aws

Developer Guide

AWS Elastic Beanstalk

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Elastic Beanstalk Developer Guide

AWS Elastic Beanstalk: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Elastic Beanstalk Developer Guide

Table of Contents

What is AWS Elastic BEaNSEalK?cccccviiiiiiiicrricrsssnnnnneensesessnnnnnnennnneenenieiiesiineiesssssssssssssssssssssssssssssss 1
PIICING ettt ettt et e st e s e e st e s st e e st e s st e s e e e sa e s aeessa e s b e e sa e e et e s b e e st e b e e aeeesae s raeestaeseeesaennras 2
WHEIE 1O O NEXL ..ottt e e et e st et e st e st e s e e e e e e e e st e st e be s s e bessaeseesaensessensassansansassaesseneans 2

Getting StArtedcccciiiiiiieeeeeeiiiiiieiiiiiiteneeneenisisisseeesteess 3
Setting up: Create an AWS QCCOUNT ...ttt sressreestessresssaessaa e st essaesssaessssessaasssaanns 3

Sign UP FOr @n AWS QCCOUNT ...ttt ettt e s e st e e e e e e s e st esae st e s se s e e e enaeaensanes 3
Create an admMiINISErAtiVE USEKciveevirirereectrentetee ettt ettt esae st e s et et e e sae st e e ssasaesaesaens 4
STEP i AL ettt ettt s st e st s ae e s b e s ae e s b e s b e e s e e e s aa e e ae s b e e e b e e st e st e s ra e e beenreessaeennas 5
Create an application and an enViroNMENt ...t 5
AWS resources created for the example application ... 9
SEEP 21 EXPLOTE ettt sttt et e st e st e s te st e s e e e e e et et et e besseesaeseesaenaensensensansasseeseenaantans 10
Step 3: DEPLOY @ NEW VEISION ..ccueeieeieieieiecieteeteeee it ees e e e e saestestestessessessee s e s esesessansassassassessssssensensansan 12
SEEP 4: CONTIGUIE ettt ettt teste e e e e e e et e s ae st et e b e s seesaesae st e st ensensessansassessaensensansansan 15
Make a configuration ChANGE ...t sa et be s s ne 15
Verify the configuration Change ...ttt anan 16
SEEP 5: CLEBAN UP ittt ettt ettt et et e st e st e e e et e e et et et e st e sesseesessaesaentastassassensansassessaesaanes 16
NEXE STEPS ettt ettt e st e e rte e e s re e s s ste s s s st e sesan e s s st e sessaesessasssssassssesssssassssaessssaesssseessssesssnnes 17

00T 1 = 1 N 21
APPLICALION ettt et et e st e e e e e s e e e et e st et et e e aeese e e et e s b e aetentesseeseeraennanes 21
APPLICALION VEISION ..ottt ettt et e st e st e st e s e s ae s et e e e e e et e b et e stessassesseessensansensansansans 21
ENVIFONIMENT ..ottt ettt et s b e st a s a e st s b st e st s s e et e e st s be st e st esesnsessesas 21
ENVIFONIMENT TIOK .ottt st s ettt a e s b st s a et e st essesae s st e snaenee 21
ENVIironment CONTIGUIAtION ...c..ooueeieeeceeeeee ettt teste e re e e e et et e stesae s e s e s e e e ennennan 22
SAVEA CONTIGUIATION ...ttt e et et e s teste st e s e s e e e e s e s et e ba b assessassessnennaneans 22
PLATFOIIM ettt et st ettt et s st e e e b et e e e aesbe st et e se b et ese s b et eneenaane 22
WED SErVEr ENVIFONIMENTS ..cvooviiriiieiierienietrestest et et sressest et ssesse e s e ssestesassessestssessessensssessessesessanseseeses 22
WOTKER ENVIFONIMENTScooiiiiieieietreretee ettt ettt sae st et s st et s s e st e s s e sse st e e s asse st esassestenassansensons 24
DESIgN CONSIAEIATIONS ..ottt e et se et et et esteste st e e e e seesa e e e s et essessassessesseeneenaansanes 25

SCALADILIEY cveeeeteteee ettt et e st e e ettt e st et et e e beereeaeene et enaetetensantans 26
SECUNILY erieeteecteeteect ettt et e st e e st e st e s s te e st e e st e e st e s saaessaessaa e sae s seessaeesaesssasssessssesssaesssesssessssenseessaens 26
PErSISTENT STOTQQE .ttt ettt e s e s sre e st e s sae e s e e s sae s s b e s saeessnessanassnasnns 27
FAULE TOLEIANCE .ttt sttt ettt ettt et e st s et et sae s et e e ssassensenas 28
CONLENT AELIVETY ettt ettt e st e st e st e et e e e e e s e et et et e b assasseesaeseesaensansansansan 28

Software updates and PAtChiNgG ...t 29

AWS Elastic Beanstalk Developer Guide

CONNECEIVILY ettt ettt et ae e s e e s sae s sae e s aeessa e s saesssaessaeesseasssessaesssassssesssessssessessssens 29
POIIMISSIONS iiiiiiiiiiiiiinnsses 31
SEIVICE TOLE .ttt sttt sttt st s et et s e st et e e s be b et e sa b et esasastesassantentesesansenenns 32
INSTANCE PIrOTILE .ot ettt te st e bt e e e e e e e st et e saesbesbesseeseenaenaansansansan 42
USEE POLICY ettt sttt et e et e st e s te st e e e et e e e e et e s be st e bassassessaesaessastansansassasseeseesaensansansansan 42
Platforms ..cciiiiiiiiiiiiiiiiiiiiinninssssssssssssssssssnssensss 44
PLAatfOrmMS GLOSSAIY ettt ettt te e e e et et et e s ae s tesaesbe st e e e e e et e s e saessasassesseessensensansansansans 44
Shared responsibility MOAEL ...ttt ae st ae s e e e e e e aenannens 47
Platform SUPPOIT POLICY .ocuvieeieieeeeeeceetetete ettt tesae st e e e s e e e e e e et et e tesaessessessnennesnanes 48
Retired platform BranChEs ... ettt a e saeaan 49
Beyond the 90 day grace Period ...ttt stesaeste s e e e e e e s e s e e e saessansans 49
Retiring platform branch SChEAULE ...ttt 50
Retired platform branch hiStOry ...t 51
SUPPOItEA PLAtFOIMIS ..ttt e e e e e et et e st et e b e b e re e e e e esnenaenes 56
Supported platform VEISIONS ...ttt st re e e e e sa e st aa s 57
LINUX PLATFOIIS .ttt e e e ettt e st e st e st e e s e e e e e e e et e b e besaessessessesnnesaanes 58
Supported AMAzon LiNUX VEISIONScceceieeereeieieieectestestessessessesesssesessessessessessessassesssessessessessenes 58
List of Elastic Beanstalk Linux platforms ...t 59
Extending LinUX PLatforms ...ttt sttt ae st s a s 60
WOIKING WIth DOCKET ...ttt sa et et e s aesae s e e e e e e et e b et e saesbesseesnennanes 85
The Docker platform BranCh@s ...ttt sae e s se s nnan 85
Docker platform Branch ...ttt 87
ECS managed platform branch ...ttt aens 110
Preconfigured CONLAINEIS ...ttt ettt te s te st s e e e e e et e s testesaassassaennenaanes 139
Environment CONfIGUIAtioN ..ottt sa et sae b ae e sn e aens 148
WOTIKING WIth GO ettt te st e st e st e e e e e e e e e et e sae st e s aesseese e e esaeeensansansans 161
GELEING STAMTEA .ottt ettt e st et e st e s e e e e e e e e e et e stasasessassaenaannans 161
Development ENVIFONMENT ...ttt e e et e e et esae st e ssesse e e e e e e e s e aesaensansans 168
THE GO PLAtFOI ettt sa e st e st e s ae s basbessa e e e naenneaenes 169
TULOMAL TOI GO ettt sttt sttt st et s s b et e e s et et e e sba st e e ssasensns 177
WOTKING WIth JAVA .ottt ettt e sttt s e et et et e s e s ae s s e e e e e e e e s antanes 182
GELEING STAMTEA .ottt e e e et e st st et e s be st e s e e e e st et et esaasassassessasnaannans 183
Development ENVIFONMENT ...ttt se e et saestessesse e e e e e e e s eaesaessansans 193
The TomMCAt PLAtFOIM .ttt e s re e s n s 196
The JAVa SE PLAatfOrm .ttt a et ae s ae s te s s e s e e nenenaens 213

ViV o [1aTe I W e I- | =1 o Y- 11 IO T SRS 223

AWS Elastic Beanstalk Developer Guide

ECLIPS@ tOOLKIL ...ttt et et e s testeste st e e e e e e s s e et e aesaesbessesseesaeseennansansans 231
RESOUICES ..ttt ettt ettt st s et b et a e s b s e e e st e sae et e e st s sesabessteseensesseessesasanneas 250
Working With .NET COre 0N LINUX ...cccueciecieieceeieeeecteseesiestesteste e e e e e e ssessessessesaessessessessssssessessessassenes 251
GELEING STAMTEA ..ottt te e et et e st st e st e s b e s s e s se e e e se et et esaesaabassassasnaannans 251
Development ENVIFONMENT ...ttt sre e e e e e e e e saesaestesaesse e e e e e e esaesaessensansan 258
The .NET Core on Linux Platform ...ttt 259
Tutorial = \NET COrE 0N LINUX .couiiiirienieinenieteenienteresestetsesteste e sestesesessessesassessessssessessesessessesseses 265
The AWS Toolkit fOr ViSUal STUIO ..c..cceveriiiiireicieecereteseeesestete et se e ae e saens 273
Migration from WiIindOWS 0 LINUX ..cceceeieiiieieeeececee ettt stesve s e sse e e s e s e ssessessessans 297
Working with .NET 0N WINAOWS SEIVELceccuicieeeereeieeeeectestesiestestessesesseesessessessessessessessssssesessansens 297
GELEING STAMTEA ..ottt te e et et e st st e st e s b e s s e s se e e e se et et esaesaabassassasnaannans 300
Development ENVIFONMENT ...ttt ste e s e e e e e e e e e saesaestesaesse s e s sae e ssaesaessessanean 308
THE INET PLAtOIrM ettt ettt e st se s e e e e e e a e e et e stenaanean 309
TULOFIAL = ASP.INET COTE c.uiiiieieieietierenteteesteste st esteste e ssessesessessessssessessesessassessesessessensssessessesessans 322
Ji¥e o [T aTe I W e I- | =1 0 Y- 11 IO OO R TSSOSO 335
The AWS Toolkit fOr ViSUal STUIO ..c..cceveriiirireicieercreteesetcesestet ettt ae e saens 338
Migrating on-premises apPLICAtIONcecv ettt aens 371
RESOUICES ...ttt ettt sttt a e s st e e b s st e b e s st e e b e s st e saesneesnnens 371
WOTrKiNG WIith NOGE.|S ..coeueiieieeeeeee ettt e st e e e st e st e sae s se s s e s e e e e e e s e aassansanes 371
GELEING STAMTEA .ottt e e ettt e st et e st e st e e e e e e e e e et e saesaanbassessaenaannans 372
Development ENVIFONMENToio ettt steste e e e e e e e saesaestesae s e s e e e e e ssaeaessansansan 374
The NOdE.[S PLAtFOIM ettt st e e e a e e naan 377
TULOTIAL = EXPIESS ..ottt ettt te e ste s e s te e e e et et et e s besaesse e s e sseess et esaansasessassaesaesaensansansansan 393
Tutorial - EXpress With ClUSEEIINGcuivecveeeeceeeeeeee ettt sa e 404
Tutorial - Node.js W/ DYNAMODB ...ttt e et saesaestesse s e e e saennan 422
Ji¥e o [T aTe I W e I- | =1 0 Y- 11 IO OO R TSSOSO 434
RESOUICES ...ttt ettt et st a e s st e b e s st s b e s se e e b e s st e saesneesnneas 437
WOTKING WIth PHP ..ottt e e et e st e st e st e s ae s e e e e s e e e b e stestessassesseennanaansans 437
Development ENVIFONMENT ...ttt ste e s e e e e e e e e tesaestesaesse s e esae e esaeaesansansan 438
THE PHP PLAtfOrI ettt e et et e s ae st e st e e e se e e e a et e naebanes 441
TULOMIAL = LArAVeL ettt sttt sttt ettt sttt st et e b et e e ssasse s saassenaenaen 450
TULOMIAL = CAKEPHP ...ttt sttt ettt et et st et sb et e e snasaessenenn 460
TULOTIAL = SYMFONY ettt ae st e e e e e st et e b e besaasseesaennenaanes 469
TUtorial = HA ProdUCLION ...ttt sttt te s e sttt e st e sae s se e nnens 475
TULOFIAL = HA WOIAPTESSeeiiieteerietetrestestetseste e ste st et s e ste st sesse s et ssasaesaesassestesassassessensssanseneen 487
TULOMIAL = HA DIUPAL ettt te e e e et ste st e b e s ae s e e seesa e s et et e aanes 505

AWS Elastic Beanstalk Developer Guide

ViV o [1aTe I W e I- | =1 o Y- 11 IO OO 523
WOTrKiNG With PYTRON ...ttt ettt te s ae s te st s e e et e e st et e s basse s e snneaennans 526
Development ENVIFONMENT ...ttt e e et e saestessesse e e e e e e e s essessesansans 527
The PYthon PlatfOrm ...ttt st st e e a et 530
TULOMTAL = FLASK ettt ettt st et b et sa et e a s et e ene 538
TULOMIAL = DJANGO oottt ettt e e te e e e e e e e e st e st e b e b e s e e s s esa e e et e tatessassassaensensanes 546
Ji¥e o [1aTe I W e I- | =1 0 Y- 11 IO OO T TSRO 560
RESOUICES ...ttt sttt et et a e st s et e et e e st s be st e s st e be st e st sssessbesstensasnsasnesns 563
WOTrKiNG With RUDY ...ttt te st e st s s s e e e e s sa et e aaaens 563
Development ENVIFONMENT ...ttt e e st et esae st e s e sse e e e e e s e s eaessessansans 564
The RUDY PLAtTOI ..ottt te st et a e e st et e s aesta s e s aa e e e e enneaanes 566
TULOMIAL = FQILS ettt ettt ae st et sae b et s st et e e be s s et e e saassenasnanes 573
TULOMIAL = SINALIA oottt ettt e st st e s e sbe st s e s s et e e esasbasaenassansan 582
Ji¥e o [1aTe I W e I- | =1 0 Y- 11 IO OO T TSRO 588
Tutorials and SAMPLES ...cciiiiieeeeirciiiiieiiiiiiiieeaanniiiieeeettttttss 591
Managing appPliCationscccciiiiiieeeieciiiiiiiiiiiiiiieeeeesiiiiieieeieeesssasse 594
Application ManagemMENt CONSOLE ...ttt sae e e e e e e e e s e e e saesaaaens 596
Managing appliCation VEISIONS ...ttt tesae s te s se e s s e s a et e saesaanes 597
VEISION LIFECYCLE ettt ettt et e st e st e e e e e e e s e te st e bassessaesaesnennan 600
Tagging APPLICAtION VEISIONScueeuieiiieeeteteteeeee ettt e sae e s e e e e s e s e saesbesaessassaess s e esaennansans 603
Create @ SOUNCE DUNALE ..ottt ettt et st ettt et e e ba st e e saanns 605
Creating a source bundle from the command liNe ..o, 606
Creating a source bundle With Git ...t sae e 607
Zipping files in Mac OS X Finder or Windows eXPLOrercccceeeeeeeeeceeciesesreceseseeeeeesenens 607
Creating a source bundle for a .NET applicationcccoeeeeeevieiieceecececececeeeeeeeeee et 610
Testing your SOUICE BUNALE ..ottt ettt s e e a e e e ae s 611
TQGGING FESOUICESeveieereierieeieenteesteestessteesstessseesssesssessssesssessseesssassssesssessssesssessssessssesssesssessssesssessssassseens 612
Tag propagation to [aunch tEMPLAtES ... 613
RESOUICES YOU CAN TG cuuiiiiiiiieiieciectcstect et re et e see s st e s saessae e s ae s ssaessaesssaassaessssesssassnsesssannses 615
TAgQing APPLICALIONS ..ottt et a et saeste st e s b e e seesa e e e s e s et ensenaanes 615
Managing eNVIFONMENEScciiiiieiiiiiieeeeesmmiiiiiiieeesesss 619
Environment Management CONSOLEoiiiiiiieiiceeeeeeeeee ettt e e s saesae st e sesaeesesae s e e nanns 620
ENVIFONMENT OVEIVIEW ..ottt ettt et s sae st e st e s st e st s s sbe st e seesnesseenesn 621
ENVIFONMENT QCLIONS .ueiiiiteeeeeet ettt ettt sae et st se s ae st e se et e s e e sne s 624
EVENTS ettt sttt ettt e s b e st st a e st et a e e b e st e s e et e st e s se e besatens 626
HEALERN .ttt ettt st ettt et s st et e s s e b et e s st e st e e s b et et esesae st enees 626

Vi

AWS Elastic Beanstalk Developer Guide

L OGS weiteittieterrteste et e st et e st e et e st e s be s st e e b e a e et e e st e e b e e st e e b e e e R e e e b e e At e et e e st e et e e st e et e e st e taeaeesssannnes 627
MONIEOTING ceeiiieieeeieeetecteetee sttt ee e st e s te s sse e s ae s s st e s s e s ssaessbeesseasssessaesssessstesssassssessseesseesssessssennses 628
ALGIINS ottt ettt sttt sttt e st et e e s e s b et e s e s b et et e s et et e se s b et e se e R e b et e Re s et et e sa b et eseese b eneeneeee 628
MANAGEA UPAALES ...ttt ettt st e e e e e e a et e st e st e b e e e e e sa e s et et e sassassassaessensensanes 629
TGS ettt et et s e e st e st e e st e e st e s r e e et e e a e e b e s r e e e b e e s R e e e b e e s e e et e e e Rt e et e e s e e e b e e s st e s be e s e e et aenstaeaaanne 629
CONFIGUIATION <.ttt et et et e s b e st e e be s e e e e e e e et et e sessassaessesaansensansanes 630
Creating ENVIFONMENTS ..ottt sttt et e e e e ae e st e s sae s s e e s saeesseessaesssaesssasssaasssesssaanssens 632
The create New enVIiroNMENt WIZardcocovevivenierininenininenieteesiesteesestesssesse st eessessesessesseseeses 639
ClONE AN ENVIFONIMENT ...oiuiiiiriiiiireieteerete et se et et e st e st e e sse st e e saesse s e e ssasseseesassessesessansensesanes 662
Terminate an enVIFONMIENT ..ottt ettt sre st st e et ne s b s e nas 665
WIth The AWS CLI ..ttt ste s te e e e e et e st et e s ae st e s b e e s e e e et e s e b e tesbassassassaesaensensanean 667
With the AP ...ttt ettt sttt e st e a e b et st et e e ssa st enasnanes 669
LAUNCR NOW URL ..ttt sttt et esse st st s sse st e e s e sbe st ssessassesassessessesassensensons 673
COMPOSE ENVIFONMIENTS ...eoiiiiiiieiieritietesteestesstesseesseeestessaesssaessseesstesssessssesssessssesssessssessssesssesssenns 679
DEPLOYMIENTS ...ttt e e e e e e e et et e st et e st e s sessaesa et e s e tassassassaesaessessassansansansassessaesesnaans 682
Choosing @ deploymMent POLICY ..ottt et e sae st e aesae s e ennens 683
Deploying @ new application VEISIONc.coeeieieieiececectesesee ettt ste e e saesae s eas 685
Redeploying @ PreViOUS VEISIONccccviceecieciecieeeceeeeeeeeseesaestestessessessessesssessessessessessessassessessasssenes 686
Other ways to deploy your appliCation ...t 686
DEPLOYMENT OPTIONS ...ttt et et e st e sae e e e e e e e et eae st e tassasseesesnnenaanes 687
Blue/Green deployMENTS ...ttt te e s et s saesae s s e s e s se e e e e et e naeaenes 695
CoNfIGUIAtioN CHANGESoeiiieeeeee ettt s te s e st e st e et et e aeeseeasese e e e e e s ansanes 697
ROLLING UPAALES ..ttt te e e et st e st e st e b e s e s e e e e et et e s bassassassassaensensanes 698
IMMULADLE UPAALES ..ottt ettt e e e sa ettt e st e s e se e e e e e e e aeaanes 703
PLAatfOrmM UPAALES ..ottt e e e s et st e st e st e s s e s e e e e et e e e testastessassassnesesnaans 707
Method 1 — Update your environment's platform versioncccveevevececececececeeeeeee 712
Method 2 — Perform a Blue/Green deploymentccoeeeeeeneneceeeeeeeeee et 714
MANAGEA UPAALES ...ttt ettt e e sa et et e st et e e s e e e e s et e ste b esbansassassasssensansanes 715
Upgrade a legacy enVIrONMENTcoeoiiieieieececee ettt ste e re e e aesaessessessa e s e s n e aanes 722
MiIgrate tO ALZ2023/AL2 ...ttt ste e s e e e e e et et e sae st e st e ssesse s e s e esa et et estensastassaesaennenean 724
Platform retiremMent FAQ ...ttt ettt reebe s sseesss e sabe e beessbessaeenneenneens 741
CANCEL AN UPAALE ettt te et sa et e st e st e s e e e e e e e et et e te st e sasseesaesaensensansan 745
RebUild @n @NVIFONMENTc.ooiiiietetretcrec ettt ettt s b e st st e e ssesae e e e sbasaeasnas 746
Rebuilding a running eNVIrONMENTccuooiiieicceeeeecere ettt sae e e e e e e e s e e e saesaentans 747
Rebuilding a terminated enVIrONMENT ..ottt sre e e nnens 747
ENVIFONMENT TYPES .ttt ettt st sae s st e st e s s sa e s sae s s sa e s saesssa e s saaessaesssasssaesssassseasssasnns 750

vii

AWS Elastic Beanstalk Developer Guide

Load-balanced, scalable enVIFONMENTooueiiviiiiieeeeeeeeeeeeeeeett et esereessseeesssreessssesssseeesssesens 750
Single-iNStance ENVIFONMENTcci oottt te e teste s e s e e e se et e s e aesaesaessassessnesnennans 750
Changing eNVIFONMENT TYPE ..ottt sre ettt e st e s besse s e e e e e e a et e tanaenes 751
WOTKEr ENVIFONIMENTSeeiiiiiieieierieteerietcesestet ettt et et s st et se s e st et ssesse st s e sastentesassansensens 752
The worker environment SQS AAEIMON ..c.eveiieeiiiieiieeeeeeeeerreeerrt et eeesreessseesssseessseesssseesssseessnns 755
DEAA-LEILET QUEUES ...ttt ettt et e st e se s e e e e e s et et et e saassasseesaesaenaensans 756
PEIHOMIC TASKS ..ttt ettt ettt et s e st et e ssa b e e ssesaeseenas 757
Use Amazon CloudWatch for automatic scaling in worker environment tiers 758
Configuring Worker @NVIFONIMENTScciiieieiieieieeteese e er e e stesaestestesse e e e e e s e e e saessesaaneans 759
ENVIFONMENT LINKS ..ottt sttt st sttt s sb e st e s s b e st s saa st s e s sasae e esasas 763
Configuring eNVIFONMENLSceiiiiiiiiiiiiinneeenmeeiiiisieeeeitsesss 766
Configuration USING the CONSOLE ...ttt te e e a e e e e saesaaaans 767
CONFIGUIAtION PAGE ..ttt et e e s be st e e s s e e e st e st e tassassasseesaenaenaansansans 768
REVIEW CHANGES PAGE ..ottt ettt saesteste st e s s e e et et et e st e aessassesseesaaneensansanes 770
AMAZON EC2 INSTANCES ...ttt ettt sa st se st e st s s st e et ssbe s b e st sse st esneenans 771
AMAzon EC2 INSTANCE TYPES ...ooviieeeieeeceectecttcrte ettt este s sre s seessaeesae s saeesssesssaessnessssasssessssasanes 772
Configuring Amazon EC2 instances for your environmentccccoeeveeveeceeveeceenesesesreeceeseenens 773
Configuring AWS EC2 instances for your environment using the AWS CLIcccccevvevennnee. 780
Recommendations for Graviton arm64 first wave environmentscccoevvvevenevenceneneerennenn 784
The aws:autoscaling:launchconfiguration Namespacevevcvenceeceecvereennne 786
IMIDS ettt ettt et e st e e st e e s et e sa e st e e s e e e b e e a e e e s e e e R e e et e e R e e e s e e e at e e b e e s e e e b e e sae e s eennaassrennnes 787
AULO SCAlING GIOUP oottt sa et et e st e st e b e s s e e e et e s et et e sessassassaesesssensassansansanes 789
SPOL INSTANCE SUPPOIT ..ttt ettt et ee st e st e s st e ssaessse e st esssessssesssassssessssesssessssennees 790
Auto Scaling group configuration using the Elastic Beanstalk consolec.ccceeveeveeeevennnnene 795
Auto Scaling group configuration using the EB CLIc.cceeiiereneeeeeeeeeecececee e 798
CoNFIGUIAtioN OPLIONS ..ttt e e et e st e s b e st e s aesbasse s e e e e aesnanaenes 799
THIGGEES ettt eete et et e st esee st e st e s sae e s e e s st esssessseessbesssaasssesssaesssessssesssessssesssessstesssessssenssesssnanns 800
SChEAULEA QCLIONS ...ttt ae sttt st e s be e s s b e e e e saesaesaenens 803
Health Check SETLING ...ttt sae st et e s aesaesse s s e snnens 808
LOQA DALANCET ettt ettt sttt s et et e s e b et e et e s e e nanes 809
ClasSiC LOAA BAlANCELcoueiiirieiiirienietreseteesiestete e sse st et sse st ese s e sse st e e s sesaesassassesaesassessensssassensesens 811
AppPlication LOAd BalanCer ...ttt stese e ee et este st e stestesre s e s s e e e e et e saasaesasaanes 821
Shared Application LOad BalanCer ...ttt saesaesaesae e s e e e e ennan 841
NEtWOIrk LOAd BaAlanCEIcoveiiiieieieietetrerteteesestet ettt et st sse st e e sseste e ssassessssassasseneen 859
CONFIGUIING QCCESS LOGS ..ueiuriiiieieciecieeeeecte ettt te e e et et et e s te st e s b e s sa e e e e et e saesaastessassassasnnenaanes 870
DATADASE ...ttt b et et e e et et e s b et et e s et et esaeae st ens 870

viii

AWS Elastic Beanstalk Developer Guide

DAtabase LIfECYCLE .ttt et et sa et st st s e e e s e et et e aan 871
Adding an Amazon RDS DB instance to your environment using the console 872
Connecting to the database ...ttt saesae e s se s aenens 874
Configuring an integrated RDS DB instance using the consoleccceceeeeeceevecceeceeceeeenee. 874
Configuring an integrated RDS DB instance using configuration filescccccevvvvevveiennnene. 875
Decoupling an RDS DB instance using the console ...t 876
Decoupling an RDS DB instance using configuration files ..o 879
SEOUNILY cuuteeitieteicterte ettt st et e e st e s te s te e st e e sae e sate s b e e s e e s saeesssesseesssesseesssasssaesssassstasstessssenssessseesssenssaensees 881
Configuring your enVIroNmMENt SECUNLY ...c.cceveeeeeiieiectectectesese e e e e seestesaesae s e s e e e e e esaesaessesans 881
Environment security configuration NAmMESPACESccvecveeeeereeeeeeeeeee et ae s 883
TAgGQING ENVIFONIMENTSeiiiiiiiieeieecterteect et esees e s st e ssae s s e essaessseesssessseesssessssesssesssessssessseesssessseesssesses 884
Adding tags during environmMent Creationc.cccceeeeeeeeeeieeicste et s e saesaesaessessens 884
Managing tags of an existing enviroNMENt ... 885
Environment properties and software Settings ... 888
Configure platform-specific SEtHINGS ...coevieieeceeee e aens 888
Configuring environment properties (environment variables)ccccvvvevevececeneniecceeceenn, 889
Software Setting NAMESPACEScvecveereeeeeeeeeeeeee et se e st stesae st e sre e e e e s e saeaesaesaassaeas 891
Accessing enVIroNMENT PrOPEITIES ...cveiviieieiiiirteerterte ettt esreestessressaaessaeesaesssessssessseessnessesanes 893
DEDUGGING ettt ettt et e e e et e st e st e st e s b e st e st e e e e e e e et et e besaeebeeseenaenaenaententantans 894
LOG VIEWING ceiiiiiiieiiiiteeieectesstesseesteesaeesssessreesssessseesssesssaasssessseesssesssessssessssesssesssessssessssesssessssesssenses 897
NOTITICALIONS ..ottt ettt et sttt s e st e st s s b e st et e sesse st esasaassestesassansesansn 899
Configuring notifications using the Elastic Beanstalk consolecccoeeeeerieceececeeceecieeenne. 901
Configuring notifications using configuration OptioNnsccccceeeeeeeeecieeceeceecececececeeee e 901
Configuring permissions to send NOtificationscocveceeeeenececceeeee e 904
AMAZON VPO ettt sttt et st s b st et e b e st e e st s be st et e s e s b e s st e ssesssasatenseenne 906
Configuring VPC settings in the Elastic Beanstalk consoleccooevecececenieccecceeeceeeee 906
The QWS:EC2:VPC NAMESPACE ..c.eeeeeeeeerereetecteeeee et et e rtetesaesaessessessesseesaesaestessessessassasssssssnsessensensansanes 909
Migrating from EC2-ClassiC t0 @ VPC ...ttt stesaesteste s e se e e e s e saannans 910
DOMIAIN NAMIE ..ttt ettt sttt e a e st ts b st e s st s b e et e s st s sessbesntssnasnsessesnnens 915
Configuring environments (Advanced)cciiiiiiiiiiiiinneeennniiiiiiiiiiiiimessmseiiiiesssssssssssssssssses 917
CoNfIGUIAtioN OPLIONS ...ttt et e st e st e e e e e s et et et e b e s saeseesae e enaennansan 918
PIECEAERNCE ..ttt sttt ettt et e s b et e st et et s aa st et e sesae st et e sasestenassansenssenes 918
RECOMMENAEA VALUES ...ttt sttt sttt ettt st et s b e b e e s e s e s enane 919
Before environNment Creation ...ttt sttt sa et s s 921
DUFING CrEATION ..ottt sttt st e s sr e s s vt e s ae s s e e s b e s ae e s b e sssaesssasssaasssessseessassseanssennses 927
ATEEE CrEATION .ttt sttt et st et s e st et e st et e e b e st e e ssasenssnsssansenaen 934

AWS Elastic Beanstalk Developer Guide

GENETAL OPLIONS ..ottt e st et e st et e st e s e s e e e e s e e et essa b assessasseessensansensansansans 944
Platform SPeCific OPLIONS ...c.eeeieeee ettt st e st s e e e e e e e aesaeaans 1021
CUSTOM OPLIONS ettt ettt et ssae s s e e s sae s se e s saessse e s sesssaesssessseesssesssassssessssesssesssanns 1033
EDEXEENSIONS ...ttt sttt et s bttt s e b et et s s et et e b et e e s be st e e e seeaenes 1034
OPLION SEEEINGS oottt e s e st s s s s s r e e st e s sbesssa e s aeessaessaaesssesssaessnesssasssaesnees 1036
LINUX SEIVET ittt ettt sttt et et s s st e st s s et et esae st e st s sse st e s st e ssesabesstensasnnenns 1039
WINAOWS SEIVETeeeiiereirienieieesesteteessestestssessestesessessestesessessessssessessesessessessesessessessssessensesessassesees 1056
CUSTOIM FESOUICES ...ttt ettt et et ettt et e st s s st e st e s e s b e st s se st e s st e sseesbe st ssesnbasntensesnsasseans 1065
SAVEd CONTIGUIATIONS ...ttt e st e ae s tesse s e ese e s e e et e sae s essassessesnnsnnans 1093
Tagging saved CONfIGUIAtiONSc.coueeieieeeee ettt s ae e s se s e s nnens 1099
BNV .Y AML oottt te s e s e s e et e e st et et et et et e st e e s e e s e e r e e e et et et et e teeseeseeseenaentesentanaans 1101
CUSTOM IMIAQGE ..ottt ettt et estessaessstessse e st e s saeesssessseesssasssassssesssaesssasssessssenssessssesssessssenssens 1104
Creating @ CUSTOM AMI ...ttt re st e s e e e st e s s s seessba s s st essaesssaessnassneens 1105
Cleaning UP @ CUSTOM AMI ...ttt ettt te s e s e e e e e s e st e st e s te st e s s e s e s e ssaensansansans 1109
AMI based on retired Platform ... e et 1109
STATIC TILES ettt st ettt et st b e sttt e et et e a et e e e ae st et enene 1116
Configure static files uSiNg the CONSOLE ... 1116
Configure static files using configuration options ... 1117
HT T PS ettt ettt e e st e st s vt e s e e s st e s b e s saa e s b e s s e e s e e s st e saessseesstassseasssessseessesssassssesssessnnens 1118
Create @ COMTITICATE oottt sttt ettt sa e e s e s nes 1120
UPLOAd @ COIITICAtE ettt et e e s s s e s e s e aesaasbesbanaens 1123
Terminate at the l0ad DalanCer ...ttt ae s eaens 1124
Terminate at the INSTANCE ...ttt a et s sa e nes 1128
ENd-10-8NA ENCIYPLION ..ttt tesae e e e e s et e b e st e st e se s e e nnans 1163
TCP PASSENIOUGR ettt te st sa et et e b e s e s s e s sa s e e e e s e aesaesaansansens 1168
SEOIE KEYS SECUIELY ..ottt ettt et e st e s e e e et e b et et et e sse s e e saesaennanean 1168
HTTP t0 HTTPS r@dir@CtiON ...ccuceveieiieieieiteteenietetsesie ettt s sae st e se s e e s sse st e e saanes 1170
Monitoring an enNVIrONMENtuiiiiiiiiiiiiiieneeessniiiiiiieceissses 1172
MORNILOIING CONSOLE .ttt e e e e st et e st e st e st e s b e s e e e e s e e e ae s e bessessessesssasaanes 1172
MORNILOFING GIAPRS ...ttt et st e st e st e st e s e e e s e et e s e tesaasaessassaesnannans 1173
Customizing the MonNitoring CONSOLE ...ttt anens 1174
BasiC health re€POrting ...ttt sae b s e n e aa s 1175
HEALEN COLOTS ettt ettt ettt e sb et e s et e st s e be st e e saessesaesans 1176
Elastic Load Balancing health CheCKS ...ttt 1177
Single instance and worker tier environment health checks ..., 1178
AdAItioNAl CRECKS ...ttt et sttt et st et s s bt e e ssaaen 1178

AWS Elastic Beanstalk Developer Guide

AmMazon ClLoUudWAtCh MELIICS ..ottt sae st e s sa e snens 1178
Enhanced health reporting and MONItOriNgG ..o 1180
The Elastic Beanstalk health @gent ... 1183
Factors in determining instance and environment health ..., 1184
Health check rule cuStOMIZAtIONccooivieiiiecteec ettt sae e 1187
ENhanced hEalth FOLES ...ttt se st s st e s sae e 1187
Enhanced health authoriZation ...t 1188
EnNhanced health @VENTS ...ttt sttt sa e 1189
Enhanced health reporting behavior during updates, deployments, and scaling 1190
Enable enhanced hEalth ...ttt 1190
HEALEN CONSOLE ...ttt sttt sttt et e a et e e ssesaesaesasans 1194
Health COlors and STALUSESccoivieiiireererectcc ettt sttt ettt sa s e 1199
INSTANCE MELEICS ettt et s e st s sb e st ae st e s st s b e st e seenessaesnees 1202
ENDanced hEAlth FULES ..ottt ettt s s s st s s sa e 1205
CLOUAWAATECR ettt sttt sttt et s s b e st e s e b et sae st e e sba b e e saassansanans 1210
APT USEIS ettt st ettt et e st s s a e st e e e bt s b e e st e st st e et e ese s b e e st e ese et e st essesabenntan 1219
Enhanced health 1og fOrMaAt ...t r e b saeas 1221
Notifications and troubleShOOtiNg ..o 1225
MANAGE QALAIIMNIS ...ttt e e s e st e st e st e st e s e s e e e e e e e et et e bessesseeseeneeneertentantataneas 1227
VIeW Chang@ RISTOIY ...ttt sttt st e st b s e s e nanns 1230
VIBW BVENTS ...ttt ettt et sttt s e st b e st a e s ae st e et e e s e s b e s st s se st e e st esseesbesstasesnsanas 1232
MORNITOF TINSTANCES ...ttt ettt sa et s s b st s e s et e st sene s ae st e se et esseessesssesnnes 1234
VIEW INSTANCE LOGS ..ottt e et et e st e st e st e s e se e e e e et et e te st e saassasseesneseensensanes 1237
Log location on AmMAazon EC2 iNSLANCESccceeeeeeeeieieieitectestesteeee e e eesesaestessessessessessssaensenes 1239
Log Location iN AMAzZON S3 ...ttt e e e et et e stesaesaessesse e e e se e e e e e e e b asasansansans 1240
Log rotation Settings ON LINUX ...c.ccoiiiieriiiiieniecrtesseesseessreeseessressseessaeesseesssessssesssesssnesssesssaesnnes 1241
Extending the default log task configuration ... 1241
Streaming log files to Amazon CloudWatch LOgscccceoeeeeeeieeeecceeeeceeeee e 1244
INtEGrating AWS SEIVICES ..uuiiiiiiiiiiiiineennnneisiisiccesessses 1246
ArChITECEUIAL OVEIVIBW ...ttt sttt sttt sttt a s e st et s saasa e ssa s eaenas 1246
CLOUARTONT .ottt sttt et et s e st e st s s e st et e et et e e s b et et ssassestesassessensesarsansensssanes 1247
CLOUATIAIL 1ttt ettt ettt sttt sa e st s s b et et s e s be st e s b et e st ssassestesessassassesarsansesersen 1248
Elastic Beanstalk information in CLoUdTrailcc.cciveeeriiineniereerereeeeseree et 1248
Understanding Elastic Beanstalk log file @ntriesccccooeeeeeeececceeceeeceeeece e 1249
CLOUAWATLCR ettt ettt et et e st et s s b e st e s b et et e sassestenasaassensesesans 1250
CLOUAWAALEN LOGS ..ttt ettt et e e stestesve e e e e s et e st e st e s e s e e s e e e et e s e tansansassasassnennanes 1251

Xi

AWS Elastic Beanstalk Developer Guide

Prerequisites to instance log streaming to CloudWatch LOogsccoeveeveeeeeeeeeececieeeeeeee 1253
How Elastic Beanstalk sets up CloudWatch LOgScooviieieeieneceeeeeceeecteee e 1254
Streaming instance logs to CloudWatch LOgScceceeieieieieeesececee ettt 1259
Troubleshooting CloudWatch Logs integrationccceceeeeeneeeeieccececece e 1262
Streaming enviroNmMeNt NEalth ... e 1262
EVENTBIIAGE ..ottt ettt et e st e st e st eeae e e e e e s et et e st e besbeesaesa et ensastantansansansassnenaanes 1265
Monitor an Elastic Beanstalk resource with EventBridgeccoeoeeeeeeeececiecececeeeeeeee, 1266
Example Elastic Beanstalk event patterns ...t 1268
Example Elastic BEanstalk @VENTS ...ttt a e v e 1271
Elastic Beanstalk event field Mapping ...t 1272
AWS CONFIG ettt et e st et e st e st e et eese e e e e e b et et e s bassesseesaesa et entantansassessaeseennenaanes 1275
Setting UP AWS CONFIG ottt te e a et e st e saesae s s e s e e e e e e s et e saensanes 1275
Configuring AWS Config to record Elastic Beanstalk resourcesccccoeeveevereeveeesceecvecvennens 1275
Viewing Elastic Beanstalk configuration details in the AWS Config console 1276
Evaluating Elastic Beanstalk resources using AWS Config rulescccceeeeeeeeeceeceeceeeennene. 1280
DYNAMIODB ...ttt ettt esae s e e s st e st e s saa s s e e s s s e e st e s st e saessaa e s st e s st esstassaessaasseassaannns 1281
ELASTICACRNE .ttt ettt ettt s sb ettt ae st s b et e e eaeee 1281
AMAZON EFS oottt ettt eae st sttt s b e st st a et e e s ne s a e st e neenee 1282
CONFIGUIALION FILES ..ttt s e e s e e st e st e b e sessa e e e snesaeaanaans 1283
ENCrypted file SYSTEIMS ..ottt st s et ettt s ae s ae s e e aennanes 1284
SAMPLE QAPPLICALIONS ..ottt e te st e st e e e e e b et e st e s e s beesaeseesaennannan 1284
Cleaning UP file SYSLEIMScv ittt te e st e e sa et st et et e saa s e s e e e ennennans 1284
TAM ettt ettt e e s st s s s a e s bt e s e st e e e b e e e e b e e e R e e e e aa e e e saa e e e s e e e e b e e e e aaeeesaaeeeraeeenranes 1285
INSEANCE PrOTILES ..ttt e e et et e s b e s b e e s e e e e aesn e aasanes 1286
SEIVICE TOLES ...ttt ettt ettt sttt e sttt s st et e et et e e s se st et esaesassestesasensessssensensesans 1289
USING SEIrVICE-LINKEA FOLES ..ottt ettt e e v e e s a e a et a et nes 1303
USEE POLICIES vttt ettt ettt teste s e e e e e e e s e e s et e st et e b e s sassasseessessessessassansansassassesssensansan 1321
ARN TOIMMAL .ttt ettt st et s b e e e s e b e e e s b e st e e ssesbestesassassenassesansenens 1336
RESOUICES anNd CONAITIONSoevuiriiiiirieieieerestcte ettt sttt et s s s et e e s e se e s e saessesaesans 1338
Tag-based ACCESS CONTIOL ...ttt ettt st st e e e e e e e sa e aesaaaans 1383
Example Managed POLICIES ...ttt re e aesaesaesaesae s e s e e e e e e nennan 1387
Example resource-specific POLICIEScoviiecieeieeeee ettt te e aeaan 1390
AMAZON RDS ...ttt ettt ettt ettt et s b e st st b et be s e e e st s s e et e e neesne s aeent s 1401
AmMazon RDS iN default VPC ...ttt sie st see st sesse st s e ssessesessassesassasaas 1402
AmMazon RDS iN EC2 ClASSIC ..coeviiirerieirenieietsestetsestestststestestssesaesteessestesesessesassassessessssessensesens 1409
Amazon RDS credentials and Secrets Manager ... eeeeeeeereeceeciecese e sae e sse s 1414

xii

AWS Elastic Beanstalk Developer Guide

Cleaning up an external Amazon RDS iNStANCEcccoueeeeeeeeececeeeeretee e 1415
AMQAZON S35 .ottt ettt st st ettt a e s bt e Rt e b e et e st st e et e st et e s e e esesse st e sseenee 1415
Contents of the Elastic Beanstalk Amazon S3 bucket ..., 1415
Deleting objects in the Elastic Beanstalk Amazon S3 bucketcccccveeeerenieeiiceececiecieee 1416
Deleting the Elastic Beanstalk Amazon S3 bucket ... 1417
AMAZON VPO .ttt ettt sttt s s a e st s e st e st et s st st e st s se st e sseseses st asntessasasanntans 1418
PUDBLIC VP C ettt te e e et e e e et et e st et et e s b e s s e e s e e e e sa e s et et e sassessasseeseesnensansansansanes 1420
PUBLIC/PFIVATE VPO ...ttt te ettt e st et et estestessesre e e e e e s e s et e tesaessessessnennenaansanes 1421
PIIVALE VPC ..ottt te s vt s s te s sae e st e s sae e s e e s sae st e s saesssaessaassaassseasssesseesssessseesssensseensees 1421
BASHION NOSES ...ttt ettt ettt s a et st e e ae st ns 1423
AMAZON RDS ...ttt ettt st ettt a e s b st a e et e s e a e s b e s at e seeaee 1428
VPC @NAPOINTS ..ottt te e s s e e e e e e e sa et estesaestessaesae e e s e s et assesansassassaeseessensensansansansans 1435
Configuring your development Machineiieeeeeeeciiiiiiiiiiiiinnnnennnnniiiiiieiiinesssssssssssssssssssssans 1439
Creating @ ProjECt FOLABN ...ttt e e st et be b e s se e e nneaanes 1439
Setting UP SOUIMCE CONTIOL c.uouiieiiieieeeeeeee ettt ettt e ae s te st e e e s e e e et estesaessessessnenaennans 1440
Configuring @ reMOtE FEPOSITONY ..ccuecueeieieieietecteeeeee ettt ste e e e e e e ra et e s aesbe st e s se s e e seenaennan 1440
INSTALlNG ThE EB CLI ...ttt et ettt e te st e s se s e e e e e s et e saestesaassassessnesaensansans 1441
INSTALLING ThE AWS CLI ..ttt ettt e te st e e s e e et et e s aesbe st e s aaesesraesa e e enaanaenes 1441
2 O N 1442
INSEALL THE EB CLI ittt ettt sttt ste st st e st s a s et et s e sae st e e s b asae st ssessenssnnssassenaes 1443
Install the EB CLI USING SELUP SCIPLS c.veeueeueeeieeeieteteteteseeee ettt eve e sse e n et sa s nes 1444
MaNUAL iNSTALLAION ..oveiiieeee ettt ettt sa e st a e 1444
CONFIGUIE ThE EB CLI ..ottt ettt et e tesae s e e se s e e s e e et e st et et e ssassessaesnenaensessansansans 1454
Ignoring files USING .€DIGNOTE ...ttt st se e s s nnens 1457
USING NAMEA PrOTILES ..ottt ettt e st e s b e s b s e e e e a e e e saenaans 1457
Deploying an artifact instead of the project folder ... 1458
Configuration settings and PreCeAENCE ...t 1458
INSEANCE MELAAATA .ottt st sttt et b e st e e s e b e e s s ne 1459
EB CLI DASICS eveveiriirieiiirieteteiesteste s et s st st e et et ssesse st e e ssa st et ssassassesassassestssassensesessensenssnessenseneesans 1459
ED CrEATE ettt ettt ettt e be b e s ee 1460
ED SEATUS .ottt ettt b e sttt b et a et e e e e b et e e esans 1461
ED NEALLN ..ttt sttt s et e e s a e e ne 1461
ED @VENTES ..ttt sttt ettt st a et et a et s et e e nas 1462
ED LOGS oottt sttt s b et e e e e b et et e beeaeeseesaeneeneensatantans 1462
ED P BN ettt ettt et eae e e e et et e testeeaeeseeneenaennans 1463
ED EPLOY ettt ettt ettt ettt b et e b e se e e e e e e e aeaetanan 1463

xiii

AWS Elastic Beanstalk Developer Guide

ED CONTIG ettt ettt e st e s s e e e e s e et e st et e b e seeseeseesaenaantenean 1464
ED £OIMINGATE ettt sttt et s sb et e b et et e e aan 1465
COABBUILA ..ttt ettt ettt s sa ettt e st e s b et et s sesaastesaesessensesessansensons 1466
Creating an @PPLICAtION ..ottt a et et e 1466
Building and deploying your application COde ... 1466
USiNG the EB CLI With Git .ottt sa et e sae e s re s n s 1468
Associating Elastic Beanstalk environments with Git branchesccccoveeeeeeecenecceneeneee. 1469
DEPLOYING CHANGES ...ttt et et e te st e st et e s e s e s e e s e s et e saestassassassassessnaneans 1469
USING Git SUDMOAULES ...ttt sttt sa e sttt s e s s e n s 1470
Assigning Git tags to your application VErSIONcccceceeeceneceeeceeretete e sre e 1471
COAEUOMIMIL .ttt ettt ste st et s s e b et e be st e e s s e st et e e b et eseesessestesessassenessensansensssansenees 1471
PrEr@QUISITES .eeeeiteeieetert ettt sttt a e s ste e st e s sae e s e e s sae e s st e s aesssaesssaesssasssaesssessssesssesssesssaannns 1472
Creating a CodeCommit repository with the EB CLIccooiiieieiecieeeceeeceeeeeeee e 1472
Deploying from your CodeCommit rePOSItOrYccecieeeeeeeereeeceeeeeete et e e e senens 1473
Configuring additional branches and enviroNmMeNts ... 1475
Using an existing CodeCommit rePOSITOrYcceeeeieciecieciecieceeeeeeee ettt se e e saesaeaens 1476
MONILOIING NEALLN ..ttt e st st st e s ae s e e e s sa e a e aetasaanes 1477
REAAING the OULPUL ..ottt e et et sae s neaenes 1480
INTEractive NEALEN VIBW ...ttt ettt ettt et 1482
Interactive health VIEW OPLiONS ...ttt 1484
COMPOSING ENVIFONMIENTSoiiiiiiieiierierceerteesreesree st eseeesaeesseessaesssaessseessaasssessssesssessssesssessseesssasssaesns 1485
JLILCeT0] 0] (=T VoY o] u [o e PSR U U RRURSR 1487
Troubleshooting dePlOYMENTSc.eoiiiceecececece et sa et st e e e s e e e e e aesaennans 1488
EB CLI COMMIANGS ..ottt sieste s e sae st e e sse st e e ssesse st s e ssesae e ssasse st ssassessesassassensssesensenenne 1491
B ADOKT ...ttt et b e e aa s 1492
€D QPPVEISION ...ttt ettt et e st e st e e e e e et et et e aenbeeseeseeseenaens 1493
BB CLONE ...t ettt ettt e bt et e e ae st e e bans 1497
€D COARSOUNCE ...ttt sttt e b e st e e et e st e s se st e e s sees 1500
€D CONFIG ...ttt ettt e st et e st e s e s seese e e et e s e tetasanes 1502
€D CONSOLE ...ttt a e sttt s st a e s s bt b e e seeaen 1510
ED CrEALE ...ttt s e e a e sae b e 1511
ED AEPLOY ...ttt ettt et e et et et e b e e re e enae e ennenean 1528
B QUENTS ...ttt et a e st teeeb et e senaen 1530
€D NEALEN ...ttt ettt aesa e n 1532
BB NN ettt sttt e e s b e e e e aenes 1534
BB LADBS ...ttt b e sttt e b et e ebe b e e ne 1538

Xiv

AWS Elastic Beanstalk Developer Guide

BB LISE ...ttt et et e e s b et et a et e e as 1539
BB LOCAL ...ttt et a ettt e e be e e e ene 1540
BB LOGS ...ttt et a e st e b e e et et et e bente et eereereenaeneenaantan 1544
(=] o T o 1= o T OO O USSR 1548
€D PLALFOII ...ttt st s e s et et st e st e st e e e e e e e e naennan 1549
€D PHINEENV ...ttt et e s e et e e e e e e et e s be st e sbessaese e e e e ensantans 1559
BB FESTOIE ...ttt ettt sttt et a e b e e e seaen 1560
BB SCALE ...ttt ettt st st a et e e ae e ens 1561
BB SEEENV ...ttt a ettt e st e e eaesaeaenaes 1562
BB SSI ...ttt et b e et et et e be e eae 1563
BB STALUS ... ettt sa et et e e s be e e e aetn 1566
BB SWAP .ttt sttt e e a e e e e e e et e benbe st e beeseeaeeneenaanes 1568
B BAGS ..ottt et e s e e e e ae et et e be st e beeseeaeereeneententans 1570
€D tEIMINALE ...ttt sttt b e e nen 1573
ED UPGrade ... ettt ettt st e st s ettt e b et e ae e aeeaeeae et entenes 1575
BB USE ...ttt sttt e a et s et et e ae st enas 1576
COMIMON OPTIONS w.eeiiiiiiieicieeieccteee et se e e ste s st e s te s s e e s saessaaesssessseesssessssesssessseesssessseesssesssessssennns 1577
EB CLI 2.6 (FELIFEA) vouveeeteeeeeeeeeeete ettt te e te e s testesse s e e e e s e s et e aesaesbesbaesessaesnensansansansansans 1578
Differences from version 3 Of EB CLI ...ttt e e s ese e ssesaesessenes 1578
Migrating to EB CLI 3 and Cod@COmMMIULc.ccueeuiiieiiiereiectectectee ettt a e ae e 1579
EB APl CLI (FELIFEA) woeeeeeeieeeteteeeeeee ettt et ve e e e e e st et esaeste st e e se s e e s e s e e et e aassesseesnesesnnennanes 1580
Converting Elastic Beanstalk APl CLI SCIPLS c..ccveieciieieceeeeeceeeeteeetecte e se e ss et saeseens 1580
SECUNITY eiiiiiiiiennnnniiiiieeiiiieneneessssesssssssesesssnssses 1584
DAta PrOTECLION ..ttt ettt et s sae e st e s ae s st e s s e e s e e s sae s saessaa e saasssaasssensseeneans 1585
DAta ENCIYPTION .ottt ettt et e e st e st s re e s sae s s se e s b e s seessbesssaesssesssaasssessseensaans 1586
INEErNETWOIK PrIVACY .ocuviieieieeieeeeeeteteteteste ettt st et esteste s e e s s e s e st e st e aessesseesee e esaenaanaensansan 1587
Identity and access MANAGEMENT ..ottt e e e e s ra et e tesaesaessesse e e ennans 1587
AWS MANAGEA POLICIES w.uveeeieeieeeietecteeres ettt te e s e e e s e e s et et esaeste st e sas e esnesesaensansansans 1587
Logging and MONILOIING ..c.coueeueeieeeeeeeeeeeecterteee ettt e rae s testesse s e e e e e e e e s e s e saessassessaennerasnnanaanes 1598
Enhanced health reporting ...ttt st st a e e sae s 1599
AmMaAzon EC2 INSTANCE LOGS ..ueouiirieeieieietctetecteteste e se et estestesaesse s e s e e e e saessesaesaessassassassessnanean 1599
Environment NOtIfiCAtioNS ..ottt st 1599
Amazon ClLoUudWAtCh Qlarms ...ttt saesae e st e e s sasse s e ne 1599
AWS CLoUATIAIL LOGS .eveuieeieieeeeceeeeeete ettt saesaestesse s e e s e e e e st e st e s aesba s e e seesnenaesaensanes 1600
AWS X-Ray dEDUGQGING ..ottt ettt stesae st s e e e et et e sa et e stesaesneesaennans 1600
ComMPLiANCe ValidAtioN ...t a ettt a et et nes 1600

XV

AWS Elastic Beanstalk Developer Guide

RESILIEINCE ..ottt ettt et st et s e st et st et e e e b e sbe e e sa b e st esassansensenasansesans 1601
INFrasStrUCTUIE SECUNILY .uviieieteecee ettt et e st e s e e e e e e s e s et e saesaessessessnennannans 1601
Shared responsibility MOAEL ...t a et saesaasaens 1602
SECUNITY DEST PraCliCOS ..ottt ettt e b et e st aese e e e an e e e e e aanes 1602
Preventive security Dest PractiCes ...ttt 1602
Detective security Dest PractiCes ...ttt 1603
TroubLeShOOTING ..ciiiiiiiiiiiiiiiiiiiiiiiiiieeennniiiiiieeetttttassassssssssssssssesssass 1605
Using the Systems Manager t0O0L ...ttt s a e aan 1605
GENETAL QUILANCE ..ottt et et e st este e e e e e et et e st e b et e s s e e se e e e st enaansensassansansassnanes 1607
CALEGOKIES ettt ettt et s e st e s e e s st e st e s saa e s b e s se e ssassaa e ssessseessaesssessssesssaessaesssessssesseesseens 1607
CONNECEIVILY ettt ettt e e st e st e e s e e s sae s saeessaessaeesssesssa s saasssaesssesssassssessseessaesssenns 1608
ENVIFONMENT CrEAtiON ..c..eieiiiiieeeee ettt sttt et ss e st et sa e st ne s b sne s 1608
DEPLOYMENTS ...ttt ettt et e s te st e st e e aesse s s e e et et e st e tesaessassaeseenaassensansansansan 1609
HEALEN ettt ettt b et s sttt ettt e st et e e se st e e enaaan 1609
CONFIGUIALION <.ttt et et et e st e s b e s be e e e e e e et et et e aesaassassassaennanes 1610
DIOCKET ettt ettt et ettt et a e sttt e b et et et et et e s et e e sesae st esaeseteneenn 1610
FAQ oottt ettt e st s e st e st e st e st s s ae e st e e s a e e e b e e s e e et e e Rt e e ae e e s e e e b e e st e e be e sa e e aeesateenseesreennrans 1611
RESOUFICES .eeeeeiieerrnnneinernnnensseesssnncsssessssssssesssssssssassssssssssesss 1613
SAMPLE APPLICALIONS ..ttt et e st e te s e s e e e e e et e besba st esaassassaennenaanes 1614
Platform RiStOrY ...ccciiiiiiiiieeeeciiiiiiciiiiiinieenneneiiiisieeetisesses 1615
CUSEOM PLALFOIIMNIS ..ttt et te s te s e e s et et et e saessessessaesaesaensansansans 1615

XVi

AWS Elastic Beanstalk Developer Guide

What is AWS Elastic Beanstalk?

