
Developer Guide

AWS Elastic Beanstalk

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Elastic Beanstalk Developer Guide

AWS Elastic Beanstalk: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Elastic Beanstalk Developer Guide

Table of Contents

What is AWS Elastic Beanstalk? .. 1
Pricing ... 2
Where to go next ... 2

Getting started .. 3
Setting up: Create an AWS account ... 3

Sign up for an AWS account .. 3
Create an administrative user .. 4

Step 1: Create ... 5
Create an application and an environment ... 5
AWS resources created for the example application ... 9

Step 2: Explore ... 10
Step 3: Deploy a new version ... 12
Step 4: Configure ... 15

Make a configuration change ... 15
Verify the configuration change .. 16

Step 5: Clean up ... 16
Next steps .. 17

Concepts ... 21
Application ... 21
Application version .. 21
Environment .. 21
Environment tier ... 21
Environment configuration .. 22
Saved configuration ... 22
Platform ... 22
Web server environments ... 22
Worker environments .. 24
Design considerations .. 25

Scalability ... 26
Security ... 26
Persistent storage ... 27
Fault tolerance ... 28
Content delivery .. 28
Software updates and patching .. 29

iii

AWS Elastic Beanstalk Developer Guide

Connectivity ... 29
Permissions .. 31

Service role .. 32
Instance profile ... 42
User policy ... 42

Platforms .. 44
Platforms glossary ... 44
Shared responsibility model .. 47
Platform support policy .. 48

Retired platform branches .. 49
Beyond the 90 day grace period ... 49
Retiring platform branch schedule ... 50
Retired platform branch history .. 51

Supported platforms ... 56
Supported platform versions ... 57

Linux platforms ... 58
Supported Amazon Linux versions .. 58
List of Elastic Beanstalk Linux platforms ... 59
Extending Linux platforms .. 60

Working with Docker ... 85
The Docker platform branches .. 85
Docker platform branch .. 87
ECS managed platform branch ... 110
Preconfigured containers .. 139
Environment configuration ... 148

Working with Go .. 161
Getting started .. 161
Development environment ... 168
The Go platform ... 169
Tutorial for Go .. 177

Working with Java ... 182
Getting started .. 183
Development environment ... 193
The Tomcat platform ... 196
The Java SE platform .. 213
Adding a database ... 223

iv

AWS Elastic Beanstalk Developer Guide

Eclipse toolkit .. 231
Resources .. 250

Working with .NET Core on Linux .. 251
Getting started .. 251
Development environment ... 258
The .NET Core on Linux platform ... 259
Tutorial - .NET core on Linux ... 265
The AWS Toolkit for Visual Studio ... 273
Migration from Windows to Linux .. 297

Working with .NET on Windows server ... 297
Getting started .. 300
Development environment ... 308
The .NET platform .. 309
Tutorial - ASP.NET Core .. 322
Adding a database ... 335
The AWS Toolkit for Visual Studio ... 338
Migrating on-premises application ... 371
Resources .. 371

Working with Node.js .. 371
Getting started .. 372
Development environment ... 374
The Node.js platform ... 377
Tutorial - Express .. 393
Tutorial - Express with clustering ... 404
Tutorial - Node.js w/ DynamoDB .. 422
Adding a database ... 434
Resources .. 437

Working with PHP ... 437
Development environment ... 438
The PHP platform .. 441
Tutorial - Laravel .. 450
Tutorial - CakePHP ... 460
Tutorial - Symfony ... 469
Tutorial - HA production ... 475
Tutorial - HA WordPress ... 487
Tutorial - HA Drupal .. 505

v

AWS Elastic Beanstalk Developer Guide

Adding a database ... 523
Working with Python .. 526

Development environment ... 527
The Python platform ... 530
Tutorial - flask ... 538
Tutorial - Django .. 546
Adding a database ... 560
Resources .. 563

Working with Ruby .. 563
Development environment ... 564
The Ruby platform ... 566
Tutorial - rails .. 573
Tutorial - sinatra ... 582
Adding a database ... 588

Tutorials and samples ... 591
Managing applications .. 594

Application management console .. 596
Managing application versions ... 597

Version lifecycle .. 600
Tagging application versions .. 603

Create a source bundle ... 605
Creating a source bundle from the command line .. 606
Creating a source bundle with Git .. 607
Zipping files in Mac OS X Finder or Windows explorer .. 607
Creating a source bundle for a .NET application ... 610
Testing your source bundle .. 611

Tagging resources .. 612
Tag propagation to launch templates ... 613
Resources you can tag ... 615
Tagging applications .. 615

Managing environments ... 619
Environment management console ... 620

Environment overview ... 621
Environment actions .. 624
Events .. 626
Health .. 626

vi

AWS Elastic Beanstalk Developer Guide

Logs ... 627
Monitoring .. 628
Alarms ... 628
Managed updates ... 629
Tags .. 629
Configuration ... 630

Creating environments ... 632
The create new environment wizard .. 639
Clone an environment ... 662
Terminate an environment ... 665
With the AWS CLI ... 667
With the API .. 669
Launch Now URL .. 673
Compose environments ... 679

Deployments ... 682
Choosing a deployment policy .. 683
Deploying a new application version ... 685
Redeploying a previous version ... 686
Other ways to deploy your application ... 686
Deployment options .. 687
Blue/Green deployments .. 695

Configuration changes .. 697
Rolling updates ... 698
Immutable updates .. 703

Platform updates ... 707
Method 1 – Update your environment's platform version ... 712
Method 2 – Perform a Blue/Green deployment .. 714
Managed updates ... 715
Upgrade a legacy environment ... 722
Migrate to AL2023/AL2 .. 724
Platform retirement FAQ .. 741

Cancel an update ... 745
Rebuild an environment ... 746

Rebuilding a running environment ... 747
Rebuilding a terminated environment ... 747

Environment types ... 750

vii

AWS Elastic Beanstalk Developer Guide

Load-balanced, scalable environment .. 750
Single-instance environment ... 750
Changing environment type .. 751

Worker environments .. 752
The worker environment SQS daemon .. 755
Dead-letter queues ... 756
Periodic tasks ... 757
Use Amazon CloudWatch for automatic scaling in worker environment tiers 758
Configuring worker environments .. 759

Environment links .. 763
Configuring environments .. 766

Configuration using the console .. 767
Configuration page .. 768
Review changes page .. 770

Amazon EC2 instances .. 771
Amazon EC2 instance types ... 772
Configuring Amazon EC2 instances for your environment .. 773
Configuring AWS EC2 instances for your environment using the AWS CLI 780
Recommendations for Graviton arm64 first wave environments ... 784
The aws:autoscaling:launchconfiguration namespace .. 786
IMDS .. 787

Auto Scaling group .. 789
Spot instance support ... 790
Auto Scaling group configuration using the Elastic Beanstalk console 795
Auto Scaling group configuration using the EB CLI .. 798
Configuration options .. 799
Triggers ... 800
Scheduled actions ... 803
Health check setting .. 808

Load balancer ... 809
Classic Load Balancer .. 811
Application Load Balancer .. 821
Shared Application Load Balancer .. 841
Network Load Balancer ... 859
Configuring access logs ... 870

Database .. 870

viii

AWS Elastic Beanstalk Developer Guide

Database lifecycle ... 871
Adding an Amazon RDS DB instance to your environment using the console 872
Connecting to the database ... 874
Configuring an integrated RDS DB instance using the console .. 874
Configuring an integrated RDS DB instance using configuration files 875
Decoupling an RDS DB instance using the console ... 876
Decoupling an RDS DB instance using configuration files ... 879

Security .. 881
Configuring your environment security ... 881
Environment security configuration namespaces .. 883

Tagging environments .. 884
Adding tags during environment creation .. 884
Managing tags of an existing environment .. 885

Environment properties and software settings ... 888
Configure platform-specific settings .. 888
Configuring environment properties (environment variables) .. 889
Software setting namespaces .. 891
Accessing environment properties .. 893
Debugging .. 894
Log viewing .. 897

Notifications .. 899
Configuring notifications using the Elastic Beanstalk console .. 901
Configuring notifications using configuration options ... 901
Configuring permissions to send notifications ... 904

Amazon VPC ... 906
Configuring VPC settings in the Elastic Beanstalk console .. 906
The aws:ec2:vpc namespace ... 909
Migrating from EC2-Classic to a VPC ... 910

Domain name ... 915
Configuring environments (advanced) ... 917

Configuration options ... 918
Precedence ... 918
Recommended values .. 919
Before environment creation ... 921
During creation ... 927
After creation .. 934

ix

AWS Elastic Beanstalk Developer Guide

General options ... 944
Platform specific options .. 1021
Custom options .. 1033

.Ebextensions .. 1034
Option settings ... 1036
Linux server ... 1039
Windows server .. 1056
Custom resources ... 1065

Saved configurations .. 1093
Tagging saved configurations .. 1099

env.yaml .. 1101
Custom image .. 1104

Creating a custom AMI ... 1105
Cleaning up a custom AMI ... 1109
AMI based on retired platform ... 1109

Static files .. 1116
Configure static files using the console .. 1116
Configure static files using configuration options .. 1117

HTTPS ... 1118
Create a certificate ... 1120
Upload a certificate ... 1123
Terminate at the load balancer ... 1124
Terminate at the instance .. 1128
End-to-end encryption .. 1163
TCP Passthrough .. 1168
Store keys securely .. 1168
HTTP to HTTPS redirection .. 1170

Monitoring an environment .. 1172
Monitoring console ... 1172

Monitoring graphs .. 1173
Customizing the monitoring console ... 1174

Basic health reporting .. 1175
Health colors ... 1176
Elastic Load Balancing health checks .. 1177
Single instance and worker tier environment health checks ... 1178
Additional checks ... 1178

x

AWS Elastic Beanstalk Developer Guide

Amazon CloudWatch metrics ... 1178
Enhanced health reporting and monitoring .. 1180

The Elastic Beanstalk health agent .. 1183
Factors in determining instance and environment health ... 1184
Health check rule customization .. 1187
Enhanced health roles ... 1187
Enhanced health authorization ... 1188
Enhanced health events .. 1189
Enhanced health reporting behavior during updates, deployments, and scaling 1190
Enable enhanced health ... 1190
Health console .. 1194
Health colors and statuses ... 1199
Instance metrics .. 1202
Enhanced health rules ... 1205
CloudWatch ... 1210
API users ... 1219
Enhanced health log format .. 1221
Notifications and troubleshooting .. 1225

Manage alarms ... 1227
View change history ... 1230
View events ... 1232
Monitor instances .. 1234
View instance logs ... 1237

Log location on Amazon EC2 instances .. 1239
Log location in Amazon S3 .. 1240
Log rotation settings on Linux .. 1241
Extending the default log task configuration .. 1241
Streaming log files to Amazon CloudWatch Logs ... 1244

Integrating AWS services .. 1246
Architectural overview .. 1246
CloudFront ... 1247
CloudTrail .. 1248

Elastic Beanstalk information in CloudTrail .. 1248
Understanding Elastic Beanstalk log file entries ... 1249

CloudWatch ... 1250
CloudWatch Logs ... 1251

xi

AWS Elastic Beanstalk Developer Guide

Prerequisites to instance log streaming to CloudWatch Logs ... 1253
How Elastic Beanstalk sets up CloudWatch Logs .. 1254
Streaming instance logs to CloudWatch Logs ... 1259
Troubleshooting CloudWatch Logs integration ... 1262
Streaming environment health ... 1262

EventBridge ... 1265
Monitor an Elastic Beanstalk resource with EventBridge ... 1266
Example Elastic Beanstalk event patterns .. 1268
Example Elastic Beanstalk events ... 1271
Elastic Beanstalk event field mapping ... 1272

AWS Config ... 1275
Setting up AWS Config ... 1275
Configuring AWS Config to record Elastic Beanstalk resources .. 1275
Viewing Elastic Beanstalk configuration details in the AWS Config console 1276
Evaluating Elastic Beanstalk resources using AWS Config rules ... 1280

DynamoDB .. 1281
ElastiCache .. 1281
Amazon EFS .. 1282

Configuration files .. 1283
Encrypted file systems .. 1284
Sample applications ... 1284
Cleaning up file systems ... 1284

IAM .. 1285
Instance profiles ... 1286
Service roles .. 1289
Using service-linked roles ... 1303
User policies .. 1321
ARN format .. 1336
Resources and conditions ... 1338
Tag-based access control .. 1383
Example managed policies ... 1387
Example resource-specific policies ... 1390

Amazon RDS ... 1401
Amazon RDS in default VPC .. 1402
Amazon RDS in EC2 classic .. 1409
Amazon RDS credentials and Secrets Manager ... 1414

xii

AWS Elastic Beanstalk Developer Guide

Cleaning up an external Amazon RDS instance ... 1415
Amazon S3 .. 1415

Contents of the Elastic Beanstalk Amazon S3 bucket .. 1415
Deleting objects in the Elastic Beanstalk Amazon S3 bucket ... 1416
Deleting the Elastic Beanstalk Amazon S3 bucket .. 1417

Amazon VPC ... 1418
Public VPC .. 1420
Public/private VPC ... 1421
Private VPC .. 1421
Bastion hosts ... 1423
Amazon RDS .. 1428
VPC endpoints .. 1435

Configuring your development machine ... 1439
Creating a project folder ... 1439
Setting up source control .. 1440
Configuring a remote repository .. 1440
Installing the EB CLI ... 1441
Installing the AWS CLI .. 1441

EB CLI ... 1442
Install the EB CLI ... 1443

Install the EB CLI using setup scripts ... 1444
Manual installation .. 1444

Configure the EB CLI .. 1454
Ignoring files using .ebignore .. 1457
Using named profiles .. 1457
Deploying an artifact instead of the project folder .. 1458
Configuration settings and precedence ... 1458
Instance metadata ... 1459

EB CLI basics ... 1459
Eb create .. 1460
Eb status .. 1461
Eb health .. 1461
Eb events .. 1462
Eb logs .. 1462
Eb open .. 1463
Eb deploy ... 1463

xiii

AWS Elastic Beanstalk Developer Guide

Eb config .. 1464
Eb terminate .. 1465

CodeBuild .. 1466
Creating an application ... 1466
Building and deploying your application code .. 1466

Using the EB CLI with Git .. 1468
Associating Elastic Beanstalk environments with Git branches .. 1469
Deploying changes ... 1469
Using Git submodules ... 1470
Assigning Git tags to your application version .. 1471

CodeCommit ... 1471
Prerequisites .. 1472
Creating a CodeCommit repository with the EB CLI ... 1472
Deploying from your CodeCommit repository ... 1473
Configuring additional branches and environments ... 1475
Using an existing CodeCommit repository ... 1476

Monitoring health .. 1477
Reading the output .. 1480
Interactive health view ... 1482
Interactive health view options ... 1484

Composing environments .. 1485
Troubleshooting ... 1487

Troubleshooting deployments ... 1488
EB CLI commands .. 1491

eb abort ... 1492
eb appversion ... 1493
eb clone ... 1497
eb codesource .. 1500
eb config .. 1502
eb console ... 1510
eb create .. 1511
eb deploy ... 1528
eb events ... 1530
eb health ... 1532
eb init ... 1534
eb labs .. 1538

xiv

AWS Elastic Beanstalk Developer Guide

eb list ... 1539
eb local .. 1540
eb logs .. 1544
eb open .. 1548
eb platform ... 1549
eb printenv ... 1559
eb restore .. 1560
eb scale .. 1561
eb setenv ... 1562
eb ssh ... 1563
eb status .. 1566
eb swap .. 1568
eb tags ... 1570
eb terminate ... 1573
eb upgrade .. 1575
eb use ... 1576
Common options .. 1577

EB CLI 2.6 (retired) .. 1578
Differences from version 3 of EB CLI ... 1578
Migrating to EB CLI 3 and CodeCommit ... 1579

EB API CLI (retired) ... 1580
Converting Elastic Beanstalk API CLI scripts .. 1580

Security .. 1584
Data protection .. 1585

Data encryption .. 1586
Internetwork privacy ... 1587

Identity and access management .. 1587
AWS managed policies .. 1587

Logging and monitoring .. 1598
Enhanced health reporting .. 1599
Amazon EC2 instance logs ... 1599
Environment notifications .. 1599
Amazon CloudWatch alarms .. 1599
AWS CloudTrail logs .. 1600
AWS X-Ray debugging .. 1600

Compliance validation .. 1600

xv

AWS Elastic Beanstalk Developer Guide

Resilience ... 1601
Infrastructure security .. 1601
Shared responsibility model .. 1602
Security best practices ... 1602

Preventive security best practices .. 1602
Detective security best practices .. 1603

Troubleshooting ... 1605
Using the Systems Manager tool .. 1605
General guidance ... 1607
Categories .. 1607

Connectivity ... 1608
Environment creation .. 1608
Deployments ... 1609
Health ... 1609
Configuration .. 1610
Docker ... 1610
FAQ .. 1611

Resources .. 1613
Sample applications .. 1614

Platform history .. 1615
Custom platforms .. 1615

xvi

AWS Elastic Beanstalk Developer Guide

What is AWS Elastic Beanstalk?
Amazon Web Services (AWS) comprises over one hundred services, each of which exposes an area
of functionality. While the variety of services offers flexibility for how you want to manage your
AWS infrastructure, it can be challenging to figure out which services to use and how to provision
them.

With Elastic Beanstalk, you can quickly deploy and manage applications in the AWS Cloud without
having to learn about the infrastructure that runs those applications. Elastic Beanstalk reduces
management complexity without restricting choice or control. You simply upload your application,
and Elastic Beanstalk automatically handles the details of capacity provisioning, load balancing,
scaling, and application health monitoring.

Elastic Beanstalk supports applications developed in Go, Java, .NET, Node.js, PHP, Python, and
Ruby. When you deploy your application, Elastic Beanstalk builds the selected supported platform
version and provisions one or more AWS resources, such as Amazon EC2 instances, to run your
application.

You can interact with Elastic Beanstalk by using the Elastic Beanstalk console, the AWS Command
Line Interface (AWS CLI), or eb, a high-level CLI designed specifically for Elastic Beanstalk.

To learn more about how to deploy a sample web application using Elastic Beanstalk, see Getting
Started with AWS: Deploying a Web App.

You can also perform most deployment tasks, such as changing the size of your fleet of Amazon
EC2 instances or monitoring your application, directly from the Elastic Beanstalk web interface
(console).

To use Elastic Beanstalk, you create an application, upload an application version in the form of
an application source bundle (for example, a Java .war file) to Elastic Beanstalk, and then provide
some information about the application. Elastic Beanstalk automatically launches an environment
and creates and configures the AWS resources needed to run your code. After your environment
is launched, you can then manage your environment and deploy new application versions. The
following diagram illustrates the workflow of Elastic Beanstalk.

1

https://docs.aws.amazon.com/gettingstarted/latest/deploy/
https://docs.aws.amazon.com/gettingstarted/latest/deploy/

AWS Elastic Beanstalk Developer Guide

After you create and deploy your application, information about the application—including
metrics, events, and environment status—is available through the Elastic Beanstalk console, APIs,
or Command Line Interfaces, including the unified AWS CLI.

Pricing

There is no additional charge for Elastic Beanstalk. You pay only for the underlying AWS resources
that your application consumes. For details about pricing, see the Elastic Beanstalk service detail
page.

Where to go next

This guide contains conceptual information about the Elastic Beanstalk web service, as well as
information about how to use the service to deploy web applications. Separate sections describe
how to use the Elastic Beanstalk console, command line interface (CLI) tools, and API to deploy and
manage your Elastic Beanstalk environments. This guide also documents how Elastic Beanstalk is
integrated with other services provided by Amazon Web Services.

We recommend that you first read Getting started using Elastic Beanstalk to learn how to start
using Elastic Beanstalk. Getting Started steps you through creating, viewing, and updating
your Elastic Beanstalk application, as well as editing and terminating your Elastic Beanstalk
environment. Getting Started also describes different ways you can access Elastic Beanstalk.

To learn more about an Elastic Beanstalk application and its components, see the following pages.

• Elastic Beanstalk concepts

• Elastic Beanstalk platforms glossary

• Shared responsibility model for Elastic Beanstalk platform maintenance

• Elastic Beanstalk platform support policy

Pricing 2

https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Getting started using Elastic Beanstalk

To help you understand how AWS Elastic Beanstalk works, this tutorial walks you through creating,
exploring, updating, and deleting an Elastic Beanstalk application. It takes less than an hour to
complete.

There is no cost for using Elastic Beanstalk, but the AWS resources that it creates for this tutorial
are live (and don't run in a sandbox). You incur the standard usage fees for these resources until
you terminate them at the end of this tutorial. The total charges are typically less than a dollar. For
information about how to minimize charges, see AWS free tier.

Topics

• Setting up: Create an AWS account

• Step 1: Create an example application

• Step 2: Explore your environment

• Step 3: Deploy a new version of your application

• Step 4: Configure your environment

• Step 5: Clean up

• Next steps

Setting up: Create an AWS account

If you're not already an AWS customer, you need to create an AWS account. Signing up enables you
to access Elastic Beanstalk and other AWS services that you need.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

Setting up: Create an AWS account 3

https://aws.amazon.com/free
https://portal.aws.amazon.com/billing/signup

AWS Elastic Beanstalk Developer Guide

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Create an administrative user 4

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

AWS Elastic Beanstalk Developer Guide

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Step 1: Create an example application

In this step, you create a new application starting from a preexisting example application. Elastic
Beanstalk supports platforms for different programming languages, application servers, and
Docker containers. You choose a platform when you create the application.

Create an application and an environment

To create your example application, you'll use the Create application console wizard. It creates
an Elastic Beanstalk application and launches an environment within it. An environment is the
collection of AWS resources required to run your application code.

To create an example application

1. Open the Elastic Beanstalk console.

2. Choose Create application.

3. For Application name enter getting-started-app.

4. Optionally add application tags.

5. For Platform, choose a platform.

6. Choose Next.

7. The Configure service access page displays.

8. Choose Use an existing service role for Service Role.

9. Next, we'll focus on the EC2 instance profile dropdown list. The values displayed in this
dropdown list may vary, depending on whether you account has previously created a new
environment.

Choose one of the following, based on the values displayed in your list.

• If aws-elasticbeanstalk-ec2-role displays in the dropdown list, select it from the
EC2 instance profile dropdown list.

Step 1: Create 5

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

• If another value displays in the list, and it’s the default EC2 instance profile intended for
your environments, select it from the EC2 instance profile dropdown list.

• If the EC2 instance profile dropdown list doesn't list any values to choose from, expand
the procedure that follows, Create IAM Role for EC2 instance profile.

Complete the steps in Create IAM Role for EC2 instance profile to create an IAM Role that
you can subsequently select for the EC2 instance profile. Then return back to this step.

Now that you've created an IAM Role, and refreshed the list, it displays as a choice in
the dropdown list. Select the IAM Role you just created from the EC2 instance profile
dropdown list.

10. Choose Skip to Review on the Configure service access page.

This skips the optional steps.

11. The Review page displays a summary of all your choices.

Choose Submit at the bottom of the page.

Create IAM Role for EC2 instance profile

Create an application and an environment 6

AWS Elastic Beanstalk Developer Guide

To create a an IAM Role for EC2 instance profile selection

1. Choose View permission details. This displays under the EC2 instance profile dropdown list.

A modal window titled View instance profile permissions displays. This window lists the
managed profiles that you'll need to attach to the new EC2 instance profile that you create. It
also provides a link to launch the IAM console.

2. Choose the IAM console link displayed at the top of the window.

3. In the IAM console navigation pane, choose Roles.

4. Choose Create role.

5. Under Trusted entity type, choose AWS service.

6. Under Use case, choose EC2.

7. Choose Next.

8. Attach the appropriate managed policies. Scroll in the View instance profile permissions
modal window to see the managed policies. The policies are also listed here:

• AWSElasticBeanstalkWebTier

• AWSElasticBeanstalkWorkerTier

• AWSElasticBeanstalkMulticontainerDocker

9. Choose Next.

10. Enter a name for the role.

11. (Optional) Add tags to the role.

12. Choose Create role.

13. Return to the Elastic Beanstalk console window that is open.

14. Close the modal window View instance profile permissions.

Important

Do not close the browser page that displays the Elastic Beanstalk console.

15. Choose

(refresh), next to the EC2 instance profile dropdown list.

Create an application and an environment 7

AWS Elastic Beanstalk Developer Guide

This refreshes the dropdown list, so that the Role you just created will display in the dropdown
list.

Elastic Beanstalk workflow

To deploy and run the example application on AWS resources, Elastic Beanstalk takes the following
actions. They take about five minutes to complete.

1. Creates an Elastic Beanstalk application named getting-started-app.

2. Launches an environment named GettingStartedApp-env with these AWS resources:

• An Amazon Elastic Compute Cloud (Amazon EC2) instance (virtual machine)

• An Amazon EC2 security group

• An Amazon Simple Storage Service (Amazon S3) bucket

• Amazon CloudWatch alarms

• An AWS CloudFormation stack

• A domain name

For details about these AWS resources, see the section called “AWS resources created for the
example application”.

3. Creates a new application version named Sample Application. This is the default Elastic
Beanstalk example application file.

4. Deploys the code for the example application to the GettingStartedApp-env environment.

During the environment creation process, the console tracks progress and displays events.

Create an application and an environment 8

AWS Elastic Beanstalk Developer Guide

When all of the resources are launched and the EC2 instances running the application pass health
checks, the environment's health changes to Ok. You can now use your web application's website.

AWS resources created for the example application

When you create the example application, Elastic Beanstalk creates the following AWS resources:

• EC2 instance – An Amazon EC2 virtual machine configured to run web apps on the platform you
choose.

AWS resources created for the example application 9

AWS Elastic Beanstalk Developer Guide

Each platform runs a different set of software, configuration files, and scripts to support a
specific language version, framework, web container, or combination thereof. Most platforms
use either Apache or nginx as a reverse proxy that processes web traffic in front of your web app,
forwards requests to it, serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow incoming traffic
on port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic is not allowed on other ports.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances in
your environment and are triggered if the load is too high or too low. When an alarm is triggered,
your Auto Scaling group scales up or down in response.

• AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the AWS CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com
domain is registered in the Public Suffix List (PSL). For further security, we recommend
that you use cookies with a __Host- prefix if you ever need to set sensitive cookies in
the default domain name for your Elastic Beanstalk applications. This practice will help
to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

Step 2: Explore your environment

To see an overview of your Elastic Beanstalk application's environment, use the Environment
overview page in the Elastic Beanstalk console.

To view the environment overview

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

Step 2: Explore 10

https://console.aws.amazon.com/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

The upper portion of the Environment overview page shows top level information about your
environment. This includes its name, its domain URL, its current health status, the name of the
currently deployed application version, and the platform version that the application is running on.
Below the overview pane you can see the most recent environment events in the Events tab. The
other tabs display other main details about your environment.

To learn more about environment tiers, platforms, application versions, and other Elastic Beanstalk
concepts, see Concepts.

While Elastic Beanstalk creates your AWS resources and launches your application, the environment
is in a Pending state. Status messages about launch events are continuously added to the
overview.

The environment's Domain, or URL, is located in the upper portion of the Environment overview
page, below the environment's Health. This is the URL of the web application that the environment
is running. Choose this URL to get to the example application's Congratulations page. The
navigation pane on the left lists a Go to environment link that launches the same application
page.

Step 2: Explore 11

AWS Elastic Beanstalk Developer Guide

Also listed on the left navigation pane is Configuration, which shows the Configuration overview
page. This page displays a summary of environment configuration option values, grouped by
category.

The tabs displayed on the bottom half of the page contain more detailed information about your
environment and provide access to additional features:

• Events – Shows information or error messages from the Elastic Beanstalk service and from other
services whose resources this environment uses.

• Health – Shows the status of and detailed health information about the Amazon EC2 instances
running your application.

• Logs – Retrieve and download logs from the Amazon EC2 in your environment. You can retrieve
full logs or recent activity. The retrieved logs are available for 15 minutes.

• Monitoring – Shows statistics for the environment, such as average latency and CPU utilization.

• Alarms – Shows the alarms that you configured for environment metrics. You can add, modify or
delete alarms on this page.

• Managed updates – Shows information about upcoming and completed managed platform
updates and instance replacement.

• Tags – Shows environment tags and allows you to manage them. Tags are key-value pairs that
are applied to your environment.

Note

The navigation pane on the left side of the console lists links with the same name as the
tabs. Selecting any of these links will display the contents of the corresponding tab.

Step 3: Deploy a new version of your application

Periodically, you might need to deploy a new version of your application. You can deploy a new
version at any time, as long as no other update operations are in progress on your environment.

The application version that you started this tutorial with is called Sample Application.

Step 3: Deploy a new version 12

AWS Elastic Beanstalk Developer Guide

To update your application version

1. Download the sample application that matches your environment's platform. Use one of the
following applications.

• Docker – docker.zip

• Multicontainer Docker – docker-multicontainer-v2.zip

• Preconfigured Docker (Glassfish) – docker-glassfish-v1.zip

• Go – go.zip

• Corretto – corretto.zip

• Tomcat – tomcat.zip

• .NET Core on Linux – dotnet-core-linux.zip

• .NET Core – dotnet-asp-windows.zip

• Node.js – nodejs.zip

• PHP – php.zip

• Python – python.zip

• Ruby – ruby.zip

2. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

3. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

4. On the environment overview page, choose Upload and deploy.

5. Choose Choose file, and then upload the sample application source bundle that you
downloaded.

Step 3: Deploy a new version 13

samples/docker.zip
samples/docker-multicontainer-v2.zip
samples/docker-glassfish-v1.zip
samples/go.zip
samples/corretto.zip
samples/tomcat.zip
samples/dotnet-core-linux.zip
samples/dotnet-asp-windows.zip
samples/nodejs.zip
samples/php.zip
samples/python.zip
samples/ruby.zip
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

The console automatically fills in the Version label with a new unique label. If you type in your
own version label, ensure that it's unique.

