
User Guide

Amazon EKS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.



Amazon EKS User Guide

Amazon EKS: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service 
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any 
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are 
the property of their respective owners, who may or may not be affiliated with, connected to, or 
sponsored by Amazon.



Amazon EKS User Guide

Table of Contents

What is Amazon EKS? ..................................................................................................................... 1
Features .......................................................................................................................................................... 1
Get started ..................................................................................................................................................... 2
Pricing ............................................................................................................................................................. 3
Common use cases ....................................................................................................................................... 3
Architecture .................................................................................................................................................... 4

Control plane ........................................................................................................................................... 4
Compute .................................................................................................................................................... 5

Deployment options .................................................................................................................................... 6
Setting up ........................................................................................................................................ 8

Step 1: Set up the AWS CLI ....................................................................................................................... 8
To create an access key ......................................................................................................................... 8
To configure the AWS CLI ..................................................................................................................... 8
To get a security token .......................................................................................................................... 9
To verify the user identity .................................................................................................................... 9

Step 2: Install Kubernetes tools .............................................................................................................. 10
To create AWS resources ..................................................................................................................... 10
To install kubectl ............................................................................................................................... 10
To set up a development environment ............................................................................................ 11

Next steps .................................................................................................................................................... 11
Installing kubectl .................................................................................................................................... 11

Getting started with Amazon EKS ................................................................................................ 24
Create your first cluster – eksctl ......................................................................................................... 24

Prerequisites ........................................................................................................................................... 25
Step 1: Create cluster and nodes ...................................................................................................... 25
Step 2: View Kubernetes resources ................................................................................................... 26
Step 3: Delete cluster and nodes ...................................................................................................... 28
Next steps ............................................................................................................................................... 29

Create your first cluster – AWS Management Console ....................................................................... 29
Prerequisites ........................................................................................................................................... 29
Step 1: Create cluster .......................................................................................................................... 30
Step 2: Configure cluster communication ....................................................................................... 33
Step 3: Create nodes ............................................................................................................................ 34
Step 4: View resources ........................................................................................................................ 39

iii



Amazon EKS User Guide

Step 5: Delete resources ..................................................................................................................... 39
Next steps ............................................................................................................................................... 41

Clusters ........................................................................................................................................... 42
Creating a cluster ....................................................................................................................................... 43
Cluster insights ........................................................................................................................................... 56
Updating Kubernetes version .................................................................................................................. 60

Update the Kubernetes version for your Amazon EKS cluster .................................................... 61
Deleting a cluster ....................................................................................................................................... 68
Configuring endpoint access .................................................................................................................... 72

Modifying cluster endpoint access .................................................................................................... 73
Accessing a private only API server .................................................................................................. 79

Enabling secret encryption ...................................................................................................................... 80
Enabling Windows support ...................................................................................................................... 84

Enabling Windows support ................................................................................................................. 86
Removing legacy Windows support .................................................................................................. 88
Disabling Windows support ................................................................................................................ 89
Deploying Pods ...................................................................................................................................... 90
Enabling legacy Windows support .................................................................................................... 90
Supporting higher Pod density on Windows nodes ...................................................................... 98

Private cluster requirements .................................................................................................................... 99
................................................................................................................................................................ 100

Kubernetes versions ................................................................................................................................ 102
Available versions on standard support ........................................................................................ 102
Available versions on extended support ....................................................................................... 103
Amazon EKS Kubernetes release calendar .................................................................................... 103
Amazon EKS version FAQs ................................................................................................................ 104
Amazon extended support FAQs ..................................................................................................... 106
Standard support versions ............................................................................................................... 109
Extended support versions ............................................................................................................... 116

Platform versions ..................................................................................................................................... 121
Kubernetes version 1.29 .................................................................................................................. 122
Kubernetes version 1.28 .................................................................................................................. 122
Kubernetes version 1.27 .................................................................................................................. 123
Kubernetes version 1.26 .................................................................................................................. 125
Kubernetes version 1.25 .................................................................................................................. 126
Kubernetes version 1.24 .................................................................................................................. 128

iv



Amazon EKS User Guide

Kubernetes version 1.23 .................................................................................................................. 130
Get current platform version ........................................................................................................... 132

Autoscaling ................................................................................................................................................ 133
Nodes ............................................................................................................................................ 134

Managed node groups ............................................................................................................................ 141
Managed node groups concepts ..................................................................................................... 141
Managed node group capacity types ............................................................................................. 144
Creating a managed node group .................................................................................................... 147
Updating a managed node group ................................................................................................... 158
Node taints on managed node groups .......................................................................................... 165
Customizing managed nodes with launch templates ................................................................. 167
Deleting a managed node group .................................................................................................... 182

Self-managed nodes ............................................................................................................................... 183
Amazon Linux ...................................................................................................................................... 184
Bottlerocket ......................................................................................................................................... 196
Windows ............................................................................................................................................... 200
Updates ................................................................................................................................................. 209

AWS Fargate .............................................................................................................................................. 223
Fargate considerations ....................................................................................................................... 223
Getting started with Fargate ........................................................................................................... 226
Fargate profile ..................................................................................................................................... 231
Fargate Pod configuration ................................................................................................................ 238
Fargate OS patching .......................................................................................................................... 241
Fargate metrics ................................................................................................................................... 243
Fargate logging ................................................................................................................................... 245

Instance types ........................................................................................................................................... 257
Maximum Pods .................................................................................................................................... 259

Amazon EKS optimized AMIs ................................................................................................................ 261
Dockershim deprecation ................................................................................................................. 261
Amazon Linux ...................................................................................................................................... 263
Bottlerocket ......................................................................................................................................... 275
Ubuntu Linux ....................................................................................................................................... 278
Windows ............................................................................................................................................... 278

Storage ......................................................................................................................................... 332
Amazon EBS CSI driver ........................................................................................................................... 332

Create an IAM role ............................................................................................................................. 333

v



Amazon EKS User Guide

Manage the Amazon EKS add-on ................................................................................................... 341
Deploy a sample application ............................................................................................................ 349
CSI migration FAQ .............................................................................................................................. 352

Amazon EFS CSI driver ........................................................................................................................... 356
Creating an IAM role .......................................................................................................................... 357
Installing the Amazon EFS CSI driver ............................................................................................. 361
Creating an Amazon EFS file system ............................................................................................. 361
Deploying a sample application ...................................................................................................... 361

Amazon FSx for Lustre CSI driver ........................................................................................................ 361
Amazon FSx for NetApp ONTAP CSI driver ........................................................................................ 369
Amazon FSx for OpenZFS CSI driver ................................................................................................... 370
Amazon File Cache CSI driver ............................................................................................................... 370
Mountpoint for Amazon S3 CSI driver ................................................................................................ 370

Creating an IAM policy ...................................................................................................................... 372
Creating an IAM role .......................................................................................................................... 374
Installing the Mountpoint for Amazon S3 CSI driver .................................................................. 378
Configuring Mountpoint for Amazon S3 ....................................................................................... 380
Deploying a sample application ...................................................................................................... 380
Removing Mountpoint for Amazon S3 CSI Driver ....................................................................... 380

CSI snapshot controller .......................................................................................................................... 382
Networking .................................................................................................................................. 384

VPC and subnet requirements .............................................................................................................. 384
VPC requirements and considerations ........................................................................................... 384
Subnet requirements and considerations ...................................................................................... 386
Shared subnet requirements and considerations ........................................................................ 391

Creating a VPC ......................................................................................................................................... 392
Security group requirements ................................................................................................................. 398
Add-ons ...................................................................................................................................................... 401

Built-in add-ons .................................................................................................................................. 401
Optional AWS networking add-ons ................................................................................................ 402
Amazon VPC CNI plugin for Kubernetes ....................................................................................... 402
AWS Load Balancer Controller ......................................................................................................... 502
CoreDNS ................................................................................................................................................ 514
kube-proxy ........................................................................................................................................ 524

AWS PrivateLink ....................................................................................................................................... 529
Considerations ..................................................................................................................................... 530

vi



Amazon EKS User Guide

Create an interface endpoint ........................................................................................................... 531
Workloads .................................................................................................................................... 532

Sample application deployment ........................................................................................................... 532
Next Steps ............................................................................................................................................ 542

Vertical Pod Autoscaler .......................................................................................................................... 542
Deploy the Vertical Pod Autoscaler ................................................................................................ 543
Test your Vertical Pod Autoscaler installation ............................................................................. 544

Horizontal Pod Autoscaler ..................................................................................................................... 548
Run a Horizontal Pod Autoscaler test application ....................................................................... 549

Network load balancing ......................................................................................................................... 552
Create a network load balancer ...................................................................................................... 555
(Optional) Deploy a sample application ........................................................................................ 558

Application load balancing .................................................................................................................... 561
(Optional) Deploy a sample application ........................................................................................ 565

Restrict service external IP address assignment ............................................................................... 568
Copy an image to a repository ............................................................................................................. 571
Amazon container image registries ...................................................................................................... 574
Amazon EKS add-ons .............................................................................................................................. 577

Available Amazon EKS add-ons from Amazon EKS ..................................................................... 579
Additional Amazon EKS add-ons from independent software vendors .................................. 586
Managing add-ons .............................................................................................................................. 596
Kubernetes field management ....................................................................................................... 616

Verify container images .......................................................................................................................... 619
Machine learning training ...................................................................................................................... 620

Create node group ............................................................................................................................. 621
(Optional) Deploy a sample EFA compatible application ........................................................... 628

Machine learning inference ................................................................................................................... 629
Prerequisites ........................................................................................................................................ 630
Create a cluster ................................................................................................................................... 630
(Optional) Deploy a TensorFlow Serving application image ...................................................... 631
(Optional) Make predictions against your TensorFlow Serving service ................................... 634

Accessing your cluster ................................................................................................................. 636
Allowing IAM roles or users access to Kubernetes ............................................................................ 637

Cluster authentication modes .......................................................................................................... 638
Changing authentication mode ....................................................................................................... 640
Creating access entries ...................................................................................................................... 642

vii



Amazon EKS User Guide

Updating access entries .................................................................................................................... 648
Deleting access entries ...................................................................................................................... 649
Associating and disassociating access policies ............................................................................. 651
Migrating existing aws-auth ConfigMap entries to access entries ...................................... 668

Using the aws-auth ConfigMap ........................................................................................................ 670
Add IAM principals ............................................................................................................................. 670
Apply the aws-auth   ConfigMap to your cluster .................................................................... 678

Creating a kubeconfig file .................................................................................................................. 680
Create kubeconfig file automatically .......................................................................................... 681

Default Kubernetes roles and users ..................................................................................................... 682
Authenticating to your cluster with your own OIDC identity provider ......................................... 687

Associate an OIDC identity provider .............................................................................................. 688
Disassociate an OIDC identity provider from your cluster ......................................................... 691
Example IAM policy ............................................................................................................................ 691
Partner validated OIDC identity providers .................................................................................... 693

Cluster management ................................................................................................................... 694
Cost monitoring ....................................................................................................................................... 694

Remove Kubecost ............................................................................................................................... 698
Frequently asked questions .............................................................................................................. 698

Metrics server ........................................................................................................................................... 702
Using Helm ................................................................................................................................................ 703
Tagging your resources ........................................................................................................................... 705

Tag basics ............................................................................................................................................. 705
Tagging your resources ..................................................................................................................... 706
Tag restrictions .................................................................................................................................... 707
Tagging your resources for billing .................................................................................................. 707
Working with tags using the console ............................................................................................. 708
Working with tags using the CLI, API, or eksctl ....................................................................... 709

Service quotas .......................................................................................................................................... 711
Service quotas ..................................................................................................................................... 712
AWS Fargate service quotas ............................................................................................................. 714

Security ........................................................................................................................................ 716
Certificate signing .................................................................................................................................... 717

CSR example ........................................................................................................................................ 718
CSRs in Kubernetes 1.24 ................................................................................................................. 720

Kubernetes service accounts ................................................................................................................. 721

viii



Amazon EKS User Guide

Service account tokens ...................................................................................................................... 721
Cluster add-ons ................................................................................................................................... 723
IAM credentials for pods ................................................................................................................... 723
EKS Pod Identities .............................................................................................................................. 727
IAM roles for service accounts ......................................................................................................... 751

Identity and access management ......................................................................................................... 775
Audience ............................................................................................................................................... 775
Authenticating with identities ......................................................................................................... 776
Managing access using policies ....................................................................................................... 779
How Amazon EKS works with IAM ................................................................................................. 781
Identity-based policy examples ....................................................................................................... 786
Using service-linked roles ................................................................................................................. 793
Cluster IAM role .................................................................................................................................. 807
Node IAM role ..................................................................................................................................... 810
Pod execution IAM role ..................................................................................................................... 816
EKS Pod Identity role ........................................................................................................................ 821
Connector IAM role ............................................................................................................................ 822
AWS managed policies ...................................................................................................................... 826
Troubleshooting .................................................................................................................................. 837

Compliance validation ............................................................................................................................ 840
Resilience ................................................................................................................................................... 841
Infrastructure security ............................................................................................................................. 842
Configuration and vulnerability analysis ............................................................................................ 843
Security best practices ............................................................................................................................ 844
Pod security policy .................................................................................................................................. 844

Amazon EKS default Pod security policy ...................................................................................... 845
Delete default policy ......................................................................................................................... 846
Install or restore default policy ....................................................................................................... 847

1.25 Pod security policy removal FAQ ................................................................................................ 849
Managing Kubernetes secrets ............................................................................................................... 852
Amazon EKS Connector considerations .............................................................................................. 852

AWS responsibilities ........................................................................................................................... 853
Customer responsibilities .................................................................................................................. 853

View Kubernetes resources ......................................................................................................... 854
Required permissions .............................................................................................................................. 855

Observability ............................................................................................................................... 862

ix



Amazon EKS User Guide

Logging and monitoring ........................................................................................................................ 862
Amazon EKS logging and monitoring tools ....................................................................................... 863
Prometheus metrics ................................................................................................................................ 867

Turn on Prometheus metrics when creating a cluster ................................................................ 867
Viewing Prometheus scraper details .............................................................................................. 869
Deploying Prometheus using Helm ................................................................................................ 869
Viewing the control plane raw metrics .......................................................................................... 872

Amazon CloudWatch ............................................................................................................................... 873
Configuring logging ................................................................................................................................. 874

Enabling and disabling control plane logs .................................................................................... 875
Viewing cluster control plane logs ................................................................................................. 878

AWS CloudTrail ......................................................................................................................................... 879
Amazon EKS information in CloudTrail ......................................................................................... 880
Understanding Amazon EKS log file entries ................................................................................. 880
Enable Auto Scaling group metrics collection .............................................................................. 883

ADOT Operator ......................................................................................................................................... 888
Working with other services ....................................................................................................... 889

Creating Amazon EKS resources with AWS CloudFormation .......................................................... 889
Amazon EKS and AWS CloudFormation templates ..................................................................... 889
Learn more about AWS CloudFormation ....................................................................................... 890

Amazon EKS and AWS Local Zones ..................................................................................................... 890
Deep Learning Containers ...................................................................................................................... 891
Amazon VPC Lattice ................................................................................................................................ 891
AWS Resilience Hub ................................................................................................................................. 891
Amazon GuardDuty ................................................................................................................................. 891
Amazon Detective .................................................................................................................................... 892

Use Amazon Detective with Amazon EKS ..................................................................................... 892
Troubleshooting ........................................................................................................................... 894

Insufficient capacity ................................................................................................................................. 894
Nodes fail to join cluster ........................................................................................................................ 894
Unauthorized or access denied (kubectl) ......................................................................................... 896
hostname doesn't match ............................................................................................................... 897
getsockopt: no route to host ............................................................................................... 897
Instances failed to join the Kubernetes cluster .................................................. 897
Managed node group error codes ........................................................................................................ 898
Not authorized for images ....................................................................................................... 903

x



Amazon EKS User Guide

Node is in NotReady state .................................................................................................................... 903
CNI log collection tool ............................................................................................................................ 903
Container runtime network not ready ................................................................................................ 904
TLS handshake timeout .......................................................................................................................... 906
InvalidClientTokenId ................................................................................................................................ 906
VPC admission webhook certificate expiration ................................................................................. 907
Node groups must match Kubernetes version before upgrading control plane ......................... 907
When launching many nodes, there are Too Many Requests errors ........................................ 908
HTTP 401 unauthorized errors ............................................................................................................. 908
Old platform version ............................................................................................................................... 909
Cluster health FAQs and error codes with resolution paths ........................................................... 912

Amazon EKS Connector .............................................................................................................. 917
Considerations .......................................................................................................................................... 917
Required IAM permissions ...................................................................................................................... 918
Connecting a cluster ............................................................................................................................... 918

Connector methods ............................................................................................................................ 919
Prerequisites ........................................................................................................................................ 919
Step 1: Registering the cluster ........................................................................................................ 919
Step 2: Installing the agent ............................................................................................................. 922
Next steps ............................................................................................................................................ 924

Granting access to an IAM principal to view Kubernetes resources on a cluster ......................... 924
Prerequisites ........................................................................................................................................ 924

Deregister a cluster ................................................................................................................................. 926
To deregister the Kubernetes cluster ............................................................................................. 926
To clean up the resources in your Kubernetes cluster ................................................................ 927

Amazon EKS Connector Troubleshooting ........................................................................................... 928
Basic troubleshooting ........................................................................................................................ 928
Helm issue: 403 Forbidden ............................................................................................................... 929
Cluster stuck in Pending state ....................................................................................................... 930
Service account can't impersonate “users” in API group ............................................................ 930
User can't list resource in API group .............................................................................................. 931
Amazon EKS can't communicate with API server ........................................................................ 931
Amazon EKS connector Pods are crash looping .......................................................................... 932
Failed to initiate eks-connector: InvalidActivation .................................... 932
Cluster node is missing outbound connectivity ........................................................................... 933
Amazon EKS connector Pods are in ImagePullBackOff state .............................................. 934

xi



Amazon EKS User Guide

Frequently asked questions ................................................................................................................... 934
Amazon EKS on AWS Outposts .................................................................................................. 936

When to use each deployment option ................................................................................................ 936
Comparing the deployment options .................................................................................................... 937
Local clusters ............................................................................................................................................ 939

Creating a local cluster ..................................................................................................................... 940
Platform versions ............................................................................................................................... 951
VPC and subnet requirements ......................................................................................................... 957
Network disconnects .......................................................................................................................... 961
Capacity considerations ..................................................................................................................... 966
Troubleshooting .................................................................................................................................. 968

Launching nodes ...................................................................................................................................... 977
Related projects ........................................................................................................................... 986

Management tools ................................................................................................................................... 986
eksctl ..................................................................................................................................................... 986
AWS controllers for Kubernetes ...................................................................................................... 986
Flux CD .................................................................................................................................................. 986
CDK for Kubernetes ........................................................................................................................... 987

Networking ................................................................................................................................................ 987
Amazon VPC CNI plugin for Kubernetes ....................................................................................... 987
AWS Load Balancer Controller for Kubernetes ............................................................................ 987
ExternalDNS ......................................................................................................................................... 987

Machine learning ...................................................................................................................................... 988
Kubeflow ............................................................................................................................................... 988

Auto Scaling .............................................................................................................................................. 988
Cluster autoscaler ............................................................................................................................... 988
Escalator ............................................................................................................................................... 988

Monitoring ................................................................................................................................................. 989
Prometheus .......................................................................................................................................... 989

Continuous integration / continuous deployment ............................................................................ 989
Jenkins X .............................................................................................................................................. 989

Amazon EKS new features and roadmap ................................................................................... 990
Document history ........................................................................................................................ 991

xii



Amazon EKS User Guide

What is Amazon EKS?

Amazon Elastic Kubernetes Service (Amazon EKS) is a managed service that eliminates the need to 
install, operate, and maintain your own Kubernetes control plane on Amazon Web Services (AWS).
Kubernetes is an open-source system that automates the management, scaling, and deployment of 
containerized applications.

Features of Amazon EKS

The following are key features of Amazon EKS:

Secure networking and authentication

Amazon EKS integrates your Kubernetes workloads with AWS  networking and security services. 
It also integrates with AWS Identity and Access Management (IAM) to provide authentication for 
your Kubernetes clusters.

Easy cluster scaling

Amazon EKS enables you to scale your Kubernetes clusters up and down easily based on the 
demand of your workloads. Amazon EKS supports horizontal Pod autoscaling based on CPU or 
custom metrics, and cluster autoscaling based on the demand of the entire workload.

Managed Kubernetes experience

You can make changes to your Kubernetes clusters using eksctl, AWS Management Console,
AWS Command Line Interface (AWS CLI), the API, kubectl, and Terraform.

High availability

Amazon EKS provides high availability for your control plane across multiple Availability Zones.

Integration with AWS services

Amazon EKS integrates with other AWS services, providing a comprehensive platform for 
deploying and managing your containerized applications. You can also more easily troubleshoot 
your Kubernetes workloads with various observability tools.

For details about other features of Amazon EKS, see Amazon EKS features.

Features 1

https://kubernetes.io/docs/concepts/overview/
https://eksctl.io/
https://console.aws.amazon.com/eks/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/eks/index.html
https://docs.aws.amazon.com/eks/latest/APIReference/Welcome.html
https://tf-eks-workshop.workshop.aws/
https://aws.amazon.com/eks/features


Amazon EKS User Guide

Get started with Amazon EKS

To create your first cluster and its associated resources, see Getting started with Amazon EKS. In 
general, getting started with Amazon EKS involves the following steps.

1. Create a cluster – Start by creating your cluster using eksctl, AWS Management Console, 
AWS CLI, or one of the AWS SDKs.

2. Choose your approach to compute resources – Decide between AWS Fargate, Karpenter, 
managed node groups, and self-managed nodes.

3. Setup – Set up the necessary controllers, drivers, and services.

4. Deploy workloads – Tailor your Kubernetes workloads to best utilize the resources and 
capabilities of your chosen node type.

5. Management – Oversee your workloads, integrating AWS services to streamline operations 
and enhance workload performance. You can view information about your workloads using the 
AWS Management Console.

The following diagram shows a basic flow of running Amazon EKS in the cloud. To learn about 
other Kubernetes deployment options, see Deployment options.

Get started 2



Amazon EKS User Guide

Pricing for Amazon EKS

An Amazon EKS cluster consists of a control plane and the Amazon Elastic Compute Cloud
(Amazon EC2) or Fargate compute that you run Pods on. For more information about pricing for 
the control plane, see Amazon EKS pricing. Both Amazon EC2 and Fargate provide:

On-Demand Instances

Pay for the instances that you use by the second, with no long-term commitments or upfront 
payments. For more information, see Amazon EC2 On-Demand Pricing and AWS Fargate Pricing.

, Savings Plans

You can reduce your costs by making a commitment to a consistent amount of usage, in USD 
per hour, for a term of one or three years. For more information, see Pricing with Savings Plans.

Common use cases in Amazon EKS

Amazon EKS offers robust managed Kubernetes services on AWS, designed to optimize 
containerized applications. The following are a few of the most common use cases of Amazon EKS, 
helping you leverage its strengths for your specific needs.

Deploying high-availability applications

Using Elastic Load Balancing, you can make sure that your applications are highly available 
across multiple Availability Zones.

Building microservices architectures

Use Kubernetes service discovery features with AWS Cloud Map or Amazon VPC Lattice to build 
resilient systems.

Automating software release process

Manage continuous integration and continuous deployment (CICD) pipelines that simplify the 
process of automated building, testing, and deployment of applications.

Running serverless applications

Use AWS Fargate with Amazon EKS to run serverless applications. This means you can focus 
solely on application development, while Amazon EKS and Fargate handle the underlying 
infrastructure.

Pricing 3

https://aws.amazon.com/ec2/
https://aws.amazon.com/eks/pricing
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/fargate/pricing/
https://aws.amazon.com/savingsplans/pricing/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/cloud-map/
https://aws.amazon.com/vpc/lattice/
https://aws.amazon.com/fargate/


Amazon EKS User Guide

Executing machine learning workloads

Amazon EKS is compatible with popular machine learning frameworks such as TensorFlow,
MXNet, and PyTorch. With GPU support, you can handle even complex machine learning tasks 
effectively.

Deploying consistently on premises and in the cloud

Use Amazon EKS Anywhere to operate Kubernetes clusters on your own infrastructure using 
tools that are consistent with Amazon EKS in the cloud.

Running cost-effective batch processing and big data workloads

Utilize Spot Instances to run your batch processing and big data workloads such as Apache 
Hadoop and Spark, at a fraction of the cost. This lets you take advantage of unused Amazon 
EC2 capacity at discounted prices.

Securing application and ensuring compliance

Implement strong security practices and maintain compliance with Amazon EKS, which 
integrates with AWS security services such as AWS Identity and Access Management (IAM),
Amazon Virtual Private Cloud (Amazon VPC), and AWS Key Management Service (AWS KMS). 
This ensures data privacy and protection as per industry standards.

Amazon EKS architecture

Amazon EKS aligns with the general cluster architecture of Kubernetes. For more information, see
Kubernetes Components in the Kubernetes documentation. The following sections summarize 
some extra architecture details for Amazon EKS.

Control plane

Amazon EKS ensures every cluster has its own unique Kubernetes control plane. This design keeps 
each cluster's infrastructure separate, with no overlaps between clusters or AWS accounts. The 
setup includes:

Distributed components

The control plane positions at least two API server instances and three etcd instances across 
three AWS Availability Zones within an AWS Region.

Architecture 4

https://www.tensorflow.org/
https://mxnet.apache.org/
https://pytorch.org/
https://aws.amazon.com/eks/eks-anywhere/
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/emr/details/hadoop/what-is-hadoop/
https://aws.amazon.com/emr/details/hadoop/what-is-hadoop/
https://aws.amazon.com/big-data/what-is-spark/
https://aws.amazon.com/iam/
https://aws.amazon.com/vpc/
https://aws.amazon.com/kms/
https://kubernetes.io/docs/concepts/overview/components/
https://etcd.io/


Amazon EKS User Guide

Optimal performance

Amazon EKS actively monitors and adjusts control plane instances to maintain peak 
performance.

Resilience

If a control plane instance falters, Amazon EKS quickly replaces it, using different Availability 
Zone if needed.

Consistent uptime

By running clusters across multiple Availability Zones, a reliable API server endpoint availability 
Service Level Agreement (SLA) is achieved.

Amazon EKS uses Amazon Virtual Private Cloud (Amazon VPC) to limit traffic between control 
plane components within a single cluster. Cluster components can't view or receive communication 
from other clusters or AWS accounts, except when authorized by Kubernetes role-based access 
control (RBAC) policies.

Compute

In addition to the control plane, an Amazon EKS cluster has a set of worker machines called 
nodes. Selecting the appropriate Amazon EKS cluster node type is crucial for meeting your specific 
requirements and optimizing resource utilization. Amazon EKS offers the following primary node 
types:

AWS Fargate

Fargate is a serverless compute engine for containers that eliminates the need to manage 
the underlying instances. With Fargate, you specify your application's resource needs, and 
AWS automatically provisions, scales, and maintains the infrastructure. This option is ideal for 
users who prioritize ease-of-use and want to concentrate on application development and 
deployment rather than managing infrastructure.

Karpenter

Karpenter is a flexible, high-performance Kubernetes cluster autoscaler that helps improve 
application availability and cluster efficiency. Karpenter launches right-sized compute resources 
in response to changing application load. This option can provision just-in-time compute 
resources that meet the requirements of your workload.

Compute 5

https://aws.amazon.com/eks/sla
https://aws.amazon.com/eks/sla
https://karpenter.sh/


Amazon EKS User Guide

Managed node groups

Managed node groups are a blend of automation and customization for managing a collection 
of Amazon EC2 instances within an Amazon EKS cluster. AWS takes care of tasks like patching, 
updating, and scaling nodes, easing operational aspects. In parallel, custom kubelet
arguments are supported, opening up possibilities for advanced CPU and memory management 
policies. Moreover, they enhance security via AWS Identity and Access Management (IAM) roles 
for service accounts, while curbing the need for separate permissions per cluster.

Self-managed nodes

Self-managed nodes offer full control over your Amazon EC2 instances within an Amazon 
EKS cluster. You are in charge of managing, scaling, and maintaining the nodes, giving you 
total control over the underlying infrastructure. This option is suitable for users who need 
granular control and customization of their nodes and are ready to invest time in managing and 
maintaining their infrastructure.

Deployment options

You can deploy Amazon EKS using any of the following options:

Amazon EKS in the cloud

You can run Kubernetes in the AWS cloud without needing to install, operate, and maintain your 
own Kubernetes control plane or nodes. This option is what is covered in this guide.

Amazon EKS on Outposts

AWS Outposts enables native AWS services, infrastructure, and operating models in your on-
premises facilities. With Amazon EKS on Outposts, you can choose to run extended or local 
clusters. With extended clusters, the Kubernetes control plane runs in an AWS Region, and 
the nodes run on Outposts. With local clusters, the entire Kubernetes cluster runs locally on 
Outposts, including both the Kubernetes control plane and nodes. For more information, see
Amazon EKS on AWS Outposts.

Amazon EKS Anywhere

Amazon EKS Anywhere is a deployment option for Amazon EKS that enables you to easily 
create and operate Kubernetes clusters on-premises. Both Amazon EKS and Amazon EKS 
Anywhere are built on the Amazon EKS Distro. To learn more about Amazon EKS Anywhere, 
and its differences with Amazon EKS, see Overview and Comparing Amazon EKS Anywhere 

Deployment options 6

https://distro.eks.amazonaws.com/
https://anywhere.eks.amazonaws.com/docs/overview
https://anywhere.eks.amazonaws.com/docs/concepts/eksafeatures/#comparing-amazon-eks-anywhere-to-amazon-eks


Amazon EKS User Guide

to Amazon EKS in the Amazon EKS Anywhere documentation. For answers to some common 
questions, see Amazon EKS Anywhere FAQs.

Amazon EKS Distro

Amazon EKS Distro is a distribution of the same open-source Kubernetes software and 
dependencies deployed by Amazon EKS in the cloud. Amazon EKS Distro follows the same 
Kubernetes version release cycle as Amazon EKS and is provided as an open-source project. To 
learn more, see Amazon EKS Distro. You can also view and download the source code for the
Amazon EKS Distro on GitHub.

When choosing which deployment options to use for your Kubernetes cluster, consider the 
following:

Feature Amazon EKS Amazon EKS 
on Outposts

Amazon EKS 
Anywhere

Amazon 
EKS Distro

Hardware AWS-supplied AWS-supplied Supplied by you Supplied by you

Deployment 
location

AWS cloud Your data center Your data center Your data center

Kubernetes 
control plane 
location

AWS cloud
AWS cloud or 

your data center
Your data center Your data center

Kubernetes data 
plane location

AWS cloud Your data center Your data center Your data center

Support
AWS Support AWS Support AWS Support

OSS community 
support

Deployment options 7

https://anywhere.eks.amazonaws.com/docs/concepts/eksafeatures/#comparing-amazon-eks-anywhere-to-amazon-eks
https://aws.amazon.com/eks/eks-anywhere/faqs/
https://distro.eks.amazonaws.com/
https://github.com/aws/eks-distro


Amazon EKS User Guide

Setting up to use Amazon EKS

AWS resources typically have access restrictions that limit access to the AWS entity that created 
them. Therefore, it's crucial to establish proper user configuration in the AWS Command Line 
Interface from the beginning. Additionally, you need to equip your local machine with essential 
tools for efficient command-line management of your Amazon EKS cluster. This topic will help you 
prepare for the command-line management of your cluster.

Step 1: Set up the AWS CLI

The AWS CLI is a command line tool for working with AWS services, including Amazon EKS. It is 
also used to authenticate IAM users or roles for access to the Amazon EKS cluster and other AWS 
resources from your local machine. To provision resources in AWS from the command line, you 
need to obtain an AWS access key ID and secret key to use in the command line. Then you need to 
configure these credentials in the AWS CLI. If you haven't already installed the AWS CLI, see Install 
or update the latest version of the AWS CLI in the AWS Command Line Interface User Guide.

To create an access key

1. Sign into the AWS Management Console.

2. In the top right, choose your AWS user name to open the navigation menu. For example, 
choose webadmin. Then choose Security credentials.

3. Under Access keys, choose Create access key.

4. Choose Command Line Interface (CLI), then choose Next.

5. Choose Create access key.

6. Choose Download .csv file.

To configure the AWS CLI

After installing the AWS CLI, do the following steps to configure it. For more information, see
Configure the AWS CLI in the AWS Command Line Interface User Guide.

1. In a terminal window, enter the following command:

aws configure

Step 1: Set up the AWS CLI 8

https://aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://console.aws.amazon.com/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html


Amazon EKS User Guide

Optionally, you can configure a named profile, such as --profile cluster-admin. If 
you configure a named profile in the AWS CLI, you must always pass this flag in subsequent 
commands.

2. Enter your AWS credentials. For example:

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: region-code
Default output format [None]: json

To get a security token

If needed, run the following command to get a new security token for the AWS CLI. For more 
information, see get-session-token in the AWS CLI Command Reference.

By default, the token is valid for 15 minutes. To change the default session timeout, pass the --
duration-seconds flag. For example:

aws sts get-session-token --duration-seconds 3600

This command returns the temporary security credentials for an AWS CLI session. You should see 
the following response output:

{ 
    "Credentials": { 
        "AccessKeyId": "ASIA5FTRU3LOEXAMPLE", 
        "SecretAccessKey": "JnKgvwfqUD9mNsPoi9IbxAYEXAMPLE", 
        "SessionToken": "VERYLONGSESSIONTOKENSTRING", 
        "Expiration": "2023-02-17T03:14:24+00:00" 
    }
}

To verify the user identity

If needed, run the following command to verify the AWS credentials for your IAM user identity 
(such as ClusterAdmin) for the terminal session.

aws sts get-caller-identity

To get a security token 9

https://docs.aws.amazon.com/cli/latest/reference/sts/get-session-token.html


Amazon EKS User Guide

This command returns the Amazon Resource Name (ARN) of the IAM entity that's configured for 
the AWS CLI. You should see the following example response output:

{ 
    "UserId": "AKIAIOSFODNN7EXAMPLE", 
    "Account": "01234567890", 
    "Arn": "arn:aws:iam::01234567890:user/ClusterAdmin"
}

Step 2: Install Kubernetes tools

To communicate with a Kubernetes cluster, you will need a tool to interact with the Kubernetes 
API. Additionally, you need a few other tools, such as one to manage Kubernetes environments on 
your local machine.

To create AWS resources

• Amazon EKS cluster resources – If you're new to AWS, we recommend installing eksctl.
eksctl is an infrastructure as code (IaC) utility that uses AWS CloudFormation to easily 
create your Amazon EKS cluster. It also creates additional Kubernetes resources, such as 
service accounts. For instructions on how to install eksctl, see Installation in the eksctl
documentation.

• AWS resources – If you're accustomed to automating the provisioning and deployment of 
your AWS infrastructure, we recommend installing Terraform. Terraform is an open-source 
infrastructure as code (IaC) tool developed by HashiCorp. It allows you to define and provision 
infrastructure using a high-level configuration language such as HashiCorp Configuration 
Language (HCL) or JSON. For instructions on how to install Terraform, see Install Terraform in 
the Terraform documentation.

To install kubectl

kubectl is an open source command line tool used to communicate with the Kubernetes API 
server on your Amazon EKS cluster. If you don't already have it installed on your local machine, 
choose from the following options.

• AWS versions – To install an Amazon EKS-supported kubectl version, see Installing or updating
kubectl.

Step 2: Install Kubernetes tools 10

https://eksctl.io/
https://eksctl.io/installation/
https://developer.hashicorp.com/terraform/tutorials/aws-get-started/install-cli


Amazon EKS User Guide

• Community versions – To install the latest community version of kubectl, see the Install tools
page in Kubernetes documentation.

To set up a development environment

• Local deployment tool – If you're new to Kubernetes, consider installing a local deployment tool 
like minikube or kind. These tools allow you to manage an Amazon EKS cluster on your local 
machine.

• Package manager – Helm is a popular package manager for Kubernetes that simplifies the 
installation and management of complex packages. With Helm, it's easier to install and manage 
packages like the AWS Load Balancer Controller on your Amazon EKS cluster.

Next steps

• Getting started with Amazon EKS

Installing or updating kubectl

Kubectl is a command line tool that you use to communicate with the Kubernetes API server. 
The kubectl binary is available in many operating system package managers. Using a package 
manager for your installation is often easier than a manual download and install process.

This topic helps you to download and install, or update, the kubectl binary on your device. The 
binary is identical to the upstream community versions. The binary is not unique to Amazon EKS or 
AWS.

Note

You must use a kubectl version that is within one minor version difference of your 
Amazon EKS cluster control plane. For example, a 1.28 kubectl client works with 
Kubernetes 1.27, 1.28, and 1.29 clusters.

To install or update kubectl

1. Determine whether you already have kubectl installed on your device.

To set up a development environment 11

https://kubernetes.io/docs/tasks/tools/#kubectl
https://minikube.sigs.k8s.io/docs/
https://kind.sigs.k8s.io/
https://helm.sh/docs/intro/install/
https://kubernetes.io/docs/tasks/tools/#kubectl


Amazon EKS User Guide

kubectl version --client

If you have kubectl installed in the path of your device, the example output includes 
information similar to the following. If you want to update the version that you currently have 
installed with a later version, complete the next step, making sure to install the new version in 
the same location that your current version is in.

Client Version: v1.29.X-eks-1234567

If you receive no output, then you either don't have kubectl installed, or it's not installed in a 
location that's in your device's path.

2. Install or update kubectl on macOS, Linux, and Windows operating systems.

macOS

To install or update kubectl on macOS

1. Download the binary for your cluster's Kubernetes version from Amazon S3.

• Kubernetes 1.29

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.29.0/2024-01-04/bin/
darwin/amd64/kubectl

• Kubernetes 1.28

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.28.5/2024-01-04/bin/
darwin/amd64/kubectl

• Kubernetes 1.27

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.27.9/2024-01-04/bin/
darwin/amd64/kubectl

• Kubernetes 1.26

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.26.12/2024-01-04/
bin/darwin/amd64/kubectl

• Kubernetes 1.25
Installing kubectl 12



Amazon EKS User Guide

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.25.16/2024-01-04/
bin/darwin/amd64/kubectl

• Kubernetes 1.24

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.24.17/2024-01-04/
bin/darwin/amd64/kubectl

• Kubernetes 1.23

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.23.17/2024-01-04/
bin/darwin/amd64/kubectl

2. (Optional) Verify the downloaded binary with the SHA-256 checksum for your binary.

a. Download the SHA-256 checksum for your cluster's Kubernetes version.

• Kubernetes 1.29

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.29.0/2024-01-04/
bin/darwin/amd64/kubectl.sha256

• Kubernetes 1.28

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.28.5/2024-01-04/
bin/darwin/amd64/kubectl.sha256

• Kubernetes 1.27

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.27.9/2024-01-04/
bin/darwin/amd64/kubectl.sha256

• Kubernetes 1.26

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.26.12/2024-01-04/
bin/darwin/amd64/kubectl.sha256

• Kubernetes 1.25

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.25.16/2024-01-04/
bin/darwin/amd64/kubectl.sha256

Installing kubectl 13



Amazon EKS User Guide

• Kubernetes 1.24

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.24.17/2024-01-04/
bin/darwin/amd64/kubectl.sha256

• Kubernetes 1.23

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.23.17/2024-01-04/
bin/darwin/amd64/kubectl.sha256

b. Check the SHA-256 checksum for your downloaded binary.

openssl sha1 -sha256 kubectl

c. Make sure that the generated checksum in the output matches in the checksum in the 
downloaded kubectl.sha256 file.

3. Apply execute permissions to the binary.

chmod +x ./kubectl

4. Copy the binary to a folder in your PATH. If you have already installed a version of
kubectl, then we recommend creating a $HOME/bin/kubectl and ensuring that
$HOME/bin comes first in your $PATH.

mkdir -p $HOME/bin && cp ./kubectl $HOME/bin/kubectl && export PATH=$HOME/bin:
$PATH

5. (Optional) Add the $HOME/bin path to your shell initialization file so that it is 
configured when you open a shell.

echo 'export PATH=$HOME/bin:$PATH' >> ~/.bash_profile

Linux (amd64)

To install or update kubectl on Linux (amd64)

1. Download the kubectl binary for your cluster's Kubernetes version from Amazon S3.

• Kubernetes 1.29

Installing kubectl 14



Amazon EKS User Guide

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.29.0/2024-01-04/bin/
linux/amd64/kubectl

• Kubernetes 1.28

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.28.5/2024-01-04/bin/
linux/amd64/kubectl

• Kubernetes 1.27

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.27.9/2024-01-04/bin/
linux/amd64/kubectl

• Kubernetes 1.26

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.26.12/2024-01-04/
bin/linux/amd64/kubectl

• Kubernetes 1.25

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.25.16/2024-01-04/
bin/linux/amd64/kubectl

• Kubernetes 1.24

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.24.17/2024-01-04/
bin/linux/amd64/kubectl

• Kubernetes 1.23

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.23.17/2024-01-04/
bin/linux/amd64/kubectl

2. (Optional) Verify the downloaded binary with the SHA-256 checksum for your binary.

a. Download the SHA-256 checksum for your cluster's Kubernetes version from Amazon 
S3 using the command for your device's hardware platform. The first link for each 
version is for amd64 and the second link is for arm64.

• Kubernetes 1.29

Installing kubectl 15



Amazon EKS User Guide

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.29.0/2024-01-04/
bin/linux/amd64/kubectl.sha256

• Kubernetes 1.28

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.28.5/2024-01-04/
bin/linux/amd64/kubectl.sha256

• Kubernetes 1.27

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.27.9/2024-01-04/
bin/linux/amd64/kubectl.sha256

• Kubernetes 1.26

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.26.12/2024-01-04/
bin/linux/amd64/kubectl.sha256

• Kubernetes 1.25

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.25.16/2024-01-04/
bin/linux/amd64/kubectl.sha256

• Kubernetes 1.24

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.24.17/2024-01-04/
bin/linux/amd64/kubectl.sha256

• Kubernetes 1.23

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.23.17/2024-01-04/
bin/linux/amd64/kubectl.sha256

b. Check the SHA-256 checksum for your downloaded binary with one of the following 
commands.

• sha256sum -c kubectl.sha256

When using this command, make sure that you see the following output:

Installing kubectl 16



Amazon EKS User Guide

kubectl: OK

• openssl sha1 -sha256 kubectl

When using this command, make sure that the generated checksum in the output 
matches in the checksum in the downloaded kubectl.sha256 file.

3. Apply execute permissions to the binary.

chmod +x ./kubectl

4. Copy the binary to a folder in your PATH. If you have already installed a version of
kubectl, then we recommend creating a $HOME/bin/kubectl and ensuring that
$HOME/bin comes first in your $PATH.

mkdir -p $HOME/bin && cp ./kubectl $HOME/bin/kubectl && export PATH=$HOME/bin:
$PATH

5. (Optional) Add the $HOME/bin path to your shell initialization file so that it is 
configured when you open a shell.

Note

This step assumes you are using the Bash shell; if you are using another shell, 
change the command to use your specific shell initialization file.

echo 'export PATH=$HOME/bin:$PATH' >> ~/.bashrc

Linux (arm64)

To install or update kubectl on Linux (arm64)

1. Download the kubectl binary for your cluster's Kubernetes version from Amazon S3.

• Kubernetes 1.29

Installing kubectl 17



Amazon EKS User Guide

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.29.0/2024-01-04/bin/
linux/arm64/kubectl

• Kubernetes 1.28

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.28.5/2024-01-04/bin/
linux/arm64/kubectl

• Kubernetes 1.27

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.27.9/2024-01-04/bin/
linux/arm64/kubectl

• Kubernetes 1.26

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.26.12/2024-01-04/
bin/linux/arm64/kubectl

• Kubernetes 1.25

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.25.16/2024-01-04/
bin/linux/arm64/kubectl

• Kubernetes 1.24

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.24.17/2024-01-04/
bin/linux/arm64/kubectl

• Kubernetes 1.23

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.23.17/2024-01-04/
bin/linux/arm64/kubectl

2. (Optional) Verify the downloaded binary with the SHA-256 checksum for your binary.

a. Download the SHA-256 checksum for your cluster's Kubernetes version from Amazon 
S3 using the command for your device's hardware platform. The first link for each 
version is for amd64 and the second link is for arm64.

• Kubernetes 1.29

Installing kubectl 18



Amazon EKS User Guide

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.29.0/2024-01-04/
bin/linux/arm64/kubectl.sha256

• Kubernetes 1.28

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.28.5/2024-01-04/
bin/linux/arm64/kubectl.sha256

• Kubernetes 1.27

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.27.9/2024-01-04/
bin/linux/arm64/kubectl.sha256

• Kubernetes 1.26

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.26.12/2024-01-04/
bin/linux/arm64/kubectl.sha256

• Kubernetes 1.25

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.25.16/2024-01-04/
bin/linux/arm64/kubectl.sha256

• Kubernetes 1.24

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.24.17/2024-01-04/
bin/linux/arm64/kubectl.sha256

• Kubernetes 1.23

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.23.17/2024-01-04/
bin/linux/arm64/kubectl.sha256

b. Check the SHA-256 checksum for your downloaded binary with one of the following 
commands.

• sha256sum -c kubectl.sha256

When using this command, make sure that you see the following output:

Installing kubectl 19



Amazon EKS User Guide

kubectl: OK

• openssl sha1 -sha256 kubectl

When using this command, make sure that the generated checksum in the output 
matches in the checksum in the downloaded kubectl.sha256 file.

3. Apply execute permissions to the binary.

chmod +x ./kubectl

4. Copy the binary to a folder in your PATH. If you have already installed a version of
kubectl, then we recommend creating a $HOME/bin/kubectl and ensuring that
$HOME/bin comes first in your $PATH.

mkdir -p $HOME/bin && cp ./kubectl $HOME/bin/kubectl && export PATH=$HOME/bin:
$PATH

5. (Optional) Add the $HOME/bin path to your shell initialization file so that it is 
configured when you open a shell.

Note

This step assumes you are using the Bash shell; if you are using another shell, 
change the command to use your specific shell initialization file.

echo 'export PATH=$HOME/bin:$PATH' >> ~/.bashrc

Windows

To install or update kubectl on Windows

1. Open a PowerShell terminal.

2. Download the kubectl binary for your cluster's Kubernetes version from Amazon S3.

• Kubernetes 1.29

Installing kubectl 20



Amazon EKS User Guide

curl.exe -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.29.0/2024-01-04/
bin/windows/amd64/kubectl.exe

• Kubernetes 1.28

curl.exe -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.28.5/2024-01-04/
bin/windows/amd64/kubectl.exe

• Kubernetes 1.27

curl.exe -O https://s3.us-west-2.amazonaws.com/amazon-eks/1.27.9/2024-01-04/
bin/windows/amd64/kubectl.exe

• Kubernetes 1.26

curl.exe -O https://s3.us-west-2.amazonaws.com/amazon-
eks/1.26.12/2024-01-04/bin/windows/amd64/kubectl.exe

• Kubernetes 1.25

curl.exe -O https://s3.us-west-2.amazonaws.com/amazon-
eks/1.25.16/2024-01-04/bin/windows/amd64/kubectl.exe

• Kubernetes 1.24

curl.exe -O https://s3.us-west-2.amazonaws.com/amazon-
eks/1.24.17/2024-01-04/bin/windows/amd64/kubectl.exe

• Kubernetes 1.23

curl.exe -O https://s3.us-west-2.amazonaws.com/amazon-
eks/1.23.17/2024-01-04/bin/windows/amd64/kubectl.exe

3. (Optional) Verify the downloaded binary with the SHA-256 checksum for your binary.

a. Download the SHA-256 checksum for your cluster's Kubernetes version for Windows.

• Kubernetes 1.29

curl.exe -O https://s3.us-west-2.amazonaws.com/amazon-
eks/1.29.0/2024-01-04/bin/windows/amd64/kubectl.exe.sha256

Installing kubectl 21



Amazon EKS User Guide

• Kubernetes 1.28

curl.exe -O https://s3.us-west-2.amazonaws.com/amazon-
eks/1.28.5/2024-01-04/bin/windows/amd64/kubectl.exe.sha256

• Kubernetes 1.27

curl.exe -O https://s3.us-west-2.amazonaws.com/amazon-
eks/1.27.9/2024-01-04/bin/windows/amd64/kubectl.exe.sha256

• Kubernetes 1.26

curl.exe -O https://s3.us-west-2.amazonaws.com/amazon-
eks/1.26.12/2024-01-04/bin/windows/amd64/kubectl.exe.sha256

• Kubernetes 1.25

curl.exe -O https://s3.us-west-2.amazonaws.com/amazon-
eks/1.25.16/2024-01-04/bin/windows/amd64/kubectl.exe.sha256

• Kubernetes 1.24

curl.exe -O https://s3.us-west-2.amazonaws.com/amazon-
eks/1.24.17/2024-01-04/bin/windows/amd64/kubectl.exe.sha256

• Kubernetes 1.23

curl.exe -O https://s3.us-west-2.amazonaws.com/amazon-
eks/1.23.17/2024-01-04/bin/windows/amd64/kubectl.exe.sha256

b. Check the SHA-256 checksum for your downloaded binary.

Get-FileHash kubectl.exe

c. Make sure that the generated checksum in the output matches in the checksum in the 
downloaded kubectl.sha256 file. The PowerShell output should be an uppercase 
equivalent string of characters.

4. Copy the binary to a folder in your PATH. If you have an existing directory in your PATH
that you use for command line utilities, copy the binary to that directory. Otherwise, 
complete the following steps.

Installing kubectl 22



Amazon EKS User Guide

a. Create a new directory for your command line binaries, such as C:\bin.

b. Copy the kubectl.exe binary to your new directory.

c. Edit your user or system PATH environment variable to add the new directory to your
PATH.

d. Close your PowerShell terminal and open a new one to pick up the new PATH variable.

3. After you install kubectl, you can verify its version.

kubectl version --client

When first installing kubectl, it isn't yet configured to communicate with any server. We will cover 
this configuration as needed in other procedures. If you ever need to update the configuration to 
communicate with a particular cluster, you can run the following command. Replace region-code
with the AWS Region that your cluster is in. Replace my-cluster with the name of your cluster.

aws eks update-kubeconfig --region region-code --name my-cluster

Installing kubectl 23



Amazon EKS User Guide

Getting started with Amazon EKS

Make sure that you are set up to use Amazon EKS before going through the getting started guides. 
For more information, see Setting up to use Amazon EKS.

There are two getting started guides available for creating a new Kubernetes cluster with nodes in 
Amazon EKS:

• Getting started with Amazon EKS – eksctl – This getting started guide helps you to install all 
of the required resources to get started with Amazon EKS using eksctl, a simple command 
line utility for creating and managing Kubernetes clusters on Amazon EKS. At the end of the 
tutorial, you will have a running Amazon EKS cluster that you can deploy applications to. This is 
the fastest and simplest way to get started with Amazon EKS.

• Getting started with Amazon EKS – AWS Management Console and AWS CLI – This getting 
started guide helps you to create all of the required resources to get started with Amazon EKS 
using the AWS Management Console and AWS CLI. At the end of the tutorial, you will have a 
running Amazon EKS cluster that you can deploy applications to. In this guide, you manually 
create each resource required for an Amazon EKS cluster. The procedures give you visibility into 
how each resource is created and how they interact with each other.

We also offer a curated collection of hands-on tutorials. For more information, see Navigating 
Amazon EKS on AWS Community.

Getting started with Amazon EKS – eksctl

This guide helps you to create all of the required resources to get started with Amazon Elastic 
Kubernetes Service (Amazon EKS) using eksctl, a simple command line utility for creating and 
managing Kubernetes clusters on Amazon EKS. At the end of this tutorial, you will have a running 
Amazon EKS cluster that you can deploy applications to.

The procedures in this guide create several resources for you automatically that you have to 
create manually when you create your cluster using the AWS Management Console. If you'd rather 
manually create most of the resources to better understand how they interact with each other, 
then use the AWS Management Console to create your cluster and compute. For more information, 
see Getting started with Amazon EKS – AWS Management Console and AWS CLI.

Create your first cluster – eksctl 24

https://community.aws/tutorials/navigating-amazon-eks
https://community.aws/tutorials/navigating-amazon-eks


Amazon EKS User Guide

Prerequisites

Before starting this tutorial, you must install and configure the following tools and resources that 
you need to create and manage an Amazon EKS cluster.

• kubectl – A command line tool for working with Kubernetes clusters. For more information, see
Installing or updating kubectl.

• eksctl – A command line tool for working with EKS clusters that automates many individual 
tasks. For more information, see Installation in the eksctl documentation.

• Required IAM permissions – The IAM security principal that you're using must have permissions 
to work with Amazon EKS IAM roles, service linked roles, AWS CloudFormation, a VPC, and 
related resources. For more information, see Actions, resources, and condition keys for Amazon 
Elastic Container Service for Kubernetes and Using service-linked roles in the IAM User Guide. 
You must complete all steps in this guide as the same user. To check the current user, run the 
following command:

aws sts get-caller-identity

Step 1: Create your Amazon EKS cluster and nodes

Important

To get started as simply and quickly as possible, this topic includes steps to create a cluster 
and nodes with default settings. Before creating a cluster and nodes for production use, 
we recommend that you familiarize yourself with all settings and deploy a cluster and 
nodes with the settings that meet your requirements. For more information, see Creating 
an Amazon EKS cluster and Amazon EKS nodes. Some settings can only be enabled when 
creating your cluster and nodes.

You can create a cluster with one of the following node types. To learn more about each type, see
Amazon EKS nodes. After your cluster is deployed, you can add other node types.

• Fargate – Linux – Select this type of node if you want to run Linux applications on AWS Fargate. 
Fargate is a serverless compute engine that lets you deploy Kubernetes Pods without managing 
Amazon EC2 instances.

Prerequisites 25

https://eksctl.io/installation
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html


Amazon EKS User Guide

• Managed nodes – Linux – Select this type of node if you want to run Amazon Linux applications 
on Amazon EC2 instances. Though not covered in this guide, you can also add Windows self-
managed and Bottlerocket nodes to your cluster.

Create your Amazon EKS cluster with the following command. You can replace my-cluster
with your own value. The name can contain only alphanumeric characters (case-sensitive) and 
hyphens. It must start with an alphabetic character and can't be longer than 100 characters. 
Replace region-code with any AWS Region that is supported by Amazon EKS. For a list of AWS 
Regions, see Amazon EKS endpoints and quotas in the AWS General Reference guide.

Fargate – Linux

eksctl create cluster --name my-cluster --region region-code --fargate

Managed nodes – Linux

eksctl create cluster --name my-cluster --region region-code

Cluster creation takes several minutes. During creation you'll see several lines of output. The last 
line of output is similar to the following example line.

[...]
[#]  EKS cluster "my-cluster" in "region-code" region is ready

eksctl created a kubectl config file in ~/.kube or added the new cluster's configuration 
within an existing config file in ~/.kube on your computer.

After cluster creation is complete, view the AWS CloudFormation stack named eksctl-my-
cluster-cluster in the AWS CloudFormation console at https://console.aws.amazon.com/
cloudformation to see all of the resources that were created.

Step 2: View Kubernetes resources

1. View your cluster nodes.

kubectl get nodes -o wide

An example output is as follows.

Step 2: View Kubernetes resources 26

https://docs.aws.amazon.com/general/latest/gr/eks.html
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/


Amazon EKS User Guide

Fargate – Linux

NAME                                                STATUS   ROLES    AGE   
   VERSION              INTERNAL-IP   EXTERNAL-IP   OS-IMAGE         KERNEL-
VERSION                  CONTAINER-RUNTIME
fargate-ip-192-0-2-0.region-code.compute.internal   Ready    <none>  
   8m3s    v1.2.3-eks-1234567   192.0.2.0     <none>        Amazon Linux 2  
   1.23.456-789.012.amzn2.x86_64   containerd://1.2.3
fargate-ip-192-0-2-1.region-code.compute.internal   Ready    <none>  
   7m30s   v1.2.3-eks-1234567   192-0-2-1     <none>        Amazon Linux 2  
   1.23.456-789.012.amzn2.x86_64   containerd://1.2.3

Managed nodes – Linux

NAME                                        STATUS   ROLES    AGE    VERSION     
          INTERNAL-IP   EXTERNAL-IP   OS-IMAGE         KERNEL-VERSION            
       CONTAINER-RUNTIME
ip-192-0-2-0.region-code.compute.internal   Ready    <none>    6m7s
   v1.2.3-eks-1234567   192.0.2.0     192.0.2.2     Amazon Linux 2  
   1.23.456-789.012.amzn2.x86_64   containerd://1.2.3
ip-192-0-2-1.region-code.compute.internal   Ready    <none>    6m4s
   v1.2.3-eks-1234567   192.0.2.1     192.0.2.3     Amazon Linux 2  
   1.23.456-789.012.amzn2.x86_64   containerd://1.2.3

For more information about what you see in the output, see View Kubernetes resources.

2. View the workloads running on your cluster.

kubectl get pods -A -o wide

An example output is as follows.

Fargate – Linux

NAMESPACE     NAME                       READY   STATUS    RESTARTS   AGE   IP 
          NODE                                                NOMINATED NODE   
 READINESS GATES
kube-system   coredns-1234567890-abcde   1/1     Running   0           18m 
  192.0.2.0   fargate-ip-192-0-2-0.region-code.compute.internal   <none>         
   <none>

Step 2: View Kubernetes resources 27



Amazon EKS User Guide

kube-system   coredns-1234567890-12345   1/1     Running   0           18m 
  192.0.2.1   fargate-ip-192-0-2-1.region-code.compute.internal   <none>         
   <none>

Managed nodes – Linux

NAMESPACE     NAME                       READY   STATUS    RESTARTS   AGE     IP 
          NODE                                        NOMINATED NODE   READINESS 
 GATES
kube-system   aws-node-12345             1/1     Running   0           7m43s
   192.0.2.1   ip-192-0-2-1.region-code.compute.internal   <none>           
 <none>
kube-system   aws-node-67890             1/1     Running   0           7m46s
   192.0.2.0   ip-192-0-2-0.region-code.compute.internal   <none>           
 <none>
kube-system   coredns-1234567890-abcde   1/1     Running   0           14m  
   192.0.2.3   ip-192-0-2-3.region-code.compute.internal   <none>           
 <none>
kube-system   coredns-1234567890-12345   1/1     Running   0           14m  
   192.0.2.4   ip-192-0-2-4.region-code.compute.internal   <none>           
 <none>
kube-system   kube-proxy-12345           1/1     Running   0           7m46s
   192.0.2.0   ip-192-0-2-0.region-code.compute.internal   <none>           
 <none>
kube-system   kube-proxy-67890           1/1     Running   0           7m43s
   192.0.2.1   ip-192-0-2-1.region-code.compute.internal   <none>           
 <none>

For more information about what you see in the output, see View Kubernetes resources.

Step 3: Delete your cluster and nodes

After you've finished with the cluster and nodes that you created for this tutorial, you should clean 
up by deleting the cluster and nodes with the following command. If you want to do more with this 
cluster before you clean up, see Next steps.

eksctl delete cluster --name my-cluster --region region-code

Step 3: Delete cluster and nodes 28



Amazon EKS User Guide

Next steps

The following documentation topics help you to extend the functionality of your cluster.

• Deploy a sample application to your cluster.

• The IAM principal that created the cluster is the only principal that can make calls to the 
Kubernetes API server with kubectl or the AWS Management Console. If you want other IAM 
principals to have access to your cluster, then you need to add them. For more information, see
Enabling IAM principal access to your cluster and Required permissions.

• Before deploying a cluster for production use, we recommend familiarizing yourself with all of 
the settings for clusters and nodes. Some settings (such as enabling SSH access to Amazon EC2 
nodes) must be made when the cluster is created.

• To increase security for your cluster, configure the Amazon VPC Container Networking Interface 
plugin to use IAM roles for service accounts.

Getting started with Amazon EKS – AWS Management Console 
and AWS CLI

This guide helps you to create all of the required resources to get started with Amazon Elastic 
Kubernetes Service (Amazon EKS) using the AWS Management Console and the AWS CLI. In this 
guide, you manually create each resource. At the end of this tutorial, you will have a running 
Amazon EKS cluster that you can deploy applications to.

The procedures in this guide give you complete visibility into how each resource is created and 
how the resources interact with each other. If you'd rather have most of the resources created for 
you automatically, use the eksctl CLI to create your cluster and nodes. For more information, see
Getting started with Amazon EKS – eksctl.

Prerequisites

Before starting this tutorial, you must install and configure the following tools and resources that 
you need to create and manage an Amazon EKS cluster.

• AWS CLI – A command line tool for working with AWS services, including Amazon EKS. For more 
information, see Installing, updating, and uninstalling the AWS CLI in the AWS Command Line 
Interface User Guide. After installing the AWS CLI, we recommend that you also configure it. For 

Next steps 29

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html


Amazon EKS User Guide

more information, see Quick configuration with aws configure in the AWS Command Line 
Interface User Guide.

• kubectl – A command line tool for working with Kubernetes clusters. For more information, see
Installing or updating kubectl.

• Required IAM permissions – The IAM security principal that you're using must have permissions 
to work with Amazon EKS IAM roles, service linked roles, AWS CloudFormation, a VPC, and 
related resources. For more information, see Actions, resources, and condition keys for Amazon 
Elastic Kubernetes Service and Using service-linked roles in the IAM User Guide. You must 
complete all steps in this guide as the same user. To check the current user, run the following 
command:

aws sts get-caller-identity

• We recommend that you complete the steps in this topic in a Bash shell. If you aren't using a 
Bash shell, some script commands such as line continuation characters and the way variables are 
set and used require adjustment for your shell. Additionally, the quoting and escaping rules for 
your shell might be different. For more information, see Using quotation marks with strings in 
the AWS CLI in the AWS Command Line Interface User Guide.

Step 1: Create your Amazon EKS cluster

Important

To get started as simply and quickly as possible, this topic includes steps to create a cluster 
with default settings. Before creating a cluster for production use, we recommend that you 
familiarize yourself with all settings and deploy a cluster with the settings that meet your 
requirements. For more information, see Creating an Amazon EKS cluster. Some settings 
can only be enabled when creating your cluster.

To create your cluster

1. Create an Amazon VPC with public and private subnets that meets Amazon EKS requirements.
Replace region-code with any AWS Region that is supported by Amazon EKS. For a list of 
AWS Regions, see Amazon EKS endpoints and quotas in the AWS General Reference guide. You 
can replace my-eks-vpc-stack with any name you choose.

Step 1: Create cluster 30

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-quoting-strings.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-quoting-strings.html
https://docs.aws.amazon.com/general/latest/gr/eks.html


Amazon EKS User Guide

aws cloudformation create-stack \ 
  --region region-code \ 
  --stack-name my-eks-vpc-stack \ 
  --template-url https://s3.us-west-2.amazonaws.com/amazon-
eks/cloudformation/2020-10-29/amazon-eks-vpc-private-subnets.yaml

Tip

For a list of all the resources the previous command creates, open the AWS 
CloudFormation console at https://console.aws.amazon.com/cloudformation. Choose 
the my-eks-vpc-stack stack and then choose the Resources tab.

2. Create a cluster IAM role and attach the required Amazon EKS IAM managed policy to it. 
Kubernetes clusters managed by Amazon EKS make calls to other AWS services on your behalf 
to manage the resources that you use with the service.

a. Copy the following contents to a file named eks-cluster-role-trust-policy.json.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "eks.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole" 
    } 
  ]
}

b. Create the role.

aws iam create-role \ 
  --role-name myAmazonEKSClusterRole \ 
  --assume-role-policy-document file://"eks-cluster-role-trust-policy.json"

c. Attach the required Amazon EKS managed IAM policy to the role.

aws iam attach-role-policy \ 

Step 1: Create cluster 31

https://console.aws.amazon.com/cloudformation/


Amazon EKS User Guide

  --policy-arn arn:aws:iam::aws:policy/AmazonEKSClusterPolicy \ 
  --role-name myAmazonEKSClusterRole

3. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

Make sure that the AWS Region shown in the upper right of your console is the AWS Region 
that you want to create your cluster in. If it's not, choose the dropdown next to the AWS 
Region name and choose the AWS Region that you want to use.

4. Choose Add cluster, and then choose Create. If you don't see this option, then choose Clusters
in the left navigation pane first.

5. On the Configure cluster page, do the following:

a. Enter a Name for your cluster, such as my-cluster. The name can contain only 
alphanumeric characters (case-sensitive) and hyphens. It must start with an alphabetic 
character and can't be longer than 100 characters.

b. For Cluster Service Role, choose myAmazonEKSClusterRole.

c. Leave the remaining settings at their default values and choose Next.

6. On the Specify networking page, do the following:

a. Choose the ID of the VPC that you created in a previous step from the VPC dropdown list. 
It is something like vpc-00x0000x000x0x000 | my-eks-vpc-stack-VPC.

b. Leave the remaining settings at their default values and choose Next.

7. On the Configure observability page, choose Next.

8. On the Select add-ons page, choose Next.

For more information on add-ons, see Amazon EKS add-ons.

9. On the Configure selected add-ons settings page, choose Next.

10. On the Review and create page, choose Create.

To the right of the cluster's name, the cluster status is Creating for several minutes until the 
cluster provisioning process completes. Don't continue to the next step until the status is
Active.

Note

You might receive an error that one of the Availability Zones in your request doesn't 
have sufficient capacity to create an Amazon EKS cluster. If this happens, the error 

Step 1: Create cluster 32

https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

output contains the Availability Zones that can support a new cluster. Retry creating 
your cluster with at least two subnets that are located in the supported Availability 
Zones for your account. For more information, see Insufficient capacity.

Step 2: Configure your computer to communicate with your cluster

In this section, you create a kubeconfig file for your cluster. The settings in this file enable the
kubectl CLI to communicate with your cluster.

To configure your computer to communicate with your cluster

1. Create or update a kubeconfig file for your cluster. Replace region-code with the AWS 
Region that you created your cluster in. Replace my-cluster with the name of your cluster.

aws eks update-kubeconfig --region region-code --name my-cluster

By default, the config file is created in ~/.kube or the new cluster's configuration is added 
to an existing config file in ~/.kube.

2. Test your configuration.

kubectl get svc

Note

If you receive any authorization or resource type errors, see Unauthorized or access 
denied (kubectl) in the troubleshooting topic.

An example output is as follows.

NAME             TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
svc/kubernetes   ClusterIP   10.100.0.1   <none>        443/TCP    1m

Step 2: Configure cluster communication 33



Amazon EKS User Guide

Step 3: Create nodes

Important

To get started as simply and quickly as possible, this topic includes steps to create nodes 
with default settings. Before creating nodes for production use, we recommend that you 
familiarize yourself with all settings and deploy nodes with the settings that meet your 
requirements. For more information, see Amazon EKS nodes. Some settings can only be 
enabled when creating your nodes.

You can create a cluster with one of the following node types. To learn more about each type, see
Amazon EKS nodes. After your cluster is deployed, you can add other node types.

• Fargate – Linux – Choose this type of node if you want to run Linux applications on AWS Fargate. 
Fargate is a serverless compute engine that lets you deploy Kubernetes Pods without managing 
Amazon EC2 instances.

• Managed nodes – Linux – Choose this type of node if you want to run Amazon Linux 
applications on Amazon EC2 instances. Though not covered in this guide, you can also add
Windows self-managed and Bottlerocket nodes to your cluster.

Fargate – Linux

Create a Fargate profile. When Kubernetes Pods are deployed with criteria that matches the 
criteria defined in the profile, the Pods are deployed to Fargate.

To create a Fargate profile

1. Create an IAM role and attach the required Amazon EKS IAM managed policy to it. When 
your cluster creates Pods on Fargate infrastructure, the components running on the 
Fargate infrastructure must make calls to AWS APIs on your behalf. This is so that they can 
do actions such as pull container images from Amazon ECR or route logs to other AWS 
services. The Amazon EKS Pod execution role provides the IAM permissions to do this.

a. Copy the following contents to a file named pod-execution-role-trust-
policy.json. Replace region-code with the AWS Region that your cluster is in. If 
you want to use the same role in all AWS Regions in your account, replace region-
code with *. Replace 111122223333 with your account ID and my-cluster with the 

Step 3: Create nodes 34



Amazon EKS User Guide

name of your cluster. If you want to use the same role for all clusters in your account, 
replace my-cluster with *.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Condition": { 
         "ArnLike": { 
            "aws:SourceArn": "arn:aws:eks:region-
code:111122223333:fargateprofile/my-cluster/*" 
         } 
      }, 
      "Principal": { 
        "Service": "eks-fargate-pods.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole" 
    } 
  ]
}

b. Create a Pod execution IAM role.

aws iam create-role \ 
  --role-name AmazonEKSFargatePodExecutionRole \ 
  --assume-role-policy-document file://"pod-execution-role-trust-
policy.json"

c. Attach the required Amazon EKS managed IAM policy to the role.

aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::aws:policy/
AmazonEKSFargatePodExecutionRolePolicy \ 
  --role-name AmazonEKSFargatePodExecutionRole

2. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

3. On the Clusters page, choose the my-cluster cluster.

4. On the my-cluster page, do the following:

a. Choose the Compute tab.

Step 3: Create nodes 35

https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

b. Under Fargate Profiles, choose Add Fargate Profile.

5. On the Configure Fargate Profile page, do the following:

a. For Name, enter a unique name for your Fargate profile, such as my-profile.

b. For Pod execution role, choose the AmazonEKSFargatePodExecutionRole that you 
created in a previous step.

c. Choose the Subnets dropdown and deselect any subnet with Public in its name. Only 
private subnets are supported for Pods that are running on Fargate.

d. Choose Next.

6. On the Configure Pod selection page, do the following:

a. For Namespace, enter default.

b. Choose Next.

7. On the Review and create page, review the information for your Fargate profile and choose
Create.

8. After a few minutes, the Status in the Fargate Profile configuration section will change 
from Creating to Active. Don't continue to the next step until the status is Active.

9. If you plan to deploy all Pods to Fargate (none to Amazon EC2 nodes), do the following to 
create another Fargate profile and run the default name resolver (CoreDNS) on Fargate.

Note

If you don't do this, you won't have any nodes at this time.

a. On the Fargate Profile page, choose my-profile.

b. Under Fargate profiles, choose Add Fargate Profile.

c. For Name, enter CoreDNS.

d. For Pod execution role, choose the AmazonEKSFargatePodExecutionRole that you 
created in a previous step.

e. Choose the Subnets dropdown and deselect any subnet with Public in its name. Only 
private subnets are supported for Pods running on Fargate.

f. Choose Next.

g. For Namespace, enter kube-system.
Step 3: Create nodes 36



Amazon EKS User Guide

h. Choose Match labels, and then choose Add label.

i. Enter k8s-app for Key and kube-dns for value. This is necessary for the default name 
resolver (CoreDNS) to deploy to Fargate.

j. Choose Next.

k. On the Review and create page, review the information for your Fargate profile and 
choose Create.

l. Run the following command to remove the default eks.amazonaws.com/compute-
type : ec2 annotation from the CoreDNS Pods.

kubectl patch deployment coredns \ 
    -n kube-system \ 
    --type json \ 
    -p='[{"op": "remove", "path": "/spec/template/metadata/annotations/
eks.amazonaws.com~1compute-type"}]'

Note

The system creates and deploys two nodes based on the Fargate profile label you 
added. You won't see anything listed in Node groups because they aren't applicable 
for Fargate nodes, but you will see the new nodes listed in the Overview tab.

Managed nodes – Linux

Create a managed node group, specifying the subnets and node IAM role that you created in 
previous steps.

To create your Amazon EC2 Linux managed node group

1. Create a node IAM role and attach the required Amazon EKS IAM managed policy to it. The 
Amazon EKS node kubelet daemon makes calls to AWS APIs on your behalf. Nodes receive 
permissions for these API calls through an IAM instance profile and associated policies.

a. Copy the following contents to a file named node-role-trust-policy.json.

{ 
  "Version": "2012-10-17", 

Step 3: Create nodes 37



Amazon EKS User Guide

  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "ec2.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole" 
    } 
  ]
}

b. Create the node IAM role.

aws iam create-role \ 
  --role-name myAmazonEKSNodeRole \ 
  --assume-role-policy-document file://"node-role-trust-policy.json"

c. Attach the required managed IAM policies to the role.

aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy \ 
  --role-name myAmazonEKSNodeRole
aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly \ 
  --role-name myAmazonEKSNodeRole
aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy \ 
  --role-name myAmazonEKSNodeRole

2. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

3. Choose the name of the cluster that you created in Step 1: Create your Amazon EKS cluster, 
such as my-cluster.

4. On the my-cluster page, do the following:

a. Choose the Compute tab.

b. Choose Add Node Group.

5. On the Configure Node Group page, do the following:

a. For Name, enter a unique name for your managed node group, such as my-
nodegroup. The node group name can't be longer than 63 characters. It must start 

Step 3: Create nodes 38

https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

with letter or digit, but can also include hyphens and underscores for the remaining 
characters.

b. For Node IAM role name, choose myAmazonEKSNodeRole role that you created in a 
previous step. We recommend that each node group use its own unique IAM role.

c. Choose Next.

6. On the Set compute and scaling configuration page, accept the default values and choose
Next.

7. On the Specify networking page, accept the default values and choose Next.

8. On the Review and create page, review your managed node group configuration and 
choose Create.

9. After several minutes, the Status in the Node Group configuration section will change 
from Creating to Active. Don't continue to the next step until the status is Active.

Step 4: View resources

You can view your nodes and Kubernetes workloads.

To view your nodes and workloads

1. In the left navigation pane, choose Clusters. In the list of Clusters, choose the name of the 
cluster that you created, such as my-cluster.

2. On the my-cluster page, choose the following:

a. Compute tab – You see the list of Nodes that were deployed for the cluster. You can 
choose the name of a node to see more information about it.

b. Resources tab – You see all of the Kubernetes resources that are deployed by default to an 
Amazon EKS cluster. Select any resource type in the console to learn more about it.

Step 5: Delete resources

After you've finished with the cluster and nodes that you created for this tutorial, you should 
delete the resources that you created. If you want to do more with this cluster before you delete 
the resources, see Next steps.

Step 4: View resources 39



Amazon EKS User Guide

To delete the resources that you created in this guide

1. Delete any node groups or Fargate profiles that you created.

a. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

b. In the left navigation pane, choose Clusters. In the list of clusters, choose my-cluster.

c. Choose the Compute tab.

d. If you created a node group, choose the my-nodegroup node group and then choose
Delete. Enter my-nodegroup, and then choose Delete.

e. For each Fargate profile that you created, choose it and then choose Delete. Enter the 
name of the profile, and then choose Delete.

Note

When deleting a second Fargate profile, you may need to wait for the first one to 
finish deleting.

f. Don't continue until the node group or Fargate profiles are deleted.

2. Delete the cluster.

a. In the left navigation pane, choose Clusters. In the list of clusters, choose my-cluster.

b. Choose Delete cluster.

c. Enter my-cluster and then choose Delete. Don't continue until the cluster is deleted.

3. Delete the VPC AWS CloudFormation stack that you created.

a. Open the AWS CloudFormation console at https://console.aws.amazon.com/
cloudformation.

b. Choose the my-eks-vpc-stack stack, and then choose Delete.

c. In the Delete my-eks-vpc-stack confirmation dialog box, choose Delete stack.

4. Delete the IAM roles that you created.

a. Open the IAM console at https://console.aws.amazon.com/iam/.

b. In the left navigation pane, choose Roles.

c. Select each role you created from the list (myAmazonEKSClusterRole, as well as
AmazonEKSFargatePodExecutionRole or myAmazonEKSNodeRole). Choose Delete, enter 
the requested confirmation text, then choose Delete.Step 5: Delete resources 40

https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/iam/


Amazon EKS User Guide

Next steps

The following documentation topics help you to extend the functionality of your cluster.

• The IAM principal that created the cluster is the only principal that can make calls to the 
Kubernetes API server with kubectl or the AWS Management Console. If you want other IAM 
principals to have access to your cluster, then you need to add them. For more information, see
Enabling IAM principal access to your cluster and Required permissions.

• Deploy a sample application to your cluster.

• Before deploying a cluster for production use, we recommend familiarizing yourself with all of 
the settings for clusters and nodes. Some settings (such as enabling SSH access to Amazon EC2 
nodes) must be made when the cluster is created.

• To increase security for your cluster, configure the Amazon VPC Container Networking Interface 
plugin to use IAM roles for service accounts.

Next steps 41

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html


Amazon EKS User Guide

Amazon EKS clusters

An Amazon EKS cluster consists of two primary components:

• The Amazon EKS control plane

• Amazon EKS nodes that are registered with the control plane

The Amazon EKS control plane consists of control plane nodes that run the Kubernetes software, 
such as etcd and the Kubernetes API server. The control plane runs in an account managed by 
AWS, and the Kubernetes API is exposed via the Amazon EKS endpoint associated with your cluster. 
Each Amazon EKS cluster control plane is single-tenant and unique, and runs on its own set of 
Amazon EC2 instances.

All of the data stored by the etcd nodes and associated Amazon EBS volumes is encrypted using 
AWS KMS. The cluster control plane is provisioned across multiple Availability Zones and fronted 
by an Elastic Load Balancing Network Load Balancer. Amazon EKS also provisions elastic network 
interfaces in your VPC subnets to provide connectivity from the control plane instances to the 
nodes (for example, to support kubectl exec logs proxy data flows).

Important

In the Amazon EKS environment, etcd storage is limited to 8 GiB as per upstream
guidance. You can monitor a metric for the current database size by running the 
following command. If your cluster has a Kubernetes version below 1.28, replace
apiserver_storage_size_bytes with the following:

• Kubernetes version 1.27 and 1.26 –
apiserver_storage_db_total_size_in_bytes

• Kubernetes version 1.25 and below – etcd_db_total_size_in_bytes

kubectl get --raw=/metrics | grep "apiserver_storage_size_bytes"

Amazon EKS nodes run in your AWS account and connect to your cluster's control plane via the API 
server endpoint and a certificate file that is created for your cluster.

42

https://etcd.io/docs/v3.5/dev-guide/limit/#storage-size-limit


Amazon EKS User Guide

Note

• You can find out how the different components of Amazon EKS work in Amazon EKS 
networking.

• For connected clusters, see Amazon EKS Connector.

Topics

• Creating an Amazon EKS cluster

• Cluster insights

• Updating an Amazon EKS cluster Kubernetes version

• Deleting an Amazon EKS cluster

• Amazon EKS cluster endpoint access control

• Enabling secret encryption on an existing cluster

• Enabling Windows support for your Amazon EKS cluster

• Private cluster requirements

• Amazon EKS Kubernetes versions

• Amazon EKS platform versions

• Autoscaling

Creating an Amazon EKS cluster

This topic provides an overview of the available options and describes what to consider when you 
create an Amazon EKS cluster. If you need to create a cluster on an AWS Outpost, see Local clusters 
for Amazon EKS on AWS Outposts. If this is your first time creating an Amazon EKS cluster, we 
recommend that you follow one of our Getting started with Amazon EKS guides. These guides help 
you to create a simple, default cluster without expanding into all of the available options.

Prerequisites

• An existing VPC and subnets that meet Amazon EKS requirements. Before you deploy a cluster 
for production use, we recommend that you have a thorough understanding of the VPC and 
subnet requirements. If you don't have a VPC and subnets, you can create them using an Amazon 
EKS provided AWS CloudFormation template.

Creating a cluster 43



Amazon EKS User Guide

• The kubectl command line tool is installed on your device or AWS CloudShell. The version can 
be the same as or up to one minor version earlier or later than the Kubernetes version of your 
cluster. For example, if your cluster version is 1.28, you can use kubectl version 1.27, 1.28, or
1.29 with it. To install or upgrade kubectl, see Installing or updating kubectl.

• Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface (AWS 
CLI) installed and configured on your device or AWS CloudShell. To check your current version, 
use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers such yum,
apt-get, or Homebrew for macOS are often several versions behind the latest version of the 
AWS CLI. To install the latest version, see Installing, updating, and uninstalling the AWS CLI and
Quick configuration with aws configure in the AWS Command Line Interface User Guide. The AWS 
CLI version that is installed in AWS CloudShell might also be several versions behind the latest 
version. To update it, see Installing AWS CLI to your home directory in the AWS CloudShell User 
Guide.

• An IAM principal with permissions to create and describe an Amazon EKS cluster. For more 
information, see Create a local Kubernetes cluster on an Outpost and List or describe all clusters.

When an Amazon EKS cluster is created, the IAM principal that creates the cluster is permanently 
added to the Kubernetes RBAC authorization table as the administrator. This principal has
system:masters permissions. This principal isn't visible in your cluster configuration. So, it's 
important to note the principal that created the cluster and make sure that you never delete it. 
Initially, only the IAM principal that created the server can make calls to the Kubernetes API server 
using kubectl. If you use the console to create the cluster, you must ensure that the same IAM 
credentials are in the AWS SDK credential chain when you run kubectl commands on your cluster. 
After your cluster is created, you can grant other IAM principals access to your cluster.

To create an Amazon EKS cluster

1. If you already have a cluster IAM role, or you're going to create your cluster with eksctl, then 
you can skip this step. By default, eksctl creates a role for you.

To create an Amazon EKS cluster IAM role

1. Run the following command to create an IAM trust policy JSON file.

cat >eks-cluster-role-trust-policy.json <<EOF
{ 
  "Version": "2012-10-17", 
  "Statement": [ 

Creating a cluster 44

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html


Amazon EKS User Guide

    { 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "eks.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole" 
    } 
  ]
}
EOF

2. Create the Amazon EKS cluster IAM role. If necessary, preface eks-cluster-role-trust-
policy.json with the path on your computer that you wrote the file to in the previous 
step. The command associates the trust policy that you created in the previous step to the 
role. To create an IAM role, the IAM principal that is creating the role must be assigned the
iam:CreateRole action (permission).

aws iam create-role --role-name myAmazonEKSClusterRole --assume-role-policy-
document file://"eks-cluster-role-trust-policy.json"

3. You can assign either the Amazon EKS managed policy or create your own custom policy. 
For the minimum permissions that you must use in your custom policy, see Amazon EKS 
cluster IAM role.

Attach the Amazon EKS managed policy named AmazonEKSClusterPolicy to the role. 
To attach an IAM policy to an IAM principal, the principal that is attaching the policy must 
be assigned one of the following IAM actions (permissions): iam:AttachUserPolicy or
iam:AttachRolePolicy.

aws iam attach-role-policy --policy-arn arn:aws:iam::aws:policy/
AmazonEKSClusterPolicy --role-name myAmazonEKSClusterRole

2. Create an Amazon EKS cluster.

You can create a cluster by using eksctl, the AWS Management Console, or the AWS CLI.

eksctl

Prerequisite

Creating a cluster 45

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSClusterPolicy.html#AmazonEKSClusterPolicy-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html


Amazon EKS User Guide

Version 0.172.0 or later of the eksctl command line tool installed on your device 
or AWS CloudShell. To install or update eksctl, see Installation in the eksctl
documentation.

To create your cluster

Create an Amazon EKS IPv4 cluster with the Amazon EKS default Kubernetes version in 
your default AWS Region. Before running command, make the following replacements:

• Replace region-code with the AWS Region that you want to create your cluster in.

• Replace my-cluster with a name for your cluster. The name can contain only 
alphanumeric characters (case-sensitive) and hyphens. It must start with an alphabetic 
character and can't be longer than 100 characters. The name must be unique within the 
AWS Region and AWS account that you're creating the cluster in.

• Replace 1.28 with any Amazon EKS supported version.

• Change the values for vpc-private-subnets to meet your requirements. You can also 
add additional IDs. You must specify at least two subnet IDs. If you'd rather specify public 
subnets, you can change --vpc-private-subnets to --vpc-public-subnets. 
Public subnets have an associated route table with a route to an internet gateway, but 
private subnets don't have an associated route table. We recommend using private 
subnets whenever possible.

The subnets that you choose must meet the Amazon EKS subnet requirements. Before 
selecting subnets, we recommend that you're familiar with all of the Amazon EKS VPC 
and subnet requirements and considerations.

eksctl create cluster --name my-cluster --region region-code --version 1.28 --
vpc-private-subnets subnet-ExampleID1,subnet-ExampleID2 --without-nodegroup

Cluster provisioning takes several minutes. While the cluster is being created, several lines 
of output appear. The last line of output is similar to the following example line.

[#]  EKS cluster "my-cluster" in "region-code" region is ready

Creating a cluster 46

https://eksctl.io/installation


Amazon EKS User Guide

Tip

To see the most options that you can specify when creating a cluster with eksctl, 
use the eksctl create cluster --help command. To see all the available 
options, you can use a config file. For more information, see Using config files
and the config file schema in the eksctl documentation. You can find config file 
examples on GitHub.

Optional settings

The following are optional settings that, if required, must be added to the previous 
command. You can only enable these options when you create the cluster, not after. If you 
need to specify these options, you must create the cluster with an eksctl config file and 
specify the settings, rather than using the previous command.

• If you want to specify one or more security groups that Amazon EKS assigns to the 
network interfaces that it creates, specify the securityGroup option.

Whether you choose any security groups or not, Amazon EKS creates a security group 
that enables communication between your cluster and your VPC. Amazon EKS associates 
this security group, and any that you choose, to the network interfaces that it creates. 
For more information about the cluster security group that Amazon EKS creates, see the 
section called “Security group requirements”. You can modify the rules in the cluster 
security group that Amazon EKS creates.

• If you want to specify which IPv4 Classless Inter-domain Routing (CIDR) block 
Kubernetes assigns service IP addresses from, specify the serviceIPv4CIDR option.

Specifying your own range can help prevent conflicts between Kubernetes services and 
other networks peered or connected to your VPC. Enter a range in CIDR notation. For 
example: 10.2.0.0/16.

The CIDR block must meet the following requirements:

• Be within one of the following ranges: 10.0.0.0/8, 172.16.0.0/12, or
192.168.0.0/16.

• Have a minimum size of /24 and a maximum size of /12.

• Not overlap with the range of the VPC for your Amazon EKS resources.

Creating a cluster 47

https://eksctl.io/usage/creating-and-managing-clusters/#using-config-files
https://eksctl.io/usage/schema/
https://github.com/weaveworks/eksctl/tree/master/examples
https://github.com/weaveworks/eksctl/tree/master/examples
https://eksctl.io/usage/creating-and-managing-clusters/#using-config-files
https://eksctl.io/usage/schema/#vpc-securityGroup
https://eksctl.io/usage/schema/#kubernetesNetworkConfig-serviceIPv4CIDR


Amazon EKS User Guide

You can only specify this option when using the IPv4 address family and only at cluster 
creation. If you don't specify this, then Kubernetes assigns service IP addresses from 
either the 10.100.0.0/16 or 172.20.0.0/16 CIDR blocks.

• If you're creating cluster and want the cluster to assign IPv6 addresses to Pods and 
services instead of IPv4 addresses, specify the ipFamily option.

Kubernetes assigns IPv4 addresses to Pods and services, by default. Before deciding 
to use the IPv6 family, make sure that you're familiar with all of the considerations 
and requirements in the the section called “VPC requirements and considerations”, the 
section called “Subnet requirements and considerations”, the section called “Security 
group requirements”, and the section called “IPv6” topics. If you choose the IPv6 family, 
you can't specify an address range for Kubernetes to assign IPv6 service addresses from 
like you can for the IPv4 family. Kubernetes assigns service addresses from the unique 
local address range (fc00::/7).

AWS Management Console

To create your cluster

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. Choose Add cluster and then choose Create.

3. On the Configure cluster page, enter the following fields:

• Name – A name for your cluster. It must be unique in your AWS account. The name can 
contain only alphanumeric characters (case-sensitive) and hyphens. It must start with 
an alphabetic character and can't be longer than 100 characters. The name must be 
unique within the AWS Region and AWS account that you're creating the cluster in.

• Kubernetes version – The version of Kubernetes to use for your cluster. We 
recommend selecting the latest version, unless you need an earlier version.

• Cluster service role – Choose the Amazon EKS cluster IAM role that you created to 
allow the Kubernetes control plane to manage AWS resources on your behalf.

• Secrets encryption – (Optional) Choose to enable secrets encryption of Kubernetes 
secrets using a KMS key. You can also enable this after you create your cluster. Before 
you enable this capability, make sure that you're familiar with the information in
Enabling secret encryption on an existing cluster.

Creating a cluster 48

https://eksctl.io/usage/schema/#kubernetesNetworkConfig-ipFamily
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

• Tags – (Optional) Add any tags to your cluster. For more information, see Tagging your 
Amazon EKS resources.

When you're done with this page, choose Next.

4. On the Specify networking page, select values for the following fields:

• VPC – Choose an existing VPC that meets Amazon EKS VPC requirements to create 
your cluster in. Before choosing a VPC, we recommend that you're familiar with all of 
the requirements and considerations in Amazon EKS VPC and subnet requirements 
and considerations. You can't change which VPC you want to use after cluster creation. 
If no VPCs are listed, then you need to create one first. For more information, see
Creating a VPC for your Amazon EKS cluster.

• Subnets – By default, all available subnets in the VPC specified in the previous field 
are preselected. You must select at least two.

The subnets that you choose must meet the Amazon EKS subnet requirements. Before 
selecting subnets, we recommend that you're familiar with all of the Amazon EKS VPC 
and subnet requirements and considerations.

Security groups – (Optional) Specify one or more security groups that you want 
Amazon EKS to associate to the network interfaces that it creates.

Whether you choose any security groups or not, Amazon EKS creates a security 
group that enables communication between your cluster and your VPC. Amazon EKS 
associates this security group, and any that you choose, to the network interfaces that 
it creates. For more information about the cluster security group that Amazon EKS 
creates, see the section called “Security group requirements”. You can modify the rules 
in the cluster security group that Amazon EKS creates.

• Choose cluster IP address family – You can choose either IPv4 and IPv6.

Kubernetes assigns IPv4 addresses to Pods and services, by default. Before deciding 
to use the IPv6 family, make sure that you're familiar with all of the considerations 
and requirements in the the section called “VPC requirements and considerations”, the 
section called “Subnet requirements and considerations”, the section called “Security 
group requirements”, and the section called “IPv6” topics. If you choose the IPv6
family, you can't specify an address range for Kubernetes to assign IPv6 service 
addresses from like you can for the IPv4 family. Kubernetes assigns service addresses 
from the unique local address range (fc00::/7).

Creating a cluster 49



Amazon EKS User Guide

• (Optional) Choose Configure Kubernetes Service IP address range and specify a
Service IPv4 range.

Specifying your own range can help prevent conflicts between Kubernetes services 
and other networks peered or connected to your VPC. Enter a range in CIDR notation. 
For example: 10.2.0.0/16.

The CIDR block must meet the following requirements:

• Be within one of the following ranges: 10.0.0.0/8, 172.16.0.0/12, or
192.168.0.0/16.

• Have a minimum size of /24 and a maximum size of /12.

• Not overlap with the range of the VPC for your Amazon EKS resources.

You can only specify this option when using the IPv4 address family and only at 
cluster creation. If you don't specify this, then Kubernetes assigns service IP addresses 
from either the 10.100.0.0/16 or 172.20.0.0/16 CIDR blocks.

• For Cluster endpoint access, select an option. After your cluster is created, you can 
change this option. Before selecting a non-default option, make sure to familiarize 
yourself with the options and their implications. For more information, see Amazon 
EKS cluster endpoint access control.

When you're done with this page, choose Next.

5. (Optional) On the Configure observability page, choose which Metrics and Control 
plane logging options to turn on. By default, each log type is turned off.

• For more information about the Prometheus metrics option, see Turn on Prometheus 
metrics when creating a cluster.

• For more information about the Control plane logging options, see Amazon EKS 
control plane logging.

When you're done with this page, choose Next.

6. On the Select add-ons page, choose the add-ons that you want to add to your cluster. 
You can choose as many Amazon EKS add-ons and AWS Marketplace add-ons as you 
require. If the AWS Marketplace add-ons that you want to install isn't listed, you can 
search for available AWS Marketplace add-ons by entering text in the search box. You 
can also search by category, vendor, or pricing model and then choose the add-ons 
from the search results. When you're done with this page, choose Next.

Creating a cluster 50



Amazon EKS User Guide

7. On the Configure selected add-ons settings page, select the version that you want to 
install. You can always update to a later version after cluster creation. You can update 
the configuration of each add-on after cluster creation. For more information about 
configuring add-ons, see Updating an add-on. When you’re done with this page, choose
Next.

8. On the Review and create page, review the information that you entered or selected 
on the previous pages. If you need to make changes, choose Edit. When you're satisfied, 
choose Create. The Status field shows CREATING while the cluster is provisioned.

Note

You might receive an error that one of the Availability Zones in your request 
doesn't have sufficient capacity to create an Amazon EKS cluster. If this happens, 
the error output contains the Availability Zones that can support a new cluster. 
Retry creating your cluster with at least two subnets that are located in the 
supported Availability Zones for your account. For more information, see
Insufficient capacity.

Cluster provisioning takes several minutes.

AWS CLI

To create your cluster

1. Create your cluster with the command that follows. Before running the command, make 
the following replacements:

• Replace region-code with the AWS Region that you want to create your cluster in.

• Replace my-cluster with a name for your cluster. The name can contain only 
alphanumeric characters (case-sensitive) and hyphens. It must start with an alphabetic 
character and can't be longer than 100 characters. The name must be unique within 
the AWS Region and AWS account that you're creating the cluster in.

• Replace 1.29 with any Amazon EKS supported version.

• Replace 111122223333 with your account ID and myAmazonEKSClusterRole with 
the name of your cluster IAM role.

Creating a cluster 51



Amazon EKS User Guide

• Replace the values for subnetIds with your own. You can also add additional IDs. You 
must specify at least two subnet IDs.

The subnets that you choose must meet the Amazon EKS subnet requirements. Before 
selecting subnets, we recommend that you're familiar with all of the Amazon EKS VPC 
and subnet requirements and considerations.

• If you don't want to specify a security group ID, remove
,securityGroupIds=sg-ExampleID1 from the command. If you want to specify 
one or more security group IDs, replace the values for securityGroupIds with your 
own. You can also add additional IDs.

Whether you choose any security groups or not, Amazon EKS creates a security 
group that enables communication between your cluster and your VPC. Amazon EKS 
associates this security group, and any that you choose, to the network interfaces that 
it creates. For more information about the cluster security group that Amazon EKS 
creates, see the section called “Security group requirements”. You can modify the rules 
in the cluster security group that Amazon EKS creates.

aws eks create-cluster --region region-code --name my-cluster --kubernetes-
version 1.29 \ 
   --role-arn arn:aws:iam::111122223333:role/myAmazonEKSClusterRole \ 
   --resources-vpc-config 
 subnetIds=subnet-ExampleID1,subnet-ExampleID2,securityGroupIds=sg-ExampleID1

Note

You might receive an error that one of the Availability Zones in your request 
doesn't have sufficient capacity to create an Amazon EKS cluster. If this happens, 
the error output contains the Availability Zones that can support a new cluster. 
Retry creating your cluster with at least two subnets that are located in the 
supported Availability Zones for your account. For more information, see
Insufficient capacity.

Optional settings

The following are optional settings that, if required, must be added to the previous 
command. You can only enable these options when you create the cluster, not after.

Creating a cluster 52



Amazon EKS User Guide

• If you want to specify which IPv4 Classless Inter-domain Routing (CIDR) block 
Kubernetes assigns service IP addresses from, you must specify it by adding the --
kubernetes-network-config serviceIpv4Cidr=CIDR block to the following 
command.

Specifying your own range can help prevent conflicts between Kubernetes services 
and other networks peered or connected to your VPC. Enter a range in CIDR notation. 
For example: 10.2.0.0/16.

The CIDR block must meet the following requirements:

• Be within one of the following ranges: 10.0.0.0/8, 172.16.0.0/12, or
192.168.0.0/16.

• Have a minimum size of /24 and a maximum size of /12.

• Not overlap with the range of the VPC for your Amazon EKS resources.

You can only specify this option when using the IPv4 address family and only at 
cluster creation. If you don't specify this, then Kubernetes assigns service IP addresses 
from either the 10.100.0.0/16 or 172.20.0.0/16 CIDR blocks.

• If you're creating a cluster and want the cluster to assign IPv6 addresses to Pods 
and services instead of IPv4 addresses, add --kubernetes-network-config 
ipFamily=ipv6 to the following command.

Kubernetes assigns IPv4 addresses to Pods and services, by default. Before deciding 
to use the IPv6 family, make sure that you're familiar with all of the considerations 
and requirements in the the section called “VPC requirements and considerations”, the 
section called “Subnet requirements and considerations”, the section called “Security 
group requirements”, and the section called “IPv6” topics. If you choose the IPv6
family, you can't specify an address range for Kubernetes to assign IPv6 service 
addresses from like you can for the IPv4 family. Kubernetes assigns service addresses 
from the unique local address range (fc00::/7).

2. It takes several minutes to provision the cluster. You can query the status of your cluster 
with the following command.

aws eks describe-cluster --region region-code --name my-cluster --query 
 "cluster.status"

Creating a cluster 53



Amazon EKS User Guide

Don't proceed to the next step until the output returned is ACTIVE.

3. If you created your cluster using eksctl, then you can skip this step. This is because eksctl
already completed this step for you. Enable kubectl to communicate with your cluster by 
adding a new context to the kubectl config file. For more information about how to create 
and update the file, see Creating or updating a kubeconfig file for an Amazon EKS cluster.

aws eks update-kubeconfig --region region-code --name my-cluster

An example output is as follows.

Added new context arn:aws:eks:region-code:111122223333:cluster/my-cluster to /home/
username/.kube/config

4. Confirm communication with your cluster by running the following command.

kubectl get svc

An example output is as follows.

NAME         TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
kubernetes   ClusterIP   10.100.0.1   <none>        443/TCP   28h

5. (Recommended) To use some Amazon EKS add-ons, or to enable individual Kubernetes 
workloads to have specific AWS Identity and Access Management (IAM) permissions, create an 
IAM OpenID Connect (OIDC) provider for your cluster. You only need to create an IAM OIDC 
provider for your cluster once. To learn more about Amazon EKS add-ons, see Amazon EKS 
add-ons. To learn more about assigning specific IAM permissions to your workloads, see IAM 
roles for service accounts.

6. (Recommended) Configure your cluster for the Amazon VPC CNI plugin for Kubernetes plugin 
before deploying Amazon EC2 nodes to your cluster. By default, the plugin was installed with 
your cluster. When you add Amazon EC2 nodes to your cluster, the plugin is automatically 
deployed to each Amazon EC2 node that you add. The plugin requires you to attach one of the 
following IAM policies to an IAM role:

AmazonEKS_CNI_Policy managed IAM policy

If your cluster uses the IPv4 family

Creating a cluster 54

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKS_CNI_Policy.html


Amazon EKS User Guide

An IAM policy that you create

If your cluster uses the IPv6 family

The IAM role that you attach the policy to can be the node IAM role, or a dedicated role used 
only for the plugin. We recommend attaching the policy to this role. For more information 
about creating the role, see Configuring the Amazon VPC CNI plugin for Kubernetes to use IAM 
roles for service accounts (IRSA) or Amazon EKS node IAM role.

7. If you deployed your cluster using the AWS Management Console, you can skip this step. The 
AWS Management Console deploys the Amazon VPC CNI plugin for Kubernetes, CoreDNS, and
kube-proxy Amazon EKS add-ons, by default.

If you deploy your cluster using either eksctl or the AWS CLI, then the Amazon VPC CNI 
plugin for Kubernetes, CoreDNS, and kube-proxy self-managed add-ons are deployed. You 
can migrate the Amazon VPC CNI plugin for Kubernetes, CoreDNS, and kube-proxy self-
managed add-ons that are deployed with your cluster to Amazon EKS add-ons. For more 
information, see Amazon EKS add-ons.

8. (Optional) If you haven’t already done so, you can enable Prometheus metrics for your cluster. 
For more information, see Create a scraper in the Amazon Managed Service for Prometheus 
User Guide.

9. If you enabled Prometheus metrics, you must set up your aws-auth ConfigMap to give the 
scraper in-cluster permissions. For more information, see Configuring your Amazon EKS cluster
in the Amazon Managed Service for Prometheus User Guide.

10. If you plan to deploy workloads to your cluster that use Amazon EBS volumes , and you 
created a 1.23 or later cluster, then you must install the Amazon EBS CSI driver to your cluster 
before deploying the workloads.

Recommended next steps:

• The IAM principal that created the cluster is the only principal that has access to the cluster.
Grant permissions to other IAM principals so they can access your cluster.

• If the IAM principal that created the cluster only has the minimum IAM permissions referenced 
in the prerequisites, then you might want to add additional Amazon EKS permissions for that 
principal. For more information about granting Amazon EKS permissions to IAM principals, see
Identity and access management for Amazon EKS.

Creating a cluster 55

https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-collector-how-to.html#AMP-collector-create
https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-collector-how-to.html#AMP-collector-eks-setup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html


Amazon EKS User Guide

• If you want the IAM principal that created the cluster, or any other principals to view Kubernetes 
resources in the Amazon EKS console, grant the Required permissions to the entities.

• If you want nodes and IAM principals to access your cluster from within your VPC, enable the 
private endpoint for your cluster. The public endpoint is enabled by default. You can disable the 
public endpoint once you've enabled the private endpoint, if desired. For more information, see
Amazon EKS cluster endpoint access control.

• Enable secrets encryption for your cluster.

• Configure logging for your cluster.

• Add nodes to your cluster.

Cluster insights

Amazon EKS cluster insights provide recommendations to help you follow Amazon EKS and 
Kubernetes best practices. Every Amazon EKS cluster undergoes automatic, recurring checks 
against an Amazon EKS curated list of insights. These insight checks are fully managed by Amazon 
EKS and offer recommendations on how to address any findings.

Important

Currently, Amazon EKS only returns insights related to Kubernetes version upgrade 
readiness.

Upgrade insights identify possible issues that could impact Kubernetes cluster upgrades. This 
minimizes the effort that administrators spend preparing for upgrades and increases the reliability 
of applications on newer Kubernetes versions. Clusters are automatically scanned by Amazon EKS 
against a list of possible Kubernetes version upgrade impacting issues. Amazon EKS frequently 
updates the list of insight checks based on reviews of changes made in each Kubernetes version 
release.

Amazon EKS upgrade insights speed up the testing and verification process for new versions. They 
also allow cluster administrators and application developers to leverage the newest Kubernetes 
capabilities by highlighting concerns and offering remediation advice. To see the list of insight 
checks performed and any relevant issues that Amazon EKS has identified, you can call the Amazon 
EKS ListInsights API operation or look in the Amazon EKS console.

Cluster insights 56



Amazon EKS User Guide

AWS Management Console

To view the insights of an Amazon EKS cluster

a. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

b. From the cluster list, choose the name of the Amazon EKS cluster for which you want to see 
the insights.

c. Choose the Upgrade Insights tab.

d. On the Upgrade Insights page you will see the following fields:

• Name – The check that was performed by Amazon EKS against the cluster.

• Insight status – An insight with a status of "Error" typically means the impacted 
Kubernetes version is N+1 of the current cluster version, while a status of "Warning" means 
the insight applies to a future Kubernetes version N+2 or more. An insight with status of 
"Passing" means Amazon EKS has not found any issues associated with this insight check in 
your cluster. An insight status of "Unknown" means Amazon EKS is unable to determine if 
your cluster is impacted by this insight check.

• Version – The Kubernetes version that the insight checked for possible issues.

• Last refresh time (UTC-5:00) – The time the status of the insight was last refreshed for 
this cluster.

• Last transition time (UTC-5:00) – The time the status of this insight last changed.

• Description – Information from the insight check, which includes the alert and 
recommended actions for remediation.

AWS CLI

To view the insights of an Amazon EKS cluster

a. Determine which cluster you would like to check for insights. The following command lists 
the insights for a specified cluster. Make the following modifications to the command as 
needed and then run the modified command:

• Replace region-code with the code for your AWS Region.

• Replace my-cluster with the name of your cluster.

aws eks list-insights --region region-code --cluster-name my-cluster

An example output is as follows.

Cluster insights 57

https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

{ 
    "insights": [ 
        { 
            "category": "UPGRADE_READINESS",  
            "name": "Deprecated APIs removed in Kubernetes v1.29",  
            "insightStatus": { 
                "status": "PASSING",  
                "reason": "No deprecated API usage detected within the last 30 
 days." 
            },  
            "kubernetesVersion": "1.29",  
            "lastTransitionTime": 1698774710.0,  
            "lastRefreshTime": 1700157422.0,  
            "id": "123e4567-e89b-42d3-a456-579642341238",  
            "description": "Checks for usage of deprecated APIs that are scheduled 
 for removal in Kubernetes v1.29. Upgrading your cluster before migrating to the 
 updated APIs supported by v1.29 could cause application impact." 
        } 
    ]
}

b. For descriptive information about the insight, run the following command. Make the 
following modifications to the command as needed and then run the modified command:

• Replace region-code with the code for your AWS Region.

• Replace 123e4567-e89b-42d3-a456-579642341238 with the insight ID retrieved from 
listing the cluster insights.

• Replace my-cluster with the name of your cluster.

aws eks describe-insight --region region-code --id 123e4567-e89b-42d3-
a456-579642341238 --cluster-name my-cluster

An example output is as follows.

{ 
    "insight": { 
        "category": "UPGRADE_READINESS",  
        "additionalInfo": { 
            "EKS update cluster documentation": "https://docs.aws.amazon.com/eks/
latest/userguide/update-cluster.html",  

Cluster insights 58



Amazon EKS User Guide

            "Kubernetes v1.29 deprecation guide": "https://kubernetes.io/docs/
reference/using-api/deprecation-guide/#v1-29" 
        },  
        "name": "Deprecated APIs removed in Kubernetes v1.29",  
        "insightStatus": { 
            "status": "PASSING",  
            "reason": "No deprecated API usage detected within the last 30 days." 
        },  
        "kubernetesVersion": "1.29",  
        "recommendation": "Update manifests and API clients to use newer 
 Kubernetes APIs if applicable before upgrading to Kubernetes v1.29.",  
        "lastTransitionTime": 1698774710.0,  
        "lastRefreshTime": 1700157422.0,  
        "categorySpecificSummary": { 
            "deprecationDetails": [ 
                { 
                    "usage": "/apis/flowcontrol.apiserver.k8s.io/v1beta2/
flowschemas",  
                    "replacedWith": "/apis/flowcontrol.apiserver.k8s.io/v1beta3/
flowschemas",  
                    "stopServingVersion": "1.29",  
                    "clientStats": [],  
                    "startServingReplacementVersion": "1.26" 
                },  
                { 
                    "usage": "/apis/flowcontrol.apiserver.k8s.io/v1beta2/
prioritylevelconfigurations",  
                    "replacedWith": "/apis/flowcontrol.apiserver.k8s.io/v1beta3/
prioritylevelconfigurations",  
                    "stopServingVersion": "1.29",  
                    "clientStats": [],  
                    "startServingReplacementVersion": "1.26" 
                } 
            ] 
        },  
        "id": "f6a11fe4-77f7-48c6-8326-9a13f022ecb3",  
        "resources": [],  
        "description": "Checks for usage of deprecated APIs that are scheduled 
 for removal in Kubernetes v1.29. Upgrading your cluster before migrating to the 
 updated APIs supported by v1.29 could cause application impact." 
    }
}

Cluster insights 59



Amazon EKS User Guide

Updating an Amazon EKS cluster Kubernetes version

When a new Kubernetes version is available in Amazon EKS, you can update your Amazon EKS 
cluster to the latest version.

Important

Once you upgrade a cluster, you can't downgrade to a previous version. We recommend 
that, before you update to a new Kubernetes version, you review the information in
Amazon EKS Kubernetes versions and also review in the update steps in this topic.

New Kubernetes versions sometimes introduce significant changes. Therefore, we recommend that 
you test the behavior of your applications against a new Kubernetes version before you update 
your production clusters. You can do this by building a continuous integration workflow to test 
your application behavior before moving to a new Kubernetes version.

The update process consists of Amazon EKS launching new API server nodes with the updated 
Kubernetes version to replace the existing ones. Amazon EKS performs standard infrastructure and 
readiness health checks for network traffic on these new nodes to verify that they're working as 
expected. However, once you've started the cluster upgrade, you can't pause or stop it. If any of 
these checks fail, Amazon EKS reverts the infrastructure deployment, and your cluster remains on 
the prior Kubernetes version. Running applications aren't affected, and your cluster is never left in 
a non-deterministic or unrecoverable state. Amazon EKS regularly backs up all managed clusters, 
and mechanisms exist to recover clusters if necessary. We're constantly evaluating and improving 
our Kubernetes infrastructure management processes.

To update the cluster, Amazon EKS requires up to five available IP addresses from the subnets 
that you specified when you created your cluster. Amazon EKS creates new cluster elastic network 
interfaces (network interfaces) in any of the subnets that you specified. The network interfaces 
may be created in different subnets than your existing network interfaces are in, so make sure that 
your security group rules allow required cluster communication for any of the subnets that you 
specified when you created your cluster. If any of the subnets that you specified when you created 
the cluster don't exist, don't have enough available IP addresses, or don't have security group rules 
that allows necessary cluster communication, then the update can fail.

Updating Kubernetes version 60



Amazon EKS User Guide

Note

To ensure that the API server endpoint for your cluster is always accessible, Amazon EKS 
provides a highly available Kubernetes control plane and performs rolling updates of API 
server instances during update operations. In order to account for changing IP addresses 
of API server instances supporting your Kubernetes API server endpoint, you must ensure 
that your API server clients manage reconnects effectively. Recent versions of kubectl and 
the Kubernetes client libraries that are officially supported, perform this reconnect process 
transparently.

Update the Kubernetes version for your Amazon EKS cluster

To update the Kubernetes version for your cluster

1. Compare the Kubernetes version of your cluster control plane to the Kubernetes version of 
your nodes.

• Get the Kubernetes version of your cluster control plane.

kubectl version

• Get the Kubernetes version of your nodes. This command returns all self-managed and 
managed Amazon EC2 and Fargate nodes. Each Fargate Pod is listed as its own node.

kubectl get nodes

Before updating your control plane to a new Kubernetes version, make sure that the 
Kubernetes minor version of both the managed nodes and Fargate nodes in your cluster are 
the same as your control plane's version. For example, if your control plane is running version
1.28 and one of your nodes is running version 1.27, then you must update your nodes to 
version 1.28 before updating your control plane to 1.29. We also recommend that you update 
your self-managed nodes to the same version as your control plane before updating the 
control plane. For more information, see Updating a managed node group and Self-managed 
node updates. If you have Fargate nodes with a minor version lower than the control plane 
version, first delete the Pod that's represented by the node. Then update your control plane. 
Any remaining Pods will update to the new version after you redeploy them.

Update the Kubernetes version for your Amazon EKS cluster 61

https://kubernetes.io/docs/tasks/administer-cluster/access-cluster-api/#programmatic-access-to-the-api


Amazon EKS User Guide

2. If the Kubernetes version that you originally deployed your cluster with was Kubernetes 1.25
or later, skip this step.

By default, the Pod security policy admission controller is enabled on Amazon EKS clusters. 
Before updating your cluster, ensure that the proper Pod security policies are in place. This is 
to avoid potential security issues. You can check for the default policy with the kubectl get 
psp eks.privileged command.

kubectl get psp eks.privileged

If you receive the following error, see Amazon EKS default Pod security policy before 
proceeding.

Error from server (NotFound): podsecuritypolicies.extensions "eks.privileged" not 
 found

3. If the Kubernetes version that you originally deployed your cluster with was Kubernetes 1.18
or later, skip this step.

You might need to remove a discontinued term from your CoreDNS manifest.

a. Check to see if your CoreDNS manifest has a line that only has the word upstream.

kubectl get configmap coredns -n kube-system -o jsonpath='{$.data.Corefile}' | 
 grep upstream

If no output is returned, this means that your manifest doesn't have the line. If this is the 
case, skip to the next step. If the word upstream is returned, remove the line.

b. Remove the line near the top of the file that only has the word upstream in the 
configmap file. Don't change anything else in the file. After the line is removed, save the 
changes.

kubectl edit configmap coredns -n kube-system -o yaml

4. Update your cluster using eksctl, the AWS Management Console, or the AWS CLI.

Update the Kubernetes version for your Amazon EKS cluster 62



Amazon EKS User Guide

Important

• If you're updating to version 1.23 and use Amazon EBS volumes in your cluster, then 
you must install the Amazon EBS CSI driver in your cluster before updating your 
cluster to version 1.23 to avoid workload disruptions. For more information, see
Kubernetes 1.23 and Amazon EBS CSI driver.

• Kubernetes 1.24 and later use containerd as the default container runtime. If 
you're switching to the containerd runtime and already have Fluentd configured 
for Container Insights, then you must migrate Fluentd to Fluent Bit before updating 
your cluster. The Fluentd parsers are configured to only parse log messages in JSON 
format. Unlike dockerd, the containerd container runtime has log messages that 
aren't in JSON format. If you don't migrate to Fluent Bit, some of the configured 
Fluentd's parsers will generate a massive amount of errors inside the Fluentd 
container. For more information on migrating, see Set up Fluent Bit as a DaemonSet 
to send logs to CloudWatch Logs.

• Because Amazon EKS runs a highly available control plane, you can update only 
one minor version at a time. For more information about this requirement, see
Kubernetes Version and Version Skew Support Policy. Assume that your current 
cluster version is version 1.27 and you want to update it to version 1.29. You must 
first update your version 1.27 cluster to version 1.28 and then update your version
1.28 cluster to version 1.29.

• Review the version skew between the Kubernetes kube-apiserver and the
kubelet on your nodes.

• Starting from Kubernetes version 1.28, kubelet may be up to three minor 
versions older than kube-apiserver. See Kubernetes upstream version skew 
policy.

• If the kubelet on your managed and Fargate nodes is on Kubernetes version
1.25 or newer, you can update your cluster up to three versions ahead without 
updating the kubelet version. For example, if the kubelet is on version 1.25, 
you can update your Amazon EKS cluster version from 1.25 to 1.26, to 1.27, and 
to 1.28 while the kubelet remains on version 1.25.

• If the kubelet on your managed and Fargate nodes is on Kubernetes version
1.24 or older, it may only be up to two minor versions older than the kube-
apiserver. In other words, if the kubelet is version 1.24 or older, you can only 

Update the Kubernetes version for your Amazon EKS cluster 63

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-logs-FluentBit.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-logs-FluentBit.html
https://kubernetes.io/docs/setup/version-skew-policy/#kube-apiserver
https://kubernetes.io/releases/version-skew-policy/#kubelet
https://kubernetes.io/releases/version-skew-policy/#kubelet


Amazon EKS User Guide

update your cluster up to two versions ahead. For example, if the kubelet is on 
version 1.21, you can update your Amazon EKS cluster version from 1.21 to
1.22, and to 1.23, but you will not be able to update the cluster to 1.24 while 
the kubelet remains on 1.21.

• As a best practice before starting an update, make sure that the kubelet on your 
nodes is at the same Kubernetes version as your control plane.

• If your cluster is configured with a version of the Amazon VPC CNI plugin for 
Kubernetes that is earlier than 1.8.0, then we recommend that you update the 
plugin to the latest version before updating your cluster. To update the plugin, see
Working with the Amazon VPC CNI plugin for Kubernetes Amazon EKS add-on.

• If you're updating your cluster to version 1.25 or later and have the AWS Load 
Balancer Controller deployed in your cluster, then update the controller to version
2.4.7 or later before updating your cluster version to 1.25. For more information, 
see the Kubernetes 1.25 release notes.

eksctl

This procedure requires eksctl version 0.172.0 or later. You can check your version with 
the following command:

eksctl version

For instructions on how to install and update eksctl, see Installation in the eksctl
documentation.

Update the Kubernetes version of your Amazon EKS control plane. Replace my-cluster
with your cluster name. Replace 1.29 with the Amazon EKS supported version number that 
you want to update your cluster to. For a list of supported version numbers, see Amazon 
EKS Kubernetes versions.

eksctl upgrade cluster --name my-cluster --version 1.29 --approve

The update takes several minutes to complete.

AWS Management Console

a. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.
Update the Kubernetes version for your Amazon EKS cluster 64

https://eksctl.io/installation
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

b. Choose the name of the Amazon EKS cluster to update and choose Update cluster 
version.

c. For Kubernetes version, select the version to update your cluster to and choose Update.

d. For Cluster name, enter the name of your cluster and choose Confirm.

The update takes several minutes to complete.

AWS CLI

a. Update your Amazon EKS cluster with the following AWS CLI command. Replace the
example values with your own. Replace 1.29 with the Amazon EKS supported version 
number that you want to update your cluster to. For a list of supported version numbers, 
see Amazon EKS Kubernetes versions.

aws eks update-cluster-version --region region-code --name my-cluster --
kubernetes-version 1.29

An example output is as follows.

{ 
    "update": { 
        "id": "b5f0ba18-9a87-4450-b5a0-825e6e84496f", 
        "status": "InProgress", 
        "type": "VersionUpdate", 
        "params": [ 
            { 
                "type": "Version", 
                "value": "1.29" 
            }, 
            { 
                "type": "PlatformVersion", 
                "value": "eks.1" 
            } 
        ],
[...] 
        "errors": [] 
    }
}

Update the Kubernetes version for your Amazon EKS cluster 65



Amazon EKS User Guide

b. Monitor the status of your cluster update with the following command. Use the cluster 
name and update ID that the previous command returned. When a Successful status 
is displayed, the update is complete. The update takes several minutes to complete.

aws eks describe-update --region region-code --name my-cluster --update-
id b5f0ba18-9a87-4450-b5a0-825e6e84496f

An example output is as follows.

{ 
    "update": { 
        "id": "b5f0ba18-9a87-4450-b5a0-825e6e84496f", 
        "status": "Successful", 
        "type": "VersionUpdate", 
        "params": [ 
            { 
                "type": "Version", 
                "value": "1.29" 
            }, 
            { 
                "type": "PlatformVersion", 
                "value": "eks.1" 
            } 
        ],
[...] 
        "errors": [] 
    }
}

5. After your cluster update is complete, update your nodes to the same Kubernetes minor 
version as your updated cluster. For more information, see Self-managed node updates and
Updating a managed node group. Any new Pods that are launched on Fargate have a kubelet
version that matches your cluster version. Existing Fargate Pods aren't changed.

6. (Optional) If you deployed the Kubernetes Cluster Autoscaler to your cluster before updating 
the cluster, update the Cluster Autoscaler to the latest version that matches the Kubernetes 
major and minor version that you updated to.

a. Open the Cluster Autoscaler releases page in a web browser and find the latest Cluster 
Autoscaler version that matches your cluster's Kubernetes major and minor version. For 
example, if your cluster's Kubernetes version is 1.29 find the latest Cluster Autoscaler 

Update the Kubernetes version for your Amazon EKS cluster 66

https://github.com/kubernetes/autoscaler/releases


Amazon EKS User Guide

release that begins with 1.29. Record the semantic version number (1.29.n, for example) 
for that release to use in the next step.

b. Set the Cluster Autoscaler image tag to the version that you recorded in the previous step 
with the following command. If necessary, replace 1.29.n with your own value.

kubectl -n kube-system set image deployment.apps/cluster-autoscaler cluster-
autoscaler=registry.k8s.io/autoscaling/cluster-autoscaler:v1.29.n

7. (Clusters with GPU nodes only) If your cluster has node groups with GPU support (for example,
p3.2xlarge), you must update the NVIDIA device plugin for Kubernetes DaemonSet on your 
cluster. Replace vX.X.X with your desired NVIDIA/k8s-device-plugin version before running 
the following command.

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/vX.X.X/
nvidia-device-plugin.yml

8. Update the Amazon VPC CNI plugin for Kubernetes, CoreDNS, and kube-proxy add-ons. We 
recommend updating the add-ons to the minimum versions listed in Service account tokens.

• If you are using Amazon EKS add-ons, select Clusters in the Amazon EKS console, then 
select the name of the cluster that you updated in the left navigation pane. Notifications 
appear in the console. They inform you that a new version is available for each add-on that 
has an available update. To update an add-on, select the Add-ons tab. In one of the boxes 
for an add-on that has an update available, select Update now, select an available version, 
and then select Update.

• Alternately, you can use the AWS CLI or eksctl to update add-ons. For more information, 
see Updating an add-on.

9. If necessary, update your version of kubectl. You must use a kubectl version that is within 
one minor version difference of your Amazon EKS cluster control plane. For example, a 1.28
kubectl client works with Kubernetes 1.27, 1.28, and 1.29 clusters. You can check your 
currently installed version with the following command.

kubectl version --client

Update the Kubernetes version for your Amazon EKS cluster 67

https://github.com/NVIDIA/k8s-device-plugin
https://github.com/NVIDIA/k8s-device-plugin/releases


Amazon EKS User Guide

Deleting an Amazon EKS cluster

When you're done using an Amazon EKS cluster, you should delete the resources associated with it 
so that you don't incur any unnecessary costs.

To remove a connected cluster, see Deregistering a cluster

Important

• If you have active services in your cluster that are associated with a load balancer, you 
must delete those services before deleting the cluster so that the load balancers are 
deleted properly. Otherwise, you can have orphaned resources in your VPC that prevent 
you from being able to delete the VPC.

• If you receive an error because the cluster creator has been removed, see this article to 
resolve.

• Amazon Managed Service for Prometheus resources are outside of the cluster lifecycle 
and need to be maintained independent of the cluster. When you delete your cluster, 
make sure to also delete any applicable scrapers to stop applicable costs. For more 
information, see Find and delete scrapers in the Amazon Managed Service for Prometheus 
User Guide.

You can delete a cluster with eksctl, the AWS Management Console, or the AWS CLI.

eksctl

To delete an Amazon EKS cluster and nodes with eksctl

This procedure requires eksctl version 0.172.0 or later. You can check your version with the 
following command:

eksctl version

For instructions on how to install or upgrade eksctl, see Installation in the eksctl
documentation.

1. List all services running in your cluster.

Deleting a cluster 68

https://aws.amazon.com/premiumsupport/knowledge-center/eks-api-server-unauthorized-error
https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-collector-how-to.html#AMP-collector-list-delete
https://eksctl.io/installation


Amazon EKS User Guide

kubectl get svc --all-namespaces

2. Delete any services that have an associated EXTERNAL-IP value. These services are fronted 
by an Elastic Load Balancing load balancer, and you must delete them in Kubernetes to 
allow the load balancer and associated resources to be properly released.

kubectl delete svc service-name

3. Delete the cluster and its associated nodes with the following command, replacing prod
with your cluster name.

eksctl delete cluster --name prod

Output:

[#]  using region region-code
[#]  deleting EKS cluster "prod"
[#]  will delete stack "eksctl-prod-nodegroup-standard-nodes"
[#]  waiting for stack "eksctl-prod-nodegroup-standard-nodes" to get deleted
[#]  will delete stack "eksctl-prod-cluster"
[#]  the following EKS cluster resource(s) for "prod" will be deleted: cluster. 
 If in doubt, check CloudFormation console

AWS Management Console

To delete an Amazon EKS cluster with the AWS Management Console

1. List all services running in your cluster.

kubectl get svc --all-namespaces

2. Delete any services that have an associated EXTERNAL-IP value. These services are fronted 
by an Elastic Load Balancing load balancer, and you must delete them in Kubernetes to 
allow the load balancer and associated resources to be properly released.

kubectl delete svc service-name

3. Delete all node groups and Fargate profiles.

Deleting a cluster 69



Amazon EKS User Guide

a. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/ 
clusters.

b. In the left navigation pane, choose Amazon EKS Clusters, and then in the tabbed list of 
clusters, choose the name of the cluster that you want to delete.

c. Choose the Compute tab and choose a node group to delete. Choose Delete, enter the 
name of the node group, and then choose Delete. Delete all node groups in the cluster.

Note

The node groups listed are managed node groups only.

d. Choose a Fargate Profile to delete, select Delete, enter the name of the profile, and 
then choose Delete. Delete all Fargate profiles in the cluster.

4. Delete all self-managed node AWS CloudFormation stacks.

a. Open the AWS CloudFormation console at https://console.aws.amazon.com/
cloudformation.

b. Choose the node stack to delete, and then choose Delete.

c. In the Delete stack confirmation dialog box, choose Delete stack. Delete all self-
managed node stacks in the cluster.

5. Delete the cluster.

a. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/ 
clusters.

b. choose the cluster to delete and choose Delete.

c. On the delete cluster confirmation screen, choose Delete.

6. (Optional) Delete the VPC AWS CloudFormation stack.

a. Open the AWS CloudFormation console at https://console.aws.amazon.com/
cloudformation.

b. Select the VPC stack to delete, and then choose Delete.

c. In the Delete stack confirmation dialog box, choose Delete stack.

Deleting a cluster 70

https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/


Amazon EKS User Guide

AWS CLI

To delete an Amazon EKS cluster with the AWS CLI

1. List all services running in your cluster.

kubectl get svc --all-namespaces

2. Delete any services that have an associated EXTERNAL-IP value. These services are fronted 
by an Elastic Load Balancing load balancer, and you must delete them in Kubernetes to 
allow the load balancer and associated resources to be properly released.

kubectl delete svc service-name

3. Delete all node groups and Fargate profiles.

a. List the node groups in your cluster with the following command.

aws eks list-nodegroups --cluster-name my-cluster

Note

The node groups listed are managed node groups only.

b. Delete each node group with the following command. Delete all node groups in the 
cluster.

aws eks delete-nodegroup --nodegroup-name my-nodegroup --cluster-name my-
cluster

c. List the Fargate profiles in your cluster with the following command.

aws eks list-fargate-profiles --cluster-name my-cluster

d. Delete each Fargate profile with the following command. Delete all Fargate profiles in 
the cluster.

aws eks delete-fargate-profile --fargate-profile-name my-fargate-profile --
cluster-name my-cluster

Deleting a cluster 71



Amazon EKS User Guide

4. Delete all self-managed node AWS CloudFormation stacks.

a. List your available AWS CloudFormation stacks with the following command. Find the 
node template name in the resulting output.

aws cloudformation list-stacks --query "StackSummaries[].StackName"

b. Delete each node stack with the following command, replacing node-stack with your 
node stack name. Delete all self-managed node stacks in the cluster.

aws cloudformation delete-stack --stack-name node-stack

5. Delete the cluster with the following command, replacing my-cluster with your cluster 
name.

aws eks delete-cluster --name my-cluster

6. (Optional) Delete the VPC AWS CloudFormation stack.

a. List your available AWS CloudFormation stacks with the following command. Find the 
VPC template name in the resulting output.

aws cloudformation list-stacks --query "StackSummaries[].StackName"

b. Delete the VPC stack with the following command, replacing my-vpc-stack with your 
VPC stack name.

aws cloudformation delete-stack --stack-name my-vpc-stack

Amazon EKS cluster endpoint access control

This topic helps you to enable private access for your Amazon EKS cluster's Kubernetes API server 
endpoint and limit, or completely disable, public access from the internet.

When you create a new cluster, Amazon EKS creates an endpoint for the managed Kubernetes API 
server that you use to communicate with your cluster (using Kubernetes management tools such 
as kubectl). By default, this API server endpoint is public to the internet, and access to the API 
server is secured using a combination of AWS Identity and Access Management (IAM) and native 
Kubernetes Role Based Access Control (RBAC).

Configuring endpoint access 72

https://kubernetes.io/docs/reference/access-authn-authz/rbac/


Amazon EKS User Guide

You can enable private access to the Kubernetes API server so that all communication between 
your nodes and the API server stays within your VPC. You can limit the IP addresses that can access 
your API server from the internet, or completely disable internet access to the API server.

Note

Because this endpoint is for the Kubernetes API server and not a traditional AWS 
PrivateLink endpoint for communicating with an AWS API, it doesn't appear as an endpoint 
in the Amazon VPC console.

When you enable endpoint private access for your cluster, Amazon EKS creates a Route 53 private 
hosted zone on your behalf and associates it with your cluster's VPC. This private hosted zone is 
managed by Amazon EKS, and it doesn't appear in your account's Route 53 resources. In order 
for the private hosted zone to properly route traffic to your API server, your VPC must have
enableDnsHostnames and enableDnsSupport set to true, and the DHCP options set for your 
VPC must include AmazonProvidedDNS in its domain name servers list. For more information, see
Updating DNS support for your VPC in the Amazon VPC User Guide.

You can define your API server endpoint access requirements when you create a new cluster, and 
you can update the API server endpoint access for a cluster at any time.

Modifying cluster endpoint access

Use the procedures in this section to modify the endpoint access for an existing cluster. The 
following table shows the supported API server endpoint access combinations and their associated 
behavior.

API server endpoint access options

Endpoint public access Endpoint private access Behavior

Enabled Disabled • This is the default behavior 
for new Amazon EKS 
clusters.

• Kubernetes API requests 
that originate from within 
your cluster's VPC (such 
as node to control plane 

Modifying cluster endpoint access 73

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating


Amazon EKS User Guide

Endpoint public access Endpoint private access Behavior

communication) leave the 
VPC but not Amazon's 
network.

• Your cluster API server 
is accessible from the 
internet. You can, optionall 
y, limit the CIDR blocks 
that can access the public 
endpoint. If you limit access 
to specific CIDR blocks, 
then it is recommended 
that you also enable the 
private endpoint, or ensure 
that the CIDR blocks that 
you specify include the 
addresses that nodes and 
Fargate Pods (if you use 
them) access the public 
endpoint from.

Enabled Enabled • Kubernetes API requests 
within your cluster's VPC 
(such as node to control 
plane communication) use 
the private VPC endpoint.

• Your cluster API server 
is accessible from the 
internet. You can, optionall 
y, limit the CIDR blocks 
that can access the public 
endpoint.

Modifying cluster endpoint access 74



Amazon EKS User Guide

Endpoint public access Endpoint private access Behavior

Disabled Enabled • All traffic to your cluster 
API server must come from 
within your cluster's VPC or 
a connected network.

• There is no public access 
to your API server from 
the internet. Any kubectl
commands must come 
from within the VPC or a 
connected network. For 
connectivity options, see
Accessing a private only API 
server.

• The cluster's API server 
endpoint is resolved by 
public DNS servers to a 
private IP address from 
the VPC. In the past, the 
endpoint could only be 
resolved from within the 
VPC.

If your endpoint does not 
resolve to a private IP 
address within the VPC for 
an existing cluster, you can:

• Enable public access and 
then disable it again. 
You only need to do so 
once for a cluster and the 
endpoint will resolve to 
a private IP address from 
that point forward.

• Update your cluster.

Modifying cluster endpoint access 75

https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/introduction.html


Amazon EKS User Guide

You can modify your cluster API server endpoint access using the AWS Management Console or 
AWS CLI.

AWS Management Console

To modify your cluster API server endpoint access using the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. Choose the name of the cluster to display your cluster information.

3. Choose the Networking tab and choose Update.

4. For Private access, choose whether to enable or disable private access for your cluster's 
Kubernetes API server endpoint. If you enable private access, Kubernetes API requests that 
originate from within your cluster's VPC use the private VPC endpoint. You must enable 
private access to disable public access.

5. For Public access, choose whether to enable or disable public access for your cluster's 
Kubernetes API server endpoint. If you disable public access, your cluster's Kubernetes API 
server can only receive requests from within the cluster VPC.

6. (Optional) If you've enabled Public access, you can specify which addresses from the 
internet can communicate to the public endpoint. Select Advanced Settings. Enter a 
CIDR block, such as 203.0.113.5/32. The block cannot include reserved addresses. 
You can enter additional blocks by selecting Add Source. There is a maximum number of 
CIDR blocks that you can specify. For more information, see Amazon EKS service quotas. 
If you specify no blocks, then the public API server endpoint receives requests from all 
(0.0.0.0/0) IP addresses. If you restrict access to your public endpoint using CIDR blocks, 
it is recommended that you also enable private endpoint access so that nodes and Fargate 
Pods (if you use them) can communicate with the cluster. Without the private endpoint 
enabled, your public access endpoint CIDR sources must include the egress sources from 
your VPC. For example, if you have a node in a private subnet that communicates to the 
internet through a NAT Gateway, you will need to add the outbound IP address of the NAT 
gateway as part of an allowed CIDR block on your public endpoint.

7. Choose Update to finish.

Modifying cluster endpoint access 76

https://console.aws.amazon.com/eks/home#/clusters
https://en.wikipedia.org/wiki/Reserved_IP_addresses


Amazon EKS User Guide

AWS CLI

To modify your cluster API server endpoint access using the AWS CLI

Complete the following steps using the AWS CLI version 1.27.160 or later. You can check your 
current version with aws --version. To install or upgrade the AWS CLI, see Installing the AWS 
CLI.

1. Update your cluster API server endpoint access with the following AWS CLI command. 
Substitute your cluster name and desired endpoint access values. If you set
endpointPublicAccess=true, then you can (optionally) enter single CIDR block, or a 
comma-separated list of CIDR blocks for publicAccessCidrs. The blocks cannot include
reserved addresses. If you specify CIDR blocks, then the public API server endpoint will 
only receive requests from the listed blocks. There is a maximum number of CIDR blocks 
that you can specify. For more information, see Amazon EKS service quotas. If you restrict 
access to your public endpoint using CIDR blocks, it is recommended that you also enable 
private endpoint access so that nodes and Fargate Pods (if you use them) can communicate 
with the cluster. Without the private endpoint enabled, your public access endpoint CIDR 
sources must include the egress sources from your VPC. For example, if you have a node in 
a private subnet that communicates to the internet through a NAT Gateway, you will need 
to add the outbound IP address of the NAT gateway as part of an allowed CIDR block on 
your public endpoint. If you specify no CIDR blocks, then the public API server endpoint 
receives requests from all (0.0.0.0/0) IP addresses.

Note

The following command enables private access and public access from a single IP 
address for the API server endpoint. Replace 203.0.113.5/32 with a single CIDR 
block, or a comma-separated list of CIDR blocks that you want to restrict network 
access to.

aws eks update-cluster-config \ 
    --region region-code \ 
    --name my-cluster \ 
    --resources-vpc-config 
 endpointPublicAccess=true,publicAccessCidrs="203.0.113.5/32",endpointPrivateAccess=true

Modifying cluster endpoint access 77

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://en.wikipedia.org/wiki/Reserved_IP_addresses


Amazon EKS User Guide

An example output is as follows.

{ 
    "update": { 
        "id": "e6f0905f-a5d4-4a2a-8c49-EXAMPLE00000", 
        "status": "InProgress", 
        "type": "EndpointAccessUpdate", 
        "params": [ 
            { 
                "type": "EndpointPublicAccess", 
                "value": "true" 
            }, 
            { 
                "type": "EndpointPrivateAccess", 
                "value": "true" 
            }, 
            { 
                "type": "publicAccessCidrs", 
                "value": "[\203.0.113.5/32\"]" 
            } 
        ], 
        "createdAt": 1576874258.137, 
        "errors": [] 
    }
}

2. Monitor the status of your endpoint access update with the following command, using the 
cluster name and update ID that was returned by the previous command. Your update is 
complete when the status is shown as Successful.

aws eks describe-update \ 
    --region region-code \ 
    --name my-cluster \ 
    --update-id e6f0905f-a5d4-4a2a-8c49-EXAMPLE00000

An example output is as follows.

{ 
    "update": { 
        "id": "e6f0905f-a5d4-4a2a-8c49-EXAMPLE00000", 
        "status": "Successful", 

Modifying cluster endpoint access 78



Amazon EKS User Guide

        "type": "EndpointAccessUpdate", 
        "params": [ 
            { 
                "type": "EndpointPublicAccess", 
                "value": "true" 
            }, 
            { 
                "type": "EndpointPrivateAccess", 
                "value": "true" 
            }, 
            { 
                "type": "publicAccessCidrs", 
                "value": "[\203.0.113.5/32\"]" 
            } 
        ], 
        "createdAt": 1576874258.137, 
        "errors": [] 
    }
}

Accessing a private only API server

If you have disabled public access for your cluster's Kubernetes API server endpoint, you can only 
access the API server from within your VPC or a connected network. Here are a few possible ways 
to access the Kubernetes API server endpoint:

Connected network

Connect your network to the VPC with an AWS transit gateway or other connectivity option and 
then use a computer in the connected network. You must ensure that your Amazon EKS control 
plane security group contains rules to allow ingress traffic on port 443 from your connected 
network.

Amazon EC2 bastion host

You can launch an Amazon EC2 instance into a public subnet in your cluster's VPC and then 
log in via SSH into that instance to run kubectl commands. For more information, see Linux 
bastion hosts on AWS. You must ensure that your Amazon EKS control plane security group 
contains rules to allow ingress traffic on port 443 from your bastion host. For more information, 
see Amazon EKS security group requirements and considerations.

Accessing a private only API server 79

https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/introduction.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/aws-technical-content/latest/aws-vpc-connectivity-options/introduction.html
https://aws.amazon.com/quickstart/architecture/linux-bastion/
https://aws.amazon.com/quickstart/architecture/linux-bastion/


Amazon EKS User Guide

When you configure kubectl for your bastion host, be sure to use AWS credentials that 
are already mapped to your cluster's RBAC configuration, or add the IAM principal that your 
bastion will use to the RBAC configuration before you remove endpoint public access. For more 
information, see Enabling IAM principal access to your cluster and Unauthorized or access 
denied (kubectl).

AWS Cloud9 IDE

AWS Cloud9 is a cloud-based integrated development environment (IDE) that lets you write, 
run, and debug your code with just a browser. You can create an AWS Cloud9 IDE in your 
cluster's VPC and use the IDE to communicate with your cluster. For more information, see
Creating an environment in AWS Cloud9. You must ensure that your Amazon EKS control plane 
security group contains rules to allow ingress traffic on port 443 from your IDE security group. 
For more information, see Amazon EKS security group requirements and considerations.

When you configure kubectl for your AWS Cloud9 IDE, be sure to use AWS credentials that are 
already mapped to your cluster's RBAC configuration, or add the IAM principal that your IDE will 
use to the RBAC configuration before you remove endpoint public access. For more information, 
see Enabling IAM principal access to your cluster and Unauthorized or access denied (kubectl).

Enabling secret encryption on an existing cluster

If you enable secrets encryption, the Kubernetes secrets are encrypted using the AWS KMS key that 
you select. The KMS key must meet the following conditions:

• Symmetric

• Can encrypt and decrypt data

• Created in the same AWS Region as the cluster

• If the KMS key was created in a different account, the IAM principal must have access to the KMS 
key.

For more information, see Allowing IAM principals in other accounts to use a KMS key in the AWS 
Key Management Service Developer Guide.

Warning

You can't disable secrets encryption after enabling it. This action is irreversible.

Enabling secret encryption 80

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/create-environment.html
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying-external-accounts.html
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/


Amazon EKS User Guide

eksctl

You can enable encryption in two ways:

• Add encryption to your cluster with a single command.

To automatically re-encrypt your secrets, run the following command.

eksctl utils enable-secrets-encryption \ 
    --cluster my-cluster \ 
    --key-arn arn:aws:kms:region-code:account:key/key

To opt-out of automatically re-encrypting your secrets, run the following command.

eksctl utils enable-secrets-encryption  
    --cluster my-cluster \ 
    --key-arn arn:aws:kms:region-code:account:key/key \ 
    --encrypt-existing-secrets=false

• Add encryption to your cluster with a kms-cluster.yaml file.

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata: 
  name: my-cluster
  region: region-code
  
secretsEncryption: 
  keyARN: arn:aws:kms:region-code:account:key/key

To have your secrets re-encrypt automatically, run the following command.

eksctl utils enable-secrets-encryption -f kms-cluster.yaml

To opt out of automatically re-encrypting your secrets, run the following command.

eksctl utils enable-secrets-encryption -f kms-cluster.yaml --encrypt-existing-
secrets=false

Enabling secret encryption 81



Amazon EKS User Guide

AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. Choose the cluster that you want to add KMS encryption to.

3. Choose the Overview tab (this is selected by default).

4. Scroll down to the Secrets encryption section and choose Enable.

5. Select a key from the dropdown list and choose the Enable button. If no keys are listed, 
you must create one first. For more information, see Creating keys

6. Choose the Confirm button to use the chosen key.

AWS CLI

1. Associate the secrets encryption configuration with your cluster using the following AWS 
CLI command. Replace the example values with your own.

aws eks associate-encryption-config \ 
    --cluster-name my-cluster \ 
    --encryption-config '[{"resources":["secrets"],"provider":
{"keyArn":"arn:aws:kms:region-code:account:key/key"}}]'

An example output is as follows.

{ 
  "update": { 
    "id": "3141b835-8103-423a-8e68-12c2521ffa4d", 
    "status": "InProgress", 
    "type": "AssociateEncryptionConfig", 
    "params": [ 
      { 
        "type": "EncryptionConfig", 
        "value": "[{\"resources\":[\"secrets\"],\"provider\":{\"keyArn\":
\"arn:aws:kms:region-code:account:key/key\"}}]" 
      } 
    ], 
    "createdAt": 1613754188.734, 
    "errors": [] 
  }
}

Enabling secret encryption 82

https://console.aws.amazon.com/eks/home#/clusters
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/


Amazon EKS User Guide

2. You can monitor the status of your encryption update with the following command. Use 
the specific cluster name and update ID that was returned in the previous output. 
When a Successful status is displayed, the update is complete.

aws eks describe-update \ 
    --region region-code \ 
    --name my-cluster \ 
    --update-id 3141b835-8103-423a-8e68-12c2521ffa4d

An example output is as follows.

{ 
  "update": { 
    "id": "3141b835-8103-423a-8e68-12c2521ffa4d", 
    "status": "Successful", 
    "type": "AssociateEncryptionConfig", 
    "params": [ 
      { 
        "type": "EncryptionConfig", 
        "value": "[{\"resources\":[\"secrets\"],\"provider\":{\"keyArn\":
\"arn:aws:kms:region-code:account:key/key\"}}]" 
      } 
    ], 
    "createdAt": 1613754188.734>, 
    "errors": [] 
  }
}

3. To verify that encryption is enabled in your cluster, run the describe-cluster command. 
The response contains an EncryptionConfig string.

aws eks describe-cluster --region region-code --name my-cluster

After you enabled encryption on your cluster, you must encrypt all existing secrets with the new 
key:

Enabling secret encryption 83



Amazon EKS User Guide

Note

If you use eksctl, running the following command is necessary only if you opt out of re-
encrypting your secrets automatically.

kubectl get secrets --all-namespaces -o json | kubectl annotate --overwrite -f - kms-
encryption-timestamp="time value"

Warning

If you enable secrets encryption for an existing cluster and the KMS key that you use is 
ever deleted, then there's no way to recover the cluster. If you delete the KMS key, you 
permanently put the cluster in a degraded state. For more information, see Deleting AWS 
KMS keys.

Note

By default, the create-key command creates a symmetric encryption KMS key with a 
key policy that gives the account root admin access on AWS KMS actions and resources. 
If you want to scope down the permissions, make sure that the kms:DescribeKey and
kms:CreateGrant actions are permitted on the policy for the principal that calls the
create-cluster API.
For clusters using KMS Envelope Encryption, kms:CreateGrant permissions are required. 
The condition kms:GrantIsForAWSResource is not supported for the CreateCluster 
action, and should not be used in KMS policies to control kms:CreateGrant permissions 
for users performing CreateCluster.

Enabling Windows support for your Amazon EKS cluster

Before deploying Windows nodes, be aware of the following considerations.

Enabling Windows support 84

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://docs.aws.amazon.com/kms/latest/developerguide/deleting-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/deleting-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html


Amazon EKS User Guide

Considerations

• You can use host networking on Windows nodes using HostProcess Pods. For more 
information, see Create a Windows HostProcessPod in the Kubernetes documentation.

• Amazon EKS clusters must contain one or more Linux or Fargate nodes to run core system Pods 
that only run on Linux, such as CoreDNS.

• The kubelet and kube-proxy event logs are redirected to the EKS Windows Event Log and are 
set to a 200 MB limit.

• You can't use Security groups for Pods with Pods running on Windows nodes.

• You can't use custom networking with Windows nodes.

• You can't use IPv6 with Windows nodes.

• Windows nodes support one elastic network interface per node. By default, the number of 
Pods that you can run per Windows node is equal to the number of IP addresses available per 
elastic network interface for the node's instance type, minus one. For more information, see IP 
addresses per network interface per instance type in the Amazon EC2 User Guide for Windows 
Instances.

• In an Amazon EKS cluster, a single service with a load balancer can support up to 1024 back-end 
Pods. Each Pod has its own unique IP address. The previous limit of 64 Pods is no longer the case, 
after a Windows Server update starting with OS Build 17763.2746.

• Windows containers aren't supported for Amazon EKS Pods on Fargate.

• You can't retrieve logs from the vpc-resource-controller Pod. You previously could when 
you deployed the controller to the data plane.

• There is a cool down period before an IPv4 address is assigned to a new Pod. This prevents 
traffic from flowing to an older Pod with the same IPv4 address due to stale kube-proxy rules.

• The source for the controller is managed on GitHub. To contribute to, or file issues against the 
controller, visit the project on GitHub.

• When specifying a custom AMI ID for Windows managed node groups, add eks:kube-proxy-
windows to your AWS IAM Authenticator configuration map. For more information, see Limits 
and conditions when specifying an AMI ID.

Prerequisites

• An existing cluster. The cluster must be running one of the Kubernetes versions and platform 
versions listed in the following table. Any Kubernetes and platform versions later than those 

Enabling Windows support 85

https://kubernetes.io/docs/tasks/configure-pod-container/create-hostprocess-pod/
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-eni.html#AvailableIpPerENI
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-eni.html#AvailableIpPerENI
https://github.com/microsoft/Windows-Containers/issues/93
https://support.microsoft.com/en-us/topic/march-22-2022-kb5011551-os-build-17763-2746-preview-690a59cd-059e-40f4-87e8-e9139cc65de4
https://github.com/aws/amazon-vpc-resource-controller-k8s


Amazon EKS User Guide

listed are also supported. If your cluster or platform version is earlier than one of the following 
versions, you need to enable legacy Windows support on your cluster's data plane. Once your 
cluster is at one of the following Kubernetes and platform versions, or later, you can remove 
legacy Windows support and enable Windows support on your control plane.

Kubernetes version Platform version

1.29 eks.1

1.28 eks.1

1.27 eks.1

1.26 eks.1

1.25 eks.1

1.24 eks.2

• Your cluster must have at least one (we recommend at least two) Linux node or Fargate Pod to 
run CoreDNS. If you enable legacy Windows support, you must use a Linux node (you can't use a 
Fargate Pod) to run CoreDNS.

• An existing Amazon EKS cluster IAM role.

Enabling Windows support

If your cluster isn't at, or later, than one of the Kubernetes and platform versions listed in the
Prerequisites, you must enable legacy Windows support instead. For more information, see
Enabling legacy Windows support.

If you've never enabled Windows support on your cluster, skip to the next step.

If you enabled Windows support on a cluster that is earlier than a Kubernetes or platform version 
listed in the Prerequisites, then you must first remove the vpc-resource-controller and vpc-
admission-webhook from your data plane. They're deprecated and no longer needed.

Enabling Windows support 86



Amazon EKS User Guide

To enable Windows support for your cluster

1. If you don't have Amazon Linux nodes in your cluster and use security groups for Pods, skip to 
the next step. Otherwise, confirm that the AmazonEKSVPCResourceController managed 
policy is attached to your cluster role. Replace eksClusterRole with your cluster role name.

aws iam list-attached-role-policies --role-name eksClusterRole

An example output is as follows.

{ 
    "AttachedPolicies": [ 
        { 
            "PolicyName": "AmazonEKSClusterPolicy", 
            "PolicyArn": "arn:aws:iam::aws:policy/AmazonEKSClusterPolicy" 
        }, 
        { 
            "PolicyName": "AmazonEKSVPCResourceController", 
            "PolicyArn": "arn:aws:iam::aws:policy/AmazonEKSVPCResourceController" 
        } 
    ]
}

If the policy is attached, as it is in the previous output, skip the next step.

2. Attach the AmazonEKSVPCResourceController managed policy to your Amazon EKS cluster 
IAM role. Replace eksClusterRole with your cluster role name.

aws iam attach-role-policy \ 
  --role-name eksClusterRole \ 
  --policy-arn arn:aws:iam::aws:policy/AmazonEKSVPCResourceController

3. Create a file named vpc-resource-controller-configmap.yaml with the following 
contents.

apiVersion: v1
kind: ConfigMap
metadata: 
  name: amazon-vpc-cni 
  namespace: kube-system
data: 

Enabling Windows support 87

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSVPCResourceController.html


Amazon EKS User Guide

  enable-windows-ipam: "true"

4. Apply the ConfigMap to your cluster.

kubectl apply -f vpc-resource-controller-configmap.yaml

5. Verify that your aws-auth ConfigMap contains a mapping for the instance role of the 
Windows node to include the eks:kube-proxy-windows RBAC permission group. You can 
verify by running the following command.

kubectl get configmap aws-auth -n kube-system -o yaml

An example output is as follows.

apiVersion: v1
kind: ConfigMap
metadata: 
  name: aws-auth 
  namespace: kube-system
data: 
  mapRoles: | 
    - groups: 
      - system:bootstrappers 
      - system:nodes 
      - eks:kube-proxy-windows # This group is required for Windows DNS resolution 
 to work 
      rolearn: arn:aws:iam::111122223333:role/eksNodeRole
      username: system:node:{{EC2PrivateDNSName}}
[...]

You should see eks:kube-proxy-windows listed under groups. If the group isn't specified, 
you need to update your ConfigMap or create it to include the required group. For more 
information about the aws-auth ConfigMap, see Apply the aws-auth   ConfigMap to your 
cluster.

Removing legacy Windows support from your data plane

If you enabled Windows support on a cluster that is earlier than a Kubernetes or platform version 
listed in the Prerequisites, then you must first remove the vpc-resource-controller and vpc-

Removing legacy Windows support 88



Amazon EKS User Guide

admission-webhook from your data plane. They're deprecated and no longer needed because 
the functionality that they provided is now enabled on the control plane.

1. Uninstall the vpc-resource-controller with the following command. Use this command 
regardless of which tool you originally installed it with. Replace region-code (only the 
instance of that text after /manifests/) with the AWS Region that your cluster is in.

kubectl delete -f https://s3.us-west-2.amazonaws.com/amazon-eks/manifests/region-
code/vpc-resource-controller/latest/vpc-resource-controller.yaml

2. Uninstall the vpc-admission-webhook using the instructions for the tool that you installed 
it with.

eksctl

Run the following commands.

kubectl delete deployment -n kube-system vpc-admission-webhook
kubectl delete service -n kube-system vpc-admission-webhook
kubectl delete mutatingwebhookconfigurations.admissionregistration.k8s.io vpc-
admission-webhook-cfg

kubectl on macOS or Windows

Run the following command. Replace region-code (only the instance of that text after /
manifests/) with the AWS Region that your cluster is in.

kubectl delete -f https://s3.us-west-2.amazonaws.com/amazon-
eks/manifests/region-code/vpc-admission-webhook/latest/vpc-admission-webhook-
deployment.yaml

3. Enable Windows support for your cluster on the control plane.

Disabling Windows support

To disable Windows support on your cluster

1. If your cluster contains Amazon Linux nodes and you use security groups for Pods with them, 
then skip this step.

Disabling Windows support 89



Amazon EKS User Guide

Remove the AmazonVPCResourceController managed IAM policy from your cluster role. 
Replace eksClusterRole with the name of your cluster role and 111122223333 with your 
account ID.

aws iam detach-role-policy \ 
    --role-name eksClusterRole \ 
    --policy-arn arn:aws:iam::aws:policy/AmazonEKSVPCResourceController

2. Disable Windows IPAM in the amazon-vpc-cni ConfigMap.

kubectl patch configmap/amazon-vpc-cni \ 
                    -n kube-system \ 
                    --type merge \ 
                    -p '{"data":{"enable-windows-ipam":"false"}}'

Deploying Pods

When you deploy Pods to your cluster, you need to specify the operating system that they use if 
you're running a mixture of node types.

For Linux Pods, use the following node selector text in your manifests.

nodeSelector: 
        kubernetes.io/os: linux 
        kubernetes.io/arch: amd64

For Windows Pods, use the following node selector text in your manifests.

nodeSelector: 
        kubernetes.io/os: windows 
        kubernetes.io/arch: amd64

You can deploy a sample application to see the node selectors in use.

Enabling legacy Windows support

If your cluster is at, or later, than one of the Kubernetes and platform versions listed in the
Prerequisites, then we recommend that you enable Windows support on your control plane 
instead. For more information, see Enabling Windows support.

Deploying Pods 90



Amazon EKS User Guide

The following steps help you to enable legacy Windows support for your Amazon EKS 
cluster's data plane if your cluster or platform version are earlier than the versions listed in the
Prerequisites. Once your cluster and platform version are at, or later than a version listed in the
Prerequisites, we recommend that you remove legacy Windows support and enable it for your 
control plane.

You can use eksctl, a Windows client, or a macOS or Linux client to enable legacy Windows 
support for your cluster.

eksctl

To enable legacy Windows support for your cluster with eksctl

Prerequisite

This procedure requires eksctl version 0.172.0 or later. You can check your version with the 
following command.

eksctl version

For more information about installing or upgrading eksctl, see Installation in the eksctl
documentation.

1. Enable Windows support for your Amazon EKS cluster with the following eksctl
command. Replace my-cluster with the name of your cluster. This command deploys 
the VPC resource controller and VPC admission controller webhook that are required on 
Amazon EKS clusters to run Windows workloads.

eksctl utils install-vpc-controllers --cluster my-cluster --approve

Important

The VPC admission controller webhook is signed with a certificate that expires one 
year after the date of issue. To avoid down time, make sure to renew the certificate 
before it expires. For more information, see Renewing the VPC admission webhook 
certificate.

2. After you have enabled Windows support, you can launch a Windows node group into your 
cluster. For more information, see Launching self-managed Windows nodes.

Enabling legacy Windows support 91

https://eksctl.io/installation


Amazon EKS User Guide

Windows

To enable legacy Windows support for your cluster with a Windows client

In the following steps, replace region-code with the AWS Region that your cluster resides in.

1. Deploy the VPC resource controller to your cluster.

kubectl apply -f https://s3.us-west-2.amazonaws.com/amazon-eks/manifests/region-
code/vpc-resource-controller/latest/vpc-resource-controller.yaml

2. Deploy the VPC admission controller webhook to your cluster.

a. Download the required scripts and deployment files.

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/manifests/region-code/
vpc-admission-webhook/latest/vpc-admission-webhook-deployment.yaml;
curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/manifests/region-code/
vpc-admission-webhook/latest/Setup-VPCAdmissionWebhook.ps1;
curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/manifests/region-code/
vpc-admission-webhook/latest/webhook-create-signed-cert.ps1;
curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/manifests/region-code/
vpc-admission-webhook/latest/webhook-patch-ca-bundle.ps1;

b. Install OpenSSL and jq.

c. Set up and deploy the VPC admission webhook.

./Setup-VPCAdmissionWebhook.ps1 -DeploymentTemplate ".\vpc-admission-
webhook-deployment.yaml"

Important

The VPC admission controller webhook is signed with a certificate that expires 
one year after the date of issue. To avoid down time, make sure to renew the 
certificate before it expires. For more information, see Renewing the VPC 
admission webhook certificate.

3. Determine if your cluster has the required cluster role binding.

kubectl get clusterrolebinding eks:kube-proxy-windows

Enabling legacy Windows support 92

https://wiki.openssl.org/index.php/Binaries
https://stedolan.github.io/jq/download/


Amazon EKS User Guide

If output similar to the following example output is returned, then the cluster has the 
necessary role binding.

NAME                      AGE
eks:kube-proxy-windows    10d

If the output includes Error from server (NotFound), then the cluster does not have 
the necessary cluster role binding. Add the binding by creating a file named eks-kube-
proxy-windows-crb.yaml with the following content.

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata: 
  name: eks:kube-proxy-windows 
  labels: 
    k8s-app: kube-proxy 
    eks.amazonaws.com/component: kube-proxy
subjects: 
  - kind: Group 
    name: "eks:kube-proxy-windows"
roleRef: 
  kind: ClusterRole 
  name: system:node-proxier 
  apiGroup: rbac.authorization.k8s.io

Apply the configuration to the cluster.

kubectl apply -f eks-kube-proxy-windows-crb.yaml

4. After you have enabled Windows support, you can launch a Windows node group into your 
cluster. For more information, see Launching self-managed Windows nodes.

macOS and Linux

To enable legacy Windows support for your cluster with a macOS or Linux client

This procedure requires that the openssl library and jq JSON processor are installed on your 
client system.

In the following steps, replace region-code with the AWS Region that your cluster resides in.

Enabling legacy Windows support 93



Amazon EKS User Guide

1. Deploy the VPC resource controller to your cluster.

kubectl apply -f https://s3.us-west-2.amazonaws.com/amazon-eks/manifests/region-
code/vpc-resource-controller/latest/vpc-resource-controller.yaml

2. Create the VPC admission controller webhook manifest for your cluster.

a. Download the required scripts and deployment files.

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/manifests/region-code/
vpc-admission-webhook/latest/webhook-create-signed-cert.sh
curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/manifests/region-code/
vpc-admission-webhook/latest/webhook-patch-ca-bundle.sh
curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/manifests/region-code/
vpc-admission-webhook/latest/vpc-admission-webhook-deployment.yaml

b. Add permissions to the shell scripts so that they can be run.

chmod +x webhook-create-signed-cert.sh webhook-patch-ca-bundle.sh

c. Create a secret for secure communication.

./webhook-create-signed-cert.sh

d. Verify the secret.

kubectl get secret -n kube-system vpc-admission-webhook-certs

e. Configure the webhook and create a deployment file.

cat ./vpc-admission-webhook-deployment.yaml | ./webhook-patch-ca-bundle.sh > 
 vpc-admission-webhook.yaml

3. Deploy the VPC admission webhook.

kubectl apply -f vpc-admission-webhook.yaml

Important

The VPC admission controller webhook is signed with a certificate that expires one 
year after the date of issue. To avoid down time, make sure to renew the certificate 

Enabling legacy Windows support 94



Amazon EKS User Guide

before it expires. For more information, see Renewing the VPC admission webhook 
certificate.

4. Determine if your cluster has the required cluster role binding.

kubectl get clusterrolebinding eks:kube-proxy-windows

If output similar to the following example output is returned, then the cluster has the 
necessary role binding.

NAME                     ROLE                              AGE
eks:kube-proxy-windows   ClusterRole/system:node-proxier   19h

If the output includes Error from server (NotFound), then the cluster does not have 
the necessary cluster role binding. Add the binding by creating a file named eks-kube-
proxy-windows-crb.yaml with the following content.

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata: 
  name: eks:kube-proxy-windows 
  labels: 
    k8s-app: kube-proxy 
    eks.amazonaws.com/component: kube-proxy
subjects: 
  - kind: Group 
    name: "eks:kube-proxy-windows"
roleRef: 
  kind: ClusterRole 
  name: system:node-proxier 
  apiGroup: rbac.authorization.k8s.io

Apply the configuration to the cluster.

kubectl apply -f eks-kube-proxy-windows-crb.yaml

5. After you have enabled Windows support, you can launch a Windows node group into your 
cluster. For more information, see Launching self-managed Windows nodes.

Enabling legacy Windows support 95



Amazon EKS User Guide

Renewing the VPC admission webhook certificate

The certificate used by the VPC admission webhook expires one year after issue. To avoid down 
time, it's important that you renew the certificate before it expires. You can check the expiration 
date of your current certificate with the following command.

kubectl get secret \ 
    -n kube-system \ 
    vpc-admission-webhook-certs -o json | \ 
    jq -r '.data."cert.pem"' | \ 
    base64 -decode | \ 
    openssl x509 \ 
    -noout \ 
    -enddate | \ 
    cut -d= -f2

An example output is as follows.

May 28 14:23:00 2022 GMT

You can renew the certificate using eksctl or a Windows or Linux/macOS computer. Follow the 
instructions for the tool you originally used to install the VPC admission webhook. For example, 
if you originally installed the VPC admission webhook using eksctl, then you should renew the 
certificate using the instructions on the eksctl tab.

eksctl

1. Reinstall the certificate. Replace my-cluster with the name of your cluster.

eksctl utils install-vpc-controllers -cluster my-cluster -approve

2. Verify that you receive the following output.

2021/05/28 05:24:59 [INFO] generate received request
2021/05/28 05:24:59 [INFO] received CSR
2021/05/28 05:24:59 [INFO] generating key: rsa-2048
2021/05/28 05:24:59 [INFO] encoded CSR

3. Restart the webhook deployment.

Enabling legacy Windows support 96



Amazon EKS User Guide

kubectl rollout restart deployment -n kube-system vpc-admission-webhook

4. If the certificate that you renewed was expired, and you have Windows Pods stuck in the
Container creating state, then you must delete and redeploy those Pods.

Windows

1. Get the script to generate new certificate.

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/manifests/region-code/vpc-
admission-webhook/latest/webhook-create-signed-cert.ps1;

2. Prepare parameter for the script.

./webhook-create-signed-cert.ps1 -ServiceName vpc-admission-webhook-svc -
SecretName vpc-admission-webhook-certs -Namespace kube-system

3. Restart the webhook deployment.

kubectl rollout restart deployment -n kube-system vpc-admission-webhook-deployment
                                                         

4. If the certificate that you renewed was expired, and you have Windows Pods stuck in the
Container creating state, then you must delete and redeploy those Pods.

Linux and macOS

Prerequisite

You must have OpenSSL and jq installed on your computer.

1. Get the script to generate new certificate.

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/manifests/region-code/vpc-
admission-webhook/latest/webhook-create-signed-cert.sh

2. Change the permissions.

chmod +x webhook-create-signed-cert.sh

Enabling legacy Windows support 97



Amazon EKS User Guide

3. Run the script.

./webhook-create-signed-cert.sh

4. Restart the webhook.

kubectl rollout restart deployment -n kube-system vpc-admission-webhook-deployment

5. If the certificate that you renewed was expired, and you have Windows Pods stuck in the
Container creating state, then you must delete and redeploy those Pods.

Supporting higher Pod density on Windows nodes

In Amazon EKS, each Pod is allocated an IPv4 address from your VPC. Due to this, the number 
of Pods that you can deploy to a node is constrained by the available IP addresses, even if there 
are sufficient resources to run more Pods on the node. Since only one elastic network interface is 
supported by a Windows node, by default, the maximum number of available IP addresses on a 
Windows node is equal to:

Number of private IPv4 addresses for each interface on the node - 1

One IP address is used as the primary IP address of the network interface, so it can't be allocated to 
Pods.

You can enable higher Pod density on Windows nodes by enabling IP prefix delegation. This feature 
enables you to assign a /28 IPv4 prefix to the primary network interface, instead of assigning 
secondary IPv4 addresses. Assigning an IP prefix increases the maximum available IPv4 addresses 
on the node to:

(Number of private IPv4 addresses assigned to the interface attached to the node - 1) * 
 16

With this significantly larger number of available IP addresses, available IP addresses shouldn't 
limit your ability to scale the number of Pods on your nodes. For more information, see Increase 
the amount of available IP addresses for your Amazon EC2 nodes.

Supporting higher Pod density on Windows nodes 98



Amazon EKS User Guide

Private cluster requirements

This topic describes how to deploy an Amazon EKS cluster that is deployed on the AWS Cloud, but 
doesn't have outbound internet access. If you have a local cluster on AWS Outposts, see Launching 
self-managed Amazon Linux nodes on an Outpost, instead of this topic.

If you're not familiar with Amazon EKS networking, see De-mystifying cluster networking for 
Amazon EKS worker nodes. If your cluster doesn't have outbound internet access, then it must 
meet the following requirements:

• Your cluster must pull images from a container registry that's in your VPC. You can create an 
Amazon Elastic Container Registry in your VPC and copy container images to it for your nodes 
to pull from. For more information, see Copy a container image from one repository to another 
repository.

• Your cluster must have endpoint private access enabled. This is required for nodes to register 
with the cluster endpoint. Endpoint public access is optional. For more information, see Amazon 
EKS cluster endpoint access control.

• Self-managed Linux and Windows nodes must include the following bootstrap arguments before 
they're launched. These arguments bypass Amazon EKS introspection and don't require access to 
the Amazon EKS API from within the VPC.

1. Determine the value of your cluster's endpoint with the following command. Replace my-
cluster with the name of your cluster.

aws eks describe-cluster --name my-cluster --query cluster.endpoint --output text

An example output is as follows.

https://EXAMPLE108C897D9B2F1B21D5EXAMPLE.sk1.region-code.eks.amazonaws.com

2. Determine the value of your cluster's certificate authority with the following command. 
Replace my-cluster with the name of your cluster.

aws eks describe-cluster --name my-cluster --query cluster.certificateAuthority --
output text

The returned output is a long string.

Private cluster requirements 99

https://aws.amazon.com/blogs/containers/de-mystifying-cluster-networking-for-amazon-eks-worker-nodes/
https://aws.amazon.com/blogs/containers/de-mystifying-cluster-networking-for-amazon-eks-worker-nodes/


Amazon EKS User Guide

3. Replace cluster-endpoint and certificate-authority in the following commands 
with the values returned in the output from the previous commands. For more information 
about specifying bootstrap arguments when launching self-managed nodes, see Launching 
self-managed Amazon Linux nodes and Launching self-managed Windows nodes.

• For Linux nodes:

--apiserver-endpoint cluster-endpoint --b64-cluster-ca certificate-authority

For additional arguments, see the bootstrap script on GitHub.

• For Windows nodes:

Note

If you're using custom service CIDR, then you need to specify it using the -
ServiceCIDR parameter. Otherwise, the DNS resolution for Pods in the cluster will 
fail.

-APIServerEndpoint cluster-endpoint -Base64ClusterCA certificate-authority

For additional arguments, see Bootstrap script configuration parameters.

• Your cluster's aws-auth ConfigMap must be created from within your VPC. For more 
information about creating and adding entries to the aws-auth ConfigMap, enter eksctl 
create iamidentitymapping --help in your terminal. If the ConfigMap doesn't exist on 
your server, eksctl will create it when you use the command to add an identity mapping.

• Pods configured with IAM roles for service accounts acquire credentials from an AWS Security 
Token Service (AWS STS) API call. If there is no outbound internet access, you must create and 
use an AWS STS VPC endpoint in your VPC. Most AWS v1 SDKs use the global AWS STS endpoint 
by default (sts.amazonaws.com), which doesn't use the AWS STS VPC endpoint. To use the 
AWS STS VPC endpoint, you might need to configure your SDK to use the regional AWS STS 
endpoint (sts.region-code.amazonaws.com). For more information, see Configuring the 
AWS Security Token Service endpoint for a service account.

Private cluster requirements 100

https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh


Amazon EKS User Guide

• Your cluster's VPC subnets must have a VPC interface endpoint for any AWS services that your 
Pods need access to. For more information, see Access an AWS service using an interface VPC 
endpoint. Some commonly-used services and endpoints are listed in the following table. For a 
complete list of endpoints, see AWS services that integrate with AWS PrivateLink in the AWS 
PrivateLink Guide.

Service Endpoint

Amazon EC2 com.amazonaws.region-code .ec2

Amazon Elastic Container Registry (for 
pulling container images)

com.amazonaws.region-code .ecr.api, com.amazo 
naws.region-code .ecr.dkr, and com.amazo 
naws.region-code .s3

Application Load Balancers and 
Network Load Balancers

com.amazonaws.region-code .elasticloadbalanc 
ing

AWS X-Ray com.amazonaws.region-code .xray

Amazon CloudWatch Logs com.amazonaws.region-code .logs

AWS Security Token Service (required 
when using IAM roles for service 
accounts)

com.amazonaws.region-code .sts

Considerations

• Any self-managed nodes must be deployed to subnets that have the VPC interface endpoints 
that you require. If you create a managed node group, the VPC interface endpoint security group 
must allow the CIDR for the subnets, or you must add the created node security group to the 
VPC interface endpoint security group.

• If your Pods use Amazon EFS volumes, then before deploying the Amazon EFS CSI driver, the 
driver's kustomization.yaml file must be changed to set the container images to use the same 
AWS Region as the Amazon EKS cluster.

• You can use the AWS Load Balancer Controller to deploy AWS Application Load Balancers (ALB) 
and Network Load Balancers to your private cluster. When deploying it, you should use command 
line flags to set enable-shield, enable-waf, and enable-wafv2 to false. Certificate 

Private cluster requirements 101

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/privatelink/aws-services-privatelink-support.html
https://docs.aws.amazon.com/vpc/latest/privatelink/
https://docs.aws.amazon.com/vpc/latest/privatelink/
https://github.com/kubernetes-sigs/aws-efs-csi-driver/blob/master/deploy/kubernetes/overlays/stable/kustomization.yaml
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/deploy/configurations/#controller-command-line-flags
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/deploy/configurations/#controller-command-line-flags
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/ingress/cert_discovery/#discover-via-ingress-rule-host


Amazon EKS User Guide

discovery with hostnames from Ingress objects isn't supported. This is because the controller 
needs to reach AWS Certificate Manager, which doesn't have a VPC interface endpoint.

The controller supports network load balancers with IP targets, which are required for use with 
Fargate. For more information, see Application load balancing on Amazon EKS and Create a 
network load balancer.

• Cluster Autoscaler is supported. When deploying Cluster Autoscaler Pods, make sure that the 
command line includes --aws-use-static-instance-list=true. For more information, 
see Use Static Instance List on GitHub. The worker node VPC must also include the AWS STS VPC 
endpoint and autoscaling VPC endpoint.

• Some container software products use API calls that access the AWS Marketplace Metering 
Service to monitor usage. Private clusters do not allow these calls, so you can't use these 
container types in private clusters.

Amazon EKS Kubernetes versions

Kubernetes rapidly evolves with new features, design updates, and bug fixes. The community 
releases new Kubernetes minor versions (such as 1.29) on average once every four months. 
Amazon EKS follows the upstream release and deprecation cycle for minor versions. As new 
Kubernetes versions become available in Amazon EKS, we recommend that you proactively update 
your clusters to use the latest available version.

A minor version is under standard support in Amazon EKS for the first 14 months after it's released. 
Once a version is past the end of standard support date, it automatically enters extended support 
for the next 12 months. Extended support allows you to stay at a specific Kubernetes version 
for longer at an additional cost per cluster hour. If you haven’t updated your cluster before the 
extended support period ends, your cluster is auto-upgraded to the oldest currently supported 
extended version.

We recommend that you create your cluster with the latest available Kubernetes version supported 
by Amazon EKS. If your application requires a specific version of Kubernetes, you can select older 
versions. You can create new Amazon EKS clusters on any version offered in standard or extended 
support.

Available versions on standard support

The following Kubernetes versions are currently available in Amazon EKS standard support:

Kubernetes versions 102

https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/ingress/cert_discovery/#discover-via-ingress-rule-host
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/cloudprovider/aws/README.md#use-static-instance-list


Amazon EKS User Guide

• 1.29

• 1.28

• 1.27

• 1.26

• 1.25

For important changes to be aware of for each version in standard support, see Release notes for 
standard support versions.

Available versions on extended support

The following Kubernetes versions are currently available in Amazon EKS extended support:

• 1.24

• 1.23

For important changes to be aware of for each version in extended support, see Release notes for 
extended support versions.

Amazon EKS Kubernetes release calendar

The following table shows important release and support dates to consider for each Kubernetes 
version.

Note

Dates with only a month and a year are approximate and are updated with an exact date 
when it's known.

Kubernetes 
version

Upstream 
release

Amazon EKS 
release

End of standard 
support

End of extended 
support

1.29 December 13, 
2023

January 23, 
2024

March 23, 2025 March 23, 2026

Available versions on extended support 103



Amazon EKS User Guide

Kubernetes 
version

Upstream 
release

Amazon EKS 
release

End of standard 
support

End of extended 
support

1.28 August 15, 2023 September 26, 
2023

November 26, 
2024

November 26, 
2025

1.27 April 11, 2023 May 24, 2023 July 24, 2024 July 24, 2025

1.26 December 9, 
2022

April 11, 2023 June 11, 2024 June 11, 2025

1.25 August 23, 2022 February 22, 
2023

May 1, 2024 May 1, 2025

1.24 May 3, 2022 November 15, 
2022

January 31, 
2024

January 31, 
2025

1.23 December 7, 
2021

August 11, 2022 October 11, 
2023

October 11, 
2024

Amazon EKS version FAQs

How many Kubernetes versions are available in standard support?

In line with the Kubernetes community support for Kubernetes versions, Amazon EKS is 
committed to offering standard support for at least four production-ready versions of 
Kubernetes at any given time. We will announce the end of standard support date of a given 
Kubernetes minor version at least 60 days in advance. Because of the Amazon EKS qualification 
and release process for new Kubernetes versions, the end of standard support date of a 
Kubernetes version on Amazon EKS will be on or after the date that the Kubernetes project 
stops supporting the version upstream.

How long does a Kubernetes receive standard support by Amazon EKS?

A Kubernetes version received standard support for 14 months after first being available 
on Amazon EKS. This is true even if upstream Kubernetes no longer support a version that's 
available on Amazon EKS. We backport security patches that are applicable to the Kubernetes 
versions that are supported on Amazon EKS.

Amazon EKS version FAQs 104



Amazon EKS User Guide

Am I notified when standard support is ending for a Kubernetes version on Amazon EKS?

Yes. If any clusters in your account are running the version nearing the end of support, Amazon 
EKS sends out a notice through the AWS Health Dashboard approximately 12 months after the 
Kubernetes version was released on Amazon EKS. The notice includes the end of support date. 
This is at least 60 days from the date of the notice.

Which Kubernetes features are supported by Amazon EKS?

Amazon EKS supports all generally available (GA) features of the Kubernetes API. Starting 
with Kubernetes version 1.24, new beta APIs aren't enabled in clusters by default. However, 
previously existing beta APIs and new versions of existing beta APIs continue to be enabled by 
default. Alpha features aren't supported.

Are Amazon EKS managed node groups automatically updated along with the cluster control 
plane version?

No. A managed node group creates Amazon EC2 instances in your account. These instances 
aren't automatically upgraded when you or Amazon EKS update your control plane. For more 
information, see Updating a managed node group. We recommend maintaining the same 
Kubernetes version on your control plane and nodes.

Are self-managed node groups automatically updated along with the cluster control plane 
version?

No. A self-managed node group includes Amazon EC2 instances in your account. These 
instances aren't automatically upgraded when you or Amazon EKS update the control plane 
version on your behalf. A self-managed node group doesn't have any indication in the console 
that it needs updating. You can view the kubelet version installed on a node by selecting the 
node in the Nodes list on the Overview tab of your cluster to determine which nodes need 
updating. You must manually update the nodes. For more information, see Self-managed node 
updates.

The Kubernetes project tests compatibility between the control plane and nodes for up to three 
minor versions. For example, 1.26 nodes continue to operate when orchestrated by a 1.29
control plane. However, running a cluster with nodes that are persistently three minor versions 
behind the control plane isn't recommended. For more information, see Kubernetes version and 
version skew support policy in the Kubernetes documentation. We recommend maintaining the 
same Kubernetes version on your control plane and nodes.

Amazon EKS version FAQs 105

https://kubernetes.io/docs/setup/version-skew-policy/
https://kubernetes.io/docs/setup/version-skew-policy/


Amazon EKS User Guide

Are Pods running on Fargate automatically upgraded with an automatic cluster control plane 
version upgrade?

No. We strongly recommend running Fargate Pods as part of a replication controller, such as 
a Kubernetes deployment. Then do a rolling restart of all Fargate Pods. The new version of 
the Fargate Pod is deployed with a kubelet version that's the same version as your updated 
cluster control plane version. For more information, see Deployments in the Kubernetes 
documentation.

Important

If you update the control plane, you must still update the Fargate nodes yourself. To 
update Fargate nodes, delete the Fargate Pod represented by the node and redeploy the 
Pod. The new Pod is deployed with a kubelet version that's the same version as your 
cluster.

Amazon extended support FAQs

The standard support and extended support terminology is new to me. What do those terms 
mean?

Standard support for a Kubernetes version in Amazon EKS begins when a Kubernetes version is 
released on Amazon EKS, and will end 14 months after the release date. Extended support for a 
Kubernetes version will begin immediately after the end of standard support, and will end after 
the next 12 months. For example, standard support for version 1.23 in Amazon EKS ends on 
October 11, 2023. Extended support for version 1.23 began on October 12, 2023 and will end 
on October 11, 2024.

What do I need to do to get extended support for Amazon EKS clusters?

You don’t have to take any action to get extended support for your Amazon EKS clusters. 
Standard support will begin when a Kubernetes version is released on Amazon EKS, and will 
end 14 months after the release date. Extended support for a Kubernetes version will begin 
immediately after the end of standard support, and will end after the next 12 months. Clusters 
that are running on a Kubernetes version past the end of standard support will automatically be 
onboarded to extended support.

Amazon extended support FAQs 106

https://kubernetes.io/docs/concepts/workloads/controllers/deployment


Amazon EKS User Guide

For which Kubernetes versions can I get extended support?

Extended support is available for Kubernetes versions 1.23 and higher. You can run clusters on 
any version for up to 12 months after the end of standard support for that version. This means 
that each version will be supported for 26 months in Amazon EKS (14 months of standard 
support plus 12 months of extended support).

What if I don’t want to use extended support?

If you don’t want to be automatically enrolled in extended support, you can upgrade your 
cluster to a Kubernetes version that’s in standard Amazon EKS support. Clusters that aren’t 
upgraded to a Kubernetes version in standard support will automatically enter extended 
support.

What will happen at the end of 12 months of extended support?

Clusters running on a Kubernetes version that has completed its 26-month lifecycle (14 months 
of standard support plus 12 months of extended support) will be auto-upgraded to the next 
version.

On the end of extended support date, you can no longer create new Amazon EKS clusters with 
the unsupported version. Existing control planes are automatically updated by Amazon EKS to 
the earliest supported version through a gradual deployment process after the end of support 
date. After the automatic control plane update, make sure to manually update cluster add-
ons and Amazon EC2 nodes. For more information, see Update the Kubernetes version for your 
Amazon EKS cluster.

When exactly is my control plane automatically updated after the end of extended support 
date?

Amazon EKS can't provide specific time frames. Automatic updates can happen at any time 
after the end of extended support date. You won't receive any notification before the update. 
We recommend that you proactively update your control plane without relying on the Amazon 
EKS automatic update process. For more information, see Updating an Amazon EKS cluster 
Kubernetes version.

Can I leave my control plane on a Kubernetes version indefinitely?

No. Cloud security at AWS is the highest priority. Past a certain point (usually one year), the 
Kubernetes community stops releasing common vulnerabilities and exposures (CVE) patches 
and discourages CVE submission for unsupported versions. This means that vulnerabilities 
specific to an older version of Kubernetes might not even be reported. This leaves clusters 

Amazon extended support FAQs 107



Amazon EKS User Guide

exposed with no notice and no remediation options in the event of a vulnerability. Given this, 
Amazon EKS doesn't allow control planes to stay on a version that reached end of extended 
support.

Is there additional cost to get extended support?

Yes, there is additional cost for Amazon EKS clusters running in extended support. For pricing 
details, see Amazon EKS extended support for Kubernetes version pricing on the AWS blog.

What is included in extended support?

Amazon EKS clusters in Extended Support receive ongoing security patches for the Kubernetes 
control plane. Additionally, Amazon EKS will release patches for the Amazon VPC CNI, kube-
proxy, and CoreDNS add-ons for Extended Support versions. Amazon EKS will also release 
patches for AWS-published Amazon EKS optimized AMIs for Amazon Linux, Bottlerocket, and 
Windows, as well as Amazon EKS Fargate nodes for those versions. All clusters in Extended 
Support will continue to get access to technical support from AWS.

Note

Extended Support for Amazon EKS optimized Windows AMIs that are published by AWS 
isn't available for Kubernetes version 1.23 but is available for Kubernetes version 1.24
and higher.

Are there any limitations to patches for non-Kubernetes components in extended support?

While Extended Support covers all of the Kubernetes specific components from AWS, it 
will only provide support for AWS-published Amazon EKS optimized AMIs for Amazon 
Linux, Bottlerocket, and Windows at all times. This means, you will potentially have newer 
components (such as OS or kernel) on your Amazon EKS optimized AMI while using Extended 
Support. For example, once Amazon Linux 2 reaches the end of its lifecycle in 2025, the 
Amazon EKS optimized Amazon Linux AMIs will be built using a newer Amazon Linux OS. 
Amazon EKS will announce and document important support lifecycle discrepancies such as this 
for each Kubernetes version.

Amazon extended support FAQs 108

https://aws.amazon.com/blogs/containers/amazon-eks-extended-support-for-kubernetes-versions-pricing/
https://aws.amazon.com/amazon-linux-2/faqs/


Amazon EKS User Guide

Release notes for standard support versions

This topic gives important changes to be aware of for each Kubernetes version in standard support. 
When upgrading, carefully review the changes that have occurred between the old and new 
versions for your cluster.

Note

For 1.24 and later clusters, officially published Amazon EKS AMIs include containerd as 
the only runtime. Kubernetes versions earlier than 1.24 use Docker as the default runtime. 
These versions have a bootstrap flag option that you can use to test out your workloads on 
any supported cluster with containerd. For more information, see Amazon EKS ended 
support for Dockershim.

Kubernetes 1.29

Kubernetes 1.29 is now available in Amazon EKS. For more information about Kubernetes 1.29, 
see the official release announcement.

Important

• The deprecated flowcontrol.apiserver.k8s.io/v1beta2 API version of
FlowSchema and PriorityLevelConfiguration are no longer served in Kubernetes
v1.29. If you have manifests or client software that uses the deprecated beta API group, 
you should change these before you upgrade to v1.29.

• The .status.kubeProxyVersion field for Node objects is now deprecated, and the 
Kubernetes project is proposing to remove that field in a future release. The deprecated field is 
not accurate and has historically been managed by kubelet - which does not actually know the
kube-proxy version, or even whether kube-proxy is running. If you've been using this field in 
client software, stop - the information isn't reliable and the field is now deprecated.

• In Kubernetes 1.29 to reduce potential attack surface, the
LegacyServiceAccountTokenCleanUp feature labels legacy auto-generated secret-based 
tokens as invalid if they have not been used for a long time (1 year by default), and automatically 

Standard support versions 109

https://kubernetes.io/blog/2023/12/13/kubernetes-v1-29-release/


Amazon EKS User Guide

removes them if use is not attempted for a long time after being marked as invalid (1 additional 
year by default). To identify such tokens, a you can run:

kubectl get cm kube-apiserver-legacy-service-account-token-tracking -nkube-system

For the complete Kubernetes 1.29 changelog, see https://github.com/kubernetes/kubernetes/ 
blob/master/CHANGELOG/CHANGELOG-1.29.md#changelog-since-v1280.

Kubernetes 1.28

Kubernetes 1.28 is now available in Amazon EKS. For more information about Kubernetes 1.28, 
see the official release announcement.

• Kubernetes v1.28 expanded the supported skew between core node and control plane 
components by one minor version, from n-2 to n-3, so that node components (kubelet and
kube-proxy) for the oldest supported minor version can work with control plane components 
(kube-apiserver, kube-scheduler, kube-controller-manager, cloud-controller-
manager) for the newest supported minor version.

• Metrics force_delete_pods_total and force_delete_pod_errors_total in the Pod 
GC Controller are enhanced to account for all forceful pods deletion. A reason is added to 
the metric to indicate whether the pod is forcefully deleted because it's terminated, orphaned, 
terminating with the out-of-service taint, or terminating and unscheduled.

• The PersistentVolume (PV) controller has been modified to automatically assign a default
StorageClass to any unbound PersistentVolumeClaim with the storageClassName
not set. Additionally, the PersistentVolumeClaim admission validation mechanism within 
the API server has been adjusted to allow changing values from an unset state to an actual
StorageClass name.

For the complete Kubernetes 1.28 changelog, see https://github.com/kubernetes/kubernetes/ 
blob/master/CHANGELOG/CHANGELOG-1.28.md#changelog-since-v1270.

Kubernetes 1.27

Kubernetes 1.27 is now available in Amazon EKS. For more information about Kubernetes 1.27, 
see the official release announcement.

Standard support versions 110

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.29.md#changelog-since-v1280
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.29.md#changelog-since-v1280
https://kubernetes.io/blog/2023/08/15/kubernetes-v1-28-release/
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.28.md#changelog-since-v1270
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.28.md#changelog-since-v1270
https://kubernetes.io/blog/2023/04/11/kubernetes-v1-27-release/


Amazon EKS User Guide

Important

• The support for the alpha seccomp annotations
seccomp.security.alpha.kubernetes.io/pod and
container.seccomp.security.alpha.kubernetes.io annotations was removed. 
The alpha seccomp annotations was deprecated in 1.19, and with their removal in
1.27, seccomp fields will no longer auto-populate for Pods with seccomp annotations. 
Instead, use the securityContext.seccompProfile field for Pods or containers 
to configure seccomp profiles. To check whether you are using the deprecated alpha
seccomp annotations in your cluster, run the following command:

kubectl get pods --all-namespaces -o json | grep 
 -E 'seccomp.security.alpha.kubernetes.io/pod|
container.seccomp.security.alpha.kubernetes.io'

• The --container-runtime command line argument for the kubelet was removed. 
The default container runtime for Amazon EKS has been containerd since 1.24, which 
eliminates the need to specify the container runtime. From 1.27 onwards, Amazon EKS 
will ignore the --container-runtime argument passed to any bootstrap scripts. It is 
important that you don't pass this argument to --kubelet-extra-args in order to 
prevent errors during the node bootstrap process. You must remove the --container-
runtime argument from all of your node creation workflows and build scripts.

• The kubelet in Kubernetes 1.27 increased the default kubeAPIQPS to 50 and kubeAPIBurst
to 100. These enhancements allow the kubelet to handle a higher volume of API queries, 
improving response times and performance. When the demands for Pods increase, due to 
scaling requirements, the revised defaults ensure that the kubelet can efficiently manage 
the increased workload. As a result, Pod launches are quicker and cluster operations are more 
effective.

• You can use more fine grained Pod topology to spread policies such as minDomain. This 
parameter gives you the ability to specify the minimum number of domains your Pods should 
be spread across. nodeAffinityPolicy and nodeTaintPolicy allow for an extra level of 
granularity in governing Pod distribution. This is in accordance to node affinities, taints, and the
matchLabelKeys field in the topologySpreadConstraints of your Pod's specification. This 
permits the selection of Pods for spreading calculations following a rolling upgrade.

Standard support versions 111



Amazon EKS User Guide

• Kubernetes1.27 promoted to beta a new policy mechanism for StatefulSets that controls 
the lifetime of their PersistentVolumeClaims(PVCs). The new PVC retention policy lets 
you specify if the PVCs generated from the StatefulSet spec template will be automatically 
deleted or retained when the StatefulSet is deleted or replicas in the StatefulSet are 
scaled down.

• The goaway-chance option in the Kubernetes API server helps prevent HTTP/2 client 
connections from being stuck on a single API server instance, by randomly closing a connection. 
When the connection is closed, the client will try to reconnect, and will likely land on a different 
API server as a result of load balancing. Amazon EKS version 1.27 has enabled goaway-chance
flag. If your workload running on Amazon EKS cluster uses a client that is not compatible with
HTTP GOAWAY, we recommend that you update your client to handle GOAWAY by reconnecting 
on connection termination.

For the complete Kubernetes 1.27 changelog, see https://github.com/kubernetes/kubernetes/ 
blob/master/CHANGELOG/CHANGELOG-1.27.md#changelog-since-v1260.

Kubernetes 1.26

Kubernetes 1.26 is now available in Amazon EKS. For more information about Kubernetes 1.26, 
see the official release announcement.

Important

Kubernetes 1.26 no longer supports CRI v1alpha2. This results in the kubelet no longer 
registering the node if the container runtime doesn't support CRI v1. This also means that 
Kubernetes 1.26 doesn't support containerd minor version 1.5 and earlier. If you're using 
containerd, you need to upgrade to containerd version 1.6.0 or later before you upgrade 
any nodes to Kubernetes 1.26. You also need to upgrade any other container runtimes that 
only support the v1alpha2. For more information, defer to the container runtime vendor. 
By default, Amazon Linux and Bottlerocket AMIs include containerd version 1.6.6.

• Before you upgrade to Kubernetes 1.26, upgrade your Amazon VPC CNI plugin for Kubernetes 
to version 1.12 or later. If you don't upgrade to Amazon VPC CNI plugin for Kubernetes version
1.12 or later, the Amazon VPC CNI plugin for Kubernetes will crash. For more information, see
Working with the Amazon VPC CNI plugin for Kubernetes Amazon EKS add-on.

Standard support versions 112

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://www.rfc-editor.org/rfc/rfc7540#section-6.8
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.27.md#changelog-since-v1260
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.27.md#changelog-since-v1260
https://kubernetes.io/blog/2022/12/09/kubernetes-v1-26-release/


Amazon EKS User Guide

• The goaway-chance option in the Kubernetes API server helps prevent HTTP/2 client 
connections from being stuck on a single API server instance, by randomly closing a connection. 
When the connection is closed, the client will try to reconnect, and will likely land on a different 
API server as a result of load balancing. Amazon EKS version 1.26 has enabled goaway-chance
flag. If your workload running on Amazon EKS cluster uses a client that is not compatible with
HTTP GOAWAY, we recommend that you update your client to handle GOAWAY by reconnecting 
on connection termination.

For the complete Kubernetes 1.26 changelog, see https://github.com/kubernetes/kubernetes/ 
blob/master/CHANGELOG/CHANGELOG-1.26.md#changelog-since-v1250.

Kubernetes 1.25

Kubernetes 1.25 is now available in Amazon EKS. For more information about Kubernetes 1.25, 
see the official release announcement.

Important

• Starting with Kubernetes version 1.25, you will no longer be able to use Amazon EC2
P2 instances with the Amazon EKS optimized accelerated Amazon Linux AMIs out of the 
box. These AMIs for Kubernetes versions 1.25 or later will support NVIDIA 525 series 
or later drivers, which are incompatible with the P2 instances. However, NVIDIA 525
series or later drivers are compatible with the P3, P4, and P5 instances, so you can use 
those instances with the AMIs for Kubernetes version 1.25 or later. Before your Amazon 
EKS clusters are upgraded to version 1.25, migrate any P2 instances to P3, P4, and
P5 instances. You should also proactively upgrade your applications to work with the
NVIDIA 525 series or later. We plan to back port the newer NVIDIA 525 series or later 
drivers to Kubernetes versions 1.23 and 1.24 in late January 2024.

• PodSecurityPolicy (PSP) is removed in Kubernetes 1.25. PSPs are replaced with Pod 
Security Admission (PSA) and Pod Security Standards (PSS). PSA is a built-in admission 
controller that implements the security controls outlined in the PSS . PSA and PSS are 
graduated to stable in Kubernetes 1.25 and are enabled in Amazon EKS by default. If 
you have PSPs in your cluster, make sure to migrate from PSP to the built-in Kubernetes 
PSS or to a policy-as-code solution before upgrading your cluster to version 1.25. If you 
don't migrate from PSP, you might encounter interruptions to your workloads. For more 
information, see the Pod security policy (PSP) removal FAQ.

Standard support versions 113

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://www.rfc-editor.org/rfc/rfc7540#section-6.8
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.26.md#changelog-since-v1250
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.26.md#changelog-since-v1250
https://kubernetes.io/blog/2022/08/23/kubernetes-v1-25-release/
https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://kubernetes.io/docs/concepts/security/pod-security-standards/


Amazon EKS User Guide

• Kubernetes version 1.25 contains changes that alter the behavior of an existing feature 
known as API Priority and Fairness (APF). APF serves to shield the API server from 
potential overload during periods of heightened request volumes. It does this by 
placing restrictions on the number of concurrent requests that can be processed at 
any given time. This is achieved through the application of distinct priority levels and 
limits to requests originating from various workloads or users. This approach ensures 
that critical applications or high-priority requests receive preferential treatment, while 
simultaneously preventing lower priority requests from overwhelming the API server. For 
more information, see API Priority and Fairness in the Kubernetes documentation or API 
Priority and Fairness in the EKS Best Practices Guide.

These updates were introduced in PR #10352 and PR #118601. Previously, APF treated 
all types of requests uniformly, with each request consuming a single unit of the 
concurrent request limit. The APF behavior change assigns higher units of concurrency 
to LIST requests due to the exceptionally heavy burden put on the API server by these 
requests. The API server estimates the number of objects that will be returned by a LIST
request. It assigns a unit of concurrency that is proportional to the number of objects 
returned.

Upon upgrading to Amazon EKS version 1.25 or higher, this updated behavior might 
cause workloads with heavy LIST requests (that previously functioned without issue) 
to encounter rate limiting. This would be indicated by an HTTP 429 response code. To 
avoid potential workload disruption due to LIST requests being rate limited, we strongly 
encourage you to restructure your workloads to reduce the rate of these requests. 
Alternatively, you can address this issue by adjusting the APF settings to allocate more 
capacity for essential requests while reducing the capacity allocated to non-essential 
ones. For more information about these mitigation techniques, see Preventing Dropped 
Requests in the EKS Best Practices Guide.

• Amazon EKS 1.25 includes enhancements to cluster authentication that contain updated 
YAML libraries. If a YAML value in the aws-auth ConfigMap found in the kube-system
namespace starts with a macro, where the first character is a curly brace, you should 
add quotation marks (“ ”) before and after the curly braces ({ }). This is required to 
ensure that aws-iam-authenticator version v0.6.3 accurately parses the aws-auth
ConfigMap in Amazon EKS 1.25.

• The beta API version (discovery.k8s.io/v1beta1) of EndpointSlice was 
deprecated in Kubernetes 1.21 and is no longer served as of Kubernetes 1.25. 

Standard support versions 114

https://kubernetes.io/docs/concepts/cluster-administration/flow-control/
https://aws.github.io/aws-eks-best-practices/scalability/docs/control-plane/#api-priority-and-fairness
https://aws.github.io/aws-eks-best-practices/scalability/docs/control-plane/#api-priority-and-fairness
https://github.com/kubernetes/kubernetes/pull/103521
https://github.com/kubernetes/kubernetes/pull/118601
https://aws.github.io/aws-eks-best-practices/scalability/docs/control-plane/#preventing-dropped-requests
https://aws.github.io/aws-eks-best-practices/scalability/docs/control-plane/#preventing-dropped-requests


Amazon EKS User Guide

This API has been updated to discovery.k8s.io/v1. For more information, see
EndpointSlice in the Kubernetes documentation. The AWS Load Balancer Controller
v2.4.6 and earlier used the v1beta1 endpoint to communicate with EndpointSlices. 
If you're using the EndpointSlices configuration for the AWS Load Balancer Controller, 
you must upgrade to AWS Load Balancer Controller v2.4.7 before upgrading your 
Amazon EKS cluster to 1.25. If you upgrade to 1.25 while using the EndpointSlices
configuration for the AWS Load Balancer Controller, the controller will crash and result in 
interruptions to your workloads. To upgrade the controller, see Installing the AWS Load 
Balancer Controller add-on.

• SeccompDefault is promoted to beta in Kubernetes 1.25. By setting the --
seccomp-default flag when you configure kubelet, the container runtime uses its
RuntimeDefaultseccomp profile, rather than the unconfined (seccomp disabled) mode. 
The default profiles provide a strong set of security defaults, while preserving the functionality 
of the workload. Although this flag is available, Amazon EKS doesn't enable this flag by default, 
so Amazon EKS behavior is effectively unchanged. If you want to, you can start enabling this on 
your nodes. For more details, see the tutorial Restrict a Container's Syscalls with seccomp in the 
Kubernetes documentation.

• Support for the Container Runtime Interface (CRI) for Docker (also known as Dockershim) was 
removed from Kubernetes 1.24 and later. The only container runtime in Amazon EKS official 
AMIs for Kubernetes 1.24 and later clusters is containerd. Before upgrading to Amazon EKS
1.24 or later, remove any reference to bootstrap script flags that aren't supported anymore. For 
more information, see Amazon EKS ended support for Dockershim.

• The support for wildcard queries was deprecated in CoreDNS 1.8.7 and removed in CoreDNS
1.9. This was done as a security measure. Wildcard queries no longer work and return NXDOMAIN
instead of an IP address.

• The goaway-chance option in the Kubernetes API server helps prevent HTTP/2 client 
connections from being stuck on a single API server instance, by randomly closing a connection. 
When the connection is closed, the client will try to reconnect, and will likely land on a different 
API server as a result of load balancing. Amazon EKS version 1.25 has enabled goaway-chance
flag. If your workload running on Amazon EKS cluster uses a client that is not compatible with
HTTP GOAWAY, we recommend that you update your client to handle GOAWAY by reconnecting 
on connection termination.

Standard support versions 115

https://kubernetes.io/docs/reference/using-api/deprecation-guide/#endpointslice-v125
https://kubernetes.io/docs/tutorials/security/seccomp/#enable-the-use-of-runtimedefault-as-the-default-seccomp-profile-for-all-workloads/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://www.rfc-editor.org/rfc/rfc7540#section-6.8


Amazon EKS User Guide

For the complete Kubernetes 1.25 changelog, see https://github.com/kubernetes/kubernetes/ 
blob/master/CHANGELOG/CHANGELOG-1.25.md#changelog-since-v1240.

Release notes for extended support versions

This topic gives important changes to be aware of for each Kubernetes version in extended 
support. When upgrading, carefully review the changes that have occurred between the old and 
new versions for your cluster.

Kubernetes 1.24

Kubernetes 1.24 is now available in Amazon EKS. For more information about Kubernetes 1.24, 
see the official release announcement.

Important

• Starting with Kubernetes 1.24, new beta APIs aren't enabled in clusters by default. By 
default, existing beta APIs and new versions of existing beta APIs continue to be enabled. 
Amazon EKS follows the same behavior as upstream Kubernetes 1.24. The feature 
gates that control new features for both new and existing API operations are enabled 
by default. This is in alignment with upstream Kubernetes. For more information, see
KEP-3136: Beta APIs Are Off by Default on GitHub.

• Support for Container Runtime Interface (CRI) for Docker (also known as Dockershim) is 
removed from Kubernetes 1.24. Amazon EKS official AMIs have containerd as the only 
runtime. Before moving to Amazon EKS 1.24 or higher, you must remove any reference 
to bootstrap script flags that aren't supported anymore. You must also make sure that 
IP forwarding is enabled for your worker nodes. For more information, see Amazon EKS 
ended support for Dockershim.

• If you already have Fluentd configured for Container Insights, then you must migrate 
Fluentd to Fluent Bit before updating your cluster. The Fluentd parsers are configured to 
only parse log messages in JSON format. Unlike dockerd, the containerd container 
runtime has log messages that aren't in JSON format. If you don't migrate to Fluent Bit, 
some of the configured Fluentd's parsers will generate a massive amount of errors inside 
the Fluentd container. For more information on migrating, see Set up Fluent Bit as a 
DaemonSet to send logs to CloudWatch Logs.

• In Kubernetes 1.23 and earlier, kubelet serving certificates with unverifiable IP and 
DNS Subject Alternative Names (SANs) are automatically issued with unverifiable SANs. 

Extended support versions 116

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.25.md#changelog-since-v1240
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.25.md#changelog-since-v1240
https://kubernetes.io/blog/2022/05/03/kubernetes-1-24-release-announcement/
https://github.com/kubernetes/enhancements/blob/master/keps/sig-architecture/3136-beta-apis-off-by-default/README.md
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-logs-FluentBit.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-logs-FluentBit.html


Amazon EKS User Guide

These unverifiable SANs are omitted from the provisioned certificate. In version 1.24
and later clusters, kubelet serving certificates aren't issued if any SAN can't be verified. 
This prevents kubectl exec and kubectl logs commands from working. For more 
information, see Certificate signing considerations before upgrading your cluster to 
Kubernetes 1.24.

• When upgrading an Amazon EKS 1.23 cluster that uses Fluent Bit, you must make sure 
that it's running k8s/1.3.12 or later. You can do this by reapplying the latest applicable 
Fluent Bit YAML file from GitHub. For more information, see Setting up Fluent Bit in the 
Amazon CloudWatch User Guide.

• You can use Topology Aware Hints to indicate your preference for keeping traffic in zone when 
cluster worker nodes are deployed across multiple availability zones. Routing traffic within a 
zone can help reduce costs and improve network performance. By default, Topology Aware 
Hints are enabled in Amazon EKS 1.24. For more information, see Topology Aware Hints in the 
Kubernetes documentation.

• The PodSecurityPolicy (PSP) is scheduled for removal in Kubernetes 1.25. PSPs are being 
replaced with Pod Security Admission (PSA). PSA is a built-in admission controller that uses 
the security controls that are outlined in the Pod Security Standards (PSS) . PSA and PSS are 
both beta features and are enabled in Amazon EKS by default. To address the removal of PSP in 
version 1.25, we recommend that you implement PSS in Amazon EKS. For more information, see
Implementing Pod Security Standards in Amazon EKS on the AWS blog.

• The client.authentication.k8s.io/v1alpha1 ExecCredential is removed in Kubernetes
1.24. The ExecCredential API was generally available in Kubernetes 1.22. If you use a client-go 
credential plugin that relies on the v1alpha1 API, contact the distributor of your plugin on how 
to migrate to the v1 API.

• For Kubernetes 1.24, we contributed a feature to the upstream Cluster Autoscaler project that 
simplifies scaling Amazon EKS managed node groups to and from zero nodes. Previously, for 
the Cluster Autoscaler to understand the resources, labels, and taints of a managed node group 
that was scaled to zero nodes, you needed to tag the underlying Amazon EC2 Auto Scaling group 
with the details of the nodes that it was responsible for. Now, when there are no running nodes 
in the managed node group, the Cluster Autoscaler calls the Amazon EKS DescribeNodegroup
API operation. This API operation provides the information that the Cluster Autoscaler requires 
of the managed node group's resources, labels, and taints. This feature requires that you add 
the eks:DescribeNodegroup permission to the Cluster Autoscaler service account IAM policy. 
When the value of a Cluster Autoscaler tag on the Auto Scaling group powering an Amazon EKS 

Extended support versions 117

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-logs-FluentBit.html#Container-Insights-FluentBit-setup
https://kubernetes.io/docs/concepts/services-networking/topology-aware-hints/
https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://aws.amazon.com/blogs/containers/implementing-pod-security-standards-in-amazon-eks/


Amazon EKS User Guide

managed node group conflicts with the node group itself, the Cluster Autoscaler prefers the 
value of the Auto Scaling group tag. This is so that you can override values as needed. For more 
information, see Autoscaling.

• If you intend to use Inferentia or Trainium instance types with Amazon EKS 1.24, you must 
upgrade to the AWS Neuron device plugin version 1.9.3.0 or later. For more information, see
Neuron K8 release [1.9.3.0] in the AWS Neuron Documentation.

• Containerd has IPv6 enabled for Pods, by default. It applies node kernel settings to Pod 
network namespaces. Because of this, containers in a Pod bind to both IPv4 (127.0.0.1) 
and IPv6 (::1) loopback addresses. IPv6 is the default protocol for communication. Before 
updating your cluster to version 1.24, we recommend that you test your multi-container Pods. 
Modify apps so that they can bind to all IP addresses on loopback interfaces. The majority of 
libraries enable IPv6 binding, which is backward compatible with IPv4. When it's not possible to 
modify your application code, you have two options:

• Run an init container and set disable ipv6 to true (sysctl -w 
net.ipv6.conf.all.disable_ipv6=1).

• Configure a mutating admission webhook to inject an init container alongside your 
application Pods.

If you need to block IPv6 for all Pods across all nodes, you might have to disable IPv6 on your 
instances.

• The goaway-chance option in the Kubernetes API server helps prevent HTTP/2 client 
connections from being stuck on a single API server instance, by randomly closing a connection. 
When the connection is closed, the client will try to reconnect, and will likely land on a different 
API server as a result of load balancing. Amazon EKS version 1.24 has enabled goaway-chance
flag. If your workload running on Amazon EKS cluster uses a client that is not compatible with
HTTP GOAWAY, we recommend that you update your client to handle GOAWAY by reconnecting 
on connection termination.

For the complete Kubernetes 1.24 changelog, see https://github.com/kubernetes/kubernetes/ 
blob/master/CHANGELOG/CHANGELOG-1.24.md#changelog-since-v1230.

Kubernetes 1.23

Kubernetes 1.23 is now available in Amazon EKS. For more information about Kubernetes 1.23, 
see the official release announcement.

Extended support versions 118

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/release-notes/containers/neuron-k8.html#id46
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#mutatingadmissionwebhook
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://www.rfc-editor.org/rfc/rfc7540#section-6.8
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.24.md#changelog-since-v1230
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.24.md#changelog-since-v1230
https://kubernetes.io/blog/2021/12/07/kubernetes-1-23-release-announcement/


Amazon EKS User Guide

Important

• The Kubernetes in-tree to container storage interface (CSI) volume migration feature is 
enabled. This feature enables the replacement of existing Kubernetes in-tree storage 
plugins for Amazon EBS with a corresponding Amazon EBS CSI driver. For more 
information, see Kubernetes 1.17 Feature: Kubernetes In-Tree to CSI Volume Migration 
Moves to Beta on the Kubernetes blog.

The feature translates in-tree APIs to equivalent CSI APIs and delegates operations 
to a replacement CSI driver. With this feature, if you use existing StorageClass,
PersistentVolume, and PersistentVolumeClaim objects that belong to these 
workloads, there likely won't be any noticeable change. The feature enables Kubernetes 
to delegate all storage management operations from the in-tree plugin to the CSI driver. 
If you use Amazon EBS volumes in an existing cluster, install the Amazon EBS CSI driver 
in your cluster before you update your cluster to version 1.23. If you don't install the 
driver before updating an existing cluster, interruptions to your workloads might occur. 
If you plan to deploy workloads that use Amazon EBS volumes in a new 1.23 cluster, 
install the Amazon EBS CSI driver in your cluster before deploying the workloads your 
cluster. For instructions on how to install the Amazon EBS CSI driver on your cluster, see
Amazon EBS CSI driver. For frequently asked questions about the migration feature, see
Amazon EBS CSI migration frequently asked questions.