Amazon Web Services (AWS) comprises over one hundred services, each of which exposes an area
of functionality. While the variety of services offers flexibility for how you want to manage your
AWS infrastructure, it can be challenging to figure out which services to use and how to provision
them.

With Elastic Beanstalk, you can quickly deploy and manage applications in the AWS Cloud without
having to learn about the infrastructure that runs those applications. Elastic Beanstalk reduces
management complexity without restricting choice or control. You simply upload your application,
and Elastic Beanstalk automatically handles the details of capacity provisioning, load balancing,
scaling, and application health monitoring.

Elastic Beanstalk supports applications developed in Go, Java, .NET, Node.js, PHP, Python, and
Ruby. When you deploy your application, Elastic Beanstalk builds the selected supported platform
version and provisions one or more AWS resources, such as Amazon EC2 instances, to run your
application.

You can interact with Elastic Beanstalk by using the Elastic Beanstalk console, the AWS Command
Line Interface (AWS CLI), or eb, a high-level CLI designed specifically for Elastic Beanstalk.

To learn more about how to deploy a sample web application using Elastic Beanstalk, see Getting
Started with AWS: Deploying a Web App.

You can also perform most deployment tasks, such as changing the size of your fleet of Amazon
EC2 instances or monitoring your application, directly from the Elastic Beanstalk web interface
(console).

To use Elastic Beanstalk, you create an application, upload an application version in the form of
an application source bundle (for example, a Java .war file) to Elastic Beanstalk, and then provide
some information about the application. Elastic Beanstalk automatically launches an environment
and creates and configures the AWS resources needed to run your code. After your environment

is launched, you can then manage your environment and deploy new application versions. The
following diagram illustrates the workflow of Elastic Beanstalk.

Update Version

Launch
Environment

Create
Application

Upload
V:r;:n -

- WELET-E]
Environment

Deploy New Version

https://docs.aws.amazon.com/gettingstarted/latest/deploy/
https://docs.aws.amazon.com/gettingstarted/latest/deploy/

AWS Elastic Beanstalk Developer Guide

After you create and deploy your application, information about the application—including
metrics, events, and environment status—is available through the Elastic Beanstalk console, APlIs,
or Command Line Interfaces, including the unified AWS CLI.

Pricing

There is no additional charge for Elastic Beanstalk. You pay only for the underlying AWS resources
that your application consumes. For details about pricing, see the Elastic Beanstalk service detail

page.

Where to go next

This guide contains conceptual information about the Elastic Beanstalk web service, as well as
information about how to use the service to deploy web applications. Separate sections describe
how to use the Elastic Beanstalk console, command line interface (CLI) tools, and API to deploy and
manage your Elastic Beanstalk environments. This guide also documents how Elastic Beanstalk is
integrated with other services provided by Amazon Web Services.

We recommend that you first read Getting started using Elastic Beanstalk to learn how to start

using Elastic Beanstalk. Getting Started steps you through creating, viewing, and updating
your Elastic Beanstalk application, as well as editing and terminating your Elastic Beanstalk
environment. Getting Started also describes different ways you can access Elastic Beanstalk.

To learn more about an Elastic Beanstalk application and its components, see the following pages.

Elastic Beanstalk concepts

Elastic Beanstalk platforms glossary

Shared responsibility model for Elastic Beanstalk platform maintenance

Elastic Beanstalk platform support policy

Pricing 2

https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Getting started using Elastic Beanstalk

To help you understand how AWS Elastic Beanstalk works, this tutorial walks you through creating,
exploring, updating, and deleting an Elastic Beanstalk application. It takes less than an hour to
complete.

There is no cost for using Elastic Beanstalk, but the AWS resources that it creates for this tutorial
are live (and don't run in a sandbox). You incur the standard usage fees for these resources until
you terminate them at the end of this tutorial. The total charges are typically less than a dollar. For
information about how to minimize charges, see AWS free tier.

Topics

« Setting up: Create an AWS account

» Step 1: Create an example application

» Step 2: Explore your environment

» Step 3: Deploy a new version of your application

» Step 4: Configure your environment

o Step 5: Clean up
e Next steps

Setting up: Create an AWS account

If you're not already an AWS customer, you need to create an AWS account. Signing up enables you
to access Elastic Beanstalk and other AWS services that you need.

Sign up for an AWS account
If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

Setting up: Create an AWS account 3

https://aws.amazon.com/free
https://portal.aws.amazon.com/billing/signup

AWS Elastic Beanstalk Developer Guide

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks

that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and

entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. InIAM lIdentity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Create an administrative user 4

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

AWS Elastic Beanstalk Developer Guide

Sign in as the administrative user

e Tosign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Step 1: Create an example application

In this step, you create a new application starting from a preexisting example application. Elastic
Beanstalk supports platforms for different programming languages, application servers, and
Docker containers. You choose a platform when you create the application.

Create an application and an environment

To create your example application, you'll use the Create application console wizard. It creates
an Elastic Beanstalk application and launches an environment within it. An environment is the
collection of AWS resources required to run your application code.

To create an example application

Open the Elastic Beanstalk console.

Choose Create application.
For Application name enter getting-started-app.

Optionally add application tags.

For Platform, choose a platform.
Choose Next.
The Configure service access page displays.

Choose Use an existing service role for Service Role.

© ® N v s W DN =

Next, we'll focus on the EC2 instance profile dropdown list. The values displayed in this
dropdown list may vary, depending on whether you account has previously created a new
environment.

Choose one of the following, based on the values displayed in your list.

« Ifaws-elasticbeanstalk-ec2-role displays in the dropdown list, select it from the
EC2 instance profile dropdown list.

Step 1: Create 5

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

« If another value displays in the list, and it's the default EC2 instance profile intended for
your environments, select it from the EC2 instance profile dropdown list.

« If the EC2 instance profile dropdown list doesn't list any values to choose from, expand
the procedure that follows, Create IAM Role for EC2 instance profile.

Complete the steps in Create IAM Role for EC2 instance profile to create an IAM Role that
you can subsequently select for the EC2 instance profile. Then return back to this step.

Now that you've created an IAM Role, and refreshed the list, it displays as a choice in
the dropdown list. Select the IAM Role you just created from the EC2 instance profile
dropdown list.

10. Choose Skip to Review on the Configure service access page.

This skips the optional steps.

11. The Review page displays a summary of all your choices.

Choose Submit at the bottom of the page.

Create IAM Role for EC2 instance profile

Configure service access e

Service access
’ = L Bath ¢

Servige role

Create and use new service role

0 Use an existing service role
Ems‘[lr'L: SErVICE rodes

aws-elasticbeanstalk-service-role v | G
ECZ key pair

t B
L J | c

EC2 instance profile

aws-elasticbeanstalk-ec2-role v | (&)

View permission details

Cancel Skip to review Previous | m

Create an application and an environment 6

AWS Elastic Beanstalk Developer Guide

To create a an IAM Role for EC2 instance profile selection

1.

© N O U M W DN

10.
11.
12.
13.
14.

15.

Choose View permission details. This displays under the EC2 instance profile dropdown list.

A modal window titled View instance profile permissions displays. This window lists the
managed profiles that you'll need to attach to the new EC2 instance profile that you create. It
also provides a link to launch the IAM console.

Choose the IAM console link displayed at the top of the window.

In the IAM console navigation pane, choose Roles.

Choose Create role.

Under Trusted entity type, choose AWS service.

Under Use case, choose EC2.

Choose Next.

Attach the appropriate managed policies. Scroll in the View instance profile permissions
modal window to see the managed policies. The policies are also listed here:
« AWSElasticBeanstalkWebTier

« AWSElasticBeanstalkWorkerTier

« AWSElasticBeanstalkMulticontainerDocker

Choose Next.

Enter a name for the role.

(Optional) Add tags to the role.

Choose Create role.

Return to the Elastic Beanstalk console window that is open.

Close the modal window View instance profile permissions.

/A Important

Do not close the browser page that displays the Elastic Beanstalk console.

Choose

&

(refresh), next to the EC2 instance profile dropdown list.

Create an application and an environment 7

AWS Elastic Beanstalk Developer Guide

This refreshes the dropdown list, so that the Role you just created will display in the dropdown
list.

Elastic Beanstalk workflow

To deploy and run the example application on AWS resources, Elastic Beanstalk takes the following
actions. They take about five minutes to complete.

1. Creates an Elastic Beanstalk application named getting-started-app.

2. Launches an environment named GettingStartedApp-env with these AWS resources:

An Amazon Elastic Compute Cloud (Amazon EC2) instance (virtual machine)

An Amazon EC2 security group

An Amazon Simple Storage Service (Amazon S3) bucket

Amazon CloudWatch alarms

An AWS CloudFormation stack

A domain name

For details about these AWS resources, see the section called "AWS resources created for the

example application”.

3. Creates a new application version named Sample Application. This is the default Elastic
Beanstalk example application file.

4. Deploys the code for the example application to the GettingStartedApp-env environment.

During the environment creation process, the console tracks progress and displays events.

Create an application and an environment 8

AWS Elastic Beanstalk

Developer Guide

Gettingstarted-env

Environment overview

Domain

Events Health Legs Maonitoring

Events (20) o

QL Filter events

Time

January 8, 2023 19:40013 (UTC-5)

January 8 2023 19:39:29 (UTC-3)
January &, 2023 19:3%:28 (UTC-5)
January 8, 2023 19:39:13 (UTC-5)
January 8, 2023 19:38:56 (UTC-5)

January 8, 2023 19:38:28 (UTC-5)

January &, 2023 19:37:13 (UTC-5)

January &, 2023 19:37:11 (UTC-5)

Janyary 8, 2023 19:36:55 (UTC-5)

January & 2023 19:36:55 (UTC-5)

January 8, 2023 19:36:34 (UTC-5)

January & 2023 19:38:33 (UTC-3)

Elastic Beanstalk » Environments » Gettingstarted-env

Alarms

Type
@INFD

@inFo
@ NFo
@ nro
@ nFo
@ InFO

@ InFo

G)INlr_)
@ InFO

@D INFO

@INFD

@ INFO

S——

Platfom

Mode s 16 running on G4bit Amazon Linux 2/5.6.3
L Updte

Running version

- Sample Application

Managed updates Tags

Details

Erviranment health has transitioned from Pending to Ok, Initialization completed 46 seconds ago

and took 2 minutes

Successfully launched emdronment: Gettingstarted-emy

Application available at Gettingstarted-env.eba-wlpdx%as.us-east-1 elasticheanstalk.com,
Added instance [i-0b1530¢ 3cabd S8083] to your emviromment.

Instance deployment completed successfully.

Waiting for EC2 instances to launch. This may take a few minutes.

Emvironment health has transitioned to Pending. Initializatien in progress (running for 20 seconds).
Thene areé No inStances.

Created security group named: awseb-e-irkuaon Iny-stack-AWSEBSecurityGroup- 1 TQDOOYHCNMTW
Created security group named: $9-0d8a41934051 2fe0a

Created target group named: arm:aws-elasticloadbalandingrs-east-
11646568291 71 targetgroup/awseb- AW SEB-EURAPI SOV 2H /3 3eflle2dc Shica

Using elasticbeanstalk-us-east-1- 164656829171 as Amazon 53 storage bucket for environment
data

createEmironment is starng.

When all of the resources are launched and the EC2 instances running the application pass health
checks, the environment's health changes to Ok. You can now use your web application's website.

AWS resources created for the example application

When you create the example application, Elastic Beanstalk creates the following AWS resources:

« EC2 instance — An Amazon EC2 virtual machine configured to run web apps on the platform you

choose.

AWS resources created for the example application

AWS Elastic Beanstalk Developer Guide

Each platform runs a different set of software, configuration files, and scripts to support a
specific language version, framework, web container, or combination thereof. Most platforms
use either Apache or nginx as a reverse proxy that processes web traffic in front of your web app,
forwards requests to it, serves static assets, and generates access and error logs.

« Instance security group — An Amazon EC2 security group configured to allow incoming traffic
on port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic is not allowed on other ports.

« Amazon S3 bucket - A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

« Amazon CloudWatch alarms - Two CloudWatch alarms that monitor the load on the instances in
your environment and are triggered if the load is too high or too low. When an alarm is triggered,
your Auto Scaling group scales up or down in response.

« AWS CloudFormation stack — Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the AWS CloudFormation console.

« Domain name - A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

® Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com
domain is registered in the Public Suffix List (PSL). For further security, we recommend
that you use cookies with a __Host- prefix if you ever need to set sensitive cookies in

the default domain name for your Elastic Beanstalk applications. This practice will help
to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

Step 2: Explore your environment

To see an overview of your Elastic Beanstalk application's environment, use the Environment
overview page in the Elastic Beanstalk console.

To view the environment overview

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

Step 2: Explore 10

https://console.aws.amazon.com/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

® Note

If you have many environments, use the search bar to filter the environment list.

The upper portion of the Environment overview page shows top level information about your
environment. This includes its name, its domain URL, its current health status, the name of the
currently deployed application version, and the platform version that the application is running on.
Below the overview pane you can see the most recent environment events in the Events tab. The
other tabs display other main details about your environment.

To learn more about environment tiers, platforms, application versions, and other Elastic Beanstalk
concepts, see Concepts.

Elastic Beanstalk Ed Elasii tale > G ts » Gettingstarted-eny

Gettingstarted-eny w. C | actions » | RSy

Environment overview Platfarm Change version

Events Health Lags Manitoring Alarmi Marimged updates

Events L &}
=] 1 I]

Time Dretalls

While Elastic Beanstalk creates your AWS resources and launches your application, the environment
isin a Pending state. Status messages about launch events are continuously added to the
overview.

The environment's Domain, or URL, is located in the upper portion of the Environment overview
page, below the environment's Health. This is the URL of the web application that the environment
is running. Choose this URL to get to the example application's Congratulations page. The
navigation pane on the left lists a Go to environment link that launches the same application
page.

Step 2: Explore 11

AWS Elastic Beanstalk Developer Guide

Also listed on the left navigation pane is Configuration, which shows the Configuration overview
page. This page displays a summary of environment configuration option values, grouped by
category.

The tabs displayed on the bottom half of the page contain more detailed information about your
environment and provide access to additional features:

« Events — Shows information or error messages from the Elastic Beanstalk service and from other
services whose resources this environment uses.

« Health — Shows the status of and detailed health information about the Amazon EC2 instances
running your application.

» Logs - Retrieve and download logs from the Amazon EC2 in your environment. You can retrieve
full logs or recent activity. The retrieved logs are available for 15 minutes.

» Monitoring — Shows statistics for the environment, such as average latency and CPU utilization.

« Alarms - Shows the alarms that you configured for environment metrics. You can add, modify or
delete alarms on this page.

« Managed updates - Shows information about upcoming and completed managed platform
updates and instance replacement.

« Tags - Shows environment tags and allows you to manage them. Tags are key-value pairs that
are applied to your environment.

® Note

The navigation pane on the left side of the console lists links with the same name as the
tabs. Selecting any of these links will display the contents of the corresponding tab.

Step 3: Deploy a new version of your application

Periodically, you might need to deploy a new version of your application. You can deploy a new
version at any time, as long as no other update operations are in progress on your environment.

The application version that you started this tutorial with is called Sample Application.

Step 3: Deploy a new version 12

AWS Elastic Beanstalk Developer Guide

To update your application version

1. Download the sample application that matches your environment's platform. Use one of the
following applications.

« Docker - docker.zip

» Multicontainer Docker — docker-multicontainer-v2.zip

» Preconfigured Docker (Glassfish) — docker-glassfish-v1.zip

e Go-go.zip
e Corretto — corretto.zip
« Tomcat - tomcat.zip

« .NET Core on Linux — dotnet-core-linux.zip

» .NET Core - dotnet-asp-windows.zip

« Node.js - nodejs.zip
« PHP - php.zip

« Python - python.zip
* Ruby - ruby.zip

2. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

3. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

® Note

If you have many environments, use the search bar to filter the environment list.

4. On the environment overview page, choose Upload and deploy.

5. Choose Choose file, and then upload the sample application source bundle that you
downloaded.

Step 3: Deploy a new version 13

samples/docker.zip
samples/docker-multicontainer-v2.zip
samples/docker-glassfish-v1.zip
samples/go.zip
samples/corretto.zip
samples/tomcat.zip
samples/dotnet-core-linux.zip
samples/dotnet-asp-windows.zip
samples/nodejs.zip
samples/php.zip
samples/python.zip
samples/ruby.zip
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Upload and deploy X

® To deploy a previous version, go to the Application Versions page.

Upload application:

| [t] Choose file ‘

File name - java-tomcat-v3.zip &
Version label:

Sample Application-2

P Deployment Preferences

The application version will be deployed using the All at once policy.
Current number of instances: 1

oep

The console automatically fills in the Version label with a new unique label. If you type in your

own version label, ensure that it's unique.

6. Choose Deploy.

While Elastic Beanstalk deploys your file to your Amazon EC2 instances, you can view the
deployment status on the environment's overview. While the application version is updated, the
Environment Health status is gray. When the deployment is complete, Elastic Beanstalk performs
an application health check. When the application responds to the health check, it's considered
healthy and the status returns to green. The environment overview shows the new Running
Version—the name you provided as the Version label.

Elastic Beanstalk also uploads your new application version and adds it to the table of application
versions. To view the table, choose Application versions under getting-started-app on the
navigation pane.

Step 3: Deploy a new version 14

AWS Elastic Beanstalk Developer Guide

Step 4: Configure your environment

You can configure your environment to better suit your application. For example, if you have

a compute-intensive application, you can change the type of Amazon Elastic Compute Cloud
(Amazon EC2) instance that is running your application. To apply configuration changes, Elastic
Beanstalk performs an environment update.

Some configuration changes are simple and happen quickly. Some changes require deleting
and recreating AWS resources, which can take several minutes. When you change configuration
settings, Elastic Beanstalk warns you about potential application downtime.

Make a configuration change

In this example of a configuration change, you edit your environment's capacity settings. You
configure a load-balanced, scalable environment that has between two and four Amazon EC2
instances in its Auto Scaling group, and then you verify that the change occurred. Elastic Beanstalk
creates an additional Amazon EC2 instance, adding to the single instance that it created initially.
Then, Elastic Beanstalk associates both instances with the environment's load balancer. As a result,
your application's responsiveness is improved and its availability is increased.

To change your environment's capacity

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

(® Note

If you have many environments, use the search bar to filter the environment list.

In the navigation pane, choose Configuration.
4. In the Instance traffic and scaling configuration category, choose Edit.

Collapse the Instances section, so you can more easily see the Capacity section. Under Auto
Scaling group change Environment type to Load balanced.

6. In the Instances row, change Max to 4, and then change Min to 2.
7. To save the changes choose Apply at the bottom of the page.

8. A warning tells you that this update replaces all of your current instances. Choose Confirm.

Step 4: Configure 15

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

9. The Environment overview page will display, showing the Events tab.

The environment update can take a few minutes. To find out that it's complete, look for
the event Successfully deployed new configuration to environment in the event list. This
confirms that the Auto Scaling minimum instance count has been set to 2. Elastic Beanstalk
automatically launches the second instance.

Verify the configuration change

When the environment update is complete and the environment is ready, verify your change.
To verify the increased capacity

1. Choose Health from either the tab list or from the left navigation pane.

2. Look at the Enhanced instance health section.

You can see that two Amazon EC2 instances are listed. Your environment capacity has
increased to two instances.

Events t Logs Monitoring Alarms Managed updates Tags

Overall health o %]

1.5 1.5

P9O latency Pal Latency ney PSO latency P10 latent

0.001 0.001 0.00m 0.001 0.00

Enhanced instance health (2] wfo &
Instance 1D Status Running time Deployment 1D Requests/sec 2xx Responses
i-04a22cd25ba2fTcde Ok January 10, 2023 071:20:26 (UTC-5) 1 2 2
i-0b1530c3cabd 58083 Ok January 8, 2023 19:37:28 (UTC-5) 1 1 1

¥

Step 5: Clean up

Congratulations! You have successfully deployed a sample application to the AWS Cloud, uploaded
a new version, and modified its configuration to add a second Auto Scaling instance. To ensure that

Verify the configuration change 16

AWS Elastic Beanstalk

Developer Guide

you're not charged for any services you aren't using, delete all application versions and terminate
the environment. This also deletes the AWS resources that the environment created for you.

To delete the application and all associated resources

1. Delete all application versions.

g.

Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

In the navigation pane, choose Applications, and then choose getting-started-app.

In the navigation pane, find your application's name and choose Application versions.
On the Application versions page, select all application versions that you want to delete.
Choose Actions, and then choose Delete.

Turn on Delete versions from Amazon S3.

Choose Delete, and then choose Done.

2. Terminate the environment.

In the navigation pane, choose getting-started-app, and then choose
GettingStartedApp-env in the environment list.

Choose Actions, and then choose Terminate Environment.

Confirm that you want to terminate GettingStartedApp-env by typing the environment
name, and then choose Terminate.

3. Delete the getting-started-app application.

a. Inthe navigation pane, choose the getting-started-app.
b. Choose Actions, and then choose Delete application.
¢. Confirm that you want to delete getting-started-app by typing the application name, and
then choose Delete.
Next steps

Now that you know how to create an Elastic Beanstalk application and environment, we

recommend that you read Concepts. This topic provides information about the Elastic Beanstalk

components and architecture, and describes important design considerations for your Elastic

Beanstalk application.

Next steps

17

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

In addition to the Elastic Beanstalk console, you can use the following tools to create and manage
Elastic Beanstalk environments.

EB CLI

The EB CLI is a command line tool for creating and managing environments. See Using the Elastic
Beanstalk command line interface (EB CLI) for details.

AWS SDK for Java

The AWS SDK for Java provides a Java API you can use to build applications that use AWS
infrastructure services. With the AWS SDK for Java, you can get started in minutes with a single,
downloadable package that includes the AWS Java library, code examples, and documentation.

The AWS SDK for Java requires the J2SE Development Kit 5.0 or later. You can download the
latest Java software from http://developers.sun.com/downloads/. The SDK also requires Apache

Commons (Codec, HTTPClient, and Logging) and Saxon-HE third-party packages, which are
included in the third-party directory of the SDK.

For more information, see AWS SDK for Java.

AWS Toolkit for Eclipse

The AWS Toolkit for Eclipse is an open source plug-in for the Eclipse Java IDE. You can use it to
create AWS Java web projects that are preconfigured with the AWS SDK for Java, and then deploy
the web applications to Elastic Beanstalk. The Elastic Beanstalk plug-in builds on top of the Eclipse
Web Tools Platform (WTP). The toolkit provides a Travel Log sample web application template that
demonstrates the use of Amazon S3 and Amazon SNS.

To ensure that you have all the WTP dependencies, we recommend that you start with the Java EE
distribution of Eclipse. You can download it from http://eclipse.org/downloads/.

For more information about using the Elastic Beanstalk plug-in for Eclipse, see AWS Toolkit for
Eclipse. To get started creating your Elastic Beanstalk application using Eclipse, see Creating and
deploying Java applications on Elastic Beanstalk.

AWS SDK for .NET

The AWS SDK for .NET enables you to build applications that use AWS infrastructure services. With
the AWS SDK for .NET, you can get started in minutes with a single, downloadable package that
includes the AWS .NET library, code examples, and documentation.

Next steps 18

http://developers.sun.com/downloads/
https://aws.amazon.com/sdk-for-java/
http://eclipse.org/downloads/
https://aws.amazon.com/eclipse/
https://aws.amazon.com/eclipse/

AWS Elastic Beanstalk Developer Guide

For more information, see AWS SDK for .NET. For supported .NET Framework and Visual Studio
versions, see the AWS SDK for .NET Developer Guide.

AWS Toolkit for Visual Studio

With the AWS Toolkit for Visual Studio plug-in, you can deploy an existing .NET application to
Elastic Beanstalk. You can also create projects using the AWS templates that are preconfigured with
the AWS SDK for .NET.

For prerequisite and installation information, see the AWS Toolkit for Visual Studio. To get started
creating your Elastic Beanstalk application using Visual Studio, see Creating and deploying .NET
applications on Elastic Beanstalk.

AWS SDK for JavaScript in Node.js

The AWS SDK for JavaScript in Node.js enables you to build applications on top of AWS
infrastructure services. With the AWS SDK for JavaScript in Node.js, you can get started in minutes
with a single, downloadable package that includes the AWS Node.js library, code examples, and
documentation.

For more information, see the AWS SDK for JavaScript in Node.js.

AWS SDK for PHP

The AWS SDK for PHP enables you to build applications on top of AWS infrastructure services. With
the AWS SDK for PHP, you can get started in minutes with a single, downloadable package that
includes the AWS PHP library, code examples, and documentation.

The AWS SDK for PHP requires PHP 5.2 or later. For download details, see http://php.net/.

For more information, see the AWS SDK for PHP.

AWS SDK for Python (Boto)

With the AWS SDK for Python (Boto), you can get started in minutes with a single, downloadable
package that includes the AWS Python library, code examples, and documentation. You can build
Python applications on top of APIs that take the complexity out of coding directly against web
service interfaces.

The all-in-one library provides Python developer-friendly APIs that hide many of the lower-level
tasks associated with programming for the AWS Cloud, including authentication, request retries,

Next steps 19

https://aws.amazon.com/sdk-for-net/
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/
https://aws.amazon.com/visualstudio/
https://aws.amazon.com/sdk-for-node-js/
http://php.net/
https://aws.amazon.com/sdk-for-php/

AWS Elastic Beanstalk Developer Guide

and error handling. The SDK provides practical examples in Python for how to use the libraries to
build applications.

For information about Boto, example code, documentation, tools, and additional resources, see the
Python Developer Center.

AWS SDK for Ruby

You can get started in minutes with a single, downloadable package complete with the AWS Ruby
library, code examples, and documentation. You can build Ruby applications on top of APIs that
take the complexity out of coding directly against web services interfaces.

The all-in-one library provides Ruby developer-friendly APIs that hide many of the lower-level
tasks associated with programming for the AWS Cloud, including authentication, request retries,
and error handling. The SDK provides practical examples in Ruby for how to use the libraries to
build applications.

For information about the SDK, example code, documentation, tools, and additional resources, see
the Ruby Developer Center.

Next steps 20

https://aws.amazon.com/python/
https://aws.amazon.com/ruby/

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk concepts

AWS Elastic Beanstalk enables you to manage all of the resources that run your application as
environments. Here are some key Elastic Beanstalk concepts.

Application

An Elastic Beanstalk application is a logical collection of Elastic Beanstalk components, including
environments, versions, and environment configurations. In Elastic Beanstalk an application is
conceptually similar to a folder.

Application version

In Elastic Beanstalk, an application version refers to a specific, labeled iteration of deployable

code for a web application. An application version points to an Amazon Simple Storage Service
(Amazon S3) object that contains the deployable code, such as a Java WAR file. An application
version is part of an application. Applications can have many versions and each application version
is unique. In a running environment, you can deploy any application version you already uploaded
to the application, or you can upload and immediately deploy a new application version. You
might upload multiple application versions to test differences between one version of your web
application and another.

Environment

An environment is a collection of AWS resources running an application version. Each environment
runs only one application version at a time, however, you can run the same application version

or different application versions in many environments simultaneously. When you create an
environment, Elastic Beanstalk provisions the resources needed to run the application version you
specified.

Environment tier

When you launch an Elastic Beanstalk environment, you first choose an environment tier. The
environment tier designates the type of application that the environment runs, and determines
what resources Elastic Beanstalk provisions to support it. An application that serves HTTP requests

Application 21

AWS Elastic Beanstalk Developer Guide

runs in a web server environment tier. A backend environment that pulls tasks from an Amazon

Simple Queue Service (Amazon SQS) queue runs in a worker environment tier.

Environment configuration

An environment configuration identifies a collection of parameters and settings that define

how an environment and its associated resources behave. When you update an environment'’s
configuration settings, Elastic Beanstalk automatically applies the changes to existing resources or
deletes and deploys new resources (depending on the type of change).

Saved configuration

A saved configuration is a template that you can use as a starting point for creating unique
environment configurations. You can create and modify saved configurations, and apply them to
environments, using the Elastic Beanstalk console, EB CLI, AWS CLI, or API. The APl and the AWS
CLI refer to saved configurations as configuration templates.

Platform

A platform is a combination of an operating system, programming language runtime, web server,
application server, and Elastic Beanstalk components. You design and target your web application
to a platform. Elastic Beanstalk provides a variety of platforms on which you can build your
applications.

For details, see Elastic Beanstalk platforms.

Web server environments

The following diagram shows an example Elastic Beanstalk architecture for a web server
environment tier, and shows how the components in that type of environment tier work together.

Environment configuration 22

AWS Elastic Beanstalk Developer Guide

MyApp.elasticbeanstalk.com

a)

Elastic Load Balancer

ir Security Group

i “N N e
i

|

i

EC2 Instance EC2 Instance EC2 Instance EC2 Instance

Security Group

N /

The environment is the heart of the application. In the diagram, the environment is shown within
the top-level solid line. When you create an environment, Elastic Beanstalk provisions the resources
required to run your application. AWS resources created for an environment include one elastic
load balancer (ELB in the diagram), an Auto Scaling group, and one or more Amazon Elastic
Compute Cloud (Amazon EC2) instances.

Every environment has a CNAME (URL) that points to a load balancer. The environment

has a URL, such as myapp.us-west-2.elasticbeanstalk.com. This URL is aliased in

Amazon Route 53 to an Elastic Load Balancing URL—something like abcdef-123456.us-
west-2.elb.amazonaws.com—by using a CNAME record. Amazon Route 53 is a highly available
and scalable Domain Name System (DNS) web service. It provides secure and reliable routing to
your infrastructure. Your domain name that you registered with your DNS provider will forward
requests to the CNAME.

The load balancer sits in front of the Amazon EC2 instances, which are part of an Auto Scaling
group. Amazon EC2 Auto Scaling automatically starts additional Amazon EC2 instances to
accommodate increasing load on your application. If the load on your application decreases,
Amazon EC2 Auto Scaling stops instances, but always leaves at least one instance running.

The software stack running on the Amazon EC2 instances is dependent on the container type.

A container type defines the infrastructure topology and software stack to be used for that
environment. For example, an Elastic Beanstalk environment with an Apache Tomcat container uses
the Amazon Linux operating system, Apache web server, and Apache Tomcat software. For a list of
supported container types, see Elastic Beanstalk supported platforms. Each Amazon EC2 instance

that runs your application uses one of these container types. In addition, a software component

Web server environments 23

https://aws.amazon.com/route53/
https://aws.amazon.com/route53/

AWS Elastic Beanstalk Developer Guide

called the host manager (HM) runs on each Amazon EC2 instance. The host manager is responsible
for the following:

» Deploying the application

» Aggregating events and metrics for retrieval via the console, the API, or the command line

» Generating instance-level events

» Monitoring the application log files for critical errors

« Monitoring the application server

« Patching instance components

« Rotating your application's log files and publishing them to Amazon S3

The host manager reports metrics, errors and events, and server instance status, which are
available via the Elastic Beanstalk console, APIs, and CLlIs.

The Amazon EC2 instances shown in the diagram are part of one security group. A security group
defines the firewall rules for your instances. By default, Elastic Beanstalk defines a security
group, which allows everyone to connect using port 80 (HTTP). You can define more than one
security group. For example, you can define a security group for your database server. For more
information about Amazon EC2 security groups and how to configure them for your Elastic
Beanstalk application, see Security groups.

Worker environments

AWS resources created for a worker environment tier include an Auto Scaling group, one or more
Amazon EC2 instances, and an IAM role. For the worker environment tier, Elastic Beanstalk also
creates and provisions an Amazon SQS queue if you don't already have one. When you launch a
worker environment, Elastic Beanstalk installs the necessary support files for your programming
language of choice and a daemon on each EC2 instance in the Auto Scaling group. The daemon
reads messages from an Amazon SQS queue. The daemon sends data from each message that

it reads to the web application running in the worker environment for processing. If you have
multiple instances in your worker environment, each instance has its own daemon, but they all read
from the same Amazon SQS queue.

The following diagram shows the different components and their interactions across environments
and AWS services.

Worker environments 24

AWS Elastic Beanstalk Developer Guide

o N |

Auto Scaling Amazon CoudWatch

o

hJ ™ -~ ~
Elastic Load Balancing | |
. : : |
! : : |
| - - .
! . - |
! | D U I
I . U m I |
| 505 Queus sad |
i } | i
! i - !

I . .

: EC2 Instance | EC2 Instance I
I I . |
|_~__ Autd Scaling Group ..i' \ Auto Scaling Group |

\ Elastic Beanstalk Container y Elastic Beanstalk Container J

Weh Server Environment Tier Worker Environment Tier

Amazon CloudWatch is used for alarms and health monitoring. For more information, go to Basic
health reporting.

For details about how the worker environment tier works, see Elastic Beanstalk worker

environments.

Design considerations

Because applications deployed using AWS Elastic Beanstalk run on AWS Cloud resources, you
should keep several configuration factors in mind to optimize your applications: scalability, security,
persistent storage, fault tolerance, content delivery, software updates and patching, and connectivity.
Each of these are covered separately in this topic. For a comprehensive list of technical AWS
whitepapers, covering topics such as architecture, as well as security and economics, see AWS Cloud
Computing Whitepapers.

Design considerations 25

https://aws.amazon.com/whitepapers/
https://aws.amazon.com/whitepapers/

AWS Elastic Beanstalk Developer Guide

Scalability

When operating in a physical hardware environment, in contrast to a cloud environment, you can
approach scalability in one of either two ways. Either you can scale up through vertical scaling

or you can scale out through horizontal scaling. The scale-up approach requires that you invest
in powerful hardware, which can support the increasing demands of your business. The scale-
out approach requires that you follow a distributed model of investment. As such, your hardware
and application acquisitions can be more targeted, your data sets are federated, and your design
is service oriented. The scale-up approach can be expensive, and there's also the risk that your
demand could outgrow your capacity. In this regard, the scale-out approach is usually more
effective. However, when using it, you must be able to predict demand at regular intervals and
deploy infrastructure in chunks to meet that demand. As a result, this approach can often lead to
unused capacity and might require some careful monitoring.

By migrating to the cloud, you can make your infrastructure align well with demand by leveraging
the elasticity of cloud. Elasticity helps to streamline resource acquisition and release. With it,

your infrastructure can rapidly scale in and scale out as demand fluctuates. To use it, configure
your Auto Scaling settings to scale up or down based on the metrics for the resources in your
environment. For example, you can set metrics such as server utilization or network /0. You can
use Auto Scaling for compute capacity to be added automatically whenever usage rises and for it
to be removed whenever usage drops. You can publish system metrics (for example, CPU, memory,
disk 1/0, and network 1/0) to Amazon CloudWatch. Then, you can use CloudWatch to configure
alarms to trigger Auto Scaling actions or send notifications based on these metrics. For instructions
on how to configure Auto Scaling, see Auto Scaling group for your Elastic Beanstalk environment.

We also recommend that you design all your Elastic Beanstalk applications as stateless as possible,
using loosely coupled, fault-tolerant components that can be scaled out as needed. For more
information about designing scalable application architectures for AWS, see AWS Well-Architected
Framework.

Security

Security on AWS is a shared responsibility. Amazon Web Services protects the physical resources

in your environment and ensures that the Cloud is a safe place for you to run applications. You're
responsible for the security of data coming in and out of your Elastic Beanstalk environment and
the security of your application.

Configure SSL to protect information that flows between your application and clients. To configure
SSL, you need a free certificate from AWS Certificate Manager (ACM). If you already have a

Scalability 26

https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Elastic Beanstalk Developer Guide

certificate from an external certificate authority (CA), you can use ACM to import that your
certificate. Otherwise, you can import it using the AWS CLI.

If ACM isn't available in your AWS Region, you can purchase a certificate from an external CA, such
as VeriSign or Entrust. Then, use the AWS Command Line Interface (AWS CLI) to upload a third-
party or self-signed certificate and private key to AWS Identity and Access Management (IAM). The
public key of the certificate authenticates your server to the browser. It also serves as the basis for
creating the shared session key that encrypts the data in both directions. For instructions on how
to create, upload, and assign an SSL certificate to your environment, see Configuring HTTPS for
your Elastic Beanstalk environment.

When you configure an SSL certificate for your environment, data is encrypted between the client
and the Elastic Load Balancing load balancer for your environment. By default, encryption is
terminated at the load balancer, and traffic between the load balancer and Amazon EC2 instances
is unencrypted.

Persistent storage

Elastic Beanstalk applications run on Amazon EC2 instances that have no persistent local storage.
When the Amazon EC2 instances terminate, the local file system isn't saved. New Amazon EC2
instances start with a default file system. We recommend that you configure your application to
store data in a persistent data source. AWS offers a number of persistent storage services that you
can use for your application. The following table lists them.

Storage service Service documentation Elastic Beanstalk integration
Amazon S3 Amazon Simple Storage Using Elastic Beanstalk with
Service Documentation Amazon S3
Amazon Elastic File Amazon Elastic File System Using Elastic Beanstalk with
System Documentation Amazon Elastic File System
Amazon Elastic Block Amazon Elastic Block Store
Store
Feature Guide: Elastic Block
Store
Amazon DynamoDB Amazon DynamoDB Using Elastic Beanstalk with
Documentation Amazon DynamoDB

Persistent storage 27

https://docs.aws.amazon.com/general/latest/gr/acm.html
https://aws.amazon.com/s3/
https://aws.amazon.com/documentation/s3/
https://aws.amazon.com/documentation/s3/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/documentation/efs/
https://aws.amazon.com/documentation/efs/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://aws.amazon.com/articles/1667
https://aws.amazon.com/articles/1667
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/documentation/dynamodb/
https://aws.amazon.com/documentation/dynamodb/

AWS Elastic Beanstalk Developer Guide

Storage service Service documentation Elastic Beanstalk integration
Amazon Relational Amazon Relational Database Using Elastic Beanstalk with
Database Service (RDS) Service Documentation Amazon RDS

® Note

Elastic Beanstalk creates a webapp user for you to set up as the owner of application
directories on EC2 instances. For Amazon Linux 2 platform versions that are released on
or after Feburary 3, 2022, Elastic Beanstalk assigns the webapp user a uid (user id) and gid
(group id) value of 900 for new environments. It does the same for existing environments
following a platform version update. This approach keeps consistent access permission for
the webapp user to permanent file system storage.

In the unlikely situation that another user or process is already using 900, the operating
system defaults the webapp user uid and gid to another value. Run the Linux command

id webapp on your EC2 instances to verify the uid and gid values that are assigned to the
webapp user.

Fault tolerance

As a rule of thumb, you should be a pessimist when designing architecture for the cloud. Leverage
the elasticity that it offers. Always design, implement, and deploy for automated recovery from
failure. Use multiple Availability Zones for your Amazon EC2 instances and for Amazon RDS.
Availability Zones are conceptually like logical data centers. Use Amazon CloudWatch to get more
visibility into the health of your Elastic Beanstalk application and take appropriate actions in case
of hardware failure or performance degradation. Configure your Auto Scaling settings to maintain
your fleet of Amazon EC2 instances at a fixed size so that unhealthy Amazon EC2 instances are
replaced by new ones. If you're using Amazon RDS, then set the retention period for backups, so
that Amazon RDS can perform automated backups.

Content delivery

When users connect to your website, their requests may be routed through a number of individual
networks. As a result, users might experience poor performance due to high latency. Amazon
CloudFront can help ameliorate latency issues by distributing your web content, such as images
and video, across a network of edge locations around the world. Users' requests are routed to the

Fault tolerance 28

https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/documentation/rds/
https://aws.amazon.com/documentation/rds/
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-02-03-linux.html#release-2022-02-03-linux.changes

AWS Elastic Beanstalk Developer Guide

nearest edge location, so content is delivered with the best possible performance. CloudFront
works seamlessly with Amazon S3, which durably stores the original, definitive versions of your
files. For more information about Amazon CloudFront, see the Amazon CloudFront Developer
Guide.

Software updates and patching

AWS Elastic Beanstalk regularly releases platform updates to provide fixes, software updates,

and new features. Elastic Beanstalk offers several options to handle platform updates. With
managed platform updates your environment automatically upgrades to the latest version of a

platform during a scheduled maintenance window while your application remains in service. For
environments created on November 25, 2019 or later using the Elastic Beanstalk console, managed
updates are enabled by default whenever possible. You can also manually initiate updates using
the Elastic Beanstalk console or EB CLI.

Connectivity

Elastic Beanstalk needs to be able to connect to the instances in your environment to complete
deployments. When you deploy an Elastic Beanstalk application inside an Amazon VPC, the
configuration required to enable connectivity depends on the type of Amazon VPC environment
you create:

» For single-instance environments, no additional configuration is required. This is because, with
these environments, Elastic Beanstalk assigns each Amazon EC2 instance a public Elastic IP
address that enables the instance to communicate directly with the internet.

» For load-balanced, scalable environments in an Amazon VPC with both public and private
subnets, you must do the following:

« Create a load balancer in the public subnet to route inbound traffic from the internet to the
Amazon EC2 instances.

» Create a network address translation (NAT) device to route outbound traffic from the Amazon
EC2 instances in private subnets to the internet.

» Create inbound and outbound routing rules for the Amazon EC2 instances inside the private
subnet.

« If you're using a NAT instance, configure the security groups for the NAT instance and Amazon
EC2 instances to enable internet communication.

» For a load-balanced, scalable environment in an Amazon VPC that has one public subnet, no
additional configuration is required. This is because, with this environment, your Amazon EC2

Software updates and patching 29

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html

AWS Elastic Beanstalk Developer Guide

instances are configured with a public IP address that enables the instances to communicate with
the internet.

For more information about using Elastic Beanstalk with Amazon VPC, see Using Elastic Beanstalk
with Amazon VPC.

Connectivity 30

AWS Elastic Beanstalk Developer Guide

Service roles, instance profiles, and user policies

When you create an environment, AWS Elastic Beanstalk prompts you to provide the following
AWS Identity and Access Management (IAM) roles:

« Service role: Elastic Beanstalk assumes a service role to use other AWS services on your behalf.

« Instance profile Elastic Beanstalk applies instances profile to the instances in your environment.
It allows them to do the following:

 Retrieve application versions from Amazon Simple Storage Service (Amazon S3).

« Upload logs to Amazon S3.

« Perform other tasks that vary depending on the environment type and platform.

Service role

When you create an environment in the Elastic Beanstalk console or using Elastic Beanstalk EB CLI,
the required service roles are created and assigned managed policies. These policies include all of

the necessary permissions. Now, suppose that the service role already exists in your account and
you then create a new environment in Elastic Beanstalk console or using Elastic Beanstalk CLI. If
this happens, the existing service role automatically gets assigned to the new environment.

Instance profile

If your AWS account doesn’t have an EC2 instance profile, you must create one using the IAM
service. You can then assign the EC2 instance profile to new environments that you create. The
Create environment wizard provides information to guide you through the IAM service, so that
you can create an EC2 instance profile with the required permissions. After creating the instance
profile, you can return to the console to select it as the EC2 instance profile and continue the steps
to create your environment.

(@ Note

Previously Elastic Beanstalk created a default EC2 instance profile named aws -
elasticbeanstalk-ec2-role the first time an AWS account created an environment.
This instance profile included default managed policies. If your account already has this
instance profile, it will remain available for you to assign to your environments.

However, recent AWS security guidelines don’t allow an AWS service to automatically create
roles with trust policies to other AWS services, EC2 in this case. Because of these security

31

AWS Elastic Beanstalk Developer Guide

guidelines, Elastic Beanstalk no longer creates a default aws-elasticbeanstalk-ec2-
role instance profile.

User policies

In addition to the roles that you assign to your environment, you can also create user policies and
apply them to IAM users and groups in your account. Applying user policies allows the users to
create and manage Elastic Beanstalk applications and environments. Elastic Beanstalk also provides
managed policies for full access and read-only access. For more information about these policies,
see the section called “User policies”.

Additional instance profiles and user policies

You can create your own instance profiles and user policies for advanced scenarios. If your
instances need to access services that aren't included in the default policies, you can create a new
policy or add additional policies to the default one. If the managed policy is too permissive for
your needs, you can also create more restrictive user policies. For more information about AWS
permissions, see the IAM User Guide.

Topics

« Elastic Beanstalk service role

 Elastic Beanstalk instance profile

» Elastic Beanstalk user policy

Elastic Beanstalk service role

A service role is the IAM role that Elastic Beanstalk assumes when calling other services on your
behalf. For example, Elastic Beanstalk uses a service role when it calls Amazon Elastic Compute
Cloud (Amazon EC2), Elastic Load Balancing, and Amazon EC2 Auto Scaling APIs to gather
information. The service role that Elastic Beanstalk uses is the one that you specified when you
create the Elastic Beanstalk environment.

There are two managed policies that are attached to the service role. These policies provide
the permissions that allow Elastic Beanstalk to access the required AWS resources to create and
manage your environments. One managed policy provides permissions for enhanced health

monitoring and worker tier Amazon SQS support, and another one provides additional permissions
required for managed platform updates.

Service role 32

https://docs.aws.amazon.com/IAM/latest/UserGuide/

AWS Elastic Beanstalk Developer Guide

AWSElasticBeanstalkEnhancedHealth

This policy grants all of the permissions that Elastic Beanstalk requires to monitor environment
health. It also includes Amazon SQS actions to allow Elastic Beanstalk to monitor queue activity for
worker environments.

"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"elasticloadbalancing:DescribeInstanceHealth",
"elasticloadbalancing:DescribeloadBalancers",
"elasticloadbalancing:DescribeTargetHealth",
"ec2:DescribeInstances",

"ec2:DescribelInstanceStatus",
"ec2:GetConsoleOutput",
"ec2:AssociateAddress",
"ec2:DescribeAddresses",
"ec2:DescribeSecurityGroups",
"sqs:GetQueueAttributes"”,

"sqgs:GetQueueUrl",
"autoscaling:DescribeAutoScalingGroups",
"autoscaling:DescribeAutoScalingInstances",
"autoscaling:DescribeScalingActivities",
"autoscaling:DescribeNotificationConfigurations",
"sns:Publish"

]I

"Resource": [

nmin

AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy

This policy grants permissions for Elastic Beanstalk to update environments on your behalf to
perform managed platform updates.

Service-level permission groupings

Service role 33

AWS Elastic Beanstalk Developer Guide

This policy is grouped into statements based on the set of permissions provided.

e ElasticBeanstalkPermissions — This group of permissions is for calling the Elastic
Beanstalk service actions (Elastic Beanstalk APIs).

e« AllowPassRoleToElasticBeanstalkAndDownstreamServices — This group of permissions
allows any role to be passed to Elastic Beanstalk and to other downstream services like AWS
CloudFormation.