6. Choose Deploy.

While Elastic Beanstalk deploys your file to your Amazon EC2 instances, you can view the
deployment status on the environment's overview. While the application version is updated, the
Environment Health status is gray. When the deployment is complete, Elastic Beanstalk performs
an application health check. When the application responds to the health check, it's considered
healthy and the status returns to green. The environment overview shows the new Running
Version—the name you provided as the Version label.

Elastic Beanstalk also uploads your new application version and adds it to the table of application
versions. To view the table, choose Application versions under getting-started-app on the
navigation pane.

Step 3: Deploy a new version 14

AWS Elastic Beanstalk Developer Guide

Step 4: Configure your environment

You can configure your environment to better suit your application. For example, if you have
a compute-intensive application, you can change the type of Amazon Elastic Compute Cloud
(Amazon EC2) instance that is running your application. To apply configuration changes, Elastic
Beanstalk performs an environment update.

Some configuration changes are simple and happen quickly. Some changes require deleting
and recreating AWS resources, which can take several minutes. When you change configuration
settings, Elastic Beanstalk warns you about potential application downtime.

Make a configuration change

In this example of a configuration change, you edit your environment's capacity settings. You
configure a load-balanced, scalable environment that has between two and four Amazon EC2
instances in its Auto Scaling group, and then you verify that the change occurred. Elastic Beanstalk
creates an additional Amazon EC2 instance, adding to the single instance that it created initially.
Then, Elastic Beanstalk associates both instances with the environment's load balancer. As a result,
your application's responsiveness is improved and its availability is increased.

To change your environment's capacity

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Instance traffic and scaling configuration category, choose Edit.

5. Collapse the Instances section, so you can more easily see the Capacity section. Under Auto
Scaling group change Environment type to Load balanced.

6. In the Instances row, change Max to 4, and then change Min to 2.

7. To save the changes choose Apply at the bottom of the page.

8. A warning tells you that this update replaces all of your current instances. Choose Confirm.

Step 4: Configure 15

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

9. The Environment overview page will display, showing the Events tab.

The environment update can take a few minutes. To find out that it's complete, look for
the event Successfully deployed new configuration to environment in the event list. This
confirms that the Auto Scaling minimum instance count has been set to 2. Elastic Beanstalk
automatically launches the second instance.

Verify the configuration change

When the environment update is complete and the environment is ready, verify your change.

To verify the increased capacity

1. Choose Health from either the tab list or from the left navigation pane.

2. Look at the Enhanced instance health section.

You can see that two Amazon EC2 instances are listed. Your environment capacity has
increased to two instances.

Step 5: Clean up

Congratulations! You have successfully deployed a sample application to the AWS Cloud, uploaded
a new version, and modified its configuration to add a second Auto Scaling instance. To ensure that

Verify the configuration change 16

AWS Elastic Beanstalk Developer Guide

you're not charged for any services you aren't using, delete all application versions and terminate
the environment. This also deletes the AWS resources that the environment created for you.

To delete the application and all associated resources

1. Delete all application versions.

a. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

b. In the navigation pane, choose Applications, and then choose getting-started-app.

c. In the navigation pane, find your application's name and choose Application versions.

d. On the Application versions page, select all application versions that you want to delete.

e. Choose Actions, and then choose Delete.

f. Turn on Delete versions from Amazon S3.

g. Choose Delete, and then choose Done.

2. Terminate the environment.

a. In the navigation pane, choose getting-started-app, and then choose
GettingStartedApp-env in the environment list.

b. Choose Actions, and then choose Terminate Environment.

c. Confirm that you want to terminate GettingStartedApp-env by typing the environment
name, and then choose Terminate.

3. Delete the getting-started-app application.

a. In the navigation pane, choose the getting-started-app.

b. Choose Actions, and then choose Delete application.

c. Confirm that you want to delete getting-started-app by typing the application name, and
then choose Delete.

Next steps

Now that you know how to create an Elastic Beanstalk application and environment, we
recommend that you read Concepts. This topic provides information about the Elastic Beanstalk
components and architecture, and describes important design considerations for your Elastic
Beanstalk application.

Next steps 17

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

In addition to the Elastic Beanstalk console, you can use the following tools to create and manage
Elastic Beanstalk environments.

EB CLI

The EB CLI is a command line tool for creating and managing environments. See Using the Elastic
Beanstalk command line interface (EB CLI) for details.

AWS SDK for Java

The AWS SDK for Java provides a Java API you can use to build applications that use AWS
infrastructure services. With the AWS SDK for Java, you can get started in minutes with a single,
downloadable package that includes the AWS Java library, code examples, and documentation.

The AWS SDK for Java requires the J2SE Development Kit 5.0 or later. You can download the
latest Java software from http://developers.sun.com/downloads/. The SDK also requires Apache
Commons (Codec, HTTPClient, and Logging) and Saxon-HE third-party packages, which are
included in the third-party directory of the SDK.

For more information, see AWS SDK for Java.

AWS Toolkit for Eclipse

The AWS Toolkit for Eclipse is an open source plug-in for the Eclipse Java IDE. You can use it to
create AWS Java web projects that are preconfigured with the AWS SDK for Java, and then deploy
the web applications to Elastic Beanstalk. The Elastic Beanstalk plug-in builds on top of the Eclipse
Web Tools Platform (WTP). The toolkit provides a Travel Log sample web application template that
demonstrates the use of Amazon S3 and Amazon SNS.

To ensure that you have all the WTP dependencies, we recommend that you start with the Java EE
distribution of Eclipse. You can download it from http://eclipse.org/downloads/.

For more information about using the Elastic Beanstalk plug-in for Eclipse, see AWS Toolkit for
Eclipse. To get started creating your Elastic Beanstalk application using Eclipse, see Creating and
deploying Java applications on Elastic Beanstalk.

AWS SDK for .NET

The AWS SDK for .NET enables you to build applications that use AWS infrastructure services. With
the AWS SDK for .NET, you can get started in minutes with a single, downloadable package that
includes the AWS .NET library, code examples, and documentation.

Next steps 18

http://developers.sun.com/downloads/
https://aws.amazon.com/sdk-for-java/
http://eclipse.org/downloads/
https://aws.amazon.com/eclipse/
https://aws.amazon.com/eclipse/

AWS Elastic Beanstalk Developer Guide

For more information, see AWS SDK for .NET. For supported .NET Framework and Visual Studio
versions, see the AWS SDK for .NET Developer Guide.

AWS Toolkit for Visual Studio

With the AWS Toolkit for Visual Studio plug-in, you can deploy an existing .NET application to
Elastic Beanstalk. You can also create projects using the AWS templates that are preconfigured with
the AWS SDK for .NET.

For prerequisite and installation information, see the AWS Toolkit for Visual Studio. To get started
creating your Elastic Beanstalk application using Visual Studio, see Creating and deploying .NET
applications on Elastic Beanstalk.

AWS SDK for JavaScript in Node.js

The AWS SDK for JavaScript in Node.js enables you to build applications on top of AWS
infrastructure services. With the AWS SDK for JavaScript in Node.js, you can get started in minutes
with a single, downloadable package that includes the AWS Node.js library, code examples, and
documentation.

For more information, see the AWS SDK for JavaScript in Node.js.

AWS SDK for PHP

The AWS SDK for PHP enables you to build applications on top of AWS infrastructure services. With
the AWS SDK for PHP, you can get started in minutes with a single, downloadable package that
includes the AWS PHP library, code examples, and documentation.

The AWS SDK for PHP requires PHP 5.2 or later. For download details, see http://php.net/.

For more information, see the AWS SDK for PHP.

AWS SDK for Python (Boto)

With the AWS SDK for Python (Boto), you can get started in minutes with a single, downloadable
package that includes the AWS Python library, code examples, and documentation. You can build
Python applications on top of APIs that take the complexity out of coding directly against web
service interfaces.

The all-in-one library provides Python developer-friendly APIs that hide many of the lower-level
tasks associated with programming for the AWS Cloud, including authentication, request retries,

Next steps 19

https://aws.amazon.com/sdk-for-net/
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/
https://aws.amazon.com/visualstudio/
https://aws.amazon.com/sdk-for-node-js/
http://php.net/
https://aws.amazon.com/sdk-for-php/

AWS Elastic Beanstalk Developer Guide

and error handling. The SDK provides practical examples in Python for how to use the libraries to
build applications.

For information about Boto, example code, documentation, tools, and additional resources, see the
Python Developer Center.

AWS SDK for Ruby

You can get started in minutes with a single, downloadable package complete with the AWS Ruby
library, code examples, and documentation. You can build Ruby applications on top of APIs that
take the complexity out of coding directly against web services interfaces.

The all-in-one library provides Ruby developer-friendly APIs that hide many of the lower-level
tasks associated with programming for the AWS Cloud, including authentication, request retries,
and error handling. The SDK provides practical examples in Ruby for how to use the libraries to
build applications.

For information about the SDK, example code, documentation, tools, and additional resources, see
the Ruby Developer Center.

Next steps 20

https://aws.amazon.com/python/
https://aws.amazon.com/ruby/

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk concepts

AWS Elastic Beanstalk enables you to manage all of the resources that run your application as
environments. Here are some key Elastic Beanstalk concepts.

Application

An Elastic Beanstalk application is a logical collection of Elastic Beanstalk components, including
environments, versions, and environment configurations. In Elastic Beanstalk an application is
conceptually similar to a folder.

Application version

In Elastic Beanstalk, an application version refers to a specific, labeled iteration of deployable
code for a web application. An application version points to an Amazon Simple Storage Service
(Amazon S3) object that contains the deployable code, such as a Java WAR file. An application
version is part of an application. Applications can have many versions and each application version
is unique. In a running environment, you can deploy any application version you already uploaded
to the application, or you can upload and immediately deploy a new application version. You
might upload multiple application versions to test differences between one version of your web
application and another.

Environment

An environment is a collection of AWS resources running an application version. Each environment
runs only one application version at a time, however, you can run the same application version
or different application versions in many environments simultaneously. When you create an
environment, Elastic Beanstalk provisions the resources needed to run the application version you
specified.

Environment tier

When you launch an Elastic Beanstalk environment, you first choose an environment tier. The
environment tier designates the type of application that the environment runs, and determines
what resources Elastic Beanstalk provisions to support it. An application that serves HTTP requests

Application 21

AWS Elastic Beanstalk Developer Guide

runs in a web server environment tier. A backend environment that pulls tasks from an Amazon
Simple Queue Service (Amazon SQS) queue runs in a worker environment tier.

Environment configuration

An environment configuration identifies a collection of parameters and settings that define
how an environment and its associated resources behave. When you update an environment’s
configuration settings, Elastic Beanstalk automatically applies the changes to existing resources or
deletes and deploys new resources (depending on the type of change).

Saved configuration

A saved configuration is a template that you can use as a starting point for creating unique
environment configurations. You can create and modify saved configurations, and apply them to
environments, using the Elastic Beanstalk console, EB CLI, AWS CLI, or API. The API and the AWS
CLI refer to saved configurations as configuration templates.

Platform

A platform is a combination of an operating system, programming language runtime, web server,
application server, and Elastic Beanstalk components. You design and target your web application
to a platform. Elastic Beanstalk provides a variety of platforms on which you can build your
applications.

For details, see Elastic Beanstalk platforms.

Web server environments

The following diagram shows an example Elastic Beanstalk architecture for a web server
environment tier, and shows how the components in that type of environment tier work together.

Environment configuration 22

AWS Elastic Beanstalk Developer Guide

The environment is the heart of the application. In the diagram, the environment is shown within
the top-level solid line. When you create an environment, Elastic Beanstalk provisions the resources
required to run your application. AWS resources created for an environment include one elastic
load balancer (ELB in the diagram), an Auto Scaling group, and one or more Amazon Elastic
Compute Cloud (Amazon EC2) instances.

Every environment has a CNAME (URL) that points to a load balancer. The environment
has a URL, such as myapp.us-west-2.elasticbeanstalk.com. This URL is aliased in
Amazon Route 53 to an Elastic Load Balancing URL—something like abcdef-123456.us-
west-2.elb.amazonaws.com—by using a CNAME record. Amazon Route 53 is a highly available
and scalable Domain Name System (DNS) web service. It provides secure and reliable routing to
your infrastructure. Your domain name that you registered with your DNS provider will forward
requests to the CNAME.

The load balancer sits in front of the Amazon EC2 instances, which are part of an Auto Scaling
group. Amazon EC2 Auto Scaling automatically starts additional Amazon EC2 instances to
accommodate increasing load on your application. If the load on your application decreases,
Amazon EC2 Auto Scaling stops instances, but always leaves at least one instance running.

The software stack running on the Amazon EC2 instances is dependent on the container type.
A container type defines the infrastructure topology and software stack to be used for that
environment. For example, an Elastic Beanstalk environment with an Apache Tomcat container uses
the Amazon Linux operating system, Apache web server, and Apache Tomcat software. For a list of
supported container types, see Elastic Beanstalk supported platforms. Each Amazon EC2 instance
that runs your application uses one of these container types. In addition, a software component

Web server environments 23

https://aws.amazon.com/route53/
https://aws.amazon.com/route53/

AWS Elastic Beanstalk Developer Guide

called the host manager (HM) runs on each Amazon EC2 instance. The host manager is responsible
for the following:

• Deploying the application

• Aggregating events and metrics for retrieval via the console, the API, or the command line

• Generating instance-level events

• Monitoring the application log files for critical errors

• Monitoring the application server

• Patching instance components

• Rotating your application's log files and publishing them to Amazon S3

The host manager reports metrics, errors and events, and server instance status, which are
available via the Elastic Beanstalk console, APIs, and CLIs.

The Amazon EC2 instances shown in the diagram are part of one security group. A security group
defines the firewall rules for your instances. By default, Elastic Beanstalk defines a security
group, which allows everyone to connect using port 80 (HTTP). You can define more than one
security group. For example, you can define a security group for your database server. For more
information about Amazon EC2 security groups and how to configure them for your Elastic
Beanstalk application, see Security groups.

Worker environments

AWS resources created for a worker environment tier include an Auto Scaling group, one or more
Amazon EC2 instances, and an IAM role. For the worker environment tier, Elastic Beanstalk also
creates and provisions an Amazon SQS queue if you don’t already have one. When you launch a
worker environment, Elastic Beanstalk installs the necessary support files for your programming
language of choice and a daemon on each EC2 instance in the Auto Scaling group. The daemon
reads messages from an Amazon SQS queue. The daemon sends data from each message that
it reads to the web application running in the worker environment for processing. If you have
multiple instances in your worker environment, each instance has its own daemon, but they all read
from the same Amazon SQS queue.

The following diagram shows the different components and their interactions across environments
and AWS services.

Worker environments 24

AWS Elastic Beanstalk Developer Guide

Amazon CloudWatch is used for alarms and health monitoring. For more information, go to Basic
health reporting.

For details about how the worker environment tier works, see Elastic Beanstalk worker
environments.

Design considerations

Because applications deployed using AWS Elastic Beanstalk run on AWS Cloud resources, you
should keep several configuration factors in mind to optimize your applications: scalability, security,
persistent storage, fault tolerance, content delivery, software updates and patching, and connectivity.
Each of these are covered separately in this topic. For a comprehensive list of technical AWS
whitepapers, covering topics such as architecture, as well as security and economics, see AWS Cloud
Computing Whitepapers.

Design considerations 25

https://aws.amazon.com/whitepapers/
https://aws.amazon.com/whitepapers/

AWS Elastic Beanstalk Developer Guide

Scalability

When operating in a physical hardware environment, in contrast to a cloud environment, you can
approach scalability in one of either two ways. Either you can scale up through vertical scaling
or you can scale out through horizontal scaling. The scale-up approach requires that you invest
in powerful hardware, which can support the increasing demands of your business. The scale-
out approach requires that you follow a distributed model of investment. As such, your hardware
and application acquisitions can be more targeted, your data sets are federated, and your design
is service oriented. The scale-up approach can be expensive, and there's also the risk that your
demand could outgrow your capacity. In this regard, the scale-out approach is usually more
effective. However, when using it, you must be able to predict demand at regular intervals and
deploy infrastructure in chunks to meet that demand. As a result, this approach can often lead to
unused capacity and might require some careful monitoring.

By migrating to the cloud, you can make your infrastructure align well with demand by leveraging
the elasticity of cloud. Elasticity helps to streamline resource acquisition and release. With it,
your infrastructure can rapidly scale in and scale out as demand fluctuates. To use it, configure
your Auto Scaling settings to scale up or down based on the metrics for the resources in your
environment. For example, you can set metrics such as server utilization or network I/O. You can
use Auto Scaling for compute capacity to be added automatically whenever usage rises and for it
to be removed whenever usage drops. You can publish system metrics (for example, CPU, memory,
disk I/O, and network I/O) to Amazon CloudWatch. Then, you can use CloudWatch to configure
alarms to trigger Auto Scaling actions or send notifications based on these metrics. For instructions
on how to configure Auto Scaling, see Auto Scaling group for your Elastic Beanstalk environment.

We also recommend that you design all your Elastic Beanstalk applications as stateless as possible,
using loosely coupled, fault-tolerant components that can be scaled out as needed. For more
information about designing scalable application architectures for AWS, see AWS Well-Architected
Framework.

Security

Security on AWS is a shared responsibility. Amazon Web Services protects the physical resources
in your environment and ensures that the Cloud is a safe place for you to run applications. You're
responsible for the security of data coming in and out of your Elastic Beanstalk environment and
the security of your application.

Configure SSL to protect information that flows between your application and clients. To configure
SSL, you need a free certificate from AWS Certificate Manager (ACM). If you already have a

Scalability 26

https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Elastic Beanstalk Developer Guide

certificate from an external certificate authority (CA), you can use ACM to import that your
certificate. Otherwise, you can import it using the AWS CLI.

If ACM isn't available in your AWS Region, you can purchase a certificate from an external CA, such
as VeriSign or Entrust. Then, use the AWS Command Line Interface (AWS CLI) to upload a third-
party or self-signed certificate and private key to AWS Identity and Access Management (IAM). The
public key of the certificate authenticates your server to the browser. It also serves as the basis for
creating the shared session key that encrypts the data in both directions. For instructions on how
to create, upload, and assign an SSL certificate to your environment, see Configuring HTTPS for
your Elastic Beanstalk environment.

When you configure an SSL certificate for your environment, data is encrypted between the client
and the Elastic Load Balancing load balancer for your environment. By default, encryption is
terminated at the load balancer, and traffic between the load balancer and Amazon EC2 instances
is unencrypted.

Persistent storage

Elastic Beanstalk applications run on Amazon EC2 instances that have no persistent local storage.
When the Amazon EC2 instances terminate, the local file system isn't saved. New Amazon EC2
instances start with a default file system. We recommend that you configure your application to
store data in a persistent data source. AWS offers a number of persistent storage services that you
can use for your application. The following table lists them.

Storage service Service documentation Elastic Beanstalk integration

Amazon S3 Amazon Simple Storage
Service Documentation

Using Elastic Beanstalk with
Amazon S3

Amazon Elastic File
System

Amazon Elastic File System
Documentation

Using Elastic Beanstalk with
Amazon Elastic File System

Amazon Elastic Block
Store

Amazon Elastic Block Store

Feature Guide: Elastic Block
Store

Amazon DynamoDB Amazon DynamoDB
Documentation

Using Elastic Beanstalk with
Amazon DynamoDB

Persistent storage 27

https://docs.aws.amazon.com/general/latest/gr/acm.html
https://aws.amazon.com/s3/
https://aws.amazon.com/documentation/s3/
https://aws.amazon.com/documentation/s3/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/documentation/efs/
https://aws.amazon.com/documentation/efs/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://aws.amazon.com/articles/1667
https://aws.amazon.com/articles/1667
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/documentation/dynamodb/
https://aws.amazon.com/documentation/dynamodb/

AWS Elastic Beanstalk Developer Guide

Storage service Service documentation Elastic Beanstalk integration

Amazon Relational
Database Service (RDS)

Amazon Relational Database
Service Documentation

Using Elastic Beanstalk with
Amazon RDS

Note

Elastic Beanstalk creates a webapp user for you to set up as the owner of application
directories on EC2 instances. For Amazon Linux 2 platform versions that are released on
or after Feburary 3, 2022, Elastic Beanstalk assigns the webapp user a uid (user id) and gid
(group id) value of 900 for new environments. It does the same for existing environments
following a platform version update. This approach keeps consistent access permission for
the webapp user to permanent file system storage.
In the unlikely situation that another user or process is already using 900, the operating
system defaults the webapp user uid and gid to another value. Run the Linux command
id webapp on your EC2 instances to verify the uid and gid values that are assigned to the
webapp user.

Fault tolerance

As a rule of thumb, you should be a pessimist when designing architecture for the cloud. Leverage
the elasticity that it offers. Always design, implement, and deploy for automated recovery from
failure. Use multiple Availability Zones for your Amazon EC2 instances and for Amazon RDS.
Availability Zones are conceptually like logical data centers. Use Amazon CloudWatch to get more
visibility into the health of your Elastic Beanstalk application and take appropriate actions in case
of hardware failure or performance degradation. Configure your Auto Scaling settings to maintain
your fleet of Amazon EC2 instances at a fixed size so that unhealthy Amazon EC2 instances are
replaced by new ones. If you're using Amazon RDS, then set the retention period for backups, so
that Amazon RDS can perform automated backups.

Content delivery

When users connect to your website, their requests may be routed through a number of individual
networks. As a result, users might experience poor performance due to high latency. Amazon
CloudFront can help ameliorate latency issues by distributing your web content, such as images
and video, across a network of edge locations around the world. Users' requests are routed to the

Fault tolerance 28

https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/documentation/rds/
https://aws.amazon.com/documentation/rds/
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-02-03-linux.html#release-2022-02-03-linux.changes

AWS Elastic Beanstalk Developer Guide

nearest edge location, so content is delivered with the best possible performance. CloudFront
works seamlessly with Amazon S3, which durably stores the original, definitive versions of your
files. For more information about Amazon CloudFront, see the Amazon CloudFront Developer
Guide.

Software updates and patching

AWS Elastic Beanstalk regularly releases platform updates to provide fixes, software updates,
and new features. Elastic Beanstalk offers several options to handle platform updates. With
managed platform updates your environment automatically upgrades to the latest version of a
platform during a scheduled maintenance window while your application remains in service. For
environments created on November 25, 2019 or later using the Elastic Beanstalk console, managed
updates are enabled by default whenever possible. You can also manually initiate updates using
the Elastic Beanstalk console or EB CLI.

Connectivity

Elastic Beanstalk needs to be able to connect to the instances in your environment to complete
deployments. When you deploy an Elastic Beanstalk application inside an Amazon VPC, the
configuration required to enable connectivity depends on the type of Amazon VPC environment
you create:

• For single-instance environments, no additional configuration is required. This is because, with
these environments, Elastic Beanstalk assigns each Amazon EC2 instance a public Elastic IP
address that enables the instance to communicate directly with the internet.

• For load-balanced, scalable environments in an Amazon VPC with both public and private
subnets, you must do the following:

• Create a load balancer in the public subnet to route inbound traffic from the internet to the
Amazon EC2 instances.

• Create a network address translation (NAT) device to route outbound traffic from the Amazon
EC2 instances in private subnets to the internet.

• Create inbound and outbound routing rules for the Amazon EC2 instances inside the private
subnet.

• If you're using a NAT instance, configure the security groups for the NAT instance and Amazon
EC2 instances to enable internet communication.

• For a load-balanced, scalable environment in an Amazon VPC that has one public subnet, no
additional configuration is required. This is because, with this environment, your Amazon EC2

Software updates and patching 29

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduction.html

AWS Elastic Beanstalk Developer Guide

instances are configured with a public IP address that enables the instances to communicate with
the internet.

For more information about using Elastic Beanstalk with Amazon VPC, see Using Elastic Beanstalk
with Amazon VPC.

Connectivity 30

AWS Elastic Beanstalk Developer Guide

Service roles, instance profiles, and user policies

When you create an environment, AWS Elastic Beanstalk prompts you to provide the following
AWS Identity and Access Management (IAM) roles:

• Service role: Elastic Beanstalk assumes a service role to use other AWS services on your behalf.

• Instance profile Elastic Beanstalk applies instances profile to the instances in your environment.
It allows them to do the following:

• Retrieve application versions from Amazon Simple Storage Service (Amazon S3).

• Upload logs to Amazon S3.

• Perform other tasks that vary depending on the environment type and platform.

Service role

When you create an environment in the Elastic Beanstalk console or using Elastic Beanstalk EB CLI,
the required service roles are created and assigned managed policies. These policies include all of
the necessary permissions. Now, suppose that the service role already exists in your account and
you then create a new environment in Elastic Beanstalk console or using Elastic Beanstalk CLI. If
this happens, the existing service role automatically gets assigned to the new environment.

Instance profile

If your AWS account doesn’t have an EC2 instance profile, you must create one using the IAM
service. You can then assign the EC2 instance profile to new environments that you create. The
Create environment wizard provides information to guide you through the IAM service, so that
you can create an EC2 instance profile with the required permissions. After creating the instance
profile, you can return to the console to select it as the EC2 instance profile and continue the steps
to create your environment.

Note

Previously Elastic Beanstalk created a default EC2 instance profile named aws-
elasticbeanstalk-ec2-role the first time an AWS account created an environment.
This instance profile included default managed policies. If your account already has this
instance profile, it will remain available for you to assign to your environments.
However, recent AWS security guidelines don’t allow an AWS service to automatically create
roles with trust policies to other AWS services, EC2 in this case. Because of these security

31

AWS Elastic Beanstalk Developer Guide

guidelines, Elastic Beanstalk no longer creates a default aws-elasticbeanstalk-ec2-
role instance profile.

User policies

In addition to the roles that you assign to your environment, you can also create user policies and
apply them to IAM users and groups in your account. Applying user policies allows the users to
create and manage Elastic Beanstalk applications and environments. Elastic Beanstalk also provides
managed policies for full access and read-only access. For more information about these policies,
see the section called “User policies”.

Additional instance profiles and user policies

You can create your own instance profiles and user policies for advanced scenarios. If your
instances need to access services that aren't included in the default policies, you can create a new
policy or add additional policies to the default one. If the managed policy is too permissive for
your needs, you can also create more restrictive user policies. For more information about AWS
permissions, see the IAM User Guide.

Topics

• Elastic Beanstalk service role

• Elastic Beanstalk instance profile

• Elastic Beanstalk user policy

Elastic Beanstalk service role

A service role is the IAM role that Elastic Beanstalk assumes when calling other services on your
behalf. For example, Elastic Beanstalk uses a service role when it calls Amazon Elastic Compute
Cloud (Amazon EC2), Elastic Load Balancing, and Amazon EC2 Auto Scaling APIs to gather
information. The service role that Elastic Beanstalk uses is the one that you specified when you
create the Elastic Beanstalk environment.

There are two managed policies that are attached to the service role. These policies provide
the permissions that allow Elastic Beanstalk to access the required AWS resources to create and
manage your environments. One managed policy provides permissions for enhanced health
monitoring and worker tier Amazon SQS support, and another one provides additional permissions
required for managed platform updates.

Service role 32

https://docs.aws.amazon.com/IAM/latest/UserGuide/

AWS Elastic Beanstalk Developer Guide

AWSElasticBeanstalkEnhancedHealth

This policy grants all of the permissions that Elastic Beanstalk requires to monitor environment
health. It also includes Amazon SQS actions to allow Elastic Beanstalk to monitor queue activity for
worker environments.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:DescribeInstanceHealth",
 "elasticloadbalancing:DescribeLoadBalancers",
 "elasticloadbalancing:DescribeTargetHealth",
 "ec2:DescribeInstances",
 "ec2:DescribeInstanceStatus",
 "ec2:GetConsoleOutput",
 "ec2:AssociateAddress",
 "ec2:DescribeAddresses",
 "ec2:DescribeSecurityGroups",
 "sqs:GetQueueAttributes",
 "sqs:GetQueueUrl",
 "autoscaling:DescribeAutoScalingGroups",
 "autoscaling:DescribeAutoScalingInstances",
 "autoscaling:DescribeScalingActivities",
 "autoscaling:DescribeNotificationConfigurations",
 "sns:Publish"
],
 "Resource": [
 "*"
]
 }
]
}

AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy

This policy grants permissions for Elastic Beanstalk to update environments on your behalf to
perform managed platform updates.

Service-level permission groupings

Service role 33

AWS Elastic Beanstalk Developer Guide

This policy is grouped into statements based on the set of permissions provided.

• ElasticBeanstalkPermissions – This group of permissions is for calling the Elastic
Beanstalk service actions (Elastic Beanstalk APIs).

• AllowPassRoleToElasticBeanstalkAndDownstreamServices – This group of permissions
allows any role to be passed to Elastic Beanstalk and to other downstream services like AWS
CloudFormation.

• ReadOnlyPermissions – This group of permissions is for collecting information about the
running environment.

• *OperationPermissions – Groups with this naming pattern are for calling the necessary
operations to perform platform updates.

• *BroadOperationPermissions – Groups with this naming pattern are for calling the
necessary operations to perform platform updates. They also include broad permissions for
supporting legacy environments.