• Extended Support for Amazon EKS optimized Windows AMIs that are published by AWS 
isn't available for Kubernetes version 1.23 but is available for Kubernetes version 1.24
and higher.

• Kubernetes stopped supporting dockershim in version 1.20 and removed dockershim
in version 1.24. For more information, see Kubernetes is Moving on From Dockershim: 
Commitments and Next Steps in the Kubernetes blog. Amazon EKS will end support for
dockershim starting in Amazon EKS version 1.24. Starting with Amazon EKS version 1.24, 
Amazon EKS official AMIs will have containerd as the only runtime.

Even though Amazon EKS version 1.23 continues to support dockershim, we recommend 
that you start testing your applications now to identify and remove any Docker dependencies. 
This way, you are prepared to update your cluster to version 1.24. For more information about
dockershim removal, see Amazon EKS ended support for Dockershim.

Extended support versions 119

https://kubernetes.io/blog/2019/12/09/kubernetes-1-17-feature-csi-migration-beta/
https://kubernetes.io/blog/2019/12/09/kubernetes-1-17-feature-csi-migration-beta/
https://kubernetes.io/blog/2022/01/07/kubernetes-is-moving-on-from-dockershim/
https://kubernetes.io/blog/2022/01/07/kubernetes-is-moving-on-from-dockershim/


Amazon EKS User Guide

• Kubernetes graduated IPv4/IPv6 dual-stack networking for Pods, services, and nodes to 
general availability. However, Amazon EKS and the Amazon VPC CNI plugin for Kubernetes don't 
support dual-stack networking. Your clusters can assign IPv4 or IPv6 addresses to Pods and 
services, but can't assign both address types.

• Kubernetes graduated the Pod Security Admission (PSA) feature to beta. The feature is enabled 
by default. For more information, see Pod Security Admission in the Kubernetes documentation. 
PSA replaces the Pod Security Policy (PSP) admission controller. The PSP admission controller 
isn't supported and is scheduled for removal in Kubernetes version 1.25.

The PSP admission controller enforces Pod security standards on Pods in a namespace based on 
specific namespace labels that set the enforcement level. For more information, see Pod Security 
Standards (PSS) and Pod Security Admission (PSA) in the Amazon EKS best practices guide.

• The kube-proxy image deployed with clusters is now the minimal base image maintained by 
Amazon EKS Distro (EKS-D). The image contains minimal packages and doesn't have shells or 
package managers.

• Kubernetes graduated ephemeral containers to beta. Ephemeral containers are temporary 
containers that run in the same namespace as an existing Pod. You can use them to observe the 
state of Pods and containers for troubleshooting and debugging purposes. This is especially 
useful for interactive troubleshooting when kubectl exec is insufficient because either a 
container has crashed or a container image doesn't include debugging utilities. An example of 
a container that includes a debugging utility is distroless images. For more information, see
Debugging with an ephemeral debug container in the Kubernetes documentation.

• Kubernetes graduated the HorizontalPodAutoscaler autoscaling/v2 stable API 
to general availability. The HorizontalPodAutoscaler autoscaling/v2beta2 API is 
deprecated. It will be unavailable in 1.26.

• The goaway-chance option in the Kubernetes API server helps prevent HTTP/2 client 
connections from being stuck on a single API server instance, by randomly closing a connection. 
When the connection is closed, the client will try to reconnect, and will likely land on a different 
API server as a result of load balancing. Amazon EKS version 1.23 has enabled goaway-chance
flag. If your workload running on Amazon EKS cluster uses a client that is not compatible with
HTTP GOAWAY, we recommend that you update your client to handle GOAWAY by reconnecting 
on connection termination.

For the complete Kubernetes 1.23 changelog, see https://github.com/kubernetes/kubernetes/ 
blob/master/CHANGELOG/CHANGELOG-1.23.md#changelog-since-v1220.

Extended support versions 120

https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://aws.github.io/aws-eks-best-practices/security/docs/pods/#pod-security-solutions
https://aws.github.io/aws-eks-best-practices/security/docs/pods/#pod-security-standards-pss-and-pod-security-admission-psa
https://aws.github.io/aws-eks-best-practices/security/docs/pods/#pod-security-standards-pss-and-pod-security-admission-psa
https://gallery.ecr.aws/eks-distro-build-tooling/eks-distro-minimal-base-iptables
https://github.com/GoogleContainerTools/distroless#distroless-container-images
https://kubernetes.io/docs/tasks/debug/debug-application/debug-running-pod/#ephemeral-container
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://www.rfc-editor.org/rfc/rfc7540#section-6.8
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.23.md#changelog-since-v1220
https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG/CHANGELOG-1.23.md#changelog-since-v1220


Amazon EKS User Guide

Amazon EKS platform versions

Amazon EKS platform versions represent the capabilities of the Amazon EKS cluster control plane, 
such as which Kubernetes API server flags are enabled, as well as the current Kubernetes patch 
version. Each Kubernetes minor version has one or more associated Amazon EKS platform versions. 
The platform versions for different Kubernetes minor versions are independent. You can retrieve 
your cluster's current platform version using the AWS CLI or AWS Management Console. If you have 
a local cluster on AWS Outposts, see Amazon EKS local cluster platform versions instead of this 
topic.

When a new Kubernetes minor version is available in Amazon EKS, such as 1.29, the initial Amazon 
EKS platform version for that Kubernetes minor version starts at eks.1. However, Amazon EKS 
releases new platform versions periodically to enable new Kubernetes control plane settings and to 
provide security fixes.

When new Amazon EKS platform versions become available for a minor version:

• The Amazon EKS platform version number is incremented (eks.n+1).

• Amazon EKS automatically upgrades all existing clusters to the latest Amazon EKS platform 
version for their corresponding Kubernetes minor version. Automatic upgrades of existing 
Amazon EKS platform versions are rolled out incrementally. The roll-out process might take 
some time. If you need the latest Amazon EKS platform version features immediately, you should 
create a new Amazon EKS cluster.

If your cluster is more than two platform versions behind the current platform version, then it's 
possible that Amazon EKS wasn't able to automatically update your cluster. For details of what 
may cause this, see Amazon EKS platform version is more than two versions behind the current 
platform version.

• Amazon EKS might publish a new node AMI with a corresponding patch version. However, 
all patch versions are compatible between the EKS control plane and node AMIs for a given 
Kubernetes minor version.

New Amazon EKS platform versions don't introduce breaking changes or cause service 
interruptions.

Clusters are always created with the latest available Amazon EKS platform version (eks.n) for the 
specified Kubernetes version. If you update your cluster to a new Kubernetes minor version, your 

Platform versions 121



Amazon EKS User Guide

cluster receives the current Amazon EKS platform version for the Kubernetes minor version that 
you updated to.

The current and recent Amazon EKS platform versions are described in the following tables.

Kubernetes version 1.29

The following admission controllers are enabled for all 1.29 platform versions:
NodeRestriction, ExtendedResourceToleration, NamespaceLifecycle,
LimitRanger, ServiceAccount, TaintNodesByCondition, PodSecurity, Priority,
DefaultTolerationSeconds, DefaultStorageClass, StorageObjectInUseProtection,
PersistentVolumeClaimResize, RuntimeClass, CertificateApproval,
CertificateSigning, CertificateSubjectRestriction, DefaultIngressClass,
MutatingAdmissionWebhook, ValidatingAdmissionWebhook, ResourceQuota.

Kubernetes 
version

EKS platform 
version

Release notes Release date

1.29.1 eks.3 New platform version with security 
fixes and enhancements.

March 12, 2024

1.29.0 eks.1 Initial release of Kubernetes version
1.29 for EKS. For more information, 
see Kubernetes 1.29.

January 23, 
2024

Kubernetes version 1.28

The following admission controllers are enabled for all 1.28 platform versions:
NodeRestriction, ExtendedResourceToleration, NamespaceLifecycle,
LimitRanger, ServiceAccount, TaintNodesByCondition, PodSecurity, Priority,
DefaultTolerationSeconds, DefaultStorageClass, StorageObjectInUseProtection,
PersistentVolumeClaimResize, RuntimeClass, CertificateApproval,
CertificateSigning, CertificateSubjectRestriction, DefaultIngressClass,
MutatingAdmissionWebhook, ValidatingAdmissionWebhook, ResourceQuota.

Kubernetes version 1.29 122



Amazon EKS User Guide

Kubernetes 
version

EKS platform 
version

Release notes Release date

1.28.6 eks.9 New platform version with security 
fixes and enhancements.

March 12, 2024

1.28.5 eks.7 New platform version with security 
fixes and enhancements.

January 17, 
2024

1.28.4 eks.6 New platform version with
access entries, security fixes and 
enhancements.

December 14, 
2023

1.28.4 eks.5 New platform version with security 
fixes and enhancements.

December 12, 
2023

1.28.3 eks.4 New platform version with EKS 
Pod Identities, security fixes and 
enhancements.

November 10, 
2023

1.28.3 eks.3 New platform version with security 
fixes and enhancements.

November 3, 
2023

1.28.2 eks.2 New platform version with security 
fixes and enhancements.

October 16, 
2023

1.28.1 eks.1 Initial release of Kubernetes version
1.28 for EKS. For more information, 
see Kubernetes 1.28.

September 26, 
2023

Kubernetes version 1.27

The following admission controllers are enabled for all 1.27 platform versions:
NodeRestriction, ExtendedResourceToleration, NamespaceLifecycle,
LimitRanger, ServiceAccount, TaintNodesByCondition, PodSecurity, Priority,
DefaultTolerationSeconds, DefaultStorageClass, StorageObjectInUseProtection,
PersistentVolumeClaimResize, RuntimeClass, CertificateApproval,

Kubernetes version 1.27 123



Amazon EKS User Guide

CertificateSigning, CertificateSubjectRestriction, DefaultIngressClass,
MutatingAdmissionWebhook, ValidatingAdmissionWebhook, ResourceQuota.

Kubernetes 
version

EKS platform 
version

Release notes Release date

1.27.10 eks.13 New platform version with security 
fixes and enhancements.

March 12, 2024

1.27.9 eks.11 New platform version with security 
fixes and enhancements.

January 17, 
2024

1.27.8 eks.10 New platform version with
access entries, security fixes and 
enhancements.

December 14, 
2023

1.27.8 eks.9 New platform version with security 
fixes and enhancements.

December 12, 
2023

1.27.7 eks.8 New platform version with EKS 
Pod Identities, security fixes and 
enhancements.

November 10, 
2023

1.27.7 eks.7 New platform version with security 
fixes and enhancements.

November 3, 
2023

1.27.6 eks.6 New platform version with security 
fixes and enhancements.

October 16, 
2023

1.27.4 eks.5 New platform version with security 
fixes and enhancements.

August 30, 2023

1.27.4 eks.4 New platform version with security 
fixes and enhancements.

July 30, 2023

1.27.3 eks.3 New platform version with security 
fixes and enhancements.

June 30, 2023

Kubernetes version 1.27 124



Amazon EKS User Guide

Kubernetes 
version

EKS platform 
version

Release notes Release date

1.27.2 eks.2 New platform version with security 
fixes and enhancements.

June 9, 2023

1.27.1 eks.1 Initial release of Kubernetes version
1.27 for EKS. For more information, 
see Kubernetes 1.27.

May 24, 2023

Kubernetes version 1.26

The following admission controllers are enabled for all 1.26 platform versions:
NodeRestriction, ExtendedResourceToleration, NamespaceLifecycle,
LimitRanger, ServiceAccount, TaintNodesByCondition, PodSecurity, Priority,
DefaultTolerationSeconds, DefaultStorageClass, StorageObjectInUseProtection,
PersistentVolumeClaimResize, RuntimeClass, CertificateApproval,
CertificateSigning, CertificateSubjectRestriction, DefaultIngressClass,
MutatingAdmissionWebhook, ValidatingAdmissionWebhook, ResourceQuota.

Kubernetes 
version

EKS platform 
version

Release notes Release date

1.26.13 eks.14 New platform version with security 
fixes and enhancements.

March 12, 2024

1.26.12 eks.12 New platform version with security 
fixes and enhancements.

January 17, 
2024

1.26.11 eks.11 New platform version with
access entries, security fixes and 
enhancements.

December 14, 
2023

1.26.11 eks.10 New platform version with security 
fixes and enhancements.

December 12, 
2023

Kubernetes version 1.26 125



Amazon EKS User Guide

Kubernetes 
version

EKS platform 
version

Release notes Release date

1.26.10 eks.9 New platform version with EKS 
Pod Identities, security fixes and 
enhancements.

November 10, 
2023

1.26.10 eks.8 New platform version with security 
fixes and enhancements.

November 3, 
2023

1.26.9 eks.7 New platform version with security 
fixes and enhancements.

October 16, 
2023

1.26.7 eks.6 New platform version with security 
fixes and enhancements.

August 30, 2023

1.26.7 eks.5 New platform version with security 
fixes and enhancements.

July 30, 2023

1.26.6 eks.4 New platform version with security 
fixes and enhancements.

June 30, 2023

1.26.5 eks.3 New platform version with security 
fixes and enhancements.

June 9, 2023

1.26.4 eks.2 New platform version with security 
fixes and enhancements.

May 5, 2023

1.26.2 eks.1 Initial release of Kubernetes version
1.26 for EKS. For more information, 
see Kubernetes 1.26.

April 11, 2023

Kubernetes version 1.25

The following admission controllers are enabled for all 1.25 platform versions:
NodeRestriction, ExtendedResourceToleration, NamespaceLifecycle,
LimitRanger, ServiceAccount, TaintNodesByCondition, PodSecurity, Priority,
DefaultTolerationSeconds, DefaultStorageClass, StorageObjectInUseProtection,

Kubernetes version 1.25 126



Amazon EKS User Guide

PersistentVolumeClaimResize, RuntimeClass, CertificateApproval,
CertificateSigning, CertificateSubjectRestriction, DefaultIngressClass,
MutatingAdmissionWebhook, ValidatingAdmissionWebhook, ResourceQuota.

Kubernetes 
version

EKS platform 
version

Release notes Release date

1.25.16 eks.16 New platform version with security 
fixes and enhancements.

March 12, 2024

1.25.16 eks.13 New platform version with security 
fixes and enhancements.

January 17, 
2024

1.25.16 eks.12 New platform version with
access entries, security fixes and 
enhancements.

December 14, 
2023

1.25.16 eks.11 New platform version with security 
fixes and enhancements.

December 12, 
2023

1.25.15 eks.10 New platform version with EKS 
Pod Identities, security fixes and 
enhancements.

November 10, 
2023

1.25.15 eks.9 New platform version with security 
fixes and enhancements.

November 3, 
2023

1.25.14 eks.8 New platform version with security 
fixes and enhancements.

October 16, 
2023

1.25.12 eks.7 New platform version with security 
fixes and enhancements.

August 30, 2023

1.25.12 eks.6 New platform version with security 
fixes and enhancements.

July 30, 2023

1.25.11 eks.5 New platform version with security 
fixes and enhancements.

June 30, 2023

Kubernetes version 1.25 127



Amazon EKS User Guide

Kubernetes 
version

EKS platform 
version

Release notes Release date

1.25.10 eks.4 New platform version with security 
fixes and enhancements.

June 9, 2023

1.25.9 eks.3 New platform version with security 
fixes and enhancements.

May 5, 2023

1.25.8 eks.2 New platform version with security 
fixes and enhancements.

March 24, 2023

1.25.6 eks.1 Initial release of Kubernetes version
1.25 for EKS. For more information, 
see Kubernetes 1.25.

February 21, 
2023

Kubernetes version 1.24

The following admission controllers are enabled for all 1.24 platform versions:
CertificateApproval, CertificateSigning, CertificateSubjectRestriction,
DefaultIngressClass, DefaultStorageClass, DefaultTolerationSeconds,
ExtendedResourceToleration, LimitRanger, MutatingAdmissionWebhook,
NamespaceLifecycle, NodeRestriction, PersistentVolumeClaimResize,
Priority, PodSecurityPolicy, ResourceQuota, RuntimeClass, ServiceAccount,
StorageObjectInUseProtection, TaintNodesByCondition, and
ValidatingAdmissionWebhook.

Kubernetes 
version

EKS platform 
version

Release notes Release date

1.24.17 eks.18 New platform version with security 
fixes and enhancements.

March 12, 2024

1.24.17 eks.16 New platform version with security 
fixes and enhancements.

January 17, 
2024

Kubernetes version 1.24 128



Amazon EKS User Guide

Kubernetes 
version

EKS platform 
version

Release notes Release date

1.24.17 eks.15 New platform version with
access entries, security fixes and 
enhancements.

December 14, 
2023

1.24.17 eks.14 New platform version with security 
fixes and enhancements.

December 12, 
2023

1.24.17 eks.13 New platform version with EKS 
Pod Identities, security fixes and 
enhancements.

November 10, 
2023

1.24.17 eks.12 New platform version with security 
fixes and enhancements.

November 3, 
2023

1.24.17 eks.11 New platform version with security 
fixes and enhancements.

October 16, 
2023

1.24.16 eks.10 New platform version with security 
fixes and enhancements.

August 30, 2023

1.24.16 eks.9 New platform version with security 
fixes and enhancements.

July 30, 2023

1.24.15 eks.8 New platform version with security 
fixes and enhancements.

June 30, 2023

1.24.14 eks.7 New platform version with security 
fixes and enhancements.

June 9, 2023

1.24.13 eks.6 New platform version with security 
fixes and enhancements.

May 5, 2023

1.24.12 eks.5 New platform version with security 
fixes and enhancements.

March 24, 2023

Kubernetes version 1.24 129



Amazon EKS User Guide

Kubernetes 
version

EKS platform 
version

Release notes Release date

1.24.8 eks.4 New platform version with security 
fixes and enhancements.

January 27, 
2023

1.24.7 eks.3 New platform version with security 
fixes and enhancements.

December 5, 
2022

1.24.7 eks.2 New platform version with security 
fixes and enhancements.

November 18, 
2022

1.24.7 eks.1 Initial release of Kubernetes version
1.24 for EKS. For more information, 
see Kubernetes 1.24.

November 15, 
2022

Kubernetes version 1.23

The following admission controllers are enabled for all 1.23 platform versions:
CertificateApproval, CertificateSigning, CertificateSubjectRestriction,
DefaultIngressClass, DefaultStorageClass, DefaultTolerationSeconds,
ExtendedResourceToleration, LimitRanger, MutatingAdmissionWebhook,
NamespaceLifecycle, NodeRestriction, PersistentVolumeClaimResize,
Priority, PodSecurityPolicy, ResourceQuota, RuntimeClass, ServiceAccount,
StorageObjectInUseProtection, TaintNodesByCondition, and
ValidatingAdmissionWebhook.

Kubernetes 
version

EKS platform 
version

Release notes Release date

1.23.17 eks.20 New platform version with security 
fixes and enhancements.

March 12, 2024

1.23.17 eks.18 New platform version with security 
fixes and enhancements.

January 17, 
2024

Kubernetes version 1.23 130



Amazon EKS User Guide

Kubernetes 
version

EKS platform 
version

Release notes Release date

1.23.17 eks.17 New platform version with
access entries, security fixes and 
enhancements.

December 14, 
2023

1.23.17 eks.16 New platform version with security 
fixes and enhancements.

December 12, 
2023

1.23.17 eks.15 New platform version with security 
fixes and enhancements.

November 10, 
2023

1.23.17 eks.14 New platform version with security 
fixes and enhancements.

November 3, 
2023

1.23.17 eks.13 New platform version with security 
fixes and enhancements.

October 16, 
2023

1.23.17 eks.12 New platform version with security 
fixes and enhancements.

August 30, 2023

1.23.17 eks.11 New platform version with security 
fixes and enhancements.

July 30, 2023

1.23.17 eks.10 New platform version with security 
fixes and enhancements.

June 30, 2023

1.23.17 eks.9 New platform version with security 
fixes and enhancements.

June 9, 2023

1.23.17 eks.8 New platform version with security 
fixes and enhancements.

May 5, 2023

1.23.17 eks.7 New platform version with security 
fixes and enhancements.

March 24, 2023

1.23.14 eks.6 New platform version with security 
fixes and enhancements.

January 27, 
2023

Kubernetes version 1.23 131



Amazon EKS User Guide

Kubernetes 
version

EKS platform 
version

Release notes Release date

1.23.13 eks.5 New platform version with security 
fixes and enhancements.

December 5, 
2022

1.23.13 eks.4 New platform version with security 
fixes and enhancements.

November 18, 
2022

1.23.12 eks.3 New platform version with security 
fixes and enhancements.

November 7, 
2022

1.23.10 eks.2 New platform version with security 
fixes and enhancements.

September 21, 
2022

1.23.7 eks.1 Initial release of Kubernetes version
1.23 for EKS. For more information, 
see Kubernetes 1.23.

August 11, 2022

Get current platform version

To get the current platform version for your cluster (console)

1. Open the Amazon EKS console.

2. In the navigation pane, choose Clusters.

3. In the list of clusters, choose the Cluster Name to check the platform version of.

4. Choose the Overview tab.

5. The Platform Version is available under in the Details section.

To get the current platform version for your cluster (AWS CLI)

1. Determine the Name of the cluster you want to check the platform version of.

2. Run the following command:

aws eks describe-cluster --name my-cluster --query cluster.platformVersion

Get current platform version 132



Amazon EKS User Guide

An example output is as follows.

"eks.10"

Autoscaling

Autoscaling is a function that automatically scales your resources out and in to meet changing 
demands. This is a major Kubernetes function that would otherwise require extensive human 
resources to perform manually.

Amazon EKS supports two autoscaling products:

Karpenter

Karpenter is a flexible, high-performance Kubernetes cluster autoscaler that helps improve 
application availability and cluster efficiency. Karpenter launches right-sized compute 
resources (for example, Amazon EC2 instances) in response to changing application load in 
under a minute. Through integrating Kubernetes with AWS, Karpenter can provision just-in-
time compute resources that precisely meet the requirements of your workload. Karpenter 
automatically provisions new compute resources based on the specific requirements of cluster 
workloads. These include compute, storage, acceleration, and scheduling requirements. 
Amazon EKS supports clusters using Karpenter, although Karpenter works with any conformant 
Kubernetes cluster. For more information, see the Karpenter documentation.

Cluster Autoscaler

The Kubernetes Cluster Autoscaler automatically adjusts the number of nodes in your cluster 
when pods fail or are rescheduled onto other nodes. The Cluster Autoscaler uses Auto Scaling 
groups. For more information, see Cluster Autoscaler on AWS.

Autoscaling 133

https://karpenter.sh/docs/
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/cloudprovider/aws/README.md


Amazon EKS User Guide

Amazon EKS nodes

A Kubernetes node is a machine that runs containerized applications. Each node has the following 
components:

• Container runtime – Software that's responsible for running the containers.

• kubelet – Makes sure that containers are healthy and running within their associated Pod.

• kube-proxy – Maintains network rules that allow communication to your Pods.

For more information, see Nodes in the Kubernetes documentation.

Your Amazon EKS cluster can schedule Pods on any combination of self-managed nodes, Amazon 
EKS managed node groups, and AWS Fargate. To learn more about nodes deployed in your cluster, 
see View Kubernetes resources.

Important

AWS Fargate with Amazon EKS isn't available in AWS GovCloud (US-East) and AWS 
GovCloud (US-West).

Note

Nodes must be in the same VPC as the subnets you selected when you created the cluster. 
However, the nodes don't have to be in the same subnets.

The following table provides several criteria to evaluate when deciding which options best meet 
your requirements. This table doesn't include connected nodes that were created outside of 
Amazon EKS, which can only be viewed.

Note

Bottlerocket has some specific differences from the general information in this table. For 
more information, see the Bottlerocket documentation on GitHub.

134

https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://github.com/bottlerocket-os/bottlerocket/blob/develop/README.md


Amazon EKS User Guide

Criteria EKS managed 
node groups

Self managed 
nodes

AWS Fargate

Can be deployed to AWS Outposts No Yes No

Can be deployed to an AWS Local 
Zone

No Yes – For more 
information, see
Amazon EKS 
and AWS Local 
Zones.

No

Can run containers that require 
Windows

Yes Yes – Your 
cluster still 
requires at 
least one (two 
recommend 
ed for availabil 
ity) Linux node 
though.

No

Can run containers that require 
Linux

Yes Yes Yes

Can run workloads that require the 
Inferentia chip

Yes – Amazon 
Linux nodes only

Yes – Amazon 
Linux only

No

Can run workloads that require a 
GPU

Yes – Amazon 
Linux nodes only

Yes – Amazon 
Linux only

No

Can run workloads that require Arm 
processors

Yes Yes No

Can run AWS Bottlerocket Yes Yes No

Pods share a kernel runtime 
environment with other Pods

Yes – All of your 
Pods on each of 
your nodes

Yes – All of your 
Pods on each of 
your nodes

No – Each Pod 
has a dedicated 
kernel

135

https://docs.aws.amazon.com/outposts/latest/userguide/what-is-outposts.html
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/bottlerocket/


Amazon EKS User Guide

Criteria EKS managed 
node groups

Self managed 
nodes

AWS Fargate

Pods share CPU, memory, storage, 
and network resources with other 
Pods.

Yes – Can result 
in unused 
resources on 
each node

Yes – Can result 
in unused 
resources on 
each node

No – Each Pod 
has dedicated 
resources and 
can be sized 
independently 
to maximize 
resource utilizati 
on.

Pods can use more hardware and 
memory than requested in Pod 
specs

Yes – If the 
Pod requires 
more resources 
than requested 
, and resources 
are available 
on the node, 
the Pod can 
use additional 
resources.

Yes – If the 
Pod requires 
more resources 
than requested 
, and resources 
are available 
on the node, 
the Pod can 
use additional 
resources.

No – The Pod 
can be re-deploy 
ed using a 
larger vCPU 
and memory 
configuration 
though.

Must deploy and manage Amazon 
EC2 instances

Yes – automated 
through Amazon 
EKS if you 
deployed an 
Amazon EKS 
optimized AMI. 
If you deployed 
a custom 
AMI, then you 
must update 
the instance 
manually.

Yes – Manual 
configuration or 
using Amazon 
EKS provided 
AWS CloudForm 
ation templates 
to deploy
Linux (x86),
Linux (Arm), or
Windows nodes.

No

136



Amazon EKS User Guide

Criteria EKS managed 
node groups

Self managed 
nodes

AWS Fargate

Must secure, maintain, and patch the 
operating system of Amazon EC2 
instances

Yes Yes No

Can provide bootstrap arguments at 
deployment of a node, such as extra
kubelet arguments.

Yes – Using
eksctl or a
launch template
with a custom 
AMI

Yes – For more 
information, see 
the bootstrap 
script usage 
information on 
GitHub.

No

Can assign IP addresses to Pods 
from a different CIDR block than the 
IP address assigned to the node.

Yes – Using a 
launch template 
with a custom 
AMI. For more 
information, 
see Customizing 
managed nodes 
with launch 
templates.

Yes – For more 
information, 
see Custom 
networking for 
pods.

No

Can SSH into node Yes Yes No – There's 
no node host 
operating 
system to SSH 
to.

Can deploy your own custom AMI to 
nodes

Yes – Using a
launch template

Yes No

Can deploy your own custom CNI to 
nodes

Yes – Using a
launch template
with a custom 
AMI

Yes No

137

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh


Amazon EKS User Guide

Criteria EKS managed 
node groups

Self managed 
nodes

AWS Fargate

Must update node AMI on your own Yes – If you 
deployed an 
Amazon EKS 
optimized AMI, 
you're notified 
in the Amazon 
EKS console 
when updates 
are available. 
You can perform 
the update with 
one-click in 
the console. If 
you deployed 
a custom AMI, 
you're not 
notified in the 
Amazon EKS 
console when 
updates are 
available. You 
must perform 
the update on 
your own.

Yes – Using 
tools other than 
the Amazon 
EKS console. 
This is because 
self managed 
nodes can't be 
managed with 
the Amazon EKS 
console.

No

138



Amazon EKS User Guide

Criteria EKS managed 
node groups

Self managed 
nodes

AWS Fargate

Must update node Kubernetes 
version on your own

Yes – If you 
deployed an 
Amazon EKS 
optimized AMI, 
you're notified 
in the Amazon 
EKS console 
when updates 
are available. 
You can perform 
the update with 
one-click in 
the console. If 
you deployed 
a custom AMI, 
you're not 
notified in the 
Amazon EKS 
console when 
updates are 
available. You 
must perform 
the update on 
your own.

Yes – Using 
tools other than 
the Amazon 
EKS console. 
This is because 
self managed 
nodes can't be 
managed with 
the Amazon EKS 
console.

No – You don't 
manage nodes.

Can use Amazon EBS storage with 
Pods

Yes Yes No

Can use Amazon EFS storage with 
Pods

Yes Yes Yes

Can use Amazon FSx for Lustre 
storage with Pods

Yes Yes No

139



Amazon EKS User Guide

Criteria EKS managed 
node groups

Self managed 
nodes

AWS Fargate

Can use Network Load Balancer for 
services

Yes Yes Yes, when using 
the Create a 
network load 
balancer

Pods can run in a public subnet Yes Yes No

Can assign different VPC security 
groups to individual Pods

Yes – Linux 
nodes only

Yes – Linux 
nodes only

Yes

Can run Kubernetes DaemonSets Yes Yes No

Support HostPort and HostNetwo 
rk  in the Pod manifest

Yes Yes No

AWS Region availability All Amazon 
EKS supported 
regions

All Amazon 
EKS supported 
regions

Some Amazon 
EKS supported 
regions

Can run containers on Amazon EC2 
dedicated hosts

Yes Yes No

Pricing Cost of Amazon 
EC2 instance 
that runs 
multiple Pods. 
For more 
information, see
Amazon EC2 
pricing.

Cost of Amazon 
EC2 instance 
that runs 
multiple Pods. 
For more 
information, see
Amazon EC2 
pricing.

Cost of an 
individual 
Fargate memory 
and CPU 
configuration. 
Each Pod has its 
own cost. For 
more informati 
on, see AWS 
Fargate pricing.

140

https://docs.aws.amazon.com/general/latest/gr/eks.html
https://docs.aws.amazon.com/general/latest/gr/eks.html
https://docs.aws.amazon.com/general/latest/gr/eks.html
https://docs.aws.amazon.com/general/latest/gr/eks.html
https://docs.aws.amazon.com/general/latest/gr/eks.html
https://docs.aws.amazon.com/general/latest/gr/eks.html
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/fargate/pricing/
https://aws.amazon.com/fargate/pricing/


Amazon EKS User Guide

Managed node groups

Amazon EKS managed node groups automate the provisioning and lifecycle management of nodes 
(Amazon EC2 instances) for Amazon EKS Kubernetes clusters.

With Amazon EKS managed node groups, you don't need to separately provision or register the 
Amazon EC2 instances that provide compute capacity to run your Kubernetes applications. You 
can create, automatically update, or terminate nodes for your cluster with a single operation. Node 
updates and terminations automatically drain nodes to ensure that your applications stay available.

Every managed node is provisioned as part of an Amazon EC2 Auto Scaling group that's managed 
for you by Amazon EKS. Every resource including the instances and Auto Scaling groups runs within 
your AWS account. Each node group runs across multiple Availability Zones that you define.

You can add a managed node group to new or existing clusters using the Amazon EKS console,
eksctl, AWS CLI; AWS API, or infrastructure as code tools including AWS CloudFormation. Nodes 
launched as part of a managed node group are automatically tagged for auto-discovery by the 
Kubernetes cluster autoscaler. You can use the node group to apply Kubernetes labels to nodes and 
update them at any time.

There are no additional costs to use Amazon EKS managed node groups, you only pay for the AWS 
resources you provision. These include Amazon EC2 instances, Amazon EBS volumes, Amazon 
EKS cluster hours, and any other AWS infrastructure. There are no minimum fees and no upfront 
commitments.

To get started with a new Amazon EKS cluster and managed node group, see Getting started with 
Amazon EKS – AWS Management Console and AWS CLI.

To add a managed node group to an existing cluster, see Creating a managed node group.

Managed node groups concepts

• Amazon EKS managed node groups create and manage Amazon EC2 instances for you.

• Every managed node is provisioned as part of an Amazon EC2 Auto Scaling group that's 
managed for you by Amazon EKS. Moreover, every resource including Amazon EC2 instances and 
Auto Scaling groups run within your AWS account.

• The Auto Scaling group of a managed node group spans every subnet that you specify when you 
create the group.

Managed node groups 141



Amazon EKS User Guide

• Amazon EKS tags managed node group resources so that they are configured to use the 
Kubernetes Cluster Autoscaler.

Important

If you are running a stateful application across multiple Availability Zones that is backed 
by Amazon EBS volumes and using the Kubernetes Autoscaling, you should configure 
multiple node groups, each scoped to a single Availability Zone. In addition, you should 
enable the --balance-similar-node-groups feature.

• You can use a custom launch template for a greater level of flexibility and customization when 
deploying managed nodes. For example, you can specify extra kubelet arguments and use a 
custom AMI. For more information, see Customizing managed nodes with launch templates. If 
you don't use a custom launch template when first creating a managed node group, there is an 
auto-generated launch template. Don't manually modify this auto-generated template or errors 
occur.

• Amazon EKS follows the shared responsibility model for CVEs and security patches on managed 
node groups. When managed nodes run an Amazon EKS optimized AMI, Amazon EKS is 
responsible for building patched versions of the AMI when bugs or issues are reported. We can 
publish a fix. However, you're responsible for deploying these patched AMI versions to your 
managed node groups. When managed nodes run a custom AMI, you're responsible for building 
patched versions of the AMI when bugs or issues are reported and then deploying the AMI. For 
more information, see Updating a managed node group.

• Amazon EKS managed node groups can be launched in both public and private subnets. If you 
launch a managed node group in a public subnet on or after April 22, 2020, the subnet must 
have MapPublicIpOnLaunch set to true for the instances to successfully join a cluster. If the 
public subnet was created using eksctl or the Amazon EKS vended AWS CloudFormation 
templates on or after March 26, 2020, then this setting is already set to true. If the public 
subnets were created before March 26, 2020, you must change the setting manually. For more 
information, see Modifying the public IPv4 addressing attribute for your subnet.

• When deploying a managed node group in private subnets, you must ensure that it can access 
Amazon ECR for pulling container images. You can do this by connecting a NAT gateway to the 
route table of the subnet or by adding the following AWS PrivateLink VPC endpoints:

• Amazon ECR API endpoint interface – com.amazonaws.region-code.ecr.api

• Amazon ECR Docker registry API endpoint interface – com.amazonaws.region-
code.ecr.dkr

Managed node groups concepts 142

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html#subnet-public-ip
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html#ecr-setting-up-vpc-create


Amazon EKS User Guide

• Amazon S3 gateway endpoint – com.amazonaws.region-code.s3

For other commonly-used services and endpoints, see Private cluster requirements.

• Managed node groups can't be deployed on AWS Outposts or in AWS Wavelength or AWS Local 
Zones.

• You can create multiple managed node groups within a single cluster. For example, you can 
create one node group with the standard Amazon EKS optimized Amazon Linux AMI for some 
workloads and another with the GPU variant for workloads that require GPU support.

• If your managed node group encounters an Amazon EC2 instance status check failure, Amazon 
EKS returns an error code to help you to diagnose the issue. For more information, see Managed 
node group error codes.

• Amazon EKS adds Kubernetes labels to managed node group instances. These Amazon EKS 
provided labels are prefixed with eks.amazonaws.com.

• Amazon EKS automatically drains nodes using the Kubernetes API during terminations or 
updates.

• Pod disruption budgets aren't respected when terminating a node with AZRebalance or 
reducing the desired node count. These actions try to evict Pods on the node. But if it takes 
more than 15 minutes, the node is terminated regardless of whether all Pods on the node are 
terminated. To extend the period until the node is terminated, add a lifecycle hook to the Auto 
Scaling group. For more information, see Add lifecycle hooks in the Amazon EC2 Auto Scaling 
User Guide.

• In order to run the drain process correctly after receiving a Spot interruption notification or a 
capacity rebalance notification, CapacityRebalance must be set to true.

• Updating managed node groups respects the Pod disruption budgets that you set for your Pods. 
For more information, see Managed node update behavior.

• There are no additional costs to use Amazon EKS managed node groups. You only pay for the 
AWS resources that you provision.

• If you want to encrypt Amazon EBS volumes for your nodes, you can deploy the nodes using 
a launch template. To deploy managed nodes with encrypted Amazon EBS volumes without 
using a launch template, encrypt all new Amazon EBS volumes created in your account. For more 
information, see Encryption by default in the Amazon EC2 User Guide for Linux Instances.

Managed node groups concepts 143

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-system-instance-status-check.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/adding-lifecycle-hooks.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html#encryption-by-default


Amazon EKS User Guide

Managed node group capacity types

When creating a managed node group, you can choose either the On-Demand or Spot capacity 
type. Amazon EKS deploys a managed node group with an Amazon EC2 Auto Scaling group that 
either contains only On-Demand or only Amazon EC2 Spot Instances. You can schedule Pods for 
fault tolerant applications to Spot managed node groups, and fault intolerant applications to 
On-Demand node groups within a single Kubernetes cluster. By default, a managed node group 
deploys On-Demand Amazon EC2 instances.

On-Demand

With On-Demand Instances, you pay for compute capacity by the second, with no long-term 
commitments.

How it works

By default, if you don't specify a Capacity Type, the managed node group is provisioned with On-
Demand Instances. A managed node group configures an Amazon EC2 Auto Scaling group on your 
behalf with the following settings applied:

• The allocation strategy to provision On-Demand capacity is set to prioritized. Managed node 
groups use the order of instance types passed in the API to determine which instance type to use 
first when fulfilling On-Demand capacity. For example, you might specify three instance types 
in the following order: c5.large, c4.large, and c3.large. When your On-Demand Instances 
are launched, the managed node group fulfills On-Demand capacity by starting with c5.large, 
then c4.large, and then c3.large. For more information, see Amazon EC2 Auto Scaling group
in the Amazon EC2 Auto Scaling User Guide.

• Amazon EKS adds the following Kubernetes label to all nodes in your managed node group that 
specifies the capacity type: eks.amazonaws.com/capacityType: ON_DEMAND. You can use 
this label to schedule stateful or fault intolerant applications on On-Demand nodes.

Spot

Amazon EC2 Spot Instances are spare Amazon EC2 capacity that offers steep discounts off of On-
Demand prices. Amazon EC2 Spot Instances can be interrupted with a two-minute interruption 
notice when EC2 needs the capacity back. For more information, see Spot Instances in the Amazon 
EC2 User Guide for Linux Instances. You can configure a managed node group with Amazon EC2 
Spot Instances to optimize costs for the compute nodes running in your Amazon EKS cluster.

Managed node group capacity types 144

https://docs.aws.amazon.com/autoscaling/ec2/userguide/asg-purchase-options.html#asg-allocation-strategies
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html


Amazon EKS User Guide

How it works

To use Spot Instances inside a managed node group, create a managed node group by setting the 
capacity type as spot. A managed node group configures an Amazon EC2 Auto Scaling group on 
your behalf with the following Spot best practices applied:

• To ensure that your Spot nodes are provisioned in the optimal Spot capacity pools, the allocation 
strategy is set to one of the following:

• price-capacity-optimized (PCO) – When creating new node groups in a cluster with 
Kubernetes version 1.28 or higher, the allocation strategy is set to price-capacity-
optimized. However, the allocation strategy won't be changed for node groups already 
created with capacity-optimized before Amazon EKS managed node groups started to 
support PCO.

• capacity-optimized (CO) – When creating new node groups in a cluster with Kubernetes 
version 1.27 or lower, the allocation strategy is set to capacity-optimized.

To increase the number of Spot capacity pools available for allocating capacity from, configure a 
managed node group to use multiple instance types.

• Amazon EC2 Spot Capacity Rebalancing is enabled so that Amazon EKS can gracefully drain and 
rebalance your Spot nodes to minimize application disruption when a Spot node is at elevated 
risk of interruption. For more information, see Amazon EC2 Auto Scaling Capacity Rebalancing 
in the Amazon EC2 Auto Scaling User Guide.

• When a Spot node receives a rebalance recommendation, Amazon EKS automatically attempts 
to launch a new replacement Spot node.

• If a Spot two-minute interruption notice arrives before the replacement Spot node is in 
a Ready state, Amazon EKS starts draining the Spot node that received the rebalance 
recommendation. Amazon EKS drains the node on a best-effort basis. As a result, there's no 
guarantee that Amazon EKS will wait for the replacement node to join the cluster before 
draining the existing node.

• When a replacement Spot node is bootstrapped and in the Ready state on Kubernetes, 
Amazon EKS cordons and drains the Spot node that received the rebalance recommendation. 
Cordoning the Spot node ensures that the service controller doesn't send any new requests to 
this Spot node. It also removes it from its list of healthy, active Spot nodes. Draining the Spot 
node ensures that running Pods are evicted gracefully.

Managed node group capacity types 145

https://docs.aws.amazon.com/autoscaling/ec2/userguide/capacity-rebalance.html


Amazon EKS User Guide

• Amazon EKS adds the following Kubernetes label to all nodes in your managed node group that 
specifies the capacity type: eks.amazonaws.com/capacityType: SPOT. You can use this 
label to schedule fault tolerant applications on Spot nodes.

Considerations for selecting a capacity type

When deciding whether to deploy a node group with On-Demand or Spot capacity, you should 
consider the following conditions:

• Spot Instances are a good fit for stateless, fault-tolerant, flexible applications. These include 
batch and machine learning training workloads, big data ETLs such as Apache Spark, queue 
processing applications, and stateless API endpoints. Because Spot is spare Amazon EC2 capacity, 
which can change over time, we recommend that you use Spot capacity for interruption-tolerant 
workloads. More specifically, Spot capacity is suitable for workloads that can tolerate periods 
where the required capacity isn't available.

• We recommend that you use On-Demand for applications that are fault intolerant. This includes 
cluster management tools such as monitoring and operational tools, deployments that require
StatefulSets, and stateful applications, such as databases.

• To maximize the availability of your applications while using Spot Instances, we recommend 
that you configure a Spot managed node group to use multiple instance types. We recommend 
applying the following rules when using multiple instance types:

• Within a managed node group, if you're using the Cluster Autoscaler, we recommend using a 
flexible set of instance types with the same amount of vCPU and memory resources. This is to 
ensure that the nodes in your cluster scale as expected. For example, if you need four vCPUs 
and eight GiB memory, use c3.xlarge, c4.xlarge, c5.xlarge, c5d.xlarge, c5a.xlarge,
c5n.xlarge, or other similar instance types.

• To enhance application availability, we recommend deploying multiple Spot managed 
node groups. For this, each group should use a flexible set of instance types that have the 
same vCPU and memory resources. For example, if you need 4 vCPUs and 8 GiB memory, 
we recommend that you create one managed node group with c3.xlarge, c4.xlarge,
c5.xlarge, c5d.xlarge, c5a.xlarge, c5n.xlarge, or other similar instance types, and 
a second managed node group with m3.xlarge, m4.xlarge, m5.xlarge, m5d.xlarge,
m5a.xlarge, m5n.xlarge or other similar instance types.

• When deploying your node group with the Spot capacity type that's using a custom launch 
template, use the API to pass multiple instance types. Don't pass a single instance type 

Managed node group capacity types 146



Amazon EKS User Guide

through the launch template. For more information about deploying a node group using a 
launch template, see Customizing managed nodes with launch templates.

Creating a managed node group

This topic describes how you can launch Amazon EKS managed node groups of nodes that 
register with your Amazon EKS cluster. After the nodes join the cluster, you can deploy Kubernetes 
applications to them.

If this is your first time launching an Amazon EKS managed node group, we recommend that 
you follow one of our Getting started with Amazon EKS guides instead. The guides provide 
walkthroughs for creating an Amazon EKS cluster with nodes.

Important

• Amazon EKS nodes are standard Amazon EC2 instances. You're billed based on the 
normal Amazon EC2 prices. For more information, see Amazon EC2 Pricing.

• You can't create managed nodes in an AWS Region where you have AWS Outposts, AWS 
Wavelength, or AWS Local Zones enabled. You can create self-managed nodes in an AWS 
Region where you have AWS Outposts, AWS Wavelength, or AWS Local Zones enabled. 
For more information, see Launching self-managed Amazon Linux nodes, Launching self-
managed Windows nodes, and Launching self-managed Bottlerocket nodes. You can also 
create a self-managed Amazon Linux node group on an Outpost. For more information, 
see Launching self-managed Amazon Linux nodes on an Outpost.

• If you don't specify an AMI ID for the bootstrap.sh file included with Amazon EKS 
optimized Linux or Bottlerocket, managed node groups enforce a maximum number on 
the value of maxPods. For instances with less than 30 vCPUs, the maximum number is
110. For instances with greater than 30 vCPUs, the maximum number jumps to 250. 
These numbers are based on Kubernetes scalability thresholds and recommended 
settings by internal Amazon EKS scalability team testing. For more information, see the
Amazon VPC CNI plugin increases pods per node limits blog post.

Prerequisites

• An existing Amazon EKS cluster. To deploy one, see Creating an Amazon EKS cluster.

Creating a managed node group 147

https://aws.amazon.com/ec2/pricing/
https://github.com/kubernetes/community/blob/master/sig-scalability/configs-and-limits/thresholds.md
https://aws.amazon.com/blogs/containers/amazon-vpc-cni-increases-pods-per-node-limits/


Amazon EKS User Guide

• An existing IAM role for the nodes to use. To create one, see Amazon EKS node IAM role. If this 
role doesn't have either of the policies for the VPC CNI, the separate role that follows is required 
for the VPC CNI pods.

• (Optional, but recommended) The Amazon VPC CNI plugin for Kubernetes add-on configured 
with its own IAM role that has the necessary IAM policy attached to it. For more information, see
Configuring the Amazon VPC CNI plugin for Kubernetes to use IAM roles for service accounts 
(IRSA).

• Familiarity with the considerations listed in Choosing an Amazon EC2 instance type. Depending 
on the instance type you choose, there may be additional prerequisites for your cluster and VPC.

• To add a Windows managed node group, you must first enable Windows support for your cluster. 
For more information, see Enabling Windows support for your Amazon EKS cluster.

You can create a managed node group with eksctl or the AWS Management Console.

eksctl

To create a managed node group with eksctl

This procedure requires eksctl version 0.172.0 or later. You can check your version with the 
following command:

eksctl version

For instructions on how to install or upgrade eksctl, see Installation in the eksctl
documentation.

1. (Optional) If the AmazonEKS_CNI_Policy managed IAM policy is attached to your Amazon 
EKS node IAM role, we recommend assigning it to an IAM role that you associate to the 
Kubernetes aws-node service account instead. For more information, see Configuring the 
Amazon VPC CNI plugin for Kubernetes to use IAM roles for service accounts (IRSA).

2. Create a managed node group with or without using a custom launch template. Manually 
specifying a launch template allows for greater customization of a node group. For 
example, it can allow deploying a custom AMI or providing arguments to the boostrap.sh
script in an Amazon EKS optimized AMI. For a complete list of every available option and 
default, enter the following command.

eksctl create nodegroup --help

Creating a managed node group 148

https://eksctl.io/installation


Amazon EKS User Guide

In the following command, replace my-cluster with the name of your cluster and replace
my-mng with the name of your node group. The node group name can't be longer than 63 
characters. It must start with letter or digit, but can also include hyphens and underscores 
for the remaining characters.

Important

If you don't use a custom launch template when first creating a managed node 
group, don't use one at a later time for the node group. If you didn't specify a 
custom launch template, the system auto-generates a launch template that 
we don't recommend that you modify manually. Manually modifying this auto-
generated launch template might cause errors.

Without a launch template

eksctl creates a default Amazon EC2 launch template in your account and deploys the 
node group using a launch template that it creates based on options that you specify. 
Before specifying a value for --node-type, see Choosing an Amazon EC2 instance 
type.

Replace ami-family with an allowed keyword. For more information, see Setting the 
node AMI Family in the eksctl documentation. Replace my-key with the name of your 
Amazon EC2 key pair or public key. This key is used to SSH into your nodes after they 
launch.

Note

For Windows, this command doesn't enable SSH. Instead, it associates your 
Amazon EC2 key pair with the instance and allows you to RDP into the instance.

If you don't already have an Amazon EC2 key pair, you can create one in the AWS 
Management Console. For Linux information, see Amazon EC2 key pairs and Linux 
instances in the Amazon EC2 User Guide for Linux Instances. For Windows information, 
see Amazon EC2 key pairs and Windows instances in the Amazon EC2 User Guide for 
Windows Instances.

Creating a managed node group 149

https://eksctl.io/usage/custom-ami-support/#setting-the-node-ami-family
https://eksctl.io/usage/custom-ami-support/#setting-the-node-ami-family
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-key-pairs.html


Amazon EKS User Guide

We recommend blocking Pod access to IMDS if the following conditions are true:

• You plan to assign IAM roles to all of your Kubernetes service accounts so that Pods 
only have the minimum permissions that they need.

• No Pods in the cluster require access to the Amazon EC2 instance metadata service 
(IMDS) for other reasons, such as retrieving the current AWS Region.

For more information, see Restrict access to the instance profile assigned to the worker 
node.

If you want to block Pod access to IMDS, then add the --disable-pod-imds option to 
the following command.

eksctl create nodegroup \ 
  --cluster my-cluster \ 
  --region region-code \ 
  --name my-mng \ 
  --node-ami-family ami-family \ 
  --node-type m5.large \ 
  --nodes 3 \ 
  --nodes-min 2 \ 
  --nodes-max 4 \ 
  --ssh-access \ 
  --ssh-public-key my-key

Your instances can optionally assign a significantly higher number of IP addresses to 
Pods, assign IP addresses to Pods from a different CIDR block than the instance's, and 
be deployed to a cluster without internet access. For more information, see Increase 
the amount of available IP addresses for your Amazon EC2 nodes, Custom networking 
for pods, and Private cluster requirements for additional options to add to the previous 
command.

Managed node groups calculates and applies a single value for the maximum number 
of Pods that can run on each node of your node group, based on instance type. If you 
create a node group with different instance types, the smallest value calculated across 
all instance types is applied as the maximum number of Pods that can run on every 
instance type in the node group. Managed node groups calculates the value using the 
script referenced in Amazon EKS recommended maximum Pods for each Amazon EC2 
instance type.

Creating a managed node group 150

https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node


Amazon EKS User Guide

With a launch template

The launch template must already exist and must meet the requirements specified in
Launch template configuration basics.

We recommend blocking Pod access to IMDS if the following conditions are true:

• You plan to assign IAM roles to all of your Kubernetes service accounts so that Pods 
only have the minimum permissions that they need.

• No Pods in the cluster require access to the Amazon EC2 instance metadata service 
(IMDS) for other reasons, such as retrieving the current AWS Region.

For more information, see Restrict access to the instance profile assigned to the worker 
node.

If you want to block Pod access to IMDS, then specify the necessary settings in the 
launch template.

a. Copy the following contents to your device. Replace the example values and 
then run the modified command to create the eks-nodegroup.yaml file. Several 
settings that you specify when deploying without a launch template are moved into 
the launch template. If you don't specify a version, the template's default version is 
used.

cat >eks-nodegroup.yaml <<EOF
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata: 
  name: my-cluster
  region: region-code
managedNodeGroups:
- name: my-mng
  launchTemplate: 
    id: lt-id
    version: "1"
EOF

For a complete list of eksctl config file settings, see Config file schema in the
eksctl documentation. Your instances can optionally assign a significantly higher 
number of IP addresses to Pods, assign IP addresses to Pods from a different CIDR 
block than the instance's, use the containerd runtime, and be deployed to a cluster 

Creating a managed node group 151

https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node
https://eksctl.io/usage/schema/


Amazon EKS User Guide

without outbound internet access. For more information, see Increase the amount 
of available IP addresses for your Amazon EC2 nodes, Custom networking for pods,
Test migration from Docker to containerd, and Private cluster requirements for 
additional options to add to the config file.

If you didn't specify an AMI ID in your launch template, managed node groups 
calculates and applies a single value for the maximum number of Pods that can run 
on each node of your node group, based on instance type. If you create a node group 
with different instance types, the smallest value calculated across all instance types is 
applied as the maximum number of Pods that can run on every instance type in the 
node group. Managed node groups calculates the value using the script referenced in
Amazon EKS recommended maximum Pods for each Amazon EC2 instance type.

If you specified an AMI ID in your launch template, specify the maximum number 
of Pods that can run on each node of your node group if you're using custom 
networking or want to increase the number of IP addresses assigned to your instance. 
For more information, see Amazon EKS recommended maximum Pods for each 
Amazon EC2 instance type.

b. Deploy the nodegroup with the following command.

eksctl create nodegroup --config-file eks-nodegroup.yaml

AWS Management Console

To create a managed node group using the AWS Management Console

1. Wait for your cluster status to show as ACTIVE. You can't create a managed node group for 
a cluster that isn't already ACTIVE.

2. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

3. Choose the name of the cluster that you want to create a managed node group in.

4. Select the Compute tab.

5. Choose Add node group.

6. On the Configure node group page, fill out the parameters accordingly, and then choose
Next.

Creating a managed node group 152

https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

• Name – Enter a unique name for your managed node group. The node group name 
can't be longer than 63 characters. It must start with letter or digit, but can also include 
hyphens and underscores for the remaining characters.

• Node IAM role – Choose the node instance role to use with your node group. For more 
information, see Amazon EKS node IAM role.

Important

• You can't use the same role that is used to create any clusters.

• We recommend using a role that's not currently in use by any self-managed 
node group. Otherwise, you plan to use with a new self-managed node group. 
For more information, see Deleting a managed node group.

• Use launch template – (Optional) Choose if you want to use an existing launch template. 
Select a Launch Template Name. Then, select a Launch template version. If you 
don't select a version, then Amazon EKS uses the template's default version. Launch 
templates allow for more customization of your node group, such as allowing you to 
deploy a custom AMI, assign a significantly higher number of IP addresses to Pods, 
assign IP addresses to Pods from a different CIDR block than the instance's, enable the
containerd runtime for your instances, and deploying nodes to a cluster without 
outbound internet access. For more information, see Increase the amount of available IP 
addresses for your Amazon EC2 nodes, Custom networking for pods, Test migration from 
Docker to containerd, and Private cluster requirements.

The launch template must meet the requirements in Customizing managed nodes with 
launch templates. If you don't use your own launch template, the Amazon EKS API 
creates a default Amazon EC2 launch template in your account and deploys the node 
group using the default launch template.

If you implement IAM roles for service accounts, assign necessary permissions directly to 
every Pod that requires access to AWS services, and no Pods in your cluster require access 
to IMDS for other reasons, such as retrieving the current AWS Region, then you can also 
disable access to IMDS for Pods that don't use host networking in a launch template. For 
more information, see Restrict access to the instance profile assigned to the worker node.

• Kubernetes labels – (Optional) You can choose to apply Kubernetes labels to the nodes 
in your managed node group.

Creating a managed node group 153

https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node


Amazon EKS User Guide

• Kubernetes taints – (Optional) You can choose to apply Kubernetes taints to the nodes 
in your managed node group. The available options in the Effect menu are NoSchedule,
NoExecute, and PreferNoSchedule. For more information, see Node taints on 
managed node groups.

• Tags – (Optional) You can choose to tag your Amazon EKS managed node group. These 
tags don't propagate to other resources in the node group, such as Auto Scaling groups 
or instances. For more information, see Tagging your Amazon EKS resources.

7. On the Set compute and scaling configuration page, fill out the parameters accordingly, 
and then choose Next.

• AMI type – Select an AMI type. If you are deploying Arm instances, be sure to review the 
considerations in Amazon EKS optimized Arm Amazon Linux AMIs before deploying.

If you specified a launch template on the previous page, and specified an AMI in the 
launch template, then you can't select a value. The value from the template is displayed. 
The AMI specified in the template must meet the requirements in Specifying an AMI.

• Capacity type – Select a capacity type. For more information about choosing a capacity 
type, see Managed node group capacity types. You can't mix different capacity types 
within the same node group. If you want to use both capacity types, create separate node 
groups, each with their own capacity and instance types.

• Instance types – By default, one or more instance type is specified. To remove a default 
instance type, select the X on the right side of the instance type. Choose the instance 
types to use in your managed node group. For more information, see Choosing an 
Amazon EC2 instance type.

The console displays a set of commonly used instance types. If you need to create a 
managed node group with an instance type that's not displayed, then use eksctl, the 
AWS CLI, AWS CloudFormation, or an SDK to create the node group. If you specified a 
launch template on the previous page, then you can't select a value because the instance 
type must be specified in the launch template. The value from the launch template 
is displayed. If you selected Spot for Capacity type, then we recommend specifying 
multiple instance types to enhance availability.

• Disk size – Enter the disk size (in GiB) to use for your node's root volume.

If you specified a launch template on the previous page, then you can't select a value 
because it must be specified in the launch template.

Creating a managed node group 154



Amazon EKS User Guide

• Desired size – Specify the current number of nodes that the managed node group should 
maintain at launch.

Note

Amazon EKS doesn't automatically scale your node group in or out. However, you 
can configure the Kubernetes Cluster Autoscaler to do this for you.

• Minimum size – Specify the minimum number of nodes that the managed node group 
can scale in to.

• Maximum size – Specify the maximum number of nodes that the managed node group 
can scale out to.

• Node group update configuration – (Optional) You can select the number or percentage 
of nodes to be updated in parallel. These nodes will be unavailable during the update. 
For Maximum unavailable, select one of the following options and specify a Value:

• Number – Select and specify the number of nodes in your node group that can be 
updated in parallel.

• Percentage – Select and specify the percentage of nodes in your node group that can 
be updated in parallel. This is useful if you have a large number of nodes in your node 
group.

8. On the Specify networking page, fill out the parameters accordingly, and then choose
Next.

• Subnets – Choose the subnets to launch your managed nodes into.

Important

If you are running a stateful application across multiple Availability Zones that 
is backed by Amazon EBS volumes and using the Kubernetes Autoscaling, you 
should configure multiple node groups, each scoped to a single Availability Zone. 
In addition, you should enable the --balance-similar-node-groups feature.

Creating a managed node group 155



Amazon EKS User Guide

Important

• If you choose a public subnet, and your cluster has only the public API server 
endpoint enabled, then the subnet must have MapPublicIPOnLaunch set to
true for the instances to successfully join a cluster. If the subnet was created 
using eksctl or the Amazon EKS vended AWS CloudFormation templates on 
or after March 26, 2020, then this setting is already set to true. If the subnets 
were created with eksctl or the AWS CloudFormation templates before March 
26, 2020, then you need to change the setting manually. For more information, 
see Modifying the public IPv4 addressing attribute for your subnet.

• If you use a launch template and specify multiple network interfaces, Amazon 
EC2 won't auto-assign a public IPv4 address, even if MapPublicIpOnLaunch
is set to true. For nodes to join the cluster in this scenario, you must either 
enable the cluster's private API server endpoint, or launch nodes in a private 
subnet with outbound internet access provided through an alternative method, 
such as a NAT Gateway. For more information, see Amazon EC2 instance IP 
addressing in the Amazon EC2 User Guide for Linux Instances.

• Configure SSH access to nodes (Optional). Enabling SSH allows you to connect to your 
instances and gather diagnostic information if there are issues. We highly recommend 
enabling remote access when you create a node group. You can't enable remote access 
after the node group is created.

If you chose to use a launch template, then this option isn't shown. To enable remote 
access to your nodes, specify a key pair in the launch template and ensure that the 
proper port is open to the nodes in the security groups that you specify in the launch 
template. For more information, see Using custom security groups.

Note

For Windows, this command doesn't enable SSH. Instead, it associates your 
Amazon EC2 key pair with the instance and allows you to RDP into the instance.

• For SSH key pair (Optional), choose an Amazon EC2 SSH key to use. For Linux 
information, see Amazon EC2 key pairs and Linux instances in the Amazon EC2 User Guide 
for Linux Instances. For Windows information, see Amazon EC2 key pairs and Windows 

Creating a managed node group 156

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html#subnet-public-ip
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-key-pairs.html


Amazon EKS User Guide

instances in the Amazon EC2 User Guide for Windows Instances. If you chose to use a 
launch template, then you can't select one. When an Amazon EC2 SSH key is provided for 
node groups using Bottlerocket AMIs, the administrative container is also enabled. For 
more information, see Admin container on GitHub.

• For Allow SSH remote access from, if you want to limit access to specific instances, 
then select the security groups that are associated to those instances. If you don't select 
specific security groups, then SSH access is allowed from anywhere on the internet 
(0.0.0.0/0).

9. On the Review and create page, review your managed node group configuration and 
choose Create.

If nodes fail to join the cluster, then see Nodes fail to join cluster in the Troubleshooting 
guide.

10. Watch the status of your nodes and wait for them to reach the Ready status.

kubectl get nodes --watch

11. (GPU nodes only) If you chose a GPU instance type and the Amazon EKS optimized 
accelerated AMI, then you must apply the NVIDIA device plugin for Kubernetes as a 
DaemonSet on your cluster. Replace vX.X.X with your desired NVIDIA/k8s-device-plugin
version before running the following command.

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-
plugin/vX.X.X/nvidia-device-plugin.yml

Now that you have a working Amazon EKS cluster with nodes, you're ready to start installing 
Kubernetes add-ons and deploying applications to your cluster. The following documentation 
topics help you to extend the functionality of your cluster.

• The IAM principal that created the cluster is the only principal that can make calls to the 
Kubernetes API server with kubectl or the AWS Management Console. If you want other IAM 
principals to have access to your cluster, then you need to add them. For more information, see
Enabling IAM principal access to your cluster and Required permissions.

• We recommend blocking Pod access to IMDS if the following conditions are true:

• You plan to assign IAM roles to all of your Kubernetes service accounts so that Pods only have 
the minimum permissions that they need.

Creating a managed node group 157

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-key-pairs.html
https://github.com/bottlerocket-os/bottlerocket#admin-container
https://github.com/NVIDIA/k8s-device-plugin
https://github.com/NVIDIA/k8s-device-plugin/releases
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html


Amazon EKS User Guide

• No Pods in the cluster require access to the Amazon EC2 instance metadata service (IMDS) for 
other reasons, such as retrieving the current AWS Region.

For more information, see Restrict access to the instance profile assigned to the worker node.

• Autoscaling – Configure the Kubernetes Cluster Autoscaler to automatically adjust the number of 
nodes in your node groups.

• Deploy a sample application to your cluster.

• Cluster management – Learn how to use important tools for managing your cluster.

Updating a managed node group

When you initiate a managed node group update, Amazon EKS automatically updates your nodes 
for you, completing the steps listed in Managed node update behavior. If you're using an Amazon 
EKS optimized AMI, Amazon EKS automatically applies the latest security patches and operating 
system updates to your nodes as part of the latest AMI release version.

There are several scenarios where it's useful to update your Amazon EKS managed node group's 
version or configuration:

• You have updated the Kubernetes version for your Amazon EKS cluster and want to update your 
nodes to use the same Kubernetes version.

• A new AMI release version is available for your managed node group. For more information 
about AMI versions, see these sections:

• Amazon EKS optimized Amazon Linux AMI versions

• Amazon EKS optimized Bottlerocket AMIs

• Amazon EKS optimized Windows AMI versions

• You want to adjust the minimum, maximum, or desired count of the instances in your managed 
node group.

• You want to add or remove Kubernetes labels from the instances in your managed node group.

• You want to add or remove AWS tags from your managed node group.

• You need to deploy a new version of a launch template with configuration changes, such as an 
updated custom AMI.

• You have deployed version 1.9.0 or later of the Amazon VPC CNI add-on, enabled the add-
on for prefix delegation, and want new AWS Nitro System instances in a node group to support 

Updating a managed node group 158

https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node


Amazon EKS User Guide

a significantly increased number of Pods. For more information, see Increase the amount of 
available IP addresses for your Amazon EC2 nodes.

• You have enabled IP prefix delegation for Windows nodes and want new AWS Nitro System 
instances in a node group to support a significantly increased number of Pods. For more 
information, see Increase the amount of available IP addresses for your Amazon EC2 nodes.

If there's a newer AMI release version for your managed node group's Kubernetes version, you can 
update your node group's version to use the newer AMI version. Similarly, if your cluster is running 
a Kubernetes version that's newer than your node group, you can update the node group to use the 
latest AMI release version to match your cluster's Kubernetes version.

When a node in a managed node group is terminated due to a scaling operation or update, the 
Pods in that node are drained first. For more information, see Managed node update behavior.

Update a node group version

You can update a node group version with eksctl or the AWS Management Console. The version 
that you update to can't be greater than the control plane's version.

eksctl

To update a node group version with eksctl

• Update a managed node group to the latest AMI release of the same Kubernetes version 
that's currently deployed on the nodes with the following command. Replace every
example value with your own values.

eksctl upgrade nodegroup \ 
  --name=node-group-name \ 
  --cluster=my-cluster \ 
  --region=region-code

Note

If you're upgrading a node group that's deployed with a launch template to a new 
launch template version, add --launch-template-version version-number
to the preceding command. The launch template must meet the requirements 
described in Customizing managed nodes with launch templates. If the launch 
template includes a custom AMI, the AMI must meet the requirements in Specifying 

Updating a managed node group 159



Amazon EKS User Guide

an AMI. When you upgrade your node group to a newer version of your launch 
template, every node is recycled to match the new configuration of the launch 
template version that's specified.
You can't directly upgrade a node group that's deployed without a launch template 
to a new launch template version. Instead, you must deploy a new node group 
using the launch template to update the node group to a new launch template 
version.

You can upgrade a node group to the same version as the control plane's Kubernetes 
version. For example, if you have a cluster running Kubernetes 1.28, you can upgrade 
nodes currently running Kubernetes 1.27 to version 1.28 with the following command.

eksctl upgrade nodegroup \ 
  --name=node-group-name \ 
  --cluster=my-cluster \ 
  --region=region-code \ 
  --kubernetes-version=1.28

AWS Management Console

To update a node group version with the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. Choose the cluster that contains the node group to update.

3. If at least one node group has an available update, a box appears at the top of the page 
notifying you of the available update. If you select the Compute tab, you'll see Update now
in the AMI release version column in the Node groups table for the node group that has 
an available update. To update the node group, choose Update now.

You won't see a notification for node groups that were deployed with a custom AMI. If 
your nodes are deployed with a custom AMI, complete the following steps to deploy a new 
updated custom AMI.

a. Create a new version of your AMI.

b. Create a new launch template version with the new AMI ID.

c. Upgrade the nodes to the new version of the launch template.

Updating a managed node group 160

https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

4. On the Update node group version dialog box, activate or deactivate the following 
options:

• Update node group version – This option is unavailable if you deployed a custom AMI or 
your Amazon EKS optimized AMI is currently on the latest version for your cluster.

• Change launch template version – This option is unavailable if the node group is 
deployed without a custom launch template. You can only update the launch template 
version for a node group that has been deployed with a custom launch template. Select 
the Launch template version that you want to update the node group to. If your node 
group is configured with a custom AMI, then the version that you select must also specify 
an AMI. When you upgrade to a newer version of your launch template, every node is 
recycled to match the new configuration of the launch template version specified.

5. For Update strategy, select one of the following options:

• Rolling update – This option respects the Pod disruption budgets for your cluster. 
Updates fail if there's a Pod disruption budget issue that causes Amazon EKS to be 
unable to gracefully drain the Pods that are running on this node group.

• Force update – This option doesn't respect Pod disruption budgets. Updates occur 
regardless of Pod disruption budget issues by forcing node restarts to occur.

6. Choose Update.

Edit a node group configuration

You can modify some of the configurations of a managed node group.

To edit a node group configuration

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. Choose the cluster that contains the node group to edit.

3. Select the Compute tab.

4. Select the node group to edit, and then choose Edit.

5. (Optional) On the Edit node group page, do the following:

a. Edit the Node group scaling configuration.

• Desired size – Specify the current number of nodes that the managed node group 
should maintain.

Updating a managed node group 161

https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

• Minimum size – Specify the minimum number of nodes that the managed node group 
can scale in to.

• Maximum size – Specify the maximum number of nodes that the managed node group 
can scale out to. For the maximum number of nodes supported in a node group, see
Amazon EKS service quotas.

b. (Optional) Add or remove Kubernetes labels to the nodes in your node group. The labels 
shown here are only the labels that you have applied with Amazon EKS. Other labels may 
exist on your nodes that aren't shown here.

c. (Optional) Add or remove Kubernetes taints to the nodes in your node group. Added 
taints can have the effect of either NoSchedule, NoExecute, or PreferNoSchedule. 
For more information, see Node taints on managed node groups.

d. (Optional) Add or remove Tags from your node group resource. These tags are only 
applied to the Amazon EKS node group. They don't propagate to other resources, such as 
subnets or Amazon EC2 instances in the node group.

e. (Optional) Edit the Node Group update configuration. Select either Number or
Percentage.

• Number – Select and specify the number of nodes in your node group that can be 
updated in parallel. These nodes will be unavailable during update.

• Percentage – Select and specify the percentage of nodes in your node group that can be 
updated in parallel. These nodes will be unavailable during update. This is useful if you 
have many nodes in your node group.

f. When you're finished editing, choose Save changes.

Managed node update behavior

The Amazon EKS managed worker node upgrade strategy has four different phases described in 
the following sections.

Setup phase

The setup phase has these steps:

1. It creates a new Amazon EC2 launch template version for the Auto Scaling group that's 
associated with your node group. The new launch template version uses the target AMI or a 
custom launch template version for the update.

Updating a managed node group 162



Amazon EKS User Guide

2. It updates the Auto Scaling group to use the latest launch template version.

3. It determines the maximum quantity of nodes to upgrade in parallel using the updateConfig
property for the node group. The maximum unavailable has a quota of 100 nodes. The default 
value is one node. For more information, see the updateConfig property in the Amazon EKS 
API Reference.

Scale up phase

When upgrading the nodes in a managed node group, the upgraded nodes are launched in 
the same Availability Zone as those that are being upgraded. To guarantee this placement, we 
use Amazon EC2's Availability Zone Rebalancing. For more information, see Availability Zone 
Rebalancing in the Amazon EC2 Auto Scaling User Guide. To meet this requirement, it's possible that 
we'd launch up to two instances per Availability Zone in your managed node group.

The scale up phase has these steps:

1. It increments the Auto Scaling Group's maximum size and desired size by the larger of either:

• Up to twice the number of Availability Zones that the Auto Scaling group is deployed in.

• The maximum unavailable of upgrade.

For example, if your node group has five Availability Zones and maxUnavailable as one, the 
upgrade process can launch a maximum of 10 nodes. However when maxUnavailable is 20 
(or anything higher than 10, the process would launch 20 new nodes).

2. After scaling the Auto Scaling group, it checks if the nodes using the latest configuration are 
present in the node group. This step succeeds only when it meets these criteria:

• At least one new node is launched in every Availability Zone where the node exists.

• Every new node should be in Ready state.

• New nodes should have Amazon EKS applied labels.

These are the Amazon EKS applied labels on the worker nodes in a regular node group:

• eks.amazonaws.com/nodegroup-image=$amiName

• eks.amazonaws.com/nodegroup=$nodeGroupName

These are the Amazon EKS applied labels on the worker nodes in a custom launch template or 
AMI node group:

• eks.amazonaws.com/nodegroup-image=$amiName
Updating a managed node group 163

https://docs.aws.amazon.com/eks/latest/APIReference/API_UpdateNodegroupConfig.html#API_UpdateNodegroupConfig_RequestSyntax
https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-benefits.html#AutoScalingBehavior.InstanceUsage
https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-benefits.html#AutoScalingBehavior.InstanceUsage


Amazon EKS User Guide

• eks.amazonaws.com/nodegroup=$nodeGroupName

• eks.amazonaws.com/sourceLaunchTemplateId=$launchTemplateId

• eks.amazonaws.com/sourceLaunchTemplateVersion=$launchTemplateVersion

3. It marks nodes as unschedulable to avoid scheduling new Pods. It also labels nodes with
node.kubernetes.io/exclude-from-external-load-balancers=true to remove the 
nodes from load balancers before terminating the nodes.

The following are known reasons which lead to a NodeCreationFailure error in this phase:

Insufficient capacity in the Availability Zone

There is a possibility that the Availability Zone might not have capacity of requested instance 
types. It's recommended to configure multiple instance types while creating a managed node 
group.

EC2 instance limits in your account

You may need to increase the number of Amazon EC2 instances your account can run 
simultaneously using Service Quotas. For more information, see EC2 Service Quotas in the
Amazon Elastic Compute Cloud User Guide for Linux Instances.

Custom user data

Custom user data can sometimes break the bootstrap process. This scenario can lead to the
kubelet not starting on the node or nodes not getting expected Amazon EKS labels on them. 
For more information, see Specifying an AMI.

Any changes which make a node unhealthy or not ready

Node disk pressure, memory pressure, and similar conditions can lead to a node not going to
Ready state.

Upgrade phase

The upgrade phase has these steps:

1. It randomly selects a node that needs to be upgraded, up to the maximum unavailable 
configured for the node group.

Updating a managed node group 164

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html


Amazon EKS User Guide

2. It drains the Pods from the node. If the Pods don't leave the node within 15 minutes and there's 
no force flag, the upgrade phase fails with a PodEvictionFailure error. For this scenario, you 
can apply the force flag with the update-nodegroup-version request to delete the Pods.

3. It cordons the node after every Pod is evicted and waits for 60 seconds. This is done so that the 
service controller doesn't send any new requests to this node and removes this node from its list 
of active nodes.

4. It sends a termination request to the Auto Scaling Group for the cordoned node.

5. It repeats the previous upgrade steps until there are no nodes in the node group that are 
deployed with the earlier version of the launch template.

The following are known reasons which lead to a PodEvictionFailure error in this phase:

Aggressive PDB

Aggressive PDB is defined on the Pod or there are multiple PDBs pointing to the same Pod.

Deployment tolerating all the taints

Once every Pod is evicted, it's expected for the node to be empty because the node is tainted in 
the earlier steps. However, if the deployment tolerates every taint, then the node is more likely 
to be non-empty, leading to Pod eviction failure.

Scale down phase

The scale down phase decrements the Auto Scaling group maximum size and desired size by one to 
return to values before the update started.

If the Upgrade workflow determines that the Cluster Autoscaler is scaling up the node group 
during the scale down phase of the workflow, it exits immediately without bringing the node group 
back to its original size.

Node taints on managed node groups

Amazon EKS supports configuring Kubernetes taints through managed node groups. Taints and 
tolerations work together to ensure that Pods aren't scheduled onto inappropriate nodes. One 
or more taints can be applied to a node. This marks that the node shouldn't accept any Pods that 
don't tolerate the taints. Tolerations are applied to Pods and allow, but don't require, the Pods to 
schedule onto nodes with matching taints. For more information, see Taints and Tolerations in the 
Kubernetes documentation.

Node taints on managed node groups 165

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/


Amazon EKS User Guide

Kubernetes node taints can be applied to new and existing managed node groups using the AWS 
Management Console or through the Amazon EKS API.

• For information on creating a node group with a taint using the AWS Management Console, see
Creating a managed node group.

• The following is an example of creating a node group with a taint using the AWS CLI:

aws eks create-nodegroup \ 
 --cli-input-json '
{ 
  "clusterName": "my-cluster", 
  "nodegroupName": "node-taints-example", 
  "subnets": [ 
     "subnet-1234567890abcdef0", 
     "subnet-abcdef01234567890", 
     "subnet-021345abcdef67890" 
   ], 
  "nodeRole": "arn:aws:iam::111122223333:role/AmazonEKSNodeRole", 
  "taints": [ 
     { 
         "key": "dedicated", 
         "value": "gpuGroup", 
         "effect": "NO_SCHEDULE" 
     } 
   ]
}'

For more information and examples of usage, see taint in the Kubernetes reference documentation.

Note

• Taints can be updated after you create the node group using the
UpdateNodegroupConfig API.

• The taint key must begin with a letter or number. It can contain letters, numbers, 
hyphens (-), periods (.), and underscores (_). It can be up to 63 characters long.

• Optionally, the taint key can begin with a DNS subdomain prefix and a single /. If it 
begins with a DNS subdomain prefix, it can be 253 characters long.

Node taints on managed node groups 166

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands#taint


Amazon EKS User Guide

• The value is optional and must begin with a letter or number. It can contain letters, 
numbers, hyphens (-), periods (.), and underscores (_). It can be up to 63 characters long.

• When using Kubernetes directly or the AWS Management Console, the taint effect 
must be NoSchedule, PreferNoSchedule, or NoExecute. However, when using the 
AWS CLI or API, the taint effect must be NO_SCHEDULE, PREFER_NO_SCHEDULE, or
NO_EXECUTE.

• A maximum of 50 taints are allowed per node group.

• If taints that were created using a managed node group are removed manually from a 
node, then Amazon EKS doesn't add the taints back to the node. This is true even if the 
taints are specified in the managed node group configuration.

You can use the aws eks update-nodegroup-config AWS CLI command to add, remove, or 
replace taints for managed node groups.

Customizing managed nodes with launch templates

For the highest level of customization, you can deploy managed nodes using your own launch 
template. Using a launch template allows capabilities such as the following:

• Provide bootstrap arguments at deployment of a node, such as extra kubelet arguments.

• Assign IP addresses to Pods from a different CIDR block than the IP address assigned to the 
node.

• Deploy your own custom AMI to nodes.

• Deploy your own custom CNI to nodes.

When you give your own launch template upon first creating a managed node group, you will also 
have greater flexibility later. As long as you deploy a managed node group with your own launch 
template, you can iteratively update it with a different version of the same launch template. When 
you update your node group to a different version of your launch template, all nodes in the group 
are recycled to match the new configuration of the specified launch template version.

Managed node groups are always deployed with a launch template to be used with the Amazon 
EC2 Auto Scaling group. When you don't provide a launch template, the Amazon EKS API creates 
one automatically with default values in your account. However, we don't recommend that you 
modify auto-generated launch templates. Furthermore, existing node groups that don't use a 

Customizing managed nodes with launch templates 167

https://docs.aws.amazon.com/cli/latest/reference/eks/update-nodegroup-config.html
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/


Amazon EKS User Guide

custom launch template can't be updated directly. Instead, you must create a new node group with 
a custom launch template to do so.

Launch template configuration basics

You can create an Amazon EC2 Auto Scaling launch template with the AWS Management Console, 
AWS CLI, or an AWS SDK. For more information, see Creating a Launch Template for an Auto 
Scaling group in the Amazon EC2 Auto Scaling User Guide. Some of the settings in a launch 
template are similar to the settings used for managed node configuration. When deploying or 
updating a node group with a launch template, some settings must be specified in either the node 
group configuration or the launch template. Don't specify a setting in both places. If a setting 
exists where it shouldn't, then operations such as creating or updating a node group fail.

The following table lists the settings that are prohibited in a launch template. It also lists similar 
settings, if any are available, that are required in the managed node group configuration. The listed 
settings are the settings that appear in the console. They might have similar but different names in 
the AWS CLI and SDK.

Launch template – Prohibited Amazon EKS node group configuration

Subnet under Network interfaces (Add 
network interface)

Subnets under Node group network 
configuration on the Specify networking
page

IAM instance profile under Advanced details Node IAM role under Node group configura 
tion on the Configure Node group page

Shutdown behavior and Stop - Hibernate 
behavior under Advanced details. Retain 
default Don't include in launch template 
setting in launch template for both settings.

No equivalent. Amazon EKS must control the 
instance lifecycle, not the Auto Scaling group.

The following table lists the prohibited settings in a managed node group configuration. It also 
lists similar settings, if any are available, which are required in a launch template. The listed 
settings are the settings that appear in the console. They might have similar names in the AWS CLI 
and SDK.

Customizing managed nodes with launch templates 168

https://docs.aws.amazon.com/autoscaling/ec2/userguide/create-launch-template.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/create-launch-template.html


Amazon EKS User Guide

Amazon EKS node group configuration – 
Prohibited

Launch template

(Only if you specified a custom AMI in a 
launch template)  AMI type under Node group 
compute configuration on Set compute and 
scaling configuration page – Console displays
Specified in launch template and the AMI ID 
that was specified.

If Application and OS Images (Amazon 
Machine Image) wasn't specified in the launch 
template, you can select an AMI in the node 
group configuration.

Application and OS Images (Amazon 
Machine Image) under Launch template 
contents – You must specify an ID if you have 
either of the following requirements:

• Using a custom AMI. If you specify an 
AMI that doesn't meet the requirements 
listed in Specifying an AMI, the node group 
deployment will fail.

• Want to provide user data to provide 
arguments to the bootstrap.sh  file 
included with an Amazon EKS optimized 
AMI. You can enable your instances to 
assign a significantly higher number of 
IP addresses to Pods, assign IP addresses 
to Pods from a different CIDR block than 
the instance's, enable the container 
d  runtime, or deploy a private cluster 
without outbound internet access. For more 
information, see the following topics:

• Increase the amount of available IP 
addresses for your Amazon EC2 nodes

• Custom networking for pods

• Test migration from Docker to
containerd

• Private cluster requirements

• Specifying an AMI

Disk size under Node group compute 
configuration on Set compute and scaling 
configuration page – Console displays
Specified in launch template.

Size under Storage (Volumes) (Add new 
volume). You must specify this in the launch 
template.

Customizing managed nodes with launch templates 169



Amazon EKS User Guide

Amazon EKS node group configuration – 
Prohibited

Launch template

SSH key pair under Node group configura 
tion on the Specify Networking page – The 
console displays the key that was specified in 
the launch template or displays Not specified 
in launch template.

Key pair name under Key pair (login).

You can't specify source security groups that 
are allowed remote access when using a 
launch template.

Security groups under Network settings
for the instance or Security groups under
Network interfaces (Add network interface), 
but not both. For more information, see Using 
custom security groups.

Note

• If you deploy a node group using a launch template, specify zero or one Instance type
under Launch template contents in a launch template. Alternatively, you can specify 
0–20 instance types for Instance types on the Set compute and scaling configuration
page in the console. Or, you can do so using other tools that use the Amazon EKS API. 
If you specify an instance type in a launch template, and use that launch template to 
deploy your node group, then you can't specify any instance types in the console or 
using other tools that use the Amazon EKS API. If you don't specify an instance type in a 
launch template, in the console, or using other tools that use the Amazon EKS API, the
t3.medium instance type is used. If your node group is using the Spot capacity type, 
then we recommend specifying multiple instance types using the console. For more 
information, see Managed node group capacity types.

• If any containers that you deploy to the node group use the Instance Metadata Service 
Version 2, make sure to set the Metadata response hop limit to 2 in your launch 
template. For more information, see Instance metadata and user data in the Amazon 
EC2 User Guide for Linux Instances. If you deploy a managed node group without using a 
custom launch template, this value is automatically set for the node group in the default 
launch template.

Customizing managed nodes with launch templates 170

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html


Amazon EKS User Guide

Tagging Amazon EC2 instances

You can use the TagSpecification parameter of a launch template to specify which tags to 
apply to Amazon EC2 instances in your node group. The IAM entity calling the CreateNodegroup
or UpdateNodegroupVersion APIs must have permissions for ec2:RunInstances and
ec2:CreateTags, and the tags must be added to the launch template.

Using custom security groups

You can use a launch template to specify custom Amazon EC2 security groups to apply to instances 
in your node group. This can be either in the instance level security groups parameter or as part 
of the network interface configuration parameters. However, you can't create a launch template 
that specifies both instance level and network interface security groups. Consider the following 
conditions that apply to using custom security groups with managed node groups:

• Amazon EKS only allows launch templates with a single network interface specification.

• By default, Amazon EKS applies the cluster security group to the instances in your node group 
to facilitate communication between nodes and the control plane. If you specify custom security 
groups in the launch template using either option mentioned earlier, Amazon EKS doesn't add 
the cluster security group. So, you must ensure that the inbound and outbound rules of your 
security groups enable communication with the endpoint of your cluster. If your security group 
rules are incorrect, the worker nodes can't join the cluster. For more information about security 
group rules, see Amazon EKS security group requirements and considerations.

• If you need SSH access to the instances in your node group, include a security group that allows 
that access.

Amazon EC2 user data

The launch template includes a section for custom user data. You can specify configuration settings 
for your node group in this section without manually creating individual custom AMIs. For more 
information about the settings available for Bottlerocket, see Using user data on GitHub.

You can supply Amazon EC2 user data in your launch template using cloud-init when launching 
your instances. For more information, see the cloud-init documentation. Your user data can be used 
to perform common configuration operations. This includes the following operations:

• Including users or groups

• Installing packages

Customizing managed nodes with launch templates 171

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html
https://github.com/bottlerocket-os/bottlerocket#using-user-data
https://cloudinit.readthedocs.io/en/latest/index.html
https://cloudinit.readthedocs.io/en/latest/topics/examples.html#including-users-and-groups
https://cloudinit.readthedocs.io/en/latest/topics/examples.html#install-arbitrary-packages


Amazon EKS User Guide

Amazon EC2 user data in launch templates that are used with managed node groups must be in 
the MIME multi-part archive format for Amazon Linux AMIs and TOML format for Bottlerocket 
AMIs. This is because your user data is merged with Amazon EKS user data required for nodes to 
join the cluster. Don't specify any commands in your user data that starts or modifies kubelet. 
This is performed as part of the user data merged by Amazon EKS. Certain kubelet parameters, 
such as setting labels on nodes, can be configured directly through the managed node groups API.

Note

For more information about advanced kubelet customization, including manually starting 
it or passing in custom configuration parameters, see Specifying an AMI. If a custom AMI ID 
is specified in a launch template, Amazon EKS doesn't merge user data.

The following details provide more information about the user data section.

Amazon Linux 2 user data

You can combine multiple user data blocks together into a single MIME multi-part file. For 
example, you can combine a cloud boothook that configures the Docker daemon with a user 
data shell script that installs a custom package. A MIME multi-part file consists of the following 
components:

• The content type and part boundary declaration – Content-Type: multipart/mixed; 
boundary="==MYBOUNDARY=="

• The MIME version declaration – MIME-Version: 1.0

• One or more user data blocks, which contain the following components:

• The opening boundary, which signals the beginning of a user data block – --
==MYBOUNDARY==

• The content type declaration for the block: Content-Type: text/cloud-config; 
charset="us-ascii". For more information about content types, see the cloud-init
documentation.

• The content of the user data (for example, a list of shell commands or cloud-init
directives).

• The closing boundary, which signals the end of the MIME multi-part file: --
==MYBOUNDARY==--

Customizing managed nodes with launch templates 172

https://cloudinit.readthedocs.io/en/latest/topics/format.html#mime-multi-part-archive
https://cloudinit.readthedocs.io/en/latest/topics/format.html


Amazon EKS User Guide

The following is an example of a MIME multi-part file that you can use to create your own.

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="==MYBOUNDARY=="

--==MYBOUNDARY==
Content-Type: text/x-shellscript; charset="us-ascii"

#!/bin/bash
echo "Running custom user data script"

--==MYBOUNDARY==--

Amazon Linux 2023 user data

Amazon Linux 2023 (AL2023) introduces a new node initialization process nodeadm that uses a 
YAML configuration schema. If you're using self-managed node groups or an AMI with a launch 
template, you'll now need to provide additional cluster metadata explicitly when creating 
a new node group. An example of the minimum required parameters is as follows, where
apiServerEndpoint, certificateAuthority, and service cidr are now required:

---
apiVersion: node.eks.aws/v1alpha1
kind: NodeConfig
spec: 
  cluster: 
    name: my-cluster
    apiServerEndpoint: https://example.com
    certificateAuthority: Y2VydGlmaWNhdGVBdXRob3JpdHk=
    cidr: 10.100.0.0/16

You'll typically set this configuration in your user data, either as-is or embedded within a MIME 
multi-part document:

MIME-Version: 1.0  
Content-Type: multipart/mixed; boundary="BOUNDARY" 

 --BOUNDARY  
 Content-Type: application/node.eks.aws  
  

Customizing managed nodes with launch templates 173

https://awslabs.github.io/amazon-eks-ami/nodeadm/


Amazon EKS User Guide

---  
apiVersion: node.eks.aws/v1alpha1  
kind: NodeConfig spec: [...]

--BOUNDARY--

In AL2, the metadata from these parameters was discovered from the Amazon EKS
DescribeCluster API call. With AL2023, this behavior has changed since the additional 
API call risks throttling during large node scale ups. This change doesn't affect you if you're 
using managed node groups without a launch template or if you're using Karpenter. For more 
information on certificateAuthority and service cidr, see DescribeCluster in the
Amazon EKS API Reference.

Bottlerocket user data

Bottlerocket structures user data in the TOML format. You can provide user data to be merged 
with the user data provided by Amazon EKS. For example, you can provide additional kubelet
settings.

[settings.kubernetes.system-reserved]
cpu = "10m"
memory = "100Mi"
ephemeral-storage= "1Gi"

For more information about the supported settings, see Bottlerocket documentation. You can 
configure node labels and taints in your user data. However, we recommend that you configure 
these within your node group instead. Amazon EKS applies these configurations when you do 
so.

When user data is merged, formatting isn't preserved, but the content remains the 
same. The configuration that you provide in your user data overrides any settings that 
are configured by Amazon EKS. So, if you set settings.kubernetes.max-pods or
settings.kubernetes.cluster-dns-ip, values in your user data are applied to the nodes.

Amazon EKS doesn't support all valid TOML. The following is a list of known unsupported 
formats:

• Quotes within quoted keys: 'quoted "value"' = "value"

• Escaped quotes in values: str = "I'm a string. \"You can quote me\""

• Mixed floats and integers: numbers = [ 0.1, 0.2, 0.5, 1, 2, 5 ]

Customizing managed nodes with launch templates 174

https://docs.aws.amazon.com/eks/latest/APIReference/API_DescribeCluster.html
https://github.com/bottlerocket-os/bottlerocket


Amazon EKS User Guide

• Mixed types in arrays: contributors = ["foo@example.com", { name = "Baz", 
email = "baz@example.com" }]

• Bracketed headers with quoted keys: [foo."bar.baz"]

Windows user data

Windows user data uses PowerShell commands. When creating a managed node group, your 
custom user data combines with Amazon EKS managed user data. Your PowerShell commands 
come first, followed by the managed user data commands, all within one <powershell></
powershell> tag.

Note

When no AMI ID is specified in the launch template, don't use the Windows Amazon EKS 
Bootstrap script in user data to configure Amazon EKS.

Example user data is as follows.

<powershell>
Write-Host "Running custom user data script"
</powershell>

Specifying an AMI

If you have either of the following requirements, then specify an AMI ID in the imageId field of 
your launch template. Select the requirement you have for additional information.

Provide user data to pass arguments to the bootstrap.sh file included with an Amazon EKS 
optimized Linux/Bottlerocket AMI

Bootstrapping is a term used to describe adding commands that can be run when an instance 
starts. For example, bootstrapping allows using extra kubelet arguments. You can pass 
arguments to the bootstrap.sh script by using eksctl without specifying a launch template. Or 
you can do so by specifying the information in the user data section of a launch template.

Customizing managed nodes with launch templates 175

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/


Amazon EKS User Guide

eksctl without specifying a launch template

Create a file named my-nodegroup.yaml with the following contents. Replace every example 
value with your own values. The --apiserver-endpoint, --b64-cluster-ca, and --
dns-cluster-ip arguments are optional. However, defining them allows the bootstrap.sh
script to avoid making a describeCluster call. This is useful in private cluster setups 
or clusters where you're scaling in and out nodes frequently. For more information on the
bootstrap.sh script, see the bootstrap.sh file on GitHub.

• The only required argument is the cluster name (my-cluster).

• To retrieve an optimized AMI ID for ami-1234567890abcdef0, you can use the tables in the 
following sections:

• Retrieving Amazon EKS optimized Amazon Linux AMI IDs

• Retrieving Amazon EKS optimized Bottlerocket AMI IDs

• Retrieving Amazon EKS optimized Windows AMI IDs

• To retrieve the certificate-authority for your cluster, run the following command.

aws eks describe-cluster --query "cluster.certificateAuthority.data" --output text 
 --name my-cluster --region region-code

• To retrieve the api-server-endpoint for your cluster, run the following command.

aws eks describe-cluster --query "cluster.endpoint" --output text --name my-
cluster --region region-code

• The value for --dns-cluster-ip is your service CIDR with .10 at the end. To retrieve the
service-cidr for your cluster, run the following command. For example, if the returned 
value for is ipv4 10.100.0.0/16, then your value is 10.100.0.10.

aws eks describe-cluster --query "cluster.kubernetesNetworkConfig.serviceIpv4Cidr" 
 --output text --name my-cluster --region region-code

• This example provides a kubelet argument to set a custom max-pods value using the
bootstrap.sh script included with the Amazon EKS optimized AMI. The node group name 
can't be longer than 63 characters. It must start with letter or digit, but can also include 
hyphens and underscores for the remaining characters. For help with selecting my-max-
pods-value, see Amazon EKS recommended maximum Pods for each Amazon EC2 instance 
type.

Customizing managed nodes with launch templates 176

https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh


Amazon EKS User Guide

---
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata: 
  name: my-cluster
  region: region-code

managedNodeGroups: 
  - name: my-nodegroup
    ami: ami-1234567890abcdef0
    instanceType: m5.large
    privateNetworking: true 
    disableIMDSv1: true 
    labels: { x86-al2-specified-mng } 
    overrideBootstrapCommand: | 
      #!/bin/bash 
      /etc/eks/bootstrap.sh my-cluster \ 
        --b64-cluster-ca certificate-authority \ 
        --apiserver-endpoint api-server-endpoint \ 
        --dns-cluster-ip service-cidr.10 \ 
        --kubelet-extra-args '--max-pods=my-max-pods-value' \ 
        --use-max-pods false

For every available eksctl config file option, see Config file schema in the eksctl
documentation. The eksctl utility still creates a launch template for you and populates its user 
data with the data that you provide in the config file.

Create a node group with the following command.

eksctl create nodegroup --config-file=my-nodegroup.yaml

User data in a launch template

Specify the following information in the user data section of your launch template. Replace 
every example value with your own values. The --apiserver-endpoint, --b64-
cluster-ca, and --dns-cluster-ip arguments are optional. However, defining them 
allows the bootstrap.sh script to avoid making a describeCluster call. This is useful in 
private cluster setups or clusters where you're scaling in and out nodes frequently. For more 
information on the bootstrap.sh script, see the bootstrap.sh file on GitHub.

Customizing managed nodes with launch templates 177

https://eksctl.io/usage/schema/
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh


Amazon EKS User Guide

• The only required argument is the cluster name (my-cluster).

• To retrieve the certificate-authority for your cluster, run the following command.

aws eks describe-cluster --query "cluster.certificateAuthority.data" --output text 
 --name my-cluster --region region-code

• To retrieve the api-server-endpoint for your cluster, run the following command.

aws eks describe-cluster --query "cluster.endpoint" --output text --name my-
cluster --region region-code

• The value for --dns-cluster-ip is your service CIDR with .10 at the end. To retrieve the
service-cidr for your cluster, run the following command. For example, if the returned 
value for is ipv4 10.100.0.0/16, then your value is 10.100.0.10.

aws eks describe-cluster --query "cluster.kubernetesNetworkConfig.serviceIpv4Cidr" 
 --output text --name my-cluster --region region-code

• This example provides a kubelet argument to set a custom max-pods value using the
bootstrap.sh script included with the Amazon EKS optimized AMI. For help with selecting
my-max-pods-value, see Amazon EKS recommended maximum Pods for each Amazon EC2 
instance type.

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="==MYBOUNDARY=="

--==MYBOUNDARY==
Content-Type: text/x-shellscript; charset="us-ascii"

#!/bin/bash
set -ex
/etc/eks/bootstrap.sh my-cluster \ 
  --b64-cluster-ca certificate-authority \ 
  --apiserver-endpoint api-server-endpoint \ 
  --dns-cluster-ip service-cidr.10 \ 
  --kubelet-extra-args '--max-pods=my-max-pods-value' \ 
  --use-max-pods false

--==MYBOUNDARY==--

Customizing managed nodes with launch templates 178



Amazon EKS User Guide

Provide user data to pass arguments to the Start-EKSBootstrap.ps1 file included with an 
Amazon EKS optimized Windows AMI

Bootstrapping is a term used to describe adding commands that can be run when an instance 
starts. You can pass arguments to the Start-EKSBootstrap.ps1 script by using eksctl without 
specifying a launch template. Or you can do so by specifying the information in the user data 
section of a launch template.

If you want to specify a custom Windows AMI ID, keep in mind the following considerations:

• You must use a launch template and give the required bootstrap commands in the user data 
section. To retrieve your desired Windows ID, you can use the table in Amazon EKS optimized 
Windows AMIs.

• There are several limits and conditions. For example, you must add eks:kube-proxy-windows
to your AWS IAM Authenticator configuration map. For more information, see Limits and 
conditions when specifying an AMI ID.

Specify the following information in the user data section of your launch template. Replace 
every example value with your own values. The -APIServerEndpoint, -Base64ClusterCA, 
and -DNSClusterIP arguments are optional. However, defining them allows the Start-
EKSBootstrap.ps1 script to avoid making a describeCluster call.

• The only required argument is the cluster name (my-cluster).

• To retrieve the certificate-authority for your cluster, run the following command.

aws eks describe-cluster --query "cluster.certificateAuthority.data" --output text --
name my-cluster --region region-code

• To retrieve the api-server-endpoint for your cluster, run the following command.

aws eks describe-cluster --query "cluster.endpoint" --output text --name my-cluster
 --region region-code

• The value for --dns-cluster-ip is your service CIDR with .10 at the end. To retrieve the
service-cidr for your cluster, run the following command. For example, if the returned value 
for is ipv4 10.100.0.0/16, then your value is 10.100.0.10.

Customizing managed nodes with launch templates 179



Amazon EKS User Guide

aws eks describe-cluster --query "cluster.kubernetesNetworkConfig.serviceIpv4Cidr" --
output text --name my-cluster --region region-code

• For additional arguments, see Bootstrap script configuration parameters.

Note

If you're using custom service CIDR, then you need to specify it using the -ServiceCIDR
parameter. Otherwise, the DNS resolution for Pods in the cluster will fail.

<powershell>
[string]$EKSBootstrapScriptFile = "$env:ProgramFiles\Amazon\EKS\Start-EKSBootstrap.ps1"
& $EKSBootstrapScriptFile -EKSClusterName my-cluster ` 
  -Base64ClusterCA certificate-authority ` 
  -APIServerEndpoint api-server-endpoint ` 
  -DNSClusterIP service-cidr.10
</powershell>

Run a custom AMI due to specific security, compliance, or internal policy requirements

For more information, see Amazon Machine Images (AMI) in the Amazon EC2 User Guide for Linux 
Instances. The Amazon EKS AMI build specification contains resources and configuration scripts for 
building a custom Amazon EKS AMI based on Amazon Linux. For more information, see Amazon 
EKS AMI Build Specification on GitHub. To build custom AMIs installed with other operating 
systems, see Amazon EKS Sample Custom AMIs on GitHub.

Important

When specifying an AMI, Amazon EKS doesn't merge any user data. Rather, you're 
responsible for supplying the required bootstrap commands for nodes to join the 
cluster. If your nodes fail to join the cluster, the Amazon EKS CreateNodegroup and
UpdateNodegroupVersion actions also fail.

Customizing managed nodes with launch templates 180

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://github.com/awslabs/amazon-eks-ami/
https://github.com/awslabs/amazon-eks-ami/
https://github.com/aws-samples/amazon-eks-custom-amis


Amazon EKS User Guide

Limits and conditions when specifying an AMI ID

The following are the limits and conditions involved with specifying an AMI ID with managed node 
groups:

• You must create a new node group to switch between specifying an AMI ID in a launch template 
and not specifying an AMI ID.

• You aren't notified in the console when a newer AMI version is available. To update your node 
group to a newer AMI version, you need to create a new version of your launch template with 
an updated AMI ID. Then, you need to update the node group with the new launch template 
version.

• The following fields can't be set in the API if you specify an AMI ID:

• amiType

• releaseVersion

• version

• Any taints set in the API are applied asynchronously if you specify an AMI ID. To apply taints 
prior to a node joining the cluster, you must pass the taints to kubelet in your user data using 
the --register-with-taints command line flag. For more information, see kubelet in the 
Kubernetes documentation.

• When specifying a custom AMI ID for Windows managed node groups, add eks:kube-proxy-
windows to your AWS IAM Authenticator configuration map. This is required for DNS to function 
properly.

1. Open the AWS IAM Authenticator configuration map for editing.

kubectl edit -n kube-system cm aws-auth

2. Add this entry to the groups list under each rolearn associated with Windows nodes. Your 
configuration map should look similar to aws-auth-cm-windows.yaml.

- eks:kube-proxy-windows

3. Save the file and exit your text editor.

Customizing managed nodes with launch templates 181

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://s3.us-west-2.amazonaws.com/amazon-eks/cloudformation/2020-10-29/aws-auth-cm-windows.yaml


Amazon EKS User Guide

Deleting a managed node group

This topic describes how you can delete an Amazon EKS managed node group. When you delete 
a managed node group, Amazon EKS first sets the minimum, maximum, and desired size of your 
Auto Scaling group to zero. This then causes your node group to scale down.

Before each instance is terminated, Amazon EKS sends a signal to drain the Pods from that node. 
If the Pods haven't drained after a few minutes, Amazon EKS lets Auto Scaling continue the 
termination of the instance. After every instance is terminated, the Auto Scaling group is deleted.

Important

If you delete a managed node group that uses a node IAM role that isn't used by any other 
managed node group in the cluster, the role is removed from the aws-auth ConfigMap. 
If any of the self-managed node groups in the cluster are using the same node IAM role, 
the self-managed nodes move to the NotReady status. Additionally, the cluster operation 
is also disrupted.  To add a mapping for the role you're using only for the self-managed 
node groups, see Creating access entries, if your cluster's platform version is at least 
minimum version listed in the prerequisites section of Allowing IAM roles or users access to 
Kubernetes objects on your Amazon EKS cluster. If your platform version is earlier than the 
required minimum version for access entries, you can add the entry back to the aws-auth
ConfigMap. For more information, enter eksctl create iamidentitymapping --
help in your terminal.

You can delete a managed node group with eksctl or the AWS Management Console.

eksctl

To delete a managed node group with eksctl

Enter the following command. Replace every example value with your own values.

eksctl delete nodegroup \ 
  --cluster my-cluster \ 
  --name my-mng \ 
  --region region-code

For more options, see Deleting and draining nodegroups in the eksctl documentation.

Deleting a managed node group 182

https://eksctl.io/usage/nodegroups/#deleting-and-draining-nodegroups


Amazon EKS User Guide

AWS Management Console

To delete your managed node group with the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. On the Clusters page, choose the cluster that contains the node group to delete.

3. On the selected cluster page, choose the Compute tab.

4. In the Node groups section, choose the node group to delete. Then choose Delete.

5. In the Delete node group confirmation dialog box, enter the name of the node group. Then 
choose Delete.

AWS CLI

To delete your managed node group with the AWS CLI

1. Enter the following command. Replace every example value with your own values.

aws eks delete-nodegroup \ 
  --cluster-name my-cluster \ 
  --nodegroup-name my-mng \ 
  --region region-code

2. Use the arrow keys on your keyboard to scroll through the response output. Press the q key 
when you're finished.

For more options, see the delete-nodegroup command in the AWS CLI Command Reference.

Self-managed nodes

A cluster contains one or more Amazon EC2 nodes that Pods are scheduled on. Amazon EKS nodes 
run in your AWS account and connect to the control plane of your cluster through the cluster API 
server endpoint. You're billed for them based on Amazon EC2 prices. For more information, see
Amazon EC2 pricing.

A cluster can contain several node groups. Each node group contains one or more nodes that are 
deployed in an Amazon EC2 Auto Scaling group. The instance type of the nodes within the group 

Self-managed nodes 183

https://console.aws.amazon.com/eks/home#/clusters
https://docs.aws.amazon.com/cli/latest/reference/eks/delete-nodegroup.html
https://aws.amazon.com/ec2/pricing/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html


Amazon EKS User Guide

can vary, such as when using attribute-based instance type selection with Karpenter. All instances 
in a node group must use the Amazon EKS node IAM role.

Amazon EKS provides specialized Amazon Machine Images (AMIs) that are called Amazon EKS 
optimized AMIs. The AMIs are configured to work with Amazon EKS. Their components include
containerd, kubelet, and the AWS IAM Authenticator. The AMIs also contain a specialized
bootstrap script that allows it to discover and connect to your cluster's control plane automatically.

If you restrict access to the public endpoint of your cluster using CIDR blocks, we recommend that 
you also enable private endpoint access. This is so that nodes can communicate with the cluster. 
Without the private endpoint enabled, the CIDR blocks that you specify for public access must 
include the egress sources from your VPC. For more information, see Amazon EKS cluster endpoint 
access control.

To add self-managed nodes to your Amazon EKS cluster, see the topics that follow. If you launch 
self-managed nodes manually, add the following tag to each node. For more information, see
Adding and deleting tags on an individual resource. If you follow the steps in the guides that 
follow, the required tag is automatically added to nodes for you.

Key Value

kubernetes.io/cluster/ my-cluster owned

For more information about nodes from a general Kubernetes perspective, see Nodes in the 
Kubernetes documentation.

Topics

• Launching self-managed Amazon Linux nodes

• Launching self-managed Bottlerocket nodes

• Launching self-managed Windows nodes

• Self-managed node updates

Launching self-managed Amazon Linux nodes

This topic describes how you can launch Auto Scaling groups of Linux nodes that register with 
your Amazon EKS cluster. After the nodes join the cluster, you can deploy Kubernetes applications 
to them. You can also launch self-managed Amazon Linux nodes with eksctl or the AWS 

Amazon Linux 184

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-fleet-attribute-based-instance-type-selection.html
https://karpenter.sh/
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#adding-or-deleting-tags
https://kubernetes.io/docs/concepts/architecture/nodes/


Amazon EKS User Guide

Management Console. If you need to launch nodes on AWS Outposts, see Launching self-managed 
Amazon Linux nodes on an Outpost.

Prerequisites

• An existing Amazon EKS cluster. To deploy one, see Creating an Amazon EKS cluster. If you have 
subnets in the AWS Region where you have AWS Outposts, AWS Wavelength, or AWS Local Zones 
enabled, those subnets must not have been passed in when you created your cluster.

• An existing IAM role for the nodes to use. To create one, see Amazon EKS node IAM role. If this 
role doesn't have either of the policies for the VPC CNI, the separate role that follows is required 
for the VPC CNI pods.

• (Optional, but recommended) The Amazon VPC CNI plugin for Kubernetes add-on configured 
with its own IAM role that has the necessary IAM policy attached to it. For more information, see
Configuring the Amazon VPC CNI plugin for Kubernetes to use IAM roles for service accounts 
(IRSA).

• Familiarity with the considerations listed in Choosing an Amazon EC2 instance type. Depending 
on the instance type you choose, there may be additional prerequisites for your cluster and VPC.

eksctl

Note

eksctl doesn't support Amazon Linux 2023 at this time.

Prerequisite

Version 0.172.0 or later of the eksctl command line tool installed on your device or AWS 
CloudShell. To install or update eksctl, see Installation in the eksctl documentation.

To launch self-managed Linux nodes using eksctl

1. (Optional) If the AmazonEKS_CNI_Policy managed IAM policy is attached to your Amazon 
EKS node IAM role, we recommend assigning it to an IAM role that you associate to the 
Kubernetes aws-node service account instead. For more information, see Configuring the 
Amazon VPC CNI plugin for Kubernetes to use IAM roles for service accounts (IRSA).

2. The following command creates a node group in an existing cluster. Replace al-nodes
with a name for your node group. The node group name can't be longer than 63 characters. 

Amazon Linux 185

https://eksctl.io/installation


Amazon EKS User Guide

It must start with letter or digit, but can also include hyphens and underscores for the 
remaining characters. Replace my-cluster with the name of your cluster. The name can 
contain only alphanumeric characters (case-sensitive) and hyphens. It must start with 
an alphabetic character and can't be longer than 100 characters. Replace the remaining
example value with your own values. The nodes are created with the same Kubernetes 
version as the control plane, by default.

Before choosing a value for --node-type, review Choosing an Amazon EC2 instance type.

Replace my-key with the name of your Amazon EC2 key pair or public key. This key is used 
to SSH into your nodes after they launch. If you don't already have an Amazon EC2 key pair, 
you can create one in the AWS Management Console. For more information, see Amazon 
EC2 key pairs in the Amazon EC2 User Guide for Linux Instances.

Create your node group with the following command.

Important

If you want to deploy a node group to AWS Outposts, Wavelength, or Local Zone 
subnets, there are additional considerations:

• The subnets must not have been passed in when you created the cluster.

• You must create the node group with a config file that specifies the subnets and
volumeType: gp2. For more information, see Create a nodegroup from a config 
file and Config file schema in the eksctl documentation.

eksctl create nodegroup \ 
  --cluster my-cluster \ 
  --name al-nodes \ 
  --node-type t3.medium \ 
  --nodes 3 \ 
  --nodes-min 1 \ 
  --nodes-max 4 \ 
  --ssh-access \ 
  --managed=false \ 
  --ssh-public-key my-key

To deploy a node group that:

Amazon Linux 186

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://eksctl.io/usage/schema/#nodeGroups-volumeType
https://eksctl.io/usage/nodegroups/#creating-a-nodegroup-from-a-config-file
https://eksctl.io/usage/nodegroups/#creating-a-nodegroup-from-a-config-file
https://eksctl.io/usage/schema/


Amazon EKS User Guide

• can assign a significantly higher number of IP addresses to Pods than the default 
configuration, see Increase the amount of available IP addresses for your Amazon EC2 
nodes.

• can assign IPv4 addresses to Pods from a different CIDR block than that of the instance, 
see Custom networking for pods.

• can assign IPv6 addresses to Pods and services, see IPv6 addresses for clusters, Pods, 
and services.

• use the containerd runtime, you must deploy the node group using a config file. For 
more information, see Test migration from Docker to containerd.

• don't have outbound internet access, see Private cluster requirements.

For a complete list of all available options and defaults, enter the following command.

eksctl create nodegroup --help

If nodes fail to join the cluster, then see Nodes fail to join cluster in the Troubleshooting 
guide.

An example output is as follows. Several lines are output while the nodes are created. One 
of the last lines of output is the following example line.

[#]  created 1 nodegroup(s) in cluster "my-cluster"

3. (Optional) Deploy a sample application to test your cluster and Linux nodes.

4. We recommend blocking Pod access to IMDS if the following conditions are true:

• You plan to assign IAM roles to all of your Kubernetes service accounts so that Pods only 
have the minimum permissions that they need.

• No Pods in the cluster require access to the Amazon EC2 instance metadata service 
(IMDS) for other reasons, such as retrieving the current AWS Region.

For more information, see Restrict access to the instance profile assigned to the worker 
node.

Amazon Linux 187

https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node


Amazon EKS User Guide

AWS Management Console

Step 1: To launch self-managed Linux nodes using the AWS Management Console

1. Download the latest version of the AWS CloudFormation template.

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/cloudformation/2022-12-23/
amazon-eks-nodegroup.yaml

2. Wait for your cluster status to show as ACTIVE. If you launch your nodes before the cluster 
is active, the nodes fail to register with the cluster and you will have to relaunch them.

3. Open the AWS CloudFormation console at https://console.aws.amazon.com/
cloudformation.

4. Choose Create stack and then select With new resources (standard).

5. For Specify template, select Upload a template file and then select Choose file.

6. Select the amazon-eks-nodegroup.yaml file that you downloaded.

7. Select Next.

8. On the Specify stack details page, enter the following parameters accordingly, and then 
choose Next:

• Stack name: Choose a stack name for your AWS CloudFormation stack. For example, you 
can call it my-cluster-nodes. The name can contain only alphanumeric characters 
(case-sensitive) and hyphens. It must start with an alphabetic character and can't be 
longer than 100 characters.

• ClusterName: Enter the name that you used when you created your Amazon EKS cluster. 
This name must equal the cluster name or your nodes can't join the cluster.

• ClusterControlPlaneSecurityGroup: Choose the SecurityGroups value from the AWS 
CloudFormation output that you generated when you created your VPC.

The following steps show one operation to retrieve the applicable group.

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/ 
clusters.

2. Choose the name of the cluster.

3. Choose the Networking tab.

4. Use the Additional security groups value as a reference when selecting from the
ClusterControlPlaneSecurityGroup dropdown list.

Amazon Linux 188

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

• NodeGroupName: Enter a name for your node group. This name can be used later to 
identify the Auto Scaling node group that's created for your nodes. The node group name 
can't be longer than 63 characters. It must start with letter or digit, but can also include 
hyphens and underscores for the remaining characters.

• NodeAutoScalingGroupMinSize: Enter the minimum number of nodes that your node 
Auto Scaling group can scale in to.

• NodeAutoScalingGroupDesiredCapacity: Enter the desired number of nodes to scale to 
when your stack is created.

• NodeAutoScalingGroupMaxSize: Enter the maximum number of nodes that your node 
Auto Scaling group can scale out to.

• NodeInstanceType: Choose an instance type for your nodes. For more information, see
Choosing an Amazon EC2 instance type.

• NodeImageIdSSMParam: Pre-populated with the Amazon EC2 Systems Manager 
parameter of a recent Amazon EKS optimized AMI for a variable Kubernetes version. To 
use a different Kubernetes minor version supported with Amazon EKS, replace 1.XX with 
a different supported version. We recommend specifying the same Kubernetes version as 
your cluster.

You can also replace amazon-linux-2 with a different AMI type. For more information, 
see Retrieving Amazon EKS optimized Amazon Linux AMI IDs.

Note

The Amazon EKS node AMI is based on Amazon Linux. You can track security 
or privacy events for Amazon Linux 2 at the Amazon Linux Security Center or 
subscribe to the associated RSS feed. Security and privacy events include an 
overview of the issue, what packages are affected, and how to update your 
instances to correct the issue.

• NodeImageId: (Optional) If you're using your own custom AMI (instead of the Amazon 
EKS optimized AMI), enter a node AMI ID for your AWS Region. If you specify a value 
here, it overrides any values in the NodeImageIdSSMParam field.

• NodeVolumeSize: Specify a root volume size for your nodes, in GiB.

• NodeVolumeType: Specify a root volume type for your nodes.

Amazon Linux 189

https://alas.aws.amazon.com/alas2.html
https://alas.aws.amazon.com/AL2/alas.rss


Amazon EKS User Guide

• KeyName: Enter the name of an Amazon EC2 SSH key pair that you can use to connect 
using SSH into your nodes with after they launch. If you don't already have an Amazon 
EC2 key pair, you can create one in the AWS Management Console. For more information, 
see Amazon EC2 key pairs in the Amazon EC2 User Guide for Linux Instances.

Note

If you don't provide a key pair here, the AWS CloudFormation stack creation fails.

• BootstrapArguments: Specify any optional arguments to pass to the node bootstrap 
script, such as extra kubelet arguments. For more information, view the bootstrap script 
usage information on GitHub.

To deploy a node group that:

• can assign a significantly higher number of IP addresses to Pods than the default 
configuration, see Increase the amount of available IP addresses for your Amazon EC2 
nodes.

• can assign IPv4 addresses to Pods from a different CIDR block than that of the 
instance, see Custom networking for pods.

• can assign IPv6 addresses to Pods and services, see IPv6 addresses for clusters, Pods, 
and services.

• use the containerd runtime, you must deploy the node group using a config file. 
For more information, see Test migration from Docker to containerd.

• don't have outbound internet access, see Private cluster requirements.

• DisableIMDSv1: By default, each node supports the Instance Metadata Service Version 
1 (IMDSv1) and IMDSv2. You can disable IMDSv1. To prevent future nodes and Pods in 
the node group from using MDSv1, set DisableIMDSv1 to true. For more information 
about IMDS, see Configuring the instance metadata service. For more information about 
restricting access to it on your nodes, see Restrict access to the instance profile assigned 
to the worker node.

• VpcId: Enter the ID for the VPC that you created.

• Subnets: Choose the subnets that you created for your VPC. If you created your VPC 
using the steps that are described in Creating a VPC for your Amazon EKS cluster, specify 
only the private subnets within the VPC for your nodes to launch into. You can see which 
subnets are private by opening each subnet link from the Networking tab of your cluster.

Amazon Linux 190

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node


Amazon EKS User Guide

Important

• If any of the subnets are public subnets, then they must have the automatic 
public IP address assignment setting enabled. If the setting isn't enabled for 
the public subnet, then any nodes that you deploy to that public subnet won't 
be assigned a public IP address and won't be able to communicate with the 
cluster or other AWS services. If the subnet was deployed before March 26, 
2020 using either of the Amazon EKS AWS CloudFormation VPC templates, 
or by using eksctl, then automatic public IP address assignment is disabled 
for public subnets. For information about how to enable public IP address 
assignment for a subnet, see Modifying the public IPv4 addressing attribute 
for your subnet. If the node is deployed to a private subnet, then it's able to 
communicate with the cluster and other AWS services through a NAT gateway.

• If the subnets don't have internet access, make sure that you're aware of the 
considerations and extra steps in Private cluster requirements.

• If you select AWS Outposts, Wavelength, or Local Zone subnets, the subnets 
must not have been passed in when you created the cluster.

9. Select your desired choices on the Configure stack options page, and then choose Next.

10. Select the check box to the left of I acknowledge that AWS CloudFormation might create 
IAM resources., and then choose Create stack.

11. When your stack has finished creating, select it in the console and choose Outputs.

12. Record the NodeInstanceRole for the node group that was created. You need this when 
you configure your Amazon EKS nodes.

Step 2: To enable nodes to join your cluster

Note

If you launched nodes inside a private VPC without outbound internet access, make sure 
to enable nodes to join your cluster from within the VPC.

1. Check to see if you already have an aws-auth ConfigMap.

Amazon Linux 191

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html#subnet-public-ip
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html#subnet-public-ip


Amazon EKS User Guide

kubectl describe configmap -n kube-system aws-auth

2. If you are shown an aws-auth ConfigMap, then update it as needed.

a. Open the ConfigMap for editing.

kubectl edit -n kube-system configmap/aws-auth

b. Add a new mapRoles entry as needed. Set the rolearn value to the
NodeInstanceRole value that you recorded in the previous procedure.

[...]
data: 
  mapRoles: |
    - rolearn: <ARN of instance role (not instance profile)>
      username: system:node:{{EC2PrivateDNSName}} 
      groups: 
        - system:bootstrappers 
        - system:nodes
[...]

c. Save the file and exit your text editor.

3. If you received an error stating "Error from server (NotFound): configmaps 
"aws-auth" not found, then apply the stock ConfigMap.

a. Download the configuration map.

curl -O https://s3.us-west-2.amazonaws.com/amazon-
eks/cloudformation/2020-10-29/aws-auth-cm.yaml

b. In the aws-auth-cm.yaml file, set the rolearn value to the NodeInstanceRole value 
that you recorded in the previous procedure. You can do this with a text editor, or by 
replacing my-node-instance-role and running the following command:

sed -i.bak -e 's|<ARN of instance role (not instance profile)>|my-node-
instance-role|' aws-auth-cm.yaml

c. Apply the configuration. This command may take a few minutes to finish.

kubectl apply -f aws-auth-cm.yaml

Amazon Linux 192



Amazon EKS User Guide

4. Watch the status of your nodes and wait for them to reach the Ready status.

kubectl get nodes --watch

Enter Ctrl+C to return to a shell prompt.

Note

If you receive any authorization or resource type errors, see Unauthorized or access 
denied (kubectl) in the troubleshooting topic.

If nodes fail to join the cluster, then see Nodes fail to join cluster in the Troubleshooting 
guide.

5. (GPU nodes only) If you chose a GPU instance type and the Amazon EKS optimized 
accelerated AMI, you must apply the NVIDIA device plugin for Kubernetes as a DaemonSet 
on your cluster. Replace vX.X.X with your desired NVIDIA/k8s-device-plugin version before 
running the following command.

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-
plugin/vX.X.X/nvidia-device-plugin.yml

Step 3: Additional actions

1. (Optional) Deploy a sample application to test your cluster and Linux nodes.

2. (Optional) If the AmazonEKS_CNI_Policy managed IAM policy (if you have an IPv4 cluster) 
or the AmazonEKS_CNI_IPv6_Policy (that you created yourself if you have an IPv6
cluster) is attached to your the section called “Node IAM role”, we recommend assigning it 
to an IAM role that you associate to the Kubernetes aws-node service account instead. For 
more information, see Configuring the Amazon VPC CNI plugin for Kubernetes to use IAM 
roles for service accounts (IRSA).

3. We recommend blocking Pod access to IMDS if the following conditions are true:

• You plan to assign IAM roles to all of your Kubernetes service accounts so that Pods only 
have the minimum permissions that they need.

Amazon Linux 193

https://github.com/NVIDIA/k8s-device-plugin
https://github.com/NVIDIA/k8s-device-plugin/releases


Amazon EKS User Guide

• No Pods in the cluster require access to the Amazon EC2 instance metadata service 
(IMDS) for other reasons, such as retrieving the current AWS Region.

For more information, see Restrict access to the instance profile assigned to the worker 
node.

Capacity Blocks for ML

Important

This feature is currently only available for P5 instances in the US East (Ohio) and US East (N. 
Virginia) AWS Regions and P4d in the US East (Ohio) and US West (Oregon) AWS Regions.

Capacity Blocks for machine learning (ML) allow you to reserve GPU instances on a future date 
to support your short duration ML workloads. Instances that run inside a Capacity Block are 
automatically placed close together inside Amazon EC2 UltraClusters, so there is no need to use a 
cluster placement group. For more information, see Capacity Blocks for ML in the Amazon EC2 User 
Guide for Linux Instances.

You can use Capacity Blocks with Amazon EKS for provisioning and scaling your self-managed 
nodes. The following steps give a general example overview.

1. Create a launch template in the AWS Management Console. For more information, see Create a 
launch template using advanced settings  in the Amazon EC2 Auto Scaling User Guide.

Make sure to include configuration of instance type and Amazon Machine Image (AMI).

2. Link the Capacity Block to a launch template using the capacity reservation ID.

The following is an example AWS CloudFormation template to create a launch template 
targeting a Capacity Block:

NodeLaunchTemplate: 
    Type: "AWS::EC2::LaunchTemplate" 
    Properties: 
      LaunchTemplateData: 
        InstanceMarketOptions: 
          MarketType: "capacity-block" 

Amazon Linux 194

https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node
https://aws.amazon.com/ec2/ultraclusters/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-capacity-blocks.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/advanced-settings-for-your-launch-template.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/advanced-settings-for-your-launch-template.html


Amazon EKS User Guide

        CapacityReservationSpecification: 
          CapacityReservationTarget: 
            CapacityReservationId: "cr-02168da1478b509e0" 
        IamInstanceProfile: 
          Arn: iam-instance-profile-arn
        ImageId: image-id
        InstanceType: p5.48xlarge 
        KeyName: key-name
        SecurityGroupIds: 
        - sg-05b1d815d1EXAMPLE
        UserData: user-data

You must pass the subnet in the Availability Zone in which the reservation is made because 
Capacity Blocks are zonal.

3. If you are creating the self managed node group prior to the capacity reservation becoming 
active, then set the desired capacity to 0. When creating the node group, make sure that you 
are only specifying the respective subnet for the Availability Zone in which the capacity is 
reserved.

The following is a sample CloudFormation template that can be used. This example gets the
LaunchTemplateId and Version of the AWS::Amazon EC2::LaunchTemplate resource 
shown in the previous example. It also gets the values for DesiredCapacity, MaxSize,
MinSize, and VPCZoneIdentifier that are declared elsewhere in the same template.

  NodeGroup: 
    Type: "AWS::AutoScaling::AutoScalingGroup" 
    Properties: 
      DesiredCapacity: !Ref NodeAutoScalingGroupDesiredCapacity 
      LaunchTemplate: 
        LaunchTemplateId: !Ref NodeLaunchTemplate 
        Version: !GetAtt NodeLaunchTemplate.LatestVersionNumber 
      MaxSize: !Ref NodeAutoScalingGroupMaxSize 
      MinSize: !Ref NodeAutoScalingGroupMinSize 
      VPCZoneIdentifier: !Ref Subnets 
      Tags: 
        - Key: Name 
          PropagateAtLaunch: true 
          Value: !Sub ${ClusterName}-${NodeGroupName}-Node 
        - Key: !Sub kubernetes.io/cluster/${ClusterName} 
          PropagateAtLaunch: true 
          Value: owned

Amazon Linux 195



Amazon EKS User Guide

4. Once the node group is created successfully, make sure to record the NodeInstanceRole for 
the node group that was created. You need this in order to make sure that when node group 
is scaled, the new nodes join the cluster and Kubernetes is able to recognize the nodes. For 
more information, see the AWS Management Console instructions in Launching self-managed 
Amazon Linux nodes.

5. We recommend that you create a scheduled scaling policy for the Auto Scaling group that 
aligns to the Capacity Block reservation times. For more information, see Scheduled scaling for 
Amazon EC2 Auto Scaling in the Amazon EC2 Auto Scaling User Guide.

You can use all of the instances you reserved until 30 minutes before the end time of the 
Capacity Block. Instances that are still running at that time will start terminating. To allow 
sufficient time to gracefully drain the node(s), we suggest that you schedule scaling to scale to 
zero more than 30 minutes before the Capacity Block reservation end time.

If you want to instead scale up manually whenever the capacity reservation becomes Active, 
then you need to update the Auto Scaling group's desired capacity at the start time of the 
Capacity Block reservation. Then you would need to also scale down manually more than 30 
minutes before the Capacity Block reservation end time.

6. The node group is now ready for workloads and Pods to be scheduled.

7. In order for your Pods to be gracefully drained, we recommend that you set up AWS Node 
Termination Handler. This handler will be able to watch for "ASG Scale-in" lifecycle events 
from Amazon EC2 Auto Scaling using EventBridge and allow the Kubernetes control plane 
to take required action before the instance becomes unavailable. Otherwise, your Pods and 
Kubernetes objects will get stuck in a pending state. For more information, see AWS Node 
Termination Handler on GitHub.

If you don't setup a Node Termination Handler, we recommend that you start draining your 
Pods manually before hitting the 30 minute window so that they have enough time to be 
gracefully drained.

Launching self-managed Bottlerocket nodes

Note

Managed node groups might offer some advantages for your use case. For more 
information, see Managed node groups.

Bottlerocket 196

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-scheduled-scaling.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-scheduled-scaling.html
https://github.com/aws/aws-node-termination-handler
https://github.com/aws/aws-node-termination-handler


Amazon EKS User Guide

This topic describes how to launch Auto Scaling groups of Bottlerocket nodes that register with 
your Amazon EKS cluster. Bottlerocket is a Linux-based open-source operating system from AWS 
that you can use for running containers on virtual machines or bare metal hosts. After the nodes 
join the cluster, you can deploy Kubernetes applications to them. For more information about 
Bottlerocket, see Using a Bottlerocket AMI with Amazon EKS on GitHub and Custom AMI support in 
the eksctl documentation.

For information about in-place upgrades, see Bottlerocket Update Operator on GitHub.

Important

• Amazon EKS nodes are standard Amazon EC2 instances, and you are billed for them 
based on normal Amazon EC2 instance prices. For more information, see Amazon EC2 
pricing.

• You can launch Bottlerocket nodes in Amazon EKS extended clusters on AWS Outposts, 
but you can't launch them in local clusters on AWS Outposts. For more information, see
Amazon EKS on AWS Outposts.

• You can deploy to Amazon EC2 instances with x86 or Arm processors. However, you can't 
deploy to instances that have Inferentia chips.

• Bottlerocket is compatible with AWS CloudFormation. However, there is no official 
CloudFormation template that can be copied to deploy Bottlerocket nodes for Amazon 
EKS.

• Bottlerocket images don't come with an SSH server or a shell. You can use out-of-
band access methods to allow SSH enabling the admin container and to pass some 
bootstrapping configuration steps with user data. For more information, see these 
sections in the bottlerocket README.md on GitHub:

• Exploration

• Admin container

• Kubernetes settings

To launch Bottlerocket nodes using eksctl

This procedure requires eksctl version 0.172.0 or later. You can check your version with the 
following command:

Bottlerocket 197

https://aws.amazon.com/bottlerocket/
https://github.com/bottlerocket-os/bottlerocket/blob/develop/QUICKSTART-EKS.md
https://eksctl.io/usage/custom-ami-support/
https://github.com/bottlerocket-os/bottlerocket-update-operator
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/
https://github.com/bottlerocket-os/bottlerocket
https://github.com/bottlerocket-os/bottlerocket#exploration
https://github.com/bottlerocket-os/bottlerocket#admin-container
https://github.com/bottlerocket-os/bottlerocket#kubernetes-settings


Amazon EKS User Guide

eksctl version

For instructions on how to install or upgrade eksctl, see Installation in the eksctl
documentation.

Note

This procedure only works for clusters that were created with eksctl.

1. Copy the following contents to your device. Replace my-cluster with the name of your 
cluster. The name can contain only alphanumeric characters (case-sensitive) and hyphens. It 
must start with an alphabetic character and can't be longer than 100 characters. Replace ng-
bottlerocket with a name for your node group. The node group name can't be longer than 
63 characters. It must start with letter or digit, but can also include hyphens and underscores 
for the remaining characters. To deploy on Arm instances, replace m5.large with an Arm 
instance type. Replace my-ec2-keypair-name with the name of an Amazon EC2 SSH key 
pair that you can use to connect using SSH into your nodes with after they launch. If you don't 
already have an Amazon EC2 key pair, you can create one in the AWS Management Console. 
For more information, see Amazon EC2 key pairs in the Amazon EC2 User Guide for Linux 
Instances. Replace all remaining example values with your own values. Once you've made 
the replacements, run the modified command to create the bottlerocket.yaml file.

If specifying an Arm Amazon EC2 instance type, then review the considerations in Amazon EKS 
optimized Arm Amazon Linux AMIs before deploying. For instructions on how to deploy using 
a custom AMI, see Building Bottlerocket on GitHub and Custom AMI support in the eksctl
documentation. To deploy a managed node group, deploy a custom AMI using a launch 
template. For more information, see Customizing managed nodes with launch templates.

Important

To deploy a node group to AWS Outposts, AWS Wavelength, or AWS Local Zone 
subnets, don't pass AWS Outposts, AWS Wavelength, or AWS Local Zone subnets when 
you create the cluster. You must specify the subnets in the following example. For 
more information see Create a nodegroup from a config file and Config file schema in 
the eksctl documentation. Replace region-code with the AWS Region that your 
cluster is in.

Bottlerocket 198

https://eksctl.io/installation
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://github.com/bottlerocket-os/bottlerocket/blob/develop/BUILDING.md
https://eksctl.io/usage/custom-ami-support/
https://eksctl.io/usage/nodegroups/#creating-a-nodegroup-from-a-config-file
https://eksctl.io/usage/schema/


Amazon EKS User Guide

cat >bottlerocket.yaml <<EOF
---
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata: 
  name: my-cluster
  region: region-code
  version: '1.29'

iam: 
  withOIDC: true

nodeGroups: 
  - name: ng-bottlerocket
    instanceType: m5.large
    desiredCapacity: 3
    amiFamily: Bottlerocket
    ami: auto-ssm 
    iam: 
       attachPolicyARNs: 
          - arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy 
          - arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly 
          - arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore 
          - arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy 
    ssh: 
        allow: true 
        publicKeyName: my-ec2-keypair-name
EOF

2. Deploy your nodes with the following command.

eksctl create nodegroup --config-file=bottlerocket.yaml

An example output is as follows.

Several lines are output while the nodes are created. One of the last lines of output is the 
following example line.

[#]  created 1 nodegroup(s) in cluster "my-cluster"

Bottlerocket 199



Amazon EKS User Guide

3. (Optional) Create a Kubernetes persistent volume on a Bottlerocket node using the Amazon 
EBS CSI Plugin. The default Amazon EBS driver relies on file system tools that aren't included 
with Bottlerocket. For more information about creating a storage class using the driver, see
Amazon EBS CSI driver.

4. (Optional) By default, kube-proxy sets the nf_conntrack_max kernel parameter to 
a default value that may differ from what Bottlerocket originally sets at boot. To keep 
Bottlerocket's default setting, edit the kube-proxy configuration with the following 
command.

kubectl edit -n kube-system daemonset kube-proxy

Add --conntrack-max-per-core and --conntrack-min to the kube-proxy arguments 
that are in the following example. A setting of 0 implies no change.

      containers: 
      - command: 
        - kube-proxy 
        - --v=2 
        - --config=/var/lib/kube-proxy-config/config 
         - --conntrack-max-per-core=0 
        - --conntrack-min=0

5. (Optional) Deploy a sample application to test your Bottlerocket nodes.

6. We recommend blocking Pod access to IMDS if the following conditions are true:

• You plan to assign IAM roles to all of your Kubernetes service accounts so that Pods only 
have the minimum permissions that they need.

• No Pods in the cluster require access to the Amazon EC2 instance metadata service (IMDS) 
for other reasons, such as retrieving the current AWS Region.

For more information, see Restrict access to the instance profile assigned to the worker node.

Launching self-managed Windows nodes

This topic describes how to launch Auto Scaling groups of Windows nodes that register with your 
Amazon EKS cluster. After the nodes join the cluster, you can deploy Kubernetes applications to 
them.

Windows 200

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/bottlerocket-os/bottlerocket/blob/develop/packages/release/release-sysctl.conf
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node


Amazon EKS User Guide

Important

• Amazon EKS nodes are standard Amazon EC2 instances, and you are billed for them 
based on normal Amazon EC2 instance prices. For more information, see Amazon EC2 
pricing.

• You can launch Windows nodes in Amazon EKS extended clusters on AWS Outposts, 
but you can't launch them in local clusters on AWS Outposts. For more information, see
Amazon EKS on AWS Outposts.

Enable Windows support for your cluster. We recommend that you review important considerations 
before you launch a Windows node group. For more information, see Enabling Windows support.

You can launch self-managed Windows nodes with eksctl or the AWS Management Console.

eksctl

To launch self-managed Windows nodes using eksctl

This procedure requires that you have installed eksctl, and that your eksctl version is at 
least 0.172.0. You can check your version with the following command.

eksctl version

For instructions on how to install or upgrade eksctl, see Installation in the eksctl
documentation.

Note

This procedure only works for clusters that were created with eksctl.

1. (Optional) If the AmazonEKS_CNI_Policy managed IAM policy (if you have an IPv4 cluster) 
or the AmazonEKS_CNI_IPv6_Policy (that you created yourself if you have an IPv6
cluster) is attached to your the section called “Node IAM role”, we recommend assigning it 
to an IAM role that you associate to the Kubernetes aws-node service account instead. For 
more information, see Configuring the Amazon VPC CNI plugin for Kubernetes to use IAM 
roles for service accounts (IRSA).

Windows 201

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/
https://eksctl.io/installation


Amazon EKS User Guide

2. This procedure assumes that you have an existing cluster. If you don't already have an 
Amazon EKS cluster and an Amazon Linux node group to add a Windows node group to, 
we recommend that you follow the Getting started with Amazon EKS – eksctl guide. 
The guide provides a complete walkthrough for how to create an Amazon EKS cluster with 
Amazon Linux nodes.

Create your node group with the following command. Replace region-code with the AWS 
Region that your cluster is in. Replace my-cluster with your cluster name. The name can 
contain only alphanumeric characters (case-sensitive) and hyphens. It must start with an 
alphabetic character and can't be longer than 100 characters. Replace ng-windows with 
a name for your node group. The node group name can't be longer than 63 characters. 
It must start with letter or digit, but can also include hyphens and underscores for the 
remaining characters. For Kubernetes version 1.24 or later, you can replace 2019 with
2022 to use Windows Server 2022. Replace the rest of the example values with your 
own values.

Important

To deploy a node group to AWS Outposts, AWS Wavelength, or AWS Local Zone 
subnets, don't pass the AWS Outposts, Wavelength, or Local Zone subnets when 
you create the cluster. Create the node group with a config file, specifying the AWS 
Outposts, Wavelength, or Local Zone subnets. For more information, see Create a 
nodegroup from a config file and Config file schema in the eksctl documentation.

eksctl create nodegroup \ 
    --region region-code \ 
    --cluster my-cluster \ 
    --name ng-windows \ 
    --node-type t2.large \ 
    --nodes 3 \ 
    --nodes-min 1 \ 
    --nodes-max 4 \ 
    --managed=false \ 
    --node-ami-family WindowsServer2019FullContainer

Windows 202

https://eksctl.io/usage/nodegroups/#creating-a-nodegroup-from-a-config-file
https://eksctl.io/usage/nodegroups/#creating-a-nodegroup-from-a-config-file
https://eksctl.io/usage/schema/


Amazon EKS User Guide

Note

• If nodes fail to join the cluster, see Nodes fail to join cluster in the 
Troubleshooting guide.

• To see the available options for eksctl commands, enter the following 
command.

eksctl command -help

An example output is as follows. Several lines are output while the nodes are created. One 
of the last lines of output is the following example line.

[#]  created 1 nodegroup(s) in cluster "my-cluster"

3. (Optional) Deploy a sample application to test your cluster and Windows nodes.

4. We recommend blocking Pod access to IMDS if the following conditions are true:

• You plan to assign IAM roles to all of your Kubernetes service accounts so that Pods only 
have the minimum permissions that they need.

• No Pods in the cluster require access to the Amazon EC2 instance metadata service 
(IMDS) for other reasons, such as retrieving the current AWS Region.

For more information, see Restrict access to the instance profile assigned to the worker 
node.

AWS Management Console

Prerequisites

• An existing Amazon EKS cluster and a Linux node group. If you don't have these resources, 
we recommend that you follow one of our Getting started with Amazon EKS guides to create 
them. The guides describe how to create an Amazon EKS cluster with Linux nodes.

• An existing VPC and security group that meet the requirements for an Amazon EKS cluster. 
For more information, see Amazon EKS VPC and subnet requirements and considerations

Windows 203

https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node


Amazon EKS User Guide

and Amazon EKS security group requirements and considerations. The Getting started with 
Amazon EKS guide creates a VPC that meets the requirements. Alternatively, you can also 
follow Creating a VPC for your Amazon EKS cluster to create one manually.

• An existing Amazon EKS cluster that uses a VPC and security group that meets the 
requirements of an Amazon EKS cluster. For more information, see Creating an Amazon 
EKS cluster. If you have subnets in the AWS Region where you have AWS Outposts, AWS 
Wavelength, or AWS Local Zones enabled, those subnets must not have been passed in when 
you created the cluster.

Step 1: To launch self-managed Windows nodes using the AWS Management Console

1. Wait for your cluster status to show as ACTIVE. If you launch your nodes before the cluster 
is active, the nodes fail to register with the cluster and you need to relaunch them.

2. Open the AWS CloudFormation console at https://console.aws.amazon.com/
cloudformation

3. Choose Create stack.

4. For Specify template, select Amazon S3 URL.

5. Copy the following URL and paste it into Amazon S3 URL.

https://s3.us-west-2.amazonaws.com/amazon-eks/cloudformation/2023-02-09/amazon-
eks-windows-nodegroup.yaml

6. Select Next twice.

7. On the Quick create stack page, enter the following parameters accordingly:

• Stack name: Choose a stack name for your AWS CloudFormation stack. For example, you 
can call it my-cluster-nodes.

• ClusterName: Enter the name that you used when you created your Amazon EKS cluster.

Important

This name must exactly match the name that you used in Step 1: Create your 
Amazon EKS cluster. Otherwise, your nodes can't join the cluster.

• ClusterControlPlaneSecurityGroup: Choose the security group from the AWS 
CloudFormation output that you generated when you created your VPC.

Windows 204

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/


Amazon EKS User Guide

The following steps show one method to retrieve the applicable group.

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/ 
clusters.

2. Choose the name of the cluster.

3. Choose the Networking tab.

4. Use the Additional security groups value as a reference when selecting from the
ClusterControlPlaneSecurityGroup dropdown list.

• NodeGroupName: Enter a name for your node group. This name can be used later to 
identify the Auto Scaling node group that's created for your nodes. The node group name 
can't be longer than 63 characters. It must start with letter or digit, but can also include 
hyphens and underscores for the remaining characters.

• NodeAutoScalingGroupMinSize: Enter the minimum number of nodes that your node 
Auto Scaling group can scale in to.

• NodeAutoScalingGroupDesiredCapacity: Enter the desired number of nodes to scale to 
when your stack is created.

• NodeAutoScalingGroupMaxSize: Enter the maximum number of nodes that your node 
Auto Scaling group can scale out to.

• NodeInstanceType: Choose an instance type for your nodes. For more information, see
Choosing an Amazon EC2 instance type.

Note

The supported instance types for the latest version of the Amazon VPC CNI 
plugin for Kubernetes are listed in vpc_ip_resource_limit.go on GitHub. You might 
need to update your CNI version to use the latest supported instance types. For 
more information, see Working with the Amazon VPC CNI plugin for Kubernetes 
Amazon EKS add-on.

• NodeImageIdSSMParam: Pre-populated with the Amazon EC2 Systems Manager 
parameter of the current recommended Amazon EKS optimized Windows Core AMI ID. To 
use the full version of Windows, replace Core with Full.

• NodeImageId: (Optional) If you're using your own custom AMI (instead of the Amazon 
EKS optimized AMI), enter a node AMI ID for your AWS Region. If you specify a value for 
this field, it overrides any values in the NodeImageIdSSMParam field.

Windows 205

https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters
https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/pkg/vpc/vpc_ip_resource_limit.go


Amazon EKS User Guide

• NodeVolumeSize: Specify a root volume size for your nodes, in GiB.

• KeyName: Enter the name of an Amazon EC2 SSH key pair that you can use to connect 
using SSH into your nodes with after they launch. If you don't already have an Amazon 
EC2 key pair, you can create one in the AWS Management Console. For more information, 
see Amazon EC2 key pairs in the Amazon EC2 User Guide for Windows Instances.

Note

If you don't provide a key pair here, the AWS CloudFormation stack fails to be 
created.

• BootstrapArguments: Specify any optional arguments to pass to the node bootstrap 
script, such as extra kubelet arguments using -KubeletExtraArgs.

• DisableIMDSv1: By default, each node supports the Instance Metadata Service Version 1 
(IMDSv1) and IMDSv2. You can disable IMDSv1. To prevent future nodes and Pods in the 
node group from using MDSv1, set DisableIMDSv1 to true. For more information about 
IMDS, see Configuring the instance metadata service.

• VpcId: Select the ID for the VPC that you created.

• NodeSecurityGroups: Select the security group that was created for your Linux node 
group when you created your VPC. If your Linux nodes have more than one security 
group attached to them, specify all of them. This for, for example, if the Linux node 
group was created with eksctl.

• Subnets: Choose the subnets that you created. If you created your VPC using the steps in
Creating a VPC for your Amazon EKS cluster, then specify only the private subnets within 
the VPC for your nodes to launch into.

Important

• If any of the subnets are public subnets, then they must have the automatic 
public IP address assignment setting enabled. If the setting isn't enabled for 
the public subnet, then any nodes that you deploy to that public subnet won't 
be assigned a public IP address and won't be able to communicate with the 
cluster or other AWS services. If the subnet was deployed before March 26, 
2020 using either of the Amazon EKS AWS CloudFormation VPC templates, 
or by using eksctl, then automatic public IP address assignment is disabled 
for public subnets. For information about how to enable public IP address 

Windows 206

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html


Amazon EKS User Guide

assignment for a subnet, see Modifying the public IPv4 addressing attribute 
for your subnet. If the node is deployed to a private subnet, then it's able to 
communicate with the cluster and other AWS services through a NAT gateway.

• If the subnets don't have internet access, then make sure that you're aware of 
the considerations and extra steps in Private cluster requirements.

• If you select AWS Outposts, Wavelength, or Local Zone subnets, then the 
subnets must not have been passed in when you created the cluster.

8. Acknowledge that the stack might create IAM resources, and then choose Create stack.

9. When your stack has finished creating, select it in the console and choose Outputs.

10. Record the NodeInstanceRole for the node group that was created. You need this when 
you configure your Amazon EKS Windows nodes.

Step 2: To enable nodes to join your cluster

1. Check to see if you already have an aws-auth ConfigMap.

kubectl describe configmap -n kube-system aws-auth

2. If you are shown an aws-auth ConfigMap, then update it as needed.

a. Open the ConfigMap for editing.

kubectl edit -n kube-system configmap/aws-auth

b. Add new mapRoles entries as needed. Set the rolearn values to the
NodeInstanceRole values that you recorded in the previous procedures.

[...]
data: 
  mapRoles: |
- rolearn: <ARN of linux instance role (not instance profile)>
      username: system:node:{{EC2PrivateDNSName}} 
      groups: 
        - system:bootstrappers 
        - system:nodes 
    - rolearn: <ARN of windows instance role (not instance profile)>
      username: system:node:{{EC2PrivateDNSName}} 
      groups: 

Windows 207

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html#subnet-public-ip
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html#subnet-public-ip


Amazon EKS User Guide

        - system:bootstrappers 
        - system:nodes 
        - eks:kube-proxy-windows
[...]

c. Save the file and exit your text editor.

3. If you received an error stating "Error from server (NotFound): configmaps 
"aws-auth" not found, then apply the stock ConfigMap.

a. Download the configuration map.

curl -O https://s3.us-west-2.amazonaws.com/amazon-
eks/cloudformation/2020-10-29/aws-auth-cm-windows.yaml

b. In the aws-auth-cm-windows.yaml file, set the rolearn values to the applicable
NodeInstanceRole values that you recorded in the previous procedures. You can do 
this with a text editor, or by replacing the example values and running the following 
command:

sed -i.bak -e 's|<ARN of linux instance role (not instance profile)>|my-
node-linux-instance-role|' \ 
    -e 's|<ARN of windows instance role (not instance profile)>|my-node-
windows-instance-role|' aws-auth-cm-windows.yaml

Important

• Don't modify any other lines in this file.

• Don't use the same IAM role for both Windows and Linux nodes.

c. Apply the configuration. This command might take a few minutes to finish.

kubectl apply -f aws-auth-cm-windows.yaml

4. Watch the status of your nodes and wait for them to reach the Ready status.

kubectl get nodes --watch

Enter Ctrl+C to return to a shell prompt.

Windows 208



Amazon EKS User Guide

Note

If you receive any authorization or resource type errors, see Unauthorized or access 
denied (kubectl) in the troubleshooting topic.

If nodes fail to join the cluster, then see Nodes fail to join cluster in the Troubleshooting 
guide.

Step 3: Additional actions

1. (Optional) Deploy a sample application to test your cluster and Windows nodes.

2. (Optional) If the AmazonEKS_CNI_Policy managed IAM policy (if you have an IPv4 cluster) 
or the AmazonEKS_CNI_IPv6_Policy (that you created yourself if you have an IPv6
cluster) is attached to your the section called “Node IAM role”, we recommend assigning it 
to an IAM role that you associate to the Kubernetes aws-node service account instead. For 
more information, see Configuring the Amazon VPC CNI plugin for Kubernetes to use IAM 
roles for service accounts (IRSA).

3. We recommend blocking Pod access to IMDS if the following conditions are true:

• You plan to assign IAM roles to all of your Kubernetes service accounts so that Pods only 
have the minimum permissions that they need.

• No Pods in the cluster require access to the Amazon EC2 instance metadata service 
(IMDS) for other reasons, such as retrieving the current AWS Region.

For more information, see Restrict access to the instance profile assigned to the worker 
node.

Self-managed node updates

When a new Amazon EKS optimized AMI is released, consider replacing the nodes in your self-
managed node group with the new AMI. Likewise, if you have updated the Kubernetes version for 
your Amazon EKS cluster, update the nodes to use nodes with the same Kubernetes version.

Updates 209

https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node


Amazon EKS User Guide

Important

This topic covers node updates for self-managed nodes. If you are using Managed node 
groups, see Updating a managed node group.

There are two basic ways to update self-managed node groups in your clusters to use a new AMI:

Migrating to a new node group

Create a new node group and migrate your Pods to that group. Migrating to a new node group 
is more graceful than simply updating the AMI ID in an existing AWS CloudFormation stack. 
This is because the migration process taints the old node group as NoSchedule and drains the 
nodes after a new stack is ready to accept the existing Pod workload.

Updating an existing self-managed node group

Update the AWS CloudFormation stack for an existing node group to use the new AMI. This 
method isn't supported for node groups that were created with eksctl.

Migrating to a new node group

This topic describes how you can create a new node group, gracefully migrate your existing 
applications to the new group, and remove the old node group from your cluster. You can migrate 
to a new node group using eksctl or the AWS Management Console.

eksctl

To migrate your applications to a new node group with eksctl

For more information on using eksctl for migration, see Unmanaged nodegroups in the eksctl
documentation.

This procedure requires eksctl version 0.172.0 or later. You can check your version with the 
following command:

eksctl version

For instructions on how to install or upgrade eksctl, see Installation in the eksctl
documentation.

Updates 210

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://eksctl.io/usage/nodegroup-unmanaged/
https://eksctl.io/installation


Amazon EKS User Guide

Note

This procedure only works for clusters and node groups that were created with eksctl.

1. Retrieve the name of your existing node groups, replacing my-cluster with your cluster 
name.

eksctl get nodegroups --cluster=my-cluster

An example output is as follows.

CLUSTER      NODEGROUP          CREATED               MIN SIZE      MAX SIZE     
 DESIRED CAPACITY     INSTANCE TYPE     IMAGE ID
default      standard-nodes   2019-05-01T22:26:58Z  1             4            3 
                    t3.medium         ami-05a71d034119ffc12

2. Launch a new node group with eksctl with the following command. In the command, 
replace every example value with your own values. The version number can't be later 
than the Kubernetes version for your control plane. Also, it can't be more than two minor 
versions earlier than the Kubernetes version for your control plane. We recommend that 
you use the same version as your control plane.

We recommend blocking Pod access to IMDS if the following conditions are true:

• You plan to assign IAM roles to all of your Kubernetes service accounts so that Pods only 
have the minimum permissions that they need.

• No Pods in the cluster require access to the Amazon EC2 instance metadata service 
(IMDS) for other reasons, such as retrieving the current AWS Region.

For more information, see Restrict access to the instance profile assigned to the worker 
node.

To block Pod access to IMDS, add the --disable-pod-imds option to the following 
command.

Updates 211

https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node


Amazon EKS User Guide

Note

For more available flags and their descriptions, see https://eksctl.io/.

eksctl create nodegroup \ 
  --cluster my-cluster \ 
  --version 1.29 \ 
  --name standard-nodes-new \ 
  --node-type t3.medium \ 
  --nodes 3 \ 
  --nodes-min 1 \ 
  --nodes-max 4 \ 
  --managed=false

3. When the previous command completes, verify that all of your nodes have reached the
Ready state with the following command:

kubectl get nodes

4. Delete the original node group with the following command. In the command, replace 
every example value with your cluster and node group names:

eksctl delete nodegroup --cluster my-cluster --name standard-nodes-old

AWS Management Console and AWS CLI

To migrate your applications to a new node group with the AWS Management Console and 
AWS CLI

1. Launch a new node group by following the steps that are outlined in Launching self-
managed Amazon Linux nodes.

2. When your stack has finished creating, select it in the console and choose Outputs.

3. Record the NodeInstanceRole for the node group that was created. You need this to add 
the new Amazon EKS nodes to your cluster.

Updates 212

https://eksctl.io/


Amazon EKS User Guide

Note

If you attached any additional IAM policies to your old node group IAM role, attach 
those same policies to your new node group IAM role to maintain that functionality 
on the new group. This applies to you if you added permissions for the Kubernetes
Cluster Autoscaler, for example.

4. Update the security groups for both node groups so that they can communicate with 
each other. For more information, see Amazon EKS security group requirements and 
considerations.

a. Record the security group IDs for both node groups. This is shown as the
NodeSecurityGroup value in the AWS CloudFormation stack outputs.

You can use the following AWS CLI commands to get the security group IDs from 
the stack names. In these commands, oldNodes is the AWS CloudFormation stack 
name for your older node stack, and newNodes is the name of the stack that you are 
migrating to. Replace every example value with your own values.

oldNodes="old_node_CFN_stack_name"
newNodes="new_node_CFN_stack_name"

oldSecGroup=$(aws cloudformation describe-stack-resources --stack-name 
 $oldNodes \
--query 'StackResources[?
ResourceType==`AWS::EC2::SecurityGroup`].PhysicalResourceId' \
--output text)
newSecGroup=$(aws cloudformation describe-stack-resources --stack-name 
 $newNodes \
--query 'StackResources[?
ResourceType==`AWS::EC2::SecurityGroup`].PhysicalResourceId' \
--output text)

b. Add ingress rules to each node security group so that they accept traffic from each 
other.

The following AWS CLI commands add inbound rules to each security group that allow 
all traffic on all protocols from the other security group. This configuration allows 

Updates 213

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler


Amazon EKS User Guide

Pods in each node group to communicate with each other while you're migrating your 
workload to the new group.

aws ec2 authorize-security-group-ingress --group-id $oldSecGroup \
--source-group $newSecGroup --protocol -1
aws ec2 authorize-security-group-ingress --group-id $newSecGroup \
--source-group $oldSecGroup --protocol -1

5. Edit the aws-auth configmap to map the new node instance role in RBAC.

kubectl edit configmap -n kube-system aws-auth

Add a new mapRoles entry for the new node group. If your cluster is in the AWS GovCloud 
(US-East) or AWS GovCloud (US-West) AWS Regions, then replace arn:aws: with
arn:aws-us-gov:.

apiVersion: v1
data: 
  mapRoles: | 
    - rolearn: ARN of instance role (not instance profile)
      username: system:node:{{EC2PrivateDNSName}} 
      groups: 
        - system:bootstrappers 
        - system:nodes> 
    - rolearn: arn:aws:iam::111122223333:role/nodes-1-16-NodeInstanceRole-
U11V27W93CX5
      username: system:node:{{EC2PrivateDNSName}} 
      groups: 
        - system:bootstrappers 
        - system:nodes

Replace the ARN of instance role (not instance profile) snippet with the
NodeInstanceRole value that you recorded in a previous step. Then, save and close the file 
to apply the updated configmap.

6. Watch the status of your nodes and wait for your new nodes to join your cluster and reach 
the Ready status.

kubectl get nodes --watch

Updates 214



Amazon EKS User Guide

7. (Optional) If you're using the Kubernetes Cluster Autoscaler, scale the deployment down to 
zero (0) replicas to avoid conflicting scaling actions.

kubectl scale deployments/cluster-autoscaler --replicas=0 -n kube-system

8. Use the following command to taint each of the nodes that you want to remove with
NoSchedule. This is so that new Pods aren't scheduled or rescheduled on the nodes 
that you're replacing. For more information, see Taints and Tolerations in the Kubernetes 
documentation.

kubectl taint nodes node_name key=value:NoSchedule

If you're upgrading your nodes to a new Kubernetes version, you can identify and taint all 
of the nodes of a particular Kubernetes version (in this case, 1.27) with the following code 
snippet. The version number can't be later than the Kubernetes version of your control 
plane. It also can't be more than two minor versions earlier than the Kubernetes version of 
your control plane. We recommend that you use the same version as your control plane.

K8S_VERSION=1.27
nodes=$(kubectl get nodes -o jsonpath="{.items[?
(@.status.nodeInfo.kubeletVersion==\"v$K8S_VERSION\")].metadata.name}")
for node in ${nodes[@]}
do 
    echo "Tainting $node" 
    kubectl taint nodes $node key=value:NoSchedule
done

9. Determine your cluster's DNS provider.

kubectl get deployments -l k8s-app=kube-dns -n kube-system

An example output is as follows. This cluster is using CoreDNS for DNS resolution, but your 
cluster can return kube-dns instead):

NAME      DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
coredns   1         1         1            1            31m

Updates 215

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/


Amazon EKS User Guide

10. If your current deployment is running fewer than two replicas, scale out the deployment to 
two replicas. Replace coredns with kubedns if your previous command output returned 
that instead.

kubectl scale deployments/coredns --replicas=2 -n kube-system

11. Drain each of the nodes that you want to remove from your cluster with the following 
command:

kubectl drain node_name --ignore-daemonsets --delete-local-data

If you're upgrading your nodes to a new Kubernetes version, identify and drain all of 
the nodes of a particular Kubernetes version (in this case, 1.27) with the following code 
snippet.

K8S_VERSION=1.27
nodes=$(kubectl get nodes -o jsonpath="{.items[?
(@.status.nodeInfo.kubeletVersion==\"v$K8S_VERSION\")].metadata.name}")
for node in ${nodes[@]}
do 
    echo "Draining $node" 
    kubectl drain $node --ignore-daemonsets --delete-local-data
done

12. After your old nodes finished draining, revoke the security group inbound rules you 
authorized earlier. Then, delete the AWS CloudFormation stack to terminate the instances.

Note

If you attached any additional IAM policies to your old node group IAM role, such as 
adding permissions for the Kubernetes Cluster Autoscaler), detach those additional 
policies from the role before you can delete your AWS CloudFormation stack.

a. Revoke the inbound rules that you created for your node security groups earlier. In 
these commands, oldNodes is the AWS CloudFormation stack name for your older 
node stack, and newNodes is the name of the stack that you are migrating to.

oldNodes="old_node_CFN_stack_name"

Updates 216

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler


Amazon EKS User Guide

newNodes="new_node_CFN_stack_name"

oldSecGroup=$(aws cloudformation describe-stack-resources --stack-name 
 $oldNodes \
--query 'StackResources[?
ResourceType==`AWS::EC2::SecurityGroup`].PhysicalResourceId' \
--output text)
newSecGroup=$(aws cloudformation describe-stack-resources --stack-name 
 $newNodes \
--query 'StackResources[?
ResourceType==`AWS::EC2::SecurityGroup`].PhysicalResourceId' \
--output text)
aws ec2 revoke-security-group-ingress --group-id $oldSecGroup \
--source-group $newSecGroup --protocol -1
aws ec2 revoke-security-group-ingress --group-id $newSecGroup \
--source-group $oldSecGroup --protocol -1

b. Open the AWS CloudFormation console at https://console.aws.amazon.com/
cloudformation.

c. Select your old node stack.

d. Choose Delete.

e. In the Delete stack confirmation dialog box, choose Delete stack.

13. Edit the aws-auth configmap to remove the old node instance role from RBAC.

kubectl edit configmap -n kube-system aws-auth

Delete the mapRoles entry for the old node group. If your cluster is in the AWS GovCloud 
(US-East) or AWS GovCloud (US-West) AWS Regions, then replace arn:aws: with
arn:aws-us-gov:.

apiVersion: v1
data: 
  mapRoles: | 
    - rolearn: arn:aws:iam::111122223333:role/nodes-1-16-NodeInstanceRole-
W70725MZQFF8
      username: system:node:{{EC2PrivateDNSName}} 
      groups: 
        - system:bootstrappers 
        - system:nodes 

Updates 217

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/


Amazon EKS User Guide

    - rolearn: arn:aws:iam::111122223333:role/nodes-1-15-NodeInstanceRole-
U11V27W93CX5
      username: system:node:{{EC2PrivateDNSName}} 
      groups: 
        - system:bootstrappers 
        - system:nodes>

Save and close the file to apply the updated configmap.

14. (Optional) If you are using the Kubernetes Cluster Autoscaler, scale the deployment back to 
one replica.

Note

You must also tag your new Auto Scaling group appropriately (for example,
k8s.io/cluster-autoscaler/enabled,k8s.io/cluster-autoscaler/my-
cluster) and update the command for your Cluster Autoscaler deployment to 
point to the newly tagged Auto Scaling group. For more information, see Cluster 
Autoscaler on AWS.

kubectl scale deployments/cluster-autoscaler --replicas=1 -n kube-system

15. (Optional) Verify that you're using the latest version of the Amazon VPC CNI plugin for 
Kubernetes. You might need to update your CNI version to use the latest supported 
instance types. For more information, see Working with the Amazon VPC CNI plugin for 
Kubernetes Amazon EKS add-on.

16. If your cluster is using kube-dns for DNS resolution (see previous step), scale in the kube-
dns deployment to one replica.

kubectl scale deployments/kube-dns --replicas=1 -n kube-system

Updating an existing self-managed node group

This topic describes how you can update an existing AWS CloudFormation self-managed node stack 
with a new AMI. You can use this procedure to update your nodes to a new version of Kubernetes 
following a cluster update. Otherwise, you can update to the latest Amazon EKS optimized AMI for 
an existing Kubernetes version.

Updates 218

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/cluster-autoscaler-release-1.3/cluster-autoscaler/cloudprovider/aws
https://github.com/kubernetes/autoscaler/tree/cluster-autoscaler-release-1.3/cluster-autoscaler/cloudprovider/aws
https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/aws/amazon-vpc-cni-k8s


Amazon EKS User Guide

Important

This topic covers node updates for self-managed nodes. For information about using
Managed node groups, see Updating a managed node group.

The latest default Amazon EKS node AWS CloudFormation template is configured to launch 
an instance with the new AMI into your cluster before removing an old one, one at a time. This 
configuration ensures that you always have your Auto Scaling group's desired count of active 
instances in your cluster during the rolling update.

Note

This method isn't supported for node groups that were created with eksctl. If you created 
your cluster or node group with eksctl, see Migrating to a new node group.

To update an existing node group

1. Determine the DNS provider for your cluster.

kubectl get deployments -l k8s-app=kube-dns -n kube-system

An example output is as follows. This cluster is using CoreDNS for DNS resolution, but your 
cluster might return kube-dns instead. Your output might look different depending on the 
version of kubectl that you're using.

NAME      DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
coredns   1         1         1            1           31m

2. If your current deployment is running fewer than two replicas, scale out the deployment to 
two replicas. Replace coredns with kube-dns if your previous command output returned that 
instead.

kubectl scale deployments/coredns --replicas=2 -n kube-system

3. (Optional) If you're using the Kubernetes Cluster Autoscaler, scale the deployment down to 
zero (0) replicas to avoid conflicting scaling actions.

Updates 219

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler


Amazon EKS User Guide

kubectl scale deployments/cluster-autoscaler --replicas=0 -n kube-system

4. Determine the instance type and desired instance count of your current node group. You enter 
these values later when you update the AWS CloudFormation template for the group.

a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

b. In the left navigation pane, choose Launch Configurations, and note the instance type for 
your existing node launch configuration.

c. In the left navigation pane, choose Auto Scaling Groups, and note the Desired instance 
count for your existing node Auto Scaling group.

5. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

6. Select your node group stack, and then choose Update.

7. Select Replace current template and select Amazon S3 URL.

8. For Amazon S3 URL, paste the following URL into the text area to ensure that you're using the 
latest version of the node AWS CloudFormation template. Then, choose Next:

https://s3.us-west-2.amazonaws.com/amazon-eks/cloudformation/2022-12-23/amazon-eks-
nodegroup.yaml

9. On the Specify stack details page, fill out the following parameters, and choose Next:

• NodeAutoScalingGroupDesiredCapacity – Enter the desired instance count that you 
recorded in a previous step. Or, enter your new desired number of nodes to scale to when 
your stack is updated.

• NodeAutoScalingGroupMaxSize – Enter the maximum number of nodes to which your 
node Auto Scaling group can scale out. This value must be at least one node more than your 
desired capacity. This is so that you can perform a rolling update of your nodes without 
reducing your node count during the update.

• NodeInstanceType – Choose the instance type your recorded in a previous step. 
Alternatively, choose a different instance type for your nodes. Before choosing a different 
instance type, review Choosing an Amazon EC2 instance type. Each Amazon EC2 instance 
type supports a maximum number of elastic network interfaces (network interface) and 
each network interface supports a maximum number of IP addresses. Because each worker 
node and Pod ,is assigned its own IP address, it's important to choose an instance type 
that will support the maximum number of Pods that you want to run on each Amazon EC2 
node. For a list of the number of network interfaces and IP addresses supported by instance 

Updates 220

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/cloudformation/


Amazon EKS User Guide

types, see  IP addresses per network interface per instance type. For example, the m5.large
instance type supports a maximum of 30 IP addresses for the worker node and Pods.

Note

The supported instance types for the latest version of the Amazon VPC CNI plugin 
for Kubernetes are shown in vpc_ip_resource_limit.go on GitHub. You might need 
to update your Amazon VPC CNI plugin for Kubernetes version to use the latest 
supported instance types. For more information, see Working with the Amazon VPC 
CNI plugin for Kubernetes Amazon EKS add-on.

Important

Some instance types might not be available in all AWS Regions.

• NodeImageIdSSMParam – The Amazon EC2 Systems Manager parameter of the AMI ID that 
you want to update to. The following value uses the latest Amazon EKS optimized AMI for 
Kubernetes version 1.29.

/aws/service/eks/optimized-ami/1.29/amazon-linux-2/recommended/image_id

You can replace 1.29 with a supported Kubernetes version that's the same. Or, it should 
be up to one version earlier than the Kubernetes version running on your control plane. 
We recommend that you keep your nodes at the same version as your control plane. You 
can also replace amazon-linux-2 with a different AMI type. For more information, see
Retrieving Amazon EKS optimized Amazon Linux AMI IDs.

Note

Using the Amazon EC2 Systems Manager parameter enables you to update your 
nodes in the future without having to look up and specify an AMI ID. If your AWS 
CloudFormation stack is using this value, any stack update always launches the latest 
recommended Amazon EKS optimized AMI for your specified Kubernetes version. 
This is even the case even if you don't change any values in the template.

• NodeImageId – To use your own custom AMI, enter the ID for the AMI to use.

Updates 221

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/pkg/vpc/vpc_ip_resource_limit.go


Amazon EKS User Guide

Important

This value overrides any value specified for NodeImageIdSSMParam. If you want to 
use the NodeImageIdSSMParam value, ensure that the value for NodeImageId is 
blank.

• DisableIMDSv1 – By default, each node supports the Instance Metadata Service Version 1 
(IMDSv1) and IMDSv2. However, you can disable IMDSv1. Select true if you don't want any 
nodes or any Pods scheduled in the node group to use IMDSv1. For more information about 
IMDS, see Configuring the instance metadata service. If you've implemented IAM roles for 
service accounts, assign necessary permissions directly to all Pods that require access to AWS 
services. This way, no Pods in your cluster require access to IMDS for other reasons, such as 
retrieving the current AWS Region. Then, you can also disable access to IMDSv2 for Pods that 
don't use host networking. For more information, see Restrict access to the instance profile 
assigned to the worker node.

10. (Optional) On the Options page, tag your stack resources. Choose Next.

11. On the Review page, review your information, acknowledge that the stack might create IAM 
resources, and then choose Update stack.

Note

The update of each node in the cluster takes several minutes. Wait for the update of all 
nodes to complete before performing the next steps.

12. If your cluster's DNS provider is kube-dns, scale in the kube-dns deployment to one replica.

kubectl scale deployments/kube-dns --replicas=1 -n kube-system

13. (Optional) If you are using the Kubernetes Cluster Autoscaler, scale the deployment back to 
your desired amount of replicas.

kubectl scale deployments/cluster-autoscaler --replicas=1 -n kube-system

14. (Optional) Verify that you're using the latest version of the Amazon VPC CNI plugin for 
Kubernetes. You might need to update your Amazon VPC CNI plugin for Kubernetes version to 
use the latest supported instance types. For more information, see Working with the Amazon 
VPC CNI plugin for Kubernetes Amazon EKS add-on.

Updates 222

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/aws/amazon-vpc-cni-k8s


Amazon EKS User Guide

AWS Fargate

Important

AWS Fargate with Amazon EKS isn't available in AWS GovCloud (US-East) and AWS 
GovCloud (US-West).

This topic discusses using Amazon EKS to run Kubernetes Pods on AWS Fargate. Fargate is a 
technology that provides on-demand, right-sized compute capacity for containers. With Fargate, 
you don't have to provision, configure, or scale groups of virtual machines on your own to run 
containers. You also don't need to choose server types, decide when to scale your node groups, or 
optimize cluster packing.

You can control which Pods start on Fargate and how they run with Fargate profiles. Fargate 
profiles are defined as part of your Amazon EKS cluster. Amazon EKS integrates Kubernetes 
with Fargate by using controllers that are built by AWS using the upstream, extensible model 
provided by Kubernetes. These controllers run as part of the Amazon EKS managed Kubernetes 
control plane and are responsible for scheduling native Kubernetes Pods onto Fargate. The Fargate 
controllers include a new scheduler that runs alongside the default Kubernetes scheduler in 
addition to several mutating and validating admission controllers. When you start a Pod that meets 
the criteria for running on Fargate, the Fargate controllers that are running in the cluster recognize, 
update, and schedule the Pod onto Fargate.

This topic describes the different components of Pods that run on Fargate, and calls out special 
considerations for using Fargate with Amazon EKS.

AWS Fargate considerations

Here are some things to consider about using Fargate on Amazon EKS.

• Each Pod that runs on Fargate has its own isolation boundary. They don't share the underlying 
kernel, CPU resources, memory resources, or elastic network interface with another Pod.

• Network Load Balancers and Application Load Balancers (ALBs) can be used with Fargate with 
IP targets only. For more information, see Create a network load balancer and Application load 
balancing on Amazon EKS.

AWS Fargate 223

https://aws.amazon.com/what-are-containers


Amazon EKS User Guide

• Fargate exposed services only run on target type IP mode, and not on node IP mode. The 
recommended way to check the connectivity from a service running on a managed node and a 
service running on Fargate is to connect via service name.

• Pods must match a Fargate profile at the time that they're scheduled to run on Fargate. Pods 
that don't match a Fargate profile might be stuck as Pending. If a matching Fargate profile 
exists, you can delete pending Pods that you have created to reschedule them onto Fargate.

• Daemonsets aren't supported on Fargate. If your application requires a daemon, reconfigure that 
daemon to run as a sidecar container in your Pods.

• Privileged containers aren't supported on Fargate.

• Pods running on Fargate can't specify HostPort or HostNetwork in the Pod manifest.

• The default nofile and nproc soft limit is 1024 and the hard limit is 65535 for Fargate Pods.

• GPUs aren't currently available on Fargate.

• Pods that run on Fargate are only supported on private subnets (with NAT gateway access to 
AWS services, but not a direct route to an Internet Gateway), so your cluster's VPC must have 
private subnets available. For clusters without outbound internet access, see Private cluster 
requirements.

• You can use the Vertical Pod Autoscaler to set the initial correct size of CPU and memory for 
your Fargate Pods, and then use the Horizontal Pod Autoscaler to scale those Pods. If you 
want the Vertical Pod Autoscaler to automatically re-deploy Pods to Fargate with larger CPU 
and memory combinations, set the mode for the Vertical Pod Autoscaler to either Auto or
Recreate to ensure correct functionality. For more information, see the Vertical Pod Autoscaler
documentation on GitHub.

• DNS resolution and DNS hostnames must be enabled for your VPC. For more information, see
Viewing and updating DNS support for your VPC.

• Amazon EKS Fargate adds defense-in-depth for Kubernetes applications by isolating each 
Pod within a Virtual Machine (VM). This VM boundary prevents access to host-based resources 
used by other Pods in the event of a container escape, which is a common method of attacking 
containerized applications and gain access to resources outside of the container.

Using Amazon EKS doesn't change your responsibilities under the shared responsibility model. 
You should carefully consider the configuration of cluster security and governance controls. The 
safest way to isolate an application is always to run it in a separate cluster.

• Fargate profiles support specifying subnets from VPC secondary CIDR blocks. You might want to 
specify a secondary CIDR block. This is because there's a limited number of IP addresses available 
in a subnet. As a result, there's also a limited number of Pods that can be created in the cluster. 

Fargate considerations 224

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#quick-start
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating


Amazon EKS User Guide

By using different subnets for Pods, you can increase the number of available IP addresses. For 
more information, see Adding IPv4 CIDR blocks to a VPC.

• The Amazon EC2 instance metadata service (IMDS) isn't available to Pods that are deployed 
to Fargate nodes. If you have Pods that are deployed to Fargate that need IAM credentials, 
assign them to your Pods using IAM roles for service accounts. If your Pods need access to other 
information available through IMDS, then you must hard code this information into your Pod 
spec. This includes the AWS Region or Availability Zone that a Pod is deployed to.

• You can't deploy Fargate Pods to AWS Outposts, AWS Wavelength, or AWS Local Zones.

• Amazon EKS must periodically patch Fargate Pods to keep them secure. We attempt the updates 
in a way that reduces impact, but there are times when Pods must be deleted if they aren't 
successfully evicted. There are some actions you can take to minimize disruption. For more 
information, see Fargate OS patching.

• The Amazon VPC CNI plugin for Amazon EKS is installed on Fargate nodes. You can't use
Alternate compatible CNI plugins with Fargate nodes.

• A Pod running on Fargate automatically mounts an Amazon EFS file system. You can't use 
dynamic persistent volume provisioning with Fargate nodes, but you can use static provisioning.

• You can't mount Amazon EBS volumes to Fargate Pods.

• You can run the Amazon EBS CSI controller on Fargate nodes, but the Amazon EBS CSI node 
DaemonSet can only run on Amazon EC2 instances.

• After a Kubernetes Job is marked Completed or Failed, the Pods that the Job creates normally 
continue to exist. This behavior allows you to view your logs and results, but with Fargate you 
will incur costs if you don't clean up the Job afterwards.

To automatically delete the related Pods after a Job completes or fails, you can specify a 
time period using the time-to-live (TTL) controller. The following example shows specifying
.spec.ttlSecondsAfterFinished in your Job manifest.

apiVersion: batch/v1
kind: Job
metadata: 
  name: busybox
spec: 
  template: 
    spec: 
      containers: 
      - name: busybox 
        image: busybox 

Fargate considerations 225

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#vpc-resize
https://github.com/aws/amazon-vpc-cni-plugins
https://kubernetes.io/docs/concepts/workloads/controllers/job/


Amazon EKS User Guide

        command: ["/bin/sh", "-c", "sleep 10"] 
      restartPolicy: Never 
   ttlSecondsAfterFinished: 60 # <-- TTL controller

Getting started with AWS Fargate using Amazon EKS

Important

AWS Fargate with Amazon EKS isn't available in AWS GovCloud (US-East) and AWS 
GovCloud (US-West).

This topic describes how to get started running Pods on AWS Fargate with your Amazon EKS 
cluster.

If you restrict access to the public endpoint of your cluster using CIDR blocks, we recommend 
that you also enable private endpoint access. This way, Fargate Pods can communicate with the 
cluster. Without the private endpoint enabled, the CIDR blocks that you specify for public access 
must include the outbound sources from your VPC. For more information, see Amazon EKS cluster 
endpoint access control.

Prerequisite

An existing cluster. If you don't already have an Amazon EKS cluster, see Getting started with 
Amazon EKS.

Ensure that existing nodes can communicate with Fargate Pods

If you're working with a new cluster with no nodes, or a cluster with only managed node groups, 
you can skip to Create a Fargate Pod execution role.

Assume that you're working with an existing cluster that already has nodes that are associated with 
it. Make sure that Pods on these nodes can communicate freely with the Pods that are running on 
Fargate. Pods that are running on Fargate are automatically configured to use the cluster security 
group for the cluster that they're associated with. Ensure that any existing nodes in your cluster 
can send and receive traffic to and from the cluster security group. Managed node groups are 
automatically configured to use the cluster security group as well, so you don't need to modify or 
check them for this compatibility.

Getting started with Fargate 226



Amazon EKS User Guide

For existing node groups that were created with eksctl or the Amazon EKS managed AWS 
CloudFormation templates, you can add the cluster security group to the nodes manually. Or, 
alternatively, you can modify the Auto Scaling group launch template for the node group to attach 
the cluster security group to the instances. For more information, see Changing an instance's 
security groups in the Amazon VPC User Guide.

You can check for a security group for your cluster in the AWS Management Console under the
Networking section for the cluster. Or, you can do this using the following AWS CLI command. 
When using this command, replace my-cluster with the name of your cluster.

aws eks describe-cluster --name my-cluster --query 
 cluster.resourcesVpcConfig.clusterSecurityGroupId

Create a Fargate Pod execution role

When your cluster creates Pods on AWS Fargate, the components that run on the Fargate 
infrastructure must make calls to AWS APIs on your behalf. The Amazon EKS Pod execution role 
provides the IAM permissions to do this. To create an AWS Fargate Pod execution role, see Amazon 
EKS Pod execution IAM role.

Note

If you created your cluster with eksctl using the --fargate option, your cluster already 
has a Pod execution role that you can find in the IAM console with the pattern eksctl-my-
cluster-FargatePodExecutionRole-ABCDEFGHIJKL. Similarly, if you use eksctl to 
create your Fargate profiles, eksctl creates your Pod execution role if one isn't already 
created.

Create a Fargate profile for your cluster

Before you can schedule Pods that are running on Fargate in your cluster, you must define a 
Fargate profile that specifies which Pods use Fargate when they're launched. For more information, 
see AWS Fargate profile.

Note

If you created your cluster with eksctl using the --fargate option, then a Fargate 
profile is already created for your cluster with selectors for all Pods in the kube-system

Getting started with Fargate 227

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#SG_Changing_Group_Membership
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html#SG_Changing_Group_Membership


Amazon EKS User Guide

and default namespaces. Use the following procedure to create Fargate profiles for any 
other namespaces you would like to use with Fargate.

You can create a Fargate profile using eksctl or the AWS Management Console.

eksctl

This procedure requires eksctl version 0.172.0 or later. You can check your version with the 
following command:

eksctl version

For instructions on how to install or upgrade eksctl, see Installation in the eksctl
documentation.

To create a Fargate profile with eksctl

Create your Fargate profile with the following eksctl command, replacing every example 
value with your own values. You're required to specify a namespace. However, the --labels
option isn't required.

eksctl create fargateprofile \ 
    --cluster my-cluster \ 
    --name my-fargate-profile \ 
    --namespace my-kubernetes-namespace \ 
    --labels key=value

You can use certain wildcards for my-kubernetes-namespace and key=value labels. For 
more information, see Fargate profile wildcards.

AWS Management Console

To create a Fargate profile for a cluster with the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. Choose the cluster to create a Fargate profile for.

3. Choose the Compute tab.

4. Under Fargate profiles, choose Add Fargate profile.

Getting started with Fargate 228

https://eksctl.io/installation
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

5. On the Configure Fargate profile page, do the following:

a. For Name, enter a name for your Fargate profile. The name must be unique.

b. For Pod execution role, choose the Pod execution role to use with your Fargate profile. 
Only the IAM roles with the eks-fargate-pods.amazonaws.com service principal 
are shown. If you don't see any roles listed, you must create one. For more information, 
see Amazon EKS Pod execution IAM role.

c. Modify the selected Subnets as needed.

Note

Only private subnets are supported for Pods that are running on Fargate.

d. For Tags, you can optionally tag your Fargate profile. These tags don't propagate to 
other resources that are associated with the profile such as Pods.

e. Choose Next.

6. On the Configure Pod selection page, do the following:

a. For Namespace, enter a namespace to match for Pods.

• You can use specific namespaces to match, such as kube-system or default.

• You can use certain wildcards (for example, prod-*) to match multiple namespaces 
(for example, prod-deployment and prod-test). For more information, see
Fargate profile wildcards.

b. (Optional) Add Kubernetes labels to the selector. Specifically add them to the one that 
the Pods in the specified namespace need to match.

• You can add the label infrastructure: fargate to the selector so that only 
Pods in the specified namespace that also have the infrastructure: fargate
Kubernetes label match the selector.

• You can use certain wildcards (for example, key?: value?) to match multiple 
namespaces (for example, keya: valuea and keyb: valueb). For more 
information, see Fargate profile wildcards.

c. Choose Next.

7. On the Review and create page, review the information for your Fargate profile and choose
Create.

Getting started with Fargate 229



Amazon EKS User Guide

Update CoreDNS

By default, CoreDNS is configured to run on Amazon EC2 infrastructure on Amazon EKS clusters. If 
you want to only run your Pods on Fargate in your cluster, complete the following steps.

Note

If you created your cluster with eksctl using the --fargate option, then you can skip to
Next steps.

1. Create a Fargate profile for CoreDNS with the following command. Replace
my-cluster with your cluster name, 111122223333 with your account ID,
AmazonEKSFargatePodExecutionRole with the name of your Pod execution role, and
0000000000000001, 0000000000000002, and 0000000000000003 with the IDs of your 
private subnets. If you don't have a Pod execution role, you must create one first.

Important

The role ARN can't include a path other than /. For example, if the name of 
your role is development/apps/my-role, you need to change it to my-role
when specifying the ARN for the role. The format of the role ARN must be
arn:aws:iam::111122223333:role/role-name.

aws eks create-fargate-profile \ 
    --fargate-profile-name coredns \ 
    --cluster-name my-cluster \ 
    --pod-execution-role-arn 
 arn:aws:iam::111122223333:role/AmazonEKSFargatePodExecutionRole \ 
    --selectors namespace=kube-system,labels={k8s-app=kube-dns} \ 
    --subnets subnet-0000000000000001 subnet-0000000000000002
 subnet-0000000000000003

2. Run the following command to remove the eks.amazonaws.com/compute-type : ec2
annotation from the CoreDNS Pods.

kubectl patch deployment coredns \ 
    -n kube-system \ 

Getting started with Fargate 230

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-friendly-names


Amazon EKS User Guide

    --type json \ 
    -p='[{"op": "remove", "path": "/spec/template/metadata/annotations/
eks.amazonaws.com~1compute-type"}]'

Next steps

• You can start migrating your existing applications to run on Fargate with the following workflow.

1. Create a Fargate profile that matches your application's Kubernetes namespace and 
Kubernetes labels.

2. Delete and re-create any existing Pods so that they're scheduled on Fargate. For example, 
the following command triggers a rollout of the coredns deployment. You can modify the 
namespace and deployment type to update your specific Pods.

kubectl rollout restart -n kube-system deployment coredns

• Deploy the Application load balancing on Amazon EKS to allow Ingress objects for your Pods 
running on Fargate.

• You can use the Vertical Pod Autoscaler to set the initial correct size of CPU and memory for 
your Fargate Pods, and then use the Horizontal Pod Autoscaler to scale those Pods. If you want 
the Vertical Pod Autoscaler to automatically re-deploy Pods to Fargate with higher CPU and 
memory combinations, set the Vertical Pod Autoscaler's mode to either Auto or Recreate. 
This is to ensure correct functionality. For more information, see the Vertical Pod Autoscaler
documentation on GitHub.

• You can set up the AWS Distro for OpenTelemetry (ADOT) collector for application monitoring by 
following these instructions.

AWS Fargate profile

Important

AWS Fargate with Amazon EKS isn't available in AWS GovCloud (US-East) and AWS 
GovCloud (US-West).

Before you schedule Pods on Fargate in your cluster, you must define at least one Fargate profile 
that specifies which Pods use Fargate when launched.

Fargate profile 231

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler#quick-start
https://aws.amazon.com/otel
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-EKS-otel.html


Amazon EKS User Guide

As an administrator, you can use a Fargate profile to declare which Pods run on Fargate. You can do 
this through the profile's selectors. You can add up to five selectors to each profile. Each selector 
must contain a namespace. The selector can also include labels. The label field consists of multiple 
optional key-value pairs. Pods that match a selector are scheduled on Fargate. Pods are matched 
using a namespace and the labels that are specified in the selector. If a namespace selector is 
defined without labels, Amazon EKS attempts to schedule all the Pods that run in that namespace 
onto Fargate using the profile. If a to-be-scheduled Pod matches any of the selectors in the Fargate 
profile, then that Pod is scheduled on Fargate.

If a Pod matches multiple Fargate profiles, you can specify which profile a Pod uses by adding the 
following Kubernetes label to the Pod specification: eks.amazonaws.com/fargate-profile:
my-fargate-profile. The Pod must match a selector in that profile to be scheduled onto 
Fargate. Kubernetes affinity/anti-affinity rules do not apply and aren't necessary with Amazon EKS 
Fargate Pods.

When you create a Fargate profile, you must specify a Pod execution role. This execution role 
is for the Amazon EKS components that run on the Fargate infrastructure using the profile. It's 
added to the cluster's Kubernetes Role Based Access Control (RBAC) for authorization. That way, 
the kubelet that runs on the Fargate infrastructure can register with your Amazon EKS cluster 
and appear in your cluster as a node. The Pod execution role also provides IAM permissions to 
the Fargate infrastructure to allow read access to Amazon ECR image repositories. For more 
information, see Amazon EKS Pod execution IAM role.

Fargate profiles can't be changed. However, you can create a new updated profile to replace an 
existing profile, and then delete the original.

Note

Any Pods that are running using a Fargate profile are stopped and put into a pending state 
when the profile is deleted.

If any Fargate profiles in a cluster are in the DELETING status, you must wait until after the Fargate 
profile is deleted before you create other profiles in that cluster.

Amazon EKS and Fargate spread Pods across each of the subnets that's defined in the Fargate 
profile. However, you might end up with an uneven spread. If you must have an even spread, use 
two Fargate profiles. Even spread is important in scenarios where you want to deploy two replicas 
and don't want any downtime. We recommend that each profile has only one subnet.

Fargate profile 232

https://kubernetes.io/docs/reference/access-authn-authz/rbac/


Amazon EKS User Guide

Fargate profile components

The following components are contained in a Fargate profile.

Pod execution role

When your cluster creates Pods on AWS Fargate, the kubelet that's running on the Fargate 
infrastructure must make calls to AWS APIs on your behalf. For example, it needs to make calls 
to pull container images from Amazon ECR. The Amazon EKS Pod execution role provides the 
IAM permissions to do this.

When you create a Fargate profile, you must specify a Pod execution role to use with your 
Pods. This role is added to the cluster's Kubernetes Role-based access control (RBAC) for 
authorization. This is so that the kubelet that's running on the Fargate infrastructure 
can register with your Amazon EKS cluster and appear in your cluster as a node. For more 
information, see Amazon EKS Pod execution IAM role.

Subnets

The IDs of subnets to launch Pods into that use this profile. At this time, Pods that are running 
on Fargate aren't assigned public IP addresses. Therefore, only private subnets with no direct 
route to an Internet Gateway are accepted for this parameter.

Selectors

The selectors to match for Pods to use this Fargate profile. You might specify up to five 
selectors in a Fargate profile. The selectors have the following components:

• Namespace – You must specify a namespace for a selector. The selector only matches Pods 
that are created in this namespace. However, you can create multiple selectors to target 
multiple namespaces.

• Labels – You can optionally specify Kubernetes labels to match for the selector. The selector 
only matches Pods that have all of the labels that are specified in the selector.

Fargate profile wildcards

In addition to characters allowed by Kubernetes, you're allowed to use * and ? in the selector 
criteria for namespaces, label keys, and label values:

• * represents none, one, or multiple characters. For example, prod* can represent prod and
prod-metrics.

Fargate profile 233

https://kubernetes.io/docs/reference/access-authn-authz/rbac/


Amazon EKS User Guide

• ? represents a single character (for example, value? can represent valuea). However, it can't 
represent value and value-a, because ? can only represent exactly one character.

These wildcard characters can be used in any position and in combination (for example, prod*,
*dev, and frontend*?). Other wildcards and forms of pattern matching, such as regular 
expressions, aren't supported.

If there are multiple matching profiles for the namespace and labels in the Pod spec, Fargate 
picks up the profile based on alphanumeric sorting by profile name. For example, if both profile A 
(with the name beta-workload) and profile B (with the name prod-workload) have matching 
selectors for the Pods to be launched, Fargate picks profile A (beta-workload) for the Pods. 
The Pods have labels with profile A on the Pods (for example, eks.amazonaws.com/fargate-
profile=beta-workload).

If you want to migrate existing Fargate Pods to new profiles that use wildcards, there are two ways 
to do so:

• Create a new profile with matching selectors, then delete the old profiles. Pods labeled with old 
profiles are rescheduled to new matching profiles.

• If you want to migrate workloads but aren't sure what Fargate labels are on each Fargate Pod, 
you can use the following method. Create a new profile with a name that sorts alphanumerically 
first among the profiles on the same cluster. Then, recycle the Fargate Pods that need to be 
migrated to new profiles.

Creating a Fargate profile

This topic describes how to create a Fargate profile. You also must have created a Pod execution 
role to use for your Fargate profile. For more information, see Amazon EKS Pod execution IAM 
role. Pods that are running on Fargate are only supported on private subnets with NAT gateway
access to AWS services, but not a direct route to an Internet Gateway. This is so that your cluster's 
VPC must have private subnets available. You can create a profile with eksctl or the AWS 
Management Console.

This procedure requires eksctl version 0.172.0 or later. You can check your version with the 
following command:

eksctl version

Fargate profile 234

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html


Amazon EKS User Guide

For instructions on how to install or upgrade eksctl, see Installation in the eksctl
documentation.

eksctl

To create a Fargate profile with eksctl

Create your Fargate profile with the following eksctl command, replacing every example 
value with your own values. You're required to specify a namespace. However, the --labels
option isn't required.

eksctl create fargateprofile \ 
    --cluster my-cluster \ 
    --name my-fargate-profile \ 
    --namespace my-kubernetes-namespace \ 
    --labels key=value

You can use certain wildcards for my-kubernetes-namespace and key=value labels. For 
more information, see Fargate profile wildcards.

AWS Management Console

To create a Fargate profile for a cluster with the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. Choose the cluster to create a Fargate profile for.

3. Choose the Compute tab.

4. Under Fargate profiles, choose Add Fargate profile.

5. On the Configure Fargate profile page, do the following:

a. For Name, enter a unique name for your Fargate profile, such as my-profile.

b. For Pod execution role, choose the Pod execution role to use with your Fargate profile. 
Only the IAM roles with the eks-fargate-pods.amazonaws.com service principal 
are shown. If you don't see any roles listed, you must create one. For more information, 
see Amazon EKS Pod execution IAM role.

c. Modify the selected Subnets as needed.

Fargate profile 235

https://eksctl.io/installation
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

Note

Only private subnets are supported for Pods that are running on Fargate.

d. For Tags, you can optionally tag your Fargate profile. These tags don't propagate to 
other resources that are associated with the profile, such as Pods.

e. Choose Next.

6. On the Configure Pod selection page, do the following:

a. For Namespace, enter a namespace to match for Pods.

• You can use specific namespaces to match, such as kube-system or default.

• You can use certain wildcards (for example, prod-*) to match multiple namespaces 
(for example, prod-deployment and prod-test). For more information, see
Fargate profile wildcards.

b. (Optional) Add Kubernetes labels to the selector. Specifically, add them to the one that 
the Pods in the specified namespace need to match.

• You can add the label infrastructure: fargate to the selector so that only 
Pods in the specified namespace that also have the infrastructure: fargate
Kubernetes label match the selector.

• You can use certain wildcards (for example, key?: value?) to match multiple 
namespaces (for example, keya: valuea and keyb: valueb). For more 
information, see Fargate profile wildcards.

c. Choose Next.

7. On the Review and create page, review the information for your Fargate profile and choose
Create.

Deleting a Fargate profile

This topic describes how to delete a Fargate profile.

When you delete a Fargate profile, any Pods that were scheduled onto Fargate with the profile are 
deleted. If those Pods match another Fargate profile, then they're scheduled on Fargate with that 
profile. If they no longer match any Fargate profiles, then they aren't scheduled onto Fargate and 
might remain as pending.

Fargate profile 236



Amazon EKS User Guide

Only one Fargate profile in a cluster can be in the DELETING status at a time. Wait for a Fargate 
profile to finish deleting before you can delete any other profiles in that cluster.

You can delete a profile with eksctl, the AWS Management Console, or the AWS CLI. Select the 
tab with the name of the tool that you want to use to delete your profile.

eksctl

To delete a Fargate profile with eksctl

Use the following command to delete a profile from a cluster. Replace every example value
with your own values.

eksctl delete fargateprofile  --name my-profile --cluster my-cluster

AWS Management Console

To delete a Fargate profile from a cluster with the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, choose Clusters. In the list of clusters, choose the cluster that 
you want to delete the Fargate profile from.

3. Choose the Compute tab.

4. Choose the Fargate profile to delete, and then choose Delete.

5. On the Delete Fargate profile page, enter the name of the profile, and then choose Delete.

AWS CLI

To delete a Fargate profile with AWS CLI

Use the following command to delete a profile from a cluster. Replace every example value
with your own values.

aws eks delete-fargate-profile --fargate-profile-name my-profile --cluster-name my-
cluster

Fargate profile 237

https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

Fargate Pod configuration

Important

AWS Fargate with Amazon EKS isn't available in AWS GovCloud (US-East) and AWS 
GovCloud (US-West).

This section describes some of the unique Pod configuration details for running Kubernetes Pods 
on AWS Fargate.

Pod CPU and memory

With Kubernetes, you can define requests, a minimum vCPU amount, and memory resources that 
are allocated to each container in a Pod. Pods are scheduled by Kubernetes to ensure that at least 
the requested resources for each Pod are available on the compute resource. For more information, 
see Managing compute resources for containers in the Kubernetes documentation.

Note

Since Amazon EKS Fargate runs only one Pod per node, the scenario of evicting Pods in 
case of fewer resources doesn't occur. All Amazon EKS Fargate Pods run with guaranteed 
priority, so the requested CPU and memory must be equal to the limit for all of the 
containers. For more information, see Configure Quality of Service for Pods in the 
Kubernetes documentation.

When Pods are scheduled on Fargate, the vCPU and memory reservations within the Pod 
specification determine how much CPU and memory to provision for the Pod.

• The maximum request out of any Init containers is used to determine the Init request vCPU and 
memory requirements.

• Requests for all long-running containers are added up to determine the long-running request 
vCPU and memory requirements.

• The larger of the previous two values is chosen for the vCPU and memory request to use for your 
Pod.

• Fargate adds 256 MB to each Pod's memory reservation for the required Kubernetes components 
(kubelet, kube-proxy, and containerd).

Fargate Pod configuration 238

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/


Amazon EKS User Guide

Fargate rounds up to the following compute configuration that most closely matches the sum of 
vCPU and memory requests in order to ensure Pods always have the resources that they need to 
run.

If you don't specify a vCPU and memory combination, then the smallest available combination is 
used (.25 vCPU and 0.5 GB memory).

The following table shows the vCPU and memory combinations that are available for Pods running 
on Fargate.

vCPU value Memory value

.25 vCPU 0.5 GB, 1 GB, 2 GB

.5 vCPU 1 GB, 2 GB, 3 GB, 4 GB

1 vCPU 2 GB, 3 GB, 4 GB, 5 GB, 6 GB, 7 GB, 8 GB

2 vCPU Between 4 GB and 16 GB in 1-GB increments

4 vCPU Between 8 GB and 30 GB in 1-GB increments

8 vCPU Between 16 GB and 60 GB in 4-GB increments

16 vCPU Between 32 GB and 120 GB in 8-GB increment 
s

The additional memory reserved for the Kubernetes components can cause a Fargate task with 
more vCPUs than requested to be provisioned. For example, a request for 1 vCPU and 8 GB 
memory will have 256 MB added to its memory request, and will provision a Fargate task with 2 
vCPUs and 9 GB memory, since no task with 1 vCPU and 9 GB memory is available.

There is no correlation between the size of the Pod running on Fargate and the node size reported 
by Kubernetes with kubectl get nodes. The reported node size is often larger than the Pod's 
capacity. You can verify Pod capacity with the following command. Replace default with your 
Pod's namespace and pod-name with the name of your Pod.

kubectl describe pod --namespace default pod-name 

Fargate Pod configuration 239



Amazon EKS User Guide

An example output is as follows.

[...]
annotations: 
    CapacityProvisioned: 0.25vCPU 0.5GB
[...]

The CapacityProvisioned annotation represents the enforced Pod capacity and it determines 
the cost of your Pod running on Fargate. For pricing information for the compute configurations, 
see AWS Fargate Pricing.

Fargate storage

A Pod running on Fargate automatically mounts an Amazon EFS file system. You can't use dynamic 
persistent volume provisioning with Fargate nodes, but you can use static provisioning. For more 
information, see Amazon EFS CSI Driver on GitHub.

When provisioned, each Pod running on Fargate receives a default 20 GiB of ephemeral storage. 
This type of storage is deleted after a Pod stops. New Pods launched onto Fargate have encryption 
of the ephemeral storage volume enabled by default. The ephemeral Pod storage is encrypted with 
an AES-256 encryption algorithm using AWS Fargate managed keys.

Note

The default usable storage for Amazon EKS Pods that run on Fargate is less than 20 GiB. 
This is because some space is used by the kubelet and other Kubernetes modules that are 
loaded inside the Pod.

You can increase the total amount of ephemeral storage up to a maximum of 175 GiB. To configure 
the size with Kubernetes, specify the requests of ephemeral-storage resource to each container 
in a Pod. When Kubernetes schedules Pods, it ensures that the sum of the resource requests 
for each Pod is less than the capacity of the Fargate task. For more information, see Resource 
Management for Pods and Containers in the Kubernetes documentation.

Amazon EKS Fargate provisions more ephemeral storage than requested for the purposes of 
system use. For example, a request of 100 GiB will provision a Fargate task with 115 GiB ephemeral 
storage.

Fargate Pod configuration 240

https://aws.amazon.com/fargate/pricing/
https://github.com/kubernetes-sigs/aws-efs-csi-driver/blob/master/docs/README.md
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/


Amazon EKS User Guide

Fargate OS patching

Important

AWS Fargate with Amazon EKS isn't available in AWS GovCloud (US-East) and AWS 
GovCloud (US-West).

Amazon EKS periodically patches the OS for AWS Fargate nodes to keep them secure. As part of 
the patching process, we recycle the nodes to install OS patches. Updates are attempted in a way 
that creates the least impact on your services. However, if Pods aren't successfully evicted, there 
are times when they must be deleted. The following are actions that you can take to minimize 
potential disruptions:

• Set appropriate Pod disruption budgets (PDBs) to control the number of Pods that are down 
simultaneously.

• Create Amazon EventBridge rules to handle failed evictions before the Pods are deleted.

• Create a notification configuration in AWS User Notifications.

Amazon EKS works closely with the Kubernetes community to make bug fixes and security patches 
available as quickly as possible. All Fargate Pods start on the most recent Kubernetes patch version, 
which is available from Amazon EKS for the Kubernetes version of your cluster. If you have a Pod 
with an older patch version, Amazon EKS might recycle it to update it to the latest version. This 
ensures that your Pods are equipped with the latest security updates. That way, if there's a critical
Common Vulnerabilities and Exposures (CVE) issue, you're kept up to date to reduce security risks.

To limit the number of Pods that are down at one time when Pods are recycled, you can 
set Pod disruption budgets (PDBs). You can use PDBs to define minimum availability based 
on the requirements of each of your applications while still allowing updates to occur. For 
more information, see Specifying a Disruption Budget for your Application in the Kubernetes 
Documentation.

Amazon EKS uses the Eviction API to safely drain the Pod while respecting the PDBs that you 
set for the application. Pods are evicted by Availability Zone to minimize impact. If the eviction 
succeeds, the new Pod gets the latest patch and no further action is required.

When the eviction for a Pod fails, Amazon EKS sends an event to your account with details about 
the Pods that failed eviction. You can act on the message before the scheduled termination time. 

Fargate OS patching 241

https://cve.mitre.org/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/#eviction-api


Amazon EKS User Guide

The specific time varies based on the urgency of the patch. When it's time, Amazon EKS attempts 
to evict the Pods again. However, this time a new event isn't sent if the eviction fails. If the eviction 
fails again, your existing Pods are deleted periodically so that the new Pods can have the latest 
patch.

The following is a sample event received when the Pod eviction fails. It contains details about the 
cluster, Pod name, Pod namespace, Fargate profile, and the scheduled termination time.

{ 
    "version": "0", 
    "id": "12345678-90ab-cdef-0123-4567890abcde", 
    "detail-type": "EKS Fargate Pod Scheduled Termination", 
    "source": "aws.eks", 
    "account": "111122223333", 
    "time": "2021-06-27T12:52:44Z", 
    "region": "region-code", 
    "resources": [ 
        "default/my-database-deployment" 
    ], 
    "detail": { 
        "clusterName": "my-cluster", 
        "fargateProfileName": "my-fargate-profile", 
        "podName": "my-pod-name", 
        "podNamespace": "default", 
        "evictErrorMessage": "Cannot evict pod as it would violate the pod's disruption 
 budget", 
        "scheduledTerminationTime": "2021-06-30T12:52:44.832Z[UTC]" 
    }
}

In addition, having multiple PDBs associated with a Pod can cause an eviction failure event. This 
event returns the following error message.

"evictErrorMessage": "This pod has multiple PodDisruptionBudget, which the eviction 
 subresource does not support",

You can create a desired action based on this event. For example, you can adjust your Pod 
disruption budget (PDB) to control how the Pods are evicted. More specifically, suppose that 
you start with a PDB that specifies the target percentage of Pods that are available. Before your 
Pods are force terminated during an upgrade, you can adjust the PDB to a different percentage 
of Pods. To receive this event, you must create an Amazon EventBridge rule in the AWS account 

Fargate OS patching 242



Amazon EKS User Guide

and AWS Region that the cluster belongs to. The rule must use the following Custom pattern. 
For more information, see Creating Amazon EventBridge rules that react to events in the Amazon 
EventBridge User Guide.

{ 
  "source": ["aws.eks"], 
  "detail-type": ["EKS Fargate Pod Scheduled Termination"]
}

A suitable target can be set for the event to capture it. For a complete list of available targets, 
see Amazon EventBridge targets in the Amazon EventBridge User Guide. You can also create a 
notification configuration in AWS User Notifications. When using the AWS Management Console 
to create the notification, under Event Rules, choose Elastic Kubernetes Service (EKS) for AWS 
service name and EKS Fargate Pod Scheduled Termination for Event type. For more information, 
see Getting started with AWS User Notifications in the AWS User Notifications User Guide.

Fargate metrics

Important

AWS Fargate with Amazon EKS isn't available in AWS GovCloud (US-East) and AWS 
GovCloud (US-West).

You can collect system metrics and CloudWatch usage metrics for AWS Fargate.

Application metrics

For applications running on Amazon EKS and AWS Fargate, you can use the AWS Distro for 
OpenTelemetry (ADOT). ADOT allows you to collect system metrics and send them to CloudWatch 
Container Insights dashboards. To get started with ADOT for applications running on Fargate, 
see Using CloudWatch Container Insights with AWS Distro for OpenTelemetry in the ADOT 
documentation.

Usage metrics

You can use CloudWatch usage metrics to provide visibility into your account's usage of resources. 
Use these metrics to visualize your current service usage on CloudWatch graphs and dashboards.

Fargate metrics 243

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-targets.html
https://docs.aws.amazon.com/notifications/latest/userguide/getting-started.html
https://aws-otel.github.io/docs/getting-started/container-insights


Amazon EKS User Guide

AWS Fargate usage metrics correspond to AWS service quotas. You can configure alarms that alert 
you when your usage approaches a service quota. For more information about Fargate service 
quotas, see Amazon EKS service quotas.

AWS Fargate publishes the following metrics in the AWS/Usage namespace.

Metric Description

ResourceCount The total number of the specified resource running on your 
account. The resource is defined by the dimensions associated 
with the metric.

The following dimensions are used to refine the usage metrics that are published by AWS Fargate.

Dimension Description

Service The name of the AWS service containing the resource. For 
AWS Fargate usage metrics, the value for this dimension is
Fargate.

Type The type of entity that's being reported. Currently, the only 
valid value for AWS Fargate usage metrics is Resource.

Resource The type of resource that's running.

Currently, AWS Fargate returns information on your Fargate 
On-Demand usage. The resource value for Fargate On-Demand 
 usage is OnDemand.

Note

Fargate On-Demand usage combines Amazon EKS Pods 
using Fargate, Amazon ECS tasks using the Fargate 
launch type and Amazon ECS tasks using the FARGATE
capacity provider.

Fargate metrics 244



Amazon EKS User Guide

Dimension Description

Class The class of resource being tracked. Currently, AWS Fargate 
doesn't use the class dimension.

Creating a CloudWatch alarm to monitor Fargate resource usage metrics

AWS Fargate provides CloudWatch usage metrics that correspond to the AWS service quotas for 
Fargate On-Demand resource usage. In the Service Quotas console, you can visualize your usage on 
a graph. You can also configure alarms that alert you when your usage approaches a service quota. 
For more information, see Fargate metrics.

Use the following steps to create a CloudWatch alarm based on the Fargate resource usage metrics.

To create an alarm based on your Fargate usage quotas (AWS Management Console)

1. Open the Service Quotas console at https://console.aws.amazon.com/servicequotas/.

2. In the left navigation pane, choose AWS services.

3. From the AWS services list, search for and select AWS Fargate.

4. In the Service quotas list, choose the Fargate usage quota you want to create an alarm for.

5. In the Amazon CloudWatch alarms section, choose Create.

6. For Alarm threshold, choose the percentage of your applied quota value that you want to set 
as the alarm value.

7. For Alarm name, enter a name for the alarm and then choose Create.

Fargate logging

Important

AWS Fargate with Amazon EKS isn't available in AWS GovCloud (US-East) and AWS 
GovCloud (US-West).

Amazon EKS on Fargate offers a built-in log router based on Fluent Bit. This means that you don't 
explicitly run a Fluent Bit container as a sidecar, but Amazon runs it for you. All that you have to do 

Fargate logging 245

https://console.aws.amazon.com/servicequotas/


Amazon EKS User Guide

is configure the log router. The configuration happens through a dedicated ConfigMap that must 
meet the following criteria:

• Named aws-logging

• Created in a dedicated namespace called aws-observability

• Can't exceed 5300 characters.

Once you've created the ConfigMap, Amazon EKS on Fargate automatically detects it and 
configures the log router with it. Fargate uses a version of AWS for Fluent Bit, an upstream 
compliant distribution of Fluent Bit managed by AWS. For more information, see AWS for Fluent 
Bit on GitHub.