* ReadOnlyPermissions — This group of permissions is for collecting information about the
running environment.

« *OperationPermissions — Groups with this naming pattern are for calling the necessary
operations to perform platform updates.

» *BroadOperationPermissions — Groups with this naming pattern are for calling the
necessary operations to perform platform updates. They also include broad permissions for
supporting legacy environments.

« *TagResource — Groups with this naming pattern are for calls that use the tag-on-create APIs
to attach tags on resources that are being created in an Elastic Beanstalk environment.

"Version": "2012-10-17",
"Statement": [

{
"Sid": "ElasticBeanstalkPermissions",
"Effect": "Allow",
"Action": [
"elasticbeanstalk:*"
1,
"Resource": "*"
.
{
"Sid": "AllowPassRoleToElasticBeanstalkAndDownstreamServices",
"Effect": "Allow",
"Action": "iam:PassRole",
"Resource": "arn:aws:iam::*:role/*",

"Condition": {
"StringEquals": {

"iam:PassedToService": [
"elasticbeanstalk.amazonaws.com",
"ec2.amazonaws.com",
"ec2.amazonaws.com.cn",

Service role 34

AWS Elastic Beanstalk

Developer Guide

"autoscaling.amazonaws.com",
"elasticloadbalancing.amazonaws.com",
"ecs.amazonaws.com",
"cloudformation.amazonaws.com"

"Sid": "ReadOnlyPermissions",

"Effect"
"Action"

: "Allow",
5 L

"autoscaling:DescribeAccountLimits",
"autoscaling:DescribeAutoScalingGroups",
"autoscaling:DescribeAutoScalingInstances",
"autoscaling:DescribelLaunchConfigurations",
"autoscaling:DescribelLoadBalancers",
"autoscaling:DescribeNotificationConfigurations",
"autoscaling:DescribeScalingActivities",
"autoscaling:DescribeScheduledActions",

"ec2:
ec2:
"ec2:
ec2:
"ec2:
ec2:

"ec2

ec2:

ec2:
"ec2:
ec2:
"ec2:
ec2:
"ec2:
ec2:

DescribeAccountAttributes",
DescribeAddresses"”,
DescribeAvailabilityZones",
DescribelImages",
DescribeInstanceAttribute",
DescribeInstances",
DescribeKeyPairs",
:DescribelaunchTemplates",
DescribelLaunchTemplateVersions",
DescribeSecurityGroups",
DescribeSnapshots",
DescribeSpotInstanceRequests"”,
DescribeSubnets",
DescribeVpcClassiclLink",
DescribeVpcs",

"elasticloadbalancing:DescribeInstanceHealth",
"elasticloadbalancing:DescribelLoadBalancers",
"elasticloadbalancing:DescribeTargetGroups",
"elasticloadbalancing:DescribeTargetHealth",
"logs:DescribelogGroups",

rds
"rds

rds
"sns

:DescribeDBEngineVersions",
:DescribeDBInstances",
:DescribeOrderableDBInstanceOptions",
:ListSubscriptionsByTopic"

Service role

35

AWS Elastic Beanstalk Developer Guide

]I

"Resource": [

"

]
},
{
"Sid": "EC2BroadOperationPermissions",
"Effect": "Allow",
"Action": [
"ec2:AllocateAddress",
"ec2:AssociateAddress",
"ec2:AuthorizeSecurityGroupEgress",
"ec2:AuthorizeSecurityGroupIngress",
"ec2:CreatelLaunchTemplate",
"ec2:CreateLaunchTemplateVersion",
"ec2:CreateSecurityGroup",
"ec2:DeleteLaunchTemplate",
"ec2:DeleteLaunchTemplateVersions",
"ec2:DeleteSecurityGroup",
"ec2:DisassociateAddress",
"ec2:ReleaseAddress",
"ec2:RevokeSecurityGroupEgress",
"ec2:RevokeSecurityGroupIngress"
1,
"Resource": "*"
I
{
"Sid": "EC2RunInstancesOperationPermissions",
"Effect": "Allow",
"Action": "ec2:RunInstances",
"Resource": "*",
"Condition": {
"ArnLike": {
"ec2:LaunchTemplate": "arn:aws:ec2:*:*:launch-template/*"
}
}
},
{
"Sid": "EC2TerminatelInstancesOperationPermissions",

"Effect": "Allow",
"Action": [
"ec2:TerminateInstances"

]I

"Resource": "arn:aws:ec2:*:*:instance/*",

Service role 36

AWS Elastic Beanstalk

Developer Guide

"Condition": {
"StringlLike": {
"ec2:ResourceTag/aws:cloudformation:stack-id": [
"arn:aws:cloudformation:*:*:stack/awseb-e-*",
"arn:aws:cloudformation:*:*:stack/eb-*"

"Sid": "ECSBroadOperationPermissions",
"Effect": "Allow",
"Action": [

"ecs:CreateCluster",

ecs:DescribeClusters",
"ecs:RegisterTaskDefinition"

iF

"Resource": "*"

"Sid": "ECSDeleteClusterOperationPermissions",
"Effect": "Allow",

"Action": "ecs:DeleteCluster",

"Resource": "arn:aws:ecs:*:*:cluster/awseb-*"
"Sid": "ASGOperationPermissions",

"Effect": "Allow",

"Action": [
"autoscaling:AttachInstances",
"autoscaling:CreateAutoScalingGroup",
"autoscaling:CreateLaunchConfiguration",
"autoscaling:CreateOrUpdateTags",
"autoscaling:DeleteLaunchConfiguration",
"autoscaling:DeleteAutoScalingGroup",
"autoscaling:DeleteScheduledAction",
"autoscaling:DetachInstances",
"autoscaling:DeletePolicy",
"autoscaling:PutScalingPolicy",
"autoscaling:PutScheduledUpdateGroupAction",
"autoscaling:PutNotificationConfiguration",
"autoscaling:ResumeProcesses",
"autoscaling:SetDesiredCapacity",
"autoscaling:SuspendProcesses",

Service role

37

AWS Elastic Beanstalk

Developer Guide

"autoscaling:TerminateInstanceInAutoScalingGroup",
"autoscaling:UpdateAutoScalingGroup"

1,
"Resource": [
"arn:aws:autoscaling:
awseb-e-*",
"arn:aws:autoscaling:
eb-*",
"arn:aws:autoscaling:
e-*",

"arn:aws:autoscaling:

"Sid":
"Effect": "Allow",
"Action": [

"cloudformation:*"
1,

"Resource":

L

:launchConfiguration:*:launchConfigurationName/
:launchConfiguration:*:launchConfigurationName/
:autoScalingGroup: *:autoScalingGroupName/awseb-

:autoScalingGroup: *:autoScalingGroupName/eb-*"

"CFNOperationPermissions",

"arn:aws:cloudformation:*:*:stack/awseb-*",
"arn:aws:cloudformation:*:*:stack/eb-*"

"Sid":
"Effect":
"Action":

"Allow",

[
"elasticloadbalancing:
"elasticloadbalancing:
"elasticloadbalancing:
"elasticloadbalancing:
"elasticloadbalancing:
"elasticloadbalancing:
"elasticloadbalancing:
"elasticloadbalancing:
"elasticloadbalancing:

1,

"Resource":

L

"arn:

aws
arn:aws:

"arn:

aws @
arn:aws:

"arn:aws:

:elasticloadbalancing:
elasticloadbalancing:
elasticloadbalancing:
elasticloadbalancing:
elasticloadbalancing:

"ELBOperationPermissions",

AddTags",
ApplySecurityGroupsToLoadBalancer",
ConfigureHealthCheck",
CreatelLoadBalancer",
DeletelLoadBalancer",
DeregisterInstancesFromLoadBalancer",
DeregisterTargets",
RegisterInstancesWithLoadBalancer",
RegisterTargets"

:targetgroup/awseb-*",
:targetgroup/eb-*",
:loadbalancer/awseb-*",
:loadbalancer/eb-*",
:loadbalancer/*/awseb-*/*",

Service role

38

AWS Elastic Beanstalk

Developer Guide

"arn:aws:elasticloadbalancing:*:*:loadbalancer/*/eb-*/*"

"Sid": "CWLogsOperationPermissions",

"Effect": "Allow",

"Action": [
"logs:CreatelLogGroup",
"logs:DeletelLogGroup",
"logs:PutRetentionPolicy"

1,
"Resource": "arn:aws:logs:*:*:log-group:/aws/elasticbeanstalk/*"
"Sid": "S30bjectOperationPermissions",

"Effect": "Allow",

"Action": [
"s3:DeleteObject",
"s3:GetObject",
"s3:GetObjectAcl",
"s3:GetObjectVersion",
"s3:GetObjectVersionAcl",
"s3:PutObject",
"s3:PutObjectAcl",
"s3:PutObjectVersionAcl"

1,
"Resource": "arn:aws:s3:::elasticbeanstalk-*/*"
"Sid": "S3BucketOperationPermissions",
"Effect": "Allow",
"Action": [
"s3:GetBucketLocation",
"s3:GetBucketPolicy",
"s3:ListBucket",
"s3:PutBucketPolicy"
1,
"Resource": "arn:aws:s3:::elasticbeanstalk-*"
"Sid": "SNSOperationPermissions",

"Effect": "Allow",
"Action": [
"sns:CreateTopic",

Service role

39

AWS Elastic Beanstalk

Developer Guide

"sns:GetTopicAttributes",
"sns:SetTopicAttributes"”,
"sns:Subscribe"

1,

"Resource": "arn:aws:sns:*:*:ElasticBeanstalkNotifications-*"

"Sid": "SQSOperationPermissions",

"Effect": "Allow",

"Action": [
"sqgs:GetQueueAttributes",
"sqs:GetQueueUrl"

1,

"Resource": [
"arn:aws:sqs:*:*:awseb-e-*",
"arn:aws:sqs:*:*:eb-*"

"Sid": "CWPutMetricAlarmOperationPermissions",

"Effect": "Allow",

"Action": [
"cloudwatch:PutMetricAlarm"

1,

"Resource": [
"arn:aws:cloudwatch:*:*:alarm:awseb-*",
"arn:aws:cloudwatch:*:*:alarm:eb-*"

"Sid": "AllowECSTagResource",
"Effect": "Allow",
"Action": [
"ecs:TagResource"
1,
"Resource": "*",
"Condition": {
"StringEquals": {
"ecs:CreateAction": [
"CreateCluster",
"RegisterTaskDefinition"

Service role

40

AWS Elastic Beanstalk Developer Guide

}

You may create an Elastic Beanstalk environment with any of the following approaches. Each
section describes how the approach handles the service role.

Elastic Beanstalk console

If you create an environment using the Elastic Beanstalk console, Elastic Beanstalk prompts you
to create a service role that's named aws-elasticbeanstalk-service-role. When created
via Elastic Beanstalk, this role includes a trust policy that allows Elastic Beanstalk to assume the
service role. The two managed policies described earlier in this topic are also attached to the role.

Elastic Beanstalk Command Line Interface (EB CLI)

You may create an environment using the the section called “eb create” command of the

Elastic Beanstalk Command Line Interface (EB CLI). If you don't specify a service role through

the --service-role option. Elastic Beanstalk creates the same default service role aws-
elasticbeanstalk-service-role. If the default service role already exists, Elastic Beanstalk
uses it for the new environment. When created via Elastic Beanstalk, this role includes a trust policy
that allows Elastic Beanstalk to assume the service role. The two managed policies described earlier
in this topic are also attached to the role.

Elastic Beanstalk API

You may create an environment using the CreateEnvironment action of the Elastic Beanstalk
API. If you don't specify a service role, Elastic Beanstalk creates a monitoring service-linked role.
This is a unique type of service role that is predefined by Elastic Beanstalk to include all the
permissions that the service requires to call other AWS services on your behalf. The service-linked
role is associated with your account. Elastic Beanstalk creates it once, and then reuses it when
creating additional environments. You can also use IAM to create the monitoring service-linked role
for your account in advance. When your account has a monitoring service-linked role, you can use
it to create an environment using either the Elastic Beanstalk console, the Elastic Beanstalk API, or
the EB CLI. For instructions on how to use service-linked roles with Elastic Beanstalk environments,
see Using service-linked roles for Elastic Beanstalk.

For more information about service roles, see Managing Elastic Beanstalk service roles.

Service role 41

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk instance profile

An instance profile is an IAM role that's applied to Amazon EC2 instances that are launched in your
Elastic Beanstalk environment. When creating an Elastic Beanstalk environment, you specify the
instance profile that's used when your EC2 instances take the following actions:

» Retrieve application versions from Amazon Simple Storage Service (Amazon S3)

» Write logs to Amazon S3
« In AWS X-Ray integrated environments, upload debugging data to X-Ray

« In Amazon ECS managed Docker environments, coordinate container deployments with Amazon
Elastic Container Service (Amazon ECS)

 In worker environments, read from an Amazon Simple Queue Service (Amazon SQS) queue
 In worker environments, perform leader election with Amazon DynamoDB

« In worker environments, publish instance health metrics to Amazon CloudWatch

Elastic Beanstalk provides a set of managed policies that allow the EC2 instances in your
environment to perform required operations. The managed policies required for basic use cases are
the following.

e AWSElasticBeanstalkWebTier
e AWSElasticBeanstalkWorkerTier

e AWSElasticBeanstalkMulticontainerDocker

You attach these policies to the instance profile that you create when you launch an environment
in the Elastic Beanstalk console for the first time.

If your web application requires access to other additional AWS services, add statements or
managed policies to the instance profile that allow access to those services.

For more information about instance profiles, see Managing Elastic Beanstalk instance profiles.

Elastic Beanstalk user policy

Create IAM users for each user who uses Elastic Beanstalk to avoid using your root account or
sharing credentials. As a security best practice, only grant these users permissions to access services
and features that they need.

Instance profile 42

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk requires permissions not only for its own API actions, but also for several other
AWS services. Elastic Beanstalk uses user permissions to launch resources in an environment. These
resources include EC2 instances, an Elastic Load Balancing load balancer, and an Auto Scaling
group. Elastic Beanstalk also uses user permissions to save logs and templates to Amazon Simple
Storage Service (Amazon S3), send notifications to Amazon SNS, assign instance profiles, and
publish metrics to CloudWatch. Elastic Beanstalk requires AWS CloudFormation permissions to
orchestrate resource deployments and updates. It also requires Amazon RDS permissions to create
databases when needed, and Amazon SQS permissions to create queues for worker environments.

For more information about user policies, see Managing Elastic Beanstalk user policies.

User policy 43

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk platforms

AWS Elastic Beanstalk provides a variety of platforms on which you can build your applications.
You design your web application to one of these platforms, and Elastic Beanstalk deploys your
code to the platform version you selected to create an active application environment.

Elastic Beanstalk provides platforms for different programming languages, application servers, and
Docker containers. Some platforms have multiple concurrently-supported versions.

Topics

 Elastic Beanstalk platforms glossary

» Shared responsibility model for Elastic Beanstalk platform maintenance

« Elastic Beanstalk platform support policy

 Elastic Beanstalk supported platforms

« Elastic Beanstalk Linux platforms

» Deploying Elastic Beanstalk applications from Docker containers

» Creating and deploying Go applications on Elastic Beanstalk

« Creating and deploying Java applications on Elastic Beanstalk

« Working with .NET Core on Linux

» Creating and deploying .NET applications on Elastic Beanstalk

» Deploying Node.js applications to Elastic Beanstalk

» Creating and deploying PHP applications on Elastic Beanstalk

» Working with Python

» Creating and deploying Ruby applications on Elastic Beanstalk

Elastic Beanstalk platforms glossary

Following are key terms related to AWS Elastic Beanstalk platforms and their lifecycle.

Runtime

The programming language-specific runtime software (framework, libraries, interpreter, vm,
etc.) required to run your application code.

Platforms glossary 44

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk Components

Software components that Elastic Beanstalk adds to a platform to enable Elastic Beanstalk
functionality. For example, the enhanced health agent is necessary for gathering and reporting
health information.

Platform

A combination of an operating system (OS), runtime, web server, application server, and
Elastic Beanstalk components. Platforms provide components that are available to run your
application.

Platform Version

A combination of specific versions of an operating system (OS), runtime, web server, application
server, and Elastic Beanstalk components. You create an Elastic Beanstalk environment based
on a platform version and deploy your application to it.

A platform version has a semantic version number of the form X.Y.Z, where X is the major
version, Y is the minor version, and Z is the patch version.

A platform version can be in one of the following states:

» Supported — A platform version that consists entirely of supported components. All
components have not reached their End of Life (EOL), as designated by their respective
suppliers (owners—AWS or third parties—or communities). They receive regular patch or
minor updates from their suppliers . Elastic Beanstalk makes supported platform versions
available to you for environment creation.

 Retired — A platform version with one or more retired components, which have reached their
End of Life (EOL), as designated by their suppliers. Retired platform versions aren't available
for use in Elastic Beanstalk environments for either new or existing customers.

For details about retired components, see the section called “Platform support policy”.

Platform Branch

A line of platform versions sharing specific (typically major) versions of some of their
components, such as the operating system (OS), runtime, or Elastic Beanstalk components. For
example: Python 3.6 running on 64bit Amazon Linux; IS 10.0 running on 64bit Windows Server
2016. Each successive platform version in the branch is an update to the previous one.

The latest platform version in each platform branch is available to you unconditionally for
environment creation. Previous platform versions in the branch are still supported—you can

Platforms glossary 45

AWS Elastic Beanstalk Developer Guide

create an environment based on a previous platform version if you've used it in an environment
in the last 30 days. But these previous platform versions lack the most up-to-date components
and aren't recommended for use.

A platform branch can be in one of the following states:

o Supported — A current platform branch. It consists entirely of supported components. It
receives ongoing platform updates, and is recommended for use in production environments.
For a list of supported platform branches, see Elastic Beanstalk supported platforms in the
AWS Elastic Beanstalk Platforms guide.

o Beta - A preview, pre-release platform branch. It's experimental in nature. It may receive
ongoing platform updates for a while, but has no long-term support. A beta platform branch
isn't recommended for use in production environments. Use it only for evaluation. For a list
of beta platform branches, see Elastic Beanstalk Platform Versions in Public Beta in the AWS
Elastic Beanstalk Platforms guide.

o Deprecated — A platform branch with one or more deprecated components. It receives ongoing
platform updates, but isn't recommended for use in production environments. For a list
of deprecated platform branches, see Elastic Beanstalk Platform Versions Scheduled for
Retirement in the AWS Elastic Beanstalk Platforms guide.

o Retired - A platform branch with one or more retired components. It doesn't receive platform
updates anymore, and isn't recommended for use in production environments. Retired
platform branches aren't listed in the AWS Elastic Beanstalk Platforms guide. Elastic Beanstalk
doesn't make platform versions of retired platform branches available to you for environment
creation.

A supported component has no retirement date scheduled by its supplier (owner or community).
The supplier might be AWS or a third party. A deprecated component has a retirement date
scheduled by its supplier. A retired component has reached End of Life (EOL) and is no longer
supported by its supplier. For details about retired components, see the section called “Platform

support policy”.

If your environment uses a deprecated or retired platform branch, we recommend that you
update it to a platform version in a supported platform branch. For details, see the section
called "Platform updates”.

Platforms glossary 46

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-beta.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-retiring.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-retiring.html

AWS Elastic Beanstalk Developer Guide

Platform Update

A release of new platform versions that contain updates to some components of the platform
—OS, runtime, web server, application server, and Elastic Beanstalk components. Platform
updates follow semantic version taxonomy, and can have several levels:

» Major update — An update that has changes that are incompatible with existing platform
versions. You might need to modify your application to run correctly on a new major version.
A major update has a new major platform version number.

» Minor update — An update that adds functionality that is backward compatible with an
existing platform version. You don't need to modify your application to run correctly on a
new minor version. A minor update has a new minor platform version number.

o Patch update — An update that consists of maintenance releases (bug fixes, security updates,
and performance improvements) that are backward compatible with an existing platform
version. A patch update has a new patch platform version number.

Managed Updates

An Elastic Beanstalk feature that automatically applies patch and minor updates to the
operating system (OS), runtime, web server, application server, and Elastic Beanstalk
components for an Elastic Beanstalk supported platform version. A managed update applies a
newer platform version in the same platform branch to your environment. You can configure
managed updates to apply only patch updates, or minor and patch updates. You can also
disable managed updates completely.

For more information, see Managed platform updates.

Shared responsibility model for Elastic Beanstalk platform
maintenance

AWS and our customers share responsibility for achieving a high level of software component
security and compliance. This shared model reduces your operational burden.

For details, see the AWS Shared Responsibility Model.

AWS Elastic Beanstalk helps you perform your side of the shared responsibility model by providing
a managed updates feature. This feature automatically applies patch and minor updates for an
Elastic Beanstalk supported platform version. If a managed update fails, Elastic Beanstalk notifies
you of the failure to ensure that you are aware of it and can take immediate action.

Shared responsibility model 47

https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Elastic Beanstalk Developer Guide

For more information, see Managed platform updates.

In addition, Elastic Beanstalk does the following:

» Publishes its platform support policy and retirement schedule for the coming 12 months.

» Releases patch, minor, and major updates of operating system (OS), runtime, application server,
and web server components typically within 30 days of their availability. Elastic Beanstalk
is responsible for creating updates to Elastic Beanstalk components that are present on its
supported platform versions. All other updates come directly from their suppliers (owners or
community).

We announce all updates to our supported platforms in our release notes in the AWS Elastic
Beanstalk Release Notes guide. We also provide a list of all supported platforms and their
components, along with a platform history, in the AWS Elastic Beanstalk Platforms guide. For more
information see Supported platform versions.

You are responsible to do the following:

« Update all the components that you control (identified as Customer in the AWS Shared
Responsibility Model). This includes ensuring the security of your application, your data, and any

components that your application requires and that you downloaded.

» Ensure that your Elastic Beanstalk environments are running on a supported platform version,
and migrate any environment running on a retired platform version to a supported version.

» Resolve all issues that come up in failed managed update attempts and retry the update.

» Patch the OS, runtime, application server, and web server yourself if you opted out of Elastic
Beanstalk managed updates. You can do this by applying platform updates manually or directly

patching the components on all relevant environment resources.

« Manage the security and compliance of any AWS services that you use outside of Elastic
Beanstalk according to the AWS Shared Responsibility Model.

Elastic Beanstalk platform support policy

AWS Elastic Beanstalk provides a variety of platforms for running applications on AWS. Elastic
Beanstalk supports platform branches that still receive ongoing minor and patch updates from
their suppliers (owners or community). For a complete definition of related terms, see Elastic
Beanstalk platforms glossary.

Platform support policy 48

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/relnotes.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Elastic Beanstalk Developer Guide

Retired platform branches

When a component (operating system [OS], runtime, application server, or web server) of a
supported platform branch is marked End of Life (EOL) by its supplier, Elastic Beanstalk marks
the platform branch as retired. When a platform branch is marked as retired, Elastic Beanstalk
no longer makes it available to new Elastic Beanstalk customers for deployments to new
environments. There is a 90 day grace period from the published retirement date for existing
customers with active environments that are running on retired platform branches.

® Note

The retired platform branch will not be available in the Create environment wizard.
However, it will be available through the AWS CLI, EB CLI and EB API for customers that
have existing environments based on the retired platform branch. Also, existing customers
can use the Clone environment and Rebuild environment consoles.

Beyond the 90 day grace period

Existing customers running an Elastic Beanstalk environment on a retired platform branch beyond
90 days from the published retirement date should be aware of the risks of doing so. We would
never remove access or delete the environment's resources. However, such environments can end
up in an unpredictable situation, because Elastic Beanstalk isn't able to provide security updates,
technical support, or hotfixes for retired platform branches due to the supplier marking their
component EOL.

For example, a detrimental and critical security vulnerability may surface in an environment
running on a retired platform branch. Or an EB API action may stop working for the environment
if it becomes incompatible with the Elastic Beanstalk service over time. The opportunity for these
types of risks increases the longer an environment on a retired platform branch remains active. To
continue to benefit from important security, performance, and functionality enhancements offered
by component suppliers in more recent releases, we strongly encourage you to update all your
Elastic Beanstalk environments to a supported platform version.

If a circumstance like the ones just described should arise for an application that you must keep
running and that you're not able to update to a supported Elastic Beanstalk platform, you'll need
to consider and employ other alternatives. Workarounds include encapsulating the application
into a Docker image to run it as a Docker container. This would allow a customer to use any of our

Retired platform branches 49

AWS Elastic Beanstalk Developer Guide

Docker solutions, such as our Elastic Beanstalk AL2023/AL2 Docker platforms, or other Docker
based services such as Amazon ECS, Amazon EKS, or AWS App Runner. Non-Docker alternatives
include our AWS CodeDeploy service, which allows complete customization of the runtimes you
desire.

Retiring platform branch schedule

The following tables list existing platform components that are either marked as retired or have
retirement dates scheduled. The tables provide the availability end date for Elastic Beanstalk
platform branches that contain these components.

For a list of related Elastic Beanstalk retiring platform branches, see platform versions scheduled

for retirement in the AWS Elastic Beanstalk Platforms guide.

Amazon Linux platforms

Amazon Linux 2 (AL2) - Runtime versions and platform branches

Runtime version Platform retirement date
or platform
branch

Python 3.7 AL2 September 30, 2024
Node.js 14 AL2 September 30, 2024
Node.js 16 AL2 September 30, 2024
Ruby 2.7 AL2 September 30, 2024
Ruby 3.0 AL2 September 30, 2024

Corretto 8 with September 30, 2024
Tomcat 8.5 AL2

Corretto 11 with September 30, 2024
Tomcat 8.5 AL2

PHP 8.0 AL2 September 30, 2024

Retiring platform branch schedule

50

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-retiring.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-retiring.html

AWS Elastic Beanstalk Developer Guide

Retired platform branch history

The following tables list platform components that were marked as retired in the past. The tables
provide the date on which Elastic Beanstalk retired platform branches that contained these
components.

® Note

For more information about the retirement of the Windows 2072 R2 platform branches, see
Windows Server 2012 R2 platform branches retired in the AWS Elastic Beanstalk Release
Notes.

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired. For more information, see Platform retirement FAQ.

Operating System (OS) versions

OS version Platform retirement date

Windows Server December 4, 2023
2012 R2 running
lIS 8.5

Windows Server December 4, 2023
Core 2012 R2
running IS 8.5

Amazon Linux July 18, 2022
AMI (AL1)

Windows Server June 22, 2022
2012 R1

Windows Server October 28, 2019
2008 R2

Retired platform branch history

51

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2023-12-04-windows-2012-retire.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk

Developer Guide

Application server versions

Application
server version

Tomcat 7

Tomcat 6

Tomcat 8

Web server versions

Web server
version

[IS 8 running on
64bit Windows
Server

Apache HTTP
Server 2.2

Nginx 1.12.2

Amazon Linux 2 (AL2) - Runtime versions and platform branches

Runtime version
or platform
branch

Corretto 11 with
Tomcat 7 AL2

Availability end date
June 29, 2022 for Amazon Linux 2

(AL2) platforms

July 18, 2022 for Amazon Linux AMI
(AL1) platforms

October 31, 2020

October 31, 2020

Availability end date

June 22, 2022

October 31, 2020

October 31, 2020

Platform retirement date

June 29, 2022

Retired platform branch history

52

AWS Elastic Beanstalk

Developer Guide

Runtime version
or platform
branch

Corretto 8 with
Tomcat 7 AL2

Node.js 12 AL2
Node.js 10 AL2
PHP 7.4 AL2
PHP 7.3 AL2
PHP 7.2 AL2
Ruby 2.6 AL2

Ruby 2.5 AL2

Amazon Linux AMI (AL1) - Runtime versions and platform branches

Runtime version

or platform
branch

Single Container
Docker

Multicontainer
Docker

Preconfig
ured Docker -
GlassFish 5.0
with Java 8

Go 1

Platform retirement date

June 29, 2022

December 23, 2022
June 29, 2022

June 9, 2023

June 29, 2022

June 29, 2022
December 23, 2022

June 29, 2022

Availability end date

July 18, 2022

July 18, 2022

July 18, 2022

July 18, 2022

Retired platform branch history

53

AWS Elastic Beanstalk

Developer Guide

Runtime version

or platform
branch

Java 8
Java 7

Java 8 with
Tomcat 8.5

Java 7 with
Tomcat 7

Node.js
PHP7.2-7.3
Python 3.6

Ruby 2,4,
2.5, 2.6 with
Passenger

Ruby 2.4, 2.5,
2.6 with Puma

Go 1.3-1.10
Java 6

Node.js 4.x-8.x
PHP 5.4-5.6
PHP 7.0-7.1

Python 2.6, 2.7,
34

Ruby 1.9.3

Availability end date

July 18, 2022
July 18, 2022

July 18, 2022

July 18, 2022

July 18, 2022
July 18, 2022
July 18, 2022

July 18, 2022

July 18, 2022

October 31, 2020
October 31, 2020
October 31, 2020
October 31, 2020
October 31, 2020

October 31, 2020

October 31, 2020

Retired platform branch history

54

AWS Elastic Beanstalk Developer Guide

Runtime version Availability end date
or platform
branch

Ruby 2.0-2.3 October 31, 2020

Windows Server - Platform branches and Platform versions

Platform Retirement date
branch or

platform

version

[IS 8.5 running June 29, 2022
on 64bit

Windows Server

(& Core) 2012

R2 version 0.1.0

[IS 8.5 running June 29, 2022
on 64bit

Windows Server

(& Core) 2012

R2 version 1.2.0

[IS 10.0 running June 29, 2022
on 64bit

Windows Server

2016 (& Core)

version 1.2.0

[IS 8 running on June 22, 2022
64bit Windows

Server 2012 R1

Platform Branch

[IS 8 running on June 22, 2022
64bit Windows

Retired platform branch history 55

AWS Elastic Beanstalk Developer Guide

Platform Retirement date
branch or

platform

version

Server 2012 R1
version 0.1.0

[IS 8 running on June 22, 2022
64bit Windows

Server 2012 R1

version 1.2.0

Elastic Beanstalk supported platforms

AWS Elastic Beanstalk provides a variety of platforms on which you can build your applications.
You design your web application to one of these platforms, and Elastic Beanstalk deploys your
code to the platform version you selected to create an active application environment.

Elastic Beanstalk provides platforms for programming languages (Go, Java, Node.js, PHP, Python,
Ruby), application servers (Tomcat, Passenger, Puma), and Docker containers. Some platforms have
multiple concurrently-supported versions.

Elastic Beanstalk provisions the resources needed to run your application, including one or more
Amazon EC2 instances. The software stack running on the Amazon EC2 instances depends on the
specific platform version you've selected for your environment.

You can use the solution stack name listed under the platform version name to launch an
environment with the EB CLI, Elastic Beanstalk API, or AWS CLI. You can also retrieve solution
stack names from the service with the ListAvailableSolutionStacks APl (aws elasticbeanstalk
list-available-solution-stacks in the AWS CLI). This operation returns all of the solution
stacks that you can use to create an environment.

(® Note

Each platform has supported and retired platform versions. You can always create an
environment based on a supported platform version. Retired platform versions are
available only to existing customer environments for a period of 90 days from the

Supported platforms 56

https://docs.aws.amazon.com/elasticbeanstalk/latest/api/
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_ListAvailableSolutionStacks.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/list-available-solution-stacks.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/list-available-solution-stacks.html

AWS Elastic Beanstalk Developer Guide

published retirement date. For a list of published platform version retirement dates, see
Retiring platform branch schedule.

When Elastic Beanstalk updates a platform, previous platform versions are still supported,
but they lack the most up-to-date components and aren't recommended for use. We
recommend that you transition to the latest platform version. You can still create an
environment based on a previous platform version if you've used it in an environment in
the last 30 days (using the same account, in the same region).

You can customize and configure the software that your application depends on in your platform.
Learn more at Customizing software on Linux servers and Customizing software on Windows

servers. Detailed release notes are available for recent releases at AWS Elastic Beanstalk Release

Notes.

Supported platform versions

All current platform versions are listed in Elastic Beanstalk Supported Platforms in the AWS Elastic

Beanstalk Platforms guide. Each platform-specific section also points to the platform history, a list
of previous platform versions. For direct access to the version list of a specific platform, use one of
the following links.

» Docker

- Go

e Java SE

e Tomcat

e .NET Core on Linux

« .NET on Windows Server

+ PHP
+ Python
+ Ruby

Supported platform versions 57

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.docker
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.go
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.javase
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.java
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.dotnetlinux
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.nodejs
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.PHP
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.python
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.ruby

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk Linux platforms

Most of the platforms that Elastic Beanstalk supports are based on the Linux operating system.
Specifically, these platforms are based on Amazon Linux, a Linux distribution provided by AWS.
Elastic Beanstalk Linux platforms use Amazon Elastic Compute Cloud (Amazon EC2) instances, and
these instances run Amazon Linux.

The Elastic Beanstalk Linux platforms provide a lot of functionality out of the box. You can extend
the platforms in several ways to support your application. For details, see the section called

"Extending Linux platforms”.

Topics

o Supported Amazon Linux versions

o List of Elastic Beanstalk Linux platforms

» Extending Elastic Beanstalk Linux platforms

Supported Amazon Linux versions

AWS Elastic Beanstalk supports platforms based on Amazon Linux 2 and Amazon Linux 2023.

As of October 19, 2023, Elastic Beanstalk offers AL2023 platforms for all of the programming
languages that are also supported on the Amazon Linux 2 platforms. Beanstalk also supports the

Docker and ECS-based Docker platforms on both Amazon Linux 2 and Amazon Linux 2023.
For more information about Amazon Linux 2 and Amazon Linux 2023, see the following:

« Amazon Linux 2 - Amazon Linux in the Amazon EC2 User Guide for Linux Instances.

« Amazon Linux 2023 - What is Amazon Linux 20237 in the Amazon Linux 2023 User Guide

For details about supported platform versions, see Elastic Beanstalk supported platforms.

(® Note

You can migrate your application from an Elastic Beanstalk AL1 or AL2 platform branch to
the equivalent AL2023 platform branch. For more information, see Migrating your Elastic

Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Linux platforms 58

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2023-10-19-al2023.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/amazon-linux-ami-basics.html
https://docs.aws.amazon.com/linux/al2023/ug/what-is-amazon-linux.html

AWS Elastic Beanstalk Developer Guide

Amazon Linux 2023

AWS announced the general availability of Amazon Linux 2023 in March of 2023. The Amazon

Linux 2023 User Guide summarizes key differences between Amazon Linux 2 and Amazon Linux
2023. For more information, see Comparing Amazon Linux 2 and Amazon Linux 2023 in the user
guide.

There is a high degree of compatibility between Elastic Beanstalk Amazon Linux 2 and Amazon
Linux 2023 platforms. Although there are some differences to note:

« Instance Metadata Service Version 1 (IMDSv1) — The DisableIMDSv1 option setting defaults to
true on AL2023 platforms. The default is false on AL2 platforms.

» pkg-repo instance tool — The pkg-repo tool is not available for environments running on AL2023
platforms. However,you can manually apply package and operating system updates to an
AL2023 instance. For more information, see Managing packages and operating system updates
in the Amazon Linux 2023 User Guide.

« Apache HTTPd configuration — The Apache httpd. conf file for AL2023 platforms has some
configuration settings that are different from those for AL2:

» Deny access to the server’s entire file system by default. These settings are described in Protect
Server Files by Default on the Apache website Security Tips page.

» Stop users from overriding security features you've configured. The configuration denies access
to set up of .htaccess in all directories, except for those specifically enabled. This setting is
described in Protecting System Settings on the Apache website Security Tips page. The Apache
HTTP Server Tutorial: .htaccess files page states this setting may help improve performance.

« Deny access to files with name pattern . ht*. This setting prevents web clients from viewing
.htaccess and .htpasswd files.

You can change any of the above configuration settings for your environment. For more
information, see Extending Elastic Beanstalk Linux platforms. Expand the Reverse Proxy topic to see
the Configuring Apache HTTPD section.

List of Elastic Beanstalk Linux platforms

The following list provides the Linux platforms that Elastic Beanstalk supports for different
programming languages as well as for Docker containers. Elastic Beanstalk offers platforms based
on Amazon Linux 2 and Amazon Linux 2023 for all of them. To learn more about a platform, select
the corresponding link.

List of Elastic Beanstalk Linux platforms 59

https://aws.amazon.com/blogs/aws/amazon-linux-2023-a-cloud-optimized-linux-distribution-with-long-term-support/
https://docs.aws.amazon.com/linux/al2023/ug/compare-with-al2.html
https://docs.aws.amazon.com/linux/al2023/ug/managing-repos-os-updates.html
https://httpd.apache.org/docs/2.4/misc/security_tips.html
https://httpd.apache.org/docs/2.4/misc/security_tips.html
https://httpd.apache.org/docs/2.4/howto/htaccess.html
https://httpd.apache.org/docs/2.4/howto/htaccess.html

AWS Elastic Beanstalk Developer Guide

o Docker (and ECS Docker)

+ Go
« Tomcat (running Java SE)

e Java SE

« .NET Core on Linux
+ PHP

+ Python

- Ruby

Extending Elastic Beanstalk Linux platforms

The AWS Elastic Beanstalk Linux platforms provide a lot of functionality out of the box to support

developing and running your application. When necessary, you can extend the platforms in several
ways to configure options, install software, add files and start-up commands, provide build and
runtime instructions, and add initialization scripts that run in various provisioning stages of your
environment's Amazon Elastic Compute Cloud (Amazon EC2) instances.

Buildfile and Procfile

Some platforms allow you to customize how you build or prepare your application, and to specify
the processes that run your application. Each individual platform topic specifically mentions
Buildfile and/or Procfile if the platform supports them. Look for your specific platform under
Platforms.

For all supporting platforms, syntax and semantics are identical, and are as described on this
page. Individual platform topics mention specific usage of these files for building and running
applications in their respective languages.

Buildfile

To specify a custom build and configuration command for your application, place a file named
Buildfile in the root directory of your application source. The file name is case sensitive. Use the
following syntax for your Buildfile.

<process_name>: <command>

Extending Linux platforms 60

AWS Elastic Beanstalk Developer Guide

The command in your Buildfile must match the following regular expression: A[A-Za-

z0-9_-]+:\s*[*\s].*$

Elastic Beanstalk doesn't monitor the application that is run with a Buildfile. Use a Buildfile
for commands that run for short periods and terminate after completing their tasks. For long-
running application processes that should not exit, use a Procfile.

All paths in the Buildfile are relative to the root of the source bundle. In the following example
of aBuildfile, build.sh is a shell script located at the root of the source bundle.

Example Buildfile

make: ./build.sh

If you want to provide custom build steps, we recommend that you use predeploy platform
hooks for anything but the simplest commands, instead of a Buildfile. Platform hooks allow
richer scripts and better error handling. Platform hooks are described in the next section.

Procfile

To specify custom commands to start and run your application, place a file named Procfile in
the root directory of your application source. The file name is case sensitive. Use the following
syntax for your Procfile. You can specify one or more commands.

<process_namel>: <commandl>
<process_name2>: <command2>

Each line in your Procfile must match the following regular expression: A[A-Za-z0-9_-]+:

\s*["\s].*$

Use a Procfile for long-running application processes that shouldn't exit. Elastic Beanstalk
expects processes run from the Procfile to run continuously. Elastic Beanstalk monitors these
processes and restarts any process that terminates. For short-running processes, use a Buildfile.

All paths in the Procfile are relative to the root of the source bundle. The following example
Procfile defines three processes. The first one, called web in the example, is the main web
application.

Extending Linux platforms 61

AWS Elastic Beanstalk Developer Guide

Example Procfile

web: bin/myserver
cache: bin/mycache
foo: bin/fooapp

Elastic Beanstalk configures the proxy server to forward requests to your main web application on
port 5000, and you can configure this port number. A common use for a Procfile is to pass this
port number to your application as a command argument. For details about proxy configuration,
expand the Reverse proxy configuration section on this page.

Elastic Beanstalk captures standard output and error streams from Procfile processes in log
files. Elastic Beanstalk names the log files after the process and stores them in /var/log. For
example, the web process in the preceding example generates logs named web-1.10g and
web-1.error.log for stdout and stderr, respectively.

Platform hooks

Platform hooks are specifically designed to extend your environment's platform. These are custom
scripts and other executable files that you deploy as part of your application's source code, and
Elastic Beanstalk runs during various instance provisioning stages.

(® Note

Platform hooks aren't supported on Amazon Linux AMI platform versions (preceding
Amazon Linux 2).

Application deployment platform hooks

An application deployment occurs when you provide a new source bundle for deployment, or when
you make a configuration change that requires termination and recreation of all environment
instances.

To provide platform hooks that run during an application deployment, place the files under the
.platform/hooks directory in your source bundle, in one of the following subdirectories.

« prebuild - Files here run after the Elastic Beanstalk platform engine downloads and extracts
the application source bundle, and before it sets up and configures the application and web
server.

Extending Linux platforms 62

AWS Elastic Beanstalk Developer Guide

The prebuild files run after running commands found in the commands section of any
configuration file and before running Buildfile commands.

« predeploy - Files here run after the Elastic Beanstalk platform engine sets up and configures
the application and web server, and before it deploys them to their final runtime location.

The predeploy files run after running commands found in the container_commands section of

any configuration file and before running Procfile commands.

« postdeploy - Files here run after the Elastic Beanstalk platform engine deploys the application
and proxy server.

This is the last deployment workflow step.

Configuration deployment platform hooks

A configuration deployment occurs when you make configuration changes that only update
environment instances without recreating them. The following option updates cause a
configuration update.

Environment properties and platform-specific settings

Static files

AWS X-Ray daemon

Log storage and streaming

Application port (for details, expand the Reverse proxy configuration section on this page)

To provide hooks that run during a configuration deployment, place them under the .platform/
confighooks directory in your source bundle. The same three subdirectories as for application
deployment hooks apply.

More about platform hooks

Hook files can be binary files, or script files starting with a #! line containing their interpreter
path, such as #! /bin/bash. All files must have execute permission. Use chmod +x to set execute
permission on your hook files. For all Amazon Linux 2023 and Amazon Linux 2 based platforms
versions that were released on or after April 29, 2022, Elastic Beanstalk automatically grants
execute permissions to all of the platform hook scripts. In this case you don't have to manually

Extending Linux platforms 63

AWS Elastic Beanstalk Developer Guide

grant execute permissions. For a list of these platform versions, refer to the April 29, 2022 Linux
release notes in the AWS Elastic Beanstalk Release Notes Guide.

Elastic Beanstalk runs files in each one of these directories in lexicographical order of file names.
All files run as the root user. The current working directory (cwd) for platform hooks is the
application's root directory. For prebuild and predeploy files it's the application staging
directory, and for postdeploy files it's the current application directory. If one of the files fails
(exits with a non-zero exit code), the deployment aborts and fails.

A platform hooks text script may fail if it contains Windows Carriage Return / Line Feed (CRLF)
line break characters. If a file was saved in a Windows host, then transferred to a Linux server, it
may contain Windows CRLF line breaks. For platforms released on or after December 29, 2022,

Elastic Beanstalk automatically converts Windows CRLF characters to Linux Line Feed (LF) line break
characters in platform hooks text files. If you application runs on any Amazon Linux 2 platforms
that were release prior to this date, you'll need to convert the Windows CRLF characters to Linux

LF characters. One way to accomplish this is to create and save the script file on a Linux host. Tools
that convert these characters are also available on the internet.

Hook files have access to all environment properties that you've defined in application options, and
to the system environment variables HOME, PATH, and PORT.

To get values of environment variables and other configuration options into your platform hook
scripts, you can use the get-config utility that Elastic Beanstalk provides on environment
instances. For details, see the section called “Platform script tools”.

Configuration files

You can add configuration files to the .ebextensions directory of your application's source

code to configure various aspects of your Elastic Beanstalk environment. Among other things,
configuration files let you customize software and other files on your environment's instances and
run initialization commands on the instances. For more information, see the section called “Linux

server”.

You can also set configuration options using configuration files. Many of the options control
platform behavior, and some of these options are platform specific.

For platforms based on Amazon Linux 2 and Amazon Linux 2023, we recommend using Buildfile,
Procfile, and platform hooks to configure and run custom code on your environment instances
during instance provisioning. These mechanisms are described in the previous sections on this
page. You can still use commands and container commands in . ebextensions configuration files,

Extending Linux platforms 64

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-04-29-linux.html#release-2022-04-29-linux.platforms
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-12-29-linux.html

AWS Elastic Beanstalk Developer Guide

but they aren't as easy to work with. For example, writing command scripts inside a YAML file can
be challenging from a syntax standpoint. You still need to use .ebextensions configuration files
for any script that needs a reference to a AWS CloudFormation resource.

Reverse proxy configuration

All Amazon Linux 2 and Amazon Linux 2023 platform versions use nginx as their default reverse
proxy server. The Tomcat, Node.js, PHP, and Python platform also support Apache HTTPD

as an alternative. To select Apache on these platforms, set the ProxyServer option in the
aws:elasticbeanstalk:environment:proxy namespace to apache. All platforms enable
proxy server configuration in a uniform way, as described in this section.

(@ Note

On Amazon Linux AMI platform versions (preceding Amazon Linux 2) you might have to
configure proxy servers differently. You can find these legacy details under the respective
platform topics in this guide.

Elastic Beanstalk configures the proxy server on your environment's instances to forward web
traffic to the main web application on the root URL of the environment; for example, http://my-
env.elasticbeanstalk.com.

By default, Elastic Beanstalk configures the proxy to forward requests coming in on port 80 to
your main web application on port 5000. You can configure this port number by setting the PORT
environment property using the aws:elasticbeanstalk:application:environment namespace in a

configuration file, as shown in the following example.

option_settings:
- namespace: aws:elasticbeanstalk:application:environment
option_name: PORT
value: <main_port_number>

For more information about setting environment variables for your application, see the section
called "Option settings”.

Your application should listen on the port that is configured for it in the proxy. If you change
the default port using the PORT environment property, your code can access it by reading
the value of the PORT environment variable. For example, call os.Getenv("PORT") in Go,

Extending Linux platforms 65

AWS Elastic Beanstalk Developer Guide

or System.getenv("PORT") in Java. If you configure your proxy to send traffic to multiple
application processes, you can configure several environment properties, and use their values in
both proxy configuration and your application code. Another option is to pass the port value to
the process as a command argument in the Procfile. For details on that, expand the Buildfile and
Procfile section on this page.

Configuring nginx

Elastic Beanstalk uses nginx as the default reverse proxy to map your application to your Elastic
Load Balancing load balancer. Elastic Beanstalk provides a default nginx configuration that you can
extend or override completely with your own configuration.

(@ Note

When you add or edit an nginx . conf configuration file, be sure to encode it as UTF-8.

To extend the Elastic Beanstalk default nginx configuration, add . conf configuration files to
a folder named .platform/nginx/conf.d/ in your application source bundle. The Elastic
Beanstalk nginx configuration includes . conf files in this folder automatically.

~/workspace/my-app/

|-- .platform

| “-- nginx

| "-- conf.d

| *-- myconf.conf
‘-- other source files

To override the Elastic Beanstalk default nginx configuration completely, include a configuration in
your source bundle at .platform/nginx/nginx.conf:

~/workspace/my-app/
|-- .platform

| “-- nginx

| “-- nginx.conf
‘-- other source files

If you override the Elastic Beanstalk nginx configuration, add the following line to your
nginx.conf to pullin the Elastic Beanstalk configurations for Enhanced health reporting and
monitoring, automatic application mappings, and static files.

Extending Linux platforms 66

AWS Elastic Beanstalk Developer Guide

include conf.d/elasticbeanstalk/*.conf;

Configuring Apache HTTPD

The Tomcat, Node.js, PHP, and Python platforms allow you to choose the Apache HTTPD proxy
server as an alternative to nginx. This isn't the default. The following example configures Elastic
Beanstalk to use Apache HTTPD.

Example .ebextensions/httpd-proxy.config

option_settings:
aws:elasticbeanstalk:environment:proxy:
ProxyServer: apache

You can extend the Elastic Beanstalk default Apache configuration with your additional
configuration files. Alternatively, you can override the Elastic Beanstalk default Apache
configuration completely.

To extend the Elastic Beanstalk default Apache configuration, add . conf configuration files to a
folder named .platform/httpd/conf.d in your application source bundle. The Elastic Beanstalk
Apache configuration includes . conf files in this folder automatically.

~/workspace/my-app/

| -- .ebextensions

| -- httpd-proxy.config
|-- .platform

| -- httpd

| -- conf.d

| -- port5000.conf
| -- ssl.conf

-- index.jsp

For example, the following Apache 2.4 configuration adds a listener on port 5000.

Example .platform/httpd/conf.d/port5000.conf

listen 5000
<VirtualHost *:5000>
<Proxy *>

Extending Linux platforms 67

AWS Elastic Beanstalk Developer Guide

Require all granted
</Proxy>
ProxyPass / http://localhost:8080/ retry=0
ProxyPassReverse / http://localhost:8080/
ProxyPreserveHost on

ErrorLog /var/log/httpd/elasticbeanstalk-error_log
</VirtualHost>

To override the Elastic Beanstalk default Apache configuration completely, include a configuration
in your source bundle at .platform/httpd/conf/httpd.conf.

~/workspace/my-app/

|-- .ebextensions

| -- httpd-proxy.config
|-- .platform

| “-- httpd

| “-- conf

| "-- httpd.conf
“-- index.jsp

(® Note

If you override the Elastic Beanstalk Apache configuration, add the following lines to your
httpd.conf to pull in the Elastic Beanstalk configurations for Enhanced health reporting

and monitoring, automatic application mappings, and static files.

IncludeOptional conf.d/elasticbeanstalk/*.conf

(@ Note

If you're migrating your Elastic Beanstalk application to an Amazon Linux 2 or Amazon
Linux 2023 platform, be sure to also read the information in the section called “Migrate to
AL2023/AL2".

Topics

» Application example with extensions

Extending Linux platforms 68

AWS Elastic Beanstalk Developer Guide

 Instance deployment workflow

« Instance deployment workflow for ECS running on Amazon Linux 2 and later

o Platform script tools

Application example with extensions

The following example demonstrates an application source bundle with several extensibility
features that Elastic Beanstalk Amazon Linux 2 and Amazon Linux 2023 platforms support: a
Procfile, .ebextensions configuration files, custom hooks, and proxy configuration files.

~/my-app/
|-- web.jar
| -- Procfile
| -- readme.md
| -- .ebextensions/
| | -- options.config # Option settings
| "-- cloudwatch.config # Other .ebextensions sections, for example files and
container commands
“-- .platform/
|-- nginx/ # Proxy configuration
| | -- nginx.conf
| ‘-- conf.d/
| "-- custom.conf
| -- hooks/ # Application deployment hooks
| | -- prebuild/
| | | -- @1_set_secrets.sh
| | "-- 12_update_permissions.sh
| |-- predeploy/
| | "-- Q1l_some_service_stop.sh
| "-- postdeploy/
| |-- 01_set_tmp_file_permissions.sh
| | -- 50@_run_something_after_app_deployment.sh
| "-- 99 _some_service_start.sh
“-- confighooks/ # Configuration deployment hooks
| -- prebuild/
| ‘-- Q@1_set_secrets.sh
| -- predeploy/
| "-- Q1_some_service_stop.sh
'-- postdeploy/

|-- @1_run_something_after_config_deployment.sh
‘-- 99 _some_service_start.sh

Extending Linux platforms 69

AWS Elastic Beanstalk Developer Guide

® Note

Some of these extensions aren't supported on Amazon Linux AMI platform versions
(preceding Amazon Linux 2).

Instance deployment workflow

(® Note

The information in this section doesn't apply to the ECS running on Amazon Linux 2 and
Amazon Linux 2023 platform branches. For more information, see the next section Instance
deployment workflow for ECS running on Amazon Linux 2 and later.