• *TagResource – Groups with this naming pattern are for calls that use the tag-on-create APIs
to attach tags on resources that are being created in an Elastic Beanstalk environment.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ElasticBeanstalkPermissions",
 "Effect": "Allow",
 "Action": [
 "elasticbeanstalk:*"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowPassRoleToElasticBeanstalkAndDownstreamServices",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "elasticbeanstalk.amazonaws.com",
 "ec2.amazonaws.com",
 "ec2.amazonaws.com.cn",

Service role 34

AWS Elastic Beanstalk Developer Guide

 "autoscaling.amazonaws.com",
 "elasticloadbalancing.amazonaws.com",
 "ecs.amazonaws.com",
 "cloudformation.amazonaws.com"
]
 }
 }
 },
 {
 "Sid": "ReadOnlyPermissions",
 "Effect": "Allow",
 "Action": [
 "autoscaling:DescribeAccountLimits",
 "autoscaling:DescribeAutoScalingGroups",
 "autoscaling:DescribeAutoScalingInstances",
 "autoscaling:DescribeLaunchConfigurations",
 "autoscaling:DescribeLoadBalancers",
 "autoscaling:DescribeNotificationConfigurations",
 "autoscaling:DescribeScalingActivities",
 "autoscaling:DescribeScheduledActions",
 "ec2:DescribeAccountAttributes",
 "ec2:DescribeAddresses",
 "ec2:DescribeAvailabilityZones",
 "ec2:DescribeImages",
 "ec2:DescribeInstanceAttribute",
 "ec2:DescribeInstances",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeLaunchTemplates",
 "ec2:DescribeLaunchTemplateVersions",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSnapshots",
 "ec2:DescribeSpotInstanceRequests",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcClassicLink",
 "ec2:DescribeVpcs",
 "elasticloadbalancing:DescribeInstanceHealth",
 "elasticloadbalancing:DescribeLoadBalancers",
 "elasticloadbalancing:DescribeTargetGroups",
 "elasticloadbalancing:DescribeTargetHealth",
 "logs:DescribeLogGroups",
 "rds:DescribeDBEngineVersions",
 "rds:DescribeDBInstances",
 "rds:DescribeOrderableDBInstanceOptions",
 "sns:ListSubscriptionsByTopic"

Service role 35

AWS Elastic Beanstalk Developer Guide

],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "EC2BroadOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "ec2:AllocateAddress",
 "ec2:AssociateAddress",
 "ec2:AuthorizeSecurityGroupEgress",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CreateLaunchTemplate",
 "ec2:CreateLaunchTemplateVersion",
 "ec2:CreateSecurityGroup",
 "ec2:DeleteLaunchTemplate",
 "ec2:DeleteLaunchTemplateVersions",
 "ec2:DeleteSecurityGroup",
 "ec2:DisassociateAddress",
 "ec2:ReleaseAddress",
 "ec2:RevokeSecurityGroupEgress",
 "ec2:RevokeSecurityGroupIngress"
],
 "Resource": "*"
 },
 {
 "Sid": "EC2RunInstancesOperationPermissions",
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "ec2:LaunchTemplate": "arn:aws:ec2:*:*:launch-template/*"
 }
 }
 },
 {
 "Sid": "EC2TerminateInstancesOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "ec2:TerminateInstances"
],
 "Resource": "arn:aws:ec2:*:*:instance/*",

Service role 36

AWS Elastic Beanstalk Developer Guide

 "Condition": {
 "StringLike": {
 "ec2:ResourceTag/aws:cloudformation:stack-id": [
 "arn:aws:cloudformation:*:*:stack/awseb-e-*",
 "arn:aws:cloudformation:*:*:stack/eb-*"
]
 }
 }
 },
 {
 "Sid": "ECSBroadOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "ecs:CreateCluster",
 "ecs:DescribeClusters",
 "ecs:RegisterTaskDefinition"
],
 "Resource": "*"
 },
 {
 "Sid": "ECSDeleteClusterOperationPermissions",
 "Effect": "Allow",
 "Action": "ecs:DeleteCluster",
 "Resource": "arn:aws:ecs:*:*:cluster/awseb-*"
 },
 {
 "Sid": "ASGOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "autoscaling:AttachInstances",
 "autoscaling:CreateAutoScalingGroup",
 "autoscaling:CreateLaunchConfiguration",
 "autoscaling:CreateOrUpdateTags",
 "autoscaling:DeleteLaunchConfiguration",
 "autoscaling:DeleteAutoScalingGroup",
 "autoscaling:DeleteScheduledAction",
 "autoscaling:DetachInstances",
 "autoscaling:DeletePolicy",
 "autoscaling:PutScalingPolicy",
 "autoscaling:PutScheduledUpdateGroupAction",
 "autoscaling:PutNotificationConfiguration",
 "autoscaling:ResumeProcesses",
 "autoscaling:SetDesiredCapacity",
 "autoscaling:SuspendProcesses",

Service role 37

AWS Elastic Beanstalk Developer Guide

 "autoscaling:TerminateInstanceInAutoScalingGroup",
 "autoscaling:UpdateAutoScalingGroup"
],
 "Resource": [
 "arn:aws:autoscaling:*:*:launchConfiguration:*:launchConfigurationName/
awseb-e-*",
 "arn:aws:autoscaling:*:*:launchConfiguration:*:launchConfigurationName/
eb-*",
 "arn:aws:autoscaling:*:*:autoScalingGroup:*:autoScalingGroupName/awseb-
e-*",
 "arn:aws:autoscaling:*:*:autoScalingGroup:*:autoScalingGroupName/eb-*"
]
 },
 {
 "Sid": "CFNOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "cloudformation:*"
],
 "Resource": [
 "arn:aws:cloudformation:*:*:stack/awseb-*",
 "arn:aws:cloudformation:*:*:stack/eb-*"
]
 },
 {
 "Sid": "ELBOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:AddTags",
 "elasticloadbalancing:ApplySecurityGroupsToLoadBalancer",
 "elasticloadbalancing:ConfigureHealthCheck",
 "elasticloadbalancing:CreateLoadBalancer",
 "elasticloadbalancing:DeleteLoadBalancer",
 "elasticloadbalancing:DeregisterInstancesFromLoadBalancer",
 "elasticloadbalancing:DeregisterTargets",
 "elasticloadbalancing:RegisterInstancesWithLoadBalancer",
 "elasticloadbalancing:RegisterTargets"
],
 "Resource": [
 "arn:aws:elasticloadbalancing:*:*:targetgroup/awseb-*",
 "arn:aws:elasticloadbalancing:*:*:targetgroup/eb-*",
 "arn:aws:elasticloadbalancing:*:*:loadbalancer/awseb-*",
 "arn:aws:elasticloadbalancing:*:*:loadbalancer/eb-*",
 "arn:aws:elasticloadbalancing:*:*:loadbalancer/*/awseb-*/*",

Service role 38

AWS Elastic Beanstalk Developer Guide

 "arn:aws:elasticloadbalancing:*:*:loadbalancer/*/eb-*/*"
]
 },
 {
 "Sid": "CWLogsOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:DeleteLogGroup",
 "logs:PutRetentionPolicy"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/elasticbeanstalk/*"
 },
 {
 "Sid": "S3ObjectOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:GetObjectAcl",
 "s3:GetObjectVersion",
 "s3:GetObjectVersionAcl",
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:PutObjectVersionAcl"
],
 "Resource": "arn:aws:s3:::elasticbeanstalk-*/*"
 },
 {
 "Sid": "S3BucketOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetBucketPolicy",
 "s3:ListBucket",
 "s3:PutBucketPolicy"
],
 "Resource": "arn:aws:s3:::elasticbeanstalk-*"
 },
 {
 "Sid": "SNSOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "sns:CreateTopic",

Service role 39

AWS Elastic Beanstalk Developer Guide

 "sns:GetTopicAttributes",
 "sns:SetTopicAttributes",
 "sns:Subscribe"
],
 "Resource": "arn:aws:sns:*:*:ElasticBeanstalkNotifications-*"
 },
 {
 "Sid": "SQSOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "sqs:GetQueueAttributes",
 "sqs:GetQueueUrl"
],
 "Resource": [
 "arn:aws:sqs:*:*:awseb-e-*",
 "arn:aws:sqs:*:*:eb-*"
]
 },
 {
 "Sid": "CWPutMetricAlarmOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricAlarm"
],
 "Resource": [
 "arn:aws:cloudwatch:*:*:alarm:awseb-*",
 "arn:aws:cloudwatch:*:*:alarm:eb-*"
]
 },
 {
 "Sid": "AllowECSTagResource",
 "Effect": "Allow",
 "Action": [
 "ecs:TagResource"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ecs:CreateAction": [
 "CreateCluster",
 "RegisterTaskDefinition"
]
 }
 }

Service role 40

AWS Elastic Beanstalk Developer Guide

 }
]
}

You may create an Elastic Beanstalk environment with any of the following approaches. Each
section describes how the approach handles the service role.

Elastic Beanstalk console

If you create an environment using the Elastic Beanstalk console, Elastic Beanstalk prompts you
to create a service role that's named aws-elasticbeanstalk-service-role. When created
via Elastic Beanstalk, this role includes a trust policy that allows Elastic Beanstalk to assume the
service role. The two managed policies described earlier in this topic are also attached to the role.

Elastic Beanstalk Command Line Interface (EB CLI)

You may create an environment using the the section called “eb create” command of the
Elastic Beanstalk Command Line Interface (EB CLI). If you don't specify a service role through
the --service-role option. Elastic Beanstalk creates the same default service role aws-
elasticbeanstalk-service-role. If the default service role already exists, Elastic Beanstalk
uses it for the new environment. When created via Elastic Beanstalk, this role includes a trust policy
that allows Elastic Beanstalk to assume the service role. The two managed policies described earlier
in this topic are also attached to the role.

Elastic Beanstalk API

You may create an environment using the CreateEnvironment action of the Elastic Beanstalk
API. If you don't specify a service role, Elastic Beanstalk creates a monitoring service-linked role.
This is a unique type of service role that is predefined by Elastic Beanstalk to include all the
permissions that the service requires to call other AWS services on your behalf. The service-linked
role is associated with your account. Elastic Beanstalk creates it once, and then reuses it when
creating additional environments. You can also use IAM to create the monitoring service-linked role
for your account in advance. When your account has a monitoring service-linked role, you can use
it to create an environment using either the Elastic Beanstalk console, the Elastic Beanstalk API, or
the EB CLI. For instructions on how to use service-linked roles with Elastic Beanstalk environments,
see Using service-linked roles for Elastic Beanstalk.

For more information about service roles, see Managing Elastic Beanstalk service roles.

Service role 41

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk instance profile

An instance profile is an IAM role that's applied to Amazon EC2 instances that are launched in your
Elastic Beanstalk environment. When creating an Elastic Beanstalk environment, you specify the
instance profile that's used when your EC2 instances take the following actions:

• Retrieve application versions from Amazon Simple Storage Service (Amazon S3)

• Write logs to Amazon S3

• In AWS X-Ray integrated environments, upload debugging data to X-Ray

• In Amazon ECS managed Docker environments, coordinate container deployments with Amazon
Elastic Container Service (Amazon ECS)

• In worker environments, read from an Amazon Simple Queue Service (Amazon SQS) queue

• In worker environments, perform leader election with Amazon DynamoDB

• In worker environments, publish instance health metrics to Amazon CloudWatch

Elastic Beanstalk provides a set of managed policies that allow the EC2 instances in your
environment to perform required operations. The managed policies required for basic use cases are
the following.

• AWSElasticBeanstalkWebTier

• AWSElasticBeanstalkWorkerTier

• AWSElasticBeanstalkMulticontainerDocker

You attach these policies to the instance profile that you create when you launch an environment
in the Elastic Beanstalk console for the first time.

If your web application requires access to other additional AWS services, add statements or
managed policies to the instance profile that allow access to those services.

For more information about instance profiles, see Managing Elastic Beanstalk instance profiles.

Elastic Beanstalk user policy

Create IAM users for each user who uses Elastic Beanstalk to avoid using your root account or
sharing credentials. As a security best practice, only grant these users permissions to access services
and features that they need.

Instance profile 42

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk requires permissions not only for its own API actions, but also for several other
AWS services. Elastic Beanstalk uses user permissions to launch resources in an environment. These
resources include EC2 instances, an Elastic Load Balancing load balancer, and an Auto Scaling
group. Elastic Beanstalk also uses user permissions to save logs and templates to Amazon Simple
Storage Service (Amazon S3), send notifications to Amazon SNS, assign instance profiles, and
publish metrics to CloudWatch. Elastic Beanstalk requires AWS CloudFormation permissions to
orchestrate resource deployments and updates. It also requires Amazon RDS permissions to create
databases when needed, and Amazon SQS permissions to create queues for worker environments.

For more information about user policies, see Managing Elastic Beanstalk user policies.

User policy 43

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk platforms

AWS Elastic Beanstalk provides a variety of platforms on which you can build your applications.
You design your web application to one of these platforms, and Elastic Beanstalk deploys your
code to the platform version you selected to create an active application environment.

Elastic Beanstalk provides platforms for different programming languages, application servers, and
Docker containers. Some platforms have multiple concurrently-supported versions.

Topics

• Elastic Beanstalk platforms glossary

• Shared responsibility model for Elastic Beanstalk platform maintenance

• Elastic Beanstalk platform support policy

• Elastic Beanstalk supported platforms

• Elastic Beanstalk Linux platforms

• Deploying Elastic Beanstalk applications from Docker containers

• Creating and deploying Go applications on Elastic Beanstalk

• Creating and deploying Java applications on Elastic Beanstalk

• Working with .NET Core on Linux

• Creating and deploying .NET applications on Elastic Beanstalk

• Deploying Node.js applications to Elastic Beanstalk

• Creating and deploying PHP applications on Elastic Beanstalk

• Working with Python

• Creating and deploying Ruby applications on Elastic Beanstalk

Elastic Beanstalk platforms glossary

Following are key terms related to AWS Elastic Beanstalk platforms and their lifecycle.

Runtime

The programming language-specific runtime software (framework, libraries, interpreter, vm,
etc.) required to run your application code.

Platforms glossary 44

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk Components

Software components that Elastic Beanstalk adds to a platform to enable Elastic Beanstalk
functionality. For example, the enhanced health agent is necessary for gathering and reporting
health information.

Platform

A combination of an operating system (OS), runtime, web server, application server, and
Elastic Beanstalk components. Platforms provide components that are available to run your
application.

Platform Version

A combination of specific versions of an operating system (OS), runtime, web server, application
server, and Elastic Beanstalk components. You create an Elastic Beanstalk environment based
on a platform version and deploy your application to it.

A platform version has a semantic version number of the form X.Y.Z, where X is the major
version, Y is the minor version, and Z is the patch version.

A platform version can be in one of the following states:

• Supported – A platform version that consists entirely of supported components. All
components have not reached their End of Life (EOL), as designated by their respective
suppliers (owners—AWS or third parties—or communities). They receive regular patch or
minor updates from their suppliers . Elastic Beanstalk makes supported platform versions
available to you for environment creation.

• Retired – A platform version with one or more retired components, which have reached their
End of Life (EOL), as designated by their suppliers. Retired platform versions aren't available
for use in Elastic Beanstalk environments for either new or existing customers.

For details about retired components, see the section called “Platform support policy”.

Platform Branch

A line of platform versions sharing specific (typically major) versions of some of their
components, such as the operating system (OS), runtime, or Elastic Beanstalk components. For
example: Python 3.6 running on 64bit Amazon Linux; IIS 10.0 running on 64bit Windows Server
2016. Each successive platform version in the branch is an update to the previous one.

The latest platform version in each platform branch is available to you unconditionally for
environment creation. Previous platform versions in the branch are still supported—you can

Platforms glossary 45

AWS Elastic Beanstalk Developer Guide

create an environment based on a previous platform version if you've used it in an environment
in the last 30 days. But these previous platform versions lack the most up-to-date components
and aren't recommended for use.

A platform branch can be in one of the following states:

• Supported – A current platform branch. It consists entirely of supported components. It
receives ongoing platform updates, and is recommended for use in production environments.
For a list of supported platform branches, see Elastic Beanstalk supported platforms in the
AWS Elastic Beanstalk Platforms guide.

• Beta – A preview, pre-release platform branch. It's experimental in nature. It may receive
ongoing platform updates for a while, but has no long-term support. A beta platform branch
isn't recommended for use in production environments. Use it only for evaluation. For a list
of beta platform branches, see Elastic Beanstalk Platform Versions in Public Beta in the AWS
Elastic Beanstalk Platforms guide.

• Deprecated – A platform branch with one or more deprecated components. It receives ongoing
platform updates, but isn't recommended for use in production environments. For a list
of deprecated platform branches, see Elastic Beanstalk Platform Versions Scheduled for
Retirement in the AWS Elastic Beanstalk Platforms guide.

• Retired – A platform branch with one or more retired components. It doesn't receive platform
updates anymore, and isn't recommended for use in production environments. Retired
platform branches aren't listed in the AWS Elastic Beanstalk Platforms guide. Elastic Beanstalk
doesn't make platform versions of retired platform branches available to you for environment
creation.

A supported component has no retirement date scheduled by its supplier (owner or community).
The supplier might be AWS or a third party. A deprecated component has a retirement date
scheduled by its supplier. A retired component has reached End of Life (EOL) and is no longer
supported by its supplier. For details about retired components, see the section called “Platform
support policy”.

If your environment uses a deprecated or retired platform branch, we recommend that you
update it to a platform version in a supported platform branch. For details, see the section
called “Platform updates”.

Platforms glossary 46

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-beta.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-retiring.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-retiring.html

AWS Elastic Beanstalk Developer Guide

Platform Update

A release of new platform versions that contain updates to some components of the platform
—OS, runtime, web server, application server, and Elastic Beanstalk components. Platform
updates follow semantic version taxonomy, and can have several levels:

• Major update – An update that has changes that are incompatible with existing platform
versions. You might need to modify your application to run correctly on a new major version.
A major update has a new major platform version number.

• Minor update – An update that adds functionality that is backward compatible with an
existing platform version. You don't need to modify your application to run correctly on a
new minor version. A minor update has a new minor platform version number.

• Patch update – An update that consists of maintenance releases (bug fixes, security updates,
and performance improvements) that are backward compatible with an existing platform
version. A patch update has a new patch platform version number.

Managed Updates

An Elastic Beanstalk feature that automatically applies patch and minor updates to the
operating system (OS), runtime, web server, application server, and Elastic Beanstalk
components for an Elastic Beanstalk supported platform version. A managed update applies a
newer platform version in the same platform branch to your environment. You can configure
managed updates to apply only patch updates, or minor and patch updates. You can also
disable managed updates completely.

For more information, see Managed platform updates.

Shared responsibility model for Elastic Beanstalk platform
maintenance

AWS and our customers share responsibility for achieving a high level of software component
security and compliance. This shared model reduces your operational burden.

For details, see the AWS Shared Responsibility Model.

AWS Elastic Beanstalk helps you perform your side of the shared responsibility model by providing
a managed updates feature. This feature automatically applies patch and minor updates for an
Elastic Beanstalk supported platform version. If a managed update fails, Elastic Beanstalk notifies
you of the failure to ensure that you are aware of it and can take immediate action.

Shared responsibility model 47

https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Elastic Beanstalk Developer Guide

For more information, see Managed platform updates.

In addition, Elastic Beanstalk does the following:

• Publishes its platform support policy and retirement schedule for the coming 12 months.

• Releases patch, minor, and major updates of operating system (OS), runtime, application server,
and web server components typically within 30 days of their availability. Elastic Beanstalk
is responsible for creating updates to Elastic Beanstalk components that are present on its
supported platform versions. All other updates come directly from their suppliers (owners or
community).

We announce all updates to our supported platforms in our release notes in the AWS Elastic
Beanstalk Release Notes guide. We also provide a list of all supported platforms and their
components, along with a platform history, in the AWS Elastic Beanstalk Platforms guide. For more
information see Supported platform versions.

You are responsible to do the following:

• Update all the components that you control (identified as Customer in the AWS Shared
Responsibility Model). This includes ensuring the security of your application, your data, and any
components that your application requires and that you downloaded.

• Ensure that your Elastic Beanstalk environments are running on a supported platform version,
and migrate any environment running on a retired platform version to a supported version.

• Resolve all issues that come up in failed managed update attempts and retry the update.

• Patch the OS, runtime, application server, and web server yourself if you opted out of Elastic
Beanstalk managed updates. You can do this by applying platform updates manually or directly
patching the components on all relevant environment resources.

• Manage the security and compliance of any AWS services that you use outside of Elastic
Beanstalk according to the AWS Shared Responsibility Model.

Elastic Beanstalk platform support policy

AWS Elastic Beanstalk provides a variety of platforms for running applications on AWS. Elastic
Beanstalk supports platform branches that still receive ongoing minor and patch updates from
their suppliers (owners or community). For a complete definition of related terms, see Elastic
Beanstalk platforms glossary.

Platform support policy 48

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/relnotes.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Elastic Beanstalk Developer Guide

Retired platform branches

When a component (operating system [OS], runtime, application server, or web server) of a
supported platform branch is marked End of Life (EOL) by its supplier, Elastic Beanstalk marks
the platform branch as retired. When a platform branch is marked as retired, Elastic Beanstalk
no longer makes it available to new Elastic Beanstalk customers for deployments to new
environments. There is a 90 day grace period from the published retirement date for existing
customers with active environments that are running on retired platform branches.

Note

The retired platform branch will not be available in the Create environment wizard.
However, it will be available through the AWS CLI, EB CLI and EB API for customers that
have existing environments based on the retired platform branch. Also, existing customers
can use the Clone environment and Rebuild environment consoles.

Beyond the 90 day grace period

Existing customers running an Elastic Beanstalk environment on a retired platform branch beyond
90 days from the published retirement date should be aware of the risks of doing so. We would
never remove access or delete the environment's resources. However, such environments can end
up in an unpredictable situation, because Elastic Beanstalk isn't able to provide security updates,
technical support, or hotfixes for retired platform branches due to the supplier marking their
component EOL.

For example, a detrimental and critical security vulnerability may surface in an environment
running on a retired platform branch. Or an EB API action may stop working for the environment
if it becomes incompatible with the Elastic Beanstalk service over time. The opportunity for these
types of risks increases the longer an environment on a retired platform branch remains active. To
continue to benefit from important security, performance, and functionality enhancements offered
by component suppliers in more recent releases, we strongly encourage you to update all your
Elastic Beanstalk environments to a supported platform version.

If a circumstance like the ones just described should arise for an application that you must keep
running and that you're not able to update to a supported Elastic Beanstalk platform, you'll need
to consider and employ other alternatives. Workarounds include encapsulating the application
into a Docker image to run it as a Docker container. This would allow a customer to use any of our

Retired platform branches 49

AWS Elastic Beanstalk Developer Guide

Docker solutions, such as our Elastic Beanstalk AL2023/AL2 Docker platforms, or other Docker
based services such as Amazon ECS, Amazon EKS, or AWS App Runner. Non-Docker alternatives
include our AWS CodeDeploy service, which allows complete customization of the runtimes you
desire.

Retiring platform branch schedule

The following tables list existing platform components that are either marked as retired or have
retirement dates scheduled. The tables provide the availability end date for Elastic Beanstalk
platform branches that contain these components.

For a list of related Elastic Beanstalk retiring platform branches, see platform versions scheduled
for retirement in the AWS Elastic Beanstalk Platforms guide.

Amazon Linux platforms

Amazon Linux 2 (AL2) - Runtime versions and platform branches

Runtime version
or platform
branch

Platform retirement date

Python 3.7 AL2 September 30, 2024

Node.js 14 AL2 September 30, 2024

Node.js 16 AL2 September 30, 2024

Ruby 2.7 AL2 September 30, 2024

Ruby 3.0 AL2 September 30, 2024

Corretto 8 with
Tomcat 8.5 AL2

September 30, 2024

Corretto 11 with
Tomcat 8.5 AL2

September 30, 2024

PHP 8.0 AL2 September 30, 2024

Retiring platform branch schedule 50

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-retiring.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-retiring.html

AWS Elastic Beanstalk Developer Guide

Retired platform branch history

The following tables list platform components that were marked as retired in the past. The tables
provide the date on which Elastic Beanstalk retired platform branches that contained these
components.

Note

For more information about the retirement of the Windows 2012 R2 platform branches, see
Windows Server 2012 R2 platform branches retired in the AWS Elastic Beanstalk Release
Notes.
On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired. For more information, see Platform retirement FAQ.

Operating System (OS) versions

OS version Platform retirement date

Windows Server
2012 R2 running
IIS 8.5

December 4, 2023

Windows Server
Core 2012 R2
running IIS 8.5

December 4, 2023

Amazon Linux
AMI (AL1)

July 18, 2022

Windows Server
2012 R1

June 22, 2022

Windows Server
2008 R2

October 28, 2019

Retired platform branch history 51

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2023-12-04-windows-2012-retire.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

Application server versions

Application
server version

Availability end date

Tomcat 7 June 29, 2022 for Amazon Linux 2
(AL2) platforms

July 18, 2022 for Amazon Linux AMI
(AL1) platforms

Tomcat 6 October 31, 2020

Tomcat 8 October 31, 2020

Web server versions

Web server
version

Availability end date

IIS 8 running on
64bit Windows
Server

June 22, 2022

Apache HTTP
Server 2.2

October 31, 2020

Nginx 1.12.2 October 31, 2020

Amazon Linux 2 (AL2) - Runtime versions and platform branches

Runtime version
or platform
branch

Platform retirement date

Corretto 11 with
Tomcat 7 AL2

June 29, 2022

Retired platform branch history 52

AWS Elastic Beanstalk Developer Guide

Runtime version
or platform
branch

Platform retirement date

Corretto 8 with
Tomcat 7 AL2

June 29, 2022

Node.js 12 AL2 December 23, 2022

Node.js 10 AL2 June 29, 2022

PHP 7.4 AL2 June 9, 2023

PHP 7.3 AL2 June 29, 2022

PHP 7.2 AL2 June 29, 2022

Ruby 2.6 AL2 December 23, 2022

Ruby 2.5 AL2 June 29, 2022

Amazon Linux AMI (AL1) - Runtime versions and platform branches

Runtime version
or platform
branch

Availability end date

Single Container
Docker

July 18, 2022

Multicontainer
Docker

July 18, 2022

Preconfig
ured Docker -
GlassFish 5.0
with Java 8

July 18, 2022

Go 1 July 18, 2022

Retired platform branch history 53

AWS Elastic Beanstalk Developer Guide

Runtime version
or platform
branch

Availability end date

Java 8 July 18, 2022

Java 7 July 18, 2022

Java 8 with
Tomcat 8.5

July 18, 2022

Java 7 with
Tomcat 7

July 18, 2022

Node.js July 18, 2022

PHP 7.2 - 7.3 July 18, 2022

Python 3.6 July 18, 2022

Ruby 2,4,
2.5, 2.6 with
Passenger

July 18, 2022

Ruby 2.4, 2.5,
2.6 with Puma

July 18, 2022

Go 1.3–1.10 October 31, 2020

Java 6 October 31, 2020

Node.js 4.x–8.x October 31, 2020

PHP 5.4–5.6 October 31, 2020

PHP 7.0–7.1 October 31, 2020

Python 2.6, 2.7,
3.4

October 31, 2020

Ruby 1.9.3 October 31, 2020

Retired platform branch history 54

AWS Elastic Beanstalk Developer Guide

Runtime version
or platform
branch

Availability end date

Ruby 2.0–2.3 October 31, 2020

Windows Server - Platform branches and Platform versions

Platform
branch or
platform
version

Retirement date

IIS 8.5 running
on 64bit
Windows Server
(& Core) 2012
R2 version 0.1.0

June 29, 2022

IIS 8.5 running
on 64bit
Windows Server
(& Core) 2012
R2 version 1.2.0

June 29, 2022

IIS 10.0 running
on 64bit
Windows Server
2016 (& Core)
version 1.2.0

June 29, 2022

IIS 8 running on
64bit Windows
Server 2012 R1
Platform Branch

June 22, 2022

IIS 8 running on
64bit Windows

June 22, 2022

Retired platform branch history 55

AWS Elastic Beanstalk Developer Guide

Platform
branch or
platform
version

Retirement date

Server 2012 R1
version 0.1.0

IIS 8 running on
64bit Windows
Server 2012 R1
version 1.2.0

June 22, 2022

Elastic Beanstalk supported platforms

AWS Elastic Beanstalk provides a variety of platforms on which you can build your applications.
You design your web application to one of these platforms, and Elastic Beanstalk deploys your
code to the platform version you selected to create an active application environment.

Elastic Beanstalk provides platforms for programming languages (Go, Java, Node.js, PHP, Python,
Ruby), application servers (Tomcat, Passenger, Puma), and Docker containers. Some platforms have
multiple concurrently-supported versions.

Elastic Beanstalk provisions the resources needed to run your application, including one or more
Amazon EC2 instances. The software stack running on the Amazon EC2 instances depends on the
specific platform version you've selected for your environment.

You can use the solution stack name listed under the platform version name to launch an
environment with the EB CLI, Elastic Beanstalk API, or AWS CLI. You can also retrieve solution
stack names from the service with the ListAvailableSolutionStacks API (aws elasticbeanstalk
list-available-solution-stacks in the AWS CLI). This operation returns all of the solution
stacks that you can use to create an environment.

Note

Each platform has supported and retired platform versions. You can always create an
environment based on a supported platform version. Retired platform versions are
available only to existing customer environments for a period of 90 days from the

Supported platforms 56

https://docs.aws.amazon.com/elasticbeanstalk/latest/api/
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_ListAvailableSolutionStacks.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/list-available-solution-stacks.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/list-available-solution-stacks.html

AWS Elastic Beanstalk Developer Guide

published retirement date. For a list of published platform version retirement dates, see
Retiring platform branch schedule.
When Elastic Beanstalk updates a platform, previous platform versions are still supported,
but they lack the most up-to-date components and aren't recommended for use. We
recommend that you transition to the latest platform version. You can still create an
environment based on a previous platform version if you've used it in an environment in
the last 30 days (using the same account, in the same region).