The log router allows you to use the breadth of services at AWS for log analytics and storage. You 
can stream logs from Fargate directly to Amazon CloudWatch, Amazon OpenSearch Service. You 
can also stream logs to destinations such as Amazon S3, Amazon Kinesis Data Streams, and partner 
tools through Amazon Data Firehose.

Prerequisites

• An existing Fargate profile that specifies an existing Kubernetes namespace that you deploy 
Fargate Pods to. For more information, see Create a Fargate profile for your cluster.

• An existing Fargate Pod execution role. For more information, see Create a Fargate Pod execution 
role.

Log router configuration

To configure the log router

In the following steps, replace every example value with your own values.

1. Create a dedicated Kubernetes namespace named aws-observability.

a. Save the following contents to a file named aws-observability-namespace.yaml
on your computer. The value for name must be aws-observability and the aws-
observability: enabled label is required.

kind: Namespace
apiVersion: v1

Fargate logging 246

https://github.com/aws/aws-for-fluent-bit
https://github.com/aws/aws-for-fluent-bit
https://aws.amazon.com/s3/
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-firehose/


Amazon EKS User Guide

metadata: 
  name: aws-observability 
  labels: 
    aws-observability: enabled

b. Create the namespace.

kubectl apply -f aws-observability-namespace.yaml

2. Create a ConfigMap with a Fluent Conf data value to ship container logs to a destination. 
Fluent Conf is Fluent Bit, which is a fast and lightweight log processor configuration language 
that's used to route container logs to a log destination of your choice. For more information, 
see Configuration File in the Fluent Bit documentation.

Important

The main sections included in a typical Fluent Conf are Service, Input, Filter, 
and Output. The Fargate log router however, only accepts:

• The Filter and Output sections.

• A Parser section.

If you provide any other sections, they will be rejected.

The Fargate log router manages the Service and Input sections. It has the following Input
section, which can't be modified and isn't needed in your ConfigMap. However, you can get 
insights from it, such as the memory buffer limit and the tag applied for logs.

[INPUT] 
    Name tail 
    Buffer_Max_Size 66KB 
    DB /var/log/flb_kube.db 
    Mem_Buf_Limit 45MB 
    Path /var/log/containers/*.log 
    Read_From_Head On 
    Refresh_Interval 10 
    Rotate_Wait 30 
    Skip_Long_Lines On 

Fargate logging 247

https://docs.fluentbit.io/manual/administration/configuring-fluent-bit/classic-mode/configuration-file


Amazon EKS User Guide

    Tag kube.*

When creating the ConfigMap, take into account the following rules that Fargate uses to 
validate fields:

• [FILTER], [OUTPUT], and [PARSER] are supposed to be specified under each 
corresponding key. For example, [FILTER] must be under filters.conf. You can have 
one or more [FILTER]s under filters.conf. The [OUTPUT] and [PARSER] sections 
should also be under their corresponding keys. By specifying multiple [OUTPUT] sections, 
you can route your logs to different destinations at the same time.

• Fargate validates the required keys for each section. Name and match are required for each
[FILTER] and [OUTPUT]. Name and format are required for each [PARSER]. The keys are 
case-insensitive.

• Environment variables such as ${ENV_VAR} aren't allowed in the ConfigMap.

• The indentation has to be the same for either directive or key-value pair within each
filters.conf, output.conf, and parsers.conf. Key-value pairs have to be indented 
more than directives.

• Fargate validates against the following supported filters: grep, parser,
record_modifier, rewrite_tag, throttle, nest, modify, and kubernetes.

• Fargate validates against the following supported output: es, firehose,
kinesis_firehose, cloudwatch, cloudwatch_logs, and kinesis.

• At least one supported Output plugin has to be provided in the ConfigMap to enable 
logging. Filter and Parser aren't required to enable logging.

You can also run Fluent Bit on Amazon EC2 using the desired configuration to troubleshoot 
any issues that arise from validation. Create your ConfigMap using one of the following 
examples.

Important

Amazon EKS Fargate logging doesn't support dynamic configuration of ConfigMaps. 
Any changes to ConfigMaps are applied to new Pods only. Changes aren't applied to 
existing Pods.

Fargate logging 248



Amazon EKS User Guide

Create a ConfigMap using the example for your desired log destination.

Note

You can also use Amazon Kinesis Data Streams for your log destination. If you use 
Kinesis Data Streams, make sure that the pod execution role has been granted the
kinesis:PutRecords permission. For more information, see Amazon Kinesis Data 
Streams Permissions in the Fluent Bit: Official Manual.

CloudWatch

To create a ConfigMap for CloudWatch

You have two output options when using CloudWatch:

• An output plugin written in C

• An output plugin written in Golang

The following example shows you how to use the cloudwatch_logs plugin to send logs 
to CloudWatch.

1. Save the following contents to a file named aws-logging-cloudwatch-
configmap.yaml. Replace region-code with the AWS Region that your cluster is in.
The parameters under [OUTPUT] are required.

kind: ConfigMap
apiVersion: v1
metadata: 
  name: aws-logging 
  namespace: aws-observability
data: 
  flb_log_cw: "false"  # Set to true to ship Fluent Bit process logs to 
 CloudWatch. 
  filters.conf: | 
    [FILTER] 
        Name parser 
        Match * 

Fargate logging 249

https://docs.fluentbit.io/manual/v/1.5/pipeline/outputs/cloudwatch
https://github.com/aws/amazon-cloudwatch-logs-for-fluent-bit


Amazon EKS User Guide

        Key_name log 
        Parser crio 
    [FILTER] 
        Name kubernetes 
        Match kube.* 
        Merge_Log On 
        Keep_Log Off 
        Buffer_Size 0 
        Kube_Meta_Cache_TTL 300s 
  output.conf: | 
    [OUTPUT] 
        Name cloudwatch_logs 
        Match   kube.* 
        region region-code
        log_group_name my-logs 
        log_stream_prefix from-fluent-bit- 
        log_retention_days 60 
        auto_create_group true 
  parsers.conf: | 
    [PARSER] 
        Name crio 
        Format Regex 
        Regex ^(?<time>[^ ]+) (?<stream>stdout|stderr) (?<logtag>P|F) (?
<log>.*)$ 
        Time_Key    time 
        Time_Format %Y-%m-%dT%H:%M:%S.%L%z

2. Apply the manifest to your cluster.

kubectl apply -f aws-logging-cloudwatch-configmap.yaml

3. Download the CloudWatch IAM policy to your computer. You can also view the policy on 
GitHub.

curl -O https://raw.githubusercontent.com/aws-samples/amazon-eks-fluent-
logging-examples/mainline/examples/fargate/cloudwatchlogs/permissions.json

Amazon OpenSearch Service

To create a ConfigMap for Amazon OpenSearch Service

Fargate logging 250

https://raw.githubusercontent.com/aws-samples/amazon-eks-fluent-logging-examples/mainline/examples/fargate/cloudwatchlogs/permissions.json


Amazon EKS User Guide

If you want to send logs to Amazon OpenSearch Service, you can use es output, which is a 
plugin written in C. The following example shows you how to use the plugin to send logs to 
OpenSearch.

1. Save the following contents to a file named aws-logging-opensearch-
configmap.yaml. Replace every example value with your own values.

kind: ConfigMap
apiVersion: v1
metadata: 
  name: aws-logging 
  namespace: aws-observability
data: 
  output.conf: | 
    [OUTPUT] 
      Name  es 
      Match * 
      Host   search-example-gjxdcilagiprbglqn42jsty66y.region-
code.es.amazonaws.com 
      Port  443 
      Index example
      Type   example_type
      AWS_Auth On 
      AWS_Region region-code
      tls   On

2. Apply the manifest to your cluster.

kubectl apply -f aws-logging-opensearch-configmap.yaml

3. Download the OpenSearch IAM policy to your computer. You can also view the policy on 
GitHub.

curl -O https://raw.githubusercontent.com/aws-samples/amazon-eks-
fluent-logging-examples/mainline/examples/fargate/amazon-elasticsearch/
permissions.json

Make sure that OpenSearch Dashboards' access control is configured properly. The
all_access role in OpenSearch Dashboards needs to have the Fargate Pod 
execution role and the IAM role mapped. The same mapping must be done for the

Fargate logging 251

https://docs.fluentbit.io/manual/v/1.5/pipeline/outputs/elasticsearch
https://raw.githubusercontent.com/aws-samples/amazon-eks-fluent-logging-examples/mainline/examples/fargate/amazon-elasticsearch/permissions.json


Amazon EKS User Guide

security_manager role. You can add the previous mappings by selecting Menu, then
Security, then Roles, and then select the respective roles. For more information, see
How do I troubleshoot CloudWatch Logs so that it streams to my Amazon ES domain?.

Firehose

To create a ConfigMap for Firehose

You have two output options when sending logs to Firehose:

• kinesis_firehose – An output plugin written in C.

• firehose – An output plugin written in Golang.

The following example shows you how to use the kinesis_firehose plugin to send logs 
to Firehose.

1. Save the following contents to a file named aws-logging-firehose-
configmap.yaml. Replace region-code with the AWS Region that your cluster is in.

kind: ConfigMap
apiVersion: v1
metadata: 
  name: aws-logging 
  namespace: aws-observability
data: 
  output.conf: | 
    [OUTPUT] 
     Name  kinesis_firehose 
     Match * 
     region region-code
     delivery_stream my-stream-firehose

2. Apply the manifest to your cluster.

kubectl apply -f aws-logging-firehose-configmap.yaml

3. Download the Firehose IAM policy to your computer. You can also view the policy on 
GitHub.

Fargate logging 252

https://aws.amazon.com/tr/premiumsupport/knowledge-center/es-troubleshoot-cloudwatch-logs/
https://docs.fluentbit.io/manual/pipeline/outputs/firehose
https://github.com/aws/amazon-kinesis-firehose-for-fluent-bit
https://raw.githubusercontent.com/aws-samples/amazon-eks-fluent-logging-examples/mainline/examples/fargate/kinesis-firehose/permissions.json


Amazon EKS User Guide

curl -O https://raw.githubusercontent.com/aws-samples/amazon-eks-fluent-
logging-examples/mainline/examples/fargate/kinesis-firehose/permissions.json

3. Create an IAM policy from the policy file you downloaded in a previous step.

aws iam create-policy --policy-name eks-fargate-logging-policy --policy-document 
 file://permissions.json

4. Attach the IAM policy to the pod execution role specified for your Fargate profile 
with the following command. Replace 111122223333 with your account ID. Replace
AmazonEKSFargatePodExecutionRole with your Pod execution role (for more information, 
see Create a Fargate Pod execution role).

aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::111122223333:policy/eks-fargate-logging-policy \ 
  --role-name AmazonEKSFargatePodExecutionRole

Kubernetes filter support

This feature requires the following minimum Kubernetes version and platform level, or later.

Kubernetes version Platform level

1.23 and later eks.1

The Fluent Bit Kubernetes filter allows you to add Kubernetes metadata to your log files. For more 
information about the filter, see Kubernetes in the Fluent Bit documentation. You can apply a filter 
using the API server endpoint.

filters.conf: | 
    [FILTER] 
        Name             kubernetes 
        Match            kube.* 
        Merge_Log           On 
        Buffer_Size         0 
        Kube_Meta_Cache_TTL 300s

Fargate logging 253

https://docs.fluentbit.io/manual/pipeline/filters/kubernetes


Amazon EKS User Guide

Important

• Kube_URL, Kube_CA_File, Kube_Token_Command, and Kube_Token_File are 
service owned configuration parameters and must not be specified. Amazon EKS Fargate 
populates these values.

• Kube_Meta_Cache_TTL is the time Fluent Bit waits until it communicates with the API 
server for the latest metadata. If Kube_Meta_Cache_TTL isn't specified, Amazon EKS 
Fargate appends a default value of 30 minutes to lessen the load on the API server.

To ship Fluent Bit process logs to your account

You can optionally ship Fluent Bit process logs to Amazon CloudWatch using the following
ConfigMap. Shipping Fluent Bit process logs to CloudWatch requires additional log ingestion and 
storage costs. Replace region-code with the AWS Region that your cluster is in.

kind: ConfigMap
apiVersion: v1
metadata: 
  name: aws-logging 
  namespace: aws-observability 
  labels:
data: 
  # Configuration files: server, input, filters and output 
  # ====================================================== 
  flb_log_cw: "true"  # Ships Fluent Bit process logs to CloudWatch. 

  output.conf: | 
    [OUTPUT] 
        Name cloudwatch 
        Match kube.* 
        region region-code
        log_group_name fluent-bit-cloudwatch 
        log_stream_prefix from-fluent-bit- 
        auto_create_group true

The logs are in the AWS Region that the cluster resides in under CloudWatch. The log group 
name is my-cluster-fluent-bit-logs and the Fluent Bit logstream name is fluent-
bit-podname-pod-namespace.

Fargate logging 254



Amazon EKS User Guide

Note

• The process logs are shipped only when the Fluent Bit process successfully starts. If 
there is a failure while starting Fluent Bit, the process logs are missed. You can only ship 
process logs to CloudWatch.

• To debug shipping process logs to your account, you can apply the previous ConfigMap
to get the process logs. Fluent Bit failing to start is usually due to your ConfigMap not 
being parsed or accepted by Fluent Bit while starting.

To stop shipping Fluent Bit process logs

Shipping Fluent Bit process logs to CloudWatch requires additional log ingestion and storage costs. 
To exclude process logs in an existing ConfigMap setup, do the following steps.

1. Locate the CloudWatch log group automatically created for your Amazon EKS cluster's Fluent 
Bit process logs after enabling Fargate logging. It follows the format {cluster_name}-
fluent-bit-logs.

2. Delete the existing CloudWatch log streams created for each Pod's process logs in the 
CloudWatch log group.

3. Edit the ConfigMap and set flb_log_cw: "false".

4. Restart any existing Pods in the cluster.

Test application

1. Deploy a sample Pod.

a. Save the following contents to a file named sample-app.yaml on your computer.

apiVersion: apps/v1
kind: Deployment
metadata: 
  name: sample-app 
  namespace: same-namespace-as-your-fargate-profile
spec: 
  replicas: 3 
  selector: 
    matchLabels: 

Fargate logging 255



Amazon EKS User Guide

      app: nginx 
  template: 
    metadata: 
      labels: 
        app: nginx 
    spec: 
      containers: 
        - name: nginx 
          image: nginx:latest 
          ports: 
            - name: http 
              containerPort: 80

b. Apply the manifest to the cluster.

kubectl apply -f sample-app.yaml

2. View the NGINX logs using the destination(s) that you configured in the ConfigMap.

Size considerations

We suggest that you plan for up to 50 MB of memory for the log router. If you expect your 
application to generate logs at very high throughput then you should plan for up to 100 MB.

Troubleshooting

To confirm whether the logging feature is enabled or disabled for some reason, such as an 
invalid ConfigMap, and why it's invalid, check your Pod events with kubectl describe pod
pod_name. The output might include Pod events that clarify whether logging is enabled or not, 
such as the following example output.

[...]
Annotations:          CapacityProvisioned: 0.25vCPU 0.5GB 
                      Logging: LoggingDisabled: LOGGING_CONFIGMAP_NOT_FOUND 
                      kubernetes.io/psp: eks.privileged
[...]
Events: 
  Type     Reason           Age        From                                             
               Message 
  ----     ------           ----       ----                                             
               ------- 

Fargate logging 256



Amazon EKS User Guide

  Warning  LoggingDisabled  <unknown>  fargate-scheduler                               
                Disabled logging because aws-logging configmap was not found. configmap 
 "aws-logging" not found

The Pod events are ephemeral with a time period depending on the settings. You can also view 
a Pod's annotations using kubectl describe pod pod-name. In the Pod annotation, there is 
information about whether the logging feature is enabled or disabled and the reason.

Choosing an Amazon EC2 instance type

Amazon EC2 provides a wide selection of instance types for worker nodes. Each instance type 
offers different compute, memory, storage, and network capabilities. Each instance is also grouped 
in an instance family based on these capabilities. For a list, see Available instance types in the
Amazon EC2 User Guide for Linux Instances and Available instance types in the Amazon EC2 User 
Guide for Windows Instances. Amazon EKS releases several variations of Amazon EC2 AMIs to 
enable support. To make sure that the instance type you select is compatible with Amazon EKS, 
consider the following criteria.

• All Amazon EKS AMIs don't currently support the g5g and mac families.

• Arm and non-accelerated Amazon EKS AMIs don't support the g3, g4, inf, and p families.

• Accelerated Amazon EKS AMIs don't support the a, c, hpc, m, and t families.

• For Arm-based instances, Amazon Linux 2023 (AL2023) only supports instance types that use 
Graviton2 or later processors. AL2023 doesn't support A1 instances.

When choosing between instance types that are supported by Amazon EKS, consider the following 
capabilities of each type.

Number of instances in a node group

In general, fewer, larger instances are better, especially if you have a lot of Daemonsets. Each 
instance requires API calls to the API server, so the more instances you have, the more load on 
the API server.

Operating system

Review the supported instance types for Linux, Windows, and Bottlerocket. Before creating 
Windows instances, review Enabling Windows support for your Amazon EKS cluster.

Instance types 257

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html#AvailableInstanceTypes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html
https://aws.amazon.com/bottlerocket/faqs/


Amazon EKS User Guide

Hardware architecture

Do you need x86 or Arm? You can only deploy Linux on Arm. Before deploying Arm instances, 
review Amazon EKS optimized Arm Amazon Linux AMIs. Do you need instances built on the 
Nitro System (Linux or Windows) or that have Accelerated capabilities? If you need accelerated 
capabilities, you can only use Linux with Amazon EKS.

Maximum number of Pods

Since each Pod is assigned its own IP address, the number of IP addresses supported by an 
instance type is a factor in determining the number of Pods that can run on the instance. To 
manually determine how many Pods an instance type supports, see Amazon EKS recommended 
maximum Pods for each Amazon EC2 instance type.

Note

If you're using an Amazon EKS optimized Amazon Linux 2 AMI that's v20220406 or 
newer, you can use a new instance type without upgrading to the latest AMI. For these 
AMIs, the AMI auto-calculates the necessary max-pods value if it isn't listed in the eni-
max-pods.txt file. Instance types that are currently in preview may not be supported 
by Amazon EKS by default. Values for max-pods for such types still need to be added to
eni-max-pods.txt in our AMI.

AWS Nitro System instance types optionally support significantly more IP addresses than non-
Nitro System instance types. However, not all IP addresses assigned for an instance are available 
to Pods. To assign a significantly larger number of IP addresses to your instances, you must have 
version 1.9.0 or later of the Amazon VPC CNI add-on installed in your cluster and configured 
appropriately. For more information, see Increase the amount of available IP addresses for 
your Amazon EC2 nodes. To assign the largest number of IP addresses to your instances, you 
must have version 1.10.1 or later of the Amazon VPC CNI add-on installed in your cluster and 
deploy the cluster with the IPv6 family.

IP family

You can use any supported instance type when using the IPv4 family for a cluster, which allows 
your cluster to assign private IPv4 addresses to your Pods and Services. But if you want to 
use the IPv6 family for your cluster, then you must use AWS Nitro System instance types or 
bare metal instance types. Only IPv4 is supported for Windows instances. Your cluster must be 

Instance types 258

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#ec2-nitro-instances
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html#ec2-nitro-instances
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/accelerated-computing-instances.html
https://github.com/awslabs/amazon-eks-ami/blob/master/files/eni-max-pods.txt
https://github.com/awslabs/amazon-eks-ami/blob/master/files/eni-max-pods.txt
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/


Amazon EKS User Guide

running version 1.10.1 or later of the Amazon VPC CNI add-on. For more information about 
using IPv6, see IPv6 addresses for clusters, Pods, and services.

Version of the Amazon VPC CNI add-on that you're running

The latest version of the Amazon VPC CNI plugin for Kubernetes supports these instance types. 
You may need to update your Amazon VPC CNI add-on version to take advantage of the latest 
supported instance types. For more information, see Working with the Amazon VPC CNI plugin 
for Kubernetes Amazon EKS add-on. The latest version supports the latest features for use with 
Amazon EKS. Earlier versions don't support all features. You can view features supported by 
different versions in the Changelog on GitHub.

AWS Region that you're creating your nodes in

Not all instance types are available in all AWS Regions.

Whether you're using security groups for Pods

If you're using security groups for Pods, only specific instance types are supported. For more 
information, see Security groups for Pods.

Amazon EKS recommended maximum Pods for each Amazon EC2 
instance type

Since each Pod is assigned its own IP address, the number of IP addresses supported by an instance 
type is a factor in determining the number of Pods that can run on the instance. Amazon EKS 
provides a script that you can download and run to determine the Amazon EKS recommended 
maximum number of Pods to run on each instance type. The script uses hardware attributes of 
each instance, and configuration options, to determine the maximum Pods number. You can use 
the number returned in these steps to enable capabilities such as assigning IP addresses to Pods 
from a different subnet than the instance's and significantly increasing the number of IP addresses 
for your instance. If you're using a managed node group with multiple instance types, use a value 
that would work for all instance types.

1. Download a script that you can use to calculate the maximum number of Pods for each instance 
type.

curl -O https://raw.githubusercontent.com/awslabs/amazon-eks-ami/master/files/max-
pods-calculator.sh

2. Mark the script as executable on your computer.

Maximum Pods 259

https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/pkg/vpc/vpc_ip_resource_limit.go
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/CHANGELOG.md


Amazon EKS User Guide

chmod +x max-pods-calculator.sh

3. Run the script, replacing m5.large with the instance type that you plan to deploy and 1.9.0-
eksbuild.1 with your Amazon VPC CNI add-on version. To determine your add-on version, see 
the update procedures in Working with the Amazon VPC CNI plugin for Kubernetes Amazon EKS 
add-on.

./max-pods-calculator.sh --instance-type m5.large --cni-version 1.9.0-eksbuild.1

An example output is as follows.

29

You can add the following options to the script to see the maximum Pods supported when using 
optional capabilities.

• --cni-custom-networking-enabled – Use this option when you want to assign IP 
addresses from a different subnet than your instance's. For more information, see Custom 
networking for pods. Adding this option to the previous script with the same example values 
yields 20.

• --cni-prefix-delegation-enabled – Use this option when you want to assign 
significantly more IP addresses to each elastic network interface. This capability requires 
an Amazon Linux instance that run on the Nitro System and version 1.9.0 or later of the 
Amazon VPC CNI add-on. For more information, see Increase the amount of available IP 
addresses for your Amazon EC2 nodes. Adding this option to the previous script with the same 
example values yields 110.

You can also run the script with the --help option to see all available options.

Note

The max Pods calculator script limits the return value to 110 based on Kubernetes 
scalability thresholds and recommended settings. If your instance type has greater than 30 
vCPUs, this limit jumps to 250, a number based on internal Amazon EKS scalability team 
testing. For more information, see the Amazon VPC CNI plugin increases pods per node 
limits blog post.

Maximum Pods 260

https://github.com/kubernetes/community/blob/master/sig-scalability/configs-and-limits/thresholds.md
https://github.com/kubernetes/community/blob/master/sig-scalability/configs-and-limits/thresholds.md
https://aws.amazon.com/blogs/containers/amazon-vpc-cni-increases-pods-per-node-limits/
https://aws.amazon.com/blogs/containers/amazon-vpc-cni-increases-pods-per-node-limits/


Amazon EKS User Guide

Amazon EKS optimized AMIs

You can deploy nodes with pre-built Amazon EKS optimized Amazon Machine Images (AMIs) or 
your own custom AMIs. For information about each type of Amazon EKS optimized AMI, see one 
of the following topics. For instructions on how to create your own custom AMI, see Amazon EKS 
optimized Amazon Linux AMI build script.

Topics

• Amazon EKS ended support for Dockershim

• Amazon EKS optimized Amazon Linux AMIs

• Amazon EKS optimized Bottlerocket AMIs

• Amazon EKS optimized Ubuntu Linux AMIs

• Amazon EKS optimized Windows AMIs

Amazon EKS ended support for Dockershim

Kubernetes no longer supports Dockershim. The Kubernetes team removed the runtime in 
Kubernetes version 1.24. For more information, see Kubernetes is Moving on From Dockershim: 
Commitments and Next Steps on the Kubernetes Blog.

Amazon EKS also ended support for Dockershim starting with the Kubernetes version 1.24
release. Amazon EKS AMIs that are officially published have containerd as the only runtime 
starting with version 1.24. This topic covers some details, but more information is available in All 
you need to know about moving to containerd on Amazon EKS.

There's a kubectl plugin that you can use to see which of your Kubernetes workloads mount the 
Docker socket volume. For more information, see Detector for Docker Socket (DDS) on GitHub. 
Amazon EKS AMIs that run Kubernetes versions that are earlier than 1.24 use Docker as the 
default runtime. However, these Amazon EKS AMIs have a bootstrap flag option that you can use 
to test out your workloads on any supported cluster using containerd. For more information, see
Test migration from Docker to containerd.

We will continue to publish AMIs for existing Kubernetes versions until the end of their support 
date. For more information, see Amazon EKS Kubernetes release calendar. If you require more 
time to test your workloads on containerd, use a supported version before 1.24. But, when you 
want to upgrade official Amazon EKS AMIs to version 1.24 or later, make sure to validate that your 
workloads run on containerd.

Amazon EKS optimized AMIs 261

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://kubernetes.io/blog/2022/01/07/kubernetes-is-moving-on-from-dockershim/
https://kubernetes.io/blog/2022/01/07/kubernetes-is-moving-on-from-dockershim/
https://aws.amazon.com/blogs/containers/all-you-need-to-know-about-moving-to-containerd-on-amazon-eks/
https://aws.amazon.com/blogs/containers/all-you-need-to-know-about-moving-to-containerd-on-amazon-eks/
https://github.com/aws-containers/kubectl-detector-for-docker-socket


Amazon EKS User Guide

The containerd runtime provides more reliable performance and security. containerd is the 
runtime that's being standardized on across Amazon EKS. Fargate and Bottlerocket already use
containerd only. containerd helps to minimize the number of Amazon EKS AMI releases that 
are required to address Dockershim Common Vulnerabilities and Exposures (CVEs). Because
Dockershim already uses containerd internally, you might not need to make any changes. 
However, there are some situations where changes might or must be required:

• You must make changes to applications that mount the Docker socket. For example, container 
images that are built with a container are impacted. Many monitoring tools also mount 
the Docker socket. You might need to wait for updates or re-deploy workloads for runtime 
monitoring.

• You might need to make changes for applications that are reliant on specific Docker settings. For 
example, the HTTPS_PROXY protocol is no longer supported. You must update applications that 
use this protocol. For more information, see dockerd in the Docker Docs.

• If you use the Amazon ECR credential helper to pull images, you must switch to the kubelet
image credential provider. For more information, see Configure a kubelet image credential 
provider in the Kubernetes documentation.

• Because Amazon EKS 1.24 no longer supports Docker, some flags that the Amazon EKS 
bootstrap script previously supported are no longer supported. Before moving to Amazon EKS
1.24 or later, you must remove any reference to flags that are now unsupported:

• --container-runtime dockerd (containerd is the only supported value)

• --enable-docker-bridge

• --docker-config-json

• If you already have Fluentd configured for Container Insights, then you must migrate Fluentd 
to Fluent Bit before changing to containerd. The Fluentd parsers are configured to only parse 
log messages in JSON format. Unlike dockerd, the containerd container runtime has log 
messages that aren't in JSON format. If you don't migrate to Fluent Bit, some of the configured 
Fluentd's parsers will generate a massive amount of errors inside the Fluentd container. For more 
information on migrating, see Set up Fluent Bit as a DaemonSet to send logs to CloudWatch 
Logs.

• If you use a custom AMI and you are upgrading to Amazon EKS 1.24, then you must make sure 
that IP forwarding is enabled for your worker nodes. This setting wasn't needed with Docker but 
is required for containerd. It is needed to troubleshoot Pod-to-Pod, Pod-to-external, or Pod-
to-apiserver network connectivity.

Dockershim deprecation 262

https://cve.mitre.org/
https://docs.docker.com/engine/reference/commandline/dockerd/
https://kubernetes.io/docs/tasks/kubelet-credential-provider/kubelet-credential-provider/
https://kubernetes.io/docs/tasks/kubelet-credential-provider/kubelet-credential-provider/
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-logs-FluentBit.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-logs-FluentBit.html


Amazon EKS User Guide

To verify this setting on a worker node, run either of the following commands:

• sysctl net.ipv4.ip_forward

• cat /proc/sys/net/ipv4/ip_forward

If the output is 0, then run either of the following commands to activate the
net.ipv4.ip_forward kernel variable:

• sysctl -w net.ipv4.ip_forward=1

• echo 1 > /proc/sys/net/ipv4/ip_forward

For the setting's activation on Amazon EKS AMIs in the containerd runtime, see install-
worker.sh on GitHub.

Amazon EKS optimized Amazon Linux AMIs

The Amazon EKS optimized Amazon Linux AMI is built on top of Amazon Linux 2 (AL2) and Amazon 
Linux 2023 (AL2023). It's configured to serve as the base image for Amazon EKS nodes. The AMI is 
configured to work with Amazon EKS and it includes the following components:

• kubelet

• AWS IAM Authenticator

• Docker (Amazon EKS version 1.23 and earlier)

• containerd

Note

• You can track security or privacy events for AL2 at the Amazon Linux security center or 
subscribe to the associated RSS feed. Security and privacy events include an overview of 
the issue, what packages are affected, and how to update your instances to correct the 
issue.

• Before deploying an accelerated or Arm AMI, review the information in Amazon EKS 
optimized accelerated Amazon Linux AMIs and Amazon EKS optimized Arm Amazon 
Linux AMIs.

Amazon Linux 263

https://github.com/awslabs/amazon-eks-ami/blob/master/scripts/install-worker.sh
https://github.com/awslabs/amazon-eks-ami/blob/master/scripts/install-worker.sh
https://alas.aws.amazon.com/alas2.html
https://alas.aws.amazon.com/AL2/alas.rss


Amazon EKS User Guide

• For Kubernetes version 1.23, you can use an optional bootstrap flag to test migration 
from Docker to containerd. For more information, see Test migration from Docker to
containerd.

• Starting with Kubernetes version 1.25, you will no longer be able to use Amazon EC2
P2 instances with the Amazon EKS optimized accelerated Amazon Linux AMIs out of the 
box. These AMIs for Kubernetes versions 1.25 or later will support NVIDIA 525 series 
or later drivers, which are incompatible with the P2 instances. However, NVIDIA 525
series or later drivers are compatible with the P3, P4, and P5 instances, so you can use 
those instances with the AMIs for Kubernetes version 1.25 or later. Before your Amazon 
EKS clusters are upgraded to version 1.25, migrate any P2 instances to P3, P4, and
P5 instances. You should also proactively upgrade your applications to work with the
NVIDIA 525 series or later. We plan to back port the newer NVIDIA 525 series or later 
drivers to Kubernetes versions 1.23 and 1.24 in late January 2024.

• Starting with Amazon EKS version 1.30, any newly created node groups will 
automatically default to using AL2023 as the node operating system across all Amazon 
EKS versions. Previously, new node groups would default to AL2. You can continue to use 
AL2 by choosing it as the AMI type when creating a new node group.

• Support for AL2 will end on June 30th, 2025. For more information, see Amazon Linux 2 
FAQs.

Upgrade from AL2 to AL2023

The Amazon EKS optimized AMI is available in two families based on AL2 and AL2023. AL2023 is 
a new Linux-based operating system designed to provide a secure, stable, and high-performance 
environment for your cloud applications. It's the next generation of Amazon Linux from Amazon 
Web Services and is available across all supported Amazon EKS versions, including versions 1.23
and 1.24 in extended support. Amazon EKS accelerated AMIs based on AL2023 will be available at 
a later date. If you have accelerated workloads, you should continue to use the AL2 accelerated AMI 
or Bottlerocket.

AL2023 offers several improvements over AL2. For a full comparison, see Comparing AL2 and 
Amazon Linux 2023 in the Amazon Linux 2023 User Guide. Several packages have been added, 
upgraded, and removed from AL2. It's highly recommended to test your applications with AL2023 
before upgrading. For a list of all package changes in AL2023, see Package changes in Amazon 
Linux 2023 in the Amazon Linux 2023 Release Notes.

Amazon Linux 264

https://aws.amazon.com/amazon-linux-2/faqs/
https://aws.amazon.com/amazon-linux-2/faqs/
https://docs.aws.amazon.com/linux/al2023/ug/compare-with-al2.html
https://docs.aws.amazon.com/linux/al2023/ug/compare-with-al2.html
https://docs.aws.amazon.com/linux/al2023/release-notes/compare-packages.html
https://docs.aws.amazon.com/linux/al2023/release-notes/compare-packages.html


Amazon EKS User Guide

In addition to these changes, you should be aware of the following:

• AL2023 introduces a new node initialization process nodeadm that uses a YAML configuration 
schema. If you're using self-managed node groups or an AMI with a launch template, you'll 
now need to provide additional cluster metadata explicitly when creating a new node group. 
An example of the minimum required parameters is as follows, where apiServerEndpoint,
certificateAuthority, and service cidr are now required:

---
apiVersion: node.eks.aws/v1alpha1
kind: NodeConfig
spec: 
  cluster: 
    name: my-cluster
    apiServerEndpoint: https://example.com
    certificateAuthority: Y2VydGlmaWNhdGVBdXRob3JpdHk=
    cidr: 10.100.0.0/16

In AL2, the metadata from these parameters was discovered from the Amazon EKS
DescribeCluster API call. With AL2023, this behavior has changed since the additional 
API call risks throttling during large node scale ups. This change doesn't affect you if you're 
using managed node groups without a launch template or if you're using Karpenter. For more 
information on certificateAuthority and service cidr, see DescribeCluster in the
Amazon EKS API Reference.

• Docker isn't supported in AL2023 for all supported Amazon EKS versions. Support for Docker 
has ended and been removed with Amazon EKS version 1.24 or greater in AL2. For more 
information on deprecation, see  Amazon EKS ended support for Dockershim.

• Amazon VPC CNI version 1.16.2 or greater is required for AL2023.

• AL2023 requires IMDSv2 by default. IMDSv2 has several benefits that help improve security 
posture. It uses a session-oriented authentication method that requires the creation of a secret 
token in a simple HTTP PUT request to start the session. A session's token can be valid for 
anywhere between 1 second and 6 hours. For more information on how to transition from
IMDSv1 to IMDSv2, see Transition to using Instance Metadata Service Version 2 and Get the full 
benefits of IMDSv2 and disable IMDSv1 across your AWS infrastructure. If you would like to use
IMDSv1, you can still do so by manually overriding the settings using instance metadata option 
launch properties.

Amazon Linux 265

https://awslabs.github.io/amazon-eks-ami/nodeadm/
https://docs.aws.amazon.com/eks/latest/APIReference/API_DescribeCluster.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-metadata-transition-to-version-2.html
https://aws.amazon.com/blogs/security/get-the-full-benefits-of-imdsv2-and-disable-imdsv1-across-your-aws-infrastructure/
https://aws.amazon.com/blogs/security/get-the-full-benefits-of-imdsv2-and-disable-imdsv1-across-your-aws-infrastructure/


Amazon EKS User Guide

Note

For IMDSv2, the default hop count for managed node groups is set to 1. This means 
that containers won't have access to the node's credentials using IMDS. If you require 
container access to the node's credentials, you can still do so by manually overriding the
HttpPutResponseHopLimit in a custom Amazon EC2 launch template, increasing it to 
2. Alternatively, you can use  Amazon EKS Pod Identity to provide credentials instead of
IMDSv2.

• AL2023 features the next generation of unified control group hierarchy (cgroupv2). cgroupv2
is used to implement a container runtime, and by systemd. While AL2023 still includes 
code that can make the system run using cgroupv1, this isn't a recommended or supported 
configuration. This configuration will be completely removed in a future major release of 
Amazon Linux.

For previously existing managed node groups, you can either perform an in-place upgrade or a 
blue/green upgrade depending on how you're using a launch template:

• If you're using a custom AMI with a managed node group, you can perform an in-place upgrade 
by swapping the AMI ID in the launch template. You should ensure that your applications and 
any user data transfer over to AL2023 first before performing this upgrade strategy.

• If you're using managed node groups with either the standard launch template or with a custom 
launch template that doesn't specify the AMI ID, you're required to upgrade using a blue/green 
strategy. A blue/green upgrade is typically more complex and involves creating an entirely 
new node group where you would specify AL2023 as the AMI type. The new node group will 
need to then be carefully configured to ensure that all custom data from the AL2 node group is 
compatible with the new OS. Once the new node group has been tested and validated with your 
applications, Pods can be migrated from the old node group to the new node group. Once the 
migration is completed, you can delete the old node group.

If you're using Karpenter and want to use AL2023, you'll need to modify the AWSNoteTemplate
amiFamily field with AL2023. By default, Drift is enabled in Karpenter. This means that once the
amiFamily field has been changed, Karpenter will automatically update your worker nodes to the 
latest AMI when available.

Amazon Linux 266

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-launchtemplate-metadataoptions.html


Amazon EKS User Guide

Amazon EKS optimized accelerated Amazon Linux AMIs

Note

Amazon EKS accelerated AMIs based on AL2023 will be available at a later date. If you have 
accelerated workloads, you should continue to use the AL2 accelerated AMI or Bottlerocket.

The Amazon EKS optimized accelerated Amazon Linux AMI is built on top of the standard Amazon 
EKS optimized Amazon Linux AMI. It's configured to serve as an optional image for Amazon EKS 
nodes to support GPU, Inferentia, and Trainium based workloads.

In addition to the standard Amazon EKS optimized AMI configuration, the accelerated AMI includes 
the following:

• NVIDIA drivers

• The nvidia-container-runtime (as the default runtime)

• AWS Neuron container runtime

For a list of the latest components included in the accelerated AMI, see the amazon-eks-ami
Releases on GitHub.

Note

• The Amazon EKS optimized accelerated AMI only supports GPU and Inferentia 
based instance types. Make sure to specify these instance types in your node AWS 
CloudFormation template. By using the Amazon EKS optimized accelerated AMI, you 
agree to NVIDIA's user license agreement (EULA).

• The Amazon EKS optimized accelerated AMI was previously referred to as the Amazon 
EKS optimized AMI with GPU support.

• Previous versions of the Amazon EKS optimized accelerated AMI installed the nvidia-
docker repository. The repository is no longer included in Amazon EKS AMI version
v20200529 and later.

Amazon Linux 267

https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/trainium/
https://github.com/awslabs/amazon-eks-ami/releases
https://www.nvidia.com/en-us/drivers/nvidia-license/


Amazon EKS User Guide

To enable GPU based workloads

The following procedure describes how to run a workload on a GPU based instance with the 
Amazon EKS optimized accelerated AMI. For other options, see the following references:

• For more information about using Inferentia based workloads, see Machine learning inference 
using AWS Inferentia.

• For more information about using Neuron, see Containers - Kubernetes - Getting Started in the
AWS Neuron Documentation.

1. After your GPU nodes join your cluster, you must apply the NVIDIA device plugin for 
Kubernetes as a DaemonSet on your cluster. Replace vX.X.X with your desired NVIDIA/k8s-
device-plugin version before running the following command.

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/vX.X.X/
nvidia-device-plugin.yml

2. You can verify that your nodes have allocatable GPUs with the following command.

kubectl get nodes "-o=custom-
columns=NAME:.metadata.name,GPU:.status.allocatable.nvidia\.com/gpu"

To deploy a Pod to test that your GPU nodes are configured properly

1. Create a file named nvidia-smi.yaml with the following contents. Replace tag with your 
desired tag for nvidia/cuda. This manifest launches an NVIDIA CUDA container that runs
nvidia-smi on a node.

apiVersion: v1
kind: Pod
metadata: 
  name: nvidia-smi
spec: 
  restartPolicy: OnFailure 
  containers: 
  - name: nvidia-smi 
    image: nvidia/cuda:tag
    args: 
    - "nvidia-smi" 

Amazon Linux 268

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/containers/kubernetes-getting-started.html
https://github.com/NVIDIA/k8s-device-plugin
https://github.com/NVIDIA/k8s-device-plugin
https://github.com/NVIDIA/k8s-device-plugin/releases
https://github.com/NVIDIA/k8s-device-plugin/releases
https://hub.docker.com/r/nvidia/cuda/tags
https://developer.nvidia.com/cuda-zone


Amazon EKS User Guide

    resources: 
      limits: 
        nvidia.com/gpu: 1

2. Apply the manifest with the following command.

kubectl apply -f nvidia-smi.yaml

3. After the Pod has finished running, view its logs with the following command.

kubectl logs nvidia-smi

An example output is as follows.

Mon Aug  6 20:23:31 20XX
+-----------------------------------------------------------------------------+
| NVIDIA-SMI XXX.XX                 Driver Version: XXX.XX                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla V100-SXM2...  On   | 00000000:00:1C.0 Off |                    0 |
| N/A   46C    P0    47W / 300W |      0MiB / 16160MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

Amazon EKS optimized Arm Amazon Linux AMIs

Arm instances deliver significant cost savings for scale-out and Arm-based applications such as web 
servers, containerized microservices, caching fleets, and distributed data stores. When adding Arm 
nodes to your cluster, review the following considerations.

Amazon Linux 269



Amazon EKS User Guide

Considerations

• If your cluster was deployed before August 17, 2020, you must do a one-time upgrade of critical 
cluster add-on manifests. This is so that Kubernetes can pull the correct image for each hardware 
architecture in use in your cluster. For more information about updating cluster add-ons, see
Update the Kubernetes version for your Amazon EKS cluster. If you deployed your cluster on 
or after August 17, 2020, then your CoreDNS, kube-proxy, and Amazon VPC CNI plugin for 
Kubernetes add-ons are already multi-architecture capable.

• Applications deployed to Arm nodes must be compiled for Arm.

• If you have DaemonSets that are deployed in an existing cluster, or you want to deploy them to a 
new cluster that you also want to deploy Arm nodes in, then verify that your DaemonSet can run 
on all hardware architectures in your cluster.

• You can run Arm node groups and x86 node groups in the same cluster. If you do, consider 
deploying multi-architecture container images to a container repository such as Amazon Elastic 
Container Registry and then adding node selectors to your manifests so that Kubernetes knows 
what hardware architecture a Pod can be deployed to. For more information, see Pushing a 
multi-architecture image in the Amazon ECR User Guide and the Introducing multi-architecture 
container images for Amazon ECR blog post.

Test migration from Docker to containerd

Amazon EKS ended support for Docker starting with the Kubernetes version 1.24 launch. For more 
information, see Amazon EKS ended support for Dockershim.

For Kubernetes version 1.23, you can use an optional bootstrap flag to enable the containerd
runtime for Amazon EKS optimized AL2 AMIs. This feature gives you a clear path to migrate to
containerd when updating to version 1.24 or later. Amazon EKS ended support for Docker 
starting with the Kubernetes version 1.24 launch. The containerd runtime is widely adopted in 
the Kubernetes community and is a graduated project with the CNCF. You can test it by adding a 
node group to a new or existing cluster.

You can enable the boostrap flag by creating one of the following types of node groups.

Self-managed

Create the node group using the instructions in Launching self-managed Amazon Linux nodes. 
Specify an Amazon EKS optimized AMI and the following text for the BootstrapArguments
parameter.

Amazon Linux 270

https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-multi-architecture-image.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-multi-architecture-image.html
https://aws.amazon.com/blogs/containers/introducing-multi-architecture-container-images-for-amazon-ecr/
https://aws.amazon.com/blogs/containers/introducing-multi-architecture-container-images-for-amazon-ecr/


Amazon EKS User Guide

--container-runtime containerd

Managed

If you use eksctl, create a file named my-nodegroup.yaml with the following contents. 
Replace every example value with your own values. The node group name can't be 
longer than 63 characters. It must start with letter or digit, but can also include hyphens 
and underscores for the remaining characters. To retrieve an optimized AMI ID for
ami-1234567890abcdef0, see Retrieving Amazon EKS optimized Amazon Linux AMI IDs.

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata: 
  name: my-cluster
  region: region-code
  version: 1.23
managedNodeGroups: 
  - name: my-nodegroup
    ami: ami-1234567890abcdef0
    overrideBootstrapCommand: | 
      #!/bin/bash 
      /etc/eks/bootstrap.sh my-cluster --container-runtime containerd

Note

If you launch many nodes simultaneously, you may also want to specify values for the
--apiserver-endpoint, --b64-cluster-ca, and --dns-cluster-ip bootstrap 
arguments to avoid errors. For more information, see Specifying an AMI.

Run the following command to create the node group.

eksctl create nodegroup -f my-nodegroup.yaml

If you prefer to use a different tool to create your managed node group, you must deploy 
the node group using a launch template. In your launch template, specify an Amazon EKS 
optimized AMI ID, then deploy the node group using a launch template and provide the 
following user data. This user data passes arguments into the bootstrap.sh file. For more 
information about the bootstrap file, see bootstrap.sh on GitHub.

Amazon Linux 271

https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh


Amazon EKS User Guide

/etc/eks/bootstrap.sh my-cluster --container-runtime containerd

More information

For more information about using Amazon EKS optimized Amazon Linux AMIs, see the following 
sections:

• To use Amazon Linux with managed node groups, see Managed node groups.

• To launch self-managed Amazon Linux nodes, see Retrieving Amazon EKS optimized Amazon 
Linux AMI IDs.

• For version information, see Amazon EKS optimized Amazon Linux AMI versions.

• To retrieve the latest IDs of the Amazon EKS optimized Amazon Linux AMIs, see Retrieving 
Amazon EKS optimized Amazon Linux AMI IDs.

• For open-source scripts that are used to build the Amazon EKS optimized AMI, see Amazon EKS 
optimized Amazon Linux AMI build script.

Amazon EKS optimized Amazon Linux AMI versions

Amazon EKS optimized Amazon Linux AMIs are versioned by Kubernetes version and the release 
date of the AMI in the following format:

k8s_major_version.k8s_minor_version.k8s_patch_version-release_date

Each AMI release includes various versions of kubelet, Docker, the Linux kernel, and containerd. 
The accelerated AMI also includes various versions of the NVIDIA driver. You can find this version 
information in the Changelog on GitHub.

Retrieving Amazon EKS optimized Amazon Linux AMI IDs

You can programmatically retrieve the Amazon Machine Image (AMI) ID for Amazon EKS optimized 
AMIs by querying the AWS Systems Manager Parameter Store API. This parameter eliminates the 
need for you to manually look up Amazon EKS optimized AMI IDs. For more information about the 
Systems Manager Parameter Store API, see GetParameter.

To retrieve an AMI ID for Amazon EKS optimized AMIs using the AWS CLI

1. Determine the region your node instance will be deployed in, such as us-east-1.

Amazon Linux 272

https://github.com/awslabs/amazon-eks-ami/blob/master/CHANGELOG.md
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameter.html


Amazon EKS User Guide

2. Determine the type of AMI you need. For information about the types of Amazon EC2 
instances, see Instance Types.

• amazon-linux-2 is for Amazon Linux 2 (AL2) x86 based instances.

• amazon-linux-2-arm64 is for AL2 ARM instances, such as AWS Graviton based instances.

• amazon-linux-2-gpu is for AL2 GPU accelerated instances.

• amazon-linux-2023/x86_64/standard is for Amazon Linux 2023 (AL2023) x86 based 
instances.

• amazon-linux-2023/arm64/standard is for AL2023 ARM instances.

3. Determine the Kubernetes version of the cluster your node will be attached to, such as 1.29.

4. Run the following AWS CLI command to retrieve the appropriate AMI ID. Replace the AWS 
Region, Kubernetes version, and platform as appropriate. You must be logged into the AWS 
CLI using an IAM principal that has the ssm:GetParameter IAM permission to retrieve the 
Amazon EKS optimized AMI metadata.

aws ssm get-parameter --name /aws/service/eks/optimized-ami/1.29/amazon-linux-2/
recommended/image_id \ 
                --region region-code --query "Parameter.Value" --output text

An example output is as follows.

ami-1234567890abcdef0

Amazon EKS optimized Amazon Linux AMI build script

Amazon Elastic Kubernetes Service (Amazon EKS) has open-source scripts that are used to build the 
Amazon EKS optimized AMI. These build scripts are available on GitHub.

The Amazon EKS optimized Amazon Linux AMI is built on top of Amazon Linux 2 (AL2) and Amazon 
Linux 2023 (AL2023), specifically for use as a node in Amazon EKS clusters. You can use this 
repository to view the specifics of how the Amazon EKS team configures kubelet , Docker, the 
AWS IAM Authenticator for Kubernetes, and build your own Amazon Linux based AMI from scratch.

The build scripts repository includes a HashiCorp packer template and build scripts to generate an 
AMI. These scripts are the source of truth for Amazon EKS optimized AMI builds, so you can follow 

Amazon Linux 273

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://aws.amazon.com/ec2/graviton/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/accelerated-computing-instances.html#gpu-instances
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://github.com/awslabs/amazon-eks-ami
https://www.packer.io/


Amazon EKS User Guide

the GitHub repository to monitor changes to our AMIs. For example, perhaps you want your own 
AMI to use the same version of Docker that the Amazon EKS team uses for the official AMI.

The GitHub repository also contains the specialized bootstrap script and nodeadm script that runs 
at boot time to configure your instance's certificate data, control plane endpoint, cluster name, and 
more.

Additionally, the GitHub repository contains our Amazon EKS node AWS CloudFormation 
templates. These templates make it easier to spin up an instance running the Amazon EKS 
optimized AMI and register it with a cluster.

For more information, see the repositories on GitHub at https://github.com/awslabs/amazon-eks-
ami.

Amazon EKS optimized AL2 contains an optional bootstrap flag to enable the containerd
runtime.

Configuring VT1 for your custom Amazon Linux AMI

Custom Amazon Linux AMIs in Amazon EKS can support the VT1 video transcoding instance 
family for Amazon Linux 2 (AL2), Ubuntu 18, and Ubuntu 20. VT1 supports the Xilinx U30 media 
transcoding cards with accelerated H.264/AVC and H.265/HEVC codecs. To get the benefit of these 
accelerated instances, you must follow these steps:

1. Create and launch a base AMI from AL2, Ubuntu 18, or Ubuntu 20.

2. After the based AMI is launched, Install the XRT driver and runtime on the node.

3. Creating an Amazon EKS cluster.

4. Install the Kubernetes FPGA plugin on your cluster.

kubectl apply -f fpga-device-plugin.yml

The plugin will now advertise Xilinx U30 devices per node on your Amazon EKS cluster. You can 
use the FFMPEG docker image to run example video transcoding workloads on your Amazon EKS 
cluster.

Configuring DL1 for your custom Amazon Linux 2 AMI

Custom Amazon Linux 2 (AL2) AMIs in Amazon EKS can support deep learning workloads at 
scale through additional configuration and Kubernetes add-ons. This document describes the 

Amazon Linux 274

https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh
https://awslabs.github.io/amazon-eks-ami/nodeadm/
https://github.com/awslabs/amazon-eks-ami
https://github.com/awslabs/amazon-eks-ami
https://xilinx.github.io/video-sdk/
https://github.com/Xilinx/FPGA_as_a_Service/tree/master/k8s-device-plugin


Amazon EKS User Guide

components required to set up a generic Kubernetes solution for an on-premise setup or as a 
baseline in a larger cloud configuration. To support this function, you will have to perform the 
following steps in your custom environment:

• SynapaseAI® Software drivers loaded on the system – These are included in the AMIs available on 
Github.

The Habana device plugin -- A Daemonset that allows you to automatically enable the 
registration of Habana devices in your Kubernetes cluster and track device health.

• Helm 3.x

• Helm chart to install MPI Operator.

• MPI Operator

1. Create and launch a base AMI from AL2, Ubuntu 18, or Ubuntu 20.

2. Follow these instructions to set up the environment for DL1.

Amazon EKS optimized Bottlerocket AMIs

Bottlerocket is an open source Linux distribution that's sponsored and supported by AWS. 
Bottlerocket is purpose-built for hosting container workloads. With Bottlerocket, you can improve 
the availability of containerized deployments and reduce operational costs by automating 
updates to your container infrastructure. Bottlerocket includes only the essential software to run 
containers, which improves resource usage, reduces security threats, and lowers management 
overhead. The Bottlerocket AMI includes containerd, kubelet, and AWS IAM Authenticator. 
In addition to managed node groups and self-managed nodes, Bottlerocket is also supported by
Karpenter.

Advantages

Using Bottlerocket with your Amazon EKS cluster has the following advantages:

• Higher uptime with lower operational cost and lower management complexity – Bottlerocket 
has a smaller resource footprint, shorter boot times, and is less vulnerable to security threats 
than other Linux distributions. Bottlerocket's smaller footprint helps to reduce costs by using less 
storage, compute, and networking resources.

• Improved security from automatic OS updates – Updates to Bottlerocket are applied as a 
single unit which can be rolled back, if necessary. This removes the risk of corrupted or failed 

Bottlerocket 275

https://github.com/aws-samples/aws-habana-baseami-pipeline
https://github.com/aws-samples/aws-habana-baseami-pipeline
https://docs.habana.ai/en/latest/Gaudi_Kubernetes/Gaudi_Kubernetes.html#habana-mpi-operator-and-helm-chart-for-kubernetes
https://docs.habana.ai/en/latest/Gaudi_Kubernetes/Gaudi_Kubernetes.html
https://aws.amazon.com/bottlerocket/
https://karpenter.sh/


Amazon EKS User Guide

updates that can leave the system in an unusable state. With Bottlerocket, security updates can 
be automatically applied as soon as they're available in a minimally disruptive manner and be 
rolled back if failures occur.

• Premium support – AWS provided builds of Bottlerocket on Amazon EC2 is covered under the 
same AWS Support plans that also cover AWS services such as Amazon EC2, Amazon EKS, and 
Amazon ECR.

Considerations

Consider the following when using Bottlerocket for your AMI type:

• Bottlerocket supports Amazon EC2 instances with x86_64 and arm64 processors. The 
Bottlerocket AMI isn't recommended for use with Amazon EC2 instances with an Inferentia chip.

• Currently, there's no AWS CloudFormation template that you can use to deploy Bottlerocket 
nodes with.

• Bottlerocket images don't include an SSH server or a shell. You can employ out-of-band 
access methods to allow SSH. These approaches enable the admin container and to pass some 
bootstrapping configuration steps with user data. For more information, refer to the following 
sections in Bottlerocket OS on GitHub:

• Exploration

• Admin container

• Kubernetes settings

• Bottlerocket uses different container types:

• By default, a control container is enabled. This container runs the AWS Systems Manager 
agent that you can use to run commands or start shell sessions on Amazon EC2 Bottlerocket 
instances. For more information, see Setting up Session Manager in the AWS Systems Manager 
User Guide.

• If an SSH key is given when creating the node group, an admin container is enabled. We 
recommend using the admin container only for development and testing scenarios. We don't 
recommend using it for production environments. For more information, see Admin container
on GitHub.

Bottlerocket 276

https://github.com/bottlerocket-os/bottlerocket/blob/develop/README.md
https://github.com/bottlerocket-os/bottlerocket/blob/develop/README.md#exploration
https://github.com/bottlerocket-os/bottlerocket/blob/develop/README.md#admin-container
https://github.com/bottlerocket-os/bottlerocket/blob/develop/README.md#kubernetes-settings
https://github.com/bottlerocket-os/bottlerocket-control-container
https://github.com/aws/amazon-ssm-agent
https://github.com/aws/amazon-ssm-agent
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-getting-started.html
https://github.com/bottlerocket-os/bottlerocket/blob/develop/README.md#admin-container


Amazon EKS User Guide

More information

For more information about using Amazon EKS optimized Bottlerocket AMIs, see the following 
sections:

• For details about Bottlerocket, see the documentation and releases on GitHub.

• To use Bottlerocket with managed node groups, see Managed node groups.

• To launch self-managed Bottlerocket nodes, see Launching self-managed Bottlerocket nodes.

• To retrieve the latest IDs of the Amazon EKS optimized Bottlerocket AMIs, see Retrieving Amazon 
EKS optimized Bottlerocket AMI IDs.

• For details on compliance support, see Bottlerocket compliance support.

Retrieving Amazon EKS optimized Bottlerocket AMI IDs

You can retrieve the Amazon Machine Image (AMI) ID for Amazon EKS optimized AMIs by 
querying the AWS Systems Manager Parameter Store API. Using this parameter, you don't need 
to manually look up Amazon EKS optimized AMI IDs. For more information about the Systems 
Manager Parameter Store API, see GetParameter. The IAM principal that you use must have the
ssm:GetParameter IAM permission to retrieve the Amazon EKS optimized AMI metadata.

You can retrieve the image ID of the latest recommended Amazon EKS optimized Bottlerocket AMI 
with the following AWS CLI command by using the sub-parameter image_id. Replace 1.29 with a
supported version and region-code with an Amazon EKS supported Region for which you want 
the AMI ID.

aws ssm get-parameter --name /aws/service/bottlerocket/aws-k8s-1.29/x86_64/latest/
image_id --region region-code --query "Parameter.Value" --output text

An example output is as follows.

ami-1234567890abcdef0

Bottlerocket compliance support

Bottlerocket complies with recommendations defined by various organizations:

• There is a CIS Benchmark defined for Bottlerocket. In a default configuration, Bottlerocket image 
has most of the controls required by CIS Level 1 configuration profile. You can implement the 

Bottlerocket 277

https://github.com/bottlerocket-os/bottlerocket/blob/develop/README.md
https://github.com/bottlerocket-os/bottlerocket/releases
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameter.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/general/latest/gr/eks.html
https://www.cisecurity.org/benchmark/bottlerocket


Amazon EKS User Guide

controls required for a CIS Level 2 configuration profile. For more information, see Validating 
Amazon EKS optimized Bottlerocket AMI against the CIS Benchmark on the AWS blog.

• The optimized feature set and reduced attack surface means that Bottlerocket instances require 
less configuration to satisfy PCI DSS requirements. The CIS Benchmark for Bottlerocket is 
an excellent resource for hardening guidance, and supports your requirements for secure 
configuration standards under PCI DSS requirement 2.2. You can also leverage Fluent Bit to 
support your requirements for operating system level audit logging under PCI DSS requirement 
10.2. AWS publishes new (patched) Bottlerocket instances periodically to help you meet PCI DSS 
requirement 6.2 (for v3.2.1) and requirement 6.3.3 (for v4.0).

• Bottlerocket is an HIPAA-eligible feature authorized for use with regulated workloads for both 
Amazon EC2 and Amazon EKS. For more information, see the Architecting for HIPAA Security and 
Compliance on Amazon EKS whitepaper.

Amazon EKS optimized Ubuntu Linux AMIs

Canonical has partnered with Amazon EKS to create node AMIs that you can use in your clusters.

Canonical delivers a built-for-purpose Kubernetes Node OS image. This minimized Ubuntu image is 
optimized for Amazon EKS and includes the custom AWS kernel that is jointly developed with AWS. 
For more information, see Ubuntu on Amazon Elastic Kubernetes Service (EKS). For information 
about support, see the Third-party software section of the AWS Premium Support FAQs.

Amazon EKS optimized Windows AMIs

Windows Amazon EKS optimized AMIs are built on top of Windows Server 2019 and Windows 
Server 2022. They are configured to serve as the base image for Amazon EKS nodes. By default, the 
AMIs include the following components:

• kubelet

• kube-proxy

• AWS IAM Authenticator for Kubernetes

• csi-proxy

• containerd

Ubuntu Linux 278

https://aws.amazon.com/blogs/containers/validating-amazon-eks-optimized-bottlerocket-ami-against-the-cis-benchmark/
https://aws.amazon.com/blogs/containers/validating-amazon-eks-optimized-bottlerocket-ami-against-the-cis-benchmark/
https://www.cisecurity.org/benchmark/bottlerocket
https://opensearch.org/blog/technical-post/2022/07/bottlerocket-k8s-fluent-bit/
https://docs.aws.amazon.com/pdfs/whitepapers/latest/architecting-hipaa-security-and-compliance-on-amazon-eks/architecting-hipaa-security-and-compliance-on-amazon-eks.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/architecting-hipaa-security-and-compliance-on-amazon-eks/architecting-hipaa-security-and-compliance-on-amazon-eks.pdf
https://www.canonical.com/
https://cloud-images.ubuntu.com/aws-eks/
https://aws.amazon.com/premiumsupport/faqs/#Third-party_software
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://github.com/kubernetes-sigs/aws-iam-authenticator
https://github.com/kubernetes-csi/csi-proxy
https://containerd.io/


Amazon EKS User Guide

Note

You can track security or privacy events for Windows Server with the Microsoft security 
update guide.

Amazon EKS offers AMIs that are optimized for Windows containers in the following variants:

• Amazon EKS-optimized Windows Server 2019 Core AMI

• Amazon EKS-optimized Windows Server 2019 Full AMI

• Amazon EKS-optimized Windows Server 2022 Core AMI

• Amazon EKS-optimized Windows Server 2022 Full AMI

Important

• The Amazon EKS-optimized Windows Server 20H2 Core AMI is deprecated. No new 
versions of this AMI will be released.

• To ensure that you have the latest security updates by default, Amazon EKS maintains 
optimized Windows AMIs for the last 4 months. Each new AMI will be available for 4 
months from the time of initial release. After this period, older AMIs are made private 
and are no longer accessible. We encourage using the latest AMIs to avoid security 
vulnerabilities and losing access to older AMIs which have reached the end of their 
supported lifetime. While we can't guarantee that we can provide access to AMIs that 
have been made private, you can request access by filing a ticket with AWS Support.

Release calendar

The following table lists the release and end of support dates for Windows versions on Amazon 
EKS. If an end date is blank, it's because the version is still supported.

Windows version Amazon EKS release Amazon EKS end of support

Windows Server 2022 Core 10/17/2022  

Windows Server 2022 Full 10/17/2022  

Windows 279

https://portal.msrc.microsoft.com/en-us/security-guidance
https://portal.msrc.microsoft.com/en-us/security-guidance


Amazon EKS User Guide

Windows version Amazon EKS release Amazon EKS end of support

Windows Server 20H2 Core 8/12/2021 8/9/2022

Windows Server 2004 Core 8/19/2020 12/14/2021

Windows Server 2019 Core 10/7/2019  

Windows Server 2019 Full 10/7/2019  

Windows Server 1909 Core 10/7/2019 12/8/2020

Bootstrap script configuration parameters

When you create a Windows node, there's a script on the node that allows for configuring different 
parameters. Depending on your setup, this script can be found on the node at a location similar 
to: C:\Program Files\Amazon\EKS\Start-EKSBootstrap.ps1. You can specify custom 
parameter values by specifying them as arguments to the bootstrap script. For example, you can 
update the user data in the launch template. For more information, see Amazon EC2 user data.

The script includes the following command-line parameters:

• -EKSClusterName – Specifies the Amazon EKS cluster name for this worker node to join.

• -KubeletExtraArgs – Specifies extra arguments for kubelet (optional).

• -KubeProxyExtraArgs – Specifies extra arguments for kube-proxy (optional).

• -APIServerEndpoint – Specifies the Amazon EKS cluster API server endpoint (optional). Only 
valid when used with -Base64ClusterCA. Bypasses calling Get-EKSCluster.

• -Base64ClusterCA – Specifies the base64 encoded cluster CA content (optional). Only valid 
when used with -APIServerEndpoint. Bypasses calling Get-EKSCluster.

• -DNSClusterIP – Overrides the IP address to use for DNS queries within the cluster (optional). 
Defaults to 10.100.0.10 or 172.20.0.10 based on the IP address of the primary interface.

• -ServiceCIDR – Overrides the Kubernetes service IP address range from which cluster services 
are addressed. Defaults to 172.20.0.0/16 or 10.100.0.0/16 based on the IP address of the 
primary interface.

• -ExcludedSnatCIDRs – A list of IPv4 CIDRs to exclude from Source Network Address 
Translation (SNAT). This means that the pod private IP which is VPC addressable wouldn't be 

Windows 280



Amazon EKS User Guide

translated to the IP address of the instance ENI's primary IPv4 address for outbound traffic. By 
default, the IPv4 CIDR of the VPC for the Amazon EKS Windows node is added. Specifying CIDRs 
to this parameter also additionally excludes the specified CIDRs. For more information, see SNAT 
for Pods.

In addition to the command line parameters, you can also specify some environment variable 
parameters. When specifying a command line parameter, it takes precedence over the respective 
environment variable. The environment variable(s) should be defined as machine (or system) 
scoped as the bootstrap script will only read machine-scoped variables.

The script takes into account the following environment variables:

• SERVICE_IPV4_CIDR – Refer to the ServiceCIDR command line parameter for the definition.

• EXCLUDED_SNAT_CIDRS – Should be a comma separated string. Refer to the
ExcludedSnatCIDRs command line parameter for the definition.

Launch self-managed Windows Server 2022 nodes with eksctl

You can use the following test-windows-2022.yaml as reference for running Windows Server 
2022 as self-managed nodes. Replace every example value with your own values.

Note

You must use eksctl version 0.116.0 or later to run self-managed Windows Server 2022 
nodes.

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata: 
  name: windows-2022-cluster
  region: region-code
  version: '1.29'

nodeGroups: 
  - name: windows-ng
    instanceType: m5.2xlarge

Windows 281

https://github.com/weaveworks/eksctl/releases/tag/v0.116.0


Amazon EKS User Guide

    amiFamily: WindowsServer2022FullContainer
    volumeSize: 100
    minSize: 2
    maxSize: 3
  - name: linux-ng
    amiFamily: AmazonLinux2
    minSize: 2
    maxSize: 3

The node groups can then be created using the following command.

eksctl create cluster -f test-windows-2022.yaml

gMSA authentication support

Amazon EKS Windows Pods allow different types of group Managed Service Account (gMSA) 
authentication.

• Amazon EKS supports Active Directory domain identities for authentication. For more 
information on domain-joined gMSA, see Windows Authentication on Amazon EKS 
Windowspods on the AWS blog.

• Amazon EKS offers a plugin that enables non-domain-joined Windows nodes to retrieve gMSA 
credentials with a portable user identity. For more information on domainless gMSA, see
Domainless Windows Authentication for Amazon EKS Windowspods on the AWS blog.

Cached container images

Amazon EKS Windows optimized AMIs have certain container images cached for the containerd
runtime. Container images are cached when building custom AMIs using Amazon-managed build 
components. For more information, see Using the Amazon-managed build component.

The following cached container images are for the containerd runtime:

• amazonaws.com/eks/pause-windows

• mcr.microsoft.com/windows/nanoserver

• mcr.microsoft.com/windows/servercore

Windows 282

https://aws.amazon.com/blogs/containers/windows-authentication-on-amazon-eks-windows-pods/
https://aws.amazon.com/blogs/containers/windows-authentication-on-amazon-eks-windows-pods/
https://aws.amazon.com/blogs/containers/domainless-windows-authentication-for-amazon-eks-windows-pods/


Amazon EKS User Guide

More information

For more information about using Amazon EKS optimized Windows AMIs, see the following 
sections:

• To use Windows with managed node groups, see Managed node groups.

• To launch self-managed Windows nodes, see Launching self-managed Windows nodes.

• For version information, see Amazon EKS optimized Windows AMI versions.

• To retrieve the latest IDs of the Amazon EKS optimized Windows AMIs, see Retrieving Amazon 
EKS optimized Windows AMI IDs.

• To use Amazon EC2 Image Builder to create custom Amazon EKS optimized Windows AMIs, see
Creating custom Amazon EKS optimized Windows AMIs.

• For best practices, see Amazon EKS optimized Windows AMI management in the EKS Best 
Practices Guide.

Amazon EKS optimized Windows AMI versions

Important

Extended Support for Amazon EKS optimized Windows AMIs that are published by AWS 
isn't available for Kubernetes version 1.23 but is available for Kubernetes version 1.24
and higher.

This topic lists versions of the Amazon EKS optimized Windows AMIs and their corresponding 
versions of kubelet, containerd, and csi-proxy.

The Amazon EKS optimized AMI metadata, including the AMI ID, for each variant can be retrieved 
programmatically. For more information, see Retrieving Amazon EKS optimized Windows AMI IDs.

AMIs are versioned by Kubernetes version and the release date of the AMI in the following format:

k8s_major_version.k8s_minor_version-release_date

Windows 283

https://aws.github.io/aws-eks-best-practices/windows/docs/ami/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://containerd.io/
https://github.com/kubernetes-csi/csi-proxy


Amazon EKS User Guide

Note

Amazon EKS managed node groups support the November 2022 and later releases of the 
Windows AMIs.

Amazon EKS optimized Windows Server 2022 Core AMI

The following tables list the current and previous versions of the Amazon EKS optimized Windows 
Server 2022 Core AMI.

Kubernetes version 1.29

Kubernetes version 1.29

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.29-2024 
.02.13

1.29.0 1.6.25 1.1.2  

1.29-2024 
.02.06

1.29.0 1.6.25 1.1.2 Fixed a bug where the pause 
image was incorrectly deleted 
by kubelet garbage collection 
process.

1.29-2024 
.01.11

1.29.0 1.6.18 1.1.2 Excluded Standalone Windows 
Update KB5034439 on Windows 
Server 2022 Core AMIs. The KB 
applies only to Windows installat 
ions with a separate WinRE 
partition, which aren't included 
with any of our Amazon EKS 
Optimized Windows AMIs.

Windows 284

https://support.microsoft.com/en-au/topic/kb5034439-windows-recovery-environment-update-for-azure-stack-hci-version-22h2-and-windows-server-2022-january-9-2024-6f9d26e6-784c-4503-a3c6-0beedda443ca


Amazon EKS User Guide

Kubernetes version 1.28

Kubernetes version 1.28

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.28-2024 
.02.13

1.28.5 1.6.18 1.1.2  

1.28-2024 
.01.11

1.28.5 1.6.18 1.1.2 Excluded Standalone Windows 
Update KB5034439 on Windows 
Server 2022 Core AMIs. The KB 
applies only to Windows installat 
ions with a separate WinRE 
partition, which aren't included 
with any of our Amazon EKS 
Optimized Windows AMIs.

1.28-2023 
.12.12

1.28.3 1.6.18 1.1.2  

1.28-2023 
.11.14

1.28.3 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.28-2023 
.10.19

1.28.2 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Added new bootstrap 
script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.28-2023 
-09.27

1.28.2 1.6.6 1.1.2 Fixed a security advisory in
kubelet.

1.28-2023 
.09.12

1.28.1 1.6.6 1.1.2  

Windows 285

https://support.microsoft.com/en-au/topic/kb5034439-windows-recovery-environment-update-for-azure-stack-hci-version-22h2-and-windows-server-2022-january-9-2024-6f9d26e6-784c-4503-a3c6-0beedda443ca
https://github.com/advisories/GHSA-6xv5-86q9-7xr8


Amazon EKS User Guide

Kubernetes version 1.27

Kubernetes version 1.27

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.27-2024 
.02.13

1.27.9 1.6.18 1.1.2  

1.27-2024 
.01.11

1.27.9 1.6.18 1.1.2 Excluded Standalone Windows 
Update KB5034439 on Windows 
Server 2022 Core AMIs. The KB 
applies only to Windows installat 
ions with a separate WinRE 
partition, which aren't included 
with any of our Amazon EKS 
Optimized Windows AMIs.

1.27-2023 
.12.12

1.27.7 1.6.18 1.1.2  

1.27-2023 
.11.14

1.27.7 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.27-2023 
.10.19

1.27.6 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Added new bootstrap 
script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.27-2023 
-09.27

1.27.6 1.6.6 1.1.2 Fixed a security advisory in
kubelet.

1.27-2023 
.09.12

1.27.4 1.6.6 1.1.2 Upgraded the Amazon VPC CNI 
plugin to use the Kubernetes 
connector binary, which gets 
the Pod IP address from the 

Windows 286

https://support.microsoft.com/en-au/topic/kb5034439-windows-recovery-environment-update-for-azure-stack-hci-version-22h2-and-windows-server-2022-january-9-2024-6f9d26e6-784c-4503-a3c6-0beedda443ca
https://github.com/advisories/GHSA-6xv5-86q9-7xr8


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

Kubernetes API server. Merged
pull request #100.

1.27-2023 
.08.17

1.27.4 1.6.6 1.1.2 Includes patches for CVE-2023- 
3676 , CVE-2023-3893 , and
CVE-2023-3955 .

1.27-2023 
.08.08

1.27.3 1.6.6 1.1.1  

1.27-2023 
.07.11

1.27.3 1.6.6 1.1.1  

1.27-2023 
.06.20

1.27.1 1.6.6 1.1.1 Resolved issue that was causing 
the DNS suffix search list to be 
incorrectly populated.

1.27-2023 
.06.14

1.27.1 1.6.6 1.1.1 Added support for host port 
mapping in CNI. Merged pull 
request #93.

1.27-2023 
.06.06

1.27.1 1.6.6 1.1.1 Fixed containers-roadmap
issue #2042, which caused nodes 
to fail pulling private Amazon 
ECR images.

1.27-2023 
.05.17

1.27.1 1.6.6 1.1.1  

Windows 287

https://github.com/aws/amazon-vpc-cni-plugins/pull/100
https://github.com/aws/amazon-vpc-cni-plugins/pull/93
https://github.com/aws/amazon-vpc-cni-plugins/pull/93
https://github.com/aws/containers-roadmap/issues/2042


Amazon EKS User Guide

Kubernetes version 1.26

Kubernetes version 1.26

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.26-2024 
.02.13

1.26.12 1.6.18 1.1.2  

1.26-2024 
.01.11

1.26.12 1.6.18 1.1.2 Excluded Standalone Windows 
Update KB5034439 on Windows 
Server 2022 Core AMIs. The KB 
applies only to Windows installat 
ions with a separate WinRE 
partition, which aren't included 
with any of our Amazon EKS 
Optimized Windows AMIs.

1.26-2023 
.12.12

1.26.10 1.6.18 1.1.2  

1.26-2023 
.11.14

1.26.10 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.26-2023 
.10.19

1.26.9 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Upgraded kubelet to
1.26.9. Added new bootstrap 
script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.26-2023 
.09.12

1.26.7 1.6.6 1.1.2 Upgraded the Amazon VPC CNI 
plugin to use the Kubernetes 
connector binary, which gets 
the Pod IP address from the 
Kubernetes API server. Merged
pull request #100.

Windows 288

https://support.microsoft.com/en-au/topic/kb5034439-windows-recovery-environment-update-for-azure-stack-hci-version-22h2-and-windows-server-2022-january-9-2024-6f9d26e6-784c-4503-a3c6-0beedda443ca
https://github.com/aws/amazon-vpc-cni-plugins/pull/100


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.26-2023 
.08.17

1.26.7 1.6.6 1.1.2 Includes patches for CVE-2023- 
3676 , CVE-2023-3893 , and
CVE-2023-3955 .

1.26-2023 
.08.08

1.26.6 1.6.6 1.1.1  

1.26-2023 
.07.11

1.26.6 1.6.6 1.1.1  

1.26-2023 
.06.20

1.26.4 1.6.6 1.1.1 Resolved issue that was causing 
the DNS suffix search list to be 
incorrectly populated.

1.26-2023 
.06.14

1.26.4 1.6.6 1.1.1 Upgraded Kubernetes to
1.26.4. Added support for host 
port mapping in CNI. Merged
pull request #93.

1.26-2023 
.05.09

1.26.2 1.6.6 1.1.1 Fixed a bug causing network 
connectivity issue #1126
on pods after node restart. 
Introduced a new bootstrap 
script configuration parameter
 (ExcludedSnatCIDRs ).

1.26-2023 
.04.26

1.26.2 1.6.6 1.1.1  

1.26-2023 
.04.11

1.26.2 1.6.6 1.1.1 Added recovery mechanism for
kubelet and kube-proxy  on 
service crash.

Windows 289

https://github.com/aws/amazon-vpc-cni-plugins/pull/93
https://github.com/aws/containers-roadmap/issues/1126


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.26-2023 
.03.24

1.26.2 1.6.6 1.1.1  

Kubernetes version 1.25

Kubernetes version 1.25

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.25-2024 
.02.13

1.25.16 1.6.18 1.1.2  

1.25-2024 
.01.11

1.25.16 1.6.18 1.1.2 Excluded Standalone Windows 
Update KB5034439 on Windows 
Server 2022 Core AMIs. The KB 
applies only to Windows installat 
ions with a separate WinRE 
partition, which aren't included 
with any of our Amazon EKS 
Optimized Windows AMIs.

1.25-2023 
.12.12

1.25.15 1.6.18 1.1.2  

1.25-2023 
.11.14

1.25.15 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.25-2023 
.10.19

1.25.14 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Upgraded kubelet to
1.25.14. Added new bootstrap 
script environment variables

Windows 290

https://support.microsoft.com/en-au/topic/kb5034439-windows-recovery-environment-update-for-azure-stack-hci-version-22h2-and-windows-server-2022-january-9-2024-6f9d26e6-784c-4503-a3c6-0beedda443ca


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.25-2023 
.09.12

1.25.12 1.6.6 1.1.2 Upgraded the Amazon VPC CNI 
plugin to use the Kubernetes 
connector binary, which gets 
the Pod IP address from the 
Kubernetes API server. Merged
pull request #100.

1.25-2023 
.08.17

1.25.12 1.6.6 1.1.2 Includes patches for CVE-2023- 
3676 , CVE-2023-3893 , and
CVE-2023-3955 .

1.25-2023 
.08.08

1.25.9 1.6.6 1.1.1  

1.25-2023 
.07.11

1.25.9 1.6.6 1.1.1  

1.25-2023 
.06.20

1.25.9 1.6.6 1.1.1 Resolved issue that was causing 
the DNS suffix search list to be 
incorrectly populated.

1.25-2023 
.06.14

1.25.9 1.6.6 1.1.1 Upgraded Kubernetes to
1.25.9. Added support for host 
port mapping in CNI. Merged
pull request #93.

Windows 291

https://github.com/aws/amazon-vpc-cni-plugins/pull/100
https://github.com/aws/amazon-vpc-cni-plugins/pull/93


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.25-2023 
.05.09

1.25.7 1.6.6 1.1.1 Fixed a bug causing network 
connectivity issue #1126
on pods after node restart. 
Introduced a new bootstrap 
script configuration parameter
 (ExcludedSnatCIDRs ).

1.25-2023 
.04.11

1.25.7 1.6.6 1.1.1 Added recovery mechanism for
kubelet and kube-proxy  on 
service crash.

1.25-2023 
.03.27

1.25.6 1.6.6 1.1.1 Installed a domainless gMSA 
plugin to facilitate gMSA 
authentication for Windows 
containers on Amazon EKS.

1.25-2023 
.03.20

1.25.6 1.6.6 1.1.1  

1.25-2023 
.02.14

1.25.6 1.6.6 1.1.1  

Kubernetes version 1.24

Kubernetes version 1.24

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.24-2024 
.02.13

1.24.17 1.6.18 1.1.2  

Windows 292

https://github.com/aws/containers-roadmap/issues/1126
https://aws.amazon.com/blogs/containers/domainless-windows-authentication-for-amazon-eks-windows-pods/
https://aws.amazon.com/blogs/containers/domainless-windows-authentication-for-amazon-eks-windows-pods/


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.24-2024 
.01.11

1.24.17 1.6.18 1.1.2 Excluded Standalone Windows 
Update KB5034439 on Windows 
Server 2022 Core AMIs. The KB 
applies only to Windows installat 
ions with a separate WinRE 
partition, which aren't included 
with any of our Amazon EKS 
Optimized Windows AMIs.

1.24-2023 
.12.12

1.24.17 1.6.18 1.1.2  

1.24-2023 
.11.14

1.24.17 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.24-2023 
.10.19

1.24.17 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Upgraded kubelet to
1.24.17. Added new bootstrap 
script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.24-2023 
.09.12

1.24.16 1.6.6 1.1.2 Upgraded the Amazon VPC CNI 
plugin to use the Kubernetes 
connector binary, which gets 
the Pod IP address from the 
Kubernetes API server. Merged
pull request #100.

1.24-2023 
.08.17

1.24.16 1.6.6 1.1.2 Includes patches for CVE-2023- 
3676 , CVE-2023-3893 , and
CVE-2023-3955 .

Windows 293

https://support.microsoft.com/en-au/topic/kb5034439-windows-recovery-environment-update-for-azure-stack-hci-version-22h2-and-windows-server-2022-january-9-2024-6f9d26e6-784c-4503-a3c6-0beedda443ca
https://github.com/aws/amazon-vpc-cni-plugins/pull/100


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.24-2023 
.08.08

1.24.13 1.6.6 1.1.1  

1.24-2023 
.07.11

1.24.13 1.6.6 1.1.1  

1.24-2023 
.06.20

1.24.13 1.6.6 1.1.1 Resolved issue that was causing 
the DNS suffix search list to be 
incorrectly populated.

1.24-2023 
.06.14

1.24.13 1.6.6 1.1.1 Upgraded Kubernetes to
1.24.13. Added support for 
host port mapping in CNI. 
Merged pull request #93.

1.24-2023 
.05.09

1.24.7 1.6.6 1.1.1 Fixed a bug causing network 
connectivity issue #1126
on pods after node restart. 
Introduced a new bootstrap 
script configuration parameter
 (ExcludedSnatCIDRs ).

1.24-2023 
.04.11

1.24.7 1.6.6 1.1.1 Added recovery mechanism for
kubelet and kube-proxy  on 
service crash.

1.24-2023 
.03.27

1.24.7 1.6.6 1.1.1 Installed a domainless gMSA 
plugin to facilitate gMSA 
authentication for Windows 
containers on Amazon EKS.

Windows 294

https://github.com/aws/amazon-vpc-cni-plugins/pull/93
https://github.com/aws/containers-roadmap/issues/1126
https://aws.amazon.com/blogs/containers/domainless-windows-authentication-for-amazon-eks-windows-pods/
https://aws.amazon.com/blogs/containers/domainless-windows-authentication-for-amazon-eks-windows-pods/


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.24-2023 
.03.20

1.24.7 1.6.6 1.1.1 Kubernetes version downgraded 
to 1.24.7 because 1.24.10 has 
a reported issue in kube-prox 
y .

1.24-2023 
.02.14

1.24.10 1.6.6 1.1.1  

1.24-2023 
.01.23

1.24.7 1.6.6 1.1.1  

1.24-2023 
.01.11

1.24.7 1.6.6 1.1.1  

1.24-2022 
.12.13

1.24.7 1.6.6 1.1.1  

1.24-2022 
.10.11

1.24.7 1.6.6 1.1.1  

Amazon EKS optimized Windows Server 2022 Full AMI

The following tables list the current and previous versions of the Amazon EKS optimized Windows 
Server 2022 Full AMI.

Kubernetes version 1.29

Kubernetes version 1.29

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.29-2024 
.02.13

1.29.0 1.6.25 1.1.2  

Windows 295



Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.29-2024 
.02.06

1.29.0 1.6.25 1.1.2 Fixed a bug where the pause 
image was incorrectly deleted 
by kubelet garbage collection 
process.

1.29-2024 
.01.09

1.29.0 1.6.18 1.1.2  

Kubernetes version 1.28

Kubernetes version 1.28

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.28-2024 
.02.13

1.28.5 1.6.18 1.1.2  

1.28-2024 
.01.09

1.28.5 1.6.18 1.1.2  

1.28-2023 
.12.12

1.28.3 1.6.18 1.1.2  

1.28-2023 
.11.14

1.28.3 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.28-2023 
.10.19

1.28.2 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Added new bootstrap 
script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

Windows 296



Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.28-2023 
-09.27

1.28.2 1.6.6 1.1.2 Fixed a security advisory in
kubelet.

1.28-2023 
.09.12

1.28.1 1.6.6 1.1.2  

Kubernetes version 1.27

Kubernetes version 1.27

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.27-2024 
.02.13

1.27.9 1.6.18 1.1.2  

1.27-2024 
.01.09

1.27.9 1.6.18 1.1.2  

1.27-2023 
.12.12

1.27.7 1.6.18 1.1.2  

1.27-2023 
.11.14

1.27.7 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.27-2023 
.10.19

1.27.6 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Added new bootstrap 
script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.27-2023 
-09.27

1.27.6 1.6.6 1.1.2 Fixed a security advisory in
kubelet.

Windows 297

https://github.com/advisories/GHSA-6xv5-86q9-7xr8
https://github.com/advisories/GHSA-6xv5-86q9-7xr8


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.27-2023 
.09.12

1.27.4 1.6.6 1.1.2 Upgraded the Amazon VPC CNI 
plugin to use the Kubernetes 
connector binary, which gets 
the Pod IP address from the 
Kubernetes API server. Merged
pull request #100.

1.27-2023 
.08.17

1.27.4 1.6.6 1.1.2 Includes patches for CVE-2023- 
3676 , CVE-2023-3893 , and
CVE-2023-3955 .

1.27-2023 
.08.08

1.27.3 1.6.6 1.1.1  

1.27-2023 
.07.11

1.27.3 1.6.6 1.1.1  

1.27-2023 
.06.20

1.27.1 1.6.6 1.1.1 Resolved issue that was causing 
the DNS suffix search list to be 
incorrectly populated.

1.27-2023 
.06.14

1.27.1 1.6.6 1.1.1 Added support for host port 
mapping in CNI. Merged pull 
request #93.

1.27-2023 
.06.06

1.27.1 1.6.6 1.1.1 Fixed containers-roadmap
issue #2042, which caused nodes 
to fail pulling private Amazon 
ECR images.

1.27-2023 
.05.18

1.27.1 1.6.6 1.1.1  

Windows 298

https://github.com/aws/amazon-vpc-cni-plugins/pull/100
https://github.com/aws/amazon-vpc-cni-plugins/pull/93
https://github.com/aws/amazon-vpc-cni-plugins/pull/93
https://github.com/aws/containers-roadmap/issues/2042


Amazon EKS User Guide

Kubernetes version 1.26

Kubernetes version 1.26

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.26-2024 
.02.13

1.26.12 1.6.18 1.1.2  

1.26-2024 
.01.09

1.26.12 1.6.18 1.1.2  

1.26-2023 
.12.12

1.26.10 1.6.18 1.1.2  

1.26-2023 
.11.14

1.26.10 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.26-2023 
.10.19

1.26.9 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Upgraded kubelet to
1.26.9. Added new bootstrap 
script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.26-2023 
.09.12

1.26.7 1.6.6 1.1.2 Upgraded the Amazon VPC CNI 
plugin to use the Kubernetes 
connector binary, which gets 
the Pod IP address from the 
Kubernetes API server. Merged
pull request #100.

1.26-2023 
.08.17

1.26.7 1.6.6 1.1.2 Includes patches for CVE-2023- 
3676 , CVE-2023-3893 , and
CVE-2023-3955 .

Windows 299

https://github.com/aws/amazon-vpc-cni-plugins/pull/100


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.26-2023 
.08.08

1.26.6 1.6.6 1.1.1  

1.26-2023 
.07.11

1.26.6 1.6.6 1.1.1  

1.26-2023 
.06.20

1.26.4 1.6.6 1.1.1 Resolved issue that was causing 
the DNS suffix search list to be 
incorrectly populated.

1.26-2023 
.06.14

1.26.4 1.6.6 1.1.1 Upgraded Kubernetes to
1.26.4. Added support for host 
port mapping in CNI. Merged
pull request #93.

1.26-2023 
.05.09

1.26.2 1.6.6 1.1.1 Fixed a bug causing network 
connectivity issue #1126
on pods after node restart. 
Introduced a new bootstrap 
script configuration parameter
 (ExcludedSnatCIDRs ).

1.26-2023 
.04.26

1.26.2 1.6.6 1.1.1  

1.26-2023 
.04.11

1.26.2 1.6.6 1.1.1 Added recovery mechanism for
kubelet and kube-proxy  on 
service crash.

1.26-2023 
.03.24

1.26.2 1.6.6 1.1.1  

Windows 300

https://github.com/aws/amazon-vpc-cni-plugins/pull/93
https://github.com/aws/containers-roadmap/issues/1126


Amazon EKS User Guide

Kubernetes version 1.25

Kubernetes version 1.25

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.25-2024 
.02.13

1.25.16 1.6.18 1.1.2  

1.25-2024 
.01.09

1.25.16 1.6.18 1.1.2  

1.25-2023 
.12.12

1.25.15 1.6.18 1.1.2  

1.25-2023 
.11.14

1.25.15 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.25-2023 
.10.19

1.25.14 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Upgraded kubelet to
1.25.14. Added new bootstrap 
script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.25-2023 
.09.12

1.25.12 1.6.6 1.1.2 Upgraded the Amazon VPC CNI 
plugin to use the Kubernetes 
connector binary, which gets 
the Pod IP address from the 
Kubernetes API server. Merged
pull request #100.

1.25-2023 
.08.17

1.25.12 1.6.6 1.1.2 Includes patches for CVE-2023- 
3676 , CVE-2023-3893 , and
CVE-2023-3955 .

Windows 301

https://github.com/aws/amazon-vpc-cni-plugins/pull/100


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.25-2023 
.08.08

1.25.9 1.6.6 1.1.1  

1.25-2023 
.07.11

1.25.9 1.6.6 1.1.1  

1.25-2023 
.06.20

1.25.9 1.6.6 1.1.1 Resolved issue that was causing 
the DNS suffix search list to be 
incorrectly populated.

1.25-2023 
.06.14

1.25.9 1.6.6 1.1.1 Upgraded Kubernetes to
1.25.9. Added support for host 
port mapping in CNI. Merged
pull request #93.

1.25-2023 
.05.09

1.25.7 1.6.6 1.1.1 Fixed a bug causing network 
connectivity issue #1126
on pods after node restart. 
Introduced a new bootstrap 
script configuration parameter
 (ExcludedSnatCIDRs ).

1.25-2023 
.04.11

1.25.7 1.6.6 1.1.1 Added recovery mechanism for
kubelet and kube-proxy  on 
service crash.

1.25-2023 
.03.27

1.25.6 1.6.6 1.1.1 Installed a domainless gMSA 
plugin to facilitate gMSA 
authentication for Windows 
containers on Amazon EKS.

1.25-2023 
.03.20

1.25.6 1.6.6 1.1.1  

Windows 302

https://github.com/aws/amazon-vpc-cni-plugins/pull/93
https://github.com/aws/containers-roadmap/issues/1126
https://aws.amazon.com/blogs/containers/domainless-windows-authentication-for-amazon-eks-windows-pods/
https://aws.amazon.com/blogs/containers/domainless-windows-authentication-for-amazon-eks-windows-pods/


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.25-2023 
.02.14

1.25.6 1.6.6 1.1.1  

Kubernetes version 1.24

Kubernetes version 1.24

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.24-2024 
.02.13

1.24.17 1.6.18 1.1.2  

1.24-2024 
.01.09

1.24.17 1.6.18 1.1.2  

1.24-2023 
.12.12

1.24.17 1.6.18 1.1.2  

1.24-2023 
.11.14

1.24.17 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.24-2023 
.10.19

1.24.17 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Upgraded kubelet to
1.24.17. Added new bootstrap 
script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.24-2023 
.09.12

1.24.16 1.6.6 1.1.2 Upgraded the Amazon VPC CNI 
plugin to use the Kubernetes 
connector binary, which gets 
the Pod IP address from the 

Windows 303



Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

Kubernetes API server. Merged
pull request #100.

1.24-2023 
.08.17

1.24.16 1.6.6 1.1.2 Includes patches for CVE-2023- 
3676 , CVE-2023-3893 , and
CVE-2023-3955 .

1.24-2023 
.08.08

1.24.13 1.6.6 1.1.1  

1.24-2023 
.07.11

1.24.13 1.6.6 1.1.1  

1.24-2023 
.06.20

1.24.13 1.6.6 1.1.1 Resolved issue that was causing 
the DNS suffix search list to be 
incorrectly populated.

1.24-2023 
.06.14

1.24.13 1.6.6 1.1.1 Upgraded Kubernetes to
1.24.13. Added support for 
host port mapping in CNI. 
Merged pull request #93.

1.24-2023 
.05.09

1.24.7 1.6.6 1.1.1 Fixed a bug causing network 
connectivity issue #1126
on pods after node restart. 
Introduced a new bootstrap 
script configuration parameter
 (ExcludedSnatCIDRs ).

1.24-2023 
.04.11

1.24.7 1.6.6 1.1.1 Added recovery mechanism for
kubelet and kube-proxy  on 
service crash.

Windows 304

https://github.com/aws/amazon-vpc-cni-plugins/pull/100
https://github.com/aws/amazon-vpc-cni-plugins/pull/93
https://github.com/aws/containers-roadmap/issues/1126


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.24-2023 
.03.27

1.24.7 1.6.6 1.1.1 Installed a domainless gMSA 
plugin to facilitate gMSA 
authentication for Windows 
containers on Amazon EKS.

1.24-2023 
.03.20

1.24.7 1.6.6 1.1.1 Kubernetes version downgraded 
to 1.24.7 because 1.24.10 has 
a reported issue in kube-prox 
y .

1.24-2023 
.02.14

1.24.10 1.6.6 1.1.1  

1.24-2023 
.01.23

1.24.7 1.6.6 1.1.1  

1.24-2023 
.01.11

1.24.7 1.6.6 1.1.1  

1.24-2022 
.12.14

1.24.7 1.6.6 1.1.1  

1.24-2022 
.10.11

1.24.7 1.6.6 1.1.1  

Amazon EKS optimized Windows Server 2019 Core AMI

The following tables list the current and previous versions of the Amazon EKS optimized Windows 
Server 2019 Core AMI.

Windows 305

https://aws.amazon.com/blogs/containers/domainless-windows-authentication-for-amazon-eks-windows-pods/
https://aws.amazon.com/blogs/containers/domainless-windows-authentication-for-amazon-eks-windows-pods/


Amazon EKS User Guide

Kubernetes version 1.29

Kubernetes version 1.29

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.29-2024 
.02.13

1.29.0 1.6.25 1.1.2  

1.29-2024 
.02.06

1.29.0 1.6.25 1.1.2 Fixed a bug where the pause 
image was incorrectly deleted 
by kubelet garbage collection 
process.

1.29-2024 
.01.09

1.29.0 1.6.18 1.1.2  

Kubernetes version 1.28

Kubernetes version 1.28

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.28-2024 
.02.13

1.28.5 1.6.18 1.1.2  

1.28-2024 
.01.09

1.28.5 1.6.18 1.1.2  

1.28-2023 
.12.12

1.28.3 1.6.18 1.1.2  

1.28-2023 
.11.14

1.28.3 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

Windows 306



Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.28-2023 
.10.19

1.28.2 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Added new bootstrap 
script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.28-2023 
-09.27

1.28.2 1.6.6 1.1.2 Fixed a security advisory in
kubelet.

1.28-2023 
.09.12

1.28.1 1.6.6 1.1.2  

Kubernetes version 1.27

Kubernetes version 1.27

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.27-2024 
.02.13

1.27.9 1.6.18 1.1.2  

1.27-2024 
.01.09

1.27.9 1.6.18 1.1.2  

1.27-2023 
.12.12

1.27.7 1.6.18 1.1.2  

1.27-2023 
.11.14

1.27.7 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.27-2023 
.10.19

1.27.6 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Added new bootstrap 

Windows 307

https://github.com/advisories/GHSA-6xv5-86q9-7xr8


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.27-2023 
-09.27

1.27.6 1.6.6 1.1.2 Fixed a security advisory in
kubelet.

1.27-2023 
.09.12

1.27.4 1.6.6 1.1.2 Upgraded the Amazon VPC CNI 
plugin to use the Kubernetes 
connector binary, which gets 
the Pod IP address from the 
Kubernetes API server. Merged
pull request #100.

1.27-2023 
.08.17

1.27.4 1.6.6 1.1.2 Includes patches for CVE-2023- 
3676 , CVE-2023-3893 , and
CVE-2023-3955 .

1.27-2023 
.08.08

1.27.3 1.6.6 1.1.1  

1.27-2023 
.07.11

1.27.3 1.6.6 1.1.1  

1.27-2023 
.06.20

1.27.1 1.6.6 1.1.1 Resolved issue that was causing 
the DNS suffix search list to be 
incorrectly populated.

1.27-2023 
.06.14

1.27.1 1.6.6 1.1.1 Added support for host port 
mapping in CNI. Merged pull 
request #93.

Windows 308

https://github.com/advisories/GHSA-6xv5-86q9-7xr8
https://github.com/aws/amazon-vpc-cni-plugins/pull/100
https://github.com/aws/amazon-vpc-cni-plugins/pull/93
https://github.com/aws/amazon-vpc-cni-plugins/pull/93


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.27-2023 
.06.06

1.27.1 1.6.6 1.1.1 Fixed containers-roadmap
issue #2042, which caused nodes 
to fail pulling private Amazon 
ECR images.

11.27-202 
3.05.18

1.27.1 1.6.6 1.1.1  

Kubernetes version 1.26

Kubernetes version 1.26

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.26-2024 
.02.13

1.26.12 1.6.18 1.1.2  

1.26-2024 
.01.09

1.26.12 1.6.18 1.1.2  

1.26-2023 
.12.12

1.26.10 1.6.18 1.1.2  

1.26-2023 
.11.14

1.26.10 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.26-2023 
.10.19

1.26.9 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Upgraded kubelet to
1.26.9. Added new bootstrap 
script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

Windows 309

https://github.com/aws/containers-roadmap/issues/2042


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.26-2023 
.09.12

1.26.7 1.6.6 1.1.2 Upgraded the Amazon VPC CNI 
plugin to use the Kubernetes 
connector binary, which gets 
the Pod IP address from the 
Kubernetes API server. Merged
pull request #100.

1.26-2023 
.08.17

1.26.7 1.6.6 1.1.2 Includes patches for CVE-2023- 
3676 , CVE-2023-3893 , and
CVE-2023-3955 .

1.26-2023 
.08.08

1.26.6 1.6.6 1.1.1  

1.26-2023 
.07.11

1.26.6 1.6.6 1.1.1  

1.26-2023 
.06.20

1.26.4 1.6.6 1.1.1 Resolved issue that was causing 
the DNS suffix search list to be 
incorrectly populated.

1.26-2023 
.06.14

1.26.4 1.6.6 1.1.1 Upgraded Kubernetes to
1.26.4. Added support for host 
port mapping in CNI. Merged
pull request #93.

1.26-2023 
.05.09

1.26.2 1.6.6 1.1.1 Fixed a bug causing network 
connectivity issue #1126
on pods after node restart. 
Introduced a new bootstrap 
script configuration parameter
 (ExcludedSnatCIDRs ).

Windows 310

https://github.com/aws/amazon-vpc-cni-plugins/pull/100
https://github.com/aws/amazon-vpc-cni-plugins/pull/93
https://github.com/aws/containers-roadmap/issues/1126


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.26-2023 
.04.26

1.26.2 1.6.6 1.1.1  

1.26-2023 
.04.11

1.26.2 1.6.6 1.1.1 Added recovery mechanism for
kubelet and kube-proxy  on 
service crash.

1.26-2023 
.03.24

1.26.2 1.6.6 1.1.1  

Kubernetes version 1.25

Kubernetes version 1.25

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.25-2024 
.02.13

1.25.16 1.6.18 1.1.2  

1.25-2024 
.01.09

1.25.16 1.6.18 1.1.2  

1.25-2023 
.12.12

1.25.15 1.6.18 1.1.2  

1.25-2023 
.11.14

1.25.15 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.25-2023 
.10.19

1.25.14 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Upgraded kubelet to
1.25.14. Added new bootstrap 
script environment variables

Windows 311



Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.25-2023 
.09.12

1.25.12 1.6.6 1.1.2 Upgraded the Amazon VPC CNI 
plugin to use the Kubernetes 
connector binary, which gets 
the Pod IP address from the 
Kubernetes API server. Merged
pull request #100.

1.25-2023 
.08.17

1.25.12 1.6.6 1.1.2 Includes patches for CVE-2023- 
3676 , CVE-2023-3893 , and
CVE-2023-3955 .

1.25-2023 
.08.08

1.25.9 1.6.6 1.1.1  

1.25-2023 
.07.11

1.25.9 1.6.6 1.1.1  

1.25-2023 
.06.20

1.25.9 1.6.6 1.1.1 Resolved issue that was causing 
the DNS suffix search list to be 
incorrectly populated.

1.25-2023 
.06.14

1.25.9 1.6.6 1.1.1 Upgraded Kubernetes to
1.25.9. Added support for host 
port mapping in CNI. Merged
pull request #93.

Windows 312

https://github.com/aws/amazon-vpc-cni-plugins/pull/100
https://github.com/aws/amazon-vpc-cni-plugins/pull/93


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.25-2023 
.05.09

1.25.7 1.6.6 1.1.1 Fixed a bug causing network 
connectivity issue #1126
on pods after node restart. 
Introduced a new bootstrap 
script configuration parameter
 (ExcludedSnatCIDRs ).

1.25-2023 
.04.11

1.25.7 1.6.6 1.1.1 Added recovery mechanism for
kubelet and kube-proxy  on 
service crash.

1.25-2023 
.03.27

1.25.6 1.6.6 1.1.1 Installed a domainless gMSA 
plugin to facilitate gMSA 
authentication for Windows 
containers on Amazon EKS.

1.25-2023 
.03.20

1.25.6 1.6.6 1.1.1  

1.25-2023 
.02.14

1.25.6 1.6.6 1.1.1  

Kubernetes version 1.24

Kubernetes version 1.24

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.24-2024 
.02.13

1.24.17 1.6.18 1.1.2  

Windows 313

https://github.com/aws/containers-roadmap/issues/1126
https://aws.amazon.com/blogs/containers/domainless-windows-authentication-for-amazon-eks-windows-pods/
https://aws.amazon.com/blogs/containers/domainless-windows-authentication-for-amazon-eks-windows-pods/


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.24-2024 
.01.09

1.24.17 1.6.18 1.1.2  

1.24-2023 
.12.12

1.24.17 1.6.18 1.1.2  

1.24-2023 
.11.14

1.24.17 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.24-2023 
.10.19

1.24.17 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Upgraded kubelet to
1.24.17. Added new bootstrap 
script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.24-2023 
.09.12

1.24.16 1.6.6 1.1.2 Upgraded the Amazon VPC CNI 
plugin to use the Kubernetes 
connector binary, which gets 
the Pod IP address from the 
Kubernetes API server. Merged
pull request #100.

1.24-2023 
.08.17

1.24.16 1.6.6 1.1.2 Includes patches for CVE-2023- 
3676 , CVE-2023-3893 , and
CVE-2023-3955 .

1.24-2023 
.08.08

1.24.13 1.6.6 1.1.1  

1.24-2023 
.07.11

1.24.13 1.6.6 1.1.1  

Windows 314

https://github.com/aws/amazon-vpc-cni-plugins/pull/100


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.24-2023 
.06.20

1.24.13 1.6.6 1.1.1 Resolved issue that was causing 
the DNS suffix search list to be 
incorrectly populated.

1.24-2023 
.06.14

1.24.13 1.6.6 1.1.1 Upgraded Kubernetes to
1.24.13. Added support for 
host port mapping in CNI. 
Merged pull request #93.

1.24-2023 
.05.09

1.24.7 1.6.6 1.1.1 Fixed a bug causing network 
connectivity issue #1126
on pods after node restart. 
Introduced a new bootstrap 
script configuration parameter
 (ExcludedSnatCIDRs ).

1.24-2023 
.04.11

1.24.7 1.6.6 1.1.1 Added recovery mechanism for
kubelet and kube-proxy  on 
service crash.

1.24-2023 
.03.27

1.24.7 1.6.6 1.1.1 Installed a domainless gMSA 
plugin to facilitate gMSA 
authentication for Windows 
containers on Amazon EKS.

1.24-2023 
.03.20

1.24.7 1.6.6 1.1.1 Kubernetes version downgraded 
to 1.24.7 because 1.24.10 has 
a reported issue in kube-prox 
y .

1.24-2023 
.02.14

1.24.10 1.6.6 1.1.1  

Windows 315

https://github.com/aws/amazon-vpc-cni-plugins/pull/93
https://github.com/aws/containers-roadmap/issues/1126
https://aws.amazon.com/blogs/containers/domainless-windows-authentication-for-amazon-eks-windows-pods/
https://aws.amazon.com/blogs/containers/domainless-windows-authentication-for-amazon-eks-windows-pods/


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.24-2023 
.01.23

1.24.7 1.6.6 1.1.1  

1.24-2023 
.01.11

1.24.7 1.6.6 1.1.1  

1.24-2022 
.12.13

1.24.7 1.6.6 1.1.1  

1.24-2022 
.11.08

1.24.7 1.6.6 1.1.1  

Amazon EKS optimized Windows Server 2019 Full AMI

The following tables list the current and previous versions of the Amazon EKS optimized Windows 
Server 2019 Full AMI.

Kubernetes version 1.29

Kubernetes version 1.29

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.29-2024 
.02.13

1.29.0 1.6.25 1.1.2  

1.29-2024 
.02.06

1.29.0 1.6.25 1.1.2 Fixed a bug where the pause 
image was incorrectly deleted 
by kubelet garbage collection 
process.

1.29-2024 
.01.09

1.29.0 1.6.18 1.1.2  

Windows 316



Amazon EKS User Guide

Kubernetes version 1.28

Kubernetes version 1.28

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.28-2024 
.02.13

1.28.5 1.6.18 1.1.2  

1.28-2024 
.01.09

1.28.5 1.6.18 1.1.2  

1.28-2023 
.12.12

1.28.3 1.6.18 1.1.2  

1.28-2023 
.11.14

1.28.3 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.28-2023 
.10.19

1.28.2 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Added new bootstrap 
script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.28-2023 
-09.27

1.28.2 1.6.6 1.1.2 Fixed a security advisory in
kubelet.

1.28-2023 
.09.12

1.28.1 1.6.6 1.1.2  

Windows 317

https://github.com/advisories/GHSA-6xv5-86q9-7xr8


Amazon EKS User Guide

Kubernetes version 1.27

Kubernetes version 1.27

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.27-2024 
.02.13

1.27.9 1.6.18 1.1.2  

1.27-2024 
.01.09

1.27.9 1.6.18 1.1.2  

1.27-2023 
.12.12

1.27.7 1.6.18 1.1.2  

1.27-2023 
.11.14

1.27.7 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.27-2023 
.10.19

1.27.6 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Added new bootstrap 
script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.27-2023 
-09.27

1.27.6 1.6.6 1.1.2 Fixed a security advisory in
kubelet.

1.27-2023 
.09.12

1.27.4 1.6.6 1.1.2 Upgraded the Amazon VPC CNI 
plugin to use the Kubernetes 
connector binary, which gets 
the Pod IP address from the 
Kubernetes API server. Merged
pull request #100.

1.27-2023 
.08.17

1.27.4 1.6.6 1.1.2 Includes patches for CVE-2023- 
3676 , CVE-2023-3893 , and
CVE-2023-3955 .

Windows 318

https://github.com/advisories/GHSA-6xv5-86q9-7xr8
https://github.com/aws/amazon-vpc-cni-plugins/pull/100


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.27-2023 
.08.08

1.27.3 1.6.6 1.1.1  

1.27-2023 
.07.11

1.27.3 1.6.6 1.1.1  

1.27-2023 
.06.20

1.27.1 1.6.6 1.1.1 Resolved issue that was causing 
the DNS suffix search list to be 
incorrectly populated.

1.27-2023 
.06.14

1.27.1 1.6.6 1.1.1 Added support for host port 
mapping in CNI. Merged pull 
request #93.

1.27-2023 
.06.06

1.27.1 1.6.6 1.1.1 Fixed containers-roadmap
issue #2042, which caused nodes 
to fail pulling private Amazon 
ECR images.

1.27-2023 
.05.17

1.27.1 1.6.6 1.1.1  

Kubernetes version 1.26

Kubernetes version 1.26

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.26-2024 
.02.13

1.26.12 1.6.18 1.1.2  

Windows 319

https://github.com/aws/amazon-vpc-cni-plugins/pull/93
https://github.com/aws/amazon-vpc-cni-plugins/pull/93
https://github.com/aws/containers-roadmap/issues/2042


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.26-2024 
.01.09

1.26.12 1.6.18 1.1.2  

1.26-2023 
.12.12

1.26.10 1.6.18 1.1.2  

1.26-2023 
.11.14

1.26.10 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.26-2023 
.10.19

1.26.9 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Upgraded kubelet to
1.26.9. Added new bootstrap 
script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.26-2023 
.09.12

1.26.7 1.6.6 1.1.2 Upgraded the Amazon VPC CNI 
plugin to use the Kubernetes 
connector binary, which gets 
the Pod IP address from the 
Kubernetes API server. Merged
pull request #100.

1.26-2023 
.08.17

1.26.7 1.6.6 1.1.2 Includes patches for CVE-2023- 
3676 , CVE-2023-3893 , and
CVE-2023-3955 .

1.26-2023 
.08.08

1.26.6 1.6.6 1.1.1  

1.26-2023 
.07.11

1.26.6 1.6.6 1.1.1  

Windows 320

https://github.com/aws/amazon-vpc-cni-plugins/pull/100


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.26-2023 
.06.20

1.26.4 1.6.6 1.1.1 Resolved issue that was causing 
the DNS suffix search list to be 
incorrectly populated.

1.26-2023 
.06.14

1.26.4 1.6.6 1.1.1 Upgraded Kubernetes to
1.26.4. Added support for host 
port mapping in CNI. Merged
pull request #93.

1.26-2023 
.05.09

1.26.2 1.6.6 1.1.1 Fixed a bug causing network 
connectivity issue #1126
on pods after node restart. 
Introduced a new bootstrap 
script configuration parameter
 (ExcludedSnatCIDRs ).

1.26-2023 
.04.26

1.26.2 1.6.6 1.1.1  

1.26-2023 
.04.11

1.26.2 1.6.6 1.1.1 Added recovery mechanism for
kubelet and kube-proxy  on 
service crash.

1.26-2023 
.03.24

1.26.2 1.6.6 1.1.1  

Windows 321

https://github.com/aws/amazon-vpc-cni-plugins/pull/93
https://github.com/aws/containers-roadmap/issues/1126


Amazon EKS User Guide

Kubernetes version 1.25

Kubernetes version 1.25

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.25-2024 
.02.13

1.25.16 1.6.18 1.1.2  

1.25-2024 
.01.09

1.25.16 1.6.18 1.1.2  

1.25-2023 
.12.12

1.25.15 1.6.18 1.1.2  

1.25-2023 
.11.14

1.25.15 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.25-2023 
.10.19

1.25.14 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Upgraded kubelet to
1.25.14. Added new bootstrap 
script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.25-2023 
.09.12

1.25.12 1.6.6 1.1.2 Upgraded the Amazon VPC CNI 
plugin to use the Kubernetes 
connector binary, which gets 
the Pod IP address from the 
Kubernetes API server. Merged
pull request #100.

1.25-2023 
.08.17

1.25.12 1.6.6 1.1.2 Includes patches for CVE-2023- 
3676 , CVE-2023-3893 , and
CVE-2023-3955 .

Windows 322

https://github.com/aws/amazon-vpc-cni-plugins/pull/100


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.25-2023 
.08.08

1.25.9 1.6.6 1.1.1  

1.25-2023 
.07.11

1.25.9 1.6.6 1.1.1  

1.25-2023 
.06.20

1.25.9 1.6.6 1.1.1 Resolved issue that was causing 
the DNS suffix search list to be 
incorrectly populated.

1.25-2023 
.06.14

1.25.9 1.6.6 1.1.1 Upgraded Kubernetes to
1.25.9. Added support for host 
port mapping in CNI. Merged
pull request #93.

1.25-2023 
.05.09

1.25.7 1.6.6 1.1.1 Fixed a bug causing network 
connectivity issue #1126
on pods after node restart. 
Introduced a new bootstrap 
script configuration parameter
 (ExcludedSnatCIDRs ).

1.25-2023 
.04.11

1.25.7 1.6.6 1.1.1 Added recovery mechanism for
kubelet and kube-proxy  on 
service crash.

1.25-2023 
.03.27

1.25.6 1.6.6 1.1.1 Installed a domainless gMSA 
plugin to facilitate gMSA 
authentication for Windows 
containers on Amazon EKS.

1.25-2023 
.03.20

1.25.6 1.6.6 1.1.1  

Windows 323

https://github.com/aws/amazon-vpc-cni-plugins/pull/93
https://github.com/aws/containers-roadmap/issues/1126
https://aws.amazon.com/blogs/containers/domainless-windows-authentication-for-amazon-eks-windows-pods/
https://aws.amazon.com/blogs/containers/domainless-windows-authentication-for-amazon-eks-windows-pods/


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.25-2023 
.02.14

1.25.6 1.6.6 1.1.1  

Kubernetes version 1.24

Kubernetes version 1.24

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.24-2024 
.02.13

1.24.17 1.6.18 1.1.2  

1.24-2024 
.01.09

1.24.17 1.6.18 1.1.2  

1.24-2023 
.12.12

1.24.17 1.6.18 1.1.2  

1.24-2023 
.11.14

1.24.17 1.6.18 1.1.2 Includes patches for CVE-2023- 
5528 .

1.24-2023 
.10.19

1.24.17 1.6.18 1.1.2 Upgraded containerd  to
1.6.18. Upgraded kubelet to
1.24.17. Added new bootstrap 
script environment variables
 (SERVICE_IPV4_CIDR  and
EXCLUDED_SNAT_CIDRS ).

1.24-2023 
.09.12

1.24.16 1.6.6 1.1.2 Upgraded the Amazon VPC CNI 
plugin to use the Kubernetes 
connector binary, which gets 
the Pod IP address from the 

Windows 324



Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

Kubernetes API server. Merged
pull request #100.

1.24-2023 
.08.17

1.24.16 1.6.6 1.1.2 Includes patches for CVE-2023- 
3676 , CVE-2023-3893 , and
CVE-2023-3955 .

1.24-2023 
.08.08

1.24.13 1.6.6 1.1.1  

1.24-2023 
.07.11

1.24.13 1.6.6 1.1.1  

1.24-2023 
.06.21

1.24.13 1.6.6 1.1.1 Resolved issue that was causing 
the DNS suffix search list to be 
incorrectly populated.

1.24-2023 
.06.14

1.24.13 1.6.6 1.1.1 Upgraded Kubernetes to
1.24.13. Added support for 
host port mapping in CNI. 
Merged pull request #93.

1.24-2023 
.05.09

1.24.7 1.6.6 1.1.1 Fixed a bug causing network 
connectivity issue #1126
on pods after node restart. 
Introduced a new bootstrap 
script configuration parameter
 (ExcludedSnatCIDRs ).

1.24-2023 
.04.11

1.24.7 1.6.6 1.1.1 Added recovery mechanism for
kubelet and kube-proxy  on 
service crash.

Windows 325

https://github.com/aws/amazon-vpc-cni-plugins/pull/100
https://github.com/aws/amazon-vpc-cni-plugins/pull/93
https://github.com/aws/containers-roadmap/issues/1126


Amazon EKS User Guide

AMI version kubelet
version

container 
d
version

csi-
proxy
version

Release notes

1.24-2023 
.03.27

1.24.7 1.6.6 1.1.1 Installed a domainless gMSA 
plugin to facilitate gMSA 
authentication for Windows 
containers on Amazon EKS.

1.24-2023 
.03.20

1.24.7 1.6.6 1.1.1 Kubernetes version downgraded 
to 1.24.7 because 1.24.10 has 
a reported issue in kube-prox 
y .

1.24-2023 
.02.14

1.24.10 1.6.6 1.1.1  

1.24-2023 
.01.23

1.24.7 1.6.6 1.1.1  

1.24-2023 
.01.11

1.24.7 1.6.6 1.1.1  

1.24-2022 
.12.14

1.24.7 1.6.6 1.1.1  

1.24-2022 
.10.12

1.24.7 1.6.6 1.1.1  

Retrieving Amazon EKS optimized Windows AMI IDs

You can programmatically retrieve the Amazon Machine Image (AMI) ID for Amazon EKS optimized 
AMIs by querying the AWS Systems Manager Parameter Store API. This parameter eliminates the 
need for you to manually look up Amazon EKS optimized AMI IDs. For more information about 
the Systems Manager Parameter Store API, see GetParameter. The IAM principal that you use 
must have the ssm:GetParameter IAM permission to retrieve the Amazon EKS optimized AMI 
metadata.

Windows 326

https://aws.amazon.com/blogs/containers/domainless-windows-authentication-for-amazon-eks-windows-pods/
https://aws.amazon.com/blogs/containers/domainless-windows-authentication-for-amazon-eks-windows-pods/
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameter.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html


Amazon EKS User Guide

You can retrieve the image ID of the latest recommended Amazon EKS optimized Windows AMI 
with the following command by using the sub-parameter image_id. You can replace 1.29 with 
any supported Amazon EKS version and can replace region-code with an Amazon EKS supported 
Region for which you want the AMI ID. Replace Core with Full to see the Windows Server full 
AMI ID. For Kubernetes version 1.24 or later, you can replace 2019 with 2022 to see the Windows 
Server 2022 AMI ID.

aws ssm get-parameter --name /aws/service/ami-windows-latest/Windows_Server-2019-
English-Core-EKS_Optimized-1.29/image_id --region region-code --query "Parameter.Value" 
 --output text

An example output is as follows.

ami-1234567890abcdef0

Creating custom Amazon EKS optimized Windows AMIs

You can use EC2 Image Builder to create custom Amazon EKS optimized Windows AMIs with one of 
the following options:

• Using an Amazon EKS optimized Windows AMI as a base

• Using the Amazon-managed build component

With both methods, you must create your own Image Builder recipe. For more information, see
Create a new version of an image recipe in the Image Builder User Guide.

Important

The following Amazon-managed components for eks include patches for
CVE-2023-5528.

• 1.24.3 and higher

• 1.25.2 and higher

• 1.26.2 and higher

• 1.27.0 and higher

• 1.28.0 and higher

Windows 327

https://docs.aws.amazon.com/general/latest/gr/eks.html
https://docs.aws.amazon.com/general/latest/gr/eks.html
https://docs.aws.amazon.com/imagebuilder/latest/userguide/create-image-recipes.html


Amazon EKS User Guide

Using an Amazon EKS optimized Windows AMI as a base

This option is the recommended way to build your custom Windows AMIs. The Amazon EKS 
optimized Windows AMIs we provide are more frequently updated than the Amazon-managed 
build component.

1. Start a new Image Builder recipe.

a. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder.

b. In the left navigation pane, choose Image recipes.

c. Choose Create image recipe.

2. In the Recipe details section, enter a Name  and Version.

3. Specify the ID of the Amazon EKS optimized Windows AMI in the Base image section.

a. Choose Enter custom AMI ID.

b. Retrieve the AMI ID for the Windows OS version that you require. For more information, 
see Retrieving Amazon EKS optimized Windows AMI IDs.

c. Enter the custom AMI ID. If the AMI ID isn't found, make sure that the AWS Region for the 
AMI ID matches the AWS Region shown in the upper right of your console.

4. (Optional) To get the latest security updates, add the update-windows component in the
Build components -  section.

a. From the dropdown list to the right of the Find components by name search box, choose
Amazon-managed.

b. In the Find components by name  search box, enter update-windows.

c. Select the check box of the update-windows search result. This component includes the 
latest Windows patches for the operating system.

5. Complete the remaining image recipe inputs with your required configurations. For more 
information, see Create a new image recipe version (console) in the Image Builder User Guide.

6. Choose Create recipe.

7. Use the new image recipe in a new or existing image pipeline. Once your image pipeline runs 
successfully, your custom AMI will be listed as an output image and is ready for use. For more 
information, see Create an image pipeline using the EC2 Image Builder console wizard.

Windows 328

https://console.aws.amazon.com/imagebuilder
https://docs.aws.amazon.com/imagebuilder/latest/userguide/create-image-recipes.html#create-image-recipe-version-console
https://docs.aws.amazon.com/imagebuilder/latest/userguide/start-build-image-pipeline.html


Amazon EKS User Guide

Using the Amazon-managed build component

When using an Amazon EKS optimized Windows AMI as a base isn't viable, you can use the 
Amazon-managed build component instead. This option may lag behind the most recent 
supported Kubernetes versions.

1. Start a new Image Builder recipe.

a. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder.

b. In the left navigation pane, choose Image recipes.

c. Choose Create image recipe.

2. In the Recipe details section, enter a Name and Version.

3. Determine which option you will be using to create your custom AMI in the Base image
section:

• Select managed images – Choose Windows for your Image Operating System (OS). Then 
choose one of the following options for Image origin.

• Quick start (Amazon-managed) – In the Image name dropdown, choose an Amazon EKS 
supported Windows Server version. For more information, see Amazon EKS optimized 
Windows AMIs.

• Images owned by me – For Image name, choose the ARN of your own image with your 
own license. The image that you provide can't already have Amazon EKS components 
installed.

• Enter custom AMI ID – For AMI ID, enter the ID for your AMI with your own license. The 
image that you provide can't already have Amazon EKS components installed.

4. In the Build components - Windows section, do the following:

a. From the dropdown list to the right of the Find components by name search box, choose
Amazon-managed.

b. In the Find components by name search box, enter eks.

c. Select the check box of the eks-optimized-ami-windows search result, even though 
the result returned may not be the version that you want.

d. In the Find components by name search box, enter update-windows .

e. Select the check box of the update-windows search result. This component includes the 
latest Windows patches for the operating system.

5. In the Selected components section, do the following:

Windows 329

https://console.aws.amazon.com/imagebuilder


Amazon EKS User Guide

a. Choose Versioning options for eks-optimized-ami-windows.

b. Choose Specify component version.

c. In the Component Version field, enter  version.x , replacing version with a 
supported Kubernetes version. Entering an  x for part of the version number indicates 
to use the latest component version that also aligns with the part of the version you 
explicitly define. Pay attention to the console output as it will advise you on whether 
your desired version is available as a managed component. Keep in mind that the most 
recent Kubernetes versions may not be available for the build component. For more 
information about available versions, see Retrieving information about eks-optimized-
ami-windows component versions.

Note

The following eks-optimized-ami-windows build component versions require
eksctl version 0.129 or lower:

• 1.24.0

6. Complete the remaining image recipe inputs with your required configurations. For more 
information, see Create a new image recipe version (console) in the Image Builder User Guide.

7. Choose Create recipe.

8. Use the new image recipe in a new or existing image pipeline. Once your image pipeline runs 
successfully, your custom AMI will be listed as an output image and is ready for use. For more 
information, see Create an image pipeline using the EC2 Image Builder console wizard.

Retrieving information about eks-optimized-ami-windows component versions

You can retrieve specific information regarding what is installed with each component. For 
example, you can verify what kubelet version is installed. The components go through functional 
testing on the Amazon EKS supported Windows operating systems versions. For more information, 
see Release calendar. Any other Windows OS versions that aren't listed as supported or have 
reached end of support might not be compatible with the component.

1. Open the EC2 Image Builder console at https://console.aws.amazon.com/imagebuilder.

2. In the left navigation pane, choose Components.

Windows 330

https://docs.aws.amazon.com/imagebuilder/latest/userguide/create-image-recipes.html#create-image-recipe-version-console
https://docs.aws.amazon.com/imagebuilder/latest/userguide/start-build-image-pipeline.html
https://console.aws.amazon.com/imagebuilder


Amazon EKS User Guide

3. From the dropdown list to the right of the Find components by name search box, change
Owned by me to Quick start (Amazon-managed).

4. In the Find components by name box, enter eks.

5. (Optional) If you are using a recent version, sort the Version  column in descending order by 
choosing it twice.

6. Choose the eks-optimized-ami-windows link with a desired version.

The Description in the resulting page shows the specific information.

Windows 331



Amazon EKS User Guide

Storage

This chapter covers storage options for Amazon EKS clusters.

Topics

• Amazon EBS CSI driver

• Amazon EFS CSI driver

• Amazon FSx for Lustre CSI driver

• Amazon FSx for NetApp ONTAP CSI driver

• Amazon FSx for OpenZFS CSI driver

• Amazon File Cache CSI driver

• Mountpoint for Amazon S3 CSI driver

• CSI snapshot controller

Amazon EBS CSI driver

The Amazon Elastic Block Store (Amazon EBS) Container Storage Interface (CSI) driver manages 
the lifecycle of Amazon EBS volumes as storage for the Kubernetes Volumes that you create. 
The Amazon EBS CSI driver makes Amazon EBS volumes for these types of Kubernetes volumes: 
generic ephemeral volumes and persistent volumes.

Here are some things to consider when using the Amazon EBS CSI driver.

• The Amazon EBS CSI plugin requires IAM permissions to make calls to AWS APIs on your behalf. 
For more information, see Creating the Amazon EBS CSI driver IAM role.

• You can't mount Amazon EBS volumes to Fargate Pods.

• You can run the Amazon EBS CSI controller on Fargate nodes, but the Amazon EBS CSI node 
DaemonSet can only run on Amazon EC2 instances.

The Amazon EBS CSI driver isn't installed when you first create a cluster. To use the driver, you 
must add it as an Amazon EKS add-on or as a self-managed add-on.

• For instructions on how to add it as an Amazon EKS add-on, see Managing the Amazon EBS CSI 
driver as an Amazon EKS add-on.

Amazon EBS CSI driver 332

https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/


Amazon EKS User Guide

• For instructions on how to add it as a self-managed installation, see the Amazon EBS Container 
Storage Interface (CSI) driver project on GitHub.

After you installed the CSI driver with either method, you can test the functionality with a sample 
application. For more information, see Deploy a sample application and verify that the CSI driver is 
working.

Creating the Amazon EBS CSI driver IAM role

The Amazon EBS CSI plugin requires IAM permissions to make calls to AWS APIs on your behalf. For 
more information, see Set up driver permission on GitHub.

Note

Pods will have access to the permissions that are assigned to the IAM role unless you block 
access to IMDS. For more information, see Security best practices for Amazon EKS.

Prerequisites

• An existing cluster.

• An existing AWS Identity and Access Management (IAM) OpenID Connect (OIDC) provider for 
your cluster. To determine whether you already have one, or to create one, see Creating an IAM 
OIDC provider for your cluster.

The following procedure shows you how to create an IAM role and attach the AWS managed policy 
to it. You can use eksctl, the AWS Management Console, or the AWS CLI.

Note

The specific steps in this procedure are written for using the driver as an Amazon EKS 
add-on. Different steps are needed to use the driver as a self-managed add-on. For more 
information, see Set up driver permissions on GitHub.

Create an IAM role 333

https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver/blob/master/docs/install.md#set-up-driver-permissions
https://github.com/kubernetes-sigs/aws-ebs-csi-driver/blob/master/docs/install.md#set-up-driver-permissions


Amazon EKS User Guide

eksctl

To create your Amazon EBS CSI plugin IAM role with eksctl

1. Create an IAM role and attach a policy. AWS maintains an AWS managed policy or you can 
create your own custom policy. You can create an IAM role and attach the AWS managed 
policy with the following command. Replace my-cluster with the name of your cluster. 
The command deploys an AWS CloudFormation stack that creates an IAM role and attaches 
the IAM policy to it. If your cluster is in the AWS GovCloud (US-East) or AWS GovCloud (US-
West) AWS Regions, then replace arn:aws: with arn:aws-us-gov:.

eksctl create iamserviceaccount \ 
    --name ebs-csi-controller-sa \ 
    --namespace kube-system \ 
    --cluster my-cluster \ 
    --role-name AmazonEKS_EBS_CSI_DriverRole \ 
    --role-only \ 
    --attach-policy-arn arn:aws:iam::aws:policy/service-role/
AmazonEBSCSIDriverPolicy \ 
    --approve

2. If you use a custom KMS key for encryption on your Amazon EBS volumes, customize the 
IAM role as needed. For example, do the following:

a. Copy and paste the following code into a new kms-key-for-encryption-on-
ebs.json file. Replace custom-key-arn with the custom KMS key ARN.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "kms:CreateGrant", 
        "kms:ListGrants", 
        "kms:RevokeGrant" 
      ], 
      "Resource": ["custom-key-arn"], 
      "Condition": { 
        "Bool": { 
          "kms:GrantIsForAWSResource": "true" 
        } 

Create an IAM role 334

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awskeymanagementservice.html#awskeymanagementservice-key


Amazon EKS User Guide

      } 
    }, 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "kms:Encrypt", 
        "kms:Decrypt", 
        "kms:ReEncrypt*", 
        "kms:GenerateDataKey*", 
        "kms:DescribeKey" 
      ], 
      "Resource": ["custom-key-arn"] 
    } 
  ]
}

b. Create the policy. You can change KMS_Key_For_Encryption_On_EBS_Policy to a 
different name. However, if you do, make sure to change it in later steps, too.

aws iam create-policy \ 
  --policy-name KMS_Key_For_Encryption_On_EBS_Policy \ 
  --policy-document file://kms-key-for-encryption-on-ebs.json

c. Attach the IAM policy to the role with the following command. Replace
111122223333 with your account ID. If your cluster is in the AWS GovCloud (US-East) 
or AWS GovCloud (US-West) AWS Regions, then replace arn:aws: with arn:aws-us-
gov:.

aws iam attach-role-policy \ 
  --policy-arn 
 arn:aws:iam::111122223333:policy/KMS_Key_For_Encryption_On_EBS_Policy \ 
  --role-name AmazonEKS_EBS_CSI_DriverRole

AWS Management Console

To create your Amazon EBS CSI plugin IAM role with the AWS Management Console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

3. On the Roles page, choose Create role.

Create an IAM role 335

https://console.aws.amazon.com/iam/


Amazon EKS User Guide

4. On the Select trusted entity page, do the following:

a. In the Trusted entity type section, choose Web identity.

b. For Identity provider, choose the OpenID Connect provider URL for your cluster (as 
shown under Overview in Amazon EKS).

c. For Audience, choose sts.amazonaws.com.

d. Choose Next.

5. On the Add permissions page, do the following:

a. In the Filter policies box, enter AmazonEBSCSIDriverPolicy.

b. Select the check box to the left of the AmazonEBSCSIDriverPolicy returned in the 
search.

c. Choose Next.

6. On the Name, review, and create page, do the following:

a. For Role name, enter a unique name for your role, such as
AmazonEKS_EBS_CSI_DriverRole.

b. Under Add tags (Optional), add metadata to the role by attaching tags as key-value 
pairs. For more information about using tags in IAM, see Tagging IAM resources in the
IAM User Guide.

c. Choose Create role.

7. After the role is created, choose the role in the console to open it for editing.

8. Choose the Trust relationships tab, and then choose Edit trust policy.

9. Find the line that looks similar to the following line:

"oidc.eks.region-code.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE:aud": 
 "sts.amazonaws.com"

Add a comma to the end of the previous line, and then add the following line after the 
previous line. Replace region-code with the AWS Region that your cluster is in. Replace
EXAMPLED539D4633E53DE1B71EXAMPLE with your cluster's OIDC provider ID.

"oidc.eks.region-code.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE:sub": 
 "system:serviceaccount:kube-system:ebs-csi-controller-sa"

10. Choose Update policy to finish.

Create an IAM role 336

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html


Amazon EKS User Guide

11. If you use a custom KMS key for encryption on your Amazon EBS volumes, customize the 
IAM role as needed. For example, do the following:

a. In the left navigation pane, choose Policies.

b. On the Policies page, choose Create Policy.

c. On the Create policy page, choose the JSON tab.

d. Copy and paste the following code into the editor, replacing custom-key-arn with 
the custom KMS key ARN.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "kms:CreateGrant", 
        "kms:ListGrants", 
        "kms:RevokeGrant" 
      ], 
      "Resource": ["custom-key-arn"], 
      "Condition": { 
        "Bool": { 
          "kms:GrantIsForAWSResource": "true" 
        } 
      } 
    }, 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "kms:Encrypt", 
        "kms:Decrypt", 
        "kms:ReEncrypt*", 
        "kms:GenerateDataKey*", 
        "kms:DescribeKey" 
      ], 
      "Resource": ["custom-key-arn"] 
    } 
  ]
}

e. Choose Next: Tags.

Create an IAM role 337

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awskeymanagementservice.html#awskeymanagementservice-key


Amazon EKS User Guide

f. On the Add tags (Optional) page, choose Next: Review.

g. For Name, enter a unique name for your policy (for example,
KMS_Key_For_Encryption_On_EBS_Policy).

h. Choose Create policy.

i. In the left navigation pane, choose Roles.

j. Choose the AmazonEKS_EBS_CSI_DriverRole in the console to open it for editing.

k. From the Add permissions dropdown list, choose Attach policies.

l. In the Filter policies box, enter KMS_Key_For_Encryption_On_EBS_Policy.

m. Select the check box to the left of the KMS_Key_For_Encryption_On_EBS_Policy
that was returned in the search.

n. Choose Attach policies.

AWS CLI

To create your Amazon EBS CSI plugin IAM role with the AWS CLI

1. View your cluster's OIDC provider URL. Replace my-cluster with your cluster name. If the 
output from the command is None, review the Prerequisites.

aws eks describe-cluster --name my-cluster --query 
 "cluster.identity.oidc.issuer" --output text

An example output is as follows.

https://oidc.eks.region-code.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE

2. Create the IAM role, granting the AssumeRoleWithWebIdentity action.

a. Copy the following contents to a file that's named aws-ebs-csi-driver-
trust-policy.json. Replace 111122223333 with your account ID. Replace
EXAMPLED539D4633E53DE1B71EXAMPLE and region-code with the values returned 
in the previous step. If your cluster is in the AWS GovCloud (US-East) or AWS GovCloud 
(US-West) AWS Regions, then replace arn:aws: with arn:aws-us-gov:.

{ 
  "Version": "2012-10-17", 

Create an IAM role 338



Amazon EKS User Guide

  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "Federated": "arn:aws:iam::111122223333:oidc-provider/
oidc.eks.region-code.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE" 
      }, 
      "Action": "sts:AssumeRoleWithWebIdentity", 
      "Condition": { 
        "StringEquals": { 
          "oidc.eks.region-code.amazonaws.com/
id/EXAMPLED539D4633E53DE1B71EXAMPLE:aud": "sts.amazonaws.com", 
          "oidc.eks.region-code.amazonaws.com/
id/EXAMPLED539D4633E53DE1B71EXAMPLE:sub": "system:serviceaccount:kube-
system:ebs-csi-controller-sa" 
        } 
      } 
    } 
  ]
}

b. Create the role. You can change AmazonEKS_EBS_CSI_DriverRole to a different 
name. If you change it, make sure to change it in later steps.

aws iam create-role \ 
  --role-name AmazonEKS_EBS_CSI_DriverRole \ 
  --assume-role-policy-document file://"aws-ebs-csi-driver-trust-
policy.json"

3. Attach a policy. AWS maintains an AWS managed policy or you can create your own custom 
policy. Attach the AWS managed policy to the role with the following command. If your 
cluster is in the AWS GovCloud (US-East) or AWS GovCloud (US-West) AWS Regions, then 
replace arn:aws: with arn:aws-us-gov:.

aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::aws:policy/service-role/AmazonEBSCSIDriverPolicy \ 
  --role-name AmazonEKS_EBS_CSI_DriverRole

4. If you use a custom KMS key for encryption on your Amazon EBS volumes, customize the 
IAM role as needed. For example, do the following:

Create an IAM role 339

https://aws.amazon.com/kms/


Amazon EKS User Guide

a. Copy and paste the following code into a new kms-key-for-encryption-on-
ebs.json file. Replace custom-key-arn with the custom KMS key ARN.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "kms:CreateGrant", 
        "kms:ListGrants", 
        "kms:RevokeGrant" 
      ], 
      "Resource": ["custom-key-arn"], 
      "Condition": { 
        "Bool": { 
          "kms:GrantIsForAWSResource": "true" 
        } 
      } 
    }, 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "kms:Encrypt", 
        "kms:Decrypt", 
        "kms:ReEncrypt*", 
        "kms:GenerateDataKey*", 
        "kms:DescribeKey" 
      ], 
      "Resource": ["custom-key-arn"] 
    } 
  ]
}

b. Create the policy. You can change KMS_Key_For_Encryption_On_EBS_Policy to a 
different name. However, if you do, make sure to change it in later steps, too.

aws iam create-policy \ 
  --policy-name KMS_Key_For_Encryption_On_EBS_Policy \ 
  --policy-document file://kms-key-for-encryption-on-ebs.json

Create an IAM role 340

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awskeymanagementservice.html#awskeymanagementservice-key


Amazon EKS User Guide

c. Attach the IAM policy to the role with the following command. Replace
111122223333 with your account ID. If your cluster is in the AWS GovCloud (US-East) 
or AWS GovCloud (US-West) AWS Regions, then replace arn:aws: with arn:aws-us-
gov:.

aws iam attach-role-policy \ 
  --policy-arn 
 arn:aws:iam::111122223333:policy/KMS_Key_For_Encryption_On_EBS_Policy \ 
  --role-name AmazonEKS_EBS_CSI_DriverRole

Now that you have created the Amazon EBS CSI driver IAM role, you can continue to Adding the 
Amazon EBS CSI driver add-on. When you deploy the plugin in that procedure, it creates and is 
configured to use a service account that's named ebs-csi-controller-sa. The service account 
is bound to a Kubernetes clusterrole that's assigned the required Kubernetes permissions.

Managing the Amazon EBS CSI driver as an Amazon EKS add-on

To improve security and reduce the amount of work, you can manage the Amazon EBS CSI driver 
as an Amazon EKS add-on. For information about Amazon EKS add-ons, see Amazon EKS add-ons. 
You can add the Amazon EBS CSI add-on by following the steps in Adding the Amazon EBS CSI 
driver add-on.

If you added the Amazon EBS CSI add-on, you can manage it by following the steps in the
Updating the Amazon EBS CSI driver as an Amazon EKS add-on and Removing the Amazon EBS CSI 
add-on sections.

Prerequisites

• An existing cluster. To see the required platform version, run the following command.

aws eks describe-addon-versions --addon-name aws-ebs-csi-driver

• An existing AWS Identity and Access Management (IAM) OpenID Connect (OIDC) provider for 
your cluster. To determine whether you already have one, or to create one, see Creating an IAM 
OIDC provider for your cluster.

• An Amazon EBS CSI driver IAM role. If you don't satisfy this prerequisite, attempting to install 
the add-on and running kubectl describe pvc will show failed to provision 
volume with StorageClass along with a could not create volume in EC2: 

Manage the Amazon EKS add-on 341



Amazon EKS User Guide

UnauthorizedOperation error. For more information, see Creating the Amazon EBS CSI driver 
IAM role.

• If you're using a cluster wide restricted PodSecurityPolicy, make sure that the add-on is 
granted sufficient permissions to be deployed. For the permissions required by each add-on Pod, 
see the relevant add-on manifest definition on GitHub.

Important

To use the snapshot functionality of the Amazon EBS CSI driver, you must install the 
external snapshotter before the installation of the add-on. The external snapshotter 
components must be installed in the following order:

• CustomResourceDefinition (CRD) for volumesnapshotclasses,
volumesnapshots, and volumesnapshotcontents

• RBAC (ClusterRole, ClusterRoleBinding, and so on)

• controller deployment

For more information, see CSI Snapshotter on GitHub.

Adding the Amazon EBS CSI driver add-on

Important

Before adding the Amazon EBS driver as an Amazon EKS add-on, confirm that you don't 
have a self-managed version of the driver installed on your cluster. If so, see  Uninstalling a 
self-managed Amazon EBS CSI driver on GitHub.

You can use eksctl, the AWS Management Console, or the AWS CLI to add the Amazon EBS CSI 
add-on to your cluster.

eksctl

To add the Amazon EBS CSI add-on using eksctl

Manage the Amazon EKS add-on 342

https://github.com/kubernetes-sigs/aws-ebs-csi-driver/tree/master/deploy/kubernetes/base
https://github.com/kubernetes-csi/external-snapshotter/tree/master/client/config/crd
https://github.com/kubernetes-csi/external-snapshotter/blob/master/deploy/kubernetes/snapshot-controller/rbac-snapshot-controller.yaml
https://github.com/kubernetes-csi/external-snapshotter/blob/master/deploy/kubernetes/snapshot-controller/setup-snapshot-controller.yaml
https://github.com/kubernetes-csi/external-snapshotter
https://github.com/kubernetes-sigs/aws-ebs-csi-driver/blob/master/docs/install.md#uninstalling-the-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver/blob/master/docs/install.md#uninstalling-the-ebs-csi-driver


Amazon EKS User Guide

Run the following command. Replace my-cluster with the name of your cluster,
111122223333 with your account ID, and AmazonEKS_EBS_CSI_DriverRole with the 
name of the IAM role created earlier. If your cluster is in the AWS GovCloud (US-East) or AWS 
GovCloud (US-West) AWS Regions, then replace arn:aws: with arn:aws-us-gov:.

eksctl create addon --name aws-ebs-csi-driver --cluster my-cluster --service-
account-role-arn arn:aws:iam::111122223333:role/AmazonEKS_EBS_CSI_DriverRole --force

If you remove the --force option and any of the Amazon EKS add-on settings conflict with 
your existing settings, then updating the Amazon EKS add-on fails, and you receive an error 
message to help you resolve the conflict. Before specifying this option, make sure that the 
Amazon EKS add-on doesn't manage settings that you need to manage, because those settings 
are overwritten with this option. For more information about other options for this setting, see
Addons in the eksctl documentation. For more information about Amazon EKS Kubernetes 
field management, see  Kubernetes field management.

AWS Management Console

To add the Amazon EBS CSI add-on using the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, choose Clusters.

3. Choose the name of the cluster that you want to configure the Amazon EBS CSI add-on for.

4. Choose the Add-ons tab.

5. Choose Get more add-ons.

6. On the Select add-ons page, do the following:

a. In the Amazon EKS-addons section, select the Amazon EBS CSI Driver check box.

b. Choose Next.

7. On the Configure selected add-ons settings page, do the following:

a. Select the Version you'd like to use.

b. For Select IAM role, select the name of an IAM role that you attached the Amazon EBS 
CSI driver IAM policy to.

c. (Optional) You can expand the Optional configuration settings. If you select Override
for the Conflict resolution method, one or more of the settings for the existing add-
on can be overwritten with the Amazon EKS add-on settings. If you don't enable this 

Manage the Amazon EKS add-on 343

https://eksctl.io/usage/addons/
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

option and there's a conflict with your existing settings, the operation fails. You can use 
the resulting error message to troubleshoot the conflict. Before selecting this option, 
make sure that the Amazon EKS add-on doesn't manage settings that you need to self-
manage.

d. Choose Next.

8. On the Review and add page, choose Create. After the add-on installation is complete, you 
see your installed add-on.

AWS CLI

To add the Amazon EBS CSI add-on using the AWS CLI

Run the following command. Replace my-cluster with the name of your cluster,
111122223333 with your account ID, and AmazonEKS_EBS_CSI_DriverRole with the name 
of the role that was created earlier. If your cluster is in the AWS GovCloud (US-East) or AWS 
GovCloud (US-West) AWS Regions, then replace arn:aws: with arn:aws-us-gov:.

aws eks create-addon --cluster-name my-cluster --addon-name aws-ebs-csi-driver \ 
  --service-account-role-arn 
 arn:aws:iam::111122223333:role/AmazonEKS_EBS_CSI_DriverRole

Now that you have added the Amazon EBS CSI driver as an Amazon EKS add-on, you can continue 
to Deploy a sample application and verify that the CSI driver is working. That procedure includes 
setting up the storage class.

Updating the Amazon EBS CSI driver as an Amazon EKS add-on

Amazon EKS doesn't automatically update Amazon EBS CSI for your cluster when new versions are 
released or after you update your cluster to a new Kubernetes minor version. To update Amazon 
EBS CSI on an existing cluster, you must initiate the update and then Amazon EKS updates the add-
on for you.

eksctl

To update the Amazon EBS CSI add-on using eksctl

1. Check the current version of your Amazon EBS CSI add-on. Replace my-cluster with your 
cluster name.

Manage the Amazon EKS add-on 344



Amazon EKS User Guide

eksctl get addon --name aws-ebs-csi-driver --cluster my-cluster

An example output is as follows.

NAME                    VERSION                      STATUS  ISSUES  IAMROLE 
 UPDATE AVAILABLE
aws-ebs-csi-driver       v1.11.2-eksbuild.1           ACTIVE  0              
   v1.11.4-eksbuild.1

2. Update the add-on to the version returned under UPDATE AVAILABLE in the output of the 
previous step.

eksctl update addon --name aws-ebs-csi-driver --version v1.11.4-eksbuild.1 --
cluster my-cluster \ 
  --service-account-role-arn 
 arn:aws:iam::111122223333:role/AmazonEKS_EBS_CSI_DriverRole --force

If you remove the --force option and any of the Amazon EKS add-on settings conflict 
with your existing settings, then updating the Amazon EKS add-on fails, and you receive an 
error message to help you resolve the conflict. Before specifying this option, make sure that 
the Amazon EKS add-on doesn't manage settings that you need to manage, because those 
settings are overwritten with this option. For more information about other options for this 
setting, see Addons in the eksctl documentation. For more information about Amazon 
EKS Kubernetes field management, see  Kubernetes field management.

AWS Management Console

To update the Amazon EBS CSI add-on using the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, choose Clusters.

3. Choose the name of the cluster that you want to update the Amazon EBS CSI add-on for.

4. Choose the Add-ons tab.

5. Choose Amazon EBS CSI Driver.

6. Choose Edit.

7. On the Configure Amazon EBS CSI Driver page, do the following:

Manage the Amazon EKS add-on 345

https://eksctl.io/usage/addons/
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

a. Select the Version you'd like to use.

b. For Select IAM role, select the name of an IAM role that you attached the Amazon EBS 
CSI driver IAM policy to.

c. (Optional) You can expand the Optional configuration settings and modify as needed.

d. Choose Save changes.

AWS CLI

To update the Amazon EBS CSI add-on using the AWS CLI

1. Check the current version of your Amazon EBS CSI add-on. Replace my-cluster with your 
cluster name.

aws eks describe-addon --cluster-name my-cluster --addon-name aws-ebs-csi-driver
 --query "addon.addonVersion" --output text

An example output is as follows.

v1.11.2-eksbuild.1

2. Determine which versions of the Amazon EBS CSI add-on are available for your cluster 
version.

aws eks describe-addon-versions --addon-name aws-ebs-csi-driver --kubernetes-
version 1.23 \ 
  --query "addons[].addonVersions[].[addonVersion, 
 compatibilities[].defaultVersion]" --output text

An example output is as follows.

v1.11.4-eksbuild.1
True
v1.11.2-eksbuild.1
False

Manage the Amazon EKS add-on 346



Amazon EKS User Guide

The version with True underneath is the default version deployed when the add-on is 
created. The version deployed when the add-on is created might not be the latest available 
version. In the previous output, the latest version is deployed when the add-on is created.

3. Update the add-on to the version with True that was returned in the output of the 
previous step. If it was returned in the output, you can also update to a later version.

aws eks update-addon --cluster-name my-cluster --addon-name aws-ebs-csi-driver 
 --addon-version v1.11.4-eksbuild.1 \ 
  --service-account-role-arn 
 arn:aws:iam::111122223333:role/AmazonEKS_EBS_CSI_DriverRole --resolve-
conflicts PRESERVE

The PRESERVE option preserves any custom settings that you've set for the add-on. 
For more information about other options for this setting, see update-addon in the 
Amazon EKS Command Line Reference. For more information about Amazon EKS add-on 
configuration management, see  Kubernetes field management.

Removing the Amazon EBS CSI add-on

You have two options for removing an Amazon EKS add-on.

• Preserve add-on software on your cluster – This option removes Amazon EKS management 
of any settings. It also removes the ability for Amazon EKS to notify you of updates and 
automatically update the Amazon EKS add-on after you initiate an update. However, it preserves 
the add-on software on your cluster. This option makes the add-on a self-managed installation, 
rather than an Amazon EKS add-on. With this option, there's no downtime for the add-on. The 
commands in this procedure use this option.

• Remove add-on software entirely from your cluster – We recommend that you remove the 
Amazon EKS add-on from your cluster only if there are no resources on your cluster that are 
dependent on it. To do this option, delete --preserve from the command you use in this 
procedure.

If the add-on has an IAM account associated with it, the IAM account isn't removed.

You can use eksctl, the AWS Management Console, or the AWS CLI to remove the Amazon EBS 
CSI add-on.

Manage the Amazon EKS add-on 347

https://docs.aws.amazon.com/cli/latest/reference/eks/update-addon.html


Amazon EKS User Guide

eksctl

To remove the Amazon EBS CSI add-on using eksctl

Replace my-cluster with the name of your cluster, and then run the following command.

eksctl delete addon --cluster my-cluster --name aws-ebs-csi-driver --preserve

AWS Management Console

To remove the Amazon EBS CSI add-on using the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, choose Clusters.

3. Choose the name of the cluster that you want to remove the Amazon EBS CSI add-on for.

4. Choose the Add-ons tab.

5. Choose Amazon EBS CSI Driver.

6. Choose Remove.

7. In the Remove: aws-ebs-csi-driver confirmation dialog box, do the following:

a. If you want Amazon EKS to stop managing settings for the add-on, select Preserve 
on cluster. Do this if you want to retain the add-on software on your cluster. This is so 
that you can manage all of the settings of the add-on on your own.

b. Enter aws-ebs-csi-driver.

c. Select Remove.

AWS CLI

To remove the Amazon EBS CSI add-on using the AWS CLI

Replace my-cluster with the name of your cluster, and then run the following command.

aws eks delete-addon --cluster-name my-cluster --addon-name aws-ebs-csi-driver --
preserve

Manage the Amazon EKS add-on 348

https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

Deploy a sample application and verify that the CSI driver is working

You can test the CSI driver functionality with a sample application. This topic shows one example, 
but you can also do the following:

• Deploy a sample application that uses the external snapshotter to create volume snapshots. For 
more information, see Volume Snapshots on GitHub.

• Deploy a sample application that uses volume resizing. For more information, see Volume 
Resizing on GitHub.

This procedure uses the Dynamic volume provisioning example from the Amazon EBS Container 
Storage Interface (CSI) driver GitHub repository to consume a dynamically provisioned Amazon EBS 
volume.

1. Clone the Amazon EBS Container Storage Interface (CSI) driver GitHub repository to your local 
system.

git clone https://github.com/kubernetes-sigs/aws-ebs-csi-driver.git

2. Navigate to the dynamic-provisioning example directory.

cd aws-ebs-csi-driver/examples/kubernetes/dynamic-provisioning/

3. (Optional) The manifests/storageclass.yaml file provisions gp2 Amazon EBS volumes by 
default. To use gp3 volumes instead, add type: gp3 to manifests/storageclass.yaml.

echo "parameters: 
  type: gp3" >> manifests/storageclass.yaml

4. Deploy the ebs-sc storage class, ebs-claim persistent volume claim, and app sample 
application from the manifests directory.

kubectl apply -f manifests/

5. Describe the ebs-sc storage class.

kubectl describe storageclass ebs-sc

An example output is as follows.

Deploy a sample application 349

https://github.com/kubernetes-sigs/aws-ebs-csi-driver/tree/master/examples/kubernetes/snapshot
https://github.com/kubernetes-sigs/aws-ebs-csi-driver/blob/master/examples/kubernetes/resizing/README.md
https://github.com/kubernetes-sigs/aws-ebs-csi-driver/blob/master/examples/kubernetes/resizing/README.md
https://github.com/kubernetes-sigs/aws-ebs-csi-driver/tree/master/examples/kubernetes/dynamic-provisioning
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver


Amazon EKS User Guide

Name:            ebs-sc
IsDefaultClass:  No
Annotations:     kubectl.kubernetes.io/last-applied-
configuration={"apiVersion":"storage.k8s.io/v1","kind":"StorageClass","metadata":
{"annotations":{},"name":"ebs-
sc"},"provisioner":"ebs.csi.aws.com","volumeBindingMode":"WaitForFirstConsumer"}

Provisioner:           ebs.csi.aws.com
Parameters:            <none>
AllowVolumeExpansion:  <unset>
MountOptions:          <none>
ReclaimPolicy:         Delete
VolumeBindingMode:     WaitForFirstConsumer
Events:                <none>

Note

The storage class uses the WaitForFirstConsumer volume binding mode. This 
means that volumes aren't dynamically provisioned until a Pod makes a persistent 
volume claim. For more information, see Volume Binding Mode in the Kubernetes 
documentation.

6. Watch the Pods in the default namespace. After a few minutes, the app Pod's status changes 
to Running.

kubectl get pods --watch

Enter Ctrl+C to return to a shell prompt.

7. List the persistent volumes in the default namespace. Look for a persistent volume with the
default/ebs-claim claim.

kubectl get pv

An example output is as follows.

NAME                                       CAPACITY   ACCESS MODES   RECLAIM POLICY 
   STATUS   CLAIM               STORAGECLASS   REASON   AGE

Deploy a sample application 350

https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode


Amazon EKS User Guide

pvc-37717cd6-d0dc-11e9-b17f-06fad4858a5a   4Gi        RWO            Delete         
   Bound    default/ebs-claim   ebs-sc                  30s

8. Describe the persistent volume. Replace pvc-37717cd6-d0dc-11e9-b17f-06fad4858a5a
with the value from the output in the previous step.

kubectl describe pv pvc-37717cd6-d0dc-11e9-b17f-06fad4858a5a

An example output is as follows.

Name:              pvc-37717cd6-d0dc-11e9-b17f-06fad4858a5a
Labels:            <none>
Annotations:       pv.kubernetes.io/provisioned-by: ebs.csi.aws.com
Finalizers:        [kubernetes.io/pv-protection external-attacher/ebs-csi-aws-com]
StorageClass:      ebs-sc
Status:            Bound
Claim:             default/ebs-claim
Reclaim Policy:    Delete
Access Modes:      RWO
VolumeMode:        Filesystem
Capacity:          4Gi
Node Affinity: 
  Required Terms: 
    Term 0:        topology.ebs.csi.aws.com/zone in [region-code]
Message:
Source: 
    Type:              CSI (a Container Storage Interface (CSI) volume source) 
    Driver:            ebs.csi.aws.com 
    VolumeHandle:       vol-0d651e157c6d93445
    ReadOnly:          false 
    VolumeAttributes:      storage.kubernetes.io/
csiProvisionerIdentity=1567792483192-8081-ebs.csi.aws.com
Events:                <none>

The Amazon EBS volume ID is the value for VolumeHandle in the previous output.

9. Verify that the Pod is writing data to the volume.

kubectl exec -it app -- cat /data/out.txt

An example output is as follows.

Deploy a sample application 351



Amazon EKS User Guide

Wed May 5 16:17:03 UTC 2021
Wed May 5 16:17:08 UTC 2021
Wed May 5 16:17:13 UTC 2021
Wed May 5 16:17:18 UTC 2021
[...]

10. After you're done, delete the resources for this sample application.

kubectl delete -f manifests/

Amazon EBS CSI migration frequently asked questions

Important

If you have Pods running on a version 1.22 or earlier cluster, then you must install the
Amazon EBS CSI driver before updating your cluster to version 1.23 to avoid service 
interruption.

The Amazon EBS container storage interface (CSI) migration feature moves responsibility for 
handling storage operations from the Amazon EBS in-tree EBS storage provisioner to the Amazon 
EBS CSI driver.

What are CSI drivers?

CSI drivers:

• replace the Kubernetes "in-tree" storage drivers that exist in the Kubernetes project source code.

• work with storage providers, such as Amazon EBS.

• provide a simplified plugin model that make it easier for storage providers like AWS to release 
features and maintain support without depending on the Kubernetes release cycle.

For more information, see Introduction in the Kubernetes CSI documentation.

CSI migration FAQ 352

https://kubernetes-csi.github.io/docs/introduction.html


Amazon EKS User Guide

What is CSI migration?

The Kubernetes CSI Migration feature moves responsibility for handling storage operations from 
the existing in-tree storage plugins, such as kubernetes.io/aws-ebs, to corresponding CSI 
drivers. Existing StorageClass, PersistentVolume and PersistentVolumeClaim (PVC) 
objects continue to work, as long as the corresponding CSI driver is installed. When the feature is 
enabled:

• Existing workloads that utilize PVCs continue to function as they always have.

• Kubernetes passes control of all storage management operations to CSI drivers.

For more information, see Kubernetes1.23: Kubernetes In-Tree to CSI Volume Migration Status 
Update on the Kubernetes blog.

To help you migrate from the in-tree plugin to CSI drivers, the CSIMigration and
CSIMigrationAWS flags are enabled by default on Amazon EKS version 1.23 and later clusters. 
These flags enable your cluster to translate the in-tree APIs to their equivalent CSI APIs. These flags 
are set on the Kubernetes control plane managed by Amazon EKS and in the kubelet settings 
configured in Amazon EKS optimized AMIs. If you have Pods using Amazon EBS volumes in your 
cluster, you must install the Amazon EBS CSI driver before updating your cluster to version
1.23. If you don't, volume operations such as provisioning and mounting might not work as 
expected. For more information, see Amazon EBS CSI driver.

Note

The in-tree StorageClass provisioner is named kubernetes.io/aws-ebs. The Amazon 
EBS CSI StorageClass provisioner is named ebs.csi.aws.com.

Can I mount kubernetes.io/aws-ebs StorageClass volumes in version 1.23
and later clusters?

Yes, as long as the Amazon EBS CSI driver is installed. For newly created version 1.23 and later 
clusters, we recommend installing the Amazon EBS CSI driver as part of your cluster creation 
process. We also recommend only using StorageClasses based on the ebs.csi.aws.com
provisioner.

CSI migration FAQ 353

https://kubernetes.io/blog/2021/12/10/storage-in-tree-to-csi-migration-status-update/
https://kubernetes.io/blog/2021/12/10/storage-in-tree-to-csi-migration-status-update/


Amazon EKS User Guide

If you've updated your cluster control plane to version 1.23 and haven't yet updated your nodes 
to 1.23, then the CSIMigration and CSIMigrationAWS kubelet flags aren't enabled. In this 
case, the in-tree driver is used to mount kubernetes.io/aws-ebs based volumes. The Amazon 
EBS CSI driver must still be installed however, to ensure that Pods using kubernetes.io/aws-
ebs based volumes can be scheduled. The driver is also required for other volume operations to 
succeed.

Can I provision kubernetes.io/aws-ebs StorageClass volumes on Amazon 
EKS 1.23 and later clusters?

Yes, as long as the Amazon EBS CSI driver is installed.

Will the kubernetes.io/aws-ebs StorageClass provisioner ever be removed 
from Amazon EKS?

The kubernetes.io/aws-ebs StorageClass provisioner and awsElasticBlockStore
volume type are no longer supported, but there are no plans to remove them. These resources are 
treated as a part of the Kubernetes API.

How do I install the Amazon EBS CSI driver?

We recommend installing the Amazon EBS CSI driver Amazon EKS add-on. When an update is 
required to the Amazon EKS add-on, you initiate the update and Amazon EKS updates the add-on 
for you. If you want to manage the driver yourself, you can install it using the open source Helm 
chart.

Important

The Kubernetes in-tree Amazon EBS driver runs on the Kubernetes control plane. It uses 
IAM permissions assigned to the Amazon EKS cluster IAM role to provision Amazon EBS 
volumes. The Amazon EBS CSI driver runs on nodes. The driver needs IAM permissions to 
provision volumes. For more information, see Creating the Amazon EBS CSI driver IAM role.

How can I check whether the Amazon EBS CSI driver is installed in my cluster?

To determine whether the driver is installed on your cluster, run the following command:

kubectl get csidriver ebs.csi.aws.com

CSI migration FAQ 354

https://github.com/kubernetes-sigs/aws-ebs-csi-driver/tree/master/charts/aws-ebs-csi-driver
https://github.com/kubernetes-sigs/aws-ebs-csi-driver/tree/master/charts/aws-ebs-csi-driver


Amazon EKS User Guide

To check if that installation is managed by Amazon EKS, run the following command:

aws eks list-addons --cluster-name my-cluster

Will Amazon EKS prevent a cluster update to version 1.23 if I haven't already 
installed the Amazon EBS CSI driver?

No.

What if I forget to install the Amazon EBS CSI driver before I update my cluster to 
version 1.23? Can I install the driver after updating my cluster?

Yes, but volume operations requiring the Amazon EBS CSI driver will fail after your cluster update 
until the driver is installed.

What is the default StorageClass applied in newly created Amazon EKS version
1.23 and later clusters?

The default StorageClass behavior remains unchanged. With each new cluster, Amazon EKS 
applies a kubernetes.io/aws-ebs based StorageClass named gp2. We don't plan to ever 
remove this StorageClass from newly created clusters. Separate from the cluster default
StorageClass, if you create an ebs.csi.aws.com based StorageClass without specifying a 
volume type, the Amazon EBS CSI driver will default to using gp3.

Will Amazon EKS make any changes to StorageClasses already present in my 
existing cluster when I update my cluster to version 1.23?

No.

How do I migrate a persistent volume from the kubernetes.io/aws-
ebsStorageClass to ebs.csi.aws.com using snapshots?

To migrate a persistent volume, see Migrating Amazon EKS clusters from gp2 to gp3 EBS volumes
on the AWS blog.

How do I modify an Amazon EBS volume using annotations?

Starting with aws-ebs-csi-driver v1.19.0-eksbuild.2, you can modify Amazon EBS 
volumes using annotations within their PersistentVolumeClaims (PVC). The new volume 

CSI migration FAQ 355

https://aws.amazon.com/blogs/containers/migrating-amazon-eks-clusters-from-gp2-to-gp3-ebs-volumes/
https://github.com/kubernetes-sigs/aws-ebs-csi-driver/blob/master/docs/modify-volume.md


Amazon EKS User Guide

modification feature is implemented as an additional sidecar, called volumemodifier. For more 
information, see Simplifying Amazon EBS volume migration and modification on Kubernetes using 
the EBS CSI Driver on the AWS blog.

Is migration supported for Windows workloads?

Yes. If you're installing the Amazon EBS CSI driver using the open source Helm chart, set
node.enableWindows to true. This is set by default if installing the Amazon EBS CSI driver as an 
Amazon EKS add-on. When creating StorageClasses, set the fsType to a Windows file system, 
such as ntfs. Volume operations for Windows workloads are then migrated to the Amazon EBS 
CSI driver the same as they are for Linux workloads.

Amazon EFS CSI driver

Amazon Elastic File System (Amazon EFS) provides serverless, fully elastic file storage so that 
you can share file data without provisioning or managing storage capacity and performance. 
The Amazon EFS Container Storage Interface (CSI) driver provides a CSI interface that allows 
Kubernetes clusters running on AWS to manage the lifecycle of Amazon EFS file systems. This topic 
shows you how to deploy the Amazon EFS CSI driver to your Amazon EKS cluster.

Considerations

• The Amazon EFS CSI driver isn't compatible with Windows-based container images.

• You can't use dynamic provisioning for persistent volumes with Fargate nodes, but you can use
static provisioning.

• Dynamic provisioning requires 1.2 or later of the driver. You can use static provisioning for 
persistent volumes using version 1.1 of the driver on any supported Amazon EKS cluster version.

• Version 1.3.2 or later of this driver supports the Arm64 architecture, including Amazon EC2 
Graviton-based instances.

• Version 1.4.2 or later of this driver supports using FIPS for mounting file systems.

• Take note of the resource quotas for Amazon EFS. For example, there's a quota of 1000 access 
points that can be created for each Amazon EFS file system. For more information, see Amazon 
EFS resource quotas that you cannot change.

Amazon EFS CSI driver 356

https://github.com/kubernetes-sigs/aws-ebs-csi-driver/blob/master/docs/modify-volume.md
https://aws.amazon.com/blogs/storage/simplifying-amazon-ebs-volume-migration-and-modification-using-the-ebs-csi-driver/
https://aws.amazon.com/blogs/storage/simplifying-amazon-ebs-volume-migration-and-modification-using-the-ebs-csi-driver/
https://docs.aws.amazon.com/efs/latest/ug/whatisefs.html
https://github.com/kubernetes-sigs/aws-efs-csi-driver
https://github.com/kubernetes-sigs/aws-efs-csi-driver/blob/master/examples/kubernetes/dynamic_provisioning/README.md
https://github.com/kubernetes-sigs/aws-efs-csi-driver/blob/master/examples/kubernetes/static_provisioning/README.md
https://github.com/kubernetes-sigs/aws-efs-csi-driver/blob/master/examples/kubernetes/dynamic_provisioning/README.md
https://github.com/kubernetes-sigs/aws-efs-csi-driver/blob/master/examples/kubernetes/static_provisioning/README.md
https://docs.aws.amazon.com/efs/latest/ug/limits.html#limits-efs-resources-per-account-per-region
https://docs.aws.amazon.com/efs/latest/ug/limits.html#limits-efs-resources-per-account-per-region


Amazon EKS User Guide

Prerequisites

• An existing AWS Identity and Access Management (IAM) OpenID Connect (OIDC) provider for 
your cluster. To determine whether you already have one, or to create one, see Creating an IAM 
OIDC provider for your cluster.

• Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface (AWS 
CLI) installed and configured on your device or AWS CloudShell. To check your current version, 
use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers such yum,
apt-get, or Homebrew for macOS are often several versions behind the latest version of the 
AWS CLI. To install the latest version, see Installing, updating, and uninstalling the AWS CLI and
Quick configuration with aws configure in the AWS Command Line Interface User Guide. The AWS 
CLI version that is installed in AWS CloudShell might also be several versions behind the latest 
version. To update it, see Installing AWS CLI to your home directory in the AWS CloudShell User 
Guide.

• The kubectl command line tool is installed on your device or AWS CloudShell. The version can 
be the same as or up to one minor version earlier or later than the Kubernetes version of your 
cluster. For example, if your cluster version is 1.28, you can use kubectl version 1.27, 1.28, or
1.29 with it. To install or upgrade kubectl, see Installing or updating kubectl.

Note

A Pod running on AWS Fargate automatically mounts an Amazon EFS file system.

Creating an IAM role

The Amazon EFS CSI driver requires IAM permissions to interact with your file system. Create 
an IAM role and attach the required AWS managed policy to it. You can use eksctl, the AWS 
Management Console, or the AWS CLI.

Note

The specific steps in this procedure are written for using the driver as an Amazon EKS add-
on. For details on self-managed installations, see Set up driver permission on GitHub.

Creating an IAM role 357

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software
https://github.com/kubernetes-sigs/aws-efs-csi-driver#set-up-driver-permission


Amazon EKS User Guide

eksctl

To create your Amazon EFS CSI driver IAM role with eksctl

Run the following commands to create the IAM role. Replace my-cluster with your cluster 
name and AmazonEKS_EFS_CSI_DriverRole with the name for your role.

export cluster_name=my-cluster
export role_name=AmazonEKS_EFS_CSI_DriverRole
eksctl create iamserviceaccount \ 
    --name efs-csi-controller-sa \ 
    --namespace kube-system \ 
    --cluster $cluster_name \ 
    --role-name $role_name \ 
    --role-only \ 
    --attach-policy-arn arn:aws:iam::aws:policy/service-role/
AmazonEFSCSIDriverPolicy \ 
    --approve
TRUST_POLICY=$(aws iam get-role --role-name $role_name --query 
 'Role.AssumeRolePolicyDocument' | \ 
    sed -e 's/efs-csi-controller-sa/efs-csi-*/' -e 's/StringEquals/StringLike/')
aws iam update-assume-role-policy --role-name $role_name --policy-document 
 "$TRUST_POLICY"

AWS Management Console

To create your Amazon EFS CSI driver IAM role with the AWS Management Console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

3. On the Roles page, choose Create role.

4. On the Select trusted entity page, do the following:

a. In the Trusted entity type section, choose Web identity.

b. For Identity provider, choose the OpenID Connect provider URL for your cluster (as 
shown under Overview in Amazon EKS).

c. For Audience, choose sts.amazonaws.com.

d. Choose Next.

5. On the Add permissions page, do the following:

Creating an IAM role 358

https://console.aws.amazon.com/iam/


Amazon EKS User Guide

a. In the Filter policies box, enter AmazonEFSCSIDriverPolicy.

b. Select the check box to the left of the AmazonEFSCSIDriverPolicy returned in the 
search.

c. Choose Next.

6. On the Name, review, and create page, do the following:

a. For Role name, enter a unique name for your role, such as
AmazonEKS_EFS_CSI_DriverRole.

b. Under Add tags (Optional), add metadata to the role by attaching tags as key-value 
pairs. For more information about using tags in IAM, see Tagging IAM resources in the
IAM User Guide.

c. Choose Create role.

7. After the role is created, choose the role in the console to open it for editing.

8. Choose the Trust relationships tab, and then choose Edit trust policy.

9. Find the line that looks similar to the following line:

"oidc.eks.region-code.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE:aud": 
 "sts.amazonaws.com"

Add the following line above the previous line. Replace region-code with the AWS Region 
that your cluster is in. Replace EXAMPLED539D4633E53DE1B71EXAMPLE with your cluster's 
OIDC provider ID.

"oidc.eks.region-code.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE:sub": 
 "system:serviceaccount:kube-system:efs-csi-*",

10. Modify the Condition operator from "StringEquals" to "StringLike".

11. Choose Update policy to finish.

AWS CLI

To create your Amazon EFS CSI driver IAM role with the AWS CLI

1. View your cluster's OIDC provider URL. Replace my-cluster with your cluster name. If the 
output from the command is None, review the Prerequisites.

Creating an IAM role 359

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html


Amazon EKS User Guide

aws eks describe-cluster --name my-cluster --query 
 "cluster.identity.oidc.issuer" --output text

An example output is as follows.

https://oidc.eks.region-code.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE

2. Create the IAM role that grants the AssumeRoleWithWebIdentity action.

a. Copy the following contents to a file named aws-efs-csi-driver-trust-
policy.json. Replace 111122223333 with your account ID. Replace
EXAMPLED539D4633E53DE1B71EXAMPLE and region-code with the values returned 
in the previous step. If your cluster is in the AWS GovCloud (US-East) or AWS GovCloud 
(US-West) AWS Regions, then replace arn:aws: with arn:aws-us-gov:.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "Federated": "arn:aws:iam::111122223333:oidc-provider/
oidc.eks.region-code.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE" 
      }, 
      "Action": "sts:AssumeRoleWithWebIdentity", 
      "Condition": { 
        "StringLike": { 
          "oidc.eks.region-code.amazonaws.com/
id/EXAMPLED539D4633E53DE1B71EXAMPLE:sub": "system:serviceaccount:kube-
system:efs-csi-*", 
          "oidc.eks.region-code.amazonaws.com/
id/EXAMPLED539D4633E53DE1B71EXAMPLE:aud": "sts.amazonaws.com" 
        } 
      } 
    } 
  ]
}

b. Create the role. You can change AmazonEKS_EFS_CSI_DriverRole to a different 
name, but if you do, make sure to change it in later steps too.

Creating an IAM role 360



Amazon EKS User Guide

aws iam create-role \ 
  --role-name AmazonEKS_EFS_CSI_DriverRole \ 
  --assume-role-policy-document file://"aws-efs-csi-driver-trust-
policy.json"

3. Attach the required AWS managed policy to the role with the following command. If your 
cluster is in the AWS GovCloud (US-East) or AWS GovCloud (US-West) AWS Regions, then 
replace arn:aws: with arn:aws-us-gov:.

aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::aws:policy/service-role/AmazonEFSCSIDriverPolicy \ 
  --role-name AmazonEKS_EFS_CSI_DriverRole

Installing the Amazon EFS CSI driver

We recommend that you install the Amazon EFS CSI driver through the Amazon EKS add-on. To 
add an Amazon EKS add-on to your cluster, see Creating an add-on. For more information about 
add-ons, see Amazon EKS add-ons. If you're unable to use the Amazon EKS add-on, we encourage 
you to submit an issue about why you can't to the Containers roadmap GitHub repository.

Alternatively, if you want a self-managed installation of the Amazon EFS CSI driver, see Installation
on GitHub.

Creating an Amazon EFS file system

To create an Amazon EFS file system, see Create an Amazon EFS file system for Amazon EKS on 
GitHub.

Deploying a sample application

You can deploy a variety of sample apps and modify them as needed. For more information, see
Examples on GitHub.

Amazon FSx for Lustre CSI driver

The FSx for Lustre Container Storage Interface (CSI) driver provides a CSI interface that allows 
Amazon EKS clusters to manage the lifecycle of FSx for Lustre file systems. For more information, 
see the FSx for Lustre User Guide.

Installing the Amazon EFS CSI driver 361

https://github.com/aws/containers-roadmap/issues
https://github.com/kubernetes-sigs/aws-efs-csi-driver/blob/master/docs/README.md#installation
https://github.com/kubernetes-sigs/aws-efs-csi-driver/blob/master/docs/efs-create-filesystem.md
https://github.com/kubernetes-sigs/aws-efs-csi-driver/blob/master/docs/README.md#examples
https://github.com/kubernetes-sigs/aws-fsx-csi-driver
https://docs.aws.amazon.com/fsx/latest/LustreGuide/what-is.html


Amazon EKS User Guide

This topic shows you how to deploy the FSx for Lustre CSI driver to your Amazon EKS cluster and 
verify that it works. We recommend using the latest version of the driver. For available versions, see
CSI Specification Compatibility Matrix on GitHub.

Note

The driver isn't supported on Fargate.

For detailed descriptions of the available parameters and complete examples that demonstrate the 
driver's features, see the FSx for Lustre Container Storage Interface (CSI) driver project on GitHub.

Prerequisites

You must have:

• Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface (AWS 
CLI) installed and configured on your device or AWS CloudShell. To check your current version, 
use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers such yum,
apt-get, or Homebrew for macOS are often several versions behind the latest version of the 
AWS CLI. To install the latest version, see Installing, updating, and uninstalling the AWS CLI and
Quick configuration with aws configure in the AWS Command Line Interface User Guide. The AWS 
CLI version that is installed in AWS CloudShell might also be several versions behind the latest 
version. To update it, see Installing AWS CLI to your home directory in the AWS CloudShell User 
Guide.

• Version 0.172.0 or later of the eksctl command line tool installed on your device or AWS 
CloudShell. To install or update eksctl, see Installation in the eksctl documentation.

• The kubectl command line tool is installed on your device or AWS CloudShell. The version can 
be the same as or up to one minor version earlier or later than the Kubernetes version of your 
cluster. For example, if your cluster version is 1.28, you can use kubectl version 1.27, 1.28, or
1.29 with it. To install or upgrade kubectl, see Installing or updating kubectl.

The following procedures help you create a simple test cluster with the FSx for Lustre CSI driver 
so that you can see how it works. We don't recommend using the testing cluster for production 
workloads. For this tutorial, we recommend using the example values, except where it's noted 
to replace them. You can replace any example value when completing the steps for your 

Amazon FSx for Lustre CSI driver 362

https://github.com/kubernetes-sigs/aws-fsx-csi-driver/blob/master/docs/README.md#csi-specification-compatibility-matrix
https://github.com/kubernetes-sigs/aws-fsx-csi-driver
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software
https://eksctl.io/installation


Amazon EKS User Guide

production cluster. We recommend completing all steps in the same terminal because variables are 
set and used throughout the steps and won't exist in different terminals.

To deploy the FSx for Lustre CSI driver to an Amazon EKS cluster

1. Set a few variables to use in the remaining steps. Replace my-csi-fsx-cluster with the 
name of the test cluster you want to create and region-code with the AWS Region that you 
want to create your test cluster in.

export cluster_name=my-csi-fsx-cluster
export region_code=region-code

2. Create a test cluster.

eksctl create cluster \ 
  --name $cluster_name \ 
  --region $region_code \ 
  --with-oidc \ 
  --ssh-access \ 
  --ssh-public-key my-key

Cluster provisioning takes several minutes. During cluster creation, you'll see several lines of 
output. The last line of output is similar to the following example line.

[#]  EKS cluster "my-csi-fsx-cluster" in "region-code" region is ready

3. Create a Kubernetes service account for the driver and attach the AmazonFSxFullAccess
AWS-managed policy to the service account with the following command. If your cluster 
is in the AWS GovCloud (US-East) or AWS GovCloud (US-West) AWS Regions, then replace
arn:aws: with arn:aws-us-gov:.

eksctl create iamserviceaccount \ 
  --name fsx-csi-controller-sa \ 
  --namespace kube-system \ 
  --cluster $cluster_name \ 
  --attach-policy-arn arn:aws:iam::aws:policy/AmazonFSxFullAccess \ 
  --approve \ 
  --role-name AmazonEKSFSxLustreCSIDriverFullAccess \ 
  --region $region_code

Amazon FSx for Lustre CSI driver 363



Amazon EKS User Guide

You'll see several lines of output as the service account is created. The last lines of output are 
similar to the following.

[#]  1 task: {  
    2 sequential sub-tasks: {  
        create IAM role for serviceaccount "kube-system/fsx-csi-controller-sa", 
        create serviceaccount "kube-system/fsx-csi-controller-sa", 
    } }
[#]  building iamserviceaccount stack "eksctl-my-csi-fsx-cluster-addon-
iamserviceaccount-kube-system-fsx-csi-controller-sa"
[#]  deploying stack "eksctl-my-csi-fsx-cluster-addon-iamserviceaccount-kube-
system-fsx-csi-controller-sa"
[#]  waiting for CloudFormation stack "eksctl-my-csi-fsx-cluster-addon-
iamserviceaccount-kube-system-fsx-csi-controller-sa"
[#]  created serviceaccount "kube-system/fsx-csi-controller-sa"

Note the name of the AWS CloudFormation stack that was deployed. In the previous example 
output, the stack is named eksctl-my-csi-fsx-cluster-addon-iamserviceaccount-
kube-system-fsx-csi-controller-sa.

4. Deploy the driver with the following command. Replace release-X.XX with your desired 
branch. The master branch isn't supported because it may contain upcoming features 
incompatible with the currently released stable version of the driver. We recommend using the 
latest released version. For a list of active branches, see aws-fsx-csi-driver on GitHub.

Note

You can view the content being applied in aws-fsx-csi-driver on GitHub.

kubectl apply -k "github.com/kubernetes-sigs/aws-fsx-csi-driver/deploy/kubernetes/
overlays/stable/?ref=release-X.XX"

An example output is as follows.

serviceaccount/fsx-csi-controller-sa created
serviceaccount/fsx-csi-node-sa created
clusterrole.rbac.authorization.k8s.io/fsx-csi-external-provisioner-role created
clusterrole.rbac.authorization.k8s.io/fsx-external-resizer-role created

Amazon FSx for Lustre CSI driver 364

https://github.com/kubernetes-sigs/aws-fsx-csi-driver/branches/active
https://github.com/kubernetes-sigs/aws-fsx-csi-driver/tree/master/deploy/kubernetes/overlays/stable


Amazon EKS User Guide

clusterrolebinding.rbac.authorization.k8s.io/fsx-csi-external-provisioner-binding 
 created
clusterrolebinding.rbac.authorization.k8s.io/fsx-csi-resizer-binding created
deployment.apps/fsx-csi-controller created
daemonset.apps/fsx-csi-node created
csidriver.storage.k8s.io/fsx.csi.aws.com created

5. Note the ARN for the role that was created. If you didn't note it earlier and don't have it 
available anymore in the AWS CLI output, you can do the following to see it in the AWS 
Management Console.

a. Open the AWS CloudFormation console at https://console.aws.amazon.com/
cloudformation.

b. Ensure that the console is set to the AWS Region that you created your IAM role in and 
then select Stacks.

c. Select the stack named eksctl-my-csi-fsx-cluster-addon-iamserviceaccount-
kube-system-fsx-csi-controller-sa.

d. Select the Outputs tab. The Role1 ARN is listed on the Outputs (1) page.

6. Patch the driver deployment to add the service account that you created earlier with the 
following command. Replace the ARN with the ARN that you noted. Replace 111122223333
with your account ID. If your cluster is in the AWS GovCloud (US-East) or AWS GovCloud (US-
West) AWS Regions, then replace arn:aws: with arn:aws-us-gov:.

kubectl annotate serviceaccount -n kube-system fsx-csi-controller-sa \ 
  eks.amazonaws.com/role-
arn=arn:aws:iam::111122223333:role/AmazonEKSFSxLustreCSIDriverFullAccess --
overwrite=true

An example output is as follows.

serviceaccount/fsx-csi-controller-sa annotated

To deploy a Kubernetes storage class, persistent volume claim, and sample application to verify 
that the CSI driver is working

This procedure uses the FSx for Lustre Container Storage Interface (CSI) driver GitHub repository to 
consume a dynamically-provisioned FSx for Lustre volume.

Amazon FSx for Lustre CSI driver 365

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://github.com/kubernetes-sigs/aws-fsx-csi-driver


Amazon EKS User Guide

1. Note the security group for your cluster. You can see it in the AWS Management Console under 
the Networking section or by using the following AWS CLI command.

aws eks describe-cluster --name $cluster_name --query 
 cluster.resourcesVpcConfig.clusterSecurityGroupId

2. Create a security group for your Amazon FSx file system according to the criteria shown 
in Amazon VPC Security Groups in the Amazon FSx for Lustre User Guide. For the VPC, 
select the VPC of your cluster as shown under the Networking section. For "the security 
groups associated with your Lustre clients", use your cluster security group. You can leave the 
outbound rules alone to allow All traffic.

3. Download the storage class manifest with the following command.

curl -O https://raw.githubusercontent.com/kubernetes-sigs/aws-fsx-csi-driver/
master/examples/kubernetes/dynamic_provisioning/specs/storageclass.yaml

4. Edit the parameters section of the storageclass.yaml file. Replace every example value
with your own values.

parameters: 
  subnetId: subnet-0eabfaa81fb22bcaf
  securityGroupIds: sg-068000ccf82dfba88
  deploymentType: PERSISTENT_1
  automaticBackupRetentionDays: "1"
  dailyAutomaticBackupStartTime: "00:00"
  copyTagsToBackups: "true"
  perUnitStorageThroughput: "200"
  dataCompressionType: "NONE"
  weeklyMaintenanceStartTime: "7:09:00"
  fileSystemTypeVersion: "2.12"

• subnetId – The subnet ID that the Amazon FSx for Lustre file system should be created in. 
Amazon FSx for Lustre isn't supported in all Availability Zones. Open the Amazon FSx for 
Lustre console at https://console.aws.amazon.com/fsx/ to confirm that the subnet that you 
want to use is in a supported Availability Zone. The subnet can include your nodes, or can be 
a different subnet or VPC:

• You can check for the node subnets in the AWS Management Console by selecting the 
node group under the Compute section.

Amazon FSx for Lustre CSI driver 366

https://docs.aws.amazon.com/fsx/latest/LustreGuide/limit-access-security-groups.html#fsx-vpc-security-groups
https://console.aws.amazon.com/fsx/


Amazon EKS User Guide

• If the subnet that you specify isn't the same subnet that you have nodes in, then your 
VPCs must be connected, and you must ensure that you have the necessary ports open in 
your security groups.

• securityGroupIds – The ID of the security group you created for the file system.

• deploymentType (optional) – The file system deployment type. Valid values are
SCRATCH_1, SCRATCH_2, PERSISTENT_1, and PERSISTENT_2. For more information about 
deployment types, see Create your Amazon FSx for Lustre file system.

• other parameters (optional) – For information about the other parameters, see Edit 
StorageClass on GitHub.

5. Create the storage class manifest.

kubectl apply -f storageclass.yaml

An example output is as follows.

storageclass.storage.k8s.io/fsx-sc created

6. Download the persistent volume claim manifest.

curl -O https://raw.githubusercontent.com/kubernetes-sigs/aws-fsx-csi-driver/
master/examples/kubernetes/dynamic_provisioning/specs/claim.yaml

7. (Optional) Edit the claim.yaml file. Change 1200Gi to one of the following increment 
values, based on your storage requirements and the deploymentType that you selected in a 
previous step.

storage: 1200Gi

• SCRATCH_2 and PERSISTENT – 1.2 TiB, 2.4 TiB, or increments of 2.4 TiB over 2.4 TiB.

• SCRATCH_1 – 1.2 TiB, 2.4 TiB, 3.6 TiB, or increments of 3.6 TiB over 3.6 TiB.

8. Create the persistent volume claim.

kubectl apply -f claim.yaml

An example output is as follows.

Amazon FSx for Lustre CSI driver 367

https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/amazon-vpc-to-amazon-vpc-connectivity-options.html
https://docs.aws.amazon.com/fsx/latest/LustreGuide/getting-started-step1.html
https://github.com/kubernetes-sigs/aws-fsx-csi-driver/tree/master/examples/kubernetes/dynamic_provisioning#edit-storageclass
https://github.com/kubernetes-sigs/aws-fsx-csi-driver/tree/master/examples/kubernetes/dynamic_provisioning#edit-storageclass


Amazon EKS User Guide

persistentvolumeclaim/fsx-claim created

9. Confirm that the file system is provisioned.

kubectl describe pvc

An example output is as follows.

Name:          fsx-claim
Namespace:     default
StorageClass:  fsx-sc
Status:        Bound
[...]

Note

The Status may show as Pending for 5-10 minutes, before changing to Bound. 
Don't continue with the next step until the Status is Bound. If the Status shows
Pending for more than 10 minutes, use warning messages in the Events as reference 
for addressing any problems.

10. Deploy the sample application.

kubectl apply -f https://raw.githubusercontent.com/kubernetes-sigs/aws-fsx-csi-
driver/master/examples/kubernetes/dynamic_provisioning/specs/pod.yaml

11. Verify that the sample application is running.

kubectl get pods

An example output is as follows.

NAME      READY   STATUS              RESTARTS   AGE
fsx-app   1/1     Running             0          8s

12. Verify that the file system is mounted correctly by the application.

kubectl exec -ti fsx-app -- df -h

Amazon FSx for Lustre CSI driver 368



Amazon EKS User Guide

An example output is as follows.

Filesystem                   Size  Used Avail Use% Mounted on
overlay                        80G  4.0G   77G   5% /
tmpfs                          64M     0   64M   0% /dev
tmpfs                         3.8G     0  3.8G   0% /sys/fs/cgroup
192.0.2.0@tcp:/abcdef01      1.1T  7.8M  1.1T   1% /data
/dev/nvme0n1p1                 80G  4.0G   77G   5% /etc/hosts
shm                            64M     0   64M   0% /dev/shm
tmpfs                         6.9G   12K  6.9G   1% /run/secrets/kubernetes.io/
serviceaccount
tmpfs                         3.8G     0  3.8G   0% /proc/acpi
tmpfs                         3.8G     0  3.8G   0% /sys/firmware

13. Verify that data was written to the FSx for Lustre file system by the sample app.

kubectl exec -it fsx-app -- ls /data

An example output is as follows.

out.txt

This example output shows that the sample app successfully wrote the out.txt file to the file 
system.

Note

Before deleting the cluster, make sure to delete the FSx for Lustre file system. For more 
information, see Clean up resources in the FSx for Lustre User Guide.

Amazon FSx for NetApp ONTAP CSI driver

NetApp's Astra Trident provides dynamic storage orchestration using a Container Storage Interface 
(CSI) compliant driver. This allows Amazon EKS clusters to manage the lifecycle of persistent 
volumes (PVs) backed by Amazon FSx for NetApp ONTAP file systems. To get started, see Use Astra 
Trident with Amazon FSx for NetApp ONTAP in the Astra Trident documentation.

Amazon FSx for NetApp ONTAP CSI driver 369

https://docs.aws.amazon.com/fsx/latest/LustreGuide/getting-started-step4.html
https://docs.netapp.com/us-en/trident/trident-use/trident-fsx.html
https://docs.netapp.com/us-en/trident/trident-use/trident-fsx.html


Amazon EKS User Guide

Amazon FSx for NetApp ONTAP is a storage service that allows you to launch and run fully 
managed ONTAP file systems in the cloud. ONTAP is NetApp's file system technology that provides 
a widely adopted set of data access and data management capabilities. Amazon FSx for NetApp 
ONTAP provides the features, performance, and APIs of on-premises NetApp file systems with the 
agility, scalability, and simplicity of a fully managed AWS service. For more information, see the FSx 
for ONTAP User Guide.

Amazon FSx for OpenZFS CSI driver

Amazon FSx for OpenZFS is a fully managed file storage service that makes it easy to move data 
to AWS from on-premises ZFS or other Linux-based file servers. You can do this without changing 
your application code or how you manage data. It offers highly reliable, scalable, efficient, 
and feature-rich file storage built on the open-source OpenZFS file system. It combines these 
capabilities with the agility, scalability, and simplicity of a fully managed AWS service. For more 
information, see the Amazon FSx for OpenZFS User Guide.

The Amazon FSx for OpenZFS Container Storage Interface (CSI) driver provides a CSI interface 
that allows Amazon EKS clusters to manage the life cycle of Amazon FSx for OpenZFS volumes. 
To deploy the Amazon FSx for OpenZFS CSI driver to your Amazon EKS cluster, see aws-fsx-
openzfs-csi-driver on GitHub.

Amazon File Cache CSI driver

Amazon File Cache is a fully managed, high-speed cache on AWS that's used to process file data, 
regardless of where the data is stored. Amazon File Cache automatically loads data into the cache 
when it's accessed for the first time and releases data when it's not used. For more information, see 
the Amazon File Cache User Guide.

The Amazon File Cache Container Storage Interface (CSI) driver provides a CSI interface that allows 
Amazon EKS clusters to manage the life cycle of Amazon file caches. To deploy the Amazon File 
Cache CSI driver to your Amazon EKS cluster, see aws-file-cache-csi-driver on GitHub.

Mountpoint for Amazon S3 CSI driver

With the Mountpoint for Amazon S3 Container Storage Interface (CSI) driver, your Kubernetes 
applications can access S3 objects through a file system interface, achieving high aggregate 

Amazon FSx for OpenZFS CSI driver 370

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://docs.aws.amazon.com/fsx/latest/OpenZFSGuide/what-is-fsx.html
https://github.com/kubernetes-sigs/aws-fsx-openzfs-csi-driver
https://github.com/kubernetes-sigs/aws-fsx-openzfs-csi-driver
https://docs.aws.amazon.com/fsx/latest/FileCacheGuide/what-is.html
https://github.com/kubernetes-sigs/aws-file-cache-csi-driver
https://github.com/awslabs/mountpoint-s3-csi-driver


Amazon EKS User Guide

throughput without changing any application code. Built on Mountpoint for Amazon S3, the CSI 
driver presents an Amazon S3 bucket as a volume that can be accessed by containers in Amazon 
EKS and self-managed Kubernetes clusters. This topic shows you how to deploy the Mountpoint for 
Amazon S3 CSI driver to your Amazon EKS cluster.

Considerations

• The Mountpoint for Amazon S3 CSI driver isn't presently compatible with Windows-based 
container images.

• The Mountpoint for Amazon S3 CSI driver doesn't support AWS Fargate. However, containers 
that are running in Amazon EC2 (either with Amazon EKS or a custom Kubernetes installation) 
are supported.

• The Mountpoint for Amazon S3 CSI driver supports only static provisioning. Dynamic 
provisioning, or creation of new buckets, isn't supported.

Note

Static provisioning refers to using an existing S3 bucket that is specified as the
bucketName in the volumeHandle in the PersistentVolume object. For more 
information, see Static Provisioning on GitHub.

• Volumes mounted with the Mountpoint for Amazon S3 CSI driver don't support all POSIX file-
system features. For details about file-system behavior, see Mountpoint for Amazon S3 file 
system behavior on GitHub.

Prerequisites

• An existing AWS Identity and Access Management (IAM) OpenID Connect (OIDC) provider for 
your cluster. To determine whether you already have one, or to create one, see Creating an IAM 
OIDC provider for your cluster.

• Version 2.12.3 or later of the AWS CLI installed and configured on your device or AWS 
CloudShell.

• The kubectl command line tool is installed on your device or AWS CloudShell. The version can 
be the same as or up to one minor version earlier or later than the Kubernetes version of your 
cluster. For example, if your cluster version is 1.28, you can use kubectl version 1.27, 1.28, or
1.29 with it. To install or upgrade kubectl, see Installing or updating kubectl.

Mountpoint for Amazon S3 CSI driver 371

https://github.com/awslabs/mountpoint-s3
https://github.com/awslabs/mountpoint-s3-csi-driver/blob/main/examples/kubernetes/static_provisioning/README.md
https://github.com/awslabs/mountpoint-s3/blob/main/doc/SEMANTICS.md
https://github.com/awslabs/mountpoint-s3/blob/main/doc/SEMANTICS.md


Amazon EKS User Guide

Creating an IAM policy

The Mountpoint for Amazon S3 CSI driver requires Amazon S3 permissions to interact with your 
file system. This section shows how to create an IAM policy that grants the necessary permissions.

The following example policy follows the IAM permission recommendations for Mountpoint. 
Alternatively, you can use the AWS managed policy AmazonS3FullAccess, but this managed policy 
grants more permissions than are needed for Mountpoint.

For more information about the recommended permissions for Mountpoint, see Mountpoint IAM 
permissions on GitHub.

Create an IAM policy with the IAM console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Policies.

3. On the Policies page, choose Create policy.

4. For Policy editor, choose JSON.

5. Under Policy editor, copy and paste the following:

Important

Replace DOC-EXAMPLE-BUCKET1 with your own Amazon S3 bucket name.

{ 
   "Version": "2012-10-17", 
   "Statement": [ 
        { 
            "Sid": "MountpointFullBucketAccess", 
            "Effect": "Allow", 
            "Action": [ 
                "s3:ListBucket" 
            ], 
            "Resource": [ 
                "arn:aws:s3:::DOC-EXAMPLE-BUCKET1" 
            ] 
        }, 
        { 

Creating an IAM policy 372

https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonS3FullAccess$jsonEditor
https://github.com/awslabs/mountpoint-s3/blob/main/doc/CONFIGURATION.md#iam-permissions
https://github.com/awslabs/mountpoint-s3/blob/main/doc/CONFIGURATION.md#iam-permissions
https://console.aws.amazon.com/iam/


Amazon EKS User Guide

            "Sid": "MountpointFullObjectAccess", 
            "Effect": "Allow", 
            "Action": [ 
                "s3:GetObject", 
                "s3:PutObject", 
                "s3:AbortMultipartUpload", 
                "s3:DeleteObject" 
            ], 
            "Resource": [ 
                "arn:aws:s3:::DOC-EXAMPLE-BUCKET1/*" 
            ] 
        } 
   ]
}

Directory buckets, introduced with the S3 Express One Zone storage class, use a different 
authentication mechanism from general purpose buckets. Instead of using s3:* actions, you 
should use the s3express:CreateSession action. For information about directory buckets, 
see Directory buckets in the Amazon S3 User Guide.

Below is an example of least-privilege policy that you would use for a directory bucket.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": "s3express:CreateSession", 
            "Resource": "arn:aws:s3express:aws-region:111122223333:bucket/DOC-
EXAMPLE-BUCKET1--az_id--x-s3" 
        } 
    ]
}

6. Choose Next.

7. On the Review and create page, name your policy. This example walkthrough uses the name
AmazonS3CSIDriverPolicy.

8. Choose Create policy.

Creating an IAM policy 373

https://docs.aws.amazon.com/AmazonS3/latest/userguide/directory-buckets-overview.html


Amazon EKS User Guide

Creating an IAM role

The Mountpoint for Amazon S3 CSI driver requires Amazon S3 permissions to interact with your 
file system. This section shows how to create an IAM role to delegate these permissions. To create 
this role, you can use eksctl, the IAM console, or the AWS CLI.

Note

The IAM policy AmazonS3CSIDriverPolicy was created in the previous section.

eksctl

To create your Mountpoint for Amazon S3 CSI driver IAM role with eksctl

To create the IAM role and the Kubernetes service account, run the following commands. These 
commands also attach the AmazonS3CSIDriverPolicy IAM policy to the role, annotate the 
Kubernetes service account (s3-csi-controller-sa) with the IAM role's Amazon Resource 
Name (ARN), and add the Kubernetes service account name to the trust policy for the IAM role.

CLUSTER_NAME=my-cluster
REGION=region-code
ROLE_NAME=AmazonEKS_S3_CSI_DriverRole
POLICY_ARN=AmazonEKS_S3_CSI_DriverRole_ARN
eksctl create iamserviceaccount \ 
    --name s3-csi-driver-sa \ 
    --namespace kube-system \ 
    --cluster $CLUSTER_NAME \ 
    --attach-policy-arn $POLICY_ARN \ 
    --approve \ 
    --role-name $ROLE_NAME \ 
    --region $REGION \ 
    --role-only

IAM console

To create your Mountpoint for Amazon S3 CSI driver IAM role with the AWS Management 
Console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

Creating an IAM role 374

https://console.aws.amazon.com/iam/


Amazon EKS User Guide

3. On the Roles page, choose Create role.

4. On the Select trusted entity page, do the following:

a. In the Trusted entity type section, choose Web identity.

b. For Identity provider, choose the OpenID Connect provider URL for your cluster (as 
shown under Overview in Amazon EKS).

If no URLs are shown, review the Prerequisites section.

c. For Audience, choose sts.amazonaws.com.

d. Choose Next.

5. On the Add permissions page, do the following:

a. In the Filter policies box, enter AmazonS3CSIDriverPolicy.

Note

This policy was created in the previous section.

b. Select the check box to the left of the AmazonS3CSIDriverPolicy result that was 
returned in the search.

c. Choose Next.

6. On the Name, review, and create page, do the following:

a. For Role name, enter a unique name for your role, such as
AmazonEKS_S3_CSI_DriverRole.

b. Under Add tags (Optional), add metadata to the role by attaching tags as key-value 
pairs. For more information about using tags in IAM, see Tagging IAM resources in the
IAM User Guide.

c. Choose Create role.

7. After the role is created, choose the role in the console to open it for editing.

8. Choose the Trust relationships tab, and then choose Edit trust policy.

9. Find the line that looks similar to the following:

"oidc.eks.region-code.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE:aud": 
 "sts.amazonaws.com"

Creating an IAM role 375

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html


Amazon EKS User Guide

Add a comma to the end of the previous line, and then add the following line after 
it. Replace region-code with the AWS Region that your cluster is in. Replace
EXAMPLED539D4633E53DE1B71EXAMPLE with your cluster's OIDC provider ID.

"oidc.eks.region-code.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE:sub": 
 "system:serviceaccount:kube-system:s3-csi-*"

10. Change the Condition operator from "StringEquals" to "StringLike".

11. Choose Update policy to finish.

AWS CLI

To create your Mountpoint for Amazon S3 CSI driver IAM role with the AWS CLI

1. View the OIDC provider URL for your cluster. Replace my-cluster with the name of your 
cluster. If the output from the command is None, review the Prerequisites.

aws eks describe-cluster --name my-cluster --query 
 "cluster.identity.oidc.issuer" --output text

An example output is as follows.

https://oidc.eks.region-code.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE

2. Create the IAM role, granting the Kubernetes service account the
AssumeRoleWithWebIdentity action.

a. Copy the following contents to a file named aws-s3-csi-driver-trust-
policy.json. Replace 111122223333 with your account ID. Replace
EXAMPLED539D4633E53DE1B71EXAMPLE and region-code with the values returned 
in the previous step.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 

Creating an IAM role 376



Amazon EKS User Guide

        "Federated": "arn:aws:iam::111122223333:oidc-provider/
oidc.eks.region-code.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE" 
      }, 
      "Action": "sts:AssumeRoleWithWebIdentity", 
      "Condition": { 
        "StringLike": { 
          "oidc.eks.region-code.amazonaws.com/
id/EXAMPLED539D4633E53DE1B71EXAMPLE:sub": "system:serviceaccount:kube-
system:s3-csi-*", 
          "oidc.eks.region-code.amazonaws.com/
id/EXAMPLED539D4633E53DE1B71EXAMPLE:aud": "sts.amazonaws.com" 
        } 
      } 
    } 
  ]
}

b. Create the role. You can change AmazonEKS_S3_CSI_DriverRole to a different 
name, but if you do, make sure to change it in later steps too.

aws iam create-role \ 
  --role-name AmazonEKS_S3_CSI_DriverRole \ 
  --assume-role-policy-document file://"aws-s3-csi-driver-trust-policy.json"

3. Attach the previously created IAM policy to the role with the following command.

aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::aws:policy/AmazonS3CSIDriverPolicy \ 
  --role-name AmazonEKS_S3_CSI_DriverRole

Note

The IAM policy AmazonS3CSIDriverPolicy was created in the previous section.

4. Skip this step if you're installing the driver as an Amazon EKS add-on. For self-managed 
installations of the driver, create Kubernetes service accounts that are annotated with the 
ARN of the IAM role that you created.

a. Save the following contents to a file named mountpoint-s3-service-
account.yaml. Replace 111122223333 with your account ID.

Creating an IAM role 377



Amazon EKS User Guide

---
apiVersion: v1
kind: ServiceAccount
metadata: 
  labels: 
    app.kubernetes.io/name: aws-mountpoint-s3-csi-driver 
  name: mountpoint-s3-csi-controller-sa 
  namespace: kube-system 
  annotations: 
    eks.amazonaws.com/role-arn: 
 arn:aws:iam::111122223333:role/AmazonEKS_S3_CSI_DriverRole

    

b. Create the Kubernetes service account on your cluster. The Kubernetes service account 
(mountpoint-s3-csi-controller-sa) is annotated with the IAM role that you 
created named AmazonEKS_S3_CSI_DriverRole.

kubectl apply -f mountpoint-s3-service-account.yaml

Note

When you deploy the plugin in this procedure, it creates and is configured to 
use a service account named s3-csi-driver-sa.

Installing the Mountpoint for Amazon S3 CSI driver

You may install the Mountpoint for Amazon S3 CSI driver through the Amazon EKS add-on. You 
can use eksctl, the AWS Management Console, or the AWS CLI to add the add-on to your cluster.

You may optionally install Mountpoint for Amazon S3 CSI driver as a self-managed installation. For 
instructions on doing a self-managed installation, see Installation on GitHub.

eksctl

To add the Amazon S3 CSI add-on using eksctl

Installing the Mountpoint for Amazon S3 CSI driver 378

https://github.com/awslabs/mountpoint-s3-csi-driver/blob/main/docs/install.md#deploy-driver


Amazon EKS User Guide

Run the following command. Replace my-cluster with the name of your cluster,
111122223333 with your account ID, and AmazonEKS_S3_CSI_DriverRole with the name of 
the IAM role created earlier.

eksctl create addon --name aws-mountpoint-s3-csi-driver --cluster my-cluster --
service-account-role-arn arn:aws:iam::111122223333:role/AmazonEKS_S3_CSI_DriverRole
 --force

If you remove the --force option and any of the Amazon EKS add-on settings conflict with 
your existing settings, then updating the Amazon EKS add-on fails, and you receive an error 
message to help you resolve the conflict. Before specifying this option, make sure that the 
Amazon EKS add-on doesn't manage settings that you need to manage, because those settings 
are overwritten with this option. For more information about other options for this setting, see
Addons in the eksctl documentation. For more information about Amazon EKS Kubernetes 
field management, see  Kubernetes field management.

AWS Management Console

To add the Mountpoint for Amazon S3 CSI add-on using the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, choose Clusters.

3. Choose the name of the cluster that you want to configure the Mountpoint for Amazon S3 
CSI add-on for.

4. Choose the Add-ons tab.

5. Choose Get more add-ons.

6. On the Select add-ons page, do the following:

a. In the Amazon EKS-addons section, select the Mountpoint for Amazon S3 CSI Driver
check box.

b. Choose Next.

7. On the Configure selected add-ons settings page, do the following:

a. Select the Version you'd like to use.

b. For Select IAM role, select the name of an IAM role that you attached the Mountpoint 
for Amazon S3 CSI driver IAM policy to.

Installing the Mountpoint for Amazon S3 CSI driver 379

https://eksctl.io/usage/addons/
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

c. (Optional) You can expand the Optional configuration settings. If you select Override
for the Conflict resolution method, one or more of the settings for the existing add-
on can be overwritten with the Amazon EKS add-on settings. If you don't enable this 
option and there's a conflict with your existing settings, the operation fails. You can use 
the resulting error message to troubleshoot the conflict. Before selecting this option, 
make sure that the Amazon EKS add-on doesn't manage settings that you need to self-
manage.

d. Choose Next.

8. On the Review and add page, choose Create. After the add-on installation is complete, you 
see your installed add-on.

AWS CLI

To add the Mountpoint for Amazon S3 CSI add-on using the AWS CLI

Run the following command. Replace my-cluster with the name of your cluster,
111122223333 with your account ID, and AmazonEKS_S3_CSI_DriverRole with the name of 
the role that was created earlier.

aws eks create-addon --cluster-name my-cluster --addon-name aws-mountpoint-s3-csi-
driver \ 
  --service-account-role-arn 
 arn:aws:iam::111122223333:role/AmazonEKS_S3_CSI_DriverRole

Configuring Mountpoint for Amazon S3

In most cases, you can configure Mountpoint for Amazon S3 with only a bucket name. For 
instructions on configuring Mountpoint for Amazon S3, see Configuring Mountpoint for Amazon S3
on GitHub.

Deploying a sample application

You can deploy static provisioning to the driver on an existing Amazon S3 bucket. For more 
information, see Static provisioning on GitHub.

Removing Mountpoint for Amazon S3 CSI Driver

You have two options for removing an Amazon EKS add-on.

Configuring Mountpoint for Amazon S3 380

https://github.com/awslabs/mountpoint-s3/blob/main/doc/CONFIGURATION.md
https://github.com/awslabs/mountpoint-s3-csi-driver/blob/main/examples/kubernetes/static_provisioning/README.md


Amazon EKS User Guide

• Preserve add-on software on your cluster – This option removes Amazon EKS management 
of any settings. It also removes the ability for Amazon EKS to notify you of updates and 
automatically update the Amazon EKS add-on after you initiate an update. However, it preserves 
the add-on software on your cluster. This option makes the add-on a self-managed installation, 
rather than an Amazon EKS add-on. With this option, there's no downtime for the add-on. The 
commands in this procedure use this option.

• Remove add-on software entirely from your cluster – We recommend that you remove the 
Amazon EKS add-on from your cluster only if there are no resources on your cluster that are 
dependent on it. To do this option, delete --preserve from the command you use in this 
procedure.

If the add-on has an IAM account associated with it, the IAM account isn't removed.