With many ways to extend your environment's platform, it's useful to know what happens
whenever Elastic Beanstalk provisions an instance or runs a deployment to an instance. The
following diagram shows this entire deployment workflow. It depicts the different phases in a
deployment and the steps that Elastic Beanstalk takes in each phase.

(® Notes

» The diagram doesn't represent the complete set of steps that Elastic Beanstalk takes on
environment instances during deployment. We provide this diagram for illustration, to
provide you with the order and context for the execution of your customizations.

 For simplicity, the diagram mentions only the .platform/hooks/* hook subdirectories
(for application deployments), and not the . platform/confighooks/* hook
subdirectories (for configuration deployments). Hooks in the latter subdirectories run
during exactly the same steps as hooks in corresponding subdirectories shown in the
diagram.

Extending Linux platforms 70

AWS Elastic Beanstalk

Developer Guide

1. Initial steps

Download application

@

!

Run commands:

!

Extract application

®

2. Configure

i

Run prebuild hooks

.platform/hooks/prebuild/*

Configure app and proxy

& @ ©

()

3. Deploy

!

Run Buildfile commands

!

Configure proxy overrides
.platform/nginx/*

!

Run container commands:

!

Run predeploy hooks

.platform/hooks/predeploy/*

Deploy/flip app and proxy

Extending Linux platforms

@

!

Run Procfile commands
[

71

AWS Elastic Beanstalk Developer Guide

The following list details the deployment phases and steps.
1. Initial steps

Elastic Beanstalk downloads and extracts your application. After each one of these steps, Elastic
Beanstalk runs one of the extensibility steps.

a. Runs commands found in the commands: section of any configuration file.

b. Runs any executable files found in the . platform/hooks/prebuild directory of your
source bundle (.platform/confighooks/prebuild for a configuration deployment).

2. Configure

Elastic Beanstalk configures your application and the proxy server.
a. Runs the commands found in the Buildfile in your source bundle.

b. Copies your custom proxy configuration files, if you have any in the .platform/nginx
directory of your source bundle, to their runtime location.

¢. Runs commands found in the container_commands: section of any configuration file.

d. Runs any executable files found in the .platform/hooks/predeploy directory of your
source bundle (. platform/confighooks/predeploy for a configuration deployment).

3. Deploy

Elastic Beanstalk deploys and runs your application and the proxy server.
a. Runs the command found in the Procfile file in your source bundle.
b. Runs or reruns the proxy server with your custom proxy configuration files, if you have any.

¢. Runs any executable files found in the . platform/hooks/postdeploy directory of your
source bundle (.platform/confighooks/postdeploy for a configuration deployment).

Instance deployment workflow for ECS running on Amazon Linux 2 and later

The previous section describes the supported extensibility features throughout the phases of the
application deployment workflow. There are some differences for the Docker platform branches

ECS running on Amazon Linux 2 and later. This section explains how those concepts apply to this

specific platform branch.

With many ways to extend your environment's platform, it's useful to know what happens
whenever Elastic Beanstalk provisions an instance or runs a deployment to an instance. The
following diagram shows this entire deployment workflow for an environment based on the ECS

Extending Linux platforms 72

AWS Elastic Beanstalk Developer Guide

running on Amazon Linux 2 and ECS running on Amazon Linux 2023 platform branches. It depicts
the different phases in a deployment and the steps that Elastic Beanstalk takes in each phase.

Unlike the workflow described in the prior section, the deployment Configuration phase doesn't
support the following extensibility features: Buildfile commands, Procfile commands,
reverse proxy configuration.

(@ Notes

» The diagram doesn't represent the complete set of steps that Elastic Beanstalk takes on
environment instances during deployment. We provide this diagram for illustration, to
provide you with the order and context for the execution of your customizations.

» For simplicity, the diagram mentions only the . platform/hooks/* hook subdirectories
(for application deployments), and not the .platform/confighooks/* hook
subdirectories (for configuration deployments). Hooks in the latter subdirectories run
during exactly the same steps as hooks in corresponding subdirectories shown in the
diagram.

Extending Linux platforms 73

AWS Elastic Beanstalk

Developer Guide

Download application

l

Run commands:

l

(®)

Run scripts under appdeploy/pre

l

Run prebuild hooks
.platform/hoocks/prebuild/*

l

G

Run containe I'_CGI'['III'[B.HC].S :

l

Run predeploy hooks
.platform/hooks/predeploy/*

l

Run scripts under appdeploy/enact

l

Run scripts under appdeploy/post

l

Run postdeploy hooks
.platform/hooks/postdeploy/*

O @6 ©

The following list details the deployment workflow steps.

Extending Linux platforms

74

AWS Elastic Beanstalk Developer Guide

a. Runs any executable files found in the appdeploy/pre directory under EBhooksDir.

b. Runs any executable files found in the . platform/hooks/prebuild directory of your source
bundle (. platform/confighooks/prebuild for a configuration deployment).

¢. Runs any executable files found in the .platform/hooks/predeploy directory of your source
bundle (. platform/confighooks/predeploy for a configuration deployment).

d. Runs any executable files found in the appdeploy/enact directory under EBhooksDir.
e. Runs any executable files found in the appdeploy/post directory under EBhooksDir.

f. Runs any executable files found in the .platform/hooks/postdeploy directory of your
source bundle (. platform/confighooks/postdeploy for a configuration deployment).

The reference to EBhooksDir represents the path of the platform hooks directory. To retrieve
directory path name use the get-config script tool on the command line of your environment
instance as shown:

$ /opt/elasticbeanstalk/bin/get-config platformconfig -k EBhooksDir

Platform script tools

This topic describes tools that AWS Elastic Beanstalk provides for environments that use Amazon
Linux platforms. The tools are located on the Amazon EC2 instances of the Elastic Beanstalk
environments.

get-config

Use the get-config tool to retrieve environment variable values and other platform and instance
information. The tool is available at /opt/elasticbeanstalk/bin/get-config.

get-config commands

Each get-config tool command returns a specific type of information. Use the following syntax
to run the commands of any of the tools.

$ /opt/elasticbeanstalk/bin/get-config command [options]

The following example runs the environment command.

$ /opt/elasticbeanstalk/bin/get-config environment -k PORT

Extending Linux platforms 75

AWS Elastic Beanstalk Developer Guide

Depending on the command and options you choose, the tool returns an object (JSON or YAML)
with key-value pairs or a single value.

You can test get-config by using SSH to connect to an EC2 instance in your Elastic Beanstalk
environment.

(@ Note

When you run get-config for testing, some commands might require root user privileges
to access the underlying information. If you get an access permission error, run the
command again under sudo.

You don't need to add sudo when using the tool in the scripts that you deploy to your
environment. Elastic Beanstalk runs all your scripts as the root user.

The following sections describe the commands for the tools.
optionsettings — Configuration options

The get-config optionsettings command returns an object that's listing the configuration
options that are set on the environment and used by the platform on environment instances.
They're organized by namespace.

$ /opt/elasticbeanstalk/bin/get-config optionsettings
{"aws:elasticbeanstalk:application:environment":
{"IDBC_CONNECTION_STRING":""},"aws:elasticbeanstalk:container:tomcat:jvmoptions":{"JVM
Options":"","Xms":"256m", "Xmx":"256m"}, "aws:elasticbeanstalk:environment:proxy":
{"ProxyServer":"nginx","StaticFiles":

[""]13}, "aws:elasticbeanstalk:healthreporting:system":

{"SystemType":"enhanced"}, "aws:elasticbeanstalk:hostmanager":

{"LogPublicationControl":"false"}}

To return a specific configuration option value, use the --namespace (-n) option to specify a
namespace, and the --option-name (-0) option to specify an option name.

$ /opt/elasticbeanstalk/bin/get-config optionsettings -
n aws:elasticbeanstalk:container:php:phpini -o memory_limit
256M

Extending Linux platforms 76

AWS Elastic Beanstalk Developer Guide

environment - Environment properties

The get-config environment command returns an object containing a list of environment
properties. These include both user-configured properties and those that are provided by Elastic
Beanstalk.

$ /opt/elasticbeanstalk/bin/get-config environment
{"IDBC_CONNECTION_STRING":"","RDS_PORT":"3306", "RDS_HOSTNAME":"anj9awlb@tbj6b.cijbpanmxz5u.us-
west-2.rds.amazonaws.com", "RDS_USERNAME" :"testusername", "RDS_DB_NAME" :"ebdb", "RDS_PASSWORD": "te

For example, Elastic Beanstalk provides environment properties for connecting to an integrated
Amazon RDS DB instance (for example, RDS_HOSTNAME). These RDS connection properties appear
in the output of get-config environment. However, they don't appear in the output of get-
config optionsettings. This is because they weren't set in configuration options.

To return a specific environment property, use the --key (-k) option to specify a property key.

$ /opt/elasticbeanstalk/bin/get-config environment -k TESTPROPERTY
testvalue

container - On-instance configuration values

The get-config container command returns an object that lists platform and environment
configuration values for environment instances.

The following example shows the output for the command on an Amazon Linux 2 Tomcat
environment.

$ /opt/elasticbeanstalk/bin/get-config container
{"common_log_list":["/var/log/eb-engine.log","/var/log/eb-

hooks.log"], "default_log_list":["/var/log/nginx/access.log","/var/log/nginx/

error.log"], "environment_name":"myenv-1da84946", "instance_port":"80","log_group_name_prefix":"/
aws/elasticbeanstalk","proxy_server":"nginx", "static_files":

[""],"xray_enabled":"false"}

To return the value of a specific key, use the --key (-k) option to specify the key.

$ /opt/elasticbeanstalk/bin/get-config container -k environment_name
myenv-1da84946

Extending Linux platforms 77

AWS Elastic Beanstalk Developer Guide

addons - Add-on configuration values

The get-config addons command returns an object that contains configuration information
of environment add-ons. Use it to retrieve the configuration of an Amazon RDS database that's
associated with the environment.

$ /opt/elasticbeanstalk/bin/get-config addons

{"rds":{"Description":"RDS Environment variables","env":

{"RDS_DB_NAME" : "ebdb", "RDS_HOSTNAME" : "eal3k2wimuldh8i.c18mnpu5rwvg.us-
east-2.rds.amazonaws.com", "RDS_PASSWORD":"password", "RDS_PORT":"3306", "RDS_USERNAME" : "user"}}}

You can restrict the result in two ways. To retrieve values for a specific add-on, use the --add-on
(-a) option to specify the add-on name.

$ /opt/elasticbeanstalk/bin/get-config addons -a rds

{"Description":"RDS Environment variables",b "env":

{"RDS_DB_NAME" : "ebdb", "RDS_HOSTNAME" : "eal3k2wimuldh8i.c18mnpu5rwvg.us-
east-2.rds.amazonaws.com", "RDS_PASSWORD" :"password", "RDS_PORT":"3306", "RDS_USERNAME" : "user"}}

To return the value of a specific key within an add-on, add the --key (-k) option to specify the
key.

$ /opt/elasticbeanstalk/bin/get-config addons -a rds -k RDS_DB_NAME
ebdb

platformconfig - Constant configuration values

The get-config platformconfig command returns an object that contains platform
configuration information that's constant to the platform version. The output is the same on all
environments that run the same platform version. The output object for the command has two
embedded objects:

« GeneralConfig - Contains information that's constant across the latest versions of all Amazon
Linux 2 and Amazon Linux 2023 platform branches.

e PlatformSpecificConfig - Contains information that's constant for the platform version and
is specific to it.

The following example shows the output for the command on an environment that uses the
Tomcat 8.5 running Corretto 11 platform branch.

Extending Linux platforms 78

AWS Elastic Beanstalk Developer Guide

$ /opt/elasticbeanstalk/bin/get-config platformconfig
{"GeneralConfig":{"AppUser":"webapp", "AppDeployDir":"/var/app/
current/","AppStagingDir":"/var/app/

staging/", "ProxyServer":"nginx", "DefaultInstancePort":"80"},"PlatformSpecificConfig":
{"ApplicationPort":"8080","JavaVersion":"11","TomcatVersion":"8.5"}}

To return the value of a specific key, use the --key (-k) option to specify the key. These keys are
unique across the two embedded objects. You don't need to specify the object that contains the
key.

$ /opt/elasticbeanstalk/bin/get-config platformconfig -k AppStagingDir
/var/app/staging/

get-config output options

Use the --output option to specify the output object format. Valid values are JSON (default) and
YAML. This is a global option. You must specify it before the command name.

The following example returns configuration option values in the YAML format.

$ /opt/elasticbeanstalk/bin/get-config --output YAML optionsettings
aws:elasticbeanstalk:application:environment:

JDBC_CONNECTION_STRING: ""
aws:elasticbeanstalk:container:tomcat:jvmoptions:

JVM Options: ""

Xms: 256m

Xmx: 256m
aws:elasticbeanstalk:environment:proxy:

ProxyServer: nginx

StaticFiles:
aws:elasticbeanstalk:healthreporting:system:

SystemType: enhanced
aws:elasticbeanstalk:hostmanager:

LogPublicationControl: "false"

Extending Linux platforms 79

AWS Elastic Beanstalk Developer Guide

pkg-repo

(® Note

The pkg-repo tool is not available for environments based on Amazon Linux 2023
platforms. However, you can manually apply package and operating system updates to
an AL2023 instance. For more information, see Managing packages and operating system

updates in the Amazon Linux 2023 User Guide

In some urgent circumstances, you might need to update your Amazon EC2 instances with an
Amazon Linux 2 security patch that hasn't yet been released with the required Elastic Beanstalk
platform versions. You can't perform a manual update on your Elastic Beanstalk environments

by default. This is because the platform versions are locked to a specific version of the Amazon
Linux 2 repository. This lock ensures that instances run supported and consistent software versions.
For urgent cases, the pkg-repo tool allows a workaround to manually update yum packages on
Amazon Linux 2 if you need to install it on an environment before it's released in a new Elastic
Beanstalk platform version.

The pkg-repo tool on Amazon Linux 2 platforms provides the capability to unlock the yum
package repositories. You can then manually perform a yum update for a security patch.
Conversely, you can follow the update by using the tool to lock the yum package repositories to
prevent further updates. The pkg-repo tool is available at the /opt/elasticbeanstalk/bin/
pkg-repo directory of all the EC2 instances in your Elastic Beanstalk environments.

Changes using the pkg-repo tool are made only on the EC2 instance that the tool is used on. They
don't affect other instances or prevent future updates to the environment. The examples that are
provided later in this topic explain how to apply the changes across all instances by calling the
pkg-repo commands from scripts and configuration files.

/A Warning

We don't recommend this tool for most users. Any manual changes applied to an unlocked
platform version are considered out of band. This option is only viable for those users in
urgent circumstances that can accept the following risks:

» Package versions can't be guaranteed to be consistent across all instances in your
environments.

Extending Linux platforms 80

https://docs.aws.amazon.com/linux/al2023/ug/managing-repos-os-updates.html
https://docs.aws.amazon.com/linux/al2023/ug/managing-repos-os-updates.html

AWS Elastic Beanstalk Developer Guide

» Environments that are modified using the pkg-repo tool aren't guaranteed to function
properly. They haven't been tested and verified on Elastic Beanstalk supported platforms.

We strongly recommend applying best practices that include testing and backout plans.
To help facilitate best practices, you can use the Elastic Beanstalk console and EB CLI to
clone an environment and swap environment URLs. For more information about using
these operations, see Blue/Green deployments in the Managing environments chapter of
this guide.

If you plan to manually edit yum repository configuration files, run the pkg-repo tool first. The
pkg-repo tool might not work as intended in an Amazon Linux 2 environment with manually
edited yum repository configuration files. This is because the tool might not recognize the
configuration changes.

For more information about the Amazon Linux package repository, see the Package repository
topic in the Amazon EC2 User Guide for Linux Instances.

pkg-repo commands

Use the following syntax to run the pkg-repo tool commands.

$ /opt/elasticbeanstalk/bin/pkg-repo command [options]

The pkg-repo commands are the following:

lock — locks the yum package repositories to a specific version

unlock — unlocks the yum package repositories from a specific version

status - lists all the yum package repositories and their current lock status

help - shows general help or help for one command

The options apply to the commands as follows:

e lock, unlock and status - options: -h, --help, or none (default).

» help - options: 1lock, unlock, status, or none (default).

Extending Linux platforms 81

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/amazon-linux-ami-basics.html#package-repository

AWS Elastic Beanstalk Developer Guide

The following example runs the unlock command.

$ sudo /opt/elasticbeanstalk/bin/pkg-repo unlock
Amazon Linux 2 core package repo successfully unlocked
Amazon Linux 2 extras package repo successfully unlocked

The following example runs the lock command.

$ sudo /opt/elasticbeanstalk/bin/pkg-repo lock
Amazon Linux 2 core package repo successfully locked
Amazon Linux 2 extras package repo successfully locked

The following example runs the status command.

$ sudo /opt/elasticbeanstalk/bin/pkg-repo status
Amazon Linux 2 core package repo is currently UNLOCKED
Amazon Linux 2 extras package repo is currently UNLOCKED

The following example runs the help command for the lock command.

$ sudo /opt/elasticbeanstalk/bin/pkg-repo help lock

The following example runs the help command for the pkg-repo tool.

$ sudo /opt/elasticbeanstalk/bin/pkg-repo help

You can test pkg-repo by using SSH to connect to an instance in your Elastic Beanstalk
environment. One SSH option is the EB CLI eb ssh command.

® Note

The pkg-repo tool requires root user privileges to run. If you get an access permission
error, run the command again under sudo.

You don't need to add sudo when using the tool in the scripts or configuration files that
you deploy to your environment. Elastic Beanstalk runs all your scripts as the root user.

Extending Linux platforms

82

AWS Elastic Beanstalk Developer Guide

pkg-repo examples

The previous section provides command line examples for testing on an individual EC2 instance
of an Elastic Beanstalk environment. This approach can be helpful for testing. However, it updates
only one instance at a time, so it isn't practical for applying changes to all of the instances in an
environment.

A more pragmatic approach is to use platform hook scripts or an . ebextensions configuration

file to apply the changes across all instances in a consistent manner.

The following example calls pkg-repo from a configuration file in the .ebextensions folder.

Elastic Beanstalk runs the commands in the update_package.config file when you deploy your
application source bundle.

.ebextensions
update_package.config

To receive the latest version of the docker package, this configuration specifies the docker package
in the yum update command.

update_package.config

commands:
update_package:
command: |
/opt/elasticbeanstalk/bin/pkg-repo unlock
yum update docker -y
/opt/elasticbeanstalk/bin/pkg-repo lock
yum clean all -y
rm -rf /var/cache/yum

This configuration doesn't specify any packages in the yum update command. All available updates
are applied as a result.

update_package.config

commands:
update_package:
command: |
/opt/elasticbeanstalk/bin/pkg-repo unlock

Extending Linux platforms 83

AWS Elastic Beanstalk Developer Guide

yum update -y
/opt/elasticbeanstalk/bin/pkg-repo lock
yum clean all -y

rm -rf /var/cache/yum

The following example calls pkg-repo from a bash script as a platform hook. Elastic Beanstalk

runs the update_package. sh script file that's located in the prebuild subdirectory.

.platform
hooks
prebuild
update_package.sh

To receive the latest version of the docker package, this script specifies the docker package in the
yum update command. If the package name is omitted, all the available updates are applied. The
prior configuration file example demonstrates this.

update_package.sh
#!/bin/bash

/opt/elasticbeanstalk/bin/pkg-repo unlock
yum update docker -y
/opt/elasticbeanstalk/bin/pkg-repo lock
yum clean all -y

rm -rf /var/cache/yum

download-source-bundle (Amazon Linux AMI only)

On Amazon Linux AMI platform branches (preceding Amazon Linux 2), Elastic Beanstalk
provides an additional tool, which is download-source-bundle. Use this tool to download
your application source code when deploying your platform. The tool is available at /opt/
elasticbeanstalk/bin/download-source-bundle.

The example script @0-unzip.sh is located in the appdeploy/pre folder on environment
instances. It demonstrates how to use download-source-bundle to download the application
source code to the /opt/elasticbeanstalk/deploy/appsource folder during deployment.

Extending Linux platforms 84

AWS Elastic Beanstalk Developer Guide

Deploying Elastic Beanstalk applications from Docker
containers

Elastic Beanstalk supports the deployment of web applications from Docker containers. With
Docker containers, you can define your own runtime environment. You can also choose your own
platform, programming language, and any application dependencies, such as package managers
or tools, which typically aren't supported by other platforms. Docker containers are self contained
and include all the configuration information and software that your web application requires to
run. All environment variables that are defined in the Elastic Beanstalk console are passed to the
containers.

The topics in this chapter assume that you have some knowledge of Elastic Beanstalk
environments. If you haven't used Elastic Beanstalk before, try the getting started tutorial to learn
the basics. This chapter also assumes that you have a basic understanding of Docker and how it
works. For more information see Docker overview on the Docker website.

The Docker platform branches

The Elastic Beanstalk Docker platform supports the following platform branches:
Docker running Amazon Linux 2 and Docker running AL2023

Elastic Beanstalk deploys Docker container(s) and source code to EC2 instances and manages them.
These platform branches offer multi-container support. You can use the Docker Compose tool to
simplify your application configuration, testing, and deployment. For more information about this
platform branch, see the section called “Docker platform branch”.

ECS running on Amazon Linux 2 and ECS running on AL2023

We provide this branch for customers who need a migration path to AL2023/AL2 from the retired
platform branch Multi-container Docker running on (Amazon Linux AMI). The latest platform
branches support all of the features from the retired platform branch. No changes to the source
code are required. For more information, see Migrating Multi-container Docker running on Amazon

Linux to ECS on Amazon Linux 2023. If you don't have an Elastic Beanstalk environment running

on an ECS based platform branch, we recommend you use the platform branch, Docker Running on
64bit AL2023. This offers a simpler approach and requires less resources.

This platform branch uses Amazon ECS to coordinate a deployment of multiple Docker containers
to an Amazon ECS cluster in an Elastic Beanstalk environment. The ECS cluster contains

Working with Docker 85

https://docs.docker.com/get-started/overview/

AWS Elastic Beanstalk Developer Guide

EC2 instances that host Docker containers. To accomplish this deployment orchestration,
Elastic Beanstalk creates an ECS Task definition which also includes a Container definition.
The instances in the environment each run the same set of containers, which are defined in
a Dockerrun.aws. jsonv2 file. For more information, see the section called “ECS managed
platform branch”.

Retired platform branches running on Amazon Linux AMI (AL1)

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon Linux
AMI (AL1) to retired. Expand each section that follows to read more about each retired platform
branch and its migration path to the latest platform branch running on Amazon Linux 2 or Amazon
Linux 2023 (recommended).

Docker (Amazon Linux AMI)

This platform branch can deploy a Docker image, described in a Dockerfile or a

Dockerrun.aws. json v1 definition. This platform branch runs only one container for each
instance. Its succeeding platform branches,Docker running on 64bit AL2023 and Docker running on
64bit Amazon Linux 2 support multiple Docker containers per instance.

We recommend that you create your environments with the newer and supported platform branch
Docker running on 64bit AL2023. You can then migrate your application to the newly created
environment. For more information about creating these environments, see the section called

"Docker platform branch”. For more information about migration, see Migrating your Elastic

Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Multi-container Docker (Amazon Linux AMI)

This platform branch uses Amazon ECS to coordinate a deployment of multiple Docker containers
to an Amazon ECS cluster in an Elastic Beanstalk environment. If you're currently using this retired
platform branch, we recommend that you migrate to the latest ECS Running on Amazon Linux 2023
platform branch. The latest platform branch supports all of the features from this discontinued
platform branch. No changes to the source code are required. For more information, see Migrating
Multi-container Docker running on Amazon Linux to ECS on Amazon Linux 2023.

Preconfigured Docker containers

In addition to the prior mentioned Docker platforms, there is also the Preconfigured Docker
GlassFish platform branch that runs on the Amazon Linux AMI operating system (AL1).

The Docker platform branches 86

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

This platform branch has been superseded by the platform branches Docker running on 64bit
AL2023 and Docker running on 64bit Amazon Linux 2. For more information, see Deploying a
GlassFish application to the Docker platform.

Using the Docker platform branch

AWS Elastic Beanstalk can launch Docker environments by building an image described in a
Dockerfile or pulling a remote Docker image. If you're deploying a remote Docker image,

you don't need to include a Dockerfile. Instead, if you are also using Docker Compose, use a
docker-compose.yml file, which specifies an image to use and additional configuration options.
If you are not using Docker Compose with your Docker environments, use a Dockerrun.aws. json
file instead.

Topics

 Prerequisites
« Containerize an Elastic Beanstalk application

» Test a container locally

» Deploy a container with a Dockerfile

» Test a remote Docker image

» Deploy a remote Docker image to Elastic Beanstalk

» Clean up
e Running a Docker environment locally with the EB CLI

» Docker configuration

Prerequisites

This tutorial assumes that you have some knowledge of basic Elastic Beanstalk operations, the
Elastic Beanstalk command line interface (EB CLI), and Docker. If you haven't already, follow
the instructions in Getting started using Elastic Beanstalk to launch your first Elastic Beanstalk
environment. This tutorial uses the EB CLI, but you can also create environments and upload
applications by using the Elastic Beanstalk console.

To follow this tutorial, you will also need the following Docker components:

» A working local installation of Docker. For more information, see Get Docker on the Docker
documentation website.

Docker platform branch 87

https://docs.docker.com/install/

AWS Elastic Beanstalk Developer Guide

o Access to Docker Hub. You will need to create a Docker ID to access the Docker Hub. For more
information, see Share the application on the Docker documentation website.

To learn more about configuring Docker environments on Elastic Beanstalk platforms, see Docker
configuration in this same chapter.

Containerize an Elastic Beanstalk application

For this example, we create a Docker image of the sample Flask application from Deploying a Flask
application to Elastic Beanstalk. The application consists of one main file, application.py. We
also need a Dockerfile. Put both files at the root of a directory.

~/eb-docker-flask/
| -- Dockerfile
| -- application.py

Example ~/eb-docker-flask/application.py

from flask import Flask

Print a nice greeting
def say_hello(username = "World"):
return '<p>Hello %s!</p>\n' % username

Some bits of text for the page
header_text = '''
<html>\n<head> <title>EB Flask Test</title> </head>\n<body>'""
instructions = "'’
<p>Hint: This is a RESTful web service! Append a username
to the URL (for example: <code>/Thelonious</code>) to say hello to
someone specific.</p>\n'""'
home_link = '<p>Back</p>\n'
footer_text = '</body>\n</html>"

Elastic Beanstalk looks for an 'application' that is callable by default
application = Flask(__name__)

Add a rule for the index page
application.add_url_rule('/', 'index', (lambda: header_text +
say_hello() + instructions + footer_text))

Docker platform branch 88

https://docs.docker.com/get-started/04_sharing_app/

AWS Elastic Beanstalk Developer Guide

Add a rule when the page is accessed with a name appended to the site

URL

application.add_url_rule('/<username>', 'hello', (lambda username:
header_text + say_hello(username) + home_link + footer_text))

Run the application

if _name__ == "__main__":
Setting debug to True enables debug output. This line should be
removed before deploying a production application.
application.debug = True
application.run(host="0.0.0.0")

Example ~/eb-docker-flask/Dockerfile

FROM python:3.6

COPY . /app

WORKDIR /app

RUN pip install Flask==1.0.2
EXPOSE 5000

CMD ["python", "application.py"]

Test a container locally

Use the Elastic Beanstalk CLI (EB CLI) to configure your local repository for deployment to Elastic
Beanstalk. Set your application's Dockerfile at the root of the directory.

~/eb-docker-flask$ eb init -p docker application-name

(Optional) Use the eb local run command to build and run your container locally.

~/eb-docker-flask$ eb local run --poxrt 5000

(® Note

To learn more about the eb local command, see the section called “eb local”. The

command isn't supported on Windows. Alternatively, you can build and run your container
with the docker build and docker run commands. For more information, see the Docker
documentation.

Docker platform branch 89

https://docs.docker.com/
https://docs.docker.com/

AWS Elastic Beanstalk Developer Guide

(Optional) While your container is running, use the eb local open command to view your
application in a web browser. Alternatively, open http://localhost:5000/ in a web browser.

~/eb-docker-flask$ eb local open

Deploy a container with a Dockerfile

After testing your application locally, deploy it to an Elastic Beanstalk environment. Elastic
Beanstalk uses the instructions in your Dockerfile to build and run the image.

Use the eb create command to create an environment and deploy your application.

~/eb-docker-flask$ eb create environment-name

After your environment launches, use the eb open command to view it in a web browser.

~/eb-docker-flask$ eb open

Test a remote Docker image

Next, we build a Docker image of the Flask application from the previous section and push it to
Docker Hub.

(® Notes

» The following steps create a publicly available Docker image.

» You will use Docker commands from your local Docker installation, along with your
Docker Hub credentials. For more information, see the preceding Prerequisites section.

Once we've built and pushed our image, we can deploy it to Elastic Beanstalk with a docker -
compose.yml file, if you are using Docker Compose with your Docker environment. If you are not
using Docker Compose with your Docker environment, use a Dockerrun.aws. json file instead.
To build a Docker image of the Flask application and push it to Docker Hub, run the following
commands. We're using the same directory from the previous example, but you can use any
directory with your application's code. Enter your Docker ID for docker-1id to sign in to Docker
Hub.

~/eb-docker-flask$ docker build -t docker-id/beanstalk-flask:latest .

Docker platform branch 90

http://localhost:5000/

AWS Elastic Beanstalk Developer Guide

~/eb-docker-flask$ docker push docker-id/beanstalk-flask:latest

(® Note

Before pushing your image, you might need to run docker login. You will be prompted for
your Docker Hub credentials if you run the command without parameters.

If you are using the Docker Compose tool to manage your Docker environment, now you can
deploy your application using only a docker-compose.yml file. To learn more about docker-
compose.yml files, see Docker configuration.

If you are not using Docker Compose, use a Dockerrun.aws. json file instead. For more
information see Deploy using Dockerrun.aws.json v1 (without Docker Compose).

Make a new directory and create a docker-compose.yml file.

Example ~/remote-docker/docker-compose.yml

version: '3.8'
services:
beanstalk-flask:
image: "username/beanstalk-flask"
ports:
- "80:5000"

Deploy using Dockexrun.aws. json v1 (without Docker Compose)

If you are not using the Docker Compose tool to manage your Docker environment, now you
can deploy your application using only a Dockerrun.aws. json file. To learn more about
Dockerrun.aws. json files, see Configuration for Docker platforms (without Docker Compose) .

Make a new directory and create a Dockerrun. aws. json file.

Example ~/remote-dockexr/Dockexrrun.aws. json

{
"AWSEBDockerrunVersion": "1",
"Image": {
"Name": "username/beanstalk-flask",
"Update": "true"
},

Docker platform branch 91

AWS Elastic Beanstalk Developer Guide

"Ports": [
{
"ContainerPort": "5000"
}
]

Use the EB CLI to configure your local repository for deployment to Elastic Beanstalk.

~/remote-docker$ eb init -p docker application-name

(Optional) Use eb local run to build and run your container locally. To learn more about the eb
local command, see eb local.

~/remote-docker$ eb local run --port 5000

(Optional) While your container is running, use the eb local open command to view your
application in a web browser. Alternatively, open http://localhost:5000/ in a web browser.

~/remote-docker$ eb local open

Deploy a remote Docker image to Elastic Beanstalk

After testing your container locally, deploy it to an Elastic Beanstalk environment. Elastic Beanstalk
uses the docker-compose.yml file to pull and run your image if you are using Docker Compose.
Otherwise, Elastic Beanstalk uses the Dockerrun.aws. json instead.

Use the EB CLI to create an environment and deploy your image.

~/remote-docker$ eb create environment-name

Once your environment is launched, use eb open to view it in a web browser.

~/remote-docker$ eb open

Clean up

When you finish working with Elastic Beanstalk, you can terminate your environment. Elastic
Beanstalk terminates all AWS resources associated with your environment, such as Amazon EC2
instances, database instances, load balancers, security groups, and alarms.

Docker platform branch 92

http://localhost:5000/

AWS Elastic Beanstalk Developer Guide

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

® Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

With Elastic Beanstalk, you can easily create a new environment for your application at any time.

Or, with the EB CLI:

~/remote-docker$ eb terminate environment-name

Running a Docker environment locally with the EB CLI

You can use the Elastic Beanstalk Command Line Interface (EB CLI) to run the Docker containers
configured in your AWS Elastic Beanstalk application locally. The EB CLI uses the Docker
configuration file (Dockerfile or Dockerrun.aws. json) and source code in your project
directory to run your application locally in Docker.

Topics

Prerequisites for running Docker applications locally

Preparing a Docker application for use with the EB CLI

Running a Docker application locally

Cleaning up after running a Docker application locally

Prerequisites for running Docker applications locally

e Linux OS or Mac OS X

« EB CLI version 3.3 or greater

Docker platform branch 93

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Run eb init in your project directory to initialize an EB CLI repository. If you haven't used the EB
CLI before, see Managing Elastic Beanstalk environments with the EB CLI.

» Docker version 1.6 or greater

Add yourself to the docker group, log out, and then log back in to ensure that you can run
Docker commands without sudo:

$ sudo usermod -a -G docker $USER

Run docker ps to verify that the Docker daemon is up and running:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

» A Docker application

If you don't have a Docker application in a project folder on your local machine, see Deploying
Elastic Beanstalk applications from Docker containers for an introduction to using Docker with
AWS Elastic Beanstalk.

» Docker profile (optional)

If your application uses Docker images that are in a private repository, run docker login and
follow the prompts to create an authentication profile.

« w3m (optional)

W3m is a web browser that you can use to view your running web application within a command
line terminal with eb local run. If you are using the command line in a desktop environment, you
don't need w3m.

Docker containers run locally without emulating AWS resources that are provisioned when you
deploy an application to Elastic Beanstalk, including security groups and data or worker tiers.

You can configure your local containers to connect to a database by passing the necessary
connection string or other variables with the envvars option, but you must ensure that any
resources in AWS are accessible from your local machine by opening the appropriate ports in their

assigned security groups or attaching a default gateway or elastic IP address.

Docker platform branch 94

https://docs.docker.com/engine/installation/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

AWS Elastic Beanstalk Developer Guide

Preparing a Docker application for use with the EB CLI

Prepare your Docker configuration file and source data as though you were deploying them to
Elastic Beanstalk. This topic uses the PHP and nginx proxy example from the Multi-container
Docker tutorial, which is also in this chapter. You can use the same commands with any Docker,
Multi-container Docker, or Preconfigured Docker application.

Running a Docker application locally

Run your Docker application locally with the eb local run command from within the project
directory:

~/project$ eb local run

Creating elasticbeanstalk_phpapp_1...

Creating elastichbeanstalk_nginxproxy_1...

Attaching to elasticbeanstalk_phpapp_1, elasticbeanstalk_nginxproxy_1
phpapp_1 | [23-Apr-2015 23:24:25] NOTICE: fpm is running, pid 1
phpapp_1 | [23-Apr-2015 23:24:25] NOTICE: ready to handle connections

The EB CLI reads the Docker configuration and executes the Docker commands necessary to run
your application. The first time you run a project locally, Docker downloads images from a remote
repository and stores them on your local machine. This process can take several minutes.

(® Note

The eb local run command takes two optional parameters, port and envvars.
To override the default port for a Docker application, use the port option:

$ eb local run --poxrt 8080

This command tells the EB CLI to use port 8080 on the host and map it to the exposed port
on the container. If you don't specify a port, the EB CLI uses the container's port for the
host. This option only works with applications using the Docker platform.

To pass environment variables to the application containers, use the envvars option:

$ eb local run --envvars RDS_HOST=$RDS_HOST,RDS_DB=$RDS_DB, RDS_USER=
$RDS_USER,RDS_PASS=$RDS_PASS

Docker platform branch 95

AWS Elastic Beanstalk Developer Guide

Use environment variables to configure a database connection, set debug options, or pass
secrets securely to your application. For more information on the options supported by the
eb local subcommands, see eb local.

After the containers are up and running in Docker, they are ready to take requests from clients. The
eb local process stays open as long as the containers are running. If you need to stop the process
and containers, press Ctrl+C.

Open a second terminal to run additional commands while the eb local process is running. Use eb
local status to view your application's status:

~/project$ eb local status

Platform: 64bit Amazon Linux 2014.09 v1.2.1 running Multi-container Docker 1.3.3
(Generic)

Container name: elasticbeanstalk_nginxproxy_1

Container ip: 127.0.0.1

Container running: True

Exposed host port(s): 80

Full local URL(s): 127.0.0.1:80

Container name: elasticbeanstalk_phpapp_1
Container ip: 127.0.0.1

Container running: True

Exposed host port(s): None

Full local URL(s): None

You can use docker ps to see the status of the containers from Docker's point of view:

~/project$ docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

6a8e71274fed nginx:latest "nginx -g 'daemon of 9 minutes ago Up 9
minutes 0.0.0.0:80->80/tcp, 443/tcp elasticbeanstalk_nginxproxy_1
82cbf620bdcl php:fpm "php-fpm" 9 minutes ago Up 9
minutes 9000/tcp elasticbeanstalk_phpapp_1

Next, view your application in action with eb local open:

~/project$ eb local open

Docker platform branch 96

AWS Elastic Beanstalk Developer Guide

This command opens your application in the default web browser. If you are running a terminal in a
desktop environment, this may be Firefox, Safari, or Google Chrome. If you are running a terminal
in a headless environment or over an SSH connection, a command line browser, such as w3m, will
be used if one is available.

Switch back to the terminal running the application process for a moment and note the additional
output:

phpapp_1 | 172.17.0.36 - 21/Apr/2015:23:46:17 +0000 "GET /index.php" 200

This shows that the web application in the Docker container received an HTTP GET request for
index.php that was returned successfully with a 200 (non error) status.

Run eb local logs to see where the EB CLI writes the logs.

~/project$ eb local logs

Elastic Beanstalk will write logs locally to /home/user/project/.elasticbeanstalk/logs/
local.

Logs were most recently created 3 minutes ago and written to /home/user/
project/.elasticbeanstalk/logs/local/150420_234011665784.

Cleaning up after running a Docker application locally

When you are done testing your application locally, you can stop the applications and remove the
images downloaded by Docker when you use eb local run. Removing the images is optional. You
may want to keep them for future use.

Return to the terminal running the eb local process and press Ctrl+C to stop the application:

ACGracefully stopping... (press Ctrl+C again to force)
Stopping elasticbeanstalk_nginxproxy_1...
Stopping elasticbeanstalk_phpapp_1...

Aborting.
[1]+ Exit 5 eb local run

The EB CLI attempts to stop each running container gracefully with Docker commands. If you need
to stop a process immediately, press Ctrl+C again.

After you stop the applications, the Docker containers should also stop running. Verify this with
docker ps:

Docker platform branch 97

AWS Elastic Beanstalk

Developer Guide

$ docker ps --all

CONTAINER ID IMAGE
STATUS PORTS
73d515d99d2a nginx:latest

Exited (@) 11 minutes ago
7061c76220de php:fpm
Exited (@) 11 minutes ago

COMMAND CREATED
NAMES
"nginx -g 'daemon of 21 minutes ago
elasticbeanstalk_nginxproxy_1
"php-fpm" 21 minutes ago

elasticbeanstalk_phpapp_1

The all option shows stopped containers (if you omitted this option, the output will be blank). In
the above example, Docker shows that both containers exited with a 0 (non-error) status.

If you are done using Docker and EB CLI local commands, you can remove the Docker images from

your local machine to save space.

To remove Docker images from your local machine

1. View the images that you downloaded using docker images:

$ docker images

REPOSITORY TAG
VIRTUAL SIZE

php fpm
414.1 MB

nginx latest
93.44 MB

IMAGE ID CREATED
68bc5150cffc 1 hour ago
637d3b2f5fb5 1 hour ago

2. Remove the two Docker containers with docker rm:

$ docker rm 73d515d99d2a 7061c76220de

73d515d99d2a
7061c76220de

3. Remove the images with docker rmi:

$ docker rmi 68bc5150cffc 637d3b2f5fb5

Untagged: php:fpm

Deleted: 68bc5150cffc0526c66b92265c3ed8f2ea50f3c71d266aa655b7a4d20c3587b0

Untagged: nginx:latest

Deleted: 637d3b2f5fb5c4f70895b77a9e76751a6e7670f4ef27a159dad49235f4feb61ed

Docker platform branch

98

AWS Elastic Beanstalk Developer Guide

Docker configuration

This section describes how to prepare your Docker image and container for deployment to Elastic
Beanstalk.

Docker environment with Docker Compose

This section describes how to prepare your Docker image and container for deployment to Elastic
Beanstalk. Any web application that you deploy to Elastic Beanstalk in a Docker environment must
include a docker-compose.yml file if you also use the Docker Compose tool. You can deploy
your web application as a containerized service to Elastic Beanstalk by doing one of the following
actions:

» Create a docker-compose.yml file to deploy a Docker image from a hosted repository to
Elastic Beanstalk. No other files are required if all your deployments are sourced from images
in public repositories. (If your deployment must source an image from a private repository, you
need to include additional configuration files for authentication. For more information, see Using
images from a private repository.) For more information about the docker-compose.yml file,
see Compose file reference on the Docker website.

« Create a Dockerfile to have Elastic Beanstalk build and run a custom image. This file is
optional, depending on your deployment requirements. For more information about the
Dockerfile see Dockerfile reference on the Docker website.

» Create a . zip file containing your application files, any application file dependencies, the
Dockerfile, and the docker-compose.yml file. If you use the EB CLI to deploy your
application, it creates a . zip file for you. The two files must be at the root, or top level, of the
.zip archive.

If you use only a docker-compose.yml file to deploy your application, you don't need to create
a .zipfile.

This topic is a syntax reference. For detailed procedures on launching Docker environments using
Elastic Beanstalk, see Using the Docker platform branch.

To learn more about Docker Compose and how to install it, see the Docker sites Overview of Docker
Compose and Install Docker Compose.

Docker platform branch 99

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/install/

AWS Elastic Beanstalk Developer Guide

® Note

If you don't use Docker Compose to configure your Docker environments,

then you shouldn't use the docker-compose.yml file either. Instead, use the
Dockerrun.aws. json file or the Dockerfile or both.

For more information, see the section called “Configuration for Docker platforms (without
Docker Compose) ".

Using images from a private repository

Elastic Beanstalk must authenticate with the online registry that hosts the private repository
before it can pull and deploy your images from a private repository. We provide examples for two
options to store and retrieve credentials for your Elastic Beanstalk environment to authenticate to
a repository.

« The AWS Secrets Manager

e The Dockerrun.aws.json v3 file

Using AWS Secrets Manager

You can configure Elastic Beanstalk to log in to your private repository before it starts the
deployment process. This enables Elastic Beanstalk to access the images from the repository and
deploy these images to your Elastic Beanstalk environment.

This configuration initiates events in the prebuild phase of the Elastic Beanstalk deployment
process. You set this up in the .ebextentions configuration directory. The configuration uses
platform hook scripts that call docker login to authenticate to the online registry that hosts the
private repository. A detailed breakdown of these configuration steps follows.

To configure Elastic Beanstalk to authenticate to your private repository with AWS Secrets
Manager

(® Note

Specific permissions must be granted to complete these steps. For more information see
the following references.

Docker platform branch 100

AWS Elastic Beanstalk Developer Guide

« In Step 2 you'll need permissions to create a secret. For more information, see Example:
Permission to create secrets in the AWS Secrets Manager User Guide.

» In Step 3 you'll need permissions to retrieve secrets using secretsmanager dynamic
references. For more information, see Example: Permission to retrieve secret values in the
AWS Secrets Manager User Guide.

1. Create your .ebextensions directory structure as follows.

.ebextensions
env.config
.platform
confighooks
prebuild
0l1llogin.sh
hooks

prebuild

0llogin.sh

docker-compose.yml

H OH HF OB H

2. Use AWS Secrets Manager to save the credentials of your private repository so that Elastic
Beanstalk can retrieve your credentials when required. For this, run the Secrets Manager
create-secret AWS CLI command.

aws secretsmanager create-secret \
--name MyTestSecret \
--description "My image repo credentials created with the CLI." \
--secret-string "{\"USER\":\"EXAMPLE-USERNAME\",\"PASSWD\":\"EXAMPLE-
PASSWORD\"}"

3. Create the following env. config file and place it in the . ebextensions
directory as shown in the preceding directory structure. This configuration uses the
aws:elasticbeanstalk:application:environment namespace to initialize the USER and PASSWD

Elastic Beanstalk environment variables using dynamic references to AWS Secrets Manager. For
more information about secretsmanager dynamic references, see Retrieve an AWS Secrets

Manager secret in an AWS CloudFormation resource in the AWS Secrets Manager User Guide.

Docker platform branch 101

https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_create
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_create
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_read
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html#create_secret_cli
https://docs.aws.amazon.com/secretsmanager/latest/userguide/cfn-example_reference-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/cfn-example_reference-secret.html

AWS Elastic Beanstalk Developer Guide

® Note

USER and PASSWD in the script must match the same strings that are used in the
preceding secretsmanager create-secret command.

option_settings:
aws:elasticbeanstalk:application:environment:
USER: '{{resolve:secretsmanager:MyTestSecret:SecretString:USER}}"
PASSWD: '{{resolve:secretsmanager:MyTestSecret:SecretString:PASSWD}}"'

4. Create the following @11ogin. sh script file and place it in the following directories (also
shown in the preceding directory structure):

e .platform/confighooks/prebuild
e .platform/hooks/prebuild

example @llogin.sh

#!/bin/bash

USER=/opt/elasticbeanstalk/bin/get-config environment -k USER

/opt/elasticbeanstalk/bin/get-config environment -k PASSWD | docker login -u $USER
--password-stdin

The 011login. sh script calls the get-config platform script to retrieve the repository
credentials and then log in to the repository. It stores the user name in the USER script
variable. In the next line, it retrieves the password. Instead of storing the password in a script
variable, the script pipes the password directly to the docker login command in the stdin
input stream. The --password-stdin option uses the input stream, so you don't have to
store the password in a variable. For more information about authentication with the Docker
command line interface, see docker login on the Docker documentation website.

® Notes

o All script files must have execute permission. Use chmod +x to set execute
permission on your hook files. For all Amazon Linux 2 based platforms versions
that were released on or after April 29, 2022, Elastic Beanstalk automatically grants

Docker platform branch 102

https://docs.docker.com/engine/reference/commandline/login/

AWS Elastic Beanstalk Developer Guide

execute permissions to all of the platform hook scripts. In this case you don't have to
manually grant execute permissions. For a list of these platform versions, refer to the
April 29, 2022 - Linux platform release notes in the AWS Elastic Beanstalk Release
Notes Guide.

» Hook files can be either binary files or script files starting with a #! line containing
their interpreter path, such as #!/bin/bash.

« For more information, see the section called “Platform hooks" in Extending Elastic
Beanstalk Linux platforms.

After Elastic Beanstalk authenticates with the online registry that hosts the private repository, your
can pull and deploy your images.

Using the Dockerrun.aws.json v3 file

This section describes another approach to authenticate Elastic Beanstalk to a private repository.
With this approach, you generate an authentication file with the Docker command, and then
upload the authentication file to an Amazon S3 bucket. You must also include the bucket
information in your Dockerrun.aws. json v3 file.

To generate and provide an authentication file to Elastic Beanstalk

1. Generate an authentication file with the docker login command. For repositories on Docker
Hub, run docker login:

$ docker login

For other registries, include the URL of the registry server:

$ docker login registry-server-url

(® Note

If your Elastic Beanstalk environment uses the Amazon Linux AMI Docker platform
version (precedes Amazon Linux 2), read the relevant information in the section called
“Docker configuration on Amazon Linux AMI (preceding Amazon Linux 2)".

Docker platform branch 103

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-04-29-linux.html#release-2022-04-29-linux.platforms

AWS Elastic Beanstalk Developer Guide

For more information about the authentication file, see Store images on Docker Hub and

docker login on the Docker website.

2. Upload a copy of the authentication file that is named .dockercfg to a secure Amazon S3
bucket.

« The Amazon S3 bucket must be hosted in the same AWS Region as the environment that is
using it. Elastic Beanstalk cannot download files from an Amazon S3 bucket hosted in other
Regions.

» Grant permissions for the s3:GetObject operation to the IAM role in the instance profile.
For more information, see Managing Elastic Beanstalk instance profiles.

3. Include the Amazon S3 bucket information in the Authentication parameter in your
Dockerrun.aws.json v3file.

Following is an example of a Dockerrun.aws.json v3 file.

{
"AWSEBDockerrunVersion": "3",
"Authentication": {
"bucket": "DOC-EXAMPLE-BUCKET",
"key": "mydockercfg"
}
}
(® Note

The AWSEBDockerrunVersion parameter indicates the version of the
Dockerrun.aws. json file.

« The Docker Amazon Linux 2 platform uses the Dockerrun.aws. json v3 file for
environments that use Docker Compose. It uses the Dockerrun.aws.json vl file
for environments that don't use Docker Compose.

» The Multicontainer Docker Amazon Linux AMI platform uses the
Dockerrun.aws.json v2file.

Docker platform branch 104

https://docs.docker.com/docker-hub/repos/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/

AWS Elastic Beanstalk Developer Guide

After Elastic Beanstalk can authenticate with the online registry that hosts the private repository,
your images can be deployed and pulled.

Building custom images with a Dockerfile

You need to create a Dockerfile if you don't already have an existing image hosted in a
repository.

The following snippet is an example of the Dockerfile. If you follow the instructions in Using the
Docker platform branch, you can upload this Dockerfile as written. Elastic Beanstalk runs the
game 2048 when you use this Dockerfile.

For more information about instructions you can include in the Dockerfile, see Dockerfile
reference on the Docker website.

FROM ubuntu:12.04

RUN apt-get update
RUN apt-get install -y nginx zip curl

RUN echo "daemon off;" >> /etc/nginx/nginx.conf

RUN curl -o /usr/share/nginx/www/master.zip -L https://codeload.github.com/
gabrielecirulli/2048/zip/master

RUN cd /usr/share/nginx/www/ && unzip master.zip && mv 2048-master/* . && rm -rf 2048-
master master.zip

EXPOSE 80

CMD ["/usr/sbin/nginx", "-c", "/etc/nginx/nginx.conf"]

(@ Note

You can run multi-stage builds from a single Dockerfile to produce smaller-sized images
with a significant reduction in complexity. For more information, see Use multi-stage builds
on the Docker documentation website.

Configuration for Docker platforms (without Docker Compose)

If your Elastic Beanstalk Docker environment does not use Docker Compose, read the additional
information in the following sections.

Docker platform branch 105

https://docs.docker.com/engine/reference/builder
https://docs.docker.com/engine/reference/builder
https://docs.docker.com/develop/develop-images/multistage-build/

AWS Elastic Beanstalk Developer Guide

Docker platform Configuration - without Docker Compose

Any web application that you deploy to Elastic Beanstalk in a Docker environment must include
either a Dockerfile ora Dockerrun.aws. json file. You can deploy your web application from a
Docker container to Elastic Beanstalk by doing one of the following actions:

» Create a Dockerfile to have Elastic Beanstalk build and run a custom image.

» Create a Dockerrun.aws. json file to deploy a Docker image from a hosted repository to
Elastic Beanstalk.

» Create a . zip file containing your application files, any application file dependencies, the
Dockerfile, and the Dockerrun.aws. json file. If you use the EB CLI to deploy your
application, it creates a . zip file for you.

If you use only a Dockexrfile or only a Dockerrun.aws. json file to deploy your application,
you don't need to create a . zip file.

This topic is a syntax reference. For detailed procedures on launching Docker environments, see
Using the Docker platform branch.