You can customize and configure the software that your application depends on in your platform.
Learn more at Customizing software on Linux servers and Customizing software on Windows
servers. Detailed release notes are available for recent releases at AWS Elastic Beanstalk Release
Notes.

Supported platform versions

All current platform versions are listed in Elastic Beanstalk Supported Platforms in the AWS Elastic
Beanstalk Platforms guide. Each platform-specific section also points to the platform history, a list
of previous platform versions. For direct access to the version list of a specific platform, use one of
the following links.

• Docker

• Go

• Java SE

• Tomcat

• .NET Core on Linux

• .NET on Windows Server

• Node.js

• PHP

• Python

• Ruby

Supported platform versions 57

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.docker
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.go
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.javase
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.java
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.dotnetlinux
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.nodejs
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.PHP
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.python
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.ruby

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk Linux platforms

Most of the platforms that Elastic Beanstalk supports are based on the Linux operating system.
Specifically, these platforms are based on Amazon Linux, a Linux distribution provided by AWS.
Elastic Beanstalk Linux platforms use Amazon Elastic Compute Cloud (Amazon EC2) instances, and
these instances run Amazon Linux.

The Elastic Beanstalk Linux platforms provide a lot of functionality out of the box. You can extend
the platforms in several ways to support your application. For details, see the section called
“Extending Linux platforms”.

Topics

• Supported Amazon Linux versions

• List of Elastic Beanstalk Linux platforms

• Extending Elastic Beanstalk Linux platforms

Supported Amazon Linux versions

AWS Elastic Beanstalk supports platforms based on Amazon Linux 2 and Amazon Linux 2023.

As of October 19, 2023, Elastic Beanstalk offers AL2023 platforms for all of the programming
languages that are also supported on the Amazon Linux 2 platforms. Beanstalk also supports the
Docker and ECS-based Docker platforms on both Amazon Linux 2 and Amazon Linux 2023.

For more information about Amazon Linux 2 and Amazon Linux 2023, see the following:

• Amazon Linux 2 – Amazon Linux in the Amazon EC2 User Guide for Linux Instances.

• Amazon Linux 2023 – What is Amazon Linux 2023? in the Amazon Linux 2023 User Guide

For details about supported platform versions, see Elastic Beanstalk supported platforms.

Note

You can migrate your application from an Elastic Beanstalk AL1 or AL2 platform branch to
the equivalent AL2023 platform branch. For more information, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Linux platforms 58

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2023-10-19-al2023.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/amazon-linux-ami-basics.html
https://docs.aws.amazon.com/linux/al2023/ug/what-is-amazon-linux.html

AWS Elastic Beanstalk Developer Guide

Amazon Linux 2023

AWS announced the general availability of Amazon Linux 2023 in March of 2023. The Amazon
Linux 2023 User Guide summarizes key differences between Amazon Linux 2 and Amazon Linux
2023. For more information, see Comparing Amazon Linux 2 and Amazon Linux 2023 in the user
guide.

There is a high degree of compatibility between Elastic Beanstalk Amazon Linux 2 and Amazon
Linux 2023 platforms. Although there are some differences to note:

• Instance Metadata Service Version 1 (IMDSv1) – The DisableIMDSv1 option setting defaults to
true on AL2023 platforms. The default is false on AL2 platforms.

• pkg-repo instance tool – The pkg-repo tool is not available for environments running on AL2023
platforms. However,you can manually apply package and operating system updates to an
AL2023 instance. For more information, see Managing packages and operating system updates
in the Amazon Linux 2023 User Guide.

• Apache HTTPd configuration – The Apache httpd.conf file for AL2023 platforms has some
configuration settings that are different from those for AL2:

• Deny access to the server’s entire file system by default. These settings are described in Protect
Server Files by Default on the Apache website Security Tips page.

• Stop users from overriding security features you've configured. The configuration denies access
to set up of .htaccess in all directories, except for those specifically enabled. This setting is
described in Protecting System Settings on the Apache website Security Tips page. The Apache
HTTP Server Tutorial: .htaccess files page states this setting may help improve performance.

• Deny access to files with name pattern .ht*. This setting prevents web clients from viewing
.htaccess and .htpasswd files.

You can change any of the above configuration settings for your environment. For more
information, see Extending Elastic Beanstalk Linux platforms. Expand the Reverse Proxy topic to see
the Configuring Apache HTTPD section.

List of Elastic Beanstalk Linux platforms

The following list provides the Linux platforms that Elastic Beanstalk supports for different
programming languages as well as for Docker containers. Elastic Beanstalk offers platforms based
on Amazon Linux 2 and Amazon Linux 2023 for all of them. To learn more about a platform, select
the corresponding link.

List of Elastic Beanstalk Linux platforms 59

https://aws.amazon.com/blogs/aws/amazon-linux-2023-a-cloud-optimized-linux-distribution-with-long-term-support/
https://docs.aws.amazon.com/linux/al2023/ug/compare-with-al2.html
https://docs.aws.amazon.com/linux/al2023/ug/managing-repos-os-updates.html
https://httpd.apache.org/docs/2.4/misc/security_tips.html
https://httpd.apache.org/docs/2.4/misc/security_tips.html
https://httpd.apache.org/docs/2.4/howto/htaccess.html
https://httpd.apache.org/docs/2.4/howto/htaccess.html

AWS Elastic Beanstalk Developer Guide

• Docker (and ECS Docker)

• Go

• Tomcat (running Java SE)

• Java SE

• .NET Core on Linux

• Node.js

• PHP

• Python

• Ruby

Extending Elastic Beanstalk Linux platforms

The AWS Elastic Beanstalk Linux platforms provide a lot of functionality out of the box to support
developing and running your application. When necessary, you can extend the platforms in several
ways to configure options, install software, add files and start-up commands, provide build and
runtime instructions, and add initialization scripts that run in various provisioning stages of your
environment's Amazon Elastic Compute Cloud (Amazon EC2) instances.

Buildfile and Procfile

Some platforms allow you to customize how you build or prepare your application, and to specify
the processes that run your application. Each individual platform topic specifically mentions
Buildfile and/or Procfile if the platform supports them. Look for your specific platform under
Platforms.

For all supporting platforms, syntax and semantics are identical, and are as described on this
page. Individual platform topics mention specific usage of these files for building and running
applications in their respective languages.

Buildfile

To specify a custom build and configuration command for your application, place a file named
Buildfile in the root directory of your application source. The file name is case sensitive. Use the
following syntax for your Buildfile.

<process_name>: <command>

Extending Linux platforms 60

AWS Elastic Beanstalk Developer Guide

The command in your Buildfile must match the following regular expression: ^[A-Za-
z0-9_-]+:\s*[^\s].*$

Elastic Beanstalk doesn't monitor the application that is run with a Buildfile. Use a Buildfile
for commands that run for short periods and terminate after completing their tasks. For long-
running application processes that should not exit, use a Procfile.

All paths in the Buildfile are relative to the root of the source bundle. In the following example
of a Buildfile, build.sh is a shell script located at the root of the source bundle.

Example Buildfile

make: ./build.sh

If you want to provide custom build steps, we recommend that you use predeploy platform
hooks for anything but the simplest commands, instead of a Buildfile. Platform hooks allow
richer scripts and better error handling. Platform hooks are described in the next section.

Procfile

To specify custom commands to start and run your application, place a file named Procfile in
the root directory of your application source. The file name is case sensitive. Use the following
syntax for your Procfile. You can specify one or more commands.

<process_name1>: <command1>
<process_name2>: <command2>
...

Each line in your Procfile must match the following regular expression: ^[A-Za-z0-9_-]+:
\s*[^\s].*$

Use a Procfile for long-running application processes that shouldn't exit. Elastic Beanstalk
expects processes run from the Procfile to run continuously. Elastic Beanstalk monitors these
processes and restarts any process that terminates. For short-running processes, use a Buildfile.

All paths in the Procfile are relative to the root of the source bundle. The following example
Procfile defines three processes. The first one, called web in the example, is the main web
application.

Extending Linux platforms 61

AWS Elastic Beanstalk Developer Guide

Example Procfile

web: bin/myserver
cache: bin/mycache
foo: bin/fooapp

Elastic Beanstalk configures the proxy server to forward requests to your main web application on
port 5000, and you can configure this port number. A common use for a Procfile is to pass this
port number to your application as a command argument. For details about proxy configuration,
expand the Reverse proxy configuration section on this page.

Elastic Beanstalk captures standard output and error streams from Procfile processes in log
files. Elastic Beanstalk names the log files after the process and stores them in /var/log. For
example, the web process in the preceding example generates logs named web-1.log and
web-1.error.log for stdout and stderr, respectively.

Platform hooks

Platform hooks are specifically designed to extend your environment's platform. These are custom
scripts and other executable files that you deploy as part of your application's source code, and
Elastic Beanstalk runs during various instance provisioning stages.

Note

Platform hooks aren't supported on Amazon Linux AMI platform versions (preceding
Amazon Linux 2).

Application deployment platform hooks

An application deployment occurs when you provide a new source bundle for deployment, or when
you make a configuration change that requires termination and recreation of all environment
instances.

To provide platform hooks that run during an application deployment, place the files under the
.platform/hooks directory in your source bundle, in one of the following subdirectories.

• prebuild – Files here run after the Elastic Beanstalk platform engine downloads and extracts
the application source bundle, and before it sets up and configures the application and web
server.

Extending Linux platforms 62

AWS Elastic Beanstalk Developer Guide

The prebuild files run after running commands found in the commands section of any
configuration file and before running Buildfile commands.

• predeploy – Files here run after the Elastic Beanstalk platform engine sets up and configures
the application and web server, and before it deploys them to their final runtime location.

The predeploy files run after running commands found in the container_commands section of
any configuration file and before running Procfile commands.

• postdeploy – Files here run after the Elastic Beanstalk platform engine deploys the application
and proxy server.

This is the last deployment workflow step.

Configuration deployment platform hooks

A configuration deployment occurs when you make configuration changes that only update
environment instances without recreating them. The following option updates cause a
configuration update.

• Environment properties and platform-specific settings

• Static files

• AWS X-Ray daemon

• Log storage and streaming

• Application port (for details, expand the Reverse proxy configuration section on this page)

To provide hooks that run during a configuration deployment, place them under the .platform/
confighooks directory in your source bundle. The same three subdirectories as for application
deployment hooks apply.

More about platform hooks

Hook files can be binary files, or script files starting with a #! line containing their interpreter
path, such as #!/bin/bash. All files must have execute permission. Use chmod +x to set execute
permission on your hook files. For all Amazon Linux 2023 and Amazon Linux 2 based platforms
versions that were released on or after April 29, 2022, Elastic Beanstalk automatically grants
execute permissions to all of the platform hook scripts. In this case you don't have to manually

Extending Linux platforms 63

AWS Elastic Beanstalk Developer Guide

grant execute permissions. For a list of these platform versions, refer to the April 29, 2022 Linux
release notes in the AWS Elastic Beanstalk Release Notes Guide.

Elastic Beanstalk runs files in each one of these directories in lexicographical order of file names.
All files run as the root user. The current working directory (cwd) for platform hooks is the
application's root directory. For prebuild and predeploy files it's the application staging
directory, and for postdeploy files it's the current application directory. If one of the files fails
(exits with a non-zero exit code), the deployment aborts and fails.

A platform hooks text script may fail if it contains Windows Carriage Return / Line Feed (CRLF)
line break characters. If a file was saved in a Windows host, then transferred to a Linux server, it
may contain Windows CRLF line breaks. For platforms released on or after December 29, 2022,
Elastic Beanstalk automatically converts Windows CRLF characters to Linux Line Feed (LF) line break
characters in platform hooks text files. If you application runs on any Amazon Linux 2 platforms
that were release prior to this date, you'll need to convert the Windows CRLF characters to Linux
LF characters. One way to accomplish this is to create and save the script file on a Linux host. Tools
that convert these characters are also available on the internet.

Hook files have access to all environment properties that you've defined in application options, and
to the system environment variables HOME, PATH, and PORT.

To get values of environment variables and other configuration options into your platform hook
scripts, you can use the get-config utility that Elastic Beanstalk provides on environment
instances. For details, see the section called “Platform script tools”.

Configuration files

You can add configuration files to the .ebextensions directory of your application's source
code to configure various aspects of your Elastic Beanstalk environment. Among other things,
configuration files let you customize software and other files on your environment's instances and
run initialization commands on the instances. For more information, see the section called “Linux
server”.

You can also set configuration options using configuration files. Many of the options control
platform behavior, and some of these options are platform specific.

For platforms based on Amazon Linux 2 and Amazon Linux 2023, we recommend using Buildfile,
Procfile, and platform hooks to configure and run custom code on your environment instances
during instance provisioning. These mechanisms are described in the previous sections on this
page. You can still use commands and container commands in .ebextensions configuration files,

Extending Linux platforms 64

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-04-29-linux.html#release-2022-04-29-linux.platforms
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-12-29-linux.html

AWS Elastic Beanstalk Developer Guide

but they aren't as easy to work with. For example, writing command scripts inside a YAML file can
be challenging from a syntax standpoint. You still need to use .ebextensions configuration files
for any script that needs a reference to a AWS CloudFormation resource.

Reverse proxy configuration

All Amazon Linux 2 and Amazon Linux 2023 platform versions use nginx as their default reverse
proxy server. The Tomcat, Node.js, PHP, and Python platform also support Apache HTTPD
as an alternative. To select Apache on these platforms, set the ProxyServer option in the
aws:elasticbeanstalk:environment:proxy namespace to apache. All platforms enable
proxy server configuration in a uniform way, as described in this section.

Note

On Amazon Linux AMI platform versions (preceding Amazon Linux 2) you might have to
configure proxy servers differently. You can find these legacy details under the respective
platform topics in this guide.

Elastic Beanstalk configures the proxy server on your environment's instances to forward web
traffic to the main web application on the root URL of the environment; for example, http://my-
env.elasticbeanstalk.com.

By default, Elastic Beanstalk configures the proxy to forward requests coming in on port 80 to
your main web application on port 5000. You can configure this port number by setting the PORT
environment property using the aws:elasticbeanstalk:application:environment namespace in a
configuration file, as shown in the following example.

option_settings:
 - namespace: aws:elasticbeanstalk:application:environment
 option_name: PORT
 value: <main_port_number>

For more information about setting environment variables for your application, see the section
called “Option settings”.

Your application should listen on the port that is configured for it in the proxy. If you change
the default port using the PORT environment property, your code can access it by reading
the value of the PORT environment variable. For example, call os.Getenv("PORT") in Go,

Extending Linux platforms 65

AWS Elastic Beanstalk Developer Guide

or System.getenv("PORT") in Java. If you configure your proxy to send traffic to multiple
application processes, you can configure several environment properties, and use their values in
both proxy configuration and your application code. Another option is to pass the port value to
the process as a command argument in the Procfile. For details on that, expand the Buildfile and
Procfile section on this page.

Configuring nginx

Elastic Beanstalk uses nginx as the default reverse proxy to map your application to your Elastic
Load Balancing load balancer. Elastic Beanstalk provides a default nginx configuration that you can
extend or override completely with your own configuration.

Note

When you add or edit an nginx .conf configuration file, be sure to encode it as UTF-8.

To extend the Elastic Beanstalk default nginx configuration, add .conf configuration files to
a folder named .platform/nginx/conf.d/ in your application source bundle. The Elastic
Beanstalk nginx configuration includes .conf files in this folder automatically.

~/workspace/my-app/
|-- .platform
| `-- nginx
| `-- conf.d
| `-- myconf.conf
`-- other source files

To override the Elastic Beanstalk default nginx configuration completely, include a configuration in
your source bundle at .platform/nginx/nginx.conf:

~/workspace/my-app/
|-- .platform
| `-- nginx
| `-- nginx.conf
`-- other source files

If you override the Elastic Beanstalk nginx configuration, add the following line to your
nginx.conf to pull in the Elastic Beanstalk configurations for Enhanced health reporting and
monitoring, automatic application mappings, and static files.

Extending Linux platforms 66

AWS Elastic Beanstalk Developer Guide

 include conf.d/elasticbeanstalk/*.conf;

Configuring Apache HTTPD

The Tomcat, Node.js, PHP, and Python platforms allow you to choose the Apache HTTPD proxy
server as an alternative to nginx. This isn't the default. The following example configures Elastic
Beanstalk to use Apache HTTPD.

Example .ebextensions/httpd-proxy.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:
 ProxyServer: apache

You can extend the Elastic Beanstalk default Apache configuration with your additional
configuration files. Alternatively, you can override the Elastic Beanstalk default Apache
configuration completely.

To extend the Elastic Beanstalk default Apache configuration, add .conf configuration files to a
folder named .platform/httpd/conf.d in your application source bundle. The Elastic Beanstalk
Apache configuration includes .conf files in this folder automatically.

~/workspace/my-app/
|-- .ebextensions
| -- httpd-proxy.config
|-- .platform
| -- httpd
| -- conf.d
| -- port5000.conf
| -- ssl.conf
-- index.jsp

For example, the following Apache 2.4 configuration adds a listener on port 5000.

Example .platform/httpd/conf.d/port5000.conf

listen 5000
<VirtualHost *:5000>
 <Proxy *>

Extending Linux platforms 67

AWS Elastic Beanstalk Developer Guide

 Require all granted
 </Proxy>
 ProxyPass / http://localhost:8080/ retry=0
 ProxyPassReverse / http://localhost:8080/
 ProxyPreserveHost on

 ErrorLog /var/log/httpd/elasticbeanstalk-error_log
</VirtualHost>

To override the Elastic Beanstalk default Apache configuration completely, include a configuration
in your source bundle at .platform/httpd/conf/httpd.conf.

~/workspace/my-app/
|-- .ebextensions
| -- httpd-proxy.config
|-- .platform
| `-- httpd
| `-- conf
| `-- httpd.conf
`-- index.jsp

Note

If you override the Elastic Beanstalk Apache configuration, add the following lines to your
httpd.conf to pull in the Elastic Beanstalk configurations for Enhanced health reporting
and monitoring, automatic application mappings, and static files.

IncludeOptional conf.d/elasticbeanstalk/*.conf

Note

If you're migrating your Elastic Beanstalk application to an Amazon Linux 2 or Amazon
Linux 2023 platform, be sure to also read the information in the section called “Migrate to
AL2023/AL2”.

Topics

• Application example with extensions

Extending Linux platforms 68

AWS Elastic Beanstalk Developer Guide

• Instance deployment workflow

• Instance deployment workflow for ECS running on Amazon Linux 2 and later

• Platform script tools

Application example with extensions

The following example demonstrates an application source bundle with several extensibility
features that Elastic Beanstalk Amazon Linux 2 and Amazon Linux 2023 platforms support: a
Procfile, .ebextensions configuration files, custom hooks, and proxy configuration files.

~/my-app/
|-- web.jar
|-- Procfile
|-- readme.md
|-- .ebextensions/
| |-- options.config # Option settings
| `-- cloudwatch.config # Other .ebextensions sections, for example files and
 container commands
`-- .platform/
 |-- nginx/ # Proxy configuration
 | |-- nginx.conf
 | `-- conf.d/
 | `-- custom.conf
 |-- hooks/ # Application deployment hooks
 | |-- prebuild/
 | | |-- 01_set_secrets.sh
 | | `-- 12_update_permissions.sh
 | |-- predeploy/
 | | `-- 01_some_service_stop.sh
 | `-- postdeploy/
 | |-- 01_set_tmp_file_permissions.sh
 | |-- 50_run_something_after_app_deployment.sh
 | `-- 99_some_service_start.sh
 `-- confighooks/ # Configuration deployment hooks
 |-- prebuild/
 | `-- 01_set_secrets.sh
 |-- predeploy/
 | `-- 01_some_service_stop.sh
 `-- postdeploy/
 |-- 01_run_something_after_config_deployment.sh
 `-- 99_some_service_start.sh

Extending Linux platforms 69

AWS Elastic Beanstalk Developer Guide

Note

Some of these extensions aren't supported on Amazon Linux AMI platform versions
(preceding Amazon Linux 2).

Instance deployment workflow

Note

The information in this section doesn't apply to the ECS running on Amazon Linux 2 and
Amazon Linux 2023 platform branches. For more information, see the next section Instance
deployment workflow for ECS running on Amazon Linux 2 and later.

With many ways to extend your environment's platform, it's useful to know what happens
whenever Elastic Beanstalk provisions an instance or runs a deployment to an instance. The
following diagram shows this entire deployment workflow. It depicts the different phases in a
deployment and the steps that Elastic Beanstalk takes in each phase.

Notes

• The diagram doesn't represent the complete set of steps that Elastic Beanstalk takes on
environment instances during deployment. We provide this diagram for illustration, to
provide you with the order and context for the execution of your customizations.

• For simplicity, the diagram mentions only the .platform/hooks/* hook subdirectories
(for application deployments), and not the .platform/confighooks/* hook
subdirectories (for configuration deployments). Hooks in the latter subdirectories run
during exactly the same steps as hooks in corresponding subdirectories shown in the
diagram.

Extending Linux platforms 70

AWS Elastic Beanstalk Developer Guide

Extending Linux platforms 71

AWS Elastic Beanstalk Developer Guide

The following list details the deployment phases and steps.

1. Initial steps

Elastic Beanstalk downloads and extracts your application. After each one of these steps, Elastic
Beanstalk runs one of the extensibility steps.

a. Runs commands found in the commands: section of any configuration file.

b. Runs any executable files found in the .platform/hooks/prebuild directory of your
source bundle (.platform/confighooks/prebuild for a configuration deployment).

2. Configure

Elastic Beanstalk configures your application and the proxy server.

a. Runs the commands found in the Buildfile in your source bundle.

b. Copies your custom proxy configuration files, if you have any in the .platform/nginx
directory of your source bundle, to their runtime location.

c. Runs commands found in the container_commands: section of any configuration file.

d. Runs any executable files found in the .platform/hooks/predeploy directory of your
source bundle (.platform/confighooks/predeploy for a configuration deployment).

3. Deploy

Elastic Beanstalk deploys and runs your application and the proxy server.

a. Runs the command found in the Procfile file in your source bundle.

b. Runs or reruns the proxy server with your custom proxy configuration files, if you have any.

c. Runs any executable files found in the .platform/hooks/postdeploy directory of your
source bundle (.platform/confighooks/postdeploy for a configuration deployment).

Instance deployment workflow for ECS running on Amazon Linux 2 and later

The previous section describes the supported extensibility features throughout the phases of the
application deployment workflow. There are some differences for the Docker platform branches
ECS running on Amazon Linux 2 and later. This section explains how those concepts apply to this
specific platform branch.

With many ways to extend your environment's platform, it's useful to know what happens
whenever Elastic Beanstalk provisions an instance or runs a deployment to an instance. The
following diagram shows this entire deployment workflow for an environment based on the ECS

Extending Linux platforms 72

AWS Elastic Beanstalk Developer Guide

running on Amazon Linux 2 and ECS running on Amazon Linux 2023 platform branches. It depicts
the different phases in a deployment and the steps that Elastic Beanstalk takes in each phase.

Unlike the workflow described in the prior section, the deployment Configuration phase doesn't
support the following extensibility features: Buildfile commands, Procfile commands,
reverse proxy configuration.

Notes

• The diagram doesn't represent the complete set of steps that Elastic Beanstalk takes on
environment instances during deployment. We provide this diagram for illustration, to
provide you with the order and context for the execution of your customizations.

• For simplicity, the diagram mentions only the .platform/hooks/* hook subdirectories
(for application deployments), and not the .platform/confighooks/* hook
subdirectories (for configuration deployments). Hooks in the latter subdirectories run
during exactly the same steps as hooks in corresponding subdirectories shown in the
diagram.

Extending Linux platforms 73

AWS Elastic Beanstalk Developer Guide

The following list details the deployment workflow steps.

Extending Linux platforms 74

AWS Elastic Beanstalk Developer Guide

a. Runs any executable files found in the appdeploy/pre directory under EBhooksDir.

b. Runs any executable files found in the .platform/hooks/prebuild directory of your source
bundle (.platform/confighooks/prebuild for a configuration deployment).

c. Runs any executable files found in the .platform/hooks/predeploy directory of your source
bundle (.platform/confighooks/predeploy for a configuration deployment).

d. Runs any executable files found in the appdeploy/enact directory under EBhooksDir.

e. Runs any executable files found in the appdeploy/post directory under EBhooksDir.

f. Runs any executable files found in the .platform/hooks/postdeploy directory of your
source bundle (.platform/confighooks/postdeploy for a configuration deployment).

The reference to EBhooksDir represents the path of the platform hooks directory. To retrieve
directory path name use the get-config script tool on the command line of your environment
instance as shown:

$ /opt/elasticbeanstalk/bin/get-config platformconfig -k EBhooksDir

Platform script tools

This topic describes tools that AWS Elastic Beanstalk provides for environments that use Amazon
Linux platforms. The tools are located on the Amazon EC2 instances of the Elastic Beanstalk
environments.

get-config

Use the get-config tool to retrieve environment variable values and other platform and instance
information. The tool is available at /opt/elasticbeanstalk/bin/get-config.

get-config commands

Each get-config tool command returns a specific type of information. Use the following syntax
to run the commands of any of the tools.

$ /opt/elasticbeanstalk/bin/get-config command [options]

The following example runs the environment command.

$ /opt/elasticbeanstalk/bin/get-config environment -k PORT

Extending Linux platforms 75

AWS Elastic Beanstalk Developer Guide

Depending on the command and options you choose, the tool returns an object (JSON or YAML)
with key-value pairs or a single value.

You can test get-config by using SSH to connect to an EC2 instance in your Elastic Beanstalk
environment.

Note

When you run get-config for testing, some commands might require root user privileges
to access the underlying information. If you get an access permission error, run the
command again under sudo.
You don't need to add sudo when using the tool in the scripts that you deploy to your
environment. Elastic Beanstalk runs all your scripts as the root user.

The following sections describe the commands for the tools.

optionsettings – Configuration options

The get-config optionsettings command returns an object that's listing the configuration
options that are set on the environment and used by the platform on environment instances.
They're organized by namespace.

$ /opt/elasticbeanstalk/bin/get-config optionsettings
{"aws:elasticbeanstalk:application:environment":
{"JDBC_CONNECTION_STRING":""},"aws:elasticbeanstalk:container:tomcat:jvmoptions":{"JVM
 Options":"","Xms":"256m","Xmx":"256m"},"aws:elasticbeanstalk:environment:proxy":
{"ProxyServer":"nginx","StaticFiles":
[""]},"aws:elasticbeanstalk:healthreporting:system":
{"SystemType":"enhanced"},"aws:elasticbeanstalk:hostmanager":
{"LogPublicationControl":"false"}}

To return a specific configuration option value, use the --namespace (-n) option to specify a
namespace, and the --option-name (-o) option to specify an option name.

$ /opt/elasticbeanstalk/bin/get-config optionsettings -
n aws:elasticbeanstalk:container:php:phpini -o memory_limit
256M

Extending Linux platforms 76

AWS Elastic Beanstalk Developer Guide

environment – Environment properties

The get-config environment command returns an object containing a list of environment
properties. These include both user-configured properties and those that are provided by Elastic
Beanstalk.

$ /opt/elasticbeanstalk/bin/get-config environment
{"JDBC_CONNECTION_STRING":"","RDS_PORT":"3306","RDS_HOSTNAME":"anj9aw1b0tbj6b.cijbpanmxz5u.us-
west-2.rds.amazonaws.com","RDS_USERNAME":"testusername","RDS_DB_NAME":"ebdb","RDS_PASSWORD":"testpassword1923851"}

For example, Elastic Beanstalk provides environment properties for connecting to an integrated
Amazon RDS DB instance (for example, RDS_HOSTNAME). These RDS connection properties appear
in the output of get-config environment. However, they don't appear in the output of get-
config optionsettings. This is because they weren't set in configuration options.

To return a specific environment property, use the --key (-k) option to specify a property key.

$ /opt/elasticbeanstalk/bin/get-config environment -k TESTPROPERTY
testvalue

container – On-instance configuration values

The get-config container command returns an object that lists platform and environment
configuration values for environment instances.

The following example shows the output for the command on an Amazon Linux 2 Tomcat
environment.

$ /opt/elasticbeanstalk/bin/get-config container
{"common_log_list":["/var/log/eb-engine.log","/var/log/eb-
hooks.log"],"default_log_list":["/var/log/nginx/access.log","/var/log/nginx/
error.log"],"environment_name":"myenv-1da84946","instance_port":"80","log_group_name_prefix":"/
aws/elasticbeanstalk","proxy_server":"nginx","static_files":
[""],"xray_enabled":"false"}

To return the value of a specific key, use the --key (-k) option to specify the key.

$ /opt/elasticbeanstalk/bin/get-config container -k environment_name
myenv-1da84946

Extending Linux platforms 77

AWS Elastic Beanstalk Developer Guide

addons – Add-on configuration values

The get-config addons command returns an object that contains configuration information
of environment add-ons. Use it to retrieve the configuration of an Amazon RDS database that's
associated with the environment.

$ /opt/elasticbeanstalk/bin/get-config addons
{"rds":{"Description":"RDS Environment variables","env":
{"RDS_DB_NAME":"ebdb","RDS_HOSTNAME":"ea13k2wimu1dh8i.c18mnpu5rwvg.us-
east-2.rds.amazonaws.com","RDS_PASSWORD":"password","RDS_PORT":"3306","RDS_USERNAME":"user"}}}

You can restrict the result in two ways. To retrieve values for a specific add-on, use the --add-on
(-a) option to specify the add-on name.