You can use eksctl, the AWS Management Console, or the AWS CLI to remove the Amazon S3 CSI 
add-on.

eksctl

To remove the Amazon S3 CSI add-on using eksctl

Replace my-cluster with the name of your cluster, and then run the following command.

eksctl delete addon --cluster my-cluster --name aws-mountpoint-s3-csi-driver --
preserve

AWS Management Console

To remove the Amazon S3 CSI add-on using the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, choose Clusters.

3. Choose the name of the cluster that you want to remove the Amazon EBS CSI add-on for.

4. Choose the Add-ons tab.

5. Choose Mountpoint for Amazon S3 CSI Driver.

6. Choose Remove.

7. In the Remove: aws-mountpoint-s3-csi-driver confirmation dialog box, do the following:

Removing Mountpoint for Amazon S3 CSI Driver 381

https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

a. If you want Amazon EKS to stop managing settings for the add-on, select Preserve 
on cluster. Do this if you want to retain the add-on software on your cluster. This is so 
that you can manage all of the settings of the add-on on your own.

b. Enter aws-mountpoint-s3-csi-driver.

c. Select Remove.

AWS CLI

To remove the Amazon S3 CSI add-on using the AWS CLI

Replace my-cluster with the name of your cluster, and then run the following command.

aws eks delete-addon --cluster-name my-cluster --addon-name aws-mountpoint-s3-csi-
driver --preserve

CSI snapshot controller

The Container Storage Interface (CSI) snapshot controller enables the use of snapshotting 
functionality in compatible CSI drivers, such as the Amazon EBS CSI driver.

Here are some things to consider when using the CSI snapshot controller.

• The snapshot controller must be installed alongside a CSI driver with snapshotting functionality. 
The Amazon EBS CSI driver supports creating Amazon EBS snapshots of Amazon EBS CSI 
managed volumes. For installation instructions, see Amazon EBS CSI driver.

• Kubernetes doesn't support snapshots of volumes being served via CSI migration, such as 
Amazon EBS volumes using a StorageClass with provisioner kubernetes.io/aws-ebs. 
Volumes must be created with a StorageClass that references the CSI driver provisioner,
ebs.csi.aws.com. For more information about CSI migration, see Amazon EBS CSI migration 
frequently asked questions.

We recommend that you install the CSI snapshot controller through the Amazon EKS managed 
add-on. To add an Amazon EKS add-on to your cluster, see Creating an add-on. For more 
information about add-ons, see Amazon EKS add-ons.

CSI snapshot controller 382



Amazon EKS User Guide

Alternatively, if you want a self-managed installation of the Amazon EBS CSI snapshot controller, 
see Usage in the upstream Kubernetes external-snapshotter on GitHub.

CSI snapshot controller 383

https://github.com/kubernetes-csi/external-snapshotter/blob/master/README.md#usage


Amazon EKS User Guide

Amazon EKS networking

Your Amazon EKS cluster is created in a VPC. Pod networking is provided by the Amazon VPC 
Container Network Interface (CNI) plugin. This chapter includes the following topics for learning 
more about networking for your cluster.

Topics

• Amazon EKS VPC and subnet requirements and considerations

• Creating a VPC for your Amazon EKS cluster

• Amazon EKS security group requirements and considerations

• Amazon EKS networking add-ons

• Access the Amazon Elastic Kubernetes Service using an interface endpoint (AWS PrivateLink)

Amazon EKS VPC and subnet requirements and considerations

When you create a cluster, you specify a VPC and at least two subnets that are in different 
Availability Zones. This topic provides an overview of Amazon EKS specific requirements and 
considerations for the VPC and subnets that you use with your cluster. If you don't have a VPC to 
use with Amazon EKS, you can create one using an Amazon EKS provided AWS CloudFormation 
template. If you're creating a local or extended cluster on AWS Outposts, see Amazon EKS local 
cluster VPC and subnet requirements and considerations instead of this topic.

VPC requirements and considerations

When you create a cluster, the VPC that you specify must meet the following requirements and 
considerations:

• The VPC must have a sufficient number of IP addresses available for the cluster, any nodes, and 
other Kubernetes resources that you want to create. If the VPC that you want to use doesn't have 
a sufficient number of IP addresses, try to increase the number of available IP addresses.

You can do this by updating the cluster configuration to change which subnets and security 
groups the cluster uses. You can update from the AWS Management Console, the latest version 
of the AWS CLI, AWS CloudFormation, and eksctl version v0.164.0-rc.0 or later. You might 
need to do this to provide subnets with more available IP addresses to successfully upgrade a 
cluster version.

VPC and subnet requirements 384

https://docs.aws.amazon.com/vpc/latest/userguide/configure-your-vpc.html


Amazon EKS User Guide

Important

All subnets that you add must be in the same set of AZs as originally provided when you 
created the cluster. New subnets must satisfy all of the other requirements, for example 
they must have sufficient IP addresses.
For example, assume that you made a cluster and specified four subnets. In the order 
that you specified them, the first subnet is in the us-west-2a Availability Zone, the 
second and third subnets are in us-west-2b Availability Zone, and the fourth subnet is 
in us-west-2c Availability Zone. If you want to change the subnets, you must provide at 
least one subnet in each of the three Availability Zones, and the subnets must be in the 
same VPC as the original subnets.

If you need more IP addresses than the CIDR blocks in the VPC have, you can add additional CIDR 
blocks by associating additional Classless Inter-Domain Routing (CIDR) blocks with your VPC. 
You can associate private (RFC 1918) and public (non-RFC 1918) CIDR blocks to your VPC either 
before or after you create your cluster. It can take a cluster up to five hours for a CIDR block that 
you associated with a VPC to be recognized.

You can conserve IP address utilization by using a transit gateway with a shared services VPC. 
For more information, see Isolated VPCs with shared services and Amazon EKS VPC routable IP 
address conservation patterns in a hybrid network.

• If you want Kubernetes to assign IPv6 addresses to Pods and services, associate an IPv6 CIDR 
block with your VPC. For more information, see Associate an IPv6 CIDR block with your VPC in 
the Amazon VPC User Guide.

• The VPC must have DNS hostname and DNS resolution support. Otherwise, nodes can't register 
to your cluster. For more information, see DNS attributes for your VPC in the Amazon VPC User 
Guide.

• The VPC might require VPC endpoints using AWS PrivateLink. For more information, see Subnet 
requirements and considerations.

If you created a cluster with Kubernetes 1.14 or earlier, Amazon EKS added the following tag to 
your VPC:

VPC requirements and considerations 385

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#add-ipv4-cidr
https://docs.aws.amazon.com/vpc/latest/tgw/transit-gateway-isolated-shared.html
https://aws.amazon.com/blogs/containers/eks-vpc-routable-ip-address-conservation/
https://aws.amazon.com/blogs/containers/eks-vpc-routable-ip-address-conservation/
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#vpc-associate-ipv6-cidr
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html


Amazon EKS User Guide

Key Value

kubernetes.io/cluster/ my-cluster owned

This tag was only used by Amazon EKS. You can remove the tag without impacting your services. 
It's not used with clusters that are version 1.15 or later.

Subnet requirements and considerations

When you create a cluster, Amazon EKS creates 2–4 elastic network interfaces in the subnets that 
you specify. These network interfaces enable communication between your cluster and your VPC. 
These network interfaces also enable Kubernetes features such as kubectl exec and kubectl 
logs. Each Amazon EKS created network interface has the text Amazon EKS cluster-name in 
its description.

Amazon EKS can create its network interfaces in any subnet that you specify when you create a 
cluster. You can change which subnets Amazon EKS creates its network interfaces in after your 
cluster is created. When you update the Kubernetes version of a cluster, Amazon EKS deletes the 
original network interfaces that it created, and creates new network interfaces. These network 
interfaces might be created in the same subnets as the original network interfaces or in different 
subnets than the original network interfaces. To control which subnets network interfaces are 
created in, you can limit the number of subnets you specify to only two when you create a cluster 
or update the subnets after creating the cluster.

Subnet requirements for clusters

The subnets that you specify when you create or update a cluster must meet the following 
requirements:

• The subnets must each have at least six IP addresses for use by Amazon EKS. However, we 
recommend at least 16 IP addresses.

• The subnets can't reside in AWS Outposts, AWS Wavelength, or an AWS Local Zone. However, if 
you have them in your VPC, you can deploy self-managed nodes and Kubernetes resources to 
these types of subnets.

• The subnets can be a public or private. However, we recommend that you specify private 
subnets, if possible. A public subnet is a subnet with a route table that includes a route to an

Subnet requirements and considerations 386

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/configure-subnets.html#subnet-types


Amazon EKS User Guide

internet gateway, whereas a private subnet is a subnet with a route table that doesn't include a 
route to an internet gateway.

• The subnets can't reside in the following Availability Zones:

AWS Region Region name Disallowed Availability 
Zone IDs

us-east-1 US East (N. Virginia) use1-az3

us-west-1 US West (N. California) usw1-az2

ca-central-1 Canada (Central) cac1-az3

IP address family usage by component

The following table contains the IP address family used by each component of Amazon EKS. You 
can use a network address translation (NAT) or other compatibility system to connect to these 
components from source IP addresses in families with the "No" value for a table entry.

Functionality can differ depending on the IP family (ipFamily) setting of the cluster. This setting 
changes the type of IP addresses used for the CIDR block that Kubernetes assigns to Services. A 
cluster with the setting value of IPv4 is referred to as an IPv4 cluster, and a cluster with the setting 
value of IPv6 is referred to as an IPv6 cluster.

Component IPv4 addresses only IPv6 addresses only Dual stack addresses

EKS API public 
endpoint

Yes No No

EKS API VPC 
endpoint

Yes No No

EKS Auth API public 
endpoint

Yes1 Yes1 Yes1

EKS Auth API VPC 
endpoint

Yes1 Yes1 Yes1

Subnet requirements and considerations 387

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html


Amazon EKS User Guide

Component IPv4 addresses only IPv6 addresses only Dual stack addresses

EKS cluster public 
endpoint

Yes No No

EKS cluster private 
endpoint

Yes2 Yes2 No

EKS cluster subnets Yes2 No Yes2

Node Primary IP 
addresses

Yes2 No Yes2

Cluster CIDR range 
for Service IP 
addresses

Yes2 Yes2 No

Pod IP addresses 
from the VPC CNI

Yes2 Yes2 No

Note
1 The endpoint is dual stack with both IPv4 and IPv6 addresses. Your applications outside 
of AWS, your nodes for the cluster, and your pods inside the cluster can reach this endpoint 
by either IPv4 or IPv6.
2 You choose between an IPv4 cluster and IPv6 cluster in the IP family (ipFamily) 
setting of the cluster when you create a cluster and this can't be changed. Instead, 
you must choose a different setting when you create another cluster and migrate your 
workloads.

Subnet requirements for nodes

You can deploy nodes and Kubernetes resources to the same subnets that you specify when you 
create your cluster. However, this isn't necessary. This is because you can also deploy nodes and 
Kubernetes resources to subnets that you didn't specify when you created the cluster. If you 
deploy nodes to different subnets, Amazon EKS doesn't create cluster network interfaces in those 

Subnet requirements and considerations 388



Amazon EKS User Guide

subnets. Any subnet that you deploy nodes and Kubernetes resources to must meet the following 
requirements:

• The subnets must have enough available IP addresses to deploy all of your nodes and 
Kubernetes resources to.

• If you want Kubernetes to assign IPv6 addresses to Pods and services, then you must have 
one IPv6 CIDR block and one IPv4 CIDR block that are associated with your subnet. For more 
information, see Associate an IPv6 CIDR block with your subnet in the Amazon VPC User Guide. 
The route tables that are associated with the subnets must include routes to IPv4 and IPv6
addresses. For more information, see Routes in the Amazon VPC User Guide. Pods are assigned 
only an IPv6 address. However the network interfaces that Amazon EKS creates for your cluster 
and your nodes are assigned an IPv4 and an IPv6 address.

• If you need inbound access from the internet to your Pods, make sure to have at least one public 
subnet with enough available IP addresses to deploy load balancers and ingresses to. You can 
deploy load balancers to public subnets. Load balancers can load balance to Pods in private or 
public subnets. We recommend deploying your nodes to private subnets, if possible.

• If you plan to deploy nodes to a public subnet, the subnet must auto-assign IPv4 public 
addresses or IPv6 addresses. If you deploy nodes to a private subnet that has an associated
IPv6 CIDR block, the private subnet must also auto-assign IPv6 addresses. If you used an
Amazon EKS AWS CloudFormation template to deploy your VPC after March 26, 2020, this 
setting is enabled. If you used the templates to deploy your VPC before this date or you use your 
own VPC, you must enable this setting manually. For more information, see Modify the public
IPv4 addressing attribute for your subnet and Modify the IPv6 addressing attribute for your 
subnet in the Amazon VPC User Guide.

• If the subnet that you deploy a node to is a private subnet and its route table doesn't include a 
route to a network address translation (NAT) device (IPv4) or an egress-only gateway (IPv6), 
add VPC endpoints using AWS PrivateLink to your VPC. VPC endpoints are needed for all the 
AWS services that your nodes and Pods need to communicate with. Examples include Amazon 
ECR, Elastic Load Balancing, Amazon CloudWatch, AWS Security Token Service, and Amazon 
Simple Storage Service (Amazon S3). The endpoint must include the subnet that the nodes 
are in. Not all AWS services support VPC endpoints. For more information, see What is AWS 
PrivateLink? and AWS services that integrate with AWS PrivateLink. For a list of more Amazon 
EKS requirements, see Private cluster requirements.

• If you want to deploy load balancers to a subnet, the subnet must have the following tag:

• Private subnets

Subnet requirements and considerations 389

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-subnets.html#subnet-associate-ipv6-cidr
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Route_Tables.html#route-table-routes
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-subnets.html#subnet-public-ip
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-subnets.html#subnet-public-ip
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-subnets.html#subnet-ipv6
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-subnets.html#subnet-ipv6
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat.html
https://docs.aws.amazon.com/vpc/latest/userguide/egress-only-internet-gateway.html
https://docs.aws.amazon.com/vpc/latest/privatelink/what-is-privatelink.html
https://docs.aws.amazon.com/vpc/latest/privatelink/what-is-privatelink.html
https://docs.aws.amazon.com/vpc/latest/privatelink/aws-services-privatelink-support.html


Amazon EKS User Guide

Key Value

kubernetes.io/role/internal-
elb

1

• Public subnets

Key Value

kubernetes.io/role/elb 1

When a Kubernetes cluster that's version 1.18 and earlier was created, Amazon EKS added the 
following tag to all of the subnets that were specified.

Key Value

kubernetes.io/cluster/ my-cluster shared

When you create a new Kubernetes cluster now, Amazon EKS doesn't add the tag to your subnets. 
If the tag was on subnets that were used by a cluster that was previously a version earlier than
1.19, the tag wasn't automatically removed from the subnets when the cluster was updated to 
a newer version. Version 2.1.1 or earlier of the AWS Load Balancer Controller requires this tag. 
If you are using a newer version of the Load Balancer Controller, you can remove the tag without 
interrupting your services.

If you deployed a VPC by using eksctl or any of the Amazon EKS AWS CloudFormation VPC 
templates, the following applies:

• On or after March 26, 2020 – Public IPv4 addresses are automatically assigned by public 
subnets to new nodes that are deployed to public subnets.

• Before March 26, 2020 – Public IPv4 addresses aren't automatically assigned by public subnets 
to new nodes that are deployed to public subnets.

This change impacts new node groups that are deployed to public subnets in the following ways:

Subnet requirements and considerations 390



Amazon EKS User Guide

• Managed node groups – If the node group is deployed to a public subnet on or after April 22, 
2020, automatic assignment of public IP addresses must be enabled for the public subnet. For 
more information, see Modifying the public IPv4 addressing attribute for your subnet.

• Linux, Windows, or Arm self-managed node groups – If the node group is deployed to a public 
subnet on or after March 26, 2020, automatic assignment of public IP addresses must be enabled 
for the public subnet. Otherwise, the nodes must be launched with a public IP address instead. 
For more information, see Modifying the public IPv4 addressing attribute for your subnet or
Assigning a public IPv4 address during instance launch.

Shared subnet requirements and considerations

You can use VPC sharing to share subnets with other AWS accounts within the same AWS 
Organizations. You can create Amazon EKS clusters in shared subnets, with the following 
considerations:

• The owner of the VPC subnet must share a subnet with a participant account before that account 
can create an Amazon EKS cluster in it.

• You can't launch resources using the default security group for the VPC because it belongs to the 
owner. Additionally, participants can't launch resources using security groups that are owned by 
other participants or the owner.

• In a shared subnet, the participant and the owner separately controls the security groups within 
each respective account. The subnet owner can see security groups that are created by the 
participants but cannot perform any actions on them. If the subnet owner wants to remove 
or modify these security groups, the participant that created the security group must take the 
action.

• If a cluster is created by a participant, the following considerations apply:

• Cluster IAM role and Node IAM roles must be created in that account. For more information, 
see Amazon EKS cluster IAM role and Amazon EKS node IAM role.

• All nodes must be made by the same participant, including managed node groups.

• The shared VPC owner cannot view, update or delete a cluster that a participant creates in the 
shared subnet. This is in addition to the VPC resources that each account has different access to. 
For more information, see Responsibilities and permissions for owners and participants in the
Amazon VPC User Guide.

Shared subnet requirements and considerations 391

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html#subnet-public-ip
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html#subnet-public-ip
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html#vpc-public-ip
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations


Amazon EKS User Guide

• If you use the custom networking feature of the Amazon VPC CNI plugin for Kubernetes, you 
need to use the Availability Zone ID mappings listed in the owner account to create each
ENIConfig. For more information, see Custom networking for pods.

For more information about VPC subnet sharing, see Share your VPC with other accounts in the
Amazon VPC User Guide.

Creating a VPC for your Amazon EKS cluster

You can use Amazon Virtual Private Cloud (Amazon VPC) to launch AWS resources into a virtual 
network that you've defined. This virtual network closely resembles a traditional network that 
you might operate in your own data center. However, it comes with the benefits of using the 
scalable infrastructure of Amazon Web Services. We recommend that you have a thorough 
understanding of the Amazon VPC service before deploying production Amazon EKS clusters. For 
more information, see the Amazon VPC User Guide.

An Amazon EKS cluster, nodes, and Kubernetes resources are deployed to a VPC. If you want to 
use an existing VPC with Amazon EKS, that VPC must meet the requirements that are described in
Amazon EKS VPC and subnet requirements and considerations. This topic describes how to create 
a VPC that meets Amazon EKS requirements using an Amazon EKS provided AWS CloudFormation 
template. Once you've deployed a template, you can view the resources created by the template to 
know exactly what resources it created, and the configuration of those resources.

Prerequisite

To create a VPC for Amazon EKS, you must have the necessary IAM permissions to create Amazon 
VPC resources. These resources are VPCs, subnets, security groups, route tables and routes, and 
internet and NAT gateways. For more information, see Create a VPC with a public subnet example 
policy in the Amazon VPC User Guide and the full list of Actions, resources, and condition keys for 
Amazon EC2 in the Service Authorization Reference.

You can create a VPC with public and private subnets, only public subnets, or only private subnets.

Public and private subnets

This VPC has two public and two private subnets. A public subnet's associated route table has a 
route to an internet gateway. However, the route table of a private subnet doesn't have a route 
to an internet gateway. One public and one private subnet are deployed to the same Availability 

Creating a VPC 392

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html#vpc-share-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-policy-examples.html#vpc-public-subnet-iam
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-policy-examples.html#vpc-public-subnet-iam
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonec2.html#amazonec2-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonec2.html#amazonec2-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/reference.html


Amazon EKS User Guide

Zone. The other public and private subnets are deployed to a second Availability Zone in the 
same AWS Region. We recommend this option for most deployments.

With this option, you can deploy your nodes to private subnets. This option allows Kubernetes 
to deploy load balancers to the public subnets that can load balance traffic to Pods that run on 
nodes in the private subnets. Public IPv4 addresses are automatically assigned to nodes that 
are deployed to public subnets, but public IPv4 addresses aren't assigned to nodes deployed to 
private subnets.

You can also assign IPv6 addresses to nodes in public and private subnets. The nodes in private 
subnets can communicate with the cluster and other AWS services. Pods can communicate to 
the internet through a NAT gateway using IPv4 addresses or outbound-only Internet gateway 
using IPv6 addresses deployed in each Availability Zone. A security group is deployed that has 
rules that deny all inbound traffic from sources other than the cluster or nodes but allows all 
outbound traffic. The subnets are tagged so that Kubernetes can deploy load balancers to them.

To create your VPC

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/
cloudformation.

2. From the navigation bar, select an AWS Region that supports Amazon EKS.

3. Choose Create stack, With new resources (standard).

4. Under Prerequisite - Prepare template, make sure that Template is ready is selected and 
then under Specify template, select Amazon S3 URL.

5. You can create a VPC that supports only IPv4, or a VPC that supports IPv4 and IPv6. 
Paste one of the following URLs into the text area under Amazon S3 URL and choose Next:

• IPv4

https://s3.us-west-2.amazonaws.com/amazon-eks/cloudformation/2020-10-29/
amazon-eks-vpc-private-subnets.yaml

• IPv4 and IPv6

https://s3.us-west-2.amazonaws.com/amazon-eks/cloudformation/2020-10-29/
amazon-eks-ipv6-vpc-public-private-subnets.yaml

6. On the Specify stack details page, enter the parameters, and then choose Next.

Creating a VPC 393

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/


Amazon EKS User Guide

• Stack name: Choose a stack name for your AWS CloudFormation stack. For example, you 
can use the template name you used in the previous step. The name can contain only 
alphanumeric characters (case-sensitive) and hyphens. It must start with an alphabetic 
character and can't be longer than 100 characters.

• VpcBlock: Choose an IPv4 CIDR range for your VPC. Each node, Pod, and load balancer 
that you deploy is assigned an IPv4 address from this block. The default IPv4 values 
provide enough IP addresses for most implementations, but if it doesn't, then you can 
change it. For more information, see VPC and subnet sizing in the Amazon VPC User 
Guide. You can also add additional CIDR blocks to the VPC once it's created. If you're 
creating an IPv6 VPC, IPv6 CIDR ranges are automatically assigned for you from 
Amazon's Global Unicast Address space.

• PublicSubnet01Block: Specify an IPv4 CIDR block for public subnet 1. The default 
value provides enough IP addresses for most implementations, but if it doesn't, then you 
can change it. If you're creating an IPv6 VPC, this block is specified for you within the 
template.

• PublicSubnet02Block: Specify an IPv4 CIDR block for public subnet 2. The default 
value provides enough IP addresses for most implementations, but if it doesn't, then you 
can change it. If you're creating an IPv6 VPC, this block is specified for you within the 
template.

• PrivateSubnet01Block: Specify an IPv4 CIDR block for private subnet 1. The default 
value provides enough IP addresses for most implementations, but if it doesn't, then you 
can change it. If you're creating an IPv6 VPC, this block is specified for you within the 
template.

• PrivateSubnet02Block: Specify an IPv4 CIDR block for private subnet 2. The default 
value provides enough IP addresses for most implementations, but if it doesn't, then you 
can change it. If you're creating an IPv6 VPC, this block is specified for you within the 
template.

7. (Optional) On the Configure stack options page, tag your stack resources and then choose
Next.

8. On the Review page, choose Create stack.

9. When your stack is created, select it in the console and choose Outputs.

10. Record the VpcId for the VPC that was created. You need this when you create your cluster 
and nodes.

Creating a VPC 394

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#VPC_Sizing


Amazon EKS User Guide

11. Record the SubnetIds for the subnets that were created and whether you created them as 
public or private subnets. You need at least two of these when you create your cluster and 
nodes.

12. If you created an IPv4 VPC, skip this step. If you created an IPv6 VPC, you must enable the 
auto-assign IPv6 address option for the public subnets that were created by the template. 
That setting is already enabled for the private subnets. To enable the setting, complete the 
following steps:

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. In the left navigation pane, choose Subnets

c. Select one of your public subnets (stack-name/SubnetPublic01 or stack-name/
SubnetPublic02 contains the word public) and choose Actions, Edit subnet settings.

d. Choose the Enable auto-assign IPv6 address check box and then choose Save.

e. Complete the previous steps again for your other public subnet.

Only public subnets

This VPC has three public subnets that are deployed into different Availability Zones in an 
AWS Region. All nodes are automatically assigned public IPv4 addresses and can send and 
receive internet traffic through an internet gateway. A security group is deployed that denies all 
inbound traffic and allows all outbound traffic. The subnets are tagged so that Kubernetes can 
deploy load balancers to them.

To create your VPC

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/
cloudformation.

2. From the navigation bar, select an AWS Region that supports Amazon EKS.

3. Choose Create stack, With new resources (standard).

4. Under Prepare template, make sure that Template is ready is selected and then under
Template source, select Amazon S3 URL.

5. Paste the following URL into the text area under Amazon S3 URL and choose Next:

https://s3.us-west-2.amazonaws.com/amazon-eks/cloudformation/2020-10-29/amazon-
eks-vpc-sample.yaml

Creating a VPC 395

https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/


Amazon EKS User Guide

6. On the Specify Details page, enter the parameters, and then choose Next.

• Stack name: Choose a stack name for your AWS CloudFormation stack. For example, 
you can call it amazon-eks-vpc-sample. The name can contain only alphanumeric 
characters (case-sensitive) and hyphens. It must start with an alphabetic character and 
can't be longer than 100 characters.

• VpcBlock: Choose a CIDR block for your VPC. Each node, Pod, and load balancer that 
you deploy is assigned an IPv4 address from this block. The default IPv4 values provide 
enough IP addresses for most implementations, but if it doesn't, then you can change it. 
For more information, see VPC and subnet sizing in the Amazon VPC User Guide. You can 
also add additional CIDR blocks to the VPC once it's created.

• Subnet01Block: Specify a CIDR block for subnet 1. The default value provides enough IP 
addresses for most implementations, but if it doesn't, then you can change it.

• Subnet02Block: Specify a CIDR block for subnet 2. The default value provides enough IP 
addresses for most implementations, but if it doesn't, then you can change it.

• Subnet03Block: Specify a CIDR block for subnet 3. The default value provides enough IP 
addresses for most implementations, but if it doesn't, then you can change it.

7. (Optional) On the Options page, tag your stack resources. Choose Next.

8. On the Review page, choose Create.

9. When your stack is created, select it in the console and choose Outputs.

10. Record the VpcId for the VPC that was created. You need this when you create your cluster 
and nodes.

11. Record the SubnetIds for the subnets that were created. You need at least two of these 
when you create your cluster and nodes.

12. (Optional) Any cluster that you deploy to this VPC can assign private IPv4 addresses to 
your Pods and services. If you want to deploy clusters to this VPC to assign private IPv6
addresses to your Pods and services, make updates to your VPC, subnet, route tables, and 
security groups. For more information, see Migrate existing VPCs from IPv4 to IPv6 in the 
Amazon VPC User Guide. Amazon EKS requires that your subnets have the Auto-assign
IPv6 addresses option enabled. By default, it's disabled.

Only private subnets

This VPC has three private subnets that are deployed into different Availability Zones in the 
AWS Region. Resources that are deployed to the subnets can't access the internet, nor can 

Creating a VPC 396

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#VPC_Sizing
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-migrate-ipv6.html


Amazon EKS User Guide

the internet access resources in the subnets. The template creates VPC endpoints using AWS 
PrivateLink for several AWS services that nodes typically need to access. If your nodes need 
outbound internet access, you can add a public NAT gateway in the Availability Zone of each 
subnet after the VPC is created. A security group is created that denies all inbound traffic, 
except from resources deployed into the subnets. A security group also allows all outbound 
traffic. The subnets are tagged so that Kubernetes can deploy internal load balancers to them. 
If you're creating a VPC with this configuration, see Private cluster requirements for additional 
requirements and considerations.

To create your VPC

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/
cloudformation.

2. From the navigation bar, select an AWS Region that supports Amazon EKS.

3. Choose Create stack, With new resources (standard).

4. Under Prepare template, make sure that Template is ready is selected and then under
Template source, select Amazon S3 URL.

5. Paste the following URL into the text area under Amazon S3 URL and choose Next:

https://s3.us-west-2.amazonaws.com/amazon-eks/cloudformation/2020-10-29/amazon-
eks-fully-private-vpc.yaml

6. On the Specify Details page, enter the parameters and then choose Next.

• Stack name: Choose a stack name for your AWS CloudFormation stack. For example, 
you can call it amazon-eks-fully-private-vpc. The name can contain only 
alphanumeric characters (case-sensitive) and hyphens. It must start with an alphabetic 
character and can't be longer than 100 characters.

• VpcBlock: Choose a CIDR block for your VPC. Each node, Pod, and load balancer that 
you deploy is assigned an IPv4 address from this block. The default IPv4 values provide 
enough IP addresses for most implementations, but if it doesn't, then you can change it. 
For more information, see VPC and subnet sizing in the Amazon VPC User Guide. You can 
also add additional CIDR blocks to the VPC once it's created.

• PrivateSubnet01Block: Specify a CIDR block for subnet 1. The default value provides 
enough IP addresses for most implementations, but if it doesn't, then you can change it.

• PrivateSubnet02Block: Specify a CIDR block for subnet 2. The default value provides 
enough IP addresses for most implementations, but if it doesn't, then you can change it.

Creating a VPC 397

https://docs.aws.amazon.com/vpc/latest/privatelink/privatelink-access-aws-services.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#VPC_Sizing


Amazon EKS User Guide

• PrivateSubnet03Block: Specify a CIDR block for subnet 3. The default value provides 
enough IP addresses for most implementations, but if it doesn't, then you can change it.

7. (Optional) On the Options page, tag your stack resources. Choose Next.

8. On the Review page, choose Create.

9. When your stack is created, select it in the console and choose Outputs.

10. Record the VpcId for the VPC that was created. You need this when you create your cluster 
and nodes.

11. Record the SubnetIds for the subnets that were created. You need at least two of these 
when you create your cluster and nodes.

12. (Optional) Any cluster that you deploy to this VPC can assign private IPv4 addresses to 
your Pods and services. If you want deploy clusters to this VPC to assign private IPv6
addresses to your Pods and services, make updates to your VPC, subnet, route tables, and 
security groups. For more information, see Migrate existing VPCs from IPv4 to IPv6 in the 
Amazon VPC User Guide. Amazon EKS requires that your subnets have the Auto-assign
IPv6 addresses option enabled (it's disabled by default).

Amazon EKS security group requirements and considerations

This topic describes the security group requirements of an Amazon EKS cluster.

When you create a cluster, Amazon EKS creates a security group that's named eks-cluster-
sg-my-cluster-uniqueID. This security group has the following default rules:

Rule type Protocol Ports Source Destination

Inbound All All Self  

Outbound All All   0.0.0.0/0 (IPv4) 
or ::/0 (IPv6)

Security group requirements 398

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-migrate-ipv6.html


Amazon EKS User Guide

Important

If your cluster doesn't need the outbound rule, you can remove it. If you remove it, you 
must still have the minimum rules listed in Restricting cluster traffic. If you remove the 
inbound rule, Amazon EKS recreates it whenever the cluster is updated.

Amazon EKS adds the following tags to the security group. If you remove the tags, Amazon EKS 
adds them back to the security group whenever your cluster is updated.

Key Value

kubernetes.io/cluster/ my-cluster owned

aws:eks:cluster-name my-cluster

Name eks-cluster-sg- my-cluste 
r -uniqueid

Amazon EKS automatically associates this security group to the following resources that it also 
creates:

• 2–4 elastic network interfaces (referred to for the rest of this document as network interface) 
that are created when you create your cluster.

• Network interfaces of the nodes in any managed node group that you create.

The default rules allow all traffic to flow freely between your cluster and nodes, and allows all 
outbound traffic to any destination. When you create a cluster, you can (optionally) specify your 
own security groups. If you do, then Amazon EKS also associates the security groups that you 
specify to the network interfaces that it creates for your cluster. However, it doesn't associate them 
to any node groups that you create.

You can determine the ID of your cluster security group in the AWS Management Console under 
the cluster's Networking section. Or, you can do so by running the following AWS CLI command.

aws eks describe-cluster --name my-cluster --query 
 cluster.resourcesVpcConfig.clusterSecurityGroupId

Security group requirements 399



Amazon EKS User Guide

Restricting cluster traffic

If you need to limit the open ports between the cluster and nodes, you can remove the default 
outbound rule and add the following minimum rules that are required for the cluster. If you remove 
the default inbound rule, Amazon EKS recreates it whenever the cluster is updated.

Rule type Protocol Port Destination

Outbound TCP 443 Cluster security group

Outbound TCP 10250 Cluster security group

Outbound (DNS) TCP and UDP 53 Cluster security group

You must also add rules for the following traffic:

• Any protocol and ports that you expect your nodes to use for inter-node communication.

• Outbound internet access so that nodes can access the Amazon EKS APIs for cluster 
introspection and node registration at launch time. If your nodes don't have internet access, 
review Private cluster requirements for additional considerations.

• Node access to pull container images from Amazon ECR or other container registries APIs that 
they need to pull images from, such as DockerHub. For more information, see AWS IP address 
ranges in the AWS General Reference.

• Node access to Amazon S3.

• Separate rules are required for IPv4 and IPv6 addresses.

If you're considering limiting the rules, we recommend that you thoroughly test all of your Pods 
before you apply your changed rules to a production cluster.

If you originally deployed a cluster with Kubernetes 1.14 and a platform version of eks.3 or 
earlier, then consider the following:

• You might also have control plane and node security groups. When these groups were created, 
they included the restricted rules listed in the previous table. These security groups are no longer 
required and can be removed. However, you need to make sure your cluster security group 
contains the rules that those groups contain.

Security group requirements 400

https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html


Amazon EKS User Guide

• If you deployed the cluster using the API directly or you used a tool such as the AWS CLI or AWS 
CloudFormation to create the cluster and you didn't specify a security group at cluster creation, 
then the default security group for the VPC was applied to the cluster network interfaces that 
Amazon EKS created.

Amazon EKS networking add-ons

Several networking add-ons are available for your Amazon EKS cluster.

Built-in add-ons

Note

If you create clusters in any way except by using the console, each cluster comes with 
the self-managed versions of the built-in add-ons. The self-managed versions can't be 
managed from the AWS Management Console, AWS Command Line Interface, or SDKs. You 
manage the configuration and upgrades of self-managed add-ons.
We recommend adding the Amazon EKS type of the add-on to your cluster instead of using 
the self-managed type of the add-on. If you create clusters in the console, the Amazon EKS 
type of these add-ons is installed.

Amazon VPC CNI plugin for Kubernetes

This CNI add-on creates elastic network interfaces and attaches them to your Amazon EC2 
nodes. The add-on also assigns a private IPv4 or IPv6 address from your VPC to each Pod and 
service. This add-on is installed, by default, on your cluster. For more information, see Working 
with the Amazon VPC CNI plugin for Kubernetes Amazon EKS add-on.

CoreDNS

CoreDNS is a flexible, extensible DNS server that can serve as the Kubernetes cluster DNS. 
CoreDNS provides name resolution for all Pods in the cluster. This add-on is installed, by 
default, on your cluster. For more information, see Working with the CoreDNS Amazon EKS add-
on.

Add-ons 401



Amazon EKS User Guide

kube-proxy

This add-on maintains network rules on your Amazon EC2 nodes and enables network 
communication to your Pods. This add-on is installed, by default, on your cluster. For more 
information, see Working with the Kubernetes kube-proxy add-on.

Optional AWS networking add-ons

AWS Load Balancer Controller

When you deploy Kubernetes service objects of type loadbalancer, the controller creates 
AWS Network Load Balancers . When you create Kubernetes ingress objects, the controller 
creates AWS Application Load Balancers. We recommend using this controller to provision 
Network Load Balancers, rather than using the legacy Cloud Provider controller built-in to 
Kubernetes. For more information, see the AWS Load Balancer Controller documentation.

AWS Gateway API Controller

This controller lets you connect services across multiple Kubernetes clusters using the
Kubernetes gateway API. The controller connects Kubernetes services running on Amazon EC2 
instances, containers, and serverless functions by using the Amazon VPC Lattice service. For 
more information, see the AWS Gateway API Controller documentation.

For more information about add-ons, see Amazon EKS add-ons.

Working with the Amazon VPC CNI plugin for Kubernetes Amazon EKS 
add-on

The Amazon VPC CNI plugin for Kubernetes add-on is deployed on each Amazon EC2 node in your 
Amazon EKS cluster. The add-on creates elastic network interfaces and attaches them to your 
Amazon EC2 nodes. The add-on also assigns a private IPv4 or IPv6 address from your VPC to each 
Pod and service.

A version of the add-on is deployed with each Fargate node in your cluster, but you don't update it 
on Fargate nodes. Other compatible CNI plugins are available for use on Amazon EKS clusters, but 
this is the only CNI plugin supported by Amazon EKS.

The following table lists the latest available version of the Amazon EKS add-on type for each 
Kubernetes version.

Optional AWS networking add-ons 402

https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.4/guide/service/annotations/#legacy-cloud-provider
https://kubernetes-sigs.github.io/aws-load-balancer-controller
https://gateway-api.sigs.k8s.io/
https://docs.aws.amazon.com/vpc-lattice/latest/ug/what-is-vpc-service-network.html
https://www.gateway-api-controller.eks.aws.dev/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html


Amazon EKS User Guide

Kubernetes 
version

1.29 1.28 1.27 1.26 1.25 1.24 1.23

Amazon EKS type 
of VPC CNI version

v1.16.4-
e 
ksbuild.2

v1.16.4-
e 
ksbuild.2

v1.16.4-
e 
ksbuild.2

v1.16.4-
e 
ksbuild.2

v1.16.4-
e 
ksbuild.2

v1.16.4-
e 
ksbuild.2

v1.16.4-
e 
ksbuild.2

Important

If you're self-managing this add-on, the versions in the table might not be the same as the 
available self-managed versions. For more information about updating the self-managed 
type of this add-on, see Updating the self-managed add-on.

Prerequisites

• An existing Amazon EKS cluster. To deploy one, see Getting started with Amazon EKS.

• An existing AWS Identity and Access Management (IAM) OpenID Connect (OIDC) provider for 
your cluster. To determine whether you already have one, or to create one, see Creating an IAM 
OIDC provider for your cluster.

• An IAM role with the AmazonEKS_CNI_Policy IAM policy (if your cluster uses the IPv4 family) 
or an IPv6 policy (if your cluster uses the IPv6 family) attached to it. For more information, see
Configuring the Amazon VPC CNI plugin for Kubernetes to use IAM roles for service accounts 
(IRSA).

• If you're using version 1.7.0 or later of the Amazon VPC CNI plugin for Kubernetes and you use 
custom Pod security policies, see Delete the default Amazon EKS Pod security policyPod security 
policy.

•
Important

Amazon VPC CNI plugin for Kubernetes versions v1.16.0 to v1.16.1 removed 
compatibility with Kubernetes versions 1.23 and earlier. VPC CNI version v1.16.2
restores compatibility with Kubernetes versions 1.23 and earlier and CNI spec v0.4.0.

Amazon VPC CNI plugin for Kubernetes 403

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKS_CNI_Policy.html


Amazon EKS User Guide

Amazon VPC CNI plugin for Kubernetes versions v1.16.0 to v1.16.1 implement CNI 
specification version v1.0.0. CNI spec v1.0.0 is supported on EKS clusters that run the 
Kubernetes versions v1.24 or later. VPC CNI version v1.16.0 to v1.16.1 and CNI spec v1.0.0
aren't supported on Kubernetes version v1.23 or earlier.  For more information about v1.0.0 of 
the CNI spec, see Container Network Interface (CNI) Specification on

Considerations

• Versions are specified as major-version.minor-version.patch-version-
eksbuild.build-number.

• Check version compatibility for each feature

Some features of each release of the Amazon VPC CNI plugin for Kubernetes require certian 
Kubernetes versions. When using different Amazon EKS features, if a specific version of the add-
on is required, then it's noted in the feature documentation. Unless you have a specific reason for 
running an earlier version, we recommend running the latest version.

Creating the Amazon EKS add-on

Create the Amazon EKS type of the add-on.

1. See which version of the add-on is installed on your cluster.

kubectl describe daemonset aws-node --namespace kube-system | grep amazon-k8s-cni: 
 | cut -d : -f 3

An example output is as follows.

v1.12.6-eksbuild.2

2. See which type of the add-on is installed on your cluster. Depending on the tool that you 
created your cluster with, you might not currently have the Amazon EKS add-on type installed 
on your cluster. Replace my-cluster with the name of your cluster.

$ aws eks describe-addon --cluster-name my-cluster --addon-name vpc-cni --query 
 addon.addonVersion --output text

Amazon VPC CNI plugin for Kubernetes 404

https://github.com/containernetworking/cni/blob/spec-v1.0.0/SPEC.md


Amazon EKS User Guide

If a version number is returned, you have the Amazon EKS type of the add-on installed on 
your cluster and don't need to complete the remaining steps in this procedure. If an error 
is returned, you don't have the Amazon EKS type of the add-on installed on your cluster. 
Complete the remaining steps of this procedure to install it.

3. Save the configuration of your currently installed add-on.

kubectl get daemonset aws-node -n kube-system -o yaml > aws-k8s-cni-old.yaml

4. Create the add-on using the AWS CLI. If you want to use the AWS Management Console or
eksctl to create the add-on, see Creating an add-on and specify vpc-cni for the add-on 
name. Copy the command that follows to your device. Make the following modifications to the 
command, as needed, and then run the modified command.

• Replace my-cluster with the name of your cluster.

• Replace v1.16.4-eksbuild.2 with the latest version listed in the latest version table for 
your cluster version.

• Replace 111122223333 with your account ID and AmazonEKSVPCCNIRole with the name 
of an existing IAM role that you've created. Specifying a role requires that you have an IAM 
OpenID Connect (OIDC) provider for your cluster. To determine whether you have one for 
your cluster, or to create one, see Creating an IAM OIDC provider for your cluster.

aws eks create-addon --cluster-name my-cluster --addon-name vpc-cni --addon-
version v1.16.4-eksbuild.2 \ 
    --service-account-role-arn arn:aws:iam::111122223333:role/AmazonEKSVPCCNIRole

If you've applied custom settings to your current add-on that conflict with the default settings 
of the Amazon EKS add-on, creation might fail. If creation fails, you receive an error that can 
help you resolve the issue. Alternatively, you can add --resolve-conflicts OVERWRITE to 
the previous command. This allows the add-on to overwrite any existing custom settings. Once 
you've created the add-on, you can update it with your custom settings.

5. Confirm that the latest version of the add-on for your cluster's Kubernetes version was added 
to your cluster. Replace my-cluster with the name of your cluster.

aws eks describe-addon --cluster-name my-cluster --addon-name vpc-cni --query 
 addon.addonVersion --output text

Amazon VPC CNI plugin for Kubernetes 405



Amazon EKS User Guide

It might take several seconds for add-on creation to complete.

An example output is as follows.

v1.16.4-eksbuild.2

6. If you made custom settings to your original add-on, before you created the Amazon EKS add-
on, use the configuration that you saved in a previous step to update the Amazon EKS add-on 
with your custom settings.

7. (Optional) Install the cni-metrics-helper to your cluster. It scrapes elastic network 
interface and IP address information, aggregates it at a cluster level, and publishes the metrics 
to Amazon CloudWatch. For more information, see cni-metrics-helper on GitHub.

Updating the Amazon EKS add-on

Update the Amazon EKS type of the add-on. If you haven't added the Amazon EKS type of the add-
on to your cluster, either add it or see Updating the self-managed add-on, instead of completing 
this procedure.

1. See which version of the add-on is installed on your cluster. Replace my-cluster with your 
cluster name.

aws eks describe-addon --cluster-name my-cluster --addon-name vpc-cni --query 
 "addon.addonVersion" --output text

An example output is as follows.

v1.12.6-eksbuild.2

If the version returned is the same as the version for your cluster's Kubernetes version in the
latest version table, then you already have the latest version installed on your cluster and 
don't need to complete the rest of this procedure. If you receive an error, instead of a version 
number in your output, then you don't have the Amazon EKS type of the add-on installed on 
your cluster. You need to create the add-on before you can update it with this procedure.

2. Save the configuration of your currently installed add-on.

Amazon VPC CNI plugin for Kubernetes 406

https://github.com/aws/amazon-vpc-cni-k8s/blob/master/cmd/cni-metrics-helper/README.md


Amazon EKS User Guide

kubectl get daemonset aws-node -n kube-system -o yaml > aws-k8s-cni-old.yaml

3. Update your add-on using the AWS CLI. If you want to use the AWS Management Console or
eksctl to update the add-on, see Updating an add-on. Copy the command that follows to 
your device. Make the following modifications to the command, as needed, and then run the 
modified command.

• Replace my-cluster with the name of your cluster.

• Replace v1.16.4-eksbuild.2 with the latest version listed in the latest version table for 
your cluster version.

• Replace 111122223333 with your account ID and AmazonEKSVPCCNIRole with the name 
of an existing IAM role that you've created. Specifying a role requires that you have an IAM 
OpenID Connect (OIDC) provider for your cluster. To determine whether you have one for 
your cluster, or to create one, see Creating an IAM OIDC provider for your cluster.

• The --resolve-conflicts PRESERVE option preserves existing configuration values for 
the add-on. If you've set custom values for add-on settings, and you don't use this option, 
Amazon EKS overwrites your values with its default values. If you use this option, then 
we recommend testing any field and value changes on a non-production cluster before 
updating the add-on on your production cluster. If you change this value to OVERWRITE, 
all settings are changed to Amazon EKS default values. If you've set custom values for any 
settings, they might be overwritten with Amazon EKS default values. If you change this 
value to none, Amazon EKS doesn't change the value of any settings, but the update might 
fail. If the update fails, you receive an error message to help you resolve the conflict.

• If you're not updating a configuration setting, remove --configuration-
values '{"env":{"AWS_VPC_K8S_CNI_EXTERNALSNAT":"true"}}'
from the command. If you're updating a configuration setting, replace "env":
{"AWS_VPC_K8S_CNI_EXTERNALSNAT":"true"} with the setting that you want to set. 
In this example, the AWS_VPC_K8S_CNI_EXTERNALSNAT environment variable is set to
true. The value that you specify must be valid for the configuration schema. If you don't 
know the configuration schema, run aws eks describe-addon-configuration --
addon-name vpc-cni --addon-version v1.16.4-eksbuild.2, replacing v1.16.4-
eksbuild.2 with the version number of the add-on that you want to see the configuration 
for. The schema is returned in the output. If you have any existing custom configuration, 
want to remove it all, and set the values for all settings back to Amazon EKS defaults, 
remove "env":{"AWS_VPC_K8S_CNI_EXTERNALSNAT":"true"} from the command, so 

Amazon VPC CNI plugin for Kubernetes 407



Amazon EKS User Guide

that you have empty {}. For an explanation of each setting, see CNI Configuration Variables
on GitHub.

aws eks update-addon --cluster-name my-cluster --addon-name vpc-cni --addon-
version v1.16.4-eksbuild.2 \ 
    --service-account-role-arn arn:aws:iam::111122223333:role/AmazonEKSVPCCNIRole
 \ 
    --resolve-conflicts PRESERVE --configuration-values '{"env":
{"AWS_VPC_K8S_CNI_EXTERNALSNAT":"true"}}'

It might take several seconds for the update to complete.

4. Confirm that the add-on version was updated. Replace my-cluster with the name of your 
cluster.

aws eks describe-addon --cluster-name my-cluster --addon-name vpc-cni

It might take several seconds for the update to complete.

An example output is as follows.

{ 
    "addon": { 
        "addonName": "vpc-cni", 
        "clusterName": "my-cluster", 
        "status": "ACTIVE", 
        "addonVersion": "v1.16.4-eksbuild.2", 
        "health": { 
            "issues": [] 
        }, 
        "addonArn": "arn:aws:eks:region:111122223333:addon/my-cluster/vpc-
cni/74c33d2f-b4dc-8718-56e7-9fdfa65d14a9", 
        "createdAt": "2023-04-12T18:25:19.319000+00:00", 
        "modifiedAt": "2023-04-12T18:40:28.683000+00:00", 
        "serviceAccountRoleArn": 
 "arn:aws:iam::111122223333:role/AmazonEKSVPCCNIRole", 
        "tags": {}, 
        "configurationValues": "{\"env\":{\"AWS_VPC_K8S_CNI_EXTERNALSNAT\":\"true
\"}}" 
    }
}

Amazon VPC CNI plugin for Kubernetes 408

https://github.com/aws/amazon-vpc-cni-k8s#cni-configuration-variables


Amazon EKS User Guide

Updating the self-managed add-on

Important

We recommend adding the Amazon EKS type of the add-on to your cluster instead of using 
the self-managed type of the add-on. If you're not familiar with the difference between the 
types, see the section called “Amazon EKS add-ons”. For more information about adding an 
Amazon EKS add-on to your cluster, see the section called “Creating an add-on”. If you're 
unable to use the Amazon EKS add-on, we encourage you to submit an issue about why 
you can't to the Containers roadmap GitHub repository.

1. Confirm that you don't have the Amazon EKS type of the add-on installed on your cluster. 
Replace my-cluster with the name of your cluster.

aws eks describe-addon --cluster-name my-cluster --addon-name vpc-cni --query 
 addon.addonVersion --output text

If an error message is returned, you don't have the Amazon EKS type of the add-on installed 
on your cluster. To self-manage the add-on, complete the remaining steps in this procedure to 
update the add-on. If a version number is returned, you have the Amazon EKS type of the add-
on installed on your cluster. To update it, use the procedure in Updating an add-on, rather than 
using this procedure. If you're not familiar with the differences between the add-on types, see
Amazon EKS add-ons.

2. See which version of the container image is currently installed on your cluster.

kubectl describe daemonset aws-node --namespace kube-system | grep amazon-k8s-cni: 
 | cut -d : -f 3

An example output is as follows.

v1.12.6-eksbuild.2

Your output might not include the build number.

3. Backup your current settings so you can configure the same settings once you've updated your 
version.

Amazon VPC CNI plugin for Kubernetes 409

https://github.com/aws/containers-roadmap/issues


Amazon EKS User Guide

kubectl get daemonset aws-node -n kube-system -o yaml > aws-k8s-cni-old.yaml

4. To review the available versions and familiarize yourself with the changes in the version that 
you want to update to, see releases on GitHub. Note that we recommend updating to the 
same major.minor.patch version listed in the latest available versions table, even if later 
versions are available on GitHub.. The build versions listed in the table aren't specified in the 
self-managed versions listed on GitHub. Update your version by completing the tasks in one of 
the following options:

• If you don't have any custom settings for the add-on, then run the command under the To 
apply this release: heading on GitHub for the release that you're updating to.

• If you have custom settings, download the manifest file with the following command. 
Change https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/
v1.16.2/config/master/aws-k8s-cni.yaml to the URL for the release on GitHub that 
you're updating to.

curl -O https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/v1.16.2/config/
master/aws-k8s-cni.yaml

If necessary, modify the manifest with the custom settings from the backup you made in 
a previous step and then apply the modified manifest to your cluster. If your nodes don't 
have access to the private Amazon EKS Amazon ECR repositories that the images are pulled 
from (see the lines that start with image: in the manifest), then you'll have to download the 
images, copy them to your own repository, and modify the manifest to pull the images from 
your repository. For more information, see Copy a container image from one repository to 
another repository.

kubectl apply -f aws-k8s-cni.yaml

5. Confirm that the new version is now installed on your cluster.

kubectl describe daemonset aws-node --namespace kube-system | grep amazon-k8s-cni: 
 | cut -d : -f 3

An example output is as follows.

v1.16.4

Amazon VPC CNI plugin for Kubernetes 410

https://github.com/aws/amazon-vpc-cni-k8s/releases
https://github.com/aws/amazon-vpc-cni-k8s/releases


Amazon EKS User Guide

6. (Optional) Install the cni-metrics-helper to your cluster. It scrapes elastic network 
interface and IP address information, aggregates it at a cluster level, and publishes the metrics 
to Amazon CloudWatch. For more information, see cni-metrics-helper on GitHub.

Configuring the Amazon VPC CNI plugin for Kubernetes to use IAM roles for 
service accounts (IRSA)

The Amazon VPC CNI plugin for Kubernetes is the networking plugin for Pod networking in 
Amazon EKS clusters. The plugin is responsible for allocating VPC IP addresses to Kubernetes 
nodes and configuring the necessary networking for Pods on each node. The plugin:

• Requires AWS Identity and Access Management (IAM) permissions. If your cluster uses the IPv4 
family, the permissions are specified in the AmazonEKS_CNI_Policy AWS managed policy. If 
your cluster uses the IPv6 family, then the permissions must be added to an IAM policy that you 
create. You can attach the policy to the Amazon EKS node IAM role, or to a separate IAM role. We 
recommend that you assign it to a separate role, as detailed in this topic.

• Creates and is configured to use a Kubernetes service account named aws-node when it's 
deployed. The service account is bound to a Kubernetes clusterrole named aws-node, which 
is assigned the required Kubernetes permissions.

Note

The Pods for the Amazon VPC CNI plugin for Kubernetes have access to the permissions 
assigned to the Amazon EKS node IAM role, unless you block access to IMDS. For more 
information, see Restrict access to the instance profile assigned to the worker node.

Prerequisites

• An existing Amazon EKS cluster. To deploy one, see Getting started with Amazon EKS.

• An existing AWS Identity and Access Management (IAM) OpenID Connect (OIDC) provider for 
your cluster. To determine whether you already have one, or to create one, see Creating an IAM 
OIDC provider for your cluster.

Amazon VPC CNI plugin for Kubernetes 411

https://github.com/aws/amazon-vpc-cni-k8s/blob/master/cmd/cni-metrics-helper/README.md
https://github.com/aws/amazon-vpc-cni-k8s
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKS_CNI_Policy.html
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node


Amazon EKS User Guide

Step 1: Create the Amazon VPC CNI plugin for Kubernetes IAM role

To create the IAM role

1. Determine the IP family of your cluster.

aws eks describe-cluster --name my-cluster | grep ipFamily

An example output is as follows.

"ipFamily": "ipv4"

The output may return ipv6 instead.

2. Create the IAM role. You can use eksctl or kubectl and the AWS CLI to create your IAM role.

eksctl

Create an IAM role and attach the IAM policy to the role with the command that matches 
the IP family of your cluster. The command creates and deploys an AWS CloudFormation 
stack that creates an IAM role, attaches the policy that you specify to it, and annotates the 
existing aws-node Kubernetes service account with the ARN of the IAM role that is created.

• IPv4

Replace my-cluster with your own value.

eksctl create iamserviceaccount \ 
    --name aws-node \ 
    --namespace kube-system \ 
    --cluster my-cluster \ 
    --role-name AmazonEKSVPCCNIRole \ 
    --attach-policy-arn arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy \ 
    --override-existing-serviceaccounts \ 
    --approve

• IPv6

Replace my-cluster with your own value. Replace 111122223333 with your account ID 
and replace AmazonEKS_CNI_IPv6_Policy with the name of your IPv6 policy. If you 
don't have an IPv6 policy, see Create IAM policy for clusters that use the IPv6 family to 

Amazon VPC CNI plugin for Kubernetes 412



Amazon EKS User Guide

create one. To use IPv6 with your cluster, it must meet several requirements. For more 
information, see IPv6 addresses for clusters, Pods, and services.

eksctl create iamserviceaccount \ 
    --name aws-node \ 
    --namespace kube-system \ 
    --cluster my-cluster \     
    --role-name AmazonEKSVPCCNIRole \ 
    --attach-policy-arn 
 arn:aws:iam::111122223333:policy/AmazonEKS_CNI_IPv6_Policy \ 
    --override-existing-serviceaccounts \ 
    --approve

kubectl and the AWS CLI

1. View your cluster's OIDC provider URL.

aws eks describe-cluster --name my-cluster --query 
 "cluster.identity.oidc.issuer" --output text

An example output is as follows.

https://oidc.eks.region-code.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE

If no output is returned, then you must create an IAM OIDC provider for your cluster.

2. Copy the following contents to a file named vpc-cni-trust-policy.json. Replace
111122223333 with your account ID and EXAMPLED539D4633E53DE1B71EXAMPLE
with the output returned in the previous step. Replace region-code with the AWS 
Region that your cluster is in.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Principal": { 
                "Federated": "arn:aws:iam::111122223333:oidc-provider/
oidc.eks.region-code.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE" 
            }, 

Amazon VPC CNI plugin for Kubernetes 413



Amazon EKS User Guide

            "Action": "sts:AssumeRoleWithWebIdentity", 
            "Condition": { 
                "StringEquals": { 
                    "oidc.eks.region-code.amazonaws.com/
id/EXAMPLED539D4633E53DE1B71EXAMPLE:aud": "sts.amazonaws.com", 
                    "oidc.eks.region-code.amazonaws.com/
id/EXAMPLED539D4633E53DE1B71EXAMPLE:sub": "system:serviceaccount:kube-
system:aws-node" 
                } 
            } 
        } 
    ]
}

3. Create the role. You can replace AmazonEKSVPCCNIRole with any name that you 
choose.

aws iam create-role \ 
  --role-name AmazonEKSVPCCNIRole \ 
  --assume-role-policy-document file://"vpc-cni-trust-policy.json"

4. Attach the required IAM policy to the role. Run the command that matches the IP family 
of your cluster.

• IPv4

aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy \ 
  --role-name AmazonEKSVPCCNIRole

• IPv6

Replace 111122223333 with your account ID and AmazonEKS_CNI_IPv6_Policy
with the name of your IPv6 policy. If you don't have an IPv6 policy, see Create IAM 
policy for clusters that use the IPv6 family to create one. To use IPv6 with your 
cluster, it must meet several requirements. For more information, see IPv6 addresses 
for clusters, Pods, and services.

aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::111122223333:policy/AmazonEKS_CNI_IPv6_Policy \ 
  --role-name AmazonEKSVPCCNIRole

Amazon VPC CNI plugin for Kubernetes 414



Amazon EKS User Guide

5. Run the following command to annotate the aws-node service account with the ARN of 
the IAM role that you created previously. Replace the example values with your own 
values.

kubectl annotate serviceaccount \ 
    -n kube-system aws-node \ 
    eks.amazonaws.com/role-
arn=arn:aws:iam::111122223333:role/AmazonEKSVPCCNIRole

3. (Optional) Configure the AWS Security Token Service endpoint type used by your Kubernetes 
service account. For more information, see Configuring the AWS Security Token Service 
endpoint for a service account.

Step 2: Re-deploy Amazon VPC CNI plugin for KubernetesPods

1. Delete and re-create any existing Pods that are associated with the service account to apply 
the credential environment variables. The annotation is not applied to Pods that are currently 
running without the annotation. The following command deletes the existing aws-node
DaemonSet Pods and deploys them with the service account annotation.

kubectl delete Pods -n kube-system -l k8s-app=aws-node

2. Confirm that the Pods all restarted.

kubectl get pods -n kube-system -l k8s-app=aws-node

3. Describe one of the Pods and verify that the AWS_WEB_IDENTITY_TOKEN_FILE and
AWS_ROLE_ARN environment variables exist. Replace cpjw7 with the name of one of your 
Pods returned in the output of the previous step.

kubectl describe pod -n kube-system aws-node-cpjw7 | grep 'AWS_ROLE_ARN:\|
AWS_WEB_IDENTITY_TOKEN_FILE:'

An example output is as follows.

AWS_ROLE_ARN:                 arn:aws:iam::111122223333:role/AmazonEKSVPCCNIRole
      AWS_WEB_IDENTITY_TOKEN_FILE:  /var/run/secrets/eks.amazonaws.com/
serviceaccount/token 

Amazon VPC CNI plugin for Kubernetes 415



Amazon EKS User Guide

      AWS_ROLE_ARN:                           
 arn:aws:iam::111122223333:role/AmazonEKSVPCCNIRole
      AWS_WEB_IDENTITY_TOKEN_FILE:            /var/run/secrets/eks.amazonaws.com/
serviceaccount/token

Two sets of duplicate results are returned because the Pod contains two containers. Both 
containers have the same values.

If your Pod is using the AWS Regional endpoint, then the following line is also returned in the 
previous output.

AWS_STS_REGIONAL_ENDPOINTS=regional

Step 3: Remove the CNI policy from the node IAM role

If your Amazon EKS node IAM role currently has the AmazonEKS_CNI_Policy IAM (IPv4) policy
or an IPv6 policy attached to it, and you've created a separate IAM role, attached the policy to it 
instead, and assigned it to the aws-node Kubernetes service account, then we recommend that 
you remove the policy from your node role with the the AWS CLI command that matches the IP 
family of your cluster. Replace AmazonEKSNodeRole with the name of your node role.

• IPv4

aws iam detach-role-policy --role-name AmazonEKSNodeRole --policy-arn 
 arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy

• IPv6

Replace 111122223333 with your account ID and AmazonEKS_CNI_IPv6_Policy with the 
name of your IPv6 policy.

aws iam detach-role-policy --role-name AmazonEKSNodeRole --policy-arn 
 arn:aws:iam::111122223333:policy/AmazonEKS_CNI_IPv6_Policy

Create IAM policy for clusters that use the IPv6 family

If you created a cluster that uses the IPv6 family and the cluster has version 1.10.1 or later of 
the Amazon VPC CNI plugin for Kubernetes add-on configured, then you need to create an IAM 

Amazon VPC CNI plugin for Kubernetes 416



Amazon EKS User Guide

policy that you can assign to an IAM role. If you have an existing cluster that you didn't configure 
with the IPv6 family when you created it, then to use IPv6, you must create a new cluster. For 
more information about using IPv6 with your cluster, see IPv6 addresses for clusters, Pods, and 
services.

1. Copy the following text and save it to a file named vpc-cni-ipv6-policy.json.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "ec2:AssignIpv6Addresses", 
                "ec2:DescribeInstances", 
                "ec2:DescribeTags", 
                "ec2:DescribeNetworkInterfaces", 
                "ec2:DescribeInstanceTypes" 
            ], 
            "Resource": "*" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "ec2:CreateTags" 
            ], 
            "Resource": [ 
                "arn:aws:ec2:*:*:network-interface/*" 
            ] 
        } 
    ]
}

2. Create the IAM policy.

aws iam create-policy --policy-name AmazonEKS_CNI_IPv6_Policy --policy-document 
 file://vpc-cni-ipv6-policy.json

Amazon VPC CNI plugin for Kubernetes 417



Amazon EKS User Guide

Choosing Pod networking use cases

The Amazon VPC CNI plugin for Kubernetes provides networking for Pods. The following table 
helps you understand which networking use cases you can use together and the capabilities and 
Amazon VPC CNI plugin for Kubernetes settings that you can use with different Amazon EKS node 
types. All information in the table applies to Linux IPv4 nodes only.

Amazon EKS 
node type

Amazon EC2 Fargate

Use case Individual 
IP addresses 

assigned 
to network 
interface

IP prefixes 
assigned 

to network 
interface

Security 
groups 

for Pods

 

Custom 
networking for 
pods – Assign IP 
addresses from a 
different subnet 
than the node's 
subnet

Yes Yes Yes Yes (subnets 
controlle 
d through 

Fargate profile)

SNAT for Pods Yes (default 
is false)

Yes (default 
is false)

Yes (true only) Yes (true only)

Capabilities

Security group
scope

Node Node Pod (If you've 
set POD_SECUR 
ITY_GROUP 
_ENFORCIN 

G_MODE =standard
and

AWS_VPC_K 
8S_CNI_EX 
TERNALSNA 

Pod

Amazon VPC CNI plugin for Kubernetes 418

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html


Amazon EKS User Guide

Amazon EKS 
node type

Amazon EC2 Fargate

Use case Individual 
IP addresses 

assigned 
to network 
interface

IP prefixes 
assigned 

to network 
interface

Security 
groups 

for Pods

 

T =false, 
traffic destined 
for endpoints 
outside the 
VPC use the 

node's security 
groups, not the 
Pod's security 

groups)

Amazon VPC 
subnet types

Private 
and public

Private and public Private only Private only

Network policy 
(VPC CNI)

Compatible Compatible Compatible

Only with 
version

1.14.0 or 
later of the 

Amazon VPC 
CNI plugin

Not supported

Pod density per 
node

Medium High Low One

Pod launch time Better Best Good Moderate

Amazon VPC CNI plugin settings (for more information about each setting, see amazon-vpc-
cni-k8s on GitHub)

Amazon VPC CNI plugin for Kubernetes 419

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#vpc-subnet-basics
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#vpc-subnet-basics
https://docs.aws.amazon.com/eks/latest/userguide/cni-network-policy.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-network-policy.html
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/README.md
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/README.md


Amazon EKS User Guide

Amazon EKS 
node type

Amazon EC2 Fargate

Use case Individual 
IP addresses 

assigned 
to network 
interface

IP prefixes 
assigned 

to network 
interface

Security 
groups 

for Pods

 

WARM_ENI_ 
TARGET

Yes Not applicable Not applicable Not applicable

WARM_IP_T 
ARGET

Yes Yes Not applicable Not applicable

MINIMUM_I 
P_TARGET

Yes Yes Not applicable Not applicable

WARM_PREF 
IX_TARGET

Not applicable Yes Not applicable Not applicable

Note

• You can't use IPv6 with custom networking.

• IPv6 addresses are not translated, so SNAT doesn't apply.

• Traffic flow to and from Pods with associated security groups are not subjected to Calico 
network policy enforcement and are limited to Amazon VPC security group enforcement 
only.

• IP prefixes and IP addresses are associated with standard Amazon EC2 elastic network 
interfaces. Pods requiring specific security groups are assigned the primary IP address of 
a branch network interface. You can mix Pods getting IP addresses, or IP addresses from 
IP prefixes with Pods getting branch network interfaces on the same node.

Windows nodes

Amazon VPC CNI plugin for Kubernetes 420



Amazon EKS User Guide

Each node only supports one network interface. You can use secondary IPv4 addresses and IPv4
prefixes. By default, the number of available IPv4 addresses on the node is equal to the number 
of secondary IPv4 addresses that you can assign to each elastic network interface, minus one. 
However, you can increase the available IPv4 addresses and Pod density on the node by enabling 
IP prefixes. For more information, see Increase the amount of available IP addresses for your 
Amazon EC2 nodes.

Calico network policies are supported on Windows. For more information, see Open Source 
Calico for Windows Containers on Amazon EKS. You can't use security groups for Pods or custom 
networking on Windows.

IPv6 addresses for clusters, Pods, and services

By default, Kubernetes assigns IPv4 addresses to your Pods and services. Instead of assigning
IPv4 addresses to your Pods and services, you can configure your cluster to assign IPv6 addresses 
to them. Amazon EKS doesn't support dual-stacked Pods or services, even though Kubernetes does 
in version 1.23 and later. As a result, you can't assign both IPv4 and IPv6 addresses to your Pods 
and services.

You select which IP family you want to use for your cluster when you create it. You can't change the 
family after you create the cluster.

Considerations for using the IPv6 family for your cluster

• You must create a new cluster and specify that you want to use the IPv6 family for that cluster. 
You can't enable the IPv6 family for a cluster that you updated from a previous version. For 
instructions on how to create a new cluster, see Creating an Amazon EKS cluster.

• The version of the Amazon VPC CNI add-on that you deploy to your cluster must be version
1.10.1 or later. This version or later is deployed by default. After you deploy the add-on, you 
can't downgrade your Amazon VPC CNI add-on to a version lower than 1.10.1 without first 
removing all nodes in all node groups in your cluster.

• Windows Pods and services aren't supported.

• If you use Amazon EC2 nodes, you must configure the Amazon VPC CNI add-on with IP prefix 
delegation and IPv6. If you choose the IPv6 family when creating your cluster, the 1.10.1
version of the add-on defaults to this configuration. This is the case for both a self-managed or 
Amazon EKS add-on. For more information about IP prefix delegation, see Increase the amount 
of available IP addresses for your Amazon EC2 nodes.

Amazon VPC CNI plugin for Kubernetes 421

https://aws.amazon.com/blogs/containers/open-source-calico-for-windows-containers-on-amazon-eks/
https://aws.amazon.com/blogs/containers/open-source-calico-for-windows-containers-on-amazon-eks/


Amazon EKS User Guide

• When you create a cluster, the VPC and subnets that you specify must have an IPv6 CIDR block 
that's assigned to the VPC and subnets that you specify. They must also have an IPv4 CIDR block 
assigned to them. This is because, even if you only want to use IPv6, a VPC still requires an IPv4
CIDR block to function. For more information, see Associate an IPv6 CIDR block with your VPC in 
the Amazon VPC User Guide.

• When you create your cluster and nodes, you must specify subnets that are configured to auto-
assign IPv6 addresses. Otherwise, you can't deploy your cluster and nodes. By default, this 
configuration is disabled. For more information, see Modify the IPv6 addressing attribute for 
your subnet in the Amazon VPC User Guide.

• The route tables that are assigned to your subnets must have routes for IPv6 addresses. For 
more information, see Migrate to IPv6 in the Amazon VPC User Guide.

• Your security groups must allow IPv6 addresses. For more information, see Migrate to IPv6 in 
the Amazon VPC User Guide.

• You can only use IPv6 with AWS Nitro-based Amazon EC2 or Fargate nodes.

• You can't use IPv6 with Security groups for Pods with Amazon EC2 nodes. However, you can use 
it with Fargate nodes. If you need separate security groups for individual Pods, continue using 
the IPv4 family with Amazon EC2 nodes, or use Fargate nodes instead.

• If you previously used custom networking to help alleviate IP address exhaustion, you can use
IPv6 instead. You can't use custom networking with IPv6. If you use custom networking for 
network isolation, then you might need to continue to use custom networking and the IPv4
family for your clusters.

• You can't use IPv6 with AWS Outposts.

• Pods and services are only assigned an IPv6 address. They aren't assigned an IPv4 address. 
Because Pods are able to communicate to IPv4 endpoints through NAT on the instance itself,
DNS64 and NAT64 aren't needed. If the traffic needs a public IP address, the traffic is then source 
network address translated to a public IP.

• The source IPv6 address of a Pod isn't source network address translated to the IPv6 address 
of the node when communicating outside of the VPC. It is routed using an internet gateway or 
egress-only internet gateway.

• All nodes are assigned an IPv4 and IPv6 address.

• The Amazon FSx for Lustre CSI driver is not supported.

• You can use version 2.3.1 or later of the AWS Load Balancer Controller to load balance
application or network traffic to IPv6 Pods in IP mode, but not instance mode. For more 
information, see Installing the AWS Load Balancer Controller add-on.

Amazon VPC CNI plugin for Kubernetes 422

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#vpc-associate-ipv6-cidr
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html#subnet-ipv6
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html#subnet-ipv6
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-migrate-ipv6.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-migrate-ipv6.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html#nat-gateway-nat64-dns64


Amazon EKS User Guide

• You must attach an IPv6 IAM policy to your node IAM or CNI IAM role. Between the two, we 
recommend that you attach it to a CNI IAM role. For more information, see Create IAM policy for 
clusters that use the IPv6 family and Step 1: Create the Amazon VPC CNI plugin for Kubernetes 
IAM role.

• Each Fargate Pod receives an IPv6 address from the CIDR that's specified for the subnet that it's 
deployed in. The underlying hardware unit that runs Fargate Pods gets a unique IPv4 and IPv6
address from the CIDRs that are assigned to the subnet that the hardware unit is deployed in.

• We recommend that you perform a thorough evaluation of your applications, Amazon EKS add-
ons, and AWS services that you integrate with before deploying IPv6 clusters. This is to ensure 
that everything works as expected with IPv6.

• Use of the Amazon EC2 Instance Metadata Service IPv6 endpoint is not supported with Amazon 
EKS.

• When creating a self-managed node group in a cluster that uses the IPv6 family, user-data must 
include the following BootstrapArguments for the bootstrap.sh file that runs at node start 
up. Replace your-cidr with the IPv6 CIDR range of your cluster's VPC.

--ip-family ipv6 --service-ipv6-cidr your-cidr

If you don't know the IPv6 CIDR range for your cluster, you can see it with the following 
command (requires the AWS CLI version 2.4.9 or later).

aws eks describe-cluster --name my-cluster --query 
 cluster.kubernetesNetworkConfig.serviceIpv6Cidr --output text

Deploy an IPv6 cluster and managed Amazon Linux nodes

In this tutorial, you deploy an IPv6 Amazon VPC, an Amazon EKS cluster with the IPv6 family, 
and a managed node group with Amazon EC2 Amazon Linux nodes. You can't deploy Amazon EC2 
Windows nodes in an IPv6 cluster. You can also deploy Fargate nodes to your cluster, though those 
instructions aren't provided in this topic for simplicity.

Before creating a cluster for production use, we recommend that you familiarize yourself with all 
settings and deploy a cluster with the settings that meet your requirements. For more information, 
see Creating an Amazon EKS cluster, Managed node groups and the considerations for this topic. 
You can only enable some settings when creating your cluster.

Amazon VPC CNI plugin for Kubernetes 423

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh


Amazon EKS User Guide

Prerequisites

Before starting this tutorial, you must install and configure the following tools and resources that 
you need to create and manage an Amazon EKS cluster.

• The kubectl command line tool is installed on your device or AWS CloudShell. The version can 
be the same as or up to one minor version earlier or later than the Kubernetes version of your 
cluster. For example, if your cluster version is 1.28, you can use kubectl version 1.27, 1.28, or
1.29 with it. To install or upgrade kubectl, see Installing or updating kubectl.

• The IAM security principal that you're using must have permissions to work with Amazon EKS 
IAM roles, service linked roles, AWS CloudFormation, a VPC, and related resources. For more 
information, see Actions, resources, and condition keys for Amazon Elastic Kubernetes Service
and Using service-linked roles in the IAM User Guide.

Procedures are provided to create the resources with either eksctl or the AWS CLI. You can also 
deploy the resources using the AWS Management Console, but those instructions aren't provided in 
this topic for simplicity.

eksctl

Prerequisite

eksctl version 0.172.0 or later installed on your computer. To install or update to it, see
Installation in the eksctl documentation.

To deploy an IPv6 cluster with eksctl

1. Create the ipv6-cluster.yaml file. Copy the command that follows to your device. 
Make the following modifications to the command as needed and then run the modified 
command:

• Replace my-cluster with a name for your cluster. The name can contain only 
alphanumeric characters (case-sensitive) and hyphens. It must start with an alphabetic 
character and can't be longer than 100 characters.

• Replace region-code with any AWS Region that is supported by Amazon EKS. For a list 
of AWS Regions, see Amazon EKS endpoints and quotas in the AWS General Reference 
guide.

Amazon VPC CNI plugin for Kubernetes 424

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://eksctl.io/installation
https://docs.aws.amazon.com/general/latest/gr/eks.html


Amazon EKS User Guide

• The value for version with the version of your cluster. For more information, see
supported Amazon EKS Kubernetes version.

• Replace my-nodegroup with a name for your node group. The node group name can't 
be longer than 63 characters. It must start with letter or digit, but can also include 
hyphens and underscores for the remaining characters.

• Replace t3.medium with any AWS Nitro System instance type.

cat >ipv6-cluster.yaml <<EOF
---
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata: 
  name: my-cluster
  region: region-code
  version: "X.XX"

kubernetesNetworkConfig: 
  ipFamily: IPv6

addons: 
  - name: vpc-cni 
    version: latest 
  - name: coredns 
    version: latest 
  - name: kube-proxy 
    version: latest

iam: 
  withOIDC: true

managedNodeGroups: 
  - name: my-nodegroup
    instanceType: t3.medium
EOF

2. Create your cluster.

eksctl create cluster -f ipv6-cluster.yaml

Amazon VPC CNI plugin for Kubernetes 425

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#ec2-nitro-instances


Amazon EKS User Guide

Cluster creation takes several minutes. Don't proceed until you see the last line of output, 
which looks similar to the following output.

[...]
[#]  EKS cluster "my-cluster" in "region-code" region is ready

3. Confirm that default Pods are assigned IPv6 addresses.

kubectl get pods -n kube-system -o wide

An example output is as follows.

NAME                       READY   STATUS    RESTARTS   AGE     IP           
                             NODE                                            
 NOMINATED NODE   READINESS GATES
aws-node-rslts             1/1     Running   1          5m36s  
   2600:1f13:b66:8200:11a5:ade0:c590:6ac8   ip-192-168-34-75.region-
code.compute.internal   <none>           <none>
aws-node-t74jh             1/1     Running   0          5m32s  
   2600:1f13:b66:8203:4516:2080:8ced:1ca9   ip-192-168-253-70.region-
code.compute.internal  <none>           <none>
coredns-85d5b4454c-cw7w2   1/1     Running   0          56m    
   2600:1f13:b66:8203:34e5::                ip-192-168-253-70.region-
code.compute.internal  <none>           <none>
coredns-85d5b4454c-tx6n8   1/1     Running   0          56m    
   2600:1f13:b66:8203:34e5::1               ip-192-168-253-70.region-
code.compute.internal  <none>           <none>
kube-proxy-btpbk           1/1     Running   0          5m36s  
   2600:1f13:b66:8200:11a5:ade0:c590:6ac8   ip-192-168-34-75.region-
code.compute.internal   <none>           <none>
kube-proxy-jjk2g           1/1     Running   0          5m33s  
   2600:1f13:b66:8203:4516:2080:8ced:1ca9   ip-192-168-253-70.region-
code.compute.internal  <none>           <none>

4. Confirm that default services are assigned IPv6 addresses.

kubectl get services -n kube-system -o wide

An example output is as follows.

Amazon VPC CNI plugin for Kubernetes 426



Amazon EKS User Guide

NAME       TYPE        CLUSTER-IP          EXTERNAL-IP   PORT(S)         AGE   
 SELECTOR
kube-dns   ClusterIP    fd30:3087:b6c2::a   <none>        53/UDP,53/TCP   57m   
 k8s-app=kube-dns

5. (Optional) Deploy a sample application or deploy the AWS Load Balancer Controller and a 
sample application to load balance application or network traffic to IPv6 Pods.

6. After you've finished with the cluster and nodes that you created for this tutorial, you 
should clean up the resources that you created with the following command.

eksctl delete cluster my-cluster

AWS CLI

Prerequisite

Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface 
(AWS CLI) installed and configured on your device or AWS CloudShell. To check your current 
version, use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers 
such yum, apt-get, or Homebrew for macOS are often several versions behind the latest 
version of the AWS CLI. To install the latest version, see Installing, updating, and uninstalling 
the AWS CLI and Quick configuration with aws configure in the AWS Command Line Interface 
User Guide. The AWS CLI version that is installed in AWS CloudShell might also be several 
versions behind the latest version. To update it, see Installing AWS CLI to your home directory in 
the AWS CloudShell User Guide. If you use the AWS CloudShell, you may need to install version
2.12.3 or later or 1.27.160 or later of the AWS CLI, because the default AWS CLI version 
installed in the AWS CloudShell may be an earlier version.

Important

• You must complete all steps in this procedure as the same user. To check the current 
user, run the following command:

aws sts get-caller-identity

• You must complete all steps in this procedure in the same shell. Several steps use 
variables set in previous steps. Steps that use variables won't function properly 

Amazon VPC CNI plugin for Kubernetes 427

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software


Amazon EKS User Guide

if the variable values are set in a different shell. If you use the AWS CloudShell to 
complete the following procedure, remember that if you don't interact with it using 
your keyboard or pointer for approximately 20–30 minutes, your shell session ends. 
Running processes do not count as interactions.

• The instructions are written for the Bash shell, and may need adjusting in other shells.

To create your cluster with the AWS CLI

Replace all example values in the steps of this procedure with your own values.

1. Run the following commands to set some variables used in later steps. Replace region-
code with the AWS Region that you want to deploy your resources in. The value can be 
any AWS Region that is supported by Amazon EKS. For a list of AWS Regions, see Amazon 
EKS endpoints and quotas in the AWS General Reference guide. Replace my-cluster
with a name for your cluster. The name can contain only alphanumeric characters (case-
sensitive) and hyphens. It must start with an alphabetic character and can't be longer than 
100 characters. Replace my-nodegroup with a name for your node group. The node group 
name can't be longer than 63 characters. It must start with letter or digit, but can also 
include hyphens and underscores for the remaining characters. Replace 111122223333
with your account ID.

export region_code=region-code
export cluster_name=my-cluster
export nodegroup_name=my-nodegroup
export account_id=111122223333

2. Create an Amazon VPC with public and private subnets that meets Amazon EKS and IPv6
requirements.

a. Run the following command to set a variable for your AWS CloudFormation stack 
name. You can replace my-eks-ipv6-vpc with any name you choose.

export vpc_stack_name=my-eks-ipv6-vpc

b. Create an IPv6 VPC using an AWS CloudFormation template.

aws cloudformation create-stack --region $region_code --stack-name 
 $vpc_stack_name \ 

Amazon VPC CNI plugin for Kubernetes 428

https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html
https://docs.aws.amazon.com/general/latest/gr/eks.html
https://docs.aws.amazon.com/general/latest/gr/eks.html


Amazon EKS User Guide

  --template-url https://s3.us-west-2.amazonaws.com/amazon-
eks/cloudformation/2020-10-29/amazon-eks-ipv6-vpc-public-private-
subnets.yaml

The stack takes a few minutes to create. Run the following command. Don't continue 
to the next step until the output of the command is CREATE_COMPLETE.

aws cloudformation describe-stacks --region $region_code --stack-name 
 $vpc_stack_name --query Stacks[].StackStatus --output text

c. Retrieve the IDs of the public subnets that were created.

aws cloudformation describe-stacks --region $region_code --stack-name 
 $vpc_stack_name \ 
    --query='Stacks[].Outputs[?OutputKey==`SubnetsPublic`].OutputValue' --
output text

An example output is as follows.

subnet-0a1a56c486EXAMPLE,subnet-099e6ca77aEXAMPLE

d. Enable the auto-assign IPv6 address option for the public subnets that were created.

aws ec2 modify-subnet-attribute --region $region_code --
subnet-id subnet-0a1a56c486EXAMPLE --assign-ipv6-address-on-
creation
aws ec2 modify-subnet-attribute --region $region_code --subnet-id 
 subnet-099e6ca77aEXAMPLE --assign-ipv6-address-on-creation

e. Retrieve the names of the subnets and security groups created by the template from 
the deployed AWS CloudFormation stack and store them in variables for use in a later 
step.

security_groups=$(aws cloudformation describe-stacks --region $region_code 
 --stack-name $vpc_stack_name \ 
    --query='Stacks[].Outputs[?OutputKey==`SecurityGroups`].OutputValue' --
output text)

public_subnets=$(aws cloudformation describe-stacks --region $region_code --
stack-name $vpc_stack_name \ 

Amazon VPC CNI plugin for Kubernetes 429



Amazon EKS User Guide

    --query='Stacks[].Outputs[?OutputKey==`SubnetsPublic`].OutputValue' --
output text)

private_subnets=$(aws cloudformation describe-stacks --region $region_code 
 --stack-name $vpc_stack_name \ 
    --query='Stacks[].Outputs[?OutputKey==`SubnetsPrivate`].OutputValue' --
output text)

subnets=${public_subnets},${private_subnets}

3. Create a cluster IAM role and attach the required Amazon EKS IAM managed policy to it. 
Kubernetes clusters managed by Amazon EKS make calls to other AWS services on your 
behalf to manage the resources that you use with the service.

a. Run the following command to create the eks-cluster-role-trust-
policy.json file.

cat >eks-cluster-role-trust-policy.json <<EOF
{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "eks.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole" 
    } 
  ]
}
EOF

b. Run the following command to set a variable for your role name. You can replace
myAmazonEKSClusterRole with any name you choose.

export cluster_role_name=myAmazonEKSClusterRole

c. Create the role.

aws iam create-role --role-name $cluster_role_name --assume-role-policy-
document file://"eks-cluster-role-trust-policy.json"

Amazon VPC CNI plugin for Kubernetes 430



Amazon EKS User Guide

d. Retrieve the ARN of the IAM role and store it in a variable for a later step.

cluster_iam_role=$(aws iam get-role --role-name $cluster_role_name --
query="Role.Arn" --output text)

e. Attach the required Amazon EKS managed IAM policy to the role.

aws iam attach-role-policy --policy-arn arn:aws:iam::aws:policy/
AmazonEKSClusterPolicy --role-name $cluster_role_name

4. Create your cluster.

aws eks create-cluster --region $region_code --name $cluster_name --kubernetes-
version 1.XX \ 
   --role-arn $cluster_iam_role --resources-vpc-config subnetIds=
$subnets,securityGroupIds=$security_groups \ 
   --kubernetes-network-config ipFamily=ipv6

•
Note

You might receive an error that one of the Availability Zones in your request 
doesn't have sufficient capacity to create an Amazon EKS cluster. If this 
happens, the error output contains the Availability Zones that can support 
a new cluster. Retry creating your cluster with at least two subnets that 
are located in the supported Availability Zones for your account. For more 
information, see Insufficient capacity.

The cluster takes several minutes to create. Run the following command. Don't 
continue to the next step until the output from the command is ACTIVE.

aws eks describe-cluster --region $region_code --name $cluster_name --query 
 cluster.status

5. Create or update a kubeconfig file for your cluster so that you can communicate with 
your cluster.

aws eks update-kubeconfig --region $region_code --name $cluster_name

Amazon VPC CNI plugin for Kubernetes 431



Amazon EKS User Guide

By default, the config file is created in ~/.kube or the new cluster's configuration is 
added to an existing config file in ~/.kube.

6. Create a node IAM role.

a. Run the following command to create the vpc-cni-ipv6-policy.json file.

cat >vpc-cni-ipv6-policy <<EOF
{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "ec2:AssignIpv6Addresses", 
                "ec2:DescribeInstances", 
                "ec2:DescribeTags", 
                "ec2:DescribeNetworkInterfaces", 
                "ec2:DescribeInstanceTypes" 
            ], 
            "Resource": "*" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "ec2:CreateTags" 
            ], 
            "Resource": [ 
                "arn:aws:ec2:*:*:network-interface/*" 
            ] 
        } 
    ]
}
EOF

b. Create the IAM policy.

aws iam create-policy --policy-name AmazonEKS_CNI_IPv6_Policy --policy-
document file://vpc-cni-ipv6-policy.json

c. Run the following command to create the node-role-trust-relationship.json
file.

Amazon VPC CNI plugin for Kubernetes 432



Amazon EKS User Guide

cat >node-role-trust-relationship.json <<EOF
{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "ec2.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole" 
    } 
  ]
}
EOF

d. Run the following command to set a variable for your role name. You can replace
AmazonEKSNodeRole with any name you choose.

export node_role_name=AmazonEKSNodeRole

e. Create the IAM role.

aws iam create-role --role-name $node_role_name --assume-role-policy-
document file://"node-role-trust-relationship.json"

f. Attach the IAM policy to the IAM role.

aws iam attach-role-policy --policy-arn arn:aws:iam::
$account_id:policy/AmazonEKS_CNI_IPv6_Policy \ 
    --role-name $node_role_name

Important

For simplicity in this tutorial, the policy is attached to this IAM role. In a 
production cluster however, we recommend attaching the policy to a separate 
IAM role. For more information, see Configuring the Amazon VPC CNI plugin 
for Kubernetes to use IAM roles for service accounts (IRSA).

g. Attach two required IAM managed policies to the IAM role.

Amazon VPC CNI plugin for Kubernetes 433



Amazon EKS User Guide

aws iam attach-role-policy --policy-arn arn:aws:iam::aws:policy/
AmazonEKSWorkerNodePolicy \ 
  --role-name $node_role_name
aws iam attach-role-policy --policy-arn arn:aws:iam::aws:policy/
AmazonEC2ContainerRegistryReadOnly \ 
  --role-name $node_role_name

h. Retrieve the ARN of the IAM role and store it in a variable for a later step.

node_iam_role=$(aws iam get-role --role-name $node_role_name --
query="Role.Arn" --output text)

7. Create a managed node group.

a. View the IDs of the subnets that you created in a previous step.

echo $subnets

An example output is as follows.

subnet-0a1a56c486EXAMPLE,subnet-099e6ca77aEXAMPLE,subnet-
0377963d69EXAMPLE,subnet-0c05f819d5EXAMPLE

b. Create the node group. Replace 0a1a56c486EXAMPLE, 099e6ca77aEXAMPLE,
0377963d69EXAMPLE, and 0c05f819d5EXAMPLE with the values returned in the 
output of the previous step. Be sure to remove the commas between subnet IDs from 
the previous output in the following command. You can replace t3.medium with any
AWS Nitro System instance type.

aws eks create-nodegroup --region $region_code --cluster-name $cluster_name 
 --nodegroup-name $nodegroup_name \ 
    --subnets subnet-0a1a56c486EXAMPLE subnet-099e6ca77aEXAMPLE
 subnet-0377963d69EXAMPLE subnet-0c05f819d5EXAMPLE \ 
    --instance-types t3.medium --node-role $node_iam_role

The node group takes a few minutes to create. Run the following command. Don't 
proceed to the next step until the output returned is ACTIVE.

Amazon VPC CNI plugin for Kubernetes 434

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#ec2-nitro-instances


Amazon EKS User Guide

aws eks describe-nodegroup --region $region_code --cluster-name 
 $cluster_name --nodegroup-name $nodegroup_name \ 
    --query nodegroup.status --output text

8. Confirm that the default Pods are assigned IPv6 addresses in the IP column.

kubectl get pods -n kube-system -o wide

An example output is as follows.

NAME                       READY   STATUS    RESTARTS   AGE     IP           
                             NODE                                            
 NOMINATED NODE   READINESS GATES
aws-node-rslts             1/1     Running   1          5m36s  
   2600:1f13:b66:8200:11a5:ade0:c590:6ac8   ip-192-168-34-75.region-
code.compute.internal   <none>           <none>
aws-node-t74jh             1/1     Running   0          5m32s  
   2600:1f13:b66:8203:4516:2080:8ced:1ca9   ip-192-168-253-70.region-
code.compute.internal  <none>           <none>
coredns-85d5b4454c-cw7w2   1/1     Running   0          56m    
   2600:1f13:b66:8203:34e5::                ip-192-168-253-70.region-
code.compute.internal  <none>           <none>
coredns-85d5b4454c-tx6n8   1/1     Running   0          56m    
   2600:1f13:b66:8203:34e5::1               ip-192-168-253-70.region-
code.compute.internal  <none>           <none>
kube-proxy-btpbk           1/1     Running   0          5m36s  
   2600:1f13:b66:8200:11a5:ade0:c590:6ac8   ip-192-168-34-75.region-
code.compute.internal   <none>           <none>
kube-proxy-jjk2g           1/1     Running   0          5m33s  
   2600:1f13:b66:8203:4516:2080:8ced:1ca9   ip-192-168-253-70.region-
code.compute.internal  <none>           <none>

9. Confirm that the default services are assigned IPv6 addresses in the IP column.

kubectl get services -n kube-system -o wide

An example output is as follows.

NAME       TYPE        CLUSTER-IP          EXTERNAL-IP   PORT(S)         AGE   
 SELECTOR

Amazon VPC CNI plugin for Kubernetes 435



Amazon EKS User Guide

kube-dns   ClusterIP    fd30:3087:b6c2::a   <none>        53/UDP,53/TCP   57m   
 k8s-app=kube-dns

10. (Optional) Deploy a sample application or deploy the AWS Load Balancer Controller and a 
sample application to load balance application or network traffic to IPv6 Pods.

11. After you've finished with the cluster and nodes that you created for this tutorial, you 
should clean up the resources that you created with the following commands. Make sure 
that you're not using any of the resources outside of this tutorial before deleting them.

a. If you're completing this step in a different shell than you completed the previous steps 
in, set the values of all the variables used in previous steps, replacing the example 
values with the values you specified when you completed the previous steps. If you're 
completing this step in the same shell that you completed the previous steps in, skip to 
the next step.

export region_code=region-code
export vpc_stack_name=my-eks-ipv6-vpc
export cluster_name=my-cluster
export nodegroup_name=my-nodegroup
export account_id=111122223333
export node_role_name=AmazonEKSNodeRole
export cluster_role_name=myAmazonEKSClusterRole

b. Delete your node group.

aws eks delete-nodegroup --region $region_code --cluster-name $cluster_name 
 --nodegroup-name $nodegroup_name

Deletion takes a few minutes. Run the following command. Don't proceed to the next 
step if any output is returned.

aws eks list-nodegroups --region $region_code --cluster-name $cluster_name 
 --query nodegroups --output text

c. Delete the cluster.

aws eks delete-cluster --region $region_code --name $cluster_name

The cluster takes a few minutes to delete. Before continuing make sure that the cluster 
is deleted with the following command.

Amazon VPC CNI plugin for Kubernetes 436



Amazon EKS User Guide

aws eks describe-cluster --region $region_code --name $cluster_name

Don't proceed to the next step until your output is similar to the following output.

An error occurred (ResourceNotFoundException) when calling the 
 DescribeCluster operation: No cluster found for name: my-cluster.

d. Delete the IAM resources that you created. Replace AmazonEKS_CNI_IPv6_Policy
with the name you chose, if you chose a different name than the one used in previous 
steps.

aws iam detach-role-policy --role-name $cluster_role_name --policy-arn 
 arn:aws:iam::aws:policy/AmazonEKSClusterPolicy
aws iam detach-role-policy --role-name $node_role_name --policy-arn 
 arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy
aws iam detach-role-policy --role-name $node_role_name --policy-arn 
 arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly
aws iam detach-role-policy --role-name $node_role_name --policy-arn 
 arn:aws:iam::$account_id:policy/AmazonEKS_CNI_IPv6_Policy
aws iam delete-policy --policy-arn arn:aws:iam::
$account_id:policy/AmazonEKS_CNI_IPv6_Policy
aws iam delete-role --role-name $cluster_role_name
aws iam delete-role --role-name $node_role_name

e. Delete the AWS CloudFormation stack that created the VPC.

aws cloudformation delete-stack --region $region_code --stack-name 
 $vpc_stack_name

SNAT for Pods

If you deployed your cluster using the IPv6 family, then the information in this topic isn't 
applicable to your cluster, because IPv6 addresses are not network translated. For more 
information about using IPv6 with your cluster, see IPv6 addresses for clusters, Pods, and 
services.

By default, each Pod in your cluster is assigned a private IPv4 address from a classless inter-
domain routing (CIDR) block that is associated with the VPC that the Pod is deployed in. Pods in 
the same VPC communicate with each other using these private IP addresses as end points. When a 

Amazon VPC CNI plugin for Kubernetes 437

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html#concepts-private-addresses


Amazon EKS User Guide

Pod communicates to any IPv4 address that isn't within a CIDR block that's associated to your VPC, 
the Amazon VPC CNI plugin (for both Linux or Windows) translates the Pod's IPv4 address to the 
primary private IPv4 address of the primary elastic network interface of the node that the Pod is 

running on, by default *.

Note

For Windows nodes, there are additional details to consider. By default, the VPC CNI plugin 
for Windows is defined with a networking configuration in which the traffic to a destination 
within the same VPC is excluded for SNAT. This means that internal VPC communication 
has SNAT disabled and the IP address allocated to a Pod is routable inside the VPC. But 
traffic to a destination outside of the VPC has the source Pod IP SNAT'ed to the instance 
ENI's primary IP address. This default configuration for Windows ensures that the pod can 
access networks outside of your VPC in the same way as the host instance.

Due to this behavior:

• Your Pods can communicate with internet resources only if the node that they're running on has 
a public or elastic IP address assigned to it and is in a public subnet. A public subnet's associated
route table has a route to an internet gateway. We recommend deploying nodes to private 
subnets, whenever possible.

• For versions of the plugin earlier than 1.8.0, resources that are in networks or VPCs that are 
connected to your cluster VPC using VPC peering, a transit VPC, or AWS Direct Connect can't 
initiate communication to your Pods behind secondary elastic network interfaces. Your Pods can 
initiate communication to those resources and receive responses from them, though.

If either of the following statements are true in your environment, then change the default 
configuration with the command that follows.

• You have resources in networks or VPCs that are connected to your cluster VPC using VPC 
peering, a transit VPC, or AWS Direct Connect that need to initiate communication with your 
Pods using an IPv4 address and your plugin version is earlier than 1.8.0.

• Your Pods are in a private subnet and need to communicate outbound to the internet. The 
subnet has a route to a NAT gateway.

Amazon VPC CNI plugin for Kubernetes 438

https://github.com/aws/amazon-vpc-cni-k8s#amazon-vpc-cni-k8s
https://github.com/aws/amazon-vpc-cni-plugins/tree/master/plugins/vpc-bridge
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#eni-basics
https://github.com/aws/amazon-vpc-cni-plugins/tree/master/plugins/vpc-bridge
https://github.com/aws/amazon-vpc-cni-plugins/tree/master/plugins/vpc-bridge
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html#concepts-public-addresses
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-eips.html
https://docs.aws.amazon.com/vpc/latest/userguide/configure-subnets.html#subnet-basics
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Route_Tables.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/transit-vpc-option.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/transit-vpc-option.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/vpc/latest/userguide/configure-subnets.html#subnet-basics
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html


Amazon EKS User Guide

kubectl set env daemonset -n kube-system aws-node AWS_VPC_K8S_CNI_EXTERNALSNAT=true

Note

The AWS_VPC_K8S_CNI_EXTERNALSNAT and AWS_VPC_K8S_CNI_EXCLUDE_SNAT_CIDRS
CNI configuration variables aren't applicable to Windows nodes. Disabling SNAT isn't 
supported for Windows. As for excluding a list of IPv4 CIDRs from SNAT, you can define 
this by specifying the ExcludedSnatCIDRs parameter in the Windows bootstrap 
script. For more information on using this parameter, see Bootstrap script configuration 
parameters.

*If a Pod's spec contains hostNetwork=true (default is false), then its IP address isn't translated 
to a different address. This is the case for the kube-proxy and Amazon VPC CNI plugin for 
Kubernetes Pods that run on your cluster, by default. For these Pods, the IP address is the same as 
the node's primary IP address, so the Pod's IP address isn't translated. For more information about 
a Pod's hostNetwork setting, see PodSpec v1 core in the Kubernetes API reference.

Configure your cluster for Kubernetes network policies

By default, there are no restrictions in Kubernetes for IP addresses, ports, or connections between 
any Pods in your cluster or between your Pods and resources in any other network. You can use 
Kubernetes network policy to restrict network traffic to and from your Pods. For more information, 
see Network Policies in the Kubernetes documentation.

If you have version 1.13 or earlier of the Amazon VPC CNI plugin for Kubernetes on your cluster, 
you need to implement a third party solution to apply Kubernetes network policies to your cluster. 
Version 1.14 or later of the plugin can implement network policies, so you don't need to use 
a third party solution. In this topic, you learn how to configure your cluster to use Kubernetes 
network policy on your cluster without using a third party add-on.

Network policies in the Amazon VPC CNI plugin for Kubernetes are supported in the following 
configurations.

• Amazon EKS clusters of version 1.25 and later.

• Version 1.14 or later of the Amazon VPC CNI plugin for Kubernetes on your cluster.

• Cluster configured for IPv4 or IPv6 addresses.

Amazon VPC CNI plugin for Kubernetes 439

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.29/#podspec-v1-core
https://kubernetes.io/docs/concepts/services-networking/network-policies/


Amazon EKS User Guide

• You can use network policies with security groups for Pods. With network policies, you can 
control all in-cluster communication. With security groups for Pods, you can control access to 
AWS services from applications within a Pod.

• You can use network policies with custom networking and prefix delegation.

Considerations

• When applying Amazon VPC CNI plugin for Kubernetes network policies to your cluster with the 
Amazon VPC CNI plugin for Kubernetes , you can apply the policies to Amazon EC2 Linux nodes 
only. You can't apply the policies to Fargate or Windows nodes.

• If your cluster is currently using a third party solution to manage Kubernetes network policies, 
you can use those same policies with the Amazon VPC CNI plugin for Kubernetes. However you 
must remove your existing solution so that it isn't managing the same policies.

• You can apply multiple network policies to the same Pod. When two or more policies that select 
the same Pod are configured, all policies are applied to the Pod.

• The maximum number of unique combinations of ports for each protocol in each ingress: or
egress: selector in a network policy is 8.

• For any of your Kubernetes services, the service port must be the same as the container port. If 
you're using named ports, use the same name in the service spec too.

• The Amazon VPC CNI plugin for Kubernetes configures network policies for pods in parallel with 
the pod provisioning. Until all of the policies are configured for the new pod, containers in the 
new pod will start with a default allow policy. All ingress and egress traffic is allowed to and from 
the new pods unless they are resolved against the existing policies.

• The network policy feature creates and requires a PolicyEndpoint Custom Resource Definition 
(CRD) called policyendpoints.networking.k8s.aws. PolicyEndpoint objects of the 
Custom Resource are managed by Amazon EKS. You shouldn't modify or delete these resources.

• If you run pods that use the instance role IAM credentials or connect to the EC2 IMDS, be careful 
to check for network policies that would block access to the EC2 IMDS. You may need to add a 
network policy to allow access to EC2 IMDS. For more information, see Instance metadata and 
user data in the Amazon EC2 User Guide for Linux Instances.

Pods that use IAM roles for service accounts don't access EC2 IMDS.

• The Amazon VPC CNI plugin for Kubernetes doesn't apply network policies to additional 
network interfaces for each pod, only the primary interface for each pod (eth0). This affects the 
following architectures:

Amazon VPC CNI plugin for Kubernetes 440

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html


Amazon EKS User Guide

• IPv6 pods with the ENABLE_V4_EGRESS variable set to true. This variable enables the
IPv4 egress feature to connect the IPv6 pods to IPv4 endpoints such as those outside the 
cluster. The IPv4 egress feature works by creating an additional network interface with a local 
loopback IPv4 address.

• When using chained network plugins such as Multus. Because these plugins add network 
interfaces to each pod, network policies aren't applied to the chained network plugins.

• The network policy feature uses port 8162 on the node for metrics by default. Also, the feature 
used port 8163 for health probes. If you run another application on the nodes or inside pods 
that needs to use these ports, the app fails to run. In VPC CNI version v1.14.1 or later, you can 
change these ports port in the following places:

AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, select Clusters, and then select the name of the cluster that 
you want to configure the Amazon VPC CNI add-on for.

3. Choose the Add-ons tab.

4. Select the box in the top right of the add-on box and then choose Edit.

5. On the Configure name of addon page:

a. Select a v1.14.0-eksbuild.3 or later version in the Version dropdown list.

b. Expand the Optional configuration settings.

c. Enter the JSON key "enableNetworkPolicy": and value "true" in
Configuration values. The resulting text must be a valid JSON object. If this key and 
value are the only data in the text box, surround the key and value with curly braces
{}.

The following example has network policy feature enabled, the network policy logs 
sent to Amazon CloudWatch Logs, and the metrics and health probes are set to the 
default port numbers:

{ 
    "enableNetworkPolicy": "true", 
    "nodeAgent": { 
        "enableCloudWatchLogs": "true", 
        "healthProbeBindAddr": "8163", 
        "metricsBindAddr": "8162" 

Amazon VPC CNI plugin for Kubernetes 441

https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

    }
}

Helm

If you have installed the Amazon VPC CNI plugin for Kubernetes through helm, you can 
update the configuration to change the ports.

• Run the following command to change the ports. Set the port number 
in the value for either key nodeAgent.metricsBindAddr or key
nodeAgent.healthProbeBindAddr, respectively.

helm upgrade --set nodeAgent.metricsBindAddr=8162 --set 
 nodeAgent.healthProbeBindAddr=8163 aws-vpc-cni --namespace kube-system eks/
aws-vpc-cni

kubectl

1. Open the aws-node DaemonSet in your editor.

kubectl edit daemonset -n kube-system aws-node

2. Replace the port numbers in the following command arguments in the args: in 
the aws-network-policy-agent container in the VPC CNI aws-node daemonset 
manifest.

    - args: 
            - --metrics-bind-addr=:8162 
            - --health-probe-bind-addr=:8163

Prerequisites

• Minimum cluster version

An existing Amazon EKS cluster. To deploy one, see Getting started with Amazon EKS. 
The cluster must be Kubernetes version 1.25 or later. The cluster must be running one of 
the Kubernetes versions and platform versions listed in the following table. Note that any 

Amazon VPC CNI plugin for Kubernetes 442



Amazon EKS User Guide

Kubernetes and platform versions later than those listed are also supported. You can check your 
current Kubernetes version by replacing my-cluster in the following command with the name 
of your cluster and then running the modified command:

aws eks describe-cluster 
              --name my-cluster --query cluster.version --output 
              text

Kubernetes version Platform version

1.27.4 eks.5

1.26.7 eks.6

1.25.12 eks.7

• Minimum VPC CNI version

Version 1.14 or later of the Amazon VPC CNI plugin for Kubernetes on your cluster. You can see 
which version that you currently have with the following command.

kubectl describe daemonset aws-node --namespace kube-system | grep amazon-k8s-cni: | 
 cut -d : -f 3

If your version is earlier than 1.14, see Updating the Amazon EKS add-on to upgrade to version
1.14 or later.

• Minimum Linux kernel version

Your nodes must have Linux kernel version 5.10 or later. You can check your kernel version 
with uname -r. If you're using the latest versions of the Amazon EKS optimized Amazon Linux, 
Amazon EKS optimized accelerated Amazon Linux AMIs, and Bottlerocket AMIs, they already 
have the required kernel version.

The Amazon EKS optimized accelerated Amazon Linux AMI version v20231116 or later have 
kernel version 5.10.

Amazon VPC CNI plugin for Kubernetes 443



Amazon EKS User Guide

To configure your cluster to use Kubernetes network policies

1. Mount the BPF filesystem

Note

If your cluster is version 1.27 or later, you can skip this step as all Amazon EKS 
optimized Amazon Linux and Bottlerocket AMIs for 1.27 or later have this feature 
already.
For all other cluster versions, if you upgrade the Amazon EKS optimized Amazon Linux 
to version v20230703 or later or you upgrade the Bottlerocket AMI to version v1.0.2
or later, you can skip this step.

a. Mount the Berkeley Packet Filter (BPF) file system on each of your nodes.

sudo mount -t bpf bpffs /sys/fs/bpf

b. Then, add the same command to your user data in your launch template for your Amazon 
EC2 Auto Scaling Groups.

2. Enable network policy in the VPC CNI

a. See which type of the add-on is installed on your cluster. Depending on the tool that you 
created your cluster with, you might not currently have the Amazon EKS add-on type 
installed on your cluster. Replace my-cluster with the name of your cluster.

aws eks describe-addon --cluster-name my-cluster --addon-name vpc-cni --query 
 addon.addonVersion --output text

If a version number is returned, you have the Amazon EKS type of the add-on installed on 
your cluster and don't need to complete the remaining steps in this procedure. If an error 
is returned, you don't have the Amazon EKS type of the add-on installed on your cluster.

b. • Amazon EKS add-on

AWS Management Console

a. Open the Amazon EKS console at https://console.aws.amazon.com/eks/ 
home#/clusters.

Amazon VPC CNI plugin for Kubernetes 444

https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

b. In the left navigation pane, select Clusters, and then select the name of the 
cluster that you want to configure the Amazon VPC CNI add-on for.

c. Choose the Add-ons tab.

d. Select the box in the top right of the add-on box and then choose Edit.

e. On the Configure name of addon page:

i. Select a v1.14.0-eksbuild.3 or later version in the Version dropdown 
list.

ii. Expand the Optional configuration settings.

iii. Enter the JSON key "enableNetworkPolicy": and value "true" in
Configuration values. The resulting text must be a valid JSON object. If 
this key and value are the only data in the text box, surround the key and 
value with curly braces {}. The following example shows both network 
policy and the network policy logs are enabled:

{ 
                              "enableNetworkPolicy": "true", 
                              "nodeAgent": { 
                              "enableCloudWatchLogs": "true" 
                              } 
                              }

The following screenshot shows an example of this scenario.

Amazon VPC CNI plugin for Kubernetes 445



Amazon EKS User Guide

AWS CLI

• Run the following AWS CLI command. Replace my-cluster with the name of 
your cluster and the IAM role ARN with the role that you are using.

Amazon VPC CNI plugin for Kubernetes 446



Amazon EKS User Guide

aws eks update-addon --cluster-name my-cluster --addon-name vpc-cni 
 --addon-version v1.14.0-eksbuild.3 \ 
    --service-account-role-arn arn:aws:iam::123456789012:role/
AmazonEKSVPCCNIRole \ 
    --resolve-conflicts PRESERVE --configuration-values 
 '{"enableNetworkPolicy": "true"}' 
                         

• Self-managed add-on

Helm

If you have installed the Amazon VPC CNI plugin for Kubernetes through helm, 
you can update the configuration to enable network policy.

• Run the following command to enable network policy.

helm upgrade --set enableNetworkPolicy=true aws-vpc-cni --namespace 
 kube-system eks/aws-vpc-cni

kubectl

a. Open the amazon-vpc-cni ConfigMap in your editor.

kubectl edit configmap -n kube-system amazon-vpc-cni -o yaml

b. Add the following line to the data in the ConfigMap.

enable-network-policy-controller: "true"

Once you've added the line, your ConfigMap should look like the following 
example.

apiVersion: v1 
 kind: ConfigMap 
 metadata: 
  name: amazon-vpc-cni 
  namespace: kube-system 
 data: 

Amazon VPC CNI plugin for Kubernetes 447



Amazon EKS User Guide

  enable-network-policy-controller: "true"

c. Open the aws-node DaemonSet in your editor.

kubectl edit daemonset -n kube-system aws-node

d. Replace the false with true in the command argument --enable-
network-policy=false in the args: in the aws-network-policy-
agent container in the VPC CNI aws-node daemonset manifest.

     - args: 
        - --enable-network-policy=true

3. Confirm that the aws-node pods are running on your cluster.

kubectl get pods -n kube-system | grep 'aws-node\|amazon'

An example output is as follows.

aws-node-gmqp7                                          2/2     Running   1 (24h 
 ago)   24h
aws-node-prnsh                                          2/2     Running   1 (24h 
 ago)   24h

If network policy is enabled, there are 2 containers in the aws-node pods. In previous versions 
and if network policy is disabled, there is only a single container in the aws-node pods.

You can now deploy Kubernetes network policies to your cluster. For more information, see
Kubernetes network policies.

Stars demo of network policy

This demo creates a front-end, back-end, and client service on your Amazon EKS cluster. The demo 
also creates a management graphical user interface that shows the available ingress and egress 
paths between each service. We recommend that you complete the demo on a cluster that you 
don't run production workloads on.

Before you create any network policies, all services can communicate bidirectionally. After you 
apply the network policies, you can see that the client can only communicate with the front-end 
service, and the back-end only accepts traffic from the front-end.

Amazon VPC CNI plugin for Kubernetes 448



Amazon EKS User Guide

To run the Stars policy demo

1. Apply the front-end, back-end, client, and management user interface services:

kubectl apply -f https://eksworkshop.com/beginner/120_network-policies/calico/
stars_policy_demo/create_resources.files/namespace.yaml
kubectl apply -f https://eksworkshop.com/beginner/120_network-policies/calico/
stars_policy_demo/create_resources.files/management-ui.yaml
kubectl apply -f https://eksworkshop.com/beginner/120_network-policies/calico/
stars_policy_demo/create_resources.files/backend.yaml
kubectl apply -f https://eksworkshop.com/beginner/120_network-policies/calico/
stars_policy_demo/create_resources.files/frontend.yaml
kubectl apply -f https://eksworkshop.com/beginner/120_network-policies/calico/
stars_policy_demo/create_resources.files/client.yaml

2. View all Pods on the cluster.

kubectl get pods -A

An example output is as follows.

In your output, you should see pods in the namespaces shown in the following output. The
NAMES of your pods and the number of pods in the READY column are different than those in 
the following output. Don't continue until you see pods with similar names and they all have
Running in the STATUS column.

NAMESPACE         NAME                                       READY   STATUS    
 RESTARTS   AGE
[...]
client            client-xlffc                               1/1     Running   0    
        5m19s
[...]
management-ui     management-ui-qrb2g                        1/1     Running   0    
        5m24s
stars             backend-sz87q                              1/1     Running   0    
        5m23s
stars             frontend-cscnf                             1/1     Running   0    
        5m21s
[...]

3. To connect to the management user interface, connect to the EXTERNAL-IP of the service 
running on your cluster:

Amazon VPC CNI plugin for Kubernetes 449



Amazon EKS User Guide

kubectl get service/management-ui -n management-ui

4. Open the a browser to the location from the previous step. You should see the management 
user interface. The C node is the client service, the F node is the front-end service, and the B
node is the back-end service. Each node has full communication access to all other nodes, as 
indicated by the bold, colored lines.

5. Apply the following network policy in both the stars and client namespaces to isolate the 
services from each other:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata: 
  name: default-deny
spec: 
  podSelector: 
    matchLabels: {}

Amazon VPC CNI plugin for Kubernetes 450



Amazon EKS User Guide

You can use the following commands to apply the policy to both namespaces:

kubectl apply -n stars -f https://eksworkshop.com/beginner/120_network-policies/
calico/stars_policy_demo/apply_network_policies.files/default-deny.yaml
kubectl apply -n client -f https://eksworkshop.com/beginner/120_network-policies/
calico/stars_policy_demo/apply_network_policies.files/default-deny.yaml

6. Refresh your browser. You see that the management user interface can no longer reach any of 
the nodes, so they don't show up in the user interface.

7. Apply the following different network policies to allow the management user interface to 
access the services. Apply this policy to allow the UI:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata: 
  namespace: stars 
  name: allow-ui  
spec: 
  podSelector: 
    matchLabels: {} 
  ingress: 
    - from: 
        - namespaceSelector: 
            matchLabels: 
              role: management-ui 

Apply this policy to allow the client:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata: 
  namespace: client  
  name: allow-ui  
spec: 
  podSelector: 
    matchLabels: {} 
  ingress: 
    - from: 
        - namespaceSelector: 
            matchLabels: 

Amazon VPC CNI plugin for Kubernetes 451



Amazon EKS User Guide

              role: management-ui 

You can use the following commands to apply both policies:

kubectl apply -f https://eksworkshop.com/beginner/120_network-policies/calico/
stars_policy_demo/apply_network_policies.files/allow-ui.yaml
kubectl apply -f https://eksworkshop.com/beginner/120_network-policies/calico/
stars_policy_demo/apply_network_policies.files/allow-ui-client.yaml

8. Refresh your browser. You see that the management user interface can reach the nodes again, 
but the nodes cannot communicate with each other.

9. Apply the following network policy to allow traffic from the front-end service to the back-end 
service:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata: 
  namespace: stars 

Amazon VPC CNI plugin for Kubernetes 452



Amazon EKS User Guide

  name: backend-policy
spec: 
  podSelector: 
    matchLabels: 
      role: backend 
  ingress: 
    - from: 
        - podSelector: 
            matchLabels: 
              role: frontend 
      ports: 
        - protocol: TCP 
          port: 6379

10. Refresh your browser. You see that the front-end can communicate with the back-end.

11. Apply the following network policy to allow traffic from the client to the front-end service:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata: 
  namespace: stars 
  name: frontend-policy
spec: 
  podSelector: 
    matchLabels: 
      role: frontend  
  ingress: 
    - from: 
        - namespaceSelector: 
            matchLabels: 
              role: client 

Amazon VPC CNI plugin for Kubernetes 453



Amazon EKS User Guide

      ports: 
        - protocol: TCP 
          port: 80

12. Refresh your browser. You see that the client can communicate to the front-end service. The 
front-end service can still communicate to the back-end service.

13. (Optional) When you are done with the demo, you can delete its resources.

kubectl delete -f https://eksworkshop.com/beginner/120_network-policies/calico/
stars_policy_demo/create_resources.files/client.yaml
kubectl delete -f https://eksworkshop.com/beginner/120_network-policies/calico/
stars_policy_demo/create_resources.files/frontend.yaml
kubectl delete -f https://eksworkshop.com/beginner/120_network-policies/calico/
stars_policy_demo/create_resources.files/backend.yaml
kubectl delete -f https://eksworkshop.com/beginner/120_network-policies/calico/
stars_policy_demo/create_resources.files/management-ui.yaml

Amazon VPC CNI plugin for Kubernetes 454



Amazon EKS User Guide

kubectl delete -f https://eksworkshop.com/beginner/120_network-policies/calico/
stars_policy_demo/create_resources.files/namespace.yaml

Even after deleting the resources, there can still be network policy endpoints on the nodes 
that might interfere in unexpected ways with networking in your cluster. The only sure way to 
remove these rules is to reboot the nodes or terminate all of the nodes and recycle them. To 
terminate all nodes, either set the Auto Scaling Group desired count to 0, then back up to the 
desired number, or just terminate the nodes.

Troubleshooting network policies

You can troubleshoot and investigate network connections that use network policies by reading the
Network policy logs and by running tools from the eBPF SDK.

Network policy logs

Whether connections are allowed or denied by a network policies is logged in flow logs. The 
network policy logs on each node include the flow logs for every pod that has a network policy. 
Network policy logs are stored at /var/log/aws-routed-eni/network-policy-agent.log. 
The following example is from a network-policy-agent.log file:

{"level":"info","timestamp":"2023-05-30T16:05:32.573Z","logger":"ebpf-
client","msg":"Flow Info: ","Src
IP":"192.168.87.155","Src Port":38971,"Dest IP":"64.6.160","Dest
Port":53,"Proto":"UDP","Verdict":"ACCEPT"}

Send network policy logs to Amazon CloudWatch Logs

You can monitor the network policy logs using services such as Amazon CloudWatch Logs. You can 
use the following methods to send the network policy logs to CloudWatch Logs.

For EKS clusters, the policy logs will be located under /aws/eks/cluster-name/cluster/ and 
for self-managed K8S clusters, the logs will be placed under /aws/k8s-cluster/cluster/.

Send network policy logs with Amazon VPC CNI plugin for Kubernetes

If you enable network policy, a second container is add to the aws-node pods for a node agent. 
This node agent can send the network policy logs to CloudWatch Logs.

Amazon VPC CNI plugin for Kubernetes 455



Amazon EKS User Guide

Note

Only the network policy logs are sent by the node agent. Other logs made by the VPC CNI 
aren't included.

Prerequisites

• Add the following permissions as a stanza or separate policy to the IAM role that you are using 
for the VPC CNI.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "VisualEditor0", 
            "Effect": "Allow", 
            "Action": [ 
                "logs:DescribeLogGroups", 
                "logs:CreateLogGroup", 
                "logs:CreateLogStream", 
                "logs:PutLogEvents" 
            ], 
            "Resource": "*" 
        } 
    ]
}

Amazon EKS add-on

AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, select Clusters, and then select the name of the cluster that 
you want to configure the Amazon VPC CNI add-on for.

3. Choose the Add-ons tab.

4. Select the box in the top right of the add-on box and then choose Edit.

5. On the Configure name of addon page:

Amazon VPC CNI plugin for Kubernetes 456

https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

a. Select a v1.14.0-eksbuild.3 or later version in the Version dropdown list.

b. Expand the Optional configuration settings.

c. Enter the top-level JSON key "nodeAgent": and value is an object with a key
"enableCloudWatchLogs": and value of "true" in Configuration values. The 
resulting text must be a valid JSON object. The following example shows both network 
policy and the network policy logs are enabled:

{ 
    "enableNetworkPolicy": "true", 
    "nodeAgent": { 
        "enableCloudWatchLogs": "true" 
    }
}

The following screenshot shows an example of this scenario.

Amazon VPC CNI plugin for Kubernetes 457



Amazon EKS User Guide

Amazon VPC CNI plugin for Kubernetes 458



Amazon EKS User Guide

AWS CLI

• Run the following AWS CLI command. Replace my-cluster with the name of your cluster 
and replace the IAM role ARN with the role that you are using.

aws eks update-addon --cluster-name my-cluster --addon-name vpc-cni --addon-
version v1.14.0-eksbuild.3 \ 
    --service-account-role-arn arn:aws:iam::123456789012:role/
AmazonEKSVPCCNIRole \ 
    --resolve-conflicts PRESERVE --configuration-values '{"nodeAgent": 
 {"enableCloudWatchLogs": "true"}}' 
                         

Self-managed add-on

Helm

If you have installed the Amazon VPC CNI plugin for Kubernetes through helm, you can update 
the configuration to send network policy logs to CloudWatch Logs.

• Run the following command to enable network policy.

helm upgrade --set nodeAgent.enableCloudWatchLogs=true aws-vpc-cni --namespace 
 kube-system eks/aws-vpc-cni

kubectl

1. Open the aws-node DaemonSet in your editor.

kubectl edit daemonset -n kube-system aws-node

2. Replace the false with true in the command argument --enable-cloudwatch-
logs=false in the args: in the aws-network-policy-agent container in the VPC CNI
aws-node daemonset manifest.

     - args: 
        - --enable-cloudwatch-logs=true

Amazon VPC CNI plugin for Kubernetes 459



Amazon EKS User Guide

Send network policy logs with a Fluent Bit daemonset

If you are using Fluent Bit in a daemonset to send logs from your nodes, you can add configuration 
to include the network policy logs from network policies. You can use the following example 
configuration:

    [INPUT] 
        Name              tail 
        Tag               eksnp.* 
        Path              /var/log/aws-routed-eni/network-policy-agent*.log 
        Parser            json 
        DB                /var/log/aws-routed-eni/flb_npagent.db 
        Mem_Buf_Limit     5MB 
        Skip_Long_Lines   On 
        Refresh_Interval  10

Included eBPF SDK

The Amazon VPC CNI plugin for Kubernetes installs eBPF SDK collection of tools on the nodes. You 
can use the eBPF SDK tools to identify issues with network policies. For example, the following 
command lists the programs that are running on the node.

sudo /opt/cni/bin/aws-eks-na-cli ebpf progs

To run this command, you can use any method to connect to the node.

Kubernetes network policies

To implement Kubernetes network policies you create Kubernetes NetworkPolicy objects and 
deploy them to your cluster. NetworkPolicy objects are scoped to a namespace. You implement 
policies to allow or deny traffic between Pods based on label selectors, namespaces, and IP address 
ranges. For more information about creating NetworkPolicy objects, see Network Policies in the 
Kubernetes documentation.

Enforcement of Kubernetes NetworkPolicy objects is implemented using the Extended Berkeley 
Packet Filter (eBPF). Relative to iptables based implementations, it offers lower latency and 
performance characteristics, including reduced CPU utilization and avoiding sequential lookups. 
Additionally, eBPF probes provide access to context rich data that helps debug complex kernel level 
issues and improve observability. Amazon EKS supports an eBPF-based exporter that leverages the 
probes to log policy results on each node and export the data to external log collectors to aid in 
debugging. For more information, see the eBPF documentation.

Amazon VPC CNI plugin for Kubernetes 460

https://kubernetes.io/docs/concepts/services-networking/network-policies/#networkpolicy-resource
https://ebpf.io/what-is-ebpf/#what-is-ebpf


Amazon EKS User Guide

Custom networking for pods

By default, when the Amazon VPC CNI plugin for Kubernetes creates secondary elastic network 
interfaces (network interfaces) for your Amazon EC2 node, it creates them in the same subnet as 
the node's primary network interface. It also associates the same security groups to the secondary 
network interface that are associated to the primary network interface. For one or more of the 
following reasons, you might want the plugin to create secondary network interfaces in a different 
subnet or want to associate different security groups to the secondary network interfaces, or both:

• There's a limited number of IPv4 addresses that are available in the subnet that the primary 
network interface is in. This might limit the number of Pods that you can create in the subnet. 
By using a different subnet for secondary network interfaces, you can increase the number of 
available IPv4 addresses available for Pods.

• For security reasons, your Pods might need to use a different subnet or security groups than the 
node's primary network interface.

• The nodes are configured in public subnets, and you want to place the Pods in private subnets. 
The route table associated to a public subnet includes a route to an internet gateway. The route 
table associated to a private subnet doesn't include a route to an internet gateway.

Considerations

• With custom networking enabled, no IP addresses assigned to the primary network interface are 
assigned to Pods. Only IP addresses from secondary network interfaces are assigned to Pods.

• If your cluster uses the IPv6 family, you can't use custom networking.

• If you plan to use custom networking only to help alleviate IPv4 address exhaustion, you can 
create a cluster using the IPv6 family instead. For more information, see IPv6 addresses for 
clusters, Pods, and services.

• Even though Pods deployed to subnets specified for secondary network interfaces can use 
different subnet and security groups than the node's primary network interface, the subnets and 
security groups must be in the same VPC as the node.

Prerequisites

• Familiarity with how the Amazon VPC CNI plugin for Kubernetes creates secondary network 
interfaces and assigns IP addresses to Pods. For more information, see ENI Allocation on GitHub.

Amazon VPC CNI plugin for Kubernetes 461

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://github.com/aws/amazon-vpc-cni-k8s#eni-allocation


Amazon EKS User Guide

• Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface (AWS 
CLI) installed and configured on your device or AWS CloudShell. To check your current version, 
use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers such yum,
apt-get, or Homebrew for macOS are often several versions behind the latest version of the 
AWS CLI. To install the latest version, see Installing, updating, and uninstalling the AWS CLI and
Quick configuration with aws configure in the AWS Command Line Interface User Guide. The AWS 
CLI version that is installed in AWS CloudShell might also be several versions behind the latest 
version. To update it, see Installing AWS CLI to your home directory in the AWS CloudShell User 
Guide.

• The kubectl command line tool is installed on your device or AWS CloudShell. The version can 
be the same as or up to one minor version earlier or later than the Kubernetes version of your 
cluster. For example, if your cluster version is 1.28, you can use kubectl version 1.27, 1.28, or
1.29 with it. To install or upgrade kubectl, see Installing or updating kubectl.

• We recommend that you complete the steps in this topic in a Bash shell. If you aren't using a 
Bash shell, some script commands such as line continuation characters and the way variables are 
set and used require adjustment for your shell. Additionally, the quoting and escaping rules for 
your shell might be different. For more information, see Using quotation marks with strings in 
the AWS CLI in the AWS Command Line Interface User Guide.

For this tutorial, we recommend using the example values, except where it's noted to replace 
them. You can replace any example value when completing the steps for a production cluster. 
We recommend completing all steps in the same terminal. This is because variables are set and 
used throughout the steps and won't exist in different terminals.

The commands in this topic are formatted using the conventions listed in Using the AWS CLI 
examples. If you're running commands from the command line against resources that are in a 
different AWS Region than the default AWS Region defined in the AWS CLI profile that you're 
using, then you need to add --region region-code to the commands.

When you want to deploy custom networking to your production cluster, skip to Step 2: Configure 
your VPC.

Step 1: Create a test VPC and cluster

To create a cluster

The following procedures help you create a test VPC and cluster and configure custom networking 
for that cluster. We don't recommend using the test cluster for production workloads because 

Amazon VPC CNI plugin for Kubernetes 462

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-quoting-strings.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-quoting-strings.html
https://docs.aws.amazon.com/cli/latest/userguide/welcome-examples.html
https://docs.aws.amazon.com/cli/latest/userguide/welcome-examples.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-profiles


Amazon EKS User Guide

several unrelated features that you might use on your production cluster aren't covered in this 
topic. For more information, see Creating an Amazon EKS cluster.

1. Define a few variables to use in the remaining steps.

export cluster_name=my-custom-networking-cluster
account_id=$(aws sts get-caller-identity --query Account --output text)

2. Create a VPC.

1. Create a VPC using an Amazon EKS AWS CloudFormation template.

aws cloudformation create-stack --stack-name my-eks-custom-networking-vpc \ 
  --template-url https://s3.us-west-2.amazonaws.com/amazon-
eks/cloudformation/2020-10-29/amazon-eks-vpc-private-subnets.yaml \ 
  --parameters ParameterKey=VpcBlock,ParameterValue=192.168.0.0/24 \ 
  ParameterKey=PrivateSubnet01Block,ParameterValue=192.168.0.64/27 \ 
  ParameterKey=PrivateSubnet02Block,ParameterValue=192.168.0.96/27 \ 
  ParameterKey=PublicSubnet01Block,ParameterValue=192.168.0.0/27 \ 
  ParameterKey=PublicSubnet02Block,ParameterValue=192.168.0.32/27

The AWS CloudFormation stack takes a few minutes to create. To check on the stack's 
deployment status, run the following command.

aws cloudformation describe-stacks --stack-name my-eks-custom-networking-vpc --
query Stacks\[\].StackStatus  --output text

Don't continue to the next step until the output of the command is CREATE_COMPLETE.

2. Define variables with the values of the private subnet IDs created by the template.

subnet_id_1=$(aws cloudformation describe-stack-resources --stack-name my-eks-
custom-networking-vpc \ 
    --query "StackResources[?
LogicalResourceId=='PrivateSubnet01'].PhysicalResourceId" --output text)
subnet_id_2=$(aws cloudformation describe-stack-resources --stack-name my-eks-
custom-networking-vpc \ 
    --query "StackResources[?
LogicalResourceId=='PrivateSubnet02'].PhysicalResourceId" --output text)

3. Define variables with the Availability Zones of the subnets retrieved in the previous step.

Amazon VPC CNI plugin for Kubernetes 463



Amazon EKS User Guide

az_1=$(aws ec2 describe-subnets --subnet-ids $subnet_id_1 --query 
 'Subnets[*].AvailabilityZone' --output text)
az_2=$(aws ec2 describe-subnets --subnet-ids $subnet_id_2 --query 
 'Subnets[*].AvailabilityZone' --output text)

3. Create a cluster IAM role.

a. Run the following command to create an IAM trust policy JSON file.

cat >eks-cluster-role-trust-policy.json <<EOF
{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "eks.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole" 
    } 
  ]
}
EOF

b. Create the Amazon EKS cluster IAM role. If necessary, preface eks-cluster-role-
trust-policy.json with the path on your computer that you wrote the file to in the 
previous step. The command associates the trust policy that you created in the previous 
step to the role. To create an IAM role, the IAM principal that is creating the role must be 
assigned the iam:CreateRole action (permission).

aws iam create-role --role-name myCustomNetworkingAmazonEKSClusterRole --
assume-role-policy-document file://"eks-cluster-role-trust-policy.json"

c. Attach the Amazon EKS managed policy named AmazonEKSClusterPolicy to the role. 
To attach an IAM policy to an IAM principal, the principal that is attaching the policy must 
be assigned one of the following IAM actions (permissions): iam:AttachUserPolicy or
iam:AttachRolePolicy.

aws iam attach-role-policy --policy-arn arn:aws:iam::aws:policy/
AmazonEKSClusterPolicy --role-name myCustomNetworkingAmazonEKSClusterRole

Amazon VPC CNI plugin for Kubernetes 464

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://console.aws.amazon.com/arn:aws:iam::aws:policy/AmazonEKSClusterPolicy
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html


Amazon EKS User Guide

4. Create an Amazon EKS cluster and configure your device to communicate with it.

a. Create a cluster.

aws eks create-cluster --name my-custom-networking-cluster \ 
   --role-arn arn:aws:iam::$account_id:role/
myCustomNetworkingAmazonEKSClusterRole \ 
   --resources-vpc-config subnetIds=$subnet_id_1","$subnet_id_2
 

Note

You might receive an error that one of the Availability Zones in your request 
doesn't have sufficient capacity to create an Amazon EKS cluster. If this happens, 
the error output contains the Availability Zones that can support a new cluster. 
Retry creating your cluster with at least two subnets that are located in the 
supported Availability Zones for your account. For more information, see
Insufficient capacity.

b. The cluster takes several minutes to create. To check on the cluster's deployment status, 
run the following command.

aws eks describe-cluster --name my-custom-networking-cluster --query 
 cluster.status

Don't continue to the next step until the output of the command is "ACTIVE".

c. Configure kubectl to communicate with your cluster.

aws eks update-kubeconfig --name my-custom-networking-cluster

Step 2: Configure your VPC

This tutorial requires the VPC created in Step 1: Create a test VPC and cluster. For a production 
cluster, adjust the steps accordingly for your VPC by replacing all of the example values with 
your own.

1. Confirm that your currently-installed Amazon VPC CNI plugin for Kubernetes is the latest 
version. To determine the latest version for the Amazon EKS add-on type and update your 

Amazon VPC CNI plugin for Kubernetes 465



Amazon EKS User Guide

version to it, see Updating an add-on. To determine the latest version for the self-managed 
add-on type and update your version to it, see Working with the Amazon VPC CNI plugin for 
Kubernetes Amazon EKS add-on.

2. Retrieve the ID of your cluster VPC and store it in a variable for use in later steps. For a 
production cluster, replace my-custom-networking-cluster with the name of your cluster.

vpc_id=$(aws eks describe-cluster --name my-custom-networking-cluster --query 
 "cluster.resourcesVpcConfig.vpcId" --output text)

3. Associate an additional Classless Inter-Domain Routing (CIDR) block with your cluster's VPC. 
The CIDR block can't overlap with any existing associated CIDR blocks.

1. View the current CIDR blocks associated to your VPC.

aws ec2 describe-vpcs --vpc-ids $vpc_id \ 
    --query 'Vpcs[*].CidrBlockAssociationSet[*].{CIDRBlock: CidrBlock, State: 
 CidrBlockState.State}' --out table

An example output is as follows.

----------------------------------
|          DescribeVpcs          |
+-----------------+--------------+
|    CIDRBlock    |    State     |
+-----------------+--------------+
|   192.168.0.0/24 |  associated  |
+-----------------+--------------+

2. Associate an additional CIDR block to your VPC. For more information, see Associate 
additional IPv4 CIDR blocks with your VPC in the Amazon VPC User Guide.

aws ec2 associate-vpc-cidr-block --vpc-id $vpc_id --cidr-block 192.168.1.0/24

3. Confirm that the new block is associated.

aws ec2 describe-vpcs --vpc-ids $vpc_id --query 
 'Vpcs[*].CidrBlockAssociationSet[*].{CIDRBlock: CidrBlock, State: 
 CidrBlockState.State}' --out table

An example output is as follows.
Amazon VPC CNI plugin for Kubernetes 466

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#add-ipv4-cidr
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#add-ipv4-cidr


Amazon EKS User Guide

----------------------------------
|          DescribeVpcs          |
+-----------------+--------------+
|    CIDRBlock    |    State     |
+-----------------+--------------+
|   192.168.0.0/24 |  associated  |
|   192.168.1.0/24 |  associated  |
+-----------------+--------------+

Don't proceed to the next step until your new CIDR block's State is associated.

4. Create as many subnets as you want to use in each Availability Zone that your existing subnets 
are in. Specify a CIDR block that's within the CIDR block that you associated with your VPC in a 
previous step.

1. Create new subnets. The subnets must be created in a different VPC CIDR block than your 
existing subnets are in, but in the same Availability Zones as your existing subnets. In this 
example, one subnet is created in the new CIDR block in each Availability Zone that the 
current private subnets exist in. The IDs of the subnets created are stored in variables for 
use in later steps. The Name values match the values assigned to the subnets created using 
the Amazon EKS VPC template in a previous step. Names aren't required. You can use 
different names.

new_subnet_id_1=$(aws ec2 create-subnet --vpc-id $vpc_id --availability-zone 
 $az_1 --cidr-block 192.168.1.0/27 \ 
    --tag-specifications 'ResourceType=subnet,Tags=[{Key=Name,Value=my-eks-
custom-networking-vpc-PrivateSubnet01},{Key=kubernetes.io/role/internal-
elb,Value=1}]' \ 
    --query Subnet.SubnetId --output text)
new_subnet_id_2=$(aws ec2 create-subnet --vpc-id $vpc_id --availability-zone 
 $az_2 --cidr-block 192.168.1.32/27 \ 
    --tag-specifications 'ResourceType=subnet,Tags=[{Key=Name,Value=my-eks-
custom-networking-vpc-PrivateSubnet02},{Key=kubernetes.io/role/internal-
elb,Value=1}]' \ 
    --query Subnet.SubnetId --output text)

Amazon VPC CNI plugin for Kubernetes 467



Amazon EKS User Guide

Important

By default, your new subnets are implicitly associated with your VPC's main route 
table. This route table allows communication between all the resources that are 
deployed in the VPC. However, it doesn't allow communication with resources 
that have IP addresses that are outside the CIDR blocks that are associated with 
your VPC. You can associate your own route table to your subnets to change this 
behavior. For more information, see Subnet route tables in the Amazon VPC User 
Guide.

2. View the current subnets in your VPC.

aws ec2 describe-subnets --filters "Name=vpc-id,Values=$vpc_id" \ 
    --query 'Subnets[*].{SubnetId: SubnetId,AvailabilityZone: 
 AvailabilityZone,CidrBlock: CidrBlock}' \ 
    --output table

An example output is as follows.

----------------------------------------------------------------------
|                           DescribeSubnets                          |
+------------------+--------------------+----------------------------+
| AvailabilityZone |     CidrBlock      |         SubnetId           |
+------------------+--------------------+----------------------------+
|   us-west-2d      |   192.168.0.0/27    |     subnet-example1        |
|   us-west-2a      |   192.168.0.32/27   |     subnet-example2        |
|   us-west-2a      |   192.168.0.64/27   |     subnet-example3        |
|   us-west-2d      |   192.168.0.96/27   |     subnet-example4        |
|   us-west-2a      |   192.168.1.0/27    |     subnet-example5        |
|   us-west-2d      |   192.168.1.32/27   |     subnet-example6        |
+------------------+--------------------+----------------------------+

You can see the subnets in the 192.168.1.0 CIDR block that you created are in the same 
Availability Zones as the subnets in the 192.168.0.0 CIDR block.

Amazon VPC CNI plugin for Kubernetes 468

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Route_Tables.html#RouteTables
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Route_Tables.html#RouteTables
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Route_Tables.html#subnet-route-tables


Amazon EKS User Guide

Step 3: Configure Kubernetes resources

To configure Kubernetes resources

1. Set the AWS_VPC_K8S_CNI_CUSTOM_NETWORK_CFG environment variable to true in the
aws-node DaemonSet.

kubectl set env daemonset aws-node -n kube-system 
 AWS_VPC_K8S_CNI_CUSTOM_NETWORK_CFG=true

2. Retrieve the ID of your cluster security group and store it in a variable for use in the next step. 
Amazon EKS automatically creates this security group when you create your cluster.

cluster_security_group_id=$(aws eks describe-cluster --name $cluster_name --query 
 cluster.resourcesVpcConfig.clusterSecurityGroupId --output text)

3. Create an ENIConfig custom resource for each subnet that you want to deploy Pods in.

a. Create a unique file for each network interface configuration.

The following commands create separate ENIConfig files for the two subnets that were 
created in a previous step. The value for name must be unique. The name is the same as 
the Availability Zone that the subnet is in. The cluster security group is assigned to the
ENIConfig.

cat >$az_1.yaml <<EOF
apiVersion: crd.k8s.amazonaws.com/v1alpha1
kind: ENIConfig
metadata:  
  name: $az_1
spec:  
  securityGroups:  
    - $cluster_security_group_id
  subnet: $new_subnet_id_1
EOF

cat >$az_2.yaml <<EOF
apiVersion: crd.k8s.amazonaws.com/v1alpha1
kind: ENIConfig
metadata:  

Amazon VPC CNI plugin for Kubernetes 469



Amazon EKS User Guide

  name: $az_2
spec:  
  securityGroups:  
    - $cluster_security_group_id
  subnet: $new_subnet_id_2
EOF

For a production cluster, you can make the following changes to the previous commands:

• Replace $cluster_security_group_id with the ID of an existing security group that 
you want to use for each ENIConfig.

• We recommend naming your ENIConfigs the same as the Availability Zone that you'll 
use the ENIConfig for, whenever possible. You might need to use different names for 
your ENIConfigs than the names of the Availability Zones for a variety of reasons. For 
example, if you have more than two subnets in the same Availability Zone and want to 
use them both with custom networking, then you need multiple ENIConfigs for the 
same Availability Zone. Since each ENIConfig requires a unique name, you can't name 
more than one of your ENIConfigs using the Availability Zone name.

If your ENIConfig names aren't all the same as Availability Zone names, then replace
$az_1 and $az_2 with your own names in the previous commands and annotate your 
nodes with the ENIConfig later in this tutorial.

Note

If you don't specify a valid security group for use with a production cluster and 
you're using:

• version 1.8.0 or later of the Amazon VPC CNI plugin for Kubernetes, then the 
security groups associated with the node's primary elastic network interface are 
used.

• a version of the Amazon VPC CNI plugin for Kubernetes that's earlier than
1.8.0, then the default security group for the VPC is assigned to secondary 
network interfaces.

Amazon VPC CNI plugin for Kubernetes 470

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html


Amazon EKS User Guide

Important

• AWS_VPC_K8S_CNI_EXTERNALSNAT=false is a default setting in the 
configuration for the Amazon VPC CNI plugin for Kubernetes. If you're using the 
default setting, then traffic that is destined for IP addresses that aren't within 
one of the CIDR blocks associated with your VPC use the security groups and 
subnets of your node's primary network interface. The subnets and security 
groups defined in your ENIConfigs that are used to create secondary network 
interfaces aren't used for this traffic. For more information about this setting, 
see SNAT for Pods.

• If you also use security groups for Pods, the security group that's specified in a
SecurityGroupPolicy is used instead of the security group that's specified in 
the ENIConfigs. For more information, see Security groups for Pods.

b. Apply each custom resource file that you created to your cluster with the following 
commands.

kubectl apply -f $az_1.yaml
kubectl apply -f $az_2.yaml

4. Confirm that your ENIConfigs were created.

kubectl get ENIConfigs

An example output is as follows.

NAME         AGE
us-west-2a   117s
us-west-2d   105s

5. If you're enabling custom networking on a production cluster and named your ENIConfigs
something other than the Availability Zone that you're using them for, then skip to the next 
step to deploy Amazon EC2 nodes.

Enable Kubernetes to automatically apply the ENIConfig for an Availability Zone to any new 
Amazon EC2 nodes created in your cluster.

Amazon VPC CNI plugin for Kubernetes 471



Amazon EKS User Guide

1. For the test cluster in this tutorial, skip to the next step.

For a production cluster, check to see if an annotation with the key k8s.amazonaws.com/
eniConfig for the ENI_CONFIG_ANNOTATION_DEF environment variable exists in the 
container spec for the aws-node DaemonSet.

kubectl describe daemonset aws-node -n kube-system | grep 
 ENI_CONFIG_ANNOTATION_DEF

If output is returned, the annotation exists. If no output is returned, then the variable is not 
set. For a production cluster, you can use either this setting or the setting in the following 
step. If you use this setting, it overrides the setting in the following step. In this tutorial, the 
setting in the next step is used.

2. Update your aws-node DaemonSet to automatically apply the ENIConfig for an 
Availability Zone to any new Amazon EC2 nodes created in your cluster.

kubectl set env daemonset aws-node -n kube-system 
 ENI_CONFIG_LABEL_DEF=topology.kubernetes.io/zone

Step 4: Deploy Amazon EC2 nodes

To deploy Amazon EC2 nodes

1. Create a node IAM role.

a. Run the following command to create an IAM trust policy JSON file.

cat >node-role-trust-relationship.json <<EOF
{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "ec2.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole" 
    } 
  ]

Amazon VPC CNI plugin for Kubernetes 472

https://github.com/aws/amazon-vpc-cni-k8s#eni_config_annotation_def


Amazon EKS User Guide

}
EOF

b. Run the following command to set a variable for your role name. You can replace
myCustomNetworkingAmazonEKSNodeRole with any name you choose.

export node_role_name=myCustomNetworkingAmazonEKSNodeRole

c. Create the IAM role and store its returned Amazon Resource Name (ARN) in a variable for 
use in a later step.

node_role_arn=$(aws iam create-role --role-name $node_role_name --assume-role-
policy-document file://"node-role-trust-relationship.json" \ 
    --query Role.Arn --output text)

d. Attach three required IAM managed policies to the IAM role.

aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy \ 
  --role-name $node_role_name
aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly \ 
  --role-name $node_role_name
aws iam attach-role-policy \ 
    --policy-arn arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy \ 
    --role-name $node_role_name

Important

For simplicity in this tutorial, the AmazonEKS_CNI_Policy policy is attached to 
the node IAM role. In a production cluster however, we recommend attaching the 
policy to a separate IAM role that is used only with the Amazon VPC CNI plugin for 
Kubernetes. For more information, see Configuring the Amazon VPC CNI plugin for 
Kubernetes to use IAM roles for service accounts (IRSA).

2. Create one of the following types of node groups. To determine the instance type that you 
want to deploy, see Choosing an Amazon EC2 instance type. For this tutorial, complete 
the Managed, Without a launch template or with a launch template without an AMI ID 
specified option. If you're going to use the node group for production workloads, then we 

Amazon VPC CNI plugin for Kubernetes 473

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKS_CNI_Policy.html


Amazon EKS User Guide

recommend that you familiarize yourself with all of the managed and self-managed node 
group options before deploying the node group.

• Managed – Deploy your node group using one of the following options:

• Without a launch template or with a launch template without an AMI ID specified – 
Run the following command. For this tutorial, use the example values. For a production 
node group, replace all example values with your own. The node group name can't be 
longer than 63 characters. It must start with letter or digit, but can also include hyphens 
and underscores for the remaining characters.

aws eks create-nodegroup --cluster-name $cluster_name --nodegroup-name my-
nodegroup \ 
    --subnets $subnet_id_1 $subnet_id_2 --instance-types t3.medium --node-role 
 $node_role_arn

• With a launch template with a specified AMI ID

1. Determine the Amazon EKS recommended number of maximum Pods for your nodes. 
Follow the instructions in Amazon EKS recommended maximum Pods for each Amazon 
EC2 instance type, adding --cni-custom-networking-enabled to step 3 in that 
topic. Note the output for use in the next step.

2. In your launch template, specify an Amazon EKS optimized AMI ID, or a custom AMI 
built off the Amazon EKS optimized AMI, then deploy the node group using a launch 
template and provide the following user data in the launch template. This user data 
passes arguments into the bootstrap.sh file. For more information about the 
bootstrap file, see bootstrap.sh on GitHub. You can replace 20 with either the value 
from the previous step (recommended) or your own value.

/etc/eks/bootstrap.sh my-cluster --use-max-pods false --kubelet-extra-args 
 '--max-pods=20'

If you've created a custom AMI that is not built off the Amazon EKS optimized AMI, 
then you need to custom create the configuration yourself.

• Self-managed

1. Determine the Amazon EKS recommended number of maximum Pods for your nodes. 
Follow the instructions in Amazon EKS recommended maximum Pods for each Amazon 
EC2 instance type, adding --cni-custom-networking-enabled to step 3 in that 
topic. Note the output for use in the next step.

Amazon VPC CNI plugin for Kubernetes 474

https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh


Amazon EKS User Guide

2. Deploy the node group using the instructions in Launching self-managed Amazon Linux 
nodes. Specify the following text for the BootstrapArguments parameter. You can 
replace 20 with either the value from the previous step (recommended) or your own 
value.

--use-max-pods false --kubelet-extra-args '--max-pods=20'

Note

If you want nodes in a production cluster to support a significantly higher number of 
Pods, run the script in Amazon EKS recommended maximum Pods for each Amazon 
EC2 instance type again. Also, add the --cni-prefix-delegation-enabled option 
to the command. For example, 110 is returned for an m5.large instance type. For 
instructions on how to enable this capability, see Increase the amount of available 
IP addresses for your Amazon EC2 nodes. You can use this capability with custom 
networking.

Node group creation takes several minutes. You can check the status of the creation of a 
managed node group with the following command.

aws eks describe-nodegroup --cluster-name $cluster_name --nodegroup-name my-
nodegroup --query nodegroup.status --output text

Don't continue to the next step until the output returned is ACTIVE.

3. For the tutorial, you can skip this step.

For a production cluster, if you didn't name your ENIConfigs the same as the Availability 
Zone that you're using them for, then you must annotate your nodes with the ENIConfig
name that should be used with the node. This step isn't necessary if you only have one subnet 
in each Availability Zone and you named your ENIConfigs with the same names as your 
Availability Zones. This is because the Amazon VPC CNI plugin for Kubernetes automatically 
associates the correct ENIConfig with the node for you when you enabled it to do so in a
previous step.

a. Get the list of nodes in your cluster.

Amazon VPC CNI plugin for Kubernetes 475



Amazon EKS User Guide

kubectl get nodes

An example output is as follows.

NAME                                          STATUS   ROLES    AGE     VERSION
ip-192-168-0-126.us-west-2.compute.internal   Ready    <none>   8m49s   
 v1.22.9-eks-810597c
ip-192-168-0-92.us-west-2.compute.internal    Ready    <none>   8m34s   
 v1.22.9-eks-810597c

b. Determine which Availability Zone each node is in. Run the following command for each 
node that was returned in the previous step.

aws ec2 describe-instances --filters Name=network-interface.private-dns-
name,Values=ip-192-168-0-126.us-west-2.compute.internal \
--query 'Reservations[].Instances[].{AvailabilityZone: 
 Placement.AvailabilityZone, SubnetId: SubnetId}'

An example output is as follows.

[ 
    { 
        "AvailabilityZone": "us-west-2d", 
        "SubnetId": "subnet-Example5" 
    }
]

c. Annotate each node with the ENIConfig that you created for the subnet ID and 
Availability Zone. You can only annotate a node with one ENIConfig, though multiple 
nodes can be annotated with the same ENIConfig. Replace the example values with 
your own.

kubectl annotate node ip-192-168-0-126.us-west-2.compute.internal 
 k8s.amazonaws.com/eniConfig=EniConfigName1
kubectl annotate node ip-192-168-0-92.us-west-2.compute.internal 
 k8s.amazonaws.com/eniConfig=EniConfigName2

4. If you had nodes in a production cluster with running Pods before you switched to using the 
custom networking feature, complete the following tasks:

Amazon VPC CNI plugin for Kubernetes 476



Amazon EKS User Guide

a. Make sure that you have available nodes that are using the custom networking feature.

b. Cordon and drain the nodes to gracefully shut down the Pods. For more information, see
Safely Drain a Node in the Kubernetes documentation.

c. Terminate the nodes. If the nodes are in an existing managed node group, you can delete 
the node group. Copy the command that follows to your device. Make the following 
modifications to the command as needed and then run the modified command:

• Replace my-cluster with the name for your cluster.

• Replace my-nodegroup with the name for your node group.

aws eks delete-nodegroup --cluster-name my-cluster --nodegroup-name my-
nodegroup

Only new nodes that are registered with the k8s.amazonaws.com/eniConfig label use the 
custom networking feature.

5. Confirm that Pods are assigned an IP address from a CIDR block that's associated to one of the 
subnets that you created in a previous step.

kubectl get pods -A -o wide

An example output is as follows.

NAMESPACE     NAME                       READY   STATUS    RESTARTS   AGE     IP    
           NODE                                          NOMINATED NODE   READINESS 
 GATES
kube-system   aws-node-2rkn4             1/1     Running   0          7m19s   
 192.168.0.92    ip-192-168-0-92.us-west-2.compute.internal    <none>           
 <none>
kube-system   aws-node-k96wp             1/1     Running   0          7m15s   
 192.168.0.126   ip-192-168-0-126.us-west-2.compute.internal   <none>           
 <none>
kube-system   coredns-657694c6f4-smcgr   1/1     Running   0          56m     
 192.168.1.23    ip-192-168-0-92.us-west-2.compute.internal    <none>           
 <none>
kube-system   coredns-657694c6f4-stwv9   1/1     Running   0          56m     
 192.168.1.28    ip-192-168-0-92.us-west-2.compute.internal    <none>           
 <none>

Amazon VPC CNI plugin for Kubernetes 477

https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/


Amazon EKS User Guide

kube-system   kube-proxy-jgshq           1/1     Running   0          7m19s   
 192.168.0.92    ip-192-168-0-92.us-west-2.compute.internal    <none>           
 <none>
kube-system   kube-proxy-wx9vk           1/1     Running   0          7m15s   
 192.168.0.126   ip-192-168-0-126.us-west-2.compute.internal   <none>           
 <none>

You can see that the coredns Pods are assigned IP addresses from the 192.168.1.0
CIDR block that you added to your VPC. Without custom networking, they would have been 
assigned addresses from the 192.168.0.0 CIDR block, because it was the only CIDR block 
originally associated with the VPC.

If a Pod's spec contains hostNetwork=true, it's assigned the primary IP address of the 
node. It isn't assigned an address from the subnets that you added. By default, this value is 
set to false. This value is set to true for the kube-proxy and Amazon VPC CNI plugin for 
Kubernetes (aws-node) Pods that run on your cluster. This is why the kube-proxy and the 
plugin's aws-node Pods aren't assigned 192.168.1.x addresses in the previous output. For 
more information about a Pod's hostNetwork setting, see PodSpec v1 core in the Kubernetes 
API reference.

Step 5: Delete tutorial resources

After you complete the tutorial, we recommend that you delete the resources that you created. You 
can then adjust the steps to enable custom networking for a production cluster.

To delete the tutorial resources

1. If the node group that you created was just for testing, then delete it.

aws eks delete-nodegroup --cluster-name $cluster_name --nodegroup-name my-nodegroup

Even after the AWS CLI output says that the cluster is deleted, the delete process might not 
actually be complete. The delete process takes a few minutes. Confirm that it's complete by 
running the following command.

aws eks describe-nodegroup --cluster-name $cluster_name --nodegroup-name my-
nodegroup --query nodegroup.status --output text

Don't continue until the returned output is similar to the following output.

Amazon VPC CNI plugin for Kubernetes 478

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.29/#podspec-v1-core


Amazon EKS User Guide

An error occurred (ResourceNotFoundException) when calling the DescribeNodegroup 
 operation: No node group found for name: my-nodegroup.

2. If the node group that you created was just for testing, then delete the node IAM role.

a. Detach the policies from the role.

aws iam detach-role-policy --role-name myCustomNetworkingAmazonEKSNodeRole --
policy-arn arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy
aws iam detach-role-policy --role-name myCustomNetworkingAmazonEKSNodeRole --
policy-arn arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly
aws iam detach-role-policy --role-name myCustomNetworkingAmazonEKSNodeRole --
policy-arn arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy

b. Delete the role.

aws iam delete-role --role-name myCustomNetworkingAmazonEKSNodeRole

3. Delete the cluster.

aws eks delete-cluster --name $cluster_name

Confirm the cluster is deleted with the following command.

aws eks describe-cluster --name $cluster_name --query cluster.status --output text

When output similar to the following is returned, the cluster is successfully deleted.

An error occurred (ResourceNotFoundException) when calling the DescribeCluster 
 operation: No cluster found for name: my-cluster.

4. Delete the cluster IAM role.

a. Detach the policies from the role.

aws iam detach-role-policy --role-name myCustomNetworkingAmazonEKSClusterRole 
 --policy-arn arn:aws:iam::aws:policy/AmazonEKSClusterPolicy

b. Delete the role.

Amazon VPC CNI plugin for Kubernetes 479



Amazon EKS User Guide

aws iam delete-role --role-name myCustomNetworkingAmazonEKSClusterRole

5. Delete the subnets that you created in a previous step.

aws ec2 delete-subnet --subnet-id $new_subnet_id_1
aws ec2 delete-subnet --subnet-id $new_subnet_id_2

6. Delete the VPC that you created.

aws cloudformation delete-stack --stack-name my-eks-custom-networking-vpc

Increase the amount of available IP addresses for your Amazon EC2 nodes

Each Amazon EC2 instance supports a maximum number of elastic network interfaces and a 
maximum number of IP addresses that can be assigned to each network interface. Each node 
requires one IP address for each network interface. All other available IP addresses can be assigned 
to Pods. Each Pod requires its own IP address. As a result, you might have nodes that have 
available compute and memory resources, but can't accommodate additional Pods because the 
node has run out of IP addresses to assign to Pods.

In this topic, you learn how to significantly increase the number of IP addresses that nodes can 
assign to Pods by assigning IP prefixes, rather than assigning individual secondary IP addresses 
to your nodes. Each prefix includes several IP addresses. If you don't configure your cluster for IP 
prefix assignment, your cluster must make more Amazon EC2 application programming interface 
(API) calls to configure network interfaces and IP addresses necessary for Pod connectivity. As 
clusters grow to larger sizes, the frequency of these API calls can lead to longer Pod and instance 
launch times. This results in scaling delays to meet the demand of large and spiky workloads, and 
adds cost and management overhead because you need to provision additional clusters and VPCs 
to meet scaling requirements. For more information, see Kubernetes Scalability thresholds on 
GitHub.

Considerations

• Each Amazon EC2 instance type supports a maximum number of Pods. If your managed node 
group consists of multiple instance types, the smallest number of maximum Pods for an instance 
in the cluster is applied to all nodes in the cluster.

Amazon VPC CNI plugin for Kubernetes 480

https://github.com/kubernetes/community/blob/master/sig-scalability/configs-and-limits/thresholds.md


Amazon EKS User Guide

• By default, the maximum number of Pods that you can run on a node is 110, but you can change 
that number. If you change the number and have an existing managed node group, the next AMI 
or launch template update of your node group results in new nodes coming up with the changed 
value.

• When transitioning from assigning IP addresses to assigning IP prefixes, we recommend that 
you create new node groups to increase the number of available IP addresses, rather than doing 
a rolling replacement of existing nodes. Running Pods on a node that has both IP addresses 
and prefixes assigned can lead to inconsistency in the advertised IP address capacity, impacting 
the future workloads on the node. For the recommended way of performing the transition, see
Replace all nodes during migration from Secondary IP mode to Prefix Delegation mode or vice 
versa in the Amazon EKS best practices guide.

• For clusters with Linux nodes only.

• Once you configure the add-on to assign prefixes to network interfaces, you can't downgrade 
your Amazon VPC CNI plugin for Kubernetes add-on to a version lower than 1.9.0 (or
1.10.1) without removing all nodes in all node groups in your cluster.

• If you're also using security groups for Pods, with
POD_SECURITY_GROUP_ENFORCING_MODE=standard and
AWS_VPC_K8S_CNI_EXTERNALSNAT=false, when your Pods communicate with endpoints 
outside of your VPC, the node's security groups are used, rather than any security groups 
you've assigned to your Pods.

If you're also using security groups for Pods, with
POD_SECURITY_GROUP_ENFORCING_MODE=strict, when your Pods communicate with 
endpoints outside of your VPC, the Pod's security groups are used.

Prerequisites

• An existing cluster. To deploy one, see Creating an Amazon EKS cluster.

• The subnets that your Amazon EKS nodes are in must have sufficient contiguous /28 (for IPv4
clusters) or /80 (for IPv6 clusters) Classless Inter-Domain Routing (CIDR) blocks. You can only 
have Linux nodes in an IPv6 cluster. Using IP prefixes can fail if IP addresses are scattered 
throughout the subnet CIDR. We recommend that following:

• Using a subnet CIDR reservation so that even if any IP addresses within the reserved range are 
still in use, upon their release, the IP addresses aren't reassigned. This ensures that prefixes are 
available for allocation without segmentation.

Amazon VPC CNI plugin for Kubernetes 481

https://github.com/aws/aws-eks-best-practices/blob/master/content/networking/prefix-mode/index_windows.md#replace-all-nodes-during-migration-from-secondary-ip-mode-to-prefix-delegation-mode-or-vice-versa
https://github.com/aws/aws-eks-best-practices/blob/master/content/networking/prefix-mode/index_windows.md#replace-all-nodes-during-migration-from-secondary-ip-mode-to-prefix-delegation-mode-or-vice-versa


Amazon EKS User Guide

• Use new subnets that are specifically used for running the workloads that IP prefixes are 
assigned to. Both Windows and Linux workloads can run in the same subnet when assigning IP 
prefixes.

• To assign IP prefixes to your nodes, your nodes must be AWS Nitro-based. Instances that aren't 
Nitro-based continue to allocate individual secondary IP addresses, but have a significantly lower 
number of IP addresses to assign to Pods than Nitro-based instances do.

• For clusters with Linux nodes only – If your cluster is configured for the IPv4 family, you must 
have version 1.9.0 or later of the Amazon VPC CNI plugin for Kubernetes add-on installed. You 
can check your current version with the following command.

kubectl describe daemonset aws-node --namespace kube-system | grep Image | cut -d "/" 
 -f 2

If your cluster is configured for the IPv6 family, you must have version 1.10.1 of the add-on 
installed. If your plugin version is earlier than the required versions, you must update it. For 
more information, see the updating sections of Working with the Amazon VPC CNI plugin for 
Kubernetes Amazon EKS add-on.

• For clusters with Windows nodes only

• Your cluster and its platform version must be at, or later than the versions in the following 
table. To upgrade your cluster version, see Updating an Amazon EKS cluster Kubernetes 
version. If your cluster isn't at the minimum platform version, then you can't assign IP prefixes 
to your nodes until Amazon EKS has updated your platform version.

Kubernetes version Platform version

1.27 eks.3

1.26 eks.4

1.25 eks.5

You can check your current Kubernetes and platform version by replacing my-cluster
in the following command with the name of your cluster and then running the modified 
command: aws eks describe-cluster --name my-cluster --query 'cluster.
{"Kubernetes Version": version, "Platform Version": platformVersion}'.

Amazon VPC CNI plugin for Kubernetes 482



Amazon EKS User Guide

• Windows support enabled for your cluster. For more information, see Enabling Windows 
support for your Amazon EKS cluster.

To increase the amount of available IP addresses for your Amazon EC2 nodes

1. Configure your cluster to assign IP address prefixes to nodes. Complete the procedure on the 
tab that matches your node's operating system.

Linux

1. Enable the parameter to assign prefixes to network interfaces for the Amazon VPC CNI
DaemonSet. When you deploy a 1.21 or later cluster, version 1.10.1 or later of the 
Amazon VPC CNI plugin for Kubernetes add-on is deployed with it. If you created the 
cluster with the IPv6 family, this setting was set to true by default. If you created the 
cluster with the IPv4 family, this setting was set to false by default.

kubectl set env daemonset aws-node -n kube-system 
 ENABLE_PREFIX_DELEGATION=true

Important

Even if your subnet has available IP addresses, if the subnet does not have any 
contiguous /28 blocks available, you will see the following error in the Amazon 
VPC CNI plugin for Kubernetes logs.

InsufficientCidrBlocks: The specified subnet does not have enough free 
 cidr blocks to satisfy the request

This can happen due to fragmentation of existing secondary IP addresses spread 
out across a subnet. To resolve this error, either create a new subnet and launch 
Pods there, or use an Amazon EC2 subnet CIDR reservation to reserve space 
within a subnet for use with prefix assignment. For more information, see Subnet 
CIDR reservations in the Amazon VPC User Guide.

2. If you plan to deploy a managed node group without a launch template, or with a 
launch template that you haven't specified an AMI ID in, and you're using a version of 
the Amazon VPC CNI plugin for Kubernetes at or later than the versions listed in the 

Amazon VPC CNI plugin for Kubernetes 483

https://docs.aws.amazon.com/vpc/latest/userguide/subnet-cidr-reservation.html
https://docs.aws.amazon.com/vpc/latest/userguide/subnet-cidr-reservation.html


Amazon EKS User Guide

prerequisites, then skip to the next step. Managed node groups automatically calculates 
the maximum number of Pods for you.

If you're deploying a self-managed node group or a managed node group with a launch 
template that you have specified an AMI ID in, then you must determine the Amazon 
EKS recommend number of maximum Pods for your nodes. Follow the instructions in
Amazon EKS recommended maximum Pods for each Amazon EC2 instance type, adding
--cni-prefix-delegation-enabled to step 3. Note the output for use in a later 
step.

Important

Managed node groups enforces a maximum number on the value of maxPods. 
For instances with less than 30 vCPUs the maximum number is 110 and for all 
other instances the maximum number is 250. This maximum number is applied 
whether prefix delegation is enabled or not.

3. If you're using a 1.21 or later cluster configured for IPv6, skip to the next step.

Specify the parameters in one of the following options. To determine which option 
is right for you and what value to provide for it, see WARM_PREFIX_TARGET,
WARM_IP_TARGET, and MINIMUM_IP_TARGET on GitHub.

You can replace the example values with a value greater than zero.

• WARM_PREFIX_TARGET

kubectl set env ds aws-node -n kube-system WARM_PREFIX_TARGET=1

• WARM_IP_TARGET or MINIMUM_IP_TARGET – If either value is set, it overrides any 
value set for WARM_PREFIX_TARGET.

kubectl set env ds aws-node -n kube-system WARM_IP_TARGET=5

kubectl set env ds aws-node -n kube-system MINIMUM_IP_TARGET=2

4. Create one of the following types of node groups with at least one Amazon EC2 Nitro 
Amazon Linux 2 instance type. For a list of Nitro instance types, see Instances built on 
the Nitro System in the Amazon EC2 User Guide for Linux Instances. This capability is not 

Amazon VPC CNI plugin for Kubernetes 484

https://github.com/aws/amazon-vpc-cni-k8s/blob/master/docs/prefix-and-ip-target.md
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/docs/prefix-and-ip-target.md
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#ec2-nitro-instances
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#ec2-nitro-instances


Amazon EKS User Guide

supported on Windows. For the options that include 110, replace it with either the value 
from step 3 (recommended), or your own value.

• Self-managed – Deploy the node group using the instructions in Launching 
self-managed Amazon Linux nodes. Specify the following text for the
BootstrapArguments parameter.

--use-max-pods false --kubelet-extra-args '--max-pods=110'

If you're using eksctl to create the node group, you can use the following command.

eksctl create nodegroup --cluster my-cluster --managed=false --max-pods-per-
node 110

• Managed – Deploy your node group using one of the following options:

• Without a launch template or with a launch template without an AMI ID specified
– Complete the procedure in Creating a managed node group. Managed node 
groups automatically calculates the Amazon EKS recommended max-pods value for 
you.

• With a launch template with a specified AMI ID – In your launch template, specify 
an Amazon EKS optimized AMI ID, or a custom AMI built off the Amazon EKS 
optimized AMI, then deploy the node group using a launch template and provide 
the following user data in the launch template. This user data passes arguments 
into the bootstrap.sh file. For more information about the bootstrap file, see
bootstrap.sh on GitHub.

/etc/eks/bootstrap.sh my-cluster \ 
  --use-max-pods false \ 
  --kubelet-extra-args '--max-pods=110'

If you're using eksctl to create the node group, you can use the following 
command.

eksctl create nodegroup --cluster my-cluster --max-pods-per-node 110

If you've created a custom AMI that is not built off the Amazon EKS optimized AMI, 
then you need to custom create the configuration yourself.

Amazon VPC CNI plugin for Kubernetes 485

https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh


Amazon EKS User Guide

Note

If you also want to assign IP addresses to Pods from a different subnet than 
the instance's, then you need to enable the capability in this step. For more 
information, see Custom networking for pods.

Windows

1. Enable assignment of IP prefixes.

a. Open the amazon-vpc-cni ConfigMap for editing.

kubectl edit configmap -n kube-system amazon-vpc-cni -o yaml

b. Add the following line to the data section.

  enable-windows-prefix-delegation: "true"

c. Save the file and close the editor.

d. Confirm that the line was added to the ConfigMap.

kubectl get configmap -n kube-system amazon-vpc-cni -o 
 "jsonpath={.data.enable-windows-prefix-delegation}"

If the returned output isn't true, then there might have been an error. Try completing 
the step again.

Important

Even if your subnet has available IP addresses, if the subnet does not have any 
contiguous /28 blocks available, you will see the following error in the node 
events.

"failed to allocate a private IP/Prefix address: 
 InsufficientCidrBlocks: The specified subnet does not have enough 
 free cidr blocks to satisfy the request"

Amazon VPC CNI plugin for Kubernetes 486



Amazon EKS User Guide

This can happen due to fragmentation of existing secondary IP addresses 
spread out across a subnet. To resolve this error, either create a new subnet 
and launch Pods there, or use an Amazon EC2 subnet CIDR reservation to 
reserve space within a subnet for use with prefix assignment. For more 
information, see Subnet CIDR reservations in the Amazon VPC User Guide.

2. (Optional) Specify additional configuration for controlling the pre-scaling and dynamic 
scaling behavior for your cluster. For more information, see Configuration options with 
Prefix Delegation mode on Windows on GitHub.

a. Open the amazon-vpc-cni ConfigMap for editing.

kubectl edit configmap -n kube-system amazon-vpc-cni -o yaml

b. Replace the example values with a value greater than zero and add the entries that 
you require to the data section of the ConfigMap. If you set a value for either warm-
ip-target or minimum-ip-target, the value overrides any value set for warm-
prefix-target.

  warm-prefix-target: "1"  
  warm-ip-target: "5" 
  minimum-ip-target: "2"

c. Save the file and close the editor.

3. Create Windows node groups with at least one Amazon EC2 Nitro instance type. For a list 
of Nitro instance types, see Instances built on the Nitro System in the Amazon Amazon 
EC2 User Guide for Windows Instances. By default, the maximum number of Pods that 
you can deploy to a node is 110. If you want to increase or decrease that number, specify 
the following in the user data for the bootstrap configuration. Replace max-pods-
quantity with your max pods value.

-KubeletExtraArgs '--max-pods=max-pods-quantity'

If you're deploying managed node groups, this configuration needs to be added in the 
launch template. For more information, see Customizing managed nodes with launch 
templates. For more information about the configuration parameters for Windows 
bootstrap script, see Bootstrap script configuration parameters.

2. Once your nodes are deployed, view the nodes in your cluster.

Amazon VPC CNI plugin for Kubernetes 487

https://docs.aws.amazon.com/vpc/latest/userguide/subnet-cidr-reservation.html
https://github.com/aws/amazon-vpc-resource-controller-k8s/blob/master/docs/windows/prefix_delegation_config_options.md
https://github.com/aws/amazon-vpc-resource-controller-k8s/blob/master/docs/windows/prefix_delegation_config_options.md
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html#ec2-nitro-instances


Amazon EKS User Guide

kubectl get nodes

An example output is as follows.

NAME                                             STATUS     ROLES    AGE   VERSION
ip-192-168-22-103.region-code.compute.internal   Ready      <none>    19m   v1.XX.X-
eks-6b7464
ip-192-168-97-94.region-code.compute.internal    Ready      <none>    19m   v1.XX.X-
eks-6b7464

3. Describe one of the nodes to determine the value of max-pods for the node and the number 
of available IP addresses. Replace 192.168.30.193 with the IPv4 address in the name of one 
of your nodes returned in the previous output.

kubectl describe node ip-192-168-30-193.region-code.compute.internal | grep 'pods\|
PrivateIPv4Address'

An example output is as follows.

pods:                                   110
vpc.amazonaws.com/PrivateIPv4Address:   144

In the previous output, 110 is the maximum number of Pods that Kubernetes will deploy to 
the node, even though 144 IP addresses are available.

Security groups for Pods

Security groups for Pods integrate Amazon EC2 security groups with Kubernetes Pods. You can use 
Amazon EC2 security groups to define rules that allow inbound and outbound network traffic to 
and from Pods that you deploy to nodes running on many Amazon EC2 instance types and Fargate. 
For a detailed explanation of this capability, see the Introducing security groups for Pods blog post.

Considerations

• Before deploying security groups for Pods, consider the following limitations and conditions:

• Security groups for Pods can't be used with Windows nodes.

• Security groups for Pods can be used with clusters configured for the IPv6 family that contain 
Amazon EC2 nodes by using version 1.16.0 or later of the Amazon VPC CNI plugin. You can use 

Amazon VPC CNI plugin for Kubernetes 488

https://aws.amazon.com/blogs/containers/introducing-security-groups-for-pods/


Amazon EKS User Guide

security groups for Pods with clusters configure IPv6 family that contain only Fargate nodes 
by using version 1.7.7 or later of the Amazon VPC CNI plugin. For more information, see IPv6
addresses for clusters, Pods, and services

• Security groups for Pods are supported by most Nitro-based Amazon EC2 instance families, 
though not by all generations of a family. For example, the m5, c5, r5, p3, m6g, c6g, and r6g
instance family and generations are supported. No instance types in the t family are supported. 
For a complete list of supported instance types, see the limits.go file on Github. Your nodes must 
be one of the listed instance types that have IsTrunkingCompatible: true in that file.

• If you're also using Pod security policies to restrict access to Pod mutation, then 
the eks:vpc-resource-controller Kubernetes user must be specified in the 
Kubernetes ClusterRoleBinding for the role that your psp is assigned to. If you're 
using the default Amazon EKS psp, role, and ClusterRoleBinding, this is the
eks:podsecuritypolicy:authenticated ClusterRoleBinding. For example, you add 
the user to the subjects: section, as shown in the following example:

[...]
subjects: 
  - kind: Group 
    apiGroup: rbac.authorization.k8s.io 
    name: system:authenticated 
  - apiGroup: rbac.authorization.k8s.io 
    kind: User 
    name: eks:vpc-resource-controller 
  - kind: ServiceAccount 
    name: eks-vpc-resource-controller

• If you're using custom networking and security groups for Pods together, the security group 
specified by security groups for Pods is used instead of the security group specified in the
ENIConfig.

• If you're using version 1.10.2 or earlier of the Amazon VPC CNI plugin and you include the
terminationGracePeriodSeconds setting in your Pod spec, the value for the setting can't be 
zero.

• If you're using version 1.10 or earlier of the Amazon VPC CNI plugin, or version 1.11 with
POD_SECURITY_GROUP_ENFORCING_MODE=strict, which is the default setting, then 
Kubernetes services of type NodePort and LoadBalancer using instance targets with an
externalTrafficPolicy set to Local aren't supported with Pods that you assign security 

Amazon VPC CNI plugin for Kubernetes 489

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#ec2-nitro-instances
https://github.com/aws/amazon-vpc-resource-controller-k8s/blob/release-1.1.4/pkg/aws/vpc/limits.go


Amazon EKS User Guide

groups to. For more information about using a load balancer with instance targets, see Network 
load balancing on Amazon EKS

• If you're using version 1.10 or earlier of the Amazon VPC CNI plugin or version 1.11 with
POD_SECURITY_GROUP_ENFORCING_MODE=strict, which is the default setting, source NAT is 
disabled for outbound traffic from Pods with assigned security groups so that outbound security 
group rules are applied. To access the internet, Pods with assigned security groups must be 
launched on nodes that are deployed in a private subnet configured with a NAT gateway or 
instance. Pods with assigned security groups deployed to public subnets are not able to access 
the internet.

If you're using version 1.11 or later of the plugin with
POD_SECURITY_GROUP_ENFORCING_MODE=standard, then Pod traffic destined for outside 
of the VPC is translated to the IP address of the instance's primary network interface. For this 
traffic, the rules in the security groups for the primary network interface are used, rather than 
the rules in the Pod's security groups.

• To use Calico network policy with Pods that have associated security groups, 
you must use version 1.11.0 or later of the Amazon VPC CNI plugin and set
POD_SECURITY_GROUP_ENFORCING_MODE=standard. Otherwise, traffic flow to and from 
Pods with associated security groups are not subjected to Calico network policy enforcement and 
are limited to Amazon EC2 security group enforcement only. To update your Amazon VPC CNI 
version, see Working with the Amazon VPC CNI plugin for Kubernetes Amazon EKS add-on

• Pods running on Amazon EC2 nodes that use security groups in clusters that use Nodelocal 
DNSCache are only supported with version 1.11.0 or later of the Amazon VPC CNI plugin and 
with POD_SECURITY_GROUP_ENFORCING_MODE=standard. To update your Amazon VPC CNI 
plugin version, see Working with the Amazon VPC CNI plugin for Kubernetes Amazon EKS add-
on

• Security groups for Pods might lead to higher Pod startup latency for Pods with high churn. This 
is due to rate limiting in the resource controller.

Configure the Amazon VPC CNI plugin for Kubernetes for security groups for Pods

To deploy security groups for Pods

If you're using security groups for Fargate Pods only, and don't have any Amazon EC2 nodes in your 
cluster, skip to Deploy an example application.

Amazon VPC CNI plugin for Kubernetes 490

https://kubernetes.io/docs/tasks/administer-cluster/nodelocaldns/
https://kubernetes.io/docs/tasks/administer-cluster/nodelocaldns/


Amazon EKS User Guide

1. Check your current Amazon VPC CNI plugin for Kubernetes version with the following 
command:

kubectl describe daemonset aws-node --namespace kube-system | grep amazon-k8s-cni: 
 | cut -d : -f 3

An example output is as follows.

v1.7.6

If your Amazon VPC CNI plugin for Kubernetes version is earlier than 1.7.7, then update the 
plugin to version 1.7.7 or later. For more information, see Working with the Amazon VPC CNI 
plugin for Kubernetes Amazon EKS add-on

2. Add the AmazonEKSVPCResourceController managed IAM policy to the cluster role that 
is associated with your Amazon EKS cluster. The policy allows the role to manage network 
interfaces, their private IP addresses, and their attachment and detachment to and from 
network instances.

a. Retrieve the name of your cluster IAM role and store it in a variable. Replace my-cluster
with the name of your cluster.

cluster_role=$(aws eks describe-cluster --name my-cluster --query 
 cluster.roleArn --output text | cut -d / -f 2)

b. Attach the policy to the role.

aws iam attach-role-policy --policy-arn arn:aws:iam::aws:policy/
AmazonEKSVPCResourceController --role-name $cluster_role

3. Enable the Amazon VPC CNI add-on to manage network interfaces for Pods by setting the
ENABLE_POD_ENI variable to true in the aws-node DaemonSet. Once this setting is set to
true, for each node in the cluster the add-on creates a cninode custom resource. The VPC 
resource controller creates and attaches one special network interface called a trunk network 
interface with the description aws-k8s-trunk-eni.

kubectl set env daemonset aws-node -n kube-system ENABLE_POD_ENI=true

Amazon VPC CNI plugin for Kubernetes 491

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonEKSVPCResourceController


Amazon EKS User Guide

Note

The trunk network interface is included in the maximum number of network interfaces 
supported by the instance type. For a list of the maximum number of network 
interfaces supported by each instance type, see IP addresses per network interface per 
instance type in the Amazon EC2 User Guide for Linux Instances. If your node already 
has the maximum number of standard network interfaces attached to it then the VPC 
resource controller will reserve a space. You will have to scale down your running Pods 
enough for the controller to detach and delete a standard network interface, create 
the trunk network interface, and attach it to the instance.

4. You can see which of your nodes have a CNINode custom resource with the following 
command. If No resources found is returned, then wait several seconds and try again. The 
previous step requires restarting the Amazon VPC CNI plugin for Kubernetes Pods, which takes 
several seconds.

$ kubectl get cninode -A 
     NAME FEATURES 
     ip-192-168-64-141.us-west-2.compute.internal 
 [{"name":"SecurityGroupsForPods"}] 
     ip-192-168-7-203.us-west-2.compute.internal [{"name":"SecurityGroupsForPods"}]

If you are using VPC CNI versions older than 1.15, node labels were used instead of the
CNINode custom resource. You can see which of your nodes have the node labelaws-k8s-
trunk-eni set to true with the following command. If No resources found is returned, 
then wait several seconds and try again. The previous step requires restarting the Amazon VPC 
CNI plugin for Kubernetes Pods, which takes several seconds.

kubectl get nodes -o wide -l vpc.amazonaws.com/has-trunk-attached=true
-

Once the trunk network interface is created, Pods are assigned secondary IP addresses from 
the trunk or standard network interfaces. The trunk interface is automatically deleted if the 
node is deleted.

When you deploy a security group for a Pod in a later step, the VPC resource controller creates 
a special network interface called a branch network interface with a description of aws-k8s-

Amazon VPC CNI plugin for Kubernetes 492

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI


Amazon EKS User Guide

branch-eni and associates the security groups to it. Branch network interfaces are created in 
addition to the standard and trunk network interfaces attached to the node.

If you are using liveness or readiness probes, then you also need to disable TCP early demux, so 
that the kubelet can connect to Pods on branch network interfaces using TCP. To disable TCP 
early demux, run the following command:

kubectl patch daemonset aws-node -n kube-system \ 
  -p '{"spec": {"template": {"spec": {"initContainers": [{"env":
[{"name":"DISABLE_TCP_EARLY_DEMUX","value":"true"}],"name":"aws-vpc-cni-
init"}]}}}}'

Note

If you're using 1.11.0 or later of the Amazon VPC CNI plugin for Kubernetes add-on 
and set POD_SECURITY_GROUP_ENFORCING_MODE=standard, as described in the 
next step, then you don't need to run the previous command.

5. If your cluster uses NodeLocal DNSCache, or you want to use Calico network policy with your 
Pods that have their own security groups, or you have Kubernetes services of type NodePort
and LoadBalancer using instance targets with an externalTrafficPolicy set to Local
for Pods that you want to assign security groups to, then you must be using version 1.11.0 or 
later of the Amazon VPC CNI plugin for Kubernetes add-on, and you must enable the following 
setting:

kubectl set env daemonset aws-node -n kube-system 
 POD_SECURITY_GROUP_ENFORCING_MODE=standard

Important

• Pod security group rules aren't applied to traffic between Pods or between Pods and 
services, such as kubelet or nodeLocalDNS, that are on the same node. Pods using 
different security groups on the same node can't communicate because they are 
configured in different subnets, and routing is disabled between these subnets.

• Outbound traffic from Pods to addresses outside of the VPC is network address 
translated to the IP address of the instance's primary network interface (unless 
you've also set AWS_VPC_K8S_CNI_EXTERNALSNAT=true). For this traffic, the rules 

Amazon VPC CNI plugin for Kubernetes 493



Amazon EKS User Guide

in the security groups for the primary network interface are used, rather than the 
rules in the Pod's security groups.

• For this setting to apply to existing Pods, you must restart the Pods or the nodes 
that the Pods are running on.

Deploy an example application

To use security groups for Pods, you must have an existing security group and Deploy an Amazon 
EKS SecurityGroupPolicy to your cluster, as described in the following procedure. The 
following steps show you how to use the security group policy for a Pod. Unless otherwise noted, 
complete all steps from the same terminal because variables are used in the following steps that 
don't persist across terminals.

To deploy an example Pod with a security group

1. Create a Kubernetes namespace to deploy resources to. You can replace my-namespace with 
the name of a namespace that you want to use.

kubectl create namespace my-namespace

2. Deploy an Amazon EKS SecurityGroupPolicy to your cluster.

a. Copy the following contents to your device. You can replace podSelector with
serviceAccountSelector if you'd rather select Pods based on service account 
labels. You must specify one selector or the other. An empty podSelector (example:
podSelector: {}) selects all Pods in the namespace. You can change my-role to the 
name of your role. An empty serviceAccountSelector selects all service accounts in 
the namespace. You can replace my-security-group-policy with a name for your
SecurityGroupPolicy and my-namespace with the namespace that you want to 
create the SecurityGroupPolicy in.

You must replace my_pod_security_group_id with the ID of an existing security 
group. If you don't have an existing security group, then you must create one. For more 
information, see Amazon EC2 security groups for Linux instances in the Amazon EC2 User 
Guide for Linux Instances. You can specify 1-5 security group IDs. If you specify more than 
one ID, then the combination of all the rules in all the security groups are effective for the 
selected Pods.

Amazon VPC CNI plugin for Kubernetes 494

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/


Amazon EKS User Guide

cat >my-security-group-policy.yaml <<EOF
apiVersion: vpcresources.k8s.aws/v1beta1
kind: SecurityGroupPolicy
metadata: 
  name: my-security-group-policy
  namespace: my-namespace
spec: 
   podSelector:  
    matchLabels: 
      role: my-role
  securityGroups: 
    groupIds: 
      - my_pod_security_group_id
EOF

Important

The security group or groups that you specify for your Pods must meet the 
following criteria:

• They must exist. If they don't exist, then, when you deploy a Pod that matches 
the selector, your Pod remains stuck in the creation process. If you describe 
the Pod, you'll see an error message similar to the following one: An error 
occurred (InvalidSecurityGroupID.NotFound) when calling 
the CreateNetworkInterface operation: The securityGroup ID 
'sg-05b1d815d1EXAMPLE' does not exist.

• They must allow inbound communication from the security group applied to 
your nodes (for kubelet) over any ports that you've configured probes for.

• They must allow outbound communication over TCP and UDP ports 53 to a 
security group assigned to the Pods (or nodes that the Pods run on) running 
CoreDNS. The security group for your CoreDNS Pods must allow inbound TCP
and UDP port 53 traffic from the security group that you specify.

• They must have necessary inbound and outbound rules to communicate with 
other Pods that they need to communicate with.

• They must have rules that allow the Pods to communicate with the Kubernetes 
control plane if you're using the security group with Fargate. The easiest way to 
do this is to specify the cluster security group as one of the security groups.

Amazon VPC CNI plugin for Kubernetes 495



Amazon EKS User Guide

Security group policies only apply to newly scheduled Pods. They do not affect 
running Pods.

b. Deploy the policy.

kubectl apply -f my-security-group-policy.yaml

3. Deploy a sample application with a label that matches the my-role value for podSelector
that you specified in a previous step.

a. Copy the following contents to your device. Replace the example values with your own 
and then run the modified command. If you replace my-role, make sure that it's the same 
as the value you specified for the selector in a previous step.

cat >sample-application.yaml <<EOF
apiVersion: apps/v1
kind: Deployment
metadata: 
  name: my-deployment
  namespace: my-namespace
  labels: 
    app: my-app
spec: 
  replicas: 4
  selector: 
    matchLabels: 
      app: my-app
  template: 
    metadata: 
      labels: 
        app: my-app
        role: my-role
    spec: 
      terminationGracePeriodSeconds: 120
      containers: 
      - name: nginx
        image: public.ecr.aws/nginx/nginx:1.23
        ports: 
        - containerPort: 80
---

Amazon VPC CNI plugin for Kubernetes 496



Amazon EKS User Guide

apiVersion: v1
kind: Service
metadata: 
  name: my-app
  namespace: my-namespace
  labels: 
    app: my-app
spec: 
  selector: 
    app: my-app
  ports: 
    - protocol: TCP
      port: 80
      targetPort: 80
EOF

b. Deploy the application with the following command. When you deploy the application, 
the Amazon VPC CNI plugin for Kubernetes matches the role label and the security 
groups that you specified in the previous step are applied to the Pod.

kubectl apply -f sample-application.yaml

4. View the Pods deployed with the sample application. For the remainder of this topic, this 
terminal is referred to as TerminalA.

kubectl get pods -n my-namespace -o wide

An example output is as follows.

NAME                             READY   STATUS    RESTARTS   AGE     IP         
       NODE                                            NOMINATED NODE   READINESS 
 GATES
my-deployment-5df6f7687b-4fbjm   1/1     Running   0          7m51s    192.168.53.48
    ip-192-168-33-28.region-code.compute.internal   <none>           <none>
my-deployment-5df6f7687b-j9fl4   1/1     Running   0          7m51s  
   192.168.70.145   ip-192-168-92-33.region-code.compute.internal   <none>           
 <none>
my-deployment-5df6f7687b-rjxcz   1/1     Running   0          7m51s  
   192.168.73.207   ip-192-168-92-33.region-code.compute.internal   <none>           
 <none>
my-deployment-5df6f7687b-zmb42   1/1     Running   0          7m51s    192.168.63.27
    ip-192-168-33-28.region-code.compute.internal   <none>           <none>

Amazon VPC CNI plugin for Kubernetes 497



Amazon EKS User Guide

Note

• If any Pods are stuck in the Waiting state, then run kubectl describe pod my-
deployment-xxxxxxxxxx-xxxxx -n my-namespace. If you see Insufficient 
permissions: Unable to create Elastic Network Interface., confirm 
that you added the IAM policy to the IAM cluster role in a previous step.

• If any Pods are stuck in the Pending state, confirm that your node instance type 
is listed in limits.go and that the product of the maximum number of branch 
network interfaces supported by the instance type multiplied times the number 
of nodes in your node group hasn't already been met. For example, an m5.large
instance supports nine branch network interfaces. If your node group has five nodes, 
then a maximum of 45 branch network interfaces can be created for the node group. 
The 46th Pod that you attempt to deploy will sit in Pending state until another Pod 
that has associated security groups is deleted.

If you run kubectl describe pod my-deployment-xxxxxxxxxx-xxxxx -n my-
namespace and see a message similar to the following message, then it can be safely ignored. 
This message might appear when the Amazon VPC CNI plugin for Kubernetes tries to set up 
host networking and fails while the network interface is being created. The plugin logs this 
event until the network interface is created.

Failed to create Pod sandbox: rpc error: code = Unknown desc = failed to set up 
 sandbox container 
 "e24268322e55c8185721f52df6493684f6c2c3bf4fd59c9c121fd4cdc894579f" network for Pod 
 "my-deployment-5df6f7687b-4fbjm": networkPlugin
cni failed to set up Pod "my-deployment-5df6f7687b-4fbjm-c89wx_my-namespace" 
 network: add cmd: failed to assign an IP address to container

You can't exceed the maximum number of Pods that can be run on the instance type. For a list 
of the maximum number of Pods that you can run on each instance type, see eni-max-pods.txt
on GitHub. When you delete a Pod that has associated security groups, or delete the node 
that the Pod is running on, the VPC resource controller deletes the branch network interface. 
If you delete a cluster with Pods using Pods for security groups, then the controller doesn't 
delete the branch network interfaces, so you'll need to delete them yourself. For information 

Amazon VPC CNI plugin for Kubernetes 498

https://github.com/aws/amazon-vpc-resource-controller-k8s/blob/master/pkg/aws/vpc/limits.go
https://github.com/awslabs/amazon-eks-ami/blob/master/files/eni-max-pods.txt


Amazon EKS User Guide

about how to delete network interfaces, see Delete a network interface in the Amazon EC2 
User Guide for Linux Instances.

5. In a separate terminal, shell into one of the Pods. For the remainder of this topic, this terminal 
is referred to as TerminalB. Replace 5df6f7687b-4fbjm with the ID of one of the Pods 
returned in your output from the previous step.

kubectl exec -it -n my-namespace my-deployment-5df6f7687b-4fbjm -- /bin/bash

6. From the shell in TerminalB, confirm that the sample application works.

curl my-app

An example output is as follows.

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
[...]

You received the output because all Pods running the application are associated with the 
security group that you created. That group contains a rule that allows all traffic between 
all Pods that the security group is associated to. DNS traffic is allowed outbound from that 
security group to the cluster security group, which is associated with your nodes. The nodes 
are running the CoreDNS Pods, which your Pods did a name lookup to.

7. From TerminalA, remove the security group rules that allow DNS communication to the 
cluster security group from your security group. If you didn't add the DNS rules to the cluster 
security group in a previous step, then replace $my_cluster_security_group_id with the 
ID of the security group that you created the rules in.

aws ec2 revoke-security-group-ingress --group-id $my_cluster_security_group_id --
security-group-rule-ids $my_tcp_rule_id
aws ec2 revoke-security-group-ingress --group-id $my_cluster_security_group_id --
security-group-rule-ids $my_udp_rule_id

8. From TerminalB, attempt to access the application again.

curl my-app

Amazon VPC CNI plugin for Kubernetes 499

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#delete_eni


Amazon EKS User Guide

An example output is as follows.

curl: (6) Could not resolve host: my-app

The attempt fails because the Pod is no longer able to access the CoreDNS Pods, which have 
the cluster security group associated to them. The cluster security group no longer has the 
security group rules that allow DNS communication from the security group associated to your 
Pod.

If you attempt to access the application using the IP addresses returned for one of the Pods in 
a previous step, you still receive a response because all ports are allowed between Pods that 
have the security group associated to them and a name lookup isn't required.

9. Once you've finished experimenting, you can remove the sample security group policy, 
application, and security group that you created. Run the following commands from
TerminalA.

kubectl delete namespace my-namespace
aws ec2 revoke-security-group-ingress --group-id $my_pod_security_group_id --
security-group-rule-ids $my_inbound_self_rule_id
wait
sleep 45s  
aws ec2 delete-security-group --group-id $my_pod_security_group_id

Multiple network interfaces for Pods

Multus CNI is a container network interface (CNI) plugin for Amazon EKS that enables attaching 
multiple network interfaces to a Pod. For more information, see the Multus-CNI documentation on 
GitHub.

In Amazon EKS, each Pod has one network interface assigned by the Amazon VPC CNI plugin. 
With Multus, you can create a multi-homed Pod that has multiple interfaces. This is accomplished 
by Multus acting as a "meta-plugin"; a CNI plugin that can call multiple other CNI plugins. AWS 
support for Multus comes configured with the Amazon VPC CNI plugin as the default delegate 
plugin.

Amazon VPC CNI plugin for Kubernetes 500

https://github.com/k8snetworkplumbingwg/multus-cni


Amazon EKS User Guide

Considerations

• Amazon EKS won't be building and publishing single root I/O virtualization (SR-IOV) and Data 
Plane Development Kit (DPDK) CNI plugins. However, you can achieve packet acceleration by 
connecting directly to Amazon EC2 Elastic Network Adapters (ENA) through Multus managed 
host-device and ipvlan plugins.

• Amazon EKS is supporting Multus, which provides a generic process that enables simple chaining 
of additional CNI plugins. Multus and the process of chaining is supported, but AWS won't 
provide support for all compatible CNI plugins that can be chained, or issues that may arise in 
those CNI plugins that are unrelated to the chaining configuration.

• Amazon EKS is providing support and life cycle management for the Multus plugin, but isn't 
responsible for any IP address or additional management associated with the additional network 
interfaces. The IP address and management of the default network interface utilizing the 
Amazon VPC CNI plugin remains unchanged.

• Only the Amazon VPC CNI plugin is officially supported as the default delegate plugin. You need 
to modify the published Multus installation manifest to reconfigure the default delegate plugin 
to an alternate CNI if you choose not to use the Amazon VPC CNI plugin for primary networking.

• Multus is only supported when using the Amazon VPC CNI as the primary CNI. We do not support 
the Amazon VPC CNI when used for higher order interfaces, secondary or otherwise.

• To prevent the Amazon VPC CNI plugin from trying to manage additional network interfaces 
assigned to Pods, add the following tag to the network interface:

key: node.k8s.amazonaws.com/no_manage

value: true

• Multus is compatible with network policies, but the policy has to be enriched to include ports 
and IP addresses that may be part of additional network interfaces attached to Pods.

For an implementation walk through, see the Multus Setup Guide on GitHub.

Alternate compatible CNI plugins

The Amazon VPC CNI plugin for Kubernetes is the only CNI plugin supported by Amazon EKS. 
Amazon EKS runs upstream Kubernetes, so you can install alternate compatible CNI plugins to 
Amazon EC2 nodes in your cluster. If you have Fargate nodes in your cluster, the Amazon VPC CNI 
plugin for Kubernetes is already on your Fargate nodes. It's the only CNI plugin you can use with 
Fargate nodes. An attempt to install an alternate CNI plugin on Fargate nodes fails.

Amazon VPC CNI plugin for Kubernetes 501

https://github.com/aws-samples/eks-install-guide-for-multus/blob/main/README.md
https://github.com/aws/amazon-vpc-cni-plugins


Amazon EKS User Guide

If you plan to use an alternate CNI plugin on Amazon EC2 nodes, we recommend that you obtain 
commercial support for the plugin or have the in-house expertise to troubleshoot and contribute 
fixes to the CNI plugin project.

Amazon EKS maintains relationships with a network of partners that offer support for alternate 
compatible CNI plugins. For details about the versions, qualifications, and testing performed, see 
the following partner documentation.

Partner Product Documentation

Tigera Calico Installation instructions

Isovalent Cilium Installation instructions

Juniper Cloud-Native Contrail 
Networking (CN2)

Installation instructions

VMware Antrea Installation instructions

Amazon EKS aims to give you a wide selection of options to cover all use cases. If you develop a 
commercially supported Kubernetes CNI plugin not listed here, contact our partner team at aws-
container-partners@amazon.com for more information.

Installing the AWS Load Balancer Controller add-on

Important

In versions 2.5 and newer, the AWS Load Balancer Controller becomes the default 
controller for Kubernetes service resources with the type: LoadBalancer and 
makes an AWS Network Load Balancer (NLB) for each service. It does this by making a 
mutating webhook for services, which sets the spec.loadBalancerClass field to
service.k8s.aws/nlb for new services of type: LoadBalancer. You can turn off this 
feature and revert to using the legacy Cloud Provider as the default controller, by setting 
the helm chart value enableServiceMutatorWebhook to false. The cluster won't 
provision new Classic Load Balancers for your services unless you turn off this feature. 
Existing Classic Load Balancers will continue to work.

AWS Load Balancer Controller 502

https://www.tigera.io/partners/aws/
https://docs.projectcalico.org/getting-started/kubernetes/managed-public-cloud/eks
https://cilium.io
https://docs.cilium.io/en/stable/gettingstarted/k8s-install-default/
https://www.juniper.net/us/en/products/sdn-and-orchestration/contrail/cloud-native-contrail-networking.html
https://www.juniper.net/us/en/products/sdn-and-orchestration/contrail/cloud-native-contrail-networking.html
https://www.juniper.net/documentation/us/en/software/cn-cloud-native23.2/cn-cloud-native-eks-install-and-lcm/index.html
https://antrea.io/
https://antrea.io/docs/main/docs/eks-installation
mailto:aws-container-partners@amazon.com
mailto:aws-container-partners@amazon.com
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.4/guide/service/annotations/#legacy-cloud-provider


Amazon EKS User Guide

The AWS Load Balancer Controller manages AWS Elastic Load Balancers for a Kubernetes cluster. 
The controller provisions the following resources:

Kubernetes Ingress

The AWS Load Balancer Controller creates an AWS Application Load Balancer (ALB) when you 
create a Kubernetes Ingress.

Kubernetes service of the LoadBalancer type

The AWS Load Balancer Controller creates an AWS Network Load Balancer (NLB) when you 
create a Kubernetes service of type LoadBalancer. In the past, the Kubernetes network load 
balancer was used for instance targets, but the AWS Load balancer Controller was used for IP
targets. With the AWS Load Balancer Controller version 2.3.0 or later, you can create NLBs 
using either target type. For more information about NLB target types, see Target type in the 
User Guide for Network Load Balancers.

The AWS Load Balancer Controller was formerly named the AWS ALB Ingress Controller. It's an
open-source project managed on GitHub.

This topic describes how to install the controller using default options. You can view the full
documentation for the controller on GitHub. Before deploying the controller, we recommend that 
you review the prerequisites and considerations in Application load balancing on Amazon EKS
and Network load balancing on Amazon EKS. Those topics also include steps on how to deploy a 
sample application that require the AWS Load Balancer Controller to provision AWS Application 
Load Balancers and Network Load Balancers.

Prerequisites

• An existing Amazon EKS cluster. To deploy one, see Getting started with Amazon EKS.

• An existing AWS Identity and Access Management (IAM) OpenID Connect (OIDC) provider for 
your cluster. To determine whether you already have one, or to create one, see Creating an IAM 
OIDC provider for your cluster.

• Make sure that your Amazon VPC CNI plugin for Kubernetes, kube-proxy, and CoreDNS add-
ons are at the minimum versions listed in Service account tokens.

• Familiarity with AWS Elastic Load Balancing. For more information, see the Elastic Load 
Balancing User Guide.

• Familiarity with Kubernetes service and ingress resources.

AWS Load Balancer Controller 503

https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-target-groups.html#target-type
https://github.com/kubernetes-sigs/aws-load-balancer-controller
https://kubernetes-sigs.github.io/aws-load-balancer-controller/latest/
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/ingress/


Amazon EKS User Guide

To deploy the AWS Load Balancer Controller to an Amazon EKS cluster

In the following steps, replace the example values with your own values.

1. Create an IAM policy.

a. Download an IAM policy for the AWS Load Balancer Controller that allows it to make calls 
to AWS APIs on your behalf.

• AWS GovCloud (US-East) or AWS GovCloud (US-West) AWS Regions

$ curl -O https://raw.githubusercontent.com/kubernetes-sigs/aws-load-
balancer-controller/v2.5.4/docs/install/iam_policy_us-gov.json

• All other AWS Regions

$ curl -O https://raw.githubusercontent.com/kubernetes-sigs/aws-load-
balancer-controller/v2.5.4/docs/install/iam_policy.json

b. Create an IAM policy using the policy downloaded in the previous step. If you downloaded
iam_policy_us-gov.json, change iam_policy.json to iam_policy_us-gov.json
before running the command.

$ aws iam create-policy \ 
    --policy-name AWSLoadBalancerControllerIAMPolicy \ 
    --policy-document file://iam_policy.json

Note

If you view the policy in the AWS Management Console, the console shows 
warnings for the ELB service, but not for the ELB v2 service. This happens because 
some of the actions in the policy exist for ELB v2, but not for ELB. You can ignore 
the warnings for ELB.

2. Create an IAM role. Create a Kubernetes service account named aws-load-balancer-
controller in the kube-system namespace for the AWS Load Balancer Controller and 
annotate the Kubernetes service account with the name of the IAM role.

You can use eksctl or the AWS CLI and kubectl to create the IAM role and Kubernetes 
service account.

AWS Load Balancer Controller 504



Amazon EKS User Guide

eksctl

Replace my-cluster with the name of your cluster, 111122223333 with your account 
ID, and then run the command. If your cluster is in the AWS GovCloud (US-East) or AWS 
GovCloud (US-West) AWS Regions, then replace arn:aws: with arn:aws-us-gov:.

$ eksctl create iamserviceaccount \ 
  --cluster=my-cluster \ 
  --namespace=kube-system \ 
  --name=aws-load-balancer-controller \ 
  --role-name AmazonEKSLoadBalancerControllerRole \ 
  --attach-policy-
arn=arn:aws:iam::111122223333:policy/AWSLoadBalancerControllerIAMPolicy \ 
  --approve

AWS CLI and kubectl

Using the AWS CLI and kubectl

a. Retrieve your cluster's OIDC provider ID and store it in a variable.

oidc_id=$(aws eks describe-cluster --name my-cluster --query 
 "cluster.identity.oidc.issuer" --output text | cut -d '/' -f 5)

b. Determine whether an IAM OIDC provider with your cluster's ID is already in your 
account.

aws iam list-open-id-connect-providers | grep $oidc_id | cut -d "/" -f4

If output is returned, then you already have an IAM OIDC provider for your cluster. If no 
output is returned, then you must create an IAM OIDC provider for your cluster. For more 
information, see Creating an IAM OIDC provider for your cluster.

c. Copy the following contents to your device. Replace 111122223333 with your 
account ID. Replace region-code with the AWS Region that your cluster is in. Replace
EXAMPLED539D4633E53DE1B71EXAMPLE with the output returned in the previous 
step. If your cluster is in the AWS GovCloud (US-East) or AWS GovCloud (US-West) AWS 
Regions, then replace arn:aws: with arn:aws-us-gov:. After replacing the text, run 

AWS Load Balancer Controller 505



Amazon EKS User Guide

the modified command to create the load-balancer-role-trust-policy.json
file.

cat >load-balancer-role-trust-policy.json <<EOF
{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Principal": { 
                "Federated": "arn:aws:iam::111122223333:oidc-provider/
oidc.eks.region-code.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE" 
            }, 
            "Action": "sts:AssumeRoleWithWebIdentity", 
            "Condition": { 
                "StringEquals": { 
                    "oidc.eks.region-code.amazonaws.com/
id/EXAMPLED539D4633E53DE1B71EXAMPLE:aud": "sts.amazonaws.com", 
                    "oidc.eks.region-code.amazonaws.com/
id/EXAMPLED539D4633E53DE1B71EXAMPLE:sub": "system:serviceaccount:kube-
system:aws-load-balancer-controller" 
                } 
            } 
        } 
    ]
}
EOF

d. Create the IAM role.

aws iam create-role \ 
  --role-name AmazonEKSLoadBalancerControllerRole \ 
  --assume-role-policy-document file://"load-balancer-role-trust-policy.json"

e. Attach the required Amazon EKS managed IAM policy to the IAM role. Replace
111122223333 with your account ID.

aws iam attach-role-policy \ 
  --policy-arn 
 arn:aws:iam::111122223333:policy/AWSLoadBalancerControllerIAMPolicy \ 
  --role-name AmazonEKSLoadBalancerControllerRole

AWS Load Balancer Controller 506



Amazon EKS User Guide

f. Copy the following contents to your device. Replace 111122223333 with your account 
ID. If your cluster is in the AWS GovCloud (US-East) or AWS GovCloud (US-West) AWS 
Regions, then replace arn:aws: with arn:aws-us-gov:. After replacing the text, run 
the modified command to create the aws-load-balancer-controller-service-
account.yaml file.

cat >aws-load-balancer-controller-service-account.yaml <<EOF
apiVersion: v1
kind: ServiceAccount
metadata: 
  labels: 
    app.kubernetes.io/component: controller 
    app.kubernetes.io/name: aws-load-balancer-controller 
  name: aws-load-balancer-controller 
  namespace: kube-system 
  annotations: 
    eks.amazonaws.com/role-arn: 
 arn:aws:iam::111122223333:role/AmazonEKSLoadBalancerControllerRole
EOF

g. Create the Kubernetes service account on your cluster. The Kubernetes service account 
named aws-load-balancer-controller is annotated with the IAM role that you 
created named AmazonEKSLoadBalancerControllerRole.

$ kubectl apply -f aws-load-balancer-controller-service-account.yaml

3. (Optional) Configure the AWS Security Token Service endpoint type used by your Kubernetes 
service account. For more information, see Configuring the AWS Security Token Service 
endpoint for a service account.

4. If you don't currently have the AWS ALB Ingress Controller for Kubernetes installed, or don't 
currently have the 0.1.x version of the AWS Load Balancer Controller installed with Helm, 
then skip to the next step.

Uninstall the AWS ALB Ingress Controller or 0.1.x version of the AWS Load Balancer 
Controller (only if installed with Helm). Complete the procedure using the tool that you 
originally installed it with. The AWS Load Balancer Controller replaces the functionality of the 
AWS ALB Ingress Controller for Kubernetes.

AWS Load Balancer Controller 507



Amazon EKS User Guide

Helm

a. If you installed the incubator/aws-alb-ingress-controller Helm chart, uninstall 
it.

$ helm delete aws-alb-ingress-controller -n kube-system

b. If you have version 0.1.x of the eks-charts/aws-load-balancer-controller
chart installed, uninstall it. The upgrade from 0.1.x to version 1.0.0 doesn't work due 
to incompatibility with the webhook API version.