Dockerrun.aws.jsonvil

A Dockerrun.aws. json file describes how to deploy a remote Docker image as an Elastic
Beanstalk application. This JSON file is specific to Elastic Beanstalk. If your application

runs on an image that is available in a hosted repository, you can specify the image in a
Dockerrun.aws.json vl file and omit the Dockerfile.

Valid keys and values for the Dockerrun.aws. json vl file include the following operations:

AWSEBDockerrunVersion

(Required) Specifies the version number as the value 1 for single container Docker
environments.

Authentication

(Required only for private repositories) Specifies the Amazon S3 object storing the .dockercfg
file.

See Using images from a private repository.

Docker platform branch 106

AWS Elastic Beanstalk Developer Guide

Image

Specifies the Docker base image on an existing Docker repository from which you're building a
Docker container. Specify the value of the Name key in the format <organization>/<image
name> for images on Docker Hub, or <site>/<organization name>/<image name> for
other sites.

When you specify an image in the Dockerrun.aws. json file, each instance in your Elastic
Beanstalk environment runs docker pull to run the image. Optionally, include the Update
key. The default value is true and instructs Elastic Beanstalk to check the repository, pull any
updates to the image, and overwrite any cached images.

When using a Dockerfile, do not specify the Image key in the Dockerrun.aws. json file.
Elastic Beanstalk always builds and uses the image described in the Dockerfile when one is
present.

Ports

(Required when you specify the Image key) Lists the ports to expose on the Docker container.
Elastic Beanstalk uses the ContainerPort value to connect the Docker container to the reverse
proxy running on the host.

You can specify multiple container ports, but Elastic Beanstalk uses only the first port. It uses
this port to connect your container to the host's reverse proxy and route requests from the
public internet. If you're using a Dockerfile, the first ContainerPort value should match the
first entry in the Dockerfile's EXPOSE list.

Optionally, you can specify a list of ports in HostPort. HostPort entries specify the host ports
that ContainerPort values are mapped to. If you don't specify a HostPort value, it defaults to
the ContainerPort value.

{
"Image": {
"Name": "image-name"
},
"Ports": [
{
"ContainerPort": 8080,
"HostPort": 8000

Docker platform branch 107

AWS Elastic Beanstalk Developer Guide

}

Volumes

Map volumes from an EC2 instance to your Docker container. Specify one or more arrays of
volumes to map.

{
"Volumes": [
{
"HostDirectory": "/path/inside/host",
"ContainerDirectory": "/path/inside/container"
}
]
Logging

Specify the directory inside the container to which your application writes logs. Elastic
Beanstalk uploads any logs in this directory to Amazon S3 when you request tail or bundle
logs. If you rotate logs to a folder named rotated within this directory, you can also
configure Elastic Beanstalk to upload rotated logs to Amazon S3 for permanent storage. For
more information, see Viewing logs from Amazon EC2 instances in your Elastic Beanstalk

environment.

Command

Specify a command to run in the container. If you specify an Entrypoint, then Command
is added as an argument to Entrypoint. For more information, see CMD in the Docker
documentation.

Entrypoint

Specify a default command to run when the container starts. For more information, see
ENTRYPOINT in the Docker documentation.

The following snippet is an example that illustrates the syntax of the Dockerrun.aws. json file
for a single container.

Docker platform branch 108

https://docs.docker.com/engine/reference/run/#cmd-default-command-or-options
https://docs.docker.com/engine/reference/run/#cmd-default-command-or-options

AWS Elastic Beanstalk Developer Guide

{

"AWSEBDockerrunVersion": "1",

"Image": {
"Name": "janedoe/image",
"Update": "true"

.

"Ports": [
{

"ContainerPort": "1234"
}
1,

"Volumes": [
{
"HostDirectory": "/var/app/mydb",
"ContainerDirectory": "/etc/mysql"
}
1,
"Logging": "/var/log/nginx",
"Entrypoint": "/app/bin/myapp",
"Command": "--argument"

You can provide Elastic Beanstalk with only the Dockerrun.aws. json file, or with a . zip archive
containing both the Dockerrun.aws. json and Dockerfile files. When you provide both

files, the Dockerfile describes the Docker image and the Dockerrun.aws. json file provides
additional information for deployment, as described later in this section.

(® Note

The two files must be at the root, or top level, of the . zip archive. Don't build the archive
from a directory containing the files. Instead, navigate into that directory and build the
archive there.

When you provide both files, don't specify an image in the Dockerrun. aws. json file.
Elastic Beanstalk builds and uses the image described in the Dockerfile and ignores the
image specified in the Dockerrun.aws. json file.

Using images from a private repository

Add the information about the Amazon S3 bucket that contains the authentication file in
the Authentication parameter of the Dockerrun.aws. json vl file. Make sure that the

Docker platform branch 109

AWS Elastic Beanstalk Developer Guide

Authentication parameter contains a valid Amazon S3 bucket and key. The Amazon S3 bucket
must be hosted in the same AWS Region as the environment that is using it. Elastic Beanstalk
doesn't download files from Amazon S3 buckets hosted in other Regions.

For information about generating and uploading the authentication file, see Using images from a

private repository.

The following example shows the use of an authentication file named mydockercfg in a bucket
named DOC-EXAMPLE-BUCKET to use a private image in a third-party registry.

"AWSEBDockerrunVersion": "1",
"Authentication": {
"Bucket": "DOC-EXAMPLE-BUCKET",
"Key": "mydockercfg"
b
"Image": {
"Name": '"quay.io/johndoe/private-image",
"Update": "true"
b
"Ports": [
{
"ContainerPort": "1234"
}
1,
"Volumes": [
{
"HostDirectory": "/var/app/mydb",
"ContainerDirectory": "/etc/mysql"
}
1,
"Logging": "/var/log/nginx"

Using the Amazon ECS platform branch
This topic covers both the Amazon ECS on Amazon Linux 2 platform branch and the platform

branch it replaces, Multi-container Docker on AL1 (also ECS managed). Unless otherwise noted, all
of the information in this topic applies to both platform branches.

ECS managed platform branch 110

AWS Elastic Beanstalk Developer Guide

® Note

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired.

Migration from Multi-container Docker on AL1

If you're presently using the retired Multi-container Docker running on AL1 platform branch, you
can migrate to the latest ECS Running on AL2023 platform branch. The latest platform branch
supports all of the features from the discontinued platform branch. No changes to the source code
are required. For more information, see Migrating Multi-container Docker running on Amazon Linux
to ECS on Amazon Linux 2023.

Topics

» ECS managed Docker platform

o Dockerrun.aws.json file

» Docker images

« Container instance role

« Amazon ECS resources created by Elastic Beanstalk

« Using multiple Elastic Load Balancing listeners

» Failed container deployments

« ECS managed Docker configuration

« ECS managed Docker environments with the Elastic Beanstalk console

« Migrating Multi-container Docker running on Amazon Linux to ECS on Amazon Linux 2023

» (Legacy) Migrating to the Docker running on Amazon Linux 2 platform branch from Multi-

container Docker running on Amazon Linux

ECS managed Docker platform

Elastic Beanstalk uses Amazon Elastic Container Service (Amazon ECS) to coordinate container
deployments to ECS managed Docker environments. Amazon ECS provides tools to manage a
cluster of instances running Docker containers. Elastic Beanstalk takes care of Amazon ECS tasks
including cluster creation, task definition and execution. Each of the instances in the environment
run the same set of containers, which are defined in a Dockerrun.aws. json v2 file. In order to

ECS managed platform branch 111

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

get the most out of Docker, Elastic Beanstalk lets you create an environment where your Amazon
EC2 instances run multiple Docker containers side by side.

The following diagram shows an example Elastic Beanstalk environment configured with three
Docker containers running on each Amazon EC2 instance in an Auto Scaling group:

e mmm s b S S S s s s -~
f]
(T N - N |
| £ Task 1-1 o e Task 1-2]
appl.elasticheanstalk.com:80 | | I
L 80 Caontainer 1 Container 2 ‘ Container 1 ‘ Container 2 |
\._,./ | 20007 Container 3 Container 3 I
Elastic Load | \ | | L N
i Balancin - . : -
appl.elasticbeanstalk.com:2000 | A | g b |
i \‘_ Instance 1 _/ K Instance 2 /
\ Auto Scaling Group / ECS Cluster J
Elastic Beanstalk Environment /_,J

(® Note

Elastic Beanstalk offers extensibility features for all of its platforms that you can use
to customize the deployment and running of your applications. For the ECS running on
Amazon Linux 2 platform branch, the instance deployment workflow implementation
of these features varies from the other platforms. For more information, see Instance
deployment workflow for ECS running on Amazon Linux 2 and later.

Dockerrxun.aws. json file

Container instances—Amazon EC2 instances running ECS managed Docker in an Elastic Beanstalk
environment—require a configuration file named Dockerrun. aws. json. This file is specific to
Elastic Beanstalk and can be used alone or combined with source code and content in a source
bundle to create an environment on a Docker platform.

ECS managed platform branch 112

AWS Elastic Beanstalk Developer Guide

® Note

Version 1 of the Dockerrun.aws. json format is used to launch a single Docker container
to an Elastic Beanstalk environment running on Amazon Linux AMI, (the version that
precedes Amazon Linux 2). The environment is based on the Docker running on 64bit
Amazon Linux platform branch, which will be retired on July 18, 2022 . To learn more
about the Dockerrun.aws. json v1 format, see Docker platform Configuration - without
Docker Compose.

The Version 2 format of the Dockerrun.aws. json adds support for multiple containers
per Amazon EC2 instance and can only be used with an ECS managed Docker platform. The
format differs significantly from the previous version.

See Dockerrun.aws. json v2 for details on the updated format and an example file.

Docker images

The ECS managed Docker platform for Elastic Beanstalk requires images to be prebuilt and stored
in a public or private online image repository.

(® Note

Building custom images during deployment with a Dockerfile is not supported by the
ECS managed Docker platform on Elastic Beanstalk. Build your images and deploy them to
an online repository before creating an Elastic Beanstalk environment.

Specify images by name in Dockerrun.aws. json v2. Note these conventions:

« Images in official repositories on Docker Hub use a single name (for example, ubuntu or mongo).

« Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent).

« Images in other online registries are qualified further by a domain name (for example, quay.io/
assemblyline/ubuntu).

To configure Elastic Beanstalk to authenticate to a private repository, include the
authentication parameterin your Dockerrun.aws. json v2 file.

ECS managed platform branch 113

AWS Elastic Beanstalk Developer Guide

Container instance role

Elastic Beanstalk uses an Amazon ECS-optimized AMI with an Amazon ECS container agent that
runs in a Docker container. The agent communicates with Amazon ECS to coordinate container
deployments. In order to communicate with Amazon ECS, each Amazon EC2 instance must have
the corresponding permissions in IAM. These permissions are attached to the default instance
profile when you create an environment in the Elastic Beanstalk console:

"Version": "2012-10-17",
"Statement": [
{
"Sid": "ECSAccess",
"Effect": "Allow",
"Action": [
"ecs:Poll",
"ecs:StartTask",
"ecs:StopTask",
"ecs:DiscoverPollEndpoint",
"ecs:StartTelemetrySession",
"ecs:RegisterContainerInstance",
"ecs:DeregisterContainerInstance",
"ecs:DescribeContainerInstances",
"ecs:Submit*"

]I

"Resource": "*"

If you create your own instance profile, you can attach the
AWSElasticBeanstalkMulticontainerDocker managed policy to make sure the permissions
stay up-to-date. For instructions on creating policies and roles in 1AM, see Creating IAM Roles in
the IAM User Guide.

Amazon ECS resources created by Elastic Beanstalk

When you create an environment using the ECS managed Docker platform, Elastic Beanstalk
automatically creates and configures several Amazon Elastic Container Service resources while
building the environment. In doing so, it creates the necessary containers on each Amazon EC2
instance.

ECS managed platform branch 114

http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-creatingrole.html

AWS Elastic Beanstalk Developer Guide

Amazon ECS Cluster — Container instances in Amazon ECS are organized into clusters. When
used with Elastic Beanstalk, one cluster is always created for each ECS managed Docker
environment.

Amazon ECS Task Definition - Elastic Beanstalk uses the Dockerrun.aws. json v2 in your
project to generate the Amazon ECS task definition that is used to configure container instances
in the environment.

Amazon ECS Task - Elastic Beanstalk communicates with Amazon ECS to run a task on every
instance in the environment to coordinate container deployment. In a scalable environment,
Elastic Beanstalk initiates a new task whenever an instance is added to the cluster. In rare cases
you may have to increase the amount of space reserved for containers and images. Learn more in
the Configuring Docker environments section.

Amazon ECS Container Agent — The agent runs in a Docker container on the instances in your
environment. The agent polls the Amazon ECS service and waits for a task to run.

Amazon ECS Data Volumes - Elastic Beanstalk inserts volume definitions (in addition to the
volumes that you define in Dockerrun. aws. json v2 into the task definition to facilitate log
collection.

Elastic Beanstalk creates log volumes on the container instance, one for each container, at /var/
log/containers/containername. These volumes are named awseb-logs-containername
and are provided for containers to mount. See Container definition format for details on how to
mount them.

Using multiple Elastic Load Balancing listeners

You can configure multiple Elastic Load Balancing listeners on a ECS managed Docker environment

in order to support inbound traffic for proxies or other services that don't run on the default HTTP
port.

Create a .ebextensions folder in your source bundle and add a file with a . configfile

extension. The following example shows a configuration file that creates an Elastic Load Balancing
listener on port 8080.

.ebextensions/elb-listener.config

option_settings:

aws:elb:1listener:8080:
ListenerProtocol: HTTP
InstanceProtocol: HTTP

ECS managed platform branch 115

AWS Elastic Beanstalk Developer Guide

InstancePort: 8080

If your environment is running in a custom Amazon Virtual Private Cloud (Amazon VPC) that
you created, Elastic Beanstalk takes care of the rest. In a default VPC, you need to configure your
instance's security group to allow ingress from the load balancer. Add a second configuration file
that adds an ingress rule to the security group:

.ebextensions/elb-ingress.config

Resources:
port8080SecurityGroupIlngress:
Type: AWS::EC2::SecurityGroupIngress
Properties:
GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
IpProtocol: tcp
ToPort: 8080
FromPort: 8080
SourceSecurityGroupName: { "Fn::GetAtt": ["AWSEBLoadBalancer",
"SourceSecurityGroup.GroupName"] }

For more information on the configuration file format, see Adding and customizing Elastic
Beanstalk environment resources and Option settings.

In addition to adding a listener to the Elastic Load Balancing configuration and opening a port
in the security group, you need to map the port on the host instance to a port on the Docker
container in the containerDefinitions section of the Dockerrun.aws. json v2 file. The
following excerpt shows an example:

"portMappings": [
{
"hostPort": 8080,
"containerPort": 8080

See Dockerrun.aws. json v2 for details on the Dockerrun.aws. json v2 file format.

Failed container deployments

If an Amazon ECS task fails, one or more containers in your Elastic Beanstalk environment will not
start. Elastic Beanstalk does not roll back multi-container environments due to a failed Amazon

ECS managed platform branch 116

https://docs.aws.amazon.com/vpc/latest/userguide/

AWS Elastic Beanstalk Developer Guide

ECS task. If a container fails to start in your environment, redeploy the current version or a previous
working version from the Elastic Beanstalk console.

To deploy an existing version

1. Open the Elastic Beanstalk console in your environment's region.
2. Click Actions to the right of your application name and then click View application versions.

3. Select a version of your application and click Deploy.

ECS managed Docker configuration

Dockerrun.aws. json is an Elastic Beanstalk configuration file that describes how to deploy a
set of Docker containers hosted in an ECS cluster in an Elastic Beanstalk environment. The Elastic
Beanstalk platform creates an ECS task definition, which includes an ECS container definition. These
definitions are described in the Dockerrun.aws. json configuration file.

The container definition in the Dockerrun. aws. json file describes the containers to deploy to
each Amazon EC2 instance in the ECS cluster. In this case an Amazon EC2 instance is also referred
to as a host container instance, because it hosts the Docker containers. The configuration file also
describes the data volumes to create on the host container instance for the Docker containers

to mount. For more information and a diagram of the components in an ECS managed Docker
environment on Elastic Beanstalk, see the ECS managed Docker platform earlier in this chapter.

A Dockerrun.aws. json file can be used on its own or zipped up with additional source code in a
single archive. Source code that is archived with a Dockerrun. aws. json is deployed to Amazon
EC2 container instances and accessible in the /var/app/current/ directory.

Topics

Dockerrun.aws.json v2

Volume format

Container definition format

Authentication format — using images from a private repository

Example Dockerrun.aws.json v2

Dockerrun.aws.jsonv2

The Dockerrun.aws. json file includes the following sections:

ECS managed platform branch 117

AWS Elastic Beanstalk Developer Guide

AWSEBDockerrunVersion

Specifies the version number as the value 2 for ECS managed Docker environments.

volumes

Creates volumes from folders in the Amazon EC2 container instance, or from your source
bundle (deployed to /var/app/current). Mount these volumes to paths within your Docker
containers using mountPoints in the containerDefinitions section.

containerDefinitions

An array of container definitions.

authentication (optional)

The location in Amazon S3 of a .dockexrcfg file that contains authentication data for a private
repository.

The containerDefinitions and volumes sections of Dockerrun.aws. json use the same formatting
as the corresponding sections of an Amazon ECS task definition file. For more information about
the task definition format and a full list of task definition parameters, see Amazon ECS task

definitions in the Amazon Elastic Container Service Developer Guide.
Volume format

The volume parameter creates volumes from either folders in the Amazon EC2 container instance,
or from your source bundle (deployed to /var/app/current).

Volumes are specified in the following format:

"volumes": [

{
"name": "volumename",
"host": {
"sourcePath": "/path/on/host/instance"
}
}

1,

Mount these volumes to paths within your Docker containers using mountPoints in the container
definition.

ECS managed platform branch 118

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_defintions.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_defintions.html

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk configures additional volumes for logs, one for each container. These should be
mounted by your Docker containers in order to write logs to the host instance.

For more details, see the mountPoints field in the Container definition format section that
follows.

Container definition format

The following examples show a subset of parameters that are commonly used in the
containerDefinitions section. More optional parameters are available.

The Beanstalk platform creates an ECS task definition, which includes an ECS container definition.
Beanstalk supports a sub-set of parameters for the ECS container definition. For more information,
see Container definitions in the Amazon Elastic Container Service Developer Guide.

A Dockerrun.aws. json file contains an array of one or more container definition objects with
the following fields:

name

The name of the container. See Standard Container Definition Parameters for information

about the maximum length and allowed characters.

image
The name of a Docker image in an online Docker repository from which you're building a Docker
container. Note these conventions:

» Images in official repositories on Docker Hub use a single name (for example, ubuntu or
mongo).

» Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent.

« Images in other online repositories are qualified further by a domain name (for example,
quay.io/assemblyline/ubuntu).

environment
An array of environment variables to pass to the container.

For example, the following entry defines an environment variable with the name Container
and the value PHP:

ECS managed platform branch 119

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definitions
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#standard_container_definition_params

AWS Elastic Beanstalk Developer Guide

"environment": [

{
"name": "Container",
"value": "PHP"
}
1,
essential

True if the task should stop if the container fails. Nonessential containers can finish or crash
without affecting the rest of the containers on the instance.

memory

Amount of memory on the container instance to reserve for the container. Specify a non-
zero integer for one or both of the memory or memoryReservation parameters in container
definitions.

memoryReservation

The soft limit (in MiB) of memory to reserve for the container. Specify a non-zero integer for
one or both of the memory or memoryReservation parameters in container definitions.

mountPoints

Volumes from the Amazon EC2 container instance to mount, and the location on the Docker
container file system at which to mount them. When you mount volumes that contain
application content, your container can read the data you upload in your source bundle. When
you mount log volumes for writing log data, Elastic Beanstalk can gather log data from these
volumes.

Elastic Beanstalk creates log volumes on the container instance, one for each Docker
container, at /var/log/containers/containername. These volumes are named awseb-
logs-containername and should be mounted to the location within the container file
structure where logs are written.

For example, the following mount point maps the nginx log location in the container to the
Elastic Beanstalk—-generated volume for the nginx-proxy container.

"sourceVolume": "awseb-logs-nginx-proxy",
"containerPath": "/var/log/nginx"

ECS managed platform branch 120

AWS Elastic Beanstalk Developer Guide

}

portMappings

Maps network ports on the container to ports on the host.

links

List of containers to link to. Linked containers can discover each other and communicate
securely.

volumesFrom

Mount all of the volumes from a different container. For example, to mount volumes from a
container named web:

"volumesFrom": [

{

"sourceContainer": "web"

Authentication format - using images from a private repository

The authentication section contains authentication data for a private repository. This entry is
optional.

Add the information about the Amazon S3 bucket that contains the authentication file in

the authentication parameter of the Dockerrun.aws. json file. Make sure that the
authentication parameter contains a valid Amazon S3 bucket and key. The Amazon S3 bucket
must be hosted in the same region as the environment that is using it. Elastic Beanstalk will not
download files from Amazon S3 buckets hosted in other regions.

Uses the following format:

"authentication": {
"bucket": "DOC-EXAMPLE-BUCKET",
"key": "mydockercfg"
},

For information about generating and uploading the authentication file, see Using images from a
private repository in the Environment configuration topic of this chapter.

ECS managed platform branch 121

AWS Elastic Beanstalk Developer Guide

Example Dockerrun.aws.json v2

The following snippet is an example that illustrates the syntax of the Dockerrun.aws. json file
for an instance with two containers.

"AWSEBDockerrunVersion": 2,
"volumes": [

{
"name": "php-app",
"host": {
"sourcePath": "/var/app/current/php-app"
}
},
{
"name": "nginx-proxy-conf",
"host": {
"sourcePath": "/var/app/current/proxy/conf.d"
}
}
1,
"containerDefinitions": [
{
"name": "php-app",
"image": "php:fpm",
"environment": [
{
"name": "Container",
"value": "PHP"
}
1,
"essential": true,
"memory": 128,
"mountPoints": [
{
"sourceVolume": "php-app",
"containerPath": "/var/www/html",
"readOnly": true
}
]
I
{
"name": "nginx-proxy",
"image": "nginx",

ECS managed platform branch 122

AWS Elastic Beanstalk Developer Guide

"essential": true,
"memory": 128,
"portMappings": [

{
"hostPort": 80,
"containerPort": 80
}
1,
"links": [
"php-app"
1,
"mountPoints": [
{
"sourceVolume": "php-app",
"containerPath": "/var/www/html",
"readOnly": true
},
{
"sourceVolume": "nginx-proxy-conf",
"containerPath": "/etc/nginx/conf.d",
"readOnly": true
.
{
"sourceVolume": "awseb-logs-nginx-proxy",
"containerPath": "/var/log/nginx"
}
]

ECS managed Docker environments with the Elastic Beanstalk console

You can launch a cluster of multi-container instances in a single-instance or scalable Elastic
Beanstalk environment using the Elastic Beanstalk console. This tutorial details container
configuration and source code preparation for an environment that uses two containers.

The containers, a PHP application and an nginx proxy, run side by side on each of the Amazon
Elastic Compute Cloud (Amazon EC2) instances in an Elastic Beanstalk environment. After creating
the environment and verifying that the applications are running, you'll connect to a container
instance to see how it all fits together.

Sections

ECS managed platform branch 123

AWS Elastic Beanstalk Developer Guide

Define ECS managed Docker containers

Add content

Deploy to Elastic Beanstalk

Connect to a container instance

Inspect the Amazon ECS container agent

Define ECS managed Docker containers

The first step in creating a new Docker environment is to create a directory for your application
data. This folder can be located anywhere on your local machine and have any name you choose. In
addition to a container configuration file, this folder will contain the content that you will upload
to Elastic Beanstalk and deploy to your environment.

® Note

All of the code for this tutorial is available in the awslabs repository on GitHub at https://
github.com/awslabs/eb-docker-nginx-proxy.

The file that Elastic Beanstalk uses to configure the containers on an Amazon EC2 instance is a
JSON-formatted text file named Dockerrun. aws. json. Create a text file with this name at the
root of your application and add the following text:

{
"AWSEBDockerrunVersion": 2,
"volumes": [
{
"name": "php-app",
"host": {
"sourcePath": "/var/app/current/php-app"
}
.
{
"name": "nginx-proxy-conf",
"host": {
"sourcePath": "/var/app/current/proxy/conf.d"
}
}
1,

ECS managed platform branch 124

https://github.com/awslabs/eb-docker-nginx-proxy
https://github.com/awslabs/eb-docker-nginx-proxy

AWS Elastic Beanstalk

Developer Guide

"containerDefinitions": [

{

"name": "php-app",
"image": "php:fpm",
"essential": true,
"memory": 128,
"mountPoints": [

{

"sourceVolume": "php-app",
"containerPath": "/var/www/html",
"readOnly": true

"name": "nginx-proxy",

"image": "nginx",
"essential": true,
"memory": 128,

"portMappings": [

{
"hostPort": 80,
"containerPort": 80
}
1,
"links": [
"php-app"
1,
"mountPoints": [
{
"sourceVolume": "php-app",
"containerPath": "/var/www/html",
"readOnly": true
1,
{
"sourceVolume": "nginx-proxy-conf",
"containerPath": "/etc/nginx/conf.d",
"readOnly": true
1,
{
"sourceVolume": "awseb-logs-nginx-proxy",
"containerPath": "/var/log/nginx"
}

ECS managed platform branch

125

AWS Elastic Beanstalk Developer Guide

}

This example configuration defines two containers, a PHP web site with an nginx proxy in front of
it. These two containers will run side by side in Docker containers on each instance in your Elastic
Beanstalk environment, accessing shared content (the content of the website) from volumes on
the host instance, which are also defined in this file. The containers themselves are created from
images hosted in official repositories on Docker Hub. The resulting environment looks like the

following:
&

B e, -
[y II
I f/’_ \\. { |
. i I
| Task 1-1 ' [Task 1-2 i
' i
appl.elasticbeanstalk.com | ! 1 1 Nginx PHP-FPM Nginx PHP-FPM .
| W . - |
Elastic Load | 1|
Balancing L V '-\ J |
I — - . i
r Inst 1
| _ nstance J '\ Instance 2 / I
\ _ Auto Scaling Group [/ ECS Cluster -

Elastic Beanstalk Environment

The volumes defined in the configuration correspond to the content that you will create next and
upload as part of your application source bundle. The containers access content on the host by
mounting volumes in the mountPoints section of the container definitions.

For more information on the format of Dockerrun.aws. json and its parameters, see Container
definition format.

Add content

Next you will add some content for your PHP site to display to visitors, and a configuration file for
the nginx proxy.

php-app/index.php

<hl>Hello World!!!</hl1>

ECS managed platform branch 126

AWS Elastic Beanstalk Developer Guide

<h3>PHP Version <pre><?= phpversion()?></pre></h3>

php-app/static.html

<hl>Hello World!</hl1>
<h3>This is a static HTML page.</h3>

proxy/conf.d/default.conf

server {
listen 80;
server_name localhost;
root /var/www/html;

index index.php;

location ~ [~/I\.php(/]$) {
fastcgi_split_path_info A(.+?\.php)(/.*)$;
if (!-f $document_root$fastcgi_script_name) {
return 404;

include fastcgi_params;

fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
fastcgi_param PATH_INFO $fastcgi_path_info;

fastcgi_param PATH_TRANSLATED $document_root$fastcgi_path_info;

fastcgi_pass php-app:9000;
fastcgi_index index.php;

Deploy to Elastic Beanstalk

Your application folder now contains the following files:

Dockerrun.aws.json
php-app
index.php
static.html
proxy

conf.d

ECS managed platform branch 127

AWS Elastic Beanstalk Developer Guide

default.conf

This is all you need to create the Elastic Beanstalk environment. Create a . zip archive of the above
files and folders (not including the top-level project folder). To create the archive in Windows
explorer, select the contents of the project folder, right-click, select Send To, and then click
Compressed (zipped) Folder

(® Note

For information on the required file structure and instructions for creating archives in other
environments, see Create an application source bundle

Next, upload the source bundle to Elastic Beanstalk and create your environment. For Platform,
select Docker. For Platform branch, select ECS running on 64bit Amazon Linux 2.

To launch an environment (console)

1. Open the Elastic Beanstalk console with this preconfigured link:
console.aws.amazon.com/elasticbeanstalk/home#/newApplication?

applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application, or the Docker platform for container-based applications.

For Application code, choose Upload your code.
Choose Local file, choose Choose file, and then open the source bundle.

Choose Review and launch.

o v A~ W

Review the available settings, and then choose Create app.

The Elastic Beanstalk console redirects you to the management dashboard for your new
environment. This screen shows the health status of the environment and events output by the
Elastic Beanstalk service. When the status is Green, click the URL next to the environment name to
see your new website.

Connect to a container instance

Next you will connect to an Amazon EC2 instance in your Elastic Beanstalk environment to see
some of the moving parts in action.

ECS managed platform branch 128

https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

AWS Elastic Beanstalk Developer Guide

The easiest way to connect to an instance in your environment is by using the EB CLI. To use it,
install the EB CLI, if you haven't done so already. You'll also need to configure your environment
with an Amazon EC2 SSH key pair. Use either the console's security configuration page or the EB
CLI eb init command to do that. To connect to an environment instance, use the EB CLI eb ssh
command.

Now that your connected to an Amazon EC2 instance hosting your docker containers, you can see
how things are set up. Run 1s on /var/app/current:

[ec2-user@ip-10-0-0-117 ~]1$ 1s /vaxr/app/current
Dockerrun.aws.json php-app proxy

This directory contains the files from the source bundle that you uploaded to Elastic Beanstalk
during environment creation.

[ec2-user@ip-10-0-0-117 ~]1$ 1s /var/log/containers
nginx-proxy nginx-proxy-4ba868dbb7f3-stdouterr.log
php-app php-app-dcc3b3c8522c-stdouterr.log rotated

This is where logs are created on the container instance and collected by Elastic Beanstalk. Elastic
Beanstalk creates a volume in this directory for each container, which you mount to the container
location where logs are written.

You can also take a look at Docker to see the running containers with docker ps.

[ec2-user@ip-10-0-0-117 ~]1$ sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

4ba868dbb7f3 nginx "/docker-entrypoint..." 4 minutes ago
Up 4 minutes 0.0.0.0:80->80/tcp, :::80->80/tcp ecs-awseb-Tutorials-env-

dc2aywfjwg-1-nginx-proxy-acca84ef87c4acal5400

dcc3b3c8522c php:fpm "docker-php-entrypoi.." 4 minutes ago
Up 4 minutes 9000/tcp ecs-awseb-Tutorials-env-

dc2aywfjwg-1-php-app-b8d38ae288b7b09e8101

d9367c0Obaad6 amazon/amazon-ecs-agent:latest "/agent" 5 minutes ago
Up 5 minutes (healthy) ecs-agent

This shows the two running containers that you deployed, as well as the Amazon ECS container
agent that coordinated the deployment.

ECS managed platform branch 129

AWS Elastic Beanstalk Developer Guide

Inspect the Amazon ECS container agent

Amazon EC2 instances in a ECS managed Docker environment on Elastic Beanstalk run an

agent process in a Docker container. This agent connects to the Amazon ECS service in order to
coordinate container deployments. These deployments run as tasks in Amazon ECS, which are
configured in task definition files. Elastic Beanstalk creates these task definition files based on the
Dockerrun.aws. json that you upload in a source bundle.

Check the status of the container agent with an HTTP get request to http://localhost:51678/
vl/metadata:

[ec2-user@ip-10-0-0-117 ~1$ curl http://localhost:51678/v1l/metadata
{
"Cluster":"awseb-Tutorials-env-dc2aywfjwg",
"ContainerInstanceArn":"arn:aws:ecs:us-west-2:123456789012:container-instance/awseb-
Tutorials-env-dc2aywfjwg/db7be5215cd74658aacfcb292a6b944f",
"Version":"Amazon ECS Agent - v1.57.1 (089b7b64)"

This structure shows the name of the Amazon ECS cluster, and the ARN (Amazon Resource Name)
of the cluster instance (the Amazon EC2 instance that you are connected to).

For more information, make an HTTP get request to http://localhost:51678/v1/tasks:

[ec2-user@ip-10-0-0-117 ~]1$ curl http://localhost:51678/v1/tasks
{
"Tasks": [
{
"Arn":"arn:aws:ecs:us-west-2:123456789012:task/awseb-Tutorials-env-dc2aywfjwg/
bbde7ebeld4e4537ab1336340150a6d6",
"DesiredStatus":"RUNNING",
"KnownStatus":"RUNNING",
"Family":"awseb-Tutorials-env-dc2aywfjwg",
"Version":"1",
"Containers":[

{

"DockerId":"dcc3b3c8522cb9510b7359689163814c0f1453b36b237204a3fd7a0@b445d2eab",
"DockerName" :"ecs-awseb-Tutorials-env-dc2aywfjwg-1-php-app-
b8d38ae288b7b09%e8101",
"Name": "php-app",
"Volumes": [

ECS managed platform branch 130

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Elastic Beanstalk

Developer Guide

"Source":"/var/app/current/php-app",
"Destination":"/var/www/html"

"DockerId":"4ba868dbb7f3fb3328b8afeb2cb6cf@3e3cblcdd5b109e470f767d50b2c3e303",
"DockerName" :"ecs-awseb-Tutorials-env-dc2aywfjwg-1-nginx-proxy-
acca84ef87c4acal5400",
"Name":"nginx-proxy",
"Ports":[
{

"ContainerPort":80,
"Protocol":"tcp",
"HostPort":80

I

{

"ContainerPort":80,
"Protocol":"tcp",
"HostPort":80

}

1,
"Volumes": [

{

"Source":"/var/app/current/php-app",
"Destination":"/var/www/html"

},

{
"Source":"/var/log/containers/nginx-proxy",
"Destination":"/var/log/nginx"

},

{
"Source":"/var/app/current/proxy/conf.d",
"Destination":"/etc/nginx/conf.d"

}

]

ECS managed platform branch

131

AWS Elastic Beanstalk Developer Guide

This structure describes the task that is run to deploy the two docker containers from this tutorial's
example project. The following information is displayed:
« KnownStatus — The RUNNING status indicates that the containers are still active.

« Family — The name of the task definition that Elastic Beanstalk created from
Dockerrun.aws. json.

« Version — The version of the task definition. This is incremented each time the task definition file
is updated.

« Containers - Information about the containers running on the instance.

Even more information is available from the Amazon ECS service itself, which you can call using
the AWS Command Line Interface. For instructions on using the AWS CLI with Amazon ECS, and
information about Amazon ECS in general, see the Amazon ECS User Guide.

Migrating Multi-container Docker running on Amazon Linux to ECS on Amazon
Linux 2023

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired. This includes the platform branch Multi-container Docker running on
64bit Amazon Linux. This topic guides you in the migration of your applications from this retired
platform branch to ECS Running on 64bit AL2023. This target platform branch is current and
supported.

Like the previous Multi-container Docker AL1 branch, the newer ECS AL2023 platform branch
uses Amazon ECS to coordinate deployment of multiple Docker containers to an Amazon ECS
cluster in an Elastic Beanstalk environment. The new ECS AL2023 platform branch supports
all of the features in the previous Multi-container Docker AL1 platform branch. Also, the same
Dockerrun.aws. json v2 file is supported.

Sections

» Migrate with the Elastic Beanstalk console

» Migrate with the AWS CLI

ECS managed platform branch 132

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_GetStarted.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

Migrate with the Elastic Beanstalk console

To migrate using the Elastic Beanstalk console deploy the same source code to a new environment
that's based on the ECS Running on AL2023 platform branch. No changes to the source code are
required.

To migrate to the ECS Running on Amazon Linux 2023 platform branch

1. Using the application source that's already deployed to the old environment, create an
application source bundle. You can use the same application source bundle and the same
Dockerrun.aws. json v2 file.

2. Create a new environment using the ECS Running on Amazon Linux 2023 platform branch.
Use the source bundle from the prior step for Application code. For more detailed steps, see
Deploy to Elastic Beanstalk in the ECS managed Docker tutorial earlier in this chapter.

Migrate with the AWS CLI

You also have the option to use the AWS Command Line Interface (AWS CLI) to migrate your
existing Multi-container Docker Amazon Linux Docker environment to the newer ECS AL2023
platform branch. In this case you don't need to create a new environment or redeploy your source
code. You only need to run the AWS CLI update-environment command. It will perform a platform
update to migrate your existing environment to the ECS Amazon Linux 2023 platform branch.

Use the following syntax to migrate your environment to the new platform branch.

aws elasticbeanstalk update-environment \

--environment-name my-env \

--solution-stack-name "64bit Amazon Linux 2023 version running ECS" \
--region my-region

The following is an example of the command to migrate environment beta-101 to version 3.0.0 of
the ECS Amazon Linux 2023 platform branch in the us-east-1 region.

aws elasticbeanstalk update-environment \

--environment-name beta-101 \

--solution-stack-name "64bit Amazon Linux 2023 v4.0.0 running ECS" \
--region us-east-1

The solution-stack-name parameter provides the platform branch and its version. Use the
most recent platform branch version by specifying the proper solution stack name. The version of

ECS managed platform branch 133

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/update-environment.html

AWS Elastic Beanstalk Developer Guide

every platform branch is included in the solution stack name, as shown in the above example. For
a list of the most current solution stacks for the Docker platform, see Supported platforms in the
AWS Elastic Beanstalk Platforms guide.

(® Note

The list-available-solution-stacks command provides a list of the platform versions
available for your account in an AWS Region.

aws elasticbeanstalk list-available-solution-stacks --region us-east-1 --query
SolutionStacks

To learn more about the AWS CLI, see the AWS Command Line Interface User Guide. For more
information about AWS CLI commands for Elastic Beanstalk, see the AWS CLI Command Reference
for Elastic Beanstalk.

(Legacy) Migrating to the Docker running on Amazon Linux 2 platform branch
from Multi-container Docker running on Amazon Linux

Prior to the release of the ECS Running on 64bit Amazon Linux 2 platform branch, Elastic Beanstalk
offered an alternate migration path to Amazon Linux 2 for customers with environments based

on the Multi-container Docker running on 64bit Amazon Linux platform branch. This topic
describes that migration path, and remains in this document as a reference for any customers that
completed that migration path.

We now recommend that customers with environments based on the Multi-container Docker
running on 64bit Amazon Linux platform branch migrate to the ECS Running on 64bit Amazon Linux
2 platform branch. Unlike the alternate migration path, this approach continues to use Amazon
ECS to coordinate container deployments to ECS managed Docker environments. This aspect
allows a more straightforward approach. No changes to the source code are required, and the

same Dockerrun.aws. json v2 is supported. For more information, see Migrating Multi-container
Docker running on Amazon Linux to ECS on Amazon Linux 2023.

Legacy Migration from Multi-container Docker on Amazon Linux to the Docker Amazon Linux 2
platform branch

You can migrate your applications running on the Multi-container Docker platform on Amazon
Linux AMI to the Amazon Linux 2 Docker platform. The Multi-container Docker platform on

ECS managed platform branch 134

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.docker
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/list-available-solution-stacks.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/index.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/index.html

AWS Elastic Beanstalk Developer Guide

Amazon Linux AMI requires that you specify prebuilt application images to run as containers. After
migrating, you will no longer have this limitation, because the Amazon Linux 2 Docker platform
also allows Elastic Beanstalk to build your container images during deployment. Your applications
will continue to run in multi-container environments with the added benefits from the Docker
Compose tool.

Docker Compose is tool for defining and running multi-container Docker applications. To learn
more about Docker Compose and how to install it, see the Docker sites Overview of Docker

Compose and Install Docker Compose.

The docker-compose.yml file

The Docker Compose tool uses the docker-compose.yml file for configuration of your
application services. This file replaces your Dockerrun.aws.json v2 file in your application
project directory and application source bundle. You create the docker-compose.yml file
manually, and will find it helpful to reference your Dockerrun.aws. json v2 file for most of the
parameter values.

Below is an example of a docker-compose.yml file and the corresponding
Dockerrun.aws.json v2 file for the same application. For more information on the
docker-compose.yml file, see Compose file reference. For more information on the

Dockerrun.aws.json v2 file, see Dockerrun.aws. json v2.

docker-compose.yml Dockerrun.aws.json v2

version: '2.4' {
services: "AWSEBDockerrunVersion": 2,
php-app: "volumes": [
image: "php:fpm" {
volumes: "name": "php-app",
- "./php-app:/var/www/html:ro "host": {

- "${EB_LOG_BASE_DIR}/php-app

"sourcePath": "/var/app/
current/php-app"

:/var/log/sample-app" }
mem_limit: 128m 3},
environment: {
Container: PHP "name": "nginx-proxy-conf"
nginx-proxy: "host": {

ECS managed platform branch

135

https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/compose-file/

AWS Elastic Beanstalk

Developer Guide

docker-compose.yml

image: '"nginx"
ports:
- "80:80"
volumes:
- "./php-app:/var/www/html:ro

- "./proxy/conf.d:/etc/nginx/
conf.d:ro"
- "${EB_LOG_BASE_DIR}/nginx-p
roxy:/var/log/nginx"
mem_limit: 128m
links:

- php-app

Dockerrun.aws.json v2

"sourcePath": "/var/app/
current/proxy/conf.d"

}
}
1,
"containerDefinitions": [
{
"name": "php-app",
"image": "php:fpm",
"environment": [
{
"name": "Container",
"value": "PHP"
}
1,
"essential": true,
"memory": 128,
"mountPoints": [
{
"sourceVolume": "php-app"
"containerPath": "/var/www
/html",
"readOnly": true
}
1
1,
{
"name": "nginx-proxy",
"image": '"nginx",

"essential": true,
"memory": 128,
"portMappings": [

{
"hostPort": 80,
"containerPort": 80
}
1,
"links": [
"php-app"
1,

"mountPoints": [

ECS managed platform branch

136

AWS Elastic Beanstalk

Developer Guide

docker-compose.yml

Additional Migration Considerations

Dockerrun.aws.json v2

{
"sourceVolume": "php-app"
"containerPath": "/var/www
/html",
"readOnly": true
1,
{
"sourceVolume": "nginx-pr
oxy-conf",
"containerPath": "/etc/ngi

nx/conf.d",
"readOnly": true
3
{

"sourceVolume": "awseb-lo
gs-nginx-proxy",

"containerPath": "/var/log
/nginx"

The Docker Amazon Linux 2 platform and Multi-container Docker Amazon Linux AMI platform

implement environment properties differently. These two platforms also have different log

directories that Elastic Beanstalk creates for each of their containers. After you migrate from the

Amazon Linux AMI Multi-container Docker platform, you will need to be aware of these different

implementations for your new Amazon Linux 2 Docker platform environment.

ECS managed platform branch

137

AWS Elastic Beanstalk

Developer Guide

Area Docker platform on Amazon Linux 2
with Docker Compose

Environme In order for your containers to access
nt environment properties you must
properties add a reference to the .env file in
the docker-compose.yml file.
Elastic Beanstalk generates the . env
file, listing each of the properties
as environment variables. For more
information see Referencing environme

nt variables in containers.

Log For each container Elastic Beanstalk
directories creates a log directory called /var/
log/eb-docker/containe

rs/ <service name> (or ${EB_LOG_

BASE_DIR}/<service name>). For
more information see Docker container

Multi-container Docker platform on
Amazon Linux AMI

Elastic Beanstalk can directly pass
environment properties to the
container. Your code running in the
container can access these properties
as environment variables without any
additional configuration.

For each container, Elastic Beanstalk
creates a log directory called /var/
log/containers/ <containe
rname> . For more information see
mountPoints field in Container
definition format.

customized logging (Docker Compose).

Migration Steps

To migrate to the Amazon Linux 2 Docker platform

1. Create the docker-compose.yml file for your application, based on its existing

Dockerrun.aws.json v2 file. For more information see the above section The docker -

compose.yml file.

2. Inyour application project folder's root directory, replace the Dockerrun.aws.json v2 file

with the docker-compose.yml you just created.

Your directory structure should be as follows.

~/myApplication
| -- docker-compose.yml
| -- .ebextensions

| -- php-app

ECS managed platform branch

138

AWS Elastic Beanstalk Developer Guide

| -- proxy

3. Use the eb init command to configure your local directory for deployment to Elastic Beanstalk.

~/myApplication$ eb init -p docker application-name

4. Use the eb create command to create an environment and deploy your Docker image.

~/myApplication$ eb create environment-name

5. If your app is a web application, after your environment launches, use the eb open command
to view it in a web browser.

~/myApplication$ eb open environment-name

6. You can display the status of your newly created environment using the eb status command.

~/myApplication$ eb status environment-name

Preconfigured Docker containers (Amazon Linux AMI)

(@ Note

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired. For more information about migrating to a current and fully
supported Amazon Linux 2023 platform branch, see Migrating your Elastic Beanstalk Linux

application to Amazon Linux 2023 or Amazon Linux 2.

The Preconfigured Docker GlassFish platform branch that runs on the Amazon Linux AMI (AL1) is
no longer supported. To migrate your GlassFish application to a supported Amazon Linux 2023
platform, deploy GlassFish and your application code to an Amazon Linux 2023 Docker image. For
more information, see the following topic, the section called “Tutorial - GlassFish on Docker: path
to Amazon Linux 2023".

Preconfigured containers 139

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

Getting started with preconfigured Docker containers - on Amazon Linux AMI (preceding
Amazon Linux 2)

This section shows you how to develop an example application locally and then deploy your
application to Elastic Beanstalk with a preconfigured Docker container.

Set up your local development environment

For this walk-through we use a GlassFish example application.
To set up your environment

1. Create a new folder for the example application.

~$ mkdir eb-preconf-example
~$ cd eb-preconf-example

2. Download the example application code into the new folder.

~$ wget https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/docker-
glassfish-vl.zip

~$ unzip docker-glassfish-vl.zip
~$ rm docker-glassfish-vl.zip

Develop and test locally
To develop an example GlassFish application

1. Add aDockerfile to your application’s root folder. In the file, specify the AWS Elastic
Beanstalk Docker base image to be used to run your local preconfigured Docker container.
You'll later deploy your application to an Elastic Beanstalk Preconfigured Docker GlassFish
platform version. Choose the Docker base image that this platform version uses. To find out
the current Docker image of the platform version, see the Preconfigured Docker section of the
AWS Elastic Beanstalk Supported Platforms page in the AWS Elastic Beanstalk Platforms guide.

Example ~/Eb-preconf-example/Dockerfile

For Glassfish 5.0 Java 8
FROM amazon/aws-eb-glassfish:5.0-al-onbuild-2.11.1

Preconfigured containers 140

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.dockerpreconfig

AWS Elastic Beanstalk Developer Guide

For more information about using a Dockerfile, see Docker configuration.

2. Build the Docker image.

~/eb-preconf-example$ docker build -t my-app-image .

3. Run the Docker container from the image.

® Note

You must include the -p flag to map port 8080 on the container to the localhost port
3000. Elastic Beanstalk Docker containers always expose the application on port 8080
on the container. The -it flags run the image as an interactive process. The --rm flag
cleans up the container file system when the container exits. You can optionally include
the -d flag to run the image as a daemon.

$ docker run -it --rm -p 3000:8080 my-app-image

4. To view the example application, type the following URL into your web browser.

http://localhost:3000

Congratulations

Your first AWS Elastic Beanstalk Application is now ninning
on your own dedicated environment in the AWS Cloud

Preconfigured containers 141

AWS Elastic Beanstalk Developer Guide

Deploy to Elastic Beanstalk

After testing your application, you are ready to deploy it to Elastic Beanstalk.

To deploy your application to Elastic Beanstalk

1.

8.
9.

In your application's root folder, rename the Dockerfile to Dockerfile.local. This step

is required for Elastic Beanstalk to use the Dockerfile that contains the correct instructions
for Elastic Beanstalk to build a customized Docker image on each Amazon EC2 instance in your
Elastic Beanstalk environment.

(® Note

You do not need to perform this step if your Dockerfile includes instructions
that modify the platform version's base Docker image. You do not need to use a
Dockerfile at all if your Dockerfile includes only a FROM line to specify the
base image from which to build the container. In that situation, the Dockerfile is
redundant.

Create an application source bundle.

~/eb-preconf-example$ zip myapp.zip -r *

Open the Elastic Beanstalk console with this preconfigured link:
console.aws.amazon.com/elasticbeanstalk/home#/newApplication?

applicationName=tutorials&environmentType=LoadBalanced

For Platform, under Preconfigured - Docker, choose Glassfish.
For Application code, choose Upload your code, and then choose Upload.

Choose Local file, choose Browse, and then open the application source bundle you just
created.

Choose Upload.
Choose Review and launch.

Review the available settings, and then choose Create app.

10. When the environment is created, you can view the deployed application. Choose the

environment URL that is displayed at the top of the console dashboard.

Preconfigured containers 142

https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

AWS Elastic Beanstalk Developer Guide

Deploying a GlassFish application to the Docker platform: a migration path to
Amazon Linux 2023

The goal of this tutorial is to provide customers using the Preconfigured Docker GlassFish platform
(based on Amazon Linux AMI) with a migration path to Amazon Linux 2023. You can migrate your
GlassFish application to Amazon Linux 2023 by deploying GlassFish and your application code to
an Amazon Linux 2023 Docker image.

The tutorial walks you through using the AWS Elastic Beanstalk Docker platform to deploy an
application based on the Java EE GlassFish application server to an Elastic Beanstalk environment.

We demonstrate two approaches to building a Docker image:

« Simple - Provide your GlassFish application source code and let Elastic Beanstalk build and
run a Docker image as part of provisioning your environment. This is easy to set up, at a cost of
increased instance provisioning time.

« Advanced - Build a custom Docker image containing your application code and dependencies,
and provide it to Elastic Beanstalk to use in your environment. This approach is slightly more
involved, and decreases the provisioning time of instances in your environment.

Prerequisites

This tutorial assumes that you have some knowledge of basic Elastic Beanstalk operations, the
Elastic Beanstalk command line interface (EB CLI), and Docker. If you haven't already, follow
the instructions in Getting started using Elastic Beanstalk to launch your first Elastic Beanstalk

environment. This tutorial uses the EB CLI, but you can also create environments and upload
applications by using the Elastic Beanstalk console.

To follow this tutorial, you will also need the following Docker components:
« A working local installation of Docker. For more information, see Get Docker on the Docker
documentation website.

o Access to Docker Hub. You will need to create a Docker ID to access the Docker Hub. For more
information, see Share the application on the Docker documentation website.

To learn more about configuring Docker environments on Elastic Beanstalk platforms, see Docker

configuration in this same chapter.

Preconfigured containers 143

https://www.oracle.com/middleware/technologies/glassfish-server.html
https://docs.docker.com/install/
https://docs.docker.com/get-started/04_sharing_app/

AWS Elastic Beanstalk Developer Guide

Simple example: provide your application code

This is an easy way to deploy your GlassFish application. You provide your application source code

together with the Dockerfile included in this tutorial. Elastic Beanstalk builds a Docker image
that includes your application and the GlassFish software stack. Then Elastic Beanstalk runs the
image on your environment instances.

An issue with this approach is that Elastic Beanstalk builds the Docker image locally whenever it
creates an instance for your environment. The image build increases instance provisioning time.

This impact isn't limited to initial environment creation—it happens during scale-out actions too.

To launch an environment with an example GlassFish application

1. Download the example docker-glassfish-al2-v1.zip, and then expand the . zip file
into a directory in your development environment.

~$ curl https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/docker-
glassfish-al2-vl.zip --output docker-glassfish-al2-v1.zip

~$ mkdir glassfish-example

~$ cd glassfish-example

~/glassfish-example$ unzip ../docker-glassfish-al2-vl.zip

Your directory structure should be as follows.

~/glassfish-example
| -- Dockerfile
| -- Dockerrun.aws.json
| -- glassfish-start.sh
| -- index.jsp
| -- META-INF
| | -- LICENSE.txt
| |-- MANIFEST.MF
| “-- NOTICE.txt
| -- robots.txt
“-- WEB-INF
“-- web.xml

The following files are key to building and running a Docker container in your environment:

« Dockerfile - Provides instructions that Docker uses to build an image with your
application and required dependencies.