$ /opt/elasticbeanstalk/bin/get-config addons -a rds
{"Description":"RDS Environment variables","env":
{"RDS_DB_NAME":"ebdb","RDS_HOSTNAME":"ea13k2wimu1dh8i.c18mnpu5rwvg.us-
east-2.rds.amazonaws.com","RDS_PASSWORD":"password","RDS_PORT":"3306","RDS_USERNAME":"user"}}

To return the value of a specific key within an add-on, add the --key (-k) option to specify the
key.

$ /opt/elasticbeanstalk/bin/get-config addons -a rds -k RDS_DB_NAME
ebdb

platformconfig – Constant configuration values

The get-config platformconfig command returns an object that contains platform
configuration information that's constant to the platform version. The output is the same on all
environments that run the same platform version. The output object for the command has two
embedded objects:

• GeneralConfig – Contains information that's constant across the latest versions of all Amazon
Linux 2 and Amazon Linux 2023 platform branches.

• PlatformSpecificConfig – Contains information that's constant for the platform version and
is specific to it.

The following example shows the output for the command on an environment that uses the
Tomcat 8.5 running Corretto 11 platform branch.

Extending Linux platforms 78

AWS Elastic Beanstalk Developer Guide

$ /opt/elasticbeanstalk/bin/get-config platformconfig
{"GeneralConfig":{"AppUser":"webapp","AppDeployDir":"/var/app/
current/","AppStagingDir":"/var/app/
staging/","ProxyServer":"nginx","DefaultInstancePort":"80"},"PlatformSpecificConfig":
{"ApplicationPort":"8080","JavaVersion":"11","TomcatVersion":"8.5"}}

To return the value of a specific key, use the --key (-k) option to specify the key. These keys are
unique across the two embedded objects. You don't need to specify the object that contains the
key.

$ /opt/elasticbeanstalk/bin/get-config platformconfig -k AppStagingDir
/var/app/staging/

get-config output options

Use the --output option to specify the output object format. Valid values are JSON (default) and
YAML. This is a global option. You must specify it before the command name.

The following example returns configuration option values in the YAML format.

$ /opt/elasticbeanstalk/bin/get-config --output YAML optionsettings
aws:elasticbeanstalk:application:environment:
 JDBC_CONNECTION_STRING: ""
aws:elasticbeanstalk:container:tomcat:jvmoptions:
 JVM Options: ""
 Xms: 256m
 Xmx: 256m
aws:elasticbeanstalk:environment:proxy:
 ProxyServer: nginx
 StaticFiles:
 - ""
aws:elasticbeanstalk:healthreporting:system:
 SystemType: enhanced
aws:elasticbeanstalk:hostmanager:
 LogPublicationControl: "false"

Extending Linux platforms 79

AWS Elastic Beanstalk Developer Guide

pkg-repo

Note

The pkg-repo tool is not available for environments based on Amazon Linux 2023
platforms. However, you can manually apply package and operating system updates to
an AL2023 instance. For more information, see Managing packages and operating system
updates in the Amazon Linux 2023 User Guide

In some urgent circumstances, you might need to update your Amazon EC2 instances with an
Amazon Linux 2 security patch that hasn't yet been released with the required Elastic Beanstalk
platform versions. You can't perform a manual update on your Elastic Beanstalk environments
by default. This is because the platform versions are locked to a specific version of the Amazon
Linux 2 repository. This lock ensures that instances run supported and consistent software versions.
For urgent cases, the pkg-repo tool allows a workaround to manually update yum packages on
Amazon Linux 2 if you need to install it on an environment before it's released in a new Elastic
Beanstalk platform version.

The pkg-repo tool on Amazon Linux 2 platforms provides the capability to unlock the yum
package repositories. You can then manually perform a yum update for a security patch.
Conversely, you can follow the update by using the tool to lock the yum package repositories to
prevent further updates. The pkg-repo tool is available at the /opt/elasticbeanstalk/bin/
pkg-repo directory of all the EC2 instances in your Elastic Beanstalk environments.

Changes using the pkg-repo tool are made only on the EC2 instance that the tool is used on. They
don’t affect other instances or prevent future updates to the environment. The examples that are
provided later in this topic explain how to apply the changes across all instances by calling the
pkg-repo commands from scripts and configuration files.

Warning

We don't recommend this tool for most users. Any manual changes applied to an unlocked
platform version are considered out of band. This option is only viable for those users in
urgent circumstances that can accept the following risks:

• Package versions can't be guaranteed to be consistent across all instances in your
environments.

Extending Linux platforms 80

https://docs.aws.amazon.com/linux/al2023/ug/managing-repos-os-updates.html
https://docs.aws.amazon.com/linux/al2023/ug/managing-repos-os-updates.html

AWS Elastic Beanstalk Developer Guide

• Environments that are modified using the pkg-repo tool aren't guaranteed to function
properly. They haven't been tested and verified on Elastic Beanstalk supported platforms.

We strongly recommend applying best practices that include testing and backout plans.
To help facilitate best practices, you can use the Elastic Beanstalk console and EB CLI to
clone an environment and swap environment URLs. For more information about using
these operations, see Blue/Green deployments in the Managing environments chapter of
this guide.

If you plan to manually edit yum repository configuration files, run the pkg-repo tool first. The
pkg-repo tool might not work as intended in an Amazon Linux 2 environment with manually
edited yum repository configuration files. This is because the tool might not recognize the
configuration changes.

For more information about the Amazon Linux package repository, see the Package repository
topic in the Amazon EC2 User Guide for Linux Instances.

pkg-repo commands

Use the following syntax to run the pkg-repo tool commands.

$ /opt/elasticbeanstalk/bin/pkg-repo command [options]

The pkg-repo commands are the following:

• lock – locks the yum package repositories to a specific version

• unlock – unlocks the yum package repositories from a specific version

• status – lists all the yum package repositories and their current lock status

• help – shows general help or help for one command

The options apply to the commands as follows:

• lock, unlock and status – options: -h, --help, or none (default).

• help – options: lock, unlock, status, or none (default).

Extending Linux platforms 81

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/amazon-linux-ami-basics.html#package-repository

AWS Elastic Beanstalk Developer Guide

The following example runs the unlock command.

$ sudo /opt/elasticbeanstalk/bin/pkg-repo unlock
Amazon Linux 2 core package repo successfully unlocked
Amazon Linux 2 extras package repo successfully unlocked

The following example runs the lock command.

$ sudo /opt/elasticbeanstalk/bin/pkg-repo lock
Amazon Linux 2 core package repo successfully locked
Amazon Linux 2 extras package repo successfully locked

The following example runs the status command.

$ sudo /opt/elasticbeanstalk/bin/pkg-repo status
Amazon Linux 2 core package repo is currently UNLOCKED
Amazon Linux 2 extras package repo is currently UNLOCKED

The following example runs the help command for the lock command.

$ sudo /opt/elasticbeanstalk/bin/pkg-repo help lock

The following example runs the help command for the pkg-repo tool.

$ sudo /opt/elasticbeanstalk/bin/pkg-repo help

You can test pkg-repo by using SSH to connect to an instance in your Elastic Beanstalk
environment. One SSH option is the EB CLI eb ssh command.

Note

The pkg-repo tool requires root user privileges to run. If you get an access permission
error, run the command again under sudo.
You don't need to add sudo when using the tool in the scripts or configuration files that
you deploy to your environment. Elastic Beanstalk runs all your scripts as the root user.

Extending Linux platforms 82

AWS Elastic Beanstalk Developer Guide

pkg-repo examples

The previous section provides command line examples for testing on an individual EC2 instance
of an Elastic Beanstalk environment. This approach can be helpful for testing. However, it updates
only one instance at a time, so it isn’t practical for applying changes to all of the instances in an
environment.

A more pragmatic approach is to use platform hook scripts or an .ebextensions configuration
file to apply the changes across all instances in a consistent manner.

The following example calls pkg-repo from a configuration file in the .ebextensions folder.
Elastic Beanstalk runs the commands in the update_package.config file when you deploy your
application source bundle.

.ebextensions
update_package.config

To receive the latest version of the docker package, this configuration specifies the docker package
in the yum update command.

update_package.config

commands:
 update_package:
 command: |
 /opt/elasticbeanstalk/bin/pkg-repo unlock
 yum update docker -y
 /opt/elasticbeanstalk/bin/pkg-repo lock
 yum clean all -y
 rm -rf /var/cache/yum

This configuration doesn't specify any packages in the yum update command. All available updates
are applied as a result.

update_package.config

commands:
 update_package:
 command: |
 /opt/elasticbeanstalk/bin/pkg-repo unlock

Extending Linux platforms 83

AWS Elastic Beanstalk Developer Guide

 yum update -y
 /opt/elasticbeanstalk/bin/pkg-repo lock
 yum clean all -y
 rm -rf /var/cache/yum

The following example calls pkg-repo from a bash script as a platform hook. Elastic Beanstalk
runs the update_package.sh script file that's located in the prebuild subdirectory.

.platform
hooks
 ### prebuild
 ### update_package.sh

To receive the latest version of the docker package, this script specifies the docker package in the
yum update command. If the package name is omitted, all the available updates are applied. The
prior configuration file example demonstrates this.

update_package.sh

#!/bin/bash

/opt/elasticbeanstalk/bin/pkg-repo unlock
yum update docker -y
/opt/elasticbeanstalk/bin/pkg-repo lock
yum clean all -y
rm -rf /var/cache/yum

download-source-bundle (Amazon Linux AMI only)

On Amazon Linux AMI platform branches (preceding Amazon Linux 2), Elastic Beanstalk
provides an additional tool, which is download-source-bundle. Use this tool to download
your application source code when deploying your platform. The tool is available at /opt/
elasticbeanstalk/bin/download-source-bundle.

The example script 00-unzip.sh is located in the appdeploy/pre folder on environment
instances. It demonstrates how to use download-source-bundle to download the application
source code to the /opt/elasticbeanstalk/deploy/appsource folder during deployment.

Extending Linux platforms 84

AWS Elastic Beanstalk Developer Guide

Deploying Elastic Beanstalk applications from Docker
containers

Elastic Beanstalk supports the deployment of web applications from Docker containers. With
Docker containers, you can define your own runtime environment. You can also choose your own
platform, programming language, and any application dependencies, such as package managers
or tools, which typically aren't supported by other platforms. Docker containers are self contained
and include all the configuration information and software that your web application requires to
run. All environment variables that are defined in the Elastic Beanstalk console are passed to the
containers.

The topics in this chapter assume that you have some knowledge of Elastic Beanstalk
environments. If you haven't used Elastic Beanstalk before, try the getting started tutorial to learn
the basics. This chapter also assumes that you have a basic understanding of Docker and how it
works. For more information see Docker overview on the Docker website.

The Docker platform branches

The Elastic Beanstalk Docker platform supports the following platform branches:

Docker running Amazon Linux 2 and Docker running AL2023

Elastic Beanstalk deploys Docker container(s) and source code to EC2 instances and manages them.
These platform branches offer multi-container support. You can use the Docker Compose tool to
simplify your application configuration, testing, and deployment. For more information about this
platform branch, see the section called “Docker platform branch”.

ECS running on Amazon Linux 2 and ECS running on AL2023

We provide this branch for customers who need a migration path to AL2023/AL2 from the retired
platform branch Multi-container Docker running on (Amazon Linux AMI). The latest platform
branches support all of the features from the retired platform branch. No changes to the source
code are required. For more information, see Migrating Multi-container Docker running on Amazon
Linux to ECS on Amazon Linux 2023. If you don't have an Elastic Beanstalk environment running
on an ECS based platform branch, we recommend you use the platform branch, Docker Running on
64bit AL2023. This offers a simpler approach and requires less resources.

This platform branch uses Amazon ECS to coordinate a deployment of multiple Docker containers
to an Amazon ECS cluster in an Elastic Beanstalk environment. The ECS cluster contains

Working with Docker 85

https://docs.docker.com/get-started/overview/

AWS Elastic Beanstalk Developer Guide

EC2 instances that host Docker containers. To accomplish this deployment orchestration,
Elastic Beanstalk creates an ECS Task definition which also includes a Container definition.
The instances in the environment each run the same set of containers, which are defined in
a Dockerrun.aws.jsonv2 file. For more information, see the section called “ECS managed
platform branch”.

Retired platform branches running on Amazon Linux AMI (AL1)

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon Linux
AMI (AL1) to retired. Expand each section that follows to read more about each retired platform
branch and its migration path to the latest platform branch running on Amazon Linux 2 or Amazon
Linux 2023 (recommended).

Docker (Amazon Linux AMI)

This platform branch can deploy a Docker image, described in a Dockerfile or a
Dockerrun.aws.json v1 definition. This platform branch runs only one container for each
instance. Its succeeding platform branches,Docker running on 64bit AL2023 and Docker running on
64bit Amazon Linux 2 support multiple Docker containers per instance.

We recommend that you create your environments with the newer and supported platform branch
Docker running on 64bit AL2023. You can then migrate your application to the newly created
environment. For more information about creating these environments, see the section called
“Docker platform branch”. For more information about migration, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Multi-container Docker (Amazon Linux AMI)

This platform branch uses Amazon ECS to coordinate a deployment of multiple Docker containers
to an Amazon ECS cluster in an Elastic Beanstalk environment. If you're currently using this retired
platform branch, we recommend that you migrate to the latest ECS Running on Amazon Linux 2023
platform branch. The latest platform branch supports all of the features from this discontinued
platform branch. No changes to the source code are required. For more information, see Migrating
Multi-container Docker running on Amazon Linux to ECS on Amazon Linux 2023.

Preconfigured Docker containers

In addition to the prior mentioned Docker platforms, there is also the Preconfigured Docker
GlassFish platform branch that runs on the Amazon Linux AMI operating system (AL1).

The Docker platform branches 86

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

This platform branch has been superseded by the platform branches Docker running on 64bit
AL2023 and Docker running on 64bit Amazon Linux 2. For more information, see Deploying a
GlassFish application to the Docker platform.

Using the Docker platform branch

AWS Elastic Beanstalk can launch Docker environments by building an image described in a
Dockerfile or pulling a remote Docker image. If you're deploying a remote Docker image,
you don't need to include a Dockerfile. Instead, if you are also using Docker Compose, use a
docker-compose.yml file, which specifies an image to use and additional configuration options.
If you are not using Docker Compose with your Docker environments, use a Dockerrun.aws.json
file instead.

Topics

• Prerequisites

• Containerize an Elastic Beanstalk application

• Test a container locally

• Deploy a container with a Dockerfile

• Test a remote Docker image

• Deploy a remote Docker image to Elastic Beanstalk

• Clean up

• Running a Docker environment locally with the EB CLI

• Docker configuration

Prerequisites

This tutorial assumes that you have some knowledge of basic Elastic Beanstalk operations, the
Elastic Beanstalk command line interface (EB CLI), and Docker. If you haven't already, follow
the instructions in Getting started using Elastic Beanstalk to launch your first Elastic Beanstalk
environment. This tutorial uses the EB CLI, but you can also create environments and upload
applications by using the Elastic Beanstalk console.

To follow this tutorial, you will also need the following Docker components:

• A working local installation of Docker. For more information, see Get Docker on the Docker
documentation website.

Docker platform branch 87

https://docs.docker.com/install/

AWS Elastic Beanstalk Developer Guide

• Access to Docker Hub. You will need to create a Docker ID to access the Docker Hub. For more
information, see Share the application on the Docker documentation website.

To learn more about configuring Docker environments on Elastic Beanstalk platforms, see Docker
configuration in this same chapter.

Containerize an Elastic Beanstalk application

For this example, we create a Docker image of the sample Flask application from Deploying a Flask
application to Elastic Beanstalk. The application consists of one main file, application.py. We
also need a Dockerfile. Put both files at the root of a directory.

~/eb-docker-flask/
|-- Dockerfile
|-- application.py

Example ~/eb-docker-flask/application.py

from flask import Flask

Print a nice greeting
def say_hello(username = "World"):
 return '<p>Hello %s!</p>\n' % username

Some bits of text for the page
header_text = '''
 <html>\n<head> <title>EB Flask Test</title> </head>\n<body>'''
instructions = '''
 <p>Hint: This is a RESTful web service! Append a username
 to the URL (for example: <code>/Thelonious</code>) to say hello to
 someone specific.</p>\n'''
home_link = '<p>Back</p>\n'
footer_text = '</body>\n</html>'

Elastic Beanstalk looks for an 'application' that is callable by default
application = Flask(__name__)

Add a rule for the index page
application.add_url_rule('/', 'index', (lambda: header_text +
 say_hello() + instructions + footer_text))

Docker platform branch 88

https://docs.docker.com/get-started/04_sharing_app/

AWS Elastic Beanstalk Developer Guide

Add a rule when the page is accessed with a name appended to the site
URL
application.add_url_rule('/<username>', 'hello', (lambda username:
 header_text + say_hello(username) + home_link + footer_text))

Run the application
if __name__ == "__main__":
 # Setting debug to True enables debug output. This line should be
 # removed before deploying a production application.
 application.debug = True
 application.run(host="0.0.0.0")

Example ~/eb-docker-flask/Dockerfile

FROM python:3.6
COPY . /app
WORKDIR /app
RUN pip install Flask==1.0.2
EXPOSE 5000
CMD ["python", "application.py"]

Test a container locally

Use the Elastic Beanstalk CLI (EB CLI) to configure your local repository for deployment to Elastic
Beanstalk. Set your application's Dockerfile at the root of the directory.

~/eb-docker-flask$ eb init -p docker application-name

(Optional) Use the eb local run command to build and run your container locally.

~/eb-docker-flask$ eb local run --port 5000

Note

To learn more about the eb local command, see the section called “eb local”. The
command isn't supported on Windows. Alternatively, you can build and run your container
with the docker build and docker run commands. For more information, see the Docker
documentation.

Docker platform branch 89

https://docs.docker.com/
https://docs.docker.com/

AWS Elastic Beanstalk Developer Guide

(Optional) While your container is running, use the eb local open command to view your
application in a web browser. Alternatively, open http://localhost:5000/ in a web browser.

~/eb-docker-flask$ eb local open

Deploy a container with a Dockerfile

After testing your application locally, deploy it to an Elastic Beanstalk environment. Elastic
Beanstalk uses the instructions in your Dockerfile to build and run the image.

Use the eb create command to create an environment and deploy your application.

~/eb-docker-flask$ eb create environment-name

After your environment launches, use the eb open command to view it in a web browser.

~/eb-docker-flask$ eb open

Test a remote Docker image

Next, we build a Docker image of the Flask application from the previous section and push it to
Docker Hub.

Notes

• The following steps create a publicly available Docker image.

• You will use Docker commands from your local Docker installation, along with your
Docker Hub credentials. For more information, see the preceding Prerequisites section.

Once we've built and pushed our image, we can deploy it to Elastic Beanstalk with a docker-
compose.yml file, if you are using Docker Compose with your Docker environment. If you are not
using Docker Compose with your Docker environment, use a Dockerrun.aws.json file instead.
To build a Docker image of the Flask application and push it to Docker Hub, run the following
commands. We're using the same directory from the previous example, but you can use any
directory with your application's code. Enter your Docker ID for docker-id to sign in to Docker
Hub.

~/eb-docker-flask$ docker build -t docker-id/beanstalk-flask:latest .

Docker platform branch 90

http://localhost:5000/

AWS Elastic Beanstalk Developer Guide

~/eb-docker-flask$ docker push docker-id/beanstalk-flask:latest

Note

Before pushing your image, you might need to run docker login. You will be prompted for
your Docker Hub credentials if you run the command without parameters.

If you are using the Docker Compose tool to manage your Docker environment, now you can
deploy your application using only a docker-compose.yml file. To learn more about docker-
compose.yml files, see Docker configuration.

If you are not using Docker Compose, use a Dockerrun.aws.json file instead. For more
information see Deploy using Dockerrun.aws.json v1 (without Docker Compose).

Make a new directory and create a docker-compose.yml file.

Example ~/remote-docker/docker-compose.yml

version: '3.8'
services:
 beanstalk-flask:
 image: "username/beanstalk-flask"
 ports:
 - "80:5000"

Deploy using Dockerrun.aws.json v1 (without Docker Compose)

If you are not using the Docker Compose tool to manage your Docker environment, now you
can deploy your application using only a Dockerrun.aws.json file. To learn more about
Dockerrun.aws.json files, see Configuration for Docker platforms (without Docker Compose) .

Make a new directory and create a Dockerrun.aws.json file.

Example ~/remote-docker/Dockerrun.aws.json

{
 "AWSEBDockerrunVersion": "1",
 "Image": {
 "Name": "username/beanstalk-flask",
 "Update": "true"
 },

Docker platform branch 91

AWS Elastic Beanstalk Developer Guide

 "Ports": [
 {
 "ContainerPort": "5000"
 }
]
}

Use the EB CLI to configure your local repository for deployment to Elastic Beanstalk.

~/remote-docker$ eb init -p docker application-name

(Optional) Use eb local run to build and run your container locally. To learn more about the eb
local command, see eb local.

~/remote-docker$ eb local run --port 5000

(Optional) While your container is running, use the eb local open command to view your
application in a web browser. Alternatively, open http://localhost:5000/ in a web browser.

~/remote-docker$ eb local open

Deploy a remote Docker image to Elastic Beanstalk

After testing your container locally, deploy it to an Elastic Beanstalk environment. Elastic Beanstalk
uses the docker-compose.yml file to pull and run your image if you are using Docker Compose.
Otherwise, Elastic Beanstalk uses the Dockerrun.aws.json instead.

Use the EB CLI to create an environment and deploy your image.

~/remote-docker$ eb create environment-name

Once your environment is launched, use eb open to view it in a web browser.

~/remote-docker$ eb open

Clean up

When you finish working with Elastic Beanstalk, you can terminate your environment. Elastic
Beanstalk terminates all AWS resources associated with your environment, such as Amazon EC2
instances, database instances, load balancers, security groups, and alarms.

Docker platform branch 92

http://localhost:5000/

AWS Elastic Beanstalk Developer Guide

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

With Elastic Beanstalk, you can easily create a new environment for your application at any time.

Or, with the EB CLI:

~/remote-docker$ eb terminate environment-name

Running a Docker environment locally with the EB CLI

You can use the Elastic Beanstalk Command Line Interface (EB CLI) to run the Docker containers
configured in your AWS Elastic Beanstalk application locally. The EB CLI uses the Docker
configuration file (Dockerfile or Dockerrun.aws.json) and source code in your project
directory to run your application locally in Docker.

Topics

• Prerequisites for running Docker applications locally

• Preparing a Docker application for use with the EB CLI

• Running a Docker application locally

• Cleaning up after running a Docker application locally

Prerequisites for running Docker applications locally

• Linux OS or Mac OS X

• EB CLI version 3.3 or greater

Docker platform branch 93

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Run eb init in your project directory to initialize an EB CLI repository. If you haven't used the EB
CLI before, see Managing Elastic Beanstalk environments with the EB CLI.

• Docker version 1.6 or greater

Add yourself to the docker group, log out, and then log back in to ensure that you can run
Docker commands without sudo:

$ sudo usermod -a -G docker $USER

Run docker ps to verify that the Docker daemon is up and running:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES

• A Docker application

If you don't have a Docker application in a project folder on your local machine, see Deploying
Elastic Beanstalk applications from Docker containers for an introduction to using Docker with
AWS Elastic Beanstalk.

• Docker profile (optional)

If your application uses Docker images that are in a private repository, run docker login and
follow the prompts to create an authentication profile.

• w3m (optional)

W3m is a web browser that you can use to view your running web application within a command
line terminal with eb local run. If you are using the command line in a desktop environment, you
don't need w3m.

Docker containers run locally without emulating AWS resources that are provisioned when you
deploy an application to Elastic Beanstalk, including security groups and data or worker tiers.

You can configure your local containers to connect to a database by passing the necessary
connection string or other variables with the envvars option, but you must ensure that any
resources in AWS are accessible from your local machine by opening the appropriate ports in their
assigned security groups or attaching a default gateway or elastic IP address.

Docker platform branch 94

https://docs.docker.com/engine/installation/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

AWS Elastic Beanstalk Developer Guide

Preparing a Docker application for use with the EB CLI

Prepare your Docker configuration file and source data as though you were deploying them to
Elastic Beanstalk. This topic uses the PHP and nginx proxy example from the Multi-container
Docker tutorial, which is also in this chapter. You can use the same commands with any Docker,
Multi-container Docker, or Preconfigured Docker application.

Running a Docker application locally

Run your Docker application locally with the eb local run command from within the project
directory:

~/project$ eb local run
Creating elasticbeanstalk_phpapp_1...
Creating elasticbeanstalk_nginxproxy_1...
Attaching to elasticbeanstalk_phpapp_1, elasticbeanstalk_nginxproxy_1
phpapp_1 | [23-Apr-2015 23:24:25] NOTICE: fpm is running, pid 1
phpapp_1 | [23-Apr-2015 23:24:25] NOTICE: ready to handle connections

The EB CLI reads the Docker configuration and executes the Docker commands necessary to run
your application. The first time you run a project locally, Docker downloads images from a remote
repository and stores them on your local machine. This process can take several minutes.

Note

The eb local run command takes two optional parameters, port and envvars.
To override the default port for a Docker application, use the port option:

$ eb local run --port 8080

This command tells the EB CLI to use port 8080 on the host and map it to the exposed port
on the container. If you don't specify a port, the EB CLI uses the container's port for the
host. This option only works with applications using the Docker platform.
To pass environment variables to the application containers, use the envvars option:

$ eb local run --envvars RDS_HOST=$RDS_HOST,RDS_DB=$RDS_DB,RDS_USER=
$RDS_USER,RDS_PASS=$RDS_PASS

Docker platform branch 95

AWS Elastic Beanstalk Developer Guide

Use environment variables to configure a database connection, set debug options, or pass
secrets securely to your application. For more information on the options supported by the
eb local subcommands, see eb local.

After the containers are up and running in Docker, they are ready to take requests from clients. The
eb local process stays open as long as the containers are running. If you need to stop the process
and containers, press Ctrl+C.

Open a second terminal to run additional commands while the eb local process is running. Use eb
local status to view your application's status:

~/project$ eb local status
Platform: 64bit Amazon Linux 2014.09 v1.2.1 running Multi-container Docker 1.3.3
 (Generic)
Container name: elasticbeanstalk_nginxproxy_1
Container ip: 127.0.0.1
Container running: True
Exposed host port(s): 80
Full local URL(s): 127.0.0.1:80

Container name: elasticbeanstalk_phpapp_1
Container ip: 127.0.0.1
Container running: True
Exposed host port(s): None
Full local URL(s): None

You can use docker ps to see the status of the containers from Docker's point of view:

~/project$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
6a8e71274fed nginx:latest "nginx -g 'daemon of 9 minutes ago Up 9
 minutes 0.0.0.0:80->80/tcp, 443/tcp elasticbeanstalk_nginxproxy_1
82cbf620bdc1 php:fpm "php-fpm" 9 minutes ago Up 9
 minutes 9000/tcp elasticbeanstalk_phpapp_1

Next, view your application in action with eb local open:

~/project$ eb local open

Docker platform branch 96

AWS Elastic Beanstalk Developer Guide

This command opens your application in the default web browser. If you are running a terminal in a
desktop environment, this may be Firefox, Safari, or Google Chrome. If you are running a terminal
in a headless environment or over an SSH connection, a command line browser, such as w3m, will
be used if one is available.

Switch back to the terminal running the application process for a moment and note the additional
output:

phpapp_1 | 172.17.0.36 - 21/Apr/2015:23:46:17 +0000 "GET /index.php" 200

This shows that the web application in the Docker container received an HTTP GET request for
index.php that was returned successfully with a 200 (non error) status.

Run eb local logs to see where the EB CLI writes the logs.

~/project$ eb local logs
Elastic Beanstalk will write logs locally to /home/user/project/.elasticbeanstalk/logs/
local.
Logs were most recently created 3 minutes ago and written to /home/user/
project/.elasticbeanstalk/logs/local/150420_234011665784.

Cleaning up after running a Docker application locally

When you are done testing your application locally, you can stop the applications and remove the
images downloaded by Docker when you use eb local run. Removing the images is optional. You
may want to keep them for future use.

Return to the terminal running the eb local process and press Ctrl+C to stop the application:

^CGracefully stopping... (press Ctrl+C again to force)
Stopping elasticbeanstalk_nginxproxy_1...
Stopping elasticbeanstalk_phpapp_1...

Aborting.
[1]+ Exit 5 eb local run

The EB CLI attempts to stop each running container gracefully with Docker commands. If you need
to stop a process immediately, press Ctrl+C again.

After you stop the applications, the Docker containers should also stop running. Verify this with
docker ps:

Docker platform branch 97

AWS Elastic Beanstalk Developer Guide

$ docker ps --all
CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
73d515d99d2a nginx:latest "nginx -g 'daemon of 21 minutes ago
 Exited (0) 11 minutes ago elasticbeanstalk_nginxproxy_1
7061c76220de php:fpm "php-fpm" 21 minutes ago
 Exited (0) 11 minutes ago elasticbeanstalk_phpapp_1

The all option shows stopped containers (if you omitted this option, the output will be blank). In
the above example, Docker shows that both containers exited with a 0 (non-error) status.

If you are done using Docker and EB CLI local commands, you can remove the Docker images from
your local machine to save space.