$ helm delete aws-load-balancer-controller -n kube-system

Kubernetes manifest

a. Check to see if the controller is currently installed.

$ kubectl get deployment -n kube-system alb-ingress-controller

This is the output if the controller isn't installed. Skip to the install controller step.

Error from server (NotFound): deployments.apps "alb-ingress-controller" not found

This is the output if the controller is installed.

NAME                   READY UP-TO-DATE AVAILABLE AGE
alb-ingress-controller 1/1   1          1         122d

b. Enter the following commands to remove the controller.

$ kubectl delete -f https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-
ingress-controller/v1.1.8/docs/examples/alb-ingress-controller.yaml
kubectl delete -f https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-
ingress-controller/v1.1.8/docs/examples/rbac-role.yaml

c. Add the following IAM policy to the IAM role created in a previous step. The policy allows 
the AWS Load Balancer Controller access to the resources that were created by the ALB 
Ingress Controller for Kubernetes.

AWS Load Balancer Controller 508



Amazon EKS User Guide

1. Download the IAM policy. You can also view the policy.

$ curl -O https://raw.githubusercontent.com/kubernetes-sigs/aws-load-
balancer-controller/v2.5.4/docs/install/iam_policy_v1_to_v2_additional.json

2. If your cluster is in the AWS GovCloud (US-East) or AWS GovCloud (US-West) AWS 
Regions, then replace arn:aws: with arn:aws-us-gov:..

$ sed -i.bak -e 's|arn:aws:|arn:aws-us-gov:|' 
 iam_policy_v1_to_v2_additional.json

3. Create the IAM policy and note the ARN that is returned.

$ aws iam create-policy \ 
  --policy-name AWSLoadBalancerControllerAdditionalIAMPolicy \ 
  --policy-document file://iam_policy_v1_to_v2_additional.json

4. Attach the IAM policy to the IAM role that you created in a previous step. Replace
your-role-name with the name of the role. If you created the role using eksctl, 
then to find the role name that was created, open the AWS CloudFormation 
console and select the eksctl-my-cluster-addon-iamserviceaccount-kube-
system-aws-load-balancer-controller stack. Select the Resources tab. The 
role name is in the Physical ID column. If you used the AWS Management 
Console to create the role, then the role name is whatever you named it, such as
AmazonEKSLoadBalancerControllerRole. If your cluster is in the AWS GovCloud 
(US-East) or AWS GovCloud (US-West) AWS Regions, then replace arn:aws: with
arn:aws-us-gov:.

$ aws iam attach-role-policy \ 
  --role-name your-role-name \ 
  --policy-arn 
 arn:aws:iam::111122223333:policy/
AWSLoadBalancerControllerAdditionalIAMPolicy

5. Install the AWS Load Balancer Controller using Helm V3 or later or by applying a Kubernetes 
manifest. If you want to deploy the controller on Fargate, use the Helm procedure. The Helm 
procedure doesn't depend on cert-manager because it generates a self-signed certificate.

AWS Load Balancer Controller 509

https://raw.githubusercontent.com/kubernetes-sigs/aws-load-balancer-controller/main/docs/install/iam_policy_v1_to_v2_additional.json
https://console.aws.amazon.com/cloudformation
https://console.aws.amazon.com/cloudformation


Amazon EKS User Guide

Helm

a. Add the eks-charts repository.

$ helm repo add eks https://aws.github.io/eks-charts

b. Update your local repo to make sure that you have the most recent charts.

$ helm repo update eks

c. If your nodes don't have access to the Amazon ECR Public image repository, then you 
need to pull the following container image and push it to a repository that your nodes 
have access to. For more information on how to pull, tag, and push an image to your 
own repository, see Copy a container image from one repository to another repository.

public.ecr.aws/eks/aws-load-balancer-controller:v2.5.4

d. Install the AWS Load Balancer Controller. If you're deploying the controller to Amazon 
EC2 nodes that have restricted access to the Amazon EC2 instance metadata service 
(IMDS), or if you're deploying to Fargate, then add the following flags to the helm
command that follows:

• --set region=region-code

• --set vpcId=vpc-xxxxxxxx

Replace my-cluster with the name of your cluster. In the following command, aws-
load-balancer-controller is the Kubernetes service account that you created in a 
previous step.

$ helm install aws-load-balancer-controller eks/aws-load-balancer-controller \ 
  -n kube-system \ 
  --set clusterName=my-cluster \ 
  --set serviceAccount.create=false \ 
  --set serviceAccount.name=aws-load-balancer-controller 

Important

The deployed chart doesn't receive security updates automatically. You need to 
manually upgrade to a newer chart when it becomes available. When upgrading, 

AWS Load Balancer Controller 510

https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node


Amazon EKS User Guide

change install to upgrade in the previous command, but run the following 
command to install the TargetGroupBinding custom resource definitions 
before running the previous command.

$ kubectl apply -k "github.com/aws/eks-charts/stable/aws-load-balancer-
controller/crds?ref=master"

Kubernetes manifest

a. Install cert-manager using one of the following methods to inject certificate 
configuration into the webhooks. For more information, see Getting Started on the
cert-manager Documentation.

• If your nodes have access to the quay.io container registry, install cert-manager to 
inject certificate configuration into the webhooks.

$ kubectl apply \ 
    --validate=false \ 
    -f https://github.com/jetstack/cert-manager/releases/download/v1.13.3/
cert-manager.yaml

• If your nodes don't have access to the quay.io container registry, then complete the 
following tasks:

i. Download the manifest.

curl -Lo cert-manager.yaml https://github.com/jetstack/cert-manager/
releases/download/v1.13.3/cert-manager.yaml

ii. Pull the following images and push them to a repository that your nodes have 
access to. For more information on how to pull, tag, and push the images to 
your own repository, see Copy a container image from one repository to another 
repository.

quay.io/jetstack/cert-manager-cainjector:v1.13.3
quay.io/jetstack/cert-manager-controller:v1.13.3
quay.io/jetstack/cert-manager-webhook:v1.13.3

iii. Replace quay.io in the manifest for the three images with your own registry 
name. The following command assumes that your private repository's name is 

AWS Load Balancer Controller 511

https://cert-manager.io/docs/installation/#getting-started


Amazon EKS User Guide

the same as the source repository. Replace 111122223333.dkr.ecr.region-
code.amazonaws.com with your private registry.

$ sed -i.bak -e 's|quay.io|111122223333.dkr.ecr.region-
code.amazonaws.com|' ./cert-manager.yaml

iv. Apply the manifest.

$ kubectl apply \ 
    --validate=false \ 
    -f ./cert-manager.yaml

b. Install the controller.

i. Download the controller specification. For more information about the controller, see 
the documentation on GitHub.

curl -Lo v2_5_4_full.yaml https://github.com/kubernetes-sigs/aws-load-
balancer-controller/releases/download/v2.5.4/v2_5_4_full.yaml

ii. Make the following edits to the file.

• If you downloaded the v2_5_4_full.yaml file, run the following command to 
remove the ServiceAccount section in the manifest. If you don't remove this 
section, the required annotation that you made to the service account in a previous 
step is overwritten. Removing this section also preserves the service account that 
you created in a previous step if you delete the controller.

$ sed -i.bak -e '596,604d' ./v2_5_4_full.yaml

If you downloaded a different file version, then open the file in an editor and 
remove the following lines.

apiVersion: v1
kind: ServiceAccount
metadata: 
  labels: 
    app.kubernetes.io/component: controller 
    app.kubernetes.io/name: aws-load-balancer-controller 
  name: aws-load-balancer-controller 
  namespace: kube-system

AWS Load Balancer Controller 512

https://kubernetes-sigs.github.io/aws-load-balancer-controller/


Amazon EKS User Guide

---

• Replace your-cluster-name in the Deployment spec section of the file with the 
name of your cluster by replacing my-cluster with the name of your cluster.

$ sed -i.bak -e 's|your-cluster-name|my-cluster|' ./v2_5_4_full.yaml

• If your nodes don't have access to the Amazon EKS Amazon ECR image repositories, 
then you need to pull the following image and push it to a repository that your 
nodes have access to. For more information on how to pull, tag, and push an image 
to your own repository, see Copy a container image from one repository to another 
repository.

public.ecr.aws/eks/aws-load-balancer-controller:v2.5.4

Add your registry's name to the manifest. The following command assumes that 
your private repository's name is the same as the source repository and adds your 
private registry's name to the file. Replace 111122223333.dkr.ecr.region-
code.amazonaws.com with your registry. This line assumes that you named 
your private repository the same as the source repository. If not, change the eks/
aws-load-balancer-controller text after your private registry name to your 
repository name.

$ sed -i.bak -e 's|public.ecr.aws/eks/aws-load-balancer-
controller|111122223333.dkr.ecr.region-code.amazonaws.com/eks/aws-load-
balancer-controller|' ./v2_5_4_full.yaml

• If you're deploying the controller to Amazon EC2 nodes that have restricted access 
to the Amazon EC2 instance metadata service (IMDS), or if you're deploying to 
Fargate, then add the following parameters under - args:.

[...]
spec: 
      containers: 
        - args: 
            - --cluster-name=your-cluster-name
            - --ingress-class=alb
            - --aws-vpc-id=vpc-xxxxxxxx
            - --aws-region=region-code
            

AWS Load Balancer Controller 513

https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node


Amazon EKS User Guide

            
[...]

iii. Apply the file.

$ kubectl apply -f v2_5_4_full.yaml

iv. Download the IngressClass and IngressClassParams manifest to your cluster.

$ curl -Lo v2_5_4_ingclass.yaml https://github.com/kubernetes-sigs/aws-
load-balancer-controller/releases/download/v2.5.4/v2_5_4_ingclass.yaml

v. Apply the manifest to your cluster.

$ kubectl apply -f v2_5_4_ingclass.yaml

6. Verify that the controller is installed.

$ kubectl get deployment -n kube-system aws-load-balancer-controller

An example output is as follows.

NAME                           READY   UP-TO-DATE   AVAILABLE   AGE
aws-load-balancer-controller   2/2     2            2           84s

You receive the previous output if you deployed using Helm. If you deployed using the 
Kubernetes manifest, you only have one replica.

7. Before using the controller to provision AWS resources, your cluster must meet specific 
requirements. For more information, see Application load balancing on Amazon EKS and
Network load balancing on Amazon EKS.

Working with the CoreDNS Amazon EKS add-on

CoreDNS is a flexible, extensible DNS server that can serve as the Kubernetes cluster DNS. When 
you launch an Amazon EKS cluster with at least one node, two replicas of the CoreDNS image are 
deployed by default, regardless of the number of nodes deployed in your cluster. The CoreDNS 
Pods provide name resolution for all Pods in the cluster. The CoreDNS Pods can be deployed to 
Fargate nodes if your cluster includes an AWS Fargate profile with a namespace that matches 

CoreDNS 514



Amazon EKS User Guide

the namespace for the CoreDNS deployment. For more information about CoreDNS, see Using 
CoreDNS for Service Discovery in the Kubernetes documentation.

The following table lists the latest version of the Amazon EKS add-on type for each Kubernetes 
version.

Kubernetes 
version

1.29 1.28 1.27 1.26 1.25 1.24 1.23

  v1.11.1-
e 
ksbuild.6

v1.10.1-
e 
ksbuild.7

v1.10.1-
e 
ksbuild.7

v1.9.3-
ek 
sbuild.11

v1.9.3-
ek 
sbuild.11

v1.9.3-
ek 
sbuild.11

v1.8.7-
ek 
sbuild.10

Important

If you're self-managing this add-on, the versions in the table might not be the same as the 
available self-managed versions. For more information about updating the self-managed 
type of this add-on, see Updating the self-managed add-on.

Important CoreDNS upgrade considerations

• To improve the stability and availability of the CoreDNS Deployment, versions
v1.9.3-eksbuild.5 and later and v1.10.1-eksbuild.2 are deployed with a
PodDisruptionBudget. If you've deployed an existing PodDisruptionBudget, your upgrade 
to these versions might fail. If the upgrade fails, completing one of the following tasks should 
resolve the issue:

• When doing the upgrade of the Amazon EKS add-on, choose to override the existing settings 
as your conflict resolution option. If you've made other custom settings to the Deployment, 
make sure to back up your settings before upgrading so that you can reapply your other 
custom settings after the upgrade.

• Remove your existing PodDisruptionBudget and try the upgrade again.

• In EKS add-on versions v1.9.3-eksbuild.3 and later and v1.10.1-eksbuild.6 and later, 
the CoreDNS Deployment sets the readinessProbe to use the /ready endpoint. This endpoint 
is enabled in the Corefile configuration file for CoreDNS.

CoreDNS 515

https://kubernetes.io/docs/tasks/administer-cluster/coredns/
https://kubernetes.io/docs/tasks/administer-cluster/coredns/


Amazon EKS User Guide

If you use a custom Corefile, you must add the ready plugin to the config, so that the /ready
endpoint is active in CoreDNS for the probe to use.

• In EKS add-on versions v1.9.3-eksbuild.7 and later and v1.10.1-eksbuild.4 and later, 
you can change the PodDisruptionBudget. You can edit the add-on and change these settings 
in the Optional configuration settings using the fields in the following example. This example 
shows the default PodDisruptionBudget.

{ 
    "podDisruptionBudget": { 
        "enabled": true, 
        "maxUnavailable": 1 
        }
}

You can set maxUnavailable or minAvailable, but you can't set both in a single
PodDisruptionBudget. For more information about PodDisruptionBudgets, see Specifying 
a PodDisruptionBudget in the Kubernetes documentation.

Note that if you set enabled to false, the PodDisruptionBudget isn't removed. After you 
set this field to false, you must delete the PodDisruptionBudget object. Similarly, if you edit 
the add-on to use an older version of the add-on (downgrade the add-on) after upgrading to a 
version with a PodDisruptionBudget, the PodDisruptionBudget isn't removed. To delete 
the PodDisruptionBudget, you can run the following command:

kubectl delete poddisruptionbudget coredns -n kube-system

• In EKS add-on versions v1.10.1-eksbuild.5 and later, change the default toleration from
node-role.kubernetes.io/master:NoSchedule to node-role.kubernetes.io/
control-plane:NoSchedule to comply with KEP 2067. For more information about 
KEP 2067, see KEP-2067: Rename the kubeadm "master" label and taint in the Kubernetes 
Enhancement Proposals (KEPs) on GitHub.

In EKS add-on versions v1.8.7-eksbuild.8 and later and v1.9.3-eksbuild.9 and later, 
both tolerations are set to be compatible with every Kubernetes version.

• In EKS add-on versions v1.9.3-eksbuild.11 and v1.10.1-eksbuild.7 and later, the 
CoreDNS Deployment sets a default value for topologySpreadConstraints. The default 
value ensures that the CoreDNS Pods are spread across the Availability Zones if there are nodes 

CoreDNS 516

https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://kubernetes.io/docs/tasks/run-application/configure-pdb/#specifying-a-poddisruptionbudget
https://github.com/kubernetes/enhancements/tree/master/keps/sig-cluster-lifecycle/kubeadm/2067-rename-master-label-taint#renaming-the-node-rolekubernetesiomaster-node-taint


Amazon EKS User Guide

in multiple Availability Zones available. You can set a custom value that will be used instead of 
the default value. The default value follows:

topologySpreadConstraints: 
  - maxSkew: 1 
    topologyKey: topology.kubernetes.io/zone 
    whenUnsatisfiable: ScheduleAnyway 
    labelSelector: 
      matchLabels: 
        k8s-app: kube-dns

CoreDNS v1.11 upgrade considerations

• In EKS add-on versions v1.11.1-eksbuild.4 and later, the container image is based on 
a minimal base image maintained by Amazon EKS Distro, which contains minimal packages 
and doesn't have shells. For more information, see Amazon EKS Distro. The usage and 
troubleshooting of the CoreDNS image remains the same.

Creating the Amazon EKS add-on

Create the Amazon EKS type of the add-on. Check

Prerequisites

• An existing Amazon EKS cluster. To deploy one, see Getting started with Amazon EKS.

1. See which version of the add-on is installed on your cluster.

kubectl describe deployment coredns --namespace kube-system | grep coredns: | cut -
d : -f 3

An example output is as follows.

v1.10.1-eksbuild.7

2. See which type of the add-on is installed on your cluster. Depending on the tool that you 
created your cluster with, you might not currently have the Amazon EKS add-on type installed 
on your cluster. Replace my-cluster with the name of your cluster.

CoreDNS 517

https://gallery.ecr.aws/eks-distro-build-tooling/eks-distro-minimal-base
https://distro.eks.amazonaws.com/


Amazon EKS User Guide

aws eks describe-addon --cluster-name my-cluster --addon-name coredns --query 
 addon.addonVersion --output text

If a version number is returned, you have the Amazon EKS type of the add-on installed on 
your cluster and don't need to complete the remaining steps in this procedure. If an error 
is returned, you don't have the Amazon EKS type of the add-on installed on your cluster. 
Complete the remaining steps of this procedure to install it.

3. Save the configuration of your currently installed add-on.

kubectl get deployment coredns -n kube-system -o yaml > aws-k8s-coredns-old.yaml

4. Create the add-on using the AWS CLI. If you want to use the AWS Management Console or
eksctl to create the add-on, see Creating an add-on and specify coredns for the add-on 
name. Copy the command that follows to your device. Make the following modifications to the 
command, as needed, and then run the modified command.

• Replace my-cluster with the name of your cluster.

• Replace v1.11.1-eksbuild.6 with the latest version listed in the latest version table for 
your cluster version.

aws eks create-addon --cluster-name my-cluster --addon-name coredns --addon-
version v1.11.1-eksbuild.6

If you've applied custom settings to your current add-on that conflict with the default settings 
of the Amazon EKS add-on, creation might fail. If creation fails, you receive an error that can 
help you resolve the issue. Alternatively, you can add --resolve-conflicts OVERWRITE to 
the previous command. This allows the add-on to overwrite any existing custom settings. Once 
you've created the add-on, you can update it with your custom settings.

5. Confirm that the latest version of the add-on for your cluster's Kubernetes version was added 
to your cluster. Replace my-cluster with the name of your cluster.

aws eks describe-addon --cluster-name my-cluster --addon-name coredns --query 
 addon.addonVersion --output text

It might take several seconds for add-on creation to complete.

CoreDNS 518



Amazon EKS User Guide

An example output is as follows.

v1.11.1-eksbuild.6

6. If you made custom settings to your original add-on, before you created the Amazon EKS add-
on, use the configuration that you saved in a previous step to update the Amazon EKS add-on 
with your custom settings.

Updating the Amazon EKS add-on

Update the Amazon EKS type of the add-on. If you haven't added the Amazon EKS type of the add-
on to your cluster, either add it or see Updating the self-managed add-on, instead of completing 
this procedure.

1. See which version of the add-on is installed on your cluster. Replace my-cluster with your 
cluster name.

aws eks describe-addon --cluster-name my-cluster --addon-name coredns --query 
 "addon.addonVersion" --output text

An example output is as follows.

v1.10.1-eksbuild.7

If the version returned is the same as the version for your cluster's Kubernetes version in the
latest version table, then you already have the latest version installed on your cluster and 
don't need to complete the rest of this procedure. If you receive an error, instead of a version 
number in your output, then you don't have the Amazon EKS type of the add-on installed on 
your cluster. You need to create the add-on before you can update it with this procedure.

2. Save the configuration of your currently installed add-on.

kubectl get deployment coredns -n kube-system -o yaml > aws-k8s-coredns-old.yaml

3. Update your add-on using the AWS CLI. If you want to use the AWS Management Console or
eksctl to update the add-on, see Updating an add-on. Copy the command that follows to 
your device. Make the following modifications to the command, as needed, and then run the 
modified command.

CoreDNS 519



Amazon EKS User Guide

• Replace my-cluster with the name of your cluster.

• Replace v1.11.1-eksbuild.6 with the latest version listed in the latest version table for 
your cluster version.

• The --resolve-conflicts PRESERVE option preserves existing configuration values for 
the add-on. If you've set custom values for add-on settings, and you don't use this option, 
Amazon EKS overwrites your values with its default values. If you use this option, then 
we recommend testing any field and value changes on a non-production cluster before 
updating the add-on on your production cluster. If you change this value to OVERWRITE, 
all settings are changed to Amazon EKS default values. If you've set custom values for any 
settings, they might be overwritten with Amazon EKS default values. If you change this 
value to none, Amazon EKS doesn't change the value of any settings, but the update might 
fail. If the update fails, you receive an error message to help you resolve the conflict.

• If you're not updating a configuration setting, remove --configuration-values 
'{"replicaCount":3}' from the command. If you're updating a configuration setting, 
replace "replicaCount":3 with the setting that you want to set. In this example, the 
number of replicas of CoreDNS is set to 3. The value that you specify must be valid for 
the configuration schema. If you don't know the configuration schema, run aws eks 
describe-addon-configuration --addon-name coredns --addon-version
v1.11.1-eksbuild.6, replacing v1.11.1-eksbuild.6 with the version number of the 
add-on that you want to see the configuration for. The schema is returned in the output. If 
you have any existing custom configuration, want to remove it all, and set the values for all 
settings back to Amazon EKS defaults, remove "replicaCount":3 from the command, 
so that you have empty {}. For more information about CoreDNS settings, see Customizing 
DNS Service in the Kubernetes documentation.

aws eks update-addon --cluster-name my-cluster --addon-name coredns --addon-
version v1.11.1-eksbuild.6 \ 
    --resolve-conflicts PRESERVE --configuration-values '{"replicaCount":3}'

It might take several seconds for the update to complete.

4. Confirm that the add-on version was updated. Replace my-cluster with the name of your 
cluster.

aws eks describe-addon --cluster-name my-cluster --addon-name coredns

CoreDNS 520

https://kubernetes.io/docs/tasks/administer-cluster/dns-custom-nameservers/
https://kubernetes.io/docs/tasks/administer-cluster/dns-custom-nameservers/


Amazon EKS User Guide

It might take several seconds for the update to complete.

An example output is as follows.

{ 
    "addon": { 
        "addonName": "coredns", 
        "clusterName": "my-cluster", 
        "status": "ACTIVE", 
        "addonVersion": "v1.11.1-eksbuild.6", 
        "health": { 
            "issues": [] 
        }, 
        "addonArn": "arn:aws:eks:region:111122223333:addon/my-cluster/coredns/
d2c34f06-1111-2222-1eb0-24f64ce37fa4", 
        "createdAt": "2023-03-01T16:41:32.442000+00:00", 
        "modifiedAt": "2023-03-01T18:16:54.332000+00:00", 
        "tags": {}, 
         "configurationValues": "{\"replicaCount\":3}"
    }
}

Updating the self-managed add-on

Important

We recommend adding the Amazon EKS type of the add-on to your cluster instead of using 
the self-managed type of the add-on. If you're not familiar with the difference between the 
types, see the section called “Amazon EKS add-ons”. For more information about adding an 
Amazon EKS add-on to your cluster, see the section called “Creating an add-on”. If you're 
unable to use the Amazon EKS add-on, we encourage you to submit an issue about why 
you can't to the Containers roadmap GitHub repository.

1. Confirm that you have the self-managed type of the add-on installed on your cluster. Replace
my-cluster with the name of your cluster.

CoreDNS 521

https://github.com/aws/containers-roadmap/issues


Amazon EKS User Guide

aws eks describe-addon --cluster-name my-cluster --addon-name coredns --query 
 addon.addonVersion --output text

If an error message is returned, you have the self-managed type of the add-on installed on 
your cluster. Complete the remaining steps in this procedure. If a version number is returned, 
you have the Amazon EKS type of the add-on installed on your cluster. To update the Amazon 
EKS type of the add-on, use the procedure in Updating the Amazon EKS add-on, rather than 
using this procedure. If you're not familiar with the differences between the add-on types, see
Amazon EKS add-ons.

2. See which version of the container image is currently installed on your cluster.

kubectl describe deployment coredns -n kube-system | grep Image | cut -d ":" -f 3

An example output is as follows.

v1.8.7-eksbuild.2

3. If your current CoreDNS version is v1.5.0 or later, but earlier than the version listed in the
CoreDNS versions table, then skip this step. If your current version is earlier than 1.5.0, then 
you need to modify the ConfigMap for CoreDNS to use the forward add-on, rather than the 
proxy add-on.

1. Open the configmap with the following command.

kubectl edit configmap coredns -n kube-system

2. Replace proxy in the following line with forward. Save the file and exit the editor.

proxy . /etc/resolv.conf

4. If you originally deployed your cluster on Kubernetes 1.17 or earlier, then you may need to 
remove a discontinued line from your CoreDNS manifest.

Important

You must complete this step before updating to CoreDNS version 1.7.0, but it's 
recommended that you complete this step even if you're updating to an earlier version.

CoreDNS 522



Amazon EKS User Guide

1. Check to see if your CoreDNS manifest has the line.

kubectl get configmap coredns -n kube-system -o jsonpath='{$.data.Corefile}' | 
 grep upstream

If no output is returned, your manifest doesn't have the line and you can skip to the next 
step to update CoreDNS. If output is returned, then you need to remove the line.

2. Edit the ConfigMap with the following command, removing the line in the file that has the 
word upstream in it. Do not change anything else in the file. Once the line is removed, save 
the changes.

kubectl edit configmap coredns -n kube-system -o yaml

5. Retrieve your current CoreDNS image version:

kubectl describe deployment coredns -n kube-system | grep Image
 

An example output is as follows.

602401143452.dkr.ecr.region-code.amazonaws.com/eks/coredns:v1.8.7-eksbuild.2

6. If you're updating to CoreDNS 1.8.3 or later, then you need to add the endpointslices
permission to the system:coredns Kubernetes clusterrole.

kubectl edit clusterrole system:coredns -n kube-system

Add the following lines under the existing permissions lines in the rules section of the file.

[...]
- apiGroups: 
  - discovery.k8s.io 
  resources: 
  - endpointslices 
  verbs: 
  - list 
  - watch

CoreDNS 523



Amazon EKS User Guide

[...]

7. Update the CoreDNS add-on by replacing 602401143452 and region-code with the 
values from the output returned in a previous step. Replace v1.11.1-eksbuild.6 with the 
CoreDNS version listed in the latest versions table for your Kubernetes version.

kubectl set image deployment.apps/coredns -n kube-system  
 coredns=602401143452.dkr.ecr.region-code.amazonaws.com/eks/coredns:v1.11.1-
eksbuild.6

An example output is as follows.

deployment.apps/coredns image updated

8. Check the container image version again to confirm that it was updated to the version that you 
specified in the previous step.

kubectl describe deployment coredns -n kube-system | grep Image | cut -d ":" -f 3

An example output is as follows.

v1.11.1-eksbuild.6

CoreDNS metrics

CoreDNS as an EKS add-on exposes the metrics from CoreDNS on port 9153 in the Prometheus 
format in the kube-dns service. You can use Prometheus, the Amazon CloudWatch agent, or any 
other compatible system to scrape (collect) these metrics.

For an example scrape configuration that is compatible with both Prometheus and the CloudWatch 
agent, see CloudWatch agent configuration for Prometheus in the Amazon CloudWatch User Guide.

Working with the Kubernetes kube-proxy add-on

Important

We recommend adding the Amazon EKS type of the add-on to your cluster instead of using 
the self-managed type of the add-on. If you're not familiar with the difference between the 
types, see the section called “Amazon EKS add-ons”. For more information about adding an 

kube-proxy 524

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights-Prometheus-Setup-configure.html


Amazon EKS User Guide

Amazon EKS add-on to your cluster, see the section called “Creating an add-on”. If you're 
unable to use the Amazon EKS add-on, we encourage you to submit an issue about why 
you can't to the Containers roadmap GitHub repository.

The kube-proxy add-on is deployed on each Amazon EC2 node in your Amazon EKS cluster. It 
maintains network rules on your nodes and enables network communication to your Pods. The 
add-on isn't deployed to Fargate nodes in your cluster. For more information, see kube-proxy in 
the Kubernetes documentation.

The following table lists the latest version of the Amazon EKS add-on type for each Kubernetes 
version.

Kubernetes 
version

1.29 1.28 1.27 1.26 1.25 1.24 1.23

  v1.29.1-
e 
ksbuild.2

v1.28.6-
e 
ksbuild.2

v1.27.10- 
eksbuild. 
2

v1.26.13- 
eksbuild. 
2

v1.25.16- 
eksbuild. 
3

v1.24.17- 
eksbuild. 
8

v1.23.17- 
eksbuild. 
9

Important

An earlier version of the documentation was incorrect. kube-proxy versions v1.28.5,
v1.27.9, and v1.26.12 aren't available.
If you're self-managing this add-on, the versions in the table might not be the same as the 
available self-managed versions.

There are two types of the kube-proxy container image available for each Amazon EKS cluster 
version:

• Default – This image type is based on a Debian-based Docker image that is maintained by the 
Kubernetes upstream community.

• Minimal – This image type is based on a minimal base image maintained by Amazon EKS Distro, 
which contains minimal packages and doesn't have shells. For more information, see Amazon 
EKS Distro.

kube-proxy 525

https://github.com/aws/containers-roadmap/issues
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://gallery.ecr.aws/eks-distro-build-tooling/eks-distro-minimal-base-iptables
https://distro.eks.amazonaws.com/
https://distro.eks.amazonaws.com/


Amazon EKS User Guide

Latest available self-managed kube-proxy container image version for each Amazon EKS 
cluster version

Image type 1.29 1.28 1.27 1.26 1.25 1.24 1.23

kube-proxy
(default type)

Only 
minimal 
type is 
available

Only 
minimal 
type is 
available

Only 
minimal 
type is 
available

Only 
minimal 
type is 
available

Only 
minimal 
type is 
available

v1.24.10- 
eksbuild. 
2

v1.23.16- 
eksbuild. 
2

kube-proxy
(minimal type)

v1.29.1-
m 
inimal-
ek 
sbuild.2

v1.28.6-
m 
inimal-
ek 
sbuild.2

v1.27.10- 
minimal-
e 
ksbuild.2

v1.26.13- 
minimal-
e 
ksbuild.2

v1.25.16- 
minimal-
e 
ksbuild.3

v1.24.17- 
minimal-
e 
ksbuild.4

v1.23.17- 
minimal-
e 
ksbuild.5

Important

• The default image type isn't available for Kubernetes version 1.25 and later. You must 
use the minimal image type.

• When you update an Amazon EKS add-on type, you specify a valid Amazon EKS add-on 
version, which might not be a version listed in this table. This is because Amazon EKS 
add-on versions don't always match container image versions specified when updating 
the self-managed type of this add-on. When you update the self-managed type of this 
add-on, you specify a valid container image version listed in this table.

Prerequisites

• An existing Amazon EKS cluster. To deploy one, see Getting started with Amazon EKS.

Considerations

• Kube-proxy on an Amazon EKS cluster has the same compatibility and skew policy as 
Kubernetes.

• Kube-proxy must be the same minor version as kubelet on your Amazon EC2 nodes.

kube-proxy 526

https://kubernetes.io/releases/version-skew-policy/#kube-proxy
https://kubernetes.io/releases/version-skew-policy/#kube-proxy


Amazon EKS User Guide

• Kube-proxy can't be later than the minor version of your cluster's control plane.

• The kube-proxy version on your Amazon EC2 nodes can't be more than two minor versions 
earlier than your control plane. For example, if your control plane is running Kubernetes 1.29, 
then the kube-proxy minor version can't be earlier than 1.27.

• If you recently updated your cluster to a new Kubernetes minor version, then update your 
Amazon EC2 nodes to the same minor version before updating kube-proxy to the same minor 
version as your nodes.

To update the kube-proxy self-managed add-on

1. Confirm that you have the self-managed type of the add-on installed on your cluster. Replace
my-cluster with the name of your cluster.

aws eks describe-addon --cluster-name my-cluster --addon-name kube-proxy --query 
 addon.addonVersion --output text

If an error message is returned, you have the self-managed type of the add-on installed on 
your cluster. The remaining steps in this topic are for updating the self-managed type of the 
add-on. If a version number is returned, you have the Amazon EKS type of the add-on installed 
on your cluster. To update it, use the procedure in Updating an add-on, rather than using the 
procedure in this topic. If you're not familiar with the differences between the add-on types, 
see Amazon EKS add-ons.

2. See which version of the container image is currently installed on your cluster.

kubectl describe daemonset kube-proxy -n kube-system | grep Image

An example output is as follows.

Image:     602401143452.dkr.ecr.region-code.amazonaws.com/eks/kube-proxy:v1.25.6-
minimal-eksbuild.2

In the example output, v1.25.6-minimal-eksbuild.2 is the version installed on the 
cluster.

3. Update the kube-proxy add-on by replacing 602401143452 and region-code with the 
values from your output. in the previous step Replace v1.26.2-minimal-eksbuild.2 with 
the kube-proxy version listed in the Latest available self-managed kube-proxy container 

kube-proxy 527



Amazon EKS User Guide

image version for each Amazon EKS cluster version table. You can specify a version number for 
the default or minimal image type.

kubectl set image daemonset.apps/kube-proxy -n kube-system kube-
proxy=602401143452.dkr.ecr.region-code.amazonaws.com/eks/kube-proxy:v1.26.2-
minimal-eksbuild.2

An example output is as follows.

daemonset.apps/kube-proxy image updated

4. Confirm that the new version is now installed on your cluster.

kubectl describe daemonset kube-proxy -n kube-system | grep Image | cut -d ":" -f 3

An example output is as follows.

v1.26.2-minimal-eksbuild.2

5. If you're using x86 and Arm nodes in the same cluster and your cluster was deployed before 
August 17, 2020. Then, edit your kube-proxy manifest to include a node selector for multiple 
hardware architectures with the following command. This is a one-time operation. After you've 
added the selector to your manifest, you don't need to add it each time you update the add-
on. If your cluster was deployed on or after August 17, 2020, then kube-proxy is already 
multi-architecture capable.

kubectl edit -n kube-system daemonset/kube-proxy

Add the following node selector to the file in the editor and then save the file. For an example 
of where to include this text in the editor, see the CNI manifest file on GitHub. This enables 
Kubernetes to pull the correct hardware image based on the node's hardware architecture.

- key: "kubernetes.io/arch" 
  operator: In 
  values: 
  - amd64 
  - arm64

kube-proxy 528

https://github.com/aws/amazon-vpc-cni-k8s/blob/release-1.11/config/master/aws-k8s-cni.yaml%23L265-%23L269


Amazon EKS User Guide

6. If your cluster was originally created with Kubernetes version 1.14 or later, then you can skip 
this step because kube-proxy already includes this Affinity Rule. If you originally created 
an Amazon EKS cluster with Kubernetes version 1.13 or earlier and intend to use Fargate 
nodes in your cluster, then edit your kube-proxy manifest to include a NodeAffinity rule 
to prevent kube-proxy Pods from scheduling on Fargate nodes. This is a one-time edit. Once 
you've added the Affinity Rule to your manifest, you don't need to add it each time that 
you update the add-on. Edit your kube-proxy DaemonSet.

kubectl edit -n kube-system daemonset/kube-proxy

Add the following Affinity Rule to the DaemonSet spec section of the file in the editor 
and then save the file. For an example of where to include this text in the editor, see the CNI 
manifest file on GitHub.

- key: eks.amazonaws.com/compute-type 
  operator: NotIn 
  values: 
  - fargate

Access the Amazon Elastic Kubernetes Service using an 
interface endpoint (AWS PrivateLink)

You can use AWS PrivateLink to create a private connection between your VPC and Amazon Elastic 
Kubernetes Service. You can access Amazon EKS as if it were in your VPC, without the use of an 
internet gateway, NAT device, VPN connection, or AWS Direct Connect connection. Instances in 
your VPC don't need public IP addresses to access Amazon EKS.

You establish this private connection by creating an interface endpoint powered by AWS 
PrivateLink. We create an endpoint network interface in each subnet that you enable for the 
interface endpoint. These are requester-managed network interfaces that serve as the entry point 
for traffic destined for Amazon EKS.

For more information, see Access AWS services through AWS PrivateLink in the AWS PrivateLink 
Guide.

AWS PrivateLink 529

https://github.com/aws/amazon-vpc-cni-k8s/blob/release-1.11/config/master/aws-k8s-cni.yaml%23L270-%23L273
https://github.com/aws/amazon-vpc-cni-k8s/blob/release-1.11/config/master/aws-k8s-cni.yaml%23L270-%23L273
https://docs.aws.amazon.com/vpc/latest/privatelink/privatelink-access-aws-services.html


Amazon EKS User Guide

Considerations for Amazon EKS

• Before you set up an interface endpoint for Amazon EKS, review Considerations in the AWS 
PrivateLink Guide.

• Amazon EKS supports making calls to all of its API actions through the interface endpoint, but 
not to the Kubernetes APIs. The Kubernetes API server already supports a private endpoint. The 
Kubernetes API server private endpoint creates a private endpoint for the Kubernetes API server 
that you use to communicate with your cluster (using Kubernetes management tools such as
kubectl). You can enable private access to the Kubernetes API server so that all communication 
between your nodes and the API server stays within your VPC. AWS PrivateLink for the Amazon 
EKS API helps you call the Amazon EKS APIs from your VPC without exposing traffic to the public 
internet.

• You can't configure Amazon EKS to only be accessed through an interface endpoint.

• Standard pricing for AWS PrivateLink applies for interface endpoints for Amazon EKS. You are 
billed for every hour that an interface endpoint is provisioned in each Availability Zone and 
for data processed through the interface endpoint. For more information, see AWS PrivateLink 
pricing.

• VPC endpoint policies are not supported for Amazon EKS. By default, full access to Amazon 
EKS is allowed through the interface endpoint. Alternatively, you can associate a security group 
with the endpoint network interfaces to control traffic to Amazon EKS through the interface 
endpoint.

• You can use VPC flow logs to capture information about IP traffic going to and from network 
interfaces, including interface endpoints. You can publish flow log data to Amazon CloudWatch 
or Amazon S3. For more information, see Logging IP traffic using VPC Flow Logs in the Amazon 
VPC User Guide.

• You can access the Amazon EKS APIs from an on-premises data center by connecting it to a VPC 
that has an interface endpoint. You can use AWS Direct Connect or AWS Site-to-Site VPN to 
connect your on-premises sites to a VPC.

• You can connect other VPCs to the VPC with an interface endpoint using an AWS Transit Gateway 
or VPC peering. VPC peering is a networking connection between two VPCs. You can establish 
a VPC peering connection between your VPCs, or with a VPC in another account. The VPCs can 
be in different AWS Regions. Traffic between peered VPCs stays on the AWS network. The traffic 
doesn't traverse the public internet. A Transit Gateway is a network transit hub that you can use 
to interconnect VPCs. Traffic between a VPC and a Transit Gateway remains on the AWS global 
private network. The traffic isn't exposed to the public internet.

Considerations 530

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#considerations-interface-endpoints
https://aws.amazon.com/privatelink/pricing/
https://aws.amazon.com/privatelink/pricing/
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html


Amazon EKS User Guide

• VPC interface endpoints for Amazon EKS are only accessible over IPv4. IPv6 isn't supported.

• AWS PrivateLink support isn't available in the Asia Pacific (Hyderabad), Asia Pacific (Jakarta), Asia 
Pacific (Melbourne), Asia Pacific (Osaka), Canada West (Calgary), Europe (Spain), Europe (Zurich), 
Israel (Tel Aviv), or Middle East (UAE) AWS Regions.

Create an interface endpoint for Amazon EKS

You can create an interface endpoint for Amazon EKS using either the Amazon VPC console or the 
AWS Command Line Interface (AWS CLI). For more information, see Create a VPC endpoint in the
AWS PrivateLink Guide.

Create an interface endpoint for Amazon EKS using the following service name:

com.amazonaws.region-code.eks

The private DNS feature is enabled by default when creating an interface endpoint for Amazon 
EKS and other AWS services. However, you must ensure that the following VPC attributes are set 
to true: enableDnsHostnames and enableDnsSupport. For more information, see View and 
update DNS attributes for your VPC in the Amazon VPC User Guide. With the private DNS feature 
enabled for the interface endpoint:

• You can make any API request to Amazon EKS using its default Regional DNS name. For example,
eks.region.amazonaws.com. For a list of APIs, see Actions in the Amazon EKS API Reference.

• You don't need to make any changes to your applications that call the EKS APIs.

• Any call made to the Amazon EKS default service endpoint is automatically routed through the 
interface endpoint over the private AWS network.

Create an interface endpoint 531

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://docs.aws.amazon.com/eks/latest/APIReference/API_Operations.html


Amazon EKS User Guide

Workloads

Your workloads are deployed in containers, which are deployed in Pods in Kubernetes. A Pod 
includes one or more containers. Typically, one or more Pods that provide the same service are 
deployed in a Kubernetes service. Once you've deployed multiple Pods that provide the same 
service, you can:

• View information about the workloads running on each of your clusters using the AWS 
Management Console.

• Vertically scale Pods up or down with the Kubernetes Vertical Pod Autoscaler.

• Horizontally scale the number of Pods needed to meet demand up or down with the Kubernetes
Horizontal Pod Autoscaler.

• Create an external (for internet-accessible Pods) or an internal (for private Pods) network load 
balancer to balance network traffic across Pods. The load balancer routes traffic at Layer 4 of the 
OSI model.

• Create an Application load balancing on Amazon EKS to balance application traffic across Pods. 
The application load balancer routes traffic at Layer 7 of the OSI model.

• If you're new to Kubernetes, this topic helps you Deploy a sample application.

• You can restrict IP addresses that can be assigned to a service with externalIPs.

Deploy a sample application

In this topic, you deploy a sample application to your cluster.

Prerequisites

• An existing Kubernetes cluster with at least one node. If you don't have an existing Amazon EKS 
cluster, you can deploy one using one of the Getting started with Amazon EKS guides. If you're 
deploying a Windows application, then you must have Windows support enabled for your cluster 
and at least one Amazon EC2 Windows node.

• Kubectl installed on your computer. For more information, see Installing or updating kubectl.

• Kubectl configured to communicate with your cluster. For more information, see Creating or 
updating a kubeconfig file for an Amazon EKS cluster.

• If you plan to deploy your sample workload to Fargate, then you must have an existing Fargate 
profile that includes the same namespace created in this tutorial, which is eks-sample-app, 

Sample application deployment 532



Amazon EKS User Guide

unless you change the name. If you used one of the getting started guides to create your cluster, 
then you'll have to create a new profile, or add the namespace to your existing profile, because 
the profile created in the getting started guides doesn't specify the namespace used in this 
tutorial. Your VPC must also have at least one private subnet.

To deploy a sample application

Though many variables are changeable in the following steps, we recommend only changing 
variable values where specified. Once you have a better understanding of Kubernetes Pods, 
deployments, and services, you can experiment with changing other values.

1. Create a namespace. A namespace allows you to group resources in Kubernetes. For more 
information, see Namespaces in the Kubernetes documentation. If you plan to deploy your 
sample application to AWS Fargate, make sure that the value for namespace in your AWS 
Fargate profile is eks-sample-app.

kubectl create namespace eks-sample-app

2. Create a Kubernetes deployment. This sample deployment pulls a container image from a 
public repository and deploys three replicas (individual Pods) of it to your cluster. To learn 
more, see Deployments in the Kubernetes documentation. You can deploy the application 
to Linux or Windows nodes. If you're deploying to Fargate, then you can only deploy a Linux 
application.

a. Save the following contents to a file named eks-sample-deployment.yaml. The 
containers in the sample application don't use network storage, but you might have 
applications that need to. For more information, see Storage.

Linux

The amd64 or arm64 values under the kubernetes.io/arch key mean that the 
application can be deployed to either hardware architecture (if you have both in your 
cluster). This is possible because this image is a multi-architecture image, but not all 
are. You can determine the hardware architecture that the image is supported on by 
viewing the image details in the repository that you're pulling it from. When deploying 
images that don't support a hardware architecture type, or that you don't want the 
image deployed to, remove that type from the manifest. For more information, see
Well-Known Labels, Annotations and Taints in the Kubernetes documentation.

Sample application deployment 533

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://gallery.ecr.aws/nginx/nginx
https://kubernetes.io/docs/reference/labels-annotations-taints/


Amazon EKS User Guide

The kubernetes.io/os: linux nodeSelector means that if you had Linux and 
Windows nodes (for example) in your cluster, the image would only be deployed to 
Linux nodes. For more information, see Well-Known Labels, Annotations and Taints in 
the Kubernetes documentation.

apiVersion: apps/v1
kind: Deployment
metadata: 
  name: eks-sample-linux-deployment 
  namespace: eks-sample-app 
  labels: 
    app: eks-sample-linux-app
spec: 
  replicas: 3 
  selector: 
    matchLabels: 
      app: eks-sample-linux-app 
  template: 
    metadata: 
      labels: 
        app: eks-sample-linux-app 
    spec: 
      affinity: 
        nodeAffinity: 
          requiredDuringSchedulingIgnoredDuringExecution: 
            nodeSelectorTerms: 
            - matchExpressions: 
              - key: kubernetes.io/arch 
                operator: In 
                values: 
                - amd64 
                - arm64 
      containers: 
      - name: nginx 
        image: public.ecr.aws/nginx/nginx:1.23 
        ports: 
        - name: http 
          containerPort: 80 
        imagePullPolicy: IfNotPresent 
      nodeSelector: 
        kubernetes.io/os: linux

Sample application deployment 534

https://kubernetes.io/docs/reference/labels-annotations-taints/


Amazon EKS User Guide

Windows

The kubernetes.io/os: windows nodeSelector means that if you had Windows 
and Linux nodes (for example) in your cluster, the image would only be deployed to 
Windows nodes. For more information, see Well-Known Labels, Annotations and Taints
in the Kubernetes documentation.

apiVersion: apps/v1
kind: Deployment
metadata: 
  name: eks-sample-windows-deployment 
  namespace: eks-sample-app 
  labels: 
    app: eks-sample-windows-app
spec: 
  replicas: 3 
  selector: 
    matchLabels: 
      app: eks-sample-windows-app 
  template: 
    metadata: 
      labels: 
        app: eks-sample-windows-app 
    spec: 
      affinity: 
        nodeAffinity: 
          requiredDuringSchedulingIgnoredDuringExecution: 
            nodeSelectorTerms: 
            - matchExpressions: 
              - key: beta.kubernetes.io/arch 
                operator: In 
                values: 
                - amd64 
      containers: 
      - name: windows-server-iis 
        image: mcr.microsoft.com/windows/servercore:ltsc2019 
        ports: 
        - name: http 
          containerPort: 80 
        imagePullPolicy: IfNotPresent 
        command: 
        - powershell.exe 

Sample application deployment 535

https://kubernetes.io/docs/reference/labels-annotations-taints/


Amazon EKS User Guide

        - -command 
        - "Add-WindowsFeature Web-Server; Invoke-WebRequest -UseBasicParsing 
 -Uri 'https://dotnetbinaries.blob.core.windows.net/servicemonitor/2.0.1.6/
ServiceMonitor.exe' -OutFile 'C:\\ServiceMonitor.exe'; echo 
 '<html><body><br/><br/><marquee><H1>Hello EKS!!!<H1><marquee></body><html>' 
 > C:\\inetpub\\wwwroot\\default.html; C:\\ServiceMonitor.exe 'w3svc'; " 
      nodeSelector: 
        kubernetes.io/os: windows

b. Apply the deployment manifest to your cluster.

kubectl apply -f eks-sample-deployment.yaml

3. Create a service. A service allows you to access all replicas through a single IP address or 
name. For more information, see Service in the Kubernetes documentation. Though not 
implemented in the sample application, if you have applications that need to interact with 
other AWS services, we recommend that you create Kubernetes service accounts for your Pods, 
and associate them to AWS IAM accounts. By specifying service accounts, your Pods have only 
the minimum permissions that you specify for them to interact with other services. For more 
information, see IAM roles for service accounts.

a. Save the following contents to a file named eks-sample-service.yaml. Kubernetes 
assigns the service its own IP address that is accessible only from within the cluster. To 
access the service from outside of your cluster, deploy the AWS Load Balancer Controller
to load balance application or network traffic to the service.

Linux

apiVersion: v1
kind: Service
metadata: 
  name: eks-sample-linux-service 
  namespace: eks-sample-app 
  labels: 
    app: eks-sample-linux-app
spec: 
  selector: 
    app: eks-sample-linux-app 
  ports: 
    - protocol: TCP 
      port: 80 

Sample application deployment 536

https://kubernetes.io/docs/concepts/services-networking/service/


Amazon EKS User Guide

      targetPort: 80

Windows

apiVersion: v1
kind: Service
metadata: 
  name: eks-sample-windows-service 
  namespace: eks-sample-app 
  labels: 
    app: eks-sample-windows-app
spec: 
  selector: 
    app: eks-sample-windows-app 
  ports: 
    - protocol: TCP 
      port: 80 
      targetPort: 80

b. Apply the service manifest to your cluster.

kubectl apply -f eks-sample-service.yaml

4. View all resources that exist in the eks-sample-app namespace.

kubectl get all -n eks-sample-app

An example output is as follows.

If you deployed Windows resources, then all instances of linux in the following output are
windows. The other example values may be different from your output.

NAME                                               READY   STATUS    RESTARTS   AGE
pod/eks-sample-linux-deployment-65b7669776-m6qxz   1/1     Running   0          27m
pod/eks-sample-linux-deployment-65b7669776-mmxvd   1/1     Running   0          27m
pod/eks-sample-linux-deployment-65b7669776-qzn22   1/1     Running   0          27m

NAME                               TYPE         CLUSTER-IP      EXTERNAL-IP   
 PORT(S)   AGE
service/eks-sample-linux-service   ClusterIP     10.100.74.8     <none>        80/
TCP    32m

Sample application deployment 537



Amazon EKS User Guide

NAME                                        READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/eks-sample-linux-deployment 3/3     3            3           27m

NAME                                                      DESIRED   CURRENT   READY 
   AGE
replicaset.apps/eks-sample-linux-deployment-776d8f8fd8    3         3         3     
   27m

In the output, you see the service and deployment that were specified in the sample manifests 
deployed in previous steps. You also see three Pods. This is because 3 replicas were 
specified in the sample manifest. For more information about Pods, see Pods in the Kubernetes 
documentation. Kubernetes automatically creates the replicaset resource, even though 
it isn't specified in the sample manifests. For more information about ReplicaSets, see
ReplicaSet in the Kubernetes documentation.

Note

Kubernetes maintains the number of replicas that are specified in the manifest. If this 
were a production deployment and you wanted Kubernetes to horizontally scale the 
number of replicas or vertically scale the compute resources for the Pods, use the
Horizontal Pod Autoscaler and the Vertical Pod Autoscaler to do so.

5. View the details of the deployed service. If you deployed a Windows service, replace linux
with windows.

kubectl -n eks-sample-app describe service eks-sample-linux-service

An example output is as follows.

If you deployed Windows resources, then all instances of linux in the following output are
windows. The other example values may be different from your output.

Name:              eks-sample-linux-service
Namespace:         eks-sample-app
Labels:            app=eks-sample-linux-app
Annotations:       <none>
Selector:          app=eks-sample-linux-app
Type:              ClusterIP
IP Families:       <none>
IP:                 10.100.74.8

Sample application deployment 538

https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/


Amazon EKS User Guide

IPs:                10.100.74.8
Port:              <unset>  80/TCP
TargetPort:        80/TCP
Endpoints:          192.168.24.212:80,192.168.50.185:80,192.168.63.93:80
Session Affinity:  None
Events:            <none>

In the previous output, the value for IP: is a unique IP address that can be reached from any 
node or Pod within the cluster, but it can't be reached from outside of the cluster. The values 
for Endpoints are IP addresses assigned from within your VPC to the Pods that are part of 
the service.

6. View the details of one of the Pods listed in the output when you viewed the namespace in 
a previous step. If you deployed a Windows app, replace linux with windows and replace
776d8f8fd8-78w66 with the value returned for one of your Pods.

kubectl -n eks-sample-app describe pod eks-sample-linux-deployment-65b7669776-m6qxz

Abbreviated output

If you deployed Windows resources, then all instances of linux in the following output are
windows. The other example values may be different from your output.

Name:         eks-sample-linux-deployment-65b7669776-m6qxz
Namespace:    eks-sample-app
Priority:     0
Node:         ip-192-168-45-132.us-west-2.compute.internal/192.168.45.132
[...]
IP:            192.168.63.93
IPs: 
  IP:            192.168.63.93
Controlled By:  ReplicaSet/eks-sample-linux-deployment-65b7669776
[...]
Conditions: 
  Type              Status 
  Initialized       True 
  Ready             True 
  ContainersReady   True 
  PodScheduled      True
[...]
Events: 

Sample application deployment 539



Amazon EKS User Guide

  Type    Reason     Age    From                                                 
 Message 
  ----    ------     ----   ----                                                 
 ------- 
  Normal  Scheduled  3m20s  default-scheduler                                    
 Successfully assigned eks-sample-app/eks-sample-linux-deployment-65b7669776-m6qxz
 to ip-192-168-45-132.us-west-2.compute.internal
[...]

In the previous output, the value for IP: is a unique IP that's assigned to the Pod from the 
CIDR block assigned to the subnet that the node is in. If you prefer to assign Pods IP addresses 
from different CIDR blocks, you can change the default behavior. For more information, see
Custom networking for pods. You can also see that the Kubernetes scheduler scheduled the 
Pod on the Node with the IP address 192.168.45.132.

Tip

Rather than using the command line, you can view many details about Pods, services, 
deployments, and other Kubernetes resources in the AWS Management Console. For 
more information, see View Kubernetes resources.

7. Run a shell on the Pod that you described in the previous step, replacing 65b7669776-m6qxz
with the ID of one of your Pods.

Linux

kubectl exec -it eks-sample-linux-deployment-65b7669776-m6qxz -n eks-sample-app 
 -- /bin/bash

Windows

kubectl exec -it eks-sample-windows-deployment-65b7669776-m6qxz -n eks-sample-
app -- powershell.exe

8. From the Pod shell, view the output from the web server that was installed with your 
deployment in a previous step. You only need to specify the service name. It is resolved to the 
service's IP address by CoreDNS, which is deployed with an Amazon EKS cluster, by default.

Sample application deployment 540



Amazon EKS User Guide

Linux

curl eks-sample-linux-service

An example output is as follows.

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
[...]

Windows

Invoke-WebRequest -uri eks-sample-windows-service/default.html -UseBasicParsing

An example output is as follows.

StatusCode        : 200
StatusDescription : OK
Content           : < h t m l > < b o d y > < b r / > < b r / > < m a r q u e e 
 > < H 1 > H e l l o   
                      E K S ! ! ! < H 1 > < m a r q u e e > < / b o d y > < h t 
 m l >

9. From the Pod shell, view the DNS server for the Pod.

Linux

cat /etc/resolv.conf

An example output is as follows.

nameserver 10.100.0.10
search eks-sample-app.svc.cluster.local svc.cluster.local cluster.local us-
west-2.compute.internal
options ndots:5

Sample application deployment 541



Amazon EKS User Guide

In the previous output, 10.100.0.10 is automatically assigned as the nameserver for all 
Pods deployed to the cluster.

Windows

Get-NetIPConfiguration

Abbreviated output

InterfaceAlias       : vEthernet
[...]
IPv4Address          : 192.168.63.14
[...]
DNSServer            : 10.100.0.10

In the previous output, 10.100.0.10 is automatically assigned as the DNS server for all 
Pods deployed to the cluster.

10. Disconnect from the Pod by typing exit.

11. Once you're finished with the sample application, you can remove the sample namespace, 
service, and deployment with the following command.

kubectl delete namespace eks-sample-app

Next Steps

After you deploy the sample application, you might want to try some of the following exercises:

• the section called “Application load balancing”

• the section called “Network load balancing”

Vertical Pod Autoscaler

The Kubernetes Vertical Pod Autoscaler automatically adjusts the CPU and memory reservations 
for your Pods to help "right size" your applications. This adjustment can improve cluster resource 
utilization and free up CPU and memory for other Pods. This topic helps you to deploy the Vertical 
Pod Autoscaler to your cluster and verify that it is working.

Next Steps 542

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler


Amazon EKS User Guide

Prerequisites

• You have an existing Amazon EKS cluster. If you don't, see Getting started with Amazon EKS.

• You have the Kubernetes Metrics Server installed. For more information, see Installing the 
Kubernetes Metrics Server.

• You are using a kubectl client that is configured to communicate with your Amazon EKS cluster.

• OpenSSL 1.1.1 or later installed on your device.

Deploy the Vertical Pod Autoscaler

In this section, you deploy the Vertical Pod Autoscaler to your cluster.

To deploy the Vertical Pod Autoscaler

1. Open a terminal window and navigate to a directory where you would like to download the 
Vertical Pod Autoscaler source code.

2. Clone the kubernetes/autoscaler GitHub repository.

git clone https://github.com/kubernetes/autoscaler.git

3. Change to the vertical-pod-autoscaler directory.

cd autoscaler/vertical-pod-autoscaler/

4. (Optional) If you have already deployed another version of the Vertical Pod Autoscaler, remove 
it with the following command.

./hack/vpa-down.sh

5. If your nodes don't have internet access to the registry.k8s.io container registry, then 
you need to pull the following images and push them to your own private repository. For more 
information about how to pull the images and push them to your own private repository, see
Copy a container image from one repository to another repository.

registry.k8s.io/autoscaling/vpa-admission-controller:0.10.0
registry.k8s.io/autoscaling/vpa-recommender:0.10.0
registry.k8s.io/autoscaling/vpa-updater:0.10.0

Deploy the Vertical Pod Autoscaler 543

https://github.com/kubernetes/autoscaler


Amazon EKS User Guide

If you're pushing the images to a private Amazon ECR repository, then replace
registry.k8s.io in the manifests with your registry. Replace 111122223333 with your 
account ID. Replace region-code with the AWS Region that your cluster is in. The following 
commands assume that you named your repository the same as the repository name in the 
manifest. If you named your repository something different, then you'll need to change it too.

sed -i.bak -e 's/registry.k8s.io/111122223333.dkr.ecr.region-
code.amazonaws.com/' ./deploy/admission-controller-deployment.yaml
sed -i.bak -e 's/registry.k8s.io/111122223333.dkr.ecr.region-
code.amazonaws.com/' ./deploy/recommender-deployment.yaml
sed -i.bak -e 's/registry.k8s.io/111122223333.dkr.ecr.region-
code.amazonaws.com/' ./deploy/updater-deployment.yaml

6. Deploy the Vertical Pod Autoscaler to your cluster with the following command.

./hack/vpa-up.sh

7. Verify that the Vertical Pod Autoscaler Pods have been created successfully.

kubectl get pods -n kube-system

An example output is as follows.

NAME                                        READY   STATUS    RESTARTS   AGE
[...]
metrics-server-8459fc497-kfj8w              1/1     Running   0          83m
vpa-admission-controller-68c748777d-ppspd   1/1     Running   0          7s
vpa-recommender-6fc8c67d85-gljpl            1/1     Running   0          8s
vpa-updater-786b96955c-bgp9d                1/1     Running   0          8s

Test your Vertical Pod Autoscaler installation

In this section, you deploy a sample application to verify that the Vertical Pod Autoscaler is 
working.

To test your Vertical Pod Autoscaler installation

1. Deploy the hamster.yaml Vertical Pod Autoscaler example with the following command.

Test your Vertical Pod Autoscaler installation 544



Amazon EKS User Guide

kubectl apply -f examples/hamster.yaml

2. Get the Pods from the hamster example application.

kubectl get pods -l app=hamster

An example output is as follows.

hamster-c7d89d6db-rglf5   1/1     Running   0          48s
hamster-c7d89d6db-znvz5   1/1     Running   0          48s

3. Describe one of the Pods to view its cpu and memory reservation. Replace c7d89d6db-rglf5
with one of the IDs returned in your output from the previous step.

kubectl describe pod hamster-c7d89d6db-rglf5

An example output is as follows.

[...]
Containers: 
  hamster: 
    Container ID:  docker://
e76c2413fc720ac395c33b64588c82094fc8e5d590e373d5f818f3978f577e24 
    Image:         registry.k8s.io/ubuntu-slim:0.1 
    Image ID:      docker-pullable://registry.k8s.io/ubuntu-
slim@sha256:b6f8c3885f5880a4f1a7cf717c07242eb4858fdd5a84b5ffe35b1cf680ea17b1 
    Port:          <none> 
    Host Port:     <none> 
    Command: 
      /bin/sh 
    Args: 
      -c 
      while true; do timeout 0.5s yes >/dev/null; sleep 0.5s; done 
    State:          Running 
      Started:      Fri, 27 Sep 2019 10:35:16 -0700 
    Ready:          True 
    Restart Count:  0 
    Requests: 
      cpu:         100m
      memory:      50Mi

Test your Vertical Pod Autoscaler installation 545



Amazon EKS User Guide

[...]

You can see that the original Pod reserves 100 millicpu of CPU and 50 mebibytes of memory. 
For this example application, 100 millicpu is less than the Pod needs to run, so it is CPU-
constrained. It also reserves much less memory than it needs. The Vertical Pod Autoscaler
vpa-recommender deployment analyzes the hamster Pods to see if the CPU and memory 
requirements are appropriate. If adjustments are needed, the vpa-updater relaunches the 
Pods with updated values.

4. Wait for the vpa-updater to launch a new hamster Pod. This should take a minute or two. 
You can monitor the Pods with the following command.

Note

If you are not sure that a new Pod has launched, compare the Pod names with your 
previous list. When the new Pod launches, you will see a new Pod name.

kubectl get --watch Pods -l app=hamster

5. When a new hamster Pod is started, describe it and view the updated CPU and memory 
reservations.

kubectl describe pod hamster-c7d89d6db-jxgfv

An example output is as follows.

[...]
Containers: 
  hamster: 
    Container ID:  
 docker://2c3e7b6fb7ce0d8c86444334df654af6fb3fc88aad4c5d710eac3b1e7c58f7db 
    Image:         registry.k8s.io/ubuntu-slim:0.1 
    Image ID:      docker-pullable://registry.k8s.io/ubuntu-
slim@sha256:b6f8c3885f5880a4f1a7cf717c07242eb4858fdd5a84b5ffe35b1cf680ea17b1 
    Port:          <none> 
    Host Port:     <none> 
    Command: 
      /bin/sh 
    Args: 

Test your Vertical Pod Autoscaler installation 546



Amazon EKS User Guide

      -c 
      while true; do timeout 0.5s yes >/dev/null; sleep 0.5s; done 
    State:          Running 
      Started:      Fri, 27 Sep 2019 10:37:08 -0700 
    Ready:          True 
    Restart Count:  0 
    Requests: 
      cpu:         587m
      memory:      262144k
[...]

In the previous output, you can see that the cpu reservation increased to 587 millicpu, which is 
over five times the original value. The memory increased to 262,144 Kilobytes, which is around 
250 mebibytes, or five times the original value. This Pod was under-resourced, and the Vertical 
Pod Autoscaler corrected the estimate with a much more appropriate value.

6. Describe the hamster-vpa resource to view the new recommendation.

kubectl describe vpa/hamster-vpa

An example output is as follows.

Name:         hamster-vpa
Namespace:    default
Labels:       <none>
Annotations:  kubectl.kubernetes.io/last-applied-configuration: 
                {"apiVersion":"autoscaling.k8s.io/
v1beta2","kind":"VerticalPodAutoscaler","metadata":{"annotations":
{},"name":"hamster-vpa","namespace":"d...
API Version:  autoscaling.k8s.io/v1beta2
Kind:         VerticalPodAutoscaler
Metadata: 
  Creation Timestamp:  2019-09-27T18:22:51Z 
  Generation:          23 
  Resource Version:    14411 
  Self Link:           /apis/autoscaling.k8s.io/v1beta2/namespaces/default/
verticalpodautoscalers/hamster-vpa 
  UID:                 d0d85fb9-e153-11e9-ae53-0205785d75b0
Spec: 
  Target Ref: 
    API Version:  apps/v1 
    Kind:         Deployment 

Test your Vertical Pod Autoscaler installation 547



Amazon EKS User Guide

    Name:         hamster
Status: 
  Conditions: 
    Last Transition Time:  2019-09-27T18:23:28Z 
    Status:                True 
    Type:                  RecommendationProvided 
  Recommendation: 
    Container Recommendations: 
      Container Name:  hamster 
      Lower Bound: 
        Cpu:     550m 
        Memory:  262144k 
      Target: 
        Cpu:     587m 
        Memory:  262144k 
      Uncapped Target: 
        Cpu:     587m 
        Memory:  262144k 
      Upper Bound: 
        Cpu:     21147m 
        Memory:  387863636
Events:          <none>

7. When you finish experimenting with the example application, you can delete it with the 
following command.

kubectl delete -f examples/hamster.yaml

Horizontal Pod Autoscaler

The Kubernetes Horizontal Pod Autoscaler automatically scales the number of Pods in a 
deployment, replication controller, or replica set based on that resource's CPU utilization. This 
can help your applications scale out to meet increased demand or scale in when resources are not 
needed, thus freeing up your nodes for other applications. When you set a target CPU utilization 
percentage, the Horizontal Pod Autoscaler scales your application in or out to try to meet that 
target.

The Horizontal Pod Autoscaler is a standard API resource in Kubernetes that simply requires that a 
metrics source (such as the Kubernetes metrics server) is installed on your Amazon EKS cluster to 
work. You do not need to deploy or install the Horizontal Pod Autoscaler on your cluster to begin 

Horizontal Pod Autoscaler 548

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/


Amazon EKS User Guide

scaling your applications. For more information, see Horizontal Pod Autoscaler in the Kubernetes 
documentation.

Use this topic to prepare the Horizontal Pod Autoscaler for your Amazon EKS cluster and to verify 
that it is working with a sample application.

Note

This topic is based on the Horizontal Pod autoscaler walkthrough in the Kubernetes 
documentation.

Prerequisites

• You have an existing Amazon EKS cluster. If you don't, see Getting started with Amazon EKS.

• You have the Kubernetes Metrics Server installed. For more information, see Installing the 
Kubernetes Metrics Server.

• You are using a kubectl client that is configured to communicate with your Amazon EKS cluster.

Run a Horizontal Pod Autoscaler test application

In this section, you deploy a sample application to verify that the Horizontal Pod Autoscaler is 
working.

Note

This example is based on the Horizontal Pod autoscaler walkthrough in the Kubernetes 
documentation.

To test your Horizontal Pod Autoscaler installation

1. Deploy a simple Apache web server application with the following command.

kubectl apply -f https://k8s.io/examples/application/php-apache.yaml

This Apache web server Pod is given a 500 millicpu CPU limit and it is serving on port 80.

Run a Horizontal Pod Autoscaler test application 549

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/


Amazon EKS User Guide

2. Create a Horizontal Pod Autoscaler resource for the php-apache deployment.

kubectl autoscale deployment php-apache --cpu-percent=50 --min=1 --max=10

This command creates an autoscaler that targets 50 percent CPU utilization for the 
deployment, with a minimum of one Pod and a maximum of ten Pods. When the average 
CPU load is lower than 50 percent, the autoscaler tries to reduce the number of Pods in 
the deployment, to a minimum of one. When the load is greater than 50 percent, the 
autoscaler tries to increase the number of Pods in the deployment, up to a maximum of ten. 
For more information, see How does a HorizontalPodAutoscaler work? in the Kubernetes 
documentation.

3. Describe the autoscaler with the following command to view its details.

kubectl get hpa

An example output is as follows.

NAME         REFERENCE               TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
php-apache   Deployment/php-apache   0%/50%    1         10        1          51s

As you can see, the current CPU load is 0%, because there's no load on the server yet. The Pod 
count is already at its lowest boundary (one), so it cannot scale in.

4. Create a load for the web server by running a container.

kubectl run -i \ 
    --tty load-generator \ 
    --rm --image=busybox \ 
    --restart=Never \ 
    -- /bin/sh -c "while sleep 0.01; do wget -q -O- http://php-apache; done"

5. To watch the deployment scale out, periodically run the following command in a separate 
terminal from the terminal that you ran the previous step in.

kubectl get hpa php-apache

An example output is as follows.

NAME         REFERENCE               TARGETS    MINPODS   MAXPODS   REPLICAS   AGE

Run a Horizontal Pod Autoscaler test application 550

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#how-does-a-horizontalpodautoscaler-work


Amazon EKS User Guide

php-apache   Deployment/php-apache   250%/50%   1         10        5          
 4m44s

It may take over a minute for the replica count to increase. As long as actual CPU percentage is 
higher than the target percentage, then the replica count increases, up to 10. In this case, it's
250%, so the number of REPLICAS continues to increase.

Note

It may take a few minutes before you see the replica count reach its maximum. If only 
6 replicas, for example, are necessary for the CPU load to remain at or under 50%, 
then the load won't scale beyond 6 replicas.

6. Stop the load. In the terminal window you're generating the load in, stop the load by holding 
down the Ctrl+C keys. You can watch the replicas scale back to 1 by running the following 
command again in the terminal that you're watching the scaling in.

kubectl get hpa

An example output is as follows.

NAME         REFERENCE               TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
php-apache   Deployment/php-apache   0%/50%    1         10        1          25m

Note

The default timeframe for scaling back down is five minutes, so it will take some time 
before you see the replica count reach 1 again, even when the current CPU percentage 
is 0 percent. The timeframe is modifiable. For more information, see Horizontal Pod 
Autoscaler in the Kubernetes documentation.

7. When you are done experimenting with your sample application, delete the php-apache
resources.

kubectl delete deployment.apps/php-apache service/php-apache 
 horizontalpodautoscaler.autoscaling/php-apache

Run a Horizontal Pod Autoscaler test application 551

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/


Amazon EKS User Guide

Network load balancing on Amazon EKS

Network traffic is load balanced at L4 of the OSI model. To load balance application traffic at L7, 
you deploy a Kubernetes ingress, which provisions an AWS Application Load Balancer. For more 
information, see Application load balancing on Amazon EKS. To learn more about the differences 
between the two types of load balancing, see Elastic Load Balancing features on the AWS website.

When you create a Kubernetes Service of type LoadBalancer, the AWS cloud provider load 
balancer controller creates AWS Classic Load Balancers by default, but can also create AWS
Network Load Balancers. This controller is only receiving critical bug fixes in the future. For more 
information about using the AWS cloud provider load balancer , see AWS cloud provider load 
balancer controller in the Kubernetes documentation. Its use is not covered in this topic.

We recommend that you use version 2.5.4 or later of the AWS Load Balancer Controller instead 
of the AWS cloud provider load balancer controller. The AWS Load Balancer Controller creates AWS 
Network Load Balancers, but doesn't create AWS Classic Load Balancers. The remainder of this 
topic is about using the AWS Load Balancer Controller.

An AWS Network Load Balancer can load balance network traffic to Pods deployed to Amazon EC2 
IP and instance targets or to AWS Fargate IP targets. For more information, see AWS Load Balancer 
Controller on GitHub.

Prerequisites

Before you can load balance network traffic using the AWS Load Balancer Controller, you must 
meet the following requirements.

• Have an existing cluster. If you don't have an existing cluster, see Getting started with Amazon 
EKS. If you need to update the version of an existing cluster, see Updating an Amazon EKS 
cluster Kubernetes version.

• Have the AWS Load Balancer Controller deployed on your cluster. For more information, see
Installing the AWS Load Balancer Controller add-on. We recommend version 2.5.4 or later.

• At least one subnet. If multiple tagged subnets are found in an Availability Zone, the controller 
chooses the first subnet whose subnet ID comes first lexicographically. The subnet must have at 
least eight available IP addresses.

• If you're using the AWS Load Balancer Controller version 2.1.1 or earlier, subnets must be 
tagged as follows. If using version 2.1.2 or later, this tag is optional. You might want to tag a 
subnet if you have multiple clusters running in the same VPC, or multiple AWS services sharing 

Network load balancing 552

https://aws.amazon.com/elasticloadbalancing/features/
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-target-groups.html#target-type
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/targetgroupbinding/targetgroupbinding/#targettype
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/targetgroupbinding/targetgroupbinding/#targettype


Amazon EKS User Guide

subnets in a VPC, and want more control over where load balancers are provisioned for each 
cluster. If you explicitly specify subnet IDs as an annotation on a service object, then Kubernetes 
and the AWS Load Balancer Controller use those subnets directly to create the load balancer. 
Subnet tagging isn't required if you choose to use this method for provisioning load balancers 
and you can skip the following private and public subnet tagging requirements. Replace my-
cluster with your cluster name.

• Key – kubernetes.io/cluster/my-cluster

• Value – shared or owned

• Your public and private subnets must meet the following requirements, unless you explicitly 
specify subnet IDs as an annotation on a service or ingress object. If you provision load 
balancers by explicitly specifying subnet IDs as an annotation on a service or ingress object, then 
Kubernetes and the AWS Load Balancer Controller use those subnets directly to create the load 
balancer and the following tags aren't required.

• Private subnets – Must be tagged in the following format. This is so that Kubernetes and the 
AWS Load Balancer Controller know that the subnets can be used for internal load balancers. 
If you use eksctl or an Amazon EKS AWS AWS CloudFormation template to create your 
VPC after March 26, 2020, then the subnets are tagged appropriately when they're created. 
For more information about the Amazon EKS AWS AWS CloudFormation VPC templates, see
Creating a VPC for your Amazon EKS cluster.

• Key – kubernetes.io/role/internal-elb

• Value – 1

• Public subnets – Must be tagged in the following format. This is so that Kubernetes knows to 
use only those subnets for external load balancers instead of choosing a public subnet in each 
Availability Zone (based on the lexicographical order of the subnet IDs). If you use eksctl or 
an Amazon EKS AWS CloudFormation template to create your VPC after March 26, 2020, then 
the subnets are tagged appropriately when they're created. For more information about the 
Amazon EKS AWS CloudFormation VPC templates, see Creating a VPC for your Amazon EKS 
cluster.

• Key – kubernetes.io/role/elb

• Value – 1

If the subnet role tags aren't explicitly added, the Kubernetes service controller examines the 
route table of your cluster VPC subnets to determine if the subnet is private or public. We 
recommend that you don't rely on this behavior, and instead explicitly add the private or public 

Network load balancing 553



Amazon EKS User Guide

role tags. The AWS Load Balancer Controller doesn't examine route tables, and requires the 
private and public tags to be present for successful auto discovery.

Considerations

• The configuration of your load balancer is controlled by annotations that are added to the 
manifest for your service. Service annotations are different when using the AWS Load Balancer 
Controller than they are when using the AWS cloud provider load balancer controller. Make sure 
to review the annotations for the AWS Load Balancer Controller before deploying services.

• When using the Amazon VPC CNI plugin for Kubernetes, the AWS Load Balancer Controller can 
load balance to Amazon EC2 IP or instance targets and Fargate IP targets. When using Alternate 
compatible CNI plugins, the controller can only load balance to instance targets. For more 
information about Network Load Balancer target types, see Target type in the User Guide for 
Network Load Balancers

• If you want to add tags to the load balancer when or after it's created, add the following 
annotation in your service specification. For more information, see AWS Resource Tags in the 
AWS Load Balancer Controller documentation.

service.beta.kubernetes.io/aws-load-balancer-additional-resource-tags

• You can assign Elastic IP addresses to the Network Load Balancer by adding the following 
annotation. Replace the example values with the Allocation IDs of your Elastic IP 
addresses. The number of Allocation IDs must match the number of subnets that are 
used for the load balancer. For more information, see the AWS Load Balancer Controller
documentation.

service.beta.kubernetes.io/aws-load-balancer-eip-allocations: 
 eipalloc-xxxxxxxxxxxxxxxxx,eipalloc-yyyyyyyyyyyyyyyyy

• Amazon EKS adds one inbound rule to the node's security group for client traffic and one rule 
for each load balancer subnet in the VPC for health checks for each Network Load Balancer that 
you create. Deployment of a service of type LoadBalancer can fail if Amazon EKS attempts 
to create rules that exceed the quota for the maximum number of rules allowed for a security 
group. For more information, see Security groups in Amazon VPC quotas in the Amazon VPC 
User Guide. Consider the following options to minimize the chances of exceeding the maximum 
number of rules for a security group:

Network load balancing 554

https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/service/annotations/
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/load-balancer-target-groups.html#target-type
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/service/annotations/#aws-resource-tags
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/service/annotations/#eip-allocations
https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-limits.html#vpc-limits-security-groups


Amazon EKS User Guide

• Request an increase in your rules per security group quota. For more information, see
Requesting a quota increase in the Service Quotas User Guide.

• Use IP targets, rather than instance targets. With IP targets, you can share rules for the same 
target ports. You can manually specify load balancer subnets with an annotation. For more 
information, see Annotations on GitHub.

• Use an ingress, instead of a service of type LoadBalancer, to send traffic to your service. The 
AWS Application Load Balancer requires fewer rules than Network Load Balancers. You can 
share an ALB across multiple ingresses. For more information, see Application load balancing 
on Amazon EKS. You can't share a Network Load Balancer across multiple services.

• Deploy your clusters to multiple accounts.

• If your Pods run on Windows in an Amazon EKS cluster, a single service with a load balancer can 
support up to 1024 back-end Pods. Each Pod has its own unique IP address.

• We recommend only creating new Network Load Balancers with the AWS Load Balancer 
Controller. Attempting to replace existing Network Load Balancers created with the AWS cloud 
provider load balancer controller can result in multiple Network Load Balancers that might cause 
application downtime.

Create a network load balancer

You can create a network load balancer with IP or instance targets.

IP targets

You can use IP targets with Pods deployed to Amazon EC2 nodes or Fargate. Your Kubernetes 
service must be created as type LoadBalancer. For more information, see Type LoadBalancer
in the Kubernetes documentation.

To create a load balancer that uses IP targets, add the following annotations to a service 
manifest and deploy your service. The external value for aws-load-balancer-type is what 
causes the AWS Load Balancer Controller, rather than the AWS cloud provider load balancer 
controller, to create the Network Load Balancer. You can view a sample service manifest with 
the annotations.

service.beta.kubernetes.io/aws-load-balancer-type: "external"
service.beta.kubernetes.io/aws-load-balancer-nlb-target-type: "ip"

Create a network load balancer 555

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/service/annotations/
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer


Amazon EKS User Guide

Note

If you're load balancing to IPv6 Pods, add the following annotation. You can only load 
balance over IPv6 to IP targets, not instance targets. Without this annotation, load 
balancing is over IPv4.

service.beta.kubernetes.io/aws-load-balancer-ip-address-type: dualstack

Network Load Balancers are created with the internal aws-load-balancer-scheme, by 
default. You can launch Network Load Balancers in any subnet in your cluster's VPC, including 
subnets that weren't specified when you created your cluster.

Kubernetes examines the route table for your subnets to identify whether they are public or 
private. Public subnets have a route directly to the internet using an internet gateway, but 
private subnets do not.

If you want to create a Network Load Balancer in a public subnet to load balance to Amazon 
EC2 nodes (Fargate can only be private), specify internet-facing with the following 
annotation:

service.beta.kubernetes.io/aws-load-balancer-scheme: "internet-facing"

Note

The service.beta.kubernetes.io/aws-load-balancer-type: "nlb-
ip" annotation is still supported for backwards compatibility. However, we 
recommend using the previous annotations for new load balancers instead of
service.beta.kubernetes.io/aws-load-balancer-type: "nlb-ip".

Important

Do not edit the annotations after creating your service. If you need to modify it, delete 
the service object and create it again with the desired value for this annotation.

Create a network load balancer 556



Amazon EKS User Guide

Instance targets

The AWS cloud provider load balancer controller creates Network Load Balancers with instance 
targets only. Version 2.2.0 and later of the AWS Load Balancer Controller also creates Network 
Load Balancers with instance targets. We recommend using it, rather than the AWS cloud 
provider load balancer controller, to create new Network Load Balancers. You can use Network 
Load Balancer instance targets with Pods deployed to Amazon EC2 nodes, but not to Fargate. 
To load balance network traffic across Pods deployed to Fargate, you must use IP targets.

To deploy a Network Load Balancer to a private subnet, your service specification must have 
the following annotations. You can view a sample service manifest with the annotations. 
The external value for aws-load-balancer-type is what causes the AWS Load Balancer 
Controller, rather than the AWS cloud provider load balancer controller, to create the Network 
Load Balancer.

service.beta.kubernetes.io/aws-load-balancer-type: "external"
service.beta.kubernetes.io/aws-load-balancer-nlb-target-type: "instance"

Network Load Balancers are created with the internal aws-load-balancer-scheme, by 
default. For internal Network Load Balancers, your Amazon EKS cluster must be configured 
to use at least one private subnet in your VPC. Kubernetes examines the route table for your 
subnets to identify whether they are public or private. Public subnets have a route directly to 
the internet using an internet gateway, but private subnets do not.

If you want to create an Network Load Balancer in a public subnet to load balance to Amazon 
EC2 nodes, specify internet-facing with the following annotation:

service.beta.kubernetes.io/aws-load-balancer-scheme: "internet-facing"

Important

Do not edit the annotations after creating your service. If you need to modify it, delete 
the service object and create it again with the desired value for this annotation.

Create a network load balancer 557



Amazon EKS User Guide

(Optional) Deploy a sample application

Prerequisites

• At least one public or private subnet in your cluster VPC.

• Have the AWS Load Balancer Controller deployed on your cluster. For more information, see
Installing the AWS Load Balancer Controller add-on. We recommend version 2.5.4 or later.

To deploy a sample application

1. If you're deploying to Fargate, make sure you have an available private subnet in your VPC and 
create a Fargate profile. If you're not deploying to Fargate, skip this step. You can create the 
profile by running the following command or in the AWS Management Console using the same 
values for name and namespace that are in the command. Replace the example values with 
your own.

eksctl create fargateprofile \ 
    --cluster my-cluster \ 
    --region region-code \ 
    --name nlb-sample-app \ 
     --namespace nlb-sample-app

2. Deploy a sample application.

a. Create a namespace for the application.

kubectl create namespace nlb-sample-app

b. Save the following contents to a file named sample-deployment.yaml file on your 
computer.

apiVersion: apps/v1
kind: Deployment
metadata: 
  name: nlb-sample-app
  namespace: nlb-sample-app
spec: 
  replicas: 3
  selector: 
    matchLabels: 

(Optional) Deploy a sample application 558



Amazon EKS User Guide

      app: nginx
  template: 
    metadata: 
      labels: 
        app: nginx
    spec: 
      containers: 
        - name: nginx
          image: public.ecr.aws/nginx/nginx:1.23
          ports: 
            - name: tcp
              containerPort: 80

c. Apply the manifest to the cluster.

kubectl apply -f sample-deployment.yaml

3. Create a service with an internet-facing Network Load Balancer that load balances to IP 
targets.

a. Save the following contents to a file named sample-service.yaml
file on your computer. If you're deploying to Fargate nodes, remove the
service.beta.kubernetes.io/aws-load-balancer-scheme: internet-facing
line.

apiVersion: v1
kind: Service
metadata: 
  name: nlb-sample-service
  namespace: nlb-sample-app
  annotations: 
    service.beta.kubernetes.io/aws-load-balancer-type: external 
    service.beta.kubernetes.io/aws-load-balancer-nlb-target-type: ip 
    service.beta.kubernetes.io/aws-load-balancer-scheme: internet-facing
spec: 
  ports: 
    - port: 80
      targetPort: 80
      protocol: TCP
  type: LoadBalancer 
  selector: 
    app: nginx

(Optional) Deploy a sample application 559



Amazon EKS User Guide

b. Apply the manifest to the cluster.

kubectl apply -f sample-service.yaml

4. Verify that the service was deployed.

kubectl get svc nlb-sample-service -n nlb-sample-app

An example output is as follows.

NAME            TYPE           CLUSTER-IP         EXTERNAL-IP                       
                                              PORT(S)        AGE
sample-service  LoadBalancer    10.100.240.137  
 k8s-nlbsampl-nlbsampl-xxxxxxxxxx-xxxxxxxxxxxxxxxx.elb.region-code.amazonaws.com
  80:32400/TCP   16h

Note

The values for 10.100.240.137 and xxxxxxxxxx-xxxxxxxxxxxxxxxx will be 
different than the example output (they will be unique to your load balancer) and us-
west-2 may be different for you, depending on which AWS Region that your cluster is 
in.

5. Open the Amazon EC2 AWS Management Console. Select Target Groups (under Load 
Balancing) in the left navigation pane. In the Name column, select the target group's 
name where the value in the Load balancer column matches a portion of the name in the
EXTERNAL-IP column of the output in the previous step. For example, you'd select the target 
group named k8s-default-samplese-xxxxxxxxxx if your output were the same as the 
previous output. The Target type is IP because that was specified in the sample service 
manifest.

6. Select the Target group and then select the Targets tab. Under Registered targets, you should 
see three IP addresses of the three replicas deployed in a previous step. Wait until the status 
of all targets is healthy before continuing. It might take several minutes before all targets are
healthy. The targets might be in an unhealthy state before changing to a healthy state.

7. Send traffic to the service replacing xxxxxxxxxx-xxxxxxxxxxxxxxxx and us-west-2 with 
the values returned in the output for a previous step for EXTERNAL-IP. If you deployed to 

(Optional) Deploy a sample application 560

https://console.aws.amazon.com/ec2


Amazon EKS User Guide

a private subnet, then you'll need to view the page from a device within your VPC, such as a 
bastion host. For more information, see Linux Bastion Hosts on AWS.

curl k8s-default-samplese-xxxxxxxxxx-xxxxxxxxxxxxxxxx.elb.region-code.amazonaws.com

An example output is as follows.

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
[...]

8. When you're finished with the sample deployment, service, and namespace, remove them.

kubectl delete namespace nlb-sample-app

Application load balancing on Amazon EKS

When you create a Kubernetes ingress, an AWS Application Load Balancer (ALB) is provisioned 
that load balances application traffic. To learn more, see What is an Application Load Balancer? in 
the Application Load Balancers User Guide and Ingress in the Kubernetes documentation. ALBs can 
be used with Pods that are deployed to nodes or to AWS Fargate. You can deploy an ALB to public 
or private subnets.

Application traffic is balanced at L7 of the OSI model. To load balance network traffic at L4, you 
deploy a Kubernetes service of the LoadBalancer type. This type provisions an AWS Network 
Load Balancer. For more information, see Network load balancing on Amazon EKS. To learn more 
about the differences between the two types of load balancing, see Elastic Load Balancing features
on the AWS website.

Prerequisites

Before you can load balance application traffic to an application, you must meet the following 
requirements.

• Have an existing cluster. If you don't have an existing cluster, see Getting started with Amazon 
EKS. If you need to update the version of an existing cluster, see Updating an Amazon EKS 
cluster Kubernetes version.

Application load balancing 561

https://aws.amazon.com/quickstart/architecture/linux-bastion/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://aws.amazon.com/elasticloadbalancing/features/


Amazon EKS User Guide

• Have the AWS Load Balancer Controller deployed on your cluster. For more information, see
Installing the AWS Load Balancer Controller add-on. We recommend version 2.5.4 or later.

• At least two subnets in different Availability Zones. The AWS Load Balancer Controller 
chooses one subnet from each Availability Zone. When multiple tagged subnets are found 
in an Availability Zone, the controller chooses the subnet whose subnet ID comes first 
lexicographically. Each subnet must have at least eight available IP addresses.

If you're using multiple security groups attached to worker node, exactly one security group must 
be tagged as follows. Replace my-cluster with your cluster name.

• Key – kubernetes.io/cluster/my-cluster

• Value – shared or owned

• If you're using the AWS Load Balancer Controller version 2.1.1 or earlier, subnets must be 
tagged in the format that follows. If you're using version 2.1.2 or later, tagging is optional. 
However, we recommend that you tag a subnet if any of the following is the case. You have 
multiple clusters that are running in the same VPC, or have multiple AWS services that share 
subnets in a VPC. Or, you want more control over where load balancers are provisioned for each 
cluster. Replace my-cluster with your cluster name.

• Key – kubernetes.io/cluster/my-cluster

• Value – shared or owned

• Your public and private subnets must meet the following requirements. This is unless you 
explicitly specify subnet IDs as an annotation on a service or ingress object. Assume that you 
provision load balancers by explicitly specifying subnet IDs as an annotation on a service or 
ingress object. In this situation, Kubernetes and the AWS load balancer controller use those 
subnets directly to create the load balancer and the following tags aren't required.

• Private subnets – Must be tagged in the following format. This is so that Kubernetes and the 
AWS load balancer controller know that the subnets can be used for internal load balancers. 
If you use eksctl or an Amazon EKS AWS CloudFormation template to create your VPC after 
March 26, 2020, the subnets are tagged appropriately when created. For more information 
about the Amazon EKS AWS CloudFormation VPC templates, see Creating a VPC for your 
Amazon EKS cluster.

• Key – kubernetes.io/role/internal-elb

• Value – 1

• Public subnets – Must be tagged in the following format. This is so that Kubernetes knows 
to use only the subnets that were specified for external load balancers. This way, Kubernetes 

Application load balancing 562



Amazon EKS User Guide

doesn't choose a public subnet in each Availability Zone (lexicographically based on their 
subnet ID). If you use eksctl or an Amazon EKS AWS CloudFormation template to create 
your VPC after March 26, 2020, the subnets are tagged appropriately when created. For more 
information about the Amazon EKS AWS CloudFormation VPC templates, see Creating a VPC 
for your Amazon EKS cluster.

• Key – kubernetes.io/role/elb

• Value – 1

If the subnet role tags aren't explicitly added, the Kubernetes service controller examines the 
route table of your cluster VPC subnets. This is to determine if the subnet is private or public. We 
recommend that you don't rely on this behavior. Rather, explicitly add the private or public role 
tags. The AWS Load Balancer Controller doesn't examine route tables. It also requires the private 
and public tags to be present for successful auto discovery.

Considerations

• The AWS Load Balancer Controller creates ALBs and the necessary supporting AWS resources 
whenever a Kubernetes ingress resource is created on the cluster with the kubernetes.io/
ingress.class: alb annotation. The ingress resource configures the ALB to route HTTP 
or HTTPS traffic to different Pods within the cluster. To ensure that your ingress objects use 
the AWS Load Balancer Controller, add the following annotation to your Kubernetes ingress 
specification. For more information, see Ingress specification on GitHub.

annotations: 
     kubernetes.io/ingress.class: alb

Note

If you're load balancing to IPv6 Pods, add the following annotation to your ingress spec. 
You can only load balance over IPv6 to IP targets, not instance targets. Without this 
annotation, load balancing is over IPv4.

alb.ingress.kubernetes.io/ip-address-type: dualstack

• The AWS Load Balancer Controller supports the following traffic modes:

Application load balancing 563

https://github.com/kubernetes-sigs/aws-load-balancer-controller
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/ingress/spec/


Amazon EKS User Guide

• Instance – Registers nodes within your cluster as targets for the ALB. Traffic reaching the ALB 
is routed to NodePort for your service and then proxied to your Pods. This is the default traffic 
mode. You can also explicitly specify it with the alb.ingress.kubernetes.io/target-
type: instance annotation.

Note

Your Kubernetes service must specify the NodePort or "LoadBalancer" type to use this 
traffic mode.

• IP – Registers Pods as targets for the ALB. Traffic reaching the ALB is directly routed to Pods 
for your service. You must specify the alb.ingress.kubernetes.io/target-type: 
ip annotation to use this traffic mode. The IP target type is required when target Pods are 
running on Fargate.

• To tag ALBs created by the controller, add the following annotation to the controller:
alb.ingress.kubernetes.io/tags. For a list of all available annotations supported by the 
AWS Load Balancer Controller, see Ingress annotations on GitHub.

• Upgrading or downgrading the ALB controller version can introduce breaking changes for 
features that rely on it. For more information about the breaking changes that are introduced in 
each release, see the ALB controller release notes on GitHub.

To share an application load balancer across multiple service resources using IngressGroups

To join an ingress to a group, add the following annotation to a Kubernetes ingress resource 
specification.

alb.ingress.kubernetes.io/group.name: my-group

The group name must:

• Be 63 or fewer characters in length.

• Consist of lower case letters, numbers, -, and .

• Start and end with a letter or number.

Application load balancing 564

https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/ingress/annotations/
https://github.com/kubernetes-sigs/aws-load-balancer-controller/releases


Amazon EKS User Guide

The controller automatically merges ingress rules for all ingresses in the same ingress group. It 
supports them with a single ALB. Most annotations that are defined on an ingress only apply to the 
paths defined by that ingress. By default, ingress resources don't belong to any ingress group.

Warning

Potential security risk: Specify an ingress group for an ingress only when all the 
Kubernetes users that have RBAC permission to create or modify ingress resources are 
within the same trust boundary. If you add the annotation with a group name, other 
Kubernetes users might create or modify their ingresses to belong to the same ingress 
group. Doing so can cause undesirable behavior, such as overwriting existing rules with 
higher priority rules.

You can add an order number of your ingress resource.

alb.ingress.kubernetes.io/group.order: '10'

The number can be 1-1000. The lowest number for all ingresses in the same ingress group is 
evaluated first. All ingresses without this annotation are evaluated with a value of zero. Duplicate 
rules with a higher number can overwrite rules with a lower number. By default, the rule order 
between ingresses within the same ingress group is determined lexicographically based namespace 
and name.

Important

Ensure that each ingress in the same ingress group has a unique priority number. You can't 
have duplicate order numbers across ingresses.

(Optional) Deploy a sample application

Prerequisites

• At least one public or private subnet in your cluster VPC.

• Have the AWS Load Balancer Controller deployed on your cluster. For more information, see
Installing the AWS Load Balancer Controller add-on. We recommend version 2.5.4 or later.

(Optional) Deploy a sample application 565



Amazon EKS User Guide

To deploy a sample application

You can run the sample application on a cluster that has Amazon EC2 nodes, Fargate Pods, or both.

1. If you're not deploying to Fargate, skip this step. If you're deploying to Fargate, create a 
Fargate profile. You can create the profile by running the following command or in the
AWS Management Console using the same values for name and namespace that are in the 
command. Replace the example values with your own.

eksctl create fargateprofile \ 
    --cluster my-cluster \ 
    --region region-code \ 
    --name alb-sample-app \ 
    --namespace game-2048

2. Deploy the game 2048 as a sample application to verify that the AWS Load Balancer Controller 
creates an AWS ALB as a result of the ingress object. Complete the steps for the type of subnet 
you're deploying to.

a. If you're deploying to Pods in a cluster that you created with the IPv6 family, skip to the 
next step.

• Public

kubectl apply -f https://raw.githubusercontent.com/kubernetes-sigs/aws-load-
balancer-controller/v2.5.4/docs/examples/2048/2048_full.yaml

• Private

1. Download the manifest.

curl -O https://raw.githubusercontent.com/kubernetes-sigs/aws-load-
balancer-controller/v2.5.4/docs/examples/2048/2048_full.yaml

2. Edit the file and find the line that says alb.ingress.kubernetes.io/scheme: 
internet-facing.

3. Change internet-facing to internal and save the file.

4. Apply the manifest to your cluster.

kubectl apply -f 2048_full.yaml

(Optional) Deploy a sample application 566

https://play2048.co/


Amazon EKS User Guide

b. If you're deploying to Pods in a cluster that you created with the IPv6 family, complete 
the following steps.

1. Download the manifest.

curl -O https://raw.githubusercontent.com/kubernetes-sigs/aws-load-balancer-
controller/v2.5.4/docs/examples/2048/2048_full.yaml

2. Open the file in an editor and add the following line to the annotations in the ingress 
spec.

alb.ingress.kubernetes.io/ip-address-type: dualstack

3. If you're load balancing to internal Pods, rather than internet facing Pods, change 
the line that says alb.ingress.kubernetes.io/scheme: internet-facing to
alb.ingress.kubernetes.io/scheme: internal

4. Save the file.

5. Apply the manifest to your cluster.

kubectl apply -f 2048_full.yaml

3. After a few minutes, verify that the ingress resource was created with the following command.

kubectl get ingress/ingress-2048 -n game-2048

An example output is as follows.

NAME           CLASS    HOSTS   ADDRESS                                             
                       PORTS   AGE
ingress-2048   <none>   *       k8s-game2048-ingress2-xxxxxxxxxx-yyyyyyyyyy.region-
code.elb.amazonaws.com   80      2m32s

Note

If you created the load balancer in a private subnet, the value under ADDRESS in the 
previous output is prefaced with internal-.

(Optional) Deploy a sample application 567



Amazon EKS User Guide

If your ingress wasn't successfully created after several minutes, run the following 
command to view the AWS Load Balancer Controller logs. These logs might contain 
error messages that you can use to diagnose issues with your deployment.

kubectl logs -f -n kube-system -l app.kubernetes.io/instance=aws-load-
balancer-controller

4. If you deployed to a public subnet, open a browser and navigate to the ADDRESS URL from 
the previous command output to see the sample application. If you don't see anything, refresh 
your browser and try again. If you deployed to a private subnet, then you'll need to view the 
page from a device within your VPC, such as a bastion host. For more information, see Linux 
Bastion Hosts on AWS.

5. When you finish experimenting with your sample application, delete it by running one of the 
the following commands.

• If you applied the manifest, rather than applying a copy that you downloaded, use the 
following command.

kubectl delete -f https://raw.githubusercontent.com/kubernetes-sigs/aws-load-
balancer-controller/v2.5.4/docs/examples/2048/2048_full.yaml

• If you downloaded and edited the manifest, use the following command.

kubectl delete -f 2048_full.yaml

Restricting external IP addresses that can be assigned to 
services

Kubernetes services can be reached from inside of a cluster through:

• A cluster IP address that is assigned automatically by Kubernetes

• Any IP address that you specify for the externalIPs property in a service spec. External IP 
addresses are not managed by Kubernetes and are the responsibility of the cluster administrator. 
External IP addresses specified with externalIPs are different than the external IP address 
assigned to a service of type LoadBalancer by a cloud provider.

Restrict service external IP address assignment 568

https://aws.amazon.com/quickstart/architecture/linux-bastion/
https://aws.amazon.com/quickstart/architecture/linux-bastion/


Amazon EKS User Guide

To learn more about Kubernetes services, see Service in the Kubernetes documentation. You can 
restrict the IP addresses that can be specified for externalIPs in a service spec.

To restrict the IP addresses that can be specified for externalIPs in a service spec

1. Deploy cert-manager to manage webhook certificates. For more information, see the cert-
manager documentation.

kubectl apply -f https://github.com/jetstack/cert-manager/releases/download/v1.5.4/
cert-manager.yaml

2. Verify that the cert-manager Pods are running.

kubectl get pods -n cert-manager

An example output is as follows.

NAME                                       READY   STATUS    RESTARTS   AGE
cert-manager-58c8844bb8-nlx7q              1/1     Running   0          15s
cert-manager-cainjector-745768f6ff-696h5   1/1     Running   0          15s
cert-manager-webhook-67cc76975b-4v4nk      1/1     Running   0          14s

3. Review your existing services to ensure that none of them have external IP addresses assigned 
to them that aren't contained within the CIDR block you want to limit addresses to.

kubectl get services -A

An example output is as follows.

NAMESPACE                      NAME                                    TYPE         
   CLUSTER-IP       EXTERNAL-IP     PORT(S)         AGE
cert-manager                   cert-manager                            ClusterIP    
   10.100.102.137   <none>          9402/TCP        20m
cert-manager                   cert-manager-webhook                    ClusterIP    
   10.100.6.136     <none>          443/TCP         20m
default                        kubernetes                              ClusterIP    
   10.100.0.1       <none>          443/TCP         2d1h
externalip-validation-system   externalip-validation-webhook-service   ClusterIP    
   10.100.234.179   <none>          443/TCP         16s
kube-system                    kube-dns                                ClusterIP    
   10.100.0.10      <none>          53/UDP,53/TCP   2d1h

Restrict service external IP address assignment 569

https://kubernetes.io/docs/concepts/services-networking/service/
https://cert-manager.io/docs/
https://cert-manager.io/docs/


Amazon EKS User Guide

my-namespace                   my-service                              ClusterIP    
   10.100.128.10    192.168.1.1     80/TCP          149m

If any of the values are IP addresses that are not within the block you want to restrict access 
to, you'll need to change the addresses to be within the block, and redeploy the services. For 
example, the my-service service in the previous output has an external IP address assigned 
to it that isn't within the CIDR block example in step 5.

4. Download the external IP webhook manifest. You can also view the source code for the 
webhook on GitHub.

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/docs/externalip-webhook.yaml

5.
Specify CIDR blocks. Open the downloaded file in your editor and remove the # at the start of 
the following lines.

#args:
#- --allowed-external-ip-cidrs=10.0.0.0/8

Replace 10.0.0.0/8 with your own CIDR block. You can specify as many blocks as you like. If 
specifying mutiple blocks, add a comma between blocks.

6. If your cluster is not in the us-west-2 AWS Region, then replace us-west-2,
602401143452, and amazonaws.com in the file with the following commands. Before 
running the commands, replace region-code and 111122223333 with the value for your 
AWS Region from the list in Amazon container image registries.

sed -i.bak -e 's|602401143452|111122223333|' externalip-webhook.yaml
sed -i.bak -e 's|us-west-2|region-code|' externalip-webhook.yaml
sed -i.bak -e 's|amazonaws.com||' externalip-webhook.yaml

7. Apply the manifest to your cluster.

kubectl apply -f externalip-webhook.yaml

An attempt to deploy a service to your cluster with an IP address specified for externalIPs
that is not contained in the blocks that you specified in the Specify CIDR blocks step will fail.

Restrict service external IP address assignment 570

https://github.com/kubernetes-sigs/externalip-webhook
https://github.com/kubernetes-sigs/externalip-webhook


Amazon EKS User Guide

Copy a container image from one repository to another 
repository

This topic describes how to pull a container image from a repository that your nodes don't have 
access to and push the image to a repository that your nodes have access to. You can push the 
image to Amazon ECR or an alternative repository that your nodes have access to.

Prerequisites

• The Docker engine installed and configured on your computer. For instructions, see Install Docker 
Engine in the Docker documentation.

• Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface (AWS 
CLI) installed and configured on your device or AWS CloudShell. To check your current version, 
use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers such yum,
apt-get, or Homebrew for macOS are often several versions behind the latest version of the 
AWS CLI. To install the latest version, see Installing, updating, and uninstalling the AWS CLI and
Quick configuration with aws configure in the AWS Command Line Interface User Guide. The AWS 
CLI version that is installed in AWS CloudShell might also be several versions behind the latest 
version. To update it, see Installing AWS CLI to your home directory in the AWS CloudShell User 
Guide.

• An interface VPC endpoint for Amazon ECR if you want your nodes to pull container images from 
or push container images to a private Amazon ECR repository over Amazon's network. For more 
information, see Create the VPC endpoints for Amazon ECR in the Amazon Elastic Container 
Registry User Guide.

Complete the following steps to pull a container image from a repository and push it to your own 
repository. In the following examples that are provided in this topic, the image for the Amazon 
VPC CNI plugin for Kubernetes metrics helper is pulled. When you follow these steps, make sure to 
replace the example values with your own values.

To copy a container image from one repository to another repository

1. If you don't already have an Amazon ECR repository or another repository, then create one 
that your nodes have access to. The following command creates an Amazon ECR private 
repository. An Amazon ECR private repository name must start with a letter. It can only contain 
lowercase letters, numbers, hyphens (-), underscores (_), and forward slashes (/). For more 

Copy an image to a repository 571

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html#ecr-setting-up-vpc-create
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/cmd/cni-metrics-helper/README.md
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/cmd/cni-metrics-helper/README.md


Amazon EKS User Guide

information, see Creating a private repository in the Amazon Elastic Container Registry User 
Guide.

You can replace cni-metrics-helper with whatever you choose. As a best practice, create 
a separate repository for each image. We recommend this because image tags must be unique 
within a repository. Replace region-code with an AWS Region supported by Amazon ECR.

aws ecr create-repository --region region-code --repository-name cni-metrics-helper

2. Determine the registry, repository, and tag (optional) of the image that your nodes need to 
pull. This information is in the registry/repository[:tag] format.

Many of the Amazon EKS topics about installing images require that you apply a manifest file 
or install the image using a Helm chart. However, before you apply a manifest file or install a 
Helm chart, first view the contents of the manifest or chart's values.yaml file. That way, you 
can determine the registry, repository, and tag to pull.

For example, you can find the following line in the manifest file for the Amazon VPC CNI 
plugin for Kubernetes metrics helper. The registry is 602401143452.dkr.ecr.us-
west-2.amazonaws.com, which is an Amazon ECR private registry. The repository is cni-
metrics-helper.

image: "602401143452.dkr.ecr.us-west-2.amazonaws.com/cni-metrics-helper:v1.12.6"

You may see the following variations for an image location:

• Only repository-name:tag. In this case, docker.io is usually the registry, but not 
specified since Kubernetes prepends it to a repository name by default if no registry is 
specified.

• repository-name/repository-namespace/repository:tag. A repository namespace 
is optional, but is sometimes specified by the repository owner for categorizing images. 
For example, all Amazon EC2 images in the Amazon ECR Public Gallery use the aws-ec2
namespace.

Before installing an image with Helm, view the Helm values.yaml file to determine the 
image location. For example, the values.yaml file for the Amazon VPC CNI plugin for 
Kubernetes metrics helper includes the following lines.

Copy an image to a repository 572

https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html
https://docs.aws.amazon.com/general/latest/gr/ecr.html
https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/v1.12.6/config/master/cni-metrics-helper.yaml
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/cmd/cni-metrics-helper/README.md
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/cmd/cni-metrics-helper/README.md
https://gallery.ecr.aws/aws-ec2/
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/charts/cni-metrics-helper/values.yaml#L5-L9
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/cmd/cni-metrics-helper/README.md
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/cmd/cni-metrics-helper/README.md


Amazon EKS User Guide

image: 
  region: us-west-2 
  tag: v1.12.6 
  account: "602401143452" 
  domain: "amazonaws.com"    

3. Pull the container image specified in the manifest file.

a. If you're pulling from a public registry, such as the Amazon ECR Public Gallery, you can 
skip to the next sub-step, because authentication isn't required. In this example, you 
authenticate to an Amazon ECR private registry that contains the repository for the CNI 
metrics helper image. Amazon EKS maintains the image in each registry listed in Amazon 
container image registries. You can authenticate to any of the registries by replacing
602401143452 and region-code with the information for a different registry. A separate 
registry exists for each AWS Region that Amazon EKS is supported in.

aws ecr get-login-password --region region-code | docker login --username AWS --
password-stdin 602401143452.dkr.ecr.region-code.amazonaws.com

b. Pull the image. In this example, you pull from the registry that you authenticated to in the 
previous sub-step. Replace 602401143452 and region-code with the information that 
you provided in the previous sub-step.

docker pull 602401143452.dkr.ecr.region-code.amazonaws.com/cni-metrics-
helper:v1.12.6

4. Tag the image that you pulled with your registry, repository, and tag. The following example 
assumes that you pulled the image from the manifest file and are going to push it to the 
Amazon ECR private repository that you created in the first step. Replace 111122223333 with 
your account ID. Replace region-code with the AWS Region that you created your Amazon 
ECR private repository in.

docker tag cni-metrics-helper:v1.12.6 111122223333.dkr.ecr.region-
code.amazonaws.com/cni-metrics-helper:v1.12.6

5. Authenticate to your registry. In this example, you authenticate to the Amazon ECR private 
registry that you created in the first step. For more information, see Registry authentication in 
the Amazon Elastic Container Registry User Guide.

Copy an image to a repository 573

https://gallery.ecr.aws/
https://docs.aws.amazon.com/general/latest/gr/eks.html#eks_region
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html#registry_auth


Amazon EKS User Guide

aws ecr get-login-password --region region-code | docker login --username AWS --
password-stdin 111122223333.dkr.ecr.region-code.amazonaws.com

6. Push the image to your repository. In this example, you push the image to the Amazon ECR 
private repository that you created in the first step. For more information, see Pushing a 
Docker image in the Amazon Elastic Container Registry User Guide.

docker push 111122223333.dkr.ecr.region-code.amazonaws.com/cni-metrics-
helper:v1.12.6

7. Update the manifest file that you used to determine the image in a previous step with the
registry/repository:tag for the image that you pushed. If you're installing with a Helm 
chart, there's often an option to specify the registry/repository:tag. When installing 
the chart, specify the registry/repository:tag for the image that you pushed to your 
repository.

Amazon container image registries

When you deploy AWS Amazon EKS add-ons to your cluster, your nodes pull the required container 
images from the registry specified in the installation mechanism for the add-on, such as an 
installation manifest or a Helm values.yaml file. The images are pulled from an Amazon EKS 
Amazon ECR private repository. Amazon EKS replicates the images to a repository in each Amazon 
EKS supported AWS Region. Your nodes can pull the container image over the internet from any of 
the following registries. Alternatively, your nodes can pull the image over Amazon's network if you 
created an interface VPC endpoint for Amazon ECR (AWS PrivateLink) in your VPC. The registries 
require authentication with an AWS IAM account. Your nodes authenticate using the Amazon EKS 
node IAM role, which has the permissions in the AmazonEC2ContainerRegistryReadOnly managed 
IAM policy associated to it.

AWS Region Registry

af-south-1 877085696533.dkr.ecr.af-south-1.amaz 
onaws.com

ap-east-1 800184023465.dkr.ecr.ap-east-1.amazo 
naws.com

Amazon container image registries 574

https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEC2ContainerRegistryReadOnly.html


Amazon EKS User Guide

AWS Region Registry

ap-northeast-1 602401143452.dkr.ecr.ap-northeast-1. 
amazonaws.com

ap-northeast-2 602401143452.dkr.ecr.ap-northeast-2. 
amazonaws.com

ap-northeast-3 602401143452.dkr.ecr.ap-northeast-3. 
amazonaws.com

ap-south-1 602401143452.dkr.ecr.ap-south-1.amaz 
onaws.com

ap-south-2 900889452093.dkr.ecr.ap-south-2.amaz 
onaws.com

ap-southeast-1 602401143452.dkr.ecr.ap-southeast-1. 
amazonaws.com

ap-southeast-2 602401143452.dkr.ecr.ap-southeast-2. 
amazonaws.com

ap-southeast-3 296578399912.dkr.ecr.ap-southeast-3. 
amazonaws.com

ap-southeast-4 491585149902.dkr.ecr.ap-southeast-4. 
amazonaws.com

ca-central-1 602401143452.dkr.ecr.ca-central-1.am 
azonaws.com

ca-west-1 761377655185.dkr.ecr.ca-west-1.amazo 
naws.com

cn-north-1 918309763551.dkr.ecr.cn-north-1.amaz 
onaws.com.cn

cn-northwest-1 961992271922.dkr.ecr.cn-northwest-1. 
amazonaws.com.cn

Amazon container image registries 575



Amazon EKS User Guide

AWS Region Registry

eu-central-1 602401143452.dkr.ecr.eu-central-1.am 
azonaws.com

eu-central-2 900612956339.dkr.ecr.eu-central-2.am 
azonaws.com

eu-north-1 602401143452.dkr.ecr.eu-north-1.amaz 
onaws.com

eu-south-1 590381155156.dkr.ecr.eu-south-1.amaz 
onaws.com

eu-south-2 455263428931.dkr.ecr.eu-south-2.amaz 
onaws.com

eu-west-1 602401143452.dkr.ecr.eu-west-1.amazo 
naws.com

eu-west-2 602401143452.dkr.ecr.eu-west-2.amazo 
naws.com

eu-west-3 602401143452.dkr.ecr.eu-west-3.amazo 
naws.com

il-central-1 066635153087.dkr.ecr.il-central-1.am 
azonaws.com

me-south-1 558608220178.dkr.ecr.me-south-1.amaz 
onaws.com

me-central-1 759879836304.dkr.ecr.me-central-1.am 
azonaws.com

sa-east-1 602401143452.dkr.ecr.sa-east-1.amazo 
naws.com

us-east-1 602401143452.dkr.ecr.us-east-1.amazo 
naws.com

Amazon container image registries 576



Amazon EKS User Guide

AWS Region Registry

us-east-2 602401143452.dkr.ecr.us-east-2.amazo 
naws.com

us-gov-east-1 151742754352.dkr.ecr.us-gov-east-1.a 
mazonaws.com

us-gov-west-1 013241004608.dkr.ecr.us-gov-west-1.a 
mazonaws.com

us-west-1 602401143452.dkr.ecr.us-west-1.amazo 
naws.com

us-west-2 602401143452.dkr.ecr.us-west-2.amazo 
naws.com

Amazon EKS add-ons

An add-on is software that provides supporting operational capabilities to Kubernetes applications, 
but is not specific to the application. This includes software like observability agents or Kubernetes 
drivers that allow the cluster to interact with underlying AWS resources for networking, compute, 
and storage. Add-on software is typically built and maintained by the Kubernetes community, 
cloud providers like AWS, or third-party vendors. Amazon EKS automatically installs self-managed 
add-ons such as the Amazon VPC CNI plugin for Kubernetes, kube-proxy, and CoreDNS for every 
cluster. You can change the default configuration of the add-ons and update them when desired.

Amazon EKS add-ons provide installation and management of a curated set of add-ons for Amazon 
EKS clusters. All Amazon EKS add-ons include the latest security patches, bug fixes, and are 
validated by AWS to work with Amazon EKS. Amazon EKS add-ons allow you to consistently ensure 
that your Amazon EKS clusters are secure and stable and reduce the amount of work that you need 
to do in order to install, configure, and update add-ons. If a self-managed add-on, such as kube-
proxy is already running on your cluster and is available as an Amazon EKS add-on, then you can 
install the kube-proxy Amazon EKS add-on to start benefiting from the capabilities of Amazon 
EKS add-ons.

You can update specific Amazon EKS managed configuration fields for Amazon EKS add-ons 
through the Amazon EKS API. You can also modify configuration fields not managed by Amazon 

Amazon EKS add-ons 577



Amazon EKS User Guide

EKS directly within the Kubernetes cluster once the add-on starts. This includes defining specific 
configuration fields for an add-on where applicable. These changes are not overridden by Amazon 
EKS once they are made. This is made possible using the Kubernetes server-side apply feature. For 
more information, see  Kubernetes field management.

You can use Amazon EKS add-ons with any Amazon EKS node type.

Considerations

• To configure add-ons for the cluster your IAM principal must have IAM permissions to work with 
add-ons. For more information, see the actions with Addon in their name in Actions defined by 
Amazon Elastic Kubernetes Service.

• Amazon EKS add-ons run on the nodes that you provision or configure for your cluster. Node 
types include Amazon EC2 instances and Fargate.

• You can modify fields that aren't managed by Amazon EKS to customize the installation of an 
Amazon EKS add-on. For more information, see  Kubernetes field management.

• If you create a cluster with the AWS Management Console, the Amazon EKS kube-proxy, 
Amazon VPC CNI plugin for Kubernetes, and CoreDNS Amazon EKS add-ons are automatically 
added to your cluster. If you use eksctl to create your cluster with a config file, eksctl
can also create the cluster with Amazon EKS add-ons. If you create your cluster using eksctl
without a config file or with any other tool, the self-managed kube-proxy, Amazon VPC CNI 
plugin for Kubernetes, and CoreDNS add-ons are installed, rather than the Amazon EKS add-ons. 
You can either manage them yourself or add the Amazon EKS add-ons manually after cluster 
creation.

• The eks:addon-cluster-admin ClusterRoleBinding binds the cluster-admin
ClusterRole to the eks:addon-manager Kubernetes identity. The role has the necessary 
permissions for the eks:addon-manager identity to create Kubernetes namespaces and install 
add-ons into namespaces. If the eks:addon-cluster-admin ClusterRoleBinding is 
removed, the Amazon EKS cluster will continue to function, however Amazon EKS is no longer 
able to manage any add-ons. All clusters starting with the following platform versions use the 
new ClusterRoleBinding.

Amazon EKS add-ons 578

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions


Amazon EKS User Guide

Kubernete 
s 
version

EKS 
platform 
version

1.20eks.12

1.21eks.14

1.22eks.9

1.23eks.5

1.24eks.3

You can add, update, or delete Amazon EKS add-ons using the Amazon EKS API, AWS Management 
Console, AWS CLI, and eksctl. For more information, see Managing Amazon EKS add-ons. You can 
also create Amazon EKS add-ons using AWS CloudFormation.

Available Amazon EKS add-ons from Amazon EKS

The following Amazon EKS add-ons are available to create on your cluster. You can always view 
the most current list of available add-ons using eksctl, the AWS Management Console, or the 
AWS CLI. To see all available add-ons or to install an add-on, see Creating an add-on. If an add-on 
requires IAM permissions, then you must have an IAM OpenID Connect (OIDC) provider for your 
cluster. To determine whether you have one, or to create one, see Creating an IAM OIDC provider 
for your cluster. You can update or delete an add-on once you've installed it.

Choose an add-on to learn more about it and its installation requirements.

Amazon VPC CNI plugin for Kubernetes

• Name – vpc-cni

• Description – A Kubernetes container network interface (CNI) plugin that provides native VPC 
networking for your cluster. The self-managed or managed type of this add-on is installed on 
each Amazon EC2 node, by default.

• Required IAM permissions – This add-on utilizes the IAM roles for service accounts capability of 
Amazon EKS. If your cluster uses the IPv4 family, the permissions in the AmazonEKS_CNI_Policy

Available Amazon EKS add-ons from Amazon EKS 579

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-eks-addon.html
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKS_CNI_Policy.html


Amazon EKS User Guide

are required. If your cluster uses the IPv6 family, you must create an IAM policy with the 
permissions in IPv6 mode. You can create an IAM role, attach one of the policies to it, and 
annotate the Kubernetes service account used by the add-on with the following command.

Replace my-cluster with the name of your cluster and AmazonEKSVPCCNIRole with the 
name for your role. If your cluster uses the IPv6 family, then replace AmazonEKS_CNI_Policy
with the name of the policy that you created. This command requires that you have eksctl
installed on your device. If you need to use a different tool to create the role, attach the policy to 
it, and annotate the Kubernetes service account, see Configuring a Kubernetes service account to 
assume an IAM role.

eksctl create iamserviceaccount --name aws-node --namespace kube-system --cluster my-
cluster --role-name AmazonEKSVPCCNIRole \ 
    --role-only --attach-policy-arn arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy --
approve

• Additional information – To learn more about the add-on's configurable settings, see aws-vpc-
cni-k8s on GitHub. To learn more about the plugin, see Proposal: CNI plugin for Kubernetes 
networking over AWS VPC. For more information about creating the add-on, see Creating the 
Amazon EKS add-on.

• Update information – You can only update one minor version at a time. For example, if your 
current version is 1.27.x-eksbuild.y and you want to update to 1.29.x-eksbuild.y, 
then you must update your current version to 1.28.x-eksbuild.y and then update it again 
to 1.29.x-eksbuild.y. For more information about updating the add-on, see Updating the 
Amazon EKS add-on.

CoreDNS

• Name – coredns

• Description – A flexible, extensible DNS server that can serve as the Kubernetes cluster DNS. 
The self-managed or managed type of this add-on was installed, by default, when you created 
your cluster. When you launch an Amazon EKS cluster with at least one node, two replicas of the 
CoreDNS image are deployed by default, regardless of the number of nodes deployed in your 
cluster. The CoreDNS Pods provide name resolution for all Pods in the cluster. You can deploy the 
CoreDNS Pods to Fargate nodes if your cluster includes an AWS Fargate profile with a namespace 
that matches the namespace for the CoreDNS deployment.

• Required IAM permissions – This add-on doesn't require any permissions.

Available Amazon EKS add-ons from Amazon EKS 580

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/docs/iam-policy.md#ipv6-mode
https://eksctl.io
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/README.md
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/README.md
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/docs/cni-proposal.md
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/docs/cni-proposal.md


Amazon EKS User Guide

• Additional information – To learn more about CoreDNS, see Using CoreDNS for Service 
Discovery and Customizing DNS Service in the Kubernetes documentation.

Kube-proxy

• Name – kube-proxy

• Description – Maintains network rules on each Amazon EC2 node. It enables network 
communication to your Pods. The self-managed or managed type of this add-on is installed on 
each Amazon EC2 node in your cluster, by default.

• Required IAM permissions – This add-on doesn't require any permissions.

• Additional information – To learn more about kube-proxy, see kube-proxy in the Kubernetes 
documentation.

• Update information – Before updating your current version, consider the following 
requirements:

• Kube-proxy on an Amazon EKS cluster has the same compatibility and skew policy as 
Kubernetes.

• Kube-proxy must be the same minor version as kubelet on your Amazon EC2 nodes.

• Kube-proxy can't be later than the minor version of your cluster's control plane.

• The kube-proxy version on your Amazon EC2 nodes can't be more than two minor versions 
earlier than your control plane. For example, if your control plane is running Kubernetes 1.29, 
then the kube-proxy minor version can't be earlier than 1.27.

• If you recently updated your cluster to a new Kubernetes minor version, then update your 
Amazon EC2 nodes to the same minor version before updating kube-proxy to the same 
minor version as your nodes.

Amazon EBS CSI driver

• Name – aws-ebs-csi-driver

• Description – A Kubernetes Container Storage Interface (CSI) plugin that provides Amazon EBS 
storage for your cluster.

• Required IAM permissions – This add-on utilizes the IAM roles for service accounts
capability of Amazon EKS. The permissions in the AmazonEBSCSIDriverPolicy AWS 
managed policy are required. You can create an IAM role and attach the managed policy to 
it with the following command. Replace my-cluster with the name of your cluster and

Available Amazon EKS add-ons from Amazon EKS 581

https://kubernetes.io/docs/tasks/administer-cluster/coredns/
https://kubernetes.io/docs/tasks/administer-cluster/coredns/
https://kubernetes.io/docs/tasks/administer-cluster/dns-custom-nameservers/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://kubernetes.io/releases/version-skew-policy/#kube-proxy
https://kubernetes.io/releases/version-skew-policy/#kube-proxy
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEBSCSIDriverPolicy.html


Amazon EKS User Guide

AmazonEKS_EBS_CSI_DriverRole with the name for your role. This command requires that 
you have eksctl installed on your device. If you need to use a different tool or you need to use 
a custom KMS key for encryption, see Creating the Amazon EBS CSI driver IAM role.

eksctl create iamserviceaccount \ 
    --name ebs-csi-controller-sa \ 
    --namespace kube-system \ 
    --cluster my-cluster \ 
    --role-name AmazonEKS_EBS_CSI_DriverRole \ 
    --role-only \ 
    --attach-policy-arn arn:aws:iam::aws:policy/service-role/AmazonEBSCSIDriverPolicy 
 \ 
    --approve

• Additional information – To learn more about the add-on, see Amazon EBS CSI driver.

Amazon EFS CSI driver

Important

The Amazon EFS driver is only available as a self-managed installation in AWS GovCloud 
(US-East) and AWS GovCloud (US-West). For instructions on how to add it as a self-
managed installation, see Installation on GitHub.

• Name – aws-efs-csi-driver

• Description – A Kubernetes Container Storage Interface (CSI) plugin that provides Amazon EFS 
storage for your cluster.

• Required IAM permissions – This add-on utilizes the IAM roles for service accounts
capability of Amazon EKS. The permissions in the AmazonEFSCSIDriverPolicy AWS 
managed policy are required. You can create an IAM role and attach the managed policy to 
it with the following commands. Replace my-cluster with the name of your cluster and
AmazonEKS_EFS_CSI_DriverRole with the name for your role. These commands require that 
you have eksctl installed on your device. If you need to use a different tool, see Creating an 
IAM role.

export cluster_name=my-cluster
export role_name=AmazonEKS_EFS_CSI_DriverRole
eksctl create iamserviceaccount \ 

Available Amazon EKS add-ons from Amazon EKS 582

https://eksctl.io
https://aws.amazon.com/kms/
https://github.com/kubernetes-sigs/aws-efs-csi-driver/blob/master/docs/README.md#installation
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEFSCSIDriverPolicy.html
https://eksctl.io


Amazon EKS User Guide

    --name efs-csi-controller-sa \ 
    --namespace kube-system \ 
    --cluster $cluster_name \ 
    --role-name $role_name \ 
    --role-only \ 
    --attach-policy-arn arn:aws:iam::aws:policy/service-role/AmazonEFSCSIDriverPolicy 
 \ 
    --approve
TRUST_POLICY=$(aws iam get-role --role-name $role_name --query 
 'Role.AssumeRolePolicyDocument' | \ 
    sed -e 's/efs-csi-controller-sa/efs-csi-*/' -e 's/StringEquals/StringLike/')
aws iam update-assume-role-policy --role-name $role_name --policy-document 
 "$TRUST_POLICY"

• Additional information – To learn more about the add-on, see Amazon EFS CSI driver.

Mountpoint for Amazon S3 CSI Driver

• Name – aws-mountpoint-s3-csi-driver

• Description – A Kubernetes Container Storage Interface (CSI) plugin that provides Amazon S3 
storage for your cluster.

• Required IAM permissions – This add-on utilizes the IAM roles for service accounts capability 
of Amazon EKS. The IAM role that is created will require a policy that gives access to S3. Follow 
the Mountpoint IAM permissions recommendations when creating the policy. Alternatively, you 
may use the AWS managed policy AmazonS3FullAccess, but this managed policy grants more 
permissions than are needed for Mountpoint.

You can create an IAM role and attach your policy to it with the following commands. 
Replace my-cluster with the name of your cluster, region-code with the correct 
AWS Region code, AmazonEKS_S3_CSI_DriverRole with the name for your role, and
AmazonEKS_S3_CSI_DriverRole_ARN with the role ARN. These commands require that you 
have eksctl installed on your device. For instructions on using the IAM console or AWS CLI, see
Creating an IAM role.

CLUSTER_NAME=my-cluster
REGION=region-code
ROLE_NAME=AmazonEKS_S3_CSI_DriverRole
POLICY_ARN=AmazonEKS_S3_CSI_DriverRole_ARN
eksctl create iamserviceaccount \ 
    --name s3-csi-driver-sa \ 

Available Amazon EKS add-ons from Amazon EKS 583

https://github.com/awslabs/mountpoint-s3/blob/main/doc/CONFIGURATION.md#iam-permissions
https://console.aws.amazon.com/iam/home?#/policies/arn:aws:iam::aws:policy/AmazonS3FullAccess$jsonEditor
https://eksctl.io


Amazon EKS User Guide

    --namespace kube-system \ 
    --cluster $CLUSTER_NAME \ 
    --attach-policy-arn $POLICY_ARN \ 
    --approve \ 
    --role-name $ROLE_NAME \ 
    --region $REGION \ 
    --role-only

• Additional information – To learn more about the add-on, see Mountpoint for Amazon S3 CSI 
driver.

CSI snapshot controller

• Name – snapshot-controller

• Description – The Container Storage Interface (CSI) snapshot controller enables the use of 
snapshot functionality in compatible CSI drivers, such as the Amazon EBS CSI driver.

• Required IAM permissions – This add-on doesn't require any permissions.

• Additional information – To learn more about the add-on, see CSI snapshot controller.

AWS Distro for OpenTelemetry

• Name – adot

• Description – The AWS Distro for OpenTelemetry (ADOT) is a secure, production-ready, AWS 
supported distribution of the OpenTelemetry project.

• Required IAM permissions – This add-on only requires IAM permissions if you’re using one of the 
preconfigured custom resources that can be opted into through advanced configuration.

• Additional information – For more information, see Getting Started with AWS Distro for 
OpenTelemetry using EKS Add-Ons in the AWS Distro for OpenTelemetry documentation.

ADOT requires that cert-manager is deployed on the cluster as a prerequisite, otherwise this 
add-on won't work if deployed directly using the Amazon EKS Terraform cluster_addons
property. For more requirements, see Requirements for Getting Started with AWS Distro for 
OpenTelemetry using EKS Add-Ons in the AWS Distro for OpenTelemetry documentation.

Amazon GuardDuty agent

• Name – aws-guardduty-agent

Available Amazon EKS add-ons from Amazon EKS 584

https://aws-otel.github.io/
https://aws-otel.github.io/docs/getting-started/adot-eks-add-on
https://aws-otel.github.io/docs/getting-started/adot-eks-add-on
https://registry.terraform.io/modules/terraform-aws-modules/eks/aws/latest
https://aws-otel.github.io/docs/getting-started/adot-eks-add-on/requirements
https://aws-otel.github.io/docs/getting-started/adot-eks-add-on/requirements


Amazon EKS User Guide

• Description – Amazon GuardDuty is a security monitoring service that analyzes and processes
foundational data sources including AWS CloudTrail management events and Amazon VPC flow 
logs. Amazon GuardDuty also processes features, such as Kubernetes audit logs and runtime 
monitoring.

• Required IAM permissions – This add-on doesn't require any permissions.

• Additional information – For more information, see Amazon EKS Protection in Amazon 
GuardDuty.

• To detect potential security threats in your Amazon EKS clusters, enable Amazon GuardDuty 
runtime monitoring and deploy the GuardDuty security agent to your Amazon EKS clusters.

Amazon CloudWatch Observability agent

• Name – amazon-cloudwatch-observability

• Description Amazon CloudWatch Agent is the monitoring and observability service provided 
by AWS. This add-on installs the CloudWatch Agent and enables both CloudWatch Application 
Signals and CloudWatch Container Insights with enhanced observability for Amazon EKS.

• Required IAM permissions – This add-on utilizes the IAM roles for service accounts
capability of Amazon EKS. The permissions in the AWSXrayWriteOnlyAccess and
CloudWatchAgentServerPolicy AWS managed policies are required. You can create an IAM 
role, attach the managed policies to it, and annotate the Kubernetes service account used by 
the add-on with the following command. Replace my-cluster with the name of your cluster 
and AmazonEKS_Observability_role with the name for your role. This command requires 
that you have eksctl installed on your device. If you need to use a different tool to create the 
role, attach the policy to it, and annotate the Kubernetes service account, see Configuring a 
Kubernetes service account to assume an IAM role.

eksctl create iamserviceaccount \ 
    --name cloudwatch-agent \ 
    --namespace amazon-cloudwatch \ 
    --cluster my-cluster \ 
    --role-name AmazonEKS_Observability_Role \ 
    --role-only \ 
    --attach-policy-arn arn:aws:iam::aws:policy/AWSXrayWriteOnlyAccess \ 
    --attach-policy-arn arn:aws:iam::aws:policy/CloudWatchAgentServerPolicy \ 
    --approve

• Additional information – For more information, see Install the CloudWatch agent.

Available Amazon EKS add-ons from Amazon EKS 585

https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_data-sources.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty-features-activation-model.html
https://docs.aws.amazon.com/guardduty/latest/ug/kubernetes-protection.html
https://docs.aws.amazon.com/guardduty/latest/ug/kubernetes-protection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSXrayWriteOnlyAccess
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/CloudWatchAgentServerPolicy
https://eksctl.io
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Observability-EKS-addon.html


Amazon EKS User Guide

Amazon EKS Pod Identity Agent

• Name – eks-pod-identity-agent

• Description – Amazon EKS Pod Identity provide the ability to manage credentials for your 
applications, similar to the way that Amazon EC2 instance profiles provide credentials to EC2 
instances.

• Required IAM permissions – This add-on users permissions from the Amazon EKS node IAM role.

• Update information – You can only update one minor version at a time. For example, if your 
current version is 1.27.x-eksbuild.y and you want to update to 1.29.x-eksbuild.y, 
then you must update your current version to 1.28.x-eksbuild.y and then update it again 
to 1.29.x-eksbuild.y. For more information about updating the add-on, see Updating the 
Amazon EKS add-on.

Additional Amazon EKS add-ons from independent software vendors

In addition to the previous list of Amazon EKS add-ons, you can also add a wide selection of 
operational software Amazon EKS add-ons from independent software vendors. Choose an add-on 
to learn more about it and its installation requirements.

Accuknox

• Publisher – Accuknox

• Name – accuknox_kubearmor

• Namespace – kubearmor

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Getting Started with KubeArmor in the KubeArmor 
documentation.

NetApp

• Publisher – NetApp

• Name – netapp_trident-operator

Additional Amazon EKS add-ons from independent software vendors 586

https://docs.kubearmor.io/kubearmor/quick-links/deployment_guide


Amazon EKS User Guide

• Namespace – trident

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Configure the Astra Trident EKS add-on in the NetApp 
documentation.

Calyptia

• Publisher – Calyptia

• Name – calyptia_fluent-bit

• Namespace – calytia-fluentbit

• Service account name – clyptia-fluentbit

• AWS managed IAM policy – AWSMarketplaceMeteringRegisterUsage.

• Command to create required IAM role – The following command requires that you have an 
IAM OpenID Connect (OIDC) provider for your cluster. To determine whether you have one, or 
to create one, see Creating an IAM OIDC provider for your cluster. Replace my-cluster with 
the name of your cluster and my-calyptia-role with the name for your role. This command 
requires that you have eksctl installed on your device. If you need to use a different tool to 
create the role and annotate the Kubernetes service account, see Configuring a Kubernetes 
service account to assume an IAM role.

eksctl create iamserviceaccount --name service-account-name  --namespace calyptia-
fluentbit --cluster my-cluster --role-name my-calyptia-role \ 
    --role-only --attach-policy-arn arn:aws:iam::aws:policy/
AWSMarketplaceMeteringRegisterUsage --approve

• Setup and usage instructions – See Calyptia for Fluent Bit in the Calyptia documentation.

Cribl

• Publisher – Cribl

• Name – cribl_cribledge

• Namespace – cribledge

• Service account name – A service account isn't used with this add-on.

Additional Amazon EKS add-ons from independent software vendors 587

https://docs.netapp.com/us-en/trident/trident-use/trident-aws-addon.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSMarketplaceMeteringRegisterUsage.html
https://eksctl.io
https://docs.calyptia.com/calyptia-for-fluent-bit/installation/eks-add-on


Amazon EKS User Guide

• AWS managed IAM policy – A managed policy isn't used with this add-on.

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Installing the Cribl Amazon EKS Add-on for Edge in the Cribl 
documentation.

Dynatrace

• Publisher – Dynatrace

• Name – dynatrace_dynatrace-operator

• Namespace – dynatrace

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Kubernetes monitoring in the dynatrace documentation.

Datree

• Publisher – Datree

• Name – datree_engine-pro

• Namespace – datree

• Service account name – datree-webhook-server-awsmp

• AWS managed IAM policy – AWSLicenseManagerConsumptionPolicy.

• Command to create required IAM role – The following command requires that you have an 
IAM OpenID Connect (OIDC) provider for your cluster. To determine whether you have one, or to 
create one, see Creating an IAM OIDC provider for your cluster. Replace my-cluster with the 
name of your cluster and my-datree-role with the name for your role. This command requires 
that you have eksctl installed on your device. If you need to use a different tool to create the 
role and annotate the Kubernetes service account, see Configuring a Kubernetes service account 
to assume an IAM role.

eksctl create iamserviceaccount --name datree-webhook-server-awsmp --namespace datree 
 --cluster my-cluster --role-name my-datree-role \ 
    --role-only --attach-policy-arn arn:aws:iam::aws:policy/service-role/
AWSLicenseManagerConsumptionPolicy --approve

Additional Amazon EKS add-ons from independent software vendors 588

https://docs.cribl.io/edge/usecase-edge-aws-eks/
https://www.dynatrace.com/technologies/kubernetes-monitoring/
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLicenseManagerConsumptionPolicy.html
https://eksctl.io


Amazon EKS User Guide

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Amazon EKS-intergration in the Datree documentation.

Datadog

• Publisher – Datadog

• Name – datadog_operator

• Namespace – datadog-agent

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Installing the Datadog Agent on Amazon EKS with the 
Datadog Operator Add-on in the Datadog documentation.

Groundcover

• Publisher – groundcover

• Name – groundcover_agent

• Namespace – groundcover

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Installing the groundcover Amazon EKS Add-on in the 
groundcover documentation.

Grafana Labs

• Publisher – Grafana Labs

• Name – grafana-labs_kubernetes-monitoring

• Namespace – monitoring

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

Additional Amazon EKS add-ons from independent software vendors 589

https://hub.datree.io/integrations/eks-integration
https://docs.datadoghq.com/containers/guide/operator-eks-addon/?tab=console
https://docs.datadoghq.com/containers/guide/operator-eks-addon/?tab=console
https://docs.groundcover.com/docs/~/changes/VhDDAl1gy1VIO3RIcgxD/configuration/customization-guide/customize-deployment/eks-add-on


Amazon EKS User Guide

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Configure Kubernetes Monitoring as an Add-on with 
Amazon EKS in the Grafana Labs documentation.

HA Proxy

• Publisher – HA Proxy

• Name – haproxy-technologies_kubernetes-ingress-ee

• Namespace – haproxy-controller

• Service account name – customer defined

• AWS managed IAM policy – AWSLicenseManagerConsumptionPolicy.

• Command to create required IAM role – The following command requires that you have an 
IAM OpenID Connect (OIDC) provider for your cluster. To determine whether you have one, or 
to create one, see Creating an IAM OIDC provider for your cluster. Replace my-cluster with 
the name of your cluster and my-haproxy-role with the name for your role. This command 
requires that you have eksctl installed on your device. If you need to use a different tool to 
create the role and annotate the Kubernetes service account, see Configuring a Kubernetes 
service account to assume an IAM role.

eksctl create iamserviceaccount --name service-account-name  --namespace haproxy-
controller --cluster my-cluster --role-name my-haproxy-role \ 
    --role-only --attach-policy-arn arn:aws:iam::aws:policy/service-role/
AWSLicenseManagerConsumptionPolicy --approve

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Install HAProxy Enterprise Kubernetes Ingress Controller on 
Amazon EKS from AWS in the HAProxy documentation.

Kpow

• Publisher – Factorhouse

• Name – factorhouse_kpow

• Namespace – factorhouse

• Service account name – kpow

• AWS managed IAM policy – AWSLicenseManagerConsumptionPolicy

Additional Amazon EKS add-ons from independent software vendors 590

https://grafana.com/docs/grafana-cloud/monitor-infrastructure/kubernetes-monitoring/configuration/config-aws-eks/
https://grafana.com/docs/grafana-cloud/monitor-infrastructure/kubernetes-monitoring/configuration/config-aws-eks/
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLicenseManagerConsumptionPolicy.html
https://eksctl.io
https://www.haproxy.com/documentation/kubernetes/1.8/enterprise/install/aws/install-using-marketplace/#create-the-required-iam-role
https://www.haproxy.com/documentation/kubernetes/1.8/enterprise/install/aws/install-using-marketplace/#create-the-required-iam-role
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLicenseManagerConsumptionPolicy.html


Amazon EKS User Guide

• Command to create required IAM role – The following command requires that you have an 
IAM OpenID Connect (OIDC) provider for your cluster. To determine whether you have one, or to 
create one, see Creating an IAM OIDC provider for your cluster. Replace my-cluster with the 
name of your cluster and my-kpow-role with the name for your role. This command requires 
that you have eksctl installed on your device. If you need to use a different tool to create the 
role and annotate the Kubernetes service account, see Configuring a Kubernetes service account 
to assume an IAM role.

eksctl create iamserviceaccount --name kpow --namespace factorhouse --cluster my-
cluster --role-name my-kpow-role \ 
    --role-only --attach-policy-arn arn:aws:iam::aws:policy/service-role/
AWSLicenseManagerConsumptionPolicy --approve

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See AWS Marketplace LM in the Kpow documentation.

Kubecost

• Publisher – Kubecost

• Name – kubecost_kubecost

• Namespace – kubecost

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See AWS Cloud Billing Integration in the Kubecost 
documentation.

• If your cluster is version 1.23 or later, you must have the the section called “Amazon EBS CSI 
driver” installed on your cluster. otherwise you will receive an error.

Kasten

• Publisher – Kasten by Veeam

• Name – kasten_k10

• Namespace – kasten-io

• Service account name – k10-k10

Additional Amazon EKS add-ons from independent software vendors 591

https://eksctl.io
https://docs.kpow.io/installation/aws-marketplace-lm/
https://docs.kubecost.com/install-and-configure/install/cloud-integration/aws-cloud-integrations


Amazon EKS User Guide

• AWS managed IAM policy – AWSLicenseManagerConsumptionPolicy.

• Command to create required IAM role – The following command requires that you have an 
IAM OpenID Connect (OIDC) provider for your cluster. To determine whether you have one, or to 
create one, see Creating an IAM OIDC provider for your cluster. Replace my-cluster with the 
name of your cluster and my-kasten-role with the name for your role. This command requires 
that you have eksctl installed on your device. If you need to use a different tool to create the 
role and annotate the Kubernetes service account, see Configuring a Kubernetes service account 
to assume an IAM role.

eksctl create iamserviceaccount --name k10-k10 --namespace kasten-io --cluster my-
cluster --role-name my-kasten-role \ 
    --role-only --attach-policy-arn arn:aws:iam::aws:policy/service-role/
AWSLicenseManagerConsumptionPolicy --approve

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Installing K10 on AWS using Amazon EKS Add-on in the 
Kasten documentation.

• Additional information – If your Amazon EKS cluster is version Kubernetes 1.23 or later, you 
must have the Amazon EBS CSI driver installed on your cluster with a default StorageClass.

Kong

• Publisher – Kong

• Name – kong_konnect-ri

• Namespace – kong

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Installing the Kong Gateway EKS Add-on in the Kong 
documentation.

LeakSignal

• Publisher – LeakSignal

• Name – leaksignal_leakagent

Additional Amazon EKS add-ons from independent software vendors 592

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSLicenseManagerConsumptionPolicy.html
https://eksctl.io
https://docs.kasten.io/latest/install/aws-eks-addon/aws-eks-addon.html
https://kong.github.io/aws-marketplace-addon-kong-gateway/


Amazon EKS User Guide

• Namespace – leakagent

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Install the LeakAgent add-on in the LeakSignal 
documentation.

New Relic

• Publisher – New Relic

• Name – new-relic_kubernetes-operator

• Namespace – newrelic

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Installing the New Relic Add-on for EKS in the New Relic 
documentation.

Rafay

• Publisher – Rafay

• Name – rafay-systems_rafay-operator

• Namespace – rafay-system

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Installing the Rafay Amazon EKS Add-on in the Rafay 
documentation.

Solo.io

• Publisher – Solo.io

• Name – solo-io_istio-distro

Additional Amazon EKS add-ons from independent software vendors 593

https://www.leaksignal.com/docs/LeakAgent/Deployment/AWS%20EKS%20Addon/
https://docs.newrelic.com/docs/infrastructure/amazon-integrations/connect/eks-add-on
https://docs.rafay.co/clusters/import/eksaddon/


Amazon EKS User Guide

• Namespace – istio-system

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Installing Istio in the Solo.io documentation.

Stormforge

• Publisher – Stormforge

• Name – stormforge_optimize-Live

• Namespace – stormforge-system

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Installing the StormForge Agent in the StormForge 
documentation.

Splunk

• Publisher – Splunk

• Name – splunk_splunk-otel-collector-chart

• Namespace – splunk-monitoring

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Install the Splunk add-on for Amazon EKS in the Splunk 
documentation.

Teleport

• Publisher – Teleport

• Name – teleport_teleport

• Namespace – teleport

Additional Amazon EKS add-ons from independent software vendors 594

https://docs.solo.io/gloo-mesh-enterprise/main/setup/install/eks_addon/
https://docs.stormforge.io/optimize-live/getting-started/install-v2/
https://docs.splunk.com/observability/en/gdi/opentelemetry/install-k8s-addon-eks.html


Amazon EKS User Guide

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See How Teleport Works in the Teleport documentation.

Tetrate

• Publisher – Tetrate Io

• Name – tetrate-io_istio-distro

• Namespace – istio-system

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See the Tetrate Istio Distro web site.

Upbound Universal Crossplane

• Publisher – Upbound

• Name – upbound_universal-crossplane

• Namespace – upbound-system

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See Upbound Universal Crossplane (UXP) in the Upbound 
documentation.

Upwind

• Publisher – Upwind

• Name – upwind

• Namespace – upwind

• Service account name – A service account isn't used with this add-on.

• AWS managed IAM policy – A managed policy isn't used with this add-on.

Additional Amazon EKS add-ons from independent software vendors 595

https://goteleport.com/how-it-works/
https://tetratelabs.io/
https://docs.upbound.io/uxp/


Amazon EKS User Guide

• Custom IAM permissions – Custom permissions aren't used with this add-on.

• Setup and usage instructions – See the installation steps in the Upwind documentation.

Managing Amazon EKS add-ons

Amazon EKS add-ons are a curated set of add-on software for Amazon EKS clusters. All Amazon 
EKS add-ons:

• include the latest security patches and bug fixes.

• are validated by AWS to work with Amazon EKS.

• reduce the amount of work required to manage the add-on software.

The AWS Management Console notifies you when a new version is available for an Amazon EKS 
add-on. You can simply initiate the update, and Amazon EKS updates the add-on software for you.

For a list of available add-ons, see Available Amazon EKS add-ons from Amazon EKS. For more 
information about Kubernetes field management, see  Kubernetes field management

Prerequisites

• An existing Amazon EKS cluster. To deploy one, see Getting started with Amazon EKS.

• If you're creating an add-on that uses a Kubernetes service account and IAM role, then you need 
to have an AWS Identity and Access Management (IAM) OpenID Connect (OIDC) provider for your 
cluster. To determine whether you have one for your cluster, or to create one, see Creating an 
IAM OIDC provider for your cluster.

Creating an add-on

You can create an Amazon EKS add-on using eksctl, the AWS Management Console, or the AWS 
CLI. If the add-on requires an IAM role, see the details for the specific add-on in Available Amazon 
EKS add-ons from Amazon EKS for details about creating the role.

eksctl

Prerequisite

Version 0.172.0 or later of the eksctl command line tool installed on your device or AWS 
CloudShell. To install or update eksctl, see Installation in the eksctl documentation.

Managing add-ons 596

https://docs.upwind.io/install-sensor/kubernetes/install?installation-method=amazon-eks-addon
https://eksctl.io/installation


Amazon EKS User Guide

To create an Amazon EKS add-on using eksctl

1. View the names of add-ons available for a cluster version. Replace 1.29 with the version of 
your cluster.

eksctl utils describe-addon-versions --kubernetes-version 1.29 | grep AddonName

An example output is as follows.

"AddonName": "aws-ebs-csi-driver", 
                        "AddonName": "coredns", 
                        "AddonName": "kube-proxy", 
                        "AddonName": "vpc-cni", 
                        "AddonName": "adot", 
                        "AddonName": "dynatrace_dynatrace-operator", 
                        "AddonName": "upbound_universal-crossplane", 
                        "AddonName": "teleport_teleport", 
                        "AddonName": "factorhouse_kpow", 
                        [...]

2. View the versions available for the add-on that you would like to create. Replace 1.29 with 
the version of your cluster. Replace name-of-addon with the name of the add-on you 
want to view the versions for. The name must be one of the names returned in the previous 
steps.

eksctl utils describe-addon-versions --kubernetes-version 1.29 --name name-of-
addon | grep AddonVersion

The following output is an example of what is returned for the add-on named vpc-cni. 
You can see that the add-on has several available versions.

"AddonVersions": [ 
    "AddonVersion": "v1.12.0-eksbuild.1", 
    "AddonVersion": "v1.11.4-eksbuild.1", 
    "AddonVersion": "v1.10.4-eksbuild.1", 
    "AddonVersion": "v1.9.3-eksbuild.1",

3. Determine whether the add-on you want to create is an Amazon EKS or AWS Marketplace 
add-on. The AWS Marketplace has third party add-ons that require you to complete 
additional steps to create the add-on.

Managing add-ons 597



Amazon EKS User Guide

eksctl utils describe-addon-versions --kubernetes-version 1.29 --name name-of-
addon | grep ProductUrl

If no output is returned, then the add-on is an Amazon EKS. If output is returned, then 
the add-on is an AWS Marketplace add-on. The following output is for an add-on named
teleport_teleport.

"ProductUrl": "https://aws.amazon.com/marketplace/pp?
sku=3bda70bb-566f-4976-806c-f96faef18b26"

You can learn more about the add-on in the AWS Marketplace with the returned URL. 
If the add-on requires a subscription, you can subscribe to the add-on through the AWS 
Marketplace. If you're going to create an add-on from the AWS Marketplace, then the
IAM principal that you're using to create the add-on must have permission to create the
AWSServiceRoleForAWSLicenseManagerRole service-linked role. For more information 
about assigning permissions to an IAM entity, see Adding and removing IAM identity 
permissions in the IAM User Guide.

4. Create an Amazon EKS add-on. Copy the command that follows to your device. Make the 
following modifications to the command as needed and then run the modified command:

• Replace my-cluster with the name of your cluster.

• Replace name-of-addon with the name of the add-on that you want to create.

• If you want a version of the add-on that's earlier than the latest version, then replace
latest with the version number returned in the output of a previous step that you want 
to use.

• If the add-on uses a service account role, replace 111122223333 with your account ID 
and replace role-name with the name of the role. For instructions on creating a role 
for your service account, see the documentation for the add-on that you're creating. 
Specifying a service account role requires that you have an IAM OpenID Connect (OIDC) 
provider for your cluster. To determine whether you have one for your cluster, or to 
create one, see Creating an IAM OIDC provider for your cluster.

If the add-on doesn't use a service account role, delete --service-account-role-
arn arn:aws:iam::111122223333:role/role-name.

Managing add-ons 598

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/license-manager/latest/userguide/license-manager-role-core.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html


Amazon EKS User Guide

• This example command overwrites the configuration of any existing self-managed 
version of the add-on, if there is one. If you don't want to overwrite the configuration of 
an existing self-managed add-on, remove the --force option. If you remove the option, 
and the Amazon EKS add-on needs to overwrite the configuration of an existing self-
managed add-on, then creation of the Amazon EKS add-on fails with an error message to 
help you resolve the conflict. Before specifying this option, make sure that the Amazon 
EKS add-on doesn't manage settings that you need to manage, because those settings 
are overwritten with this option.

eksctl create addon --cluster my-cluster --name name-of-addon --version latest
 \ 
     --service-account-role-arn arn:aws:iam::111122223333:role/role-name --
force

You can see a list of all available options for the command.

eksctl create addon --help

For more information about available options see Addons in the eksctl documentation.

AWS Management Console

To create an Amazon EKS add-on using the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, select Clusters, and then select the name of the cluster that 
you want to create the add-on for.

3. Choose the Add-ons tab.

4. Choose Get more add-ons.

5. Choose the add-ons that you want to add to your cluster. You can add as many Amazon 
EKS add-ons and AWS Marketplace add-ons as you require.

For AWS Marketplace add-ons the IAM principal that you're using to create the add-on 
must have permissions to read entitlements for the add-on from the AWS LicenseManager. 
AWS LicenseManager requires AWSServiceRoleForAWSLicenseManagerRole service-linked 
role (SLR) that allows AWS resources to manage licenses on your behalf. The SLR is a one 
time requirement, per account, and you will not have to create separate SLR's for each add-

Managing add-ons 599

https://eksctl.io/usage/addons/
https://console.aws.amazon.com/eks/home#/clusters
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/license-manager/latest/userguide/license-manager-role-core.html


Amazon EKS User Guide

on nor each cluster. For more information about assigning permissions to an IAM principal
see Adding and removing IAM identity permissions in the IAM User Guide.

If the AWS Marketplace add-ons that you want to install aren't listed, you can search for 
available add-ons by entering text in the search box. In the Filtering options, you can also 
filter by category, vendor, or pricing model and then choose the add-ons from the search 
results. Once you've selected the add-ons that you want to install, choose Next.

6. On the Configure selected add-ons settings page:

• Choose View subscription options to open the Subscription options form. Review the
Pricing details and Legal sections, then choose the Subscribe button to continue.

• For Version, select the version that you want to install. We recommend the version 
marked latest, unless the individual add-on that you're creating recommends a 
different version. To determine whether an add-on has a recommended version, see the
documentation for the add-on that you're creating.

• If all of the add-ons that you selected have Requires subscription under Status, select
Next. You can't configure those add-ons further until you've subscribed to them after 
your cluster is created. For the add-ons that don't have Requires subscription under
Status:

• For Select IAM role, accept the default option, unless the add-on requires IAM 
permissions. If the add-on requires AWS permissions, you can use the IAM role of the 
node (Not set) or an existing role that you created for use with the add-on. If there's 
no role to select, then you don't have an existing role. Regardless of which option 
your choose, see the documentation for the add-on that you're creating to create an 
IAM policy and attach it to a role. Selecting an IAM role requires that you have an IAM 
OpenID Connect (OIDC) provider for your cluster. To determine whether you have one 
for your cluster, or to create one, see Creating an IAM OIDC provider for your cluster.

• Choose Optional configuration settings.

• If the add-on requires configuration, enter it in the Configuration values box. 
To determine whether the add-on requires configuration information, see the
documentation for the add-on that you're creating.

• Select one of the available options for Conflict resolution method.

• Choose Next.

7. On the Review and add page, choose Create. After the add-on installation is complete, you 
see your installed add-ons.

Managing add-ons 600

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html


Amazon EKS User Guide

8. If any of the add-ons that you installed require a subscription, complete the following 
steps:

1. Choose the Subscribe button in the lower right corner for the add-on. You're taken to 
the page for the add-on in the AWS Marketplace. Read the information about the add-on 
such as its Product Overview and Pricing Information.

2. Select the Continue to Subscribe button on the top right of the add-on page.

3. Read through the Terms and Conditions. If you agree to them, choose Accept Terms. 
It may take several minutes to process the subscription. While the subscription is 
processing, the Return to Amazon EKS Console button is grayed out.

4. Once the subscription has finished processing, the Return to Amazon EKS Console
button is no longer grayed out. Choose the button to go back to the Amazon EKS 
console Add-ons tab for your cluster.

5. For the add-on that you subscribed to, choose Remove and reinstall and then choose
Reinstall add-on. Installation of the add-on can take several minutes. When Installation 
is complete, you can configure the add-on.

AWS CLI

Prerequisite

Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface 
(AWS CLI) installed and configured on your device or AWS CloudShell. To check your current 
version, use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers 
such yum, apt-get, or Homebrew for macOS are often several versions behind the latest 
version of the AWS CLI. To install the latest version, see Installing, updating, and uninstalling 
the AWS CLI and Quick configuration with aws configure in the AWS Command Line Interface 
User Guide. The AWS CLI version that is installed in AWS CloudShell might also be several 
versions behind the latest version. To update it, see Installing AWS CLI to your home directory in 
the AWS CloudShell User Guide.

To create an Amazon EKS add-on using the AWS CLI

1. Determine which add-ons are available. You can see all available add-ons, their type, and 
their publisher. You can also see the URL for add-ons that are available through the AWS 
Marketplace. Replace 1.29 with the version of your cluster.

Managing add-ons 601

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software


Amazon EKS User Guide

aws eks describe-addon-versions --kubernetes-version 1.29 \ 
    --query 'addons[].{MarketplaceProductUrl: marketplaceInformation.productUrl, 
 Name: addonName, Owner: owner Publisher: publisher, Type: type}' --output table

An example output is as follows.

---------------------------------------------------------------------------------------------------------------------------------------------------------
|                                                                 
 DescribeAddonVersions                                                           
       |
+---------------------------------------------------------------
+-------------------------------+------------------+--------------
+---------------------+
|                     MarketplaceProductUrl                     |             
 Name              |      Owner       |  Publisher   |        Type         |
+---------------------------------------------------------------
+-------------------------------+------------------+--------------
+---------------------+
|  None                                                         |  aws-ebs-csi-
driver           |  aws             |  eks         |  storage            |
|  None                                                         |  coredns       
                |  aws             |  eks         |  networking         |
|  None                                                         |  kube-proxy    
                |  aws             |  eks         |  networking         |
|  None                                                         |  vpc-cni       
                |  aws             |  eks         |  networking         |
|  None                                                         |  adot          
                |  aws             |  eks         |  observability      |
|  https://aws.amazon.com/marketplace/pp/prodview-brb73nceicv7u |  
 dynatrace_dynatrace-operator |  aws-marketplace |  dynatrace   |  monitoring    
      |
|  https://aws.amazon.com/marketplace/pp/prodview-uhc2iwi5xysoc |  
 upbound_universal-crossplane |  aws-marketplace |  upbound     |  infra-
management   |
|  https://aws.amazon.com/marketplace/pp/prodview-hd2ydsrgqy4li |  
 teleport_teleport            |  aws-marketplace |  teleport    |  policy-
management  |
|  https://aws.amazon.com/marketplace/pp/prodview-vgghgqdsplhvc |  
 factorhouse_kpow             |  aws-marketplace |  factorhouse |  monitoring    
      |
|  [...]                                                        |  [...]         
                |  [...]           |  [...]       |  [...]              |

Managing add-ons 602



Amazon EKS User Guide

+---------------------------------------------------------------
+-------------------------------+------------------+--------------
+---------------------+

Your output might be different. In this example output, there are three different add-ons 
available of type networking and five add-ons with a publisher of type eks. The add-ons 
with aws-marketplace in the Owner column may require a subscription before you can 
install them. You can visit the URL to learn more about the add-on and to subscribe to it.

2. You can see which versions are available for each add-on. Replace 1.29 with the version 
of your cluster and replace vpc-cni with the name of an add-on returned in the previous 
step.

aws eks describe-addon-versions --kubernetes-version 1.29 --addon-name vpc-cni \ 
    --query 'addons[].addonVersions[].{Version: addonVersion, Defaultversion: 
 compatibilities[0].defaultVersion}' --output table

An example output is as follows.

------------------------------------------
|          DescribeAddonVersions         |
+-----------------+----------------------+
| Defaultversion  |       Version        |
+-----------------+----------------------+
|  False          |  v1.12.0-eksbuild.1  |
|  True           |  v1.11.4-eksbuild.1  |
|  False          |  v1.10.4-eksbuild.1  |
|  False          |  v1.9.3-eksbuild.1   |
+-----------------+----------------------+

The version with True in the Defaultversion column is the version that the add-on is 
created with, by default.

3. (Optional) Find the configuration options for your chosen add-on by running the following 
command:

aws eks describe-addon-configuration --addon-name vpc-cni --addon-
version v1.12.0-eksbuild.1

{ 

Managing add-ons 603



Amazon EKS User Guide

    "addonName": "vpc-cni", 
    "addonVersion": "v1.12.0-eksbuild.1", 
    "configurationSchema": "{\"$ref\":\"#/definitions/VpcCni\",\"$schema
\":\"http://json-schema.org/draft-06/schema#\",\"definitions\":{\"Cri\":
{\"additionalProperties\":false,\"properties\":{\"hostPath\":{\"$ref\":
\"#/definitions/HostPath\"}},\"title\":\"Cri\",\"type\":\"object\"},\"Env
\":{\"additionalProperties\":false,\"properties\":{\"ADDITIONAL_ENI_TAGS
\":{\"type\":\"string\"},\"AWS_VPC_CNI_NODE_PORT_SUPPORT\":{\"format\":
\"boolean\",\"type\":\"string\"},\"AWS_VPC_ENI_MTU\":{\"format\":\"integer
\",\"type\":\"string\"},\"AWS_VPC_K8S_CNI_CONFIGURE_RPFILTER\":{\"format
\":\"boolean\",\"type\":\"string\"},\"AWS_VPC_K8S_CNI_CUSTOM_NETWORK_CFG\":
{\"format\":\"boolean\",\"type\":\"string\"},\"AWS_VPC_K8S_CNI_EXTERNALSNAT
\":{\"format\":\"boolean\",\"type\":\"string\"},\"AWS_VPC_K8S_CNI_LOGLEVEL
\":{\"type\":\"string\"},\"AWS_VPC_K8S_CNI_LOG_FILE\":{\"type
\":\"string\"},\"AWS_VPC_K8S_CNI_RANDOMIZESNAT\":{\"type\":
\"string\"},\"AWS_VPC_K8S_CNI_VETHPREFIX\":{\"type\":\"string
\"},\"AWS_VPC_K8S_PLUGIN_LOG_FILE\":{\"type\":\"string\"},
\"AWS_VPC_K8S_PLUGIN_LOG_LEVEL\":{\"type\":\"string\"},\"DISABLE_INTROSPECTION
\":{\"format\":\"boolean\",\"type\":\"string\"},\"DISABLE_METRICS\":{\"format
\":\"boolean\",\"type\":\"string\"},\"DISABLE_NETWORK_RESOURCE_PROVISIONING
\":{\"format\":\"boolean\",\"type\":\"string\"},\"ENABLE_POD_ENI\":{\"format
\":\"boolean\",\"type\":\"string\"},\"ENABLE_PREFIX_DELEGATION\":{\"format
\":\"boolean\",\"type\":\"string\"},\"WARM_ENI_TARGET\":{\"format\":\"integer
\",\"type\":\"string\"},\"WARM_PREFIX_TARGET\":{\"format\":\"integer\",
\"type\":\"string\"}},\"title\":\"Env\",\"type\":\"object\"},\"HostPath\":
{\"additionalProperties\":false,\"properties\":{\"path\":{\"type\":\"string\"}},
\"title\":\"HostPath\",\"type\":\"object\"},\"Limits\":{\"additionalProperties
\":false,\"properties\":{\"cpu\":{\"type\":\"string\"},\"memory\":{\"type
\":\"string\"}},\"title\":\"Limits\",\"type\":\"object\"},\"Resources\":
{\"additionalProperties\":false,\"properties\":{\"limits\":{\"$ref\":\"#/
definitions/Limits\"},\"requests\":{\"$ref\":\"#/definitions/Limits\"}},
\"title\":\"Resources\",\"type\":\"object\"},\"VpcCni\":{\"additionalProperties
\":false,\"properties\":{\"cri\":{\"$ref\":\"#/definitions/Cri\"},\"env\":
{\"$ref\":\"#/definitions/Env\"},\"resources\":{\"$ref\":\"#/definitions/
Resources\"}},\"title\":\"VpcCni\",\"type\":\"object\"}}}"
}

The output is a standard JSON schema.

Here is an example of valid configuration values, in JSON format, that works with the 
schema above.

{ 

Managing add-ons 604



Amazon EKS User Guide

  "resources": { 
    "limits": { 
      "cpu": "100m" 
    } 
  }
}

Here is an example of valid configuration values, in YAML format, that works with the 
schema above.

  resources:  
    limits:  
      cpu: 100m     

4. Create an Amazon EKS add-on. Copy the command that follows to your device. Make the 
following modifications to the command as needed and then run the modified command:

• Replace my-cluster with the name of your cluster.

• Replace vpc-cni with an add-on name returned in the output of the previous step that 
you want to create.

• Replace version-number with the version returned in the output of the previous step 
that you want to use.

• If the add-on uses a Kubernetes service account and IAM role, replace 111122223333
with your account ID and role-name with the name of an existing IAM role that you've 
created. For instructions on creating the role, see the documentation for the add-on that 
you're creating. Specifying a service account role requires that you have an IAM OpenID 
Connect (OIDC) provider for your cluster. To determine whether you have one for your 
cluster, or to create one, see Creating an IAM OIDC provider for your cluster.

If the add-on doesn't use a Kubernetes service account and IAM role, delete --service-
account-role-arn arn:aws:iam::111122223333:role/role-name.

• These example commands overwrites the --configuration-values option of any 
existing self-managed version of the add-on, if there is one. Replace this with the 
desired configuration values, such as a string or a file input. If you don't want to provide 
configuration values, then delete the --configuration-values option. If you don't 
want the AWS CLI to overwrite the configuration of an existing self-managed add-on, 
remove the --resolve-conflicts OVERWRITE option. If you remove the option, 
and the Amazon EKS add-on needs to overwrite the configuration of an existing self-

Managing add-ons 605



Amazon EKS User Guide

managed add-on, then creation of the Amazon EKS add-on fails with an error message to 
help you resolve the conflict. Before specifying this option, make sure that the Amazon 
EKS add-on doesn't manage settings that you need to manage, because those settings 
are overwritten with this option.

aws eks create-addon --cluster-name my-cluster --addon-name vpc-cni --addon-
version version-number \ 
    --service-account-role-arn arn:aws:iam::111122223333:role/role-name --
configuration-values '{"resources":{"limits":{"cpu":"100m"}}}' --resolve-
conflicts OVERWRITE

aws eks create-addon --cluster-name my-cluster --addon-name vpc-cni --addon-
version version-number \ 
    --service-account-role-arn arn:aws:iam::111122223333:role/role-name --
configuration-values 'file://example.yaml' --resolve-conflicts OVERWRITE

For a full list of available options, see create-addon in the Amazon EKS Command Line 
Reference. If the add-on that you created has aws-marketplace listed in the Owner
column of a previous step, then creation may fail, and you may receive an error message 
similar to the following error.

{ 
    "addon": { 
        "addonName": "addon-name", 
        "clusterName": "my-cluster", 
        "status": "CREATE_FAILED", 
        "addonVersion": "version", 
        "health": { 
            "issues": [ 
                { 
                    "code": "AddonSubscriptionNeeded", 
                    "message": "You are currently not subscribed to this add-
on. To subscribe, visit the AWS Marketplace console, agree to the seller EULA, 
 select the pricing type if required, then re-install the add-on"
[...]

If you receive an error similar to the error in the previous output, visit the URL in the output 
of a previous step to subscribe to the add-on. Once subscribed, run the create-addon
command again.

Managing add-ons 606

https://docs.aws.amazon.com/cli/latest/reference/eks/create-addon.html


Amazon EKS User Guide

Updating an add-on

Amazon EKS doesn't automatically update an add-on when new versions are released or after 
you update your cluster to a new Kubernetes minor version. To update an add-on for an existing 
cluster, you must initiate the update. After you initiate the update, Amazon EKS updates the add-
on for you. Before updating an add-on, review the current documentation for the add-on. For a list 
of available add-ons, see Available Amazon EKS add-ons from Amazon EKS. If the add-on requires 
an IAM role, see the details for the specific add-on in Available Amazon EKS add-ons from Amazon 
EKS for details about creating the role.

You can update an Amazon EKS add-on using eksctl, the AWS Management Console, or the AWS 
CLI.

eksctl

Prerequisite

Version 0.172.0 or later of the eksctl command line tool installed on your device or AWS 
CloudShell. To install or update eksctl, see Installation in the eksctl documentation.

To update an Amazon EKS add-on using eksctl

1. Determine the current add-ons and add-on versions installed on your cluster. Replace my-
cluster with the name of your cluster.

eksctl get addon --cluster my-cluster

An example output is as follows.

NAME        VERSION              STATUS  ISSUES  IAMROLE  UPDATE AVAILABLE
coredns     v1.8.7-eksbuild.2    ACTIVE  0
kube-proxy  v1.23.7-eksbuild.1   ACTIVE  0                v1.23.8-eksbuild.2
vpc-cni     v1.10.4-eksbuild.1   ACTIVE  0                v1.12.0-
eksbuild.1,v1.11.4-eksbuild.1,v1.11.3-eksbuild.1,v1.11.2-eksbuild.1,v1.11.0-
eksbuild.1

Your output might look different, depending on which add-ons and versions that you have 
on your cluster. You can see that in the previous example output, two existing add-ons on 
the cluster have newer versions available in the UPDATE AVAILABLE column.

2. Update the add-on.

Managing add-ons 607

https://eksctl.io/installation


Amazon EKS User Guide

1. Copy the command that follows to your device. Make the following modifications to the 
command as needed:

• Replace my-cluster with the name of your cluster.

• Replace region-code with the AWS Region that your cluster is in.

• Replace vpc-cni with the name of an add-on returned in the output of the previous 
step that you want to update.

• If you want to update to a version earlier than the latest available version, then replace
latest with the version number returned in the output of the previous step that you 
want to use. Some add-ons have recommended versions. For more information, see 
the documentation for the add-on that you're updating.

• If the add-on uses a Kubernetes service account and IAM role, replace 111122223333
with your account ID and role-name with the name of an existing IAM role that 
you've created. For instructions on creating the role, see the documentation for the 
add-on that you're creating. Specifying a service account role requires that you have 
an IAM OpenID Connect (OIDC) provider for your cluster. To determine whether you 
have one for your cluster, or to create one, see Creating an IAM OIDC provider for your 
cluster.

If the add-on doesn't use a Kubernetes service account and IAM role, delete the
serviceAccountRoleARN: arn:aws:iam::111122223333:role/role-name
line.

• The preserve option preserves existing values for the add-on. If you have set custom 
values for add-on settings, and you don't use this option, Amazon EKS overwrites your 
values with its default values. If you use this option, then we recommend that you test 
any field and value changes on a non-production cluster before updating the add-on 
on your production cluster. If you change this value to overwrite, all settings are 
changed to Amazon EKS default values. If you've set custom values for any settings, 
they might be overwritten with Amazon EKS default values. If you change this value 
to none, Amazon EKS doesn't change the value of any settings, but the update might 
fail. If the update fails, you receive an error message to help you resolve the conflict.

cat >update-addon.yaml <<EOF
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata: 
  name: my-cluster

Managing add-ons 608



Amazon EKS User Guide

  region: region-code

addons:
- name: vpc-cni
  version: latest
  serviceAccountRoleARN: arn:aws:iam::111122223333:role/role-name
  resolveConflicts: preserve
EOF

2. Run the modified command to create the update-addon.yaml file.

3. Apply the config file to your cluster.

eksctl update addon -f update-addon.yaml

For more information about updating add-ons, see Addons in the eksctl documentation.

AWS Management Console

To update an Amazon EKS add-on using the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, select Clusters, and then select the name of the cluster that 
you want to configure the add-on for.

3. Choose the Add-ons tab.

4. Select the box in the top right of the add-on box and then choose Edit.

5. On the Configure name of addon page:

• Select the Version that you'd like to use. The add-on might have a recommended version. 
For more information, see the documentation for the add-on that you're updating.

• For Select IAM role, you can use the IAM role of the node (Not set) or an existing role 
that you created for use with the add-on. If there's no role to select, then you don't have 
an existing role. Regardless of which option your choose, see the documentation for the 
add-on that you're creating to create an IAM policy and attach it to a role. Selecting an 
IAM role requires that you have an IAM OpenID Connect (OIDC) provider for your cluster. 
To determine whether you have one for your cluster, or to create one, see Creating an 
IAM OIDC provider for your cluster.

Managing add-ons 609

https://eksctl.io/usage/addons/
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

• For Code editor, enter any add-on specific configuration information. For more 
information, see the documentation for the add-on that you're updating.

• For Conflict resolution method, select one of the options. If you have set custom values 
for add-on settings, we recommend the Preserve option. If you don't choose this option, 
Amazon EKS overwrites your values with its default values. If you use this option, then 
we recommend that you test any field and value changes on a non-production cluster 
before updating the add-on on your production cluster.

6. Choose Update.

AWS CLI

Prerequisite

Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface 
(AWS CLI) installed and configured on your device or AWS CloudShell. To check your current 
version, use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers 
such yum, apt-get, or Homebrew for macOS are often several versions behind the latest 
version of the AWS CLI. To install the latest version, see Installing, updating, and uninstalling 
the AWS CLI and Quick configuration with aws configure in the AWS Command Line Interface 
User Guide. The AWS CLI version that is installed in AWS CloudShell might also be several 
versions behind the latest version. To update it, see Installing AWS CLI to your home directory in 
the AWS CloudShell User Guide.

To update an Amazon EKS add-on using the AWS CLI

1. See a list of installed add-ons. Replace my-cluster with the name of your cluster.

aws eks list-addons --cluster-name my-cluster

An example output is as follows.

{ 
    "addons": [ 
        "coredns", 
        "kube-proxy", 
        "vpc-cni" 
    ]
}

Managing add-ons 610

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software


Amazon EKS User Guide

2. View the current version of the add-on that you want to update. Replace my-cluster with 
your cluster name and vpc-cni with the name of the add-on that you want to update.

aws eks describe-addon --cluster-name my-cluster --addon-name vpc-cni --query 
 "addon.addonVersion" --output text

An example output is as follows.

v1.10.4-eksbuild.1

3. You can see which versions of the add-on are available for your cluster's version. Replace
1.29 with your cluster's version and vpc-cni with the name of the add-on that you want 
to update.

aws eks describe-addon-versions --kubernetes-version 1.29 --addon-name vpc-cni \ 
    --query 'addons[].addonVersions[].{Version: addonVersion, Defaultversion: 
 compatibilities[0].defaultVersion}' --output table

An example output is as follows.

------------------------------------------
|          DescribeAddonVersions         |
+-----------------+----------------------+
| Defaultversion  |       Version        |
+-----------------+----------------------+
|  False          |  v1.12.0-eksbuild.1  |
|  True           |  v1.11.4-eksbuild.1  |
|  False          |  v1.10.4-eksbuild.1  |
|  False          |  v1.9.3-eksbuild.1   |
+-----------------+----------------------+

The version with True in the Defaultversion column is the version that the add-on is 
created with, by default.

4. Update your add-on. Copy the command that follows to your device. Make the following 
modifications to the command, as needed, and then run the modified command.

• Replace my-cluster with the name of your cluster.

• Replace vpc-cni with the name of the add-on that you want to update that was 
returned in the output of a previous step.

Managing add-ons 611



Amazon EKS User Guide

• Replace version-number with the version returned in the output of the previous 
step that you want to update to. Some add-ons have recommended versions. For more 
information, see the documentation for the add-on that you're updating.

• If the add-on uses a Kubernetes service account and IAM role, replace 111122223333
with your account ID and role-name with the name of an existing IAM role that you've 
created. For instructions on creating the role, see the documentation for the add-on that 
you're creating. Specifying a service account role requires that you have an IAM OpenID 
Connect (OIDC) provider for your cluster. To determine whether you have one for your 
cluster, or to create one, see Creating an IAM OIDC provider for your cluster.

If the add-on doesn't use a Kubernetes service account and IAM role, delete the
serviceAccountRoleARN: arn:aws:iam::111122223333:role/role-name line.

• The --resolve-conflicts PRESERVE option preserves existing values for the add-
on. If you have set custom values for add-on settings, and you don't use this option, 
Amazon EKS overwrites your values with its default values. If you use this option, then 
we recommend that you test any field and value changes on a non-production cluster 
before updating the add-on on your production cluster. If you change this value to
overwrite, all settings are changed to Amazon EKS default values. If you've set custom 
values for any settings, they might be overwritten with Amazon EKS default values. If 
you change this value to none, Amazon EKS doesn't change the value of any settings, 
but the update might fail. If the update fails, you receive an error message to help you 
resolve the conflict.

• If you want to remove all custom configuration then perform the update using the --
configuration-values '{}' option. This sets all custom configuration back to the 
default values. If you don't want to change your custom configuration, don't provide 
the --configuration-values flag. If you want to adjust a custom configuration 
then replace {} with the new parameters. To see a list of parameters, see viewing 
configuration schema step in the create an add-on section.

aws eks update-addon --cluster-name my-cluster --addon-name vpc-cni --addon-
version version-number \ 
    --service-account-role-arn arn:aws:iam::111122223333:role/role-name --
configuration-values '{}' --resolve-conflicts PRESERVE

Managing add-ons 612



Amazon EKS User Guide

5. Check the status of the update. Replace my-cluster with the name of your cluster and
vpc-cni with the name of the add-on you're updating.

aws eks describe-addon --cluster-name my-cluster --addon-name vpc-cni

An example output is as follows.

{ 
    "addon": { 
        "addonName": "vpc-cni", 
        "clusterName": "my-cluster", 
        "status": "UPDATING",
[...]

The update is complete when the status is ACTIVE.

Deleting an add-on

When you delete an Amazon EKS add-on:

• There is no downtime for the functionality that the add-on provides.

• If the add-on has an IAM role associated with it, the IAM role isn't removed.

• Amazon EKS stops managing settings for the add-on.

• The console stops notifying you when new versions are available.

• You can't update the add-on using any AWS tools or APIs.

• You can choose to leave the add-on software on your cluster so that you can self-manage it, 
or you can remove the add-on software from your cluster. You should only remove the add-
on software from your cluster if there are no resources on your cluster are dependent on the 
functionality that the add-on provides.

You can delete an Amazon EKS add-on from your cluster using eksctl, the AWS Management 
Console, or the AWS CLI.

eksctl

Prerequisite

Managing add-ons 613



Amazon EKS User Guide

Version 0.172.0 or later of the eksctl command line tool installed on your device or AWS 
CloudShell. To install or update eksctl, see Installation in the eksctl documentation.

To delete an Amazon EKS add-on using eksctl

1. Determine the current add-ons installed on your cluster. Replace my-cluster with the name 
of your cluster.

eksctl get addon --cluster my-cluster

An example output is as follows.

NAME        VERSION              STATUS  ISSUES  IAMROLE  UPDATE AVAILABLE
coredns     v1.8.7-eksbuild.2    ACTIVE  0
kube-proxy  v1.23.7-eksbuild.1   ACTIVE  0                 
vpc-cni     v1.10.4-eksbuild.1   ACTIVE  0
[...]

Your output might look different, depending on which add-ons and versions that you have on 
your cluster.

2. Delete the add-on. Replace my-cluster with the name of your cluster and name-of-add-
on with the name of the add-on returned in the output of the previous step that you want 
to remove. If you remove the --preserve option, in addition to Amazon EKS no longer 
managing the add-on, the add-on software is removed from your cluster.

eksctl delete addon --cluster my-cluster --name name-of-addon --preserve

AWS Management Console

To delete an Amazon EKS add-on using the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, select Clusters, and then select the name of the cluster that you 
want to remove the Amazon EKS add-on for.

3. Choose the Add-ons tab.

4. Select the check box in the upper right of the add-on box and then choose Remove. Select
Preserve on the cluster if you want Amazon EKS to stop managing settings for the add-on, 

Managing add-ons 614

https://eksctl.io/installation
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

but want to retain the add-on software on your cluster so that you can self-manage all of the 
settings for the add-on. Type the add-on name and then select Remove.

AWS CLI

Prerequisite

Version 0.172.0 or later of the eksctl command line tool installed on your device or AWS 
CloudShell. To install or update eksctl, see Installation in the eksctl documentation.

To delete an Amazon EKS add-on using the AWS CLI

1. See a list of installed add-ons. Replace my-cluster with the name of your cluster.

aws eks list-addons --cluster-name my-cluster

An example output is as follows.

{ 
    "addons": [ 
        "coredns", 
        "kube-proxy", 
        "vpc-cni", 
        "name-of-addon" 
    ]
}

2. Delete the installed add-on. Replace my-cluster with the name of your cluster and name-
of-add-on with the name of the add-on that you want to remove. Removing --preserve
removes the add-on software from your cluster.

aws eks delete-addon --cluster-name my-cluster --addon-name name-of-addon --
preserve

The abbreviated example output is as follows.

{ 
    "addon": { 
        "addonName": "name-of-add-on", 
        "clusterName": "my-cluster", 

Managing add-ons 615

https://eksctl.io/installation


Amazon EKS User Guide

        "status": "DELETING",
[...]

3. Check the status of the deletion. Replace my-cluster with the name of your cluster and
name-of-addon with the name of the add-on that you're removing.

aws eks describe-addon --cluster-name my-cluster --addon-name name-of-addon

After the add-on is deleted, the example output is as follows.

An error occurred (ResourceNotFoundException) when calling the DescribeAddon 
 operation: No addon: name-of-addon found in cluster: my-cluster

Kubernetes field management

Amazon EKS add-ons are installed to your cluster using standard, best practice configurations. For 
more information about adding an Amazon EKS add-on to your cluster, see Amazon EKS add-ons.

You may want to customize the configuration of an Amazon EKS add-on to enable advanced 
features. Amazon EKS uses the Kubernetes server-side apply feature to enable management of an 
add-on by Amazon EKS without overwriting your configuration for settings that aren't managed 
by Amazon EKS. For more information, see Server-Side Apply in the Kubernetes documentation. 
To achieve this, Amazon EKS manages a minimum set of fields for every add-on that it installs. You 
can modify all fields that aren't managed by Amazon EKS, or another Kubernetes control plane 
process such as kube-controller-manager, without issue.

Important

Modifying a field managed by Amazon EKS prevents Amazon EKS from managing the add-
on and may result in your changes being overwritten when an add-on is updated.

View field management status

You can use kubectl to see which fields are managed by Amazon EKS for any Amazon EKS add-
on.

Kubernetes field management 616

https://kubernetes.io/docs/reference/using-api/server-side-apply/


Amazon EKS User Guide

To see the management status of a field

1. Determine which add-on that you want to examine. To see all of the deployments and
DaemonSets deployed to your cluster, see View Kubernetes resources.

2. View the managed fields for an add-on by running the following command:

kubectl get type/add-on-name -n add-on-namespace -o yaml

For example, you can see the managed fields for the CoreDNS add-on with the following 
command.

kubectl get deployment/coredns -n kube-system -o yaml

Field management is listed in the following section in the returned output.

[...]
managedFields: 
  - apiVersion: apps/v1 
    fieldsType: FieldsV1 
    fieldsV1:                         
[...]                

Note

If you don't see managedFields in the output, add --show-managed-fields to 
the command and run it again. The version of kubectl that you're using determines 
whether managed fields are returned by default.

Understanding field management syntax in the Kubernetes API

When you view details for a Kubernetes object, both managed and unmanaged fields are returned 
in the output. Managed fields can be either of the following types:

• Fully managed – All keys for the field are managed by Amazon EKS. Modifications to any value 
causes a conflict.

• Partially managed – Some keys for the field are managed by Amazon EKS. Only modifications to 
the keys explicitly managed by Amazon EKS cause a conflict.

Kubernetes field management 617



Amazon EKS User Guide

Both types of fields are tagged with manager: eks.

Each key is either a . representing the field itself, which always maps to an empty set, or a string 
that represents a sub-field or item. The output for field management consists of the following 
types of declarations:

• f:name, where name is the name of a field in a list.

• k:keys, where keys is a map of a list item's fields.

• v:value, where value is the exact JSON formatted value of a list item.

• i:index, where index is position of an item in the list.

The following portions of output for the CoreDNS add-on illustrate the previous declarations:

• Fully managed fields – If a managed field has an f: (field) specified, but no k: (key), then the 
entire field is managed. Modifications to any values in this field cause a conflict.

In the following output, you can see that the container named coredns is managed by eks. The
args, image, and imagePullPolicy sub-fields are also managed by eks. Modifications to any 
values in these fields cause a conflict.

[...]
f:containers: 
  k:{"name":"coredns"}: 
  .: {} 
  f:args: {} 
  f:image: {} 
  f:imagePullPolicy: {}
[...]
manager: eks
[...]

• Partially managed fields – If a managed key has a value specified, the declared keys are 
managed for that field. Modifying the specified keys cause a conflict.

In the following output, you can see that eks manages the config-volume and tmp volumes 
set with the name key.

[...]
f:volumes: 
  k:{"name":"config-volume"}: 

Kubernetes field management 618



Amazon EKS User Guide

    .: {} 
    f:configMap: 
      f:items: {} 
      f:name: {} 
    f:name: {} 
  k:{"name":"tmp"}: 
    .: {} 
    f:name: {}
[...]
manager: eks
[...]

• Adding keys to partially managed fields – If only a specific key value is managed, you can 
safely add additional keys, such as arguments, to a field without causing a conflict. If you add 
additional keys, make sure that the field isn't managed first. Adding or modifying any value that 
is managed causes a conflict.

In the following output, you can see that both the name key and name field are managed. Adding 
or modifying any container name causes a conflict with this managed key.

[...]
f:containers: 
  k:{"name":"coredns"}:
[...] 
    f:name: {}
[...]
manager: eks
[...]

Verifying a container image during deployment

If you use AWS Signer and want to verify signed container images at the time of deployment, you 
can use one of the following solutions:

• Gatekeeper and Ratify – Use Gatekeeper as the admission controller and Ratify configured with 
an AWS Signer plugin as a web hook for validating signatures.

• Kyverno – A Kubernetes policy engine configured with an AWS Signer plugin for validating 
signatures.

Verify container images 619

https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://ratify.dev/docs/1.0/quickstarts/ratify-on-aws
https://github.com/nirmata/kyverno-notation-aws


Amazon EKS User Guide

Note

Before verifying container image signatures, configure the Notation trust store and trust 
policy, as required by your selected admission controller.

Machine learning training using Elastic Fabric Adapter

This topic describes how to integrate Elastic Fabric Adapter (EFA) with Pods deployed in your 
Amazon EKS cluster. Elastic Fabric Adapter (EFA) is a network interface for Amazon EC2 instances 
that enables you to run applications requiring high levels of inter-node communications at scale 
on AWS. Its custom-built operating system bypass hardware interface enhances the performance 
of inter-instance communications, which is critical to scaling these applications. With EFA, High 
Performance Computing (HPC) applications using the Message Passing Interface (MPI) and Machine 
Learning (ML) applications using NVIDIA Collective Communications Library (NCCL) can scale 
to thousands of CPUs or GPUs. As a result, you get the application performance of on-premises 
HPC clusters with the on-demand elasticity and flexibility of the AWS cloud. Integrating EFA 
with applications running on Amazon EKS clusters can reduce the time to complete large scale 
distributed training workloads without having to add additional instances to your cluster. For more 
information about EFA, Elastic Fabric Adapter.

The EFA plugin described in this topic fully supports Amazon EC2 P4d instances, which represent 
the current state of the art in distributed machine learning in the cloud. Each p4d.24xlarge
instance has eight NVIDIA A100 GPUs, and 400 Gbps GPUDirectRDMA over EFA. GPUDirectRDMA 
enables you to have direct GPU-to-GPU communication across nodes with CPU bypass, increasing 
collective communication bandwidth and lowering latency. Amazon EKS and EFA integration with
P4d instances provides a seamless method to take advantage of the highest performing Amazon 
EC2 computing instance for distributed machine learning training.

Prerequisites

• An existing Amazon EKS cluster. If you don't have an existing cluster, use one of our Getting 
started with Amazon EKS guides to create one. Your cluster must be deployed in a VPC that 
has at least one private subnet with enough available IP addresses to deploy nodes in. The 
private subnet must have outbound internet access provided by an external device, such as a NAT 
gateway.

If you plan to use eksctl to create your node group, eksctl can also create a cluster for you.

Machine learning training 620

https://github.com/notaryproject/notation#readme
https://aws.amazon.com/hpc/efa/
https://aws.amazon.com/ec2/instance-types/p4/


Amazon EKS User Guide

• Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface (AWS 
CLI) installed and configured on your device or AWS CloudShell. To check your current version, 
use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers such yum,
apt-get, or Homebrew for macOS are often several versions behind the latest version of the 
AWS CLI. To install the latest version, see Installing, updating, and uninstalling the AWS CLI and
Quick configuration with aws configure in the AWS Command Line Interface User Guide. The AWS 
CLI version that is installed in AWS CloudShell might also be several versions behind the latest 
version. To update it, see Installing AWS CLI to your home directory in the AWS CloudShell User 
Guide.

• The kubectl command line tool is installed on your device or AWS CloudShell. The version can 
be the same as or up to one minor version earlier or later than the Kubernetes version of your 
cluster. For example, if your cluster version is 1.28, you can use kubectl version 1.27, 1.28, or
1.29 with it. To install or upgrade kubectl, see Installing or updating kubectl.

• You must have the Amazon VPC CNI plugin for Kubernetes version 1.7.10 or later installed 
before launching worker nodes that support multiple Elastic Fabric Adapters, such as the
p4d.24xlarge. For more information about updating your Amazon VPC CNI plugin for 
Kubernetes version, see Working with the Amazon VPC CNI plugin for Kubernetes Amazon EKS 
add-on.

Create node group

The following procedure helps you create a node group with a p4d.24xlarge backed node group 
with EFA interfaces and GPUDirect RDMA, and run an example NVIDIA Collective Communications 
Library (NCCL) test for multi-node NCCL Performance using EFAs. The example can be used a 
template for distributed deep learning training on Amazon EKS using EFAs.

1. Determine which Amazon EC2 instance types that support EFA are available in the AWS Region 
that you want to deploy nodes in. Replace region-code with the AWS Region that you want 
to deploy your node group in.

aws ec2 describe-instance-types --region region-code --filters Name=network-
info.efa-supported,Values=true \ 
    --query "InstanceTypes[*].[InstanceType]" --output text

When you deploy nodes, the instance type that you want to deploy must be available in the 
AWS Region that your cluster is in.

Create node group 621

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software


Amazon EKS User Guide

2. Determine which Availability Zones that the instance type that you want to deploy is available 
in. In this tutorial, the p4d.24xlarge instance type is used and must be returned in the 
output for the AWS Region that you specified in the previous step. When you deploy nodes in 
a production cluster, replace p4d.24xlarge with any instance type returned in the previous 
step.

aws ec2 describe-instance-type-offerings --region region-code --location-type 
 availability-zone --filters Name=instance-type,Values=p4d.24xlarge \ 
    --query 'InstanceTypeOfferings[*].Location' --output text

An example output is as follows.

us-west-2a    us-west-2c    us-west-2b

Note the Availability Zones returned for use in later steps. When you deploy nodes to a cluster, 
your VPC must have subnets with available IP addresses in one of the Availability Zones 
returned in the output.

3. Create a node group using either eksctl or the AWS CLI and AWS CloudFormation.

eksctl

Prerequisite

Version 0.172.0 or later of the eksctl command line tool installed on your device 
or AWS CloudShell. To install or update eksctl, see Installation in the eksctl
documentation.

1. Copy the following contents to a file named efa-cluster.yaml. Replace the example 
values with your own. You can replace p4d.24xlarge with a different instance, but if 
you do, make sure that the values for availabilityZones are Availability Zones that 
were returned for the instance type in step 1.

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata: 
  name: my-efa-cluster
  region: region-code
  version: "1.XX"

Create node group 622

https://eksctl.io/installation


Amazon EKS User Guide

iam: 
  withOIDC: true

availabilityZones: ["us-west-2a", "us-west-2c"]   

managedNodeGroups: 
  - name: my-efa-ng
    instanceType: p4d.24xlarge
    minSize: 1
    desiredCapacity: 2
    maxSize: 3
    availabilityZones: ["us-west-2a"] 
    volumeSize: 300 
    privateNetworking: true 
    efaEnabled: true

2. Create a managed node group in an existing cluster.

eksctl create nodegroup -f efa-cluster.yaml

If you don't have an existing cluster, you can run the following command to create a 
cluster and the node group.

eksctl create cluster -f efa-cluster.yaml

Note

Because the instance type used in this example has GPUs, eksctl automatically 
installs the NVIDIA Kubernetes device plugin on each instance for you.

AWS CLI and AWS CloudFormation

There are several requirements for EFA networking, including creating an EFA specific 
security group, creating an Amazon EC2 placement group, and creating a launch template 
that specifies one or more EFA interfaces, and includes EFA driver installation as part of 
Amazon EC2 user data. To learn more about EFA requirements, see Get started with EFA 
and MPI in the Amazon EC2 User Guide for Linux Instances. The following steps create all of 
this for you. Replace all example values with your own.

Create node group 623

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html


Amazon EKS User Guide

1. Set a few variables used in later steps. Replace all of the example values with 
your own. Replace my-cluster with the name of your existing cluster. The value for
node_group_resources_name is later used to create an AWS CloudFormation stack. 
The value for node_group_name is later used to create the node group in your cluster.

cluster_name="my-cluster"
cluster_region="region-code"
node_group_resources_name="my-efa-nodegroup-resources"
node_group_name="my-efa-nodegroup"

2. Identify a private subnet in your VPC that is in the same Availability Zone as the instance 
type that you want to deploy is available in.

a. Retrieve the version of your cluster and store it in a variable for use in a later step.

cluster_version=$(aws eks describe-cluster \ 
    --name $cluster_name \ 
    --query "cluster.version" \ 
    --output text)

b. Retrieve the VPC ID that your cluster is in and store it in a variable for use in a later 
step.

vpc_id=$(aws eks describe-cluster \ 
    --name $cluster_name \ 
    --query "cluster.resourcesVpcConfig.vpcId" \ 
    --output text)

c. Retrieve the ID of the control plane security group for your cluster and store it in a 
variable for use in a later step.

control_plane_security_group=$(aws eks describe-cluster \ 
    --name $cluster_name \ 
    --query "cluster.resourcesVpcConfig.clusterSecurityGroupId" \ 
    --output text)

d. Get the list of subnet IDs in your VPC that are in an Availability Zone returned in step 
1.

aws ec2 describe-subnets \ 

Create node group 624



Amazon EKS User Guide

    --filters "Name=vpc-id,Values=$vpc_id" "Name=availability-
zone,Values=us-west-2a" \ 
    --query 'Subnets[*].SubnetId' \ 
    --output text

If no output is returned, try a different Availability Zone returned in step 1. If none of 
your subnets are in an Availability Zone returned in step 1, then you need to create a 
subnet in an Availability Zone returned in step 1. If you have no room in your VPC to 
create another subnet, then you can add a CIDR block to the VPC and create subnets 
in the new CIDR block, or create a new cluster in a new VPC.

e. Determine whether the subnet is a private subnet by checking the route table for the 
subnet.

aws ec2 describe-route-tables \ 
    --filter Name=association.subnet-id,Values=subnet-0d403852a65210a29 \ 
    --query "RouteTables[].Routes[].GatewayId" \ 
    --output text

An example output is as follows.

local

If the output is local igw-02adc64c1b72722e2, then the subnet is a public 
subnet. You must select a private subnet in an Availability Zone returned in step 1. 
Once you've identified a private subnet, note its ID for use in a later step.

f. Set a variable with the private subnet ID from the previous step for use in later steps.

subnet_id=your-subnet-id

3. Download the AWS CloudFormation template.

curl -O https://raw.githubusercontent.com/aws-samples/aws-efa-eks/main/
cloudformation/efa-p4d-managed-nodegroup.yaml

4. Copy the following text to your computer. Replace p4d.24xlarge with an instance type 
from step 1. Replace subnet-0d403852a65210a29 with the ID of the private subnet 
that you identified in step 2.b.v. Replace path-to-downloaded-cfn-template with 
the path to the efa-p4d-managed-nodegroup.yaml that you downloaded in the 

Create node group 625



Amazon EKS User Guide

previous step. Replace your-public-key-name with the name of your public key. Once 
you've made the replacements, run the modified command.

aws cloudformation create-stack \ 
    --stack-name ${node_group_resources_name} \ 
    --capabilities CAPABILITY_IAM \ 
    --template-body file://path-to-downloaded-cfn-template \ 
    --parameters \ 
       ParameterKey=ClusterName,ParameterValue=${cluster_name} \ 
       ParameterKey=ClusterControlPlaneSecurityGroup,ParameterValue=
${control_plane_security_group} \ 
       ParameterKey=VpcId,ParameterValue=${vpc_id} \ 
       ParameterKey=SubnetId,ParameterValue=${subnet_id} \ 
       ParameterKey=NodeGroupName,ParameterValue=${node_group_name} \ 
       ParameterKey=NodeImageIdSSMParam,ParameterValue=/aws/service/eks/
optimized-ami/${cluster_version}/amazon-linux-2-gpu/recommended/image_id \ 
       ParameterKey=KeyName,ParameterValue=your-public-key-name \ 
       ParameterKey=NodeInstanceType,ParameterValue=p4d.24xlarge

5. Determine when the stack that you deployed in the previous step is deployed.

aws cloudformation wait stack-create-complete --stack-name 
 $node_group_resources_name

There is no output from the previous command, but your shell prompt doesn't return 
until the stack is created.

6. Create your node group using the resources created by the AWS CloudFormation stack in 
the previous step.

a. Retrieve information from the deployed AWS CloudFormation stack and store it in 
variables.

node_instance_role=$(aws cloudformation describe-stacks \ 
    --stack-name $node_group_resources_name \ 
    --query='Stacks[].Outputs[?OutputKey==`NodeInstanceRole`].OutputValue' 
 \ 
    --output text)
launch_template=$(aws cloudformation describe-stacks \ 
    --stack-name $node_group_resources_name \ 
    --query='Stacks[].Outputs[?OutputKey==`LaunchTemplateID`].OutputValue' 
 \ 

Create node group 626



Amazon EKS User Guide

    --output text)

b. Create a managed node group that uses the launch template and node IAM role that 
were created in the previous step.

aws eks create-nodegroup \ 
    --cluster-name $cluster_name \ 
    --nodegroup-name $node_group_name \ 
    --node-role $node_instance_role \ 
    --subnets $subnet_id \ 
    --launch-template id=$launch_template,version=1

c. Confirm that the nodes were created.

aws eks describe-nodegroup \ 
   --cluster-name ${cluster_name} \ 
   --nodegroup-name ${node_group_name} | jq -r .nodegroup.status

Don't continue until the status returned from the previous command is ACTIVE. It can 
take several minutes for the nodes to become ready.

7. If you chose a GPU instance type, you must deploy the NVIDIA device plugin for 
Kubernetes. Replace vX.X.X with your desired NVIDIA/k8s-device-plugin version before 
running the following command.

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-
plugin/vX.X.X/nvidia-device-plugin.yml

4. Deploy the EFA Kubernetes device plugin.

The EFA Kubernetes device plugin detects and advertises EFA interfaces as allocatable 
resources to Kubernetes. An application can consume the extended resource type
vpc.amazonaws.com/efa in a Pod request spec just like CPU and memory. For more 
information, see Consuming extended resources in the Kubernetes documentation. Once 
requested, the plugin automatically assigns and mounts an EFA interface to the Pod. Using the 
device plugin simplifies EFA setup and does not require a Pod to run in privileged mode.

kubectl apply -f https://raw.githubusercontent.com/aws-samples/aws-efa-eks/main/
manifest/efa-k8s-device-plugin.yml

Create node group 627

https://github.com/NVIDIA/k8s-device-plugin
https://github.com/NVIDIA/k8s-device-plugin
https://github.com/NVIDIA/k8s-device-plugin/releases
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#consuming-extended-resources


Amazon EKS User Guide

(Optional) Deploy a sample EFA compatible application

Deploy the Kubeflow MPI Operator

For the NCCL tests you can apply the Kubeflow MPI Operator. The MPI Operator makes it easy to 
run Allreduce-style distributed training on Kubernetes. For more information, see MPI Operator on 
GitHub.

kubectl apply -f https://raw.githubusercontent.com/kubeflow/mpi-operator/master/deploy/
v2beta1/mpi-operator.yaml

Run the multi-node NCCL Performance Test to verify GPUDirectRDMA/EFA

To verify NCCL Performance with GPUDirectRDMA over EFA, run the standard NCCL Performance 
test. For more information, see the official NCCL-Tests repo on GitHub. You can use the sample
Dockerfile that comes with this test already built for both NVIDIA CUDA 11.2 and the latest 
version of EFA.

Alternately, you can download an AWS Docker image available from an Amazon ECR repo.

Important

An important consideration required for adopting EFA with Kubernetes is configuring 
and managing Huge Pages as a resource in the cluster. For more information, see Manage 
Huge Pages in the Kubernetes documentation. Amazon EC2 instances with the EFA driver 
installed pre-allocate 5128 2M Huge Pages, which you can request as resources to consume 
in your job specifications.

Complete the following steps to run a two node NCCL Performance Test. In the example NCCL 
test job, each worker requests eight GPUs, 5210Mi of hugepages-2Mi, four EFAs, and 8000Mi of 
memory, which effectively means each worker consumes all the resources of a p4d.24xlarge
instance.

1. Create the NCCL-tests job.

kubectl apply -f https://raw.githubusercontent.com/aws-samples/aws-efa-eks/main/
examples/simple/nccl-efa-tests.yaml

(Optional) Deploy a sample EFA compatible application 628

https://github.com/kubeflow/mpi-operator
https://github.com/NVIDIA/nccl-tests.git
https://github.com/aws-samples/aws-efa-eks/blob/main/Dockerfile
https://developer.nvidia.com/cuda-zone
https://gallery.ecr.aws/w6p6i9i7/aws-efa-nccl-rdma
https://kubernetes.io/docs/tasks/manage-hugepages/scheduling-hugepages/
https://kubernetes.io/docs/tasks/manage-hugepages/scheduling-hugepages/


Amazon EKS User Guide

An example output is as follows.

mpijob.kubeflow.org/nccl-tests-efa created

2. View your running Pods.

kubectl get pods

An example output is as follows.

NAME                             READY   STATUS     RESTARTS   AGE
nccl-tests-efa-launcher-nbql9  0/1     Init:0/1   0          2m49s
nccl-tests-efa-worker-0          1/1     Running    0          2m49s
nccl-tests-efa-worker-1          1/1     Running    0          2m49s

The MPI Operator creates a launcher Pod and 2 worker Pods (one on each node).

3. View the log for the efa-launcher Pod. Replace wzr8j with the value from your output.

kubectl logs -f nccl-tests-efa-launcher-nbql9

For more examples, see the Amazon EKS EFA samples repository on GitHub.

Machine learning inference using AWS Inferentia

This topic describes how to create an Amazon EKS cluster with nodes running Amazon EC2 Inf1
instances and (optionally) deploy a sample application. Amazon EC2 Inf1 instances are powered by
AWS Inferentia chips, which are custom built by AWS to provide high performance and lowest cost 
inference in the cloud. Machine learning models are deployed to containers using AWS Neuron, 
a specialized software development kit (SDK) consisting of a compiler, runtime, and profiling 
tools that optimize the machine learning inference performance of Inferentia chips. AWS Neuron 
supports popular machine learning frameworks such as TensorFlow, PyTorch, and MXNet.

Note

Neuron device logical IDs must be contiguous. If a Pod requesting multiple Neuron devices 
is scheduled on an inf1.6xlarge or inf1.24xlarge instance type (which have more 
than one Neuron device), that Pod will fail to start if the Kubernetes scheduler selects non-

Machine learning inference 629

https://github.com/aws-samples/aws-efa-eks
https://aws.amazon.com/ec2/instance-types/inf1/
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/neuron/


Amazon EKS User Guide

contiguous device IDs. For more information, see Device logical IDs must be contiguous on 
GitHub.

Prerequisites

• Have eksctl installed on your computer. If you don't have it installed, see Installation in the
eksctl documentation.

• Have kubectl installed on your computer. For more information, see Installing or updating
kubectl.

• (Optional) Have python3 installed on your computer. If you don't have it installed, then see
Python downloads for installation instructions.

Create a cluster

To create a cluster with Inf1 Amazon EC2 instance nodes

1. Create a cluster with Inf1 Amazon EC2 instance nodes. You can replace inf1.2xlarge with 
any Inf1 instance type. The eksctl utility detects that you are launching a node group with 
an Inf1 instance type and will start your nodes using one of the Amazon EKS optimized 
accelerated Amazon Linux AMIs.

Note

You can't use IAM roles for service accounts with TensorFlow Serving.

eksctl create cluster \ 
    --name inferentia \ 
    --region region-code \ 
    --nodegroup-name ng-inf1 \ 
    --node-type inf1.2xlarge \ 
    --nodes 2 \ 
    --nodes-min 1 \ 
    --nodes-max 4 \ 
    --ssh-access \ 
    --ssh-public-key your-key \ 

Prerequisites 630

https://github.com/aws/aws-neuron-sdk/issues/110
https://eksctl.io/installation
https://www.python.org/downloads/
https://aws.amazon.com/ec2/instance-types/inf1/


Amazon EKS User Guide

    --with-oidc

Note

Note the value of the following line of the output. It's used in a later (optional) step.

[9]  adding identity "arn:aws:iam::111122223333:role/
eksctl-inferentia-nodegroup-ng-in-NodeInstanceRole-FI7HIYS3BS09" to auth 
 ConfigMap

When launching a node group with Inf1 instances, eksctl automatically installs the AWS 
Neuron Kubernetes device plugin. This plugin advertises Neuron devices as a system resource 
to the Kubernetes scheduler, which can be requested by a container. In addition to the default 
Amazon EKS node IAM policies, the Amazon S3 read only access policy is added so that the 
sample application, covered in a later step, can load a trained model from Amazon S3.

2. Make sure that all Pods have started correctly.

kubectl get pods -n kube-system

Abbreviated output:

NAME                                   READY   STATUS    RESTARTS   AGE
[...]
neuron-device-plugin-daemonset-6djhp   1/1     Running   0          5m
neuron-device-plugin-daemonset-hwjsj   1/1     Running   0          5m

(Optional) Deploy a TensorFlow Serving application image

A trained model must be compiled to an Inferentia target before it can be deployed on Inferentia 
instances. To continue, you will need a Neuron optimized TensorFlow model saved in Amazon S3. If 
you don't already have a SavedModel, please follow the tutorial for creating a Neuron compatible 
ResNet50 model and upload the resulting SavedModel to S3. ResNet-50 is a popular machine 
learning model used for image recognition tasks. For more information about compiling Neuron 
models, see The AWS Inferentia Chip With DLAMI in the AWS Deep Learning AMI Developer Guide.

(Optional) Deploy a TensorFlow Serving application image 631

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/tensorflow-neuron/index.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-tf-neuron.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-tf-neuron.html
https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia.html


Amazon EKS User Guide

The sample deployment manifest manages a pre-built inference serving container for TensorFlow 
provided by AWS Deep Learning Containers. Inside the container is the AWS Neuron Runtime 
and the TensorFlow Serving application. A complete list of pre-built Deep Learning Containers 
optimized for Neuron is maintained on GitHub under Available Images. At start-up, the DLC will 
fetch your model from Amazon S3, launch Neuron TensorFlow Serving with the saved model, and 
wait for prediction requests.

The number of Neuron devices allocated to your serving application can be adjusted by changing 
the aws.amazon.com/neuron resource in the deployment yaml. Please note that communication 
between TensorFlow Serving and the Neuron runtime happens over GRPC, which requires passing 
the IPC_LOCK capability to the container.