Preconfigured containers

144

AWS Elastic Beanstalk Developer Guide

e glassfish-start.sh - Ashell script that the Docker image runs to start your application.

» Dockerrun.aws. json - Provides a logging key, to include the GlassFish application server
log in log file requests. If you aren't interested in GlassFish logs, you can omit this file.

2. Configure your local directory for deployment to Elastic Beanstalk.

~/glassfish-example$ eb init -p docker glassfish-example

3. (Optional) Use the eb local run command to build and run your container locally.

~/glassfish-example$ eb local run --port 8080

(® Note

To learn more about the eb local command, see the section called “eb local”. The

command isn't supported on Windows. Alternatively, you can build and run your
container with the docker build and docker run commands. For more information, see
the Docker documentation.

4. (Optional) While your container is running, use the eb local open command to view your
application in a web browser. Alternatively, open http://localhost:8080/ in a web browser.

~/glassfish-example$ eb local open

5. Use the eb create command to create an environment and deploy your application.

~/glassfish-example$ eb create glassfish-example-env

6. After your environment launches, use the eb open command to view it in a web browser.

~/glassfish-example$ eb open

When you're done working with the example, terminate the environment and delete related
resources.

~/glassfish-example$ eb terminate --all

Preconfigured containers 145

https://docs.docker.com/
http://localhost:8080/

AWS Elastic Beanstalk Developer Guide

Advanced example: provide a prebuilt Docker image

This is a more advanced way to deploy your GlassFish application. Building on the first example,
you create a Docker image containing your application code and the GlassFish software stack,
and push it to Docker Hub. After you've done this one-time step, you can launch Elastic Beanstalk
environments based on your custom image.

When you launch an environment and provide your Docker image, instances in your environment
download and use this image directly and don't need to build a Docker image. Therefore, instance
provisioning time is decreased.

® Notes

» The following steps create a publicly available Docker image.

» You will use Docker commands from your local Docker installation, along with your
Docker Hub credentials. For more information, see the preceding Prerequisites section.

To launch an environment with a prebuilt GlassFish application Docker image

1. Download and expand the example docker-glassfish-al2-v1.zip asin the previous
simple example. If you've completed that example, you can use the directory you already have.

2. Build a Docker image and push it to Docker Hub. Enter your Docker ID for docker-id to sign
in to Docker Hub.

~/glassfish-example$ docker build -t docker-id/beanstalk-glassfish-example:latest .
~/glassfish-example$ docker push docker-id/beanstalk-glassfish-example:latest

(® Note

Before pushing your image, you might need to run docker login. You will be prompted
for your Docker Hub credentials if you run the command without parameters.

3. Create an additional directory.

~$ mkdir glassfish-prebuilt
~$ cd glassfish-prebuilt

Preconfigured containers 146

AWS Elastic Beanstalk

Developer Guide

4. Copy the following example into a file named Dockerrun.aws. json.

Example ~/glassfish-prebuilt/Dockerrun.aws.json

}

"AWSEBDockerrunVersion": "1",
"Image": {
"Name": "docker-username/beanstalk-glassfish-example"
},
"Ports": [
{
"ContainerPort": 8080,
"HostPort": 8080
}

1,
"Logging": "/usr/local/glassfish5/glassfish/domains/domainl/logs"

5. Configure your local directory for deployment to Elastic Beanstalk.

~/glassfish-prebuilt$ eb init -p docker glassfish-prebuilt$

6. (Optional) Use the eb local run command to run your container locally.

~/glassfish-prebuilt$ eb local run --port 8080

7. (Optional) While your container is running, use the eb local open command to view your

application in a web browser. Alternatively, open http://localhost:8080/ in a web browser.

~/glassfish-prebuilt$ eb local open

8. Use the eb create command to create an environment and deploy your Docker image.

~/glassfish-prebuilt$ eb create glassfish-prebuilt-env

9. After your environment launches, use the eb open command to view it in a web browser.

~/glassfish-prebuilt$ eb open

When you're done working with the example, terminate the environment and delete related

resources.

Preconfigured containers

147

http://localhost:8080/

AWS Elastic Beanstalk Developer Guide

~/glassfish-prebuilt$ eb terminate --all

Configuring Docker environments

There are several ways to configure the behavior of your Elastic Beanstalk Docker environment.

® Note

If your Elastic Beanstalk environment uses an Amazon Linux AMI Docker platform version
(preceding Amazon Linux 2), be sure to read the additional information in the section called
“Docker configuration on Amazon Linux AMI (preceding Amazon Linux 2)".

Sections

Configuring software in Docker environments

Referencing environment variables in containers

Using interpolate feature for environment variables (Docker Compose)

Generating logs for enhanced health reporting (Docker Compose)

Docker container customized logging (Docker Compose)

Docker images

Configuring managed updates for Docker environments

Docker configuration namespaces

Docker configuration on Amazon Linux AMI (preceding Amazon Linux 2)

Configuring software in Docker environments

You can use the Elastic Beanstalk console to configure the software running on your environment's
instances.

To configure your Docker environment in the Elastic Beanstalk console

1.
2.

Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Environment configuration 148

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

® Note

If you have many environments, use the search bar to filter the environment list.

In the navigation pane, choose Configuration.
In the Updates, monitoring, and logging configuration category, choose Edit.

Make necessary configuration changes.

A

To save the changes choose Apply at the bottom of the page.

For information about configuring software settings in any environment, see the section called

“Environment properties and software settings”. The following sections cover Docker specific
information.

Container options

The Container options section has platform-specific options. For Docker environments, it lets you
choose whether or not your environment includes the NGINX proxy server.

Environments with Docker Compose

If you manage your Docker environment with Docker Compose, Elastic Beanstalk assumes that you
run a proxy server as a container. Therefore it defaults to None for the Proxy server setting, and
Elastic Beanstalk does not provide an NGINX configuration.

® Note

Even if you select NGINX as a proxy server, this setting is ignored in an environment with
Docker Compose. The Proxy server setting still defaults to None.

Since the NGINX web server proxy is disabled for the Docker on Amazon Linux 2 platform with
Docker Compose, you must follow the instructions for generating logs for enhanced health
reporting. For more information, see Generating logs for enhanced health reporting (Docker

Compose).

Environment configuration 149

AWS Elastic Beanstalk Developer Guide

Environment properties and Environment Variables

The Environment properties section lets you specify environment configuration settings on
the Amazon Elastic Compute Cloud (Amazon EC2) instances that are running your application.
Environment properties are passed in as key-value pairs to the application. In a Docker
environment, Elastic Beanstalk passes environment properties to containers as environment
variables.

Your application code running in a container can refer to an environment variable by name and
read its value. The source code that reads these environment variables will vary by progamming
language. You can find instructions for reading environment variable values in the programming
languages that Elastic Beanstalk managed platforms support in the respective platform topic. For a
list of links to these topics, see the section called “Environment properties and software settings”.

Environments with Docker Compose

If you manage your Docker environment with Docker Compose, you must make some additional
configuration to retrieve the environment variables in the containers. In order for the executables
running in your container to access these environment variables, you must reference them in

the docker-compose.yml. For more information see Referencing environment variables in
containers.

Referencing environment variables in containers

If you are using the Docker Compose tool on the Amazon Linux 2 Docker platform, Elastic
Beanstalk generates a Docker Compose environment file called . env in the root directory of your
application project. This file stores the environment variables you configured for Elastic Beanstalk.

® Note

If you include a . env file in your application bundle, Elastic Beanstalk will not generate an
.env file.

In order for a container to reference the environment variables you define in Elastic Beanstalk, you
must follow one or both of these configuration approaches.

« Add the .env file generated by Elastic Beanstalk to the env_file configuration option in the
docker-compose.yml file.

Environment configuration 150

AWS Elastic Beanstalk Developer Guide

 Directly define the environment variables in the docker-compose.yml file.

The following files provide an example. The sample docker-compose.yml file demonstrates both
approaches.

« If you define environment properties DEBUG_LEVEL=1 and LOG_LEVEL=error, Elastic
Beanstalk generates the following . env file for you:

DEBUG_LEVEL=1
LOG_LEVEL=error

 In this docker-compose.yml file, the env_file configuration option points to the . env file,
and it also defines the environment variable DEBUG=1 directly in the docker-compose.yml file.

services:
web:
build: .
environment:
- DEBUG=1
env_file:
- .env

(® Notes

« If you set the same environment variable in both files, the variable defined in the
docker-compose.yml file has higher precedence than the variable defined in the .env
file.

» Be careful to not leave spaces between the equal sign (=) and the value assigned to your
variable in order to prevent spaces from being added to the string.

To learn more about environment variables in Docker Compose, see Environment variables in

Compose
Using interpolate feature for environment variables (Docker Compose)

Starting with the July 28, 2023 platform release, the Docker Amazon Linux 2 platform branch

offers the Docker Compose interpolation feature. With this feature, values in a Compose file can

Environment configuration 151

https://docs.docker.com/compose/environment-variables/
https://docs.docker.com/compose/environment-variables/
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2023-07-28-al2.html

AWS Elastic Beanstalk Developer Guide

be set by variables and interpolated at runtime. For more information about this feature, see
Interpolation on the Docker documentation website.

/A Important

If you'd like to use this feature with your applications, be aware that you'll need to
implement an approach that uses platform hooks.

This is necessary due a mitigation that we implemented in the platform engine. This
mitigation ensures backward compatibility for customers that aren't aware of the new
interpolation feature and have existing applications that use environment variables with
the $ character. The updated platform engine escapes the interpolation by default by
replacing the $ character with $$ characters.

The following is an example of a platform hook script that you can set up to allow use of the
interpolation feature.

#!/bin/bash

example data format in .env file
keyl=valuel

key2=value2
envfile="/var/app/staging/.env"
tempfile=$(mktemp)

while IFS= read -r line; do
split each env var string at '='
split_str=(${line//=/ })
if [${#split_str[@]} -eq 2]; then
replace '$$' with '$"’
replaced_str=${split_str[1]//\$\$/\$2}
update the value of env var using ${replaced_str}
line="${split_str[0]}=${replaced_str}"
fi
append the updated env var to the tempfile
echo "${linel}" #"${tempfilel}"
done < "${envfilel}"
replace the original .env file with the tempfile
mv "${tempfile}" "${envfile}"

Environment configuration 152

https://docs.docker.com/compose/compose-file/12-interpolation/

AWS Elastic Beanstalk Developer Guide

Place the platform hooks under both of these directories:

e .platform/confighooks/predeploy/
e .platform/hooks/predeploy/

For more information, see Platform hooks in the Extending Linux platforms topic of this guide.

Generating logs for enhanced health reporting (Docker Compose)

The Elastic Beanstalk health agent provides operating system and application health metrics for

Elastic Beanstalk environments. It relies on web server log formats that relay information in a
specific format.

Elastic Beanstalk assumes that you run a web server proxy as a container. As a result the NGINX
web server proxy is disabled for Docker environments running Docker Compose. You must
configure your server to write logs in the location and format that the Elastic Beanstalk health
agent uses. Doing so allows you to make full use of enhanced health reporting, even if the web
server proxy is disabled.

For instructions on how to do this, see Web server log configuration

Docker container customized logging (Docker Compose)

In order to efficiently troubleshoot issues and monitor your containerized services, you can request
instance logs from Elastic Beanstalk through the environment management console or the EB CLI.
Instance logs are comprised of bundle logs and tail logs, combined and packaged to allow you to
view logs and recent events in an efficient and straightforward manner.

Elastic Beanstalk creates log directories on the container instance, one for each service defined in
the docker-compose.yml file, at /var/log/eb-docker/containers/<service name>.If
you are using the Docker Compose feature on the Amazon Linux 2 Docker platform, you can mount
these directories to the location within the container file structure where logs are written. When
you mount log directories for writing log data, Elastic Beanstalk can gather log data from these
directories.

If your applications are on a Docker platform that is not using Docker Compose, you can follow the
standard procedure desribed in Docker container customized logging (Docker Compose).

Environment configuration 153

AWS Elastic Beanstalk Developer Guide

To configure your service's logs files to be retreivable tail files and bundle logs

1. Edit the docker-compose.yml file.

2. Under the volumes key for your service add a bind mount to be the following:
"${EB_LOG_BASE_DIR}/<service name>:<log directory inside container>

In the sample docker-compose.yml file below:

e Nginx-proxy is <service name>

« /var/log/nginxis <log directory inside container>

services:
nginx-proxy:
image: '"nginx"
volumes:
- "${EB_LOG_BASE_DIR}/nginx-proxy:/var/log/nginx"

« The var/log/nginx directory contains the logs for the nginx-proxy service in the container, and
it will be mapped to the /var/log/eb-docker/containers/nginx-proxy directory on the
host.

« All of the logs in this directory are now retrievable as bundle and tail logs through Elastic
Beanstalk's request instance logs functionality.

(® Notes

« ${EB_LOG_BASE_DIR} is an environment variable set by Elastic Beanstalk with the value /
var/log/eb-docker/containers.

« Elastic Beanstalk automatically creates the /var/log/eb-docker/
containers/<service name> directory for each service in the docker-
compose.ymlfile.

Environment configuration 154

AWS Elastic Beanstalk Developer Guide

Docker images

The Docker and ECS managed Docker platform branches for Elastic Beanstalk support the use of
Docker images stored in a public or private online image repository.

Specify images by name in Dockerrun.aws. json. Note these conventions:

« Images in official repositories on Docker Hub use a single name (for example, ubuntu or mongo).

« Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent).

« Images in other online repositories are qualified further by a domain name (for example,
quay.io/assemblyline/ubuntuoraccount-id.dkr.ecr.us-east-2.amazonaws.com/
ubuntu:trusty).

For environments using the Docker platform only, you can also build your own image during
environment creation with a Dockerfile. See Building custom images with a Dockerfile for details.
The Multi-container Docker platform doesn't support this functionality.

Using images from an Amazon ECR repository

You can store your custom Docker images in AWS with Amazon Elastic Container Registry (Amazon
ECR). When you store your Docker images in Amazon ECR, Elastic Beanstalk automatically
authenticates to the Amazon ECR registry with your environment's instance profile, so you don't

need to generate an authentication file and upload it to Amazon Simple Storage Service (Amazon
S3).

You do, however, need to provide your instances with permission to access the images in your
Amazon ECR repository by adding permissions to your environment's instance profile. You can
attach the AmazonEC2ContainerRegistryReadOnly managed policy to the instance profile to

provide read-only access to all Amazon ECR repositories in your account, or grant access to single
repository by using the following template to create a custom policy:

"Version": "2012-10-17",
"Statement": [
{
"Sid": "AllowEbAuth",
"Effect": "Allow",

Environment configuration 155

https://aws.amazon.com/ecr
https://docs.aws.amazon.com/AmazonECR/latest/userguide/ecr_managed_policies.html#AmazonEC2ContainerRegistryReadOnly

AWS Elastic Beanstalk Developer Guide

"Action": [
"ecr:GetAuthorizationToken"
1,
"Resource": [
"
]
},

{
"Sid": "AllowPull",
"Effect": "Allow",
"Resource": [

"arn:aws:ecr:us-east-2:account-id:repository/repository-name"

1,
"Action": [

"ecr:GetAuthorizationToken",
"ecr:BatchChecklLayerAvailability",
"ecr:GetDownloadUrlForLayer",
"ecr:GetRepositoryPolicy",
"ecr:DescribeRepositories",
"ecr:ListImages",

ecr:BatchGetImage"

Replace the Amazon Resource Name (ARN) in the above policy with the ARN of your repository.

In your Dockerrun.aws. json file, refer to the image by URL. For the Docker platform, the URL

goes in the Image definition:

"Image": {
"Name": "account-id.dkr.ecr.us-east-2.amazonaws.com/repository-name:latest",
"Update": "true"
1,

For the Multi-container Docker platform, use the image key in a container definition object:

"containerDefinitions": [

"name": "my-image",
"image": "account-id.dkr.ecr.us-east-2.amazonaws.com/repository-name:latest",

Environment configuration 156

AWS Elastic Beanstalk Developer Guide

Using images from a private repository

To use a Docker image in a private repository hosted by an online registry, you must provide an
authentication file that contains information required to authenticate with the registry.

Generate an authentication file with the docker login command. For repositories on Docker Hub,
run docker login:

$ docker login
For other registries, include the URL of the registry server:

$ docker login registry-server-url

(® Note

If your Elastic Beanstalk environment uses an Amazon Linux AMI Docker platform version
(preceding Amazon Linux 2), read the additional information in the section called “Docker
configuration on Amazon Linux AMI (preceding Amazon Linux 2)".

Upload a copy named .dockercfg of the authentication file to a secure Amazon S3 bucket. The
Amazon S3 bucket must be hosted in the same AWS Region as the environment that is using it.
Elastic Beanstalk cannot download files from an Amazon S3 bucket hosted in other Regions. Grant
permissions for the s3:GetObject operation to the IAM role in the instance profile. For details,
see Managing Elastic Beanstalk instance profiles.

Include the Amazon S3 bucket information in the Authentication (v1) or authentication (v2)
parameter in your Dockerrun.aws. json file.

For more information about the Dockerrun.aws. json format for Docker environments, see
Docker configuration. For multi-container environments, see ECS managed Docker configuration.

For more information about the authentication file, see Store images on Docker Hub and docker
login on the Docker website.

Configuring managed updates for Docker environments

With managed platform updates, you can configure your environment to automatically update to

the latest version of a platform on a schedule.

Environment configuration 157

https://docs.docker.com/docker-hub/repos/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/

AWS Elastic Beanstalk Developer Guide

In the case of Docker environments, you might want to decide if an automatic platform update
should happen across Docker versions—when the new platform version includes a new Docker
version. Elastic Beanstalk supports managed platform updates across Docker versions when
updating from an environment running a Docker platform version newer than 2.9.0. When a

new platform version includes a new version of Docker, Elastic Beanstalk increments the minor
update version number. Therefore, to allow managed platform updates across Docker versions,
enable managed platform updates for both minor and patch version updates. To prevent managed
platform updates across Docker versions, enable managed platform updates to apply patch version
updates only.

For example, the following configuration file enables managed platform updates at 9:00 AM UTC
each Tuesday for both minor and patch version updates, thereby allowing for managed updates
across Docker versions:

Example .ebextensions/managed-platform-update.config

option_settings:
aws:elasticbeanstalk:managedactions:
ManagedActionsEnabled: true
PreferredStartTime: "Tue:09:00"
aws:elasticbeanstalk:managedactions:platformupdate:
UpdatelLevel: minor

For environments running Docker platform versions 2.9.0 or earlier, Elastic Beanstalk never
performs managed platform updates if the new platform version includes a new Docker version.

Docker configuration namespaces

You can use a configuration file to set configuration options and perform other instance

configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

(® Note

This information only applies to Docker environment that are not running Docker Compose.
This option has a different behavior with Docker environments that run Docker Compose.
For further information on proxy services with Docker Compose see Container options.

Environment configuration 158

AWS Elastic Beanstalk Developer Guide

The Docker platform supports options in the following namespaces, in addition to the options
supported for all Elastic Beanstalk environments:

 aws:elasticbeanstalk:environment:proxy — Choose the proxy server for your
environment. Docker supports either running Nginx or no proxy server.

The following example configuration file configures a Docker environment to run no proxy server.

Example .ebextensions/docker-settings.config

option_settings:
aws:elasticbeanstalk:environment:proxy:
ProxyServer: none

Docker configuration on Amazon Linux AMI (preceding Amazon Linux 2)

If your Elastic Beanstalk Docker environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

Using an authentication file for a private repository

This information is relevant to you if you are using images from a private repository. Beginning

with Docker version 1.7, the docker login command changed the name of the authentication file,
and the format of the file. Amazon Linux AMI Docker platform versions (preceding Amazon Linux 2)
require the older ~/.dockercfg format configuration file.

With Docker version 1.7 and later, the docker login command creates the authentication file in
~/.docker/config. json in the following format.

"auths":{
"server":{
"auth":"key"
}
}
}

With Docker version 1.6.2 and earlier, the docker login command creates the authentication file in
~/.dockercfg in the following format.

Environment configuration 159

AWS Elastic Beanstalk Developer Guide

"server" :

{
"auth" : "auth_token",
"email" : "email"

}

To convert a config. json file, remove the outer auths key, add an email key, and flatten the
JSON document to match the old format.

On Amazon Linux 2 Docker platform versions, Elastic Beanstalk uses the newer authentication
file name and format. If you're using an Amazon Linux 2 Docker platform version, you can use the
authentication file that the docker login command creates without any conversion.

Configuring additional storage volumes

For improved performance on Amazon Linux AMI, Elastic Beanstalk configures two Amazon EBS
storage volumes for your Docker environment's Amazon EC2 instances. In addition to the root
volume provisioned for all Elastic Beanstalk environments, a second 12GB volume named xvdcz is
provisioned for image storage on Docker environments.

If you need more storage space or increased IOPS for Docker images, you can customize
the image storage volume by using the BlockDeviceMapping configuration option in the
aws:autoscaling:launchconfiguration namespace.

For example, the following configuration file increases the storage volume's size to 100 GB with
500 provisioned I0PS:

Example .ebextensions/blockdevice-xvdcz.config

option_settings:
aws:autoscaling:launchconfiguration:
BlockDeviceMappings: /dev/xvdcz=:100::i01:500

If you use the BlockDeviceMappings option to configure additional volumes for your
application, you should include a mapping for xvdcz to ensure that it is created. The following
example configures two volumes, the image storage volume xvdcz with default settings and an
additional 24 GB application volume named sdh:

Example .ebextensions/blockdevice-sdh.config

option_settings:

Environment configuration 160

AWS Elastic Beanstalk Developer Guide

aws:autoscaling:launchconfiguration:
BlockDeviceMappings: /dev/xvdcz=:12:true:gp2,/dev/sdh=:24

(@ Note

When you change settings in this namespace, Elastic Beanstalk replaces all instances in
your environment with instances running the new configuration. See Configuration changes

for details.

Creating and deploying Go applications on Elastic Beanstalk

AWS Elastic Beanstalk for Go makes it easy to deploy, manage, and scale your Go web applications
using Amazon Web Services. Elastic Beanstalk for Go is available to anyone developing or hosting
a web application using Go. This chapter provides step-by-step instructions for deploying your web
application to Elastic Beanstalk.

After you deploy your Elastic Beanstalk application, you can continue to use the EB CLI to manage
your application and environment, or you can use the Elastic Beanstalk console, AWS CLI, or the
APls.

The topics in this chapter assume that you have some knowledge of Elastic Beanstalk
environments. If you haven't used Elastic Beanstalk before, try the getting started tutorial to learn
the basics.

Topics

» Getting started with Go on Elastic Beanstalk

« Setting up your Go development environment

» Using the Elastic Beanstalk Go platform

» Deploying a Go application to Elastic Beanstalk

Getting started with Go on Elastic Beanstalk

To get started with Go applications on AWS Elastic Beanstalk, all you need is an application source
bundle to upload as your first application version, and deploy it to an environment. When you
create an environment, Elastic Beanstalk allocates all of the AWS resources needed to run a highly
scalable web application.

Working with Go 161

AWS Elastic Beanstalk Developer Guide

Launching an environment with a sample Go application

Elastic Beanstalk provides single-page sample applications for each platform. Elastic Beanstalk also
provides more complex examples that show the use of additional AWS resources, such as Amazon
RDS, and language or platform-specific features and APIs.

Samples
Supported Environme Source Description
configura nt type bundle
tions
Go Web 0.Zi Single page application.

server

Download the sample application and deploy it to Elastic Beanstalk by following these steps.
To launch an environment with a sample application (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. Inthe navigation pane, choose Applications, and then choose an existing application's name in
the list or create one.

3. On the application overview page, choose Create new environment.

Elastic Beanstalk PRl T imtroducieg the new Elastic Baanstslk comole sxperimen
‘e ver recriigeand the Bl Brarmatalh contele 10 salr it eatier b e Continue 1o wse the e comobe or select 1o uie the old comele.

Application GettingStarted environmen! 85 (2] ke o] Actlom W m
a 1

FlatF
@ @

This launches the Create environment wizard. The wizard provides a set of steps for you to
create a new environment.

Getting started 162

samples/go.zip
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk

Developer Guide

Step 1

Configure environment

Step 2

Step 5 - optional

Step 4 - optional

Step 5 - optronal

Configure environment .

Environment tier info

Amazon Elastic Beanstalk has two types of environment tiers to support different types of web applications.

O Web server environment
Fun a website, web application, or web API that serves HTTP requests. Learn more [

Worker environment
Run a worker application that processes long-running workloads on demand or performs tasks on a schedule. Learn more E

Application information info

Application name
GettingStarted

Maximurm length of 100 characters

Step B

» Application tags (optional)
Environment information e
Cheose the name, subdomain and description for your environment. These cannat be changed later.
Environment name

GettingStarted-eny
Must be from 4 to 40 characters in length. The name can contain only letters, numbers, and hyphens. It can with a hyphen.
This name must be unigue within a region in your account
Domain name

Leave blank for autogenerated value .us-east-1_elasticbeanstalk.com Check availabilit
Environment description

y:
Platform info
Platform type
O Managed platform
Platforms published and maintained by Amazon Elastic Beanstalle Leam mone E‘,

Platform

Choose a platform v
Platform branch

Choose o platform branch v
Platform version

Choose o platform version v
Application code inte
O sample application

Exicting worsian
Getting started Application versions that you have uploaded 163

Sample Appli

on L

Upload your code
Upload a source bundle from your computer or copy one from Amagzon 53

AWS Elastic Beanstalk Developer Guide

4. For environment tier, choose the Web server environment or Worker environment
environment tier. You can't change an environment's tier after creation.

® Note

The .NET on Windows Server platform doesn't support the worker environment tier.

5. For Platform, select the platform and platform branch that match the language your
application uses.

® Note

Elastic Beanstalk supports multiple versions for most of the platforms that are
listed. By default, the console selects the recommended version for the platform and
platform branch you choose. If your application requires a different version, you can
select it here. For information about supported platform versions, see the section
called “Supported platforms”.

For Application code, choose Sample application.
For Configuration presets, choose Single instance.

Choose Next.

o © N o

The Configure service access page displays.

Getting started 164

AWS Elastic Beanstalk Developer Guide

Configure service access e

Service access

aws-elasticbeanstalk-service-role v | G
ECZ key pair
&
L J | &)
EC2 instance profile
aws-elasticheanstalk-ec2-role v | G

View permission details

T
it
Next

Cancel Skip to review Previous |

10. Choose Use an existing service role for Service Role.

11. Next, we'll focus on the EC2 instance profile dropdown list. The values displayed in this
dropdown list may vary, depending on whether you account has previously created a new
environment.

Choose one of the following, based on the values displayed in your list.

« Ifaws-elasticbeanstalk-ec2-role displays in the dropdown list, select it from the
EC2 instance profile dropdown list.

« If another value displays in the list, and it's the default EC2 instance profile intended for
your environments, select it from the EC2 instance profile dropdown list.

o If the EC2 instance profile dropdown list doesn't list any values to choose from, expand
the procedure that follows, Create IAM Role for EC2 instance profile.

Complete the steps in Create IAM Role for EC2 instance profile to create an IAM Role that
you can subsequently select for the EC2 instance profile. Then return back to this step.

Now that you've created an IAM Role, and refreshed the list, it displays as a choice in
the dropdown list. Select the IAM Role you just created from the EC2 instance profile
dropdown list.

Getting started 165

AWS Elastic Beanstalk Developer Guide

12. Choose Skip to Review on the Configure service access page.

This will select the default values for this step and skip the optional steps.

13. The Review page displays a summary of all your choices.

To further customize your environment, choose Edit next to the step that includes any items
you want to configure. You can set the following options only during environment creation:

Environment name

« Domain name

Platform version

Processor
« VPC

o Tier
You can change the following settings after environment creation, but they require new
instances or other resources to be provisioned and can take a long time to apply:

« Instance type, root volume, key pair, and AWS Identity and Access Management (IAM) role
« Internal Amazon RDS database

» Load balancer

For details on all available settings, see The create new environment wizard.

14. Choose Submit at the bottom of the page to initialize the creation of your new environment.

Getting started 166

AWS Elastic Beanstalk Developer Guide

Create IAM Role for EC2 instance profile

Configure service access e

Service access
=
Servige role
Create and use new service role

0 Use an existing service role

Existing service roles

aws-elasticheanstalk-service-role b | G

ECZ key pair

EC2 instance profile

aws-elasticheanstalk-ec2-role v | (&)

View permission details

Cancel Skip to review Previous | 3

To create a an IAM Role for EC2 instance profile selection

1.

©® N O U M W N

Choose View permission details. This displays under the EC2 instance profile dropdown list.

A modal window titled View instance profile permissions displays. This window lists the
managed profiles that you'll need to attach to the new EC2 instance profile that you create. It
also provides a link to launch the IAM console.

Choose the IAM console link displayed at the top of the window.
In the IAM console navigation pane, choose Roles.

Choose Create role.

Under Trusted entity type, choose AWS service.

Under Use case, choose EC2.

Choose Next.

Attach the appropriate managed policies. Scroll in the View instance profile permissions
modal window to see the managed policies. The policies are also listed here:

e AWSElasticBeanstalkWebTier

Getting started 167

AWS Elastic Beanstalk Developer Guide

« AWSElasticBeanstalkWorkerTier
« AWSElasticBeanstalkMulticontainerDocker
9. Choose Next.
10. Enter a name for the role.
11. (Optional) Add tags to the role.
12. Choose Create role.
13. Return to the Elastic Beanstalk console window that is open.

14. Close the modal window View instance profile permissions.

/A Important

Do not close the browser page that displays the Elastic Beanstalk console.

15. Choose

c

(refresh), next to the EC2 instance profile dropdown list.

This refreshes the dropdown list, so that the Role you just created will display in the dropdown
list.

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a different application at any time. Deploying a new application version is very quick
because it doesn't require provisioning or restarting EC2 instances.

After you deploy a sample application or two and are ready to start developing and running Go
applications locally, see Setting up your Go development environment.

Setting up your Go development environment

Set up a Go development environment to test your application locally before you deploy it to AWS
Elastic Beanstalk. This topic describes the setup steps for your development environment and
provides links to installation pages for useful tools.

For common setup steps and tools that apply to all languages, see Configuring your development
machine for use with Elastic Beanstalk.

Development environment 168

AWS Elastic Beanstalk Developer Guide

Installing Go

To run Go applications locally, install Go. If you don't need a specific version, get the latest version
that Elastic Beanstalk supports. For a list of supported versions, see Go in the AWS Elastic Beanstalk
Platforms document.

Download Go at https://golang.org/doc/install.

Installing the AWS SDK for Go

If you need to manage AWS resources from within your application, install the AWS SDK for Go by
using the following command.

$ go get github.com/aws/aws-sdk-go

For more information, see AWS SDK for Go.

Using the Elastic Beanstalk Go platform

You can use AWS Elastic Beanstalk to run, build, and configure Go-based applications. For simple
Go applications, there are two ways to deploy your application:

« Provide a source bundle with a source file at the root called application.go that contains
the main package for your application. Elastic Beanstalk builds the binary using the following
command:

go build -o bin/application application.go

After the application is built, Elastic Beanstalk starts it on port 5000.

« Provide a source bundle with a binary file called application. The binary file can be located
either at the root of the source bundle or in the bin/ directory of the source bundle. If you
place the application binary file in both locations, Elastic Beanstalk uses the file in the bin/
directory.

Elastic Beanstalk launches this application on port 5000.

In both cases, with Go 1.11 or later, you can also provide module requirements in a file called
go.mod. For more information, see Migrating to Go Modules in the Go blog.

The Go platform 169

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.go
https://golang.org/doc/install
https://aws.amazon.com/sdk-for-go/
https://blog.golang.org/migrating-to-go-modules

AWS Elastic Beanstalk Developer Guide

For more complex Go applications, there are two ways to deploy your application:

» Provide a source bundle that includes your application source files, along with a Buildfile and
a Procfile. The Buildfile includes a command to build the application, and the Procfile includes
instructions to run the application.

» Provide a source bundle that includes your application binary files, along with a Procfile. The
Procfile includes instructions to run the application.

The Go platform includes a proxy server to serve static assets and forward traffic to your
application. You can extend or override the default proxy configuration for advanced scenarios.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called “Extending Linux platforms".

Configuring your Go environment

The Go platform settings let you fine-tune the behavior of your Amazon EC2 instances. You can
edit the Elastic Beanstalk environment's Amazon EC2 instance configuration using the Elastic
Beanstalk console.

Use the Elastic Beanstalk console to enable log rotation to Amazon S3 and configure variables that
your application can read from the environment.

To configure your Go environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

(® Note

If you have many environments, use the search bar to filter the environment list.

In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Log options

The Log Options section has two settings:

The Go platform 170

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

« Instance profile — Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

» Enable log file rotation to Amazon S3 - Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Static files

To improve performance, you can use the Static files section to configure the proxy server to serve
static files (for example, HTML or images) from a set of directories inside your web application.

For each directory, you set the virtual path to directory mapping. When the proxy server receives a
request for a file under the specified path, it serves the file directly instead of routing the request
to your application.

For details about configuring static files using configuration files or the Elastic Beanstalk console,
see the section called “Static files".

Environment properties

The Environment Properties section lets you specify environment configuration settings on the
Amazon EC2 instances that are running your application. Environment properties are passed in as
key-value pairs to the application.

Inside the Go environment running in Elastic Beanstalk, environment variables are accessible using
the os.Getenv function. For example, you could read a property named API_ENDPOINT to a
variable with the following code:

endpoint := os.Getenv("API_ENDPOINT")

See Environment properties and other software settings for more information.

Go configuration namespace

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

The Go platform doesn't define any platform-specific namespaces. You can configure the proxy to
serve static files by using the aws:elasticbeanstalk:environment:proxy:staticfiles
namespace. For details and an example, see the section called “Static files".

The Go platform 171

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

The Amazon Linux AMI (preceding Amazon Linux 2) Go platform

If your Elastic Beanstalk Go environment uses an Amazon Linux AMI platform version (preceding
Amazon Linux 2), read the additional information in this section.

® Notes

» The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

« OnJuly 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Go configuration namespaces — Amazon Linux AMI (AL1)

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

(@ Note

The information in this topic only applies to platform branches based on Amazon Linux AMI
(AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux AMI
(AL1) platform versions and require different configuration settings.

The Amazon Linux AMI Go platform supports one platform-specific configuration

namespace in addition to the namespaces supported by all platforms. The
aws:elasticbeanstalk:container:golang:staticfiles namespace lets you define
options that map paths on your web application to folders in your application source bundle that
contain static content.

The Go platform 172

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

For example, this configuration file tells the proxy server to serve files in the staticimages folder
at the path /images:

Example .ebextensions/go-settings.config

option_settings:
aws:elasticbeanstalk:container:golang:staticfiles:
/html: statichtml
/images: staticimages

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

Configuring the application process with a Procfile

To specify custom commands to start a Go application, include a file called Procfile at the root
of your source bundle.

For details about writing and using a Procfile, expand the Buildfile and Procfile section in the
section called “Extending Linux platforms".

Example Procfile

web: bin/server
queue_process: bin/queue_processor
foo: bin/fooapp

You must call the main application web, and list it as the first command in your Procfile. Elastic
Beanstalk exposes the main web application on the root URL of the environment; for example,
http://my-go-env.elasticbeanstalk.com.

Elastic Beanstalk also runs any application whose name does not have the web_ prefix, but these
applications are not available from outside of your instance.

Elastic Beanstalk expects processes run from the Procfile to run continuously. Elastic Beanstalk
monitors these applications and restarts any process that terminates. For short-running processes,
use a Buildfile command.

The Go platform 173

AWS Elastic Beanstalk Developer Guide

Using a Procfile on Amazon Linux AMI (preceding Amazon Linux 2)

If your Elastic Beanstalk Go environment uses an Amazon Linux AMI platform version (preceding
Amazon Linux 2), read the additional information in this section.

(® Notes

» The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

« OnJuly 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic

Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Port passing — Amazon Linux AMI (AL1)

(@ Note

The information in this topic only applies to platform branches based on Amazon Linux AMI
(ALT). AL2023/AL2 platform branches are incompatible with previous Amazon Linux AMI
(AL1) platform versions and require different configuration settings.

Elastic Beanstalk configures the nginx proxy to forward requests to your application on the port
number specified in the PORT environment property for your application. Your application should

always listen on that port. You can access this variable within your application by calling the
os.Getenv("PORT") method.

Elastic Beanstalk uses the port number specified in the PORT environment property for the port for
the first application in the Procfile, and then increments the port number for each subsequent
application in the Procfile by 100. If the PORT environment property is not set, Elastic Beanstalk
uses 5000 for the initial port.

In the preceding example, the PORT environment property for the web application is 5000, the
gueue_process application is 5100, and the foo application is 5200.

The Go platform 174

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

You can specify the initial port by setting the PORT option with the
aws:elasticbeanstalk:application:environment namespace, as shown in the following example.

option_settings:
- namespace: aws:elasticbeanstalk:application:environment
option_name: PORT
value: <first_port_number>

For more information about setting environment properties for your application, see Option
settings.

Building executable on-server with a Buildfile

To specify a custom build and configuration command for your Go application, include a file called
Buildfile at the root of your source bundle. The file name is case sensitive. Use the following
format for the Buildfile:

<process_name>: <command>

The command in your Buildfile must match the following regular expression: A[A-Za-
z0-9_]+:\s*.+$.

Elastic Beanstalk doesn't monitor the application that is run with a Buildfile. Use a Buildfile
for commands that run for short periods and terminate after completing their tasks. For long-
running application processes that should not exit, use the Procfile instead.

In the following example of a Buildfile, build. shis a shell script that is located at the root of
the source bundle:

make: ./build.sh

All paths in the Buildfile are relative to the root of the source bundle. If you know in advance
where the files reside on the instance, you can include absolute paths in the Buildfile.

Configuring the reverse proxy

Elastic Beanstalk uses nginx as the reverse proxy to map your application to your Elastic Load
Balancing load balancer on port 80. Elastic Beanstalk provides a default nginx configuration that
you can either extend or override completely with your own configuration.

The Go platform 175

AWS Elastic Beanstalk Developer Guide

By default, Elastic Beanstalk configures the nginx proxy to forward requests to your application on
port 5000. You can override the default port by setting the PORT environment property to the port

on which your main application listens.

® Note

The port that your application listens on doesn't affect the port that the nginx server
listens to receive requests from the load balancer.

Configuring the proxy server on your platform version

All AL2023/AL2 platforms support a uniform proxy configuration feature. For more information
about configuring the proxy server on your platform versions running AL2023/AL2, expand the
Reverse Proxy Configuration section in the section called “Extending Linux platforms”.

Configuring the proxy on Amazon Linux AMI (preceding Amazon Linux 2)

(® Notes

« The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

« OnJuly 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic

Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

If your Elastic Beanstalk Go environment uses an Amazon Linux AMI platform version (preceding
Amazon Linux 2), read the information in this section.

Extending and overriding the default proxy configuration — Amazon Linux AMI (AL1)

Elastic Beanstalk uses nginx as the reverse proxy to map your application to your load balancer
on port 80. If you want to provide your own nginx configuration, you can override the default
configuration provided by Elastic Beanstalk by including the .ebextensions/nginx/
nginx.conf file in your source bundle. If this file is present, Elastic Beanstalk uses it in place of
the default nginx configuration file.

The Go platform 176

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

If you want to include directives in addition to those in the nginx.conf http block, you can also
provide additional configuration files in the .ebextensions/nginx/conf.d/ directory of your
source bundle. All files in this directory must have the . conf extension.

To take advantage of functionality provided by Elastic Beanstalk, such as Enhanced health
reporting and monitoring, automatic application mappings, and static files, you must include the
following line in the server block of your nginx configuration file:

include conf.d/elasticbeanstalk/*.conf;

Deploying a Go application to Elastic Beanstalk

This tutorial walks you through the process of creating a Go application and deploying it to an AWS
Elastic Beanstalk environment.

Sections

« Prerequisites
o Create a Go application

» Deploy your Go application with the EB CLI
« Clean up

Prerequisites

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Getting started using Elastic
Beanstalk to launch your first Elastic Beanstalk environment.

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows 10, you
can install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and
Bash.

Tutorial for Go 177

https://docs.microsoft.com/en-us/windows/wsl/install-win10

AWS Elastic Beanstalk Developer Guide

This tutorial uses the Elastic Beanstalk Command Line Interface (EB CLI). For details on installing
and configuring the EB CLI, see Install the EB CLI and Configure the EB CLI.

Create a Go application

Create a project directory.

~$ mkdir eb-go
~$ cd eb-go

Next, create an application that you'll deploy using Elastic Beanstalk. We'll create a "Hello World"
RESTful web service.

This example prints a customized greeting that varies based on the path used to access the service.
Create a text file in this directory named application.go with the following contents.

Example ~/eb-go/application.go

package main

import (
Ilfmt n
"net/http"
)

func handler(w http.ResponseWriter, r *http.Request) {
if r.URL.Path == "/" {
fmt.Fprintf(w, "Hello World! Append a name to the URL to say hello. For example, use
%s/Mary to say hello to Mary.", r.Host)
} else {
fmt.Fprintf(w, "Hello, %s!", r.URL.Path[1l:])
}
}

func main() {
http.HandleFunc("/", handler)
http.ListenAndServe(":5000", nil)
}

Tutorial for Go 178

AWS Elastic Beanstalk Developer Guide

Deploy your Go application with the EB CLI

Next, you create your application environment and deploy your configured application with Elastic
Beanstalk.

To create an environment and deploy your Go application

1. Initialize your EB CLI repository with the eb init command.

~/eb-go$ eb init -p go go-tutorial --region us-east-2
Application go-tutorial has been created.

This command creates an application named go-tutorial, and configures your local
repository to create environments with the latest Go platform version.

2. (Optional) Run eb init again to configure a default key pair so that you can use SSH to connect
to the EC2 instance running your application.

~/eb-go$ eb init

Do you want to set up SSH for your instances?
(y/n): y

Select a keypair.

1) my-keypair

2) [Create new KeyPair]

Select a key pair if you have one already, or follow the prompts to create one. If you don't see
the prompt or need to change your settings later, run eb init -i.

3. Create an environment and deploy your application to it with eb create. Elastic Beanstalk
automatically builds a binary file for your application and starts it on port 5000.

~/eb-go$ eb create go-env

Environment creation takes about five minutes and creates the following resources:

« EC2 instance — An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either

Tutorial for Go 179

AWS Elastic Beanstalk Developer Guide

Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

« Instance security group — An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

» Load balancer - An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

» Load balancer security group — An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

« Auto Scaling group — An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

« Amazon S3 bucket - A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

« Amazon CloudWatch alarms - Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

« AWS CloudFormation stack - Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the AWS CloudFormation console.

« Domain name - A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

(® Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com
domain is registered in the Public Suffix List (PSL). For further security, we recommend

that you use cookies with a __Host- prefix if you ever need to set sensitive cookies in
the default domain name for your Elastic Beanstalk applications. This practice will help
to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

Tutorial for Go 180

https://console.aws.amazon.com/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk manages all of these resources. When you terminate your environment, Elastic
Beanstalk terminates all the resources that it contains.

(® Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

When the environment creation process completes, open your website with eb open.
~/eb-go$ eb open

This opens a browser window using the domain name created for your application.

If you don't see your application running, or get an error message, see Troubleshooting
Deployments for help with how to determine the cause of the error.

If you do see your application running, then congratulations, you've deployed a Go application with
Elastic Beanstalk!

Clean up

When you finish working with Elastic Beanstalk, you can terminate your environment. Elastic
Beanstalk terminates all AWS resources associated with your environment, such as Amazon EC2
instances, database instances, load balancers, security groups, and alarms.

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

(® Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

Tutorial for Go 181

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

4. Use the on-screen dialog box to confirm environment termination.

With Elastic Beanstalk, you can easily create a new environment for your application at any time.

Or, with the EB CLI, do the following.

~/eb-go$ eb terminate

Creating and deploying Java applications on Elastic Beanstalk

AWS Elastic Beanstalk supports two platforms for Java applications.

» Tomcat - A platform based on Apache Tomcat, an open source web container for applications
that use Java servlets and JavaServer Pages (JSPs) to serve HTTP requests. Tomcat facilitates
web application development by providing multithreading, declarative security configuration,
and extensive customization. Elastic Beanstalk has platform branches for each of Tomcat's
current major versions. For more information, see The Tomcat platform.

« Java SE - A platform for applications that don't use a web container, or use one other than
Tomcat, such as Jetty or GlassFish. You can include any library Java Archives (JARs) used by your
application in the source bundle that you deploy to Elastic Beanstalk. For more information, see
The Java SE platform.

Recent branches of both the Tomcat and Java SE platforms are based on Amazon Linux 2 and later,
and use Corretto—the AWS Java SE distribution. Names of these branches in the platform lists
include the word Corretto instead of Java, for example, Corretto 11 with Tomcat 8.5.

For a list of current platform versions, see Tomcat and Java SE in the AWS Elastic Beanstalk

Platforms guide.

AWS provides several tools for working with Java and Elastic Beanstalk. Regardless of the platform
branch that you choose, you can use the AWS SDK for Java to use other AWS services from within

your Java application. The AWS SDK for Java is a set of libraries that allow you to use AWS APIs
from your application code without writing the raw HTTP calls from scratch.

If you use the Eclipse integrated development environment (IDE) to develop your Java application,
you can also get the AWS Toolkit for Eclipse. The AWS Toolkit for Eclipse is an open source plug-

in that lets you manage AWS resources, including Elastic Beanstalk applications and environments,
from within the Eclipse IDE.

Working with Java 182

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.java
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.javase

AWS Elastic Beanstalk Developer Guide

If the command line is more your style, install the Elastic Beanstalk Command Line Interface (EB
CLI) and use it to create, monitor, and manage your Elastic Beanstalk environments from the
command line. If you run multiple environments for your application, the EB CLI integrates with Git
to let you associate each of your environments with a different Git branch.

The topics in this chapter assume that you have some knowledge of Elastic Beanstalk
environments. If you haven't used Elastic Beanstalk before, try the getting started tutorial to learn
the basics.

Topics

» Getting started with Java on Elastic Beanstalk

« Setting up your Java development environment

» Using the Elastic Beanstalk Tomcat platform

» Using the Elastic Beanstalk Java SE platform

« Adding an Amazon RDS DB instance to your Java application environment

» Using the AWS Toolkit for Eclipse

¢ Resources

Getting started with Java on Elastic Beanstalk

To get started with Java applications on AWS Elastic Beanstalk, all you need is an application
source bundle to upload as your first application version and to deploy to an environment. When
you create an environment, Elastic Beanstalk allocates all of the AWS resources needed to run a
scalable web application.

Launching an environment with a sample Java application

Elastic Beanstalk provides single page sample applications for each platform as well as more
complex examples that show the use of additional AWS resources such as Amazon RDS and
language or platform-specific features and APIs.

The single page samples are the same code that you get when you create an environment without
supplying your own source code. The more complex examples are hosted on GitHub and may need
to be compiled or built prior to deploying to an Elastic Beanstalk environment.

Getting started 183

AWS Elastic Beanstalk

Developer Guide

Samples

Nam: Supported versions

Tomc All Tomcat with Corretto
(singl platform branches

page.

Corre Corretto 11
(singl

page Corretto 8

Envirc Source
nt

type

Web tomcat.zi

Serve p

Worke

Web corretto.
Serve zip

Description

Tomcat web application with a single page
(index.jsp) configured to be displayed
at the website root.

For worker environments, this sample
includes a cron.yaml file that
configures a scheduled task that calls
scheduled. jsp once per minute. When

scheduled. jsp is called, it writes to
a log file at /tmp/sample-app.log
Finally, a configuration file is included
in .ebextensions that copies the
logs from /tmp/ to the locations read
by Elastic Beanstalk when you request
environment logs.

If you enable X-Ray integration on an

environment running this sample, the
application shows additional content
regarding X-Ray and provides an option to
generate debug information that you can
view in the X-Ray console.

Corretto application with Buildfile
and Procfile configuration files.

If you enable X-Ray integration on an

environment running this sample, the
application shows additional content
regarding X-Ray and provides an option to
generate debug information that you can
view in the X-Ray console.

Getting started

184

samples/tomcat.zip
samples/tomcat.zip
samples/corretto.zip
samples/corretto.zip

AWS Elastic Beanstalk Developer Guide

Nam: Supported versions Envirc Source Description
nt
type
Score Java 8 Web Clone Scorekeep is a RESTful web API that
Serve the uses the Spring framework to provide
repo at an interface for creating and managing

GitHub.co users, sessions, and games. The API is
m bundles with an Angular 1.5 web app that

consumes the APl over HTTP.

The application uses features of the Java
SE platform to download dependencies
and build on-instance, minimizing the

size of the souce bundle. The application
also includes nginx configuration files that
override the default configuration to serve
the frontend web app statically on port 80
through the proxy, and route requests to
paths under /api to the API running on
localhost:5000 .

Scorekeep also includes an xray branch
that shows how to instrument a Java
application for use with AWS X-Ray.

It shows instrumentation of incoming
HTTP requests with a servlet filter,
automatic and manual AWS SDK client
instrumentation, recorder configuration,
and instrumentation of outgoing HTTP
requests and SQL clients.

See the readme for instructions or use the
AWS X-Ray getting started tutorial to try
the application with X-Ray.

Getting started 185

https://github.com/awslabs/eb-java-scorekeep
https://github.com/awslabs/eb-java-scorekeep
https://github.com/awslabs/eb-java-scorekeep
https://github.com/awslabs/eb-java-scorekeep
https://github.com/awslabs/eb-java-scorekeep
https://docs.aws.amazon.com/xray/latest/devguide/xray-gettingstarted.html

AWS Elastic Beanstalk

Developer Guide

Nam: Supported versions

Does Tomcat 8 with Java 8
it

Have

Snak

Locu¢ Java 8
Load
Gene

Envirc Source

nt

type

Web Clone

Serve the
repo at
GitHub.co
m

Web Clone

Serve the
repo at
GitHub.co
m

Description

Does it Have Snakes? is a Tomcat web
application that shows the use of Elastic
Beanstalk configuration files, Amazon
RDS, JDBC, PostgreSQL, Servlets, JSPs,
Simple Tag Support, Tag Files, Log4J,
Bootstrap, and Jackson.

The source code for this project includes
a minimal build script that compiles

the servlets and models into class files
and packages the required files into a
Web Archive that you can deploy to an
Elastic Beanstalk environment. See the
readme file in the project repository for
full instructions.

Web application that you can use to load
test another web application running in
a different Elastic Beanstalk environme
nt. Shows the use of Buildfile and
Procfile files, DynamoDB, and Locust,
an open source load testing tool.

Download any of the sample applications and deploy it to Elastic Beanstalk by following these

steps:

To launch an environment with a sample application (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose an existing application's name in

the list or create one.

3. On the application overview page, choose Create new environment.

Getting started

186

https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-locustio-sample
https://github.com/awslabs/eb-locustio-sample
https://github.com/awslabs/eb-locustio-sample
https://github.com/awslabs/eb-locustio-sample
https://github.com/awslabs/eb-locustio-sample
http://locust.io/
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk

Developer Guide

Elastic Beanstalk PRl O ietreduciag the new Elsutle Branstatk comole srparionce

‘e ver recriigeand the Bl Brarmatalh contele 10 salr it eatier b e Continue 1o wse the e comobe or select 1o uie the old comele.

T EE] TR

Clastic Bearntal > Applications
E
@ Application GettingStarted environments (2) we [a] Actiom ¥ m
Q Fite e 1y @
-
Errviranment name - Heaith v Demain Rusning verilom. ¥ Flatferm Patformutamte = Tier name
wderes - Gamringizaned: Wiedo. Sample Agplaaion #5300 running on B4k Windows Sereer 2019 @ Suppaned WebServer
[T [———— Sample dpplication Mode fs 16 nunmineg o 64 Amazon Lines &) Suppomed WebServer

This launches the Create environment wizard. The wizard provides a set of steps for you to

create a new environment.