To remove Docker images from your local machine

1. View the images that you downloaded using docker images:

$ docker images
REPOSITORY TAG IMAGE ID CREATED
 VIRTUAL SIZE
php fpm 68bc5150cffc 1 hour ago
 414.1 MB
nginx latest 637d3b2f5fb5 1 hour ago
 93.44 MB

2. Remove the two Docker containers with docker rm:

$ docker rm 73d515d99d2a 7061c76220de
73d515d99d2a
7061c76220de

3. Remove the images with docker rmi:

$ docker rmi 68bc5150cffc 637d3b2f5fb5
Untagged: php:fpm
Deleted: 68bc5150cffc0526c66b92265c3ed8f2ea50f3c71d266aa655b7a4d20c3587b0
Untagged: nginx:latest
Deleted: 637d3b2f5fb5c4f70895b77a9e76751a6e7670f4ef27a159dad49235f4fe61e0

Docker platform branch 98

AWS Elastic Beanstalk Developer Guide

Docker configuration

This section describes how to prepare your Docker image and container for deployment to Elastic
Beanstalk.

Docker environment with Docker Compose

This section describes how to prepare your Docker image and container for deployment to Elastic
Beanstalk. Any web application that you deploy to Elastic Beanstalk in a Docker environment must
include a docker-compose.yml file if you also use the Docker Compose tool. You can deploy
your web application as a containerized service to Elastic Beanstalk by doing one of the following
actions:

• Create a docker-compose.yml file to deploy a Docker image from a hosted repository to
Elastic Beanstalk. No other files are required if all your deployments are sourced from images
in public repositories. (If your deployment must source an image from a private repository, you
need to include additional configuration files for authentication. For more information, see Using
images from a private repository.) For more information about the docker-compose.yml file,
see Compose file reference on the Docker website.

• Create a Dockerfile to have Elastic Beanstalk build and run a custom image. This file is
optional, depending on your deployment requirements. For more information about the
Dockerfile see Dockerfile reference on the Docker website.

• Create a .zip file containing your application files, any application file dependencies, the
Dockerfile, and the docker-compose.yml file. If you use the EB CLI to deploy your
application, it creates a .zip file for you. The two files must be at the root, or top level, of the
.zip archive.

If you use only a docker-compose.yml file to deploy your application, you don't need to create
a .zip file.

This topic is a syntax reference. For detailed procedures on launching Docker environments using
Elastic Beanstalk, see Using the Docker platform branch.

To learn more about Docker Compose and how to install it, see the Docker sites Overview of Docker
Compose and Install Docker Compose.

Docker platform branch 99

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/install/

AWS Elastic Beanstalk Developer Guide

Note

If you don't use Docker Compose to configure your Docker environments,
then you shouldn't use the docker-compose.yml file either. Instead, use the
Dockerrun.aws.json file or the Dockerfile or both.
For more information, see the section called “Configuration for Docker platforms (without
Docker Compose) ”.

Using images from a private repository

Elastic Beanstalk must authenticate with the online registry that hosts the private repository
before it can pull and deploy your images from a private repository. We provide examples for two
options to store and retrieve credentials for your Elastic Beanstalk environment to authenticate to
a repository.

• The AWS Secrets Manager

• The Dockerrun.aws.json v3 file

Using AWS Secrets Manager

You can configure Elastic Beanstalk to log in to your private repository before it starts the
deployment process. This enables Elastic Beanstalk to access the images from the repository and
deploy these images to your Elastic Beanstalk environment.

This configuration initiates events in the prebuild phase of the Elastic Beanstalk deployment
process. You set this up in the .ebextentions configuration directory. The configuration uses
platform hook scripts that call docker login to authenticate to the online registry that hosts the
private repository. A detailed breakdown of these configuration steps follows.

To configure Elastic Beanstalk to authenticate to your private repository with AWS Secrets
Manager

Note

Specific permissions must be granted to complete these steps. For more information see
the following references.

Docker platform branch 100

AWS Elastic Beanstalk Developer Guide

• In Step 2 you'll need permissions to create a secret. For more information, see Example:
Permission to create secrets in the AWS Secrets Manager User Guide.

• In Step 3 you'll need permissions to retrieve secrets using secretsmanager dynamic
references. For more information, see Example: Permission to retrieve secret values in the
AWS Secrets Manager User Guide.

1. Create your .ebextensions directory structure as follows.

.ebextensions
env.config
.platform
confighooks
prebuild
01login.sh
hooks
prebuild
01login.sh
docker-compose.yml

2. Use AWS Secrets Manager to save the credentials of your private repository so that Elastic
Beanstalk can retrieve your credentials when required. For this, run the Secrets Manager
create-secret AWS CLI command.

aws secretsmanager create-secret \
 --name MyTestSecret \
 --description "My image repo credentials created with the CLI." \
 --secret-string "{\"USER\":\"EXAMPLE-USERNAME\",\"PASSWD\":\"EXAMPLE-
PASSWORD\"}"

3. Create the following env.config file and place it in the .ebextensions
directory as shown in the preceding directory structure. This configuration uses the
aws:elasticbeanstalk:application:environment namespace to initialize the USER and PASSWD
Elastic Beanstalk environment variables using dynamic references to AWS Secrets Manager. For
more information about secretsmanager dynamic references, see Retrieve an AWS Secrets
Manager secret in an AWS CloudFormation resource in the AWS Secrets Manager User Guide.

Docker platform branch 101

https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_create
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_create
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_read
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html#create_secret_cli
https://docs.aws.amazon.com/secretsmanager/latest/userguide/cfn-example_reference-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/cfn-example_reference-secret.html

AWS Elastic Beanstalk Developer Guide

Note

USER and PASSWD in the script must match the same strings that are used in the
preceding secretsmanager create-secret command.

option_settings:
 aws:elasticbeanstalk:application:environment:
 USER: '{{resolve:secretsmanager:MyTestSecret:SecretString:USER}}'
 PASSWD: '{{resolve:secretsmanager:MyTestSecret:SecretString:PASSWD}}'

4. Create the following 01login.sh script file and place it in the following directories (also
shown in the preceding directory structure):

• .platform/confighooks/prebuild

• .platform/hooks/prebuild

example 01login.sh
#!/bin/bash
USER=/opt/elasticbeanstalk/bin/get-config environment -k USER
/opt/elasticbeanstalk/bin/get-config environment -k PASSWD | docker login -u $USER
 --password-stdin

The 01login.sh script calls the get-config platform script to retrieve the repository
credentials and then log in to the repository. It stores the user name in the USER script
variable. In the next line, it retrieves the password. Instead of storing the password in a script
variable, the script pipes the password directly to the docker login command in the stdin
input stream. The --password-stdin option uses the input stream, so you don't have to
store the password in a variable. For more information about authentication with the Docker
command line interface, see docker login on the Docker documentation website.

Notes

• All script files must have execute permission. Use chmod +x to set execute
permission on your hook files. For all Amazon Linux 2 based platforms versions
that were released on or after April 29, 2022, Elastic Beanstalk automatically grants

Docker platform branch 102

https://docs.docker.com/engine/reference/commandline/login/

AWS Elastic Beanstalk Developer Guide

execute permissions to all of the platform hook scripts. In this case you don't have to
manually grant execute permissions. For a list of these platform versions, refer to the
April 29, 2022 - Linux platform release notes in the AWS Elastic Beanstalk Release
Notes Guide.

• Hook files can be either binary files or script files starting with a #! line containing
their interpreter path, such as #!/bin/bash.

• For more information, see the section called “Platform hooks” in Extending Elastic
Beanstalk Linux platforms.

After Elastic Beanstalk authenticates with the online registry that hosts the private repository, your
can pull and deploy your images.

Using the Dockerrun.aws.json v3 file

This section describes another approach to authenticate Elastic Beanstalk to a private repository.
With this approach, you generate an authentication file with the Docker command, and then
upload the authentication file to an Amazon S3 bucket. You must also include the bucket
information in your Dockerrun.aws.json v3 file.

To generate and provide an authentication file to Elastic Beanstalk

1. Generate an authentication file with the docker login command. For repositories on Docker
Hub, run docker login:

$ docker login

For other registries, include the URL of the registry server:

$ docker login registry-server-url

Note

If your Elastic Beanstalk environment uses the Amazon Linux AMI Docker platform
version (precedes Amazon Linux 2), read the relevant information in the section called
“Docker configuration on Amazon Linux AMI (preceding Amazon Linux 2)”.

Docker platform branch 103

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-04-29-linux.html#release-2022-04-29-linux.platforms

AWS Elastic Beanstalk Developer Guide

For more information about the authentication file, see Store images on Docker Hub and
docker login on the Docker website.

2. Upload a copy of the authentication file that is named .dockercfg to a secure Amazon S3
bucket.

• The Amazon S3 bucket must be hosted in the same AWS Region as the environment that is
using it. Elastic Beanstalk cannot download files from an Amazon S3 bucket hosted in other
Regions.

• Grant permissions for the s3:GetObject operation to the IAM role in the instance profile.
For more information, see Managing Elastic Beanstalk instance profiles.

3. Include the Amazon S3 bucket information in the Authentication parameter in your
Dockerrun.aws.json v3 file.

Following is an example of a Dockerrun.aws.json v3 file.

{
 "AWSEBDockerrunVersion": "3",
 "Authentication": {
 "bucket": "DOC-EXAMPLE-BUCKET",
 "key": "mydockercfg"
 }
}

Note

The AWSEBDockerrunVersion parameter indicates the version of the
Dockerrun.aws.json file.

• The Docker Amazon Linux 2 platform uses the Dockerrun.aws.json v3 file for
environments that use Docker Compose. It uses the Dockerrun.aws.json v1 file
for environments that don't use Docker Compose.

• The Multicontainer Docker Amazon Linux AMI platform uses the
Dockerrun.aws.json v2 file.

Docker platform branch 104

https://docs.docker.com/docker-hub/repos/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/

AWS Elastic Beanstalk Developer Guide

After Elastic Beanstalk can authenticate with the online registry that hosts the private repository,
your images can be deployed and pulled.

Building custom images with a Dockerfile

You need to create a Dockerfile if you don't already have an existing image hosted in a
repository.

The following snippet is an example of the Dockerfile. If you follow the instructions in Using the
Docker platform branch, you can upload this Dockerfile as written. Elastic Beanstalk runs the
game 2048 when you use this Dockerfile.

For more information about instructions you can include in the Dockerfile, see Dockerfile
reference on the Docker website.

FROM ubuntu:12.04

RUN apt-get update
RUN apt-get install -y nginx zip curl

RUN echo "daemon off;" >> /etc/nginx/nginx.conf
RUN curl -o /usr/share/nginx/www/master.zip -L https://codeload.github.com/
gabrielecirulli/2048/zip/master
RUN cd /usr/share/nginx/www/ && unzip master.zip && mv 2048-master/* . && rm -rf 2048-
master master.zip

EXPOSE 80

CMD ["/usr/sbin/nginx", "-c", "/etc/nginx/nginx.conf"]

Note

You can run multi-stage builds from a single Dockerfile to produce smaller-sized images
with a significant reduction in complexity. For more information, see Use multi-stage builds
on the Docker documentation website.

Configuration for Docker platforms (without Docker Compose)

If your Elastic Beanstalk Docker environment does not use Docker Compose, read the additional
information in the following sections.

Docker platform branch 105

https://docs.docker.com/engine/reference/builder
https://docs.docker.com/engine/reference/builder
https://docs.docker.com/develop/develop-images/multistage-build/

AWS Elastic Beanstalk Developer Guide

Docker platform Configuration - without Docker Compose

Any web application that you deploy to Elastic Beanstalk in a Docker environment must include
either a Dockerfile or a Dockerrun.aws.json file. You can deploy your web application from a
Docker container to Elastic Beanstalk by doing one of the following actions:

• Create a Dockerfile to have Elastic Beanstalk build and run a custom image.

• Create a Dockerrun.aws.json file to deploy a Docker image from a hosted repository to
Elastic Beanstalk.

• Create a .zip file containing your application files, any application file dependencies, the
Dockerfile, and the Dockerrun.aws.json file. If you use the EB CLI to deploy your
application, it creates a .zip file for you.

If you use only a Dockerfile or only a Dockerrun.aws.json file to deploy your application,
you don't need to create a .zip file.

This topic is a syntax reference. For detailed procedures on launching Docker environments, see
Using the Docker platform branch.

Dockerrun.aws.json v1

A Dockerrun.aws.json file describes how to deploy a remote Docker image as an Elastic
Beanstalk application. This JSON file is specific to Elastic Beanstalk. If your application
runs on an image that is available in a hosted repository, you can specify the image in a
Dockerrun.aws.json v1 file and omit the Dockerfile.

Valid keys and values for the Dockerrun.aws.json v1 file include the following operations:

AWSEBDockerrunVersion

(Required) Specifies the version number as the value 1 for single container Docker
environments.

Authentication

(Required only for private repositories) Specifies the Amazon S3 object storing the .dockercfg
file.

See Using images from a private repository.

Docker platform branch 106

AWS Elastic Beanstalk Developer Guide

Image

Specifies the Docker base image on an existing Docker repository from which you're building a
Docker container. Specify the value of the Name key in the format <organization>/<image
name> for images on Docker Hub, or <site>/<organization name>/<image name> for
other sites.

When you specify an image in the Dockerrun.aws.json file, each instance in your Elastic
Beanstalk environment runs docker pull to run the image. Optionally, include the Update
key. The default value is true and instructs Elastic Beanstalk to check the repository, pull any
updates to the image, and overwrite any cached images.

When using a Dockerfile, do not specify the Image key in the Dockerrun.aws.json file.
Elastic Beanstalk always builds and uses the image described in the Dockerfile when one is
present.

Ports

(Required when you specify the Image key) Lists the ports to expose on the Docker container.
Elastic Beanstalk uses the ContainerPort value to connect the Docker container to the reverse
proxy running on the host.

You can specify multiple container ports, but Elastic Beanstalk uses only the first port. It uses
this port to connect your container to the host's reverse proxy and route requests from the
public internet. If you're using a Dockerfile, the first ContainerPort value should match the
first entry in the Dockerfile's EXPOSE list.

Optionally, you can specify a list of ports in HostPort. HostPort entries specify the host ports
that ContainerPort values are mapped to. If you don't specify a HostPort value, it defaults to
the ContainerPort value.

{
 "Image": {
 "Name": "image-name"
 },
 "Ports": [
 {
 "ContainerPort": 8080,
 "HostPort": 8000
 }
]

Docker platform branch 107

AWS Elastic Beanstalk Developer Guide

}

Volumes

Map volumes from an EC2 instance to your Docker container. Specify one or more arrays of
volumes to map.

{
 "Volumes": [
 {
 "HostDirectory": "/path/inside/host",
 "ContainerDirectory": "/path/inside/container"
 }
]
...

Logging

Specify the directory inside the container to which your application writes logs. Elastic
Beanstalk uploads any logs in this directory to Amazon S3 when you request tail or bundle
logs. If you rotate logs to a folder named rotated within this directory, you can also
configure Elastic Beanstalk to upload rotated logs to Amazon S3 for permanent storage. For
more information, see Viewing logs from Amazon EC2 instances in your Elastic Beanstalk
environment.

Command

Specify a command to run in the container. If you specify an Entrypoint, then Command
is added as an argument to Entrypoint. For more information, see CMD in the Docker
documentation.

Entrypoint

Specify a default command to run when the container starts. For more information, see
ENTRYPOINT in the Docker documentation.

The following snippet is an example that illustrates the syntax of the Dockerrun.aws.json file
for a single container.

Docker platform branch 108

https://docs.docker.com/engine/reference/run/#cmd-default-command-or-options
https://docs.docker.com/engine/reference/run/#cmd-default-command-or-options

AWS Elastic Beanstalk Developer Guide

{
 "AWSEBDockerrunVersion": "1",
 "Image": {
 "Name": "janedoe/image",
 "Update": "true"
 },
 "Ports": [
 {
 "ContainerPort": "1234"
 }
],
 "Volumes": [
 {
 "HostDirectory": "/var/app/mydb",
 "ContainerDirectory": "/etc/mysql"
 }
],
 "Logging": "/var/log/nginx",
 "Entrypoint": "/app/bin/myapp",
 "Command": "--argument"
}

You can provide Elastic Beanstalk with only the Dockerrun.aws.json file, or with a .zip archive
containing both the Dockerrun.aws.json and Dockerfile files. When you provide both
files, the Dockerfile describes the Docker image and the Dockerrun.aws.json file provides
additional information for deployment, as described later in this section.

Note

The two files must be at the root, or top level, of the .zip archive. Don't build the archive
from a directory containing the files. Instead, navigate into that directory and build the
archive there.
When you provide both files, don't specify an image in the Dockerrun.aws.json file.
Elastic Beanstalk builds and uses the image described in the Dockerfile and ignores the
image specified in the Dockerrun.aws.json file.

Using images from a private repository

Add the information about the Amazon S3 bucket that contains the authentication file in
the Authentication parameter of the Dockerrun.aws.json v1 file. Make sure that the

Docker platform branch 109

AWS Elastic Beanstalk Developer Guide

Authentication parameter contains a valid Amazon S3 bucket and key. The Amazon S3 bucket
must be hosted in the same AWS Region as the environment that is using it. Elastic Beanstalk
doesn't download files from Amazon S3 buckets hosted in other Regions.

For information about generating and uploading the authentication file, see Using images from a
private repository.

The following example shows the use of an authentication file named mydockercfg in a bucket
named DOC-EXAMPLE-BUCKET to use a private image in a third-party registry.

{
 "AWSEBDockerrunVersion": "1",
 "Authentication": {
 "Bucket": "DOC-EXAMPLE-BUCKET",
 "Key": "mydockercfg"
 },
 "Image": {
 "Name": "quay.io/johndoe/private-image",
 "Update": "true"
 },
 "Ports": [
 {
 "ContainerPort": "1234"
 }
],
 "Volumes": [
 {
 "HostDirectory": "/var/app/mydb",
 "ContainerDirectory": "/etc/mysql"
 }
],
 "Logging": "/var/log/nginx"
}

Using the Amazon ECS platform branch

This topic covers both the Amazon ECS on Amazon Linux 2 platform branch and the platform
branch it replaces, Multi-container Docker on AL1 (also ECS managed). Unless otherwise noted, all
of the information in this topic applies to both platform branches.

ECS managed platform branch 110

AWS Elastic Beanstalk Developer Guide

Note

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired.

Migration from Multi-container Docker on AL1

If you're presently using the retired Multi-container Docker running on AL1 platform branch, you
can migrate to the latest ECS Running on AL2023 platform branch. The latest platform branch
supports all of the features from the discontinued platform branch. No changes to the source code
are required. For more information, see Migrating Multi-container Docker running on Amazon Linux
to ECS on Amazon Linux 2023.

Topics

• ECS managed Docker platform

• Dockerrun.aws.json file

• Docker images

• Container instance role

• Amazon ECS resources created by Elastic Beanstalk

• Using multiple Elastic Load Balancing listeners

• Failed container deployments

• ECS managed Docker configuration

• ECS managed Docker environments with the Elastic Beanstalk console

• Migrating Multi-container Docker running on Amazon Linux to ECS on Amazon Linux 2023

• (Legacy) Migrating to the Docker running on Amazon Linux 2 platform branch from Multi-
container Docker running on Amazon Linux

ECS managed Docker platform

Elastic Beanstalk uses Amazon Elastic Container Service (Amazon ECS) to coordinate container
deployments to ECS managed Docker environments. Amazon ECS provides tools to manage a
cluster of instances running Docker containers. Elastic Beanstalk takes care of Amazon ECS tasks
including cluster creation, task definition and execution. Each of the instances in the environment
run the same set of containers, which are defined in a Dockerrun.aws.json v2 file. In order to

ECS managed platform branch 111

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

get the most out of Docker, Elastic Beanstalk lets you create an environment where your Amazon
EC2 instances run multiple Docker containers side by side.

The following diagram shows an example Elastic Beanstalk environment configured with three
Docker containers running on each Amazon EC2 instance in an Auto Scaling group:

Note

Elastic Beanstalk offers extensibility features for all of its platforms that you can use
to customize the deployment and running of your applications. For the ECS running on
Amazon Linux 2 platform branch, the instance deployment workflow implementation
of these features varies from the other platforms. For more information, see Instance
deployment workflow for ECS running on Amazon Linux 2 and later.

Dockerrun.aws.json file

Container instances—Amazon EC2 instances running ECS managed Docker in an Elastic Beanstalk
environment—require a configuration file named Dockerrun.aws.json. This file is specific to
Elastic Beanstalk and can be used alone or combined with source code and content in a source
bundle to create an environment on a Docker platform.

ECS managed platform branch 112

AWS Elastic Beanstalk Developer Guide

Note

Version 1 of the Dockerrun.aws.json format is used to launch a single Docker container
to an Elastic Beanstalk environment running on Amazon Linux AMI, (the version that
precedes Amazon Linux 2). The environment is based on the Docker running on 64bit
Amazon Linux platform branch, which will be retired on July 18, 2022 . To learn more
about the Dockerrun.aws.json v1 format, see Docker platform Configuration - without
Docker Compose.
The Version 2 format of the Dockerrun.aws.json adds support for multiple containers
per Amazon EC2 instance and can only be used with an ECS managed Docker platform. The
format differs significantly from the previous version.

See Dockerrun.aws.json v2 for details on the updated format and an example file.

Docker images

The ECS managed Docker platform for Elastic Beanstalk requires images to be prebuilt and stored
in a public or private online image repository.

Note

Building custom images during deployment with a Dockerfile is not supported by the
ECS managed Docker platform on Elastic Beanstalk. Build your images and deploy them to
an online repository before creating an Elastic Beanstalk environment.

Specify images by name in Dockerrun.aws.json v2. Note these conventions:

• Images in official repositories on Docker Hub use a single name (for example, ubuntu or mongo).

• Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent).

• Images in other online registries are qualified further by a domain name (for example, quay.io/
assemblyline/ubuntu).

To configure Elastic Beanstalk to authenticate to a private repository, include the
authentication parameter in your Dockerrun.aws.json v2 file.

ECS managed platform branch 113

AWS Elastic Beanstalk Developer Guide

Container instance role

Elastic Beanstalk uses an Amazon ECS-optimized AMI with an Amazon ECS container agent that
runs in a Docker container. The agent communicates with Amazon ECS to coordinate container
deployments. In order to communicate with Amazon ECS, each Amazon EC2 instance must have
the corresponding permissions in IAM. These permissions are attached to the default instance
profile when you create an environment in the Elastic Beanstalk console:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ECSAccess",
 "Effect": "Allow",
 "Action": [
 "ecs:Poll",
 "ecs:StartTask",
 "ecs:StopTask",
 "ecs:DiscoverPollEndpoint",
 "ecs:StartTelemetrySession",
 "ecs:RegisterContainerInstance",
 "ecs:DeregisterContainerInstance",
 "ecs:DescribeContainerInstances",
 "ecs:Submit*"
],
 "Resource": "*"
 }
]
}

If you create your own instance profile, you can attach the
AWSElasticBeanstalkMulticontainerDocker managed policy to make sure the permissions
stay up-to-date. For instructions on creating policies and roles in IAM, see Creating IAM Roles in
the IAM User Guide.

Amazon ECS resources created by Elastic Beanstalk

When you create an environment using the ECS managed Docker platform, Elastic Beanstalk
automatically creates and configures several Amazon Elastic Container Service resources while
building the environment. In doing so, it creates the necessary containers on each Amazon EC2
instance.

ECS managed platform branch 114

http://docs.aws.amazon.com/IAM/latest/UserGuide/roles-creatingrole.html

AWS Elastic Beanstalk Developer Guide

• Amazon ECS Cluster – Container instances in Amazon ECS are organized into clusters. When
used with Elastic Beanstalk, one cluster is always created for each ECS managed Docker
environment.

• Amazon ECS Task Definition – Elastic Beanstalk uses the Dockerrun.aws.json v2 in your
project to generate the Amazon ECS task definition that is used to configure container instances
in the environment.

• Amazon ECS Task – Elastic Beanstalk communicates with Amazon ECS to run a task on every
instance in the environment to coordinate container deployment. In a scalable environment,
Elastic Beanstalk initiates a new task whenever an instance is added to the cluster. In rare cases
you may have to increase the amount of space reserved for containers and images. Learn more in
the Configuring Docker environments section.

• Amazon ECS Container Agent – The agent runs in a Docker container on the instances in your
environment. The agent polls the Amazon ECS service and waits for a task to run.

• Amazon ECS Data Volumes – Elastic Beanstalk inserts volume definitions (in addition to the
volumes that you define in Dockerrun.aws.json v2 into the task definition to facilitate log
collection.

Elastic Beanstalk creates log volumes on the container instance, one for each container, at /var/
log/containers/containername. These volumes are named awseb-logs-containername
and are provided for containers to mount. See Container definition format for details on how to
mount them.

Using multiple Elastic Load Balancing listeners

You can configure multiple Elastic Load Balancing listeners on a ECS managed Docker environment
in order to support inbound traffic for proxies or other services that don't run on the default HTTP
port.

Create a .ebextensions folder in your source bundle and add a file with a .config file
extension. The following example shows a configuration file that creates an Elastic Load Balancing
listener on port 8080.

.ebextensions/elb-listener.config

option_settings:
 aws:elb:listener:8080:
 ListenerProtocol: HTTP
 InstanceProtocol: HTTP

ECS managed platform branch 115

AWS Elastic Beanstalk Developer Guide

 InstancePort: 8080

If your environment is running in a custom Amazon Virtual Private Cloud (Amazon VPC) that
you created, Elastic Beanstalk takes care of the rest. In a default VPC, you need to configure your
instance's security group to allow ingress from the load balancer. Add a second configuration file
that adds an ingress rule to the security group:

.ebextensions/elb-ingress.config

Resources:
 port8080SecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 8080
 FromPort: 8080
 SourceSecurityGroupName: { "Fn::GetAtt": ["AWSEBLoadBalancer",
 "SourceSecurityGroup.GroupName"] }

For more information on the configuration file format, see Adding and customizing Elastic
Beanstalk environment resources and Option settings.

In addition to adding a listener to the Elastic Load Balancing configuration and opening a port
in the security group, you need to map the port on the host instance to a port on the Docker
container in the containerDefinitions section of the Dockerrun.aws.json v2 file. The
following excerpt shows an example:

"portMappings": [
 {
 "hostPort": 8080,
 "containerPort": 8080
 }
]

See Dockerrun.aws.json v2 for details on the Dockerrun.aws.json v2 file format.

Failed container deployments

If an Amazon ECS task fails, one or more containers in your Elastic Beanstalk environment will not
start. Elastic Beanstalk does not roll back multi-container environments due to a failed Amazon

ECS managed platform branch 116

https://docs.aws.amazon.com/vpc/latest/userguide/

AWS Elastic Beanstalk Developer Guide

ECS task. If a container fails to start in your environment, redeploy the current version or a previous
working version from the Elastic Beanstalk console.

To deploy an existing version

1. Open the Elastic Beanstalk console in your environment's region.

2. Click Actions to the right of your application name and then click View application versions.

3. Select a version of your application and click Deploy.

ECS managed Docker configuration

Dockerrun.aws.json is an Elastic Beanstalk configuration file that describes how to deploy a
set of Docker containers hosted in an ECS cluster in an Elastic Beanstalk environment. The Elastic
Beanstalk platform creates an ECS task definition, which includes an ECS container definition. These
definitions are described in the Dockerrun.aws.json configuration file.

The container definition in the Dockerrun.aws.json file describes the containers to deploy to
each Amazon EC2 instance in the ECS cluster. In this case an Amazon EC2 instance is also referred
to as a host container instance, because it hosts the Docker containers. The configuration file also
describes the data volumes to create on the host container instance for the Docker containers
to mount. For more information and a diagram of the components in an ECS managed Docker
environment on Elastic Beanstalk, see the ECS managed Docker platform earlier in this chapter.

A Dockerrun.aws.json file can be used on its own or zipped up with additional source code in a
single archive. Source code that is archived with a Dockerrun.aws.json is deployed to Amazon
EC2 container instances and accessible in the /var/app/current/ directory.

Topics

• Dockerrun.aws.json v2

• Volume format

• Container definition format

• Authentication format – using images from a private repository

• Example Dockerrun.aws.json v2

Dockerrun.aws.json v2

The Dockerrun.aws.json file includes the following sections:

ECS managed platform branch 117

AWS Elastic Beanstalk Developer Guide

AWSEBDockerrunVersion

Specifies the version number as the value 2 for ECS managed Docker environments.

volumes

Creates volumes from folders in the Amazon EC2 container instance, or from your source
bundle (deployed to /var/app/current). Mount these volumes to paths within your Docker
containers using mountPoints in the containerDefinitions section.

containerDefinitions

An array of container definitions.

authentication (optional)

The location in Amazon S3 of a .dockercfg file that contains authentication data for a private
repository.

The containerDefinitions and volumes sections of Dockerrun.aws.json use the same formatting
as the corresponding sections of an Amazon ECS task definition file. For more information about
the task definition format and a full list of task definition parameters, see Amazon ECS task
definitions in the Amazon Elastic Container Service Developer Guide.

Volume format

The volume parameter creates volumes from either folders in the Amazon EC2 container instance,
or from your source bundle (deployed to /var/app/current).

Volumes are specified in the following format:

"volumes": [
 {
 "name": "volumename",
 "host": {
 "sourcePath": "/path/on/host/instance"
 }
 }
],

Mount these volumes to paths within your Docker containers using mountPoints in the container
definition.

ECS managed platform branch 118

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_defintions.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_defintions.html

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk configures additional volumes for logs, one for each container. These should be
mounted by your Docker containers in order to write logs to the host instance.

For more details, see the mountPoints field in the Container definition format section that
follows.

Container definition format

The following examples show a subset of parameters that are commonly used in the
containerDefinitions section. More optional parameters are available.

The Beanstalk platform creates an ECS task definition, which includes an ECS container definition.
Beanstalk supports a sub-set of parameters for the ECS container definition. For more information,
see Container definitions in the Amazon Elastic Container Service Developer Guide.