1. Add the AmazonS3ReadOnlyAccess IAM policy to the node instance role that was created in 
step 1 of Create a cluster. This is necessary so that the sample application can load a trained 
model from Amazon S3.

aws iam attach-role-policy \ 
    --policy-arn arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess \ 
    --role-name eksctl-inferentia-nodegroup-ng-in-NodeInstanceRole-FI7HIYS3BS09

2. Create a file named rn50_deployment.yaml with the following contents. Update the region-
code and model path to match your desired settings. The model name is for identification 
purposes when a client makes a request to the TensorFlow server. This example uses a model 
name to match a sample ResNet50 client script that will be used in a later step for sending 
prediction requests.

aws ecr list-images --repository-name neuron-rtd --registry-id 790709498068 --
region us-west-2

kind: Deployment
apiVersion: apps/v1
metadata: 
  name: eks-neuron-test 
  labels: 
    app: eks-neuron-test 
    role: master
spec: 
  replicas: 2 
  selector: 
    matchLabels: 

(Optional) Deploy a TensorFlow Serving application image 632

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#neuron-inference-containers


Amazon EKS User Guide

      app: eks-neuron-test 
      role: master 
  template: 
    metadata: 
      labels: 
        app: eks-neuron-test 
        role: master 
    spec: 
      containers: 
        - name: eks-neuron-test 
          image: 763104351884.dkr.ecr.us-east-1.amazonaws.com/tensorflow-inference-
neuron:1.15.4-neuron-py37-ubuntu18.04 
          command: 
            - /usr/local/bin/entrypoint.sh 
          args: 
            - --port=8500 
            - --rest_api_port=9000 
            - --model_name=resnet50_neuron 
            - --model_base_path=s3://your-bucket-of-models/resnet50_neuron/ 
          ports: 
            - containerPort: 8500 
            - containerPort: 9000 
          imagePullPolicy: IfNotPresent 
          env: 
            - name: AWS_REGION 
              value: "us-east-1" 
            - name: S3_USE_HTTPS 
              value: "1" 
            - name: S3_VERIFY_SSL 
              value: "0" 
            - name: S3_ENDPOINT 
              value: s3.us-east-1.amazonaws.com 
            - name: AWS_LOG_LEVEL 
              value: "3" 
          resources: 
            limits: 
              cpu: 4 
              memory: 4Gi 
              aws.amazon.com/neuron: 1 
            requests: 
              cpu: "1" 
              memory: 1Gi 
          securityContext: 
            capabilities: 

(Optional) Deploy a TensorFlow Serving application image 633



Amazon EKS User Guide

              add: 
                - IPC_LOCK

3. Deploy the model.

kubectl apply -f rn50_deployment.yaml

4. Create a file named rn50_service.yaml with the following contents. The HTTP and gRPC 
ports are opened for accepting prediction requests.

kind: Service
apiVersion: v1
metadata: 
  name: eks-neuron-test
  labels: 
    app: eks-neuron-test
spec: 
  type: ClusterIP 
  ports: 
    - name: http-tf-serving 
      port: 8500 
      targetPort: 8500 
    - name: grpc-tf-serving 
      port: 9000 
      targetPort: 9000 
  selector: 
    app: eks-neuron-test
    role: master

5. Create a Kubernetes service for your TensorFlow model Serving application.

kubectl apply -f rn50_service.yaml

(Optional) Make predictions against your TensorFlow Serving service

1. To test locally, forward the gRPC port to the eks-neuron-test service.

kubectl port-forward service/eks-neuron-test 8500:8500 &

2. Create a Python script called tensorflow-model-server-infer.py with the following 
content. This script runs inference via gRPC, which is service framework.

(Optional) Make predictions against your TensorFlow Serving service 634



Amazon EKS User Guide

import numpy as np 
   import grpc 
   import tensorflow as tf 
   from tensorflow.keras.preprocessing import image 
   from tensorflow.keras.applications.resnet50 import preprocess_input 
   from tensorflow_serving.apis import predict_pb2 
   from tensorflow_serving.apis import prediction_service_pb2_grpc 
   from tensorflow.keras.applications.resnet50 import decode_predictions 
    
   if __name__ == '__main__': 
       channel = grpc.insecure_channel('localhost:8500') 
       stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) 
       img_file = tf.keras.utils.get_file( 
           "./kitten_small.jpg", 
           "https://raw.githubusercontent.com/awslabs/mxnet-model-server/master/
docs/images/kitten_small.jpg") 
       img = image.load_img(img_file, target_size=(224, 224)) 
       img_array = preprocess_input(image.img_to_array(img)[None, ...]) 
       request = predict_pb2.PredictRequest() 
       request.model_spec.name = 'resnet50_inf1' 
       request.inputs['input'].CopyFrom( 
           tf.make_tensor_proto(img_array, shape=img_array.shape)) 
       result = stub.Predict(request) 
       prediction = tf.make_ndarray(result.outputs['output']) 
       print(decode_predictions(prediction))

3. Run the script to submit predictions to your service.

python3 tensorflow-model-server-infer.py

An example output is as follows.

[[(u'n02123045', u'tabby', 0.68817204), (u'n02127052', u'lynx', 0.12701613), 
 (u'n02123159', u'tiger_cat', 0.08736559), (u'n02124075', u'Egyptian_cat', 
 0.063844085), (u'n02128757', u'snow_leopard', 0.009240591)]]

(Optional) Make predictions against your TensorFlow Serving service 635



Amazon EKS User Guide

Allowing users to access your cluster

There are two types of identities that can access your Amazon EKS cluster:

• An AWS Identity and Access Management (IAM) principal (role or user) – This type requires 
authentication to IAM. Users can sign in to AWS as an IAM user or with a federated identity by 
using credentials provided through an identity source. Users can only sign in with a federated 
identity if your administrator previously set up identity federation using IAM roles. When users 
access AWS by using federation, they're indirectly assuming a role. When users use this type of 
identity, you:

• Can assign them Kubernetes permissions so that they can work with Kubernetes objects on 
your cluster. For more information about how to assign permissions to your IAM principals so 
that they're able to access Kubernetes objects on your cluster, see Allowing IAM roles or users 
access to Kubernetes objects on your Amazon EKS cluster.

• Can assign them IAM permissions so that they can work with your Amazon EKS cluster and 
its resources using the Amazon EKS API, AWS CLI, AWS CloudFormation, AWS Management 
Console, or eksctl. For more information, see Actions defined by Amazon Elastic Kubernetes 
Service in the Service Authorization Reference.

Nodes join your cluster by assuming an IAM role. The ability to access your cluster using IAM 
principals is provided by the AWS IAM Authenticator for Kubernetes, which runs on the Amazon 
EKS control plane.

• A user in your own OpenID Connect (OIDC) provider – This type requires authentication to 
your OIDC provider. For more information about setting up your own OIDC provider with your 
Amazon EKS cluster, see Authenticating users for your cluster from an OpenID Connect identity 
provider. When users use this type of identity, you:

• Can assign them Kubernetes permissions so that they can work with Kubernetes objects on 
your cluster.

• Can't assign them IAM permissions so that they can work with your Amazon EKS cluster and 
its resources using the Amazon EKS API, AWS CLI, AWS CloudFormation, AWS Management 
Console, or eksctl.

You can use both types of identities with your cluster. Users need to configure their kubectl 
config file to access Kubernetes objects on your cluster. To configure a kube config file for IAM 
identities, see Creating or updating a kubeconfig file for an Amazon EKS cluster. To configure 

636

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://aws.amazon.com/identity/federation/
https://docs.aws.amazon.com/IAM/latest/UserGuide/when-to-use-iam.html#security_iam_authentication-iamrole
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions
https://github.com/kubernetes-sigs/aws-iam-authenticator#readme
https://openid.net/connect/


Amazon EKS User Guide

a kube config file for use with identities from your OIDC provider, see Using kubectl in the 
Kubernetes documentation.

Allowing IAM roles or users access to Kubernetes objects on 
your Amazon EKS cluster

The AWS IAM Authenticator for Kubernetes is installed on your cluster's control plane. It enables
AWS Identity and Access Management (IAM) principals (roles and users) that you allow to access 
Kubernetes resources on your cluster. You can allow IAM principals to access Kubernetes objects on 
your cluster using one of the following methods:

• Creating access entries – If your cluster is at or later than the platform version listed in the
Prerequisites section for your cluster's Kubernetes version, we recommend that you use this 
option.

Use access entries to manage the Kubernetes permissions of IAM principals from outside the 
cluster. You can add and manage access to the cluster by using the EKS API, AWS Command Line 
Interface, AWS SDKs, AWS CloudFormation, and AWS Management Console. This means you can 
manage users with the same tools that you created the cluster with.

To get started, follow Setting up access entries, then Migrating existing aws-auth ConfigMap
entries to access entries.

• Adding entries to the aws-auth ConfigMap – If your cluster's platform version is earlier than 
the version listed in the Prerequisites section, then you must use this option. If your cluster's 
platform version is at or later than the platform version listed in the Prerequisites section 
for your cluster's Kubernetes version, and you've added entries to the ConfigMap, then we 
recommend that you migrate those entries to access entries. You can't migrate entries that 
Amazon EKS added to the ConfigMap however, such as entries for IAM roles used with managed 
node groups or Fargate profiles. For more information, see Enabling IAM principal access to your 
cluster.

The remainder of this topic only covers working with access entries. If you have to use the aws-
auth ConfigMap option, you can add entries to the ConfigMap using the eksctl create 
iamidentitymapping command. For more information, see Manage IAM users and roles in the
eksctl documentation.

Allowing IAM roles or users access to Kubernetes 637

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#using-kubectl
https://github.com/kubernetes-sigs/aws-iam-authenticator#readme
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://eksctl.io/usage/iam-identity-mappings/


Amazon EKS User Guide

Cluster authentication modes

Each cluster has an authentication mode. The authentication mode determines which methods 
you can use to allow IAM principals to access Kubernetes objects on your cluster. There are three 
authentication modes.

Important

Once the access entry method is enabled, it cannot be disabled.
If the ConfigMap method is not enabled during cluster creation, it cannot be enabled later. 
All clusters created before the introduction of access entries have the ConfigMap method 
enabled.

The aws-auth ConfigMap inside the cluster

This is the original authentication mode for Amazon EKS clusters. The IAM principal that created 
the cluster is the initial user that can access the cluster by using kubectl. The initial user must 
add other users to the list in the aws-auth ConfigMap and assign permissions that affect the 
other users within the cluster. These other users can't manage or remove the initial user, as 
there isn't an entry in the ConfigMap to manage.

Both the ConfigMap and access entries

With this authentication mode, you can use both methods to add IAM principals to the cluster. 
Note that each method stores separate entries; for example, if you add an access entry from the 
AWS CLI, the aws-auth ConfigMap is not updated.

Access entries only

With this authentication mode, you can use the EKS API, AWS Command Line Interface, AWS 
SDKs, AWS CloudFormation, and AWS Management Console to manage access to the cluster for 
IAM principals.

Each access entry has a type and you can use the combination of an access scope to limit the 
principal to a specific namespace and an access policy to set preconfigured reusable permissions 
policies. Alternatively, you can use the Standard type and Kubernetes RBAC groups to assign 
custom permissions.

Cluster authentication modes 638



Amazon EKS User Guide

Authentication mode Methods

ConfigMap  only (CONFIG_MAP ) aws-auth ConfigMap

EKS API and ConfigMap  (API_AND_C 
ONFIG_MAP )

access entries in the EKS API, AWS Command 
Line Interface, AWS SDKs, AWS CloudForm 
ation, and AWS Management Console and
aws-auth ConfigMap

EKS API only (API) access entries in the EKS API, AWS Command 
Line Interface, AWS SDKs, AWS CloudForm 
ation, and AWS Management Console

Prerequisites

• Familiarity with cluster access options for your Amazon EKS cluster. For more information, see
Allowing users to access your cluster.

• An existing Amazon EKS cluster. To deploy one, see Getting started with Amazon EKS. To use
access entries and change the authentication mode of a cluster, the cluster must have a platform 
version that is the same or later than the version listed in the following table, or a Kubernetes 
version that is later than the versions listed in the table.

Kubernetes version Platform version

1.28 eks.6

1.27 eks.10

1.26 eks.11

1.25 eks.12

1.24 eks.15

1.23 eks.17

Cluster authentication modes 639



Amazon EKS User Guide

You can check your current Kubernetes and platform version by replacing my-cluster in the 
following command with the name of your cluster and then running the modified command:
aws eks describe-cluster --name my-cluster --query 'cluster.{"Kubernetes 
Version": version, "Platform Version": platformVersion}'.

Important

After Amazon EKS updates your cluster to the platform version listed in the table, 
Amazon EKS creates an access entry with administrator permissions to the cluster for the 
IAM principal that originally created the cluster. If you don't want that IAM principal to 
have administrator permissions to the cluster, remove the access entry that Amazon EKS 
created.
For clusters with platform versions that are earlier than those listed in the previous table, 
the cluster creator is always a cluster administrator. It's not possible to remove cluster 
administrator permissions from the IAM user or role that created the cluster.

• An IAM principal with the following permissions for your cluster: CreateAccessEntry,
ListAccessEntries, DescribeAccessEntry, DeleteAccessEntry, and
UpdateAccessEntry. For more information about Amazon EKS permissions, see Actions 
defined by Amazon Elastic Kubernetes Service in the Service Authorization Reference.

• An existing IAM principal to create an access entry for, or an existing access entry to update or 
delete.

Setting up access entries

To begin using access entries, you must change the authentication mode of the cluster to either the
API_AND_CONFIG_MAP or API modes. This adds the API for access entries.

AWS Management Console

To create an access entry

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. Choose the name of the cluster that you want to create an access entry in.

3. Choose the Access tab.

Changing authentication mode 640

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

4. The Authentication mode show the current authentication mode of the cluster. If the 
mode says EKS API, you can already add access entries and you can skip the remaining 
steps.

5. Choose Manage access.

6. For Cluster authentication mode, select a mode with the EKS API. Note that you can't 
change the authentication mode back to a mode that removes the EKS API and access 
entries.

7. Choose Save changes. Amazon EKS begins to update the cluster, the status of the cluster 
changes to Updating, and the change is recorded in the Update history tab.

8. Wait for the status of the cluster to return to Active. When the cluster is Active, you can 
follow the steps in Creating access entries to add access to the cluster for IAM principals.

AWS CLI

Prerequisite

The latest version of the AWS CLI v1 installed and configured on your device or AWS CloudShell. 
AWS CLI v2 doesn't support new features for a few days. You can check your current version 
with aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers such yum,
apt-get, or Homebrew for macOS are often several versions behind the latest version of the 
AWS CLI. To install the latest version, see Installing, updating, and uninstalling the AWS CLI and
Quick configuration with aws configure in the AWS Command Line Interface User Guide. The 
AWS CLI version installed in the AWS CloudShell may also be several versions behind the latest 
version. To update it, see Installing AWS CLI to your home directory in the AWS CloudShell User 
Guide.

1.

2. Run the following command. Replace my-cluster with the name of your cluster. If you 
want to disable the ConfigMap method permanently, replace API_AND_CONFIG_MAP with
API.

Amazon EKS begins to update the cluster, the status of the cluster changes to UPDATING, 
and the change is recorded in the aws eks list-updates.

aws eks update-cluster-config --name my-cluster --access-config 
 authenticationMode=API_AND_CONFIG_MAP

Changing authentication mode 641

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software


Amazon EKS User Guide

3. Wait for the status of the cluster to return to Active. When the cluster is Active, you can 
follow the steps in Creating access entries to add access to the cluster for IAM principals.

Creating access entries

Considerations

Before creating access entries, consider the following:

• An access entry includes the Amazon Resource Name (ARN) of one, and only one, existing 
IAM principal. An IAM principal can't be included in more than one access entry. Additional 
considerations for the ARN that you specify:

• IAM best practices recommend accessing your cluster using IAM roles that have short-term 
credentials, rather than IAM users that have long-term credentials. For more information, 
see Require human users to use federation with an identity provider to access AWS using 
temporary credentials in the IAM User Guide.

• If the ARN is for an IAM role, it can include a path. ARNs in aws-auth
ConfigMap entries, can't include a path. For example, your ARN can be
arn:aws:iam::111122223333:role/development/apps/my-role or
arn:aws:iam::111122223333:role/my-role.

• If the type of the access entry is anything other than Standard (see next consideration 
about types), the ARN must be in the same AWS account that your cluster is in. If the type is
Standard, the ARN can be in the same, or different, AWS account than the account that your 
cluster is in.

• You can't change the IAM principal after the access entry is created.

• If you ever delete the IAM principal with this ARN, the access entry isn't automatically deleted. 
We recommend that you delete the access entry with an ARN for an IAM principal that you 
delete. If you don't delete the access entry and ever recreate the IAM principal, even if it has 
the same ARN, the access entry won't work. This is because even though the ARN is the same 
for the recreated IAM principal, the roleID or userID (you can see this with the aws sts 
get-caller-identity AWS CLI command) is different for the recreated IAM principal than 
it was for the original IAM principal. Even though you don't see the IAM principal's roleID or
userID for an access entry, Amazon EKS stores it with the access entry.

• Each access entry has a type. You can specify EC2 Linux (for an IAM role used with Linux or 
Bottlerocket self-managed nodes), EC2 Windows (for an IAM roles used with Windows self-
managed nodes), FARGATE_LINUX (for an IAM roles used with AWS Fargate (Fargate)), or

Creating access entries 642

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp


Amazon EKS User Guide

Standard as a type. If you don't specify a type, Amazon EKS automatically sets the type to
Standard. It's unnecessary to create an access entry for an IAM role that's used for a managed 
node group or a Fargate profile, because Amazon EKS adds entries for these roles to the aws-
auth ConfigMap, regardless of which platform version your cluster is at.

You can't change the type after the access entry is created.

• If the type of the access entry is Standard, you can specify a username for the access entry. If 
you don't specify a value for username, Amazon EKS sets one of the following values for you, 
depending on the type of the access entry and whether the IAM principal that you specified is 
an IAM role or IAM user. Unless you have a specific reason for specifying your own username, we 
recommend that don't specify one and let Amazon EKS auto-generate it for you. If you specify 
your own username:

• It can't start with system:, eks:, aws:, amazon:, or iam:.

• If the username is for an IAM role, we recommend that you add {{SessionName}} to the 
end of your username. If you add {{SessionName}} to your username, the username must 
include a colon before {{SessionName}}. When this role is assumed, the name of the session 
specified when assuming the role is automatically passed to the cluster and will appear in 
CloudTrail logs. For example, you can't have a username of john{{SessionName}}. The 
username would have to be :john{{SessionName}} or jo:hn{{SessionName}}. The 
colon only has to be before {{SessionName}}. The username generated by Amazon EKS in 
the following table includes an ARN. Since an ARN includes colons, it meets this requirement. 
The colon isn't required if you don't include {{SessionName}} in your username.

IAM principal type Type Username value that 
Amazon EKS automatically 
sets

User Standard The ARN of the user. 
Example: arn:aws:i 
am:: 111122223 
333 :user/my-user

Role Standard The STS ARN of the role 
when it's assumed. Amazon 
EKS appends {{Session 
Name}}  to the role.

Creating access entries 643



Amazon EKS User Guide

IAM principal type Type Username value that 
Amazon EKS automatically 
sets

Example: arn:aws:s 
ts:: 111122223 
333 :assumed-role/ my-
role/{{SessionName}}

If the ARN of the role that 
you specified contained a 
path, Amazon EKS removes it 
in the generated username.

Role EC2 Linux or EC2 
Windows

system:node:{{EC2P 
rivateDNSName}}

Role FARGATE_LINUX system:node:{{Sess 
ionName}}

You can change the username after the access entry is created.

• If an access entry's type is Standard, and you want to use Kubernetes RBAC authorization, you 
can add one or more group names to the access entry. After you create an access entry you can 
add and remove group names. For the IAM principal to have access to Kubernetes objects on your 
cluster, you must create and manage Kubernetes role-based authorization (RBAC) objects. Create 
Kubernetes RoleBinding or ClusterRoleBinding objects on your cluster that specify the 
group name as a subject for kind: Group. Kubernetes authorizes the IAM principal access 
to any cluster objects that you've specified in a Kubernetes Role or ClusterRole object that 
you've also specified in your binding's roleRef. If you specify group names, we recommend 
that you're familiar with the Kubernetes role-based authorization (RBAC) objects. For more 
information, see Using RBAC Authorization in the Kubernetes documentation.

Important

Amazon EKS doesn't confirm that any Kubernetes RBAC objects that exist on your cluster 
include any of the group names that you specify.

Creating access entries 644

https://kubernetes.io/docs/reference/access-authn-authz/rbac/


Amazon EKS User Guide

Instead of, or in addition to, Kubernetes authorizing the IAM principal access to Kubernetes 
objects on your cluster, you can associate Amazon EKS access policies to an access entry. Amazon 
EKS authorizes IAM principals to access Kubernetes objects on your cluster with the permissions 
in the access policy. You can scope an access policy's permissions to Kubernetes namespaces that 
you specify. Use of access policies don't require you to manage Kubernetes RBAC objects. For 
more information, see Associating and disassociating access policies to and from access entries.

• If you create an access entry with type EC2 Linux or EC2 Windows, the IAM principal creating 
the access entry must have the iam:PassRole permission. For more information, see Granting a 
user permissions to pass a role to an AWS service in the IAM User Guide.

• Similar to standard IAM behavior, access entry creation and updates are eventually consistent, 
and may take several seconds to be effective after the initial API call returns successfully. You 
must design your applications to account for these potential delays. We recommend that you 
don't include access entry creates or updates in the critical, high- availability code paths of your 
application. Instead, make changes in a separate initialization or setup routine that you run less 
frequently. Also, be sure to verify that the changes have been propagated before production 
workflows depend on them.

You can create an access entry using the AWS Management Console or the AWS CLI.

AWS Management Console

To create an access entry

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. Choose the name of the cluster that you want to create an access entry in.

3. Choose the Access tab.

4. Choose Create access entry.

5. For IAM principal, select an existing IAM role or user. IAM best practices recommend 
accessing your cluster using IAM roles that have short-term credentials, rather than IAM
users that have long-term credentials. For more information, see Require human users to 
use federation with an identity provider to access AWS using temporary credentials in the 
IAM User Guide.

6. For Type, if the access entry is for the node role used for self-managed Amazon EC2 nodes, 
select EC2 Linux or EC2 Windows. Otherwise, accept the default (Standard).

Creating access entries 645

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_general.html#troubleshoot_general_eventual-consistency
https://console.aws.amazon.com/eks/home#/clusters
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp


Amazon EKS User Guide

7. If the Type you chose is Standard and you want to specify a Username, enter the 
username.

8. If the Type you chose is Standard and you want to use Kubernetes RBAC authorization for 
the IAM principal, specify one or more names for Groups. If you don't specify any group 
names and want to use Amazon EKS authorization, you can associate an access policy in a 
later step, or after the access entry is created.

9. (Optional) For Tags, assign labels to the access entry. For example, to make it easier to find 
all resources with the same tag.

10. Choose Next.

11. On the Add access policy page, if the type you chose was Standard and you want Amazon 
EKS to authorize the IAM principal to have permissions to the Kubernetes objects on your 
cluster, complete the following steps. Otherwise, choose Next.

a. For Policy name, choose an access policy. You can't view the permissions of the access 
policies, but they include similar permissions to those in the Kubernetes user-facing
ClusterRole objects. For more information, see User-facing roles in the Kubernetes 
documentation.

b. Choose one of the following options:

• Cluster – Choose this option if you want Amazon EKS to authorize the IAM principal 
to have the permissions in the access policy for all Kubernetes objects on your 
cluster.

• Kubernetes namespace – Choose this option if you want Amazon EKS to authorize 
the IAM principal to have the permissions in the access policy for all Kubernetes 
objects in a specific Kubernetes namespace on your cluster. For Namespace, 
enter the name of the Kubernetes namespace on your cluster. If you want to add 
additional namespaces, choose Add new namespace and enter the namespace 
name.

c. If you want to add additional policies, choose Add policy. You can scope each policy 
differently, but you can add each policy only once.

d. Choose Next.

12. Review the configuration for your access entry. If anything looks incorrect, choose Previous
to go back through the steps and correct the error. If the configuration is correct, choose
Create.

Creating access entries 646

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-facing-roles


Amazon EKS User Guide

AWS CLI

Prerequisite

The latest version of the AWS CLI v1 installed and configured on your device or AWS CloudShell. 
AWS CLI v2 doesn't support new features for a few days. You can check your current version 
with aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers such yum,
apt-get, or Homebrew for macOS are often several versions behind the latest version of the 
AWS CLI. To install the latest version, see Installing, updating, and uninstalling the AWS CLI and
Quick configuration with aws configure in the AWS Command Line Interface User Guide. The 
AWS CLI version installed in the AWS CloudShell may also be several versions behind the latest 
version. To update it, see Installing AWS CLI to your home directory in the AWS CloudShell User 
Guide.

To create an access entry

You can use any of the following examples to create access entries:

• Create an access entry for a self-managed Amazon EC2 Linux node group. Replace my-
cluster with the name of your cluster, 111122223333 with your AWS account ID, and EKS-
my-cluster-self-managed-ng-1 with the name of your node IAM role. If your node 
group is a Windows node group, then replace EC2_Linux with EC2_Windows.

aws eks create-access-entry --cluster-name my-cluster --principal-arn 
 arn:aws:iam::111122223333:role/EKS-my-cluster-self-managed-ng-1 --type EC2_Linux

You can't use the --kubernetes-groups option when you specify a type other than
Standard. You can't associate an access policy to this access entry, because its type is a value 
other than Standard.

• Create an access entry that allows an IAM role that's not used for an Amazon EC2 self-
managed node group, that you want Kubernetes to authorize access to your cluster with. 
Replace my-cluster with the name of your cluster, 111122223333 with your AWS account 
ID, and my-role with the name of your IAM role. Replace Viewers with the name of a group 
that you've specified in a Kubernetes RoleBinding or ClusterRoleBinding object on 
your cluster.

aws eks create-access-entry --cluster-name my-cluster --principal-arn 
 arn:aws:iam::111122223333:role/my-role --type Standard --user Viewers --
kubernetes-groups Viewers

Creating access entries 647

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software


Amazon EKS User Guide

• Create an access entry that allows an IAM user to authenticate to your cluster. This example 
is provided because this is possible, though IAM best practices recommend accessing your 
cluster using IAM roles that have short-term credentials, rather than IAM users that have long-
term credentials. For more information, see Require human users to use federation with an 
identity provider to access AWS using temporary credentials in the IAM User Guide.

aws eks create-access-entry --cluster-name my-cluster --principal-arn 
 arn:aws:iam::111122223333:user/my-user --type Standard --username my-user

If you want this user to have more access to your cluster than the permissions in the 
Kubernetes API discovery roles, then you need to associate an access policy to the access 
entry, since the --kubernetes-groups option isn't used. For more information, see
Associating and disassociating access policies to and from access entries and API discovery 
roles  in the Kubernetes documentation.

Updating access entries

You can update an access entry using the AWS Management Console or the AWS CLI.

AWS Management Console

To update an access entry

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. Choose the name of the cluster that you want to create an access entry in.

3. Choose the Access tab.

4. Choose the access entry that you want to update.

5. Choose Edit.

6. For Username, you can change the existing value.

7. For Groups, you can remove existing group names or add new group names. If the 
following groups names exist, don't remove them: system:nodes or system:bootstrappers. 
Removing these groups can cause your cluster to function improperly. If you don't specify 
any group names and want to use Amazon EKS authorization, associate an access policy in 
a later step.

8. For Tags, you can assign labels to the access entry. For example, to make it easier to find all 
resources with the same tag. You can also remove existing tags.

Updating access entries 648

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#discovery-roles
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#discovery-roles
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

9. Choose Save changes.

10. If you want to associate an access policy to the entry, see Associating and disassociating 
access policies to and from access entries.

AWS CLI

Prerequisite

Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface 
(AWS CLI) installed and configured on your device or AWS CloudShell. To check your current 
version, use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers 
such yum, apt-get, or Homebrew for macOS are often several versions behind the latest 
version of the AWS CLI. To install the latest version, see Installing, updating, and uninstalling 
the AWS CLI and Quick configuration with aws configure in the AWS Command Line Interface 
User Guide. The AWS CLI version that is installed in AWS CloudShell might also be several 
versions behind the latest version. To update it, see Installing AWS CLI to your home directory in 
the AWS CloudShell User Guide.

To update an access entry

Replace my-cluster with the name of your cluster, 111122223333 with your AWS account ID, 
and EKS-my-cluster-my-namespace-Viewers with the name of an IAM role.

aws eks update-access-entry --cluster-name my-cluster --principal-arn 
 arn:aws:iam::111122223333:role/EKS-my-cluster-my-namespace-Viewers --kubernetes-
groups Viewers 

You can't use the --kubernetes-groups option if the type of the access entry is a value other 
than Standard. You also can't associate an access policy to an access entry with a type other 
than Standard.

Deleting access entries

If you discover that you deleted an access entry in error, you can always recreate it. If the access 
entry that you're deleting is associated to any access policies, the associations are automatically 
deleted. You don't have to disassociate access policies from an access entry before deleting the 
access entry.

Deleting access entries 649

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software


Amazon EKS User Guide

You can delete an access entry using the AWS Management Console or the AWS CLI.

AWS Management Console

To delete an access entry

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. Choose the name of the cluster that you want to delete an access entry from.

3. Choose the Access tab.

4. In the Access entries list, choose the access entry that you want to delete.

5. Choose Delete.

6. In the confirmation dialog box, choose Delete.

AWS CLI

Prerequisite

Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface 
(AWS CLI) installed and configured on your device or AWS CloudShell. To check your current 
version, use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers 
such yum, apt-get, or Homebrew for macOS are often several versions behind the latest 
version of the AWS CLI. To install the latest version, see Installing, updating, and uninstalling 
the AWS CLI and Quick configuration with aws configure in the AWS Command Line Interface 
User Guide. The AWS CLI version that is installed in AWS CloudShell might also be several 
versions behind the latest version. To update it, see Installing AWS CLI to your home directory in 
the AWS CloudShell User Guide.

To delete an access entry

Replace my-cluster with the name of your cluster, 111122223333 with your AWS account 
ID, and my-role with the name of the IAM role that you no longer want to have access to your 
cluster.

aws eks delete-access-entry --cluster-name my-cluster --principal-arn 
 arn:aws:iam::111122223333:role/my-role

Deleting access entries 650

https://console.aws.amazon.com/eks/home#/clusters
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software


Amazon EKS User Guide

Associating and disassociating access policies to and from access 
entries

You can assign one or more access policies to access entries of type Standard. Amazon EKS 
automatically grants the other types of access entries the permissions required to function properly 
in your cluster. Amazon EKS access policies include Kubernetes permissions, not IAM permissions. 
Before associating an access policy to an access entry, make sure that you're familiar with the 
Kubernetes permissions included in each access policy. For more information, see Access policy 
permissions. If none of the access policies meet your requirements, then don't associate an access 
policy to an access entry. Instead, specify one or more group names for the access entry and create 
and manage Kubernetes role-based access control objects. For more information, see Creating 
access entries.

Prerequisites

• An existing access entry. To create one, see Creating access entries.

• An AWS Identity and Access Management role or user with the following permissions:
ListAccessEntries, DescribeAccessEntry, UpdateAccessEntry,
ListAccessPolicies, AssociateAccessPolicy, and DisassociateAccesPolicy. For 
more information, see Actions defined by Amazon Elastic Kubernetes Service in the Service 
Authorization Reference.

Before associating access policies with access entries, consider the following requirements:

• You can associate multiple access policies to each access entry, but you can only associate each 
policy to an access entry once. If you associate multiple access policies, the access entry's IAM 
principal has all permissions included in all associated access policies.

• You can scope an access policy to all resources on a cluster or by specifying the name of one 
or more Kubernetes namespaces. You can use wildcard characters for a namespace name. For 
example, if you want to scope an access policy to all namespaces that start with dev-, you can 
specify dev-* as a namespace name. Make sure that the namespaces exist on your cluster and 
that your spelling matches the actual namespace name on the cluster. Amazon EKS doesn't 
confirm the spelling or existence of the namespaces on your cluster.

• You can change the access scope for an access policy after you associate it to an access entry. If 
you've scoped the access policy to Kubernetes namespaces, you can add and remove namespaces 
for the association, as necessary.

Associating and disassociating access policies 651

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions


Amazon EKS User Guide

• If you associate an access policy to an access entry that also has group names specified, then 
the IAM principal has all the permissions in all associated access policies. It also has all the 
permissions in any Kubernetes Role or ClusterRole object that is specified in any Kubernetes
Role and RoleBinding objects that specify the group names.

• If you run the kubectl auth can-i --list command, you won't see any Kubernetes 
permissions assigned by access policies associated with an access entry for the IAM principal 
you're using when you run the command. The command only shows Kubernetes permissions 
if you've granted them in Kubernetes Role or ClusterRole objects that you've bound to the 
group names or username that you specified for an access entry.

• If you impersonate a Kubernetes user or group when interacting with Kubernetes objects on your 
cluster, such as using the kubectl command with --as username or --as-group group-
name, you're forcing the use of Kubernetes RBAC authorization. As a result, the IAM principal 
has no permissions assigned by any access policies associated to the access entry. The only 
Kubernetes permissions that the user or group that the IAM principal is impersonating has are 
the Kubernetes permissions that you've granted them in Kubernetes Role or ClusterRole
objects that you've bound to the group names or user name. For your IAM principal to have the 
permissions in associated access policies, don't impersonate a Kubernetes user or group. The 
IAM principal will still also have any permissions that you've granted them in the Kubernetes
Role or ClusterRole objects that you've bound to the group names or user name that you 
specified for the access entry. For more information, see User impersonation in the Kubernetes 
documentation.

You can associate an access policy to an access entry using the AWS Management Console or the 
AWS CLI.

AWS Management Console

To associate an access policy to an access entry using the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. Choose the name of the cluster that has an access entry that you want to associate an 
access policy to.

3. Choose the Access tab.

4. If the type of the access entry is Standard, you can associate or disassociate Amazon EKS
access policies. If the type of your access entry is anything other than Standard, then this 
option isn't available.

Associating and disassociating access policies 652

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

5. Choose Associate access policy.

6. For Policy name, select the policy with the permissions you want the IAM principal to have. 
To view the permissions included in each policy, see Access policy permissions.

7. For Access scope, choose an access scope. If you choose Cluster, the permissions in the 
access policy are granted to the IAM principal for resources in all Kubernetes namespaces. 
If you choose Kubernetes namespace, you can then choose Add new namespace. In the
Namespace field that appears, you can enter the name of a Kubernetes namespace on your 
cluster. If you want the IAM principal to have the permissions across multiple namespaces, 
then you can enter multiple namespaces.

8. Choose Add access policy.

AWS CLI

Prerequisite

Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface 
(AWS CLI) installed and configured on your device or AWS CloudShell. To check your current 
version, use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers 
such yum, apt-get, or Homebrew for macOS are often several versions behind the latest 
version of the AWS CLI. To install the latest version, see Installing, updating, and uninstalling 
the AWS CLI and Quick configuration with aws configure in the AWS Command Line Interface 
User Guide. The AWS CLI version that is installed in AWS CloudShell might also be several 
versions behind the latest version. To update it, see Installing AWS CLI to your home directory in 
the AWS CloudShell User Guide.

To associate an access policy to an access entry

1. View the available access policies.

aws eks list-access-policies --output table

An example output is as follows.

---------------------------------------------------------------------------------------------------------
|                                          ListAccessPolicies                    
                        |
+-------------------------------------------------------------------------------------------------------
+

Associating and disassociating access policies 653

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software


Amazon EKS User Guide

||                                           accessPolicies                      
                       ||
|+---------------------------------------------------------------------
+-------------------------------+|
||                                 arn                                 |         
     name              ||
|+---------------------------------------------------------------------
+-------------------------------+|
||  arn:aws:eks::aws:cluster-access-policy/AmazonEKSAdminPolicy        |  
 AmazonEKSAdminPolicy         ||
||  arn:aws:eks::aws:cluster-access-policy/AmazonEKSClusterAdminPolicy |  
 AmazonEKSClusterAdminPolicy  ||
||  arn:aws:eks::aws:cluster-access-policy/AmazonEKSEditPolicy         |  
 AmazonEKSEditPolicy          ||
||  arn:aws:eks::aws:cluster-access-policy/AmazonEKSViewPolicy         |  
 AmazonEKSViewPolicy          ||
|+---------------------------------------------------------------------
+-------------------------------+|

To view the permissions included in each policy, see Access policy permissions.

2. View your existing access entries. Replace my-cluster with the name of your cluster.

aws eks list-access-entries --cluster-name my-cluster

An example output is as follows.

{ 
    "accessEntries": [ 
        "arn:aws::aws:iam::111122223333:role/my-role", 
        "arn:aws::aws:iam::111122223333:user/my-user" 
    ]
}

3. Associate an access policy to an access entry. The following example associates the
AmazonEKSViewPolicy access policy to an access entry. Whenever the my-role IAM role 
attempts to access Kubernetes objects on the cluster, Amazon EKS will authorize the role 
to use the permissions in the policy to access Kubernetes objects in the my-namespace1
and my-namespace2 Kubernetes namespaces only. Replace my-cluster with the name of 
your cluster, 111122223333 with your AWS account ID, and my-role with the name of the 
IAM role that you want Amazon EKS to authorize access to Kubernetes cluster objects for.

Associating and disassociating access policies 654



Amazon EKS User Guide

aws eks associate-access-policy --cluster-name my-cluster --principal-arn 
 arn:aws::aws:iam::111122223333:role/my-role \ 
    --access-scope type=namespace,namespaces=my-namespace1,my-namespace2 --
policy-arn arn:aws:eks::aws:cluster-access-policy/AmazonEKSViewPolicy

If you want the IAM principal to have the permissions cluster-wide, replace
type=namespace,namespaces=my-namespace1,my-namespace2 with
type=cluster. If you want to associate multiple access policies to the access entry, run 
the command multiple times, each with a unique access policy. Each associated access 
policy has its own scope.

Note

If you later want to change the scope of an associated access policy, run 
the previous command again with the new scope. For example, if you 
wanted to remove my-namespace2, you'd run the command again using
type=namespace,namespaces=my-namespace1 only. If you wanted to 
change the scope from namespace to cluster, you'd run the command 
again using type=cluster, removing type=namespace,namespaces=my-
namespace1,my-namespace2.

To disassociate an access policy from an access entry

1. Determine which access policies are associated to an access entry.

aws eks list-associated-access-policies --cluster-name my-cluster --principal-
arn arn:aws::aws:iam::111122223333:role/my-role

An example output is as follows.

{ 
    "clusterName": "my-cluster", 
    "principalArn": "arn:aws::aws:iam::111122223333", 
    "associatedAccessPolicies": [ 
        { 
            "policyArn": "arn:aws:eks::aws:cluster-access-
policy/AmazonEKSViewPolicy", 

Associating and disassociating access policies 655



Amazon EKS User Guide

            "accessScope": { 
                "type": "cluster", 
                "namespaces": [] 
            }, 
            "associatedAt": "2023-04-17T15:25:21.675000-04:00", 
            "modifiedAt": "2023-04-17T15:25:21.675000-04:00" 
        }, 
        { 
            "policyArn": "arn:aws:eks::aws:cluster-access-
policy/AmazonEKSAdminPolicy", 
            "accessScope": { 
                "type": "namespace", 
                "namespaces": [ 
                    "my-namespace1", 
                    "my-namespace2" 
                ] 
            }, 
            "associatedAt": "2023-04-17T15:02:06.511000-04:00", 
            "modifiedAt": "2023-04-17T15:02:06.511000-04:00" 
        } 
    ]
}

In the previous example, the IAM principal for this access entry has view permissions 
across all namespaces on the cluster, and administrator permissions to two Kubernetes 
namespaces.

2. Disassociate an access policy from an access entry. In this example, the
AmazonEKSAdminPolicy policy is disassociated from an access entry. The IAM principal 
retains the permissions in the AmazonEKSViewPolicy access policy for objects in the my-
namespace1 and my-namespace2 namespaces however, because that access policy is not 
disassociated from the access entry.

aws eks disassociate-access-policy --cluster-name my-cluster --principal-arn 
 arn:aws::aws:iam::111122223333:role/my-role \ 
    --policy-arn arn:aws:eks::aws:cluster-access-policy/AmazonEKSAdminPolicy

Access policy permissions

Access policies include rules that contain Kubernetes verbs (permissions) and resources. 
Access policies don't include IAM permissions or resources. Similar to Kubernetes Role and

Associating and disassociating access policies 656



Amazon EKS User Guide

ClusterRole objects, access policies only include allow rules. You can't modify the contents of 
an access policy. You can't create your own access policies. If the permissions in the access policies 
don't meet your needs, then create Kubernetes RBAC objects and specify group names for your 
access entries. For more information, see Creating access entries. The permissions contained in 
access policies are similar to the permissions in the Kubernetes user-facing cluster roles. For more 
information, see User-facing roles in the Kubernetes documentation.

Choose any access policy to see its contents. Each row of each table in each access policy is a 
separate rule.

AmazonEKSAdminPolicy

This access policy includes permissions that grant an IAM principal most permissions to resources. 
When associated to an access entry, its access scope is typically one or more Kubernetes 
namespaces. If you want an IAM principal to have administrator access to all resources on your 
cluster, associate the AmazonEKSClusterAdminPolicy access policy to your access entry instead.

ARN – arn:aws:eks::aws:cluster-access-policy/AmazonEKSAdminPolicy

Kubernetes API groups Kubernetes resources Kubernetes verbs (permissi 
ons)

apps daemonsets , deploymen 
ts , deployments/
rollback , deploymen 
ts/scale , replicase 
ts , replicasets/
scale, statefulsets ,
statefulsets/scale

create, delete, deletecol 
lection , patch, update

apps controllerrevisions ,
daemonsets , daemonset 
s/status , deploymen 
ts , deployments/scale ,
deployments/status ,
replicasets , replicase 
ts/scale , replicase 
ts/status , statefuls 

get, list, watch

Associating and disassociating access policies 657

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-facing-roles


Amazon EKS User Guide

Kubernetes API groups Kubernetes resources Kubernetes verbs (permissi 
ons)

ets , statefulsets/
scale , statefulsets/
status

authorization.k8s.io localsubjectaccess 
reviews

create

autoscaling horizontalpodautos 
calers

create, delete, deletecol 
lection , patch, update

autoscaling horizontalpodautos 
calers , horizonta 
lpodautoscalers/st 
atus

get, list, watch

batch cronjobs, jobs create, delete, deletecol 
lection , patch, update

batch cronjobs, cronjobs/ 
status , jobs, jobs/stat 
us

get, list, watch

discovery.k8s.io endpointslices get, list, watch

extensions daemonsets , deploymen 
ts , deployments/
rollback , deploymen 
ts/scale , ingresses

, networkpolicies ,
replicasets , replicase 
ts/scale , replicati 
oncontrollers/scale

create, delete, deletecol 
lection , patch, update

Associating and disassociating access policies 658



Amazon EKS User Guide

Kubernetes API groups Kubernetes resources Kubernetes verbs (permissi 
ons)

extensions daemonsets , daemonset 
s/status , deploymen 
ts , deployments/scale ,
deployments/status ,
ingresses , ingresses 
/status , networkpo 
licies , replicasets ,
replicasets/scale ,
replicasets/status

, replicationcontrol 
lers/scale

get, list, watch

networking.k8s.io ingresses , ingresses 
/status , networkpo 
licies

get, list, watch

networking.k8s.io ingresses , networkpo 
licies

create, delete, deletecol 
lection , patch, update

policy poddisruptionbudgets create, delete, deletecol 
lection , patch, update

policy poddisruptionbudgets ,
poddisruptionbudge 
ts/status

get, list, watch

rbac.authorization 
.k8s.io

rolebindings , roles create, delete, deletecol 
lection , get, list,
patch, update, watch

Associating and disassociating access policies 659



Amazon EKS User Guide

Kubernetes API groups Kubernetes resources Kubernetes verbs (permissi 
ons)

  configmaps , endpoints
, persistentvolumecl 
aims , persisten 
tvolumeclaims/stat 
us , pods, replicati 
oncontrollers ,
replicationcontrol 
lers/scale , serviceac 
counts , services,
services/status

get,list, watch

  pods/attach , pods/exec
, pods/portforward ,
pods/proxy , secrets,
services/proxy

get, list, watch

  configmaps , events,
persistentvolumecl 
aims , replicati 
oncontrollers ,
replicationcontrol 
lers/scale , secrets,
serviceaccounts ,
services, services/ 
proxy

create, delete, deletecol 
lection , patch, update

  pods, pods/attach ,
pods/exec , pods/port 
forward , pods/proxy

create, delete, deletecol 
lection , patch, update

  serviceaccounts impersonate

Associating and disassociating access policies 660



Amazon EKS User Guide

Kubernetes API groups Kubernetes resources Kubernetes verbs (permissi 
ons)

  bindings, events,
limitranges , namespace 
s/status , pods/log,
pods/status , replicati 
oncontrollers/stat 
us , resourcequotas ,
resourcequotas/sta 
tus

get, list, watch

  namespaces get,list, watch

AmazonEKSClusterAdminPolicy

This access policy includes permissions that grant an IAM principal administrator access to a 
cluster. When associated to an access entry, its access scope is typically the cluster, rather than a 
Kubernetes namespace. If you want an IAM principal to have a more limited administrative scope, 
consider associating the AmazonEKSAdminPolicy access policy to your access entry instead.

ARN – arn:aws:eks::aws:cluster-access-policy/AmazonEKSClusterAdminPolicy

Kubernetes API 
groups

Kubernetes 
nonResourceURLs

Kubernetes 
resources

Kubernetes verbs 
(permissions)

*   * *

  *   *

AmazonEKSEditPolicy

This access policy includes permissions that allow an IAM principal to edit most Kubernetes 
resources.

ARN – arn:aws:eks::aws:cluster-access-policy/AmazonEKSEditPolicy

Associating and disassociating access policies 661



Amazon EKS User Guide

Kubernetes API groups Kubernetes resources Kubernetes verbs (permissi 
ons)

apps daemonsets , deploymen 
ts , deployments/
rollback , deploymen 
ts/scale , replicase 
ts , replicasets/
scale, statefulsets ,
statefulsets/scale

create, delete, deletecol 
lection , patch, update

apps controllerrevisions ,
daemonsets , daemonset 
s/status , deploymen 
ts , deployments/scale ,
deployments/status ,
replicasets , replicase 
ts/scale , replicase 
ts/status , statefuls 
ets , statefulsets/
scale , statefulsets/
status

get, list, watch

autoscaling horizontalpodautos 
calers , horizonta 
lpodautoscalers/st 
atus

get, list, watch

autoscaling horizontalpodautos 
calers

create, delete, deletecol 
lection , patch, update

batch cronjobs, jobs create, delete, deletecol 
lection , patch, update

batch cronjobs, cronjobs/ 
status , jobs, jobs/stat 
us

get, list, watch

Associating and disassociating access policies 662



Amazon EKS User Guide

Kubernetes API groups Kubernetes resources Kubernetes verbs (permissi 
ons)

discovery.k8s.io endpointslices get, list, watch

extensions daemonsets , deploymen 
ts , deployments/
rollback , deploymen 
ts/scale , ingresses

, networkpolicies ,
replicasets , replicase 
ts/scale , replicati 
oncontrollers/scale

create, delete, deletecol 
lection , patch, update

extensions daemonsets , daemonset 
s/status , deploymen 
ts , deployments/scale ,
deployments/status ,
ingresses , ingresses 
/status , networkpo 
licies , replicasets ,
replicasets/scale ,
replicasets/status

, replicationcontrol 
lers/scale

get, list, watch

networking.k8s.io ingresses , networkpo 
licies

create, delete, deletecol 
lection , patch, update

networking.k8s.io ingresses , ingresses 
/status , networkpo 
licies

get, list, watch

policy poddisruptionbudgets create, delete, deletecol 
lection , patch, update

Associating and disassociating access policies 663



Amazon EKS User Guide

Kubernetes API groups Kubernetes resources Kubernetes verbs (permissi 
ons)

policy poddisruptionbudgets ,
poddisruptionbudge 
ts/status

get, list, watch

  namespaces get, list, watch

  pods/attach , pods/exec
, pods/portforward ,
pods/proxy , secrets,
services/proxy

get, list, watch

  serviceaccounts impersonate

  pods, pods/attach ,
pods/exec , pods/port 
forward , pods/proxy

create, delete, deletecol 
lection , patch, update

  configmaps , events,
persistentvolumecl 
aims , replicati 
oncontrollers ,
replicationcontrol 
lers/scale , secrets,
serviceaccounts ,
services, services/ 
proxy

create, delete, deletecol 
lection , patch, update

Associating and disassociating access policies 664



Amazon EKS User Guide

Kubernetes API groups Kubernetes resources Kubernetes verbs (permissi 
ons)

  configmaps , endpoints
, persistentvolumecl 
aims , persisten 
tvolumeclaims/stat 
us , pods, replicati 
oncontrollers ,
replicationcontrol 
lers/scale , serviceac 
counts , services,
services/status

get, list, watch

  bindings, events,
limitranges , namespace 
s/status , pods/log,
pods/status , replicati 
oncontrollers/stat 
us , resourcequotas ,
resourcequotas/sta 
tus

get, list, watch

AmazonEKSViewPolicy

This access policy includes permissions that allow an IAM principal to view most Kubernetes 
resources.

ARN – arn:aws:eks::aws:cluster-access-policy/AmazonEKSViewPolicy

Kubernetes API groups Kubernetes resources Kubernetes verbs (permissi 
ons)

apps controllerrevisions ,
daemonsets , daemonset 
s/status , deploymen 
ts , deployments/scale ,

get, list, watch

Associating and disassociating access policies 665



Amazon EKS User Guide

Kubernetes API groups Kubernetes resources Kubernetes verbs (permissi 
ons)

deployments/status ,
replicasets , replicase 
ts/scale , replicase 
ts/status , statefuls 
ets , statefulsets/
scale , statefulsets/
status

autoscaling horizontalpodautos 
calers , horizonta 
lpodautoscalers/st 
atus

get, list, watch

batch cronjobs, cronjobs/ 
status , jobs, jobs/stat 
us

get, list, watch

discovery.k8s.io endpointslices get, list, watch

extensions daemonsets , daemonset 
s/status , deploymen 
ts , deployments/scale ,
deployments/status ,
ingresses , ingresses 
/status , networkpo 
licies , replicasets , 
replicasets/scale ,
replicasets/status

, replicationcontrol 
lers/scale

get, list, watch

networking.k8s.io ingresses , ingresses 
/status , networkpo 
licies

get, list, watch

Associating and disassociating access policies 666



Amazon EKS User Guide

Kubernetes API groups Kubernetes resources Kubernetes verbs (permissi 
ons)

policy poddisruptionbudgets ,
poddisruptionbudge 
ts/status

get, list, watch

  configmaps , endpoints
, persistentvolumecl 
aims , persisten 
tvolumeclaims/stat 
us , pods, replicati 
oncontrollers ,
replicationcontrol 
lers/scale , serviceac 
counts , services,
services/status

get, list, watch

  bindings, events,
limitranges , namespace 
s/status , pods/log,
pods/status , replicatio 
ncontrollers/statu 
s , resourcequotas , 
resourcequotas/status

get, list, watch

  namespaces get, list, watch

Access policy updates

View details about updates to access policies, since they were introduced. For automatic alerts 
about changes to this page, subscribe to the RSS feed on the Amazon EKS Document history page.

Change Description Date

Access policies 
introduced.

Amazon EKS introduced access policies. May 29, 2023

Associating and disassociating access policies 667



Amazon EKS User Guide

Migrating existing aws-auth ConfigMap entries to access entries

If you've added entries to the aws-auth ConfigMap on your cluster, we recommend that you 
create access entries for the existing entries in your aws-auth ConfigMap. After creating the 
access entries, you can remove the entries from your ConfigMap. You can't associate access 
policies to entries in the aws-auth ConfigMap. If you want to associate access polices to your IAM 
principals, create access entries.

Important

Don't remove existing aws-auth ConfigMap entries that were created by Amazon EKS 
when you added a managed node group or a Fargate profile to your cluster. If you remove 
entries that Amazon EKS created in the ConfigMap, your cluster won't function properly. 
You can however, remove any entries for self-managed node groups after you've created 
access entries for them.

Prerequisites

• Familiarity with access entries and access policies. For more information, see Allowing IAM 
roles or users access to Kubernetes objects on your Amazon EKS cluster and Associating and 
disassociating access policies to and from access entries.

• An existing cluster with a platform version that is at or later than the versions listed in the 
Prerequisites of the Allowing IAM roles or users access to Kubernetes objects on your Amazon 
EKS cluster topic.

• Version 0.172.0 or later of the eksctl command line tool installed on your device or AWS 
CloudShell. To install or update eksctl, see Installation in the eksctl documentation.

• Kubernetes permissions to modify the aws-auth ConfigMap in the kube-system namespace.

• An AWS Identity and Access Management role or user with the following permissions:
CreateAccessEntry and ListAccessEntries. For more information, see Actions defined by 
Amazon Elastic Kubernetes Service in the Service Authorization Reference.

To migrate an entry from your aws-auth ConfigMap to an access entry

1. View the existing entries in your aws-auth ConfigMap. Replace my-cluster with the name 
of your cluster.

Migrating existing aws-auth ConfigMap entries to access entries 668

https://eksctl.io/installation
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions


Amazon EKS User Guide

eksctl get iamidentitymapping --cluster my-cluster 

An example output is as follows.

ARN                                                                                 
             USERNAME                                GROUPS                         
                          ACCOUNT
arn:aws:iam::111122223333:role/EKS-my-cluster-Admins                                
             Admins                                  system:masters
arn:aws:iam::111122223333:role/EKS-my-cluster-my-namespace-Viewers                  
             my-namespace-Viewers                    Viewers
arn:aws:iam::111122223333:role/EKS-my-cluster-self-managed-ng-1     
                             system:node:{{EC2PrivateDNSName}}       
 system:bootstrappers,system:nodes
arn:aws:iam::111122223333:user/my-user                                              
             my-user
arn:aws:iam::111122223333:role/EKS-my-cluster-fargateprofile1       
                             system:node:{{SessionName}}             
 system:bootstrappers,system:nodes,system:node-proxier
arn:aws:iam::111122223333:role/EKS-my-cluster-managed-ng            
                             system:node:{{EC2PrivateDNSName}}       
 system:bootstrappers,system:nodes

2. Create access entries for any of the ConfigMap entries that you created returned in the 
previous output. When creating the access entries, make sure to specify the same values for
ARN, USERNAME, GROUPS, and ACCOUNT returned in your output. In the example output, you 
would create access entries for all entries except the last two entries, since those entries were 
created by Amazon EKS for a Fargate profile and a managed node group.

3. Delete the entries from the ConfigMap for any access entries that you created. If you don't 
delete the entry from the ConfigMap, the settings for the access entry for the IAM principal 
ARN override the ConfigMap entry. Replace 111122223333 with your AWS account ID and
EKS-my-cluster-my-namespace-Viewers with the name of the role in the entry in your
ConfigMap. If the entry you're removing is for an IAM user, rather than an IAM role, replace
role with user and EKS-my-cluster-my-namespace-Viewers with the user name.

eksctl delete iamidentitymapping --arn arn:aws:iam::111122223333:role/EKS-my-
cluster-my-namespace-Viewers --cluster my-cluster

Migrating existing aws-auth ConfigMap entries to access entries 669



Amazon EKS User Guide

Enabling IAM principal access to your cluster

Access to your cluster using IAM principals is enabled by the AWS IAM Authenticator for 
Kubernetes, which runs on the Amazon EKS control plane. The authenticator gets its configuration 
information from the aws-auth ConfigMap. For all aws-auth ConfigMap settings, see Full 
Configuration Format on GitHub.

Add IAM principals to your Amazon EKS cluster

When you create an Amazon EKS cluster, the IAM principal that creates the cluster is automatically 
granted system:masters permissions in the cluster's role-based access control (RBAC) 
configuration in the Amazon EKS control plane. This principal doesn't appear in any visible 
configuration, so make sure to keep track of which principal originally created the cluster. To grant 
additional IAM principals the ability to interact with your cluster, edit the aws-auth ConfigMap
within Kubernetes and create a Kubernetes rolebinding or clusterrolebinding with the 
name of a group that you specify in the aws-auth ConfigMap.

Note

For more information about Kubernetes role-based access control (RBAC) configuration, see
Using RBAC Authorization in the Kubernetes documentation.

To add an IAM principal to an Amazon EKS cluster

1. Determine which credentials kubectl is using to access your cluster. On your computer, you 
can see which credentials kubectl uses with the following command. Replace ~/.kube/
config with the path to your kubeconfig file if you don't use the default path.

cat ~/.kube/config

An example output is as follows.

[...]
contexts:
- context: 
    cluster: my-cluster.region-code.eksctl.io
    user: admin@my-cluster.region-code.eksctl.io
  name: admin@my-cluster.region-code.eksctl.io

Using the aws-auth ConfigMap 670

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://github.com/kubernetes-sigs/aws-iam-authenticator#readme
https://github.com/kubernetes-sigs/aws-iam-authenticator#readme
https://github.com/kubernetes-sigs/aws-iam-authenticator#full-configuration-format
https://github.com/kubernetes-sigs/aws-iam-authenticator#full-configuration-format
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://kubernetes.io/docs/reference/access-authn-authz/rbac/


Amazon EKS User Guide

current-context: admin@my-cluster.region-code.eksctl.io
[...]

In the previous example output, the credentials for a user named admin are configured for 
a cluster named my-cluster. If this is the user that created the cluster, then it already has 
access to your cluster. If it's not the user that created the cluster, then you need to complete 
the remaining steps to enable cluster access for other IAM principals. IAM best practices
recommend that you grant permissions to roles instead of users. You can see which other 
principals currently have access to your cluster with the following command:

kubectl describe -n kube-system configmap/aws-auth

An example output is as follows.

Name:         aws-auth
Namespace:    kube-system
Labels:       <none>
Annotations:  <none>

Data
====
mapRoles:
----
- groups: 
  - system:bootstrappers 
  - system:nodes 
  rolearn: arn:aws:iam::111122223333:role/my-node-role
  username: system:node:{{EC2PrivateDNSName}}

BinaryData
====

Events:  <none>

The previous example is a default aws-auth ConfigMap. Only the node instance role has 
access to the cluster.

2. Make sure that you have existing Kubernetes roles and rolebindings or clusterroles
and clusterrolebindings that you can map IAM principals to. For more information about 
these resources, see Using RBAC Authorization in the Kubernetes documentation.

Add IAM principals 671

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://kubernetes.io/docs/reference/access-authn-authz/rbac/


Amazon EKS User Guide

1. View your existing Kubernetes roles or clusterroles. Roles are scoped to a
namespace, but clusterroles are scoped to the cluster.

kubectl get roles -A

kubectl get clusterroles

2. View the details of any role or clusterrole returned in the previous output and confirm 
that it has the permissions (rules) that you want your IAM principals to have in your 
cluster.

Replace role-name with a role name returned in the output from the previous command. 
Replace kube-system with the namespace of the role.

kubectl describe role role-name -n kube-system

Replace cluster-role-name with a clusterrole name returned in the output from the 
previous command.

kubectl describe clusterrole cluster-role-name

3. View your existing Kubernetes rolebindings or clusterrolebindings. Rolebindings
are scoped to a namespace, but clusterrolebindings are scoped to the cluster.

kubectl get rolebindings -A

kubectl get clusterrolebindings

4. View the details of any rolebinding or clusterrolebinding and confirm that it has a
role or clusterrole from the previous step listed as a roleRef and a group name listed 
for subjects.

Replace role-binding-name with a rolebinding name returned in the output from the 
previous command. Replace kube-system with the namespace of the rolebinding.

kubectl describe rolebinding role-binding-name -n kube-system

Add IAM principals 672



Amazon EKS User Guide

An example output is as follows.

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata: 
  name: eks-console-dashboard-restricted-access-role-binding
  namespace: default
subjects:
- kind: Group 
  name: eks-console-dashboard-restricted-access-group
  apiGroup: rbac.authorization.k8s.io
roleRef: 
  kind: Role 
  name: eks-console-dashboard-restricted-access-role
  apiGroup: rbac.authorization.k8s.io

Replace cluster-role-binding-name with a clusterrolebinding name returned in 
the output from the previous command.

kubectl describe clusterrolebinding cluster-role-binding-name

An example output is as follows.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata: 
  name: eks-console-dashboard-full-access-binding
subjects:
- kind: Group 
  name: eks-console-dashboard-full-access-group
  apiGroup: rbac.authorization.k8s.io
roleRef: 
  kind: ClusterRole 
  name: eks-console-dashboard-full-access-clusterrole
  apiGroup: rbac.authorization.k8s.io

3. Edit the aws-auth ConfigMap. You can use a tool such as eksctl to update the ConfigMap
or you can update it manually by editing it.

Add IAM principals 673



Amazon EKS User Guide

Important

We recommend using eksctl, or another tool, to edit the ConfigMap. For 
information about other tools you can use, see Use tools to make changes to the aws-
authConfigMap in the Amazon EKS best practices guides. An improperly formatted
aws-auth ConfigMap can cause you to lose access to your cluster.

eksctl

Prerequisite

Version 0.172.0 or later of the eksctl command line tool installed on your device 
or AWS CloudShell. To install or update eksctl, see Installation in the eksctl
documentation.

1. View the current mappings in the ConfigMap. Replace my-cluster with the name of 
your cluster. Replace region-code with the AWS Region that your cluster is in.

eksctl get iamidentitymapping --cluster my-cluster --region=region-code

An example output is as follows.

ARN                                                                            
                  USERNAME                                GROUPS               
            ACCOUNT
arn:aws:iam::111122223333:role/eksctl-my-cluster-my-nodegroup-
NodeInstanceRole-1XLS7754U3ZPA    system:node:{{EC2PrivateDNSName}}       
 system:bootstrappers,system:nodes

2. Add a mapping for a role. Replace my-role with your role name. Replace eks-
console-dashboard-full-access-group with the name of the group specified 
in your Kubernetes RoleBinding or ClusterRoleBinding object. Replace
111122223333 with your account ID. You can replace admin with any name you choose.

eksctl create iamidentitymapping --cluster my-cluster --region=region-code \ 
    --arn arn:aws:iam::111122223333:role/my-role --username admin --group eks-
console-dashboard-full-access-group \ 

Add IAM principals 674

https://aws.github.io/aws-eks-best-practices/security/docs/iam/#use-tools-to-make-changes-to-the-aws-auth-configmap
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#use-tools-to-make-changes-to-the-aws-auth-configmap
https://eksctl.io/installation


Amazon EKS User Guide

    --no-duplicate-arns

Important

The role ARN can't include a path such as role/my-team/
developers/my-role. The format of the ARN must be
arn:aws:iam::111122223333:role/my-role. In this example, my-team/
developers/ needs to be removed.

An example output is as follows.

[...]
2022-05-09 14:51:20 [#]  adding identity "arn:aws:iam::111122223333:role/my-
role" to auth ConfigMap

3. Add a mapping for a user. IAM best practices recommend that you grant permissions to 
roles instead of users. Replace my-user with your user name. Replace eks-console-
dashboard-restricted-access-group with the name of the group specified in your 
Kubernetes RoleBinding or ClusterRoleBinding object. Replace 111122223333
with your account ID. You can replace my-user with any name you choose.

eksctl create iamidentitymapping --cluster my-cluster --region=region-code \ 
    --arn arn:aws:iam::111122223333:user/my-user --username my-user --
group eks-console-dashboard-restricted-access-group \ 
    --no-duplicate-arns

An example output is as follows.

[...]
2022-05-09 14:53:48 [#]  adding identity "arn:aws:iam::111122223333:user/my-
user" to auth ConfigMap

4. View the mappings in the ConfigMap again.

eksctl get iamidentitymapping --cluster my-cluster --region=region-code

An example output is as follows.

Add IAM principals 675

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html


Amazon EKS User Guide

ARN                                                                            
                  USERNAME                                GROUPS               
                    ACCOUNT
arn:aws:iam::111122223333:role/eksctl-my-cluster-my-nodegroup-
NodeInstanceRole-1XLS7754U3ZPA    system:node:{{EC2PrivateDNSName}}       
 system:bootstrappers,system:nodes
arn:aws:iam::111122223333:role/admin                                      
                      my-role                                 eks-console-
dashboard-full-access-group
arn:aws:iam::111122223333:user/my-user                                    
                      my-user                                 eks-console-
dashboard-restricted-access-group

Edit ConfigMap manually

1. Open the ConfigMap for editing.

kubectl edit -n kube-system configmap/aws-auth

Note

If you receive an error stating "Error from server (NotFound): 
configmaps "aws-auth" not found", then use the procedure in Apply the
aws-auth   ConfigMap to your cluster to apply the stock ConfigMap.

2. Add your IAM principals to the ConfigMap. An IAM group isn't an IAM principal, so it 
can't be added to the ConfigMap.

• To add an IAM role (for example, for federated users): Add the role details to the
mapRoles section of the ConfigMap, under data. Add this section if it does not 
already exist in the file. Each entry supports the following parameters:

• rolearn: The ARN of the IAM role to add. This value can't include a path. For 
example, you can't specify an ARN such as arn:aws:iam::111122223333:role/
my-team/developers/role-name. The ARN needs to be
arn:aws:iam::111122223333:role/role-name instead.

• username: The user name within Kubernetes to map to the IAM role.

Add IAM principals 676

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html


Amazon EKS User Guide

• groups: The group or list of Kubernetes groups to map the role to. The group can be 
a default group, or a group specified in a clusterrolebinding or rolebinding. 
For more information, see Default roles and role bindings in the Kubernetes 
documentation.

• To add an IAM user: IAM best practices recommend that you grant permissions 
to roles instead of users. Add the user details to the mapUsers section of the
ConfigMap, under data. Add this section if it does not already exist in the file. Each 
entry supports the following parameters:

• userarn: The ARN of the IAM user to add.

• username: The user name within Kubernetes to map to the IAM user.

• groups: The group, or list of Kubernetes groups to map the user to. The group 
can be a default group, or a group specified in a clusterrolebinding or
rolebinding. For more information, see Default roles and role bindings in the 
Kubernetes documentation.

For example, the following YAML block contains:

• A mapRoles section that maps the IAM node instance to Kubernetes groups so that 
nodes can register themselves with the cluster and the my-console-viewer-role
IAM role that is mapped to a Kubernetes group that can view all Kubernetes resources 
for all clusters. For a list of the IAM and Kubernetes group permissions required for the
my-console-viewer-role IAM role, see Required permissions.

• A mapUsers section that maps the admin IAM user from the default AWS account to 
the system:masters Kubernetes group and the my-user user from a different AWS 
account that is mapped to a Kubernetes group that can view Kubernetes resources for 
a specific namespace. For a list of the IAM and Kubernetes group permissions required 
for the my-user IAM user, see Required permissions.

Add or remove lines as necessary and replace all example values with your own 
values.

# Please edit the object below. Lines beginning with a '#' will be ignored,
# and an empty file will abort the edit. If an error occurs while saving this 
 file will be
# reopened with the relevant failures.
#
apiVersion: v1
data: 

Add IAM principals 677

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#default-roles-and-role-bindings


Amazon EKS User Guide

  mapRoles: | 
    - groups: 
      - system:bootstrappers
      - system:nodes
      rolearn: arn:aws:iam::111122223333:role/my-role
      username: system:node:{{EC2PrivateDNSName}} 
    - groups: 
      - eks-console-dashboard-full-access-group
      rolearn: arn:aws:iam::111122223333:role/my-console-viewer-role
      username: my-console-viewer-role
  mapUsers: | 
    - groups: 
      - system:masters
      userarn: arn:aws:iam::111122223333:user/admin
      username: admin
    - groups: 
      - eks-console-dashboard-restricted-access-group      
      userarn: arn:aws:iam::444455556666:user/my-user
      username: my-user

3. Save the file and exit your text editor.

Apply the aws-auth   ConfigMap to your cluster

The aws-auth ConfigMap is automatically created and applied to your cluster when you create 
a managed node group or when you create a node group using eksctl. It is initially created to 
allow nodes to join your cluster, but you also use this ConfigMap to add role-based access control 
(RBAC) access to IAM principals. If you've launched self-managed nodes and haven't applied the
aws-auth ConfigMap to your cluster, you can do so with the following procedure.

To apply the aws-authConfigMap to your cluster

1. Check to see if you've already applied the aws-auth ConfigMap.

kubectl describe configmap -n kube-system aws-auth

If you receive an error stating "Error from server (NotFound): configmaps "aws-
auth" not found", then proceed with the following steps to apply the stock ConfigMap.

2. Download, edit, and apply the AWS authenticator configuration map.

Apply the aws-auth   ConfigMap to your cluster 678



Amazon EKS User Guide

a. Download the configuration map.

curl -O https://s3.us-west-2.amazonaws.com/amazon-
eks/cloudformation/2020-10-29/aws-auth-cm.yaml

b. In the aws-auth-cm.yaml file, set the rolearn to the Amazon Resource Name (ARN) of 
the IAM role associated with your nodes. You can do this with a text editor, or by replacing
my-node-instance-role and running the following command:

sed -i.bak -e 's|<ARN of instance role (not instance profile)>|my-node-
instance-role|' aws-auth-cm.yaml

Don't modify any other lines in this file.

Important

The role ARN can't include a path such as role/my-team/
developers/my-role. The format of the ARN must be
arn:aws:iam::111122223333:role/my-role. In this example, my-team/
developers/ needs to be removed.

You can inspect the AWS CloudFormation stack outputs for your node groups and look for 
the following values:

• InstanceRoleARN – For node groups that were created with eksctl

• NodeInstanceRole – For node groups that were created with Amazon EKS vended AWS 
CloudFormation templates in the AWS Management Console

c. Apply the configuration. This command may take a few minutes to finish.

kubectl apply -f aws-auth-cm.yaml

Note

If you receive any authorization or resource type errors, see Unauthorized or access 
denied (kubectl) in the troubleshooting topic.

Apply the aws-auth   ConfigMap to your cluster 679



Amazon EKS User Guide

3. Watch the status of your nodes and wait for them to reach the Ready status.

kubectl get nodes --watch

Enter Ctrl+C to return to a shell prompt.

Creating or updating a kubeconfig file for an Amazon EKS 
cluster

In this topic, you create a kubeconfig file for your cluster (or update an existing one).

The kubectl command-line tool uses configuration information in kubeconfig files to 
communicate with the API server of a cluster. For more information, see Organizing Cluster Access 
Using kubeconfig Files in the Kubernetes documentation.

Amazon EKS uses the aws eks get-token command with kubectl for cluster authentication. 
By default, the AWS CLI uses the same credentials that are returned with the following command:

aws sts get-caller-identity

Prerequisites

• An existing Amazon EKS cluster. To deploy one, see Getting started with Amazon EKS.

• The kubectl command line tool is installed on your device or AWS CloudShell. The version can 
be the same as or up to one minor version earlier or later than the Kubernetes version of your 
cluster. For example, if your cluster version is 1.28, you can use kubectl version 1.27, 1.28, or
1.29 with it. To install or upgrade kubectl, see Installing or updating kubectl.

• Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface (AWS 
CLI) installed and configured on your device or AWS CloudShell. To check your current version, 
use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers such yum,
apt-get, or Homebrew for macOS are often several versions behind the latest version of the 
AWS CLI. To install the latest version, see Installing, updating, and uninstalling the AWS CLI and
Quick configuration with aws configure in the AWS Command Line Interface User Guide. The AWS 
CLI version that is installed in AWS CloudShell might also be several versions behind the latest 
version. To update it, see Installing AWS CLI to your home directory in the AWS CloudShell User 
Guide.

Creating a kubeconfig file 680

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software


Amazon EKS User Guide

• An IAM user or role with permission to use the eks:DescribeCluster API action for the 
cluster that you specify. For more information, see Amazon EKS identity-based policy examples. 
If you use an identity from your own OpenID Connect provider to access your cluster, then see
Using kubectl in the Kubernetes documentation to create or update your kube config file.

Create kubeconfig file automatically

Prerequisites

• Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface (AWS 
CLI) installed and configured on your device or AWS CloudShell. To check your current version, 
use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers such yum,
apt-get, or Homebrew for macOS are often several versions behind the latest version of the 
AWS CLI. To install the latest version, see Installing, updating, and uninstalling the AWS CLI and
Quick configuration with aws configure in the AWS Command Line Interface User Guide. The AWS 
CLI version that is installed in AWS CloudShell might also be several versions behind the latest 
version. To update it, see Installing AWS CLI to your home directory in the AWS CloudShell User 
Guide.

• Permission to use the eks:DescribeCluster API action for the cluster that you specify. For 
more information, see Amazon EKS identity-based policy examples.

To create your kubeconfig file with the AWS CLI

1. Create or update a kubeconfig file for your cluster. Replace region-code with the AWS 
Region that your cluster is in and replace my-cluster with the name of your cluster.

aws eks update-kubeconfig --region region-code --name my-cluster

By default, the resulting configuration file is created at the default kubeconfig path (.kube) 
in your home directory or merged with an existing config file at that location. You can specify 
another path with the --kubeconfig option.

You can specify an IAM role ARN with the --role-arn option to use for authentication when 
you issue kubectl commands. Otherwise, the IAM principal in your default AWS CLI or SDK 
credential chain is used. You can view your default AWS CLI or SDK identity by running the aws 
sts get-caller-identity command.

Create kubeconfig file automatically 681

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#using-kubectl
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html


Amazon EKS User Guide

For all available options, run the aws eks update-kubeconfig help command or see
update-kubeconfig in the AWS CLI Command Reference.

2. Test your configuration.

kubectl get svc

An example output is as follows.

NAME             TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
svc/kubernetes   ClusterIP   10.100.0.1   <none>        443/TCP   1m

If you receive any authorization or resource type errors, see Unauthorized or access denied 
(kubectl) in the troubleshooting topic.

Default Amazon EKS created Kubernetes roles and users

When you create a Kubernetes cluster, several default Kubernetes identities are created on that 
cluster for the proper functioning of Kubernetes. Amazon EKS creates Kubernetes identities for 
each of its default components. The identities provide Kubernetes role-based authorization control 
(RBAC) for the cluster components. For more information, see Using RBAC Authorization in the 
Kubernetes documentation.

When you install optional add-ons to your cluster, additional Kubernetes identities might be 
added to your cluster. For more information about identities not addressed by this topic, see the 
documentation for the add-on.

You can view the list of Amazon EKS created Kubernetes identities on your cluster using the AWS 
Management Console or kubectl command line tool. All of the user identities appear in the kube
audit logs available to you through Amazon CloudWatch.

AWS Management Console

Prerequisite

The IAM principal that you use must have the permissions described in Required permissions.

Default Kubernetes roles and users 682

https://docs.aws.amazon.com/cli/latest/reference/eks/update-kubeconfig.html
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html


Amazon EKS User Guide

To view Amazon EKS created identities using the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the Clusters list, choose the cluster that contains the identities that you want to view.

3. Choose the Resources tab.

4. Under Resource types, choose Authorization.

5. Choose, ClusterRoles, ClusterRoleBindings, Roles, or RoleBindings. All resources prefaced 
with eks are created by Amazon EKS. Additional Amazon EKS created identity resources are:

• The ClusterRole and ClusterRoleBinding named aws-node. The aws-node resources 
support the Amazon VPC CNI plugin for Kubernetes, which Amazon EKS installs on all 
clusters.

• A ClusterRole named vpc-resource-controller-role and a ClusterRoleBinding named
vpc-resource-controller-rolebinding. These resources support the Amazon VPC resource 
controller, which Amazon EKS installs on all clusters.

In addition to the resources that you see in the console, the following special user identities 
exist on your cluster, though they're not visible in the cluster's configuration:

• eks:cluster-bootstrap – Used for kubectl operations during cluster bootstrap.

• eks:support-engineer – Used for cluster management operations.

6. Choose a specific resource to view details about it. By default, you're shown information in
Structured view. In the top-right corner of the details page you can choose Raw view to 
see all information for the resource.

Kubectl

Prerequisite

The entity that you use (AWS Identity and Access Management (IAM) or OpenID Connect (OIDC)) 
to list the Kubernetes resources on the cluster must be authenticated by IAM or your OIDC 
identity provider. The entity must be granted permissions to use the Kubernetes get and list
verbs for the Role, ClusterRole, RoleBinding, and ClusterRoleBinding resources 
on your cluster that you want the entity to work with. For more information about granting 
IAM entities access to your cluster, see Enabling IAM principal access to your cluster. For more 

Default Kubernetes roles and users 683

https://console.aws.amazon.com/eks/home#/clusters
https://github.com/aws/amazon-vpc-resource-controller-k8s
https://github.com/aws/amazon-vpc-resource-controller-k8s


Amazon EKS User Guide

information about granting entities authenticated by your own OIDC provider access to your 
cluster, see Authenticating users for your cluster from an OpenID Connect identity provider.

To view Amazon EKS created identities using kubectl

Run the command for the type of resource that you want to see. All returned resources that 
are prefaced with eks are created by Amazon EKS. In addition to the resources returned in the 
output from the commands, the following special user identities exist on your cluster, though 
they're not visible in the cluster's configuration:

• eks:cluster-bootstrap – Used for kubectl operations during cluster bootstrap.

• eks:support-engineer – Used for cluster management operations.

ClusterRoles – ClusterRoles are scoped to your cluster, so any permission granted to a role 
applies to resources in any Kubernetes namespace on the cluster.

The following command returns all of the Amazon EKS created Kubernetes ClusterRoles on 
your cluster.

kubectl get clusterroles | grep eks

In addition to the ClusterRoles returned in the output that are prefaced with, the following
ClusterRoles exist.

• aws-node – This ClusterRole supports the Amazon VPC CNI plugin for Kubernetes, which 
Amazon EKS installs on all clusters.

• vpc-resource-controller-role – This ClusterRole supports the Amazon VPC 
resource controller, which Amazon EKS installs on all clusters.

To see the specification for a ClusterRole, replace eks:k8s-metrics in the following 
command with a ClusterRole returned in the output of the previous command. The following 
example returns the specification for the eks:k8s-metrics ClusterRole.

kubectl describe clusterrole eks:k8s-metrics

An example output is as follows.

Default Kubernetes roles and users 684

https://github.com/aws/amazon-vpc-resource-controller-k8s
https://github.com/aws/amazon-vpc-resource-controller-k8s


Amazon EKS User Guide

Name:         eks:k8s-metrics
Labels:       <none>
Annotations:  <none>
PolicyRule: 
  Resources         Non-Resource URLs  Resource Names  Verbs 
  ---------         -----------------  --------------  ----- 
                    [/metrics]         []              [get] 
  endpoints         []                 []              [list] 
  nodes             []                 []              [list] 
  pods              []                 []              [list] 
  deployments.apps  []                 []              [list]

ClusterRoleBindings – ClusterRoleBindings are scoped to your cluster.

The following command returns all of the Amazon EKS created Kubernetes
ClusterRoleBindings on your cluster.

kubectl get clusterrolebindings | grep eks

In addition to the ClusterRoleBindings returned in the output, the following
ClusterRoleBindings exist.

• aws-node – This ClusterRoleBinding supports the Amazon VPC CNI plugin for 
Kubernetes, which Amazon EKS installs on all clusters.

• vpc-resource-controller-rolebinding – This ClusterRoleBinding supports the
Amazon VPC resource controller, which Amazon EKS installs on all clusters.

To see the specification for a ClusterRoleBinding, replace eks:k8s-metrics in the 
following command with a ClusterRoleBinding returned in the output of the previous 
command. The following example returns the specification for the eks:k8s-metrics
ClusterRoleBinding.

kubectl describe clusterrolebinding eks:k8s-metrics

An example output is as follows.

Name:         eks:k8s-metrics
Labels:       <none>
Annotations:  <none>

Default Kubernetes roles and users 685

https://github.com/aws/amazon-vpc-resource-controller-k8s


Amazon EKS User Guide

Role: 
  Kind:  ClusterRole 
  Name:  eks:k8s-metrics
Subjects: 
  Kind  Name             Namespace 
  ----  ----             --------- 
  User  eks:k8s-metrics

Roles – Roles are scoped to a Kubernetes namespace. All Amazon EKS created Roles are 
scoped to the kube-system namespace.

The following command returns all of the Amazon EKS created Kubernetes Roles on your 
cluster.

kubectl get roles -n kube-system | grep eks

To see the specification for a Role, replace eks:k8s-metrics in the following command with 
the name of a Role returned in the output of the previous command. The following example 
returns the specification for the eks:k8s-metrics Role.

kubectl describe role eks:k8s-metrics -n kube-system

An example output is as follows.

Name:         eks:k8s-metrics
Labels:       <none>
Annotations:  <none>
PolicyRule: 
  Resources         Non-Resource URLs  Resource Names             Verbs 
  ---------         -----------------  --------------             ----- 
  daemonsets.apps   []                 [aws-node]                 [get] 
  deployments.apps  []                 [vpc-resource-controller]  [get]

RoleBindings – RoleBindings are scoped to a Kubernetes namespace. All Amazon EKS 
created RoleBindings are scoped to the kube-system namespace.

The following command returns all of the Amazon EKS created Kubernetes RoleBindings on 
your cluster.

kubectl get rolebindings -n kube-system | grep eks

Default Kubernetes roles and users 686



Amazon EKS User Guide

To see the specification for a RoleBinding, replace eks:k8s-metrics in the following 
command with a RoleBinding returned in the output of the previous command. The following 
example returns the specification for the eks:k8s-metrics RoleBinding.

kubectl describe rolebinding eks:k8s-metrics -n kube-system

An example output is as follows.

Name:         eks:k8s-metrics
Labels:       <none>
Annotations:  <none>
Role: 
  Kind:  Role 
  Name:  eks:k8s-metrics
Subjects: 
  Kind  Name             Namespace 
  ----  ----             --------- 
  User  eks:k8s-metrics

Authenticating users for your cluster from an OpenID Connect 
identity provider

Amazon EKS supports using OpenID Connect (OIDC) identity providers as a method to authenticate 
users to your cluster. OIDC identity providers can be used with, or as an alternative to AWS Identity 
and Access Management (IAM). For more information about using IAM, see Enabling IAM principal 
access to your cluster. After configuring authentication to your cluster, you can create Kubernetes
roles and clusterroles to assign permissions to the roles, and then bind the roles to the 
identities using Kubernetes rolebindings and clusterrolebindings. For more information, 
see Using RBAC Authorization in the Kubernetes documentation.

Considerations

• You can associate one OIDC identity provider to your cluster.

• Kubernetes doesn't provide an OIDC identity provider. You can use an existing public OIDC 
identity provider, or you can run your own identity provider. For a list of certified providers, see
OpenID Certification on the OpenID site.

Authenticating to your cluster with your own OIDC identity provider 687

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://openid.net/certification/


Amazon EKS User Guide

• The issuer URL of the OIDC identity provider must be publicly accessible, so that Amazon EKS 
can discover the signing keys. Amazon EKS doesn't support OIDC identity providers with self-
signed certificates.

• You can't disable IAM authentication to your cluster, because it's still required for joining nodes 
to a cluster.

• An Amazon EKS cluster must still be created by an AWS IAM principal, rather than an OIDC 
identity provider user. This is because the cluster creator interacts with the Amazon EKS APIs, 
rather than the Kubernetes APIs.

• OIDC identity provider-authenticated users are listed in the cluster's audit log if CloudWatch logs 
are turned on for the control plane. For more information, see Enabling and disabling control 
plane logs.

• You can't sign in to the AWS Management Console with an account from an OIDC provider. You 
can only view Kubernetes resources in the console by signing into the AWS Management Console 
with an AWS Identity and Access Management account.

Associate an OIDC identity provider

Before you can associate an OIDC identity provider with your cluster, you need the following 
information from your provider:

Issuer URL

The URL of the OIDC identity provider that allows the API server to discover public signing keys 
for verifying tokens. The URL must begin with https:// and should correspond to the iss
claim in the provider's OIDC ID tokens. In accordance with the OIDC standard, path components 
are allowed but query parameters are not. Typically the URL consists of only a host name, like
https://server.example.org or https://example.com. This URL should point to the 
level below .well-known/openid-configuration and must be publicly accessible over the 
internet.

Client ID (also known as audience)

The ID for the client application that makes authentication requests to the OIDC identity 
provider.

You can associate an identity provider using eksctl or the AWS Management Console.

Associate an OIDC identity provider 688

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html


Amazon EKS User Guide

eksctl

To associate an OIDC identity provider to your cluster using eksctl

1. Create a file named associate-identity-provider.yaml with the following contents. 
Replace the example values with your own. The values in the identityProviders
section are obtained from your OIDC identity provider. Values are only required for the
name, type, issuerUrl, and clientId settings under identityProviders.

---
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata: 
  name: my-cluster
  region: your-region-code

identityProviders: 
  - name: my-provider
    type: oidc 
    issuerUrl: https://example.com
    clientId: kubernetes
    usernameClaim: email
    usernamePrefix: my-username-prefix
    groupsClaim: my-claim
    groupsPrefix: my-groups-prefix
    requiredClaims: 
      string: string
    tags: 
      env: dev

Important

Don't specify system:, or any portion of that string, for groupsPrefix or
usernamePrefix.

2. Create the provider.

eksctl associate identityprovider -f associate-identity-provider.yaml

Associate an OIDC identity provider 689



Amazon EKS User Guide

3. To use kubectl to work with your cluster and OIDC identity provider, see Using kubectl
in the Kubernetes documentation.

AWS Management Console

To associate an OIDC identity provider to your cluster using the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. Select your cluster, and then select the Access tab.

3. In the OIDC Identity Providers section, select Associate Identity Provider.

4. On the Associate OIDC Identity Provider page, enter or select the following options, and 
then select Associate.

• For Name, enter a unique name for the provider.

• For Issuer URL, enter the URL for your provider. This URL must be accessible over the 
internet.

• For Client ID, enter the OIDC identity provider's client ID (also known as audience).

• For Username claim, enter the claim to use as the username.

• For Groups claim, enter the claim to use as the user's group.

• (Optional) Select Advanced options, enter or select the following information.

• Username prefix – Enter a prefix to prepend to username claims. The prefix is 
prepended to username claims to prevent clashes with existing names. If you do not 
provide a value, and the username is a value other than email, the prefix defaults to 
the value for Issuer URL. You can use the value - to disable all prefixing. Don't specify
system: or any portion of that string.

• Groups prefix – Enter a prefix to prepend to groups claims. The prefix is prepended 
to group claims to prevent clashes with existing names (such as system: groups). 
For example, the value oidc: creates group names like oidc:engineering and
oidc:infra. Don't specify system: or any portion of that string..

• Required claims – Select Add claim and enter one or more key value pairs that 
describe required claims in the client ID token. The paris describe required claims in 
the ID Token. If set, each claim is verified to be present in the ID token with a matching 
value.

5. To use kubectl to work with your cluster and OIDC identity provider, see Using kubectl
in the Kubernetes documentation.

Associate an OIDC identity provider 690

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#using-kubectl
https://console.aws.amazon.com/eks/home#/clusters
https://kubernetes.io/docs/reference/access-authn-authz/authentication/#using-kubectl


Amazon EKS User Guide

Disassociate an OIDC identity provider from your cluster

If you disassociate an OIDC identity provider from your cluster, users included in the provider can 
no longer access the cluster. However, you can still access the cluster with IAM principals.

To disassociate an OIDC identity provider from your cluster using the AWS Management 
Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the OIDC Identity Providers section, select Disassociate, enter the identity provider name, 
and then select Disassociate.

Example IAM policy

If you want to prevent an OIDC identity provider from being associated with a cluster, create and 
associate the following IAM policy to the IAM accounts of your Amazon EKS administrators. For 
more information, see Creating IAM policies and Adding IAM identity permissions in the IAM User 
Guide and Actions, resources, and condition keys for Amazon Elastic Kubernetes Service in the 
Service Authorization Reference.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "denyOIDC", 
            "Effect": "Deny", 
            "Action": [ 
                "eks:AssociateIdentityProviderConfig" 
            ], 
            "Resource": "arn:aws:eks:us-west-2.amazonaws.com:111122223333:cluster/*" 

        }, 
        { 
            "Sid": "eksAdmin", 
            "Effect": "Allow", 
            "Action": [ 
                "eks:*" 
            ], 
            "Resource": "*" 
        } 

Disassociate an OIDC identity provider from your cluster 691

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://console.aws.amazon.com/eks/home#/clusters
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticcontainerserviceforkubernetes.html


Amazon EKS User Guide

    ]
}

The following example policy allows OIDC identity provider association if the clientID is
kubernetes and the issuerUrl is https://cognito-idp.us-west-2amazonaws.com/*.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "AllowCognitoOnly", 
            "Effect": "Deny", 
            "Action": "eks:AssociateIdentityProviderConfig", 
            "Resource": "arn:aws:eks:us-west-2:111122223333:cluster/my-instance", 
            "Condition": { 
                "StringNotLikeIfExists": { 
                    "eks:issuerUrl": "https://cognito-idp.us-west-2.amazonaws.com/*" 
                } 
            } 
        }, 
        { 
            "Sid": "DenyOtherClients", 
            "Effect": "Deny", 
            "Action": "eks:AssociateIdentityProviderConfig", 
            "Resource": "arn:aws:eks:us-west-2:111122223333:cluster/my-instance", 
            "Condition": { 
                "StringNotEquals": { 
                    "eks:clientId": "kubernetes" 
                } 
            } 
        }, 
        { 
            "Sid": "AllowOthers", 
            "Effect": "Allow", 
            "Action": "eks:*", 
            "Resource": "*" 
        } 
    ]
}

Example IAM policy 692



Amazon EKS User Guide

Partner validated OIDC identity providers

Amazon EKS maintains relationships with a network of partners that offer support for compatible 
OIDC identity providers. Refer to the following partners' documentation for details on how to 
integrate the identity provider with Amazon EKS.

Partner Product Documentation

PingIdentity PingOne for Enterprise Installation instructions

Amazon EKS aims to give you a wide selection of options to cover all use cases. If you develop a 
commercially supported OIDC compatible identity provider that is not listed here, then contact our 
partner team at aws-container-partners@amazon.com for more information.

Partner validated OIDC identity providers 693

https://docs.pingidentity.com/r/en-us/pingoneforenterprise/p14e_landing
https://docs.pingidentity.com/r/en-us/solution-guides/htg_config_oidc_authn_aws_eks_custers
mailto:aws-container-partners@amazon.com


Amazon EKS User Guide

Cluster management

This chapter includes the following topics to help you manage your cluster. You can also view 
information about your Kubernetes resources with the AWS Management Console.

• The Kubernetes Dashboard is a general purpose, web-based UI for Kubernetes clusters. It allows 
users to manage applications running in the cluster and troubleshoot them, as well as manage 
the cluster itself. For more information, see The Kubernetes Dashboard GitHub repository.

• Installing the Kubernetes Metrics Server – The Kubernetes Metrics Server is an aggregator of 
resource usage data in your cluster. It isn't deployed by default in your cluster, but is used by 
Kubernetes add-ons, such as the Kubernetes Dashboard and Horizontal Pod Autoscaler. In this 
topic you learn how to install the Metrics Server.

• Using Helm with Amazon EKS – The Helm package manager for Kubernetes helps you install and 
manage applications on your Kubernetes cluster. This topic helps you install and run the Helm 
binaries so that you can install and manage charts using the Helm CLI on your local computer.

• Tagging your Amazon EKS resources – To help you manage your Amazon EKS resources, you can 
assign your own metadata to each resource in the form of tags. This topic describes tags and 
shows you how to create them.

• Amazon EKS service quotas – Your AWS account has default quotas, formerly referred to as 
limits, for each AWS service. Learn about the quotas for Amazon EKS and how to increase them.

Cost monitoring

Amazon EKS supports Kubecost, which you can use to monitor your costs broken down by 
Kubernetes resources including Pods, nodes, namespaces, and labels. As a Kubernetes platform 
administrator and finance leader, you can use Kubecost to visualize a breakdown of Amazon 
EKS charges, allocate costs, and charge back organizational units such as application teams. 
You can provide your internal teams and business units with transparent and accurate cost data 
based on their actual AWS bill. Moreover, you can also get customized recommendations for cost 
optimization based on their infrastructure environment and usage patterns within their clusters. 
For more information about Kubecost, see the Kubecost documentation.

Amazon EKS provides an AWS optimized bundle of Kubecost for cluster cost visibility. You can use 
your existing AWS support agreements to obtain support.

Cost monitoring 694

https://github.com/kubernetes/dashboard
https://guide.kubecost.com


Amazon EKS User Guide

Prerequisites

• An existing Amazon EKS cluster. To deploy one, see Getting started with Amazon EKS. The 
cluster must have Amazon EC2 nodes because you can't run Kubecost on Fargate nodes.

• The kubectl command line tool is installed on your device or AWS CloudShell. The version can 
be the same as or up to one minor version earlier or later than the Kubernetes version of your 
cluster. For example, if your cluster version is 1.28, you can use kubectl version 1.27, 1.28, or
1.29 with it. To install or upgrade kubectl, see Installing or updating kubectl.

• Helm version 3.9.0 or later configured on your device or AWS CloudShell. To install or update 
Helm, see the section called “Using Helm”.

• If your cluster is version 1.23 or later, you must have the the section called “Amazon EBS CSI 
driver” installed on your cluster.

To install Kubecost

1. Determine the version of Kubecost to install. You can see the available versions at kubecost/
cost-analyzer in the Amazon ECR Public Gallery. For more information about the compability 
of Kubecost versions and Amazon EKS, see the Environment Requirements in the Kubecost 
documentation.

2. Install Kubecost with the following command. Replace kubecost-version with the value 
retreived from ECR, such as 1.108.1.

helm upgrade -i kubecost oci://public.ecr.aws/kubecost/cost-analyzer --
version kubecost-version \ 
    --namespace kubecost --create-namespace \ 
    -f https://raw.githubusercontent.com/kubecost/cost-analyzer-helm-chart/develop/
cost-analyzer/values-eks-cost-monitoring.yaml

Kubecost releases new versions regularly. You can update your version using helm upgrade. 
By default, the installation includes a local Prometheus server and kube-state-metrics. 
You can customize your deployment to use Amazon Managed Service for Prometheus by 
following the documentation in Integrating with Amazon EKS cost monitoring. For a list of all 
other settings that you can configure, see the sample configuration file on GitHub.

3. Make sure the required Pods are running.

kubectl get pods -n kubecost

Cost monitoring 695

https://gallery.ecr.aws/kubecost/cost-analyzer
https://gallery.ecr.aws/kubecost/cost-analyzer
https://docs.kubecost.com/install-and-configure/install/environment
https://helm.sh/docs/helm/helm_upgrade/
https://prometheus.io/
https://aws.amazon.com/blogs/mt/integrating-kubecost-with-amazon-managed-service-for-prometheus/
https://docs.aws.amazon.com/prometheus/latest/userguide/integrating-kubecost.html
https://github.com/kubecost/cost-analyzer-helm-chart/blob/develop/cost-analyzer/values-eks-cost-monitoring.yaml


Amazon EKS User Guide

An example output is as follows.

NAME                                          READY   STATUS    RESTARTS   AGE
kubecost-cost-analyzer-b9788c99f-5vj5b        2/2     Running   0          3h27m
kubecost-kube-state-metrics-99bb8c55b-bn2br   1/1     Running   0          3h27m
kubecost-prometheus-server-7d9967bfc8-9c8p7   2/2     Running   0          3h27m

4. On your device, enable port-forwarding to expose the Kubecost dashboard.

kubectl port-forward --namespace kubecost deployment/kubecost-cost-analyzer 9090

Alternatively, you can use the AWS Load Balancer Controller to expose Kubecost and 
use Amazon Cognito for authentication, authorization, and user management. For more 
information, see How to use Application Load Balancer and Amazon Cognito to authenticate 
users for your Kubernetes web apps.

5. On the same device that you completed the previous step on, open a web browser and enter 
the following address.

http://localhost:9090

You see the Kubecost Overview page in your browser. It might take 5–10 minutes for Kubecost 
to gather metrics. You can see your Amazon EKS spend, including cumulative cluster costs, 
associated Kubernetes asset costs, and monthly aggregated spend.

Cost monitoring 696

https://aws.amazon.com/blogs/containers/how-to-use-application-load-balancer-and-amazon-cognito-to-authenticate-users-for-your-kubernetes-web-apps/
https://aws.amazon.com/blogs/containers/how-to-use-application-load-balancer-and-amazon-cognito-to-authenticate-users-for-your-kubernetes-web-apps/


Amazon EKS User Guide

6. To track costs at a cluster level, tag your Amazon EKS resources for billing. For more 
information, see Tagging your resources for billing.

You can also view the following information by selecting it in the left pane of the dashboard:

• Cost allocation – View monthly Amazon EKS costs and cumulative costs for each of your 
namespaces and other dimensions over the past seven days. This is helpful for understanding 
which parts of your application are contributing to Amazon EKS spend.

• Assets – View the costs of the AWS infrastructure assets that are associated with your Amazon 
EKS resources.

Additional features

• Export cost metrics – Amazon EKS optimized cost monitoring is deployed with Kubecost and 
Prometheus, which is an open-source monitoring system and time series database. Kubecost 
reads metric from Prometheus and then performs cost allocation calculations and writes the 
metrics back to Prometheus. The Kubecost front-end reads metrics from Prometheus and shows 
them on the Kubecost user interface. The architecture is illustrated in the following diagram.

With Prometheus pre-installed, you can write queries to ingest Kubecost data into your current 
business intelligence system for further analysis. You can also use it as a data source for your 
current Grafana dashboard to display Amazon EKS cluster costs that your internal teams are 
familiar with. To learn more about how to write Prometheus queries, see the Prometheus 

Cost monitoring 697

https://prometheus.io/
https://grafana.com/
https://github.com/opencost/opencost/blob/develop/PROMETHEUS.md


Amazon EKS User Guide

Configuration readme file on GitHub or use the example Grafana JSON models in the Kubecost 
Github repository as references.

• AWS Cost and Usage Report integration – To perform cost allocation calculations for your 
Amazon EKS cluster, Kubecost retrieves the public pricing information of AWS services and AWS 
resources from the AWS Price List API. You can also integrate Kubecost with AWS Cost and 
Usage Report to enhance the accuracy of the pricing information specific to your AWS account. 
This information includes enterprise discount programs, reserved instance usage, savings plans, 
and spot usage. To learn more about how the AWS Cost and Usage Report integration works, see
AWS Cloud Billing Integration in the Kubecost documentation.

Remove Kubecost

You can remove Kubecost from your cluster with the following commands.

helm uninstall kubecost --namespace kubecost
kubectl delete ns kubecost

Frequently asked questions

See the following common questions and answers about using Kubecost with Amazon EKS.

What is the difference between the custom bundle of Kubecost and the free version of 
Kubecost (also known as OpenCost)?

AWS and Kubecost collaborated to offer a customized version of Kubecost. This version includes a 
subset of commercial features at no additional charge. See the following table for features that are 
included with in the custom bundle of Kubecost.

Feature Kubecost free tier Amazon EKS 
optimized Kubecost 
custom bundle

Kubecost Enterprise

Deployment User hosted User hosted User hosted or 
Kubecost hosted 
(SaaS)

Number of clusters 
supported

Unlimited Unlimited Unlimited

Remove Kubecost 698

https://github.com/opencost/opencost/blob/develop/PROMETHEUS.md
https://github.com/kubecost/cost-analyzer-helm-chart/tree/develop/cost-analyzer
https://github.com/kubecost/cost-analyzer-helm-chart/tree/develop/cost-analyzer
https://docs.kubecost.com/install-and-configure/install/cloud-integration/aws-cloud-integrations


Amazon EKS User Guide

Feature Kubecost free tier Amazon EKS 
optimized Kubecost 
custom bundle

Kubecost Enterprise

Databases supported Local Prometheus Local Prometheu 
s or Amazon 
Managed Service for 
Prometheus

Prometheus, Amazon 
Managed Service for 
Prometheus, Cortex, 
or Thanos

Database retention 
support

15 days Unlimited historical 
data

Unlimited historical 
data

Kubecost API 
retention (ETL)

15 days 15 days Unlimited historical 
data

Cluster cost visibility Single clusters Unified multi-cluster Unified multi-cluster

Hybrid cloud visibilit 
y

- Amazon EKS 
and Amazon EKS 
Anywhere clusters

Multi-cloud and 
hybrid-cloud support

Alerts and recurring 
reports

- Efficiency alerts, 
budget alerts, spend 
change alerts, and 
more supported

Efficiency alerts, 
budget alerts, spend 
change alerts, and 
more supported

Saved reports - Reports using 15 days 
data

Reports using 
unlimited historical 
data

Cloud billing 
integration

Required for each 
individual cluster

Custom pricing 
support for AWS 
(including multiple 
clusters and multiple 
accounts)

Custom pricing 
support for AWS 
(including multiple 
clusters and multiple 
accounts)

Savings recommend 
ations

Single cluster insights Single cluster insights Multi-cluster insights

Frequently asked questions 699



Amazon EKS User Guide

Feature Kubecost free tier Amazon EKS 
optimized Kubecost 
custom bundle

Kubecost Enterprise

Governance: Audits - - Audit historical cost 
events

Single sign-on (SSO) 
support

- Amazon Cognito 
supported

Okta, Auth0, PingID, 
KeyCloak

Role-based access 
control (RBAC) with 
SAML 2.0

- - Okta, Auth0, PingID, 
Keycloak

Enterprise training 
and onboarding

- - Full-service 
training and FinOps 
onboarding

What is the Kubecost API retention (ETL) feature?

The Kubecost ETL feature aggregates and organizes metrics to surface cost visibility at various 
levels of granularity (such as namespace-level, pod-level, and deployment-level). For 
the custom Kubecost bundle, customers get data and insights from metrics for the last 15 days.

What is the alerts and recurring reports feature? What alerts and reports does it include?

Kubecost alerts allow teams to receive updates on real-time Kubernetes spend as well as cloud 
spend. Recurring reports enable teams to receive customized views of historical Kubernetes and 
cloud spend. Both are configurable using the Kubecost UI or Helm values. They support email, 
Slack, and Microsoft Teams.

What do saved reports include?

Kubecost saved reports are predefined views of cost and efficiency metrics. They include cost by 
cluster, namespace, label, and more.

What is cloud billing integration?

Integration with AWS billing APIs allows Kubecost to display out-of-cluster costs (such as 
Amazon S3). Additionally, it allows Kubecost to reconcile Kubecost's in-cluster predictions with 
actual billing data to account for spot usage, savings plans, and enterprise discounts.

Frequently asked questions 700



Amazon EKS User Guide

What do savings recommendations include?

Kubecost provides insights and automation to help users optimize their Kubernetes 
infrastructure and spend.

Is there a charge for this functionality?

No. You can use this version of Kubecost at no additional charge. If you want additional Kubecost 
capabilities that aren't included in this bundle, you can buy an enterprise license of Kubecost 
through the AWS Marketplace, or from Kubecost directly.

Is support available?

Yes. You can open a support case with the AWS Support team at Contact AWS.

Do I need a license to use Kubecost features provided by the Amazon EKS integration?

No.

Can I integrate Kubecost with AWS Cost and Usage Report for more accurate reporting?

Yes. You can configure Kubecost to ingest data from AWS Cost and Usage Report to get accurate 
cost visibility, including discounts, Spot pricing, reserved instance pricing, and others. For more 
information, see AWS Cloud Billing Integration in the Kubecost documentation.

Does this version support cost management of self-managed Kubernetes clusters on Amazon 
EC2?

No. This version is only compatible with Amazon EKS clusters.

Can Kubecost track costs for Amazon EKS on AWS Fargate?

Kubecost provides best effort to show cluster cost visibility for Amazon EKS on Fargate, but with 
lower accuracy than with Amazon EKS on Amazon EC2. This is primarily due to the difference 
in how you're billed for your usage. With Amazon EKS on Fargate, you're billed for consumed 
resources. With Amazon EKS on Amazon EC2 nodes, you're billed for provisioned resources. 
Kubecost calculates the cost of an Amazon EC2 node based on the node specification, which 
includes CPU, RAM, and ephemeral storage. With Fargate, costs are calculated based on the 
requested resources for the Fargate Pods.

Frequently asked questions 701

https://aws.amazon.com/contact-us/
https://docs.kubecost.com/install-and-configure/install/cloud-integration/aws-cloud-integrations


Amazon EKS User Guide

How can I get updates and new versions of Kubecost?

You can upgrade your Kubecost version using standard Helm upgrade procedures. The latest 
versions are in the Amazon ECR Public Gallery.

Is the kubectl-cost CLI supported? How do I install it?

Yes. Kubectl-cost is an open source tool by Kubecost (Apache 2.0 License) that provides CLI 
access to Kubernetes cost allocation metrics. To install kubectl-cost, see Installation on GitHub.

Is the Kubecost user interface supported? How do I access it?

Kubecost provides a web dashboard that you can access through kubectl port forwarding, an 
ingress, or a load balancer. You can also use the AWS Load Balancer Controller to expose Kubecost 
and use Amazon Cognito for authentication, authorization, and user management. For more 
information, see How to use Application Load Balancer and Amazon Cognito to authenticate users 
for your Kubernetes web apps on the AWS blog.

Is Amazon EKS Anywhere supported?

No.

Installing the Kubernetes Metrics Server

The Kubernetes Metrics Server is an aggregator of resource usage data in your cluster, and it 
isn't deployed by default in Amazon EKS clusters. For more information, see Kubernetes Metrics 
Server on GitHub. The Metrics Server is commonly used by other Kubernetes add ons, such 
as the Horizontal Pod Autoscaler or the Kubernetes Dashboard. For more information, see
Resource metrics pipeline in the Kubernetes documentation. This topic explains how to deploy the 
Kubernetes Metrics Server on your Amazon EKS cluster.

Important

The metrics are meant for point-in-time analysis and aren't an accurate source for historical 
analysis. They can't be used as a monitoring solution or for other non-auto scaling 
purposes. For information about monitoring tools, see Observability in Amazon EKS.

Deploy the Metrics Server

1. Deploy the Metrics Server with the following command:

Metrics server 702

https://gallery.ecr.aws/kubecost/cost-analyzer
https://github.com/kubecost/kubectl-cost#installation
https://aws.amazon.com/blogs/containers/how-to-use-application-load-balancer-and-amazon-cognito-to-authenticate-users-for-your-kubernetes-web-apps/
https://aws.amazon.com/blogs/containers/how-to-use-application-load-balancer-and-amazon-cognito-to-authenticate-users-for-your-kubernetes-web-apps/
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-metrics-pipeline/


Amazon EKS User Guide

kubectl apply -f https://github.com/kubernetes-sigs/metrics-server/releases/latest/
download/components.yaml

2. Verify that the metrics-server deployment is running the desired number of Pods with the 
following command.

kubectl get deployment metrics-server -n kube-system

An example output is as follows.

NAME             READY   UP-TO-DATE   AVAILABLE   AGE
metrics-server   1/1     1            1           6m

Using Helm with Amazon EKS

The Helm package manager for Kubernetes helps you install and manage applications on your 
Kubernetes cluster. For more information, see the Helm documentation. This topic helps you install 
and run the Helm binaries so that you can install and manage charts using the Helm CLI on your 
local system.

Important

Before you can install Helm charts on your Amazon EKS cluster, you must configure
kubectl to work for Amazon EKS. If you have not already done this, see Creating or 
updating a kubeconfig file for an Amazon EKS cluster before proceeding. If the following 
command succeeds for your cluster, you're properly configured.

kubectl get svc

To install the Helm binaries on your local system

1. Run the appropriate command for your client operating system.

• If you're using macOS with Homebrew, install the binaries with the following command.

Using Helm 703

https://docs.helm.sh/
https://brew.sh/


Amazon EKS User Guide

brew install helm

• If you're using Windows with Chocolatey, install the binaries with the following command.

choco install kubernetes-helm

• If you're using Linux, install the binaries with the following commands.

curl https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3 > 
 get_helm.sh
chmod 700 get_helm.sh
./get_helm.sh

Note

If you get a message that openssl must first be installed, you can install it with the 
following command.

sudo yum install openssl

2. To pick up the new binary in your PATH, Close your current terminal window and open a new 
one.

3. See the version of Helm that you installed.

helm version | cut -d + -f 1

An example output is as follows.

v3.9.0

4. At this point, you can run any Helm commands (such as helm install chart-name) to 
install, modify, delete, or query Helm charts in your cluster. If you're new to Helm and don't 
have a specific chart to install, you can:

• Experiment by installing an example chart. See Install an example chart in the Helm
Quickstart guide.

Using Helm 704

https://chocolatey.org/
https://helm.sh/docs/intro/quickstart#install-an-example-chart
https://helm.sh/docs/intro/quickstart/


Amazon EKS User Guide

• Create an example chart and push it to Amazon ECR. For more information, see Pushing a 
Helm chart in the Amazon Elastic Container Registry User Guide.

• Install an Amazon EKS chart from the eks-charts GitHub repo or from  ArtifactHub.

Tagging your Amazon EKS resources

You can use tags to help you manage your Amazon EKS resources. This topic provides an overview 
of the tags function and shows how you can create tags.

Topics

• Tag basics

• Tagging your resources

• Tag restrictions

• Tagging your resources for billing

• Working with tags using the console

• Working with tags using the CLI, API, or eksctl

Note

Tags are a type of metadata that's separate from Kubernetes labels and annotations. For 
more information about these other metadata types, see the following sections in the 
Kubernetes documentation:

• Labels and Selectors

• Annotations

Tag basics

A tag is a label that you assign to an AWS resource. Each tag consists of a key and an optional value.

With tags, you can categorize your AWS resources. For example, you can categorize resources by 
purpose, owner, or environment. When you have many resources of the same type, you can use the 
tags that you assigned to a specific resource to quickly identify that resource. For example, you can 
define a set of tags for your Amazon EKS clusters to help you track each cluster's owner and stack 

Tagging your resources 705

https://docs.aws.amazon.com/AmazonECR/latest/userguide/push-oci-artifact.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/push-oci-artifact.html
https://github.com/aws/eks-charts#eks-charts
https://artifacthub.io/packages/search?page=1&repo=aws
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/


Amazon EKS User Guide

level. We recommend that you devise a consistent set of tag keys for each resource type. You can 
then search and filter the resources based on the tags that you add.

After you add a tag, you can edit tag keys and values or remove tags from a resource at any time. If 
you delete a resource, any tags for the resource are also deleted.

Tags don't have any semantic meaning to Amazon EKS and are interpreted strictly as a string of 
characters. You can set the value of a tag to an empty string. However, you can't set the value of 
a tag to null. If you add a tag that has the same key as an existing tag on that resource, the new 
value overwrites the earlier value.

If you use AWS Identity and Access Management (IAM), you can control which users in your AWS 
account have permission to manage tags.

Tagging your resources

The following Amazon EKS resources support tags:

• clusters

• managed node groups

• Fargate profiles

You can tag these resources using the following:

• If you're using the Amazon EKS console, you can apply tags to new or existing resources at any 
time. You can do this by using the Tags tab on the relevant resource page. For more information, 
see Working with tags using the console.

• If you're using eksctl, you can apply tags to resources when they're created using the --tags
option.

• If you're using the AWS CLI, the Amazon EKS API, or an AWS SDK, you can apply tags to new 
resources using the tags parameter on the relevant API action. You can apply tags to existing 
resources using the TagResource API action. For more information, see TagResource.

When you use some resource-creating actions, you can also specify tags for the resource at the 
same time that you create it. If tags can't be applied while the resource is being created, the 
resource fails to be created. This mechanism ensures that resources that you intend to tag are 
either created with the tags that you specify or not created at all. If you tag resources when you 
create them, you don't need to run custom tagging scripts after you create the resource.

Tagging your resources 706

https://docs.aws.amazon.com/eks/latest/APIReference/API_TagResource.html


Amazon EKS User Guide

Tags don't propagate to other resources that are associated with the resource that you create. 
For example, Fargate profile tags don't propagate to other resources that are associated with the 
Fargate profile, such as the Pods that are scheduled with it.

Tag restrictions

The following restrictions apply to tags:

• A maximum of 50 tags can be associated with a resource.

• Tag keys can't be repeated for one resource. Each tag key must be unique, and can only have one 
value.

• Keys can be up to 128 characters long in UTF-8.

• Values can be up to 256 characters long in UTF-8.

• If multiple AWS services and resources use your tagging schema, limit the types of characters 
you use. Some services might have restrictions on allowed characters. Generally, allowed 
characters are letters, numbers, spaces, and the following characters: + - = . _ : / @.

• Tag keys and values are case sensitive.

• Don't use aws:, AWS:, or any upper or lowercase combination of such as a prefix for either keys 
or values. These are reserved only for AWS use. You can't edit or delete tag keys or values with 
this prefix. Tags with this prefix don't count against your tags-per-resource limit.

Tagging your resources for billing

When you apply tags to Amazon EKS clusters, you can use them for cost allocation in your Cost & 
Usage Reports. The metering data in your Cost & Usage Reports shows usage across all of your 
Amazon EKS clusters. For more information, see AWS cost and usage report in the AWS Billing User 
Guide.

The AWS generated cost allocation tag, specifically aws:eks:cluster-name, lets you break 
down Amazon EC2 instance costs by individual Amazon EKS cluster in Cost Explorer. However, this 
tag doesn't capture the control plane expenses. The tag is automatically added to Amazon EC2 
instances that participate in an Amazon EKS cluster. This behavior happens regardless of whether 
the instances are provisioned using Amazon EKS managed node groups, Karpenter, or directly with 
Amazon EC2. This specific tag doesn't count towards the 50 tags limit. To use the tag, the account 
owner must activate it in the AWS Billing console or by using the API. When an AWS Organizations 

Tag restrictions 707

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-reports-costusage.html


Amazon EKS User Guide

management account owner activates the tag, it's also activated for all organization member 
accounts.

You can also organize your billing information based on resources that have the same tag key 
values. For example, you can tag several resources with a specific application name, and then 
organize your billing information. That way, you can see the total cost of that application across 
several services. For more information about setting up a cost allocation report with tags, see The 
Monthly Cost Allocation Report in the AWS Billing User Guide.

Note

If you just enabled reporting, data for the current month is available for viewing after 24 
hours.

Cost Explorer is a reporting tool that's available as part of the AWS Free Tier. You can use Cost 
Explorer to view charts of your Amazon EKS resources from the last 13 months. You can also 
forecast how much you're likely to spend for the next three months. You can see patterns in how 
much you spend on AWS resources over time. For example, you can use it to identify areas that 
need further inquiry and see trends that you can use to understand your costs. You also can specify 
time ranges for the data, and view time data by day or by month.

Working with tags using the console

Using the Amazon EKS console, you can manage the tags that are associated with new or existing 
clusters and managed node groups.

When you select a resource-specific page in the Amazon EKS console, the page displays a list of 
those resources. For example, if you select Clusters from the left navigation pane, the console 
displays a list of Amazon EKS clusters. When you select a resource from one of these lists (for 
example, a specific cluster) that supports tags, you can view and manage its tags on the Tags tab.

You can also use Tag Editor in the AWS Management Console, which provides a unified way to 
manage your tags. For more information, see Tagging your AWS resources with Tag Editor in the
AWS Tag Editor User Guide.

Adding tags on a resource on creation

You can add tags to Amazon EKS clusters, managed node groups, and Fargate profiles when you 
create them. For more information, see Creating an Amazon EKS cluster.

Working with tags using the console 708

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/configurecostallocreport.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/configurecostallocreport.html
https://docs.aws.amazon.com/ARG/latest/userguide/tag-editor.html


Amazon EKS User Guide

Adding and deleting tags on a resource

You can add or delete the tags that are associated with your clusters directly from the resource's 
page.

To add or delete a tag on an individual resource

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. On the navigation bar, select the AWS Region to use.

3. In the left navigation pane, choose Clusters.

4. Choose a specific cluster.

5. Choose the Tags tab, and then choose Manage tags.

6. On the Manage tags page, add or delete your tags as necessary.

• To add a tag, choose Add tag. Then specify the key and value for each tag.

• To delete a tag, choose Remove tag.

7. Repeat this process for each tag that you want to add or delete.

8. Choose Update to finish.

Working with tags using the CLI, API, or eksctl

Use the following AWS CLI commands or Amazon EKS API operations to add, update, list, and 
delete the tags for your resources. You can only use eksctl to add tags while simultaneously 
creating the new resources with one command.

Tagging support for Amazon EKS resources

Task AWS CLI AWS Tools for Windows 
PowerShell

API action

Add or overwrite 
one or more tags.

tag-resource Add-EKSResourceTag TagResource

Delete one or 
more tags.

untag-res 
ource

Remove-EKSResource 
Tag

UntagResource

The following examples show how to tag or untag resources using the AWS CLI.

Working with tags using the CLI, API, or eksctl 709

https://console.aws.amazon.com/eks/home#/clusters
https://docs.aws.amazon.com/cli/latest/reference/eks/tag-resource.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Add-EKSResourceTag.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/cli/latest/reference/eks/untag-resource.html
https://docs.aws.amazon.com/cli/latest/reference/eks/untag-resource.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Remove-EKSResourceTag.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Remove-EKSResourceTag.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_UntagResource.html


Amazon EKS User Guide

Example 1: Tag an existing cluster

The following command tags an existing cluster.

aws eks tag-resource --resource-arn resource_ARN --tags team=devs

Example 2: Untag an existing cluster

The following command deletes a tag from an existing cluster.

aws eks untag-resource --resource-arn resource_ARN --tag-keys tag_key

Example 3: List tags for a resource

The following command lists the tags that are associated with an existing resource.

aws eks list-tags-for-resource --resource-arn resource_ARN

When you use some resource-creating actions, you can specify tags at the same time that you 
create the resource. The following actions support specifying a tag when you create a resource.

Task AWS CLI AWS Tools 
for Windows 
PowerShell

API action eksctl

Create a cluster create-cl 
uster

New-EKSCluster CreateClu 
ster

create 
cluster

Create a managed node 
group*

create-no 
degroup

New-EKSNo 
degroup

CreateNod 
egroup

create 
nodegroup

Create a Fargate profile create-fa 
rgate-
profile

New-EKSFa 
rgateProfile

CreateFar 
gateProfi 
le.html

create 
fargatepr 
ofile

* If you want to also tag the Amazon EC2 instances when you create a managed node group, create 
the managed node group using a launch template. For more information, see Tagging Amazon EC2 

Working with tags using the CLI, API, or eksctl 710

https://docs.aws.amazon.com/cli/latest/reference/eks/create-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/eks/create-cluster.html
https://docs.aws.amazon.com/powershell/latest/reference/items/New-EKSCluster.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateCluster.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateCluster.html
https://docs.aws.amazon.com/cli/latest/reference/eks/create-nodegroup.html
https://docs.aws.amazon.com/cli/latest/reference/eks/create-nodegroup.html
https://docs.aws.amazon.com/powershell/latest/reference/items/New-EKSNodegroup.html
https://docs.aws.amazon.com/powershell/latest/reference/items/New-EKSNodegroup.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateNodegroup.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateNodegroup.html
https://docs.aws.amazon.com/cli/latest/reference/eks/create-fargate-profile.html
https://docs.aws.amazon.com/cli/latest/reference/eks/create-fargate-profile.html
https://docs.aws.amazon.com/cli/latest/reference/eks/create-fargate-profile.html
https://docs.aws.amazon.com/powershell/latest/reference/items/New-EKSFargateProfile.html
https://docs.aws.amazon.com/powershell/latest/reference/items/New-EKSFargateProfile.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateFargateProfile.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateFargateProfile.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateFargateProfile.html


Amazon EKS User Guide

instances. If your instances already exist, you can manually tag the instances. For more information, 
see Tagging your resources in the Amazon EC2 User Guide for Linux Instances.

Amazon EKS service quotas

Amazon EKS has integrated with Service Quotas, an AWS service that you can use to view and 
manage your quotas from a central location. For more information, see What Is Service Quotas? in 
the Service Quotas User Guide. With Service Quotas integration, you can quickly look up the value 
of your Amazon EKS and AWS Fargate service quotas using the AWS Management Console and 
AWS CLI.

AWS Management Console

To view Amazon EKS and Fargate service quotas using the AWS Management Console

1. Open the Service Quotas console at https://console.aws.amazon.com/servicequotas/.

2. In the left navigation pane, choose AWS services.

3. From the AWS services list, search for and select Amazon Elastic Kubernetes Service 
(Amazon EKS) or AWS Fargate.

In the Service quotas list, you can see the service quota name, applied value (if it's 
available), AWS default quota, and whether the quota value is adjustable.

4. To view additional information about a service quota, such as the description, choose the 
quota name.

5. (Optional) To request a quota increase, select the quota that you want to increase, select
Request quota increase, enter or select the required information, and select Request.

To work more with service quotas using the AWS Management Console, see the Service Quotas 
User Guide. To request a quota increase, see Requesting a Quota Increase in the Service Quotas 
User Guide.

AWS CLI

To view Amazon EKS and Fargate service quotas using the AWS CLI

Run the following command to view your Amazon EKS quotas.

aws service-quotas list-aws-default-service-quotas \ 

Service quotas 711

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-resources
https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://console.aws.amazon.com/servicequotas/
https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html


Amazon EKS User Guide

    --query 'Quotas[*].
{Adjustable:Adjustable,Name:QuotaName,Value:Value,Code:QuotaCode}' \ 
    --service-code eks \ 
    --output table

Run the following command to view your Fargate quotas.

aws service-quotas list-aws-default-service-quotas \ 
    --query 'Quotas[*].
{Adjustable:Adjustable,Name:QuotaName,Value:Value,Code:QuotaCode}' \ 
    --service-code fargate \ 
    --output table

Note

The quota returned is the number of Amazon ECS tasks or Amazon EKS Pods that can 
run concurrently on Fargate in this account in the current AWS Region.

To work more with service quotas using the AWS CLI, see service-quotas in the AWS 
CLI Command Reference. To request a quota increase, see the request-service-quota-
increase command in the AWS CLI Command Reference.

Service quotas

Name Default Adjustabl 
e

Description

Access entries per cluster Each supported 
Region: 3,000

No The maximum number of 
access entries per cluster.

Clusters Each supported 
Region: 100

Yes The maximum number 
of EKS clusters in this 
account in the current 
Region.

Control plane security groups per 
cluster

Each supported 
Region: 4

No The maximum number 
of control plane security 

Service quotas 712

https://docs.aws.amazon.com/cli/latest/reference/service-quotas/index.html
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/request-service-quota-increase.html
https://docs.aws.amazon.com/cli/latest/reference/service-quotas/request-service-quota-increase.html
https://console.aws.amazon.com/servicequotas/home/services/eks/quotas/L-1194D53C


Amazon EKS User Guide

Name Default Adjustabl 
e

Description

groups per cluster (these 
are specified when you 
create the cluster).

EKS Anywhere Enterprise Subscriptions Each supported 
Region: 10

Yes The maximum number of 
EKS Anywhere Enterpris 
e Subscriptions in this 
account in the current 
Region.

Fargate profiles per cluster Each supported 
Region: 10

Yes The maximum number 
of Fargate profiles per 
cluster.

Label pairs per Fargate profile selector Each supported 
Region: 5

Yes The maximum number 
of label pairs per Fargate 
profile selector.

Managed node groups per cluster Each supported 
Region: 30

Yes The maximum number 
of managed node groups 
per cluster.

Nodes per managed node group Each supported 
Region: 450

Yes The maximum number of 
nodes per managed node 
group.

Public endpoint access CIDR ranges per 
cluster

Each supported 
Region: 40

No The maximum number 
of public endpoint access 
CIDR ranges per cluster 
(these are specified when 
you create or update the 
cluster).

Service quotas 713

https://console.aws.amazon.com/servicequotas/home/services/eks/quotas/L-EA277FDC
https://console.aws.amazon.com/servicequotas/home/services/eks/quotas/L-33415657
https://console.aws.amazon.com/servicequotas/home/services/eks/quotas/L-23414FF3
https://console.aws.amazon.com/servicequotas/home/services/eks/quotas/L-6D54EA21
https://console.aws.amazon.com/servicequotas/home/services/eks/quotas/L-BD136A63


Amazon EKS User Guide

Name Default Adjustabl 
e

Description

Registered clusters Each supported 
Region: 10

Yes The maximum number of 
registered clusters in this 
account in the current 
Region.

Selectors per Fargate profile Each supported 
Region: 5

Yes The maximum number 
of selectors per Fargate 
profile.

Note

The default values are the initial quotas set by AWS. These default values are separate 
from the actual applied quota values and maximum possible service quotas. For more 
information, see Terminology in Service Quotas in the Service Quotas User Guide.

These service quotas are listed under Amazon Elastic Kubernetes Service (Amazon EKS) in the 
Service Quotas console. To request a quota increase for values that are shown as adjustable, see
Requesting a quota increase in the Service Quotas User Guide.

AWS Fargate service quotas

The AWS Fargate service in the Service Quotas console lists several service quotas. The following 
table only describes the quota that is applicable to Amazon EKS. You can configure alarms that 
alert you when your usage approaches a service quota. For more information, see Creating a 
CloudWatch alarm to monitor Fargate resource usage metrics.

New AWS accounts might have lower initial quotas that can increase over time. Fargate constantly 
monitors the account usage within each AWS Region, and then automatically increases the quotas 
based on the usage. You can also request a quota increase for values that are shown as adjustable. 
For more information, see Requesting a quota increase in the Service Quotas User Guide.

AWS Fargate service quotas 714

https://console.aws.amazon.com/servicequotas/home/services/eks/quotas/L-FDFA5F81
https://console.aws.amazon.com/servicequotas/home/services/eks/quotas/L-D78D8AF8
https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html#intro_getting-started
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html


Amazon EKS User Guide

Name Default Adjustable Description

Fargate On-Demand 
vCPU resource count

6 Yes The number of 
Fargate vCPUs that 
can run concurren 
tly as Fargate On-
Demand in this 
account in the current 
Region.

Note

The default values are the initial quotas set by AWS. These default values are separate 
from the actual applied quota values and maximum possible service quotas. For more 
information, see Terminology in Service Quotas in the Service Quotas User Guide.

Note

Fargate additionally enforces Amazon ECS tasks and Amazon EKS Pods launch rate quotas. 
For more information, see AWS Fargate throttling quotas in the .

AWS Fargate service quotas 715

https://console.aws.amazon.com/servicequotas/home/services/fargate/quotas
https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html#intro_getting-started
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/throttling.html


Amazon EKS User Guide

Security in Amazon EKS

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center 
and network architecture that is built to meet the requirements of the most security-sensitive 
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes 
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS 
services in the AWS Cloud. For Amazon EKS, AWS is responsible for the Kubernetes control 
plane, which includes the control plane nodes and etcd database. Third-party auditors regularly 
test and verify the effectiveness of our security as part of the AWS compliance programs. To 
learn about the compliance programs that apply to Amazon EKS, see AWS Services in Scope by 
Compliance Program.

• Security in the cloud – Your responsibility includes the following areas.

• The security configuration of the data plane, including the configuration of the security groups 
that allow traffic to pass from the Amazon EKS control plane into the customer VPC

• The configuration of the nodes and the containers themselves

• The node's operating system (including updates and security patches)

• Other associated application software:

• Setting up and managing network controls, such as firewall rules

• Managing platform-level identity and access management, either with or in addition to IAM

• The sensitivity of your data, your company's requirements, and applicable laws and regulations

This documentation helps you understand how to apply the shared responsibility model when 
using Amazon EKS. The following topics show you how to configure Amazon EKS to meet your 
security and compliance objectives. You also learn how to use other AWS services that help you to 
monitor and secure your Amazon EKS resources.

Note

Linux containers are made up of control groups (cgroups) and namespaces that help limit 
what a container can access, but all containers share the same Linux kernel as the host 
Amazon EC2 instance. Running a container as the root user (UID 0) or granting a container 

716

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/


Amazon EKS User Guide

access to host resources or namespaces such as the host network or host PID namespace 
are strongly discouraged, because doing so reduces the effectiveness of the isolation that 
containers provide.

Topics

• Certificate signing

• Kubernetes service accounts

• Identity and access management for Amazon EKS

• Compliance validation for Amazon Elastic Kubernetes Service

• Resilience in Amazon EKS

• Infrastructure security in Amazon EKS

• Configuration and vulnerability analysis in Amazon EKS

• Security best practices for Amazon EKS

• Pod security policy

• Pod security policy (PSP) removal FAQ

• Using AWS Secrets Manager secrets with Kubernetes

• Amazon EKS Connector considerations

Certificate signing

The Kubernetes Certificates API automates X.509 credential provisioning. The API features a 
command line interface for Kubernetes API clients to request and obtain X.509 certificates from 
a Certificate Authority (CA). You can use the CertificateSigningRequest (CSR) resource to 
request that a denoted signer sign the certificate. Your requests are either approved or denied 
before they're signed. Kubernetes supports both built-in signers and custom signers with well-
defined behaviors. This way, clients can predict what happens to their CSRs. To learn more about 
certificate signing, see signing requests.

One of the built-in signers is kubernetes.io/legacy-unknown. The v1beta1 API of CSR 
resource honored this legacy-unknown signer. However, the stable v1 API of CSR doesn't allow the
signerName to be set to kubernetes.io/legacy-unknown.

Amazon EKS version 1.21 and earlier allowed the legacy-unknown value as the signerName
in v1beta1 CSR API. This API enables the Amazon EKS Certificate Authority (CA) to generate 

Certificate signing 717

https://www.itu.int/rec/T-REC-X.509
https://kubernetes.io/docs/tasks/tls/managing-tls-in-a-cluster/
https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/


Amazon EKS User Guide

certificates. However, in Kubernetes version 1.22, the v1beta1 CSR API was replaced by the v1
CSR API. This API doesn't support the signerName of “legacy-unknown.” If you want to use Amazon 
EKS CA for generating certificates on your clusters, you must use a custom signer. It was introduced 
in Amazon EKS version 1.22. To use the CSR v1 API version and generate a new certificate, you 
must migrate any existing manifests and API clients. Existing certificates that were created with 
the existing v1beta1 API are valid and function until the certificate expires. This includes the 
following:

• Trust distribution: None. There's no standard trust or distribution for this signer in a Kubernetes 
cluster.

• Permitted subjects: Any

• Permitted x509 extensions: Honors subjectAltName and key usage extensions and discards other 
extensions

• Permitted key usages: Must not include usages beyond ["key encipherment", "digital signature", 
"server auth"]

Note

Client certificate signing is not supported.

• Expiration/certificate lifetime: 1 year (default and maximum)

• CA bit allowed/disallowed: Not allowed

Example CSR generation with signerName

These steps shows how to generate a serving certificate for DNS name myserver.default.svc
using signerName: beta.eks.amazonaws.com/app-serving. Use this as a guide for your 
own environment.

1. Run the openssl genrsa -out myserver.key 2048 command to generate an RSA 
private key.

openssl genrsa -out myserver.key 2048

2. Run the following command to generate a certificate request.

CSR example 718



Amazon EKS User Guide

openssl req -new -key myserver.key -out myserver.csr -subj "/
CN=myserver.default.svc"

3. Generate a base64 value for the CSR request and store it in a variable for use in a later step.

base_64=$(cat myserver.csr | base64 -w 0 | tr -d "\n")

4. Run the following command to create a file named mycsr.yaml. In the following example,
beta.eks.amazonaws.com/app-serving is the signerName.

cat >mycsr.yaml <<EOF
apiVersion: certificates.k8s.io/v1
kind: CertificateSigningRequest
metadata: 
  name: myserver
spec: 
  request: $base_64 
  signerName: beta.eks.amazonaws.com/app-serving 
  usages: 
    - digital signature 
    - key encipherment 
    - server auth
EOF

5. Submit the CSR.

kubectl apply -f mycsr.yaml

6. Approve the serving certificate.

kubectl certificate approve myserver

7. Verify that the certificate was issued.

kubectl get csr myserver

An example output is as follows.

NAME       AGE     SIGNERNAME                           REQUESTOR          
 CONDITION

CSR example 719



Amazon EKS User Guide

myserver   3m20s   beta.eks.amazonaws.com/app-serving   kubernetes-admin   
 Approved,Issued

8. Export the issued certificate.

kubectl get csr myserver -o jsonpath='{.status.certificate}'| base64 -d 
 > myserver.crt

Certificate signing considerations before upgrading your cluster to 
Kubernetes 1.24

In Kubernetes 1.23 and earlier, kubelet serving certificates with unverifiable IP and DNS Subject 
Alternative Names (SANs) are automatically issued with unverifiable SANs. The SANs are omitted 
from the provisioned certificate. In 1.24 and later clusters, kubelet serving certificates aren't 
issued if a SAN can't be verified. This prevents the kubectl exec and kubectl logs commands 
from working.

Before upgrading your cluster to 1.24, determine whether your cluster has certificate signing 
requests (CSR) that haven't been approved by completing the following steps:

1. Run the following command.

kubectl get csr -A

An example output is as follows.

NAME        AGE   SIGNERNAME                      REQUESTOR                         
                          REQUESTEDDURATION   CONDITION
csr-7znmf   90m   kubernetes.io/kubelet-serving   
 system:node:ip-192-168-42-149.region.compute.internal      <none>              
 Approved
csr-9xx5q   90m   kubernetes.io/kubelet-serving   
 system:node:ip-192-168-65-38.region.compute.internal      <none>              
 Approved, Issued

If the returned output shows a CSR with a kubernetes.io/kubelet-serving signer that's
Approved but not Issued for a node, then you need to approve the request.

2. Manually approve the CSR. Replace csr-7znmf with your own value.

CSRs in Kubernetes 1.24 720

https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/#kubernetes-signers


Amazon EKS User Guide

kubectl certificate approve csr-7znmf

To auto-approve CSRs in the future, we recommend that you write an approving controller that can 
automatically validate and approve CSRs that contain IP or DNS SANs that Amazon EKS can't verify.

Kubernetes service accounts

A Kubernetes service account provides an identity for processes that run in a Pod. For more 
information see Managing Service Accounts in the Kubernetes documentation. If your Pod 
needs access to AWS services, you can map the service account to an AWS Identity and Access 
Management identity to grant that access. For more information, see IAM roles for service 
accounts.

Service account tokens

The BoundServiceAccountTokenVolume feature is enabled by default in Kubernetes versions. 
This feature improves the security of service account tokens by allowing workloads running on 
Kubernetes to request JSON web tokens that are audience, time, and key bound. Service account 
tokens have an expiration of one hour. In earlier Kubernetes versions, the tokens didn't have an 
expiration. This means that clients that rely on these tokens must refresh the tokens within an 
hour. The following Kubernetes client SDKs refresh tokens automatically within the required time 
frame:

• Go version 0.15.7 and later

• Python version 12.0.0 and later

• Java version 9.0.0 and later

• JavaScript version 0.10.3 and later

• Ruby master branch

• Haskell version 0.3.0.0

• C# version 7.0.5 and later

If your workload is using an earlier client version, then you must update it. To enable a smooth 
migration of clients to the newer time-bound service account tokens, Kubernetes adds an extended 

Kubernetes service accounts 721

https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#bound-service-account-token-volume
https://kubernetes.io/docs/reference/using-api/client-libraries/


Amazon EKS User Guide

expiry period to the service account token over the default one hour. For Amazon EKS clusters, 
the extended expiry period is 90 days. Your Amazon EKS cluster's Kubernetes API server rejects 
requests with tokens that are greater than 90 days old. We recommend that you check your 
applications and their dependencies to make sure that the Kubernetes client SDKs are the same or 
later than the versions listed previously.

When the API server receives requests with tokens that are greater than one hour old, it annotates 
the API audit log event with annotations.authentication.k8s.io/stale-token. The value 
of the annotation looks like the following example:

subject: system:serviceaccount:common:fluent-bit, seconds after warning threshold: 
 4185802.

If your cluster has control plane logging enabled, then the annotations are in the audit logs. You 
can use the following CloudWatch Logs Insights query to identify all the Pods in your Amazon EKS 
cluster that are using stale tokens:

fields @timestamp
| filter @logStream like /kube-apiserver-audit/
| filter @message like /seconds after warning threshold/
| parse @message "subject: *, seconds after warning threshold:*\"" as subject, 
 elapsedtime

The subject refers to the service account that the Pod used. The elapsedtime indicates the 
elapsed time (in seconds) after reading the latest token. The requests to the API server are denied 
when the elapsedtime exceeds 90 days (7,776,000 seconds). You should proactively update your 
applications' Kubernetes client SDK to use one of the version listed previously that automatically 
refresh the token. If the service account token used is close to 90 days and you don't have sufficient 
time to update your client SDK versions before token expiration, then you can terminate existing 
Pods and create new ones. This results in refetching of the service account token, giving you an 
additional 90 days to update your client version SDKs.

If the Pod is part of a deployment, the suggested way to terminate Pods while keeping high 
availability is to perform a roll out with the following command. Replace my-deployment with the 
name of your deployment.

kubectl rollout restart deployment/my-deployment

Service account tokens 722

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html


Amazon EKS User Guide

Cluster add-ons

The following cluster add-ons have been updated to use the Kubernetes client SDKs that 
automatically refetch service account tokens. We recommend making sure that the listed versions, 
or later versions, are installed on your cluster.

• Amazon VPC CNI plugin for Kubernetes and metrics helper plugins version 1.8.0 and later. 
To check your current version or update it, see Working with the Amazon VPC CNI plugin for 
Kubernetes Amazon EKS add-on and cni-metrics-helper.

• CoreDNS version 1.8.4 and later. To check your current version or update it, see Working with 
the CoreDNS Amazon EKS add-on.

• AWS Load Balancer Controller version 2.0.0 and later. To check your current version or update 
it, see Installing the AWS Load Balancer Controller add-on.

• A current kube-proxy version. To check your current version or update it, see Working with the 
Kubernetes kube-proxy add-on.

• AWS for Fluent Bit version 2.25.0 or later. To update your current version, see Releases on 
GitHub.

• Fluentd image version 1.14.6-1.2 or later and Fluentd filter plugin for Kubernetes metadata 
version 2.11.1 or later.

Granting AWS Identity and Access Management permissions to 
workloads on Amazon Elastic Kubernetes Service clusters

Amazon EKS provides two ways to grant AWS Identity and Access Management permissions to 
workloads that run in Amazon EKS clusters: IAM roles for service accounts, and EKS Pod Identities.

IAM roles for service accounts

IAM roles for service accounts (IRSA) configures Kubernetes applications running on AWS 
with fine-grained IAM permissions to access various other AWS resources such as Amazon S3 
buckets, Amazon DynamoDB tables, and more. You can run multiple applications together 
in the same Amazon EKS cluster, and ensure each application has only the minimum set of 
permissions that it needs. IRSA was build to support various Kubernetes deployment options 
supported by AWS such as Amazon EKS, Amazon EKS Anywhere, Red Hat OpenShift Service 
on AWS, and self managed Kubernetes clusters on Amazon EC2 instances. Thus, IRSA was 

Cluster add-ons 723

https://github.com/aws/amazon-vpc-cni-k8s/blob/master/cmd/cni-metrics-helper/README.md
https://github.com/aws/aws-for-fluent-bit/releases
https://hub.docker.com/r/fluent/fluentd/tags?page=1&name=v1.14.6-1.2
https://rubygems.org/gems/fluent-plugin-kubernetes_metadata_filter/versions/2.11.1


Amazon EKS User Guide

build using foundational AWS service like IAM, and did not take any direct dependency on the 
Amazon EKS service and the EKS API. For more information, see IAM roles for service accounts.

EKS Pod Identities

EKS Pod Identity offers cluster administrators a simplified workflow for authenticating 
applications to access various other AWS resources such as Amazon S3 buckets, Amazon 
DynamoDB tables, and more. EKS Pod Identity is for EKS only, and as a result, it simplifies 
how cluster administrators can configure Kubernetes applications to obtain IAM permissions. 
These permissions can now be easily configured with fewer steps directly through AWS 
Management Console, EKS API, and AWS CLI, and there isn't any action to take inside the 
cluster in any Kubernetes objects. Cluster administrators don't need to switch between the 
EKS and IAM services, or use privileged IAM operations to configure permissions required by 
your applications. IAM roles can now be used across multiple clusters without the need to 
update the role trust policy when creating new clusters. IAM credentials supplied by EKS Pod 
Identity include role session tags, with attributes such as cluster name, namespace, service 
account name. Role session tags enable administrators to author a single role that can work 
across service accounts by allowing access to AWS resources based on matching tags. For more 
information, see EKS Pod Identities.

Comparing EKS Pod Identity and IRSA

At a high level, both EKS Pod Identity and IRSA enables you to grant IAM permissions to 
applications running on Kubernetes clusters. But they are fundamentally different in how you 
configure them, the limits supported, and features enabled. Below, we compare some of the key 
facets of both the solutions.

  EKS Pod Identity IRSA

Role extensibility You have to setup each 
role once to establish trust 
with the newly-introduced 
Amazon EKS service principal 
  pods.eks.amazonaws 
.com . After this one-time 
step, you don't need to 
update the role's trust policy 

You have to update the 
IAM role's trust policy with 
the new EKS cluster OIDC 
provider endpoint each time 
you want to use the role in a 
new cluster.

IAM credentials for pods 724



Amazon EKS User Guide

  EKS Pod Identity IRSA

each time that it is used in a 
new cluster.

Cluster scalability EKS Pod Identity doesn't 
require users to setup IAM 
OIDC provider, so this limit 
doesn't apply.

Each EKS cluster has an 
OpenID Connect (OIDC) issuer 
URL associated with it. To 
use IRSA, a unique OpenID 
Connect provider needs to 
be created for each EKS 
cluster in IAM. IAM has a 
default global limit of 100 
OIDC providers for each AWS 
account. If you plan to have 
more than 100 EKS clusters 
for each AWS account with 
IRSA, then you will reach the 
IAM OIDC provider limit.

Role scalability EKS Pod Identity doesn't 
require users to define trust 
relationship between IAM 
role and service account in 
the trust policy, so this limit 
doesn't apply.

In IRSA, you define the trust 
relationship between an IAM 
role and service account in 
the role's trust policy. By 
default, the length of trust 
policy size is 2048. This 
means that you can typically 
define 4 trust relationships 
in a single trust policy. While 
you can get the trust policy 
length limit increased, you are 
typically limited to a max of 
8 trust relationships within a 
single trust policy.

IAM credentials for pods 725



Amazon EKS User Guide

  EKS Pod Identity IRSA

Role reusability AWS STS temporary credentia 
ls supplied by EKS Pod 
Identity include role session 
tags, such as cluster name, 
namespace, service account 
name. Role session tags 
enable administrators to 
author a single IAM role that 
can be used with multiple 
service accounts, with 
different effective permissio 
n, by allowing access to AWS 
resources based on tags 
attached to them. This is 
also called attribute-based 
access control (ABAC). For 
more information, see Define 
permissions for EKS Pod 
Identities to assume roles 
based on tags.

AWS STS session tags are not 
supported. You can reuse a 
role between clusters but 
every pod receives all of the 
permissions of the role.

Environments supported EKS Pod Identity is only 
available on Amazon EKS.

IRSA can be used such as 
Amazon EKS, Amazon EKS 
Anywhere, Red Hat OpenShift 
Service on AWS, and self 
managed Kubernetes clusters 
on Amazon EC2 instances.

EKS versions supported EKS Kubernetes versions
1.24 or later. For the specific 
platform versions, see EKS 
Pod Identity cluster versions.

All of the supported EKS 
cluster versions.

IAM credentials for pods 726



Amazon EKS User Guide

EKS Pod Identities

Applications in a Pod's containers can use the AWS SDK or the AWS CLI to make API requests to 
AWS services using AWS Identity and Access Management (IAM) permissions. Applications must 
sign their AWS API requests with AWS credentials.

EKS Pod Identities provide the ability to manage credentials for your applications, similar to the 
way that Amazon EC2 instance profiles provide credentials to Amazon EC2 instances. Instead 
of creating and distributing your AWS credentials to the containers or using the Amazon EC2 
instance's role, you associate an IAM role with a Kubernetes service account and configure your 
Pods to use the service account.

Each EKS Pod Identity association maps a role to a service account in a namespace in the specified 
cluster. If you have the same application in multiple clusters, you can make identical associations in 
each cluster without modifying the trust policy of the role.

If a pod uses a service account that has an association, Amazon EKS sets environment variables in 
the containers of the pod. The environment variables configure the AWS SDKs, including the AWS 
CLI, to use the EKS Pod Identity credentials.

Benefits of EKS Pod Identities

EKS Pod Identities provide the following benefits:

• Least privilege – You can scope IAM permissions to a service account, and only Pods that use 
that service account have access to those permissions. This feature also eliminates the need for 
third-party solutions such as kiam or kube2iam.

• Credential isolation – A Pod's containers can only retrieve credentials for the IAM role that's 
associated with the service account that the container uses. A container never has access to 
credentials that are used by other containers in other Pods. When using Pod Identities, the Pod's 
containers also have the permissions assigned to the Amazon EKS node IAM role, unless you 
block Pod access to the Amazon EC2 Instance Metadata Service (IMDS). For more information, 
see Restrict access to the instance profile assigned to the worker node.

• Auditability – Access and event logging is available through AWS CloudTrail to help facilitate 
retrospective auditing.

EKS Pod Identity is a simpler method than IAM roles for service accounts, as this method doesn't 
use OIDC identity providers. EKS Pod Identity has the following enhancements:

EKS Pod Identities 727

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node


Amazon EKS User Guide

• Independent operations – In many organizations, creating OIDC identity providers is a 
responsibility of different teams than administering the Kubernetes clusters. EKS Pod Identity 
has clean separation of duties, where all configuration of EKS Pod Identity associations is done in 
Amazon EKS and all configuration of the IAM permissions is done in IAM.

• Reusability – EKS Pod Identity uses a single IAM principal instead of the separate principals for 
each cluster that IAM roles for service accounts use. Your IAM administrator adds the following 
principal to the trust policy of any role to make it usable by EKS Pod Identities.

            "Principal": { 
                "Service": "pods.eks.amazonaws.com" 
            }

• Scalability – Each set of temporary credentials are assumed by the EKS Auth service in EKS Pod 
Identity, instead of each AWS SDK that you run in each pod. Then, the Amazon EKS Pod Identity 
Agent that runs on each node issues the credentials to the SDKs. Thus the load is reduced to 
once for each node and isn't duplicated in each pod. For more details of the process, see How 
EKS Pod Identity works.

For more information to compare the two alternatives, see Granting AWS Identity and Access 
Management permissions to workloads on Amazon Elastic Kubernetes Service clusters.

Overview of setting up EKS Pod Identities

Turn on EKS Pod Identities by completing the following procedures:

1. Setting up the Amazon EKS Pod Identity Agent – You only complete this procedure once for 
each cluster.

2. Configuring a Kubernetes service account to assume an IAM role with EKS Pod Identity – 
Complete this procedure for each unique set of permissions that you want an application to 
have.

3. Configuring Pods to use a Kubernetes service account – Complete this procedure for each Pod 
that needs access to AWS services.

4. Using a supported AWS SDK – Confirm that the workload uses an AWS SDK of a supported 
version and that the workload uses the default credential chain.

EKS Pod Identities 728



Amazon EKS User Guide

EKS Pod Identity considerations

• You can associate one IAM role to each Kubernetes service account in each cluster. You can 
change which role is mapped to the service account by editing the EKS Pod Identity association.

• You can only associate roles that are in the same AWS account as the cluster. You can delegate 
access from another account to the role in this account that you configure for EKS Pod Identities 
to use. For a tutorial about delegating access and AssumeRole, see Delegate access across AWS 
accounts using IAM roles in the IAM User Guide.

• The EKS Pod Identity Agent is required. It runs as a Kubernetes DaemonSet on your nodes and 
only provides credentials to pods on the node that it runs on. For more information about EKS 
Pod Identity Agent compatibility, see the following section EKS Pod Identity restrictions.

• The EKS Pod Identity Agent uses the hostNetwork of the node and it uses port 80 and port
2703 on a link-local address on the node. This address is 169.254.170.23 for IPv4 and
[fd00:ec2::23] for IPv6 clusters.

EKS Pod Identity cluster versions

To use EKS Pod Identities, the cluster must have a platform version that is the same or later than 
the version listed in the following table, or a Kubernetes version that is later than the versions 
listed in the table.

Kubernetes version Platform version

1.28 eks.4

1.27 eks.8

1.26 eks.9

1.25 eks.10

1.24 eks.13

EKS Pod Identity restrictions

EKS Pod Identities are available on the following:

• Amazon EKS cluster versions listed in the previous topic EKS Pod Identity cluster versions.

EKS Pod Identities 729

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html


Amazon EKS User Guide

• Worker nodes in the cluster that are Linux Amazon EC2 instances.

EKS Pod Identities aren't available on the following:

• China Regions.

• AWS GovCloud (US).

• AWS Outposts.

• Amazon EKS Anywhere.

• Kubernetes clusters that you create and run on Amazon EC2. The EKS Pod Identity components 
are only available on Amazon EKS.

You can't use EKS Pod Identities with:

• Pods that run anywhere except Linux Amazon EC2 instances. Linux and Windows pods that run 
on AWS Fargate (Fargate) aren't supported. Pods that run on Windows Amazon EC2 instances 
aren't supported.

• Amazon EKS add-ons that need IAM credentials. The EKS add-ons can only use IAM roles for 
service accounts instead. The list of EKS add-ons that use IAM credentials include:

• Amazon VPC CNI plugin for Kubernetes

• AWS Load Balancer Controller

• The CSI storage drivers: EBS CSI, EFS CSI, Amazon FSx for Lustre CSI driver, Amazon FSx for 
NetApp ONTAP CSI driver, Amazon FSx for OpenZFS CSI driver, Amazon File Cache CSI driver

Note

If these controllers, drivers, and plugins are installed as self-managed add-ons instead 
of EKS add-ons, they support EKS Pod Identities as long as they are updated to use the 
latest AWS SDKs.

How EKS Pod Identity works

Amazon EKS Pod Identity associations provide the ability to manage credentials for your 
applications, similar to the way that Amazon EC2 instance profiles provide credentials to Amazon 
EC2 instances.

EKS Pod Identities 730



Amazon EKS User Guide

Amazon EKS Pod Identity provides credentials to your workloads with an additional EKS Auth API 
and an agent pod that runs on each node.

In your add-ons, such as Amazon EKS add-ons and self-managed controller, operators, and other 
add-ons, the author needs to update their software to use the latest AWS SDKs. For the list of 
compatibility between EKS Pod Identity and the add-ons produced by Amazon EKS, see the 
previous section EKS Pod Identity restrictions.

Using EKS Pod Identities in your code

In your code, you can use the AWS SDKs to access AWS services. You write code to create a client 
for an AWS service with an SDK, and by default the SDK searches in a chain of locations for AWS 
Identity and Access Management credentials to use. After valid credentials are found, the search is 
stopped. For more information about the default locations used, see the Credential provider chain
in the AWS SDKs and Tools Reference Guide.

EKS Pod Identities have been added to the Container credential provider which is searched in a step 
in the default credential chain. If your workloads currently use credentials that are earlier in the 
chain of credentials, those credentials will continue to be used even if you configure an EKS Pod 
Identity association for the same workload. This way you can safely migrate from other types of 
credentials by creating the association first, before removing the old credentials.

The container credentials provider provides temporary credentials from an agent that runs on each 
node. In Amazon EKS, the agent is the Amazon EKS Pod Identity Agent and on Amazon Elastic 
Container Service the agent is the amazon-ecs-agent. The SDKs use environment variables to 
locate the agent to connect to.

In contrast, IAM roles for service accounts provides a web identity token that the AWS SDK must 
exchange with AWS Security Token Service by using AssumeRoleWithWebIdentity.

How EKS Pod Identity Agent works with a Pod

1. When Amazon EKS starts a new pod that uses a service account with an EKS Pod Identity 
association, the cluster adds the following content to the Pod manifest:

    env: 
    - name: AWS_CONTAINER_AUTHORIZATION_TOKEN_FILE 
      value: "/var/run/secrets/pods.eks.amazonaws.com/serviceaccount/eks-pod-
identity-token" 
    - name: AWS_CONTAINER_CREDENTIALS_FULL_URI 

EKS Pod Identities 731

https://docs.aws.amazon.com/sdkref/latest/guide/standardized-credentials.html#credentialProviderChain


Amazon EKS User Guide

      value: "http://169.254.170.23/v1/credentials" 
    volumeMounts: 
    - mountPath: "/var/run/secrets/pods.eks.amazonaws.com/serviceaccount/" 
      name: eks-pod-identity-token 
  volumes: 
  - name: eks-pod-identity-token 
    projected: 
      defaultMode: 420 
      sources: 
      - serviceAccountToken: 
          audience: pods.eks.amazonaws.com 
          expirationSeconds: 86400 # 24 hours 
          path: eks-pod-identity-token

2. Kubernetes selects which node to run the pod on. Then, the Amazon EKS Pod Identity Agent on 
the node uses the AssumeRoleForPodIdentity action to retrieve temporary credentials from the 
EKS Auth API.

3. The EKS Pod Identity Agent makes these credentials available for the AWS SDKs that you run 
inside your containers.

4. You use the SDK in your application without specifying a credential provider to use the default 
credential chain. Or, you specify the container credential provider. For more information 
about the default locations used, see the Credential provider chain in the AWS SDKs and Tools 
Reference Guide.

5. The SDK uses the environment variables to connect to the EKS Pod Identity Agent and retrieve 
the credentials.

Note

If your workloads currently use credentials that are earlier in the chain of credentials, 
those credentials will continue to be used even if you configure an EKS Pod Identity 
association for the same workload.

Setting up the Amazon EKS Pod Identity Agent

Amazon EKS Pod Identity associations provide the ability to manage credentials for your 
applications, similar to the way that Amazon EC2 instance profiles provide credentials to Amazon 
EC2 instances.

EKS Pod Identities 732

https://docs.aws.amazon.com/eks/latest/APIReference/API_auth_AssumeRoleForPodIdentity.html
https://docs.aws.amazon.com/sdkref/latest/guide/standardized-credentials.html#credentialProviderChain


Amazon EKS User Guide

Amazon EKS Pod Identity provides credentials to your workloads with an additional EKS Auth API 
and an agent pod that runs on each node.

Creating the Amazon EKS Pod Identity Agent

Agent prerequisites

• An existing Amazon EKS cluster. To deploy one, see Getting started with Amazon EKS. The 
cluster version and platform version must be the same or later than the versions listed in EKS 
Pod Identity cluster versions.

• The node role has permissions for the agent to do the AssumeRoleForPodIdentity action in 
the EKS Auth API. You can use the AWS managed policy: AmazonEKSWorkerNodePolicy or add a 
custom policy similar to the following:

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "eks-auth:AssumeRoleForPodIdentity", 
            ], 
            "Resource": "*" 
        } 
    ]
}

This action can be limited by tags to restrict which roles can be assumed by pods that use the 
agent.

• The nodes can reach and download images from Amazon ECR. The container image for the add-
on is in the registries listed in Amazon container image registries.

Note that you can change the image location and provide imagePullSecrets for EKS add-
ons in the Optional configuration settings in the AWS Management Console, and in the --
configuration-values in the AWS CLI.

• The nodes can reach the Amazon EKS Auth API. For private clusters, the eks-auth endpoint in 
AWS PrivateLink is required.

EKS Pod Identities 733



Amazon EKS User Guide

AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, select Clusters, and then select the name of the cluster that 
you want to configure the EKS Pod Identity Agent add-on for.

3. Choose the Add-ons tab.

4. Choose Get more add-ons.

5. Select the box in the top right of the add-on box for EKS Pod Identity Agent and then 
choose Next.

6. On the Configure selected add-ons settings page, select any version in the Version
dropdown list.

7. (Optional) Expand Optional configuration settings to enter additional configuration. 
For example, you can provide an alternative container image location and
ImagePullSecrets. The JSON Schema with accepted keys is shown in Add-on 
configuration schema.

Enter the configuration keys and values in Configuration values.

8. Choose Next.

9. Confirm that the EKS Pod Identity Agent pods are running on your cluster.

kubectl get pods -n kube-system | grep 'eks-pod-identity-agent'

An example output is as follows.

eks-pod-identity-agent-gmqp7                                          1/1     
 Running   1 (24h ago)   24h
eks-pod-identity-agent-prnsh                                          1/1     
 Running   1 (24h ago)   24h

You can now use EKS Pod Identity associations in your cluster. For more information, see
Configuring a Kubernetes service account to assume an IAM role with EKS Pod Identity.

AWS CLI

1. Run the following AWS CLI command. Replace my-cluster with the name of your cluster.

EKS Pod Identities 734

https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

aws eks create-addon --cluster-name my-cluster --addon-name eks-pod-identity-
agent --addon-version v1.0.0-eksbuild.1

Note

The EKS Pod Identity Agent doesn't use the service-account-role-arn for
IAM roles for service accounts. You must provide the EKS Pod Identity Agent with 
permissions in the node role.

2. Confirm that the EKS Pod Identity Agent pods are running on your cluster.

kubectl get pods -n kube-system | grep 'eks-pod-identity-agent'

An example output is as follows.

eks-pod-identity-agent-gmqp7                                          1/1     
 Running   1 (24h ago)   24h
eks-pod-identity-agent-prnsh                                          1/1     
 Running   1 (24h ago)   24h

You can now use EKS Pod Identity associations in your cluster. For more information, see
Configuring a Kubernetes service account to assume an IAM role with EKS Pod Identity.

Updating the Amazon EKS Pod Identity Agent

Update the Amazon EKS type of the add-on. If you haven't added the Amazon EKS type of the add-
on to your cluster, see Creating the Amazon EKS Pod Identity Agent.

AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, select Clusters, and then select the name of the cluster that 
you want to configure the EKS Pod Identity Agent add-on for.

3. Choose the Add-ons tab.

4. If a new version of the add-on is available, the EKS Pod Identity Agent has an Update 
version button. Select Update version.

EKS Pod Identities 735

https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

5. On the Configure Amazon EKS Pod Identity Agent page, select the new version in the
Version dropdown list.

6. Select Save changes.

It might take several seconds for the update to complete. Then, confirm that the add-on 
version was updated by checking the Status.

AWS CLI

1. See which version of the add-on is installed on your cluster. Replace my-cluster with your 
cluster name.

aws eks describe-addon --cluster-name my-cluster --addon-name eks-pod-identity-
agent --query "addon.addonVersion" --output text

An example output is as follows.

v1.0.0-eksbuild.1

You need to create the add-on before you can update it with this procedure.

2. Update your add-on using the AWS CLI. If you want to use the AWS Management Console 
or eksctl to update the add-on, see Updating an add-on. Copy the command that follows 
to your device. Make the following modifications to the command, as needed, and then run 
the modified command.

• Replace my-cluster with the name of your cluster.

• Replace v1.0.0-eksbuild.1 with the your desired version.

• Replace 111122223333 with your account ID.

• Run the following command:

aws eks update-addon --cluster-name my-cluster --addon-name eks-pod-identity-
agent --addon-version v1.0.0-eksbuild.1'

It might take several seconds for the update to complete.

3. Confirm that the add-on version was updated. Replace my-cluster with the name of your 
cluster.

EKS Pod Identities 736



Amazon EKS User Guide

aws eks describe-addon --cluster-name my-cluster --addon-name eks-pod-identity-
agent

It might take several seconds for the update to complete.

An example output is as follows.

{ 
    "addon": { 
        "addonName": "eks-pod-identity-agent", 
        "clusterName": "my-cluster", 
        "status": "ACTIVE", 
        "addonVersion": "v1.0.0-eksbuild.1", 
        "health": { 
            "issues": [] 
        }, 
        "addonArn": "arn:aws:eks:region:111122223333:addon/my-cluster/eks-pod-
identity-agent/74c33d2f-b4dc-8718-56e7-9fdfa65d14a9", 
        "createdAt": "2023-04-12T18:25:19.319000+00:00", 
        "modifiedAt": "2023-04-12T18:40:28.683000+00:00", 
        "tags": {} 
    }
}

Configuring a Kubernetes service account to assume an IAM role with EKS Pod 
Identity

This topic covers how to configure a Kubernetes service account to assume an AWS Identity and 
Access Management (IAM) role with EKS Pod Identity. Any Pods that are configured to use the 
service account can then access any AWS service that the role has permissions to access.

To create an EKS Pod Identity association, there is only a single step; you create the association in 
EKS through the AWS Management Console, AWS CLI, AWS SDKs, AWS CloudFormation and other 
tools. There isn't any data or metadata about the associations inside the cluster in any Kubernetes 
objects and you don't add any annotations to the service accounts.

EKS Pod Identities 737



Amazon EKS User Guide

Prerequisites

• An existing cluster. If you don't have one, you can create one by following one of the Getting 
started with Amazon EKS guides.

• The IAM principal that is creating the association must have iam:PassRole.

• The latest version of the AWS CLI installed and configured on your device or AWS CloudShell. 
You can check your current version with aws --version | cut -d / -f2 | cut -d ' 
' -f1. Package managers such yum, apt-get, or Homebrew for macOS are often several 
versions behind the latest version of the AWS CLI. To install the latest version, see  Installing, 
updating, and uninstalling the AWS CLI and Quick configuration with aws configure in the 
AWS Command Line Interface User Guide. The AWS CLI version installed in the AWS CloudShell 
may also be several versions behind the latest version. To update it, see  Installing AWS CLI to 
your home directory in the AWS CloudShell User Guide.

• The kubectl command line tool is installed on your device or AWS CloudShell. The version can 
be the same as or up to one minor version earlier or later than the Kubernetes version of your 
cluster. For example, if your cluster version is 1.28, you can use kubectl version 1.27, 1.28, or
1.29 with it. To install or upgrade kubectl, see Installing or updating kubectl.

• An existing kubectl config file that contains your cluster configuration. To create a kubectl
config file, see Creating or updating a kubeconfig file for an Amazon EKS cluster.

Creating the EKS Pod Identity association

AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, select Clusters, and then select the name of the cluster that 
you want to configure the EKS Pod Identity Agent add-on for.

3. Choose the Access tab.

4. In the Pod Identity associations, choose Create.

5. For the IAM role, select the IAM role with the permissions that you want the workload to 
have.

EKS Pod Identities 738

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

Note

The list only contains roles that have the following trust policy which allows EKS 
Pod Identity to use them.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "AllowEksAuthToAssumeRoleForPodIdentity", 
            "Effect": "Allow", 
            "Principal": { 
                "Service": "pods.eks.amazonaws.com" 
            }, 
            "Action": [ 
                "sts:AssumeRole", 
                "sts:TagSession" 
            ] 
        } 
    ]
}

sts:AssumeRole

EKS Pod Identity uses TagSession to assume the IAM role before passing the 
temporary credentials to your pods.

sts:TagSession

EKS Pod Identity uses TagSession to include session tags in the requests to AWS STS.

You can use these tags in the condition keys in the trust policy to restrict which service 
accounts, namespaces, and clusters can use this role.

For a list of Amazon EKS condition keys, see Conditions defined by Amazon Elastic 
Kubernetes Service in the Service Authorization Reference. To learn which actions and 
resources you can use a condition key with, see Actions defined by Amazon Elastic 
Kubernetes Service.

EKS Pod Identities 739

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions


Amazon EKS User Guide

6. For the Kubernetes namespace, select the Kubernetes namespace that contains the service 
account and workload. Optionally, you can specify a namespace by name that doesn't exist 
in the cluster.

7. For the Kubernetes service account, select the Kubernetes service account to use. The 
manifest for your Kubernetes workload must specify this service account. Optionally, you 
can specify a service account by name that doesn't exist in the cluster.

8. (Optional) For the Tags, choose Add tag to add metadata in a key and value pair. These 
tags are applied to the association and can be used in IAM policies.

You can repeat this step to add multiple tags.

9. Choose Create.

AWS CLI

1. If you want to associate an existing IAM policy to your IAM role, skip to the next step.

Create an IAM policy. You can create your own policy, or copy an AWS managed policy that 
already grants some of the permissions that you need and customize it to your specific 
requirements. For more information, see Creating IAM policies in the IAM User Guide.

a. Create a file that includes the permissions for the AWS services that you want 
your Pods to access. For a list of all actions for all AWS services, see the Service 
Authorization Reference.

You can run the following command to create an example policy file that allows 
read-only access to an Amazon S3 bucket. You can optionally store configuration 
information or a bootstrap script in this bucket, and the containers in your Pod can 
read the file from the bucket and load it into your application. If you want to create 
this example policy, copy the following contents to your device. Replace my-pod-
secrets-bucket with your bucket name and run the command.

cat >my-policy.json <<EOF
{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": "s3:GetObject", 

EKS Pod Identities 740

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/service-authorization/latest/reference/
https://docs.aws.amazon.com/service-authorization/latest/reference/


Amazon EKS User Guide

            "Resource": "arn:aws:s3:::my-pod-secrets-bucket" 
        } 
    ]
}
EOF

b. Create the IAM policy.

aws iam create-policy --policy-name my-policy --policy-document file://my-
policy.json

2. Create an IAM role and associate it with a Kubernetes service account.

1. If you have an existing Kubernetes service account that you want to assume an IAM role, 
then you can skip this step.

Create a Kubernetes service account. Copy the following contents to your device. 
Replace my-service-account with your desired name and default with a different 
namespace, if necessary. If you change default, the namespace must already exist.

cat >my-service-account.yaml <<EOF
apiVersion: v1
kind: ServiceAccount
metadata: 
  name: my-service-account
  namespace: default
EOF
kubectl apply -f my-service-account.yaml

Run the following command.

kubectl apply -f my-service-account.yaml

2. Run the following command to create a trust policy file for the IAM role.

cat >trust-relationship.json <<EOF
{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "AllowEksAuthToAssumeRoleForPodIdentity", 
            "Effect": "Allow", 

EKS Pod Identities 741



Amazon EKS User Guide

            "Principal": { 
                "Service": "pods.eks.amazonaws.com" 
            }, 
            "Action": [ 
                "sts:AssumeRole", 
                "sts:TagSession" 
            ] 
        } 
    ]
}
EOF

3. Create the role. Replace my-role with a name for your IAM role, and my-role-
description with a description for your role.

aws iam create-role --role-name my-role --assume-role-policy-document 
 file://trust-relationship.json --description "my-role-description"

4. Attach an IAM policy to your role. Replace my-role with the name of your IAM role and
my-policy with the name of an existing policy that you created.

aws iam attach-role-policy --role-name my-role --policy-
arn=arn:aws:iam::111122223333:policy/my-policy

Note

Unlike IAM roles for service accounts, EKS Pod Identity doesn't use an annotation 
on the service account.

5. Run the following command to create the association. Replace my-cluster with 
the name of the cluster, replace my-service-account with your desired name and
default with a different namespace, if necessary.

aws eks create-pod-identity-association --cluster-name my-cluster --role-
arn arn:aws:iam::111122223333:role/my-role --namespace default --service-
account my-service-account

An example output is as follows.

{ 

EKS Pod Identities 742



Amazon EKS User Guide

    "association": { 
        "clusterName": "my-cluster", 
        "namespace": "default", 
        "serviceAccount": "my-service-account", 
        "roleArn": "arn:aws:iam::111122223333:role/my-role", 
        "associationArn": "arn:aws::111122223333:podidentityassociation/my-
cluster/a-abcdefghijklmnop1", 
        "associationId": "a-abcdefghijklmnop1", 
        "tags": {}, 
        "createdAt": 1700862734.922, 
        "modifiedAt": 1700862734.922 
    }
}

Note

You can specify a namespace and service account by name that doesn't exist in 
the cluster. You must create the namespace, service account, and the workload 
that uses the service account for the EKS Pod Identity association to function.

3. Confirm that the role and service account are configured correctly.

a. Confirm that the IAM role's trust policy is configured correctly.

aws iam get-role --role-name my-role --query Role.AssumeRolePolicyDocument

An example output is as follows.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "Allow EKS Auth service to assume this role for Pod 
 Identities", 
            "Effect": "Allow", 
            "Principal": { 
                "Service": "pods.eks.amazonaws.com" 
            }, 
            "Action": [ 
                "sts:AssumeRole", 
                "sts:TagSession" 

EKS Pod Identities 743



Amazon EKS User Guide

            ] 
        } 
    ]
}

b. Confirm that the policy that you attached to your role in a previous step is attached to 
the role.

aws iam list-attached-role-policies --role-name my-role --query 
 AttachedPolicies[].PolicyArn --output text

An example output is as follows.

arn:aws:iam::111122223333:policy/my-policy

c. Set a variable to store the Amazon Resource Name (ARN) of the policy that you want 
to use. Replace my-policy with the name of the policy that you want to confirm 
permissions for.

export policy_arn=arn:aws:iam::111122223333:policy/my-policy

d. View the default version of the policy.

aws iam get-policy --policy-arn $policy_arn

An example output is as follows.

{ 
    "Policy": { 
        "PolicyName": "my-policy", 
        "PolicyId": "EXAMPLEBIOWGLDEXAMPLE", 
        "Arn": "arn:aws:iam::111122223333:policy/my-policy", 
        "Path": "/", 
        "DefaultVersionId": "v1", 
        [...] 
    }
}

e. View the policy contents to make sure that the policy includes all the permissions that 
your Pod needs. If necessary, replace 1 in the following command with the version 
that's returned in the previous output.

EKS Pod Identities 744



Amazon EKS User Guide

aws iam get-policy-version --policy-arn $policy_arn --version-id v1

An example output is as follows.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
         { 
            "Effect": "Allow", 
            "Action": "s3:GetObject", 
            "Resource": "arn:aws:s3:::my-pod-secrets-bucket" 
        }
    ]
}

If you created the example policy in a previous step, then your output is the same. If 
you created a different policy, then the example content is different.

Next step

Configuring Pods to use a Kubernetes service account

Configuring Pods to use a Kubernetes service account

If a Pod needs to access AWS services, then you must configure it to use a Kubernetes service 
account. The service account must be associated to an AWS Identity and Access Management (IAM) 
role that has permissions to access the AWS services.

Prerequisites

• An existing cluster. If you don't have one, you can create one using one of the Getting started 
with Amazon EKS guides.

• An existing Kubernetes service account and an EKS Pod Identity association that associates the 
service account with an IAM role. The role must have an associated IAM policy that contains the 
permissions that you want your Pods to have to use AWS services. For more information about 
how to create the service account and role, and configure them, see Configuring a Kubernetes 
service account to assume an IAM role with EKS Pod Identity.

EKS Pod Identities 745



Amazon EKS User Guide

• The latest version of the AWS CLI installed and configured on your device or AWS CloudShell. 
You can check your current version with aws --version | cut -d / -f2 | cut -d ' 
' -f1. Package managers such yum, apt-get, or Homebrew for macOS are often several 
versions behind the latest version of the AWS CLI. To install the latest version, see  Installing, 
updating, and uninstalling the AWS CLI and Quick configuration with aws configure in the 
AWS Command Line Interface User Guide. The AWS CLI version installed in the AWS CloudShell 
may also be several versions behind the latest version. To update it, see Installing AWS CLI to 
your home directory in the AWS CloudShell User Guide.

• The kubectl command line tool is installed on your device or AWS CloudShell. The version can 
be the same as or up to one minor version earlier or later than the Kubernetes version of your 
cluster. For example, if your cluster version is 1.28, you can use kubectl version 1.27, 1.28, or
1.29 with it. To install or upgrade kubectl, see Installing or updating kubectl.

• An existing kubectl config file that contains your cluster configuration. To create a kubectl
config file, see Creating or updating a kubeconfig file for an Amazon EKS cluster.

To configure a Pod to use a service account

1. Use the following command to create a deployment manifest that you can deploy a Pod to 
confirm configuration with. Replace the example values with your own values.

cat >my-deployment.yaml <<EOF
apiVersion: apps/v1
kind: Deployment
metadata: 
  name: my-app
spec: 
  selector: 
    matchLabels: 
      app: my-app
  template: 
    metadata: 
      labels: 
        app: my-app
    spec: 
      serviceAccountName: my-service-account
      containers: 
      - name: my-app
        image: public.ecr.aws/nginx/nginx:X.XX
EOF

EKS Pod Identities 746

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software


Amazon EKS User Guide

2. Deploy the manifest to your cluster.

kubectl apply -f my-deployment.yaml

3. Confirm that the required environment variables exist for your Pod.

a. View the Pods that were deployed with the deployment in the previous step.

kubectl get pods | grep my-app

An example output is as follows.

my-app-6f4dfff6cb-76cv9   1/1     Running   0          3m28s

b. Confirm that the Pod has a service account token file mount.

kubectl describe pod my-app-6f4dfff6cb-76cv9 | grep 
 AWS_CONTAINER_AUTHORIZATION_TOKEN_FILE:

An example output is as follows.

AWS_CONTAINER_AUTHORIZATION_TOKEN_FILE:  /var/run/secrets/
pods.eks.amazonaws.com/serviceaccount/eks-pod-identity-token

4. Confirm that your Pods can interact with the AWS services using the permissions that you 
assigned in the IAM policy attached to your role.

Note

When a Pod uses AWS credentials from an IAM role that's associated with a service 
account, the AWS CLI or other SDKs in the containers for that Pod use the credentials 
that are provided by that role. If you don't restrict access to the credentials that 
are provided to the Amazon EKS node IAM role, the Pod still has access to these 
credentials. For more information, see Restrict access to the instance profile assigned 
to the worker node.

If your Pods can't interact with the services as you expected, complete the following steps to 
confirm that everything is properly configured.

EKS Pod Identities 747

https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node


Amazon EKS User Guide

a. Confirm that your Pods use an AWS SDK version that supports assuming an IAM role 
through an EKS Pod Identity association. For more information, see Using a supported 
AWS SDK.

b. Confirm that the deployment is using the service account.

kubectl describe deployment my-app | grep "Service Account"

An example output is as follows.

Service Account:   my-service-account

Define permissions for EKS Pod Identities to assume roles based on tags

EKS Pod Identity attaches tags to the temporary credentials to each pod with attributes such as 
cluster name, namespace, service account name. These role session tags enable administrators 
to author a single role that can work across service accounts by allowing access to AWS resources 
based on matching tags. By adding support for role session tags, customers can enforce tighter 
security boundaries between clusters, and workloads within clusters, while reusing the same IAM 
roles and IAM policies.

For example, the following policy allows the s3:GetObject action if the object is tagged with the 
name of the EKS cluster.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "s3:ListAllMyBuckets" 
            ], 
            "Resource": "*" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "s3:GetObject", 
                "s3:GetObjectTagging" 
            ], 

EKS Pod Identities 748



Amazon EKS User Guide

            "Resource": "*", 
            "Condition": { 
                "StringEquals": { 
                    "s3:ExistingObjectTag/eks-cluster-name": "${aws:PrincipalTag/eks-
cluster-name}" 
                } 
            } 
        } 
    ]
}

List of session tags added by EKS Pod Identity

The following list contains all of the keys for tags that are added to the AssumeRole request made 
by Amazon EKS. To use these tags in policies, use ${aws:PrincipalTag/ followed by the key, for 
example ${aws:PrincipalTag/kubernetes-namespace}.

• eks-cluster-arn

• eks-cluster-name

• kubernetes-namespace

• kubernetes-service-account

• kubernetes-pod-name

• kubernetes-pod-uid

Cross-account tags

All of the session tags that are added by EKS Pod Identity are transitive; the tag keys and values are 
passed to any AssumeRole actions that your workloads use to switch roles into another account. 
You can use these tags in policies in other accounts to limit access in cross-account scenarios. For 
more infromation, see Chaining roles with session tags in the IAM User Guide.

Custom tags

EKS Pod Identity can't add additional custom tags to the AssumeRole action that it performs. 
However, tags that you apply to the IAM role are always available though the same format:
${aws:PrincipalTag/ followed by the key, for example ${aws:PrincipalTag/
MyCustomTag}.

EKS Pod Identities 749

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_session-tags.html#id_session-tags_role-chaining


Amazon EKS User Guide

Note

Tags added to the session through the sts:AssumeRole request take precedence in the 
case of conflict. For example, assume that Amazon EKS adds a key eks-cluster-name
and value my-cluster to the session when EKS assume the customer role. You has also 
added an eks-cluster-name tag to the IAM role with value my-own-cluster. In this 
case, the former takes precedence and value for the eks-cluster-name tag will be my-
cluster.

Using a supported AWS SDK

Important

An earlier version of the documentation was incorrect. The AWS SDK for Java v1 doesn't 
support EKS Pod Identity.

When using EKS Pod Identities, the containers in your Pods must use an AWS SDK version that 
supports assuming an IAM role from the EKS Pod Identity Agent. Make sure that you're using the 
following versions, or later, for your AWS SDK:

• Java (Version 2) – 2.21.30

• Go v1 – v1.47.11

• Go v2 – release-2023-11-14

• Python (Boto3) – 1.29.0

• Python (botocore) – 1.32.0

• AWS CLI – 1.30.0

AWS CLI – 2.15.0

• JavaScript v2 – 2.1550.0

• JavaScript v3 – 3.458.0

• Ruby – 3.188.0

• C++ – 1.11.263

• .NET – 3.7.734.0 –

EKS Pod Identities 750

https://github.com/aws/aws-sdk-java-v2/releases/tag/2.21.30
https://github.com/aws/aws-sdk-go/releases/tag/v1.47.11
https://github.com/aws/aws-sdk-go-v2/releases/tag/release-2023-11-14
https://github.com/boto/boto3/releases/tag/1.29.0
https://github.com/boto/botocore/releases/tag/1.32.0
https://github.com/aws/aws-cli/releases/tag/1.30.0
https://github.com/aws/aws-cli/releases/tag/2.15.0
https://github.com/aws/aws-sdk-js/releases/tag/2.1550.0
https://github.com/aws/aws-sdk-js-v3/releases/tag/v3.458.0
https://github.com/aws/aws-sdk-ruby/blob/version-3/gems/aws-sdk-core/CHANGELOG.md#31880-2023-11-22
https://github.com/aws/aws-sdk-cpp/releases/tag/1.11.263
https://github.com/aws/aws-sdk-net/releases/tag/3.7.734.0


Amazon EKS User Guide

• PHP – 3.287.1

To ensure that you're using a supported SDK, follow the installation instructions for your preferred 
SDK at Tools to Build on AWS when you build your containers.

Using EKS Pod Identity credentials

To use the credentials from a EKS Pod Identity association, your code can use any AWS SDK to 
create a client for an AWS service with an SDK, and by default the SDK searches in a chain of 
locations for AWS Identity and Access Management credentials to use. The EKS Pod Identity 
credentials will be used if you don't specify a credential provider when you create the client or 
otherwise initialized the SDK.

This works because EKS Pod Identities have been added to the Container credential provider which 
is searched in a step in the default credential chain. If your workloads currently use credentials 
that are earlier in the chain of credentials, those credentials will continue to be used even if you 
configure an EKS Pod Identity association for the same workload.

For more information about how EKS Pod Identities work, see How EKS Pod Identity works.

IAM roles for service accounts

Applications in a Pod's containers can use an AWS SDK or the AWS CLI to make API requests to 
AWS services using AWS Identity and Access Management (IAM) permissions. Applications must 
sign their AWS API requests with AWS credentials. IAM roles for service accounts provide the 
ability to manage credentials for your applications, similar to the way that Amazon EC2 instance 
profiles provide credentials to Amazon EC2 instances. Instead of creating and distributing your 
AWS credentials to the containers or using the Amazon EC2 instance's role, you associate an IAM 
role with a Kubernetes service account and configure your Pods to use the service account. You 
can't use IAM roles for service accounts with local clusters for Amazon EKS on AWS Outposts.

IAM roles for service accounts provide the following benefits:

• Least privilege – You can scope IAM permissions to a service account, and only Pods that use 
that service account have access to those permissions. This feature also eliminates the need for 
third-party solutions such as kiam or kube2iam.

• Credential isolation – A Pod's containers can only retrieve credentials for the IAM role that's 
associated with the service account that the container uses. A container never has access to 
credentials that are used by other containers in other Pods. When using IAM roles for service 

IAM roles for service accounts 751

https://github.com/aws/aws-sdk-php/releases/tag/3.287.1
https://aws.amazon.com/tools/


Amazon EKS User Guide

accounts, the Pod's containers also have the permissions assigned to the Amazon EKS node IAM 
role, unless you block Pod access to the Amazon EC2 Instance Metadata Service (IMDS). For more 
information, see Restrict access to the instance profile assigned to the worker node.

• Auditability – Access and event logging is available through AWS CloudTrail to help ensure 
retrospective auditing.

Enable IAM roles for service accounts by completing the following procedures:

1. Creating an IAM OIDC provider for your cluster – You only complete this procedure once for each 
cluster.

Note

If you enable the EKS VPC endpoint, the EKS OIDC service endpoint can't be accessed 
from inside that VPC. Consequently, your operations such as creating an OIDC provider 
with eksctl in the VPC will not work and will result in a timeout when attempting to 
request https://oidc.eks.region.amazonaws.com. An example error message 
follows:

** server can't find oidc.eks.region.amazonaws.com: NXDOMAIN

To complete this step, you can run the command outside the VPC, for example in AWS 
CloudShell or on a computer connected to the internet.

2. Configuring a Kubernetes service account to assume an IAM role – Complete this procedure for 
each unique set of permissions that you want an application to have.

3. Configuring Pods to use a Kubernetes service account – Complete this procedure for each Pod 
that needs access to AWS services.

4. Using a supported AWS SDK – Confirm that the workload uses an AWS SDK of a supported 
version and that the workload uses the default credential chain.

IAM, Kubernetes, and OpenID Connect (OIDC) background information

In 2014, AWS Identity and Access Management added support for federated identities using 
OpenID Connect (OIDC). This feature allows you to authenticate AWS API calls with supported 
identity providers and receive a valid OIDC JSON web token (JWT). You can pass this token to 

IAM roles for service accounts 752

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node


Amazon EKS User Guide

the AWS STS AssumeRoleWithWebIdentity API operation and receive IAM temporary role 
credentials. You can use these credentials to interact with any AWS service, including Amazon S3 
and DynamoDB.

Each JWT token is signed by a signing key pair. The keys are served on the OIDC provider managed 
by Amazon EKS and the private key rotates every 7 days. Amazon EKS keeps the public keys until 
they expire. If you connect external OIDC clients, be aware that you need to refresh the signing 
keys before the public key expires. Learn how to the section called “Fetch signing keys”.

Kubernetes has long used service accounts as its own internal identity system. Pods can 
authenticate with the Kubernetes API server using an auto-mounted token (which was a non-OIDC 
JWT) that only the Kubernetes API server could validate. These legacy service account tokens don't 
expire, and rotating the signing key is a difficult process. In Kubernetes version 1.12, support was 
added for a new ProjectedServiceAccountToken feature. This feature is an OIDC JSON web 
token that also contains the service account identity and supports a configurable audience.

Amazon EKS hosts a public OIDC discovery endpoint for each cluster that contains the signing keys 
for the ProjectedServiceAccountToken JSON web tokens so external systems, such as IAM, 
can validate and accept the OIDC tokens that are issued by Kubernetes.

Creating an IAM OIDC provider for your cluster

Your cluster has an OpenID Connect (OIDC) issuer URL associated with it. To use AWS Identity and 
Access Management (IAM) roles for service accounts, an IAM OIDC provider must exist for your 
cluster's OIDC issuer URL.

Prerequisites

• An existing Amazon EKS cluster. To deploy one, see Getting started with Amazon EKS.

• Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface (AWS 
CLI) installed and configured on your device or AWS CloudShell. To check your current version, 
use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers such yum,
apt-get, or Homebrew for macOS are often several versions behind the latest version of the 
AWS CLI. To install the latest version, see Installing, updating, and uninstalling the AWS CLI and
Quick configuration with aws configure in the AWS Command Line Interface User Guide. The AWS 
CLI version that is installed in AWS CloudShell might also be several versions behind the latest 
version. To update it, see Installing AWS CLI to your home directory in the AWS CloudShell User 
Guide.

IAM roles for service accounts 753

https://openid.net/connect/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software


Amazon EKS User Guide

• The kubectl command line tool is installed on your device or AWS CloudShell. The version can 
be the same as or up to one minor version earlier or later than the Kubernetes version of your 
cluster. For example, if your cluster version is 1.28, you can use kubectl version 1.27, 1.28, or
1.29 with it. To install or upgrade kubectl, see Installing or updating kubectl.

• An existing kubectl config file that contains your cluster configuration. To create a kubectl
config file, see Creating or updating a kubeconfig file for an Amazon EKS cluster.

You can create an IAM OIDC provider for your cluster using eksctl or the AWS Management 
Console.

eksctl

Prerequisite

Version 0.172.0 or later of the eksctl command line tool installed on your device or AWS 
CloudShell. To install or update eksctl, see Installation in the eksctl documentation.

To create an IAM OIDC identity provider for your cluster with eksctl

1. Determine the OIDC issuer ID for your cluster.

Retrieve your cluster's OIDC issuer ID and store it in a variable. Replace my-cluster with 
your own value.

cluster_name=my-cluster

oidc_id=$(aws eks describe-cluster --name $cluster_name --query 
 "cluster.identity.oidc.issuer" --output text | cut -d '/' -f 5)

echo $oidc_id

2. Determine whether an IAM OIDC provider with your cluster's issuer ID is already in your 
account.

aws iam list-open-id-connect-providers | grep $oidc_id | cut -d "/" -f4

IAM roles for service accounts 754

https://eksctl.io/installation


Amazon EKS User Guide

If output is returned, then you already have an IAM OIDC provider for your cluster and you 
can skip the next step. If no output is returned, then you must create an IAM OIDC provider 
for your cluster.

3. Create an IAM OIDC identity provider for your cluster with the following command.

eksctl utils associate-iam-oidc-provider --cluster $cluster_name --approve

Note

If you enable the EKS VPC endpoint, the EKS OIDC service endpoint can't be 
accessed from inside that VPC. Consequently, your operations such as creating an 
OIDC provider with eksctl in the VPC will not work and will result in a timeout 
when attempting to request https://oidc.eks.region.amazonaws.com. An 
example error message follows:

** server can't find oidc.eks.region.amazonaws.com: NXDOMAIN

To complete this step, you can run the command outside the VPC, for example in 
AWS CloudShell or on a computer connected to the internet.

AWS Management Console

To create an IAM OIDC identity provider for your cluster with the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left pane, select Clusters, and then select the name of your cluster on the Clusters
page.

3. In the Details section on the Overview tab, note the value of the OpenID Connect 
provider URL.

4. Open the IAM console at https://console.aws.amazon.com/iam/.

5. In the left navigation pane, choose Identity Providers under Access management. If a
Provider is listed that matches the URL for your cluster, then you already have a provider 
for your cluster. If a provider isn't listed that matches the URL for your cluster, then you 
must create one.

IAM roles for service accounts 755

https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/iam/


Amazon EKS User Guide

6. To create a provider, choose Add provider.

7. For Provider type, select OpenID Connect.

8. For Provider URL, enter the OIDC provider URL for your cluster, and then choose Get 
thumbprint.

9. For Audience, enter sts.amazonaws.com and choose Add provider.

Next step

Configuring a Kubernetes service account to assume an IAM role

Configuring a Kubernetes service account to assume an IAM role

This topic covers how to configure a Kubernetes service account to assume an AWS Identity and 
Access Management (IAM) role. Any Pods that are configured to use the service account can then 
access any AWS service that the role has permissions to access.

Prerequisites

• An existing cluster. If you don't have one, you can create one by following one of the Getting 
started with Amazon EKS guides.

• An existing IAM OpenID Connect (OIDC) provider for your cluster. To learn if you already have 
one or how to create one, see Creating an IAM OIDC provider for your cluster.

• Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface (AWS 
CLI) installed and configured on your device or AWS CloudShell. To check your current version, 
use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers such yum,
apt-get, or Homebrew for macOS are often several versions behind the latest version of the 
AWS CLI. To install the latest version, see Installing, updating, and uninstalling the AWS CLI and
Quick configuration with aws configure in the AWS Command Line Interface User Guide. The AWS 
CLI version that is installed in AWS CloudShell might also be several versions behind the latest 
version. To update it, see Installing AWS CLI to your home directory in the AWS CloudShell User 
Guide.

• The kubectl command line tool is installed on your device or AWS CloudShell. The version can 
be the same as or up to one minor version earlier or later than the Kubernetes version of your 
cluster. For example, if your cluster version is 1.28, you can use kubectl version 1.27, 1.28, or
1.29 with it. To install or upgrade kubectl, see Installing or updating kubectl.

• An existing kubectl config file that contains your cluster configuration. To create a kubectl
config file, see Creating or updating a kubeconfig file for an Amazon EKS cluster.

IAM roles for service accounts 756

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software


Amazon EKS User Guide

To associate an IAM role with a Kubernetes service account

1. If you want to associate an existing IAM policy to your IAM role, skip to the next step.

Create an IAM policy. You can create your own policy, or copy an AWS managed policy that 
already grants some of the permissions that you need and customize it to your specific 
requirements. For more information, see Creating IAM policies in the IAM User Guide.

a. Create a file that includes the permissions for the AWS services that you want your Pods 
to access. For a list of all actions for all AWS services, see the Service Authorization 
Reference.

You can run the following command to create an example policy file that allows read-
only access to an Amazon S3 bucket. You can optionally store configuration information 
or a bootstrap script in this bucket, and the containers in your Pod can read the file from 
the bucket and load it into your application. If you want to create this example policy, 
copy the following contents to your device. Replace my-pod-secrets-bucket with your 
bucket name and run the command.

cat >my-policy.json <<EOF
{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": "s3:GetObject", 
            "Resource": "arn:aws:s3:::my-pod-secrets-bucket" 
        } 
    ]
}
EOF

b. Create the IAM policy.

aws iam create-policy --policy-name my-policy --policy-document file://my-
policy.json

2. Create an IAM role and associate it with a Kubernetes service account. You can use either
eksctl or the AWS CLI.

IAM roles for service accounts 757

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/service-authorization/latest/reference/
https://docs.aws.amazon.com/service-authorization/latest/reference/


Amazon EKS User Guide

eksctl

Prerequisite

Version 0.172.0 or later of the eksctl command line tool installed on your device 
or AWS CloudShell. To install or update eksctl, see Installation in the eksctl
documentation.

Replace my-service-account with the name of the Kubernetes service account that 
you want eksctl to create and associate with an IAM role. Replace default with the 
namespace that you want eksctl to create the service account in. Replace my-cluster
with the name of your cluster. Replace my-role with the name of the role that you want 
to associate the service account to. If it doesn't already exist, eksctl creates it for you. 
Replace 111122223333 with your account ID and my-policy with the name of an existing 
policy.

eksctl create iamserviceaccount --name my-service-account --namespace default --
cluster my-cluster --role-name my-role \ 
    --attach-policy-arn arn:aws:iam::111122223333:policy/my-policy --approve

Important

If the role or service account already exist, the previous command might fail.
eksctl has different options that you can provide in those situations. For more 
information run eksctl create iamserviceaccount --help.

AWS CLI

1. If you have an existing Kubernetes service account that you want to assume an IAM role, 
then you can skip this step.

Create a Kubernetes service account. Copy the following contents to your device. 
Replace my-service-account with your desired name and default with a different 
namespace, if necessary. If you change default, the namespace must already exist.

cat >my-service-account.yaml <<EOF
apiVersion: v1

IAM roles for service accounts 758

https://eksctl.io/installation


Amazon EKS User Guide

kind: ServiceAccount
metadata: 
  name: my-service-account
  namespace: default
EOF
kubectl apply -f my-service-account.yaml

2. Set your AWS account ID to an environment variable with the following command.

account_id=$(aws sts get-caller-identity --query "Account" --output text)

3. Set your cluster's OIDC identity provider to an environment variable with the following 
command. Replace my-cluster with the name of your cluster.

oidc_provider=$(aws eks describe-cluster --name my-cluster --region 
 $AWS_REGION --query "cluster.identity.oidc.issuer" --output text | sed -e "s/
^https:\/\///")

4. Set variables for the namespace and name of the service account. Replace my-service-
account with the Kubernetes service account that you want to assume the role. Replace
default with the namespace of the service account.

export namespace=default
export service_account=my-service-account

5. Run the following command to create a trust policy file for the IAM role. If you want to 
allow all service accounts within a namespace to use the role, then copy the following 
contents to your device. Replace StringEquals with StringLike and replace
$service_account with *. You can add multiple entries in the StringEquals or
StringLike conditions to allow multiple service accounts or namespaces to assume the 
role. To allow roles from a different AWS account than the account that your cluster is in 
to assume the role, see Cross-account IAM permissions for more information.

cat >trust-relationship.json <<EOF
{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "Federated": "arn:aws:iam::$account_id:oidc-provider/$oidc_provider" 

IAM roles for service accounts 759



Amazon EKS User Guide

      }, 
      "Action": "sts:AssumeRoleWithWebIdentity", 
      "Condition": { 
        "StringEquals": { 
          "$oidc_provider:aud": "sts.amazonaws.com", 
          "$oidc_provider:sub": "system:serviceaccount:
$namespace:$service_account" 
        } 
      } 
    } 
  ]
}
EOF

6. Create the role. Replace my-role with a name for your IAM role, and my-role-
description with a description for your role.

aws iam create-role --role-name my-role --assume-role-policy-document 
 file://trust-relationship.json --description "my-role-description"

7. Attach an IAM policy to your role. Replace my-role with the name of your IAM role and
my-policy with the name of an existing policy that you created.

aws iam attach-role-policy --role-name my-role --policy-arn=arn:aws:iam::
$account_id:policy/my-policy

8. Annotate your service account with the Amazon Resource Name (ARN) of the IAM role 
that you want the service account to assume. Replace my-role with the name of your 
existing IAM role. Suppose that you allowed a role from a different AWS account than 
the account that your cluster is in to assume the role in a previous step. Then, make sure 
to specify the AWS account and role from the other account. For more information, see
Cross-account IAM permissions.

kubectl annotate serviceaccount -n $namespace $service_account 
 eks.amazonaws.com/role-arn=arn:aws:iam::$account_id:role/my-role

3. Confirm that the role and service account are configured correctly.

a. Confirm that the IAM role's trust policy is configured correctly.

aws iam get-role --role-name my-role --query Role.AssumeRolePolicyDocument

IAM roles for service accounts 760



Amazon EKS User Guide

An example output is as follows.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Principal": { 
                "Federated": "arn:aws:iam::111122223333:oidc-provider/
oidc.eks.region-code.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE" 
            }, 
            "Action": "sts:AssumeRoleWithWebIdentity", 
            "Condition": { 
                "StringEquals": { 
                    "oidc.eks.region-code.amazonaws.com/
id/EXAMPLED539D4633E53DE1B71EXAMPLE:sub": "system:serviceaccount:default:my-
service-account", 
                    "oidc.eks.region-code.amazonaws.com/
id/EXAMPLED539D4633E53DE1B71EXAMPLE:aud": "sts.amazonaws.com" 
                } 
            } 
        } 
    ]
}

b. Confirm that the policy that you attached to your role in a previous step is attached to the 
role.

aws iam list-attached-role-policies --role-name my-role --query 
 AttachedPolicies[].PolicyArn --output text

An example output is as follows.

arn:aws:iam::111122223333:policy/my-policy

c. Set a variable to store the Amazon Resource Name (ARN) of the policy that you want 
to use. Replace my-policy with the name of the policy that you want to confirm 
permissions for.

export policy_arn=arn:aws:iam::111122223333:policy/my-policy

IAM roles for service accounts 761



Amazon EKS User Guide

d. View the default version of the policy.

aws iam get-policy --policy-arn $policy_arn

An example output is as follows.

{ 
    "Policy": { 
        "PolicyName": "my-policy", 
        "PolicyId": "EXAMPLEBIOWGLDEXAMPLE", 
        "Arn": "arn:aws:iam::111122223333:policy/my-policy", 
        "Path": "/", 
        "DefaultVersionId": "v1", 
        [...] 
    }
}

e. View the policy contents to make sure that the policy includes all the permissions that 
your Pod needs. If necessary, replace 1 in the following command with the version that's 
returned in the previous output.

aws iam get-policy-version --policy-arn $policy_arn --version-id v1

An example output is as follows.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
         { 
            "Effect": "Allow", 
            "Action": "s3:GetObject", 
            "Resource": "arn:aws:s3:::my-pod-secrets-bucket" 
        }
    ]
}

If you created the example policy in a previous step, then your output is the same. If you 
created a different policy, then the example content is different.

f. Confirm that the Kubernetes service account is annotated with the role.

IAM roles for service accounts 762



Amazon EKS User Guide

kubectl describe serviceaccount my-service-account -n default

An example output is as follows.

Name:                 my-service-account
Namespace:            default
Annotations:         eks.amazonaws.com/role-arn: 
 arn:aws:iam::111122223333:role/my-role
Image pull secrets:  <none>
Mountable secrets:    my-service-account-token-qqjfl
Tokens:               my-service-account-token-qqjfl
[...]

4. (Optional) Configuring the AWS Security Token Service endpoint for a service account. AWS 
recommends using a regional AWS STS endpoint instead of the global endpoint. This reduces 
latency, provides built-in redundancy, and increases session token validity.

Next step

Configuring Pods to use a Kubernetes service account

Configuring Pods to use a Kubernetes service account

If a Pod needs to access AWS services, then you must configure it to use a Kubernetes service 
account. The service account must be associated to an AWS Identity and Access Management (IAM) 
role that has permissions to access the AWS services.

Prerequisites

• An existing cluster. If you don't have one, you can create one using one of the Getting started 
with Amazon EKS guides.

• An existing IAM OpenID Connect (OIDC) provider for your cluster. To learn if you already have 
one or how to create one, see Creating an IAM OIDC provider for your cluster.

• An existing Kubernetes service account that's associated with an IAM role. The service account 
must be annotated with the Amazon Resource Name (ARN) of the IAM role. The role must have 
an associated IAM policy that contains the permissions that you want your Pods to have to 
use AWS services. For more information about how to create the service account and role, and 
configure them, see Configuring a Kubernetes service account to assume an IAM role.

IAM roles for service accounts 763



Amazon EKS User Guide

• Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface (AWS 
CLI) installed and configured on your device or AWS CloudShell. To check your current version, 
use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers such yum,
apt-get, or Homebrew for macOS are often several versions behind the latest version of the 
AWS CLI. To install the latest version, see Installing, updating, and uninstalling the AWS CLI and
Quick configuration with aws configure in the AWS Command Line Interface User Guide. The AWS 
CLI version that is installed in AWS CloudShell might also be several versions behind the latest 
version. To update it, see Installing AWS CLI to your home directory in the AWS CloudShell User 
Guide.

• The kubectl command line tool is installed on your device or AWS CloudShell. The version can 
be the same as or up to one minor version earlier or later than the Kubernetes version of your 
cluster. For example, if your cluster version is 1.28, you can use kubectl version 1.27, 1.28, or
1.29 with it. To install or upgrade kubectl, see Installing or updating kubectl.

• An existing kubectl config file that contains your cluster configuration. To create a kubectl
config file, see Creating or updating a kubeconfig file for an Amazon EKS cluster.

To configure a Pod to use a service account

1. Use the following command to create a deployment manifest that you can deploy a Pod to 
confirm configuration with. Replace the example values with your own values.

cat >my-deployment.yaml <<EOF
apiVersion: apps/v1
kind: Deployment
metadata: 
  name: my-app
spec: 
  selector: 
    matchLabels: 
      app: my-app
  template: 
    metadata: 
      labels: 
        app: my-app
    spec: 
      serviceAccountName: my-service-account
      containers: 
      - name: my-app
        image: public.ecr.aws/nginx/nginx:X.XX

IAM roles for service accounts 764

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software


Amazon EKS User Guide

EOF

2. Deploy the manifest to your cluster.

kubectl apply -f my-deployment.yaml

3. Confirm that the required environment variables exist for your Pod.

a. View the Pods that were deployed with the deployment in the previous step.

kubectl get pods | grep my-app

An example output is as follows.

my-app-6f4dfff6cb-76cv9   1/1     Running   0          3m28s

b. View the ARN of the IAM role that the Pod is using.

kubectl describe pod my-app-6f4dfff6cb-76cv9 | grep AWS_ROLE_ARN:

An example output is as follows.

AWS_ROLE_ARN:                 arn:aws:iam::111122223333:role/my-role

The role ARN must match the role ARN that you annotated the existing service account 
with. For more about annotating the service account, see Configuring a Kubernetes service 
account to assume an IAM role.

c. Confirm that the Pod has a web identity token file mount.

kubectl describe pod my-app-6f4dfff6cb-76cv9 | grep 
 AWS_WEB_IDENTITY_TOKEN_FILE:

An example output is as follows.

AWS_WEB_IDENTITY_TOKEN_FILE:  /var/run/secrets/eks.amazonaws.com/
serviceaccount/token

The kubelet requests and stores the token on behalf of the Pod. By default, the
kubelet refreshes the token if the token is older than 80 percent of its total time to live 

IAM roles for service accounts 765



Amazon EKS User Guide

or older than 24 hours. You can modify the expiration duration for any account other than 
the default service account by using the settings in your Pod spec. For more information, 
see Service Account Token Volume Projection in the Kubernetes documentation.

The Amazon EKS Pod Identity Webhook on the cluster watches for Pods that use a service 
account with the following annotation:

eks.amazonaws.com/role-arn: arn:aws:iam::111122223333:role/my-role

The webhook applies the previous environment variables to those Pods. Your cluster 
doesn't need to use the webhook to configure the environment variables and token file 
mounts. You can manually configure Pods to have these environment variables. The
supported versions of the AWS SDK look for these environment variables first in the 
credential chain provider. The role credentials are used for Pods that meet this criteria.

4. Confirm that your Pods can interact with the AWS services using the permissions that you 
assigned in the IAM policy attached to your role.

Note

When a Pod uses AWS credentials from an IAM role that's associated with a service 
account, the AWS CLI or other SDKs in the containers for that Pod use the credentials 
that are provided by that role. If you don't restrict access to the credentials that 
are provided to the Amazon EKS node IAM role, the Pod still has access to these 
credentials. For more information, see Restrict access to the instance profile assigned 
to the worker node.

If your Pods can't interact with the services as you expected, complete the following steps to 
confirm that everything is properly configured.

a. Confirm that your Pods use an AWS SDK version that supports assuming an IAM role 
through an OpenID Connect web identity token file. For more information, see Using a 
supported AWS SDK.

b. Confirm that the deployment is using the service account.

kubectl describe deployment my-app | grep "Service Account"

IAM roles for service accounts 766

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#service-account-token-volume-projection
https://github.com/aws/amazon-eks-pod-identity-webhook#amazon-eks-pod-identity-webhook
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node


Amazon EKS User Guide

An example output is as follows.

Service Account:   my-service-account

c. If your Pods still can't access services, review the steps that are described in Configuring 
a Kubernetes service account to assume an IAM role to confirm that your role and service 
account are configured properly.

Configuring the AWS Security Token Service endpoint for a service account

If you're using a Kubernetes service account with IAM roles for service accounts, then you can 
configure the type of AWS Security Token Service endpoint that's used by the service account if 
your cluster and platform version are the same or later than those listed in the following table. 
If your Kubernetes or platform version are earlier than those listed in the table, then your service 
accounts can only use the global endpoint.

Kubernetes version Platform version Default endpoint type

1.29 eks.1 Regional

1.28 eks.1 Regional

1.27 eks.1 Regional

1.26 eks.1 Regional

1.25 eks.1 Regional

1.24 eks.2 Regional

1.23 eks.1 Regional

AWS recommends using the regional AWS STS endpoints instead of the global endpoint. This 
reduces latency, provides built-in redundancy, and increases session token validity. The AWS 
Security Token Service must be active in the AWS Region where the Pod is running. Moreover, your 
application must have built-in redundancy for a different AWS Region in the event of a failure of 

IAM roles for service accounts 767



Amazon EKS User Guide

the service in the AWS Region. For more information, see Managing AWS STS in an AWS Region in 
the IAM User Guide.

Prerequisites

• An existing cluster. If you don't have one, you can create one using one of the Getting started 
with Amazon EKS guides.

• An existing IAM OIDC provider for your cluster. For more information, see Creating an IAM OIDC 
provider for your cluster.

• An existing Kubernetes service account configured for use with the Amazon EKS IAM for service 
accounts feature.

To configure the endpoint type used by a Kubernetes service account

The following examples all use the aws-node Kubernetes service account used by the Amazon 
VPC CNI plugin. You can replace the example values with your own service accounts, Pods, 
namespaces, and other resources.

1. Select a Pod that uses a service account that you want to change the endpoint for. Determine 
which AWS Region that the Pod runs in. Replace aws-node-6mfgv with your Pod name and
kube-system with your Pod's namespace.

kubectl describe pod aws-node-6mfgv -n kube-system |grep Node:

An example output is as follows.

ip-192-168-79-166.us-west-2/192.168.79.166

In the previous output, the Pod is running on a node in the us-west-2 AWS Region.

2. Determine the endpoint type that the Pod's service account is using.

kubectl describe pod aws-node-6mfgv -n kube-system |grep AWS_STS_REGIONAL_ENDPOINTS

An example output is as follows.

AWS_STS_REGIONAL_ENDPOINTS: regional

IAM roles for service accounts 768

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html


Amazon EKS User Guide

If the current endpoint is global, then global is returned in the output. If no output is 
returned, then the default endpoint type is in use and has not been overridden.

3. If your cluster or platform version are the same or later than those listed in the table, then 
you can change the endpoint type used by your service account from the default type to a 
different type with one of the following commands. Replace aws-node with the name of your 
service account and kube-system with the namespace for your service account.

• If your default or current endpoint type is global and you want to change it to regional:

kubectl annotate serviceaccount -n kube-system aws-node eks.amazonaws.com/sts-
regional-endpoints=true

If you are using IAM roles for service accounts to generate pre-signed S3 URLs in your 
application running in Pods' containers, the format of the URL for regional endpoints is 
similar to the following example:

https://bucket.s3.us-west-2.amazonaws.com/path?...&X-Amz-Credential=your-access-
key-id/date/us-west-2/s3/aws4_request&...

• If your default or current endpoint type is regional and you want to change it to global:

kubectl annotate serviceaccount -n kube-system aws-node eks.amazonaws.com/sts-
regional-endpoints=false

If your application is explicitly making requests to AWS STS global endpoints and you 
don't override the default behavior of using regional endpoints in Amazon EKS clusters, 
then requests will fail with an error. For more information, see Pod containers receive the 
following error: An error occurred (SignatureDoesNotMatch) when calling 
the GetCallerIdentity operation: Credential should be scoped to a 
valid region.

If you're using IAM roles for service accounts to generate pre-signed S3 URLs in your 
application running in Pods' containers, the format of the URL for global endpoints is similar 
to the following example:

https://bucket.s3.amazonaws.com/path?...&X-Amz-Credential=your-access-key-
id/date/us-west-2/s3/aws4_request&...