Getting started

187

AWS Elastic Beanstalk

Developer Guide

Step 1

Configure environment

Step 2

Step 5 - optional

Step 4 - optional

Step 5 - optronal

Configure environment .

Environment tier info

Amazon Elastic Beanstalk has two types of environment tiers to support different types of web applications.

O Web server environment
Fun a website, web application, or web API that serves HTTP requests. Learn more [

Worker environment
Run a worker application that processes long-running workloads on demand or performs tasks on a schedule. Learn more E

Application information info

Application name
GettingStarted

Maximurm length of 100 characters

Step B

» Application tags (optional)
Environment information e
Cheose the name, subdomain and description for your environment. These cannat be changed later.
Environment name

GettingStarted-eny
Must be from 4 to 40 characters in length. The name can contain only letters, numbers, and hyphens. It can with a hyphen.
This name must be unigue within a region in your account
Domain name

Leave blank for autogenerated value .us-east-1_elasticbeanstalk.com Check availabilit
Environment description

y:
Platform info
Platform type
O Managed platform
Platforms published and maintained by Amazon Elastic Beanstalle Leam mone E‘,

Platform

Choose a platform v
Platform branch

Choose o platform branch v
Platform version

Choose o platform version v
Application code inte
O sample application

Exicting worsian
Getting started Application versions that you have uploaded 188

Sample Appli

on L

Upload your code
Upload a source bundle from your computer or copy one from Amagzon 53

AWS Elastic Beanstalk Developer Guide

4. For environment tier, choose the Web server environment or Worker environment
environment tier. You can't change an environment's tier after creation.

® Note

The .NET on Windows Server platform doesn't support the worker environment tier.

5. For Platform, select the platform and platform branch that match the language your
application uses.

® Note

Elastic Beanstalk supports multiple versions for most of the platforms that are
listed. By default, the console selects the recommended version for the platform and
platform branch you choose. If your application requires a different version, you can
select it here. For information about supported platform versions, see the section
called “Supported platforms”.

For Application code, choose Sample application.
For Configuration presets, choose Single instance.

Choose Next.

o © N o

The Configure service access page displays.

Getting started 189

AWS Elastic Beanstalk Developer Guide

Configure service access e

Service access

aws-elasticbeanstalk-service-role v | G
ECZ key pair
&
L J | &)
EC2 instance profile
aws-elasticheanstalk-ec2-role v | G

View permission details

T
it
Next

Cancel Skip to review Previous |

10. Choose Use an existing service role for Service Role.

11. Next, we'll focus on the EC2 instance profile dropdown list. The values displayed in this
dropdown list may vary, depending on whether you account has previously created a new
environment.

Choose one of the following, based on the values displayed in your list.

« Ifaws-elasticbeanstalk-ec2-role displays in the dropdown list, select it from the
EC2 instance profile dropdown list.

« If another value displays in the list, and it's the default EC2 instance profile intended for
your environments, select it from the EC2 instance profile dropdown list.

o If the EC2 instance profile dropdown list doesn't list any values to choose from, expand
the procedure that follows, Create IAM Role for EC2 instance profile.

Complete the steps in Create IAM Role for EC2 instance profile to create an IAM Role that
you can subsequently select for the EC2 instance profile. Then return back to this step.

Now that you've created an IAM Role, and refreshed the list, it displays as a choice in
the dropdown list. Select the IAM Role you just created from the EC2 instance profile
dropdown list.

Getting started 190

AWS Elastic Beanstalk Developer Guide

12. Choose Skip to Review on the Configure service access page.

This will select the default values for this step and skip the optional steps.

13. The Review page displays a summary of all your choices.

To further customize your environment, choose Edit next to the step that includes any items
you want to configure. You can set the following options only during environment creation:

Environment name

« Domain name

Platform version

Processor
« VPC

o Tier
You can change the following settings after environment creation, but they require new
instances or other resources to be provisioned and can take a long time to apply:

« Instance type, root volume, key pair, and AWS Identity and Access Management (IAM) role
« Internal Amazon RDS database

» Load balancer

For details on all available settings, see The create new environment wizard.

14. Choose Submit at the bottom of the page to initialize the creation of your new environment.

Getting started 191

AWS Elastic Beanstalk Developer Guide

Create IAM Role for EC2 instance profile

Configure service access e

Service access
=
Servige role
Create and use new service role

0 Use an existing service role

Existing service roles

aws-elasticheanstalk-service-role b | G

ECZ key pair

EC2 instance profile

aws-elasticheanstalk-ec2-role v | (&)

View permission details

Cancel Skip to review Previous | 3

To create a an IAM Role for EC2 instance profile selection

1.

©® N O U M W N

Choose View permission details. This displays under the EC2 instance profile dropdown list.

A modal window titled View instance profile permissions displays. This window lists the
managed profiles that you'll need to attach to the new EC2 instance profile that you create. It
also provides a link to launch the IAM console.

Choose the IAM console link displayed at the top of the window.
In the IAM console navigation pane, choose Roles.

Choose Create role.

Under Trusted entity type, choose AWS service.

Under Use case, choose EC2.

Choose Next.

Attach the appropriate managed policies. Scroll in the View instance profile permissions
modal window to see the managed policies. The policies are also listed here:

e AWSElasticBeanstalkWebTier

Getting started 192

AWS Elastic Beanstalk Developer Guide

« AWSElasticBeanstalkWorkerTier
« AWSElasticBeanstalkMulticontainerDocker
9. Choose Next.
10. Enter a name for the role.
11. (Optional) Add tags to the role.
12. Choose Create role.
13. Return to the Elastic Beanstalk console window that is open.

14. Close the modal window View instance profile permissions.

/A Important

Do not close the browser page that displays the Elastic Beanstalk console.

15. Choose

&

(refresh), next to the EC2 instance profile dropdown list.

This refreshes the dropdown list, so that the Role you just created will display in the dropdown
list.

Next steps

After you have an environment running an application, you can deploy a new version of the

application or a completely different application at any time. Deploying a new application version
is very quick because it doesn't require provisioning or restarting EC2 instances.

After you've deployed a sample application or two and are ready to start developing and running
Java applications locally, see the next section to set up a Java development environment with all of
the tools and libraries that you will need.

Setting up your Java development environment

Set up a Java development environment to test your application locally prior to deploying it to
AWS Elastic Beanstalk. This topic outlines development environment setup steps and links to
installation pages for useful tools.

Development environment 193

AWS Elastic Beanstalk Developer Guide

For common setup steps and tools that apply to all languages, see Configuring your development

machine.

Sections

« Installing the Java development kit

« Installing a web container

« Downloading libraries
« Installing the AWS SDK for Java

« Installing an IDE or text editor

« Installing the AWS toolkit for Eclipse

Installing the Java development kit

Install the Java Development Kit (JDK). If you don't have a preference, get the latest version.
Download the JDK at oracle.com

The JDK includes the Java compiler, which you can use to build your source files into class files that
can be executed on an Elastic Beanstalk web server.

Installing a web container

If you don't already have another web container or framework, install the appropriate version of
Tomcat:

« Download Tomcat 8 (requires Java 7 or later)

« Download Tomcat 7 (requires Java 6 or later)

Downloading libraries

Elastic Beanstalk platforms include few libraries by default. Download libraries that your
application will use and save them in your project folder to deploy in your application source
bundle.

If you've installed Tomcat locally, you can copy the servlet APl and JavaServer Pages (JSP) API
libraries from the installation folder. If you deploy to a Tomcat platform version, you don't need
to include these files in your source bundle, but you do need to have them in your classpath to
compile any classes that use them.

Development environment 194

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://tomcat.apache.org/download-80.cgi
http://tomcat.apache.org/download-70.cgi

AWS Elastic Beanstalk Developer Guide

JUnit, Google Guava, and Apache Commons provide several useful libraries. Visit their home pages
to learn more:

« Download JUnit

« Download Google Guava

» Download Apache Commons

Installing the AWS SDK for Java

If you need to manage AWS resources from within your application, install the AWS SDK for
Java. For example, with the AWS SDK for Java, you can use Amazon DynamoDB (DynamoDB)
to share session states of Apache Tomcat applications across multiple web servers. For more
information, see Manage Tomcat Session State with Amazon DynamoDB in the AWS SDK for Java

documentation.

Visit the AWS SDK for Java home page for more information and installation instructions.

Installing an IDE or text editor

Integrated development environments (IDEs) provide a wide range of features that facilitate
application development. If you haven't used an IDE for Java development, try Eclipse and IntelliJ
and see which works best for you.

« Install Eclipse IDE for Java EE Developers

« Install IntelliJ

® Note

An IDE might add files to your project folder that you might not want to commit to source
control. To prevent committing these files to source control, use .gitignore or your
source control tool's equivalent.

If you just want to begin coding and don't need all of the features of an IDE, consider installing
Sublime Text.

Development environment 195

https://github.com/junit-team/junit/wiki/Download-and-Install
https://code.google.com/p/guava-libraries/
http://commons.apache.org/downloads/
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-tomcat-session-manager.html
https://aws.amazon.com/sdk-for-java/
https://www.eclipse.org/downloads/
https://www.jetbrains.com/idea/
http://www.sublimetext.com/
http://www.sublimetext.com/

AWS Elastic Beanstalk Developer Guide

Installing the AWS toolkit for Eclipse

The AWS Toolkit for Eclipse is an open source plug-in for the Eclipse Java IDE that makes it easier

for developers to develop, debug, and deploy Java applications using AWS. Visit the AWS Toolkit
for Eclipse home page for installation instructions.

Using the Elastic Beanstalk Tomcat platform

/A Important

AWS Elastic Beanstalk installs Log4j from the Amazon Linux default package repositories
in its Tomcat platforms for Amazon Linux 1 and Amazon Linux 2. The versions of Log4j
available in the Amazon Linux 1 and Amazon Linux 2 repositories are not affected by
CVE-2021-44228 or CVE-2021-45046 in their default configuration.

If you've made configuration changes to your application’s use of log4j, or installed newer
versions of log4j, then we recommend that you take action to update your application’s code

to mitigate this issue.
Out of caution, Elastic Beanstalk released new platform versions that use the latest
Amazon Linux default package repositories, which include the Log4j hotpatched JDK, in

our Amazon Linux platform release on December 21, 2021. If you've customized log4j

installation as your application dependency, we recommend that you upgrade to the latest
Elastic Beanstalk platform version to mitigate CVE-2021-44228 or CVE-2021-45046. You
can also enable automated managed updates as part of normal update practices.

For more information about security-related software updates for Amazon Linux, see the
Amazon Linux Security Center.

The AWS Elastic Beanstalk Tomcat platform is a set of platform versions for Java web applications

that can run in a Tomcat web container. Tomcat runs behind an nginx proxy server. Each platform
branch corresponds to a major version of Tomcat, like Java 8 with Tomcat 8.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate

it, you can use saved configurations to save your settings and later apply them to another

environment.

To save settings in your source code, you can include configuration files. Settings in configuration

files are applied every time you create an environment or deploy your application. You can also

The Tomcat platform 196

https://aws.amazon.com/eclipse/
https://aws.amazon.com/eclipse/
https://www.cve.org/CVERecord?id=CVE-2021-44228
https://www.cve.org/CVERecord?id=CVE-2021-45046
https://aws.amazon.com/blogs/opensource/hotpatch-for-apache-log4j/
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2021-12-21-linux.html
https://alas.aws.amazon.com/
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.java

AWS Elastic Beanstalk Developer Guide

use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

The Elastic Beanstalk Tomcat platform includes a reverse proxy that forwards requests to your

application. You can use configuration options to configure the proxy server to serve static assets
from a folder in your source code to reduce the load on your application. For advanced scenarios,
you can include your own . conf files in your source bundle to extend the Elastic Beanstalk proxy

configuration or overwrite it completely.

(@ Note
Elastic Beanstalk supports nginx (the default) and Apache HTTP Server as the proxy servers

on the Tomcat platform. If your Elastic Beanstalk Tomcat environment uses an Amazon
Linux AMI platform branch (preceding Amazon Linux 2), you also have the option of using
Apache HTTP Server Version 2.2. Apache (latest) is the default on these older platform
branches.

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired. For more information about migrating to a current and fully

supported Amazon Linux 2023 platform branch, see Migrating your Elastic Beanstalk Linux

application to Amazon Linux 2023 or Amazon Linux 2.

You must package Java applications in a web application archive (WAR) file with a specific
structure. For information on the required structure and how it relates to the structure of your
project directory, see Structuring your project folder.

To run multiple applications on the same web server, you can bundle multiple WAR files into a

single source bundle. Each application in a multiple WAR source bundle runs at the root path
(ROOT.war runs at myapp.elasticbeanstalk.com/) or at a path directly beneath it (app2.war
runs at myapp .elasticbeanstalk.com/app2/), as determined by the name of the WAR. In a
single WAR source bundle, the application always runs at the root path.

Settings applied in the Elastic Beanstalk console override the same settings in configuration files,
if they exist. This lets you have default settings in configuration files, and override them with
environment-specific settings in the console. For more information about precedence, and other
methods of changing settings, see Configuration options.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called "Extending Linux platforms”.

The Tomcat platform 197

https://www.nginx.com/
https://httpd.apache.org/
https://httpd.apache.org/docs/2.2/
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

Topics

Configuring your Tomcat environment

Tomcat configuration namespaces

Bundling multiple WAR files for Tomcat environments

Structuring your project folder

Configuring your Tomcat environment's proxy server

Configuring your Tomcat environment

The Elastic Beanstalk Tomcat platform provides a few platform-specific options in addition to the
standard options that all platforms have. These options enable you to configure the Java virtual
machine (JVM) that runs on your environment's web servers, and define system properties that
provide information configuration strings to your application.

You can use the Elastic Beanstalk console to enable log rotation to Amazon S3 and configure
variables that your application can read from the environment.

To configure your Tomcat environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

(® Note

If you have many environments, use the search bar to filter the environment list.

3. Inthe navigation pane, choose Configuration.
4. In the Updates, monitoring, and logging configuration category, choose Edit.
Container options

You can specify these platform-specific options:

» Proxy server — The proxy server to use on your environment instances. By default, nginx is used.

The Tomcat platform 198

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

JVM container options

The heap size in the Java virtual machine (JVM) determines how many objects your application can
create in memory before garbage collection occurs. You can modify the Initial JVM Heap Size (-

Xms option) and a Maximum JVM Heap Size (-Xmx option). A larger initial heap size allows more
objects to be created before garbage collection occurs, but it also means that the garbage collector
will take longer to compact the heap. The maximum heap size specifies the maximum amount of
memory the JVM can allocate when expanding the heap during heavy activity.

(@ Note

The available memory depends on the Amazon EC2 instance type. For more information
about the EC2 instance types available for your Elastic Beanstalk environment, see Instance
Types in the Amazon Elastic Compute Cloud User Guide for Linux Instances.

The permanent generation is a section of the JVM heap that stores class definitions and associated
metadata. To modify the size of the permanent generation, type the new size in the Maximum
JVM PermGen Size (-XX:MaxPermSize) option. This setting applies only to Java 7 and

earlier. This option was deprecated in JDK 8 and superseded by the MaxMetaspace Size (-
XX:MaxMetaspaceSize) option.

/A Important

JDK 17 removed support of the Java -XX:MaxPermSize option. Usage of this option with
an environment running on an Elastic Beanstalk platform branch with Corretto 17 will
result in an error. Elastic Beanstalk released its first platform branch running Tomcat with
Corretto 17 on July 13, 2023.

For more information see the following resources.

» Oracle Java documentation website: Removed Java Options

« Oracle Java documentation website: Class Metadata section in Other Considerations

For more information about Elastic Beanstalk platforms and their components, see Supported
Platforms in the AWS Elastic Beanstalk Platforms guide.

The Tomcat platform 199

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/introduction.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2023-07-13-al2023.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/java.html#removed-java-options
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/considerations.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html

AWS Elastic Beanstalk Developer Guide

Log options
The Log Options section has two settings:

« Instance profile — Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

« Enable log file rotation to Amazon S3 - Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Static files

To improve performance, you can use the Static files section to configure the proxy server to serve
static files (for example, HTML or images) from a set of directories inside your web application.

For each directory, you set the virtual path to directory mapping. When the proxy server receives a
request for a file under the specified path, it serves the file directly instead of routing the request
to your application.

For details about configuring static files using configuration files or the Elastic Beanstalk console,
see the section called “Static files".

Environment properties

In the Environment Properties section, you can specify environment configuration settings on the
Amazon EC2 instances that are running your application. Environment properties are passed in as
key-value pairs to the application.

The Tomcat platform defines a placeholder property named JDBC_CONNECTION_STRING for
Tomcat environments for passing a connection string to an external database.

(@ Note

If you attach an RDS DB instance to your environment, construct the JDBC connection
string dynamically from the Amazon Relational Database Service (Amazon RDS)
environment properties provided by Elastic Beanstalk. Use JDBC_CONNECTION_STRING
only for database instances that are not provisioned using Elastic Beanstalk.

For more information about using Amazon RDS with your Java application, see Adding an
Amazon RDS DB instance to your Java application environment.

The Tomcat platform 200

AWS Elastic Beanstalk Developer Guide

Inside the Tomcat environment running in Elastic Beanstalk, environment variables are
accessible using the System.getProperty(). For example, you could read a property named
API_ENDPOINT to a variable with the following code.

String endpoint = System.getProperty("API_ENDPOINT");

See Environment properties and other software settings for more information.

Tomcat configuration namespaces

You can use a configuration file to set configuration options and perform other instance

configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

The Tomcat platform supports options in the following namespaces, in addition to the options
supported for all Elastic Beanstalk environments:

« aws:elasticbeanstalk:container:tomcat:jvmoptions - Modify JVM settings. Options
in this namespace correspond to options in the management console, as follows:

e Xms - JVM command line options
« JVM Options -JVM command line options

e aws:elasticbeanstalk:environment:proxy - Choose the environment's proxy server.

The following example configuration file shows the use of the Tomcat-specific configuration
options.

Example .ebextensions/tomcat-settings.config

option_settings:

aws:elasticbeanstalk:container:tomcat:jvmoptions:

Xms: 512m

JVM Options: '-Xmnl28m'
aws:elasticbeanstalk:application:environment:

API_ENDPOINT: mywebapi.zkpexsjtmd.us-west-2.elasticbeanstalk.com
aws:elasticbeanstalk:environment:proxy:

ProxyServer: apache

The Tomcat platform 201

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

The Amazon Linux AMI (preceding Amazon Linux 2) Tomcat platform

If your Elastic Beanstalk Tomcat environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

(® Notes

» The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

« OnJuly 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Tomcat configuration namespaces — Amazon Linux AMI (AL1)
The Tomcat Amazon Linux AMI platform supports additional options in the following namespaces:

« aws:elasticbeanstalk:container:tomcat:jvmoptions - In addition to the options
mentioned earlier on this page for this namespace, older Amazon Linux AMI platform versions
also support:

« XX:MaxPermSize - Maximum JVM permanent generation size

« aws:elasticbeanstalk:environment:proxy - In addition to choosing the proxy server,
also configure response compression.

The following example configuration file shows the use of the proxy namespace configuration
options.

Example .ebextensions/tomcat-settings.config

option_settings:
aws:elasticbeanstalk:environment:proxy:

The Tomcat platform 202

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

GzipCompression: 'true'
ProxyServer: nginx

Include Elastic Beanstalk configurations files — Amazon Linux AMI (AL1)

To deploy . ebextensions configuration files, include them in your application source. For a
single application, add your .ebextensions to a compressed WAR file by running the following
command:

Example

zip -ur your_application.war .ebextensions

For an application requiring multiple WAR files, see Bundling multiple WAR files for Tomcat
environments for further instructions.

Bundling multiple WAR files for Tomcat environments

If your web app comprises multiple web application components, you can simplify deployments
and reduce operating costs by running components in a single environment, instead of running a
separate environment for each component. This strategy is effective for lightweight applications
that don't require a lot of resources, and for development and test environments.

To deploy multiple web applications to your environment, combine each component's web
application archive (WAR) files into a single source bundle.

To create an application source bundle that contains multiple WAR files, organize the WAR files
using the following structure.

MyApplication.zip
.ebextensions
.platform

foo.war

bar.war

ROOT.war

When you deploy a source bundle containing multiple WAR files to an AWS Elastic Beanstalk
environment, each application is accessible from a different path off of the root domain name.
The preceding example includes three applications: foo, bar, and ROOT. ROOT .war is a special
file name that tells Elastic Beanstalk to run that application at the root domain, so that the

The Tomcat platform 203

AWS Elastic Beanstalk Developer Guide

three applications are available at http://MyApplication.elasticbeanstalk.com/
foo, http://MyApplication.elasticbeanstalk.com/bar, and http://
MyApplication.elasticbeanstalk.com.

The source bundle can include WAR files, an optional .ebextensions folder, and an optional
.platform folder. For details about these optional configuration folders, see the section called
“Extending Linux platforms”.

To launch an environment (console)

1. Open the Elastic Beanstalk console with this preconfigured link:
console.aws.amazon.com/elasticbeanstalk/home#/newApplication?

applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application, or the Docker platform for container-based applications.

For Application code, choose Upload your code.
Choose Local file, choose Choose file, and then open the source bundle.

Choose Review and launch.

o v kAW

Review the available settings, and then choose Create app.

For information about creating source bundles, see Create an application source bundle.

Structuring your project folder

To work when deployed to a Tomcat server, compiled Java Platform Enterprise Edition (Java EE)
web application archives (WAR files) must be structured according to certain guidelines. Your
project directory doesn't have to meet the same standards, but it's a good idea to structure it in the
same way to simplify compiling and packaging. Structuring your project folder like the WAR file
contents also helps you understand how files are related and how they behave on a web server.

In the following recommended hierarchy, the source code for the web application is placed ina sxc
directory, to isolate it from the build script and the WAR file it generates.

~/workspace/my-app/

| -- build.sh - Build script that compiles classes and creates a WAR

| -- README.MD - Readme file with information about your project, notes
| -- ROOT.war - Source bundle artifact created by build.sh

‘-- srIc - Source code folder

The Tomcat platform 204

https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://docs.oracle.com/javaee/7/tutorial/packaging003.htm

AWS Elastic Beanstalk Developer Guide

| -- WEB-INF - Folder for private supporting files
| | -- classes - Compiled classes

| |-- 1lib - JAR libraries

| | -- tags - Tag files

| |-- tlds - Tag Library Descriptor files

| “-- web.xml - Deployment Descriptor

| -- com - Uncompiled classes

|-- css - Style sheets

| -- images - Image files

|-- js - JavaScript files

“-- default.jsp - JSP (JavaServer Pages) webpage

The src folder contents match what you will package and deploy to the server, with the exception
of the com folder. The com folder contains your uncompiled classes (. java files). These need to be
compiled and placed in the WEB-INF/classes directory to be accessible from your application
code.

The WEB-INF directory contains code and configurations that are not served publicly on the web
server. The other folders at the root of the source directory (css, images, and js) are publicly
available at the corresponding path on the web server.

The following example is identical to the preceding project directory, except that it contains more
files and subdirectories. This example project includes simple tags, model and support classes, and
a Java Server Pages (JSP) file for a record resource. It also includes a style sheet and JavaScript for
Bootstrap, a default JSP file, and an error page for 404 errors.

WEB-INF/1ib includes a Java Archive (JAR) file containing the Java Database Connectivity (JDBC)
driver for PostgreSQL. WEB-INF/classes is empty because class files have not been compiled yet.

~/workspace/my-app/
|-- build.sh
| -- README.MD
| -- ROOT.war
‘-- src
|-- WEB-INF
| | -- classes
|-- 1lib
| "-- postgresql-9.4-1201.jdbc4.jar
| -- tags
| "-- header.tag
|-- tlds
| "-- records.tld

The Tomcat platform 205

http://getbootstrap.com/

AWS Elastic Beanstalk Developer Guide

“-- web.xml
-- com
“-- myapp
| -- model
| "-- Record.java
‘-- web
"-- ListRecords.java
-- css
| -- bootstrap.min.css
‘-- myapp.css
-- images
"-- myapp.png
|-- Js
| “-- bootstrap.min.js
|-- 404.jsp
| -- default.jsp
‘-- records.jsp

Building a WAR file with a shell script

build.shis a very simple shell script that compiles Java classes, constructs a WAR file, and copies
it to the Tomcat webapps directory for local testing.

cd src

javac -d WEB-INF/classes com/myapp/model/Record.java

javac -classpath WEB-INF/lib/*:WEB-INF/classes -d WEB-INF/classes com/myapp/model/
Record. java

javac -classpath WEB-INF/lib/*:WEB-INF/classes -d WEB-INF/classes com/myapp/web/
ListRecords. java

jar -cvf ROOT.war *.jsp images css js WEB-INF
cp ROOT.war /Library/Tomcat/webapps
mv ROOT.war ../

Inside the WAR file, you find the same structure that exists in the src directory in the preceding
example, excluding the src/com folder. The jar command automatically creates the META-INF/
MANIFEST.MF file.

~/workspace/my-app/ROOT.war
| -- META-INF

| *-- MANIFEST.MF

| -- WEB-INF

The Tomcat platform 206

AWS Elastic Beanstalk Developer Guide

| | -- classes

| T-- com

I ‘-~ myapp

| | -- model

| | "-- Records.class
| ‘-- web

| "-- ListRecords.class
| -- 1ib

| "-- postgresql-9.4-1201.jdbc4.jar
| |-- tags

| | "-- header.tag

| |-- tlds

| | "-- records.tld

| “-- web.xml

|-- css

| | -- bootstrap.min.css

| ‘-- myapp.css

| -- images

| "-- myapp.png

|-- s

| “-- bootstrap.min.js

|-- 404.jsp

| -- default.jsp

‘-- records.jsp

Using .gitignore

To avoid committing compiled class files and WAR files to your Git repository, or seeing messages
about them appear when you run Git commands, add the relevant file types to a file named
.gitignore in your project folder.

~/workspace/myapp/.gitignore

*,zip
*.class

Configuring your Tomcat environment's proxy server

The Tomcat platform uses nginx (the default) or Apache HTTP Server as the reverse proxy to relay
requests from port 80 on the instance to your Tomcat web container listening on port 8080. Elastic
Beanstalk provides a default proxy configuration that you can extend or override completely with

your own configuration.

The Tomcat platform 207

https://www.nginx.com/
https://httpd.apache.org/

AWS Elastic Beanstalk Developer Guide

Configuring the proxy server on your platform version

All AL2023/AL2 platforms support a uniform proxy configuration feature. For more information
about configuring the proxy server on your platform versions running AL2023/AL2, expand the
Reverse Proxy Configuration section in the section called “Extending Linux platforms”.

Configuring the proxy on the Amazon Linux AMI (preceding Amazon Linux 2) Tomcat platform

If your Elastic Beanstalk Tomcat environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

® Notes

« The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

« OnJuly 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Choosing a proxy server for your Tomcat environment — Amazon Linux AMI (AL1)

Tomcat platform versions based on Amazon Linux AMI (preceding Amazon Linux 2) use Apache 2.4
for the proxy by default. You can choose to use Apache 2.2 or nginx by including a configuration

file in your source code. The following example configures Elastic Beanstalk to use nginx.

Example .ebextensions/nginx-proxy.config

option_settings:
aws:elasticbeanstalk:environment:proxy:
ProxyServer: nginx

Migrating from Apache 2.2 to Apache 2.4 — Amazon Linux AMI (AL1)

If your application was developed for Apache 2.2, read this section to learn about migrating to
Apache 2.4.

The Tomcat platform 208

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html
https://httpd.apache.org/docs/2.4/
https://httpd.apache.org/docs/2.2/
https://www.nginx.com/
https://httpd.apache.org/docs/2.2/
https://httpd.apache.org/docs/2.4/

AWS Elastic Beanstalk Developer Guide

Starting with Tomcat platform version 3.0.0 configurations, which were released with the Java
with Tomcat platform update on May 24, 2018, Apache 2.4 is the default proxy of the Tomcat

platform. The Apache 2.4 . conf files are mostly, but not entirely, backward compatible with those
of Apache 2.2. Elastic Beanstalk includes default . conf files that work correctly with each Apache
version. If your application doesn't customize Apache's configuration, as explained in Extending
and overriding the default Apache configuration — Amazon Linux AMI (AL1), it should migrate to
Apache 2.4 without any issues.

If your application extends or overrides Apache's configuration, you might have to make some
changes to migrate to Apache 2.4. For more information, see Upgrading to 2.4 from 2.2 on The

Apache Software Foundation's site. As a temporary measure, until you successfully migrate to
Apache 2.4, you can choose to use Apache 2.2 with your application by including the following
configuration file in your source code.

Example .ebextensions/apache-legacy-proxy.config

option_settings:
aws:elasticbeanstalk:environment:proxy:
ProxyServer: apache/2.2

For a quick fix, you can also select the proxy server in the Elastic Beanstalk console.
To select the proxy in your Tomcat environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

® Note

If you have many environments, use the search bar to filter the environment list.

In the navigation pane, choose Configuration.
In the Updates, monitoring, and logging configuration category, choose Edit.

For Proxy server, choose Apache 2.2 (deprecated).

AN

To save the changes choose Apply at the bottom of the page.

The Tomcat platform 209

https://aws.amazon.com/releasenotes/release-aws-elastic-beanstalk-platform-update-for-the-java-with-tomcat-platform-on-may-24-2018/
https://aws.amazon.com/releasenotes/release-aws-elastic-beanstalk-platform-update-for-the-java-with-tomcat-platform-on-may-24-2018/
https://httpd.apache.org/docs/current/upgrading.html
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Modify software

Container Options

The Tollowing settings control container behavior and let you pass key-value pairs in as O3 environment variables. Learn more

Proxy server |Apache E|

|

Apache ~ |dfor dient connections. By choosing Apache, Elastic Beanstalk defaults to the Iatestversion
Apache 2.2 {deprecated) more
Hginx h

Extending and overriding the default Apache configuration — Amazon Linux AMI (AL1)

You can extend the Elastic Beanstalk default Apache configuration with your additional

configuration files. Alternatively, you can override the Elastic Beanstalk default Apache
configuration completely.

® Note

« All Amazon Linux 2 platforms support a uniform proxy configuration feature. For details
about configuring the proxy server on Tomcat platform versions running Amazon Linux
2, expand the Reverse Proxy Configuration section in the section called “Extending Linux
platforms”.

« If you're migrating your Elastic Beanstalk application to an Amazon Linux 2 platform, be
sure to also read the information in the section called “Migrate to AL2023/AL2".

To extend the Elastic Beanstalk default Apache configuration, add . conf configuration files to
a folder named .ebextensions/httpd/conf.d in your application source bundle. The Elastic
Beanstalk Apache configuration includes . conf files in this folder automatically.

~/workspace/my-app/

| -- .ebextensions

| -- httpd

| -- conf.d

| -- myconf.conf
| -- ssl.conf

-- index.jsp

For example, the following Apache 2.4 configuration adds a listener on port 5000.

The Tomcat platform 210

AWS Elastic Beanstalk Developer Guide

Example .ebextensions/httpd/conf.d/port5000.conf

listen 5000
<VirtualHost *:5000>
<Proxy *>
Require all granted
</Proxy>
ProxyPass / http://localhost:8080/ retry=0
ProxyPassReverse / http://localhost:8080/
ProxyPreserveHost on

ErrorLog /var/log/httpd/elasticbeanstalk-error_log
</VirtualHost>

To override the Elastic Beanstalk default Apache configuration completely, include a configuration
in your source bundle at .ebextensions/httpd/conf/httpd.conf.

~/workspace/my-app/

| -- .ebextensions

| “-- httpd

| “-- conf

| "-- httpd.conf
“-- index.jsp

If you override the Elastic Beanstalk Apache configuration, add the following lines to your
httpd. conf to pull in the Elastic Beanstalk configurations for Enhanced health reporting and
monitoring, response compression, and static files.

IncludeOptional conf.d/*.conf
IncludeOptional conf.d/elasticbeanstalk/*.conf

If your environment uses Apache 2.2 as its proxy, replace the IncludeOptional directives with
Include. For details about the behavior of these two directives in the two Apache versions, see
Include in Apache 2.4, IncludeOptional in Apache 2.4, and Include in Apache 2.2.

(® Note

To override the default listener on port 80, include a file named 00_application.conf

at .ebextensions/httpd/conf.d/elasticbeanstalk/ to overwrite the Elastic
Beanstalk configuration.

The Tomcat platform 211

https://httpd.apache.org/docs/2.4/mod/core.html#include
https://httpd.apache.org/docs/2.4/mod/core.html#includeoptional
https://httpd.apache.org/docs/2.2/mod/core.html#include

AWS Elastic Beanstalk Developer Guide

For a working example, take a look at the Elastic Beanstalk default configuration file at /etc/
httpd/conf/httpd. conf on aninstance in your environment. All files in the . ebextensions/
httpd folder in your source bundle are copied to /etc/httpd during deployments.

Extending the default nginx configuration — Amazon Linux AMI (AL1)

To extend Elastic Beanstalk's default nginx configuration, add . conf configuration files to a folder

named .ebextensions/nginx/conf.d/ in your application source bundle. The Elastic Beanstalk
nginx configuration includes . conf files in this folder automatically.

~/workspace/my-app/

| -- .ebextensions

| “-- nginx

| "-- conf.d

| | -- elasticbeanstalk

| | ‘-- my-server-conf.conf
| “-- my-http-conf.conf

“-- index.jsp

Files with the .conf extension in the conf.d folder are included in the http block of the default

configuration. Files in the conf.d/elasticbeanstalk folder are included in the server block
within the http block.

To override the Elastic Beanstalk default nginx configuration completely, include a configuration in
your source bundle at .ebextensions/nginx/nginx.conf.

~/workspace/my-app/

| -- .ebextensions

| “-- nginx

| "-- nginx.conf
“-- index.jsp

(® Notes

« If you override the Elastic Beanstalk nginx configuration, add the following line to your
configuration's server block to pull in the Elastic Beanstalk configurations for the port
80 listener, response compression, and static files.

include conf.d/elasticbeanstalk/*.conf;

The Tomcat platform 212

AWS Elastic Beanstalk Developer Guide

» To override the default listener on port 80, include a file named 00_application.conf
at .ebextensions/nginx/conf.d/elasticbeanstalk/ to overwrite the Elastic
Beanstalk configuration.

« Also include the following line in your configuration's http block to pull in the Elastic
Beanstalk configurations for Enhanced health reporting and monitoring and logging.

include conf.d/*.conf;

For a working example, take a look at the Elastic Beanstalk default configuration file at /etc/
nginx/nginx.conf on an instance in your environment. All files in the .ebextensions/nginx
folder in your source bundle are copied to /etc/nginx during deployments.

Using the Elastic Beanstalk Java SE platform

The AWS Elastic Beanstalk Java SE platform is a set of platform versions for Java web applications
that can run on their own from a compiled JAR file. You can compile your application locally or
upload the source code with a build script to compile it on-instance. Java SE platform versions are
grouped into platform branches, each of which corresponds to a major version of Java, for example
Java 8 and Java 7.

(® Note

Elastic Beanstalk doesn't parse your application's JAR file. Keep files that Elastic Beanstalk
needs outside of the JAR file. For example, include the cron.yaml file of a worker
environment at the root of your application's source bundle, next to the JAR file.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate

it, you can use saved configurations to save your settings and later apply them to another

environment.

To save settings in your source code, you can include configuration files. Settings in configuration

files are applied every time you create an environment or deploy your application. You can also
use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

The Java SE platform 213

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.javase

AWS Elastic Beanstalk Developer Guide

The Elastic Beanstalk Java SE platform includes an nginx server that acts as a reverse proxy,
serving cached static content and passing requests to your application. The platform provides
configuration options to configure the proxy server to serve static assets from a folder in your
source code to reduce the load on your application. For advanced scenarios, you can include your
own .conf files in your source bundle to extend Elastic Beanstalk's proxy configuration or overwrite
it completely.

If you only provide a single JAR file for your application source (on its own, not within a source
bundle), Elastic Beanstalk renames your JAR file to application. jar, and then runs it using
java -jar application.jar. To configure the processes that run on the server instances in
your environment, include an optional Procfile in your source bundle. A Procfile is required

if you have more than one JAR in your source bundle root, or if you want to customize the java
command to set JVM options.

We recommend that you always provide a Procfile in the source bundle alongside your
application. This way you precisely control which processes Elastic Beanstalk runs for your
application and which arguments these processes receive.

To compile Java classes and run other build commands on the EC2 instances in your environment
at deploy time, include a Buildfile in your application source bundle. ABuildfile lets you deploy
your source code as-is and build on the server instead of compiling JARs locally. The Java SE
platform includes common build tools to let you build on-server.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called “Extending Linux platforms".

Configuring your Java SE environment

The Java SE platform settings let you fine-tune the behavior of your Amazon EC2 instances. You
can edit the Elastic Beanstalk environment's Amazon EC2 instance configuration using the Elastic
Beanstalk console.

Use the Elastic Beanstalk console to enable log rotation to Amazon S3 and configure variables that
your application can read from the environment.

To configure your Java SE environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

The Java SE platform 214

https://www.nginx.com/
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

® Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Log options
The Log Options section has two settings:

« Instance profile - Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

« Enable log file rotation to Amazon S3 - Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Static files

To improve performance, you can use the Static files section to configure the proxy server to serve
static files (for example, HTML or images) from a set of directories inside your web application.

For each directory, you set the virtual path to directory mapping. When the proxy server receives a
request for a file under the specified path, it serves the file directly instead of routing the request
to your application.

For details about configuring static files using configuration files or the Elastic Beanstalk console,
see the section called “Static files".

Environment properties

The Environment Properties section lets you specify environment configuration settings on the
Amazon EC2 instances that are running your application. Environment properties are passed in as
key-value pairs to the application.

Inside the Java SE environment running in Elastic Beanstalk, environment variables are accessible
using the System.getenv(). For example, you could read a property named API_ENDPOINT to a
variable with the following code:

String endpoint = System.getenv("API_ENDPOINT");

The Java SE platform 215

AWS Elastic Beanstalk Developer Guide

See Environment properties and other software settings for more information.

Java SE configuration namespace

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

The Java SE platform doesn't define any platform-specific namespaces. You can configure the
proxy to serve static files by using the
aws:elasticbeanstalk:environment:proxy:staticfiles namespace. For details and an
example, see the section called “Static files".

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

The Amazon Linux AMI (preceding Amazon Linux 2) Java SE platform

If your Elastic Beanstalk Java SE environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

(® Notes

» The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

« OnJuly 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic

Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Java SE configuration namespaces — Amazon Linux AMI (AL1)

You can use a configuration file to set configuration options and perform other instance

configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

The Java SE platform 216

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

The Java SE platform supports one platform-specific configuration

namespace in addition to the namespaces supported by all platforms. The
aws:elasticbeanstalk:container:java:staticfiles namespace lets you define options
that map paths on your web application to folders in your application source bundle that contain
static content.

For example, this option_settings snippet defines two options in the static files namespace. The
first maps the path /public to a folder named public, and the second maps the path /images
to a folder named img:

option_settings:
aws:elasticbeanstalk:container:java:staticfiles:
/html: statichtml
/images: staticimages

The folders that you map using this namespace must be actual folders in the root of your source
bundle. You cannot map a path to a folder in a JAR file.

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

Building JARs on-server with a Buildfile

You can build your application's class files and JAR(s) on the EC2 instances in your environment by
invoking a build command from a Buildfile file in your source bundle.

Commands in a Buildfile are only run once and must terminate upon completion, whereas
commands in a Procfile are expected to run for the life of the application and will be restarted if
they terminate. To run the JARs in your application, use a Procfile.

For details about the placement and syntax of a Buildfile, expand the Buildfile and Procfile
section in the section called “Extending Linux platforms”.

The following Buildfile example runs Apache Maven to build a web application from source
code. For a sample application that uses this feature, see Java web application samples.

Example Buildfile

build: mvn assembly:assembly -DdescriptorId=jar-with-dependencies

The Java SE platform 217

AWS Elastic Beanstalk Developer Guide

The Java SE platform includes the following build tools, which you can invoke from your build
script:

javac - Java compiler

ant - Apache Ant

mvn — Apache Maven

gradle - Gradle

Configuring the application process with a Procfile

If you have more than one JAR file in the root of your application source bundle, you must
include a Procfile file that tells Elastic Beanstalk which JAR(s) to run. You can also include a
Procfile file for a single JAR application to configure the Java virtual machine (JVM) that runs
your application.

We recommend that you always provide a Procfile in the source bundle alongside your
application. This way you precisely control which processes Elastic Beanstalk runs for your
application and which arguments these processes receive.

For details about writing and using a Procfile, expand the Buildfile and Procfile section in the
section called “Extending Linux platforms”.

Example Procfile

web: java -Xms256m -jar server.jar
cache: java -jar mycache.jar
web_foo: java -jar other.jar

The command that runs the main JAR in your application must be called web, and it must be
the first command listed in your Procfile. The nginx server forwards all HTTP requests that it
receives from your environment's load balancer to this application.

Elastic Beanstalk assumes that all entries in the Procfile should run at all times and automatically
restarts any application defined in the Procfile that terminates. To run commands that will
terminate and should not be restarted, use a Buildfile.

The Java SE platform 218

AWS Elastic Beanstalk Developer Guide

Using a Procfile on Amazon Linux AMI (preceding Amazon Linux 2)

If your Elastic Beanstalk Java SE environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

(® Notes

« The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

« OnJuly 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic

Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Port passing — Amazon Linux AMI (AL1)

By default, Elastic Beanstalk configures the nginx proxy to forward requests to your application on
port 5000. You can override the default port by setting the PORT environment property to the port
on which your main application listens.

If you use a Procfile to run multiple applications, Elastic Beanstalk on Amazon Linux AMI
platform versions expects each additional application to listen on a port 100 higher than the
previous one. Elastic Beanstalk sets the PORT variable accessible from within each application
to the port that it expects the application to run on. You can access this variable within your
application code by calling System.getenv("PORT").

In the preceding Procfile example, the web application listens on port 5000, cache listens on
port 5100, and web_foo listens on port 5200. web configures its listening port by reading the
PORT variable, and adds 100 to that humber to determine which port cache is listening on so that
it can send it requests.

Configuring the reverse proxy

Elastic Beanstalk uses nginx as the reverse proxy to map your application to your Elastic Load
Balancing load balancer on port 80. Elastic Beanstalk provides a default nginx configuration that
you can either extend or override completely with your own configuration.

The Java SE platform 219

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html
https://www.nginx.com/

AWS Elastic Beanstalk Developer Guide

By default, Elastic Beanstalk configures the nginx proxy to forward requests to your application on
port 5000. You can override the default port by setting the PORT environment property to the port
on which your main application listens.

® Note

The port that your application listens on doesn't affect the port that the nginx server
listens to receive requests from the load balancer.

Configuring the proxy server on your platform version

All AL2023/AL2 platforms support a uniform proxy configuration feature. For more information
about configuring the proxy server on your platform versions running AL2023/AL2, expand the
Reverse Proxy Configuration section in the section called “Extending Linux platforms”.

Configuring the proxy on Amazon Linux AMI (preceding Amazon Linux 2)

If your Elastic Beanstalk Java SE environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

(® Notes

» The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

« OnJuly 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic

Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Extending and overriding the default proxy configuration — Amazon Linux AMI (AL1)

To extend Elastic Beanstalk's default nginx configuration, add . conf configuration files to a folder
named .ebextensions/nginx/conf.d/ in your application source bundle. Elastic Beanstalk's
nginx configuration includes . conf files in this folder automatically.

~/workspace/my-app/

The Java SE platform 220

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

| -- .ebextensions

| “-- nginx

| "-- conf.d

| “-- myconf.conf
“-- web.jar

To override Elastic Beanstalk's default nginx configuration completely, include a configuration in
your source bundle at .ebextensions/nginx/nginx.conf:

~/workspace/my-app/

| -- .ebextensions

| “-- nginx

| “-- nginx.conf
“-- web.jar

If you override Elastic Beanstalk's nginx configuration, add the following line to your nginx.conf
to pull in Elastic Beanstalk's configurations for Enhanced health reporting and monitoring,
automatic application mappings, and static files.

include conf.d/elasticbeanstalk/*.conf;

The following example configuration from the Scorekeep sample application overrides Elastic
Beanstalk's default configuration to serve a static web application from the public subdirectory
of /var/app/current, where the Java SE platform copies the application source code. The /api
location forwards traffic to routes under /api/ to the Spring application listening on port 5000.
All other traffic is served by the web app at the root path.

Example
user nginx;
error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;
worker_processes auto;

worker_rlimit_nofile 33282;

events {
worker_connections 1024;
}
http {
include /etc/nginx/mime. types;

The Java SE platform 221

https://github.com/aws-samples/eb-java-scorekeep/

AWS Elastic Beanstalk Developer Guide

default_type application/octet-stream;

log_format main '$remote_addr - $remote_user [$time_local] "$request" '
'$status $body_bytes_sent "$http_referer" '

""$http_user_agent" "$http_x_forwarded_for"';
include conf.d/*.conf;

map $http_upgrade $connection_upgrade {

default "upgrade";
}
server {
listen 80 default_server;
root /var/app/current/public;
location / {
}git pull
location /api {
proxy_pass http://127.0.0.1:5000;
proxy_http_version 1.1;
proxy_set_header Connection $connection_upgrade;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Host $host;
proxy_set_header X-Real-1IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
}
access_log /var/log/nginx/access.log main;
client_header_timeout 60;
client_body_timeout 60;
keepalive_timeout 60;
gzip off;
gzip_comp_level 4;
Include the Elastic Beanstalk generated locations
include conf.d/elasticbeanstalk/@1_static.conf;
include conf.d/elasticbeanstalk/healthd.conf;
}

The Java SE platform 222

AWS Elastic Beanstalk Developer Guide

}

Adding an Amazon RDS DB instance to your Java application
environment

You can use an Amazon Relational Database Service (Amazon RDS) DB instance to store data that
your application gathers and modifies. The database can be attached to your environment and
managed by Elastic Beanstalk, or created and managed externally.

If you are using Amazon RDS for the first time, add a DB instance to a test environment by using
the Elastic Beanstalk console and verify that your application can connect to it.

To add a DB instance to your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

(@ Note

If you have many environments, use the search bar to filter the environment list.

In the navigation pane, choose Configuration.
In the Database configuration category, choose Edit.

Choose a DB engine, and enter a user name and password.

o v A~ W

To save the changes choose Apply at the bottom of the page.

Adding a DB instance takes about 10 minutes. When the environment update is complete, the DB
instance's hostname and other connection information are available to your application through
the following environment properties:

Property name Description Property value
RDS_HOSTNAME The hostname of the DB On the Connectivity &
instance. security tab on the Amazon

RDS console: Endpoint.

Adding a database 223

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Property name Description Property value

RDS_PORT The port where the DB On the Connectivity &
instance accepts connectio security tab on the Amazon
ns. The default value varies RDS console: Port.

among DB engines.

RDS_DB_NAME The database name, ebdb. On the Configuration tab on
the Amazon RDS console: DB
Name.

RDS_USERNAME The username that you On the Configuration tab

configured for your database. on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you Not available for reference in
configured for your database. the Amazon RDS console.

For more information about configuring an internal DB instance, see Adding a database to your

Elastic Beanstalk environment. For instructions on configuring an external database for use with
Elastic Beanstalk, see Using Elastic Beanstalk with Amazon RDS.

To connect to the database, add the appropriate driver JAR file to your application, load the driver
class in your code, and create a connection object with the environment properties provided by
Elastic Beanstalk.

Sections
Downloading the JDBC driver

Connecting to a database (Java SE platforms)

Connecting to a database (Tomcat platforms)

Troubleshooting database connections

Downloading the JDBC driver

You will need the JAR file of the JDBC driver for the DB engine that you choose. Save the JAR
file in your source code and include it in your classpath when you compile the class that creates
connections to the database.

Adding a database 224

AWS Elastic Beanstalk Developer Guide

You can find the latest driver for your DB engine in the following locations:

MySQL - MySQL Connector/J
Oracle SE-1 - Oracle JDBC Driver
Postgres — PostgreSQL JDBC Driver
SQL Server - Microsoft JDBC Driver

To use the JDBC driver, call Class.forName() to load it before creating the connection with
DriverManager.getConnection() in your code.

JDBC uses a connection string in the following format:

jdbc:driver://hostname:port/dbName?user=userName&password=password

You can retrieve the hostname, port, database name, user name, and password from the
environment variables that Elastic Beanstalk provides to your application. The driver name is
specific to your database type and driver version. The following are example driver names:

« mysql for MySQL

» postgresql for PostgreSQL

« oracle:thin for Oracle Thin
« oracle:oci for Oracle OCI

« oracle:oci8 for Oracle OCI 8
« oracle:kprb for Oracle KPRB

» sqlserver for SQL Server

Connecting to a database (Java SE platforms)

In a Java SE environment, use System.getenv () to read the connection variables from the
environment. The following example code shows a class that creates a connection to a PostgreSQL
database.

private static Connection getRemoteConnection() {
if (System.getenv("RDS_HOSTNAME") != null) {
try {
Class.forName("org.postgresql.Driver");
String dbName = System.getenv("RDS_DB_NAME");

Adding a database 225

https://dev.mysql.com/downloads/connector/j/
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
https://jdbc.postgresql.org/
https://msdn.microsoft.com/en-us/sqlserver/aa937724.aspx

AWS Elastic Beanstalk Developer Guide

String userName = System.getenv("RDS_USERNAME");

String password = System.getenv("RDS_PASSWORD");

String hostname = System.getenv("RDS_HOSTNAME");

String port = System.getenv("RDS_PORT");

String jdbcUrl = "jdbc:postgresql://" + hostname + ":" + port + "/" + dbName + "?
user=" + userName + "&password=" + password;

logger.trace("Getting remote connection with connection string from environment
variables.");
Connection con = DriverManager.getConnection(jdbcUrl);
logger.info("Remote connection successful.");
return con;
}
catch (ClassNotFoundException e) { logger.warn(e.toString());}
catch (SQLException e) { logger.warn(e.toString());}
}

return null;

Connecting to a database (Tomcat platforms)

In a Tomcat environment, environment properties are provided as system properties that are
accessible with System.getProperty().

The following example code shows a class that creates a connection to a PostgreSQL database.

private static Connection getRemoteConnection() {
if (System.getProperty("RDS_HOSTNAME") != null) {

try {

Class.forName("org.postgresql.Driver");

String dbName = System.getProperty('"RDS_DB_NAME");

String userName = System.getProperty("RDS_USERNAME");

String password = System.getProperty("RDS_PASSWORD");

String hostname = System.getProperty("RDS_HOSTNAME");

String port = System.getProperty("RDS_PORT");

String jdbcUrl = "jdbc:postgresql://" + hostname + ":" + port + "/" + dbName + "?
user=" + userName + "&password=" + password;

logger.trace("Getting remote connection with connection string from environment
variables.");

Connection con = DriverManager.getConnection(jdbcUrl);

logger.info("Remote connection successful.");

return con;

}
catch (ClassNotFoundException e) { logger.warn(e.toString());}

Adding a database 226

AWS Elastic Beanstalk Developer Guide

catch (SQLException e) { logger.warn(e.toString());}

}

return null;

If you have trouble getting a connection or running SQL statements, try placing the following code

in a JSP file. This code connects to a DB instance, creates a table, and writes to it.