A Dockerrun.aws.json file contains an array of one or more container definition objects with
the following fields:

name

The name of the container. See Standard Container Definition Parameters for information
about the maximum length and allowed characters.

image

The name of a Docker image in an online Docker repository from which you're building a Docker
container. Note these conventions:

• Images in official repositories on Docker Hub use a single name (for example, ubuntu or
mongo).

• Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent.

• Images in other online repositories are qualified further by a domain name (for example,
quay.io/assemblyline/ubuntu).

environment

An array of environment variables to pass to the container.

For example, the following entry defines an environment variable with the name Container
and the value PHP:

ECS managed platform branch 119

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definitions
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#standard_container_definition_params

AWS Elastic Beanstalk Developer Guide

"environment": [
 {
 "name": "Container",
 "value": "PHP"
 }
],

essential

True if the task should stop if the container fails. Nonessential containers can finish or crash
without affecting the rest of the containers on the instance.

memory

Amount of memory on the container instance to reserve for the container. Specify a non-
zero integer for one or both of the memory or memoryReservation parameters in container
definitions.

memoryReservation

The soft limit (in MiB) of memory to reserve for the container. Specify a non-zero integer for
one or both of the memory or memoryReservation parameters in container definitions.

mountPoints

Volumes from the Amazon EC2 container instance to mount, and the location on the Docker
container file system at which to mount them. When you mount volumes that contain
application content, your container can read the data you upload in your source bundle. When
you mount log volumes for writing log data, Elastic Beanstalk can gather log data from these
volumes.

Elastic Beanstalk creates log volumes on the container instance, one for each Docker
container, at /var/log/containers/containername. These volumes are named awseb-
logs-containername and should be mounted to the location within the container file
structure where logs are written.

For example, the following mount point maps the nginx log location in the container to the
Elastic Beanstalk–generated volume for the nginx-proxy container.

{
 "sourceVolume": "awseb-logs-nginx-proxy",
 "containerPath": "/var/log/nginx"

ECS managed platform branch 120

AWS Elastic Beanstalk Developer Guide

}

portMappings

Maps network ports on the container to ports on the host.

links

List of containers to link to. Linked containers can discover each other and communicate
securely.

volumesFrom

Mount all of the volumes from a different container. For example, to mount volumes from a
container named web:

"volumesFrom": [
 {
 "sourceContainer": "web"
 }
],

Authentication format – using images from a private repository

The authentication section contains authentication data for a private repository. This entry is
optional.

Add the information about the Amazon S3 bucket that contains the authentication file in
the authentication parameter of the Dockerrun.aws.json file. Make sure that the
authentication parameter contains a valid Amazon S3 bucket and key. The Amazon S3 bucket
must be hosted in the same region as the environment that is using it. Elastic Beanstalk will not
download files from Amazon S3 buckets hosted in other regions.

Uses the following format:

"authentication": {
 "bucket": "DOC-EXAMPLE-BUCKET",
 "key": "mydockercfg"
 },

For information about generating and uploading the authentication file, see Using images from a
private repository in the Environment configuration topic of this chapter.

ECS managed platform branch 121

AWS Elastic Beanstalk Developer Guide

Example Dockerrun.aws.json v2

The following snippet is an example that illustrates the syntax of the Dockerrun.aws.json file
for an instance with two containers.

{
 "AWSEBDockerrunVersion": 2,
 "volumes": [
 {
 "name": "php-app",
 "host": {
 "sourcePath": "/var/app/current/php-app"
 }
 },
 {
 "name": "nginx-proxy-conf",
 "host": {
 "sourcePath": "/var/app/current/proxy/conf.d"
 }
 }
],
 "containerDefinitions": [
 {
 "name": "php-app",
 "image": "php:fpm",
 "environment": [
 {
 "name": "Container",
 "value": "PHP"
 }
],
 "essential": true,
 "memory": 128,
 "mountPoints": [
 {
 "sourceVolume": "php-app",
 "containerPath": "/var/www/html",
 "readOnly": true
 }
]
 },
 {
 "name": "nginx-proxy",
 "image": "nginx",

ECS managed platform branch 122

AWS Elastic Beanstalk Developer Guide

 "essential": true,
 "memory": 128,
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80
 }
],
 "links": [
 "php-app"
],
 "mountPoints": [
 {
 "sourceVolume": "php-app",
 "containerPath": "/var/www/html",
 "readOnly": true
 },
 {
 "sourceVolume": "nginx-proxy-conf",
 "containerPath": "/etc/nginx/conf.d",
 "readOnly": true
 },
 {
 "sourceVolume": "awseb-logs-nginx-proxy",
 "containerPath": "/var/log/nginx"
 }
]
 }
]
}

ECS managed Docker environments with the Elastic Beanstalk console

You can launch a cluster of multi-container instances in a single-instance or scalable Elastic
Beanstalk environment using the Elastic Beanstalk console. This tutorial details container
configuration and source code preparation for an environment that uses two containers.

The containers, a PHP application and an nginx proxy, run side by side on each of the Amazon
Elastic Compute Cloud (Amazon EC2) instances in an Elastic Beanstalk environment. After creating
the environment and verifying that the applications are running, you'll connect to a container
instance to see how it all fits together.

Sections

ECS managed platform branch 123

AWS Elastic Beanstalk Developer Guide

• Define ECS managed Docker containers

• Add content

• Deploy to Elastic Beanstalk

• Connect to a container instance

• Inspect the Amazon ECS container agent

Define ECS managed Docker containers

The first step in creating a new Docker environment is to create a directory for your application
data. This folder can be located anywhere on your local machine and have any name you choose. In
addition to a container configuration file, this folder will contain the content that you will upload
to Elastic Beanstalk and deploy to your environment.

Note

All of the code for this tutorial is available in the awslabs repository on GitHub at https://
github.com/awslabs/eb-docker-nginx-proxy.

The file that Elastic Beanstalk uses to configure the containers on an Amazon EC2 instance is a
JSON-formatted text file named Dockerrun.aws.json. Create a text file with this name at the
root of your application and add the following text:

{
 "AWSEBDockerrunVersion": 2,
 "volumes": [
 {
 "name": "php-app",
 "host": {
 "sourcePath": "/var/app/current/php-app"
 }
 },
 {
 "name": "nginx-proxy-conf",
 "host": {
 "sourcePath": "/var/app/current/proxy/conf.d"
 }
 }
],

ECS managed platform branch 124

https://github.com/awslabs/eb-docker-nginx-proxy
https://github.com/awslabs/eb-docker-nginx-proxy

AWS Elastic Beanstalk Developer Guide

 "containerDefinitions": [
 {
 "name": "php-app",
 "image": "php:fpm",
 "essential": true,
 "memory": 128,
 "mountPoints": [
 {
 "sourceVolume": "php-app",
 "containerPath": "/var/www/html",
 "readOnly": true
 }
]
 },
 {
 "name": "nginx-proxy",
 "image": "nginx",
 "essential": true,
 "memory": 128,
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80
 }
],
 "links": [
 "php-app"
],
 "mountPoints": [
 {
 "sourceVolume": "php-app",
 "containerPath": "/var/www/html",
 "readOnly": true
 },
 {
 "sourceVolume": "nginx-proxy-conf",
 "containerPath": "/etc/nginx/conf.d",
 "readOnly": true
 },
 {
 "sourceVolume": "awseb-logs-nginx-proxy",
 "containerPath": "/var/log/nginx"
 }
]

ECS managed platform branch 125

AWS Elastic Beanstalk Developer Guide

 }
]
}

This example configuration defines two containers, a PHP web site with an nginx proxy in front of
it. These two containers will run side by side in Docker containers on each instance in your Elastic
Beanstalk environment, accessing shared content (the content of the website) from volumes on
the host instance, which are also defined in this file. The containers themselves are created from
images hosted in official repositories on Docker Hub. The resulting environment looks like the
following:

The volumes defined in the configuration correspond to the content that you will create next and
upload as part of your application source bundle. The containers access content on the host by
mounting volumes in the mountPoints section of the container definitions.

For more information on the format of Dockerrun.aws.json and its parameters, see Container
definition format.

Add content

Next you will add some content for your PHP site to display to visitors, and a configuration file for
the nginx proxy.

php-app/index.php

<h1>Hello World!!!</h1>

ECS managed platform branch 126

AWS Elastic Beanstalk Developer Guide

<h3>PHP Version <pre><?= phpversion()?></pre></h3>

php-app/static.html

<h1>Hello World!</h1>
<h3>This is a static HTML page.</h3>

proxy/conf.d/default.conf

server {
 listen 80;
 server_name localhost;
 root /var/www/html;

 index index.php;

 location ~ [^/]\.php(/|$) {
 fastcgi_split_path_info ^(.+?\.php)(/.*)$;
 if (!-f $document_root$fastcgi_script_name) {
 return 404;
 }

 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_param PATH_INFO $fastcgi_path_info;
 fastcgi_param PATH_TRANSLATED $document_root$fastcgi_path_info;

 fastcgi_pass php-app:9000;
 fastcgi_index index.php;
 }
}

Deploy to Elastic Beanstalk

Your application folder now contains the following files:

Dockerrun.aws.json
php-app
index.php
static.html
proxy
 ### conf.d

ECS managed platform branch 127

AWS Elastic Beanstalk Developer Guide

 ### default.conf

This is all you need to create the Elastic Beanstalk environment. Create a .zip archive of the above
files and folders (not including the top-level project folder). To create the archive in Windows
explorer, select the contents of the project folder, right-click, select Send To, and then click
Compressed (zipped) Folder

Note

For information on the required file structure and instructions for creating archives in other
environments, see Create an application source bundle

Next, upload the source bundle to Elastic Beanstalk and create your environment. For Platform,
select Docker. For Platform branch, select ECS running on 64bit Amazon Linux 2.

To launch an environment (console)

1. Open the Elastic Beanstalk console with this preconfigured link:
console.aws.amazon.com/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application, or the Docker platform for container-based applications.

3. For Application code, choose Upload your code.

4. Choose Local file, choose Choose file, and then open the source bundle.

5. Choose Review and launch.

6. Review the available settings, and then choose Create app.

The Elastic Beanstalk console redirects you to the management dashboard for your new
environment. This screen shows the health status of the environment and events output by the
Elastic Beanstalk service. When the status is Green, click the URL next to the environment name to
see your new website.

Connect to a container instance

Next you will connect to an Amazon EC2 instance in your Elastic Beanstalk environment to see
some of the moving parts in action.

ECS managed platform branch 128

https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

AWS Elastic Beanstalk Developer Guide

The easiest way to connect to an instance in your environment is by using the EB CLI. To use it,
install the EB CLI, if you haven't done so already. You'll also need to configure your environment
with an Amazon EC2 SSH key pair. Use either the console's security configuration page or the EB
CLI eb init command to do that. To connect to an environment instance, use the EB CLI eb ssh
command.

Now that your connected to an Amazon EC2 instance hosting your docker containers, you can see
how things are set up. Run ls on /var/app/current:

[ec2-user@ip-10-0-0-117 ~]$ ls /var/app/current
Dockerrun.aws.json php-app proxy

This directory contains the files from the source bundle that you uploaded to Elastic Beanstalk
during environment creation.

[ec2-user@ip-10-0-0-117 ~]$ ls /var/log/containers
nginx-proxy nginx-proxy-4ba868dbb7f3-stdouterr.log
php-app php-app-dcc3b3c8522c-stdouterr.log rotated

This is where logs are created on the container instance and collected by Elastic Beanstalk. Elastic
Beanstalk creates a volume in this directory for each container, which you mount to the container
location where logs are written.

You can also take a look at Docker to see the running containers with docker ps.

[ec2-user@ip-10-0-0-117 ~]$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES

4ba868dbb7f3 nginx "/docker-entrypoint.…" 4 minutes ago
 Up 4 minutes 0.0.0.0:80->80/tcp, :::80->80/tcp ecs-awseb-Tutorials-env-
dc2aywfjwg-1-nginx-proxy-acca84ef87c4aca15400
dcc3b3c8522c php:fpm "docker-php-entrypoi…" 4 minutes ago
 Up 4 minutes 9000/tcp ecs-awseb-Tutorials-env-
dc2aywfjwg-1-php-app-b8d38ae288b7b09e8101
d9367c0baad6 amazon/amazon-ecs-agent:latest "/agent" 5 minutes ago
 Up 5 minutes (healthy) ecs-agent

This shows the two running containers that you deployed, as well as the Amazon ECS container
agent that coordinated the deployment.

ECS managed platform branch 129

AWS Elastic Beanstalk Developer Guide

Inspect the Amazon ECS container agent

Amazon EC2 instances in a ECS managed Docker environment on Elastic Beanstalk run an
agent process in a Docker container. This agent connects to the Amazon ECS service in order to
coordinate container deployments. These deployments run as tasks in Amazon ECS, which are
configured in task definition files. Elastic Beanstalk creates these task definition files based on the
Dockerrun.aws.json that you upload in a source bundle.

Check the status of the container agent with an HTTP get request to http://localhost:51678/
v1/metadata:

[ec2-user@ip-10-0-0-117 ~]$ curl http://localhost:51678/v1/metadata
{
 "Cluster":"awseb-Tutorials-env-dc2aywfjwg",
 "ContainerInstanceArn":"arn:aws:ecs:us-west-2:123456789012:container-instance/awseb-
Tutorials-env-dc2aywfjwg/db7be5215cd74658aacfcb292a6b944f",
 "Version":"Amazon ECS Agent - v1.57.1 (089b7b64)"
}

This structure shows the name of the Amazon ECS cluster, and the ARN (Amazon Resource Name)
of the cluster instance (the Amazon EC2 instance that you are connected to).

For more information, make an HTTP get request to http://localhost:51678/v1/tasks:

[ec2-user@ip-10-0-0-117 ~]$ curl http://localhost:51678/v1/tasks
{
 "Tasks":[
 {
 "Arn":"arn:aws:ecs:us-west-2:123456789012:task/awseb-Tutorials-env-dc2aywfjwg/
bbde7ebe1d4e4537ab1336340150a6d6",
 "DesiredStatus":"RUNNING",
 "KnownStatus":"RUNNING",
 "Family":"awseb-Tutorials-env-dc2aywfjwg",
 "Version":"1",
 "Containers":[
 {

 "DockerId":"dcc3b3c8522cb9510b7359689163814c0f1453b36b237204a3fd7a0b445d2ea6",
 "DockerName":"ecs-awseb-Tutorials-env-dc2aywfjwg-1-php-app-
b8d38ae288b7b09e8101",
 "Name":"php-app",
 "Volumes":[

ECS managed platform branch 130

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Elastic Beanstalk Developer Guide

 {
 "Source":"/var/app/current/php-app",
 "Destination":"/var/www/html"
 }
]
 },
 {

 "DockerId":"4ba868dbb7f3fb3328b8afeb2cb6cf03e3cb1cdd5b109e470f767d50b2c3e303",
 "DockerName":"ecs-awseb-Tutorials-env-dc2aywfjwg-1-nginx-proxy-
acca84ef87c4aca15400",
 "Name":"nginx-proxy",
 "Ports":[
 {
 "ContainerPort":80,
 "Protocol":"tcp",
 "HostPort":80
 },
 {
 "ContainerPort":80,
 "Protocol":"tcp",
 "HostPort":80
 }
],
 "Volumes":[
 {
 "Source":"/var/app/current/php-app",
 "Destination":"/var/www/html"
 },
 {
 "Source":"/var/log/containers/nginx-proxy",
 "Destination":"/var/log/nginx"
 },
 {
 "Source":"/var/app/current/proxy/conf.d",
 "Destination":"/etc/nginx/conf.d"
 }
]
 }
]
 }
]
}

ECS managed platform branch 131

AWS Elastic Beanstalk Developer Guide

This structure describes the task that is run to deploy the two docker containers from this tutorial's
example project. The following information is displayed:

• KnownStatus – The RUNNING status indicates that the containers are still active.

• Family – The name of the task definition that Elastic Beanstalk created from
Dockerrun.aws.json.

• Version – The version of the task definition. This is incremented each time the task definition file
is updated.

• Containers – Information about the containers running on the instance.

Even more information is available from the Amazon ECS service itself, which you can call using
the AWS Command Line Interface. For instructions on using the AWS CLI with Amazon ECS, and
information about Amazon ECS in general, see the Amazon ECS User Guide.

Migrating Multi-container Docker running on Amazon Linux to ECS on Amazon
Linux 2023

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired. This includes the platform branch Multi-container Docker running on
64bit Amazon Linux. This topic guides you in the migration of your applications from this retired
platform branch to ECS Running on 64bit AL2023. This target platform branch is current and
supported.

Like the previous Multi-container Docker AL1 branch, the newer ECS AL2023 platform branch
uses Amazon ECS to coordinate deployment of multiple Docker containers to an Amazon ECS
cluster in an Elastic Beanstalk environment. The new ECS AL2023 platform branch supports
all of the features in the previous Multi-container Docker AL1 platform branch. Also, the same
Dockerrun.aws.json v2 file is supported.

Sections

• Migrate with the Elastic Beanstalk console

• Migrate with the AWS CLI

ECS managed platform branch 132

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_GetStarted.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

Migrate with the Elastic Beanstalk console

To migrate using the Elastic Beanstalk console deploy the same source code to a new environment
that’s based on the ECS Running on AL2023 platform branch. No changes to the source code are
required.

To migrate to the ECS Running on Amazon Linux 2023 platform branch

1. Using the application source that's already deployed to the old environment, create an
application source bundle. You can use the same application source bundle and the same
Dockerrun.aws.json v2 file.

2. Create a new environment using the ECS Running on Amazon Linux 2023 platform branch.
Use the source bundle from the prior step for Application code. For more detailed steps, see
Deploy to Elastic Beanstalk in the ECS managed Docker tutorial earlier in this chapter.

Migrate with the AWS CLI

You also have the option to use the AWS Command Line Interface (AWS CLI) to migrate your
existing Multi-container Docker Amazon Linux Docker environment to the newer ECS AL2023
platform branch. In this case you don't need to create a new environment or redeploy your source
code. You only need to run the AWS CLI update-environment command. It will perform a platform
update to migrate your existing environment to the ECS Amazon Linux 2023 platform branch.

Use the following syntax to migrate your environment to the new platform branch.

aws elasticbeanstalk update-environment \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2023 version running ECS" \
--region my-region

The following is an example of the command to migrate environment beta-101 to version 3.0.0 of
the ECS Amazon Linux 2023 platform branch in the us-east-1 region.

aws elasticbeanstalk update-environment \
--environment-name beta-101 \
--solution-stack-name "64bit Amazon Linux 2023 v4.0.0 running ECS" \
--region us-east-1

The solution-stack-name parameter provides the platform branch and its version. Use the
most recent platform branch version by specifying the proper solution stack name. The version of

ECS managed platform branch 133

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/update-environment.html

AWS Elastic Beanstalk Developer Guide

every platform branch is included in the solution stack name, as shown in the above example. For
a list of the most current solution stacks for the Docker platform, see Supported platforms in the
AWS Elastic Beanstalk Platforms guide.

Note

The list-available-solution-stacks command provides a list of the platform versions
available for your account in an AWS Region.

aws elasticbeanstalk list-available-solution-stacks --region us-east-1 --query
 SolutionStacks

To learn more about the AWS CLI, see the AWS Command Line Interface User Guide. For more
information about AWS CLI commands for Elastic Beanstalk, see the AWS CLI Command Reference
for Elastic Beanstalk.

(Legacy) Migrating to the Docker running on Amazon Linux 2 platform branch
from Multi-container Docker running on Amazon Linux

Prior to the release of the ECS Running on 64bit Amazon Linux 2 platform branch, Elastic Beanstalk
offered an alternate migration path to Amazon Linux 2 for customers with environments based
on the Multi-container Docker running on 64bit Amazon Linux platform branch. This topic
describes that migration path, and remains in this document as a reference for any customers that
completed that migration path.

We now recommend that customers with environments based on the Multi-container Docker
running on 64bit Amazon Linux platform branch migrate to the ECS Running on 64bit Amazon Linux
2 platform branch. Unlike the alternate migration path, this approach continues to use Amazon
ECS to coordinate container deployments to ECS managed Docker environments. This aspect
allows a more straightforward approach. No changes to the source code are required, and the
same Dockerrun.aws.json v2 is supported. For more information, see Migrating Multi-container
Docker running on Amazon Linux to ECS on Amazon Linux 2023.

Legacy Migration from Multi-container Docker on Amazon Linux to the Docker Amazon Linux 2
platform branch

You can migrate your applications running on the Multi-container Docker platform on Amazon
Linux AMI to the Amazon Linux 2 Docker platform. The Multi-container Docker platform on

ECS managed platform branch 134

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.docker
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/list-available-solution-stacks.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/index.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/index.html

AWS Elastic Beanstalk Developer Guide

Amazon Linux AMI requires that you specify prebuilt application images to run as containers. After
migrating, you will no longer have this limitation, because the Amazon Linux 2 Docker platform
also allows Elastic Beanstalk to build your container images during deployment. Your applications
will continue to run in multi-container environments with the added benefits from the Docker
Compose tool.

Docker Compose is tool for defining and running multi-container Docker applications. To learn
more about Docker Compose and how to install it, see the Docker sites Overview of Docker
Compose and Install Docker Compose.

The docker-compose.yml file

The Docker Compose tool uses the docker-compose.yml file for configuration of your
application services. This file replaces your Dockerrun.aws.json v2 file in your application
project directory and application source bundle. You create the docker-compose.yml file
manually, and will find it helpful to reference your Dockerrun.aws.json v2 file for most of the
parameter values.

Below is an example of a docker-compose.yml file and the corresponding
Dockerrun.aws.json v2 file for the same application. For more information on the
docker-compose.yml file, see Compose file reference. For more information on the
Dockerrun.aws.json v2 file, see Dockerrun.aws.json v2.

docker-compose.yml Dockerrun.aws.json v2

version: '2.4'
services:
 php-app:
 image: "php:fpm"
 volumes:
 - "./php-app:/var/www/html:ro
"
 - "${EB_LOG_BASE_DIR}/php-app
:/var/log/sample-app"
 mem_limit: 128m
 environment:
 Container: PHP
 nginx-proxy:

{
 "AWSEBDockerrunVersion": 2,
 "volumes": [
 {
 "name": "php-app",
 "host": {
 "sourcePath": "/var/app/
current/php-app"
 }
 },
 {
 "name": "nginx-proxy-conf",
 "host": {

ECS managed platform branch 135

https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/compose-file/

AWS Elastic Beanstalk Developer Guide

docker-compose.yml Dockerrun.aws.json v2

 image: "nginx"
 ports:
 - "80:80"
 volumes:
 - "./php-app:/var/www/html:ro
"
 - "./proxy/conf.d:/etc/nginx/
conf.d:ro"
 - "${EB_LOG_BASE_DIR}/nginx-p
roxy:/var/log/nginx"
 mem_limit: 128m
 links:
 - php-app

 "sourcePath": "/var/app/
current/proxy/conf.d"
 }
 }
],
 "containerDefinitions": [
 {
 "name": "php-app",
 "image": "php:fpm",
 "environment": [
 {
 "name": "Container",
 "value": "PHP"
 }
],
 "essential": true,
 "memory": 128,
 "mountPoints": [
 {
 "sourceVolume": "php-app"
,
 "containerPath": "/var/www
/html",
 "readOnly": true
 }
]
 },
 {
 "name": "nginx-proxy",
 "image": "nginx",
 "essential": true,
 "memory": 128,
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80
 }
],
 "links": [
 "php-app"
],
 "mountPoints": [

ECS managed platform branch 136

AWS Elastic Beanstalk Developer Guide

docker-compose.yml Dockerrun.aws.json v2

 {
 "sourceVolume": "php-app"
,
 "containerPath": "/var/www
/html",
 "readOnly": true
 },
 {
 "sourceVolume": "nginx-pr
oxy-conf",
 "containerPath": "/etc/ngi
nx/conf.d",
 "readOnly": true
 },
 {
 "sourceVolume": "awseb-lo
gs-nginx-proxy",
 "containerPath": "/var/log
/nginx"
 }
]
 }
]
}

Additional Migration Considerations

The Docker Amazon Linux 2 platform and Multi-container Docker Amazon Linux AMI platform
implement environment properties differently. These two platforms also have different log
directories that Elastic Beanstalk creates for each of their containers. After you migrate from the
Amazon Linux AMI Multi-container Docker platform, you will need to be aware of these different
implementations for your new Amazon Linux 2 Docker platform environment.

ECS managed platform branch 137

AWS Elastic Beanstalk Developer Guide

Area Docker platform on Amazon Linux 2
with Docker Compose

Multi-container Docker platform on
Amazon Linux AMI

Environme
nt
properties

In order for your containers to access
environment properties you must
add a reference to the .env file in
the docker-compose.yml file.
Elastic Beanstalk generates the .env
file, listing each of the properties
as environment variables. For more
information see Referencing environme
nt variables in containers.

Elastic Beanstalk can directly pass
environment properties to the
container. Your code running in the
container can access these properties
as environment variables without any
additional configuration.

Log
directories

For each container Elastic Beanstalk
creates a log directory called /var/
log/eb-docker/containe
rs/ <service name> (or ${EB_LOG_
BASE_DIR}/<service name>). For
more information see Docker container
customized logging (Docker Compose).

For each container, Elastic Beanstalk
creates a log directory called /var/
log/containers/ <containe
rname> . For more information see
mountPoints field in Container
definition format.

Migration Steps

To migrate to the Amazon Linux 2 Docker platform

1. Create the docker-compose.yml file for your application, based on its existing
Dockerrun.aws.json v2 file. For more information see the above section The docker-
compose.yml file.

2. In your application project folder's root directory, replace the Dockerrun.aws.json v2 file
with the docker-compose.yml you just created.

Your directory structure should be as follows.

~/myApplication
|-- docker-compose.yml
|-- .ebextensions
|-- php-app

ECS managed platform branch 138

AWS Elastic Beanstalk Developer Guide

|-- proxy

3. Use the eb init command to configure your local directory for deployment to Elastic Beanstalk.

~/myApplication$ eb init -p docker application-name

4. Use the eb create command to create an environment and deploy your Docker image.

~/myApplication$ eb create environment-name

5. If your app is a web application, after your environment launches, use the eb open command
to view it in a web browser.

~/myApplication$ eb open environment-name

6. You can display the status of your newly created environment using the eb status command.

~/myApplication$ eb status environment-name

Preconfigured Docker containers (Amazon Linux AMI)

Note

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired. For more information about migrating to a current and fully
supported Amazon Linux 2023 platform branch, see Migrating your Elastic Beanstalk Linux
application to Amazon Linux 2023 or Amazon Linux 2.

The Preconfigured Docker GlassFish platform branch that runs on the Amazon Linux AMI (AL1) is
no longer supported. To migrate your GlassFish application to a supported Amazon Linux 2023
platform, deploy GlassFish and your application code to an Amazon Linux 2023 Docker image. For
more information, see the following topic, the section called “Tutorial - GlassFish on Docker: path
to Amazon Linux 2023”.

Preconfigured containers 139

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

Getting started with preconfigured Docker containers - on Amazon Linux AMI (preceding
Amazon Linux 2)

This section shows you how to develop an example application locally and then deploy your
application to Elastic Beanstalk with a preconfigured Docker container.

Set up your local development environment

For this walk-through we use a GlassFish example application.

To set up your environment

1. Create a new folder for the example application.

~$ mkdir eb-preconf-example
~$ cd eb-preconf-example

2. Download the example application code into the new folder.

~$ wget https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/docker-
glassfish-v1.zip
~$ unzip docker-glassfish-v1.zip
~$ rm docker-glassfish-v1.zip

Develop and test locally

To develop an example GlassFish application

1. Add a Dockerfile to your application’s root folder. In the file, specify the AWS Elastic
Beanstalk Docker base image to be used to run your local preconfigured Docker container.
You'll later deploy your application to an Elastic Beanstalk Preconfigured Docker GlassFish
platform version. Choose the Docker base image that this platform version uses. To find out
the current Docker image of the platform version, see the Preconfigured Docker section of the
AWS Elastic Beanstalk Supported Platforms page in the AWS Elastic Beanstalk Platforms guide.

Example ~/Eb-preconf-example/Dockerfile

For Glassfish 5.0 Java 8
FROM amazon/aws-eb-glassfish:5.0-al-onbuild-2.11.1

Preconfigured containers 140

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.dockerpreconfig

AWS Elastic Beanstalk Developer Guide

For more information about using a Dockerfile, see Docker configuration.

2. Build the Docker image.

~/eb-preconf-example$ docker build -t my-app-image .

3. Run the Docker container from the image.

Note

You must include the -p flag to map port 8080 on the container to the localhost port
3000. Elastic Beanstalk Docker containers always expose the application on port 8080
on the container. The -it flags run the image as an interactive process. The --rm flag
cleans up the container file system when the container exits. You can optionally include
the -d flag to run the image as a daemon.

$ docker run -it --rm -p 3000:8080 my-app-image

4. To view the example application, type the following URL into your web browser.

http://localhost:3000

Preconfigured containers 141

AWS Elastic Beanstalk Developer Guide

Deploy to Elastic Beanstalk

After testing your application, you are ready to deploy it to Elastic Beanstalk.

To deploy your application to Elastic Beanstalk

1. In your application's root folder, rename the Dockerfile to Dockerfile.local. This step
is required for Elastic Beanstalk to use the Dockerfile that contains the correct instructions
for Elastic Beanstalk to build a customized Docker image on each Amazon EC2 instance in your
Elastic Beanstalk environment.