IAM roles for service accounts 769



Amazon EKS User Guide

If you have automation that expects the pre-signed URL in a certain format or if your 
application or downstream dependencies that use pre-signed URLs have expectations for 
the AWS Region targeted, then make the necessary changes to use the appropriate AWS STS 
endpoint.

4. Delete and re-create any existing Pods that are associated with the service account to apply 
the credential environment variables. The mutating web hook doesn't apply them to Pods that 
are already running. You can replace Pods, kube-system, and -l k8s-app=aws-node with 
the information for the Pods that you set your annotation for.

kubectl delete Pods -n kube-system -l k8s-app=aws-node

5. Confirm that the all Pods restarted.

kubectl get Pods -n kube-system -l k8s-app=aws-node

6. View the environment variables for one of the Pods. Verify that the
AWS_STS_REGIONAL_ENDPOINTS value is what you set it to in a previous step.

kubectl describe pod aws-node-kzbtr -n kube-system |grep AWS_STS_REGIONAL_ENDPOINTS

An example output is as follows.

AWS_STS_REGIONAL_ENDPOINTS=regional

Cross-account IAM permissions

You can configure cross-account IAM permissions either by creating an identity provider from 
another account's cluster or by using chained AssumeRole operations. In the following examples,
Account A owns an Amazon EKS cluster that supports IAM roles for service accounts. Pods that are 
running on that cluster must assume IAM permissions from Account B.

Example Create an identity provider from another account's cluster

Example

In this example, Account A provides Account B with the OpenID Connect (OIDC) issuer URL from 
their cluster. Account B follows the instructions in Creating an IAM OIDC provider for your cluster

IAM roles for service accounts 770



Amazon EKS User Guide

and Configuring a Kubernetes service account to assume an IAM role using the OIDC issuer URL 
from Account A's cluster. Then, a cluster administrator annotates the service account in Account A's 
cluster to use the role from Account B (444455556666).

apiVersion: v1
kind: ServiceAccount
metadata: 
  annotations: 
    eks.amazonaws.com/role-arn: arn:aws:iam::444455556666:role/account-b-role

Example Use chained AssumeRole operations

Example

In this example, Account B creates an IAM policy with the permissions to give to Pods in Account 
A's cluster. Account B (444455556666) attaches that policy to an IAM role with a trust relationship 
that allows AssumeRole permissions to Account A (111122223333).

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "AWS": "arn:aws:iam::111122223333:root" 
      }, 
      "Action": "sts:AssumeRole", 
      "Condition": {} 
    } 
  ]
}

Account A creates a role with a trust policy that gets credentials from the identity provider created 
with the cluster's OIDC issuer address.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 

IAM roles for service accounts 771



Amazon EKS User Guide

        "Federated": "arn:aws:iam::111122223333:oidc-provider/oidc.eks.region-
code.amazonaws.com/id/EXAMPLED539D4633E53DE1B71EXAMPLE" 
      }, 
      "Action": "sts:AssumeRoleWithWebIdentity" 
    } 
  ]
}

Account A attaches a policy to that role with the following permissions to assume the role that 
Account B created.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": "sts:AssumeRole", 
            "Resource": "arn:aws:iam::444455556666:role/account-b-role" 
        } 
    ]
}

The application code for Pods to assume Account B's role uses two profiles: account_b_role and
account_a_role. The account_b_role profile uses the account_a_role profile as its source. 
For the AWS CLI, the ~/.aws/config file is similar to the following.

[profile account_b_role]
source_profile = account_a_role
role_arn=arn:aws:iam::444455556666:role/account-b-role

[profile account_a_role]
web_identity_token_file = /var/run/secrets/eks.amazonaws.com/serviceaccount/token  
role_arn=arn:aws:iam::111122223333:role/account-a-role

To specify chained profiles for other AWS SDKs, consult the documentation for the SDK that you're 
using. For more information, see Tools to Build on AWS.

IAM roles for service accounts 772

https://aws.amazon.com/developer/tools/


Amazon EKS User Guide

Using a supported AWS SDK

When using IAM roles for service accounts, the containers in your Pods must use an AWS SDK 
version that supports assuming an IAM role through an OpenID Connect web identity token file. 
Make sure that you're using the following versions, or later, for your AWS SDK:

• Java (Version 2) – 2.10.11

• Java – 1.11.704

• Go – 1.23.13

• Python (Boto3) – 1.9.220

• Python (botocore) – 1.12.200

• AWS CLI – 1.16.232

• Node – 2.525.0 and 3.27.0

• Ruby – 3.58.0

• C++ – 1.7.174

• .NET – 3.3.659.1 – You must also include AWSSDK.SecurityToken.

• PHP – 3.110.7

Many popular Kubernetes add-ons, such as the Cluster Autoscaler, the Installing the AWS Load 
Balancer Controller add-on, and the Amazon VPC CNI plugin for Kubernetes support IAM roles for 
service accounts.

To ensure that you're using a supported SDK, follow the installation instructions for your preferred 
SDK at Tools to Build on AWS when you build your containers.

Using the credentials

To use the credentials from IAM roles for service accounts, your code can use any AWS SDK to 
create a client for an AWS service with an SDK, and by default the SDK searches in a chain of 
locations for AWS Identity and Access Management credentials to use. The IAM roles for service 
accounts credentials will be used if you don't specify a credential provider when you create the 
client or otherwise initialized the SDK.

This works because IAM roles for service accounts have been added as a step in the default 
credential chain. If your workloads currently use credentials that are earlier in the chain of 

IAM roles for service accounts 773

https://github.com/aws/aws-sdk-java-v2/releases/tag/2.10.11
https://github.com/aws/aws-sdk-java/releases/tag/1.11.704
https://github.com/aws/aws-sdk-go/releases/tag/v1.23.13
https://github.com/boto/boto3/releases/tag/1.9.220
https://github.com/boto/botocore/releases/tag/1.12.200
https://github.com/aws/aws-cli/releases/tag/1.16.232
https://github.com/aws/aws-sdk-js/releases/tag/v2.525.0
https://github.com/aws/aws-sdk-js-v3/releases/tag/v3.27.0
https://github.com/aws/aws-sdk-ruby/blob/version-3/gems/aws-sdk-core/CHANGELOG.md#3580-2019-07-01
https://github.com/aws/aws-sdk-cpp/releases/tag/1.7.174
https://github.com/aws/aws-sdk-net/releases/tag/3.3.659.1
https://github.com/aws/aws-sdk-php/releases/tag/3.110.7
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://aws.amazon.com/tools/


Amazon EKS User Guide

credentials, those credentials will continue to be used even if you configure an IAM roles for service 
accounts for the same workload.

The SDK automatically exchanges the service account OIDC token for temporary credentials from 
AWS Security Token Service by using the AssumeRoleWithWebIdentity action. Amazon EKS and 
this SDK action continue to rotate the temporary credentials by renewing them before they expire.

Fetch signing keys

Kubernetes issues a ProjectedServiceAccountToken to each Kubernetes Service Account. 
This token is an OIDC token, which is further a type of JSON web token (JWT). Amazon EKS hosts 
a public OIDC endpoint for each cluster that contains the signing keys for the token so external 
systems can validate it.

To validate a ProjectedServiceAccountToken, you need to fetch the OIDC public signing keys, 
also called the JSON Web Key Set (JWKS). Use these keys in your application to validate the token. 
For example, you can use the PyJWT Python library to validate tokens using these keys. For more 
information on the ProjectedServiceAccountToken, see the section called “IAM, Kubernetes, 
and OpenID Connect (OIDC) background information”.

Prerequisites

• An existing AWS Identity and Access Management (IAM) OpenID Connect (OIDC) provider for 
your cluster. To determine whether you already have one, or to create one, see Creating an IAM 
OIDC provider for your cluster.

• AWS CLI – A command line tool for working with AWS services, including Amazon EKS. For more 
information, see Installing, updating, and uninstalling the AWS CLI in the AWS Command Line 
Interface User Guide. After installing the AWS CLI, we recommend that you also configure it. For 
more information, see Quick configuration with aws configure in the AWS Command Line 
Interface User Guide.

Fetch OIDC Public Signing Keys (AWS CLI)

1. Retrieve the OIDC URL for your Amazon EKS cluster using the AWS CLI.

$ aws eks describe-cluster --name my-cluster --query 'cluster.identity.oidc.issuer'
"https://oidc.eks.us-east-1.amazonaws.com/id/8EBDXXXX00BAE"

IAM roles for service accounts 774

https://pyjwt.readthedocs.io/en/latest/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config


Amazon EKS User Guide

2. Retrieve the public signing key using curl, or a similar tool. The result is a JSON Web Key Set 
(JWKS).

Important

Amazon EKS throttles calls to the OIDC endpoint. You should cache the public signing 
key. Respect the cache-control header included in the response.

Important

Amazon EKS rotates the OIDC signing key every seven days.

$ curl https://oidc.eks.us-east-1.amazonaws.com/id/8EBDXXXX00BAE/keys
{"keys":
[{"kty":"RSA","kid":"2284XXXX4a40","use":"sig","alg":"RS256","n":"wklbXXXXMVfQ","e":"AQAB"}]}

Identity and access management for Amazon EKS

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely 
control access to AWS resources. IAM administrators control who can be authenticated (signed in) 
and authorized (have permissions) to use Amazon EKS resources. IAM is an AWS service that you 
can use with no additional charge.

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you 
do in Amazon EKS.

Service user – If you use the Amazon EKS service to do your job, then your administrator provides 
you with the credentials and permissions that you need. As you use more Amazon EKS features to 
do your work, you might need additional permissions. Understanding how access is managed can 
help you request the right permissions from your administrator. If you cannot access a feature in 
Amazon EKS, see Troubleshooting IAM.

Service administrator – If you're in charge of Amazon EKS resources at your company, you 
probably have full access to Amazon EKS. It's your job to determine which Amazon EKS features 

Identity and access management 775

https://www.rfc-editor.org/rfc/rfc7517#section-5
https://www.rfc-editor.org/rfc/rfc7517#section-5


Amazon EKS User Guide

and resources your service users should access. You must then submit requests to your IAM 
administrator to change the permissions of your service users. Review the information on this page 
to understand the basic concepts of IAM. To learn more about how your company can use IAM with 
Amazon EKS, see How Amazon EKS works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you 
can write policies to manage access to Amazon EKS. To view example Amazon EKS identity-based 
policies that you can use in IAM, see Amazon EKS identity-based policy examples.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an 
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity 
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on 
authentication, and your Google or Facebook credentials are examples of federated identities. 
When you sign in as a federated identity, your administrator previously set up identity federation 
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the 
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS 
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a 
command line interface (CLI) to cryptographically sign your requests by using your credentials. If 
you don't use AWS tools, you must sign requests yourself. For more information about using the 
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User 
Guide.

Regardless of the authentication method that you use, you might be required to provide additional 
security information. For example, AWS recommends that you use multi-factor authentication 
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM 
User Guide.

Authenticating with identities 776

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html


Amazon EKS User Guide

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to 
all AWS services and resources in the account. This identity is called the AWS account root user and 
is accessed by signing in with the email address and password that you used to create the account. 
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your 
root user credentials and use them to perform the tasks that only the root user can perform. For 
the complete list of tasks that require you to sign in as the root user, see Tasks that require root 
user credentials in the IAM User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person 
or application. Where possible, we recommend relying on temporary credentials instead of creating 
IAM users who have long-term credentials such as passwords and access keys. However, if you have 
specific use cases that require long-term credentials with IAM users, we recommend that you rotate 
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You 
can use groups to specify permissions for multiple users at a time. Groups make permissions easier 
to manage for large sets of users. For example, you could have a group named IAMAdmins and give 
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but 
a role is intended to be assumable by anyone who needs it. Users have permanent long-term 
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user 
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an 
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in 
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or 
AWS API operation or by using a custom URL. For more information about methods for using roles, 
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

Authenticating with identities 777

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html


Amazon EKS User Guide

• Federated user access – To assign permissions to a federated identity, you create a role 
and define permissions for the role. When a federated identity authenticates, the identity 
is associated with the role and is granted the permissions that are defined by the role. For 
information about roles for federation, see  Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control 
what your identities can access after they authenticate, IAM Identity Center correlates the 
permission set to a role in IAM. For information about permissions sets, see  Permission sets in 
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily 
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a 
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource 
(instead of using a role as a proxy). To learn the difference between roles and resource-based 
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when 
you make a call in a service, it's common for that service to run applications in Amazon EC2 or 
store objects in Amazon S3. A service might do this using the calling principal's permissions, 
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in 
AWS, you are considered a principal. When you use some services, you might perform an 
action that then initiates another action in a different service. FAS uses the permissions of the 
principal calling an AWS service, combined with the requesting AWS service to make requests 
to downstream services. FAS requests are only made when a service receives a request that 
requires interactions with other AWS services or resources to complete. In this case, you must 
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your 
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For 
more information, see Creating a role to delegate permissions to an AWS service in the IAM 
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS 
service. The service can assume the role to perform an action on your behalf. Service-linked 

Authenticating with identities 778

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html


Amazon EKS User Guide

roles appear in your AWS account and are owned by the service. An IAM administrator can 
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary 
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API 
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role 
to an EC2 instance and make it available to all of its applications, you create an instance profile 
that is attached to the instance. An instance profile contains the role and enables programs that 
are running on the EC2 instance to get temporary credentials. For more information, see Using 
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM 
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources. 
A policy is an object in AWS that, when associated with an identity or resource, defines their 
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes 
a request. Permissions in the policies determine whether the request is allowed or denied. Most 
policies are stored in AWS as JSON documents. For more information about the structure and 
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on 
the resources that they need, an IAM administrator can create IAM policies. The administrator can 
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the 
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A 
user with that policy can get role information from the AWS Management Console, the AWS CLI, or 
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity, 
such as an IAM user, group of users, or role. These policies control what actions users and roles can 

Managing access using policies 779

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json


Amazon EKS User Guide

perform, on which resources, and under what conditions. To learn how to create an identity-based 
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline 
policies are embedded directly into a single user, group, or role. Managed policies are standalone 
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed 
policies include AWS managed policies and customer managed policies. To learn how to choose 
between a managed policy or an inline policy, see Choosing between managed policies and inline 
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of 
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that 
support resource-based policies, service administrators can use them to control access to a specific 
resource. For the resource where the policy is attached, the policy defines what actions a specified 
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS 
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS 
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have 
permissions to access a resource. ACLs are similar to resource-based policies, although they do not 
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more 
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer 
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum 
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set 
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user 

Managing access using policies 780

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html


Amazon EKS User Guide

or role). You can set a permissions boundary for an entity. The resulting permissions are the 
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based 
policies that specify the user or role in the Principal field are not limited by the permissions 
boundary. An explicit deny in any of these policies overrides the allow. For more information 
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions 
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a 
service for grouping and centrally managing multiple AWS accounts that your business owns. If 
you enable all features in an organization, then you can apply service control policies (SCPs) to 
any or all of your accounts. The SCP limits permissions for entities in member accounts, including 
each AWS account root user. For more information about Organizations and SCPs, see How SCPs 
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you 
programmatically create a temporary session for a role or federated user. The resulting session's 
permissions are the intersection of the user or role's identity-based policies and the session 
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these 
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated 
to understand. To learn how AWS determines whether to allow a request when multiple policy 
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon EKS works with IAM

Before you use IAM to manage access to Amazon EKS, you should understand what IAM features 
are available to use with Amazon EKS. To get a high-level view of how Amazon EKS and other AWS 
services work with IAM, see AWS services that work with IAM in the IAM User Guide.

Topics

• Amazon EKS identity-based policies

• Amazon EKS resource-based policies

• Authorization based on Amazon EKS tags

• Amazon EKS IAM roles

How Amazon EKS works with IAM 781

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


Amazon EKS User Guide

Amazon EKS identity-based policies

With IAM identity-based policies, you can specify allowed or denied actions and resources as well 
as the conditions under which actions are allowed or denied. Amazon EKS supports specific actions, 
resources, and condition keys. To learn about all of the elements that you use in a JSON policy, see
IAM JSON policy elements reference in the IAM User Guide.

Actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny 
access in a policy. Policy actions usually have the same name as the associated AWS API operation. 
There are some exceptions, such as permission-only actions that don't have a matching API 
operation. There are also some operations that require multiple actions in a policy. These 
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions in Amazon EKS use the following prefix before the action: eks:. For example, to 
grant someone permission to get descriptive information about an Amazon EKS cluster, you 
include the DescribeCluster action in their policy. Policy statements must include either an
Action or NotAction element.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": ["eks:action1", "eks:action2"]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin 
with the word Describe, include the following action:

"Action": "eks:Describe*"

To see a list of Amazon EKS actions, see Actions defined by Amazon Elastic Kubernetes Service in 
the Service Authorization Reference.

How Amazon EKS works with IAM 782

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions


Amazon EKS User Guide

Resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies. 
Statements must include either a Resource or a NotResource element. As a best practice, 
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support 
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard 
(*) to indicate that the statement applies to all resources.

"Resource": "*"

The Amazon EKS cluster resource has the following ARN.

arn:aws:eks:region-code:account-id:cluster/cluster-name

For more information about the format of ARNs, see Amazon resource names (ARNs) and AWS 
service namespaces.

For example, to specify the cluster with the name my-cluster in your statement, use the 
following ARN:

"Resource": "arn:aws:eks:region-code:111122223333:cluster/my-cluster"

To specify all clusters that belong to a specific account and AWS Region, use the wildcard (*):

"Resource": "arn:aws:eks:region-code:111122223333:cluster/*"

Some Amazon EKS actions, such as those for creating resources, can't be performed on a specific 
resource. In those cases, you must use the wildcard (*).

"Resource": "*"

To see a list of Amazon EKS resource types and their ARNs, see Resources defined by Amazon 
Elastic Kubernetes Service in the Service Authorization Reference. To learn with which actions you 
can specify the ARN of each resource, see Actions defined by Amazon Elastic Kubernetes Service.

How Amazon EKS works with IAM 783

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions


Amazon EKS User Guide

Condition keys

Amazon EKS defines its own set of condition keys and also supports using some global condition 
keys. To see all AWS global condition keys, see AWS Global Condition Context Keys in the IAM User 
Guide.

You can set condition keys when associating an OpenID Connect provider to your cluster. For more 
information, see Example IAM policy.

All Amazon EC2 actions support the aws:RequestedRegion and ec2:Region condition keys. For 
more information, see Example: Restricting Access to a Specific AWS Region.

For a list of Amazon EKS condition keys, see Conditions defined by Amazon Elastic Kubernetes 
Service in the Service Authorization Reference. To learn which actions and resources you can use a 
condition key with, see Actions defined by Amazon Elastic Kubernetes Service.

Examples

To view examples of Amazon EKS identity-based policies, see Amazon EKS identity-based policy 
examples.

When you create an Amazon EKS cluster, the IAM principal that creates the cluster is automatically 
granted system:masters permissions in the cluster's role-based access control (RBAC) 
configuration in the Amazon EKS control plane. This principal doesn't appear in any visible 
configuration, so make sure to keep track of which principal originally created the cluster. To grant 
additional IAM principals the ability to interact with your cluster, edit the aws-auth ConfigMap
within Kubernetes and create a Kubernetes rolebinding or clusterrolebinding with the 
name of a group that you specify in the aws-auth ConfigMap.

For more information about working with the ConfigMap, see Enabling IAM principal access to your 
cluster.

Amazon EKS resource-based policies

Amazon EKS does not support resource-based policies.

Authorization based on Amazon EKS tags

You can attach tags to Amazon EKS resources or pass tags in a request to Amazon EKS. To control 
access based on tags, you provide tag information in the condition element of a policy using 
the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys condition 

How Amazon EKS works with IAM 784

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html#iam-example-region
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html


Amazon EKS User Guide

keys. For more information about tagging Amazon EKS resources, see Tagging your Amazon EKS 
resources. For more information about which actions that you can use tags in condition keys with, 
see Actions defined by Amazon EKS in the Service Authorization Reference.

Amazon EKS IAM roles

An IAM role is an entity within your AWS account that has specific permissions.

Using temporary credentials with Amazon EKS

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a 
cross-account role. You obtain temporary security credentials by calling AWS STS API operations 
such as AssumeRole or GetFederationToken.

Amazon EKS supports using temporary credentials.

Service-linked roles

Service-linked roles allow AWS services to access resources in other services to complete an action 
on your behalf. Service-linked roles appear in your IAM account and are owned by the service. An 
administrator can view but can't edit the permissions for service-linked roles.

Amazon EKS supports service-linked roles. For details about creating or managing Amazon EKS 
service-linked roles, see Using service-linked roles for Amazon EKS.

Service roles

This feature allows a service to assume a service role on your behalf. This role allows the service to 
access resources in other services to complete an action on your behalf. Service roles appear in your 
IAM account and are owned by the account. This means that an IAM administrator can change the 
permissions for this role. However, doing so might break the functionality of the service.

Amazon EKS supports service roles. For more information, see Amazon EKS cluster IAM role and
Amazon EKS node IAM role.

Choosing an IAM role in Amazon EKS

When you create a cluster resource in Amazon EKS, you must choose a role to allow Amazon EKS 
to access several other AWS resources on your behalf. If you have previously created a service role, 
then Amazon EKS provides you with a list of roles to choose from. It's important to choose a role 
that has the Amazon EKS managed policies attached to it. For more information, see Check for an 
existing cluster role and Check for an existing node role.

How Amazon EKS works with IAM 785

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/reference.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role


Amazon EKS User Guide

Amazon EKS identity-based policy examples

By default, IAM users and roles don't have permission to create or modify Amazon EKS resources. 
They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS API. An IAM 
administrator must create IAM policies that grant users and roles permission to perform specific 
API operations on the specified resources they need. The administrator must then attach those 
policies to the IAM users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents, 
see Creating policies on the JSON tab in the IAM User Guide.

When you create an Amazon EKS cluster, the IAM principal that creates the cluster is automatically 
granted system:masters permissions in the cluster's role-based access control (RBAC) 
configuration in the Amazon EKS control plane. This principal doesn't appear in any visible 
configuration, so make sure to keep track of which principal originally created the cluster. To grant 
additional IAM principals the ability to interact with your cluster, edit the aws-auth ConfigMap
within Kubernetes and create a Kubernetes rolebinding or clusterrolebinding with the 
name of a group that you specify in the aws-auth ConfigMap.

For more information about working with the ConfigMap, see Enabling IAM principal access to your 
cluster.

Topics

• Policy best practices

• Using the Amazon EKS console

• Allow IAM users to view their own permissions

• Create a Kubernetes cluster on the AWS Cloud

• Create a local Kubernetes cluster on an Outpost

• Update a Kubernetes cluster

• List or describe all clusters

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon EKS 
resources in your account. These actions can incur costs for your AWS account. When you create or 
edit identity-based policies, follow these guidelines and recommendations:

Identity-based policy examples 786

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html


Amazon EKS User Guide

• Get started with AWS managed policies and move toward least-privilege permissions – To 
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We 
recommend that you reduce permissions further by defining AWS customer managed policies 
that are specific to your use cases. For more information, see AWS managed policies or AWS 
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the 
permissions required to perform a task. You do this by defining the actions that can be taken on 
specific resources under specific conditions, also known as least-privilege permissions. For more 
information about using IAM to apply permissions, see  Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your 
policies to limit access to actions and resources. For example, you can write a policy condition to 
specify that all requests must be sent using SSL. You can also use conditions to grant access to 
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For 
more information, see  IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional 
permissions – IAM Access Analyzer validates new and existing policies so that the policies 
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides 
more than 100 policy checks and actionable recommendations to help you author secure and 
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM 
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users 
or a root user in your AWS account, turn on MFA for additional security. To require MFA when 
API operations are called, add MFA conditions to your policies. For more information, see 
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User 
Guide.

Using the Amazon EKS console

To access the Amazon EKS console, an IAM principal, must have a minimum set of permissions. 
These permissions allow the principal to list and view details about the Amazon EKS resources in 
your AWS account. If you create an identity-based policy that is more restrictive than the minimum 

Identity-based policy examples 787

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html


Amazon EKS User Guide

required permissions, the console won't function as intended for principals with that policy 
attached to them.

To ensure that your IAM principals can still use the Amazon EKS console, create a policy with your 
own unique name, such as AmazonEKSAdminPolicy. Attach the policy to the principals. For more 
information, see Adding and removing IAM identity permissions in the IAM User Guide.

Important

The following example policy allows a principal to view information on the Configuration
tab in the console. To view information on the Overview and Resources tabs in the 
AWS Management Console, the principal also needs Kubernetes permissions. For more 
information, see Required permissions.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "eks:*" 
            ], 
            "Resource": "*" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": "iam:PassRole", 
            "Resource": "*", 
            "Condition": { 
                "StringEquals": { 
                    "iam:PassedToService": "eks.amazonaws.com" 
                } 
            } 
        } 
    ]
}

You don't need to allow minimum console permissions for principals that are making calls only to 
the AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation 
that you're trying to perform.

Identity-based policy examples 788

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html


Amazon EKS User Guide

Allow IAM users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and 
managed policies that are attached to their user identity. This policy includes permissions to 
complete this action on the console or programmatically using the AWS CLI or AWS API.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "ViewOwnUserInfo", 
            "Effect": "Allow", 
            "Action": [ 
                "iam:GetUserPolicy", 
                "iam:ListGroupsForUser", 
                "iam:ListAttachedUserPolicies", 
                "iam:ListUserPolicies", 
                "iam:GetUser" 
            ], 
            "Resource": ["arn:aws:iam::*:user/${aws:username}"] 
        }, 
        { 
            "Sid": "NavigateInConsole", 
            "Effect": "Allow", 
            "Action": [ 
                "iam:GetGroupPolicy", 
                "iam:GetPolicyVersion", 
                "iam:GetPolicy", 
                "iam:ListAttachedGroupPolicies", 
                "iam:ListGroupPolicies", 
                "iam:ListPolicyVersions", 
                "iam:ListPolicies", 
                "iam:ListUsers" 
            ], 
            "Resource": "*" 
        } 
    ]
}

Identity-based policy examples 789



Amazon EKS User Guide

Create a Kubernetes cluster on the AWS Cloud

This example policy includes the minimum permissions required to create an Amazon EKS cluster 
named my-cluster in the us-west-2 AWS Region. You can replace the AWS Region with the 
AWS Region that you want to create a cluster in. If you see a warning that says The actions in your 
policy do not support resource-level permissions and require you to choose All resources
in the AWS Management Console, it can be safely ignored. If your account already has the
AWSServiceRoleForAmazonEKS role, you can remove the iam:CreateServiceLinkedRole
action from the policy. If you've ever created an Amazon EKS cluster in your account then this role 
already exists, unless you deleted it.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": "eks:CreateCluster", 
            "Resource": "arn:aws:eks:us-west-2:111122223333:cluster/my-cluster" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": "iam:CreateServiceLinkedRole", 
            "Resource": "arn:aws:iam::111122223333:role/aws-service-role/
eks.amazonaws.com/AWSServiceRoleForAmazonEKS", 
            "Condition": { 
                "ForAnyValue:StringEquals": { 
                    "iam:AWSServiceName": "eks" 
                } 
            } 
        }, 
        { 
            "Effect": "Allow", 
            "Action": "iam:PassRole", 
            "Resource": "arn:aws:iam::111122223333:role/cluster-role-name" 
        } 
    ]
}       

Identity-based policy examples 790



Amazon EKS User Guide

Create a local Kubernetes cluster on an Outpost

This example policy includes the minimum permissions required to create an Amazon EKS local 
cluster named my-cluster on an Outpost in the us-west-2 AWS Region. You can replace the 
AWS Region with the AWS Region that you want to create a cluster in. If you see a warning that 
says The actions in your policy do not support resource-level permissions and require you 
to choose All resources in the AWS Management Console, it can be safely ignored. If your 
account already has the AWSServiceRoleForAmazonEKSLocalOutpost role, you can remove 
the iam:CreateServiceLinkedRole action from the policy. If you've ever created an Amazon 
EKS local cluster on an Outpost in your account then this role already exists, unless you deleted it.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": "eks:CreateCluster", 
            "Resource": "arn:aws:eks:us-west-2:111122223333:cluster/my-cluster" 
        }, 
        { 
            "Action": [ 
                "ec2:DescribeSubnets", 
                "ec2:DescribeVpcs", 
                "iam:GetRole" 
            ], 
            "Resource": "*", 
            "Effect": "Allow" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": "iam:CreateServiceLinkedRole", 
            "Resource": "arn:aws:iam::111122223333:role/aws-service-role/outposts.eks-
local.amazonaws.com/AWSServiceRoleForAmazonEKSLocalOutpost" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "iam:PassRole", 
                "iam:ListAttachedRolePolicies" 
            ] 
            "Resource": "arn:aws:iam::111122223333:role/cluster-role-name" 
        }, 

Identity-based policy examples 791



Amazon EKS User Guide

        { 
            "Action": [ 
                "iam:CreateInstanceProfile", 
                "iam:TagInstanceProfile", 
                "iam:AddRoleToInstanceProfile", 
                "iam:GetInstanceProfile", 
                "iam:DeleteInstanceProfile", 
                "iam:RemoveRoleFromInstanceProfile" 
            ], 
            "Resource": "arn:aws:iam::*:instance-profile/eks-local-*", 
            "Effect": "Allow" 
        }, 
    ]
}       

Update a Kubernetes cluster

This example policy includes the minimum permission required to update a cluster named my-
cluster in the us-west-2 AWS Region.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": "eks:UpdateClusterVersion", 
            "Resource": "arn:aws:eks:us-west-2:111122223333:cluster/my-cluster" 
        } 
    ]
}        

List or describe all clusters

This example policy includes the minimum permissions required to list and describe all clusters 
in your account. An IAM principal must be able to list and describe clusters to use the update-
kubeconfig AWS CLI command.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 

Identity-based policy examples 792

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html


Amazon EKS User Guide

            "Effect": "Allow", 
            "Action": [ 
                "eks:DescribeCluster", 
                "eks:ListClusters" 
            ], 
            "Resource": "*" 
        } 
    ]
}          

Using service-linked roles for Amazon EKS

Amazon Elastic Kubernetes Service uses AWS Identity and Access Management (IAM) service-
linked roles. A service-linked role is a unique type of IAM role that is linked directly to Amazon EKS. 
Service-linked roles are predefined by Amazon EKS and include all the permissions that the service 
requires to call other AWS services on your behalf.

Topics

• Using roles for Amazon EKS clusters

• Using roles for Amazon EKS node groups

• Using roles for Amazon EKS Fargate profiles

• Using roles to connect a Kubernetes cluster to Amazon EKS

• Using roles for Amazon EKS local clusters on Outpost

Using roles for Amazon EKS clusters

Amazon Elastic Kubernetes Service uses AWS Identity and Access Management (IAM) service-
linked roles. A service-linked role is a unique type of IAM role that is linked directly to Amazon EKS. 
Service-linked roles are predefined by Amazon EKS and include all the permissions that the service 
requires to call other AWS services on your behalf.

A service-linked role makes setting up Amazon EKS easier because you don't have to manually add 
the necessary permissions. Amazon EKS defines the permissions of its service-linked roles, and 
unless defined otherwise, only Amazon EKS can assume its roles. The defined permissions include 
the trust policy and the permissions policy, and that permissions policy cannot be attached to any 
other IAM entity.

Using service-linked roles 793

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role


Amazon EKS User Guide

You can delete a service-linked role only after first deleting their related resources. This protects 
your Amazon EKS resources because you can't inadvertently remove permission to access the 
resources.

For information about other services that support service-linked roles, see AWS services that work 
with IAM and look for the services that have Yes in the Service-linked role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Amazon EKS

Amazon EKS uses the service-linked role named AWSServiceRoleForAmazonEKS – The role 
allows Amazon EKS to manage clusters in your account. The attached policies allow the role to 
manage the following resources: network interfaces, security groups, logs, and VPCs.

Note

The AWSServiceRoleForAmazonEKS service-linked role is distinct from the role required 
for cluster creation. For more information, see Amazon EKS cluster IAM role.

The AWSServiceRoleForAmazonEKS service-linked role trusts the following services to assume 
the role:

• eks.amazonaws.com

The role permissions policy allows Amazon EKS to complete the following actions on the specified 
resources:

• AmazonEKSServiceRolePolicy

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create, 
edit, or delete a service-linked role. For more information, see Service-linked role permissions in 
the IAM User Guide.

Creating a service-linked role for Amazon EKS

You don't need to manually create a service-linked role. When you create a cluster in the AWS 
Management Console, the AWS CLI, or the AWS API, Amazon EKS creates the service-linked role for 
you.

Using service-linked roles 794

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSServiceRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions


Amazon EKS User Guide

If you delete this service-linked role, and then need to create it again, you can use the same process 
to recreate the role in your account. When you create a cluster, Amazon EKS creates the service-
linked role for you again.

Editing a service-linked role for Amazon EKS

Amazon EKS does not allow you to edit the AWSServiceRoleForAmazonEKS service-linked role. 
After you create a service-linked role, you cannot change the name of the role because various 
entities might reference the role. However, you can edit the description of the role using IAM. For 
more information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for Amazon EKS

If you no longer need to use a feature or service that requires a service-linked role, we recommend 
that you delete that role. That way you don't have an unused entity that is not actively monitored 
or maintained. However, you must clean up your service-linked role before you can manually delete 
it.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first delete any resources used by 
the role.

Note

If the Amazon EKS service is using the role when you try to delete the resources, then the 
deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete Amazon EKS resources used by the AWSServiceRoleForAmazonEKS role.

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, choose Clusters.

3. If your cluster has any node groups or Fargate profiles, you must delete them before you can 
delete the cluster. For more information, see Deleting a managed node group and Deleting a 
Fargate profile.

4. On the Clusters page, choose the cluster that you want to delete and choose Delete.

5. Type the name of the cluster in the deletion confirmation window, and then choose Delete.

Using service-linked roles 795

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

6. Repeat this procedure for any other clusters in your account. Wait for all of the delete 
operations to finish.

Manually delete the service-linked role

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForAmazonEKS
service-linked role. For more information, see Deleting a service-linked role in the IAM User Guide.

Supported regions for Amazon EKS service-linked roles

Amazon EKS supports using service-linked roles in all of the regions where the service is available. 
For more information, see Amazon EKS endpoints and quotas.

Using roles for Amazon EKS node groups

Amazon EKS uses AWS Identity and Access Management (IAM) service-linked roles. A service-linked 
role is a unique type of IAM role that is linked directly to Amazon EKS. Service-linked roles are 
predefined by Amazon EKS and include all the permissions that the service requires to call other 
AWS services on your behalf.

A service-linked role makes setting up Amazon EKS easier because you don't have to manually add 
the necessary permissions. Amazon EKS defines the permissions of its service-linked roles, and 
unless defined otherwise, only Amazon EKS can assume its roles. The defined permissions include 
the trust policy and the permissions policy, and that permissions policy cannot be attached to any 
other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects 
your Amazon EKS resources because you can't inadvertently remove permission to access the 
resources.

For information about other services that support service-linked roles, see AWS services that work 
with IAM and look for the services that have Yes in the Service-linked role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Amazon EKS

Amazon EKS uses the service-linked role named AWSServiceRoleForAmazonEKSNodegroup – 
The role allows Amazon EKS to manage node groups in your account. The attached policies allow 
the role to manage the following resources: Auto Scaling groups, security groups, launch templates 
and IAM instance profiles..

Using service-linked roles 796

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/eks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


Amazon EKS User Guide

The AWSServiceRoleForAmazonEKSNodegroup service-linked role trusts the following services 
to assume the role:

• eks-nodegroup.amazonaws.com

The role permissions policy allows Amazon EKS to complete the following actions on the specified 
resources:

• AWSServiceRoleForAmazonEKSNodegroup

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create, 
edit, or delete a service-linked role. For more information, see Service-linked role permissions in 
the IAM User Guide.

Creating a service-linked role for Amazon EKS

You don't need to manually create a service-linked role. When you CreateNodegroup in the AWS 
Management Console, the AWS CLI, or the AWS API, Amazon EKS creates the service-linked role for 
you.

Important

This service-linked role can appear in your account if you completed an action in another 
service that uses the features supported by this role. If you were using the Amazon EKS 
service before January 1, 2017, when it began supporting service-linked roles, then 
Amazon EKS created the AWSServiceRoleForAmazonEKSNodegroup role in your account. 
To learn more, see A new role appeared in my IAM account.

Creating a service-linked role in Amazon EKS (AWS API)

You don't need to manually create a service-linked role. When you create a managed node group 
in the AWS Management Console, the AWS CLI, or the AWS API, Amazon EKS creates the service-
linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process 
to recreate the role in your account. When you create another managed node group, Amazon EKS 
creates the service-linked role for you again.

Using service-linked roles 797

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSServiceRoleForAmazonEKSNodegroup.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared


Amazon EKS User Guide

Editing a service-linked role for Amazon EKS

Amazon EKS does not allow you to edit the AWSServiceRoleForAmazonEKSNodegroup service-
linked role. After you create a service-linked role, you cannot change the name of the role because 
various entities might reference the role. However, you can edit the description of the role using 
IAM. For more information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for Amazon EKS

If you no longer need to use a feature or service that requires a service-linked role, we recommend 
that you delete that role. That way you don't have an unused entity that is not actively monitored 
or maintained. However, you must clean up your service-linked role before you can manually delete 
it.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first delete any resources used by 
the role.

Note

If the Amazon EKS service is using the role when you try to delete the resources, then the 
deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete Amazon EKS resources used by the AWSServiceRoleForAmazonEKSNodegroup role.

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, choose Clusters.

3. Select the Compute tab.

4. In the Node groups section, choose the node group to delete.

5. Type the name of the node group in the deletion confirmation window, and then choose
Delete.

6. Repeat this procedure for any other node groups in the cluster. Wait for all of the delete 
operations to finish.

Using service-linked roles 798

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

Manually delete the service-linked role

Use the IAM console, the AWS CLI, or the AWS API to delete the
AWSServiceRoleForAmazonEKSNodegroup service-linked role. For more information, see
Deleting a service-linked role in the IAM User Guide.

Supported regions for Amazon EKS service-linked roles

Amazon EKS supports using service-linked roles in all of the regions where the service is available. 
For more information, see Amazon EKS endpoints and quotas.

Using roles for Amazon EKS Fargate profiles

Amazon EKS uses AWS Identity and Access Management (IAM) service-linked roles. A service-linked 
role is a unique type of IAM role that is linked directly to Amazon EKS. Service-linked roles are 
predefined by Amazon EKS and include all the permissions that the service requires to call other 
AWS services on your behalf.

A service-linked role makes setting up Amazon EKS easier because you don't have to manually add 
the necessary permissions. Amazon EKS defines the permissions of its service-linked roles, and 
unless defined otherwise, only Amazon EKS can assume its roles. The defined permissions include 
the trust policy and the permissions policy, and that permissions policy cannot be attached to any 
other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects 
your Amazon EKS resources because you can't inadvertently remove permission to access the 
resources.

For information about other services that support service-linked roles, see AWS services that work 
with IAM and look for the services that have Yes in the Service-linked role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Amazon EKS

Amazon EKS uses the service-linked role named AWSServiceRoleForAmazonEKSForFargate – 
The role allows Amazon EKS Fargate to configure VPC networking required for Fargate Pods. The 
attached policies allow the role to create and delete elastic network interfaces and describe elastic 
network Interfaces and resources.

The AWSServiceRoleForAmazonEKSForFargate service-linked role trusts the following 
services to assume the role:

Using service-linked roles 799

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/eks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


Amazon EKS User Guide

• eks-fargate.amazonaws.com

The role permissions policy allows Amazon EKS to complete the following actions on the specified 
resources:

• AmazonEKSForFargateServiceRolePolicy

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create, 
edit, or delete a service-linked role. For more information, see Service-linked role permissions in 
the IAM User Guide.

Creating a service-linked role for Amazon EKS

You don't need to manually create a service-linked role. When you create a Fargate profile in the 
AWS Management Console, the AWS CLI, or the AWS API, Amazon EKS creates the service-linked 
role for you.

Important

This service-linked role can appear in your account if you completed an action in another 
service that uses the features supported by this role. If you were using the Amazon EKS 
service before December 13, 2019, when it began supporting service-linked roles, then 
Amazon EKS created the AWSServiceRoleForAmazonEKSForFargate role in your account. To 
learn more, see A New role appeared in my IAM account.

Creating a service-linked role in Amazon EKS (AWS API)

You don't need to manually create a service-linked role. When you create a Fargate profile in the 
AWS Management Console, the AWS CLI, or the AWS API, Amazon EKS creates the service-linked 
role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process 
to recreate the role in your account. When you create another managed node group, Amazon EKS 
creates the service-linked role for you again.

Using service-linked roles 800

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSForFargateServiceRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared


Amazon EKS User Guide

Editing a service-linked role for Amazon EKS

Amazon EKS does not allow you to edit the AWSServiceRoleForAmazonEKSForFargate
service-linked role. After you create a service-linked role, you cannot change the name of the role 
because various entities might reference the role. However, you can edit the description of the role 
using IAM. For more information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for Amazon EKS

If you no longer need to use a feature or service that requires a service-linked role, we recommend 
that you delete that role. That way you don't have an unused entity that is not actively monitored 
or maintained. However, you must clean up your service-linked role before you can manually delete 
it.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first delete any resources used by 
the role.

Note

If the Amazon EKS service is using the role when you try to delete the resources, then the 
deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete Amazon EKS resources used by the AWSServiceRoleForAmazonEKSForFargate
role.

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, choose Clusters.

3. On the Clusters page, select your cluster.

4. Select the Compute tab.

5. If there are any Fargate profiles in the Fargate profiles section, select each one individually, 
and then choose Delete.

6. Type the name of the profile in the deletion confirmation window, and then choose Delete.

7. Repeat this procedure for any other Fargate profiles in the cluster and for any other clusters in 
your account.

Using service-linked roles 801

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

Manually delete the service-linked role

Use the IAM console, the AWS CLI, or the AWS API to delete the 
AWSServiceRoleForAmazonEKSForFargate service-linked role. For more information, see Deleting a 
service-linked role in the IAM User Guide.

Supported regions for Amazon EKS service-linked roles

Amazon EKS supports using service-linked roles in all of the regions where the service is available. 
For more information, see Amazon EKS endpoints and quotas.

Using roles to connect a Kubernetes cluster to Amazon EKS

Amazon EKS uses AWS Identity and Access Management (IAM) service-linked roles. A service-linked 
role is a unique type of IAM role that is linked directly to Amazon EKS. Service-linked roles are 
predefined by Amazon EKS and include all the permissions that the service requires to call other 
AWS services on your behalf.

A service-linked role makes setting up Amazon EKS easier because you don't have to manually add 
the necessary permissions. Amazon EKS defines the permissions of its service-linked roles, and 
unless defined otherwise, only Amazon EKS can assume its roles. The defined permissions include 
the trust policy and the permissions policy, and that permissions policy cannot be attached to any 
other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects 
your Amazon EKS resources because you can't inadvertently remove permission to access the 
resources.

For information about other services that support service-linked roles, see AWS services that work 
with IAM and look for the services that have Yes in the Service-linked role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Amazon EKS

Amazon EKS uses the service-linked role named AWSServiceRoleForAmazonEKSConnector – 
The role allows Amazon EKS to connect Kubernetes clusters. The attached policies allow the role to 
manage necessary resources to connect to your registered Kubernetes cluster.

The AWSServiceRoleForAmazonEKSConnector service-linked role trusts the following services 
to assume the role:

Using service-linked roles 802

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/eks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


Amazon EKS User Guide

• eks-connector.amazonaws.com

The role permissions policy allows Amazon EKS to complete the following actions on the specified 
resources:

• AmazonEKSConnectorServiceRolePolicy

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create, 
edit, or delete a service-linked role. For more information, see Service-linked role permissions in 
the IAM User Guide.

Creating a service-linked role for Amazon EKS

You don't need to manually create a service-linked role to connect a cluster. When you connect 
a cluster in the AWS Management Console, the AWS CLI, eksctl, or the AWS API, Amazon EKS 
creates the service-linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process 
to recreate the role in your account. When you connect a cluster, Amazon EKS creates the service-
linked role for you again.

Editing a service-linked role for Amazon EKS

Amazon EKS does not allow you to edit the AWSServiceRoleForAmazonEKSConnector service-
linked role. After you create a service-linked role, you cannot change the name of the role because 
various entities might reference the role. However, you can edit the description of the role using 
IAM. For more information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for Amazon EKS

If you no longer need to use a feature or service that requires a service-linked role, we recommend 
that you delete that role. That way you don't have an unused entity that is not actively monitored 
or maintained. However, you must clean up your service-linked role before you can manually delete 
it.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first delete any resources used by 
the role.

Using service-linked roles 803

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSConnectorServiceRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role


Amazon EKS User Guide

Note

If the Amazon EKS service is using the role when you try to delete the resources, then the 
deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete Amazon EKS resources used by the AWSServiceRoleForAmazonEKSConnector role.

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, choose Clusters.

3. On the Clusters page, select your cluster.

4. Select the Deregister tab and then select the Ok tab.

Manually delete the service-linked role

Use the IAM console, the AWS CLI, or the AWS API to delete the 
AWSServiceRoleForAmazonEKSConnector service-linked role. For more information, see Deleting a 
service-linked role in the IAM User Guide.

Using roles for Amazon EKS local clusters on Outpost

Amazon Elastic Kubernetes Service uses AWS Identity and Access Management (IAM) service-
linked roles. A service-linked role is a unique type of IAM role that is linked directly to Amazon EKS. 
Service-linked roles are predefined by Amazon EKS and include all the permissions that the service 
requires to call other AWS services on your behalf.

A service-linked role makes setting up Amazon EKS easier because you don't have to manually add 
the necessary permissions. Amazon EKS defines the permissions of its service-linked roles, and 
unless defined otherwise, only Amazon EKS can assume its roles. The defined permissions include 
the trust policy and the permissions policy, and that permissions policy cannot be attached to any 
other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects 
your Amazon EKS resources because you can't inadvertently remove permission to access the 
resources.

For information about other services that support service-linked roles, see AWS services that work 
with IAM and look for the services that have Yes in the Service-linked role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Using service-linked roles 804

https://console.aws.amazon.com/eks/home#/clusters
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


Amazon EKS User Guide

Service-linked role permissions for Amazon EKS

Amazon EKS uses the service-linked role named AWSServiceRoleForAmazonEKSLocalOutpost
– The role allows Amazon EKS to manage local clusters in your account. The attached policies allow 
the role to manage the following resources: network interfaces, security groups, logs, and Amazon 
EC2 instances.

Note

The AWSServiceRoleForAmazonEKSLocalOutpost service-linked role is distinct from 
the role required for cluster creation. For more information, see Amazon EKS cluster IAM 
role.

The AWSServiceRoleForAmazonEKSLocalOutpost service-linked role trusts the following 
services to assume the role:

• outposts.eks-local.amazonaws.com

The role permissions policy allows Amazon EKS to complete the following actions on the specified 
resources:

• AmazonEKSServiceRolePolicy

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create, 
edit, or delete a service-linked role. For more information, see Service-linked role permissions in 
the IAM User Guide.

Creating a service-linked role for Amazon EKS

You don't need to manually create a service-linked role. When you create a cluster in the AWS 
Management Console, the AWS CLI, or the AWS API, Amazon EKS creates the service-linked role for 
you.

If you delete this service-linked role, and then need to create it again, you can use the same process 
to recreate the role in your account. When you create a cluster, Amazon EKS creates the service-
linked role for you again.

Using service-linked roles 805

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSServiceRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions


Amazon EKS User Guide

Editing a service-linked role for Amazon EKS

Amazon EKS does not allow you to edit the AWSServiceRoleForAmazonEKSLocalOutpost
service-linked role. After you create a service-linked role, you can't change the name of the role 
because various entities might reference the role. However, you can edit the description of the role 
using IAM. For more information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for Amazon EKS

If you no longer need to use a feature or service that requires a service-linked role, we recommend 
that you delete that role. That way you don't have an unused entity that is not actively monitored 
or maintained. However, you must clean up your service-linked role before you can manually delete 
it.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first delete any resources used by 
the role.

Note

If the Amazon EKS service is using the role when you try to delete the resources, then the 
deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete Amazon EKS resources used by the AWSServiceRoleForAmazonEKSLocalOutpost
role.

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the left navigation pane, choose Amazon EKS Clusters.

3. If your cluster has any node groups or Fargate profiles, you must delete them before you can 
delete the cluster. For more information, see Deleting a managed node group and Deleting a 
Fargate profile.

4. On the Clusters page, choose the cluster that you want to delete and choose Delete.

5. Type the name of the cluster in the deletion confirmation window, and then choose Delete.

6. Repeat this procedure for any other clusters in your account. Wait for all of the delete 
operations to finish.

Using service-linked roles 806

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

Manually delete the service-linked role

Use the IAM console, the AWS CLI, or the AWS API to delete the
AWSServiceRoleForAmazonEKSLocalOutpost service-linked role. For more information, see
Deleting a service-linked role in the IAM User Guide.

Supported regions for Amazon EKS service-linked roles

Amazon EKS supports using service-linked roles in all of the regions where the service is available. 
For more information, see Amazon EKS endpoints and quotas.

Amazon EKS cluster IAM role

The Amazon EKS cluster IAM role is required for each cluster. Kubernetes clusters managed by 
Amazon EKS use this role to manage nodes and the legacy Cloud Provider uses this role to create 
load balancers with Elastic Load Balancing for services.

Before you can create Amazon EKS clusters, you must create an IAM role with either of the 
following IAM policies:

• AmazonEKSClusterPolicy

• A custom IAM policy. The minimal permissions that follow allows the Kubernetes cluster to 
manage nodes, but doesn't allow the legacy Cloud Provider to create load balancers with Elastic 
Load Balancing. Your custom IAM policy must have at least the following permissions:

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": [ 
        "ec2:CreateTags" 
      ], 
      "Resource": "arn:aws:ec2:*:*:instance/*", 
      "Condition": { 
        "ForAnyValue:StringLike": { 
          "aws:TagKeys": "kubernetes.io/cluster/*" 
        } 
      } 
    }, 
    { 

Cluster IAM role 807

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/eks.html
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.4/guide/service/annotations/#legacy-cloud-provider
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSClusterPolicy.html
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.4/guide/service/annotations/#legacy-cloud-provider


Amazon EKS User Guide

      "Effect": "Allow", 
      "Action": [ 
        "ec2:DescribeInstances", 
        "ec2:DescribeNetworkInterfaces", 
        "ec2:DescribeVpcs", 
        "ec2:DescribeDhcpOptions", 
        "kms:DescribeKey" 
      ], 
      "Resource": "*" 
    } 
  ]
}

Note

Prior to October 3, 2023, AmazonEKSClusterPolicy was required on the IAM role for each 
cluster.
Prior to April 16, 2020, AmazonEKSServicePolicy was also required and the suggested 
name was eksServiceRole. With the AWSServiceRoleForAmazonEKS service-linked 
role, that policy is no longer required for clusters created on or after April 16, 2020.

Check for an existing cluster role

You can use the following procedure to check and see if your account already has the Amazon EKS 
cluster role.

To check for the eksClusterRole in the IAM console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

3. Search the list of roles for eksClusterRole. If a role that includes eksClusterRole doesn't 
exist, then see Creating the Amazon EKS cluster role to create the role. If a role that includes
eksClusterRole does exist, then select the role to view the attached policies.

4. Choose Permissions.

5. Ensure that the AmazonEKSClusterPolicy managed policy is attached to the role. If the policy 
is attached, your Amazon EKS cluster role is properly configured.

6. Choose Trust relationships, and then choose Edit trust policy.

Cluster IAM role 808

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSClusterPolicy.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSServicePolicy.html
https://console.aws.amazon.com/iam/


Amazon EKS User Guide

7. Verify that the trust relationship contains the following policy. If the trust relationship matches 
the following policy, choose Cancel. If the trust relationship doesn't match, copy the policy 
into the Edit trust policy window and choose Update policy.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "eks.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole" 
    } 
  ]
}

Creating the Amazon EKS cluster role

You can use the AWS Management Console or the AWS CLI to create the cluster role.

AWS Management Console

To create your Amazon EKS cluster role in the IAM console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Roles, then Create role.

3. Under Trusted entity type, select AWS service.

4. From the Use cases for other AWS services dropdown list, choose EKS.

5. Choose EKS - Cluster for your use case, and then choose Next.

6. On the Add permissions tab, choose Next.

7. For Role name, enter a unique name for your role, such as eksClusterRole.

8. For Description, enter descriptive text such as Amazon EKS - Cluster role.

9. Choose Create role.

Cluster IAM role 809

https://console.aws.amazon.com/iam/


Amazon EKS User Guide

AWS CLI

1. Copy the following contents to a file named cluster-trust-policy.json.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "eks.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole" 
    } 
  ]
}

2. Create the role. You can replace eksClusterRole with any name that you choose.

aws iam create-role \ 
  --role-name eksClusterRole \ 
  --assume-role-policy-document file://"cluster-trust-policy.json"

3. Attach the required IAM policy to the role.

aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::aws:policy/AmazonEKSClusterPolicy \ 
  --role-name eksClusterRole

Amazon EKS node IAM role

The Amazon EKS node kubelet daemon makes calls to AWS APIs on your behalf. Nodes receive 
permissions for these API calls through an IAM instance profile and associated policies. Before you 
can launch nodes and register them into a cluster, you must create an IAM role for those nodes 
to use when they are launched. This requirement applies to nodes launched with the Amazon 
EKS optimized AMI provided by Amazon, or with any other node AMIs that you intend to use. 
Additionally, this requirement applies to both managed node groups and self-managed nodes.

Node IAM role 810



Amazon EKS User Guide

Note

You can't use the same role that is used to create any clusters.

Before you create nodes, you must create an IAM role with the following permissions:

• Permissions for the kubelet to describe Amazon EC2 resources in the VPC, such as provided 
by the AmazonEKSWorkerNodePolicy policy. This policy also provides the permissions for the 
Amazon EKS Pod Identity Agent.

• Permissions for the kubelet to use container images from Amazon Elastic Container Registry 
(Amazon ECR), such as provided by the AmazonEC2ContainerRegistryReadOnly policy. The 
permissions to use container images from Amazon Elastic Container Registry (Amazon ECR) are 
required because the built-in add-ons for networking run pods that use container images from 
Amazon ECR.

• (Optional) Permissions for the Amazon EKS Pod Identity Agent to use the eks-
auth:AssumeRoleForPodIdentity action to retrieve credentials for pods. If you don't use 
the AmazonEKSWorkerNodePolicy, then you must provide this permission in addition to the EC2 
permissions to use EKS Pod Identity.

• (Optional) If you don't use IRSA or EKS Pod Identity to give permissions to the VPC CNI pods, 
then you must provide permissions for the VPC CNI on the instance role. You can use either the
AmazonEKS_CNI_Policy managed policy (if you created your cluster with the IPv4 family) 
or an IPv6 policy that you create (if you created your cluster with the IPv6 family). Rather than 
attaching the policy to this role however, we recommend that you attach the policy to a separate 
role used specifically for the Amazon VPC CNI add-on. For more information about creating a 
separate role for the Amazon VPC CNI add-on, see Configuring the Amazon VPC CNI plugin for 
Kubernetes to use IAM roles for service accounts (IRSA).

Note

Prior to October 3, 2023, AmazonEKSWorkerNodePolicy and
AmazonEC2ContainerRegistryReadOnly were required on the IAM role for each 
managed node group.
The Amazon EC2 node groups must have a different IAM role than the Fargate profile. For 
more information, see Amazon EKS Pod execution IAM role.

Node IAM role 811

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSWorkerNodePolicy.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEC2ContainerRegistryReadOnly.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSWorkerNodePolicy.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKS_CNI_Policy.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSWorkerNodePolicy.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEC2ContainerRegistryReadOnly.html


Amazon EKS User Guide

Check for an existing node role

You can use the following procedure to check and see if your account already has the Amazon EKS 
node role.

To check for the eksNodeRole in the IAM console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

3. Search the list of roles for eksNodeRole, AmazonEKSNodeRole, or NodeInstanceRole. 
If a role with one of those names doesn't exist, then see Creating the Amazon EKS node 
IAM role to create the role. If a role that contains eksNodeRole, AmazonEKSNodeRole, or
NodeInstanceRole does exist, then select the role to view the attached policies.

4. Choose Permissions.

5. Ensure that the AmazonEKSWorkerNodePolicy and AmazonEC2ContainerRegistryReadOnly
managed policies are attached to the role or a custom policy is attached with the minimal 
permissions.

Note

If the AmazonEKS_CNI_Policy policy is attached to the role, we recommend removing 
it and attaching it to an IAM role that is mapped to the aws-node Kubernetes service 
account instead. For more information, see Configuring the Amazon VPC CNI plugin for 
Kubernetes to use IAM roles for service accounts (IRSA).

6. Choose Trust relationships, and then choose Edit trust policy.

7. Verify that the trust relationship contains the following policy. If the trust relationship matches 
the following policy, choose Cancel. If the trust relationship doesn't match, copy the policy 
into the Edit trust policy window and choose Update policy.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "ec2.amazonaws.com" 
      }, 

Node IAM role 812

https://console.aws.amazon.com/iam/


Amazon EKS User Guide

      "Action": "sts:AssumeRole" 
    } 
  ]
}

Creating the Amazon EKS node IAM role

You can create the node IAM role with the AWS Management Console or the AWS CLI.

AWS Management Console

To create your Amazon EKS node role in the IAM console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

3. On the Roles page, choose Create role.

4. On the Select trusted entity page, do the following:

a. In the Trusted entity type section, choose AWS service.

b. Under Use case, choose EC2.

c. Choose Next.

5. On the Add permissions page, attach a custom policy or do the following:

a. In the Filter policies box, enter AmazonEKSWorkerNodePolicy.

b. Select the check box to the left of AmazonEKSWorkerNodePolicy in the search 
results.

c. Choose Clear filters.

d. In the Filter policies box, enter AmazonEC2ContainerRegistryReadOnly.

e. Select the check box to the left of AmazonEC2ContainerRegistryReadOnly in the 
search results.

Either the AmazonEKS_CNI_Policy managed policy, or an IPv6 policy that you create 
must also be attached to either this role or to a different role that's mapped to the
aws-node Kubernetes service account. We recommend assigning the policy to the role 
associated to the Kubernetes service account instead of assigning it to this role. For 
more information, see Configuring the Amazon VPC CNI plugin for Kubernetes to use 
IAM roles for service accounts (IRSA).

Node IAM role 813

https://console.aws.amazon.com/iam/


Amazon EKS User Guide

f. Choose Next.

6. On the Name, review, and create page, do the following:

a. For Role name, enter a unique name for your role, such as AmazonEKSNodeRole.

b. For Description, replace the current text with descriptive text such as Amazon EKS - 
Node role.

c. Under Add tags (Optional), add metadata to the role by attaching tags as key-value 
pairs. For more information about using tags in IAM, see Tagging IAM resources in the
IAM User Guide.

d. Choose Create role.

AWS CLI

1. Run the following command to create the node-role-trust-relationship.json file.

cat >node-role-trust-relationship.json <<EOF
{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "ec2.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole" 
    } 
  ]
}
EOF

2. Create the IAM role.

aws iam create-role \ 
  --role-name AmazonEKSNodeRole \ 
  --assume-role-policy-document file://"node-role-trust-relationship.json"

3. Attach two required IAM managed policies to the IAM role.

aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy \ 

Node IAM role 814

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html


Amazon EKS User Guide

  --role-name AmazonEKSNodeRole
aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly \ 
  --role-name AmazonEKSNodeRole

4. Attach one of the following IAM policies to the IAM role depending on which IP family you 
created your cluster with. The policy must be attached to this role or to a role associated to 
the Kubernetes aws-node service account that's used for the Amazon VPC CNI plugin for 
Kubernetes. We recommend assigning the policy to the role associated to the Kubernetes 
service account. To assign the policy to the role associated to the Kubernetes service 
account, see Configuring the Amazon VPC CNI plugin for Kubernetes to use IAM roles for 
service accounts (IRSA).

• IPv4

aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy \ 
  --role-name AmazonEKSNodeRole

• IPv6

1. Copy the following text and save it to a file named vpc-cni-ipv6-policy.json.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "ec2:AssignIpv6Addresses", 
                "ec2:DescribeInstances", 
                "ec2:DescribeTags", 
                "ec2:DescribeNetworkInterfaces", 
                "ec2:DescribeInstanceTypes" 
            ], 
            "Resource": "*" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "ec2:CreateTags" 
            ], 
            "Resource": [ 

Node IAM role 815



Amazon EKS User Guide

                "arn:aws:ec2:*:*:network-interface/*" 
            ] 
        } 
    ]
}

2. Create the IAM policy.

aws iam create-policy --policy-name AmazonEKS_CNI_IPv6_Policy --policy-
document file://vpc-cni-ipv6-policy.json

3. Attach the IAM policy to the IAM role. Replace 111122223333 with your account ID.

aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::111122223333:policy/AmazonEKS_CNI_IPv6_Policy \ 
  --role-name AmazonEKSNodeRole

Amazon EKS Pod execution IAM role

The Amazon EKS Pod execution role is required to run Pods on AWS Fargate infrastructure.

When your cluster creates Pods on AWS Fargate infrastructure, the components running on the 
Fargate infrastructure must make calls to AWS APIs on your behalf. This is so that they can do 
actions such as pull container images from Amazon ECR or route logs to other AWS services. The 
Amazon EKS Pod execution role provides the IAM permissions to do this.

When you create a Fargate profile, you must specify a Pod execution role for the Amazon EKS 
components that run on the Fargate infrastructure using the profile. This role is added to the 
cluster's Kubernetes Role based access control (RBAC) for authorization. This allows the kubelet
that's running on the Fargate infrastructure to register with your Amazon EKS cluster so that it can 
appear in your cluster as a node.

Note

The Fargate profile must have a different IAM role than Amazon EC2 node groups.

Pod execution IAM role 816

https://kubernetes.io/docs/reference/access-authn-authz/rbac/


Amazon EKS User Guide

Important

The containers running in the Fargate Pod can't assume the IAM permissions associated 
with a Pod execution role. To give the containers in your Fargate Pod permissions to access 
other AWS services, you must use IAM roles for service accounts.

Before you create a Fargate profile, you must create an IAM role with the
AmazonEKSFargatePodExecutionRolePolicy.

Check for a correctly configured existing Pod execution role

You can use the following procedure to check and see if your account already has a correctly 
configured Amazon EKS Pod execution role. To avoid a confused deputy security problem, it's 
important that the role restricts access based on SourceArn. You can modify the execution role as 
needed to include support for Fargate profiles on other clusters.

To check for an Amazon EKS Pod execution role in the IAM console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

3. On the Roles page, search the list of roles for AmazonEKSFargatePodExecutionRole. If the 
role doesn't exist, see Creating the Amazon EKS Pod execution role to create the role. If the 
role does exist, choose the role.

4. On the AmazonEKSFargatePodExecutionRole page, do the following:

a. Choose Permissions.

b. Ensure that the AmazonEKSFargatePodExecutionRolePolicy Amazon managed policy is 
attached to the role.

c. Choose Trust relationships.

d. Choose Edit trust policy.

5. On the Edit trust policy page, verify that the trust relationship contains the following policy 
and has a line for Fargate profiles on your cluster. If so, choose Cancel.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 

Pod execution IAM role 817

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSFargatePodExecutionRolePolicy.html
https://console.aws.amazon.com/iam/


Amazon EKS User Guide

      "Effect": "Allow", 
      "Condition": { 
         "ArnLike": { 
            "aws:SourceArn": "arn:aws:eks:region-
code:111122223333:fargateprofile/my-cluster/*" 
         } 
      }, 
      "Principal": { 
        "Service": "eks-fargate-pods.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole" 
    } 
  ]
}

If the policy matches but doesn't have a line specifying the Fargate profiles on your cluster, 
you can add the following line at the top of the ArnLike object. Replace region-code with 
the AWS Region that your cluster is in, 111122223333 with your account ID, and my-cluster
with the name of your cluster.

"aws:SourceArn": "arn:aws:eks:region-code:111122223333:fargateprofile/my-cluster/
*",

If the policy doesn't match, copy the full previous policy into the form and choose Update 
policy. Replace region-code with the AWS Region that your cluster is in. If you want to 
use the same role in all AWS Regions in your account, replace region-code with *. Replace
111122223333 with your account ID and my-cluster with the name of your cluster. If you 
want to use the same role for all clusters in your account, replace my-cluster with *.

Creating the Amazon EKS Pod execution role

If you don't already have the Amazon EKS Pod execution role for your cluster, you can use the AWS 
Management Console or the AWS CLI to create it.

AWS Management Console

To create an AWS FargatePod execution role with the AWS Management Console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

Pod execution IAM role 818

https://console.aws.amazon.com/iam/


Amazon EKS User Guide

3. On the Roles page, choose Create role.

4. On the Select trusted entity page, do the following:

a. In the Trusted entity type section, choose AWS service.

b. From the Use cases for other AWS services dropdown list, choose EKS.

c. Choose EKS - Fargate Pod.

d. Choose Next.

5. On the Add permissions page, choose Next.

6. On the Name, review, and create page, do the following:

a. For Role name, enter a unique name for your role, such as
AmazonEKSFargatePodExecutionRole.

b. Under Add tags (Optional), add metadata to the role by attaching tags as key-value 
pairs. For more information about using tags in IAM, see Tagging IAM resources in the
IAM User Guide.

c. Choose Create role.

7. On the Roles page, search the list of roles for AmazonEKSFargatePodExecutionRole. 
Choose the role.

8. On the AmazonEKSFargatePodExecutionRole page, do the following:

a. Choose Trust relationships.

b. Choose Edit trust policy.

9. On the Edit trust policy page, do the following:

a. Copy and paste the following contents into the Edit trust policy form. Replace
region-code with the AWS Region that your cluster is in. If you want to use the 
same role in all AWS Regions in your account, replace region-code with *. Replace
111122223333 with your account ID and my-cluster with the name of your cluster. 
If you want to use the same role for all clusters in your account, replace my-cluster
with *.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 

Pod execution IAM role 819

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html


Amazon EKS User Guide

      "Condition": { 
         "ArnLike": { 
            "aws:SourceArn": "arn:aws:eks:region-
code:111122223333:fargateprofile/my-cluster/*" 
         } 
      }, 
      "Principal": { 
        "Service": "eks-fargate-pods.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole" 
    } 
  ]
}

b. Choose Update policy.

AWS CLI

To create an AWS FargatePod execution role with the AWS CLI

1. Copy and paste the following contents to a file named pod-execution-role-trust-
policy.json. Replace region-code with the AWS Region that your cluster is in. If you 
want to use the same role in all AWS Regions in your account, replace region-code
with *. Replace 111122223333 with your account ID and my-cluster with the name of 
your cluster. If you want to use the same role for all clusters in your account, replace my-
cluster with *.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Condition": { 
         "ArnLike": { 
            "aws:SourceArn": "arn:aws:eks:region-
code:111122223333:fargateprofile/my-cluster/*" 
         } 
      }, 
      "Principal": { 
        "Service": "eks-fargate-pods.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole" 

Pod execution IAM role 820



Amazon EKS User Guide

    } 
  ]
}

2. Create a Pod execution IAM role.

aws iam create-role \ 
  --role-name AmazonEKSFargatePodExecutionRole \ 
  --assume-role-policy-document file://"pod-execution-role-trust-policy.json"

3. Attach the required Amazon EKS managed IAM policy to the role.

aws iam attach-role-policy \ 
  --policy-arn arn:aws:iam::aws:policy/AmazonEKSFargatePodExecutionRolePolicy \ 
  --role-name AmazonEKSFargatePodExecutionRole

EKS Pod Identity role

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "AllowEksAuthToAssumeRoleForPodIdentity", 
            "Effect": "Allow", 
            "Principal": { 
                "Service": "pods.eks.amazonaws.com" 
            }, 
            "Action": [ 
                "sts:AssumeRole", 
                "sts:TagSession" 
            ] 
        } 
    ]
}

sts:AssumeRole

EKS Pod Identity uses TagSession to assume the IAM role before passing the temporary 
credentials to your pods.

EKS Pod Identity role 821



Amazon EKS User Guide

sts:TagSession

EKS Pod Identity uses TagSession to include session tags in the requests to AWS STS.

You can use these tags in the condition keys in the trust policy to restrict which service accounts, 
namespaces, and clusters can use this role.

For a list of Amazon EKS condition keys, see Conditions defined by Amazon Elastic Kubernetes 
Service in the Service Authorization Reference. To learn which actions and resources you can use 
a condition key with, see Actions defined by Amazon Elastic Kubernetes Service.

Amazon EKS connector IAM role

You can connect Kubernetes clusters to view them in your AWS Management Console. To connect 
to a Kubernetes cluster, create an IAM role.

Check for an existing EKS connector role

You can use the following procedure to check and see if your account already has the Amazon EKS 
connector role.

To check for the AmazonEKSConnectorAgentRole in the IAM console

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

3. Search the list of roles for AmazonEKSConnectorAgentRole. If a role that 
includes AmazonEKSConnectorAgentRole doesn't exist, then see Creating 
the Amazon EKS connector agent role to create the role. If a role that includes
AmazonEKSConnectorAgentRole does exist, then select the role to view the attached 
policies.

4. Choose Permissions.

5. Ensure that the AmazonEKSConnectorAgentPolicy managed policy is attached to the role. If 
the policy is attached, your Amazon EKS connector role is properly configured.

6. Choose Trust relationships, and then choose Edit trust policy.

7. Verify that the trust relationship contains the following policy. If the trust relationship matches 
the following policy, choose Cancel. If the trust relationship doesn't match, copy the policy 
into the Edit trust policy window and choose Update policy.

Connector IAM role 822

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions
https://console.aws.amazon.com/iam/


Amazon EKS User Guide

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Principal": { 
                "Service": [ 
                    "ssm.amazonaws.com" 
                ] 
            }, 
            "Action": "sts:AssumeRole" 
        } 
    ]
}

Creating the Amazon EKS connector agent role

You can use the AWS Management Console or AWS CloudFormation to create the connector agent 
role.

AWS CLI

1. Create a file named eks-connector-agent-trust-policy.json that contains the 
following JSON to use for the IAM role.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Principal": { 
                "Service": [ 
                    "ssm.amazonaws.com" 
                ] 
            }, 
            "Action": "sts:AssumeRole" 
        } 
    ]
}

Connector IAM role 823



Amazon EKS User Guide

2. Create a file named eks-connector-agent-policy.json that contains the following 
JSON to use for the IAM role.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "SsmControlChannel", 
            "Effect": "Allow", 
            "Action": [ 
                "ssmmessages:CreateControlChannel" 
            ], 
            "Resource": "arn:aws:eks:*:*:cluster/*" 
        }, 
        { 
            "Sid": "ssmDataplaneOperations", 
            "Effect": "Allow", 
            "Action": [ 
                "ssmmessages:CreateDataChannel", 
                "ssmmessages:OpenDataChannel", 
                "ssmmessages:OpenControlChannel" 
            ], 
            "Resource": "*" 
        } 
    ]
}

3. Create the Amazon EKS Connector agent role using the trust policy and policy you created in 
the previous list items.

aws iam create-role \ 
     --role-name AmazonEKSConnectorAgentRole \ 
     --assume-role-policy-document file://eks-connector-agent-trust-policy.json

4. Attach the policy to your Amazon EKS Connector agent role.

aws iam put-role-policy \ 
     --role-name AmazonEKSConnectorAgentRole \ 
     --policy-name AmazonEKSConnectorAgentPolicy \ 
     --policy-document file://eks-connector-agent-policy.json

Connector IAM role 824



Amazon EKS User Guide

AWS CloudFormation

To create your Amazon EKS connector agent role with AWS CloudFormation.

1. Save the following AWS CloudFormation template to a text file on your local system.

Note

This template also creates the service-linked role that would otherwise be created 
when the registerCluster API is called. See Using roles to connect a Kubernetes 
cluster to Amazon EKS for details.

---
AWSTemplateFormatVersion: '2010-09-09'
Description: 'Provisions necessary resources needed to register clusters in EKS'
Parameters: {}
Resources: 
  EKSConnectorSLR: 
    Type: AWS::IAM::ServiceLinkedRole 
    Properties: 
      AWSServiceName: eks-connector.amazonaws.com 

  EKSConnectorAgentRole: 
    Type: AWS::IAM::Role 
    Properties: 
      AssumeRolePolicyDocument: 
        Version: '2012-10-17' 
        Statement: 
          - Effect: Allow 
            Action: [ 'sts:AssumeRole' ] 
            Principal: 
              Service: 'ssm.amazonaws.com' 

  EKSConnectorAgentPolicy: 
    Type: AWS::IAM::Policy 
    Properties: 
      PolicyName: EKSConnectorAgentPolicy 
      Roles: 
        - {Ref: 'EKSConnectorAgentRole'} 
      PolicyDocument: 
        Version: '2012-10-17' 

Connector IAM role 825



Amazon EKS User Guide

        Statement: 
          - Effect: 'Allow' 
            Action: [ 'ssmmessages:CreateControlChannel' ] 
            Resource: 
            - Fn::Sub: 'arn:${AWS::Partition}:eks:*:*:cluster/*' 
          - Effect: 'Allow' 
            Action: [ 'ssmmessages:CreateDataChannel', 
 'ssmmessages:OpenDataChannel', 'ssmmessages:OpenControlChannel' ] 
            Resource: "*"
Outputs: 
  EKSConnectorAgentRoleArn: 
    Description: The agent role that EKS connector uses to communicate with AWS 
 services. 
    Value: !GetAtt EKSConnectorAgentRole.Arn

2. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation.

3. Choose Create stack (either with new resources or existing resources.

4. For Specify template, select Upload a template file, and then choose Choose file.

5. Choose the file you created earlier, and then choose Next.

6. For Stack name, enter a name for your role, such as eksConnectorAgentRole, and then 
choose Next.

7. On the Configure stack options page, choose Next.

8. On the Review page, review your information, acknowledge that the stack might create IAM 
resources, and then choose Create stack.

AWS managed policies for Amazon Elastic Kubernetes Service

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS 
managed policies are designed to provide permissions for many common use cases so that you can 
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your 
specific use cases because they're available for all AWS customers to use. We recommend that you 
reduce permissions further by defining  customer managed policies that are specific to your use 
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the 
permissions defined in an AWS managed policy, the update affects all principal identities (users, 

AWS managed policies 826

https://console.aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies


Amazon EKS User Guide

groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed 
policy when a new AWS service is launched or new API operations become available for existing 
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: AmazonEKS_CNI_Policy

You can attach the AmazonEKS_CNI_Policy to your IAM entities. Before you create an Amazon 
EC2 node group, this policy must be attached to either the node IAM role, or to an IAM role that's 
used specifically by the Amazon VPC CNI plugin for Kubernetes. This is so that it can perform 
actions on your behalf. We recommend that you attach the policy to a role that's used only by 
the plugin. For more information, see Working with the Amazon VPC CNI plugin for Kubernetes 
Amazon EKS add-on and Configuring the Amazon VPC CNI plugin for Kubernetes to use IAM roles 
for service accounts (IRSA).

Permissions details

This policy includes the following permissions that allow Amazon EKS to complete the following 
tasks:

• ec2:*NetworkInterface and ec2:*PrivateIpAddresses  – Allows the Amazon VPC CNI 
plugin to perform actions such as provisioning Elastic Network Interfaces and IP addresses for 
Pods to provide networking for applications that run in Amazon EKS.

• ec2 read actions – Allows the Amazon VPC CNI plugin to perform actions such as describe 
instances and subnets to see the amount of free IP addresses in your Amazon VPC subnets. The 
VPC CNI can use the free IP addresses in each subnet to pick the subnets with the most free IP 
addresses to use when creating an elastic network interface.

To view the latest version of the JSON policy document, see AmazonEKS_CNI_Policy in the AWS 
Managed Policy Reference Guide.

AWS managed policy: AmazonEKSClusterPolicy

You can attach AmazonEKSClusterPolicy to your IAM entities. Before creating a cluster, you 
must have a cluster IAM role with this policy attached. Kubernetes clusters that are managed 

AWS managed policies 827

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKS_CNI_Policy.html#AmazonEKS_CNI_Policy-json


Amazon EKS User Guide

by Amazon EKS make calls to other AWS services on your behalf. They do this to manage the 
resources that you use with the service.

This policy includes the following permissions that allow Amazon EKS to complete the following 
tasks:

• autoscaling – Read and update the configuration of an Auto Scaling group. These permissions 
aren't used by Amazon EKS but remain in the policy for backwards compatibility.

• ec2 – Work with volumes and network resources that are associated to Amazon EC2 nodes. This 
is required so that the Kubernetes control plane can join instances to a cluster and dynamically 
provision and manage Amazon EBS volumes that are requested by Kubernetes persistent 
volumes.

• elasticloadbalancing – Work with Elastic Load Balancers and add nodes to them as targets. 
This is required so that the Kubernetes control plane can dynamically provision Elastic Load 
Balancers requested by Kubernetes services.

• iam – Create a service-linked role. This is required so that the Kubernetes control plane can 
dynamically provision Elastic Load Balancers that are requested by Kubernetes services.

• kms – Read a key from AWS KMS. This is required for the Kubernetes control plane to support
secrets encryption of Kubernetes secrets stored in etcd.

To view the latest version of the JSON policy document, see AmazonEKSClusterPolicy in the AWS 
Managed Policy Reference Guide.

AWS managed policy: AmazonEKSFargatePodExecutionRolePolicy

You can attach AmazonEKSFargatePodExecutionRolePolicy to your IAM entities. Before you 
can create a Fargate profile, you must create a Fargate Pod execution role and attach this policy to 
it. For more information, see Create a Fargate Pod execution role and AWS Fargate profile.

This policy grants the role the permissions that provide access to other AWS service resources that 
are required to run Amazon EKS Pods on Fargate.

Permissions details

This policy includes the following permissions that allow Amazon EKS to complete the following 
tasks:

• ecr – Allows Pods that are running on Fargate to pull container images that are stored in 
Amazon ECR.

AWS managed policies 828

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSClusterPolicy.html#AmazonEKSClusterPolicy-json


Amazon EKS User Guide

To view the latest version of the JSON policy document, see
AmazonEKSFargatePodExecutionRolePolicy in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonEKSForFargateServiceRolePolicy

You can't attach AmazonEKSForFargateServiceRolePolicy to your IAM entities. This policy 
is attached to a service-linked role that allows Amazon EKS to perform actions on your behalf. For 
more information, see AWSServiceRoleforAmazonEKSForFargate.

This policy grants necessary permissions to Amazon EKS to run Fargate tasks. The policy is only 
used if you have Fargate nodes.

Permissions details

This policy includes the following permissions that allow Amazon EKS to complete the following 
tasks.

• ec2 – Create and delete Elastic Network Interfaces and describe Elastic Network Interfaces 
and resources. This is required so that the Amazon EKS Fargate service can configure the VPC 
networking that's required for Fargate Pods.

To view the latest version of the JSON policy document, see
AmazonEKSForFargateServiceRolePolicy in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonEKSServicePolicy

You can attach AmazonEKSServicePolicy to your IAM entities. Clusters that were created 
before April 16, 2020, required you to create an IAM role and attach this policy to it. Clusters 
that were created on or after April 16, 2020, don't require you to create a role and don't 
require you to assign this policy. When you create a cluster using an IAM principal that has the
iam:CreateServiceLinkedRole permission, the AWSServiceRoleforAmazonEKS service-
linked role is automatically created for you. The service-linked role has the AWS managed policy: 
AmazonEKSServiceRolePolicy attached to it.

This policy allows Amazon EKS to create and manage the necessary resources to operate Amazon 
EKS clusters.

Permissions details

This policy includes the following permissions that allow Amazon EKS to complete the following 
tasks.

AWS managed policies 829

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSFargatePodExecutionRolePolicy.html#AmazonEKSFargatePodExecutionRolePolicy-json
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSForFargateServiceRolePolicy.html#AmazonEKSForFargateServiceRolePolicy-json


Amazon EKS User Guide

• eks – Update the Kubernetes version of your cluster after you initiate an update. This permission 
isn't used by Amazon EKS but remains in the policy for backwards compatibility.

• ec2 – Work with Elastic Network Interfaces and other network resources and tags. This is 
required by Amazon EKS to configure networking that facilitates communication between nodes 
and the Kubernetes control plane.

• route53 – Associate a VPC with a hosted zone. This is required by Amazon EKS to enable private 
endpoint networking for your Kubernetes cluster API server.

• logs – Log events. This is required so that Amazon EKS can ship Kubernetes control plane logs 
to CloudWatch.

• iam – Create a service-linked role. This is required so that Amazon EKS can create the
AWSServiceRoleForAmazonEKS service-linked role on your behalf.

To view the latest version of the JSON policy document, see AmazonEKSServicePolicy in the AWS 
Managed Policy Reference Guide.

AWS managed policy: AmazonEKSServiceRolePolicy

You can't attach AmazonEKSServiceRolePolicy to your IAM entities. This policy is attached 
to a service-linked role that allows Amazon EKS to perform actions on your behalf. For more 
information, see Service-linked role permissions for Amazon EKS. When you create a cluster 
using an IAM principal that has the iam:CreateServiceLinkedRole permission, the
AWSServiceRoleforAmazonEKS service-linked role is automatically created for you and this policy is 
attached to it.

This policy allows the service-linked role to call AWS services on your behalf.

Permissions details

This policy includes the following permissions that allow Amazon EKS to complete the following 
tasks.

• ec2 – Create and describe Elastic Network Interfaces and Amazon EC2 instances, the cluster 
security group, and VPC that are required to create a cluster.

• iam – List all of the managed policies that attached to an IAM role. This is required so that 
Amazon EKS can list and validate all managed policies and permissions required to create a 
cluster.

AWS managed policies 830

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSServicePolicy.html#AmazonEKSServicePolicy-json


Amazon EKS User Guide

• Associate a VPC with a hosted zone – This is required by Amazon EKS to enable private 
endpoint networking for your Kubernetes cluster API server.

• Log event – This is required so that Amazon EKS can ship Kubernetes control plane logs to 
CloudWatch.

To view the latest version of the JSON policy document, see AmazonEKSServiceRolePolicy in the 
AWS Managed Policy Reference Guide.

AWS managed policy: AmazonEKSVPCResourceController

You can attach the AmazonEKSVPCResourceController policy to your IAM identities. If you're 
using security groups for Pods, you must attach this policy to your Amazon EKS cluster IAM role to 
perform actions on your behalf.

This policy grants the cluster role permissions to manage Elastic Network Interfaces and IP 
addresses for nodes.

Permissions details

This policy includes the following permissions that allow Amazon EKS to complete the following 
tasks:

• ec2 – Manage Elastic Network Interfaces and IP addresses to support Pod security groups and 
Windows nodes.

To view the latest version of the JSON policy document, see AmazonEKSVPCResourceController in 
the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonEKSWorkerNodePolicy

You can attach the AmazonEKSWorkerNodePolicy to your IAM entities. You must attach this 
policy to a node IAM role that you specify when you create Amazon EC2 nodes that allow Amazon 
EKS to perform actions on your behalf. If you create a node group using eksctl, it creates the 
node IAM role and attaches this policy to the role automatically.

This policy grants Amazon EKS Amazon EC2 nodes permissions to connect to Amazon EKS clusters.

Permissions details

AWS managed policies 831

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSServiceRolePolicy.html#AmazonEKSServiceRolePolicy-json
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSVPCResourceController.html#AmazonEKSVPCResourceController-json


Amazon EKS User Guide

This policy includes the following permissions that allow Amazon EKS to complete the following 
tasks:

• ec2 – Read instance volume and network information. This is required so that Kubernetes nodes 
can describe information about Amazon EC2 resources that are required for the node to join the 
Amazon EKS cluster.

• eks – Optionally describe the cluster as part of node bootstrapping.

• eks-auth:AssumeRoleForPodIdentity – Allow retrieving credentials for EKS workloads on 
the node. This is required for EKS Pod Identity to function properly.

To view the latest version of the JSON policy document, see AmazonEKSWorkerNodePolicy in the 
AWS Managed Policy Reference Guide.

AWS managed policy: AWSServiceRoleForAmazonEKSNodegroup

You can't attach AWSServiceRoleForAmazonEKSNodegroup to your IAM entities. This policy is 
attached to a service-linked role that allows Amazon EKS to perform actions on your behalf. For 
more information, see Service-linked role permissions for Amazon EKS.

This policy grants the AWSServiceRoleForAmazonEKSNodegroup role permissions that allow it 
to create and manage Amazon EC2 node groups in your account.

Permissions details

This policy includes the following permissions that allow Amazon EKS to complete the following 
tasks:

• ec2 – Work with security groups, tags, and launch templates. This is required for Amazon 
EKS managed node groups to enable remote access configuration. Additionally, Amazon EKS 
managed node groups create a launch template on your behalf. This is to configure the Amazon 
EC2 Auto Scaling group that backs each managed node group.

• iam – Create a service-linked role and pass a role. This is required by Amazon EKS managed node 
groups to manage instance profiles for the role being passed when creating a managed node 
group. This instance profile is used by Amazon EC2 instances launched as part of a managed 
node group. Amazon EKS needs to create service-linked roles for other services such as Amazon 
EC2 Auto Scaling groups. These permissions are used in the creation of a managed node group.

• autoscaling – Work with security Auto Scaling groups. This is required by Amazon EKS 
managed node groups to manage the Amazon EC2 Auto Scaling group that backs each managed 

AWS managed policies 832

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSWorkerNodePolicy.html#AmazonEKSWorkerNodePolicy-json


Amazon EKS User Guide

node group. It's also used to support functionality such as evicting Pods when nodes are 
terminated or recycled during node group updates.

To view the latest version of the JSON policy document, see
AWSServiceRoleForAmazonEKSNodegroup in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonEBSCSIDriverPolicy

The AmazonEBSCSIDriverPolicy policy allows the Amazon EBS Container Storage Interface 
(CSI) driver to create, modify, attach, detach, and delete volumes on your behalf. It also grants the 
EBS CSI driver permissions to create and delete snapshots, and to list your instances, volumes, and 
snapshots.

To view the latest version of the JSON policy document, see AmazonEBSCSIDriverServiceRolePolicy
in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonEFSCSIDriverPolicy

The AmazonEFSCSIDriverPolicy policy allows the Amazon EFS Container Storage Interface 
(CSI) to create and delete access points on your behalf. It also grants the Amazon EFS CSI driver 
permissions to list your access points file systems, mount targets, and Amazon EC2 availability 
zones.

To view the latest version of the JSON policy document, see AmazonEFSCSIDriverServiceRolePolicy
in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonEKSLocalOutpostClusterPolicy

You can attach this policy to IAM entities. Before creating a local cluster, you must attach this 
policy to your cluster role. Kubernetes clusters that are managed by Amazon EKS make calls to 
other AWS services on your behalf. They do this to manage the resources that you use with the 
service.

The AmazonEKSLocalOutpostClusterPolicy includes the following permissions:

• ec2 – Required permissions for Amazon EC2 instances to successfully join the cluster as control 
plane instances.

• ssm – Allows Amazon EC2 Systems Manager connection to the control plane instance, which is 
used by Amazon EKS to communicate and manage the local cluster in your account.

AWS managed policies 833

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSServiceRoleForAmazonEKSNodegroup.html#AWSServiceRoleForAmazonEKSNodegroup-json
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEBSCSIDriverPolicy.html#AmazonEBSCSIDriverPolicy-json
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEFSCSIDriverPolicy.html#AmazonEFSCSIDriverPolicy-json


Amazon EKS User Guide

• logs – Allows instances to push logs to Amazon CloudWatch.

• secretsmanager – Allows instances to get and delete bootstrap data for the control plane 
instances securely from AWS Secrets Manager.

• ecr – Allows Pods and containers that are running on the control plane instances to pull 
container images that are stored in Amazon Elastic Container Registry.

To view the latest version of the JSON policy document, see AmazonEKSLocalOutpostClusterPolicy
in the AWS Managed Policy Reference Guide.

AWS managed policy: AmazonEKSLocalOutpostServiceRolePolicy

You can't attach this policy to your IAM entities. When you create a cluster using an IAM principal 
that has the iam:CreateServiceLinkedRole permission, Amazon EKS automatically creates 
the AWSServiceRoleforAmazonEKSLocalOutpost service-linked role for you and attaches this 
policy to it. This policy allows the service-linked role to call AWS services on your behalf for local 
clusters.

The AmazonEKSLocalOutpostServiceRolePolicy includes the following permissions:

• ec2 – Allows Amazon EKS to work with security, network, and other resources to successfully 
launch and manage control plane instances in your account.

• ssm – Allows Amazon EC2 Systems Manager connection to the control plane instances, which is 
used by Amazon EKS to communicate and manage the local cluster in your account.

• iam – Allows Amazon EKS to manage the instance profile associated with the control plane 
instances.

• secretsmanager – Allows Amazon EKS to put bootstrap data for the control plane instances 
into AWS Secrets Manager so it can be securely referenced during instance bootstrapping.

• outposts – Allows Amazon EKS to get Outpost information from your account to successfully 
launch a local cluster in an Outpost.

To view the latest version of the JSON policy document, see
AmazonEKSLocalOutpostServiceRolePolicy in the AWS Managed Policy Reference Guide.

Amazon EKS updates to AWS managed policies

AWS managed policies 834

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSLocalOutpostClusterPolicy.html#AmazonEKSLocalOutpostClusterPolicy-json
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSLocalOutpostServiceRolePolicy.html#AmazonEKSLocalOutpostServiceRolePolicy-json


Amazon EKS User Guide

View details about updates to AWS managed policies for Amazon EKS since this service began 
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed 
on the Amazon EKS Document history page.

Change Description Date

AmazonEKS_CNI_Policy – 
Update to an existing policy

Amazon EKS added new ec2:Descr 
ibeSubnets  permissions to allow 
the Amazon VPC CNI plugin for 
Kubernetes to see the amount of free 
IP addresses in your Amazon VPC 
subnets.

The VPC CNI can use the free IP 
addresses in each subnet to pick the 
subnets with the most free IP addresses 
to use when creating an elastic network 
interface.

March 4, 2024

AmazonEKSWorkerNod 
ePolicy – Update to an 
existing policy

Amazon EKS added new permissions to 
allow EKS Pod Identities.

The Amazon EKS Pod Identity Agent 
uses the node role.

November 26, 2023

Introduced AmazonEFS 
CSIDriverPolicy.

AWS introduced the AmazonEFS 
CSIDriverPolicy .

July 26, 2023

Added permissions to
AmazonEKSClusterPolicy.

Added ec2:DescribeAvaila 
bilityZones  permission to allow 
Amazon EKS to get the AZ details 
during subnet auto-discovery while 
creating load balancers.

February 7, 2023

Updated policy conditions in
AmazonEBSCSIDriverPolicy.

Removed invalid policy condition 
s with wildcard characters in the
StringLike  key field. Also added a 
new condition  ec2:ResourceTag/

November 17, 2022

AWS managed policies 835



Amazon EKS User Guide

Change Description Date

kubernetes.io/created-for/
pvc/name: "*"  to ec2:Delet 
eVolume , which allows the EBS CSI 
driver to delete volumes created by the 
in-tree plugin.

Added permissions to
AmazonEKSLocalOutp 
ostServiceRolePolicy.

Added ec2:DescribeVPCAtt 
ribute , ec2:GetConsoleOutp 
ut  and ec2:DescribeSecret
to allow better prerequisite validatio 
n and managed lifecycle control. 
Also added ec2:DescribePlacem 
entGroups  and "arn:aws: 
ec2:*:*:placement-group/*"
to ec2:RunInstances  to support 
placement control of the control plane 
Amazon EC2 instances on Outposts.

October 24, 2022

Update Amazon Elastic 
Container Registry permissio 
ns in AmazonEKSLocalOutp 
ostClusterPolicy.

Moved action ecr:GetDownloadUrl 
ForLayer  from all resource sections 
to a scoped section. Added resource
arn:aws:ecr:*:*:repository/ 
eks/* . Removed resource arn:aws:e 
cr:*:*:repository/eks/eks-
certificates-controller-
public . This resource is covered by 
the added arn:aws:ecr:*:*:re 
pository/eks/*  resource.

October 20, 2022

Added permissions to
AmazonEKSLocalOutp 
ostClusterPolicy.

Added the arn:aws:ecr:*:*:re 
pository/kubelet-config-
updater  Amazon Elastic Container 
Registry repository so the cluster 
control plane instances can update 
some kubelet arguments.

August 31, 2022

AWS managed policies 836



Amazon EKS User Guide

Change Description Date

Introduced AmazonEKS 
LocalOutpostClusterPolicy.

AWS introduced the AmazonEKS 
LocalOutpostClusterPolicy .

August 24, 2022

Introduced AmazonEKS 
LocalOutpostServiceRolePoli 
cy.

AWS introduced the AmazonEKS 
LocalOutpostServiceRolePoli 
cy .

August 23, 2022

Introduced AmazonEBS 
CSIDriverPolicy.

AWS introduced the AmazonEBS 
CSIDriverPolicy .

April 4, 2022

Added permissions to
AmazonEKSWorkerNod 
ePolicy.

Added ec2:DescribeInstan 
ceTypes  to enable Amazon EKS-
optimized AMIs that can auto discover 
instance level properties.

March 21, 2022

Added permissions to
AWSServiceRoleForA 
mazonEKSNodegroup.

Added autoscaling:Enable 
MetricsCollection  permission 
to allow Amazon EKS to enable metrics 
collection.

December 13, 2021

Added permissions to
AmazonEKSClusterPolicy.

Added ec2:DescribeAccoun 
tAttributes , ec2:Descr 
ibeAddresses , and ec2:Descr 
ibeInternetGateways  permissio 
ns to allow Amazon EKS to create a 
service-linked role for a Network Load 
Balancer.

June 17, 2021

Amazon EKS started tracking 
changes.

Amazon EKS started tracking changes 
for its AWS managed policies.

June 17, 2021

Troubleshooting IAM

This topic covers some common errors that you may see while using Amazon EKS with IAM and 
how to work around them.

Troubleshooting 837



Amazon EKS User Guide

AccessDeniedException

If you receive an AccessDeniedException when calling an AWS API operation, then the IAM 
principal credentials that you're using don't have the required permissions to make that call.

An error occurred (AccessDeniedException) when calling the DescribeCluster operation:  
User: arn:aws:iam::111122223333:user/user_name is not authorized to perform:  
eks:DescribeCluster on resource: arn:aws:eks:region:111122223333:cluster/my-cluster

In the previous example message, the user does not have permissions to call the Amazon EKS
DescribeCluster API operation. To provide Amazon EKS admin permissions to an IAM principal, 
see Amazon EKS identity-based policy examples.

For more general information about IAM, see Controlling access using policies in the IAM User 
Guide.

Can't see Nodes on the Compute tab or anything on the Resources tab and you 
receive an error in the AWS Management Console

You may see a console error message that says Your current user or role does not have 
access to Kubernetes objects on this EKS cluster. Make sure that the IAM principal
user that you're using the AWS Management Console with has the necessary permissions. For more 
information, see Required permissions.

aws-auth ConfigMap does not grant access to the cluster

The AWS IAM Authenticator doesn't permit a path in the role ARN used in the
ConfigMap. Therefore, before you specify rolearn, remove the path. For example, 
change arn:aws:iam::111122223333:role/team/developers/eks-admin to
arn:aws:iam::111122223333:role/eks-admin.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your 
policies must be updated to allow you to pass a role to Amazon EKS.

Some AWS services allow you to pass an existing role to that service instead of creating a new 
service role or service-linked role. To do this, you must have permissions to pass the role to the 
service.

Troubleshooting 838

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_controlling.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://github.com/kubernetes-sigs/aws-iam-authenticator


Amazon EKS User Guide

The following example error occurs when an IAM user named marymajor tries to use the console 
to perform an action in Amazon EKS. However, the action requires the service to have permissions 
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: 
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided 
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Amazon EKS 
resources

You can create a role that users in other accounts or people outside of your organization can use to 
access your resources. You can specify who is trusted to assume the role. For services that support 
resource-based policies or access control lists (ACLs), you can use those policies to grant people 
access to your resources.

To learn more, consult the following:

• To learn whether Amazon EKS supports these features, see How Amazon EKS works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing 
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally 
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access, 
see How IAM roles differ from resource-based policies in the IAM User Guide.

Troubleshooting 839

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html


Amazon EKS User Guide

Pod containers receive the following error: An error occurred 
(SignatureDoesNotMatch) when calling the GetCallerIdentity 
operation: Credential should be scoped to a valid region

Your containers receive this error if your application is explicitly making requests to the AWS STS 
global endpoint (https://sts.amazonaws) and your Kubernetes service account is configured to 
use a regional endpoint. You can resolve the issue with one of the following options:

• Update your application code to remove explicit calls to the AWS STS global endpoint.

• Update your application code to make explicit calls to regional endpoints such as https://
sts.us-west-2.amazonaws.com. Your application should have redundancy built in to pick 
a different AWS Region in the event of a failure of the service in the AWS Region. For more 
information, see Managing AWS STS in an AWS Region in the IAM User Guide.

• Configure your service accounts to use the global endpoint. All versions earlier than 1.22 used 
the global endpoint by default, but version 1.22 and later clusters use the regional endpoint by 
default. For more information, see Configuring the AWS Security Token Service endpoint for a 
service account.

Compliance validation for Amazon Elastic Kubernetes Service

To learn whether an AWS service is within the scope of specific compliance programs, see AWS 
services in Scope by Compliance Program and choose the compliance program that you are 
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your 
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the 
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural 
considerations and provide steps for deploying baseline environments on AWS that are security 
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper 
describes how companies can use AWS to create HIPAA-eligible applications.

Compliance validation 840

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html


Amazon EKS User Guide

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible 
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your 
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the 
lens of compliance. The guides summarize the best practices for securing AWS services and map 
the guidance to security controls across multiple frameworks (including National Institute of 
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and 
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service 
assesses how well your resource configurations comply with internal practices, industry 
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within 
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your 
compliance against security industry standards and best practices. For a list of supported services 
and controls, see Security Hub controls reference.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify 
how you manage risk and compliance with regulations and industry standards.

Resilience in Amazon EKS

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions 
provide multiple physically separated and isolated Availability Zones, which are connected with 
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can 
design and operate applications and databases that automatically fail over between Availability 
Zones without interruption. Availability Zones are more highly available, fault tolerant, and 
scalable than traditional single or multiple data center infrastructures.

Amazon EKS runs and scales the Kubernetes control plane across multiple AWS Availability Zones 
to ensure high availability. Amazon EKS automatically scales control plane instances based on 
load, detects and replaces unhealthy control plane instances, and automatically patches the 

Resilience 841

https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html


Amazon EKS User Guide

control plane. After you initiate a version update, Amazon EKS updates your control plane for you, 
maintaining high availability of the control plane during the update.

This control plane consists of at least two API server instances and three etcd instances that run 
across three Availability Zones within an AWS Region. Amazon EKS:

• Actively monitors the load on control plane instances and automatically scales them to ensure 
high performance.

• Automatically detects and replaces unhealthy control plane instances, restarting them across the 
Availability Zones within the AWS Region as needed.

• Leverages the architecture of AWS Regions in order to maintain high availability. Because of this, 
Amazon EKS is able to offer an SLA for API server endpoint availability.

For more information about AWS Regions and Availability Zones, see AWS global infrastructure.

Infrastructure security in Amazon EKS

As a managed service, Amazon Elastic Kubernetes Service is protected by AWS global network 
security. For information about AWS security services and how AWS protects infrastructure, see
AWS Cloud Security. To design your AWS environment using the best practices for infrastructure 
security, see Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Amazon EKS through the network. Clients must support 
the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or 
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later 
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is 
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to 
generate temporary security credentials to sign requests.

When you create an Amazon EKS cluster, you specify the VPC subnets for your cluster to use. 
Amazon EKS requires subnets in at least two Availability Zones. We recommend a VPC with public 

Infrastructure security 842

https://aws.amazon.com/eks/sla
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html


Amazon EKS User Guide

and private subnets so that Kubernetes can create public load balancers in the public subnets that 
load balance traffic to Pods running on nodes that are in private subnets.

For more information about VPC considerations, see Amazon EKS VPC and subnet requirements 
and considerations.

If you create your VPC and node groups with the AWS CloudFormation templates provided in the
Getting started with Amazon EKS walkthrough, then your control plane and node security groups 
are configured with our recommended settings.

For more information about security group considerations, see Amazon EKS security group 
requirements and considerations.

When you create a new cluster, Amazon EKS creates an endpoint for the managed Kubernetes API 
server that you use to communicate with your cluster (using Kubernetes management tools such 
as kubectl). By default, this API server endpoint is public to the internet, and access to the API 
server is secured using a combination of AWS Identity and Access Management (IAM) and native 
Kubernetes Role Based Access Control (RBAC).

You can enable private access to the Kubernetes API server so that all communication between 
your nodes and the API server stays within your VPC. You can limit the IP addresses that can access 
your API server from the internet, or completely disable internet access to the API server.

For more information about modifying cluster endpoint access, see Modifying cluster endpoint 
access.

You can implement Kubernetes network policies with the Amazon VPC CNI or third-party tools such 
as Project Calico. For more information about using the Amazon VPC CNI for network policies, see
Configure your cluster for Kubernetes network policies. Project Calico is a third party open source 
project. For more information, see the Project Calico documentation.

Configuration and vulnerability analysis in Amazon EKS

Security is a critical consideration for configuring and maintaining Kubernetes clusters and 
applications. The Center for Internet Security (CIS) Kubernetes Benchmark provides guidance for 
Amazon EKS node security configurations. The benchmark:

• Is applicable to Amazon EC2 nodes (both managed and self-managed) where you are responsible 
for security configurations of Kubernetes components.

Configuration and vulnerability analysis 843

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://docs.tigera.io/calico/latest/about/
https://docs.tigera.io/calico/latest/getting-started/kubernetes/managed-public-cloud/eks/
https://www.cisecurity.org/benchmark/kubernetes/


Amazon EKS User Guide

• Provides a standard, community-approved way to ensure that you have configured your 
Kubernetes cluster and nodes securely when using Amazon EKS.

• Consists of four sections; control plane logging configuration, node security configurations, 
policies, and managed services.

• Supports all of the Kubernetes versions currently available in Amazon EKS and can be run using
kube-bench, a standard open source tool for checking configuration using the CIS benchmark on 
Kubernetes clusters.

To learn more, see Introducing The CIS Amazon EKS Benchmark.

Amazon EKS platform versions represent the capabilities of the cluster control plane, including 
which Kubernetes API server flags are enabled and the current Kubernetes patch version. New 
clusters are deployed with the latest platform version. For details, see Amazon EKS platform 
versions.

You can update an Amazon EKS cluster to newer Kubernetes versions. As new Kubernetes versions 
become available in Amazon EKS, we recommend that you proactively update your clusters to use 
the latest available version. For more information about Kubernetes versions in EKS, see Amazon 
EKS Kubernetes versions.

Track security or privacy events for Amazon Linux 2 at the Amazon Linux Security Center or 
subscribe to the associated RSS feed. Security and privacy events include an overview of the issue 
affected, packages, and instructions for updating your instances to correct the issue.

You can use Amazon Inspector to check for unintended network accessibility of your nodes and for 
vulnerabilities on those Amazon EC2 instances.

Security best practices for Amazon EKS

Amazon EKS security best practices are maintained on Github: https://aws.github.io/aws-eks-best-
practices/security/docs/

Pod security policy

The Kubernetes Pod security policy admission controller validates Pod creation and update 
requests against a set of rules. By default, Amazon EKS clusters ship with a fully permissive security 
policy with no restrictions. For more information, see Pod Security Policies in the Kubernetes 
documentation.

Security best practices 844

https://github.com/aquasecurity/kube-bench
https://aws.amazon.com/blogs/containers/introducing-cis-amazon-eks-benchmark/
https://alas.aws.amazon.com/alas2.html
https://alas.aws.amazon.com/AL2/alas.rss
https://docs.aws.amazon.com/inspector/latest/userguide/inspector_introduction.html
https://aws.github.io/aws-eks-best-practices/security/docs/
https://aws.github.io/aws-eks-best-practices/security/docs/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/


Amazon EKS User Guide

Note

The PodSecurityPolicy (PSP) was deprecated in Kubernetes version 1.21 and removed 
in Kubernetes 1.25. PSPs are being replaced with Pod Security Admission (PSA), a built-
in admission controller that implements the security controls outlined in the Pod Security 
Standards (PSS) . PSA and PSS have both reached beta feature states, and are enabled 
in Amazon EKS by default. To address PSP removal in 1.25, we recommend that you 
implement PSS in Amazon EKS. For more information, see Implementing Pod Security 
Standards in Amazon EKS on the AWS blog.

Amazon EKS default Pod security policy

Amazon EKS clusters with Kubernetes version 1.13 or higher have a default Pod security policy 
named eks.privileged. This policy has no restriction on what kind of Pod can be accepted into 
the system, which is equivalent to running Kubernetes with the PodSecurityPolicy controller 
disabled.

Note

This policy was created to maintain backwards compatibility with clusters that did not 
have the PodSecurityPolicy controller enabled. You can create more restrictive policies 
for your cluster and for individual namespaces and service accounts and then delete the 
default policy to enable the more restrictive policies.

You can view the default policy with the following command.

kubectl get psp eks.privileged

An example output is as follows.

NAME             PRIV   CAPS   SELINUX    RUNASUSER   FSGROUP    SUPGROUP   
 READONLYROOTFS   VOLUMES
eks.privileged   true   *      RunAsAny   RunAsAny    RunAsAny   RunAsAny   false       
      *

For more details, you can describe the policy with the following command.

Amazon EKS default Pod security policy 845

https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://aws.amazon.com/blogs/containers/implementing-pod-security-standards-in-amazon-eks/
https://aws.amazon.com/blogs/containers/implementing-pod-security-standards-in-amazon-eks/


Amazon EKS User Guide

kubectl describe psp eks.privileged

An example output is as follows.

Name:  eks.privileged

Settings: 
  Allow Privileged:                       true 
  Allow Privilege Escalation:             0xc0004ce5f8 
  Default Add Capabilities:               <none> 
  Required Drop Capabilities:             <none> 
  Allowed Capabilities:                   * 
  Allowed Volume Types:                   * 
  Allow Host Network:                     true 
  Allow Host Ports:                       0-65535 
  Allow Host PID:                         true 
  Allow Host IPC:                         true 
  Read Only Root Filesystem:              false 
  SELinux Context Strategy: RunAsAny 
    User:                                 <none> 
    Role:                                 <none> 
    Type:                                 <none> 
    Level:                                <none> 
  Run As User Strategy: RunAsAny 
    Ranges:                               <none> 
  FSGroup Strategy: RunAsAny 
    Ranges:                               <none> 
  Supplemental Groups Strategy: RunAsAny 
    Ranges:                               <none>

You can view the full YAML file for the eks.privileged Pod security policy, its cluster role, and 
cluster role binding in Install or restore the default Pod security policy.

Delete the default Amazon EKS Pod security policy

If you create more restrictive policies for your Pods, then after doing so, you can delete the default 
Amazon EKS eks.privileged Pod security policy to enable your custom policies.

Important

If you are using version 1.7.0 or later of the CNI plugin and you assign a custom 
Pod security policy to the aws-node Kubernetes service account used for the aws-

Delete default policy 846



Amazon EKS User Guide

node Pods deployed by the Daemonset, then the policy must have NET_ADMIN in its
allowedCapabilities section along with hostNetwork: true and privileged: 
true in the policy's spec.

To delete the default Pod security policy

1. Create a file named privileged-podsecuritypolicy.yaml with the contents in the 
example file in Install or restore the default Pod security policy.

2. Delete the YAML with the following command. This deletes the default Pod security policy, the
ClusterRole, and the ClusterRoleBinding associated with it.

kubectl delete -f privileged-podsecuritypolicy.yaml

Install or restore the default Pod security policy

If you are upgrading from an earlier version of Kubernetes, or have modified or deleted the default 
Amazon EKS eks.privileged Pod security policy, you can restore it with the following steps.

To install or restore the default Pod security policy

1. Create a file called privileged-podsecuritypolicy.yaml with the following contents.

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata: 
  name: eks.privileged 
  annotations: 
    kubernetes.io/description: 'privileged allows full unrestricted access to 
      Pod features, as if the PodSecurityPolicy controller was not enabled.' 
    seccomp.security.alpha.kubernetes.io/allowedProfileNames: '*' 
  labels: 
    kubernetes.io/cluster-service: "true" 
    eks.amazonaws.com/component: pod-security-policy
spec: 
  privileged: true 
  allowPrivilegeEscalation: true 
  allowedCapabilities: 
  - '*' 
  volumes: 

Install or restore default policy 847



Amazon EKS User Guide

  - '*' 
  hostNetwork: true 
  hostPorts: 
  - min: 0 
    max: 65535 
  hostIPC: true 
  hostPID: true 
  runAsUser: 
    rule: 'RunAsAny' 
  seLinux: 
    rule: 'RunAsAny' 
  supplementalGroups: 
    rule: 'RunAsAny' 
  fsGroup: 
    rule: 'RunAsAny' 
  readOnlyRootFilesystem: false

---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata: 
  name: eks:podsecuritypolicy:privileged 
  labels: 
    kubernetes.io/cluster-service: "true" 
    eks.amazonaws.com/component: pod-security-policy
rules:
- apiGroups: 
  - policy 
  resourceNames: 
  - eks.privileged 
  resources: 
  - podsecuritypolicies 
  verbs: 
  - use

---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata: 
  name: eks:podsecuritypolicy:authenticated 
  annotations: 
    kubernetes.io/description: 'Allow all authenticated users to create privileged 
 Pods.' 
  labels: 

Install or restore default policy 848



Amazon EKS User Guide

    kubernetes.io/cluster-service: "true" 
    eks.amazonaws.com/component: pod-security-policy
roleRef: 
  apiGroup: rbac.authorization.k8s.io 
  kind: ClusterRole 
  name: eks:podsecuritypolicy:privileged
subjects: 
  - kind: Group 
    apiGroup: rbac.authorization.k8s.io 
    name: system:authenticated

2. Apply the YAML with the following command.

kubectl apply -f privileged-podsecuritypolicy.yaml

Pod security policy (PSP) removal FAQ

PodSecurityPolicy was deprecated in Kubernetes1.21, and has been removed in 
Kubernetes1.25. If you are using PodSecurityPolicy in your cluster, then you must migrate to 
the built-in Kubernetes Pod Security Standards (PSS) or to a policy-as-code solution before 
upgrading your cluster to version 1.25 to avoid interruptions to your workloads. Select any 
frequently asked question to learn more.

What is a PSP?

PodSecurityPolicy is a built-in admission controller that allows a cluster administrator to control 
security-sensitive aspects of Pod specification. If a Pod meets the requirements of its PSP, the Pod 
is admitted to the cluster as usual. If a Pod doesn't meet the PSP requirements, the Pod is rejected 
and can't run.

Is the PSP removal specific to Amazon EKS or is it being removed in upstream 
Kubernetes?

This is an upstream change in the Kubernetes project, and not a change made in Amazon EKS. PSP 
was deprecated in Kubernetes 1.21 and removed in Kubernetes 1.25. The Kubernetes community 
identified serious usability problems with PSP. These included accidentally granting broader 
permissions than intended and difficulty in inspecting which PSPs apply in a given situation. These 
issues couldn't be addressed without making breaking changes. This is the primary reason why the 
Kubernetes community decided to remove PSP.

1.25 Pod security policy removal FAQ 849

https://kubernetes.io/blog/2021/04/06/podsecuritypolicy-deprecation-past-present-and-future/
https://kubernetes.io/docs/concepts/security/pod-security-policy/
https://kubernetes.io/blog/2021/04/06/podsecuritypolicy-deprecation-past-present-and-future/#why-is-podsecuritypolicy-going-away


Amazon EKS User Guide

How can I check if I'm using PSPs in my Amazon EKS clusters?

To check if you're using PSPs in your cluster, you can run the following command:

kubectl get psp

To see the Pods that the PSPs in your cluster are impacting, run the following command. This 
command outputs the Pod name, namespace, and PSPs:

kubectl get pod -A -o jsonpath='{range.items[?(@.metadata.annotations.kubernetes
\.io/psp)]}{.metadata.name}{"\t"}{.metadata.namespace}{"\t"}
{.metadata.annotations.kubernetes\.io/psp}{"\n"}'

If I'm using PSPs in my Amazon EKS cluster, what can I do?

Before upgrading your cluster to 1.25, you must migrate your PSPs to either one of these 
alternatives:

• Kubernetes PSS.

• Policy-as-code solutions from the Kubernetes environment.

In response to the PSP deprecation and the ongoing need to control Pod security from the start, 
the Kubernetes community created a built-in solution with (PSS) and Pod Security Admission (PSA). 
The PSA webhook implements the controls that are defined in the PSS.

You can review best practices for migrating PSPs to the built-in PSS in the EKS Best Practices 
Guide. We also recommend reviewing our blog on Implementing Pod Security Standards in 
Amazon EKS. Additional references include Migrate from PodSecurityPolicy to the Built-In 
PodSecurity Admission Controller and Mapping PodSecurityPolicies to Pod Security Standards.

Policy-as-code solutions provide guardrails to guide cluster users and prevents unwanted behaviors 
through prescribed automated controls. Policy-as-code solutions typically use Kubernetes Dynamic 
Admission Controllers to intercept the Kubernetes API server request flow using a webhook call. 
Policy-as-code solutions mutate and validate request payloads based on policies written and stored 
as code.

1.25 Pod security policy removal FAQ 850

https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://aws.github.io/aws-eks-best-practices/security/docs/pods/#pod-security-standards-pss-and-pod-security-admission-psa
https://aws.github.io/aws-eks-best-practices/security/docs/pods/#pod-security-standards-pss-and-pod-security-admission-psa
https://aws.amazon.com/blogs/containers/implementing-pod-security-standards-in-amazon-eks/
https://aws.amazon.com/blogs/containers/implementing-pod-security-standards-in-amazon-eks/
https://kubernetes.io/docs/tasks/configure-pod-container/migrate-from-psp/
https://kubernetes.io/docs/tasks/configure-pod-container/migrate-from-psp/
https://kubernetes.io/docs/reference/access-authn-authz/psp-to-pod-security-standards/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/


Amazon EKS User Guide

There are several open source policy-as-code solutions available for Kubernetes. To review best 
practices for migrating PSPs to a policy-as-code solution, see the Policy-as-code  section of the Pod 
Security page on GitHub.

I see a PSP called eks.privileged in my cluster. What is it and what can I do 
about it?

Amazon EKS clusters with Kubernetes version 1.13 or higher have a default PSP that's named
eks.privileged. This policy is created in 1.24 and earlier clusters. It isn't used in 1.25 and later 
clusters. Amazon EKS automatically migrates this PSP to a PSS-based enforcement. No action is 
needed on your part.

Will Amazon EKS make any changes to PSPs present in my existing cluster when I 
update my cluster to version 1.25?

No. Besides eks.privileged, which is a PSP created by Amazon EKS, no changes are made to 
other PSPs in your cluster when you upgrade to 1.25.

Will Amazon EKS prevent a cluster update to version 1.25 if I haven't migrated 
off of PSP?

No. Amazon EKS won't prevent a cluster update to version 1.25 if you didn't migrate off of PSP 
yet.

What if I forget to migrate my PSPs to PSS/PSA or to a policy-as-code solution 
before I update my cluster to version 1.25? Can I migrate after updating my 
cluster?

When a cluster that contains a PSP is upgraded to Kubernetes version 1.25, the API server doesn't 
recognize the PSP resource in 1.25. This might result in Pods getting incorrect security scopes. For 
an exhaustive list of implications, see Migrate from PodSecurityPolicy to the Built-In PodSecurity 
Admission Controller.

How does this change impact pod security for Windows workloads?

We don't expect any specific impact to Windows workloads. PodSecurityContext has a field called
windowsOptions in the PodSpec v1 API for Windows Pods. This uses PSS in Kubernetes 1.25. 
For more information and best practices about enforcing PSS for Windows workloads, see the EKS 
Best Practices Guide and Kubernetes documentation.

1.25 Pod security policy removal FAQ 851

https://aws.github.io/aws-eks-best-practices/security/docs/pods/#policy-as-code-pac
https://kubernetes.io/docs/tasks/configure-pod-container/migrate-from-psp/
https://kubernetes.io/docs/tasks/configure-pod-container/migrate-from-psp/
https://aws.github.io/aws-eks-best-practices/windows/docs/security/#pod-security-contexts
https://aws.github.io/aws-eks-best-practices/windows/docs/security/#pod-security-contexts
https://kubernetes.io/docs/tasks/configure-pod-container/configure-runasusername/


Amazon EKS User Guide

Using AWS Secrets Manager secrets with Kubernetes

To show secrets from Secrets Manager and parameters from Parameter Store as files mounted 
in Amazon EKS Pods, you can use the AWS Secrets and Configuration Provider (ASCP) for the
Kubernetes Secrets Store CSI Driver.

With the ASCP, you can store and manage your secrets in Secrets Manager and then retrieve them 
through your workloads running on Amazon EKS. You can use IAM roles and policies to limit access 
to your secrets to specific Kubernetes Pods in a cluster. The ASCP retrieves the Pod identity and 
exchanges the identity for an IAM role. ASCP assumes the IAM role of the Pod, and then it can 
retrieve secrets from Secrets Manager that are authorized for that role.

If you use Secrets Manager automatic rotation for your secrets, you can also use the Secrets Store 
CSI Driver rotation reconciler feature to ensure you are retrieving the latest secret from Secrets 
Manager.

For more information, see Using Secrets Manager secrets in Amazon EKS in the AWS Secrets 
Manager User Guide.

Amazon EKS Connector considerations

The Amazon EKS Connector is an open source component that runs on your Kubernetes cluster. 
This cluster can be located outside of the AWS environment. This creates additional considerations 
for security responsibilities. This configuration can be illustrated by the following diagram. Orange 
represents AWS responsibilities, and blue represents customer responsibilities:

Managing Kubernetes secrets 852

https://secrets-store-csi-driver.sigs.k8s.io/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/integrating_csi_driver.html


Amazon EKS User Guide

This topic describes the differences in the responsibility model if the connected cluster is outside of 
AWS.

AWS responsibilities

• Maintaining, building, and delivering Amazon EKS Connector, which is an open source 
component that runs on a customer's Kubernetes cluster and communicates with AWS.

• Maintaining transport and application layer communication security between the connected 
Kubernetes cluster and AWS services.

Customer responsibilities

• Kubernetes cluster specific security, specifically along the following lines:

• Kubernetes secrets must be properly encrypted and protected.

• Lock down access to the eks-connector namespace.

• Configuring role-based access control (RBAC) permissions to manage IAM principal access from 
AWS. For instructions, see Granting access to an IAM principal to view Kubernetes resources on a 
cluster.

• Installing and upgrading Amazon EKS Connector.

• Maintaining the hardware, software, and infrastructure that supports the connected Kubernetes 
cluster.

• Securing their AWS accounts (for example, through safeguarding your root user credentials).

AWS responsibilities 853

https://github.com/aws/amazon-eks-connector
https://github.com/aws/amazon-eks-connector
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#lock-away-credentials


Amazon EKS User Guide

View Kubernetes resources

You can view the Kubernetes resources deployed to your cluster with the AWS Management 
Console. You can't view Kubernetes resources with the AWS CLI or eksctl. To view Kubernetes 
resources using a command-line tool, use kubectl.

Prerequisite

To view the Resources tab and Nodes section on the Compute tab in the AWS Management 
Console, the IAM principal that you're using must have specific IAM and Kubernetes permissions. 
For more information, see Required permissions.

To view Kubernetes resources with the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. In the Clusters list, select the cluster that contains the Kubernetes resources that you want to 
view.

3. Select the Resources tab.

4. Select a Resource type group that you want to view resources for, such as Workloads. You see 
a list of resource types in that group.

5. Select a resource type, such as Deployments, in the Workloads group. You see a description 
of the resource type, a link to the Kubernetes documentation for more information about the 
resource type, and a list of resources of that type that are deployed on your cluster. If the list is 
empty, then there are no resources of that type deployed to your cluster.

6. Select a resource to view more information about it. Try the following examples:

• Select the Workloads group, select the Deployments resource type, and then select the
coredns resource. When you select a resource, you are in Structured view, by default. For 
some resource types, you see a Pods section in Structured view. This section lists the Pods 
managed by the workload. You can select any Pod listed to view information about the Pod. 
Not all resource types display information in Structured View. If you select Raw view in the 
top right corner of the page for the resource, you see the complete JSON response from the 
Kubernetes API for the resource.

• Select the Cluster group and then select the Nodes resource type. You see a list of all nodes 
in your cluster. The nodes can be any Amazon EKS node type. This is the same list that you 
see in the Nodes section when you select the Compute tab for your cluster. Select a node 

854

https://eksctl.io/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

resource from the list. In Structured view, you also see a Pods section. This section shows 
you all Pods running on the node.

Required permissions

To view the Resources tab and Nodes section on the Compute tab in the AWS Management 
Console, the IAM principal that you're using must have specific minimum IAM and Kubernetes 
permissions. Complete the following steps to assign the required permissions to your IAM 
principals.

1. Make sure that the eks:AccessKubernetesApi, and other necessary IAM permissions 
to view Kubernetes resources, are assigned to the IAM principal that you're using. For more 
information about how to edit permissions for an IAM principal, see Controlling access for 
principals in the IAM User Guide. For more information about how to edit permissions for a 
role, see Modifying a role permissions policy (console) in the IAM User Guide.

The following example policy includes the necessary permissions for a principal to view 
Kubernetes resources for all clusters in your account. Replace 111122223333 with your AWS 
account ID.

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "eks:ListFargateProfiles", 
                "eks:DescribeNodegroup", 
                "eks:ListNodegroups", 
                "eks:ListUpdates", 
                "eks:AccessKubernetesApi", 
                "eks:ListAddons", 
                "eks:DescribeCluster", 
                "eks:DescribeAddonVersions", 
                "eks:ListClusters", 
                "eks:ListIdentityProviderConfigs", 
                "iam:ListRoles" 
            ], 
            "Resource": "*" 
        }, 

Required permissions 855

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_controlling.html#access_controlling-principals
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_controlling.html#access_controlling-principals
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy


Amazon EKS User Guide

        { 
            "Effect": "Allow", 
            "Action": "ssm:GetParameter", 
            "Resource": "arn:aws:ssm:*:111122223333:parameter/*" 
        } 
    ]
}   

To view nodes in connected clusters, the Amazon EKS connector IAM role should be able to 
impersonate the principal in the cluster. This allows the Amazon EKS Connector to map the 
principal to a Kubernetes user.

2. Create a Kubernetes rolebinding or clusterrolebinding that is bound to a Kubernetes
role or clusterrole that has the necessary permissions to view the Kubernetes resources. 
To learn more about Kubernetes roles and role bindings, see Using RBAC Authorization in the 
Kubernetes documentation. You can apply one of the following manifests to your cluster that 
create a role and rolebinding or a clusterrole and clusterrolebinding with the 
necessary Kubernetes permissions:

View Kubernetes resources in all namespaces

The group name in the file is eks-console-dashboard-full-access-group. Apply 
the manifest to your cluster with the following command:

kubectl apply -f https://s3.us-west-2.amazonaws.com/amazon-eks/docs/eks-console-
full-access.yaml

View Kubernetes resources in a specific namespace

The namespace in this file is default. The group name in the file is eks-console-
dashboard-restricted-access-group. Apply the manifest to your cluster with the 
following command:

kubectl apply -f https://s3.us-west-2.amazonaws.com/amazon-eks/docs/eks-console-
restricted-access.yaml

If you need to change the Kubernetes group name, namespace, permissions, or any other 
configuration in the file, then download the file and edit it before applying it to your cluster:

Required permissions 856

https://kubernetes.io/docs/reference/access-authn-authz/rbac/


Amazon EKS User Guide

1. Download the file with one of the following commands:

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/docs/eks-console-full-
access.yaml

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/docs/eks-console-
restricted-access.yaml

2. Edit the file as necessary.

3. Apply the manifest to your cluster with one of the following commands:

kubectl apply -f eks-console-full-access.yaml

kubectl apply -f eks-console-restricted-access.yaml

3. Map the IAM principal to the Kubernetes user or group in the aws-auth ConfigMap. You can 
use a tool such as eksctl to update the ConfigMap or you can update it manually by editing 
it.

Important

We recommend using eksctl, or another tool, to edit the ConfigMap. For 
information about other tools you can use, see Use tools to make changes to the aws-
authConfigMap in the Amazon EKS best practices guides. An improperly formatted
aws-auth ConfigMap can cause you to lose access to your cluster.

eksctl

Prerequisite

Version 0.172.0 or later of the eksctl command line tool installed on your device 
or AWS CloudShell. To install or update eksctl, see Installation in the eksctl
documentation.

1. View the current mappings in the ConfigMap. Replace my-cluster with the name of 
your cluster. Replace region-code with the AWS Region that your cluster is in.

Required permissions 857

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#use-tools-to-make-changes-to-the-aws-auth-configmap
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#use-tools-to-make-changes-to-the-aws-auth-configmap
https://eksctl.io/installation


Amazon EKS User Guide

eksctl get iamidentitymapping --cluster my-cluster --region=region-code

An example output is as follows.

ARN                                                                            
                  USERNAME                                GROUPS               
            ACCOUNT
arn:aws:iam::111122223333:role/eksctl-my-cluster-my-nodegroup-
NodeInstanceRole-1XLS7754U3ZPA    system:node:{{EC2PrivateDNSName}}       
 system:bootstrappers,system:nodes

2. Add a mapping for a role. This example assume that you attached the IAM permissions 
in the first step to a role named my-console-viewer-role. Replace 111122223333
with your account ID.

eksctl create iamidentitymapping \ 
    --cluster my-cluster \ 
    --region=region-code \ 
    --arn arn:aws:iam::111122223333:role/my-console-viewer-role \ 
    --group eks-console-dashboard-full-access-group \ 
    --no-duplicate-arns

Important

The role ARN can't include a path such as role/my-team/
developers/my-role. The format of the ARN must be
arn:aws:iam::111122223333:role/my-role. In this example, my-team/
developers/ needs to be removed.

An example output is as follows.

[...]
2022-05-09 14:51:20 [#]  adding identity "arn:aws:iam::111122223333:role/my-
console-viewer-role" to auth ConfigMap

Required permissions 858



Amazon EKS User Guide

3. Add a mapping for a user. IAM best practices recommend that you grant permissions to 
roles instead of users. This example assume that you attached the IAM permissions in the 
first step to a user named my-user. Replace 111122223333 with your account ID.

eksctl create iamidentitymapping \ 
    --cluster my-cluster \ 
    --region=region-code \ 
    --arn arn:aws:iam::111122223333:user/my-user \ 
    --group eks-console-dashboard-restricted-access-group \ 
    --no-duplicate-arns

An example output is as follows.

[...]
2022-05-09 14:53:48 [#]  adding identity "arn:aws:iam::111122223333:user/my-
user" to auth ConfigMap

4. View the mappings in the ConfigMap again.

eksctl get iamidentitymapping --cluster my-cluster --region=region-code

An example output is as follows.

ARN                                                                            
                  USERNAME                                GROUPS               
                    ACCOUNT
arn:aws:iam::111122223333:role/eksctl-my-cluster-my-nodegroup-
NodeInstanceRole-1XLS7754U3ZPA    system:node:{{EC2PrivateDNSName}}       
 system:bootstrappers,system:nodes
arn:aws:iam::111122223333:role/my-console-viewer-role                     
                                                              eks-console-
dashboard-full-access-group
arn:aws:iam::111122223333:user/my-user                                    
                                                              eks-console-
dashboard-restricted-access-group

Required permissions 859

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html


Amazon EKS User Guide

Edit ConfigMap manually

For more information about adding users or roles to the aws-auth ConfigMap, see Add 
IAM principals to your Amazon EKS cluster.

1. Open the aws-auth ConfigMap for editing.

kubectl edit -n kube-system configmap/aws-auth

2. Add the mappings to the aws-auth ConfigMap, but don't replace any of the existing 
mappings. The following example adds mappings between IAM principals with 
permissions added in the first step and the Kubernetes groups created in the previous 
step:

• The my-console-viewer-role role and the eks-console-dashboard-full-
access-group.

• The my-user user and the eks-console-dashboard-restricted-access-
group.

These examples assume that you attached the IAM permissions in the first step to 
a role named my-console-viewer-role and a user named my-user. Replace
111122223333 with your AWS account ID.

apiVersion: v1
data:
mapRoles: | 
  - groups: 
    - eks-console-dashboard-full-access-group
    rolearn: arn:aws:iam::111122223333:role/my-console-viewer-role
    username: my-console-viewer-role        
mapUsers: | 
  - groups: 
    - eks-console-dashboard-restricted-access-group
    userarn: arn:aws:iam::111122223333:user/my-user
    username: my-user

Required permissions 860

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html


Amazon EKS User Guide

Important

The role ARN can't include a path such as role/my-team/developers/
my-console-viewer-role. The format of the ARN must be
arn:aws:iam::111122223333:role/my-console-viewer-role. In this 
example, my-team/developers/ needs to be removed.

3. Save the file and exit your text editor.

Required permissions 861



Amazon EKS User Guide

Observability in Amazon EKS

You can observe your data in Amazon EKS using many available monitoring or logging tools. Your 
Amazon EKS log data can be streamed to AWS services or to partner tools for data analysis. There 
are many services available in the AWS Management Console that provide data for troubleshooting 
your Amazon EKS issues.

After selecting Clusters in the left navigation pane of the Amazon EKS console, you can view 
cluster health and details by selecting your cluster's name. To view details about any existing 
Kubernetes resources that are deployed to your cluster, see View Kubernetes resources.

Monitoring is an important part of maintaining the reliability, availability, and performance of 
Amazon EKS and your AWS solutions. We recommend that you collect monitoring data from all of 
the parts of your AWS solution. That way, you can more easily debug a multi-point failure if one 
occurs. Before you start monitoring Amazon EKS, make sure that your monitoring plan addresses 
the following questions.

• What are your goals? Do you need real-time notifications if your clusters scale dramatically?

• What resources need to be observed?

• How frequently do you need to observe these resources? Does your company want to respond 
quickly to risks?

• What tools do you intend to use? If you already run AWS Fargate as part of your launch, then you 
can use the built-in log router.

• Who you do intend to perform the monitoring tasks?

• Whom do you want notifications to be sent to when something goes wrong?

Logging and monitoring on Amazon EKS

Amazon EKS provides built-in tools for logging and monitoring. Control plane logging records 
all API calls to your clusters, audit information capturing what users performed what actions to 
your clusters, and role-based information. For more information, see Logging and monitoring on 
Amazon EKS in the AWS Prescriptive Guidance.

Amazon EKS control plane logging provides audit and diagnostic logs directly from the Amazon 
EKS control plane to CloudWatch Logs in your account. These logs make it easy for you to secure 

Logging and monitoring 862

https://docs.aws.amazon.com/prescriptive-guidance/latest/implementing-logging-monitoring-cloudwatch/amazon-eks-logging-monitoring.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/implementing-logging-monitoring-cloudwatch/amazon-eks-logging-monitoring.html


Amazon EKS User Guide

and run your clusters. You can select the exact log types you need, and logs are sent as log streams 
to a group for each Amazon EKS cluster in CloudWatch. For more information, see Amazon EKS 
control plane logging.

Note

When you check the Amazon EKS authenticator logs in Amazon CloudWatch, the entries 
are displayed that contain text similar to the following example text.

level=info msg="mapping IAM role" groups="[]" 
 role="arn:aws:iam::111122223333:role/XXXXXXXXXXXXXXXXXX-
NodeManagerRole-XXXXXXXX" username="eks:node-manager"

Entries that contain this text are expected. The username is an Amazon EKS internal 
service role that performs specific operations for managed node groups and Fargate.
For low-level, customizable logging, then Kubernetes logging is available.

Amazon EKS is integrated with AWS CloudTrail, a service that provides a record of actions taken by 
a user, role, or an AWS service in Amazon EKS. CloudTrail captures all API calls for Amazon EKS as 
events. The calls captured include calls from the Amazon EKS console and code calls to the Amazon 
EKS API operations. For more information, see Logging Amazon EKS API calls with AWS CloudTrail.

The Kubernetes API server exposes a number of metrics that are useful for monitoring and analysis. 
For more information, see Prometheus metrics.

To configure Fluent Bit for custom Amazon CloudWatch logs, see Setting up Fluent Bit in the 
Amazon CloudWatch User Guide.

Amazon EKS logging and monitoring tools

Amazon Web Services provides various tools that you can use to monitor Amazon EKS. You 
can configure some tools to set up automatic monitoring, but some require manual calls. We 
recommend that you automate monitoring tasks as much as your environment and existing toolset 
allows.

Amazon EKS logging and monitoring tools 863

https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-logs-FluentBit.html#Container-Insights-FluentBit-setup


Amazon EKS User Guide

Logging Tools

Areas Tool Description Setup

Applications Amazon 
CloudWatc 
h Container 
Insights

It collects, 
aggregates, 
and summarize 
s metrics and 
logs from your 
containerized 
applications and 
microservices.

Setup procedure

Control plane AWS CloudTrail It logs API calls 
by a user, role, 
or service.

Setup procedure

Multiple areas for AWS Fargate 
instances

AWS Fargate log 
router

For AWS Fargate 
instances, it 
streams logs to 
AWS services or 
partner tools. 
Uses AWS for 
Fluent Bit. Logs 
can be streamed 
to other AWS 
services or 
partner tools.

Setup procedure

Monitoring Tools

Areas Tool Description Setup

Applications CloudWatc 
h Container 
Insights

CloudWatc 
h Container 
Insights collects, 
aggregates, 
and summarize 

Setup procedure

Amazon EKS logging and monitoring tools 864

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Container-Insights-setup-EKS-quickstart.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://github.com/aws/aws-for-fluent-bit
https://github.com/aws/aws-for-fluent-bit
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/deploy-container-insights-EKS.html


Amazon EKS User Guide

Areas Tool Description Setup

s metrics and 
logs from your 
containerized 
applications and 
microservices.

Applications AWS Distro for 
OpenTelemetry 
(ADOT)

It collects and 
sends correlate 
d metrics, 
trace data, and 
metadata to 
AWS monitorin 
g services or 
partners. It 
can be set 
up through 
CloudWatc 
h Container 
Insights.

Setup procedure

Applications Amazon 
DevOps Guru

It detects node-
level operation 
al performance 
and availability.

Setup procedure

Amazon EKS logging and monitoring tools 865

https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/introduction
https://aws.amazon.com/about-aws/whats-new/2021/11/amazon-devops-guru-coverage-amazon-eks-metrics-cluster/
https://aws.amazon.com/about-aws/whats-new/2021/11/amazon-devops-guru-coverage-amazon-eks-metrics-cluster/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/deploy-container-insights-EKS.html


Amazon EKS User Guide

Areas Tool Description Setup

Applications AWS X-Ray It receives trace 
data about your 
application. 
This trace data 
includes ingoing 
and outgoing 
requests and 
metadata about 
the requests. For 
Amazon EKS, 
the implement 
ation requires 
the OpenTelem 
etry add-on.

Setup procedure

Applications Amazon 
CloudWatch 
Observability 
Operator

The Amazon 
CloudWatc 
h Observabi 
lity Operator 
collects metrics, 
logs, and trace 
data. It sends 
them to Amazon 
CloudWatch and 
AWS X-Ray.

Setup procedure

Control plane Prometheus CloudWatch 
Logs ingestion, 
archive storage, 
and data 
scanning rates 
apply to enabled 
control plane 
logs.

Setup procedure

Amazon EKS logging and monitoring tools 866

https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Observability-EKS-addon.html
https://prometheus.io/


Amazon EKS User Guide

Prometheus metrics

Important

Amazon Managed Service for Prometheus isn't available in AWS GovCloud (US-East) and 
AWS GovCloud (US-West).

Prometheus is a monitoring and time series database that scrapes endpoints. It provides the 
ability to query, aggregate, and store collected data. You can also use it for alerting and alert 
aggregation. This topic explains how to set up Prometheus as either a managed or open source 
option. Monitoring Amazon EKS control plane metrics is a common use case.

Amazon Managed Service for Prometheus is a Prometheus-compatible monitoring and alerting 
service that makes it easy to monitor containerized applications and infrastructure at scale. It is 
a fully-managed service that automatically scales the ingestion, storage, querying, and alerting 
of your metrics. It also integrates with AWS security services to enable fast and secure access to 
your data. You can use the open-source PromQL query language to query your metrics and alert on 
them.

For more information about how to use the Prometheus metrics after you turn them on, see the
Amazon Managed Service for Prometheus User Guide.

Turn on Prometheus metrics when creating a cluster

Important

Amazon Managed Service for Prometheus resources are outside of the cluster lifecycle and 
need to be maintained independent of the cluster. When you delete your cluster, make sure 
to also delete any applicable scrapers to stop applicable costs. For more information, see
Find and delete scrapers in the Amazon Managed Service for Prometheus User Guide.

When you create a new cluster, you can turn on the option to send metrics to Prometheus. In the 
AWS Management Console, this option is in the Configure observability step of creating a new 
cluster. For more information, see Creating an Amazon EKS cluster.

Prometheus metrics 867

https://prometheus.io/
https://docs.aws.amazon.com/prometheus/latest/userguide/what-is-Amazon-Managed-Service-Prometheus.html
https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-collector-how-to.html#AMP-collector-list-delete


Amazon EKS User Guide

Prometheus discovers and collects metrics from your cluster through a pull-based model called 
scraping. Scrapers are set up to gather data from your cluster infrastructure and containerized 
applications.

When you turn on the option to send Prometheus metrics, Amazon Managed Service for 
Prometheus provides a fully managed agentless scraper. Use the following Advanced 
configuration options to customize the default scraper as needed.

Scraper alias

(Optional) Enter a unique alias for the scraper.

Destination

Choose an Amazon Managed Service for Prometheus workspace. A workspace is a logical 
space dedicated to the storage and querying of Prometheus metrics. With this workspace, 
you will be able to view Prometheus metrics across the accounts that have access to it. The
Create new workspace option tells Amazon EKS to create a workspace on your behalf using 
the Workspace alias you provide. With the Select existing workspace option, you can select 
an existing workspace from a dropdown list. For more information about workspaces, see
Managing workspaces in the Amazon Managed Service for Prometheus User Guide.

Service access

This section summarizes the permissions you grant when sending Prometheus metrics:

• Allow Amazon Managed Service for Prometheus to describe the scraped Amazon EKS cluster

• Allow remote writing to the Amazon Managed Prometheus workspace

If the AmazonManagedScraperRole already exists, the scraper uses it. Choose 
the AmazonManagedScraperRole link to see the Permission details. If the
AmazonManagedScraperRole doesn’t exist already, choose the View permission details link 
to see the specific permissions you are granting by sending Prometheus metrics.

Subnets

View the subnets that the scraper will inherit. If you need to change them, go back to the create 
cluster Specify networking step.

Security groups

View the security groups that the scraper will inherit. If you need to change them, go back to 
the create cluster Specify networking step.

Turn on Prometheus metrics when creating a cluster 868

https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-manage-ingest-query.html


Amazon EKS User Guide

Scraper configuration

Modify the scraper configuration in YAML format as needed. To do so, use the form or upload 
a replacement YAML file. For more information, see Scraper configuration in the Amazon 
Managed Service for Prometheus User Guide.

Amazon Managed Service for Prometheus refers to the agentless scraper that is created alongside 
the cluster as an AWS managed collector. For more information about AWS managed collectors, 
see AWS managed collectors in the Amazon Managed Service for Prometheus User Guide.

Important

You must set up your aws-auth ConfigMap to give the scraper in-cluster permissions. 
For more information, see Configuring your Amazon EKS cluster in the Amazon Managed 
Service for Prometheus User Guide.

Viewing Prometheus scraper details

After creating a cluster with the Prometheus metrics option turned on, you can view your 
Prometheus scraper details. When viewing your cluster in the AWS Management Console, choose 
the Observability  tab. A table shows a list of scrapers for the cluster, including information such 
as the scraper ID, alias, status, and creation date.

To see more details about the scraper, choose a scraper ID link. For example, you can view 
the scraper configuration, Amazon Resource Name (ARN), remote write URL, and networking 
information. You can use the scraper ID as input to Amazon Managed Service for Prometheus API 
operations like DescribeScraper and DeleteScraper. You can also use the API to create more 
scrapers.

For more information on using the Prometheus API, see the Amazon Managed Service for 
Prometheus API Reference.

Deploying Prometheus using Helm

Alternatively, you can deploy Prometheus into your cluster with Helm V3. If you already have 
Helm installed, you can check your version with the helm version command. Helm is a package 
manager for Kubernetes clusters. For more information about Helm and how to install it, see Using 
Helm with Amazon EKS.

Viewing Prometheus scraper details 869

https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-collector-how-to.html#AMP-collector-configuration
https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-collector.html
https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-collector-how-to.html#AMP-collector-eks-setup
https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-APIReference.html
https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-APIReference.html


Amazon EKS User Guide

After you configure Helm for your Amazon EKS cluster, you can use it to deploy Prometheus with 
the following steps.

To deploy Prometheus using Helm

1. Create a Prometheus namespace.

kubectl create namespace prometheus

2. Add the prometheus-community chart repository.

helm repo add prometheus-community https://prometheus-community.github.io/helm-
charts

3. Deploy Prometheus.

helm upgrade -i prometheus prometheus-community/prometheus \ 
    --namespace prometheus \ 
    --set 
 alertmanager.persistentVolume.storageClass="gp2",server.persistentVolume.storageClass="gp2"

Note

If you get the error Error: failed to download "stable/
prometheus" (hint: running `helm repo update` may help) when 
executing this command, run helm repo update prometheus-community, and 
then try running the Step 2 command again.
If you get the error Error: rendered manifests contain a resource that 
already exists, run helm uninstall your-release-name -n namespace, 
then try running the Step 3 command again.

4. Verify that all of the Pods in the prometheus namespace are in the READY state.

kubectl get pods -n prometheus

An example output is as follows.

NAME                                             READY   STATUS    RESTARTS   AGE
prometheus-alertmanager-59b4c8c744-r7bgp         1/2     Running   0          48s

Deploying Prometheus using Helm 870



Amazon EKS User Guide

prometheus-kube-state-metrics-7cfd87cf99-jkz2f   1/1     Running   0          48s
prometheus-node-exporter-jcjqz                   1/1     Running   0          48s
prometheus-node-exporter-jxv2h                   1/1     Running   0          48s
prometheus-node-exporter-vbdks                   1/1     Running   0          48s
prometheus-pushgateway-76c444b68c-82tnw          1/1     Running   0          48s
prometheus-server-775957f748-mmht9               1/2     Running   0          48s

5. Use kubectl to port forward the Prometheus console to your local machine.

kubectl --namespace=prometheus port-forward deploy/prometheus-server 9090

6. Point a web browser to http://localhost:9090 to view the Prometheus console.

7. Choose a metric from the - insert metric at cursor menu, then choose Execute. 
Choose the Graph tab to show the metric over time. The following image shows
container_memory_usage_bytes over time.

Deploying Prometheus using Helm 871



Amazon EKS User Guide

8. From the top navigation bar, choose Status, then Targets.

All of the Kubernetes endpoints that are connected to Prometheus using service discovery are 
displayed.

Viewing the control plane raw metrics

As an alternative to deploying Prometheus, the Kubernetes API server exposes a number of metrics 
that are represented in a Prometheus format. These metrics are useful for monitoring and analysis. 
They are exposed internally through a metrics endpoint that refers to the /metrics HTTP API. 
Like other endpoints, this endpoint is exposed on the Amazon EKS control plane. This endpoint 
is primarily useful for looking at a specific metric. To analyze metrics over time, we recommend 
deploying Prometheus.

To view the raw metrics output, use kubectl with the --raw flag. This command allows you to 
pass any HTTP path and returns the raw response.

kubectl get --raw /metrics

Viewing the control plane raw metrics 872

https://github.com/prometheus/docs/blob/master/content/docs/instrumenting/exposition_formats.md


Amazon EKS User Guide

An example output is as follows.

[...]
# HELP rest_client_requests_total Number of HTTP requests, partitioned by status code, 
 method, and host.
# TYPE rest_client_requests_total counter
rest_client_requests_total{code="200",host="127.0.0.1:21362",method="POST"} 4994
rest_client_requests_total{code="200",host="127.0.0.1:443",method="DELETE"} 1
rest_client_requests_total{code="200",host="127.0.0.1:443",method="GET"} 1.326086e+06
rest_client_requests_total{code="200",host="127.0.0.1:443",method="PUT"} 862173
rest_client_requests_total{code="404",host="127.0.0.1:443",method="GET"} 2
rest_client_requests_total{code="409",host="127.0.0.1:443",method="POST"} 3
rest_client_requests_total{code="409",host="127.0.0.1:443",method="PUT"} 8
# HELP ssh_tunnel_open_count Counter of ssh tunnel total open attempts
# TYPE ssh_tunnel_open_count counter
ssh_tunnel_open_count 0
# HELP ssh_tunnel_open_fail_count Counter of ssh tunnel failed open attempts
# TYPE ssh_tunnel_open_fail_count counter
ssh_tunnel_open_fail_count 0

This raw output returns verbatim what the API server exposes. The different metrics are listed by 
line, with each line including a metric name, tags, and a value.

metric_name{"tag"="value"[,...]} 
             value

Amazon EKS add-on support for Amazon CloudWatch

Amazon CloudWatch Observability collects real-time logs, metrics, and trace data. It sends them 
to Amazon CloudWatch and AWS X-Ray. You can install this add-on to enable both CloudWatch 
Application Signals and CloudWatch Container Insights with enhanced observability for Amazon 
EKS. This helps you monitor the health and performance of your infrastructure and containerized 
applications. The Amazon CloudWatch Observability Operator is designed to install and configure 
the necessary components.

Amazon EKS supports Amazon CloudWatch Observability Operator as an Amazon EKS add-on. The 
topics below describe how to get started using Amazon CloudWatch Observability Operator for 
your Amazon EKS cluster.

Amazon CloudWatch 873

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-add-ons.html


Amazon EKS User Guide

• For instructions on installing this add-on, see Install the CloudWatch agent by using the 
CloudWatch Observability Amazon EKS add-ons in the Amazon CloudWatch User Guide.

• For more information about CloudWatch Application Signals, see Application Signals.

• For more information about Container Insights, see Using Container Insights in the Amazon 
CloudWatch User Guide.

Amazon EKS control plane logging

Amazon EKS control plane logging provides audit and diagnostic logs directly from the Amazon 
EKS control plane to CloudWatch Logs in your account. These logs make it easy for you to secure 
and run your clusters. You can select the exact log types you need, and logs are sent as log streams 
to a group for each Amazon EKS cluster in CloudWatch. For more information, see Amazon 
CloudWatch logging.

You can start using Amazon EKS control plane logging by choosing which log types you want to 
enable for each new or existing Amazon EKS cluster. You can enable or disable each log type on a 
per-cluster basis using the AWS Management Console, AWS CLI (version 1.16.139 or higher), or 
through the Amazon EKS API. When enabled, logs are automatically sent from the Amazon EKS 
cluster to CloudWatch Logs in the same account.

When you use Amazon EKS control plane logging, you're charged standard Amazon EKS pricing 
for each cluster that you run. You are charged the standard CloudWatch Logs data ingestion and 
storage costs for any logs sent to CloudWatch Logs from your clusters. You are also charged for any 
AWS resources, such as Amazon EC2 instances or Amazon EBS volumes, that you provision as part 
of your cluster.

The following cluster control plane log types are available. Each log type corresponds to a 
component of the Kubernetes control plane. To learn more about these components, see
Kubernetes Components in the Kubernetes documentation.

API server (api)

Your cluster's API server is the control plane component that exposes the Kubernetes API. If you 
enable API server logs when you launch the cluster, or shortly thereafter, the logs include API 
server flags that were used to start the API server. For more information, see kube-apiserver
and the audit policy in the Kubernetes documentation.

Configuring logging 874

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Observability-EKS-addon.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Observability-EKS-addon.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Monitoring-Sections.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://github.com/kubernetes/kubernetes/blob/master/cluster/gce/gci/configure-helper.sh#L1129-L1255


Amazon EKS User Guide

Audit (audit)

Kubernetes audit logs provide a record of the individual users, administrators, or system 
components that have affected your cluster. For more information, see Auditing in the 
Kubernetes documentation.

Authenticator (authenticator)

Authenticator logs are unique to Amazon EKS. These logs represent the control plane 
component that Amazon EKS uses for Kubernetes Role Based Access Control (RBAC) 
authentication using IAM credentials. For more information, see Cluster management.

Controller manager (controllerManager)

The controller manager manages the core control loops that are shipped with Kubernetes. For 
more information, see kube-controller-manager in the Kubernetes documentation.

Scheduler (scheduler)

The scheduler component manages when and where to run Pods in your cluster. For more 
information, see kube-scheduler in the Kubernetes documentation.

Enabling and disabling control plane logs

By default, cluster control plane logs aren't sent to CloudWatch Logs. You must enable each log 
type individually to send logs for your cluster. CloudWatch Logs ingestion, archive storage, and 
data scanning rates apply to enabled control plane logs. For more information, see CloudWatch 
pricing.

To update the control plane logging configuration, Amazon EKS requires up to five available IP 
addresses in each subnet. When you enable a log type, the logs are sent with a log verbosity level 
of 2.

AWS Management Console

To enable or disable control plane logs with the AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. Choose the name of the cluster to display your cluster information.

3. Choose the Observability tab.

Enabling and disabling control plane logs 875

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/
https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

4. In the Control plane logging section, choose Manage logging.

5. For each individual log type, choose whether the log type should be turned on or turned 
off. By default, each log type is turned off.

6. Choose Save changes to finish.

AWS CLI

To enable or disable control plane logs with the AWS CLI

1. Check your AWS CLI version with the following command.

aws --version

If your AWS CLI version is earlier than 1.16.139, you must first update to the latest 
version. To install or upgrade the AWS CLI, see Installing the AWS Command Line Interface
in the AWS Command Line Interface User Guide.

2. Update your cluster's control plane log export configuration with the following AWS CLI 
command. Replace my-cluster with your cluster name and specify your desired endpoint 
access values.

Note

The following command sends all available log types to CloudWatch Logs.

aws eks update-cluster-config \ 
    --region region-code \ 
    --name my-cluster \ 
    --logging '{"clusterLogging":[{"types":
["api","audit","authenticator","controllerManager","scheduler"],"enabled":true}]}'

An example output is as follows.

{ 
    "update": { 
        "id": "883405c8-65c6-4758-8cee-2a7c1340a6d9", 
        "status": "InProgress", 
        "type": "LoggingUpdate", 

Enabling and disabling control plane logs 876

https://docs.aws.amazon.com/cli/latest/userguide/installing.html


Amazon EKS User Guide

        "params": [ 
            { 
                "type": "ClusterLogging", 
                "value": "{\"clusterLogging\":[{\"types\":[\"api\",\"audit\",
\"authenticator\",\"controllerManager\",\"scheduler\"],\"enabled\":true}]}" 
            } 
        ], 
        "createdAt": 1553271814.684, 
        "errors": [] 
    }
}

3. Monitor the status of your log configuration update with the following command, using the 
cluster name and the update ID that were returned by the previous command. Your update 
is complete when the status appears as Successful.

aws eks describe-update \ 
    --region region-code\ 
    --name my-cluster \ 
    --update-id 883405c8-65c6-4758-8cee-2a7c1340a6d9

An example output is as follows.

{ 
    "update": { 
        "id": "883405c8-65c6-4758-8cee-2a7c1340a6d9", 
        "status": "Successful", 
        "type": "LoggingUpdate", 
        "params": [ 
            { 
                "type": "ClusterLogging", 
                "value": "{\"clusterLogging\":[{\"types\":[\"api\",\"audit\",
\"authenticator\",\"controllerManager\",\"scheduler\"],\"enabled\":true}]}" 
            } 
        ], 
        "createdAt": 1553271814.684, 
        "errors": [] 
    }
}

Enabling and disabling control plane logs 877



Amazon EKS User Guide

Viewing cluster control plane logs

After you have enabled any of the control plane log types for your Amazon EKS cluster, you can 
view them on the CloudWatch console.

To learn more about viewing, analyzing, and managing logs in CloudWatch, see the Amazon 
CloudWatch Logs User Guide.

To view your cluster control plane logs on the CloudWatch console

1. Open the CloudWatch console. The link opens the console and displays your current available 
log groups and filters them with the /aws/eks prefix.

2. Choose the cluster that you want to view logs for. The log group name format is /aws/
eks/my-cluster/cluster.

3. Choose the log stream to view. The following list describes the log stream name format for 
each log type.

Note

As log stream data grows, the log stream names are rotated. When multiple log 
streams exist for a particular log type, you can view the latest log stream by looking 
for the log stream name with the latest Last event time.

• Kubernetes API server component logs (api) – kube-
apiserver-1234567890abcdef01234567890abcde

• Audit (audit) – kube-apiserver-audit-1234567890abcdef01234567890abcde

• Authenticator (authenticator) –
authenticator-1234567890abcdef01234567890abcde

• Controller manager (controllerManager) – kube-controller-
manager-1234567890abcdef01234567890abcde

• Scheduler (scheduler) – kube-scheduler-1234567890abcdef01234567890abcde

4. Look through the events of the log stream.

For example, you should see the initial API server flags for the cluster when viewing the top of
kube-apiserver-1234567890abcdef01234567890abcde.

Viewing cluster control plane logs 878

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://console.aws.amazon.com/cloudwatch/home#logs:prefix=/aws/eks


Amazon EKS User Guide

Note

If you don't see the API server logs at the beginning of the log stream, then it is 
likely that the API server log file was rotated on the server before you enabled API 
server logging on the server. Any log files that are rotated before API server logging is 
enabled can't be exported to CloudWatch.
However, you can create a new cluster with the same Kubernetes version and enable 
the API server logging when you create the cluster. Clusters with the same platform 
version have the same flags enabled, so your flags should match the new cluster's 
flags. When you finish viewing the flags for the new cluster in CloudWatch, you can 
delete the new cluster.

Logging Amazon EKS API calls with AWS CloudTrail

Amazon EKS is integrated with AWS CloudTrail. CloudTrail is a service that provides a record of 
actions by a user, role, or an AWS service in Amazon EKS. CloudTrail captures all API calls for 
Amazon EKS as events. This includes calls from the Amazon EKS console and from code calls to the 
Amazon EKS API operations.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3 
bucket. This includes events for Amazon EKS. If you don't configure a trail, you can still view 
the most recent events in the CloudTrail console in Event history. Using the information that 
CloudTrail collects, you can determine several details about a request. For example, you can 
determine when the request was made to Amazon EKS, the IP address where the request was made 
from, and who made the request.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Topics

• Amazon EKS information in CloudTrail

• Understanding Amazon EKS log file entries

• Enable Auto Scaling group metrics collection

AWS CloudTrail 879

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/


Amazon EKS User Guide

Amazon EKS information in CloudTrail

When you create your AWS account, CloudTrail is also enabled on your AWS account. When any 
activity occurs in Amazon EKS, that activity is recorded in a CloudTrail event along with other AWS 
service events in Event history. You can view, search, and download recent events in your AWS 
account. For more information, see Viewing events with CloudTrail event history.

For an ongoing record of events in your AWS account, including events for Amazon EKS, create a 
trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you 
create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all AWS 
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify. 
Additionally, you can configure other AWS services to further analyze and act upon the event data 
that's collected in CloudTrail logs. For more information, see the following resources.

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from 
multiple accounts

All Amazon EKS actions are logged by CloudTrail and are documented in the Amazon EKS API 
Reference. For example, calls to the CreateCluster, ListClusters and DeleteCluster
sections generate entries in the CloudTrail log files.

Every event or log entry contains information about the type of IAM identity that made the 
request, and which credentials were used. If temporary credentials were used, the entry shows how 
the credentials were obtained.

For more information, see the CloudTrail userIdentity element.

Understanding Amazon EKS log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that 
you specify. CloudTrail log files contain one or more log entries. An event represents a single 
request from any source and includes information about the requested action. This include 
information such as the date and time of the action and the request parameters that were used. 
CloudTrail log files aren't an ordered stack trace of the public API calls, so they don't appear in any 
specific order.

Amazon EKS information in CloudTrail 880

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/eks/latest/APIReference/
https://docs.aws.amazon.com/eks/latest/APIReference/
https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateCluster.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_ListClusters.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_DeleteCluster.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html


Amazon EKS User Guide

The following example shows a CloudTrail log entry that demonstrates the CreateCluster
action.

{ 
  "eventVersion": "1.05", 
  "userIdentity": { 
    "type": "IAMUser", 
    "principalId": "AKIAIOSFODNN7EXAMPLE", 
    "arn": "arn:aws:iam::111122223333:user/username", 
    "accountId": "111122223333", 
    "accessKeyId": "AKIAIOSFODNN7EXAMPLE", 
    "userName": "username" 
  }, 
  "eventTime": "2018-05-28T19:16:43Z", 
  "eventSource": "eks.amazonaws.com", 
  "eventName": "CreateCluster", 
  "awsRegion": "region-code", 
  "sourceIPAddress": "205.251.233.178", 
  "userAgent": "PostmanRuntime/6.4.0", 
  "requestParameters": { 
    "resourcesVpcConfig": { 
      "subnetIds": [ 
        "subnet-a670c2df", 
        "subnet-4f8c5004" 
      ] 
    }, 
    "roleArn": "arn:aws:iam::111122223333:role/AWSServiceRoleForAmazonEKS-
CAC1G1VH3ZKZ", 
    "clusterName": "test" 
  }, 
  "responseElements": { 
    "cluster": { 
      "clusterName": "test", 
      "status": "CREATING", 
      "createdAt": 1527535003.208, 
      "certificateAuthority": {}, 
      "arn": "arn:aws:eks:region-code:111122223333:cluster/test", 
      "roleArn": "arn:aws:iam::111122223333:role/AWSServiceRoleForAmazonEKS-
CAC1G1VH3ZKZ", 
      "version": "1.10", 
      "resourcesVpcConfig": { 
        "securityGroupIds": [], 
        "vpcId": "vpc-21277358", 

Understanding Amazon EKS log file entries 881

https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateCluster.html


Amazon EKS User Guide

        "subnetIds": [ 
          "subnet-a670c2df", 
          "subnet-4f8c5004" 
        ] 
      } 
    } 
  }, 
  "requestID": "a7a0735d-62ab-11e8-9f79-81ce5b2b7d37", 
  "eventID": "eab22523-174a-499c-9dd6-91e7be3ff8e3", 
  "readOnly": false, 
  "eventType": "AwsApiCall", 
  "recipientAccountId": "111122223333"
}

Log Entries for Amazon EKS Service Linked Roles

The Amazon EKS service linked roles make API calls to AWS resources. CloudTrail 
log entries with username: AWSServiceRoleForAmazonEKS and username: 
AWSServiceRoleForAmazonEKSNodegroup appears for calls made by the Amazon EKS service 
linked roles. For more information about Amazon EKS and service linked roles, see Using service-
linked roles for Amazon EKS.

The following example shows a CloudTrail log entry that demonstrates a
DeleteInstanceProfile action that's made by the
AWSServiceRoleForAmazonEKSNodegroup service linked role, noted in the sessionContext.

{ 
    "eventVersion": "1.05", 
    "userIdentity": { 
        "type": "AssumedRole", 
        "principalId": "AROA3WHGPEZ7SJ2CW55C5:EKS", 
        "arn": "arn:aws:sts::111122223333:assumed-role/
AWSServiceRoleForAmazonEKSNodegroup/EKS", 
        "accountId": "111122223333", 
        "accessKeyId": "AKIAIOSFODNN7EXAMPLE", 
        "sessionContext": { 
            "sessionIssuer": { 
                "type": "Role", 
                "principalId": "AROA3WHGPEZ7SJ2CW55C5", 
                "arn": "arn:aws:iam::111122223333:role/aws-service-role/eks-
nodegroup.amazonaws.com/AWSServiceRoleForAmazonEKSNodegroup", 
                "accountId": "111122223333", 

Understanding Amazon EKS log file entries 882

https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteInstanceProfile.html


Amazon EKS User Guide

                "userName": "AWSServiceRoleForAmazonEKSNodegroup" 
            }, 
            "webIdFederationData": {}, 
            "attributes": { 
                "mfaAuthenticated": "false", 
                "creationDate": "2020-02-26T00:56:33Z" 
            } 
        }, 
        "invokedBy": "eks-nodegroup.amazonaws.com" 
    }, 
    "eventTime": "2020-02-26T00:56:34Z", 
    "eventSource": "iam.amazonaws.com", 
    "eventName": "DeleteInstanceProfile", 
    "awsRegion": "region-code", 
    "sourceIPAddress": "eks-nodegroup.amazonaws.com", 
    "userAgent": "eks-nodegroup.amazonaws.com", 
    "requestParameters": { 
        "instanceProfileName": "eks-11111111-2222-3333-4444-abcdef123456" 
    }, 
    "responseElements": null, 
    "requestID": "11111111-2222-3333-4444-abcdef123456", 
    "eventID": "11111111-2222-3333-4444-abcdef123456", 
    "eventType": "AwsApiCall", 
    "recipientAccountId": "111122223333"
}

Enable Auto Scaling group metrics collection

This topic describes how you can enable Auto Scaling group metrics collection using AWS Lambda
and AWS CloudTrail. Amazon EKS doesn't automatically enable group metrics collection for Auto 
Scaling groups created for managed nodes.

You can use Auto Scaling group metrics to track changes in an Auto Scaling group and to set 
alarms on threshold values. Auto Scaling group metrics are available in the Auto Scaling console 
or the Amazon CloudWatch console. Once enabled, the Auto Scaling group sends sampled data to 
Amazon CloudWatch every minute. There is no charge for enabling these metrics.

By enabling Auto Scaling group metrics collection, you'll be able to monitor the scaling of 
managed node groups. Auto Scaling group metrics report the minimum, maximum, and desired 
size of an Auto Scaling group. You can create an alarm if the number of nodes in a node group falls 
below the minimum size, which would indicate an unhealthy node group. Tracking node group size 
is also useful in adjusting the maximum count so that your data plane doesn't run out of capacity.

Enable Auto Scaling group metrics collection 883

https://aws.amazon.com/lambda
https://aws.amazon.com/cloudtrail
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-cloudwatch-monitoring.html
https://aws.amazon.com/cloudwatch


Amazon EKS User Guide

When you create a managed node group, AWS CloudTrail sends a CreateNodegroup
event to Amazon EventBridge. By creating an Amazon EventBridge rule that matches the
CreateNodegroup event, you trigger a Lambda function to enable group metrics collection for 
the Auto Scaling group associated with the managed node group.

To enable Auto Scaling group metrics collection

1. Create an IAM role for Lambda.

LAMBDA_ROLE=$(aws iam create-role \ 
  --role-name lambda-asg-enable-metrics \ 
  --assume-role-policy-document '{"Version": "2012-10-17","Statement": 
 [{ "Effect": "Allow", "Principal": {"Service": "lambda.amazonaws.com"}, "Action": 
 "sts:AssumeRole"}]}' \ 
  --output text \ 
  --query 'Role.Arn')
echo $LAMBDA_ROLE

2. Create a policy that allows describing Amazon EKS node groups and enabling Auto Scaling 
group metrics collection.

Enable Auto Scaling group metrics collection 884

https://aws.amazon.com/eventbridge


Amazon EKS User Guide

cat > /tmp/lambda-policy.json <<EOF
{ 
    "Version": "2012-10-17", 
    "Statement": [ 
      { 
        "Effect": "Allow", 
        "Action": [ 
            "eks:DescribeNodegroup", 
            "autoscaling:EnableMetricsCollection" 
            ], 
        "Resource": [ 
            "*" 
        ] 
      } 
    ]
}
EOF
LAMBDA_POLICY_ARN=$(aws iam create-policy \ 
  --policy-name lambda-asg-enable-metrics-policy \ 
  --policy-document file:///tmp/lambda-policy.json \ 
  --output text \ 
  --query 'Policy.Arn')
echo $LAMBDA_POLICY_ARN

3. Attach the policy to the IAM role for Lambda.

aws iam attach-role-policy \ 
  --policy-arn $LAMBDA_POLICY_ARN \ 
  --role-name lambda-asg-enable-metrics

4. Add the AWSLambdaBasicExecutionRole managed policy, which has the permissions that 
the function needs to write logs to CloudWatch Logs.

aws iam attach-role-policy \ 
  --role-name lambda-asg-enable-metrics \ 
  --policy-arn arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole

5. Create the Lambda code.

cat > /tmp/lambda-handler.py <<EOF
import json
import boto3

Enable Auto Scaling group metrics collection 885



Amazon EKS User Guide

import time
import logging

eks = boto3.client('eks')
autoscaling = boto3.client('autoscaling')

logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context): 
    ASG_METRICS_COLLLECTION_TAG_NAME = "ASG_METRICS_COLLLECTION_ENABLED" 
    initial_retry_delay = 10 
    attempts = 0  
     
    #print(event) 
     
    if not event["detail"]["eventName"] == "CreateNodegroup": 
        print("invalid event.") 
        return -1 
         
    clusterName = event["detail"]["requestParameters"]["name"] 
    nodegroupName = event["detail"]["requestParameters"]["nodegroupName"] 
    try: 
        metricsCollectionEnabled = event["detail"]["requestParameters"]["tags"]
[ASG_METRICS_COLLLECTION_TAG_NAME] 
    except KeyError: 
        print(ASG_METRICS_COLLLECTION_TAG_NAME, "tag not found.") 
        return 
     
    # Check if metrics collection is enabled in tags 
    if metricsCollectionEnabled.lower() != "true": 
        print("Metrics collection is not enabled in nodegroup tags.") 
        return 
     
    # Get the name of the associated autoscaling group 
    print("Getting the autoscaling group name for nodegroup=", nodegroupName, ", 
 cluster=", clusterName ) 
    for i in range(0,10): 
        try: 
            autoScalingGroup = 
 eks.describe_nodegroup(clusterName=clusterName,nodegroupName=nodegroupName)
["nodegroup"]["resources"]["autoScalingGroups"][0]["name"] 
        except: 
            attempts += 1 

Enable Auto Scaling group metrics collection 886



Amazon EKS User Guide

            print("Failed to obtain the associated autoscaling group for 
 nodegroup", nodegroupName, "Retrying in", initial_retry_delay*attempts, 
 "seconds.") 
            time.sleep(initial_retry_delay*attempts) 
        else: 
            break 
     
    print("Enabling metrics collection on autoscaling group ", autoScalingGroup) 
     
    # Enable metrics collection in the autoscaling group 
    try: 
        enableMetricsCollection = 
 autoscaling.enable_metrics_collection(AutoScalingGroupName=autoScalingGroup,Granularity="1Minute") 
    except: 
        print("Unable to enable metrics collection on nodegroup=",nodegroup) 
    print("Enabled metrics collection on nodegroup", nodegroupName)
EOF

6. Create a deployment package.

cd /tmp  
zip function.zip lambda-handler.py

7. Create a Lambda function.

LAMBDA_ARN=$(aws lambda create-function --function-name asg-enable-metrics-
collection \ 
  --zip-file fileb://function.zip --handler lambda-handler.lambda_handler \ 
  --runtime python3.9 \ 
  --timeout 600 \ 
  --role $LAMBDA_ROLE \ 
  --output text \ 
  --query 'FunctionArn')
echo $LAMBDA_ARN

8. Create an EventBridge rule.

RULE_ARN=$(aws events put-rule --name CreateNodegroupRuleToLambda \ 
  --event-pattern "{\"source\":[\"aws.eks\"],\"detail-type\":[\"AWS API Call via 
 CloudTrail\"],\"detail\":{\"eventName\":[\"CreateNodegroup\"],\"eventSource\":
[\"eks.amazonaws.com\"]}}" \ 
  --output text \ 
  --query 'RuleArn')

Enable Auto Scaling group metrics collection 887



Amazon EKS User Guide

echo $RULE_ARN

9. Add the Lambda function as a target.

aws events put-targets --rule CreateNodegroupRuleToLambda \ 
 --targets "Id"="1","Arn"="$LAMBDA_ARN"

10. Add a policy that allows EventBridge to invoke the Lambda function.

aws lambda add-permission \ 
  --function-name asg-enable-metrics-collection \ 
  --statement-id CreateNodegroupRuleToLambda \ 
  --action 'lambda:InvokeFunction' \ 
  --principal events.amazonaws.com \ 
  --source-arn $RULE_ARN

The Lambda function enables Auto Scaling group metrics collection for any managed node groups 
that you tag with ASG_METRICS_COLLLECTION_ENABLED set to TRUE. To confirm that Auto 
Scaling group metrics collection is enabled, navigate to the associated Auto Scaling group in the 
Amazon EC2 console. In the Monitoring tab, you should see that the Enable check box is activated.

Amazon EKS add-on support for ADOT Operator

Amazon EKS supports using the AWS Management Console, AWS CLI and Amazon EKS API to 
install and manage the AWS Distro for OpenTelemetry (ADOT) Operator. This makes it easier 
to enable your applications running on Amazon EKS to send metric and trace data to multiple 
monitoring service options like Amazon CloudWatch, Prometheus, and X-Ray.

For more information, see Getting Started with AWS Distro for OpenTelemetry using EKS Add-Ons
in the AWS Distro for OpenTelemetry documentation.

ADOT Operator 888

https://aws-otel.github.io/
https://console.aws.amazon.com/cloudwatch
https://console.aws.amazon.com/prometheus
https://console.aws.amazon.com/xray
https://aws-otel.github.io/docs/getting-started/adot-eks-add-on


Amazon EKS User Guide

More AWS services integrated with Amazon EKS

In addition to the services covered in other sections, Amazon EKS works with more AWS services to 
provide additional solutions. This topic identifies some of the other services that either use Amazon 
EKS to add functionality, or services that Amazon EKS uses to perform tasks.

Topics

• Creating Amazon EKS resources with AWS CloudFormation

• Amazon EKS and AWS Local Zones

• Deep Learning Containers

• Amazon VPC Lattice

• AWS Resilience Hub

• Amazon GuardDuty

• Amazon Detective

Creating Amazon EKS resources with AWS CloudFormation

Amazon EKS is integrated with AWS CloudFormation, a service that helps you model and set 
up your AWS resources so that you can spend less time creating and managing your resources 
and infrastructure. You create a template that describes all the AWS resources that you want, 
for example an Amazon EKS cluster, and AWS CloudFormation takes care of provisioning and 
configuring those resources for you.

When you use AWS CloudFormation, you can reuse your template to set up your Amazon EKS 
resources consistently and repeatedly. Just describe your resources once, and then provision the 
same resources over and over in multiple AWS accounts and Regions.

Amazon EKS and AWS CloudFormation templates

To provision and configure resources for Amazon EKS and related services, you must understand
AWS CloudFormation templates. Templates are formatted text files in JSON or YAML. These 
templates describe the resources that you want to provision in your AWS CloudFormation stacks. 
If you're unfamiliar with JSON or YAML, you can use AWS CloudFormation Designer to help 
you get started with AWS CloudFormation templates. For more information, see What is AWS 
CloudFormation Designer? in the AWS CloudFormation User Guide.

Creating Amazon EKS resources with AWS CloudFormation 889

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html


Amazon EKS User Guide

Amazon EKS supports creating clusters and node groups in AWS CloudFormation. For more 
information, including examples of JSON and YAML templates for your Amazon EKS resources, see
Amazon EKS resource type reference in the AWS CloudFormation User Guide.

Learn more about AWS CloudFormation

To learn more about AWS CloudFormation, see the following resources:

• AWS CloudFormation

• AWS CloudFormation User Guide

• AWS CloudFormation Command Line Interface User Guide

Amazon EKS and AWS Local Zones

An AWS Local Zone is an extension of an AWS Region in geographic proximity to your users. 
Local Zones have their own connections to the internet and support AWS Direct Connect. 
Resources created in a Local Zone can serve local users with low-latency communications. For more 
information, see Local Zones.

Amazon EKS supports certain resources in Local Zones. This includes self-managed Amazon EC2 
nodes, Amazon EBS volumes, and Application Load Balancers (ALBs). We recommend that you 
consider the following when using Local Zones as part of your Amazon EKS cluster.

Nodes

You can't create managed node groups or Fargate nodes in Local Zones with Amazon EKS. 
However, you can create self-managed Amazon EC2 nodes in Local Zones using the Amazon EC2 
API, AWS CloudFormation, or eksctl. For more information, see Self-managed nodes.

Network architecture

• The Amazon EKS managed Kubernetes control plane always runs in the AWS Region. The 
Amazon EKS managed Kubernetes control plane can't run in the Local Zone. Because Local Zones 
appear as a subnet within your VPC, Kubernetes sees your Local Zone resources as part of that 
subnet.

• The Amazon EKS Kubernetes cluster communicates with the Amazon EC2 instances you run in 
the AWS Region or Local Zone using Amazon EKS managed elastic network interfaces. To learn 
more about Amazon EKS networking architecture, see Amazon EKS networking.

Learn more about AWS CloudFormation 890

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_EKS.html
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-local-zones
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html


Amazon EKS User Guide

• Unlike regional subnets, Amazon EKS can't place network interfaces into your Local Zone 
subnets. This means that you must not specify Local Zone subnets when you create your cluster.

Deep Learning Containers

AWS Deep Learning Containers are a set of Docker images for training and serving models in 
TensorFlow on Amazon EKS and Amazon Elastic Container Service (Amazon ECS). Deep Learning 
Containers provide optimized environments with TensorFlow, NVIDIA CUDA (for GPU instances), 
and Intel MKL (for CPU instances) libraries and are available in Amazon ECR.

To get started using AWS Deep Learning Containers on Amazon EKS, see Amazon EKS Setup in the
AWS Deep Learning Containers Developer Guide.

Amazon VPC Lattice

Amazon VPC Lattice is a fully managed application networking service built directly into the 
AWS networking infrastructure that you can use to connect, secure, and monitor your services 
across multiple accounts and Virtual Private Clouds (VPCs). With Amazon EKS, you can leverage 
Amazon VPC Lattice through the use of the AWS Gateway API Controller, an implementation of the 
Kubernetes Gateway API. Using Amazon VPC Lattice, you can set up cross-cluster connectivity with 
standard Kubernetes semantics in a simple and consistent manner. To get started using Amazon 
VPC Lattice with Amazon EKS see the AWS Gateway API Controller User Guide.

AWS Resilience Hub

AWS Resilience Hub assesses the resiliency of an Amazon EKS cluster by analyzing its 
infrastructure. AWS Resilience Hub uses the Kubernetes role-based access control (RBAC) 
configuration to assess the Kubernetes workloads deployed to your cluster. For more information, 
see Enabling AWS Resilience Hub access to your Amazon EKS cluster in the AWS Resilience Hub 
User Guide.

Amazon GuardDuty

EKS Protection in Amazon GuardDuty provides threat detection coverage to help you protect 
Amazon EKS clusters within your AWS environment. EKS Protection includes EKS Audit Log 
Monitoring and EKS Runtime Monitoring. For more information, see EKS Protection in Amazon 

Deep Learning Containers 891

https://www.tensorflow.org/
https://developer.nvidia.com/cuda-zone
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-eks.html
https://gateway-api.sigs.k8s.io/
https://www.gateway-api-controller.eks.aws.dev/
https://docs.aws.amazon.com/resilience-hub/latest/userguide/enabling-eks-in-arh.html
https://docs.aws.amazon.com/guardduty/latest/ug/kubernetes-protection.html


Amazon EKS User Guide

GuardDuty in the Amazon GuardDuty User Guide. You can install the GuardDuty agent to your 
cluster as an Amazon EKS add-on. For more information, see Available Amazon EKS add-ons from 
Amazon EKS.

Amazon Detective

Amazon Detective helps you analyze, investigate, and quickly identify the root cause of security 
findings or suspicious activities. Detective automatically collects log data from your AWS resources. 
It then uses machine learning, statistical analysis, and graph theory to generate visualizations that 
help you to conduct faster and more efficient security investigations. The Detective prebuilt data 
aggregations, summaries, and context help you to quickly analyze and determine the nature and 
extent of possible security issues. For more information, see the Amazon Detective User Guide.

Detective organizes Kubernetes and AWS data into findings such as:

• Amazon EKS cluster details, including the IAM identity that created the cluster and the service 
role of the cluster. You can investigate the AWS and Kubernetes API activity of these IAM 
identities with Detective.

• Container details, such as the image and security context. You can also review details for 
terminated Pods.

• Kubernetes API activity, including both overall trends in API activity and details on specific API 
calls. For example, you can show the number of successful and failed Kubernetes API calls that 
were issued during a selected time range. Additionally, the section on newly observed API calls 
might be helpful to identify suspicious activity.

Amazon EKS audit logs is an optional data source package that can be added to your Detective 
behavior graph. You can view the available optional source packages, and their status in your 
account. For more information, see Amazon EKS audit logs for Detective in the Amazon Detective 
User Guide.

Use Amazon Detective with Amazon EKS

To review findings for an Amazon EKS cluster

Before you can review findings, Detective must be enabled for at least 48 hours in the same AWS 
Region that your cluster is in. For more information, see Setting up Amazon Detective in the
Amazon Detective User Guide.

Amazon Detective 892

https://docs.aws.amazon.com/guardduty/latest/ug/kubernetes-protection.html
https://aws.amazon.com/detective/
https://docs.aws.amazon.com/detective/latest/adminguide/what-is-detective.html
https://docs.aws.amazon.com/detective/latest/adminguide/source-data-types-EKS.html
https://docs.aws.amazon.com/detective/latest/adminguide/detective-setup.html


Amazon EKS User Guide

1. Open the Detective console at https://console.aws.amazon.com/detective/.

2. From the left navigation pane, select Search.

3. Select Choose type and then select EKS cluster.

4. Enter the cluster name or ARN and then choose Search.

5. In the search results, choose the name of the cluster that you want to view activity for. For 
more information about what you can view, see Overall Kubernetes API activity involving an 
Amazon EKS cluster in the Amazon Detective User Guide.

Use Amazon Detective with Amazon EKS 893

https://console.aws.amazon.com/detective/
https://docs.aws.amazon.com/detective/latest/userguide/profile-panel-drilldown-kubernetes-api-volume.html
https://docs.aws.amazon.com/detective/latest/userguide/profile-panel-drilldown-kubernetes-api-volume.html


Amazon EKS User Guide

Amazon EKS troubleshooting

This chapter covers some common errors that you may see while using Amazon EKS and how 
to work around them. If you need to troubleshoot specific Amazon EKS areas, see the separate
Troubleshooting IAM, Troubleshooting issues in Amazon EKS Connector, and Troubleshooting for 
ADOT using EKS Add-Ons topics.

For other troubleshooting information, see Knowledge Center content about Amazon Elastic 
Kubernetes Service on AWS re:Post.

Insufficient capacity

If you receive the following error while attempting to create an Amazon EKS cluster, then one of 
the Availability Zones you specified doesn't have sufficient capacity to support a cluster.

Cannot create cluster 'example-cluster' because region-1d, the targeted 
Availability Zone, does not currently have sufficient capacity to support 
the cluster. Retry and choose from these Availability Zones: region-1a, 
region-1b, region-1c

Retry creating your cluster with subnets in your cluster VPC that are hosted in the Availability 
Zones returned by this error message.

There are Availability Zones that a cluster can't reside in. Compare the Availability Zones that your 
subnets are in with the list of Availability Zones in the Subnet requirements and considerations.

Nodes fail to join cluster

There are a few common reasons that prevent nodes from joining the cluster:

• If the nodes are managed nodes, Amazon EKS adds entries to the aws-auth ConfigMap when 
you create the node group. If the entry was removed or modified, then you need to re-add it. For 
more information, enter eksctl create iamidentitymapping --help in your terminal. 
You can view your current aws-auth ConfigMap entries by replacing my-cluster in the 
following command with the name of your cluster and then running the modified command:
eksctl get iamidentitymapping --cluster my-cluster. The ARN of the role that you 
specify can't include a path other than /. For example, if the name of your role is development/

Insufficient capacity 894

https://aws-otel.github.io/docs/getting-started/adot-eks-add-on/troubleshooting
https://aws-otel.github.io/docs/getting-started/adot-eks-add-on/troubleshooting
https://repost.aws/tags/knowledge-center/TA4IvCeWI1TE66q4jEj4Z9zg/amazon-elastic-kubernetes-service
https://repost.aws/tags/knowledge-center/TA4IvCeWI1TE66q4jEj4Z9zg/amazon-elastic-kubernetes-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-friendly-names


Amazon EKS User Guide

apps/my-role, you'd need to change it to my-role when specifying the ARN for the role. Make 
sure that you specify the node IAM role ARN (not the instance profile ARN).

If the nodes are self-managed, and you haven't created access entries for the ARN of the node's 
IAM role, then run the same commands listed for managed nodes. If you have created an access 
entry for the ARN for your node IAM role, then it might not be configured properly in the access 
entry. Make sure that the node IAM role ARN (not the instance profile ARN) is specified as the 
principal ARN in your aws-auth ConfigMap entry or access entry. For more information about 
access entries, see Allowing IAM roles or users access to Kubernetes objects on your Amazon EKS 
cluster.

• The ClusterName in your node AWS CloudFormation template doesn't exactly match the name 
of the cluster you want your nodes to join. Passing an incorrect value to this field results in an 
incorrect configuration of the node's /var/lib/kubelet/kubeconfig file, and the nodes will 
not join the cluster.

• The node is not tagged as being owned by the cluster. Your nodes must have the following tag 
applied to them, where my-cluster is replaced with the name of your cluster.

Key Value

kubernetes.io/cluster/ my-cluste 
r

owned

• The nodes may not be able to access the cluster using a public IP address. Ensure that nodes 
deployed in public subnets are assigned a public IP address. If not, you can associate an Elastic IP 
address to a node after it's launched. For more information, see Associating an Elastic IP address 
with a running instance or network interface. If the public subnet is not set to automatically 
assign public IP addresses to instances deployed to it, then we recommend enabling that setting. 
For more information, see Modifying the public IPv4 addressing attribute for your subnet. If the 
node is deployed to a private subnet, then the subnet must have a route to a NAT gateway that 
has a public IP address assigned to it.

• The AWS STS endpoint for the AWS Region that you're deploying the nodes to is not enabled for 
your account. To enable the region, see Activating and deactivating AWS STS in an AWS Region.

• The node doesn't have a private DNS entry, resulting in the kubelet log containing a node 
"" not found error. Ensure that the VPC where the node is created has values set for
domain-name and domain-name-servers as Options in a DHCP options set. The 
default values are domain-name:<region>.compute.internal and domain-name-

Nodes fail to join cluster 895

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html#using-instance-addressing-eips-associating
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html#using-instance-addressing-eips-associating
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-ip-addressing.html#subnet-public-ip
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html#sts-regions-activate-deactivate


Amazon EKS User Guide

servers:AmazonProvidedDNS. For more information, see DHCP options sets in the Amazon 
VPC User Guide.

• If the nodes in the managed node group do not connect to the cluster within 15 minutes, a 
health issue of “NodeCreationFailure” will be emitted and the console status will be set to
Create failed. For Windows AMIs that have slow launch times, this issue can be resolved 
using fast launch.

To identify and troubleshoot common causes that prevent worker nodes from joining a cluster, you 
can use the AWSSupport-TroubleshootEKSWorkerNode runbook. For more information, see
AWSSupport-TroubleshootEKSWorkerNode in the AWS Systems Manager Automation runbook 
reference.

Unauthorized or access denied (kubectl)

If you receive one of the following errors while running kubectl commands, then you don't have
kubectl configured properly for Amazon EKS or the credentials for the IAM principal (role or 
user) that you're using don't map to a Kubernetes username that has sufficient permissions to 
Kubernetes objects on your Amazon EKS cluster.

• could not get token: AccessDenied: Access denied

• error: You must be logged in to the server (Unauthorized)

• error: the server doesn't have a resource type "svc"

This could be due to one of the following reasons:

• The cluster was created with credentials for one IAM principal and kubectl is configured to 
use credentials for a different IAM principal. To resolve this, update your kube config file to 
use the credentials that created the cluster. For more information, see Creating or updating a
kubeconfig file for an Amazon EKS cluster.

• If your cluster meets the minimum platform requirements in the prerequisites section of
Allowing IAM roles or users access to Kubernetes objects on your Amazon EKS cluster, an access 
entry doesn't exist with your IAM principal. If it exists, it doesn't have the necessary Kubernetes 
group names defined for it, or doesn't have the proper access policy associated to it. For more 
information, see Allowing IAM roles or users access to Kubernetes objects on your Amazon EKS 
cluster.

Unauthorized or access denied (kubectl) 896

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html#AmazonDNS
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/win-ami-config-fast-launch.html
https://docs.aws.amazon.com/systems-manager-automation-runbooks/latest/userguide/automation-awssupport-troubleshooteksworkernode.html


Amazon EKS User Guide

• If your cluster doesn't meet the minimum platform requirements in Allowing IAM roles or users 
access to Kubernetes objects on your Amazon EKS cluster, an entry with your IAM principal 
doesn't exist in the aws-auth ConfigMap. If it exists, it's not mapped to Kubernetes group 
names that are bound to a Kubernetes Role or ClusterRole with the necessary permissions. 
For more information about Kubernetes role-based authorization (RBAC) objects, see Using 
RBAC authorization in the Kubernetes documentation. You can view your current aws-auth
ConfigMap entries by replacing my-cluster in the following command with the name of 
your cluster and then running the modified command: eksctl get iamidentitymapping 
--cluster my-cluster. If an entry for with the ARN of your IAM principal isn't in the
ConfigMap, enter eksctl create iamidentitymapping --help in your terminal to learn 
how to create one.

If you install and configure the AWS CLI, you can configure the IAM credentials that you use. For 
more information, see Configuring the AWS CLI in the AWS Command Line Interface User Guide. 
You can also configure kubectl to use an IAM role, if you assume an IAM role to access Kubernetes 
objects on your cluster. For more information, see Creating or updating a kubeconfig file for an 
Amazon EKS cluster.

hostname doesn't match

Your system's Python version must be 2.7.9 or later. Otherwise, you receive hostname doesn't 
match errors with AWS CLI calls to Amazon EKS. For more information, see What are "hostname 
doesn't match" errors? in the Python Requests Frequently Asked Questions.

getsockopt: no route to host

Docker runs in the 172.17.0.0/16 CIDR range in Amazon EKS clusters. We recommend that your 
cluster's VPC subnets do not overlap this range. Otherwise, you will receive the following error:

Error: : error upgrading connection: error dialing backend: dial tcp 
 172.17.<nn>.<nn>:10250: getsockopt: no route to host

Instances failed to join the Kubernetes cluster

If you receive the error Instances failed to join the Kubernetes cluster in the AWS 
Management Console, ensure that either the cluster's private endpoint access is enabled, or that 

hostname doesn't match 897

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://requests.readthedocs.io/en/latest/community/faq.html#what-are-hostname-doesn-t-match-errors
https://requests.readthedocs.io/en/latest/community/faq.html#what-are-hostname-doesn-t-match-errors


Amazon EKS User Guide

you have correctly configured CIDR blocks for public endpoint access. For more information, see
Amazon EKS cluster endpoint access control.

Managed node group error codes

If your managed node group encounters a hardware health issue, Amazon EKS returns an error 
code to help you to diagnose the issue. These health checks don't detect software issues because 
they are based on Amazon EC2 health checks. The following list describes the error codes.

AccessDenied

Amazon EKS or one or more of your managed nodes is failing to authenticate or authorize 
with your Kubernetes cluster API server. For more information about resolving a common 
cause, see Fixing a common cause of AccessDenied errors for managed node groups. Private 
Windows AMIs can also cause this error code alongside the Not authorized for images
error message. For more information, see Not authorized for images.

AmiIdNotFound

We couldn't find the AMI ID associated with your launch template. Make sure that the AMI exists 
and is shared with your account.

AutoScalingGroupNotFound

We couldn't find the Auto Scaling group associated with the managed node group. You may be 
able to recreate an Auto Scaling group with the same settings to recover.

ClusterUnreachable

Amazon EKS or one or more of your managed nodes is unable to communicate with your 
Kubernetes cluster API server. This can happen if there are network disruptions or if API servers 
are timing out processing requests.

Ec2SecurityGroupNotFound

We couldn't find the cluster security group for the cluster. You must recreate your cluster.

Ec2SecurityGroupDeletionFailure

We could not delete the remote access security group for your managed node group. Remove 
any dependencies from the security group.

Managed node group error codes 898

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-system-instance-status-check.html


Amazon EKS User Guide

Ec2LaunchTemplateNotFound

We couldn't find the Amazon EC2 launch template for your managed node group. You must 
recreate your node group to recover.

Ec2LaunchTemplateVersionMismatch

The Amazon EC2 launch template version for your managed node group doesn't match the 
version that Amazon EKS created. You may be able to revert to the version that Amazon EKS 
created to recover.

IamInstanceProfileNotFound

We couldn't find the IAM instance profile for your managed node group. You may be able to 
recreate an instance profile with the same settings to recover.

IamNodeRoleNotFound

We couldn't find the IAM role for your managed node group. You may be able to recreate an 
IAM role with the same settings to recover.

AsgInstanceLaunchFailures

Your Auto Scaling group is experiencing failures while attempting to launch instances.

NodeCreationFailure

Your launched instances are unable to register with your Amazon EKS cluster. Common causes 
of this failure are insufficient node IAM role permissions or lack of outbound internet access for 
the nodes. Your nodes must meet either of the following requirements:

• Able to access the internet using a public IP address. The security group associated to the 
subnet the node is in must allow the communication. For more information, see Subnet 
requirements and considerations and Amazon EKS security group requirements and 
considerations.

• Your nodes and VPC must meet the requirements in Private cluster requirements.

InstanceLimitExceeded

Your AWS account is unable to launch any more instances of the specified instance type. You 
may be able to request an Amazon EC2 instance limit increase to recover.

InsufficientFreeAddresses

One or more of the subnets associated with your managed node group doesn't have enough 
available IP addresses for new nodes.

Managed node group error codes 899



Amazon EKS User Guide

InternalFailure

These errors are usually caused by an Amazon EKS server-side issue.

Fixing a common cause of AccessDenied errors for managed node groups

The most common cause of AccessDenied errors when performing operations on managed node 
groups is missing the eks:node-manager ClusterRole or ClusterRoleBinding. Amazon EKS 
sets up these resources in your cluster as part of onboarding with managed node groups, and these 
are required for managing the node groups.

The ClusterRole may change over time, but it should look similar to the following example:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata: 
  name: eks:node-manager
rules:
- apiGroups: 
  - '' 
  resources: 
  - pods 
  verbs: 
  - get 
  - list 
  - watch 
  - delete
- apiGroups: 
  - '' 
  resources: 
  - nodes 
  verbs: 
  - get 
  - list 
  - watch 
  - patch
- apiGroups: 
  - '' 
  resources: 
  - pods/eviction 
  verbs: 
  - create                

Managed node group error codes 900



Amazon EKS User Guide

            

The ClusterRoleBinding may change over time, but it should look similar to the following 
example:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata: 
  name: eks:node-manager
roleRef: 
  apiGroup: rbac.authorization.k8s.io 
  kind: ClusterRole 
  name: eks:node-manager
subjects:
- apiGroup: rbac.authorization.k8s.io 
  kind: User 
  name: eks:node-manager

Verify that the eks:node-manager ClusterRole exists.

kubectl describe clusterrole eks:node-manager

If present, compare the output to the previous ClusterRole example.

Verify that the eks:node-manager ClusterRoleBinding exists.

kubectl describe clusterrolebinding eks:node-manager

If present, compare the output to the previous ClusterRoleBinding example.

If you've identified a missing or broken ClusterRole or ClusterRoleBinding as the cause of 
an AcessDenied error while requesting managed node group operations, you can restore them. 
Save the following contents to a file named eks-node-manager-role.yaml.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata: 
  name: eks:node-manager
rules:
- apiGroups: 

Managed node group error codes 901



Amazon EKS User Guide

  - '' 
  resources: 
  - pods 
  verbs: 
  - get 
  - list 
  - watch 
  - delete
- apiGroups: 
  - '' 
  resources: 
  - nodes 
  verbs: 
  - get 
  - list 
  - watch 
  - patch
- apiGroups: 
  - '' 
  resources: 
  - pods/eviction 
  verbs: 
  - create
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata: 
  name: eks:node-manager
roleRef: 
  apiGroup: rbac.authorization.k8s.io 
  kind: ClusterRole 
  name: eks:node-manager
subjects:
- apiGroup: rbac.authorization.k8s.io 
  kind: User 
  name: eks:node-manager

Apply the file.

kubectl apply -f eks-node-manager-role.yaml

Retry the node group operation to see if that resolved your issue.

Managed node group error codes 902



Amazon EKS User Guide

Not authorized for images

One potential cause of a Not authorized for images error message is using a private Amazon 
EKS Windows AMI to launch Windows managed node groups. After releasing new Windows AMIs, 
AWS makes AMIs that are older than 4 months private, which makes them no longer accessible. 
If your managed node group is using a private Windows AMI, consider updating your Windows 
managed node group. While we can’t guarantee that we can provide access to AMIs that have been 
made private, you can request access by filing a ticket with AWS Support. For more information, 
see Patches, security updates, and AMI IDs in the Amazon EC2 User Guide for Windows Instances.

Node is in NotReady state

If your node enters a NotReady status, this likely indicates that the node is unhealthy and 
unavailable to schedule new Pods. This can occur for various reasons, such as the node lacking 
sufficient resources for CPU, memory, or available disk space.

For Amazon EKS optimized Windows AMIs, there’s no reservation for compute resources specified 
by default in the kubelet configuration. To help prevent resource issues, you can reserve compute 
resources for system processes by providing the kubelet with configuration values for kube-
reserved and/or system-reserved. You do this using the -KubeletExtraArgs command-
line parameter in the bootstrap script. For more information, see Reserve Compute Resources for 
System Daemons in the Kubernetes documentation and Bootstrap script configuration parameters
in this user guide.

CNI log collection tool

The Amazon VPC CNI plugin for Kubernetes has its own troubleshooting script that is available on 
nodes at /opt/cni/bin/aws-cni-support.sh. You can use the script to collect diagnostic logs 
for support cases and general troubleshooting.

Use the following command to run the script on your node:

sudo bash /opt/cni/bin/aws-cni-support.sh

Note

If the script is not present at that location, then the CNI container failed to run. You can 
manually download and run the script with the following command:

Not authorized for images 903

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/aws-windows-ami.html#ami-patches-security-ID
https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/#kube-reserved
https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/#kube-reserved
https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/#system-reserved
https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/
https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/


Amazon EKS User Guide

curl -O https://raw.githubusercontent.com/awslabs/amazon-eks-ami/master/log-
collector-script/linux/eks-log-collector.sh
sudo bash eks-log-collector.sh

The script collects the following diagnostic information. The CNI version that you have deployed 
can be earlier than the script version.

      This is version 0.6.1. New versions can be found at https://github.com/awslabs/
amazon-eks-ami

Trying to collect common operating system logs...  
Trying to collect kernel logs...  
Trying to collect mount points and volume information...  
Trying to collect SELinux status...  
Trying to collect iptables information...  
Trying to collect installed packages...  
Trying to collect active system services...  
Trying to collect Docker daemon information...  
Trying to collect kubelet information...  
Trying to collect L-IPAMD information...  
Trying to collect sysctls information...  
Trying to collect networking information...  
Trying to collect CNI configuration information...  
Trying to collect running Docker containers and gather container data...  
Trying to collect Docker daemon logs...  
Trying to archive gathered information...  

 Done... your bundled logs are located in /var/
log/eks_i-0717c9d54b6cfaa19_2020-03-24_0103-UTC_0.6.1.tar.gz

The diagnostic information is collected and stored at:

/var/log/eks_i-0717c9d54b6cfaa19_2020-03-24_0103-UTC_0.6.1.tar.gz

Container runtime network not ready

You may receive a Container runtime network not ready error and authorization errors 
similar to the following:

Container runtime network not ready 904



Amazon EKS User Guide

4191 kubelet.go:2130] Container runtime network not ready: NetworkReady=false 
 reason:NetworkPluginNotReady message:docker: network plugin is not ready: cni config 
 uninitialized
4191 reflector.go:205] k8s.io/kubernetes/pkg/kubelet/kubelet.go:452: Failed to list 
 *v1.Service: Unauthorized
4191 kubelet_node_status.go:106] Unable to register node 
 "ip-10-40-175-122.ec2.internal" with API server: Unauthorized
4191 reflector.go:205] k8s.io/kubernetes/pkg/kubelet/kubelet.go:452: Failed to list 
 *v1.Service: Unauthorized

This can happen due to one of the following reasons:

1. You either don't have an aws-auth ConfigMap on your cluster or it doesn't include entries for 
the IAM role that you configured your nodes with.

This ConfigMap entry is necessary if your nodes meet one of the following criteria:

• Managed nodes in a cluster with any Kubernetes or platform version.

• Self-managed nodes in a cluster that is earlier than one of the platform versions listed in the 
prerequisites section of the Allowing IAM roles or users access to Kubernetes objects on your 
Amazon EKS cluster topic.

To resolve the issue, view the existing entries in your ConfigMap by replacing my-cluster in 
the following command with the name of your cluster and then running the modified command:
eksctl get iamidentitymapping --cluster my-cluster. If you receive an error 
message from the command, it might be because your cluster doesn't have an aws-auth
ConfigMap. The following command adds an entry to the ConfigMap. If the ConfigMap
doesn't exist, the command also creates it. Replace 111122223333 with the AWS account ID for 
the IAM role and myAmazonEKSNodeRole with the name of your node's role.

eksctl create iamidentitymapping --cluster my-cluster \ 
    --arn arn:aws:iam::111122223333:role/myAmazonEKSNodeRole --group 
 system:bootstrappers,system:nodes \ 
    --username system:node:{{EC2PrivateDNSName}}

The ARN of the role that you specify can't include a path other than /. For example, if the 
name of your role is development/apps/my-role, you'd need to change it to my-role when 
specifying the ARN of the role. Make sure that you specify the node IAM role ARN (not the 
instance profile ARN).

Container runtime network not ready 905

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-friendly-names


Amazon EKS User Guide

2. Your self-managed nodes are in a cluster with a platform version at the minimum version listed 
in the prerequisites in the Allowing IAM roles or users access to Kubernetes objects on your 
Amazon EKS cluster topic, but an entry isn't listed in the aws-auth ConfigMap (see previous 
item) for the node's IAM role or an access entry doesn't exist for the role. To resolve the issue, 
view your existing access entries by replacing my-cluster in the following command with 
the name of your cluster and then running the modified command: aws eks list-access-
entries --cluster-name my-cluster. The following command adds an access entry 
for the node's IAM role. Replace 111122223333 with the AWS account ID for the IAM role 
and myAmazonEKSNodeRole with the name of your node's role. If you have a Windows node, 
replace EC2_Linux with EC2_Windows. Make sure that you specify the node IAM role ARN (not 
the instance profile ARN).

aws eks create-access-entry --cluster-name my-cluster --principal-arn 
 arn:aws:iam::111122223333:role/myAmazonEKSNodeRole --type EC2_Linux

TLS handshake timeout

When a node is unable to establish a connection to the public API server endpoint, you may see an 
error similar to the following error.

server.go:233] failed to run Kubelet: could not init cloud provider "aws": error 
 finding instance i-1111f2222f333e44c: "error listing AWS instances: \"RequestError: 
 send request failed\\ncaused by: Post  net/http: TLS handshake timeout\""

The kubelet process will continually respawn and test the API server endpoint. The error can also 
occur temporarily during any procedure that performs a rolling update of the cluster in the control 
plane, such as a configuration change or version update.

To resolve the issue, check the route table and security groups to ensure that traffic from the nodes 
can reach the public endpoint.

InvalidClientTokenId

If you're using IAM roles for service accounts for a Pod or DaemonSet deployed to a cluster in a 
China AWS Region, and haven't set the AWS_DEFAULT_REGION environment variable in the spec, 
the Pod or DaemonSet may receive the following error:

TLS handshake timeout 906



Amazon EKS User Guide

An error occurred (InvalidClientTokenId) when calling the GetCallerIdentity operation: 
 The security token included in the request is invalid

To resolve the issue, you need to add the AWS_DEFAULT_REGION environment variable to your Pod 
or DaemonSet spec, as shown in the following example Pod spec.

apiVersion: v1
kind: Pod
metadata: 
  name: envar-demo 
  labels: 
    purpose: demonstrate-envars
spec: 
  containers: 
  - name: envar-demo-container 
    image: gcr.io/google-samples/node-hello:1.0 
    env: 
    - name: AWS_DEFAULT_REGION 
      value: "region-code"

VPC admission webhook certificate expiration

If the certificate used to sign the VPC admission webhook expires, the status for new Windows Pod 
deployments stays at ContainerCreating.

To resolve the issue if you have legacy Windows support on your data plane, see Renewing the VPC 
admission webhook certificate. If your cluster and platform version are later than a version listed in 
the Windows support prerequisites, then we recommend that you remove legacy Windows support 
on your data plane and enable it for your control plane. Once you do, you don't need to manage 
the webhook certificate. For more information, see Enabling Windows support for your Amazon 
EKS cluster.

Node groups must match Kubernetes version before upgrading 
control plane

Before you upgrade a control plane to a new Kubernetes version, the minor version of the 
managed and Fargate nodes in your cluster must be the same as the version of your control plane's 
current version. The Amazon EKS update-cluster-version API rejects requests until you 

VPC admission webhook certificate expiration 907



Amazon EKS User Guide

upgrade all Amazon EKS managed nodes to the current cluster version. Amazon EKS provides APIs 
to upgrade managed nodes. For information on upgrading a managed node group's Kubernetes 
version, see Updating a managed node group. To upgrade the version of a Fargate node, delete the 
pod that's represented by the node and redeploy the pod after you upgrade your control plane. For 
more information, see Updating an Amazon EKS cluster Kubernetes version.

When launching many nodes, there are Too Many Requests
errors

If you launch many nodes simultaneously, you may see an error message in the Amazon EC2 user 
data execution logs that says Too Many Requests. This can occur because the control plane is 
being overloaded with describeCluster calls. The overloading results in throttling, nodes failing 
to run the bootstrap script, and nodes failing to join the cluster altogether.

Make sure that --apiserver-endpoint, --b64-cluster-ca, and --dns-cluster-ip
arguments are being passed to the node's bootstrap script. When including these arguments, 
there's no need for the bootstrap script to make a describeCluster call, which helps prevent 
the control plane from being overloaded. For more information, see Provide user data to pass 
arguments to the bootstrap.sh file included with an Amazon EKS optimized Linux/Bottlerocket 
AMI.

HTTP 401 unauthorized error response on Kubernetes API 
server requests

You see these errors if a Pod's service account token has expired on a cluster.

Your Amazon EKS cluster's Kubernetes API server rejects requests with tokens older than 90 days. 
In previous Kubernetes versions, tokens did not have an expiration. This means that clients that 
rely on these tokens must refresh them within an hour. To prevent the Kubernetes API server from 
rejecting your request due to an invalid token, the Kubernetes client SDK version used by your 
workload must be the same, or later than the following versions:

• Go version 0.15.7 and later

• Python version 12.0.0 and later

• Java version 9.0.0 and later

• JavaScript version 0.10.3 and later

When launching many nodes, there are Too Many Requests errors 908

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html#user-data-shell-scripts
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html#user-data-shell-scripts
https://kubernetes.io/docs/reference/using-api/client-libraries/


Amazon EKS User Guide

• Ruby master branch

• Haskell version 0.3.0.0

• C# version 7.0.5 and later

You can identify all existing Pods in your cluster that are using stale tokens. For more information, 
see Kubernetes service accounts.

Amazon EKS platform version is more than two versions behind 
the current platform version

This can happen when Amazon EKS isn't able to automatically update your cluster's platform 
version. Though there are many causes for this, some of the common causes follow. If any of these 
problems apply to your cluster, it may still function, its platform version just won't be updated by 
Amazon EKS.

Problem

The cluster IAM role was deleted – This role was specified when the cluster was created. You can 
see which role was specified with the following command. Replace my-cluster with the name of 
your cluster.

aws eks describe-cluster --name my-cluster --query cluster.roleArn --output text | cut 
 -d / -f 2

An example output is as follows.

eksClusterRole

Solution

Create a new cluster IAM role with the same name.

Problem

A subnet specified during cluster creation was deleted – The subnets to use with the cluster were 
specified during cluster creation. You can see which subnets were specified with the following 
command. Replace my-cluster with the name of your cluster.

Old platform version 909



Amazon EKS User Guide

aws eks describe-cluster --name my-cluster --query cluster.resourcesVpcConfig.subnetIds

An example output is as follows.

[
"subnet-EXAMPLE1",
"subnet-EXAMPLE2"
]

Solution

Confirm whether the subnet IDs exist in your account.

vpc_id=$(aws eks describe-cluster --name my-cluster --query 
 cluster.resourcesVpcConfig.vpcId --output text)
aws ec2 describe-subnets --filters "Name=vpc-id,Values=$vpc_id" --query 
 "Subnets[*].SubnetId"

An example output is as follows.

[
"subnet-EXAMPLE3",
"subnet-EXAMPLE4"
]

If the subnet IDs returned in the output don't match the subnet IDs that were specified when the 
cluster was created, then if you want Amazon EKS to update the cluster, you need to change the 
subnets used by the cluster. This is because if you specified more than two subnets when you 
created your cluster, Amazon EKS randomly selects subnets that you specified to create new elastic 
network interfaces in. These network interfaces enable the control plane to communicate with 
your nodes. Amazon EKS won't update the cluster if the subnet it selects doesn't exist. You have no 
control over which of the subnets that you specified at cluster creation that Amazon EKS chooses 
to create a new network interface in.