<%@ page

o
<%

import="java.sql.*" %>

// Read RDS connection information from the environment

String dbName = System.getProperty("RDS_DB_NAME");
String userName = System.getProperty("RDS_USERNAME");
String password = System.getProperty("RDS_PASSWORD");
String hostname = System.getProperty("RDS_HOSTNAME");
String port = System.getProperty("RDS_PORT");
String jdbcUrl = "jdbc:mysql://" + hostname + ":" +
port + "/" + dbName + "?user=" + userName + "&password=" + password;

// Load the JDBC driver

try {
System.out.println("Loading driver...");
Class.forName("com.mysql.jdbc.Driver");
System.out.println("Driver loaded!");

} catch (ClassNotFoundException e) {

throw new RuntimeException("Cannot find the driver in the classpath!", e);

Connection conn = null;
Statement setupStatement = null;
Statement readStatement = null;
ResultSet resultSet = null;
String results = "";

int numresults = 0;

String statement = null;

try {
// Create connection to RDS DB instance
conn = DriverManager.getConnection(jdbcUrl);

// Create a table and write two rows
setupStatement = conn.createStatement();
String createTable = "CREATE TABLE Beanstalk

(Resource char(50));";

Adding a database

227

AWS Elastic Beanstalk

Developer Guide

String insertRowl = "INSERT INTO Beanstalk (Resource) VALUES ('EC2 Instance');";
String insertRow2 = "INSERT INTO Beanstalk (Resource) VALUES ('RDS Instance');";

setupStatement.addBatch(createTable);
setupStatement.addBatch(insertRowl);
setupStatement.addBatch(insertRow2);
setupStatement.executeBatch();
setupStatement.close();

} catch (SQLException ex) {
// Handle any errors
System.out.println("SQLException: " + ex.getMessage());
System.out.println("SQLState: " + ex.getSQLState());
System.out.println("VendorError: " + ex.getErrorCode());

} finally {
System.out.println("Closing the connection.");
if (conn != null) try { conn.close(); } catch (SQLException ignore) {}

try {
conn = DriverManager.getConnection(jdbcUrl);

readStatement = conn.createStatement();

resultSet = readStatement.executeQuery("SELECT Resource FROM Beanstalk;");

resultSet.first();

results = resultSet.getString("Resource");
resultSet.next();

results += ", " + resultSet.getString("Resource");

resultSet.close();
readStatement.close();
conn.close();

} catch (SQLException ex) {
// Handle any errors
System.out.println("SQLException: " + ex.getMessage());
System.out.println("SQLState: " + ex.getSQLState());
System.out.println("VendorError: " + ex.getErrorCode());
} finally {
System.out.println("Closing the connection.");
if (conn != null) try { conn.close(); } catch (SQLException ignore)

{3

Adding a database

228

AWS Elastic Beanstalk Developer Guide

%>

To display the results, place the following code in the body of the HTML portion of the JSP file.

<p>Established connection to RDS. Read first two rows: <%= results %></p>

Troubleshooting database connections

If you run into issues connecting to a database from within your application, review the web
container log and database.

Reviewing logs

You can view all the logs from your Elastic Beanstalk environment from within Eclipse. If you don't
have the AWS Explorer view open, choose the arrow next to the orange AWS icon in the toolbar,
and then choose Show AWS Explorer View. Expand AWS Elastic Beanstalk and your environment
name, and then open the context (right-click) menu for the server. Choose Open in WTP Server
Editor.

Choose the Log tab of the Server view to see the aggregate logs from your environment. To open
the latest logs, choose the Refresh button at the upper right corner of the page.

Scroll down to locate the Tomcat logs in /var/log/tomcat7/catalina.out. If you loaded the
webpage from our earlier example several times, you might see the following.

INFO: Server startup in 9285 ms

Loading driver...

Driver loaded!

SQLException: Table 'Beanstalk' already exists
SQLState: 42501

VendorError: 1050

Closing the connection.

Closing the connection.

All information that the web application sends to standard output appears in the web container
log. In the previous example, the application tries to create the table every time the page loads.
This results in catching a SQL exception on every page load after the first one.

Adding a database 229

AWS Elastic Beanstalk Developer Guide

As an example, the preceding is acceptable. But in actual applications, keep your database
definitions in schema objects, perform transactions from within model classes, and coordinate
requests with controller servlets.

Connecting to an RDS DB Instance

You can connect directly to the RDS DB instance in your Elastic Beanstalk environment by using the
MySQL client application.

First, open the security group to your RDS DB instance to allow traffic from your computer.

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

® Note

If you have many environments, use the search bar to filter the environment list.

In the navigation pane, choose Configuration.
In the Database configuration category, choose Edit.

Next to Endpoint, choose the Amazon RDS console link.

o un &~ W

On the RDS Dashboard instance details page, under Security and Network, choose the
security group starting with rds- next to Security Groups.

(® Note

The database might have multiple entries labeled Security Groups. Use the first,
which starts with awseb, only if you have an older account that doesn't have a default
Amazon Virtual Private Cloud (Amazon VPC).

In Security group details, choose the Inbound tab, and then choose Edit.

8. Add a rule for MySQL (port 3306) that allows traffic from your IP address, specified in CIDR
format.

9. Choose Save. The changes take effect immediately.

Return to the Elastic Beanstalk configuration details for your environment and note the endpoint.
You will use the domain name to connect to the RDS DB instance.

Adding a database 230

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/vpc/latest/userguide/

AWS Elastic Beanstalk Developer Guide

Install the MySQL client and initiate a connection to the database on port 3306. On Windows,
install MySQL Workbench from the MySQL home page and follow the prompts.

On Linux, install the MySQL client using the package manager for your distribution. The following
example works on Ubuntu and other Debian derivatives.

// Install MySQL client
$ sudo apt-get install mysql-client-5.5

// Connect to database

$ mysql -h aas839jo2vwhwb.cnubrrfwfka8.us-west-2.rds.amazonaws.com -u username -
ppassword ebdb

Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 117
Server version: 5.5.40-log Source distribution

After you have connected, you can run SQL commands to see the status of the database, whether
your tables and rows were created, and other information.

mysql> SELECT Resource from Beanstalk;

| EC2 Instance |
| RDS Instance |

2 rows in set (0.01 sec)

Using the AWS Toolkit for Eclipse

The AWS Toolkit for Eclipse integrates AWS Elastic Beanstalk management features with your
Tomcat development environment to facilitate environment creation, configuration, and
code deployment. The toolkit includes support for multiple AWS accounts, managing existing
environments, and connecting directly to instances in your environment for troubleshooting.

Eclipse toolkit 231

AWS Elastic Beanstalk Developer Guide

® Note

The AWS Toolkit for Eclipse only supports projects that use the Java with Tomcat platform,
not the Java SE platform.

For more information about prerequisites and installing the AWS Toolkit for Eclipse, go to https://
aws.amazon.com/eclipse. You can also check out the Using AWS Elastic Beanstalk with the AWS

Toolkit for Eclipse video. This topic also provides useful information covering tools, how-to topics,

and additional resources for Java developers.
Importing existing environments into Eclipse

You can import existing environments that you created in the AWS Management Console into
Eclipse.

To import existing environments, expand the AWS Elastic Beanstalk node and double-click on
an environment in the AWS Explorer inside Eclipse. You can now deploy your Elastic Beanstalk
applications to this environment.

Managing Elastic Beanstalk application environments

Topics

« Changing environment configuration settings

« Changing environment type

» Configuring EC2 server instances using AWS Toolkit for Eclipse

» Configuring Elastic Load Balancing using AWS Toolkit for Eclipse

» Configuring Auto Scaling using AWS Toolkit for Eclipse

» Configuring notifications using AWS Toolkit for Eclipse

» Configuring Java containers using AWS Toolkit for Eclipse

» Setting system properties with AWS Toolkit for Eclipse

With the AWS Toolkit for Eclipse, you can change the provisioning and configuration of the AWS
resources that are used by your application environments. For information on how to manage your
application environments using the AWS Management Console, see Managing environments. This

section discusses the specific service settings you can edit in the AWS Toolkit for Eclipse as part

Eclipse toolkit 232

https://aws.amazon.com/eclipse
https://aws.amazon.com/eclipse
http://d1un85p0f2qstc.cloudfront.net/eclipse/elasticbeanstalk/index.html
http://d1un85p0f2qstc.cloudfront.net/eclipse/elasticbeanstalk/index.html

AWS Elastic Beanstalk Developer Guide

of your application environment configuration. For more about AWS Toolkit for Eclipse, see AWS
Toolkit for Eclipse Getting Started Guide.

Changing environment configuration settings

When you deploy your application, Elastic Beanstalk configures a number of AWS cloud computing
services. You can control how these individual services are configured using the AWS Toolkit for
Eclipse.

To edit an application's environment settings

1. If Eclipse isn't displaying the AWS Explorer view, in the menu choose Window, Show View,
AWS Explorer. Expand the Elastic Beanstalk node and your application node.

2. In AWS Explorer, double-click your Elastic Beanstalk environment.

3. At the bottom of the pane, click the Configuration tab.

A Overview

eneral Information b Publishing
Specify the hast name and other common settings.

environment2 at AWS Elastic Beanstalk - US-East (Northern Virginia)

Host name AWS Elastic Beanstalk - US-East (Northern Virginial ~ AWS Elastic Beanstalk Deployment

Incremental deployment publishes anly the ch

— - - anges in your project
SpacheiomeniiChiy el Fosiie Renn sl = since your last deployment, which means faster deplayments.

& Use Incremental Deployments

environment2

Environment URL http: / fenviranment? - Srgxfhdmag.elasticheanstalk.com

on Name MylavaWe bAppl

git-ca79baababl0195e0fcI0TEEA44al 1156313 2¢

Owerview Environment Resources | Configuration | Advanced | Events | Log

You can now configure settings for the following:

» EC2 server instances
» Load balancer

» Autoscaling

» Notifications

« Environment types

« Environment properties

Eclipse toolkit 233

https://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/
https://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/

AWS Elastic Beanstalk Developer Guide

Changing environment type

In AWS Toolkit for Eclipse, the Environment Type section of your environment's Configuration tab
lets you select either Load balanced, auto scaled or a Single instance environment, depending on
the requirements of the application that you deploy. For an application that requires scalability,
select Load balanced, auto scaled. For a simple, low traffic application, select Single instance. For
more information, see Environment types.

* Environment Type

Select an environment type, either load balanced and auto scaled or single
instance. A load-balanced, auto-scaled environment automatically distributes
traffic across multiple Amazon EC2 instances and can stop and start instances
based on demand. A single-instance environment includes just a single
Amazon EC2 instance, which costs less.

Environment Type

FY

Singlelnstance »

Configuring EC2 server instances using AWS Toolkit for Eclipse

Amazon Elastic Compute Cloud (EC2) is a web service for launching and managing server instances
in Amazon's data centers. You can use Amazon EC2 server instances at any time, for as long as you
need, and for any legal purpose. Instances are available in different sizes and configurations. For
more information, go to the Amazon EC2 product page.

Under Server, on your environment's Configuration tab inside the Toolkit for Eclipse, you can edit
the Elastic Beanstalk environment's Amazon EC2 instance configuration.

™
> Server

These settings allow you to control your environment's servers and enable login.

EC2 Instance Type **

ECZ Security Groups ™ glasticbeanstalk-default

Existing Key Pair o o

MName

" new key pair

Monitoring Interval **

Custom AMIID ** ami-5eddb237

Eclipse toolkit 234

https://aws.amazon.com/ec2/

AWS Elastic Beanstalk Developer Guide

Amazon EC2 instance types

Instance type displays the instance types available to your Elastic Beanstalk application. Change
the instance type to select a server with the characteristics (including memory size and CPU power)
that are most appropriate to your application. For example, applications with intensive and long-
running operations can require more CPU or memory.

For more information about the Amazon EC2 instance types available for your Elastic Beanstalk
application, see Instance Types in the Amazon Elastic Compute Cloud User Guide.

Amazon EC2 security groups

You can control access to your Elastic Beanstalk application using an Amazon EC2 Security Group.
A security group defines firewall rules for your instances. These rules specify which ingress (i.e.,
incoming) network traffic should be delivered to your instance. All other ingress traffic will be
discarded. You can modify rules for a group at any time. The new rules are automatically enforced
for all running instances and instances launched in the future.

You can set up your Amazon EC2 security groups using the AWS Management Console or by using
the AWS Toolkit for Eclipse. You can specify which Amazon EC2 security groups control access to
your Elastic Beanstalk application by entering the names of one or more Amazon EC2 security
group names (delimited by commas) into the EC2 Security Groups box.

® Note

If you are running your application using a legacy container type, make sure port 80
(HTTP) is accessible from 0.0.0.0/0 as the source CIDR range if you want to enable health
checks for your application. For more information about health checks, see Health checks.

To check if you are using a legacy container type, see the section called “Why are some

platform versions marked legacy?”

To create a security group using the AWS Toolkit for Eclipse

1. In the AWS Toolkit for Eclipse, click AWS Explorer tab. Expand the Amazon EC2 node, and
then double-click Security Groups.

2. Right-click anywhere in the left table, and then click New Group.

Eclipse toolkit 235

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

AWS Elastic Beanstalk Developer Guide

53 Progress | i@ EC2 Instances |jgl EC2 AMIs | & EC2 Elastic Block Storage | (g EC2 Security Groups &3 » =0
Region: US East (Virginial
Mame Description Protocol Pert UsenGroup Source CIDR
(& default default group tep 22 0.0.0.0/0

(@ elasticheanstalk-default . “**'5 ElasticBeanstalk Security Group tep 80 0.0.0.0/0
5 L= tep 33 00.00/0

3 Delete Group

3. Inthe Security Group dialog box, type the security group name and description and then click
OK.

For more information on Amazon EC2 Security Groups, see Using Security Groups in the Amazon
Elastic Compute Cloud User Guide.

Amazon EC2 key pairs

You can securely log in to the Amazon EC2 instances provisioned for your Elastic Beanstalk
application with an Amazon EC2 key pair.

/A Important

You must create an Amazon EC2 key pair and configure your Elastic Beanstalk-provisioned
Amazon EC2 instances to use the Amazon EC2 key pair before you can access your

Elastic Beanstalk-provisioned Amazon EC2 instances. You can create your key pair using
the Publish to Beanstalk Wizard inside AWS Toolkit for Eclipse when you deploy your
application to Elastic Beanstalk. Alternatively, you can set up your Amazon EC2 key pairs
using the AWS Management Console. For instructions on creating a key pair for Amazon
EC2, see the Amazon Elastic Compute Cloud Getting Started Guide.

For more information on Amazon EC2 key pairs, go to Using Amazon EC2 Credentials in the
Amazon Elastic Compute Cloud User Guide. For more information on connecting to Amazon EC2

instances, go to Connecting to Instances and Connecting to a Linux/UNIX Instance from Windows

using PuTTY in the Amazon Elastic Compute Cloud User Guide.
CloudWatch metrics

By default, only basic Amazon CloudWatch metrics are enabled. They return data in five-minute
periods. You can enable more granular one-minute CloudWatch metrics by selecting 1 minute for
the Monitoring Interval in the Server section of the Configuration tab for your environment in the
AWS Toolkit for Eclipse.

Eclipse toolkit 236

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://console.aws.amazon.com/
http://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-credentials.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html

AWS Elastic Beanstalk Developer Guide

® Note

Amazon CloudWatch service charges can apply for one-minute interval metrics. See
Amazon CloudWatch for more information.

Custom AMI ID

You can override the default AMI used for your Amazon EC2 instances with your own custom AMI
by entering the identifier of your custom AMI into the Custom AMI ID box in the Server section of
the Configuration tab for your environment in the AWS Toolkit for Eclipse.

/A Important

Using your own AMI is an advanced task that you should do with care. If you need a custom
AMI, we recommend you start with the default Elastic Beanstalk AMI and then modify it.
To be considered healthy, Elastic Beanstalk expects Amazon EC2 instances to meet a set of
requirements, including having a running host manager. If these requirements are not met,
your environment might not work properly.

Configuring Elastic Load Balancing using AWS Toolkit for Eclipse

Elastic Load Balancing is an Amazon web service that improves the availability and scalability of
your application. With Elastic Load Balancing, you can distribute application loads between two or
more Amazon EC2 instances. Elastic Load Balancing improves availability through redundancy, and
it supports traffic growth for your application.

Elastic Load Balancing automatically distributes and balances incoming application traffic among
all the EC2 server instances you are running. The service also makes it easy to add new instances
when you need to increase the capacity of your application.

Elastic Beanstalk automatically provisions Elastic Load Balancing when you deploy an application.
Under Load Balancing, on the Configuration tab for your environment inside the Toolkit for
Eclipse, you can edit the Elastic Beanstalk environment's load balancing configuration.

Eclipse toolkit 237

https://aws.amazon.com/cloudwatch/

AWS Elastic Beanstalk Developer Guide

~ Load Balancing

These settings allow you to control the behavior of your environment's load balancer.

HTTP Port
HTTPS Port
SSL Certificate Id

EC2 Instance Health Check
These settings allow you to configure how AWS Elastic Beanstalk determines whether an EC2 instance is healthy or
not.

Application Health Check URL

Health Check Interval (seconds) EN]
Health Check Timeout (seconds) 5
Healthy Check Count Threshold 3

Unhealthy Check Count Threshold 5

Sessions
These settings allow you to control how your load balancer handles session cookies.

[T Enable Session Stickiness

Cookie Expiration Period (seconds) g

The following sections describe the Elastic Load Balancing parameters you can configure for your
application.

Ports

The load balancer provisioned to handle requests for your Elastic Beanstalk application sends
requests to the Amazon EC2 instances that are running your application. The provisioned load
balancer can listen for requests on HTTP and HTTPS ports and route requests to the Amazon EC2
instances in your AWS Elastic Beanstalk application. By default, the load balancer handles requests
on the HTTP port. At least one of the ports (either HTTP or HTTPS) must be turned on.

These settings allow you to control the behavior of your environment's load balancer.

HTTP Port

HTTPS Port T —

S5L CertificateId an:aws:iam::123456789012:/server-ce
alth C

/A Important

Make sure that the port you specified is not locked down; otherwise, users will not be able
to connect to your Elastic Beanstalk application.

Eclipse toolkit 238

AWS Elastic Beanstalk Developer Guide

Controlling the HTTP port

To turn off the HTTP port, you select OFF for HTTP Listener Port. To turn on the HTTP port, you
select an HTTP port (for example, 80).

(® Note

To access your environment using a port other than the default port 80, such as port 8080,
add a listener to the existing load balancer and configure the new listener to listen on that
port.

For example, using the AWS CLI for Classic load balancers, type the following command,
replacing LOAD_BALANCER_NAME with the name of your load balancer for Elastic
Beanstalk.

aws elb create-load-balancer-listeners --load-balancer-name LOAD_BALANCER_NAME
--listeners "Protocol=HTTP, LoadBalancerPort=8080, InstanceProtocol=HTTP,
InstancePort=80"

For example, using the AWS CLI for Application Load Balancers, type the following
command, replacing LOAD_BALANCER_ARN with the ARN of your load balancer for Elastic
Beanstalk.

aws elbv2 create-listener --load-balancer-arn LOAD_BALANCER_ARN --protocol HTTP
--port 8080

If you want Elastic Beanstalk to monitor your environment, do not remove the listener on
port 80.

Controlling the HTTPS port

Elastic Load Balancing supports the HTTPS/TLS protocol to enable traffic encryption for client
connections to the load balancer. Connections from the load balancer to the EC2 instances are
done using plain text. By default, the HTTPS port is turned off.

To turn on the HTTPS port

1. Create a new certificate using AWS Certificate Manager (ACM) or upload a certificate and key
to AWS Identity and Access Management (IAM). For more information about requesting an

Eclipse toolkit 239

https://docs.aws.amazon.com/cli/latest/reference/elb/create-load-balancer-listeners.html
https://docs.aws.amazon.com/cli/latest/reference/elbv2/create-listener.html

AWS Elastic Beanstalk Developer Guide

ACM certificate, see Request a Certificate in the AWS Certificate Manager User Guide. For more
information about importing third-party certificates into ACM, see Importing Certificates

in the AWS Certificate Manager User Guide. If ACM isn't available in your AWS Region, use
AWS Identity and Access Management (IAM) to upload a third-party certificate. The ACM

and IAM services store the certificate and provide an Amazon Resource Name (ARN) for the

SSL certificate. For more information about creating and uploading certificates to 1AM, see
Working with Server Certificates in IAM User Guide.

2. Specify the HTTPS port by selecting a port from the HTTPS Listener Port drop-down list.

3. In the SSL Certificate ID text box, enter the Amazon Resources Name (ARN) of
your SSL certificate. For example, arn:aws:iam: :123456789012:sexver-
certificate/abc/cexrts/build or arn:aws:acm:us-
east-2:123456789012:cextificate/12345678-12ab-34cd-56ef-12345678. Use the
SSL certificate that you created and uploaded in step 1.

To turn off the HTTPS port, select OFF for HTTPS Listener Port.
Health checks

You can control the settings for the health check using the EC2 Instance Health Check section of
the Load Balancing panel.

EC2 Instance Health Check
These settings allow you to configure how AWS Elastic Beanstalk determines whether an EC2 instance is healthy or
not.

Application Health Check URL
Health Check Interval (seconds) EN]
Health Check Timeout (seconds) 5

Healthy Check Count Threshold 3

Unhealthy Check Count Threshold 5

The following list describes the health check parameters you can set for your application.

« To determine instance health, Elastic Beanstalk looks for a 200 response code on a URL it
queries. By default, Elastic Beanstalk checks TCP:80 for nonlegacy containers and HTTP:80 for
legacy containers. You can override to match an existing resource in your application (e.g., /
myapp/index. jsp) by entering it in the Application Health Check URL box. If you override the
default URL, Elastic Beanstalk uses HTTP to query the resource. To check if you are using a legacy
container type, see the section called “Why are some platform versions marked legacy?”

Eclipse toolkit 240

https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingServerCerts.html

AWS Elastic Beanstalk Developer Guide

» For Health Check Interval (seconds), enter the number of seconds between your application's
Amazon EC2 instances health checks.

» For Health Check Timeout, specify the number of seconds for Elastic Load Balancing to wait for
a response before it considers an instance unresponsive.

» Use the Healthy Check Count Threshold and Unhealthy Check Count Threshold boxes, specify
the number of consecutive successful or unsuccessful URL probes before Elastic Load Balancing
changes the instance health status. For example, specifying 5 in the Unhealthy Check Count
Threshold text box means that the URL would have to return an error message or timeout five
consecutive times before Elastic Load Balancing considers the health check "failed."

Sessions

By default, a load balancer routes each request independently to the server instance with the
smallest load. By comparison, a sticky session binds a user's session to a specific server instance so
that all requests coming from the user during the session are sent to the same server instance.

Elastic Beanstalk uses load balancer-generated HTTP cookies when sticky sessions are enabled
for an application. The load balancer uses a special load balancer-generated cookie to track the
application instance for each request. When the load balancer receives a request, it first checks
to see if this cookie is present in the request. If so, the request is sent to the application instance
specified in the cookie. If it finds no cookie, the load balancer chooses an application instance
based on the existing load balancing algorithm. A cookie is inserted into the response for binding
subsequent requests from the same user to that application instance. The policy configuration
defines a cookie expiry, which establishes the duration of validity for each cookie.

Under Load Balancer in the Sessions section, specify whether or not the load balancer for your
application allows session stickiness and the duration for each cookie.

Sessions
These settings allow you to control how your load balancer handles session cookies.

Enable Session Stickiness

Cookie Expiration Period (seconds) g

For more information on Elastic Load Balancing, see the Elastic Load Balancing Developer Guide.

Configuring Auto Scaling using AWS Toolkit for Eclipse

Amazon EC2 Auto Scaling is an Amazon web service designed to automatically launch or terminate
Amazon EC2 instances based on user-defined triggers. Users can set up Auto Scaling groups

Eclipse toolkit 241

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/

AWS Elastic Beanstalk Developer Guide

and associate triggers with these groups to automatically scale computing resources based on
metrics such as bandwidth usage or CPU utilization. Amazon EC2 Auto Scaling works with Amazon
CloudWatch to retrieve metrics for the server instances running your application.

Amazon EC2 Auto Scaling lets you take a group of Amazon EC2 instances and set various
parameters to have this group automatically increase or decrease in number. Amazon EC2 Auto
Scaling can add or remove Amazon EC2 instances from that group to help you seamlessly deal with
traffic changes to your application.

Amazon EC2 Auto Scaling also monitors the health of each Amazon EC2 instance that it launches.
If any instance terminates unexpectedly, Amazon EC2 Auto Scaling detects the termination and
launches a replacement instance. This capability enables you to maintain a fixed, desired number of
Amazon EC2 instances automatically.

Elastic Beanstalk provisions Amazon EC2 Auto Scaling for your application. Under Auto Scaling,
on your environment's Configuration tab inside the Toolkit for Eclipse, you can edit the Elastic
Beanstalk environment's Auto Scaling configuration.

~ Auto Scaling
Auto-scaling automatically launches or terminates EC2 instances based on defined metrics and thresholds called
triggers. Auto-scaling will also launch a new EC2 instance in the event of a failure. These settings allow you to
control auto-scaling behavior,
Minimum Instance Count 1
Maximum Instance Count 4
Availability Zones
Scaling Cooldown Time (seconds) 350
Scaling Trigger
Trigger Measurement
Trigger Statistic
Unit of Measurement
Measurement Period (seconds) 5
Breach Duration (seconds) 5
Upper Threshold 6000000
Scale-up Increment 1
Lower Threshold 2000000
Scale-down Increment 1
W

The following sections discuss how to configure Auto Scaling parameters for your application.
Launch configuration

You can edit the launch configuration to control how your Elastic Beanstalk application provisions
Amazon EC2 Auto Scaling resources.

Eclipse toolkit 242

AWS Elastic Beanstalk Developer Guide

Use the Minimum Instance Count and Maximum Instance Count settings to specify the minimum
and maximum size of the Auto Scaling group that your Elastic Beanstalk application uses.

Minimum Instance Count 1

Mazximum Instance Count 4

Availability Zones Anyl -

Scaling Cooldown Time (seconds) 350

(@ Note

To maintain a fixed number of Amazon EC2 instances, set the Minimum Instance Count
and Maximum Instance Count text boxes to the same value.

For Availability Zones, specify the number of Availability Zones you want your Amazon EC2
instances to be in. It is important to set this number if you want to build fault-tolerant applications:
If one Availability Zone goes down, your instances will still be running in your other Availability
Zones.

(@ Note

Currently, it is not possible to specify which Availability Zone your instance will be in.

Triggers

A trigger is an Amazon EC2 Auto Scaling mechanism that you set to tell the system when to
increase (scale out) and decrease (scale in) the number of instances. You can configure triggers
to fire on any metric published to Amazon CloudWatch, such as CPU utilization, and determine
whether the specified conditions have been met. When your upper or lower thresholds for the
metric have been breached for the specified period of time, the trigger launches a long-running
process called a scaling activity.

You can define a scaling trigger for your Elastic Beanstalk application using the AWS Toolkit for
Eclipse.

Eclipse toolkit 243

AWS Elastic Beanstalk Developer Guide

Scaling Trigger

Trigger Statistic
Unit of Measurement

Measurement Period (seconds) 5
Breach Duration (seconds) 5
Upper Threshold 6000000
Scale-up Increment 1
Lower Threshold 2000000

Scale-down Increment 1

R P -

You can configure the following list of trigger parameters in the Scaling Trigger section of the
Configuration tab for your environment inside the Toolkit for Eclipse.
» For Trigger Measurement, specify the metric for your trigger.

« For Trigger Statistic, specify which statistic the trigger will use—Minimum, Maximum, Sum, or
Average.

» For Unit of Measurement, specify the units for the trigger measurement.

o For Measurement Period, specify how frequently Amazon CloudWatch measures the metrics for
your trigger. For Breach Duration, specify the amount of time a metric can be beyond its defined
limit (as specified for Upper Threshold and Lower Threshold) before the trigger fires.

» For Scale-up Increment and Scale-down Increment, specify how many Amazon EC2 instances to
add or remove when performing a scaling activity.

For more information on Amazon EC2 Auto Scaling, see the Amazon EC2 Auto Scaling section on
Amazon Elastic Compute Cloud Documentation.

Configuring notifications using AWS Toolkit for Eclipse

Elastic Beanstalk uses the Amazon Simple Notification Service (Amazon SNS) to notify you of
important events affecting your application. To enable Amazon SNS notifications, simply enter
your email address in the Email Address text box under Notifications on the Configuration tab for
your environment inside the Toolkit for Eclipse. To disable Amazon SNS notifications, remove your
email address from the text box.

Eclipse toolkit 244

https://aws.amazon.com/documentation/ec2/

AWS Elastic Beanstalk Developer Guide

~ Notifications

Enter an e-mail address which will be sent notifications regarding important events using the Amazon Simple
MNetification Service. If you wish to stop receiving notifications, simply remove your e-mail address.

E-mail Address

Configuring Java containers using AWS Toolkit for Eclipse

The Container/JVM Options panel lets you fine-tune the behavior of the Java Virtual Machine on
your Amazon EC2 instances and enable or disable Amazon S3 log rotation. You can use the AWS
Toolkit for Eclipse to configure your container information. For more information on the options
available for Tomcat environments, see the section called “Configuring your Tomcat environment”.

(@ Note

You can modify your configuration settings with zero downtime by swapping the CNAME
for your environments. For more information, see Blue/Green deployments with Elastic
Beanstalk.

To access the Container/JVM options panel for your Elastic Beanstalk application

1. If Eclipse isn't displaying the AWS Explorer view, in the menu choose Window, Show View,
AWS Explorer. Expand the Elastic Beanstalk node and your application node.

2. In the AWS Explorer, double-click your Elastic Beanstalk environment.

3. At the bottom of the pane, click the Configuration tab.

4. Under Container, you can configure container options.

~ Container

Container / JVM Options
These settings control command-line options for your container and the underlying JVM.

Initial VM Heap Size (-Xms argument) * 256m

Mazxirmum JVM Heap Size (-Xmx argument) * 256m

Maxirmum JVM PermGen Size (-XX:MaxPermSize argument) * gam

Additional Temcat JVM cormmand line options * -Xdebug -Xrunjdwp:transport=dt_so

Enable log file rotation to Amazon 53
Enable remote debugging

Remote debugging port: 4443

WM

Eclipse toolkit 245

AWS Elastic Beanstalk Developer Guide

Remote debugging

To test your application remotely, you can run your application in debug mode.
To enable remote debugging

1. Select Enable remote debugging.

2. For Remote debugging port, specify the port number to use for remote debugging.

The Additional Tomcat JVM command line options setting is filled automatically.

To start remote debugging

1. In the AWS Toolkit for Eclipse menu, choose Window, Show View, Other.
2. Expand the Server folder, and then choose Servers. Choose OK.

3. Inthe Servers pane, right-click the server your application is running on, and then click Restart
in Debug.

Setting system properties with AWS Toolkit for Eclipse

The following example sets the JDBC_CONNECTION_STRING system property in the AWS Toolkit
for Eclipse. After you set this properties, it becomes available to your Elastic Beanstalk application
as system properties called JDBC_CONNECTION_STRING.

(@ Note

The AWS Toolkit for Eclipse does not yet support modifying environment configuration,
including system properties, for environments in a VPC. Unless you have an older account
using EC2 Classic, you must use the AWS Management Console (described in the next
section) or the EB CLI.

(@ Note

Environment configuration settings can contain any printable ASCII character except the
grave accent (°, ASCIl 96) and cannot exceed 200 characters in length.

Eclipse toolkit 246

AWS Elastic Beanstalk Developer Guide

To set system properties for your Elastic Beanstalk application
1. If Eclipse isn't displaying the AWS Explorer view, choose Window, Show View, Other. Expand
AWS Toolkit and then choose AWS Explorer.

2. Inthe AWS Explorer pane, expand Elastic Beanstalk, expand the node for your application,
and then double-click your Elastic Beanstalk environment.

3. At the bottom of the pane for your environment, click the Advanced tab.

4. Under aws:elasticbeanstalk:application:environment, click JDBC_CONNECTION_STRING
and then type a connection string. For example, the following JDBC connection string would
connect to a MySQL database instance on port 3306 of localhost, with a user name of me and
a password of mypassword:

jdbc:mysql://localhost:3306/mydatabase?user=me&password=mypassword

This will be accessible to your Elastic Beanstalk application as a system property called
JDBC_CONNECTION_STRING.

5. Press Ctrl+C on the keyboard or choose File, Save to save your changes to the environment
configuration. Changes are reflected in about one minute.

Managing multiple AWS accounts

You might want to set up different AWS accounts to perform different tasks, such as testing,
staging, and production. You can use the AWS Toolkit for Eclipse to add, edit, and delete accounts
easily.

To add an AWS account with the AWS Toolkit for Eclipse

1. In Eclipse, make sure the toolbar is visible. On the toolbar, click the arrow next to the AWS icon
and select Preferences.

2. Click Add account.

Eclipse toolkit 247

AWS Elastic Beanstalk Developer Guide

[.} Preferences (Filtered) l = iz-]
type filter text AWS Toolkit ~ T

AWS Toolkit AWS Toolkit Preferences

Select account: | New Account v| [Add account] | Remove account

Account Details:

Sign up for a new AWS account or find vour existing AWS security credentials.

Account Name: MNew Account
Access Key ID:

Secret Access Key:

Show secret access key

» Optional configuration:

See Network connections to configure how the AWS Toolkit connects to the internet.

Get help or provide feedback on the AWS Java Development forum.

| Restore Defaults| | Apply |

.C‘?] [QK] | Cancel |

3. In the Account Name text box, type the display name for the account.
4. Inthe Access Key ID text box, type your AWS access key ID.
5. Inthe Secret Access Key text box, type your AWS secret key.
For API access, you need an access key ID and secret access key. Use IAM user access keys

instead of AWS account root user access keys. For more information about creating access
keys, see Managing access keys for IAM users in the IAM User Guide.

6. Click OK.

To use a different account to deploy an application to Elastic Beanstalk

1. In the Eclipse toolbar, click the arrow next to the AWS icon and select Preferences.

2. For Default Account, select the account you want to use to deploy applications to Elastic
Beanstalk.

3. Click OK.

4. Inthe Project Explorer pane, right-click the application you want to deploy, and then select
Amazon Web Services > Deploy to Elastic Beanstalk.

Eclipse toolkit 248

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS Elastic Beanstalk Developer Guide

Viewing events

You can use the AWS Toolkit for Eclipse to access events and notifications associated with your
application.

To view application events

1. If Eclipse isn't displaying the AWS Explorer view, in the menu click Window > Show View >
AWS Explorer. Expand the Elastic Beanstalk node and your application node.

2. Inthe AWS Explorer, double-click your Elastic Beanstalk environment.

3. At the bottom of the pane, click the Events tab.

A list of the events for all environments for your application is displayed.

7 Eventlog

Environment Events
Events recorded to your Elastic Beanstalk environment

Message Version Date
i Successfully launched environment: myjavawebappeny First Release Tue Jul 12 12:18:41 PDT 2011
i Application available at myjavawebappenv.elasticheanstalk.com. First Release Tue Jul 12 12:18:39 POT 2011
i Adding instance 'i-0dSeabéc’ to your environment. First Release Tue Jul1212:18:17 POT 2011
i Added EC2 instance 'i-0d5eabfc’ to Auto Scaling Group 'awseb-myjavawebappenv-29PeEdFom’, First Release Tue Jul1212:17:08 POT 2011
i AnEC2instance has been launched. Waiting for it to be added to Auto Scaling... First Release Tue Jul 12 12:17:00 POT 2011
i Waiting for an EC2 instance to be launched... First Release Tue Jul 12 12:16:38 PDT 2011
i Added Elastic Load Balancer ‘awseb-myj bappenv' to your environment. First Release Tue Jul121 PDT 2011
i Added URLCheck healthcheck for 'http://myjavawebappenv.elasticbeanstalk.com:80/" First Release Tue Jul121 FOT 2011
i Adding Auto Scaling Group 'awseb-rmyje bapp 29PeE@Fom’ to your envi First Release Tue Jul 12 12:16:36 PDT 2011
i Created Auto Scaling trigger named: awseb-myjavawebappenv-29PeESFom, First Release Tue Jul1212:16:35 PDT 2011
i Created Auto Scaling group named: awseb-myjavawebappeny-29PeExdFom. First Release Tue Jul1212:16:34 POT 2011
i Created Auto Scaling launch configuration named: awseb-myjavawebappeny-DKMTWBY X, First Release Tue Jul1212:16:32 PDT 2011
i Created load balancer named: awseb-myjavawebappeny, First Release Tue Jul12 12:16:31 PDT 2011
i Using elasticbeanstalk-us-east-1-049020475370 as Amazon 53 storage bucket for environment data, First Release Tue Jul 12 12:16:29 PDT 2011
i createEnvironment is starting. First Release Tue Jul 12 12:16:27 PDT 2011

Il SO Pt ol o o P P PP il P PP el)

Listing and connecting to server instances

You can view a list of Amazon EC2 instances running your Elastic Beanstalk application
environment through the AWS Toolkit for Eclipse or from the AWS Management Console. You can
connect to these instances using Secure Shell (SSH). For information about listing and connecting
to your server instances using the AWS Management Console, see Listing and connecting to server

instances. The following section steps you through viewing and connecting you to your server
instances using the AWS Toolkit for Eclipse.

To view and connect to Amazon EC2 instances for an environment

1. In the AWS Toolkit for Eclipse, click AWS Explorer. Expand the Amazon EC2 node, and then
double-click Instances.

Eclipse toolkit 249

AWS Elastic Beanstalk Developer Guide

2. Inthe Amazon EC2 Instances window, in the Instance ID column, right-click the Instance ID for
the Amazon EC2 instance running in your application's load balancer. Then click Open Shell.

~ Amazon EC2 Instances
These instances make up the fleet in your envircnment

Instance D Fublic DNS Neme Imege D Foot Device Type State Type Ausishility Zone ey Pair Leunch Time Security Groups Tags

o 0382l ec2-67-202-36-223.compute-l.amazonaws.com al Rel ming tlmecro us-east-1d " new key pasr Jul 12, 2011 2:09:31 PM elesticbeanstalk-default
* Refresh

Reboat

(] Copy Public DNS Name

Elastic Block Storage

‘MWWPM;

Eclipse automatically opens the SSH client and makes the connection to the EC2 instance.

For more information on connecting to an Amazon EC2 instance, see the Amazon Elastic
Compute Cloud Getting Started Guide.

Terminating an environment

To avoid incurring charges for unused AWS resources, you can use the AWS Toolkit for Eclipse to
terminate a running environment. For details about environment termination, see Terminate an
Elastic Beanstalk environment.

To terminate an environment

1. Inthe AWS Toolkit for Eclipse, click the AWS Explorer pane. Expand the Elastic Beanstalk
node.

2. Expand the Elastic Beanstalk application and right-click on the Elastic Beanstalk environment.

3. Click Terminate Environment. It will take a few minutes for Elastic Beanstalk to terminate the
AWS resources running in the environment.

Resources

There are several places you can go to get additional help when developing your Java applications.

Resource Description

The AWS Java Development Forum Post your questions and get feedback.

Resources 250

http://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/
http://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/
https://forums.aws.amazon.com/forum.jspa?forumID=70

AWS Elastic Beanstalk Developer Guide

Resource Description

Java Developer Center One-stop shop for sample code, documentation, tools,

and additional resources.

Working with .NET Core on Linux

This section provides information about deploying .NET core applications on Linux using AWS
Elastic Beanstalk.

The topics in this chapter assume that you have some knowledge of Elastic Beanstalk
environments. If you haven't used Elastic Beanstalk before, try the getting started tutorial to learn

the basics.

Topics

o Getting started with .NET Core on Linux

» Setting up your .NET Core on Linux development environment

» Using the .NET Core on Linux platform

» Tutorial: Deploying an ASP.NET core application on Linux using Elastic Beanstalk

« The AWS Toolkit for Visual Studio - Working with .Net Core

« Migrating from .NET on Windows Server platforms to the .NET Core on Linux platform

Getting started with .NET Core on Linux

To get started with .NET Core on Linux applications on AWS Elastic Beanstalk, all you need is an
application source bundle to upload as your first application version, and then to deploy it to an

environment. When you create an environment, Elastic Beanstalk allocates all of the AWS resources
needed to run a highly scalable web application.

Launching an environment with a sample .NET Core on Linux application

Elastic Beanstalk provides single-page sample applications for each platform.

Working with .NET Core on Linux 251

https://aws.amazon.com/java/

AWS Elastic Beanstalk

Developer Guide

Samples

Supported
configura
tions

.NET Core on
Linux

.NET Core on
Linux

Environme Source

nt type

Web
server

Web
server

bundle

dotnet-core-

linux.zip

dotnet-co
re-linux-
multiple-
apps.zip

Description

Single-page application.

Two web applications that run on the same web
server.

Download the sample application and deploy it to Elastic Beanstalk by following these steps.

To launch an environment with a sample application (console)

1.
2.

the list or create one.

Elastic Beanstalk

PRl T ietroducieg the new Elritic Beanstalk comols exparimcs
W redesiad the Elatic Besrtlk ool 10 ke it s b8 ks ot 10 e the fiw ROl o SHECT 15 s the old comssle.

Application GettingStarted environments (2] s

Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

In the navigation pane, choose Applications, and then choose an existing application's name in

On the application overview page, choose Create new environment.

This launches the Create environment wizard. The wizard provides a set of steps for you to

create a new environment.

Getting started

252

samples/dotnet-core-linux.zip
samples/dotnet-core-linux.zip
samples/dotnet-core-linux-multiple-apps.zip
samples/dotnet-core-linux-multiple-apps.zip
samples/dotnet-core-linux-multiple-apps.zip
samples/dotnet-core-linux-multiple-apps.zip
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk

Developer Guide

Step 1

Configure environment

Step 2

Step 5 - optional

Step 4 - optional

Step 5 - optronal

Configure environment .

Environment tier info

Amazon Elastic Beanstalk has two types of environment tiers to support different types of web applications.

O Web server environment
Fun a website, web application, or web API that serves HTTP requests. Learn more [

Worker environment
Run a worker application that processes long-running workloads on demand or performs tasks on a schedule. Learn more E

Application information info

Application name
GettingStarted

Maximurm length of 100 characters

Step B

» Application tags (optional)
Environment information e
Cheose the name, subdomain and description for your environment. These cannat be changed later.
Environment name

GettingStarted-eny
Must be from 4 to 40 characters in length. The name can contain only letters, numbers, and hyphens. It can with a hyphen.
This name must be unigue within a region in your account
Domain name

Leave blank for autogenerated value .us-east-1_elasticbeanstalk.com Check availabilit
Environment description

y:
Platform info
Platform type
O Managed platform
Platforms published and maintained by Amazon Elastic Beanstalle Leam mone E‘,

Platform

Choose a platform v
Platform branch

Choose o platform branch v
Platform version

Choose o platform version v
Application code inte
O sample application

Exicting worsian
Getting started Application versions that you have uploaded 253

Sample Appli

on L

Upload your code
Upload a source bundle from your computer or copy one from Amagzon 53

AWS Elastic Beanstalk Developer Guide

4. For environment tier, choose the Web server environment or Worker environment
environment tier. You can't change an environment's tier after creation.

® Note

The .NET on Windows Server platform doesn't support the worker environment tier.

5. For Platform, select the platform and platform branch that match the language your
application uses.

® Note

Elastic Beanstalk supports multiple versions for most of the platforms that are
listed. By default, the console selects the recommended version for the platform and
platform branch you choose. If your application requires a different version, you can
select it here. For information about supported platform versions, see the section
called “Supported platforms”.

For Application code, choose Sample application.
For Configuration presets, choose Single instance.

Choose Next.

o © N o

The Configure service access page displays.

Getting started 254

AWS Elastic Beanstalk Developer Guide

Configure service access e

Service access

aws-elasticbeanstalk-service-role v | G
ECZ key pair
&
L J | &)
EC2 instance profile
aws-elasticheanstalk-ec2-role v | G

View permission details

T
it
Next

Cancel Skip to review Previous |

10. Choose Use an existing service role for Service Role.

11. Next, we'll focus on the EC2 instance profile dropdown list. The values displayed in this
dropdown list may vary, depending on whether you account has previously created a new
environment.

Choose one of the following, based on the values displayed in your list.

« Ifaws-elasticbeanstalk-ec2-role displays in the dropdown list, select it from the
EC2 instance profile dropdown list.

« If another value displays in the list, and it's the default EC2 instance profile intended for
your environments, select it from the EC2 instance profile dropdown list.

o If the EC2 instance profile dropdown list doesn't list any values to choose from, expand
the procedure that follows, Create IAM Role for EC2 instance profile.

Complete the steps in Create IAM Role for EC2 instance profile to create an IAM Role that
you can subsequently select for the EC2 instance profile. Then return back to this step.

Now that you've created an IAM Role, and refreshed the list, it displays as a choice in
the dropdown list. Select the IAM Role you just created from the EC2 instance profile
dropdown list.

Getting started 255

AWS Elastic Beanstalk Developer Guide

12. Choose Skip to Review on the Configure service access page.

This will select the default values for this step and skip the optional steps.

13. The Review page displays a summary of all your choices.

To further customize your environment, choose Edit next to the step that includes any items
you want to configure. You can set the following options only during environment creation:

Environment name

« Domain name

Platform version

Processor
« VPC

o Tier
You can change the following settings after environment creation, but they require new
instances or other resources to be provisioned and can take a long time to apply:

« Instance type, root volume, key pair, and AWS Identity and Access Management (IAM) role
« Internal Amazon RDS database

» Load balancer

For details on all available settings, see The create new environment wizard.

14. Choose Submit at the bottom of the page to initialize the creation of your new environment.

Getting started 256

AWS Elastic Beanstalk Developer Guide

Create IAM Role for EC2 instance profile

Configure service access e

Service access
=
Servige role
Create and use new service role

0 Use an existing service role

Existing service roles

aws-elasticheanstalk-service-role b | G

ECZ key pair

EC2 instance profile

aws-elasticheanstalk-ec2-role v | (&)

View permission details

Cancel Skip to review Previous | 3

To create a an IAM Role for EC2 instance profile selection

1.

©® N O U M W N

Choose View permission details. This displays under the EC2 instance profile dropdown list.

A modal window titled View instance profile permissions displays. This window lists the
managed profiles that you'll need to attach to the new EC2 instance profile that you create. It
also provides a link to launch the IAM console.

Choose the IAM console link displayed at the top of the window.
In the IAM console navigation pane, choose Roles.

Choose Create role.

Under Trusted entity type, choose AWS service.

Under Use case, choose EC2.

Choose Next.

Attach the appropriate managed policies. Scroll in the View instance profile permissions
modal window to see the managed policies. The policies are also listed here:

e AWSElasticBeanstalkWebTier

Getting started 257

AWS Elastic Beanstalk Developer Guide

« AWSElasticBeanstalkWorkerTier
« AWSElasticBeanstalkMulticontainerDocker
9. Choose Next.
10. Enter a name for the role.
11. (Optional) Add tags to the role.
12. Choose Create role.
13. Return to the Elastic Beanstalk console window that is open.

14. Close the modal window View instance profile permissions.

/A Important

Do not close the browser page that displays the Elastic Beanstalk console.

15. Choose

c

(refresh), next to the EC2 instance profile dropdown list.

This refreshes the dropdown list, so that the Role you just created will display in the dropdown
list.

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a different application at any time. Deploying a new application version is very quick
because it doesn't require provisioning or restarting Amazon EC2 instances.

After you deploy a sample application or two and are ready to start developing and running .NET
Core applications locally, see Setting up your .NET Core on Linux development environment.

Setting up your .NET Core on Linux development environment

Set up a .NET Core development environment to test your application locally before you deploy
it to AWS Elastic Beanstalk. This topic outlines development environment setup steps and links to
installation pages for useful tools.

For common setup steps and tools that apply to all languages, see Configuring your development
machine for use with Elastic Beanstalk.

Development environment 258

AWS Elastic Beanstalk Developer Guide

Sections
« Installing the .NET Core SDK

« Installing an IDE
« Installing the AWS Toolkit for Visual Studio

Installing the .NET Core SDK
You can use the .NET Core SDK to develop applications that run on Linux.

See the .NET downloads page to download and install the .NET Core SDK.

Installing an IDE

Integrated development environments (IDEs) provide a range of features that facilitate application
development. If you haven't used an IDE for .NET development, try Visual Studio Community to get
started.

See the Visual Studio Community page to download and install Visual Studio Community.

Installing the AWS Toolkit for Visual Studio

The AWS Toolkit for Visual Studio is an open source plugin for the Visual Studio IDE that makes it
easier for developers to develop, debug, and deploy .NET applications using AWS. See the Toolkit
for Visual Studio homepage for installation instructions.

Using the .NET Core on Linux platform

The AWS Elastic Beanstalk .NET Core on Linux platform is a set of platform versions for .NET Core

applications that run on the Linux operating system.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform,
see the section called “Extending Linux platforms". Following are some platform-specific

considerations.
Introduction to the .NET Core on Linux platform

Proxy server

The Elastic Beanstalk .NET Core on Linux platform includes a reverse proxy that forwards requests
to your application. By default, Elastic Beanstalk uses nginx as the proxy server. You can choose

The .NET Core on Linux platform 259

https://dotnet.microsoft.com/download
https://www.visualstudio.com/vs/community/
https://aws.amazon.com/visualstudio/
https://aws.amazon.com/visualstudio/
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.dotnetlinux
https://www.nginx.com/

AWS Elastic Beanstalk Developer Guide

to use no proxy server, and configure Kestrel as your web server. Kestrel is included by default in
ASP.NET Core project templates.

Application structure

You can publish runtime-dependent applications that use the .NET Core runtime provided by Elastic
Beanstalk. You can also publish self-contained applications that include the .NET Core runtime

and your application's dependencies in the source bundle. To learn more, see the section called
“Bundling applications”.

Platform configuration

To configure the processes that run on the server instances in your environment, include an
optional Procfile in your source bundle. A Procfile is required if you have more than one
application in your source bundle.

We recommend that you always provide a Procfile in the source bundle with your application.
This way you precisely control which processes Elastic Beanstalk runs for your application.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration

of a running environment. To avoid losing your environment's configuration when you terminate

it, you can use saved configurations to save your settings and later apply them to another
environment.

To save settings in your source code, you can include configuration files. Settings in configuration

files are applied every time you create an environment or deploy your application. You can also
use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

Settings applied in the Elastic Beanstalk console override the same settings in configuration files,
if they exist. This lets you have default settings in configuration files, and override them with
environment-specific settings in the console. For more information about precedence, and other
methods of changing settings, see Configuration options.

Configuring your .NET Core on Linux environment

The .NET Core on Linux platform settings enable you to fine-tune the behavior of your Amazon
EC2 instances. You can edit the Elastic Beanstalk environment's Amazon EC2 instance configuration
using the Elastic Beanstalk console.

The .NET Core on Linux platform 260

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel

AWS Elastic Beanstalk Developer Guide

Use the Elastic Beanstalk console to enable log rotation to Amazon S3 and configure variables that
your application can read from the environment.

To configure your .NET Core on Linux environment using the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

(@ Note

If you have many environments, use the search bar to filter the environment list.

In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Log options
The Log Options section has two settings:

« Instance profile - Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

« Enable log file rotation to Amazon S3 - Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Environment properties

The Environment Properties section enables you to specify environment configuration settings on
the Amazon EC2 instances that are running your application. Environment properties are passed in
as key-value pairs to the application.

Inside the .NET Core on Linux environment running in Elastic Beanstalk, environment variables are
accessible using Environment.GetEnvironmentVariable("variable-name"). For example,
you could read a property named API_ENDPOINT to a variable with the following code.

string endpoint = Environment.GetEnvironmentVariable("API_ENDPOINT");

See Environment properties and other software settings for more information.

The .NET Core on Linux platform 261

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

.NET Core on Linux configuration namespace

You can use a configuration file to set configuration options and perform other instance

configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organ