When you initiate a Kubernetes version update for your cluster, the update can fail for the same 
reason.

Problem

Old platform version 910



Amazon EKS User Guide

A security group specified during cluster creation was deleted – If you specified security groups 
during cluster creation, you can see their IDs with the following command. Replace my-cluster
with the name of your cluster.

aws eks describe-cluster --name my-cluster --query 
 cluster.resourcesVpcConfig.securityGroupIds

An example output is as follows.

[ 
    "sg-EXAMPLE1"
]

If [] is returned, then no security groups were specified when the cluster was created and a 
missing security group isn't the problem. If security groups are returned, then confirm that the 
security groups exist in your account.

Solution

Confirm whether these security groups exist in your account.

vpc_id=$(aws eks describe-cluster --name my-cluster --query 
 cluster.resourcesVpcConfig.vpcId --output text)
aws ec2 describe-security-groups --filters "Name=vpc-id,Values=$vpc_id" --query 
 "SecurityGroups[*].GroupId"

An example output is as follows.

[
"sg-EXAMPLE2"
]

If the security group IDs returned in the output don't match the security group IDs that were 
specified when the cluster was created, then if you want Amazon EKS to update the cluster, you 
need to change the security groups used by the cluster. Amazon EKS won't update a cluster if the 
security group IDs specified at cluster creation don't exist.

When you initiate a Kubernetes version update for your cluster, the update can fail for the same 
reason.

Old platform version 911



Amazon EKS User Guide

Other reasons that Amazon EKS doesn't update the platform version of your cluster

• You don't have at least six (though we recommend 16) available IP addresses in each of the 
subnets that you specified when you created your cluster. If you don't have enough available IP 
addresses in the subnet, you either need to free up IP addresses in the subnet or you need to 
change the subnets used by the cluster to use subnets with enough available IP addresses.

• You enabled secrets encryption when you created your cluster and the AWS KMS key that you 
specified has been deleted. If you want Amazon EKS to update the cluster, you need to create a 
new cluster

Cluster health FAQs and error codes with resolution paths

Amazon EKS detects issues with your EKS clusters and the cluster infrastructure and stores it in the
cluster health. You can detect, troubleshoot, and address cluster issues more rapidly with the aid 
of cluster health information. This enables you to create application environments that are more 
secure and up-to-date. Additionally, it may be impossible for you to upgrade to newer versions of 
Kubernetes or for Amazon EKS to install security updates on a degraded cluster as a result of issues 
with the necessary infrastructure or cluster configuration. Amazon EKS can take 3 hours to detect 
issues or detect that an issue is resolved.

The health of an Amazon EKS cluster is a shared responsibility between Amazon EKS and its users. 
You are responsible for the prerequisite infrastructure of IAM roles and Amazon VPC subnets, as 
well as other necessary infrastructure, that must be provided in advance. Amazon EKS detects 
changes in the configuration of this infrastructure and the cluster.

To access your health of your cluster in the Amazon EKS console, look for a section called Health 
Issues in the Overview tab of the Amazon EKS cluster detail page. This data will be also be 
available by calling the DescribeCluster action in the EKS API, for example from within the AWS 
Command Line Interface.

Why should I use this feature?

You will get increased visibility into the health of your Amazon EKS cluster, quickly diagnose 
and fix any issues, without needing to spend time debugging or opening AWS support cases. 
For example: you accidentally deleted a subnet for the Amazon EKS cluster, Amazon EKS won’t 
be able to create cross account network interfaces and Kubernetes AWS CLI commands such 
as kubectl exec or kubectl logs. These will fail with the error: Error from server: 
error dialing backend: remote error: tls: internal error. Now you will see an 

Cluster health FAQs and error codes with resolution paths 912



Amazon EKS User Guide

Amazon EKS health issue that says: subnet-da60e280 was deleted: could not create 
network interface.

How does this feature relate or work with other AWS services?

IAM roles and Amazon VPC subnets are two examples of prerequisite infrastructure that cluster 
health detects issues with. This feature will return detailed information if those resources are 
not configured properly.

Does a cluster with health issues incur charges?

Yes, every Amazon EKS cluster is billed at the standard Amazon EKS pricing. The cluster health
feature is available at no additional charge.

Does this feature work with Amazon EKS clusters on AWS Outposts?

Yes, cluster issues are detected for EKS clusters in the AWS Cloud including extended clusters
on AWS Outposts and local clusters on AWS Outposts. Cluster health doesn't detect issues with 
Amazon EKS Anywhere or Amazon EKS Distro (EKS-D).

Can I get notified when new issues are detected?

No, you need to check the Amazon EKS Console or call the EKS DescribeCluster API.

Does the console give me warnings for health issues?

Yes, any cluster with health issues will include a banner at the top of the console.

The first two columns are what are needed for API response values. The third field of the Health 
ClusterIssue object is resourceIds, the return of which is dependent on the issue type.

Code Message ResourceI 
ds

Cluster 
Recoverab 
le?

SUBNET_NO 
T_FOUND

We couldn't find one or more 
subnets currently associated 
with your cluster. Call Amazon 
EKS update-cluster-config API to 
update subnets.

Subnet 
Ids

Yes

SECURITY_ 
GROUP_NOT_FOUND

We couldn't find one or more 
security groups currently 

Security 
group Ids

Yes

Cluster health FAQs and error codes with resolution paths 913

https://docs.aws.amazon.com/eks/latest/APIReference/API_ClusterIssue.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_ClusterIssue.html


Amazon EKS User Guide

Code Message ResourceI 
ds

Cluster 
Recoverab 
le?

associated with your cluster. Call 
Amazon EKS update-cluster-con 
fig API to update security groups

IP_NOT_AVAILABLE One or more of the subnets 
associated with your cluster does 
not have enough available IP 
addresses for Amazon EKS to 
perform cluster management 
operations. Free up addresses 
in the subnet(s), or associate 
different subnets to your cluster 
using the Amazon EKS update-cl 
uster-config API.

Subnet 
Ids

Yes

VPC_NOT_FOUND We couldn't find the VPC 
associated with your cluster. You 
must delete and recreate your 
cluster.

VPC id No

ASSUME_RO 
LE_ACCESS_DENIED

Your cluster is not using the 
Amazon EKS service-linked-rol 
e. We couldn't assume the role 
associated with your cluster 
to perform required Amazon 
EKS management operations. 
Check the role exists and has the 
required trust policy.

The 
cluster 
IAM role

Yes

Cluster health FAQs and error codes with resolution paths 914



Amazon EKS User Guide

Code Message ResourceI 
ds

Cluster 
Recoverab 
le?

PERMISSIO 
N_ACCESS_DENIED

Your cluster is not using the 
Amazon EKS service-linked-rol 
e. The role associated with your 
cluster does not grant sufficient 
permissions for Amazon EKS to 
perform required managemen 
t operations. Check the policies 
attached to the cluster role and 
if any separate deny policies are 
applied.

The 
cluster 
IAM role

Yes

ASSUME_RO 
LE_ACCESS 
_DENIED_USING_SLR

We couldn't assume the Amazon 
EKS cluster management service-
linked-role. Check the role exists 
and has the required trust policy.

The 
Amazon 
EKS 
service-l 
inked-rol 
e

Yes

PERMISSIO 
N_ACCESS_ 
DENIED_USING_SLR

The Amazon EKS cluster 
management service-linked-
role does not grant sufficient 
permissions for Amazon EKS to 
perform required managemen 
t operations. Check the policies 
attached to the cluster role and 
if any separate deny policies are 
applied.

The 
Amazon 
EKS 
service-l 
inked-rol 
e

Yes

OPT_IN_REQUIRED Your account doesn't have an 
Amazon EC2 service subscription. 
Update your account subscript 
ions in your account settings 
page.

N/A Yes

Cluster health FAQs and error codes with resolution paths 915



Amazon EKS User Guide

Code Message ResourceI 
ds

Cluster 
Recoverab 
le?

STS_REGIO 
NAL_ENDPO 
INT_DISABLED

The STS regional endpoint is 
disabled. Enable the endpoint for 
Amazon EKS to perform required 
cluster management operations.

N/A Yes

KMS_KEY_DISABLED The AWS KMS Key associated with 
your cluster is disabled. Re-enable 
 the key to recover your cluster.

The KMS 
Key Arn

Yes

KMS_KEY_N 
OT_FOUND

We couldn't find the AWS KMS 
key associated with your cluster. 
You must delete and recreate the 
cluster.

The KMS 
Key ARN

No

KMS_GRANT 
_REVOKED

Grants for the AWS KMS Key 
associated with your cluster are 
revoked. You must delete and 
recreate the cluster.

The KMS 
Key Arn

No

Cluster health FAQs and error codes with resolution paths 916



Amazon EKS User Guide

Amazon EKS Connector

You can use Amazon EKS Connector to register and connect any conformant Kubernetes cluster 
to AWS and visualize it in the Amazon EKS console. After a cluster is connected, you can see the 
status, configuration, and workloads for that cluster in the Amazon EKS console. You can use 
this feature to view connected clusters in Amazon EKS console, but you can't manage them. The 
Amazon EKS Connector requires an agent that is an open source project on Github. For additional 
technical content, including frequently asked questions and troubleshooting, see Troubleshooting 
issues in Amazon EKS Connector

The Amazon EKS Connector can connect the following types of Kubernetes clusters to Amazon 
EKS.

• On-premises Kubernetes clusters

• Self-managed clusters that are running on Amazon EC2

• Managed clusters from other cloud providers

Amazon EKS Connector considerations

Before you use Amazon EKS Connector, understand the following:

• You must have administrative privileges to the Kubernetes cluster to connect the cluster to 
Amazon EKS.

• The Kubernetes cluster must have Linux 64-bit (x86) worker nodes present before connecting. 
ARM worker nodes aren't supported.

• You must have worker nodes in your Kubernetes cluster that have outbound access to the ssm.
and ssmmessages. Systems Manager endpoints. For more information, see Systems Manager 
endpoints in the AWS General Reference.

• By default, you can connect up to 10 clusters in a Region. You can request an increase through 
the service quota console. See Requesting a quota increase for more information.

• Only the Amazon EKS RegisterCluster, ListClusters, DescribeCluster, and
DeregisterCluster APIs are supported for external Kubernetes clusters.

• You must have the following permissions to register a cluster:

• eks:RegisterCluster

Considerations 917

https://github.com/aws/amazon-eks-connector
https://docs.aws.amazon.com/general/latest/gr/ssm.html
https://docs.aws.amazon.com/general/latest/gr/ssm.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html


Amazon EKS User Guide

• ssm:CreateActivation

• ssm:DeleteActivation

• iam:PassRole

• You must have the following permissions to deregister a cluster:

• eks:DeregisterCluster

• ssm:DeleteActivation

• ssm:DeregisterManagedInstance

Required IAM roles for Amazon EKS Connector

Using the Amazon EKS Connector requires the following two IAM roles:

• The Amazon EKS Connector service-linked role is created when you register a cluster for the first 
time.

• You must create the Amazon EKS Connector agent IAM role. See Amazon EKS connector IAM role
for details.

To enable cluster and workload view permission for IAM principals, apply the eks-connector and 
Amazon EKS Connector cluster roles to your cluster. Follow the steps in Granting access to an IAM 
principal to view Kubernetes resources on a cluster.

Connecting an external cluster

You can connect an external Kubernetes cluster to Amazon EKS by using multiple methods in the 
following process. This process involves two steps: Registering the cluster with Amazon EKS and 
installing the eks-connector agent in the cluster.

Important

You must complete the second step within 3 days of completing the first step, before the 
registration expires.

Required IAM permissions 918

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html


Amazon EKS User Guide

Connector methods

Not all of the methods to install the agent can be used after each of the methods to register the 
cluster. The following table lists each of the registration method and which methods for installing 
the agent can be used.

Step Methods

Register the cluster AWS Management 
Console

AWS Command Line 
Interface

eksctl

Install the agent Helm, YAML 
manifests

Helm, YAML 
manifests

YAML manifests

Prerequisites

• Ensure the Amazon EKS Connector agent role was created. Follow the steps in Creating the 
Amazon EKS connector agent role.

• You must have the following permissions to register a cluster:

• eks:RegisterCluster

• ssm:CreateActivation

• ssm:DeleteActivation

• iam:PassRole

Step 1: Registering the cluster

AWS CLI

Prerequisites

• AWS CLI must be installed. To install or upgrade it, see Installing the AWS CLI.

To register your cluster with the AWS CLI

• For the Connector configuration, specify your Amazon EKS Connector agent IAM role. For 
more information, see Required IAM roles for Amazon EKS Connector.

Connector methods 919

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html


Amazon EKS User Guide

aws eks register-cluster \ 
     --name my-first-registered-cluster \ 
     --connector-config roleArn=arn:aws:iam::111122223333:role/
AmazonEKSConnectorAgentRole,provider="OTHER" \ 
     --region aws-region

An example output is as follows.

{ 
    "cluster": { 
        "name": "my-first-registered-cluster", 
        "arn": "arn:aws:eks:region:111122223333:cluster/my-first-registered-
cluster", 
        "createdAt": 1627669203.531, 
        "ConnectorConfig": { 
            "activationId": "xxxxxxxxACTIVATION_IDxxxxxxxx", 
            "activationCode": "xxxxxxxxACTIVATION_CODExxxxxxxx", 
            "activationExpiry": 1627672543.0, 
            "provider": "OTHER", 
            "roleArn": "arn:aws:iam::111122223333:role/
AmazonEKSConnectorAgentRole" 
        }, 
        "status": "CREATING" 
    }
}              

You use the aws-region, activationId, and activationCode values in the next step.

AWS Management Console

To register your Kubernetes cluster with the console.

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

2. Choose Add cluster and select Register to bring up the configuration page.

3. On the Configure cluster section, fill in the following fields:

• Name – A unique name for your cluster.

• Provider – Choose to display the dropdown list of Kubernetes cluster providers. If you 
don't know the specific provider, select Other.

Step 1: Registering the cluster 920

https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

• EKS Connector role – Select the role to use for connecting the cluster.

4. Select Register cluster.

5. The Cluster overview page displays. If you want to use the Helm chart, copy the helm 
install command and continue to the next step. If you want to use the YAML manifest, 
choose Download YAML file to download the manifest file to your local drive.

Important

• This is your only opportunity to copy the helm install command or download 
this file. Don't navigate away from this page, as the link will not be accessible and 
you must deregister the cluster and start the steps from the beginning.

• The command or manifest file can be used only once for the registered cluster. If 
you delete resources from the Kubernetes cluster, you must re-register the cluster 
and obtain a new manifest file.

Continue to the next step to apply the manifest file to your Kubernetes cluster.

eksctl

Prerequisites

• eksctl version 0.68 or later must be installed. To install or upgrade it, see Getting started 
with Amazon EKS – eksctl.

To register your cluster with eksctl

1. Register the cluster by providing a name, provider, and region.

eksctl register cluster --name my-cluster --provider my-provider --
region region-code

Example output:

2021-08-19 13:47:26 [#]  creating IAM role "eksctl-20210819194112186040"
2021-08-19 13:47:26 [#]  registered cluster "<name>" successfully

Step 1: Registering the cluster 921



Amazon EKS User Guide

2021-08-19 13:47:26 [#]  wrote file eks-connector.yaml to <current directory>
2021-08-19 13:47:26 [#]  wrote file eks-connector-clusterrole.yaml to <current 
 directory>
2021-08-19 13:47:26 [#]  wrote file eks-connector-console-dashboard-full-access-
group.yaml to <current directory>
2021-08-19 13:47:26 [!]  note: "eks-connector-clusterrole.yaml" and "eks-
connector-console-dashboard-full-access-group.yaml" give full EKS Console access 
 to IAM identity "<aws-arn>", edit if required; read https://eksctl.io/usage/
eks-connector for more info
2021-08-19 13:47:26 [#]  run `kubectl apply -f eks-connector.yaml,eks-connector-
clusterrole.yaml,eks-connector-console-dashboard-full-access-group.yaml` before 
 expiry> to connect the cluster 
                             

This creates files on your local computer. These files must be applied to the external cluster 
within 3 days, or the registration expires.

2. In a terminal that can access the cluster, apply the eks-connector-binding.yaml file:

kubectl apply -f eks-connector-binding.yaml

Step 2: Installing the eks-connector agent

Helm chart

1. If you used the AWS CLI in the previous step, replace the ACTIVATION_CODE
and ACTIVATION_ID in the following command with the activationId, and
activationCode values respectively. Replace the aws-region with the AWS Region that 
you used in the previous step. Then run the command to install the eks-connector agent 
on the registering cluster:

$ helm install eks-connector \ 
  --namespace eks-connector \ 
  oci://public.ecr.aws/eks-connector/eks-connector-chart \ 
  --set eks.activationCode=ACTIVATION_CODE \ 
  --set eks.activationId=ACTIVATION_ID \ 
  --set eks.agentRegion=aws-region

If you used the AWS Management Console in the previous step, use the command that you 
copied from the previous step that has these values filled in.

Step 2: Installing the agent 922



Amazon EKS User Guide

2. Check the healthiness of the installed eks-connector deployment and wait for the status 
of the registered cluster in Amazon EKS to be ACTIVE.

YAML manifest

Complete the connection by applying the Amazon EKS Connector manifest file to your 
Kubernetes cluster. To do this, you must use the methods described previously. If the manifest 
isn't applied within three days, the Amazon EKS Connector registration expires. If the cluster 
connection expires, the cluster must be deregistered before connecting the cluster again.

1. Download the Amazon EKS Connector YAML file.

curl -O https://amazon-eks.s3.us-west-2.amazonaws.com/eks-connector/manifests/
eks-connector/latest/eks-connector.yaml

2. Edit the Amazon EKS Connector YAML file to replace all references of %AWS_REGION
%, %EKS_ACTIVATION_ID%, %EKS_ACTIVATION_CODE% with the aws-region,
activationId, and activationCode from the output of the previous step.

The following example command can replace these values.

sed -i "s~%AWS_REGION%~$aws-region~g; s~%EKS_ACTIVATION_ID
%~$EKS_ACTIVATION_ID~g; s~%EKS_ACTIVATION_CODE%~$(echo -n $EKS_ACTIVATION_CODE | 
 base64)~g" eks-connector.yaml

Important

Ensure that your activation code is in the base64 format.

3. In a terminal that can access the cluster, you can apply the updated manifest file by running 
the following command:

kubectl apply -f eks-connector.yaml

4. After the Amazon EKS Connector manifest and role binding YAML files are applied to your 
Kubernetes cluster, confirm that the cluster is now connected.

aws eks describe-cluster \ 
     --name "my-first-registered-cluster" \ 

Step 2: Installing the agent 923



Amazon EKS User Guide

     --region AWS_REGION

The output should include status=ACTIVE.

5. (Optional) Add tags to your cluster. For more information, see Tagging your Amazon EKS 
resources.

Next steps

If you have any issues with these steps, see Troubleshooting issues in Amazon EKS Connector.

To grant additional IAM principals access to the Amazon EKS console to view Kubernetes resources 
in a connected cluster, see Granting access to an IAM principal to view Kubernetes resources on a 
cluster.

Granting access to an IAM principal to view Kubernetes 
resources on a cluster

Grant IAM principals access to the Amazon EKS console to view information about Kubernetes 
resources running on your connected cluster.

Prerequisites

The IAM principal that you use to access the AWS Management Console must meet the following 
requirements:

• It must have the eks:AccessKubernetesApi IAM permission.

• The Amazon EKS Connector service account can impersonate the IAM principal in the cluster. 
This allows the Amazon EKS Connector to map the IAM principal to a Kubernetes user.

To create and apply the Amazon EKS Connector cluster role

1. Download the eks-connector cluster role template.

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/eks-connector/manifests/eks-
connector-console-roles/eks-connector-clusterrole.yaml

2. Edit the cluster role template YAML file. Replace references of %IAM_ARN% with the Amazon 
Resource Name (ARN) of your IAM principal.

Next steps 924

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html


Amazon EKS User Guide

3. Apply the Amazon EKS Connector cluster role YAML to your Kubernetes cluster.

kubectl apply -f eks-connector-clusterrole.yaml

For an IAM principal to view Kubernetes resources in Amazon EKS console, the principal must 
be associated with a Kubernetes role or clusterrole with necessary permissions to read the 
resources. For more information, see Using RBAC Authorization in the Kubernetes documentation.

To configure an IAM principal to access the connected cluster

1. You can download either of these example manifest files to create a clusterrole and
clusterrolebinding or a role and rolebinding, respectively:

View Kubernetes resources in all namespaces

The eks-connector-console-dashboard-full-access-clusterrole cluster role 
gives access to all namespaces and resources that can be visualized in the console. You 
can change the name of the role, clusterrole and their corresponding binding before 
applying it to your cluster. Use the following command to download a sample file.

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/eks-connector/manifests/
eks-connector-console-roles/eks-connector-console-dashboard-full-access-
group.yaml

View Kubernetes resources in a specific namespace

The namespace in this file is default, so if you want to specify a different namespace, 
edit the file before applying it to your cluster.Use the following command to download a 
sample file.

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/eks-connector/manifests/
eks-connector-console-roles/eks-connector-console-dashboard-restricted-access-
group.yaml

2. Edit the full access or restricted access YAML file to replace references of %IAM_ARN% with the 
Amazon Resource Name (ARN) of your IAM principal.

3. Apply the full access or restricted access YAML files to your Kubernetes cluster. Replace the 
YAML file value with your own.

Prerequisites 925

https://kubernetes.io/docs/reference/access-authn-authz/rbac/


Amazon EKS User Guide

kubectl apply -f eks-connector-console-dashboard-full-access-group.yaml

To view Kubernetes resources in your connected cluster, see View Kubernetes resources. Data for 
some resource types on the Resources tab isn't available for connected clusters.

Deregistering a cluster

If you are finished using a connected cluster, you can deregister it. After it's deregistered, the 
cluster is no longer visible in the Amazon EKS console.

You must have the following permissions to call the deregisterCluster API:

• eks:DeregisterCluster

• ssm:DeleteActivation

• ssm:DeregisterManagedInstance

This process involves two steps: Deregistering the cluster with Amazon EKS and uninstalling the 
eks-connector agent in the cluster.

To deregister the Kubernetes cluster

AWS CLI

Prerequisites

• AWS CLI must be installed. To install or upgrade it, see Installing the AWS CLI.

• Ensure the Amazon EKS Connector agent role was created. .

Deregister the connected cluster.

aws eks deregister-cluster \ 
    --name my-cluster \ 
    --region region-code

AWS Management Console

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

Deregister a cluster 926

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

2. Choose Clusters.

3. On the Clusters page, select the connected cluster and select Deregister.

4. Confirm that you want to deregister the cluster.

eksctl

Prerequisites

• eksctl version 0.68 or later must be installed. To install or upgrade it, see Getting started 
with Amazon EKS – eksctl.

• Ensure the Amazon EKS Connector agent role was created. .

To deregister your cluster with eksctl

• For the Connector configuration, specify your Amazon EKS Connector agent IAM role. For 
more information, see Required IAM roles for Amazon EKS Connector.

eksctl deregister cluster --name my-cluster

To clean up the resources in your Kubernetes cluster

Helm

• Run the following command to uninstall the agent.

helm -n eks-connector uninstall eks-connector

YAML manifest

1. Delete the Amazon EKS Connector YAML file from your Kubernetes cluster.

kubectl delete -f eks-connector.yaml

2. If you created clusterrole or clusterrolebindings for additional IAM principals to 
access the cluster, delete them from your Kubernetes cluster.

To clean up the resources in your Kubernetes cluster 927

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html


Amazon EKS User Guide

Troubleshooting issues in Amazon EKS Connector

This topic covers some of the common errors that you might encounter while using the Amazon 
EKS Connector, including instructions on how to resolve them and workarounds.

Basic troubleshooting

This section describes steps to diagnose the issue if it's unclear.

Check Amazon EKS Connector status

Check the Amazon EKS Connector status.

kubectl get pods -n eks-connector

Inspect Amazon EKS Connector logs

The Amazon EKS Connector Pod consists of three containers. To retrieve full logs for all of these 
containers so that you can inspect them, run the following commands:

• connector-init

kubectl logs eks-connector-0 --container connector-init -n eks-connector
kubectl logs eks-connector-1 --container connector-init -n eks-connector

• connector-proxy

kubectl logs eks-connector-0 --container connector-proxy -n eks-connector
kubectl logs eks-connector-1 --container connector-proxy -n eks-connector

• connector-agent

kubectl exec eks-connector-0 --container connector-agent -n eks-connector -- cat /
var/log/amazon/ssm/amazon-ssm-agent.log
kubectl exec eks-connector-1 --container connector-agent -n eks-connector -- cat /
var/log/amazon/ssm/amazon-ssm-agent.log

Amazon EKS Connector Troubleshooting 928



Amazon EKS User Guide

Get the effective cluster name

Amazon EKS clusters are uniquely identified by clusterName within a single AWS account and 
AWS Region. If you have multiple connected clusters in Amazon EKS, you can confirm which 
Amazon EKS cluster that the current Kubernetes cluster is registered to. To do this, enter the 
following to find out the clusterName of the current cluster.

kubectl exec eks-connector-0 --container connector-agent -n eks-connector \ 
  -- cat /var/log/amazon/ssm/amazon-ssm-agent.log | grep -m1 -oE "eks_c:[a-zA-Z0-9_-]+" 
 | sed -E "s/^.*eks_c:([a-zA-Z0-9_-]+)_[a-zA-Z0-9]+.*$/\1/"
kubectl exec eks-connector-1 --container connector-agent -n eks-connector \ 
  -- cat /var/log/amazon/ssm/amazon-ssm-agent.log | grep -m1 -oE "eks_c:[a-zA-Z0-9_-]+" 
 | sed -E "s/^.*eks_c:([a-zA-Z0-9_-]+)_[a-zA-Z0-9]+.*$/\1/"

Miscellaneous commands

The following commands are useful to retrieve information that you need to troubleshoot issues.

• Use the following command to gather images that's used by Pods in Amazon EKS Connector.

kubectl get pods -n eks-connector -o jsonpath="{.items[*].spec.containers[*].image}" 
 | tr -s '[[:space:]]' '\n'

• Use the following command to determine the node names that Amazon EKS Connector is 
running on.

kubectl get pods -n eks-connector -o jsonpath="{.items[*].spec.nodeName}" | tr -s 
 '[[:space:]]' '\n'

• Run the following command to get your Kubernetes client and server versions.

kubectl version

• Run the following command to get information about your nodes.

kubectl get nodes -o wide --show-labels

Helm issue: 403 Forbidden

If you received the following error when running helm install commands:

Helm issue: 403 Forbidden 929



Amazon EKS User Guide

Error: INSTALLATION FAILED: unexpected status from HEAD request to https://
public.ecr.aws/v2/eks-connector/eks-connector-chart/manifests/0.0.6: 403 Forbidden

You can run the following line to fix it:

docker logout public.ecr.aws

Console error: the cluster is stuck in the Pending state

If the cluster gets stuck in the Pending state on the Amazon EKS console after you're registered 
it, it might be because the Amazon EKS Connector didn't successfully connect the cluster to AWS 
yet. For a registered cluster, the Pending state means that the connection isn't successfully 
established. To resolve this issue, make sure that you have applied the manifest to the target 
Kubernetes cluster. If you applied it to the cluster, but the cluster is still in the Pending state, then 
the eks-connector statefulset might be unhealthy. To troubleshoot this issue, see Amazon EKS 
connector Pods are crash looping in this topic.

Console error: User “system:serviceaccount:eks-
connector:eks-connector” can't impersonate resource 
“users” in API group “” at cluster scope

The Amazon EKS Connector uses Kubernetes user impersonation to act on behalf of IAM principals
from the AWS Management Console. Each principal that accesses the Kubernetes API from the AWS
eks-connector service account must be granted permission to impersonate the corresponding 
Kubernetes user with an IAM ARN as its Kubernetes user name. In the following examples, the IAM 
ARN is mapped to a Kubernetes user.

• IAM user john from AWS account 111122223333 is mapped to a Kubernetes user. IAM best 
practices recommend that you grant permissions to roles instead of users.

arn:aws:iam::111122223333:user/john

• IAM role admin from AWS account 111122223333 is mapped to a Kubernetes user:

arn:aws:iam::111122223333:role/admin

The result is an IAM role ARN, instead of the AWS STS session ARN.

Cluster stuck in Pending state 930

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#user-impersonation
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html


Amazon EKS User Guide

For instructions on how to configure the ClusterRole and ClusterRoleBinding to grant the
eks-connector service account privilege to impersonate the mapped user, see Granting access 
to an IAM principal to view Kubernetes resources on a cluster. Make sure that in the template,
%IAM_ARN% is replaced with the IAM ARN of the AWS Management Console IAM principal.

Console error: [...] is forbidden: User [...] cannot list 
resource “[...] in API group” at the cluster scope

Consider the following problem. The Amazon EKS Connector has successfully impersonated the 
requesting AWS Management Console IAM principal in the target Kubernetes cluster. However, the 
impersonated principal doesn't have RBAC permission for Kubernetes API operations.

To resolve this issue, there are two methods to give permissions to additional users. If you 
previously installed eks-connector via helm chart, you can easily grant users access by running the 
following command. Replace the userARN1 and userARN2 with a list of the ARNs of the IAM roles 
to give access to view the Kubernetes resources:

helm upgrade eks-connector oci://public.ecr.aws/eks-connector/eks-connector-chart \ 
    --reuse-values \ 
    --set 'authentication.allowedUserARNs={userARN1,userARN2}'

Or, as the cluster administrator, grant the appropriate level of RBAC privileges to individual 
Kubernetes users. For more information and examples, see Granting access to an IAM principal to 
view Kubernetes resources on a cluster.

Console error: Amazon EKS can't communicate with your Kubernetes 
cluster API server. The cluster must be in an ACTIVE state for successful 
connection. Try again in few minutes.

If the Amazon EKS service can't communicate with the Amazon EKS connector in the target cluster, 
it might be because of one of the following reasons:

• The Amazon EKS Connector in the target cluster is unhealthy.

• Poor connectivity or an interrupted connection between the target cluster and the AWS Region.

To resolve this problem, check the Amazon EKS Connector logs. If you don't see an error for the 
Amazon EKS Connector, retry the connection after a few minutes. If you regularly experience high 

User can't list resource in API group 931



Amazon EKS User Guide

latency or intermittent connectivity for the target cluster, consider re-registering the cluster to an 
AWS Region that's located closer to you.

Amazon EKS connector Pods are crash looping

There are many reasons that can cause an Amazon EKS connector Pod to enter the
CrashLoopBackOff status. This issue likely involves the connector-init container. Check the 
status of the Amazon EKS connector Pod.

kubectl get pods -n eks-connector

An example output is as follows.

NAME              READY   STATUS                  RESTARTS   AGE
eks-connector-0   0/2     Init:CrashLoopBackOff   1          7s

If your output is similar to the previous output, see Inspect Amazon EKS Connector logs to 
troubleshoot the issue.

Failed to initiate eks-connector: InvalidActivation

When you start the Amazon EKS Connector for the first time, it registers an activationId and
activationCode with Amazon Web Services. The registration might fail, which can cause the
connector-init container to crash with an error similar to the following error.

F1116 20:30:47.261469       1 init.go:43] failed to initiate eks-connector: 
 InvalidActivation:

To troubleshoot this issue, consider the following causes and recommended fixes:

• Registration might have failed because the activationId and activationCode aren't in your 
manifest file. If this is the case, make sure that they are the correct values that were returned 
from the RegisterCluster API operation, and that the activationCode is in the manifest 
file. The activationCode is added to Kubernetes secrets, so it must be base64 encoded. For 
more information, see Step 1: Registering the cluster.

• Registration might have failed because your activation expired. This is because, for security 
reasons, you must activate the Amazon EKS Connector within three days after registering the 
cluster. To resolve this issue, make sure that the Amazon EKS Connector manifest is applied to 

Amazon EKS connector Pods are crash looping 932



Amazon EKS User Guide

the target Kubernetes cluster before the expiry date and time. To confirm your activation expiry 
date, call the DescribeCluster API operation.

aws eks describe-cluster --name my-cluster

In the following example response, the expiry date and time is recorded as
2021-11-12T22:28:51.101000-08:00.

{ 
    "cluster": { 
        "name": "my-cluster", 
        "arn": "arn:aws:eks:region:111122223333:cluster/my-cluster", 
        "createdAt": "2021-11-09T22:28:51.449000-08:00", 
        "status": "FAILED", 
        "tags": { 
        }, 
        "connectorConfig": { 
            "activationId": "00000000-0000-0000-0000-000000000000", 
            "activationExpiry": "2021-11-12T22:28:51.101000-08:00", 
            "provider": "OTHER", 
            "roleArn": "arn:aws:iam::111122223333:role/my-connector-role" 
        } 
    }
}

If the activationExpiry passed, deregister the cluster and register it again. Do this generates 
a new activation.

Cluster node is missing outbound connectivity

To work properly, the Amazon EKS Connector requires outbound connectivity to several AWS 
endpoints. You can't connect a private cluster without outbound connectivity to a target AWS 
Region. To resolve this issue, you must add the necessary outbound connectivity. For information 
about connector requirements, see Amazon EKS Connector considerations.

Cluster node is missing outbound connectivity 933



Amazon EKS User Guide

Amazon EKS connector Pods are in ImagePullBackOff state

If you run the get pods command and Pods are in the ImagePullBackOff state, they can't work 
properly. If the Amazon EKS Connector Pods are in the ImagePullBackOff state, they can't work 
properly. Check the status of your Amazon EKS Connector Pods.

kubectl get pods -n eks-connector

An example output is as follows.

NAME              READY   STATUS                  RESTARTS   AGE
eks-connector-0   0/2     Init:ImagePullBackOff   0          4s

The default Amazon EKS Connector manifest file references images from the Amazon ECR Public 
Gallery. It's possible that the target Kubernetes cluster can't pull images from the Amazon ECR 
Public Gallery. Either resolve the Amazon ECR Public Gallery image pull issue, or consider mirroring 
the images in the private container registry of your choice.

Frequently asked questions

Q: How does the underlying technology behind the Amazon EKS Connector work?

A: The Amazon EKS Connector is based on the AWS Systems Manager (Systems Manager) agent. 
The Amazon EKS Connector runs as a StatefulSet on your Kubernetes cluster. It establishes a 
connection and proxies the communication between the API server of your cluster and Amazon 
Web Services. It does this to display cluster data in the Amazon EKS console until you disconnect 
the cluster from AWS. The Systems Manager agent is an open source project. For more information 
about this project, see the GitHub project page.

Q: I have an on-premises Kubernetes cluster that I want to connect. Do I need to open firewall 
ports to connect it?

A: No, you don't need to open any firewall ports. The Kubernetes cluster only requires outbound 
connection to AWS Regions. AWS services never access resources in your on-premises network. The 
Amazon EKS Connector runs on your cluster and initiates the connection to AWS. When the cluster 
registration completes, AWS only issues commands to the Amazon EKS Connector after you start 
an action from the Amazon EKS console that requires information from the Kubernetes API server 
on your cluster.

Amazon EKS connector Pods are in ImagePullBackOff state 934

https://gallery.ecr.aws/
https://gallery.ecr.aws/
https://github.com/aws/amazon-ssm-agent


Amazon EKS User Guide

Q: What data is sent from my cluster to AWS by the Amazon EKS Connector?

A: The Amazon EKS Connector sends technical information that's necessary for your cluster to 
be registered on AWS. It also sends cluster and workload metadata for the Amazon EKS console 
features that customers request. The Amazon EKS Connector only gathers or sends this data if you 
start an action from the Amazon EKS console or the Amazon EKS API that necessitates the data to 
be sent to AWS. Other than the Kubernetes version number, AWS doesn't store any data by default. 
It stores data only if you authorize it to.

Q: Can I connect a cluster outside of an AWS Region?

A: Yes, you can connect a cluster from any location to Amazon EKS. Moreover, your Amazon EKS 
service can be located in any AWS public commercial AWS Region. This works with a valid network 
connection from your cluster to the target AWS Region. We recommend that you pick an AWS 
Region that is closest to your cluster location for UI performance optimization. For example, if 
you have a cluster running in Tokyo, connect your cluster to the AWS Region in Tokyo (that is, the
ap-northeast-1 AWS Region) for low latency. You can connect a cluster from any location to 
Amazon EKS in any of the public commercial AWS Regions, except the China or GovCloud AWS 
Regions.

Frequently asked questions 935



Amazon EKS User Guide

Amazon EKS on AWS Outposts

You can use Amazon EKS to run on-premises Kubernetes applications on AWS Outposts. You can 
deploy Amazon EKS on Outposts in the following ways:

• Extended clusters – Run the Kubernetes control plane in an AWS Region and nodes on your 
Outpost.

• Local clusters – Run the Kubernetes control plane and nodes on your Outpost.

For both deployment options, the Kubernetes control plane is fully managed by AWS. You can use 
the same Amazon EKS APIs, tools, and console that you use in the cloud to create and run Amazon 
EKS on Outposts.

The following diagram shows these deployment options.

When to use each deployment option

Both local and extended clusters are general-purpose deployment options and can be used for a 
range of applications.

With local clusters, you can run the entire Amazon EKS cluster locally on Outposts. This option can 
mitigate the risk of application downtime that might result from temporary network disconnects 
to the cloud. These network disconnects can be caused by fiber cuts or weather events. Because 
the entire Amazon EKS cluster runs locally on Outposts, applications remain available. You can 
perform cluster operations during network disconnects to the cloud. For more information, 

When to use each deployment option 936



Amazon EKS User Guide

see Preparing for network disconnects. If you're concerned about the quality of the network 
connection from your Outposts to the parent AWS Region and require high availability through 
network disconnects, use the local cluster deployment option.

With extended clusters, you can conserve capacity on your Outpost because the Kubernetes control 
plane runs in the parent AWS Region. This option is suitable if you can invest in reliable, redundant 
network connectivity from your Outpost to the AWS Region. The quality of the network connection 
is critical for this option. The way that Kubernetes handles network disconnects between the 
Kubernetes control plane and nodes might lead to application downtime. For more information 
on the behavior of Kubernetes, see Scheduling, Preemption, and Eviction in the Kubernetes 
documentation.

Comparing the deployment options

The following table compares the differences between the two options.

Feature Extended cluster Local cluster

Kubernetes control plane 
location

AWS Region Outpost

Kubernetes control plane 
account

AWS account Your account

Regional availability See Service endpoints US East (Ohio), US East 
(N. Virginia), US West (N. 
California), US West (Oregon), 
Asia Pacific (Seoul), Asia 
Pacific (Singapore), Asia 
Pacific (Sydney), Asia Pacific 
(Tokyo), Canada (Central), 
Europe (Frankfurt), Europe 
(Ireland), Europe (London), 
Middle East (Bahrain), and 
South America (São Paulo)

Kubernetes minor versions Supported Amazon EKS 
versions.

Supported Amazon EKS 
versions.

Comparing the deployment options 937

https://kubernetes.io/docs/concepts/scheduling-eviction/
https://docs.aws.amazon.com/general/latest/gr/eks.html#eks_region


Amazon EKS User Guide

Feature Extended cluster Local cluster

Platform versions See Amazon EKS platform 
versions

See Amazon EKS local cluster 
platform versions

Outpost form factors Outpost racks Outpost racks

User interfaces AWS Management Console, 
AWS CLI, Amazon EKS API,
eksctl, AWS CloudForm 
ation, and Terraform

AWS Management Console, 
AWS CLI, Amazon EKS API,
eksctl, AWS CloudForm 
ation, and Terraform

Managed policies AmazonEKSClusterPolicy and
AmazonEKSServiceRolePolicy

AmazonEKSLocalOutp 
ostClusterPolicy and
AmazonEKSLocalOutp 
ostServiceRolePolicy

Cluster VPC and subnets See Amazon EKS VPC and 
subnet requirements and 
considerations

See Amazon EKS local cluster 
VPC and subnet requirements 
and considerations

Cluster endpoint access Public or private or both Private only

Kubernetes API server 
authentication

AWS Identity and Access 
Management (IAM) and OIDC

IAM and x.509 certificates

Node types Self-managed only Self-managed only

Node compute types Amazon EC2 on-demand Amazon EC2 on-demand

Node storage types Amazon EBS gp2 and local 
NVMe SSD

Amazon EBS gp2 and local 
NVMe SSD

Amazon EKS optimized AMIs Amazon Linux, Windows, and 
Bottlerocket

Amazon Linux only

IP versions IPv4 only IPv4 only

Add-ons Amazon EKS add-ons or self-
managed add-ons

Self-managed add-ons only

Comparing the deployment options 938



Amazon EKS User Guide

Feature Extended cluster Local cluster

Default Container Network 
Interface

Amazon VPC CNI plugin for 
Kubernetes

Amazon VPC CNI plugin for 
Kubernetes

Kubernetes control plane logs Amazon CloudWatch Logs Amazon CloudWatch Logs

Load balancing Use the AWS Load Balancer 
Controller to provision 
Application Load Balancers 
only (no Network Load 
Balancers)

Use the AWS Load Balancer 
Controller to provision 
Application Load Balancers 
only (no Network Load 
Balancers)

Secrets envelope encryption See Enabling secret encryptio 
n on an existing cluster

Not supported

IAM roles for service accounts See IAM roles for service 
accounts

Not supported

Troubleshooting See Amazon EKS troublesh 
ooting

See Troubleshooting local 
clusters for Amazon EKS on 
AWS Outposts

Local clusters for Amazon EKS on AWS Outposts

You can use local clusters to run your entire Amazon EKS cluster locally on AWS Outposts. This 
helps mitigate the risk of application downtime that might result from temporary network 
disconnects to the cloud. These disconnects can be caused by fiber cuts or weather events. Because 
the entire Kubernetes cluster runs locally on Outposts, applications remain available. You can 
perform cluster operations during network disconnects to the cloud. For more information, see
Preparing for network disconnects. The following diagram shows a local cluster deployment.

Local clusters are generally available for use with Outposts racks.

Local clusters 939



Amazon EKS User Guide

Supported AWS Regions

You can create local clusters in the following AWS Regions: US East (Ohio), US East (N. Virginia), 
US West (N. California), US West (Oregon), Asia Pacific (Seoul), Asia Pacific (Singapore), Asia Pacific 
(Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), Europe 
(London), Middle East (Bahrain), and South America (São Paulo). For detailed information about 
supported features, see Comparing the deployment options.

Topics

• Creating a local cluster on an Outpost

• Amazon EKS local cluster platform versions

• Amazon EKS local cluster VPC and subnet requirements and considerations

• Preparing for network disconnects

• Capacity considerations

• Troubleshooting local clusters for Amazon EKS on AWS Outposts

Creating a local cluster on an Outpost

This topic provides an overview of what to consider when running a local cluster on an Outpost. 
The topic also provides instructions for how to deploy a local cluster on an Outpost.

Considerations

Important

• These considerations aren't replicated in related Amazon EKS documentation. If other 
Amazon EKS documentation topics conflict with the considerations here, follow the 
considerations here.

• These considerations are subject to change and might change frequently. So, we 
recommend that you regularly review this topic.

• Many of the considerations are different than the considerations for creating a cluster on 
the AWS Cloud.

Creating a local cluster 940



Amazon EKS User Guide

• Local clusters support Outpost racks only. A single local cluster can run across multiple physical 
Outpost racks that comprise a single logical Outpost. A single local cluster can't run across 
multiple logical Outposts. Each logical Outpost has a single Outpost ARN.

• Local clusters run and manage the Kubernetes control plane in your account on the Outpost. 
You can't run workloads on the Kubernetes control plane instances or modify the Kubernetes 
control plane components. These nodes are managed by the Amazon EKS service. Changes to 
the Kubernetes control plane don't persist through automatic Amazon EKS management actions, 
such as patching.

• Local clusters support self-managed add-ons and self-managed Amazon Linux node groups. The
Amazon VPC CNI plugin for Kubernetes, kube-proxy, and CoreDNS add-ons are automatically 
installed on local clusters.

• Local clusters require the use of Amazon EBS on Outposts. Your Outpost must have Amazon EBS 
available for the Kubernetes control plane storage.

• Local clusters use Amazon EBS on Outposts. Your Outpost must have Amazon EBS available for 
the Kubernetes control plane storage. Outposts support Amazon EBS gp2 volumes only.

• Amazon EBS backed Kubernetes PersistentVolumes are supported using the Amazon EBS CSI 
driver.

Prerequisites

• Familiarity with the Outposts deployment options, Capacity considerations, and Amazon EKS 
local cluster VPC and subnet requirements and considerations.

• An existing Outpost. For more information, see What is AWS Outposts.

• The kubectl command line tool is installed on your computer or AWS CloudShell. The version 
can be the same as or up to one minor version earlier or later than the Kubernetes version of 
your cluster. For example, if your cluster version is 1.28, you can use kubectl version 1.27,
1.28, or 1.29 with it. To install or upgrade kubectl, see Installing or updating kubectl.

• Version 2.12.3 or later or version 1.27.160 or later of the AWS Command Line Interface (AWS 
CLI) installed and configured on your device or AWS CloudShell. To check your current version, 
use aws --version | cut -d / -f2 | cut -d ' ' -f1. Package managers such yum,
apt-get, or Homebrew for macOS are often several versions behind the latest version of the 
AWS CLI. To install the latest version, see Installing, updating, and uninstalling the AWS CLI and
Quick configuration with aws configure in the AWS Command Line Interface User Guide. The AWS 
CLI version that is installed in AWS CloudShell might also be several versions behind the latest 

Creating a local cluster 941

https://docs.aws.amazon.com/outposts/latest/userguide/what-is-outposts.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config


Amazon EKS User Guide

version. To update it, see Installing AWS CLI to your home directory in the AWS CloudShell User 
Guide.

• An IAM principal (user or role) with permissions to create and describe an Amazon EKS 
cluster. For more information, see Create a local Kubernetes cluster on an Outpost and List or 
describe all clusters.

When a local Amazon EKS cluster is created, the IAM principal that creates the cluster is 
permanently added. The principal is specifically added to the Kubernetes RBAC authorization table 
as the administrator. This entity has system:masters permissions. The identity of this entity isn't 
visible in your cluster configuration. So, it's important to note the entity that created the cluster 
and make sure that you never delete it. Initially, only the principal that created the server can make 
calls to the Kubernetes API server using kubectl. If you use the console to create the cluster, make 
sure that the same IAM credentials are in the AWS SDK credential chain when you run kubectl
commands on your cluster. After your cluster is created, you can grant other IAM principals access 
to your cluster.

To create a local Amazon EKS local cluster

You can create a local cluster with eksctl, the AWS Management Console, the AWS CLI, the
Amazon EKS API, the AWS SDKs, AWS CloudFormation or Terraform.

1. Create a local cluster.

eksctl

Prerequisite

Version 0.172.0 or later of the eksctl command line tool installed on your device 
or AWS CloudShell. To install or update eksctl, see Installation in the eksctl
documentation.

To create your cluster with eksctl

1. Copy the contents that follow to your device. Replace the following values and then run 
the modified command to create the outpost-control-plane.yaml file:

• Replace region-code with the supported AWS Region that you want to create your 
cluster in.

Creating a local cluster 942

https://docs.aws.amazon.com/cloudshell/latest/userguide/vm-specs.html#install-cli-software
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/cli/latest/reference/eks/create-cluster.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateCluster.html
https://aws.amazon.com/developer/tools/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-eks-cluster-outpostconfig.html
https://registry.terraform.io/modules/terraform-aws-modules/eks/aws/latest
https://eksctl.io/installation


Amazon EKS User Guide

• Replace my-cluster with a name for your cluster. The name can contain only 
alphanumeric characters (case-sensitive) and hyphens. It must start with an alphabetic 
character and can't be longer than 100 characters. The name must be unique within 
the AWS Region and AWS account that you're creating the cluster in.

• Replace vpc-ExampleID1 and subnet-ExampleID1 with the IDs of your existing 
VPC and subnet. The VPC and subnet must meet the requirements in Amazon EKS 
local cluster VPC and subnet requirements and considerations.

• Replace uniqueid with the ID of your Outpost.

• Replace m5.large with an instance type available on your Outpost. Before choosing 
an instance type, see Capacity considerations. Three control plane instances are 
deployed. You can't change this number.

cat >outpost-control-plane.yaml <<EOF
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata: 
  name: my-cluster
  region: region-code
  version: "1.24"

vpc: 
  clusterEndpoints: 
    privateAccess: true 
  id: "vpc-vpc-ExampleID1" 
  subnets: 
    private: 
      outpost-subnet-1: 
        id: "subnet-subnet-ExampleID1"

outpost: 
  controlPlaneOutpostARN: arn:aws:outposts:region-code:111122223333:outpost/
op-uniqueid
  controlPlaneInstanceType: m5.large
EOF

For a complete list of all available options and defaults, see AWS Outposts Support and
Config file schema in the eksctl documentation.

Creating a local cluster 943

https://eksctl.io/usage/outposts/
https://eksctl.io/usage/schema/


Amazon EKS User Guide

2. Create the cluster using the configuration file that you created in the previous step.
eksctl creates a VPC and one subnet on your Outpost to deploy the cluster in.

eksctl create cluster -f outpost-control-plane.yaml

Cluster provisioning takes several minutes. While the cluster is being created, several 
lines of output appear. The last line of output is similar to the following example line.

[#]  EKS cluster "my-cluster" in "region-code" region is ready

Tip

To see the most options that you can specify when creating a cluster with eksctl, 
use the eksctl create cluster --help command. To see all the available 
options, you can use a config file. For more information, see Using config files
and the config file schema in the eksctl documentation. You can find config file 
examples on GitHub.

Eksctl automatically created an access entry for the IAM principal (user or role) that 
created the cluster and granted the IAM principal administrator permissions to Kubernetes 
objects on the cluster. If you don't want the cluster creator to have administrator access 
to Kubernetes objects on the cluster, add the following text to the previous configuration 
file: bootstrapClusterCreatorAdminPermissions: false (at the same level as
metadata, vpc, and outpost). If you added the option, then after cluster creation, you 
need to create an access entry for at least one IAM principal, or no IAM principals will have 
access to Kubernetes objects on the cluster.

AWS Management Console

Prerequisite

An existing VPC and subnet that meet Amazon EKS requirements. For more information, 
see Amazon EKS local cluster VPC and subnet requirements and considerations.

Creating a local cluster 944

https://eksctl.io/usage/creating-and-managing-clusters/#using-config-files
https://eksctl.io/usage/schema/
https://github.com/weaveworks/eksctl/tree/master/examples
https://github.com/weaveworks/eksctl/tree/master/examples


Amazon EKS User Guide

To create your cluster with the AWS Management Console

1. If you already have a local cluster IAM role, or you're going to create your cluster with
eksctl, then you can skip this step. By default, eksctl creates a role for you.

a. Run the following command to create an IAM trust policy JSON file.

cat >eks-local-cluster-role-trust-policy.json <<EOF
{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "ec2.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole" 
    } 
  ]
}
EOF

b. Create the Amazon EKS cluster IAM role. To create an IAM role, the IAM principal that 
is creating the role must be assigned the iam:CreateRole action (permission).

aws iam create-role --role-name myAmazonEKSLocalClusterRole --assume-role-
policy-document file://"eks-local-cluster-role-trust-policy.json"

c. Attach the Amazon EKS managed policy named
AmazonEKSLocalOutpostClusterPolicy to the role. To attach an IAM policy 
to an IAM principal, the principal that is attaching the policy must be assigned 
one of the following IAM actions (permissions): iam:AttachUserPolicy or
iam:AttachRolePolicy.

aws iam attach-role-policy --policy-arn arn:aws:iam::aws:policy/
AmazonEKSLocalOutpostClusterPolicy --role-name myAmazonEKSLocalClusterRole

2. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.

3. At the top of the console screen, make sure that you have selected a supported AWS 
Region.

Creating a local cluster 945

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSLocalOutpostClusterPolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

4. Choose Add cluster and then choose Create.

5. On the Configure cluster page, enter or select values for the following fields:

• Kubernetes control plane location – Choose AWS Outposts.

• Outpost ID – Choose the ID of the Outpost that you want to create your control plane 
on.

• Instance type – Select an instance type. Only the instance types available in your 
Outpost are displayed. In the dropdown list, each instance type describes how many 
nodes the instance type is recommended for. Before choosing an instance type, see
Capacity considerations. All replicas are deployed using the same instance type. 
You can't change the instance type after your cluster is created. Three control plane 
instances are deployed. You can't change this number.

• Name – A name for your cluster. It must be unique in your AWS account. The name can 
contain only alphanumeric characters (case-sensitive) and hyphens. It must start with 
an alphabetic character and can't be longer than 100 characters. The name must be 
unique within the AWS Region and AWS account that you're creating the cluster in.

• Kubernetes version – Choose the Kubernetes version that you want to use for your 
cluster. We recommend selecting the latest version, unless you need to use an earlier 
version.

• Cluster service role – Choose the Amazon EKS cluster IAM role that you created in a 
previous step to allow the Kubernetes control plane to manage AWS resources.

• Kubernetes cluster administrator access – If you want the IAM principal (role or user) 
that's creating the cluster to have administrator access to the Kubernetes objects on 
the cluster, accept the default (allow). Amazon EKS creates an access entry for the IAM 
principal and grants cluster administrator permissions to the access entry. For more 
information about access entries, see Allowing IAM roles or users access to Kubernetes 
objects on your Amazon EKS cluster.

If you want a different IAM principal than the principal creating the cluster to have 
administrator access to Kubernetes cluster objects, choose the disallow option. After 
cluster creation, any IAM principal that has IAM permissions to create access entries 
can add an access entries for any IAM principals that need access to Kubernetes cluster 
objects. For more information about the required IAM permissions, see Actions defined 
by Amazon Elastic Kubernetes Service in the Service Authorization Reference. If you 
choose the disallow option and don't create any access entries, then no IAM principals 
will have access to the Kubernetes objects on the cluster.

Creating a local cluster 946

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelastickubernetesservice.html#amazonelastickubernetesservice-actions-as-permissions


Amazon EKS User Guide

• Tags – (Optional) Add any tags to your cluster. For more information, see Tagging your 
Amazon EKS resources.

When you're done with this page, choose Next.

6. On the Specify networking page, select values for the following fields:

• VPC – Choose an existing VPC. The VPC must have a sufficient number of IP addresses 
available for the cluster, any nodes, and other Kubernetes resources that you want to 
create. Your VPC must meet the requirements in VPC requirements and considerations.

• Subnets – By default, all available subnets in the VPC specified in the previous field 
are preselected. The subnets that you choose must meet the requirements in Subnet 
requirements and considerations.

Security groups – (Optional) Specify one or more security groups that you want 
Amazon EKS to associate to the network interfaces that it creates. Amazon EKS 
automatically creates a security group that enables communication between your 
cluster and your VPC. Amazon EKS associates this security group, and any that you 
choose, to the network interfaces that it creates. For more information about the 
cluster security group that Amazon EKS creates, see Amazon EKS security group 
requirements and considerations. You can modify the rules in the cluster security 
group that Amazon EKS creates. If you choose to add your own security groups, you 
can't change the ones that you choose after cluster creation. For on-premises hosts 
to communicate with the cluster endpoint, you must allow inbound traffic from the 
cluster security group. For clusters that don't have an ingress and egress internet 
connection (also knows as private clusters), you must do one of the following:

• Add the security group associated with required VPC endpoints. For more 
information about the required endpoints, see interface VPC endpoints in Subnet 
access to AWS services.

• Modify the security group that Amazon EKS created to allow traffic from the 
security group associated with the VPC endpoints.

When you're done with this page, choose Next.

7. On the Configure observability page, you can optionally choose which Metrics and
Control plane logging options that you want to turn on. By default, each log type is 
turned off.

• For more information on the Prometheus metrics option, see Turn on Prometheus 
metrics when creating a cluster.

Creating a local cluster 947



Amazon EKS User Guide

• For more information on the Control plane logging options, see Amazon EKS control 
plane logging.

When you're done with this page, choose Next.

8. On the Review and create page, review the information that you entered or selected 
on the previous pages. If you need to make changes, choose Edit. When you're satisfied, 
choose Create. The Status field shows CREATING while the cluster is provisioned.

Cluster provisioning takes several minutes.

2. After your cluster is created, you can view the Amazon EC2 control plane instances that were 
created.

aws ec2 describe-instances --query 'Reservations[*].Instances[*].{Name:Tags[?
Key==`Name`]|[0].Value}' | grep my-cluster-control-plane

An example output is as follows.

"Name": "my-cluster-control-plane-id1"
"Name": "my-cluster-control-plane-id2"
"Name": "my-cluster-control-plane-id3"

Each instance is tainted with node-role.eks-local.amazonaws.com/control-plane
so that no workloads are ever scheduled on the control plane instances. For more information 
about taints, see Taints and Tolerations in the Kubernetes documentation. Amazon EKS 
continuously monitors the state of local clusters. We perform automatic management 
actions, such as security patches and repairing unhealthy instances. When local clusters are 
disconnected from the cloud, we complete actions to ensure that the cluster is repaired to a 
healthy state upon reconnect.

3. If you created your cluster using eksctl, then you can skip this step. eksctl completes this 
step for you. Enable kubectl to communicate with your cluster by adding a new context to 
the kubectl config file. For instructions on how to create and update the file, see Creating 
or updating a kubeconfig file for an Amazon EKS cluster.

aws eks update-kubeconfig --region region-code --name my-cluster

An example output is as follows.

Creating a local cluster 948

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/


Amazon EKS User Guide

Added new context arn:aws:eks:region-code:111122223333:cluster/my-cluster to /home/
username/.kube/config

4. To connect to your local cluster's Kubernetes API server, have access to the local gateway 
for the subnet, or connect from within the VPC. For more information about connecting an 
Outpost rack to your on-premises network, see How local gateways for racks work in the AWS 
Outposts User Guide. If you use Direct VPC Routing and the Outpost subnet has a route to 
your local gateway, the private IP addresses of the Kubernetes control plane instances are 
automatically broadcasted over your local network. The local cluster's Kubernetes API server 
endpoint is hosted in Amazon Route 53 (Route 53). The API service endpoint can be resolved 
by public DNS servers to the Kubernetes API servers' private IP addresses.

Local clusters' Kubernetes control plane instances are configured with static elastic network 
interfaces with fixed private IP addresses that don't change throughout the cluster lifecycle. 
Machines that interact with the Kubernetes API server might not have connectivity to Route 53 
during network disconnects. If this is the case, we recommend configuring /etc/hosts
with the static private IP addresses for continued operations. We also recommend setting 
up local DNS servers and connecting them to your Outpost. For more information, see the
AWS Outposts documentation. Run the following command to confirm that communication's 
established with your cluster.

kubectl get svc

An example output is as follows.

NAME         TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
kubernetes   ClusterIP   10.100.0.1   <none>        443/TCP   28h

5. (Optional) Test authentication to your local cluster when it's in a disconnected state from the 
AWS Cloud. For instructions, see Preparing for network disconnects.

Internal resources

Amazon EKS creates the following resources on your cluster. The resources are for Amazon EKS 
internal use. For proper functioning of your cluster, don't edit or modify these resources.

• The following mirror Pods:

Creating a local cluster 949

https://docs.aws.amazon.com/outposts/latest/userguide/how-racks-work.html
https://docs.aws.amazon.com/outposts/latest/userguide/how-outposts-works.html#dns
https://kubernetes.io/docs/reference/glossary/?all=true#term-mirror-pod


Amazon EKS User Guide

• aws-iam-authenticator-node-hostname

• eks-certificates-controller-node-hostname

• etcd-node-hostname

• kube-apiserver-node-hostname

• kube-controller-manager-node-hostname

• kube-scheduler-node-hostname

• The following self-managed add-ons:

• kube-system/coredns

• kube-system/kube-proxy (not created until you add your first node)

• kube-system/aws-node (not created until you add your first node). Local clusters use the 
Amazon VPC CNI plugin for Kubernetes plugin for cluster networking. Do not change the 
configuration for control plane instances (Pods named aws-node-controlplane-*). There 
are configuration variables that you can use to change the default value for when the plugin 
creates new network interfaces. For more information, see the documentation on GitHub.

• The following services:

• default/kubernetes

• kube-system/kube-dns

• A PodSecurityPolicy named eks.system

• A ClusterRole named eks:system:podsecuritypolicy

• A ClusterRoleBinding named eks:system

• A default PodSecurityPolicy

• In addition to the cluster security group, Amazon EKS creates a security group in your 
AWS account that's named eks-local-internal-do-not-use-or-edit-cluster-
name-uniqueid. This security group allows traffic to flow freely between Kubernetes 
components running on the control plane instances.

Recommended next steps:

• Grant the IAM principal that created the cluster the required permissions to view Kubernetes 
resources in the AWS Management Console

• Grant IAM entities access to your cluster. If you want the entities to view Kubernetes resources in 
the Amazon EKS console, grant the Required permissions to the entities.

Creating a local cluster 950

https://github.com/aws/amazon-vpc-cni-k8s/blob/master/README.md


Amazon EKS User Guide

• Configure logging for your cluster

• Familiarize yourself with what happens during network disconnects.

• Add nodes to your cluster

• Consider setting up a backup plan for your etcd. Amazon EKS doesn't support automated 
backup and restore of etcd for local clusters. For more information, see Backing up an etcd
cluster in the Kubernetes documentation. The two main options are using etcdctl to automate 
taking snapshots or using Amazon EBS storage volume backup.

Amazon EKS local cluster platform versions

Local cluster platform versions represent the capabilities of the Amazon EKS cluster on AWS 
Outposts. The versions include the components that run on the Kubernetes control plane, which 
Kubernetes API server flags are enabled. They also include the current Kubernetes patch version. 
Each Kubernetes minor version has one or more associated platform versions. The platform 
versions for different Kubernetes minor versions are independent. The platform versions for local 
clusters and Amazon EKS clusters in the cloud are independent.

When a new Kubernetes minor version is available for local clusters, such as 1.28, the initial 
platform version for that Kubernetes minor version starts at eks-local-outposts.1. However, 
Amazon EKS releases new platform versions periodically to enable new Kubernetes control plane 
settings and to provide security fixes.

When new local cluster platform versions become available for a minor version:

• The platform version number is incremented (eks-local-outposts.n+1).

• Amazon EKS automatically updates all existing local clusters to the latest platform version for 
their corresponding Kubernetes minor version. Automatic updates of existing platform versions 
are rolled out incrementally. The roll-out process might take some time. If you need the latest 
platform version features immediately, we recommend that you create a new local cluster.

• Amazon EKS might publish a new node AMI with a corresponding patch version. All patch 
versions are compatible between the Kubernetes control plane and node AMIs for a single 
Kubernetes minor version.

New platform versions don't introduce breaking changes or cause service interruptions.

Local clusters are always created with the latest available platform version (eks-local-
outposts.n) for the specified Kubernetes version.

Platform versions 951

https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#backing-up-an-etcd-cluster
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#backing-up-an-etcd-cluster


Amazon EKS User Guide

The current and recent platform versions are described in the following tables.

Kubernetes version 1.28

The following admission controllers are enabled for all 1.28 platform versions:
CertificateApproval, CertificateSigning, CertificateSubjectRestriction,
DefaultIngressClass, DefaultStorageClass, DefaultTolerationSeconds,
ExtendedResourceToleration, LimitRanger, MutatingAdmissionWebhook,
NamespaceLifecycle, NodeRestriction, PersistentVolumeClaimResize,
Priority, PodSecurity, ResourceQuota, RuntimeClass, ServiceAccount,
StorageObjectInUseProtection, TaintNodesByCondition,
ValidatingAdmissionPolicy, and ValidatingAdmissionWebhook.

Kubernetes version Amazon EKS 
platform version

Release notes Release date

1.28.1 eks-local-
outposts.1

Initial release of Kubernetes 
version 1.28 for local Amazon 
EKS clusters on Outposts.

October 4, 
2023

Kubernetes version 1.27

The following admission controllers are enabled for all 1.27 platform versions:
CertificateApproval, CertificateSigning, CertificateSubjectRestriction,
DefaultIngressClass, DefaultStorageClass, DefaultTolerationSeconds,
ExtendedResourceToleration, LimitRanger, MutatingAdmissionWebhook,
NamespaceLifecycle, NodeRestriction, PersistentVolumeClaimResize,
Priority, PodSecurity, ResourceQuota, RuntimeClass, ServiceAccount,
StorageObjectInUseProtection, TaintNodesByCondition,
ValidatingAdmissionPolicy, and ValidatingAdmissionWebhook.

Kubernetes version Amazon EKS 
platform version

Release notes Release date

1.27.3 eks-local-
outposts.3

New platform version with 
security fixes and enhanceme 

July 14, 2023

Platform versions 952



Amazon EKS User Guide

Kubernetes version Amazon EKS 
platform version

Release notes Release date

nts. kube-proxy  updated 
to v1.27.3. Amazon VPC CNI 
plugin for Kubernetes updated 
to v1.13.2.

1.27.1 eks-local-
outposts.2

Updated CoreDNS image to
v1.10.1

June 22, 2023

1.27.1 eks-local-
outposts.1

Initial release of Kubernetes 
version 1.27 for local Amazon 
EKS clusters on Outposts.

May 30, 2023

Kubernetes version 1.26

The following admission controllers are enabled for all 1.26 platform versions:
CertificateApproval, CertificateSigning, CertificateSubjectRestriction,
DefaultIngressClass, DefaultStorageClass, DefaultTolerationSeconds,
ExtendedResourceToleration, LimitRanger, MutatingAdmissionWebhook,
NamespaceLifecycle, NodeRestriction, PersistentVolumeClaimResize,
Priority, PodSecurity, ResourceQuota, RuntimeClass, ServiceAccount,
StorageObjectInUseProtection, TaintNodesByCondition,
ValidatingAdmissionPolicy, and ValidatingAdmissionWebhook.

Kubernetes version Amazon EKS 
platform version

Release notes Release date

1.26.6 eks-local-
outposts.4

New platform version with 
security fixes and enhanceme 
nts. kube-proxy  updated 
to v1.26.6. Amazon VPC CNI 
plugin for Kubernetes updated 
to v1.13.2.

July 14, 2023

Platform versions 953



Amazon EKS User Guide

Kubernetes version Amazon EKS 
platform version

Release notes Release date

1.26.4 eks-local-
outposts.3

New platform version with 
security fixes and enhanceme 
nts.

July 13, 2023

1.26.2 eks-local-
outposts.2

Updated Bottlerocket version 
to 1.13.2

May 2, 2023

1.26.2 eks-local-
outposts.1

Initial release of Kubernetes 
version 1.26 for local Amazon 
EKS clusters on Outposts.

April 11, 2023

Kubernetes version 1.25

The following admission controllers are enabled for all 1.25 platform versions:
CertificateApproval, CertificateSigning, CertificateSubjectRestriction,
DefaultIngressClass, DefaultStorageClass, DefaultTolerationSeconds,
ExtendedResourceToleration, LimitRanger, MutatingAdmissionWebhook,
NamespaceLifecycle, NodeRestriction, PersistentVolumeClaimResize,
Priority, PodSecurity, ResourceQuota, RuntimeClass, ServiceAccount,
StorageObjectInUseProtection, TaintNodesByCondition, and
ValidatingAdmissionWebhook.

Kubernetes version Amazon EKS 
platform version

Release notes Release date

1.25.11 eks-local-
outposts.6

New platform version with 
security fixes and enhanceme 
nts. kube-proxy  updated to
v1.25.11. Amazon VPC CNI 
plugin for Kubernetes updated 
to v1.13.2.

July 14, 2023

Platform versions 954



Amazon EKS User Guide

Kubernetes version Amazon EKS 
platform version

Release notes Release date

1.25.9 eks-local-
outposts.5

New platform version with 
security fixes and enhanceme 
nts.

July 13, 2023

1.25.6 eks-local-
outposts.4

Updated Bottlerocket version 
to 1.13.2

May 2, 2023

1.25.6 eks-local-
outposts.3

Amazon EKS control plane 
instance operating system 
updated to Bottlerocket 
version v1.13.1 and Amazon 
VPC CNI plugin for Kubernetes 
updated to version v1.12.6.

April 14, 2023

1.25.6 eks-local-
outposts.2

Improved diagnostics collectio 
n for Kubernetes control plane 
instances.

March 8, 2023

1.25.6 eks-local-
outposts.1

Initial release of Kubernetes 
version 1.25 for local Amazon 
EKS clusters on Outposts.

March 1, 2023

Kubernetes version 1.24

The following admission controllers are enabled for all 1.24 platform versions:
DefaultStorageClass, DefaultTolerationSeconds, LimitRanger,
MutatingAdmissionWebhook, NamespaceLifecycle, NodeRestriction,
ResourceQuota, ServiceAccount, ValidatingAdmissionWebhook,
PodSecurityPolicy, TaintNodesByCondition, StorageObjectInUseProtection,
PersistentVolumeClaimResize, ExtendedResourceToleration, CertificateApproval,
PodPriority, CertificateSigning, CertificateSubjectRestriction, RuntimeClass, 
and DefaultIngressClass.

Platform versions 955



Amazon EKS User Guide

Kubernetes version Amazon EKS 
platform version

Release notes Release date

1.24.15 eks-local-
outposts.6

New platform version with 
security fixes and enhanceme 
nts. kube-proxy  updated 
to v1.24.15. Amazon VPC 
CNI plugin for Kubernetes 
updated to v1.13.2.

July 14, 2023

1.24.13 eks-local-
outposts.5

New platform version with 
security fixes and enhanceme 
nts.

July 13, 2023

1.24.9 eks-local-
outposts.4

Updated Bottlerocket version 
to 1.13.2

May 2, 2023

1.24.9 eks-local-
outposts.3

Amazon EKS control plane 
instance operating system 
updated to Bottlerocket 
version v1.13.1 and Amazon 
VPC CNI plugin for Kubernetes 
updated to version v1.12.6.

April 14, 2023

1.24.9 eks-local-
outposts.2

Improved diagnostics collectio 
n for Kubernetes control plane 
instances.

March 8, 2023

1.24.9 eks-local-
outposts.1

Initial release of Kubernetes 
version 1.24 for local Amazon 
EKS clusters on Outposts.

January 17, 
2023

Kubernetes version 1.23

The following admission controllers are enabled for all 1.23 platform versions:
DefaultStorageClass, DefaultTolerationSeconds, LimitRanger,
MutatingAdmissionWebhook, NamespaceLifecycle, NodeRestriction,

Platform versions 956



Amazon EKS User Guide

ResourceQuota, ServiceAccount, ValidatingAdmissionWebhook,
PodSecurityPolicy, TaintNodesByCondition, StorageObjectInUseProtection,
PersistentVolumeClaimResize, ExtendedResourceToleration, CertificateApproval,
PodPriority, CertificateSigning, CertificateSubjectRestriction, RuntimeClass, 
and DefaultIngressClass.

Kubernetes version Amazon EKS 
platform version

Release notes Release date

1.23.17 eks-local-
outposts.5

New platform version with 
security fixes and enhanceme 
nts.

July 13, 2023

1.23.15 eks-local-
outposts.4

Updated Bottlerocket version 
to 1.13.2

May 2, 2023

1.23.15 eks-local-
outposts.3

Amazon EKS control plane 
instance operating system 
updated to Bottlerocket 
version v1.13.1 and Amazon 
VPC CNI plugin for Kubernetes 
updated to version v1.12.6.

April 14, 2023

1.23.15 eks-local-
outposts.2

Improved diagnostics collectio 
n for Kubernetes control plane 
instances.

March 8, 2023

1.23.15 eks-local-
outposts.1

Initial release of Kubernetes 
version 1.23 for local Amazon 
EKS clusters on Outposts.

January 17, 
2023

Amazon EKS local cluster VPC and subnet requirements and 
considerations

When you create a local cluster, you specify a VPC and at least one private subnet that runs on 
Outposts. This topic provides an overview of the VPC and subnets requirements and considerations 
for your local cluster.

VPC and subnet requirements 957



Amazon EKS User Guide

VPC requirements and considerations

When you create a local cluster, the VPC that you specify must meet the following requirements 
and considerations:

• Make sure that the VPC has enough IP addresses for the local cluster, any nodes, and other 
Kubernetes resources that you want to create. If the VPC that you want to use doesn't have 
enough IP addresses, increase the number of available IP addresses. You can do this by
associating additional Classless Inter-Domain Routing (CIDR) blocks with your VPC. You can 
associate private (RFC 1918) and public (non-RFC 1918) CIDR blocks to your VPC either before 
or after you create your cluster. It can take a cluster up to 5 hours for a CIDR block that you 
associated with a VPC to be recognized.

• The VPC can't have assigned IP prefixes or IPv6 CIDR blocks. Because of these constraints, the 
information that's covered in Increase the amount of available IP addresses for your Amazon EC2 
nodes and IPv6 addresses for clusters, Pods, and services isn't applicable to your VPC.

• The VPC has a DNS hostname and DNS resolution enabled. Without these features, the local 
cluster fails to create, and you need to enable the features and recreate your cluster. For more 
information, see DNS attributes for your VPC in the Amazon VPC User Guide.

• To access your local cluster over your local network, the VPC must be associated with your 
Outpost's local gateway route table. For more information, see VPC associations in the AWS 
Outposts User Guide.

Subnet requirements and considerations

When you create the cluster, specify at least one private subnet. If you specify more than one 
subnet, the Kubernetes control plane instances are evenly distributed across the subnets. If 
more than one subnet is specified, the subnets must exist on the same Outpost. Moreover, the 
subnets must also have proper routes and security group permissions to communicate with each 
other. When you create a local cluster, the subnets that you specify must meet the following 
requirements:

• The subnets are all on the same logical Outpost.

• The subnets together have at least three available IP addresses for the Kubernetes control plane 
instances. If three subnets are specified, each subnet must have at least one available IP address. 
If two subnets are specified, each subnet must have at least two available IP addresses. If one 
subnet is specified, the subnet must have at least three available IP addresses.

VPC and subnet requirements 958

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#add-ipv4-cidr
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html
https://docs.aws.amazon.com/outposts/latest/userguide/outposts-local-gateways.html#vpc-associations


Amazon EKS User Guide

• The subnets have a route to the Outpost rack's local gateway to access the Kubernetes API server 
over your local network. If the subnets don't have a route to the Outpost rack's local gateway, 
you must communicate with your Kubernetes API server from within the VPC.

• The subnets must use IP address-based naming. Amazon EC2 resource-based naming isn't 
supported by Amazon EKS.

Subnet access to AWS services

The local cluster's private subnets on Outposts must be able to communicate with Regional AWS 
services. You can achieve this by using a NAT gateway for outbound internet access or, if you want 
to keep all traffic private within your VPC, using interface VPC endpoints.

Using a NAT gateway

The local cluster's private subnets on Outposts must have an associated route table that has a 
route to a NAT gateway in a public subnet that is in the Outpost's parent Availability Zone. The 
public subnet must have a route to an internet gateway. The NAT gateway enables outbound 
internet access and prevents unsolicited inbound connections from the internet to instances on the 
Outpost.

Using interface VPC endpoints

If the local cluster's private subnets on Outposts don't have an outbound internet connection, or if 
you want to keep all traffic private within your VPC, then you must create the following interface 
VPC endpoints and gateway endpoint in a Regional subnet before creating your cluster.

Endpoint Endpoint type

com.amazonaws. region-code .ssm Interface

com.amazonaws. region-co 
de .ssmmessages

Interface

com.amazonaws. region-co 
de .ec2messages

Interface

com.amazonaws. region-code .ec2 Interface

VPC and subnet requirements 959

https://docs.aws.amazon.com/outposts/latest/userguide/outposts-local-gateways.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-naming.html#instance-naming-rbn
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/vpc/latest/privatelink/gateway-endpoints.html


Amazon EKS User Guide

Endpoint Endpoint type

com.amazonaws. region-co 
de .secretsmanager

Interface

com.amazonaws. region-code .logs Interface

com.amazonaws. region-code .sts Interface

com.amazonaws. region-code .ecr.api Interface

com.amazonaws. region-code .ecr.dkr Interface

com.amazonaws. region-code .s3 Gateway

The endpoints must meet the following requirements:

• Created in a private subnet located in your Outpost's parent Availability Zone

• Have private DNS names enabled

• Have an attached security group that permits inbound HTTPS traffic from the CIDR range of the 
private outpost subnet.

Creating endpoints incurs charges. For more information, see AWS PrivateLink pricing. If your 
Pods need access to other AWS services, then you need to create additional endpoints. For a 
comprehensive list of endpoints, see AWS services that integrate with AWS PrivateLink.

Create a VPC

You can create a VPC that meets the previous requirements using one of the following AWS 
CloudFormation templates:

• Template 1 – This template creates a VPC with one private subnet on the Outpost and one 
public subnet in the AWS Region. The private subnet has a route to an internet through a NAT 
Gateway that resides in the public subnet in the AWS Region. This template can be used to create 
a local cluster in a subnet with egress internet access.

• Template 2 – This template creates a VPC with one private subnet on the Outpost and the 
minimum set of VPC Endpoints required to create a local cluster in a subnet that doesn't have 
ingress or egress internet access (also referred to as a private subnet).

VPC and subnet requirements 960

https://aws.amazon.com/privatelink/pricing/
https://docs.aws.amazon.com/vpc/latest/privatelink/aws-services-privatelink-support.html
https://s3.us-west-2.amazonaws.com/amazon-eks/cloudformation/2022-09-20/amazon-eks-local-outposts-vpc-subnet.yaml
https://s3.us-west-2.amazonaws.com/amazon-eks/cloudformation/2023-03-20/amazon-eks-local-outposts-fully-private-vpc-subnet.yaml


Amazon EKS User Guide

Preparing for network disconnects

If your local network has lost connectivity with the AWS Cloud, you can continue to use your local 
Amazon EKS cluster on an Outpost. This topic covers how you can prepare your local cluster for 
network disconnects and related considerations.

Considerations when preparing your local cluster for a network disconnect:

• Local clusters enable stability and continued operations during temporary, unplanned network 
disconnects. AWS Outposts remains a fully connected offering that acts as an extension of the 
AWS Cloud in your data center. In the event of network disconnects between your Outpost and 
AWS Cloud, we recommend attempting to restore your connection. For instruction, see AWS 
Outposts rack network troubleshooting checklist in the AWS Outposts User Guide. For more 
information about how to troubleshoot issues with local clusters, see Troubleshooting local 
clusters for Amazon EKS on AWS Outposts.

• Outposts emit a ConnectedStatus metric that you can use to monitor the connectivity state of 
your Outpost. For more information, see Outposts Metrics in the AWS Outposts User Guide.

• Local clusters use IAM as the default authentication mechanism using the AWS Identity 
and Access Management authenticator for Kubernetes. IAM isn't available during network 
disconnects. So, local clusters support an alternative authentication mechanism using
x.509 certificates that you can use to connect to your cluster during network disconnects. 
For information about how to obtain and use an x.509 certificate for your cluster, see
Authenticating to your local cluster during a network disconnect.

• If you can't access Route 53 during network disconnects, consider using local DNS servers in your 
on-premises environment. The Kubernetes control plane instances use static IP addresses. You 
can configure the hosts that you use to connect to your cluster with the endpoint hostname and 
IP addresses as an alternative to using local DNS servers. For more information, see DNS in the
AWS Outposts User Guide.

• If you expect increases in application traffic during network disconnects, you can provision 
spare compute capacity in your cluster when connected to the cloud. Amazon EC2 instances are 
included in the price of AWS Outposts. So, running spare instances doesn't impact your AWS 
usage cost.

• During network disconnects to enable create, update, and scale operations for workloads, your 
application's container images must be accessible over the local network and your cluster must 
have enough capacity. Local clusters don't host a container registry for you. If the Pods have 
previously run on those nodes, container images are cached on the nodes. If you typically pull 

Network disconnects 961

https://docs.aws.amazon.com/outposts/latest/userguide/network-troubleshoot.html
https://docs.aws.amazon.com/outposts/latest/userguide/network-troubleshoot.html
https://docs.aws.amazon.com/outposts/latest/userguide/outposts-cloudwatch-metrics.html#outposts-metrics
https://github.com/kubernetes-sigs/aws-iam-authenticator
https://github.com/kubernetes-sigs/aws-iam-authenticator
https://docs.aws.amazon.com/outposts/latest/userguide/how-outposts-works.html#dns


Amazon EKS User Guide

your application's container images from Amazon ECR in the cloud, consider running a local 
cache or registry. A local cache or registry is helpful if you require create, update, and scale 
operations for workload resources during network disconnects.

• Local clusters use Amazon EBS as the default storage class for persistent volumes and the 
Amazon EBS CSI driver to manage the lifecycle of Amazon EBS persistent volumes. During 
network disconnects, Pods that are backed by Amazon EBS can't be created, updated, or scaled. 
This is because these operations require calls to the Amazon EBS API in the cloud. If you're 
deploying stateful workloads on local clusters and require create, update, or scale operations 
during network disconnects, consider using an alternative storage mechanism.

• Amazon EBS snapshots can't be created or deleted if AWS Outposts can't access the relevant 
AWS in-region APIs (such as the APIs for Amazon EBS or Amazon S3).

• When integrating ALB (Ingress) with AWS Certificate Manager (ACM), certificates are pushed and 
stored in memory of the AWS Outposts ALB Compute instance. Current TLS termination will 
continue to operate in the event of a disconnect from the AWS Region. Mutating operations in 
this context will fail (such as new ingress definitions, new ACM based certificates API operations, 
ALB compute scale, or certificate rotation). For more information, see Troubleshooting managed 
certificate renewal in the AWS Certificate Manager User Guide.

• The Amazon EKS control plane logs are cached locally on the Kubernetes control plane instances 
during network disconnects. Upon reconnect, the logs are sent to CloudWatch Logs in the parent 
AWS Region. You can use Prometheus, Grafana, or Amazon EKS partner solutions to monitor the 
cluster locally using the Kubernetes API server's metrics endpoint or using Fluent Bit for logs.

• If you're using the AWS Load Balancer Controller on Outposts for application traffic, existing 
Pods fronted by the AWS Load Balancer Controller continue to receive traffic during network 
disconnects. New Pods created during network disconnects don't receive traffic until the Outpost 
is reconnected to the AWS Cloud. Consider setting the replica count for your applications while 
connected to the AWS Cloud to accommodate your scaling needs during network disconnects.

• The Amazon VPC CNI plugin for Kubernetes defaults to secondary IP mode. It's configured with
WARM_ENI_TARGET=1, which allows the plugin to keep "a full elastic network interface" of 
available IP addresses available. Consider changing WARM_ENI_TARGET, WARM_IP_TARGET, 
and MINIMUM_IP_TARGET values according to your scaling needs during a disconnected state. 
For more information, see the readme file for the plugin on GitHub. For a list of the maximum 
number of Pods that's supported by each instance type, see the eni-max-pods.txt file on 
GitHub.

Network disconnects 962

https://docs.aws.amazon.com/acm/latest/userguide/troubleshooting-renewal.html
https://docs.aws.amazon.com/acm/latest/userguide/troubleshooting-renewal.html
https://prometheus.io/
https://grafana.com/
https://aws.github.io/aws-eks-best-practices/networking/vpc-cni/#overview
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/README.md
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/misc/eni-max-pods.txt


Amazon EKS User Guide

Authenticating to your local cluster during a network disconnect

AWS Identity and Access Management (IAM) isn't available during network disconnects. You can't 
authenticate to your local cluster using IAM credentials while disconnected. However, you can 
connect to your cluster over your local network using x509 certificates when disconnected. You 
need to download and store a client X509 certificate to use during disconnects. In this topic, 
you learn how to create and use the certificate to authenticate to your cluster when it's in a 
disconnected state.

1. Create a certificate signing request.

a. Generate a certificate signing request.

openssl req -new -newkey rsa:4096 -nodes -days 365 \ 
    -keyout admin.key -out admin.csr -subj "/CN=admin"

b. Create a certificate signing request in Kubernetes.

BASE64_CSR=$(cat admin.csr | base64 -w 0)
cat << EOF > admin-csr.yaml
apiVersion: certificates.k8s.io/v1
kind: CertificateSigningRequest
metadata: 
  name: admin-csr
spec: 
  signerName: kubernetes.io/kube-apiserver-client 
  request: ${BASE64_CSR} 
  usages: 
  - client auth
EOF

2. Create a certificate signing request using kubectl.

kubectl create -f admin-csr.yaml

3. Check the status of the certificate signing request.

kubectl get csr admin-csr

An example output is as follows.

Network disconnects 963



Amazon EKS User Guide

NAME       AGE   REQUESTOR                       CONDITION
admin-csr  11m   kubernetes-admin                Pending

Kubernetes created the certificate signing request.

4. Approve the certificate signing request.

kubectl certificate approve admin-csr

5. Recheck the certificate signing request status for approval.

kubectl get csr admin-csr

An example output is as follows.

NAME       AGE   REQUESTOR                     CONDITION
admin-csr  11m   kubernetes-admin              Approved

6. Retrieve and verify the certificate.

a. Retrieve the certificate.

kubectl get csr admin-csr -o jsonpath='{.status.certificate}' | base64 --decode 
 > admin.crt

b. Verify the certificate.

cat admin.crt

7. Create a cluster role binding for an admin user.

kubectl create clusterrolebinding admin --clusterrole=cluster-admin \ 
    --user=admin --group=system:masters

8. Generate a user-scoped kubeconfig for a disconnected state.

You can generate a kubeconfig file using the downloaded admin certificates. Replace my-
cluster and apiserver-endpoint in the following commands.

aws eks describe-cluster --name my-cluster \ 

Network disconnects 964



Amazon EKS User Guide

    --query "cluster.certificateAuthority" \ 
    --output text | base64 --decode > ca.crt

kubectl config --kubeconfig admin.kubeconfig set-cluster my-cluster \ 
    --certificate-authority=ca.crt --server apiserver-endpoint --embed-certs

kubectl config --kubeconfig admin.kubeconfig set-credentials admin \ 
    --client-certificate=admin.crt --client-key=admin.key --embed-certs

kubectl config --kubeconfig admin.kubeconfig set-context admin@my-cluster \ 
    --cluster my-cluster --user admin

kubectl config --kubeconfig admin.kubeconfig use-context admin@my-cluster

9. View your kubeconfig file.

kubectl get nodes --kubeconfig admin.kubeconfig

10. If you have services already in production on your Outpost, skip this step. If Amazon EKS is the 
only service running on your Outpost and the Outpost isn't currently in production, you can 
simulate a network disconnect. Before you go into production with your local cluster, simulate 
a disconnect to make sure that you can access your cluster when it's in a disconnected state.

a. Apply firewall rules on the networking devices that connect your Outpost to the AWS 
Region. This disconnects the service link of the Outpost. You can't create any new 
instances. Currently running instances lose connectivity to the AWS Region and the 
internet.

b. You can test the connection to your local cluster while disconnected using the x509
certificate. Make sure to change your kubeconfig to the admin.kubeconfig that you 
created in a previous step. Replace my-cluster with the name of your local cluster.

kubectl config use-context admin@my-cluster --kubeconfig admin.kubeconfig

If you notice any issues with your local clusters while they're in a disconnected state, we 
recommend opening a support ticket.

Network disconnects 965



Amazon EKS User Guide

Capacity considerations

This topic provides guidance for selecting the Kubernetes control plane instance type and 
(optionally) using placement groups to meet high-availability requirements for your local Amazon 
EKS cluster on an Outpost.

Before you select an instance type (such as m5, c5, or r5) to use for your local cluster's Kubernetes 
control plane on Outposts, confirm the instance types that are available on your Outpost 
configuration. After you identify the available instance types, select the instance size (such as
large, xlarge, or 2xlarge) based on the number of nodes that your workloads require. The 
following table provides recommendations for choosing an instance size.

Note

The instance sizes must be slotted on your Outposts. Make sure that you have enough 
capacity for three instances of the size available on your Outposts for the lifetime of your 
local cluster. For a list of the available Amazon EC2 instance types, see the Compute and 
storage sections in AWS Outposts rack features.

Number of nodes Kubernetes control plane instance size

1–20 large

21–100 xlarge

101–250 2xlarge

251–500 4xlarge

The storage for the Kubernetes control plane requires 246 GB of Amazon EBS storage for each 
local cluster to meet etcd's required IOPS. When the local cluster is created, the Amazon EBS 
volumes are provisioned automatically for you.

Control plane placement

When you don't specify a placement group with the
OutpostConfig.ControlPlanePlacement.GroupName property, the Amazon EC2 instances 

Capacity considerations 966

https://aws.amazon.com/outposts/rack/features/


Amazon EKS User Guide

provisioned for your Kubernetes control plane don't receive any specific hardware placement 
enforcement across the underlying capacity available on your Outpost.

You can use placement groups to meet the high-availability requirements for your local Amazon 
EKS cluster on an Outpost. By specifying a placement group during cluster creation, you influence 
the placement of the Kubernetes control plane instances. The instances are spread across 
independent underlying hardware (racks or hosts), minimizing correlated instance impact on the 
event of hardware failures.

Requirements

The type of spread that you can configure depends on the number of Outpost racks you have in 
your deployment.

• Deployments with one or two physical racks in a single logical Outpost – You must have at 
least three hosts that are configured with the instance type that you choose for your Kubernetes 
control plane instances. A spread placement group using host-level spread ensures that all 
Kubernetes control plane instances run on distinct hosts within the underlying racks available in 
your Outpost deployment.

• Deployments with three or more physical racks in a single logical Outpost – You must have at 
least three hosts configured with the instance type you choose for your Kubernetes control plane 
instances. A spread placement group using rack-level spread ensures that all Kubernetes control 
plane instances run on distinct racks in your Outpost deployment. You can alternatively use the
host-level spread placement group as described in the previous option.

You are responsible for creating the desired placement group. You specify the placement group 
when calling the CreateCluster API. For more information about placement groups and how to 
create them, see Placement Groups in the Amazon EC2 User Guide for Linux Instances.

Considerations

• When a placement group is specified, there must be available slotted capacity on your Outpost 
to successfully create a local Amazon EKS cluster. The capacity varies based on whether you use 
the host or rack spread type. If there isn't enough capacity, the cluster remains in the Creating
state. You are able to check the Insufficient Capacity Error on the health field of the
DescribeCluster API response. You must free capacity for the creation process to progress.

• During Amazon EKS local cluster platform and version updates, the Kubernetes control plane 
instances from your cluster are replaced by new instances using a rolling update strategy. During 

Capacity considerations 967

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_DescribeCluster.html


Amazon EKS User Guide

this replacement process, each control plane instance is terminated, freeing up its respective 
slot. A new updated instance is provisioned in its place. The updated instance might be placed 
in the slot that was released. If the slot is consumed by another unrelated instance and there is 
no more capacity left that respects the required spread topology requirement, then the cluster 
remains in the Updating state. You are able to see the respective Insufficient Capacity 
Error on the health field of the DescribeCluster API response. You must free capacity so the 
update process can progress and reestablish prior high availability levels.

• You can create a maximum of 500 placement groups per account in each AWS Region. For more 
information, see General rules and limitations in the Amazon EC2 User Guide for Linux Instances.

Troubleshooting local clusters for Amazon EKS on AWS Outposts

This topic covers some common errors that you might see while using local clusters and how to 
troubleshoot them. Local clusters are similar to Amazon EKS clusters in the cloud, but there are 
some differences in how they're managed by Amazon EKS.

API behavior

Local clusters are created through the Amazon EKS API, but are run in an asynchronous manner. 
This means that requests to the Amazon EKS API return immediately for local clusters. However, 
these requests might succeed, fail fast because of input validation errors, or fail and have 
descriptive validation errors. This behavior is similar to the Kubernetes API.

Local clusters don't transition to a FAILED status. Amazon EKS attempts to reconcile the cluster 
state with the user-requested desired state in a continuous manner. As a result, a local cluster 
might remain in the CREATING state for an extended period of time until the underlying issue is 
resolved.

Describe cluster health field

Local cluster issues can be discovered using the describe-cluster Amazon EKS AWS CLI 
command. Local cluster issues are surfaced by the cluster.health field of the describe-
cluster command's response. The message contained in this field includes an error code, 
descriptive message, and related resource IDs. This information is available through the Amazon 
EKS API and AWS CLI only. In the following example, replace my-cluster with the name of your 
local cluster.

aws eks describe-cluster --name my-cluster --query 'cluster.health'

Troubleshooting 968

https://docs.aws.amazon.com/eks/latest/APIReference/API_DescribeCluster.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html#placement-groups-limitations-general
https://docs.aws.amazon.com/cli/latest/reference/eks/describe-cluster.html


Amazon EKS User Guide

An example output is as follows.

{ 
    "issues": [ 
        { 
            "code": "ConfigurationConflict", 
            "message": "The instance type 'm5.large' is not supported in Outpost 'my-
outpost-arn'.", 
            "resourceIds": [ 
                "my-cluster-arn" 
            ] 
        } 
    ]
}

If the problem is beyond repair, you might need to delete the local cluster and create a new 
one. For example, trying to provision a cluster with an instance type that's not available on your 
Outpost. The following table includes common health related errors.

Error scenario Code Message ResourceIds

Provided subnets 
couldn't be found.

ResourceN 
otFound

The subnet ID
subnet-id  does 
not exist

All provided subnet 
IDs

Provided subnets 
don't belong to the 
same VPC.

Configura 
tionConflict

Subnets 
specified must 
belong to the 
same VPC

All provided subnet 
IDs

Some provided 
subnets don't belong 
to the specified 
 Outpost.

Configura 
tionConflict

Subnet subnet-id
 expected to be 

in outpost-arn , 
but is in other-
outpost-arn

Problematic subnet 
ID

Some provided 
subnets don't belong 
to any Outpost.

Configura 
tionConflict

Subnet subnet-id
 is not part of 

any Outpost

Problematic subnet 
ID

Troubleshooting 969



Amazon EKS User Guide

Error scenario Code Message ResourceIds

Some provided 
subnets don't 
have enough free 
addresses to create 
elastic network 
interfaces for control 
plane instances.

ResourceL 
imitExceeded

The specified 
subnet does 
not have enough 
free addresses 
 to satisfy the 
request.

Problematic subnet 
ID

The specified control 
plane instance type 
isn't supported on 
your Outpost.

Configura 
tionConflict

The instance 
type type is 
not supported in 
Outpost outpost-
arn

Cluster ARN

You terminated 
a control plane 
Amazon EC2 instance 
or run-insta 
nce  succeeded 
, but the state 
observed changes 
to Terminated . 
This can happen 
for a period of time 
after your Outpost 
reconnects and 
Amazon EBS internal 
errors cause an 
Amazon EC2 internal 
work flow to fail.

InternalFailure EC2 instance 
state "Terminat 
ed" is 
unexpected

Cluster ARN

Troubleshooting 970



Amazon EKS User Guide

Error scenario Code Message ResourceIds

You have insuffici 
ent capacity on your 
Outpost. This can 
also happen when 
a cluster is being 
created if an Outpost 
is disconnected from 
the AWS Region.

ResourceL 
imitExceeded

There is not 
enough capacity 
on the Outpost 
to launch 
or start the 
instance.

Cluster ARN

Your account 
exceeded your 
security group quota.

ResourceL 
imitExceeded

Error message 
returned by Amazon 
EC2 API

Target VPC ID

Your account 
exceeded your elastic 
network interface 
 quota.

ResourceL 
imitExceeded

Error message 
returned by Amazon 
EC2 API

Target subnet ID

Control plane 
instances weren't 
reachable through 
AWS Systems 
Manager. For 
resolution, see
Control plane 
instances aren't 
reachable through 
AWS Systems 
Manager.

ClusterUn 
reachable

Amazon EKS control 
plane instances 
are not reachable 
through SSM. Please 
verify your SSM and 
network configura 
tion, and reference 
the EKS on Outposts 
troubleshooting 
documentation.

Amazon EC2 instance 
IDs

Troubleshooting 971



Amazon EKS User Guide

Error scenario Code Message ResourceIds

An error occurred 
while getting details 
for a managed 
security group or 
elastic network 
interface.

Based on Amazon 
EC2 client error code.

Error message 
returned by Amazon 
EC2 API

All managed security 
group IDs

An error occurred 
while authorizing 
or revoking security 
group ingress rules. 
This applies to both 
the cluster and 
control plane security 
groups.

Based on Amazon 
EC2 client error code.

Error message 
returned by Amazon 
EC2 API

Problematic security 
group ID

An error occurred 
while deleting an 
elastic network 
interface for a control 
plane instance.

Based on Amazon 
EC2 client error code.

Error message 
returned by Amazon 
EC2 API

Problematic elastic 
network interface ID

The following table lists errors from other AWS services that are presented in the health field of 
the describe-cluster response.

Amazon EC2 error code Cluster health issue code Description

AuthFailure AccessDenied This error can occur for a 
variety of reasons. The most 
common reason is that you 
accidentally removed a tag 
that the service uses to scope 
down the service linked role 
policy from the control plane. 
If this occurs, Amazon EKS 

Troubleshooting 972



Amazon EKS User Guide

Amazon EC2 error code Cluster health issue code Description

can no longer manage and 
monitor these AWS resources.

UnauthorizedOperat 
ion

AccessDenied This error can occur for a 
variety of reasons. The most 
common reason is that you 
accidentally removed a tag 
that the service uses to scope 
down the service linked role 
policy from the control plane. 
If this occurs, Amazon EKS 
can no longer manage and 
monitor these AWS resources.

InvalidSubnetID.No 
tFound

ResourceNotFound This error occurs when subnet 
ID for the ingress rules of a 
security group can't be found.

InvalidPermission. 
NotFound

ResourceNotFound This error occurs when the 
permissions for the ingress 
rules of a security group 
aren't correct.

InvalidGroup.NotFo 
und

ResourceNotFound This error occurs when the 
group of the ingress rules of a 
security group can't be found.

InvalidNetworkInte 
rfaceID.NotFound

ResourceNotFound This error occurs when the 
network interface ID for the 
ingress rules of a security 
group can't be found.

InsufficientFreeAd 
dressesInSubnet

ResourceLimitExcee 
ded

This error occurs when the 
subnet resource quota is 
exceeded.

Troubleshooting 973



Amazon EKS User Guide

Amazon EC2 error code Cluster health issue code Description

InsufficientCapaci 
tyOnOutpost

ResourceLimitExcee 
ded

This error occurs when the 
outpost capacity quota is 
exceeded.

NetworkInterfaceLi 
mitExceeded

ResourceLimitExcee 
ded

This error occurs when the 
elastic network interface 
quota is exceeded.

SecurityGroupLimit 
Exceeded

ResourceLimitExcee 
ded

This error occurs when the 
security group quota is 
exceeded.

VcpuLimitExceeded ResourceLimitExcee 
ded

This is observed when 
creating an Amazon EC2 
instance in a new account. 
The error might be similar 
to the following: "You have 
requested more vCPU 
capacity than your 
current vCPU limit 
of 32 allows for the 
instance bucket that 
the specified instance 
type belongs to. 
Please visit http://aw 
s.amazon.com/conta 
ct-us/ec2-request to 
request an adjustment 
to this limit."

InvalidParameterVa 
lue

ConfigurationConfl 
ict

Amazon EC2 returns this error 
code if the specified instance 
type isn't supported on the 
Outpost.

Troubleshooting 974



Amazon EKS User Guide

Amazon EC2 error code Cluster health issue code Description

All other failures InternalFailure None

Unable to create or modify clusters

Local clusters require different permissions and policies than Amazon EKS clusters that are 
hosted in the cloud. When a cluster fails to create and produces an InvalidPermissions error, 
double check that the cluster role that you're using has the AmazonEKSLocalOutpostClusterPolicy
managed policy attached to it. All other API calls require the same set of permissions as Amazon 
EKS clusters in the cloud.

Cluster is stuck in CREATING state

The amount of time it takes to create a local cluster varies depending on several factors. These 
factors include your network configuration, Outpost configuration, and the cluster's configuration. 
In general, a local cluster is created and changes to the ACTIVE status within 15–20 minutes. If 
a local cluster remains in the CREATING state, you can call describe-cluster for information 
about the cause in the cluster.health output field.

The most common issues are the following:

AWS Systems Manager (Systems Manager) encounters the following issues:

• Your cluster can't connect to the control plane instance from the AWS Region that Systems 
Manager is in. You can verify this by calling aws ssm start-session --target instance-
id from an in-Region bastion host. If that command doesn't work, check if Systems Manager is 
running on the control plane instance. Or, another work around is to delete the cluster and then 
recreate it.

• Systems Manager control plane instances might not have internet access. Check if the subnet 
that you provided when you created the cluster has a NAT gateway and a VPC with an internet 
gateway. Use VPC reachability analyzer to verify that the control plane instance can reach the 
internet gateway. For more information, see Getting started with VPC Reachability Analyzer.

• The role ARN that you provided is missing policies. Check if the AWS managed policy: 
AmazonEKSLocalOutpostClusterPolicy was removed from the role. This can also occur if an AWS 
CloudFormation stack is misconfigured.

Troubleshooting 975

https://docs.aws.amazon.com/vpc/latest/reachability/getting-started.html


Amazon EKS User Guide

Multiple subnets are misconfigured and specified when a cluster is created:

• All the provided subnets must be associated with the same Outpost and must reach each other. 
When multiple subnets are specified when a cluster is created, Amazon EKS attempts to spread 
the control plane instances across multiple subnets.

• The Amazon EKS managed security groups are applied at the elastic network interface. However, 
other configuration elements such as NACL firewall rules might conflict with the rules for the 
elastic network interface.

VPC and subnet DNS configuration is misconfigured or missing

Review Amazon EKS local cluster VPC and subnet requirements and considerations.

Can't join nodes to a cluster

Common causes:

• AMI issues:

• You're using an unsupported AMI. You must use v20220620 or later for the Amazon EKS 
optimized Amazon Linux AMIs Amazon EKS optimized Amazon Linux.

• If you used an AWS CloudFormation template to create your nodes, make sure it wasn't using 
an unsupported AMI.

• Missing the AWS IAM Authenticator ConfigMap – If it's missing, you must create it. For more 
information, see Apply the aws-auth   ConfigMap to your cluster .

• The wrong security group is used – Make sure to use eks-cluster-sg-cluster-
name-uniqueid for your worker nodes' security group. The selected security group is changed 
by AWS CloudFormation to allow a new security group each time the stack is used.

• Following unexpected private link VPC steps – Wrong CA data (--b64-cluster-ca) or API 
Endpoint (--apiserver-endpoint) are passed.

• Misconfigured Pod security policy:

• The CoreDNS and Amazon VPC CNI plugin for Kubernetes Daemonsets must run on nodes for 
nodes to join and communicate with the cluster.

• The Amazon VPC CNI plugin for Kubernetes requires some privileged networking features to 
work properly. You can view the privileged networking features with the following command:
kubectl describe psp eks.privileged.

Troubleshooting 976

https://github.com/awslabs/amazon-eks-ami/releases/tag/v20220620


Amazon EKS User Guide

We don't recommend modifying the default pod security policy. For more information, see Pod 
security policy.

Collecting logs

When an Outpost gets disconnected from the AWS Region that it's associated with, the Kubernetes 
cluster likely will continue working normally. However, if the cluster doesn't work properly, follow 
the troubleshooting steps in Preparing for network disconnects. If you encounter other issues, 
contact AWS Support. AWS Support can guide you on downloading and running a log collection 
tool. That way, you can collect logs from your Kubernetes cluster control plane instances and send 
them to AWS Support support for further investigation.

Control plane instances aren't reachable through AWS Systems Manager

When the Amazon EKS control plane instances aren't reachable through AWS Systems Manager 
(Systems Manager), Amazon EKS displays the following error for your cluster.

Amazon EKS control plane instances are not reachable through SSM. Please verify your 
 SSM and network configuration, and reference the EKS on Outposts troubleshooting 
 documentation.

To resolve this issue, make sure that your VPC and subnets meet the requirements in Amazon EKS 
local cluster VPC and subnet requirements and considerations and that you completed the steps in
Setting up Session Manager in the AWS Systems Manager User Guide.

Launching self-managed Amazon Linux nodes on an Outpost

This topic describes how you can launch Auto Scaling groups of Amazon Linux nodes on an 
Outpost that register with your Amazon EKS cluster. The cluster can be on the AWS Cloud or on an 
Outpost.

Prerequisites

• An existing Outpost. For more information, see What is AWS Outposts.

• An existing Amazon EKS cluster. To deploy a cluster on the AWS Cloud, see Creating an Amazon 
EKS cluster. To deploy a cluster on an Outpost, see Local clusters for Amazon EKS on AWS 
Outposts.

Launching nodes 977

https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-getting-started.html
https://docs.aws.amazon.com/outposts/latest/userguide/what-is-outposts.html


Amazon EKS User Guide

• Suppose that you're creating your nodes in a cluster on the AWS Cloud and you have subnets in 
the AWS Region where you have AWS Outposts, AWS Wavelength, or AWS Local Zones enabled. 
Then, those subnets must not have been passed in when you created your cluster. If you're 
creating your nodes in a cluster on an Outpost, you must have passed in an Outpost subnet when 
creating your cluster.

• (Recommended for clusters on the AWS Cloud) The Amazon VPC CNI plugin for Kubernetes add-
on configured with its own IAM role that has the necessary IAM policy attached to it. For more 
information, see Configuring the Amazon VPC CNI plugin for Kubernetes to use IAM roles for 
service accounts (IRSA). Local clusters do not support IAM roles for service accounts.

You can create a self-managed Amazon Linux node group with eksctl or the AWS Management 
Console (with an AWS CloudFormation template). You can also use Terraform.

eksctl

Prerequisite

Version 0.172.0 or later of the eksctl command line tool installed on your device or AWS 
CloudShell. To install or update eksctl, see Installation in the eksctl documentation.

To launch self-managed Linux nodes using eksctl

1. If your cluster is on the AWS Cloud and the AmazonEKS_CNI_Policy managed IAM policy 
is attached to your Amazon EKS node IAM role, we recommend assigning it to an IAM 
role that you associate to the Kubernetes aws-node service account instead. For more 
information, see Configuring the Amazon VPC CNI plugin for Kubernetes to use IAM roles 
for service accounts (IRSA). If your cluster in on your Outpost, the policy must be attached 
to your node role.

2. The following command creates a node group in an existing cluster. The cluster must have 
been created using eksctl. Replace al-nodes with a name for your node group. The node 
group name can't be longer than 63 characters. It must start with letter or digit, but can 
also include hyphens and underscores for the remaining characters. Replace my-cluster
with the name of your cluster. The name can contain only alphanumeric characters (case-
sensitive) and hyphens. It must start with an alphabetic character and can't be longer than 
100 characters. If your cluster exists on an Outpost, replace id with the ID of an Outpost 
subnet. If your cluster exists on the AWS Cloud, replace id with the ID of a subnet that you 
didn't specify when you created your cluster. Replace instance-type with an instance 
type supported by your Outpost. Replace the remaining example values with your own 

Launching nodes 978

https://registry.terraform.io/modules/terraform-aws-modules/eks/aws/latest
https://eksctl.io/installation


Amazon EKS User Guide

values. The nodes are created with the same Kubernetes version as the control plane, by 
default.

Replace instance-type with an instance type available on your Outpost.

Replace my-key with the name of your Amazon EC2 key pair or public key. This key is used 
to SSH into your nodes after they launch. If you don't already have an Amazon EC2 key pair, 
you can create one in the AWS Management Console. For more information, see Amazon 
EC2 key pairs in the Amazon EC2 User Guide for Linux Instances.

Create your node group with the following command.

eksctl create nodegroup --cluster my-cluster --name al-nodes --node-
type instance-type \ 
    --nodes 3 --nodes-min 1 --nodes-max 4 --managed=false --node-volume-type gp2 
 --subnet-ids subnet-id

If your cluster is deployed on the AWS Cloud:

• The node group that you deploy can assign IPv4 addresses to Pods from a different CIDR 
block than that of the instance. For more information, see Custom networking for pods.

• The node group that you deploy doesn't require outbound internet access. For more 
information, see Private cluster requirements.

For a complete list of all available options and defaults, see AWS Outposts Support in the
eksctl documentation.

If nodes fail to join the cluster, then see Nodes fail to join cluster in Amazon EKS 
troubleshooting and Can't join nodes to a cluster in Troubleshooting local clusters for 
Amazon EKS on AWS Outposts.

An example output is as follows. Several lines are output while the nodes are created. One 
of the last lines of output is the following example line.

[#]  created 1 nodegroup(s) in cluster "my-cluster"

3. (Optional) Deploy a sample application to test your cluster and Linux nodes.

Launching nodes 979

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://eksctl.io/usage/outposts/


Amazon EKS User Guide

AWS Management Console

Step 1: To launch self-managed Amazon Linux nodes using the AWS Management Console

1. Download the latest version of the AWS CloudFormation template.

curl -O https://s3.us-west-2.amazonaws.com/amazon-eks/cloudformation/2022-12-23/
amazon-eks-nodegroup.yaml

2. Open the AWS CloudFormation console at https://console.aws.amazon.com/
cloudformation.

3. Choose Create stack and then select With new resources (standard).

4. For Specify template, select Upload a template file and then select Choose file. Select 
the amazon-eks-nodegroup.yaml file that you downloaded in a previous step and then 
select Next.

5. On the Specify stack details page, enter the following parameters accordingly, and then 
choose Next:

• Stack name: Choose a stack name for your AWS CloudFormation stack. For example, 
you can call it al-nodes. The name can contain only alphanumeric characters (case-
sensitive) and hyphens. It must start with an alphabetic character and can't be longer 
than 100 characters.

• ClusterName: Enter the name of your cluster. If this name doesn't match your cluster 
name, your nodes can't join the cluster.

• ClusterControlPlaneSecurityGroup: Choose the SecurityGroups value from the AWS 
CloudFormation output that you generated when you created your VPC.

The following steps show one operation to retrieve the applicable group.

1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/ 
clusters.

2. Choose the name of the cluster.

3. Choose the Networking tab.

4. Use the Additional security groups value as a reference when selecting from the
ClusterControlPlaneSecurityGroup dropdown list.

• NodeGroupName: Enter a name for your node group. This name can be used later to 
identify the Auto Scaling node group that's created for your nodes.

Launching nodes 980

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/eks/home#/clusters
https://console.aws.amazon.com/eks/home#/clusters


Amazon EKS User Guide

• NodeAutoScalingGroupMinSize: Enter the minimum number of nodes that your node 
Auto Scaling group can scale in to.

• NodeAutoScalingGroupDesiredCapacity: Enter the desired number of nodes to scale to 
when your stack is created.

• NodeAutoScalingGroupMaxSize: Enter the maximum number of nodes that your node 
Auto Scaling group can scale out to.

• NodeInstanceType: Choose an instance type for your nodes. If your cluster is running on 
the AWS Cloud, then for more information, see Choosing an Amazon EC2 instance type. 
If your cluster is running on an Outpost, then you can only select an instance type that is 
available on your Outpost.

• NodeImageIdSSMParam: Pre-populated with the Amazon EC2 Systems Manager 
parameter of a recent Amazon EKS optimized AMI for a variable Kubernetes version. To 
use a different Kubernetes minor version supported with Amazon EKS, replace 1.XX with 
a different supported version. We recommend specifying the same Kubernetes version as 
your cluster.

To use the Amazon EKS optimized accelerated AMI, replace amazon-linux-2 with
amazon-linux-2-gpu. To use the Amazon EKS optimized Arm AMI, replace amazon-
linux-2 with amazon-linux-2-arm64.

Note

The Amazon EKS node AMI is based on Amazon Linux. You can track security 
or privacy events for Amazon Linux 2 at the Amazon Linux Security Center or 
subscribe to the associated RSS feed. Security and privacy events include an 
overview of the issue, what packages are affected, and how to update your 
instances to correct the issue.

• NodeImageId: (Optional) If you're using your own custom AMI (instead of the Amazon 
EKS optimized AMI), enter a node AMI ID for your AWS Region. If you specify a value 
here, it overrides any values in the NodeImageIdSSMParam field.

• NodeVolumeSize: Specify a root volume size for your nodes, in GiB.

• NodeVolumeType: Specify a root volume type for your nodes.

• KeyName: Enter the name of an Amazon EC2 SSH key pair that you can use to connect 
using SSH into your nodes with after they launch. If you don't already have an Amazon 

Launching nodes 981

https://alas.aws.amazon.com/alas2.html
https://alas.aws.amazon.com/AL2/alas.rss


Amazon EKS User Guide

EC2 key pair, you can create one in the AWS Management Console. For more information, 
see Amazon EC2 key pairs in the Amazon EC2 User Guide for Linux Instances.

Note

If you don't provide a key pair here, the AWS CloudFormation stack creation fails.

• BootstrapArguments: There are several optional arguments that you can pass to your 
nodes. For more information, view the bootstrap script usage information on GitHub. 
If you're adding nodes to a cluster that doesn't have an ingress and egress internet 
connection (also known as private clusters), then you must provide the following 
bootstrap arguments (as a single line).

--b64-cluster-ca ${CLUSTER_CA} --apiserver-endpoint https://
${APISERVER_ENDPOINT} --enable-local-outpost true --cluster-id ${CLUSTER_ID}

• DisableIMDSv1: By default, each node supports the Instance Metadata Service Version 
1 (IMDSv1) and IMDSv2. You can disable IMDSv1. To prevent future nodes and Pods in 
the node group from using IMDSv1, set DisableIMDSv1 to true. For more information 
about IMDS, see Configuring the instance metadata service. For more information about 
restricting access to it on your nodes, see Restrict access to the instance profile assigned 
to the worker node.

• VpcId: Enter the ID for the VPC that you created. Before choosing a VPC, review VPC 
requirements and considerations.

• Subnets: If your cluster is on an Outpost, then choose at least one private subnet in your 
VPC. Before choosing subnets, review Subnet requirements and considerations. You can 
see which subnets are private by opening each subnet link from the Networking tab of 
your cluster.

6. Select your desired choices on the Configure stack options page, and then choose Next.

7. Select the check box to the left of I acknowledge that AWS CloudFormation might create 
IAM resources., and then choose Create stack.

8. When your stack has finished creating, select it in the console and choose Outputs.

9. Record the NodeInstanceRole for the node group that was created. You need this when 
you configure your Amazon EKS nodes.

Launching nodes 982

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node
https://aws.github.io/aws-eks-best-practices/security/docs/iam/#restrict-access-to-the-instance-profile-assigned-to-the-worker-node


Amazon EKS User Guide

Step 2: To enable nodes to join your cluster

1. Check to see if you already have an aws-auth ConfigMap.

kubectl describe configmap -n kube-system aws-auth

2. If you are shown an aws-auth ConfigMap, then update it as needed.

a. Open the ConfigMap for editing.

kubectl edit -n kube-system configmap/aws-auth

b. Add a new mapRoles entry as needed. Set the rolearn value to the
NodeInstanceRole value that you recorded in the previous procedure.

[...]
data: 
  mapRoles: |
    - rolearn: <ARN of instance role (not instance profile)>
      username: system:node:{{EC2PrivateDNSName}} 
      groups: 
        - system:bootstrappers 
        - system:nodes
[...]

c. Save the file and exit your text editor.

3. If you received an error stating "Error from server (NotFound): configmaps 
"aws-auth" not found, then apply the stock ConfigMap.

a. Download the configuration map.

curl -O https://s3.us-west-2.amazonaws.com/amazon-
eks/cloudformation/2020-10-29/aws-auth-cm.yaml

b. In the aws-auth-cm.yaml file, set the rolearn to the NodeInstanceRole value 
that you recorded in the previous procedure. You can do this with a text editor, or by 
replacing my-node-instance-role and running the following command:

sed -i.bak -e 's|<ARN of instance role (not instance profile)>|my-node-
instance-role|' aws-auth-cm.yaml

Launching nodes 983



Amazon EKS User Guide

c. Apply the configuration. This command may take a few minutes to finish.

kubectl apply -f aws-auth-cm.yaml

4. Watch the status of your nodes and wait for them to reach the Ready status.

kubectl get nodes --watch

Enter Ctrl+C to return to a shell prompt.

Note

If you receive any authorization or resource type errors, see Unauthorized or access 
denied (kubectl) in the troubleshooting topic.

If nodes fail to join the cluster, then see Nodes fail to join cluster in Amazon EKS 
troubleshooting and Can't join nodes to a cluster in Troubleshooting local clusters for 
Amazon EKS on AWS Outposts.

5. Install the Amazon EBS CSI driver. For more information, see Installation on GitHub. In the
Set up driver permission section, make sure to follow the instruction for the Using IAM 
instance profile option. You must use the gp2 storage class. The gp3 storage class isn't 
supported.

To create a gp2 storage class on your cluster, complete the following steps.

1. Run the following command to create the gp2-storage-class.yaml file.

cat >gp2-storage-class.yaml <<EOF
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata: 
  annotations: 
    storageclass.kubernetes.io/is-default-class: "true" 
  name: ebs-sc
provisioner: ebs.csi.aws.com
volumeBindingMode: WaitForFirstConsumer
parameters: 
  type: gp2 
  encrypted: "true"

Launching nodes 984

https://github.com/kubernetes-sigs/aws-ebs-csi-driver/blob/master/docs/install.md


Amazon EKS User Guide

allowVolumeExpansion: true
EOF

2. Apply the manifest to your cluster.

kubectl apply -f gp2-storage-class.yaml

6. (GPU nodes only) If you chose a GPU instance type and the Amazon EKS optimized 
accelerated AMI, you must apply the NVIDIA device plugin for Kubernetes as a DaemonSet 
on your cluster. Replace vX.X.X with your desired NVIDIA/k8s-device-plugin version before 
running the following command.

kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-
plugin/vX.X.X/nvidia-device-plugin.yml

Step 3: Additional actions

1. (Optional) Deploy a sample application to test your cluster and Linux nodes.

2. If your cluster is deployed on an Outpost, then skip this step. If your cluster is deployed 
on the AWS Cloud, the following information is optional. If the AmazonEKS_CNI_Policy
managed IAM policy is attached to your Amazon EKS node IAM role, we recommend 
assigning it to an IAM role that you associate to the Kubernetes aws-node service account 
instead. For more information, see Configuring the Amazon VPC CNI plugin for Kubernetes 
to use IAM roles for service accounts (IRSA).

Launching nodes 985

https://github.com/NVIDIA/k8s-device-plugin
https://github.com/NVIDIA/k8s-device-plugin/releases


Amazon EKS User Guide

Related projects

These open-source projects extend the functionality of Kubernetes clusters running on or outside 
of AWS, including clusters managed by Amazon EKS.

Management tools

Related management tools for Amazon EKS and Kubernetes clusters.

eksctl

eksctl is a simple CLI tool for creating clusters on Amazon EKS.

• Project URL

• Project documentation

• AWS open source blog: eksctl: Amazon EKS cluster with one command

AWS controllers for Kubernetes

With AWS Controllers for Kubernetes, you can create and manage AWS resources directly from your 
Kubernetes cluster.

• Project URL

• AWS open source blog: AWS service operator for Kubernetes now available

Flux CD

Flux is a tool that you can use to manage your cluster configuration using Git. It uses an operator in 
the cluster to trigger deployments inside of Kubernetes. For more information about operators, see
OperatorHub.io on GitHub.

• Project URL

• Project documentation

Management tools 986

https://eksctl.io/
https://eksctl.io/
https://aws.amazon.com/blogs/opensource/eksctl-eks-cluster-one-command/
https://github.com/aws-controllers-k8s/
https://aws.amazon.com/blogs/opensource/aws-service-operator-kubernetes-available/
https://operatorhub.io/
https://fluxcd.io/
https://docs.fluxcd.io/


Amazon EKS User Guide

CDK for Kubernetes

With the CDK for Kubernetes (cdk8s), you can define Kubernetes apps and components using 
familiar programming languages. cdk8s apps synthesize into standard Kubernetes manifests, which 
can be applied to any Kubernetes cluster.

• Project URL

• Project documentation

• AWS containers blog: Introducing cdk8s+: Intent-driven APIs for Kubernetes objects

Networking

Related networking projects for Amazon EKS and Kubernetes clusters.

Amazon VPC CNI plugin for Kubernetes

Amazon EKS supports native VPC networking through the Amazon VPC CNI plugin for Kubernetes. 
The plugin assigns an IP address from your VPC to each Pod.

• Project URL

• Project documentation

AWS Load Balancer Controller for Kubernetes

The AWS Load Balancer Controller helps manage AWS Elastic Load Balancers for a Kubernetes 
cluster. It satisfies Kubernetes Ingress resources by provisioning AWS Application Load Balancers. It 
satisfies Kubernetes service resources by provisioning AWS Network Load Balancers.

• Project URL

• Project documentation

ExternalDNS

ExternalDNS synchronizes exposed Kubernetes services and ingresses with DNS providers including 
Amazon Route 53 and AWS Service Discovery.

CDK for Kubernetes 987

https://cdk8s.io/
https://cdk8s.io/docs/latest/
https://aws.amazon.com/blogs/containers/introducing-cdk8s-intent-driven-apis-for-kubernetes-objects/
https://github.com/aws/amazon-vpc-cni-k8s
https://github.com/aws/amazon-vpc-cni-k8s/blob/master/README.md
https://github.com/kubernetes-sigs/aws-load-balancer-controller
https://kubernetes-sigs.github.io/aws-load-balancer-controller/latest/


Amazon EKS User Guide

• Project URL

• Project documentation

Machine learning

Related machine learning projects for Amazon EKS and Kubernetes clusters.

Kubeflow

A machine learning toolkit for Kubernetes.

• Project URL

• Project documentation

• AWS open source blog: Kubeflow on Amazon EKS

Auto Scaling

Related auto scaling projects for Amazon EKS and Kubernetes clusters.

Cluster autoscaler

Cluster Autoscaler is a tool that automatically adjusts the size of the Kubernetes cluster based on 
CPU and memory pressure.

• Project URL

• Project documentation

• Amazon EKS workshop: https://www.eksworkshop.com/

Escalator

Escalator is a batch or job optimized horizontal autoscaler for Kubernetes.

• Project URL

• Project documentation

Machine learning 988

https://github.com/kubernetes-incubator/external-dns
https://github.com/kubernetes-incubator/external-dns/blob/master/docs/tutorials/aws.md
https://www.kubeflow.org/
https://www.kubeflow.org/docs/
https://aws.amazon.com/blogs/opensource/kubeflow-amazon-eks/
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/cloudprovider/aws/README.md
https://www.eksworkshop.com/
https://github.com/atlassian/escalator
https://github.com/atlassian/escalator/blob/master/docs/README.md


Amazon EKS User Guide

Monitoring

Related monitoring projects for Amazon EKS and Kubernetes clusters.

Prometheus

Prometheus is an open-source systems monitoring and alerting toolkit.

• Project URL

• Project documentation

• Amazon EKS workshop: https://eksworkshop.com/intermediate/240_monitoring/

Continuous integration / continuous deployment

Related CI/CD projects for Amazon EKS and Kubernetes clusters.

Jenkins X

CI/CD solution for modern cloud applications on Amazon EKS and Kubernetes clusters.

• Project URL

• Project documentation

Monitoring 989

https://prometheus.io/
https://prometheus.io/docs/introduction/overview/
https://eksworkshop.com/intermediate/240_monitoring/
https://jenkins-x.io/
https://jenkins-x.io/docs/


Amazon EKS User Guide

Amazon EKS new features and roadmap

You can learn about new Amazon EKS features by scrolling to the What's New feed on the What's 
New with AWS page. You can also review the roadmap on GitHub, which lets you know about 
upcoming features and priorities so that you can plan how you want to use Amazon EKS in the 
future. You can provide direct feedback to us about the roadmap priorities.

990

https://aws.amazon.com/new/?whats-new-content-all.sort-by=item.additionalFields.postDateTime&whats-new-content-all.sort-order=desc&awsf.whats-new-compute=*all&awsf.whats-new-containers=general-products%23amazon-eks
https://aws.amazon.com/new/?whats-new-content-all.sort-by=item.additionalFields.postDateTime&whats-new-content-all.sort-order=desc&awsf.whats-new-compute=*all&awsf.whats-new-containers=general-products%23amazon-eks
https://github.com/aws/containers-roadmap/projects/1?card_filter_query=eks


Amazon EKS User Guide

Document history for Amazon EKS

The following table describes the major updates and new features for the Amazon EKS User Guide. 
We also update the documentation frequently to address the feedback that you send us.

Change Description Date

AWS managed policy updates 
- Update to an existing policy

Amazon EKS updated an 
existing AWS managed policy.

March 4, 2024

Amazon Linux 2023 Amazon Linux 2023 (AL2023) 
is a new Linux-based 
operating system designed to 
provide a secure, stable, and 
high-performance environme 
nt for your cloud applications.

February 29, 2024

EKS Pod Identity and IRSA 
support sidecars in Kubernete 
s1.29

In Kubernetes 1.29, sidecar 
containers are available in 
Amazon EKS clusters. Sidecar 
containers are supported with 
IAM roles for service accounts 
or EKS Pod Identity. For more 
information about sidecars, 
see Sidecar Containers in the 
Kubernetes documentation.

February 26, 2024

Kubernetes version 1.29 Added Kubernetes version
1.29 support for new clusters 
and version upgrades.

January 23, 2024

Full release: Amazon EKS 
Extended Support for 
Kubernetes versions

Extended Kubernetes version 
support allows you to stay at 
a specific Kubernetes version 
for longer than 14 months.

January 16, 2024

Amazon EKS cluster health 
detection in the AWS Cloud

Amazon EKS detects issues 
with your Amazon EKS 

December 28, 2023

991

https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html#al2023
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html#kubernetes-1.29
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html#kubernetes-1.29
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html#kubernetes-1.29
https://kubernetes.io/docs/concepts/workloads/pods/sidecar-containers/
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html#kubernetes-1.29
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/troubleshooting.html#cluster-health-status
https://docs.aws.amazon.com/eks/latest/userguide/troubleshooting.html#cluster-health-status


Amazon EKS User Guide

clusters and the infrastru 
cture of the cluster prerequis 
ites in clsuter health. You 
can view the issues with 
your EKS clusters in the AWS 
Management Console and in 
the health of the cluster in 
the EKS API. These issues are 
in addition to the issues that 
are detected by and displayed 
by the console. Previousl 
y, cluster health was only 
available for local clusters on 
AWS Outposts.

Amazon EKS AWS Region 
expansion

Amazon EKS is now available 
in the Canada West (Calgary) 
(ca-west-1 ) AWS Region.

December 20, 2023

Cluster insights You can now get recommend 
ations on your cluster based 
on recurring checks.

December 20, 2023

You can now grant IAM roles 
and users access to your 
cluster using access entries

Before the introduction of 
access entries, you granted 
IAM roles and users access to 
your cluster by adding entries 
to the aws-auth ConfigMap

. Now each cluster has an 
access mode, and you can 
switch to using access entries 
on your schedule. After 
you switch modes, you can 
add users by adding access 
entries in the AWS CLI, AWS 
CloudFormation, and the AWS 
SDKs.

December 18, 2023

992

https://docs.aws.amazon.com/eks/latest/userguide/cluster-insights.html
https://docs.aws.amazon.com/eks/latest/userguide/access-entries.html
https://docs.aws.amazon.com/eks/latest/userguide/access-entries.html
https://docs.aws.amazon.com/eks/latest/userguide/access-entries.html


Amazon EKS User Guide

Amazon EKS platform version 
update

This is a new platform 
version with security fixes 
and enhancements. This 
includes new patch versions 
of Kubernetes 1.28.4,
1.27.8, 1.26.11, and
1.25.16.

December 12, 2023

Mountpoint for Amazon S3 
CSI driver

You can now install the 
Mountpoint for Amazon S3 
CSI driver on Amazon EKS 
clusters.

November 27, 2023

Turn on Prometheus metrics 
when creating a cluster

In the AWS Management 
Console, you can now turn 
on Prometheus metrics when 
creating a cluster. You can 
also view Prometheus scraper 
details in the Observability
tab.

November 26, 2023

Amazon EKS Pod Identities Amazon EKS Pod Identities 
associate an IAM role with a 
Kubernetes service account. 
With this feature, you no 
longer need to provide 
extended permissions to the 
node IAM role. This way, Pods 
on that node can call AWS 
APIs. Unlike IAM roles for 
service accounts, EKS Pod 
Identities are completely 
inside EKS; you don't need an 
OIDC identity provider.

November 26, 2023

AWS managed policy updates 
- Update to an existing policy

Amazon EKS updated an 
existing AWS managed policy.

November 26, 2023

993

https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/s3-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/s3-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/prometheus.html
https://docs.aws.amazon.com/eks/latest/userguide/prometheus.html
https://docs.aws.amazon.com/eks/latest/userguide/pod-identites.html
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates


Amazon EKS User Guide

CSI snapshot controller You can now install the CSI 
snapshot controller for use 
with compatible CSI drivers, 
such as the Amazon EBS CSI 
driver.

November 17, 2023

ADOT Operator topic rewrite The Amazon EKS add-on 
support for ADOT Operator 
section was redundant 
with the AWS Distro for 
OpenTelemetry documenta 
tion. We migrated remaining 
essential information to that 
resource to reduce outdated 
and inconsistent information.

November 14, 2023

CoreDNS EKS add-on support 
for Prometheus metrics

The v1.10.1-eksbuild.5
, v1.9.3-eksbuild.9 , 

and v1.8.7-eksbuild.8
versions of the EKS add-
on for CoreDNS expose the 
port that CoreDNS published 
metrics to, in the kube-dns
service. This makes it easier to 
include the CoreDNS metrics 
in your monitoring systems.

November 10, 2023

Amazon EKS CloudWatch 
Observability Operator add-
on

Added Amazon EKS 
CloudWatch Observability 
Operator page.

November 6, 2023

Capacity Blocks for self-mana 
ged P5 instances in US East 
(Ohio)

In US East (Ohio), you can 
now use Capacity Blocks for 
self-managed P5 instances.

October 31, 2023

994

https://docs.aws.amazon.com/eks/latest/userguide/csi-snapshot-controller.html
https://docs.aws.amazon.com/eks/latest/userguide/opentelemetry.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-coredns.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-coredns.html
https://docs.aws.amazon.com/eks/latest/userguide/cloudwatch.html
https://docs.aws.amazon.com/eks/latest/userguide/cloudwatch.html
https://docs.aws.amazon.com/eks/latest/userguide/cloudwatch.html
https://docs.aws.amazon.com/eks/latest/userguide/capacity-blocks.html
https://docs.aws.amazon.com/eks/latest/userguide/capacity-blocks.html
https://docs.aws.amazon.com/eks/latest/userguide/capacity-blocks.html


Amazon EKS User Guide

Clusters support modifying 
subnets and security groups

You can update the cluster 
to change which subnets and 
security groups the cluster 
uses. You can update from the 
AWS Management Console, 
the latest version of the 
AWS CLI, AWS CloudForm 
ation, and eksctl version
v0.164.0-rc.0  or later. 
You might need to do this to 
provide subnets with more 
available IP addresses to 
successfully upgrade a cluster 
version.

October 24, 2023

Cluster role and managed 
node group role supports 
customer managed 
AWS Identity and Access 
Management policies

You can use a custom IAM 
policy on the cluster role, 
instead of the AmazonEKS 
ClusterPolicy  AWS 
managed policy. Also, you can 
use a custom IAM policy on 
the node role in a managed 
node group, instead of the
AmazonEKSWorkerNod 
ePolicy  AWS managed 
policy. Do this to create a 
policy with the least privilege 
to meet strict compliance 
requirements.

October 23, 2023

Fix link to eksctl installation Fix install link for eksctl after 
the page was moved.

October 6, 2023

Preview release: Amazon 
EKS Extended Support for 
Kubernetes versions

Extended Kubernetes version 
support allows you to stay at 
a specific Kubernetes version 
for longer than 14 months.

October 4, 2023

995

https://docs.aws.amazon.com/eks/latest/userguide/network_reqs.html
https://docs.aws.amazon.com/eks/latest/userguide/network_reqs.html
https://docs.aws.amazon.com/eks/latest/userguide/service_IAM_role.html
https://docs.aws.amazon.com/eks/latest/userguide/service_IAM_role.html
https://docs.aws.amazon.com/eks/latest/userguide/service_IAM_role.html
https://docs.aws.amazon.com/eks/latest/userguide/service_IAM_role.html
https://docs.aws.amazon.com/eks/latest/userguide/service_IAM_role.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSClusterPolicy.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSClusterPolicy.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSWorkerNodePolicy.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonEKSWorkerNodePolicy.html
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html


Amazon EKS User Guide

Remove references to AWS 
App Mesh integration

Amazon EKS integrations with 
AWS App Mesh remain for 
existing customers of App 
Mesh only.

September 29, 2023

Kubernetes version 1.28 Added Kubernetes version
1.28 support for new clusters 
and version upgrades.

September 26, 2023

Existing clusters support 
Kubernetes network policy 
enforcement in the Amazon 
VPC CNI plugin for Kubernete 
s

You can use Kubernetes
network policy in existing 
clusters with the Amazon VPC 
CNI plugin for Kubernetes, 
instead of requiring a third 
party solution.

September 15, 2023

CoreDNS Amazon EKS add-on 
supports modifying PDB

You can modify the
PodDisruptionBudge 
t  of the EKS add-on for 
CoreDNS in versions v1.9.3-
eksbuild.7  and later and
v1.10.1-eksbuild.4
and later.

September 15, 2023

Amazon EKS support for 
shared subnets

New Shared subnet requireme 
nts and considerations for 
making Amazon EKS clusters 
in shared subnets.

September 7, 2023

Updates to What is Amazon 
EKS?

Added new Common use 
cases and Architecture topics. 
Refreshed other topics.

September 6, 2023

996

https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html#kubernetes-1.28
https://docs.aws.amazon.com/eks/latest/userguide/cni-network-policy.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-network-policy.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-network-policy.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-network-policy.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-network-policy.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-coredns.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-coredns.html
https://docs.aws.amazon.com/eks/latest/userguide/network_reqs.html#network-requirements-shared
https://docs.aws.amazon.com/eks/latest/userguide/network_reqs.html#network-requirements-shared
https://docs.aws.amazon.com/eks/latest/userguide/network_reqs.html#network-requirements-shared
https://docs.aws.amazon.com/eks/latest/userguide/network_reqs.html#network-requirements-shared
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/eks/latest/userguide/common-use-cases.html
https://docs.aws.amazon.com/eks/latest/userguide/common-use-cases.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-architecture.html


Amazon EKS User Guide

Kubernetes network policy 
enforcement in the Amazon 
VPC CNI plugin for Kubernete 
s

You can use Kubernete 
s network policy with the 
Amazon VPC CNI plugin 
for Kubernetes, instead 
of requiring a third party 
solution.

August 29, 2023

Amazon EKS AWS Region 
expansion

Amazon EKS is now available 
in the Israel (Tel Aviv) (il-
central-1 ) AWS Region.

August 1, 2023

Configurable ephemeral 
storage for Fargate

You can increase the total 
amount of ephemeral storage 
for each Pod running on 
Amazon EKS Fargate.

July 31, 2023

Add-on support for Amazon 
EFS CSI driver

You can now use the AWS 
Management Console, AWS 
CLI, and API to manage the 
Amazon EFS CSI driver.

July 26, 2023

AWS managed policy updates 
- New policy

Amazon EKS added a new 
AWS managed policy.

July 26, 2023

Kubernetes version updates 
for 1.27, 1.26, 1.25, and 1.24 
are now available for local 
clusters on AWS Outposts

Kubernetes version updates 
to 1.27.3, 1.26.6, 1.25.11, 
and 1.24.15 are now available 
for local clusters on AWS 
Outposts

July 20, 2023

IP prefixes support for 
Windows nodes

Assigning IP prefixes to your 
nodes can enable you to host 
a significantly higher number 
of Pods on your nodes than 
you can when assigning 
 individual secondary IP 
addresses to your nodes.

July 6, 2023

997

https://docs.aws.amazon.com/eks/latest/userguide/cni-network-policy.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-network-policy.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-network-policy.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-network-policy.html
https://docs.aws.amazon.com/eks/latest/userguide/fargate-pod-configuration.html#fargate-storage
https://docs.aws.amazon.com/eks/latest/userguide/fargate-pod-configuration.html#fargate-storage
https://docs.aws.amazon.com/eks/latest/userguide/eks-add-ons.html#add-ons-aws-efs-csi-driver
https://docs.aws.amazon.com/eks/latest/userguide/eks-add-ons.html#add-ons-aws-efs-csi-driver
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/eks-outposts-platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-outposts-platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-outposts-platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-outposts-platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-increase-ip-addresses.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-increase-ip-addresses.html


Amazon EKS User Guide

Amazon FSx for OpenZFS CSI 
driver

You can now install the 
Amazon FSx for OpenZFS 
CSI driver on Amazon EKS 
clusters.

June 30, 2023

Pods on Linux nodes in IPv4
clusters can now communica 
te with IPv6 endpoints.

After assigning an IPv6 
address to your node, your 
Pods' IPv4 address is network 
address translated to the
IPv6 address of the node 
that it's running on.

June 19, 2023

Windows managed node 
groups in AWS GovCloud (US-
East) and AWS GovCloud (US-
West)

In the AWS GovCloud (US-
East) and AWS GovCloud 
(US-West) AWS Regions, 
Amazon EKS managed node 
groups can now run Windows 
containers.

May 30, 2023

Kubernetes version 1.27 Added Kubernetes version
1.27 support for new clusters 
and version upgrades.

May 24, 2023

Kubernetes version 1.26 Added Kubernetes version
1.26 support for new clusters 
and version upgrades.

April 11, 2023

Domainless gMSA You can now use domainless 
gMSA with Windows Pods.

March 27, 2023

Amazon EKS AWS Region 
expansion

Amazon EKS is now available 
in the Asia Pacific (Melbourn 
e) (ap-southeast-4 ) AWS 
Region.

March 10, 2023

Amazon File Cache CSI driver You can now install the 
Amazon File Cache CSI driver 
on Amazon EKS clusters.

March 3, 2023

998

https://docs.aws.amazon.com/eks/latest/userguide/fsx-openzfs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/fsx-openzfs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-ipv6-egress.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-ipv6-egress.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-ipv6-egress.html
https://docs.aws.amazon.com/eks/latest/userguide/create-managed-node-group.html
https://docs.aws.amazon.com/eks/latest/userguide/create-managed-node-group.html
https://docs.aws.amazon.com/eks/latest/userguide/create-managed-node-group.html
https://docs.aws.amazon.com/eks/latest/userguide/create-managed-node-group.html
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html#kubernetes-1.27
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html#kubernetes-1.26
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-windows-ami.html#ad-and-gmsa-support
https://docs.aws.amazon.com/eks/latest/userguide/file-cache-csi.html


Amazon EKS User Guide

Kubernetes version 1.25 
is now available for local 
clusters on AWS Outposts

You can now create an 
Amazon EKS local cluster on 
an Outpost using Kubernetes 
versions 1.22 – 1.25.

March 1, 2023

Kubernetes version 1.25 Added Kubernetes version
1.25 support for new clusters 
and version upgrades.

February 22, 2023

AWS managed policy updates 
- Update to an existing policy

Amazon EKS updated an 
existing AWS managed policy.

February 7, 2023

Amazon EKS AWS Region 
expansion

Amazon EKS is now available 
in the Asia Pacific (Hyderaba 
d) (ap-south-2 ), Europe 
(Zurich) (eu-central-2 ), 
and Europe (Spain) (eu-
south-2 ) AWS Regions.

February 6, 2023

Kubernetes versions 1.21
– 1.24 are now available 
 for local clusters on AWS 
Outposts.

You can now create an 
Amazon EKS local cluster on 
an Outpost using Kubernete 
s versions 1.21 – 1.24. 
Previously, only version 1.21
was available.

January 17, 2023

Amazon EKS now supports 
AWS PrivateLink

You can use an AWS PrivateLi 
nk to create a private 
connection between your VPC 
and Amazon EKS.

December 16, 2022

Managed node group 
Windows support

You can now use Windows for 
Amazon EKS managed node 
groups.

December 15, 2022

999

https://docs.aws.amazon.com/eks/latest/userguide/eks-outposts-local-cluster-create.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-outposts-local-cluster-create.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-outposts-local-cluster-create.html
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html#kubernetes-1.25
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/eks-outposts-local-cluster-create.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-outposts-local-cluster-create.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-outposts-local-cluster-create.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-outposts-local-cluster-create.html
https://docs.aws.amazon.com/eks/latest/userguide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/eks/latest/userguide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/eks/latest/userguide/managed-node-groups.html
https://docs.aws.amazon.com/eks/latest/userguide/managed-node-groups.html


Amazon EKS User Guide

Amazon EKS add-ons from 
independent software 
vendors are now available in 
the AWS Marketplace

You can now browse and 
subscribe to Amazon EKS 
add-ons from independent 
software vendors through the 
AWS Marketplace.

November 28, 2022

AWS managed policy updates 
- Update to an existing policy

Amazon EKS updated an 
existing AWS managed policy.

November 17, 2022

Kubernetes version 1.24 Added Kubernetes version
1.24 support for new clusters 
and version upgrades.

November 15, 2022

Amazon EKS AWS Region 
expansion

Amazon EKS is now available 
in the Middle East (UAE) (me-
central-1 ) AWS Region.

November 3, 2022

AWS managed policy updates 
- Update to an existing policy

Amazon EKS updated an 
existing AWS managed policy.

October 24, 2022

AWS managed policy updates 
- Update to an existing policy

Amazon EKS updated an 
existing AWS managed policy.

October 20, 2022

Local clusters on AWS 
Outposts are now available

You can now create an 
Amazon EKS local cluster on 
an Outpost.

September 19, 2022

Fargate vCPU based quotas Fargate is transitioning from 
Pod based quotas to vCPU 
based quotas.

September 8, 2022

AWS managed policy updates 
- Update to an existing policy

Amazon EKS updated an 
existing AWS managed policy.

August 31, 2022

1000

https://docs.aws.amazon.com/eks/latest/userguide/managing-add-ons.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-add-ons.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-add-ons.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-add-ons.html
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html#kubernetes-1.24
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/eks-outposts-local-cluster-create.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-outposts-local-cluster-create.html
https://docs.aws.amazon.com/eks/latest/userguide/service-quotas.html#service-quotas-eks-fargate
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates


Amazon EKS User Guide

Cost monitoring Amazon EKS now supports 
Kubecost, which enables you 
to monitor costs broken down 
by Kubernetes resources 
including Pods, nodes, 
namespaces, and labels.

August 24, 2022

AWS managed policy updates 
- New policy

Amazon EKS added a new 
AWS managed policy.

August 24, 2022

AWS managed policy updates 
- New policy

Amazon EKS added a new 
AWS managed policy.

August 23, 2022

Tag resources for billing Added aws:eks:cluster-
name  generated cost 
allocation tag support for all 
clusters.

August 16, 2022

Fargate profile wildcards Added support for Fargate 
profile wildcards in 
the selector criteria for 
namespaces, label keys, and 
label values.

August 16, 2022

Kubernetes version 1.23 Added Kubernetes version
1.23 support for new clusters 
and version upgrades.

August 11, 2022

View Kubernetes resources 
in the AWS Management 
Console

You can now view informati 
on about the Kubernete 
s resources deployed to 
your cluster using the AWS 
Management Console.

May 3, 2022

Amazon EKS AWS Region 
expansion

Amazon EKS is now available 
in the Asia Pacific (Jakarta) 
 (ap-southeast-3 ) AWS 
Region.

May 2, 2022

1001

https://docs.aws.amazon.com/eks/latest/userguide/cost-monitoring
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/eks-using-tags.html#tag-resources-for-billing
https://docs.aws.amazon.com/eks/latest/userguide/fargate-profile.html#fargate-profile-wildcards
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html#kubernetes-1.23
https://docs.aws.amazon.com/eks/latest/userguide/view-kubernetes-resources.html
https://docs.aws.amazon.com/eks/latest/userguide/view-kubernetes-resources.html
https://docs.aws.amazon.com/eks/latest/userguide/view-kubernetes-resources.html


Amazon EKS User Guide

Observability page and ADOT 
add-on support

Added Observability page and 
AWS Distro for OpenTelem 
etry (ADOT).

April 21, 2022

Kubernetes version 1.22 Added Kubernetes version
1.22 support for new clusters 
and version upgrades.

April 4, 2022

AWS managed policy updates 
- New policy

Amazon EKS added a new 
AWS managed policy.

April 4, 2022

Added Fargate Pod patching 
details

When upgrading Fargate 
Pods, Amazon EKS first tries 
to evict Pods based on your 
Pod disruption budgets. You 
can create event rules to react 
to failed evictions before the 
Pods are deleted.

April 1, 2022

Full release: Add-on support 
for Amazon EBS CSI driver

You can now use the AWS 
Management Console, AWS 
CLI, and API to manage the 
Amazon EBS CSI driver.

March 31, 2022

AWS Outposts content update Instructions to deploy an 
Amazon EKS cluster on AWS 
Outposts.

March 22, 2022

AWS managed policy updates 
- Update to an existing policy

Amazon EKS updated an 
existing AWS managed policy.

March 21, 2022

Windows containerd
support

You can now select the
containerd  runtime for 
Windows nodes.

March 14, 2022

Added Amazon EKS 
Connector considerations to 
security documentation

Describes the shared 
responsibility model as it 
relates to connected clusters.

February 25, 2022

1002

https://docs.aws.amazon.com/eks/latest/userguide/eks-observe.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-observe.html
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/fargate-pod-patching.html
https://docs.aws.amazon.com/eks/latest/userguide/fargate-pod-patching.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/outposts.html
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-windows-ami.html.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-windows-ami.html.html
https://docs.aws.amazon.com/eks/latest/userguide/connector-considerations.html
https://docs.aws.amazon.com/eks/latest/userguide/connector-considerations.html
https://docs.aws.amazon.com/eks/latest/userguide/connector-considerations.html


Amazon EKS User Guide

Assign IPv6 addresses to 
your Pods and services

You can now create a 1.21 or 
later cluster that assigns IPv6
addresses to your Pods and 
services.

January 6, 2022

AWS managed policy updates 
- Update to an existing policy

Amazon EKS updated an 
existing AWS managed policy.

December 13, 2021

Preview release: Add-on 
support for Amazon EBS CSI 
driver

You can now preview using 
the AWS Management 
Console, AWS CLI, and API to 
manage the Amazon EBS CSI 
driver.

December 9, 2021

Karpenter autoscaler support You can now use the 
Karpenter open-source 
project to autoscale your 
nodes.

November 29, 2021

Fluent Bit Kubernetes filter 
support in Fargate logging

You can now use the Fluent 
Bit Kubernetes filter with 
Fargate logging.

November 10, 2021

Windows support available in 
the control plane

Windows support is now 
available in your control 
plane. You no longer need to 
enable it in your data plane.

November 9, 2021

Bottlerocket added as an 
AMI type for managed node 
groups

Previously, Bottlerocket was 
only available as a self-mana 
ged node option. Now it can 
be configured as a managed 
node group, reducing the 
effort that's required to meet 
node compliance requireme 
nts.

October 28, 2021

1003

https://docs.aws.amazon.com/eks/latest/userguide/cni-ipv6.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-ipv6.html
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/autoscaling.html#karpenter
https://docs.aws.amazon.com/eks/latest/userguide/fargate-logging.html#fargate-logging-kubernetes-filter
https://docs.aws.amazon.com/eks/latest/userguide/fargate-logging.html#fargate-logging-kubernetes-filter
https://docs.aws.amazon.com/eks/latest/userguide/windows-support.html
https://docs.aws.amazon.com/eks/latest/userguide/windows-support.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami-bottlerocket.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami-bottlerocket.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami-bottlerocket.html


Amazon EKS User Guide

DL1 driver support Custom Amazon Linux AMIs 
now support deep learning 
workloads for Amazon Linux 
2. This enablement allows a 
generic on-premises or cloud 
baseline configuration.

October 25, 2021

VT1 video support Custom Amazon Linux AMIs 
now support VT1 for some 
distributions. This enablemen 
t advertises Xilinx U30 devices 
on your Amazon EKS cluster.

September 13, 2021

Amazon EKS Connector is 
now available

You can use Amazon EKS 
Connector to register and 
connect any conformant 
Kubernetes cluster to AWS 
and visualize it in the Amazon 
EKS console.

September 8, 2021

Amazon EKS Anywhere is now 
available

Amazon EKS Anywhere is a 
new deployment option for 
Amazon EKS that you can 
use to create and operate 
Kubernetes clusters on-
premises.

September 8, 2021

Amazon FSx for NetApp 
ONTAP CSI driver

Added topic that summarize 
s the Amazon FSx for NetApp 
ONTAP CSI driver and gives 
links to other references.

September 2, 2021

1004

https://docs.aws.amazon.com/eks/latest/userguide/eks-ami-build-scripts.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-ami-build-scripts.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-connector.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-connector.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-deployment-options.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-deployment-options.html
https://docs.aws.amazon.com/eks/latest/userguide/fsx-ontap.html
https://docs.aws.amazon.com/eks/latest/userguide/fsx-ontap.html


Amazon EKS User Guide

Managed node groups now 
auto-calculates the Amazon 
EKS recommended maximum 
Pods for nodes

Managed node groups now 
auto-calculate the Amazon 
EKS maximum Pods for nodes 
that you deploy without a 
launch template, or with a 
launch template that you 
haven't specified an AMI ID in.

August 30, 2021

Remove Amazon EKS 
management of add-on 
settings without removing the 
Amazon EKS add-on software

You can now remove an 
Amazon EKS add-on without 
removing the add-on 
software from your cluster.

August 20, 2021

Create multi-homed Pods 
using Multus

You can now add multiple 
network interfaces to a Pod 
using Multus.

August 2, 2021

Add more IP addresses to 
your Linux Amazon EC2 nodes

You can now add significantly 
more IP addresses to your 
Linux Amazon EC2 nodes. 
This means that you can run a 
higher density of Podson each 
node.

July 27, 2021

containerd  runtime 
bootstrap

The Amazon EKS optimized 
accelerated Amazon Linux 
Amazon Machine Image (AMI) 
now contains a bootstrap flag 
that you can use to enable 
the containerd  runtime in 
Amazon EKS optimized and 
Bottlerocket AMIs. This flag 
is available in all supported 
Kubernetes versions of the 
AMI.

July 19, 2021

1005

https://docs.aws.amazon.com/eks/latest/userguide/cni-increase-ip-addresses.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-increase-ip-addresses.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-increase-ip-addresses.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-increase-ip-addresses.html
https://docs.aws.amazon.com/eks/latest/userguide/managing-vpc-cni.html#removing-vpc-cni-eks-add-on
https://docs.aws.amazon.com/eks/latest/userguide/managing-vpc-cni.html#removing-vpc-cni-eks-add-on
https://docs.aws.amazon.com/eks/latest/userguide/managing-vpc-cni.html#removing-vpc-cni-eks-add-on
https://docs.aws.amazon.com/eks/latest/userguide/managing-vpc-cni.html#removing-vpc-cni-eks-add-on
https://docs.aws.amazon.com/eks/latest/userguide/pod-multiple-network-interfaces.html
https://docs.aws.amazon.com/eks/latest/userguide/pod-multiple-network-interfaces.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-increase-ip-addresses.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-increase-ip-addresses.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html#containerd-bootstrap
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html#containerd-bootstrap


Amazon EKS User Guide

Kubernetes version 1.21 Added Kubernetes version
1.21 support.

July 19, 2021

Added managed policies topic A list of all Amazon EKS 
IAM managed policies and 
changes that were made to 
them since June 17, 2021.

June 17, 2021

Use security groups for Pods 
with Fargate

You can now use security 
groups for Pods with Fargate, 
in addition to using them with 
Amazon EC2 nodes.

June 1, 2021

Added CoreDNS and kube-
proxy  Amazon EKS add-ons

Amazon EKS can now help 
you manage the CoreDNS and
kube-proxy  Amazon EKS 
add-ons for your cluster.

May 19, 2021

Kubernetes version 1.20 Added Kubernetes version
1.20 support for new clusters 
and version upgrades.

May 18, 2021

AWS Load Balancer Controlle 
r2.2.0 released

You can now use the AWS 
Load Balancer Controller to 
create Elastic Load Balancers 
using instance or IP targets.

May 14, 2021

Node taints for managed 
node groups

Amazon EKS now supports 
adding note taints to 
managed node groups.

May 11, 2021

Secrets encryption for 
existing clusters

Amazon EKS now supports 
adding secrets encryption to 
existing clusters.

February 26, 2021

Kubernetes version 1.19 Added Kubernetes version
1.19 support for new clusters 
and version upgrades.

February 16, 2021

1006

https://docs.aws.amazon.com/eks/latest/userguide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/eks/latest/userguide/security-groups-for-pods.html
https://docs.aws.amazon.com/eks/latest/userguide/security-groups-for-pods.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-add-ons.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-add-ons.html
https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html
https://docs.aws.amazon.com/eks/latest/userguide/aws-load-balancer-controller.html
https://docs.aws.amazon.com/eks/latest/userguide/node-taints-managed-node-groups.html
https://docs.aws.amazon.com/eks/latest/userguide/node-taints-managed-node-groups.html
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html#enable-kms
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html#enable-kms
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/


Amazon EKS User Guide

Amazon EKS now supports 
OpenID Connect (OIDC) 
identity providers as a 
method to authenticate users 
to a version 1.16 or later 
cluster.

OIDC identity providers 
can be used with, or as an 
alternative to AWS Identity 
and Access Management 
(IAM).

February 12, 2021

View node and workload 
resources in the AWS 
Management Console

You can now view details 
about your managed, self-
managed, and Fargate nodes 
and your deployed Kubernete 
s workloads in the AWS 
Management Console.

December 1, 2020

Deploy Spot Instance types in 
a managed node group

You can now deploy multiple 
Spot or On-Demand Instance 
types to a managed node 
group.

December 1, 2020

Amazon EKS can now manage 
specific add-ons for your 
cluster

You can manage add-ons 
yourself, or allow Amazon 
EKS to control the launch and 
version of an add-on through 
the Amazon EKS API.

December 1, 2020

Share an ALB across multiple 
Ingresses

You can now share an 
AWS Application Load 
Balancer (ALB) across multiple 
Kubernetes Ingresses. In the 
past, you had to deploy a 
separate ALB for each Ingress.

October 23, 2020

1007

https://docs.aws.amazon.com/eks/latest/userguide/authenticate-oidc-identity-provider.html
https://docs.aws.amazon.com/eks/latest/userguide/authenticate-oidc-identity-provider.html
https://docs.aws.amazon.com/eks/latest/userguide/authenticate-oidc-identity-provider.html
https://docs.aws.amazon.com/eks/latest/userguide/authenticate-oidc-identity-provider.html
https://docs.aws.amazon.com/eks/latest/userguide/authenticate-oidc-identity-provider.html
https://docs.aws.amazon.com/eks/latest/userguide/authenticate-oidc-identity-provider.html
https://docs.aws.amazon.com/eks/latest/userguide/view-kubernetes-resources.html
https://docs.aws.amazon.com/eks/latest/userguide/view-kubernetes-resources.html
https://docs.aws.amazon.com/eks/latest/userguide/view-kubernetes-resources.html
https://docs.aws.amazon.com/eks/latest/userguide/managed-node-groups.html#managed-node-group-capacity-types
https://docs.aws.amazon.com/eks/latest/userguide/managed-node-groups.html#managed-node-group-capacity-types
https://docs.aws.amazon.com/eks/latest/userguide/eks-add-ons.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-add-ons.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-add-ons.html
https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html
https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html


Amazon EKS User Guide

NLB IP target support You can now deploy a 
Network Load Balancer with 
IP targets. This means that 
you can use an NLB to load 
balance network traffic to 
Fargate Pods and directly 
to Pods that are running on 
Amazon EC2 nodes.

October 23, 2020

Kubernetes version 1.18 Added Kubernetes version
1.18 support for new clusters 
and version upgrades.

October 13, 2020

Specify a custom CIDR block 
for Kubernetes service IP 
address assignment.

You can now specify a custom 
CIDR block that Kubernetes 
assigns service IP addresses 
from.

September 29, 2020

Assign security groups to 
individual Pods

You can now associate 
different security groups to 
some of the individual Pods 
that are running on many 
Amazon EC2 instance types.

September 9, 2020

Deploy Bottlerocket on your 
nodes

You can now deploy nodes 
that are running Bottlerocket.

August 31, 2020

The ability to launch Arm 
nodes is generally available

You can now launch Arm 
nodes in managed and self-
managed node groups.

August 17, 2020

Managed node group launch 
templates and custom AMI

You can now deploy a 
managed node group 
that uses an Amazon EC2 
launch template. The launch 
template can specify a 
custom AMI, if you choose.

August 17, 2020

1008

https://docs.aws.amazon.com/eks/latest/userguide/networkg-load-balancing.html#network-load-balancer
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/security-groups-for-pods.html
https://docs.aws.amazon.com/eks/latest/userguide/security-groups-for-pods.html
https://docs.aws.amazon.com/eks/latest/userguide/launch-node-bottlerocket.html
https://docs.aws.amazon.com/eks/latest/userguide/launch-node-bottlerocket.html
https://aws.amazon.com/bottlerocket/
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html#arm-ami
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html#arm-ami
https://docs.aws.amazon.com/eks/latest/userguide/launch-templates.html
https://docs.aws.amazon.com/eks/latest/userguide/launch-templates.html


Amazon EKS User Guide

EFS support for AWS Fargate You can now use Amazon EFS 
with AWS Fargate.

August 17, 2020

Amazon EKS platform version 
update

This is a new platform version 
with security fixes and 
enhancements. This includes 
UDP support for services of 
type LoadBalancer  when 
using Network Load Balancers 
with Kubernetes version 1.15
or later. For more informati 
on, see the Allow UDP for 
AWS Network Load Balancer
issue on GitHub.

August 12, 2020

Amazon EKS AWS Region 
expansion

Amazon EKS is now available 
in the Africa (Cape Town) 
(af-south-1 ) and Europe 
(Milan) (eu-south-1 ) AWS 
Regions.

August 6, 2020

Fargate usage metrics AWS Fargate provides 
CloudWatch usage metrics 
that provide visibility 
into your account's usage 
of Fargate On-Demand 
resources.

August 3, 2020

Kubernetes version 1.17 Added Kubernetes version
1.17 support for new clusters 
and version upgrades.

July 10, 2020

1009

https://docs.aws.amazon.com/eks/latest/userguide/efs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://github.com/kubernetes/kubernetes/pull/92109
https://github.com/kubernetes/kubernetes/pull/92109
https://docs.aws.amazon.com/eks/latest/userguide/monitoring-fargate-usage.html


Amazon EKS User Guide

Create and manage App 
Mesh resources from within 
Kubernetes with the App 
Mesh controller for Kubernete 
s

You can create and manage 
App Mesh resources from 
within Kubernetes. The 
controller also automatically 
injects the Envoy proxy and 
init containers into Pods that 
you deploy.

June 18, 2020

Amazon EKS now supports 
Amazon EC2 Inf1 nodes

You can add Amazon EC2 Inf1 
nodes to your cluster.

June 4, 2020

Amazon EKS AWS Region 
expansion

Amazon EKS is now available 
in the AWS GovCloud (US-
East) (us-gov-east-1 ) and 
AWS GovCloud (US-West) 
 (us-gov-west-1 ) AWS 
Regions.

May 13, 2020

Kubernetes1.12 is no longer 
supported on Amazon EKS

Kubernetes version 1.12
is no longer supported on 
Amazon EKS. Update any
1.12 clusters to version
1.13 or later to avoid service 
interruption.

May 12, 2020

Kubernetes version 1.16 Added Kubernetes version
1.16 support for new clusters 
and version upgrades.

April 30, 2020

Added the AWSServic 
eRoleForAmazonEKS service-
linked role

Added the AWSServic 
eRoleForAmazonEKS service-
linked role.

April 16, 2020

Kubernetes version 1.15 Added Kubernetes version
1.15 support for new clusters 
and version upgrades.

March 10, 2020

1010

https://docs.aws.amazon.com/eks/latest/userguide/mesh-k8s-integration.html
https://docs.aws.amazon.com/eks/latest/userguide/mesh-k8s-integration.html
https://docs.aws.amazon.com/eks/latest/userguide/mesh-k8s-integration.html
https://docs.aws.amazon.com/eks/latest/userguide/mesh-k8s-integration.html
https://docs.aws.amazon.com/eks/latest/userguide/mesh-k8s-integration.html
https://docs.aws.amazon.com/eks/latest/userguide/inferentia-support.html
https://docs.aws.amazon.com/eks/latest/userguide/inferentia-support.html
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/using-service-linked-roles-eks.html
https://docs.aws.amazon.com/eks/latest/userguide/using-service-linked-roles-eks.html
https://docs.aws.amazon.com/eks/latest/userguide/using-service-linked-roles-eks.html


Amazon EKS User Guide

Amazon EKS AWS Region 
expansion

Amazon EKS is now available 
in the Beijing (cn-north- 
1 ) and Ningxia (cn-northw 
est-1 ) AWS Regions.

February 26, 2020

FSx for Lustre CSI driver Added topic for installing the 
FSx for Lustre CSI driver on 
Kubernetes 1.14 Amazon 
EKS clusters.

December 23, 2019

Restrict network access to the 
public access endpoint of a 
cluster

With this update, you can 
use Amazon EKS to restrict 
the CIDR ranges that can 
communicate to the public 
access endpoint of the 
Kubernetes API server.

December 20, 2019

Resolve the private access 
endpoint address for a cluster 
from outside of a VPC

With this update, you can use 
Amazon EKS to resolve the 
private access endpoint of the 
Kubernetes API server from 
outside of a VPC.

December 13, 2019

(Beta) Amazon EC2 A1 
Amazon EC2 instance nodes

Launch Amazon EC2 A1
Amazon EC2 instance nodes 
that register with your 
Amazon EKS cluster.

December 4, 2019

Creating a cluster on AWS 
Outposts

Amazon EKS now supports 
creating clusters on AWS 
Outposts.

December 3, 2019

AWS Fargate on Amazon EKS Amazon EKS Kubernetes 
clusters now support running 
Pods on Fargate.

December 3, 2019

1011

https://docs.aws.amazon.com/eks/latest/userguide/fsx-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.amazon.com/eks/latest/userguide/arm-support.html
https://docs.aws.amazon.com/eks/latest/userguide/arm-support.html
https://aws.amazon.com/ec2/instance-types/a1/
https://docs.aws.amazon.com/eks/latest/userguide/eks-on-outposts.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-on-outposts.html
https://docs.aws.amazon.com/eks/latest/userguide/fargate.html


Amazon EKS User Guide

Amazon EKS AWS Region 
expansion

Amazon EKS is now available 
in the Canada (Central) (ca-
central-1 ) AWS Region.

November 21, 2019

Managed node groups Amazon EKS managed 
node groups automate the 
provisioning and lifecycle 
management of nodes 
(Amazon EC2 instances) for 
Amazon EKS Kubernetes 
clusters.

November 18, 2019

Amazon EKS platform version 
update

New platform versions to 
address CVE-2019-11253 .

November 6, 2019

Kubernetes1.11 is no longer 
supported on Amazon EKS

Kubernetes version 1.11 is no 
longer supported on Amazon 
EKS. Please update any 1.11
clusters to version 1.12
or higher to avoid service 
interruption.

November 4, 2019

Amazon EKS AWS Region 
expansion

Amazon EKS is now available 
in the South America (São 
Paulo) (sa-east-1 ) AWS 
Region.

October 16, 2019

Windows support Amazon EKS clusters running 
Kubernetes version 1.14 now 
support Windows workloads.

October 7, 2019

Autoscaling Added a chapter to cover 
some of the different types of 
Kubernetes autoscaling that 
are supported on Amazon 
EKS clusters.

September 30, 2019

1012

https://docs.aws.amazon.com/eks/latest/userguide/managed-node-groups.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://groups.google.com/forum/#!msg/kubernetes-security-announce/jk8polzSUxs/dfq6a-MnCQAJ
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/windows-support.html
https://docs.aws.amazon.com/eks/latest/userguide/autoscaling.html


Amazon EKS User Guide

Kubernetes Dashboard 
update

Updated topic for installing 
the Kubernetes Dashboard on 
Amazon EKS clusters to use 
the beta 2.0 version.

September 28, 2019

Amazon EFS CSI driver Added topic for installing the 
Amazon EFS CSI driver on 
Kubernetes 1.14 Amazon 
EKS clusters.

September 19, 2019

Amazon EC2 Systems 
Manager parameter for 
Amazon EKS optimized AMI 
ID

Added topic for retrieving 
the Amazon EKS optimized 
AMI ID using an Amazon EC2 
Systems Manager parameter. 
The parameter eliminates the 
need for you to look up AMI 
IDs.

September 18, 2019

Amazon EKS resource tagging You can manage the tagging 
of your Amazon EKS clusters.

September 16, 2019

Amazon EBS CSI driver Added topic for installing the 
Amazon EBS CSI driver on 
Kubernetes 1.14 Amazon 
EKS clusters.

September 9, 2019

New Amazon EKS optimized 
AMI patched for CVE-2019- 
9512  and CVE-2019-9514

Amazon EKS has updated the 
Amazon EKS optimized AMI 
to address CVE-2019-9512
and CVE-2019-9514 .

September 6, 2019

Announcing deprecation of 
Kubernetes1.11 in Amazon 
EKS

Amazon EKS discontinued 
support for Kubernetes 
version 1.11 on November 4, 
2019.

September 4, 2019

1013

https://docs.aws.amazon.com/eks/latest/userguide/dashboard-tutorial.html
https://docs.aws.amazon.com/eks/latest/userguide/dashboard-tutorial.html
https://docs.aws.amazon.com/eks/latest/userguide/efs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/retrieve-ami-id.html
https://docs.aws.amazon.com/eks/latest/userguide/retrieve-ami-id.html
https://docs.aws.amazon.com/eks/latest/userguide/retrieve-ami-id.html
https://docs.aws.amazon.com/eks/latest/userguide/retrieve-ami-id.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-using-tags.html
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://groups.google.com/forum/#!topic/kubernetes-security-announce/wlHLHit1BqA
https://groups.google.com/forum/#!topic/kubernetes-security-announce/wlHLHit1BqA
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html


Amazon EKS User Guide

Kubernetes version 1.14 Added Kubernetes version
1.14 support for new clusters 
and version upgrades.

September 3, 2019

IAM roles for service accounts With IAM roles for service 
accounts on Amazon EKS 
clusters, you can associate 
an IAM role with a Kubernete 
s service account. With this 
feature, you no longer need 
to provide extended permissio 
ns to the node IAM role. This 
way, Pods on that node can 
call AWS APIs.

September 3, 2019

Amazon EKS AWS Region 
expansion

Amazon EKS is now available 
in the Middle East (Bahrain) 
(me-south-1 ) AWS Region.

August 29, 2019

Amazon EKS platform version 
update

New platform versions to 
address CVE-2019-9512
and CVE-2019-9514 .

August 28, 2019

Amazon EKS platform version 
update

New platform versions to 
address CVE-2019-11247
and CVE-2019-11249 .

August 5, 2019

Amazon EKS Region 
expansion

Amazon EKS is now available 
in the Asia Pacific (Hong 
Kong) (ap-east-1 ) AWS 
Region.

July 31, 2019

Kubernetes1.10 no longer 
supported on Amazon EKS

Kubernetes version 1.10
is no longer supported on 
Amazon EKS. Update any
1.10 clusters to version 1.11
or higher to avoid service 
interruption.

July 30, 2019

1014

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://groups.google.com/forum/#!topic/kubernetes-security-announce/wlHLHit1BqA
https://groups.google.com/forum/#!topic/kubernetes-security-announce/wlHLHit1BqA
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://groups.google.com/forum/#!topic/kubernetes-security-announce/vUtEcSEY6SM
https://groups.google.com/forum/#!topic/kubernetes-security-announce/vUtEcSEY6SM
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html


Amazon EKS User Guide

Added topic on ALB ingress 
controller

The AWS ALB Ingress 
Controller for Kubernetes is a 
controller that causes an ALB 
to be created when ingress 
resources are created.

July 11, 2019

New Amazon EKS optimized 
AMI

Removing unnecessary
kubectl binary from AMIs.

July 3, 2019

Kubernetes version 1.13 Added Kubernetes version
1.13 support for new clusters 
and version upgrades.

June 18, 2019

New Amazon EKS optimized 
AMI patched for AWS-2019- 
005

Amazon EKS has updated 
the Amazon EKS optimized 
AMI to address the vulnerabi 
lities that are described in
AWS-2019-005 .

June 17, 2019

Announcing discontinuation 
of support of Kubernete 
s1.10 in Amazon EKS

Amazon EKS stopped 
supporting Kubernetes 
version 1.10 on July 22, 
2019.

May 21, 2019

Amazon EKS platform version 
update

New platform version for 
Kubernetes 1.11 and 1.10
clusters to support custom 
DNS names in the kubelet
certificate and improve etcd
performance.

May 21, 2019

1015

https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html
https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://aws.amazon.com/security/security-bulletins/AWS-2019-005/
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html


Amazon EKS User Guide

AWS CLIget-token
command

The aws eks get-token
 command was added to 

the AWS CLI. You no longer 
need to install the AWS IAM 
Authenticator for Kubernete 
s to create client security 
tokens for cluster API server 
communication. Upgrade 
your AWS CLI installation to 
the latest version to use this 
new functionality. For more 
information, see Installing the 
AWS Command Line Interface
 in the AWS Command Line 
Interface User Guide.

May 10, 2019

Getting started with eksctl This getting started guide 
describes how you can install 
all of the required resources 
to get started with Amazon 
EKS using eksctl. This is a 
simple command line utility 
for creating and managing 
Kubernetes clusters on 
Amazon EKS.

May 10, 2019

Amazon EKS platform version 
update

New platform version for 
Kubernetes 1.12 clusters to 
support custom DNS names in 
the kubelet certificate and 
improve etcd performance. 
This fixes a bug that caused 
node kubelet daemons 
to request a new certificate 
every few seconds.

May 8, 2019

1016

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html


Amazon EKS User Guide

Prometheus tutorial Added topic for deploying 
Prometheus to your Amazon 
EKS cluster.

April 5, 2019

Amazon EKS control plane 
logging

With this update, you can 
get audit and diagnostic logs 
directly from the Amazon 
EKS control pane. You can 
use these CloudWatch logs in 
your account as reference for 
securing and running clusters.

April 4, 2019

Kubernetes version 1.12 Added Kubernetes version
1.12 support for new clusters 
and version upgrades.

March 28, 2019

Added App Mesh getting 
started guide

Added documentation for 
getting started with App 
Mesh and Kubernetes.

March 27, 2019

Amazon EKS API server 
endpoint private access

Added documentation for 
disabling public access for 
your Amazon EKS cluster's 
Kubernetes API server 
endpoint.

March 19, 2019

Added topic for installing the 
Kubernetes Metrics Server

The Kubernetes Metrics 
Server is an aggregator of 
resource usage data in your 
cluster.

March 18, 2019

Added list of related open 
source projects

These open source projects 
extend the functionality of 
Kubernetes clusters running 
on AWS, including clusters 
that are managed by Amazon 
EKS.

March 15, 2019

1017

https://docs.aws.amazon.com/eks/latest/userguide/prometheus.html
https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html
https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html
https://docs.aws.amazon.com/eks/latest/userguide/mesh-gs-k8s.html
https://docs.aws.amazon.com/eks/latest/userguide/mesh-gs-k8s.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html
https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html
https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html
https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html


Amazon EKS User Guide

Added topic for installing 
Helm locally

The helm package manager 
for Kubernetes helps you 
install and manage applicati 
ons on your Kubernetes 
cluster. This topic shows how 
to install and run the helm
and tiller binaries locally. 
That way, you can install 
and manage charts using 
the Helm CLI on your local 
system.

March 11, 2019

Amazon EKS platform version 
update

New platform version 
that updates Amazon EKS 
Kubernetes 1.11 clusters 
to patch level 1.11.8
to address CVE-2019- 
1002100 .

March 8, 2019

Increased cluster limit Amazon EKS has increased 
the number of clusters that 
you can create in an AWS 
Region from 3 to 50.

February 13, 2019

Amazon EKS AWS Region 
expansion

Amazon EKS is now available 
in the Europe (London) (eu-
west-2 ), Europe (Paris) (eu-
west-3 ), and Asia Pacific 
(Mumbai) (ap-south-1 ) 
AWS Regions.

February 13, 2019

New Amazon EKS optimized 
AMI patched for ALAS-2019 
-1156

Amazon EKS has updated 
the Amazon EKS optimized 
AMI to address the vulnerabi 
lity that's described in
ALAS-2019-1156 .

February 11, 2019

1018

https://docs.aws.amazon.com/eks/latest/userguide/helm.html
https://docs.aws.amazon.com/eks/latest/userguide/helm.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://discuss.kubernetes.io/t/kubernetes-security-announcement-v1-11-8-1-12-6-1-13-4-released-to-address-medium-severity-cve-2019-1002100/5147
https://discuss.kubernetes.io/t/kubernetes-security-announcement-v1-11-8-1-12-6-1-13-4-released-to-address-medium-severity-cve-2019-1002100/5147
https://docs.aws.amazon.com/eks/latest/userguide/service_limits.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://alas.aws.amazon.com/ALAS-2019-1156.html


Amazon EKS User Guide

New Amazon EKS optimized 
AMI patched for ALAS2-201 
9-1141

Amazon EKS has updated the 
Amazon EKS optimized AMI 
to address the CVEs that are 
referenced in ALAS2-201 
9-1141 .

January 9, 2019

Amazon EKS AWS Region 
expansion

Amazon EKS is now available 
in the Asia Pacific (Seoul) (ap-
northeast-2 ) AWS Region.

January 9, 2019

Amazon EKS region expansion Amazon EKS is now available 
in the following additiona 
l AWS Regions: Europe 
(Frankfurt) (eu-centra 
l-1 ), Asia Pacific (Tokyo) 
(ap-northeast-1 ), Asia 
Pacific (Singapore) (ap-
southeast-1 ), and Asia 
Pacific (Sydney) (ap-southe 
ast-2 ).

December 19, 2018

Amazon EKS cluster updates Added documentation 
for Amazon EKS cluster 
Kubernetes version updates
and node replacement.

December 12, 2018

Amazon EKS AWS Region 
expansion

Amazon EKS is now available 
in the Europe (Stockholm) 
(eu-north-1 ) AWS Region.

December 11, 2018

Amazon EKS platform version 
update

New platform version 
updating Kubernetes to patch 
level 1.10.11 to address
CVE-2018-1002105 .

December 4, 2018

Added version 1.0.0 support 
for the ALB ingress controller

The ALB ingress controller 
releases version 1.0.0 with 
formal support from AWS.

November 20, 2018

1019

https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://alas.aws.amazon.com/AL2/ALAS-2019-1141.html
https://alas.aws.amazon.com/AL2/ALAS-2019-1141.html
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/update-workers.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://aws.amazon.com/security/security-bulletins/AWS-2018-020/
https://github.com/kubernetes-sigs/aws-alb-ingress-controller
https://github.com/kubernetes-sigs/aws-alb-ingress-controller


Amazon EKS User Guide

Added support for CNI 
network configuration

The Amazon VPC CNI plugin 
for Kubernetes version
1.2.1 now supports custom 
network configuration for 
secondary Pod network 
interfaces.

October 16, 2018

Added support for
MutatingAdmissionW 
ebhook  and Validatin 
gAdmissionWebhook

Amazon EKS platform version
1.10-eks.2  now supports
MutatingAdmissionW 
ebhook  and Validatin 
gAdmissionWebhook
admission controllers.

October 10, 2018

Added partner AMI informati 
on

Canonical has partnered with 
Amazon EKS to create node 
AMIs that you can use in your 
clusters.

October 3, 2018

Added instructions for AWS 
CLIupdate-kubeconfig
command

Amazon EKS has added the
update-kubeconfig
to the AWS CLI to simplify 
the process of creating 
a kubeconfig  file for 
accessing your cluster.

September 21, 2018

New Amazon EKS optimized 
AMIs

Amazon EKS has updated 
the Amazon EKS optimized 
AMIs (with and without 
GPU support) to provide 
various security fixes and AMI 
optimizations.

September 13, 2018

Amazon EKS AWS Region 
expansion

Amazon EKS is now available 
in the Europe (Ireland) (eu-
west-1 ) Region.

September 5, 2018

1020

https://docs.aws.amazon.com/eks/latest/userguide/cni-custom-network.html
https://docs.aws.amazon.com/eks/latest/userguide/cni-custom-network.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-partner-amis.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-partner-amis.html
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html


Amazon EKS User Guide

Amazon EKS platform version 
update

New platform version with 
support for Kubernetes
aggregation layer and the
Horizontal Pod Autoscale 
r(HPA).

August 31, 2018

New Amazon EKS optimized 
AMIs and GPU support

Amazon EKS has updated the 
Amazon EKS optimized AMI 
to use a new AWS CloudForm 
ation node template and
bootstrap script. In addition, 
a new Amazon EKS optimized 
AMI with GPU support is 
available.

August 22, 2018

New Amazon EKS optimized 
AMI patched for ALAS2-201 
8-1058

Amazon EKS has updated the 
Amazon EKS optimized AMI 
to address the CVEs that are 
referenced in ALAS2-201 
8-1058 .

August 14, 2018

Amazon EKS optimized AMI 
build scripts

Amazon EKS has open-sour 
ced the build scripts that are 
used to build the Amazon EKS 
optimized AMI. These build 
scripts are now available on 
GitHub.

July 10, 2018

Amazon EKS initial release Initial documentation for 
service launch

June 5, 2018

1021

https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://docs.aws.amazon.com/eks/latest/userguide/platform-versions.html
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/apiserver-aggregation/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh
https://docs.aws.amazon.com/eks/latest/userguide/gpu-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/gpu-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://alas.aws.amazon.com/AL2/ALAS-2018-1058.html
https://alas.aws.amazon.com/AL2/ALAS-2018-1058.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html
https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html

	Amazon EKS
	Table of Contents
	What is Amazon EKS?
	Features of Amazon EKS
	Get started with Amazon EKS
	Pricing for Amazon EKS
	Common use cases in Amazon EKS
	Amazon EKS architecture
	Control plane
	Compute

	Deployment options

	Setting up to use Amazon EKS
	Step 1: Set up the AWS CLI
	To create an access key
	To configure the AWS CLI
	To get a security token
	To verify the user identity

	Step 2: Install Kubernetes tools
	To create AWS resources
	To install kubectl
	To set up a development environment

	Next steps
	Installing or updating kubectl

	Getting started with Amazon EKS
	Getting started with Amazon EKS – eksctl
	Prerequisites
	Step 1: Create your Amazon EKS cluster and nodes
	Step 2: View Kubernetes resources
	Step 3: Delete your cluster and nodes
	Next steps

	Getting started with Amazon EKS – AWS Management Console and AWS CLI
	Prerequisites
	Step 1: Create your Amazon EKS cluster
	Step 2: Configure your computer to communicate with your cluster
	Step 3: Create nodes
	Step 4: View resources
	Step 5: Delete resources
	Next steps


	Amazon EKS clusters
	Creating an Amazon EKS cluster
	Cluster insights
	Updating an Amazon EKS cluster Kubernetes version
	Update the Kubernetes version for your Amazon EKS cluster

	Deleting an Amazon EKS cluster
	Amazon EKS cluster endpoint access control
	Modifying cluster endpoint access
	Accessing a private only API server

	Enabling secret encryption on an existing cluster
	Enabling Windows support for your Amazon EKS cluster
	Enabling Windows support
	Removing legacy Windows support from your data plane
	Disabling Windows support
	Deploying Pods
	Enabling legacy Windows support
	Renewing the VPC admission webhook certificate

	Supporting higher Pod density on Windows nodes

	Private cluster requirements
	

	Amazon EKS Kubernetes versions
	Available versions on standard support
	Available versions on extended support
	Amazon EKS Kubernetes release calendar
	Amazon EKS version FAQs
	Amazon extended support FAQs
	Release notes for standard support versions
	Kubernetes 1.29
	Kubernetes 1.28
	Kubernetes 1.27
	Kubernetes 1.26
	Kubernetes 1.25

	Release notes for extended support versions
	Kubernetes 1.24
	Kubernetes 1.23


	Amazon EKS platform versions
	Kubernetes version 1.29
	Kubernetes version 1.28
	Kubernetes version 1.27
	Kubernetes version 1.26
	Kubernetes version 1.25
	Kubernetes version 1.24
	Kubernetes version 1.23
	Get current platform version

	Autoscaling

	Amazon EKS nodes
	Managed node groups
	Managed node groups concepts
	Managed node group capacity types
	On-Demand
	Spot

	Creating a managed node group
	Updating a managed node group
	Update a node group version
	Edit a node group configuration
	Managed node update behavior
	Setup phase
	Scale up phase
	Upgrade phase
	Scale down phase


	Node taints on managed node groups
	Customizing managed nodes with launch templates
	Launch template configuration basics
	Tagging Amazon EC2 instances
	Using custom security groups
	Amazon EC2 user data
	Specifying an AMI
	Provide user data to pass arguments to the bootstrap.sh file included with an Amazon EKS optimized Linux/Bottlerocket AMI
	Provide user data to pass arguments to the Start-EKSBootstrap.ps1 file included with an Amazon EKS optimized Windows AMI
	Run a custom AMI due to specific security, compliance, or internal policy requirements

	Limits and conditions when specifying an AMI ID

	Deleting a managed node group

	Self-managed nodes
	Launching self-managed Amazon Linux nodes
	Capacity Blocks for ML

	Launching self-managed Bottlerocket nodes
	Launching self-managed Windows nodes
	Self-managed node updates
	Migrating to a new node group
	Updating an existing self-managed node group


	AWS Fargate
	AWS Fargate considerations
	Getting started with AWS Fargate using Amazon EKS
	Ensure that existing nodes can communicate with Fargate Pods
	Create a Fargate Pod execution role
	Create a Fargate profile for your cluster
	Update CoreDNS
	Next steps

	AWS Fargate profile
	Fargate profile components
	Fargate profile wildcards
	Creating a Fargate profile
	Deleting a Fargate profile

	Fargate Pod configuration
	Pod CPU and memory
	Fargate storage

	Fargate OS patching
	Fargate metrics
	Application metrics
	Usage metrics
	Creating a CloudWatch alarm to monitor Fargate resource usage metrics


	Fargate logging
	Log router configuration
	Kubernetes filter support
	To ship Fluent Bit process logs to your account
	To stop shipping Fluent Bit process logs

	Test application
	Size considerations
	Troubleshooting


	Choosing an Amazon EC2 instance type
	Amazon EKS recommended maximum Pods for each Amazon EC2 instance type

	Amazon EKS optimized AMIs
	Amazon EKS ended support for Dockershim
	Amazon EKS optimized Amazon Linux AMIs
	Upgrade from AL2 to AL2023
	Amazon EKS optimized accelerated Amazon Linux AMIs
	Amazon EKS optimized Arm Amazon Linux AMIs
	Test migration from Docker to containerd
	More information
	Amazon EKS optimized Amazon Linux AMI versions
	Retrieving Amazon EKS optimized Amazon Linux AMI IDs
	Amazon EKS optimized Amazon Linux AMI build script
	Configuring VT1 for your custom Amazon Linux AMI
	Configuring DL1 for your custom Amazon Linux 2 AMI


	Amazon EKS optimized Bottlerocket AMIs
	Advantages
	Considerations
	More information
	Retrieving Amazon EKS optimized Bottlerocket AMI IDs
	Bottlerocket compliance support

	Amazon EKS optimized Ubuntu Linux AMIs
	Amazon EKS optimized Windows AMIs
	Release calendar
	Bootstrap script configuration parameters
	Launch self-managed Windows Server 2022 nodes with eksctl
	gMSA authentication support
	Cached container images
	More information
	Amazon EKS optimized Windows AMI versions
	Amazon EKS optimized Windows Server 2022 Core AMI
	Amazon EKS optimized Windows Server 2022 Full AMI
	Amazon EKS optimized Windows Server 2019 Core AMI
	Amazon EKS optimized Windows Server 2019 Full AMI

	Retrieving Amazon EKS optimized Windows AMI IDs
	Creating custom Amazon EKS optimized Windows AMIs
	Using an Amazon EKS optimized Windows AMI as a base
	Using the Amazon-managed build component
	Retrieving information about eks-optimized-ami-windows component versions




	Storage
	Amazon EBS CSI driver
	Creating the Amazon EBS CSI driver IAM role
	Managing the Amazon EBS CSI driver as an Amazon EKS add-on
	Adding the Amazon EBS CSI driver add-on
	Updating the Amazon EBS CSI driver as an Amazon EKS add-on
	Removing the Amazon EBS CSI add-on

	Deploy a sample application and verify that the CSI driver is working
	Amazon EBS CSI migration frequently asked questions
	What are CSI drivers?
	What is CSI migration?
	Can I mount kubernetes.io/aws-ebs StorageClass volumes in version 1.23 and later clusters?
	Can I provision kubernetes.io/aws-ebs StorageClass volumes on Amazon EKS 1.23 and later clusters?
	Will the kubernetes.io/aws-ebs StorageClass provisioner ever be removed from Amazon EKS?
	How do I install the Amazon EBS CSI driver?
	How can I check whether the Amazon EBS CSI driver is installed in my cluster?
	Will Amazon EKS prevent a cluster update to version 1.23 if I haven't already installed the Amazon EBS CSI driver?
	What if I forget to install the Amazon EBS CSI driver before I update my cluster to version 1.23? Can I install the driver after updating my cluster?
	What is the default StorageClass applied in newly created Amazon EKS version 1.23 and later clusters?
	Will Amazon EKS make any changes to StorageClasses already present in my existing cluster when I update my cluster to version 1.23?
	How do I migrate a persistent volume from the kubernetes.io/aws-ebsStorageClass to ebs.csi.aws.com using snapshots?
	How do I modify an Amazon EBS volume using annotations?
	Is migration supported for Windows workloads?


	Amazon EFS CSI driver
	Creating an IAM role
	Installing the Amazon EFS CSI driver
	Creating an Amazon EFS file system
	Deploying a sample application

	Amazon FSx for Lustre CSI driver
	Amazon FSx for NetApp ONTAP CSI driver
	Amazon FSx for OpenZFS CSI driver
	Amazon File Cache CSI driver
	Mountpoint for Amazon S3 CSI driver
	Creating an IAM policy
	Creating an IAM role
	Installing the Mountpoint for Amazon S3 CSI driver
	Configuring Mountpoint for Amazon S3
	Deploying a sample application
	Removing Mountpoint for Amazon S3 CSI Driver

	CSI snapshot controller

	Amazon EKS networking
	Amazon EKS VPC and subnet requirements and considerations
	VPC requirements and considerations
	Subnet requirements and considerations
	Subnet requirements for clusters
	IP address family usage by component
	Subnet requirements for nodes

	Shared subnet requirements and considerations

	Creating a VPC for your Amazon EKS cluster
	Amazon EKS security group requirements and considerations
	Amazon EKS networking add-ons
	Built-in add-ons
	Optional AWS networking add-ons
	Working with the Amazon VPC CNI plugin for Kubernetes Amazon EKS add-on
	Creating the Amazon EKS add-on
	Updating the Amazon EKS add-on
	Updating the self-managed add-on
	Configuring the Amazon VPC CNI plugin for Kubernetes to use IAM roles for service accounts (IRSA)
	Step 1: Create the Amazon VPC CNI plugin for Kubernetes IAM role
	Step 2: Re-deploy Amazon VPC CNI plugin for KubernetesPods
	Step 3: Remove the CNI policy from the node IAM role
	Create IAM policy for clusters that use the IPv6 family

	Choosing Pod networking use cases
	IPv6 addresses for clusters, Pods, and services
	Considerations for using the IPv6 family for your cluster
	Deploy an IPv6 cluster and managed Amazon Linux nodes

	SNAT for Pods
	Configure your cluster for Kubernetes network policies
	Considerations
	Prerequisites
	To configure your cluster to use Kubernetes network policies
	Stars demo of network policy
	Troubleshooting network policies
	Network policy logs
	Send network policy logs to Amazon CloudWatch Logs
	Send network policy logs with Amazon VPC CNI plugin for Kubernetes
	Prerequisites
	Amazon EKS add-on
	Self-managed add-on

	Send network policy logs with a Fluent Bit daemonset

	Included eBPF SDK

	Kubernetes network policies

	Custom networking for pods
	Step 1: Create a test VPC and cluster
	Step 2: Configure your VPC
	Step 3: Configure Kubernetes resources
	Step 4: Deploy Amazon EC2 nodes
	Step 5: Delete tutorial resources

	Increase the amount of available IP addresses for your Amazon EC2 nodes
	Security groups for Pods
	Considerations
	Configure the Amazon VPC CNI plugin for Kubernetes for security groups for Pods
	Deploy an example application

	Multiple network interfaces for Pods

	Alternate compatible CNI plugins

	Installing the AWS Load Balancer Controller add-on
	Working with the CoreDNS Amazon EKS add-on
	Important CoreDNS upgrade considerations
	CoreDNS v1.11 upgrade considerations

	Creating the Amazon EKS add-on
	Updating the Amazon EKS add-on
	Updating the self-managed add-on
	CoreDNS metrics

	Working with the Kubernetes kube-proxy add-on

	Access the Amazon Elastic Kubernetes Service using an interface endpoint (AWS PrivateLink)
	Considerations for Amazon EKS
	Create an interface endpoint for Amazon EKS


	Workloads
	Deploy a sample application
	Next Steps

	Vertical Pod Autoscaler
	Deploy the Vertical Pod Autoscaler
	Test your Vertical Pod Autoscaler installation

	Horizontal Pod Autoscaler
	Run a Horizontal Pod Autoscaler test application

	Network load balancing on Amazon EKS
	Create a network load balancer
	(Optional) Deploy a sample application

	Application load balancing on Amazon EKS
	(Optional) Deploy a sample application

	Restricting external IP addresses that can be assigned to services
	Copy a container image from one repository to another repository
	Amazon container image registries
	Amazon EKS add-ons
	Available Amazon EKS add-ons from Amazon EKS
	Amazon VPC CNI plugin for Kubernetes
	CoreDNS
	Kube-proxy
	Amazon EBS CSI driver
	Amazon EFS CSI driver
	Mountpoint for Amazon S3 CSI Driver
	CSI snapshot controller
	AWS Distro for OpenTelemetry
	Amazon GuardDuty agent
	Amazon CloudWatch Observability agent
	Amazon EKS Pod Identity Agent

	Additional Amazon EKS add-ons from independent software vendors
	Accuknox
	NetApp
	Calyptia
	Cribl
	Dynatrace
	Datree
	Datadog
	Groundcover
	Grafana Labs
	HA Proxy
	Kpow
	Kubecost
	Kasten
	Kong
	LeakSignal
	New Relic
	Rafay
	Solo.io
	Stormforge
	Splunk
	Teleport
	Tetrate
	Upbound Universal Crossplane
	Upwind

	Managing Amazon EKS add-ons
	Creating an add-on
	Updating an add-on
	Deleting an add-on

	Kubernetes field management
	View field management status
	Understanding field management syntax in the Kubernetes API


	Verifying a container image during deployment
	Machine learning training using Elastic Fabric Adapter
	Create node group
	(Optional) Deploy a sample EFA compatible application

	Machine learning inference using AWS Inferentia
	Prerequisites
	Create a cluster
	(Optional) Deploy a TensorFlow Serving application image
	(Optional) Make predictions against your TensorFlow Serving service


	Allowing users to access your cluster
	Allowing IAM roles or users access to Kubernetes objects on your Amazon EKS cluster
	Cluster authentication modes
	Setting up access entries
	Creating access entries
	Updating access entries
	Deleting access entries
	Associating and disassociating access policies to and from access entries
	Access policy permissions
	AmazonEKSAdminPolicy
	AmazonEKSClusterAdminPolicy
	AmazonEKSEditPolicy
	AmazonEKSViewPolicy

	Access policy updates

	Migrating existing aws-auth ConfigMap entries to access entries

	Enabling IAM principal access to your cluster
	Add IAM principals to your Amazon EKS cluster
	Apply the aws-auth   ConfigMap to your cluster

	Creating or updating a kubeconfig file for an Amazon EKS cluster
	Create kubeconfig file automatically

	Default Amazon EKS created Kubernetes roles and users
	Authenticating users for your cluster from an OpenID Connect identity provider
	Associate an OIDC identity provider
	Disassociate an OIDC identity provider from your cluster
	Example IAM policy
	Partner validated OIDC identity providers


	Cluster management
	Cost monitoring
	Remove Kubecost
	Frequently asked questions
	What is the difference between the custom bundle of Kubecost and the free version of Kubecost (also known as OpenCost)?
	Is there a charge for this functionality?
	Is support available?
	Do I need a license to use Kubecost features provided by the Amazon EKS integration?
	Can I integrate Kubecost with AWS Cost and Usage Report for more accurate reporting?
	Does this version support cost management of self-managed Kubernetes clusters on Amazon EC2?
	Can Kubecost track costs for Amazon EKS on AWS Fargate?
	How can I get updates and new versions of Kubecost?
	Is the kubectl-cost CLI supported? How do I install it?
	Is the Kubecost user interface supported? How do I access it?
	Is Amazon EKS Anywhere supported?


	Installing the Kubernetes Metrics Server
	Using Helm with Amazon EKS
	Tagging your Amazon EKS resources
	Tag basics
	Tagging your resources
	Tag restrictions
	Tagging your resources for billing
	Working with tags using the console
	Adding tags on a resource on creation
	Adding and deleting tags on a resource

	Working with tags using the CLI, API, or eksctl

	Amazon EKS service quotas
	Service quotas
	AWS Fargate service quotas


	Security in Amazon EKS
	Certificate signing
	Example CSR generation with signerName
	Certificate signing considerations before upgrading your cluster to Kubernetes 1.24

	Kubernetes service accounts
	Service account tokens
	Cluster add-ons
	Granting AWS Identity and Access Management permissions to workloads on Amazon Elastic Kubernetes Service clusters
	Comparing EKS Pod Identity and IRSA

	EKS Pod Identities
	Benefits of EKS Pod Identities
	Overview of setting up EKS Pod Identities
	EKS Pod Identity considerations
	EKS Pod Identity cluster versions
	EKS Pod Identity restrictions

	How EKS Pod Identity works
	Using EKS Pod Identities in your code
	How EKS Pod Identity Agent works with a Pod

	Setting up the Amazon EKS Pod Identity Agent
	Creating the Amazon EKS Pod Identity Agent
	Agent prerequisites

	Updating the Amazon EKS Pod Identity Agent

	Configuring a Kubernetes service account to assume an IAM role with EKS Pod Identity
	Creating the EKS Pod Identity association

	Configuring Pods to use a Kubernetes service account
	Define permissions for EKS Pod Identities to assume roles based on tags
	List of session tags added by EKS Pod Identity
	Cross-account tags
	Custom tags

	Using a supported AWS SDK
	Using EKS Pod Identity credentials


	IAM roles for service accounts
	IAM, Kubernetes, and OpenID Connect (OIDC) background information
	Creating an IAM OIDC provider for your cluster
	Configuring a Kubernetes service account to assume an IAM role
	Configuring Pods to use a Kubernetes service account
	Configuring the AWS Security Token Service endpoint for a service account
	Cross-account IAM permissions
	Using a supported AWS SDK
	Fetch signing keys


	Identity and access management for Amazon EKS
	Audience
	Authenticating with identities
	AWS account root user
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon EKS works with IAM
	Amazon EKS identity-based policies
	Actions
	Resources
	Condition keys
	Examples

	Amazon EKS resource-based policies
	Authorization based on Amazon EKS tags
	Amazon EKS IAM roles
	Using temporary credentials with Amazon EKS
	Service-linked roles
	Service roles
	Choosing an IAM role in Amazon EKS


	Amazon EKS identity-based policy examples
	Policy best practices
	Using the Amazon EKS console
	Allow IAM users to view their own permissions
	Create a Kubernetes cluster on the AWS Cloud
	Create a local Kubernetes cluster on an Outpost
	Update a Kubernetes cluster
	List or describe all clusters

	Using service-linked roles for Amazon EKS
	Using roles for Amazon EKS clusters
	Service-linked role permissions for Amazon EKS
	Creating a service-linked role for Amazon EKS
	Editing a service-linked role for Amazon EKS
	Deleting a service-linked role for Amazon EKS
	Cleaning up a service-linked role
	Manually delete the service-linked role

	Supported regions for Amazon EKS service-linked roles

	Using roles for Amazon EKS node groups
	Service-linked role permissions for Amazon EKS
	Creating a service-linked role for Amazon EKS
	Creating a service-linked role in Amazon EKS (AWS API)

	Editing a service-linked role for Amazon EKS
	Deleting a service-linked role for Amazon EKS
	Cleaning up a service-linked role
	Manually delete the service-linked role

	Supported regions for Amazon EKS service-linked roles

	Using roles for Amazon EKS Fargate profiles
	Service-linked role permissions for Amazon EKS
	Creating a service-linked role for Amazon EKS
	Creating a service-linked role in Amazon EKS (AWS API)

	Editing a service-linked role for Amazon EKS
	Deleting a service-linked role for Amazon EKS
	Cleaning up a service-linked role
	Manually delete the service-linked role

	Supported regions for Amazon EKS service-linked roles

	Using roles to connect a Kubernetes cluster to Amazon EKS
	Service-linked role permissions for Amazon EKS
	Creating a service-linked role for Amazon EKS
	Editing a service-linked role for Amazon EKS
	Deleting a service-linked role for Amazon EKS
	Cleaning up a service-linked role
	Manually delete the service-linked role


	Using roles for Amazon EKS local clusters on Outpost
	Service-linked role permissions for Amazon EKS
	Creating a service-linked role for Amazon EKS
	Editing a service-linked role for Amazon EKS
	Deleting a service-linked role for Amazon EKS
	Cleaning up a service-linked role
	Manually delete the service-linked role

	Supported regions for Amazon EKS service-linked roles


	Amazon EKS cluster IAM role
	Check for an existing cluster role
	Creating the Amazon EKS cluster role

	Amazon EKS node IAM role
	Check for an existing node role
	Creating the Amazon EKS node IAM role

	Amazon EKS Pod execution IAM role
	Check for a correctly configured existing Pod execution role
	Creating the Amazon EKS Pod execution role

	EKS Pod Identity role
	Amazon EKS connector IAM role
	Check for an existing EKS connector role
	Creating the Amazon EKS connector agent role

	AWS managed policies for Amazon Elastic Kubernetes Service
	AWS managed policy: AmazonEKS_CNI_Policy
	AWS managed policy: AmazonEKSClusterPolicy
	AWS managed policy: AmazonEKSFargatePodExecutionRolePolicy
	AWS managed policy: AmazonEKSForFargateServiceRolePolicy
	AWS managed policy: AmazonEKSServicePolicy
	AWS managed policy: AmazonEKSServiceRolePolicy
	AWS managed policy: AmazonEKSVPCResourceController
	AWS managed policy: AmazonEKSWorkerNodePolicy
	AWS managed policy: AWSServiceRoleForAmazonEKSNodegroup
	AWS managed policy: AmazonEBSCSIDriverPolicy
	AWS managed policy: AmazonEFSCSIDriverPolicy
	AWS managed policy: AmazonEKSLocalOutpostClusterPolicy
	AWS managed policy: AmazonEKSLocalOutpostServiceRolePolicy
	Amazon EKS updates to AWS managed policies

	Troubleshooting IAM
	AccessDeniedException
	Can't see Nodes on the Compute tab or anything on the Resources tab and you receive an error in the AWS Management Console
	aws-auth ConfigMap does not grant access to the cluster
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Amazon EKS resources
	Pod containers receive the following error: An error occurred (SignatureDoesNotMatch) when calling the GetCallerIdentity operation: Credential should be scoped to a valid region


	Compliance validation for Amazon Elastic Kubernetes Service
	Resilience in Amazon EKS
	Infrastructure security in Amazon EKS
	Configuration and vulnerability analysis in Amazon EKS
	Security best practices for Amazon EKS
	Pod security policy
	Amazon EKS default Pod security policy
	Delete the default Amazon EKS Pod security policy
	Install or restore the default Pod security policy

	Pod security policy (PSP) removal FAQ
	What is a PSP?
	Is the PSP removal specific to Amazon EKS or is it being removed in upstream Kubernetes?
	How can I check if I'm using PSPs in my Amazon EKS clusters?
	If I'm using PSPs in my Amazon EKS cluster, what can I do?
	I see a PSP called eks.privileged in my cluster. What is it and what can I do about it?
	Will Amazon EKS make any changes to PSPs present in my existing cluster when I update my cluster to version 1.25?
	Will Amazon EKS prevent a cluster update to version 1.25 if I haven't migrated off of PSP?
	What if I forget to migrate my PSPs to PSS/PSA or to a policy-as-code solution before I update my cluster to version 1.25? Can I migrate after updating my cluster?
	How does this change impact pod security for Windows workloads?

	Using AWS Secrets Manager secrets with Kubernetes
	Amazon EKS Connector considerations
	AWS responsibilities
	Customer responsibilities


	View Kubernetes resources
	Required permissions

	Observability in Amazon EKS
	Logging and monitoring on Amazon EKS
	Amazon EKS logging and monitoring tools
	Prometheus metrics
	Turn on Prometheus metrics when creating a cluster
	Viewing Prometheus scraper details
	Deploying Prometheus using Helm
	Viewing the control plane raw metrics

	Amazon EKS add-on support for Amazon CloudWatch
	Amazon EKS control plane logging
	Enabling and disabling control plane logs
	Viewing cluster control plane logs

	Logging Amazon EKS API calls with AWS CloudTrail
	Amazon EKS information in CloudTrail
	Understanding Amazon EKS log file entries
	Log Entries for Amazon EKS Service Linked Roles

	Enable Auto Scaling group metrics collection

	Amazon EKS add-on support for ADOT Operator

	More AWS services integrated with Amazon EKS
	Creating Amazon EKS resources with AWS CloudFormation
	Amazon EKS and AWS CloudFormation templates
	Learn more about AWS CloudFormation

	Amazon EKS and AWS Local Zones
	Deep Learning Containers
	Amazon VPC Lattice
	AWS Resilience Hub
	Amazon GuardDuty
	Amazon Detective
	Use Amazon Detective with Amazon EKS


	Amazon EKS troubleshooting
	Insufficient capacity
	Nodes fail to join cluster
	Unauthorized or access denied (kubectl)
	hostname doesn't match
	getsockopt: no route to host
	Instances failed to join the Kubernetes cluster
	Managed node group error codes
	Fixing a common cause of AccessDenied errors for managed node groups

	Not authorized for images
	Node is in NotReady state
	CNI log collection tool
	Container runtime network not ready
	TLS handshake timeout
	InvalidClientTokenId
	VPC admission webhook certificate expiration
	Node groups must match Kubernetes version before upgrading control plane
	When launching many nodes, there are Too Many Requests errors
	HTTP 401 unauthorized error response on Kubernetes API server requests
	Amazon EKS platform version is more than two versions behind the current platform version
	Cluster health FAQs and error codes with resolution paths

	Amazon EKS Connector
	Amazon EKS Connector considerations
	Required IAM roles for Amazon EKS Connector
	Connecting an external cluster
	Connector methods
	Prerequisites
	Step 1: Registering the cluster
	Step 2: Installing the eks-connector agent
	Next steps

	Granting access to an IAM principal to view Kubernetes resources on a cluster
	Prerequisites

	Deregistering a cluster
	To deregister the Kubernetes cluster
	To clean up the resources in your Kubernetes cluster

	Troubleshooting issues in Amazon EKS Connector
	Basic troubleshooting
	Check Amazon EKS Connector status
	Inspect Amazon EKS Connector logs
	Get the effective cluster name
	Miscellaneous commands

	Helm issue: 403 Forbidden
	Console error: the cluster is stuck in the Pending state
	Console error: User “system:serviceaccount:eks-connector:eks-connector” can't impersonate resource “users” in API group “” at cluster scope
	Console error: [...] is forbidden: User [...] cannot list resource “[...] in API group” at the cluster scope
	Console error: Amazon EKS can't communicate with your Kubernetes cluster API server. The cluster must be in an ACTIVE state for successful connection. Try again in few minutes.
	Amazon EKS connector Pods are crash looping
	Failed to initiate eks-connector: InvalidActivation
	Cluster node is missing outbound connectivity
	Amazon EKS connector Pods are in ImagePullBackOff state

	Frequently asked questions

	Amazon EKS on AWS Outposts
	When to use each deployment option
	Comparing the deployment options
	Local clusters for Amazon EKS on AWS Outposts
	Creating a local cluster on an Outpost
	Internal resources

	Amazon EKS local cluster platform versions
	Kubernetes version 1.28
	Kubernetes version 1.27
	Kubernetes version 1.26
	Kubernetes version 1.25
	Kubernetes version 1.24
	Kubernetes version 1.23

	Amazon EKS local cluster VPC and subnet requirements and considerations
	VPC requirements and considerations
	Subnet requirements and considerations
	Subnet access to AWS services
	Create a VPC

	Preparing for network disconnects
	Authenticating to your local cluster during a network disconnect

	Capacity considerations
	Control plane placement

	Troubleshooting local clusters for Amazon EKS on AWS Outposts
	API behavior
	Describe cluster health field
	Unable to create or modify clusters
	Cluster is stuck in CREATING state
	Can't join nodes to a cluster
	Collecting logs
	Control plane instances aren't reachable through AWS Systems Manager


	Launching self-managed Amazon Linux nodes on an Outpost

	Related projects
	Management tools
	eksctl
	AWS controllers for Kubernetes
	Flux CD
	CDK for Kubernetes

	Networking
	Amazon VPC CNI plugin for Kubernetes
	AWS Load Balancer Controller for Kubernetes
	ExternalDNS

	Machine learning
	Kubeflow

	Auto Scaling
	Cluster autoscaler
	Escalator

	Monitoring
	Prometheus

	Continuous integration / continuous deployment
	Jenkins X


	Amazon EKS new features and roadmap
	Document history for Amazon EKS