Note

You do not need to perform this step if your Dockerfile includes instructions
that modify the platform version's base Docker image. You do not need to use a
Dockerfile at all if your Dockerfile includes only a FROM line to specify the
base image from which to build the container. In that situation, the Dockerfile is
redundant.

2. Create an application source bundle.

~/eb-preconf-example$ zip myapp.zip -r *

3. Open the Elastic Beanstalk console with this preconfigured link:
console.aws.amazon.com/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

4. For Platform, under Preconfigured – Docker, choose Glassfish.

5. For Application code, choose Upload your code, and then choose Upload.

6. Choose Local file, choose Browse, and then open the application source bundle you just
created.

7. Choose Upload.

8. Choose Review and launch.

9. Review the available settings, and then choose Create app.

10. When the environment is created, you can view the deployed application. Choose the
environment URL that is displayed at the top of the console dashboard.

Preconfigured containers 142

https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

AWS Elastic Beanstalk Developer Guide

Deploying a GlassFish application to the Docker platform: a migration path to
Amazon Linux 2023

The goal of this tutorial is to provide customers using the Preconfigured Docker GlassFish platform
(based on Amazon Linux AMI) with a migration path to Amazon Linux 2023. You can migrate your
GlassFish application to Amazon Linux 2023 by deploying GlassFish and your application code to
an Amazon Linux 2023 Docker image.

The tutorial walks you through using the AWS Elastic Beanstalk Docker platform to deploy an
application based on the Java EE GlassFish application server to an Elastic Beanstalk environment.

We demonstrate two approaches to building a Docker image:

• Simple – Provide your GlassFish application source code and let Elastic Beanstalk build and
run a Docker image as part of provisioning your environment. This is easy to set up, at a cost of
increased instance provisioning time.

• Advanced – Build a custom Docker image containing your application code and dependencies,
and provide it to Elastic Beanstalk to use in your environment. This approach is slightly more
involved, and decreases the provisioning time of instances in your environment.

Prerequisites

This tutorial assumes that you have some knowledge of basic Elastic Beanstalk operations, the
Elastic Beanstalk command line interface (EB CLI), and Docker. If you haven't already, follow
the instructions in Getting started using Elastic Beanstalk to launch your first Elastic Beanstalk
environment. This tutorial uses the EB CLI, but you can also create environments and upload
applications by using the Elastic Beanstalk console.

To follow this tutorial, you will also need the following Docker components:

• A working local installation of Docker. For more information, see Get Docker on the Docker
documentation website.

• Access to Docker Hub. You will need to create a Docker ID to access the Docker Hub. For more
information, see Share the application on the Docker documentation website.

To learn more about configuring Docker environments on Elastic Beanstalk platforms, see Docker
configuration in this same chapter.

Preconfigured containers 143

https://www.oracle.com/middleware/technologies/glassfish-server.html
https://docs.docker.com/install/
https://docs.docker.com/get-started/04_sharing_app/

AWS Elastic Beanstalk Developer Guide

Simple example: provide your application code

This is an easy way to deploy your GlassFish application. You provide your application source code
together with the Dockerfile included in this tutorial. Elastic Beanstalk builds a Docker image
that includes your application and the GlassFish software stack. Then Elastic Beanstalk runs the
image on your environment instances.

An issue with this approach is that Elastic Beanstalk builds the Docker image locally whenever it
creates an instance for your environment. The image build increases instance provisioning time.
This impact isn't limited to initial environment creation—it happens during scale-out actions too.

To launch an environment with an example GlassFish application

1. Download the example docker-glassfish-al2-v1.zip, and then expand the .zip file
into a directory in your development environment.

~$ curl https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/docker-
glassfish-al2-v1.zip --output docker-glassfish-al2-v1.zip
~$ mkdir glassfish-example
~$ cd glassfish-example
~/glassfish-example$ unzip ../docker-glassfish-al2-v1.zip

Your directory structure should be as follows.

~/glassfish-example
|-- Dockerfile
|-- Dockerrun.aws.json
|-- glassfish-start.sh
|-- index.jsp
|-- META-INF
| |-- LICENSE.txt
| |-- MANIFEST.MF
| `-- NOTICE.txt
|-- robots.txt
`-- WEB-INF
 `-- web.xml

The following files are key to building and running a Docker container in your environment:

• Dockerfile – Provides instructions that Docker uses to build an image with your
application and required dependencies.

Preconfigured containers 144

AWS Elastic Beanstalk Developer Guide

• glassfish-start.sh – A shell script that the Docker image runs to start your application.

• Dockerrun.aws.json – Provides a logging key, to include the GlassFish application server
log in log file requests. If you aren't interested in GlassFish logs, you can omit this file.

2. Configure your local directory for deployment to Elastic Beanstalk.

~/glassfish-example$ eb init -p docker glassfish-example

3. (Optional) Use the eb local run command to build and run your container locally.

~/glassfish-example$ eb local run --port 8080

Note

To learn more about the eb local command, see the section called “eb local”. The
command isn't supported on Windows. Alternatively, you can build and run your
container with the docker build and docker run commands. For more information, see
the Docker documentation.

4. (Optional) While your container is running, use the eb local open command to view your
application in a web browser. Alternatively, open http://localhost:8080/ in a web browser.

~/glassfish-example$ eb local open

5. Use the eb create command to create an environment and deploy your application.

~/glassfish-example$ eb create glassfish-example-env

6. After your environment launches, use the eb open command to view it in a web browser.

~/glassfish-example$ eb open

When you're done working with the example, terminate the environment and delete related
resources.

~/glassfish-example$ eb terminate --all

Preconfigured containers 145

https://docs.docker.com/
http://localhost:8080/

AWS Elastic Beanstalk Developer Guide

Advanced example: provide a prebuilt Docker image

This is a more advanced way to deploy your GlassFish application. Building on the first example,
you create a Docker image containing your application code and the GlassFish software stack,
and push it to Docker Hub. After you've done this one-time step, you can launch Elastic Beanstalk
environments based on your custom image.

When you launch an environment and provide your Docker image, instances in your environment
download and use this image directly and don't need to build a Docker image. Therefore, instance
provisioning time is decreased.

Notes

• The following steps create a publicly available Docker image.

• You will use Docker commands from your local Docker installation, along with your
Docker Hub credentials. For more information, see the preceding Prerequisites section.

To launch an environment with a prebuilt GlassFish application Docker image

1. Download and expand the example docker-glassfish-al2-v1.zip as in the previous
simple example. If you've completed that example, you can use the directory you already have.

2. Build a Docker image and push it to Docker Hub. Enter your Docker ID for docker-id to sign
in to Docker Hub.

~/glassfish-example$ docker build -t docker-id/beanstalk-glassfish-example:latest .
~/glassfish-example$ docker push docker-id/beanstalk-glassfish-example:latest

Note

Before pushing your image, you might need to run docker login. You will be prompted
for your Docker Hub credentials if you run the command without parameters.

3. Create an additional directory.

~$ mkdir glassfish-prebuilt
~$ cd glassfish-prebuilt

Preconfigured containers 146

AWS Elastic Beanstalk Developer Guide

4. Copy the following example into a file named Dockerrun.aws.json.

Example ~/glassfish-prebuilt/Dockerrun.aws.json

{
 "AWSEBDockerrunVersion": "1",
 "Image": {
 "Name": "docker-username/beanstalk-glassfish-example"
 },
 "Ports": [
 {
 "ContainerPort": 8080,
 "HostPort": 8080
 }
],
 "Logging": "/usr/local/glassfish5/glassfish/domains/domain1/logs"
}

5. Configure your local directory for deployment to Elastic Beanstalk.

~/glassfish-prebuilt$ eb init -p docker glassfish-prebuilt$

6. (Optional) Use the eb local run command to run your container locally.

~/glassfish-prebuilt$ eb local run --port 8080

7. (Optional) While your container is running, use the eb local open command to view your
application in a web browser. Alternatively, open http://localhost:8080/ in a web browser.

~/glassfish-prebuilt$ eb local open

8. Use the eb create command to create an environment and deploy your Docker image.

~/glassfish-prebuilt$ eb create glassfish-prebuilt-env

9. After your environment launches, use the eb open command to view it in a web browser.

~/glassfish-prebuilt$ eb open

When you're done working with the example, terminate the environment and delete related
resources.

Preconfigured containers 147

http://localhost:8080/

AWS Elastic Beanstalk Developer Guide

~/glassfish-prebuilt$ eb terminate --all

Configuring Docker environments

There are several ways to configure the behavior of your Elastic Beanstalk Docker environment.

Note

If your Elastic Beanstalk environment uses an Amazon Linux AMI Docker platform version
(preceding Amazon Linux 2), be sure to read the additional information in the section called
“Docker configuration on Amazon Linux AMI (preceding Amazon Linux 2)”.

Sections

• Configuring software in Docker environments

• Referencing environment variables in containers

• Using interpolate feature for environment variables (Docker Compose)

• Generating logs for enhanced health reporting (Docker Compose)

• Docker container customized logging (Docker Compose)

• Docker images

• Configuring managed updates for Docker environments

• Docker configuration namespaces

• Docker configuration on Amazon Linux AMI (preceding Amazon Linux 2)

Configuring software in Docker environments

You can use the Elastic Beanstalk console to configure the software running on your environment's
instances.

To configure your Docker environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Environment configuration 148

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Make necessary configuration changes.

6. To save the changes choose Apply at the bottom of the page.

For information about configuring software settings in any environment, see the section called
“Environment properties and software settings”. The following sections cover Docker specific
information.

Container options

The Container options section has platform-specific options. For Docker environments, it lets you
choose whether or not your environment includes the NGINX proxy server.

Environments with Docker Compose

If you manage your Docker environment with Docker Compose, Elastic Beanstalk assumes that you
run a proxy server as a container. Therefore it defaults to None for the Proxy server setting, and
Elastic Beanstalk does not provide an NGINX configuration.

Note

Even if you select NGINX as a proxy server, this setting is ignored in an environment with
Docker Compose. The Proxy server setting still defaults to None.

Since the NGINX web server proxy is disabled for the Docker on Amazon Linux 2 platform with
Docker Compose, you must follow the instructions for generating logs for enhanced health
reporting. For more information, see Generating logs for enhanced health reporting (Docker
Compose).

Environment configuration 149

AWS Elastic Beanstalk Developer Guide

Environment properties and Environment Variables

The Environment properties section lets you specify environment configuration settings on
the Amazon Elastic Compute Cloud (Amazon EC2) instances that are running your application.
Environment properties are passed in as key-value pairs to the application. In a Docker
environment, Elastic Beanstalk passes environment properties to containers as environment
variables.

Your application code running in a container can refer to an environment variable by name and
read its value. The source code that reads these environment variables will vary by progamming
language. You can find instructions for reading environment variable values in the programming
languages that Elastic Beanstalk managed platforms support in the respective platform topic. For a
list of links to these topics, see the section called “Environment properties and software settings”.

Environments with Docker Compose

If you manage your Docker environment with Docker Compose, you must make some additional
configuration to retrieve the environment variables in the containers. In order for the executables
running in your container to access these environment variables, you must reference them in
the docker-compose.yml. For more information see Referencing environment variables in
containers.

Referencing environment variables in containers

If you are using the Docker Compose tool on the Amazon Linux 2 Docker platform, Elastic
Beanstalk generates a Docker Compose environment file called .env in the root directory of your
application project. This file stores the environment variables you configured for Elastic Beanstalk.

Note

If you include a .env file in your application bundle, Elastic Beanstalk will not generate an
.env file.

In order for a container to reference the environment variables you define in Elastic Beanstalk, you
must follow one or both of these configuration approaches.

• Add the .env file generated by Elastic Beanstalk to the env_file configuration option in the
docker-compose.yml file.

Environment configuration 150

AWS Elastic Beanstalk Developer Guide

• Directly define the environment variables in the docker-compose.yml file.

The following files provide an example. The sample docker-compose.yml file demonstrates both
approaches.

• If you define environment properties DEBUG_LEVEL=1 and LOG_LEVEL=error, Elastic
Beanstalk generates the following .env file for you:

DEBUG_LEVEL=1
LOG_LEVEL=error

• In this docker-compose.yml file, the env_file configuration option points to the .env file,
and it also defines the environment variable DEBUG=1 directly in the docker-compose.yml file.

services:
 web:
 build: .
 environment:
 - DEBUG=1
 env_file:
 - .env

Notes

• If you set the same environment variable in both files, the variable defined in the
docker-compose.yml file has higher precedence than the variable defined in the .env
file.

• Be careful to not leave spaces between the equal sign (=) and the value assigned to your
variable in order to prevent spaces from being added to the string.

To learn more about environment variables in Docker Compose, see Environment variables in
Compose

Using interpolate feature for environment variables (Docker Compose)

Starting with the July 28, 2023 platform release, the Docker Amazon Linux 2 platform branch
offers the Docker Compose interpolation feature. With this feature, values in a Compose file can

Environment configuration 151

https://docs.docker.com/compose/environment-variables/
https://docs.docker.com/compose/environment-variables/
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2023-07-28-al2.html

AWS Elastic Beanstalk Developer Guide

be set by variables and interpolated at runtime. For more information about this feature, see
Interpolation on the Docker documentation website.

Important

If you'd like to use this feature with your applications, be aware that you'll need to
implement an approach that uses platform hooks.
This is necessary due a mitigation that we implemented in the platform engine. This
mitigation ensures backward compatibility for customers that aren't aware of the new
interpolation feature and have existing applications that use environment variables with
the $ character. The updated platform engine escapes the interpolation by default by
replacing the $ character with $$ characters.

The following is an example of a platform hook script that you can set up to allow use of the
interpolation feature.

#!/bin/bash

: '
example data format in .env file
key1=value1
key2=value2
'
envfile="/var/app/staging/.env"
tempfile=$(mktemp)

while IFS= read -r line; do
 # split each env var string at '='
 split_str=(${line//=/ })
 if [${#split_str[@]} -eq 2]; then
 # replace '$$' with '$'
 replaced_str=${split_str[1]//\$\$/\$}
 # update the value of env var using ${replaced_str}
 line="${split_str[0]}=${replaced_str}"
 fi
 # append the updated env var to the tempfile
 echo "${line}" #"${tempfile}"
done < "${envfile}"
replace the original .env file with the tempfile
mv "${tempfile}" "${envfile}"

Environment configuration 152

https://docs.docker.com/compose/compose-file/12-interpolation/

AWS Elastic Beanstalk Developer Guide

Place the platform hooks under both of these directories:

• .platform/confighooks/predeploy/

• .platform/hooks/predeploy/

For more information, see Platform hooks in the Extending Linux platforms topic of this guide.

Generating logs for enhanced health reporting (Docker Compose)

The Elastic Beanstalk health agent provides operating system and application health metrics for
Elastic Beanstalk environments. It relies on web server log formats that relay information in a
specific format.

Elastic Beanstalk assumes that you run a web server proxy as a container. As a result the NGINX
web server proxy is disabled for Docker environments running Docker Compose. You must
configure your server to write logs in the location and format that the Elastic Beanstalk health
agent uses. Doing so allows you to make full use of enhanced health reporting, even if the web
server proxy is disabled.

For instructions on how to do this, see Web server log configuration

Docker container customized logging (Docker Compose)

In order to efficiently troubleshoot issues and monitor your containerized services, you can request
instance logs from Elastic Beanstalk through the environment management console or the EB CLI.
Instance logs are comprised of bundle logs and tail logs, combined and packaged to allow you to
view logs and recent events in an efficient and straightforward manner.

Elastic Beanstalk creates log directories on the container instance, one for each service defined in
the docker-compose.yml file, at /var/log/eb-docker/containers/<service name>. If
you are using the Docker Compose feature on the Amazon Linux 2 Docker platform, you can mount
these directories to the location within the container file structure where logs are written. When
you mount log directories for writing log data, Elastic Beanstalk can gather log data from these
directories.

If your applications are on a Docker platform that is not using Docker Compose, you can follow the
standard procedure desribed in Docker container customized logging (Docker Compose).

Environment configuration 153

AWS Elastic Beanstalk Developer Guide

To configure your service's logs files to be retreivable tail files and bundle logs

1. Edit the docker-compose.yml file.

2. Under the volumes key for your service add a bind mount to be the following:

"${EB_LOG_BASE_DIR}/<service name>:<log directory inside container>

In the sample docker-compose.yml file below:

• nginx-proxy is <service name>

• /var/log/nginx is <log directory inside container>

services:
 nginx-proxy:
 image: "nginx"
 volumes:
 - "${EB_LOG_BASE_DIR}/nginx-proxy:/var/log/nginx"

• The var/log/nginx directory contains the logs for the nginx-proxy service in the container, and
it will be mapped to the /var/log/eb-docker/containers/nginx-proxy directory on the
host.

• All of the logs in this directory are now retrievable as bundle and tail logs through Elastic
Beanstalk's request instance logs functionality.

Notes

• ${EB_LOG_BASE_DIR} is an environment variable set by Elastic Beanstalk with the value /
var/log/eb-docker/containers.

• Elastic Beanstalk automatically creates the /var/log/eb-docker/
containers/<service name> directory for each service in the docker-
compose.ymlfile.

Environment configuration 154

AWS Elastic Beanstalk Developer Guide

Docker images

The Docker and ECS managed Docker platform branches for Elastic Beanstalk support the use of
Docker images stored in a public or private online image repository.

Specify images by name in Dockerrun.aws.json. Note these conventions:

• Images in official repositories on Docker Hub use a single name (for example, ubuntu or mongo).

• Images in other repositories on Docker Hub are qualified with an organization name (for
example, amazon/amazon-ecs-agent).

• Images in other online repositories are qualified further by a domain name (for example,
quay.io/assemblyline/ubuntu or account-id.dkr.ecr.us-east-2.amazonaws.com/
ubuntu:trusty).

For environments using the Docker platform only, you can also build your own image during
environment creation with a Dockerfile. See Building custom images with a Dockerfile for details.
The Multi-container Docker platform doesn't support this functionality.

Using images from an Amazon ECR repository

You can store your custom Docker images in AWS with Amazon Elastic Container Registry (Amazon
ECR). When you store your Docker images in Amazon ECR, Elastic Beanstalk automatically
authenticates to the Amazon ECR registry with your environment's instance profile, so you don't
need to generate an authentication file and upload it to Amazon Simple Storage Service (Amazon
S3).

You do, however, need to provide your instances with permission to access the images in your
Amazon ECR repository by adding permissions to your environment's instance profile. You can
attach the AmazonEC2ContainerRegistryReadOnly managed policy to the instance profile to
provide read-only access to all Amazon ECR repositories in your account, or grant access to single
repository by using the following template to create a custom policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowEbAuth",
 "Effect": "Allow",

Environment configuration 155

https://aws.amazon.com/ecr
https://docs.aws.amazon.com/AmazonECR/latest/userguide/ecr_managed_policies.html#AmazonEC2ContainerRegistryReadOnly

AWS Elastic Beanstalk Developer Guide

 "Action": [
 "ecr:GetAuthorizationToken"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "AllowPull",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:ecr:us-east-2:account-id:repository/repository-name"
],
 "Action": [
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:GetRepositoryPolicy",
 "ecr:DescribeRepositories",
 "ecr:ListImages",
 "ecr:BatchGetImage"
]
 }
]
 }

Replace the Amazon Resource Name (ARN) in the above policy with the ARN of your repository.

In your Dockerrun.aws.json file, refer to the image by URL. For the Docker platform, the URL
goes in the Image definition:

 "Image": {
 "Name": "account-id.dkr.ecr.us-east-2.amazonaws.com/repository-name:latest",
 "Update": "true"
 },

For the Multi-container Docker platform, use the image key in a container definition object:

"containerDefinitions": [
 {
 "name": "my-image",
 "image": "account-id.dkr.ecr.us-east-2.amazonaws.com/repository-name:latest",

Environment configuration 156

AWS Elastic Beanstalk Developer Guide

Using images from a private repository

To use a Docker image in a private repository hosted by an online registry, you must provide an
authentication file that contains information required to authenticate with the registry.

Generate an authentication file with the docker login command. For repositories on Docker Hub,
run docker login:

$ docker login

For other registries, include the URL of the registry server:

$ docker login registry-server-url

Note

If your Elastic Beanstalk environment uses an Amazon Linux AMI Docker platform version
(preceding Amazon Linux 2), read the additional information in the section called “Docker
configuration on Amazon Linux AMI (preceding Amazon Linux 2)”.

Upload a copy named .dockercfg of the authentication file to a secure Amazon S3 bucket. The
Amazon S3 bucket must be hosted in the same AWS Region as the environment that is using it.
Elastic Beanstalk cannot download files from an Amazon S3 bucket hosted in other Regions. Grant
permissions for the s3:GetObject operation to the IAM role in the instance profile. For details,
see Managing Elastic Beanstalk instance profiles.

Include the Amazon S3 bucket information in the Authentication (v1) or authentication (v2)
parameter in your Dockerrun.aws.json file.

For more information about the Dockerrun.aws.json format for Docker environments, see
Docker configuration. For multi-container environments, see ECS managed Docker configuration.

For more information about the authentication file, see Store images on Docker Hub and docker
login on the Docker website.

Configuring managed updates for Docker environments

With managed platform updates, you can configure your environment to automatically update to
the latest version of a platform on a schedule.

Environment configuration 157

https://docs.docker.com/docker-hub/repos/
https://docs.docker.com/engine/reference/commandline/login/
https://docs.docker.com/engine/reference/commandline/login/

AWS Elastic Beanstalk Developer Guide

In the case of Docker environments, you might want to decide if an automatic platform update
should happen across Docker versions—when the new platform version includes a new Docker
version. Elastic Beanstalk supports managed platform updates across Docker versions when
updating from an environment running a Docker platform version newer than 2.9.0. When a
new platform version includes a new version of Docker, Elastic Beanstalk increments the minor
update version number. Therefore, to allow managed platform updates across Docker versions,
enable managed platform updates for both minor and patch version updates. To prevent managed
platform updates across Docker versions, enable managed platform updates to apply patch version
updates only.

For example, the following configuration file enables managed platform updates at 9:00 AM UTC
each Tuesday for both minor and patch version updates, thereby allowing for managed updates
across Docker versions:

Example .ebextensions/managed-platform-update.config

option_settings:
 aws:elasticbeanstalk:managedactions:
 ManagedActionsEnabled: true
 PreferredStartTime: "Tue:09:00"
 aws:elasticbeanstalk:managedactions:platformupdate:
 UpdateLevel: minor

For environments running Docker platform versions 2.9.0 or earlier, Elastic Beanstalk never
performs managed platform updates if the new platform version includes a new Docker version.

Docker configuration namespaces

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

Note

This information only applies to Docker environment that are not running Docker Compose.
This option has a different behavior with Docker environments that run Docker Compose.
For further information on proxy services with Docker Compose see Container options.

Environment configuration 158

AWS Elastic Beanstalk Developer Guide

The Docker platform supports options in the following namespaces, in addition to the options
supported for all Elastic Beanstalk environments:

• aws:elasticbeanstalk:environment:proxy – Choose the proxy server for your
environment. Docker supports either running Nginx or no proxy server.

The following example configuration file configures a Docker environment to run no proxy server.

Example .ebextensions/docker-settings.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:
 ProxyServer: none

Docker configuration on Amazon Linux AMI (preceding Amazon Linux 2)

If your Elastic Beanstalk Docker environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

Using an authentication file for a private repository

This information is relevant to you if you are using images from a private repository. Beginning
with Docker version 1.7, the docker login command changed the name of the authentication file,
and the format of the file. Amazon Linux AMI Docker platform versions (preceding Amazon Linux 2)
require the older ~/.dockercfg format configuration file.

With Docker version 1.7 and later, the docker login command creates the authentication file in
~/.docker/config.json in the following format.

{
 "auths":{
 "server":{
 "auth":"key"
 }
 }
 }

With Docker version 1.6.2 and earlier, the docker login command creates the authentication file in
~/.dockercfg in the following format.

{

Environment configuration 159

AWS Elastic Beanstalk Developer Guide

 "server" :
 {
 "auth" : "auth_token",
 "email" : "email"
 }
 }

To convert a config.json file, remove the outer auths key, add an email key, and flatten the
JSON document to match the old format.

On Amazon Linux 2 Docker platform versions, Elastic Beanstalk uses the newer authentication
file name and format. If you're using an Amazon Linux 2 Docker platform version, you can use the
authentication file that the docker login command creates without any conversion.

Configuring additional storage volumes

For improved performance on Amazon Linux AMI, Elastic Beanstalk configures two Amazon EBS
storage volumes for your Docker environment's Amazon EC2 instances. In addition to the root
volume provisioned for all Elastic Beanstalk environments, a second 12GB volume named xvdcz is
provisioned for image storage on Docker environments.

If you need more storage space or increased IOPS for Docker images, you can customize
the image storage volume by using the BlockDeviceMapping configuration option in the
aws:autoscaling:launchconfiguration namespace.

For example, the following configuration file increases the storage volume's size to 100 GB with
500 provisioned IOPS:

Example .ebextensions/blockdevice-xvdcz.config

option_settings:
 aws:autoscaling:launchconfiguration:
 BlockDeviceMappings: /dev/xvdcz=:100::io1:500

If you use the BlockDeviceMappings option to configure additional volumes for your
application, you should include a mapping for xvdcz to ensure that it is created. The following
example configures two volumes, the image storage volume xvdcz with default settings and an
additional 24 GB application volume named sdh:

Example .ebextensions/blockdevice-sdh.config

option_settings:

Environment configuration 160

AWS Elastic Beanstalk Developer Guide

 aws:autoscaling:launchconfiguration:
 BlockDeviceMappings: /dev/xvdcz=:12:true:gp2,/dev/sdh=:24

Note

When you change settings in this namespace, Elastic Beanstalk replaces all instances in
your environment with instances running the new configuration. See Configuration changes
for details.

Creating and deploying Go applications on Elastic Beanstalk

AWS Elastic Beanstalk for Go makes it easy to deploy, manage, and scale your Go web applications
using Amazon Web Services. Elastic Beanstalk for Go is available to anyone developing or hosting
a web application using Go. This chapter provides step-by-step instructions for deploying your web
application to Elastic Beanstalk.

After you deploy your Elastic Beanstalk application, you can continue to use the EB CLI to manage
your application and environment, or you can use the Elastic Beanstalk console, AWS CLI, or the
APIs.

The topics in this chapter assume that you have some knowledge of Elastic Beanstalk
environments. If you haven't used Elastic Beanstalk before, try the getting started tutorial to learn
the basics.

Topics

• Getting started with Go on Elastic Beanstalk

• Setting up your Go development environment

• Using the Elastic Beanstalk Go platform

• Deploying a Go application to Elastic Beanstalk

Getting started with Go on Elastic Beanstalk

To get started with Go applications on AWS Elastic Beanstalk, all you need is an application source
bundle to upload as your first application version, and deploy it to an environment. When you
create an environment, Elastic Beanstalk allocates all of the AWS resources needed to run a highly
scalable web application.

Working with Go 161

AWS Elastic Beanstalk Developer Guide

Launching an environment with a sample Go application

Elastic Beanstalk provides single-page sample applications for each platform. Elastic Beanstalk also
provides more complex examples that show the use of additional AWS resources, such as Amazon
RDS, and language or platform-specific features and APIs.

Samples

Supported
configura
tions

Environme
nt type

Source
bundle

Description

Go Web
server

go.zip Single page application.

Download the sample application and deploy it to Elastic Beanstalk by following these steps.

To launch an environment with a sample application (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose an existing application's name in
the list or create one.

3. On the application overview page, choose Create new environment.

This launches the Create environment wizard. The wizard provides a set of steps for you to
create a new environment.

Getting started 162

samples/go.zip
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Getting started 163

AWS Elastic Beanstalk Developer Guide

4. For environment tier, choose the Web server environment or Worker environment
environment tier. You can't change an environment's tier after creation.

Note

The .NET on Windows Server platform doesn't support the worker environment tier.

5. For Platform, select the platform and platform branch that match the language your
application uses.

Note

Elastic Beanstalk supports multiple versions for most of the platforms that are
listed. By default, the console selects the recommended version for the platform and
platform branch you choose. If your application requires a different version, you can
select it here. For information about supported platform versions, see the section
called “Supported platforms”.

6. For Application code, choose Sample application.

7. For Configuration presets, choose Single instance.

8. Choose Next.

9. The Configure service access page displays.

Getting started 164

AWS Elastic Beanstalk Developer Guide

10. Choose Use an existing service role for Service Role.

11. Next, we'll focus on the EC2 instance profile dropdown list. The values displayed in this
dropdown list may vary, depending on whether you account has previously created a new
environment.

Choose one of the following, based on the values displayed in your list.

• If aws-elasticbeanstalk-ec2-role displays in the dropdown list, select it from the
EC2 instance profile dropdown list.

• If another value displays in the list, and it’s the default EC2 instance profile intended for
your environments, select it from the EC2 instance profile dropdown list.

• If the EC2 instance profile dropdown list doesn't list any values to choose from, expand
the procedure that follows, Create IAM Role for EC2 instance profile.

Complete the steps in Create IAM Role for EC2 instance profile to create an IAM Role that
you can subsequently select for the EC2 instance profile. Then return back to this step.

Now that you've created an IAM Role, and refreshed the list, it displays as a choice in
the dropdown list. Select the IAM Role you just created from the EC2 instance profile
dropdown list.

Getting started 165

AWS Elastic Beanstalk Developer Guide

12. Choose Skip to Review on the Configure service access page.

This will select the default values for this step and skip the optional steps.

13. The Review page displays a summary of all your choices.

To further customize your environment, choose Edit next to the step that includes any items
you want to configure. You can set the following options only during environment creation:

• Environment name

• Domain name

• Platform version

• Processor

• VPC

• Tier

You can change the following settings after environment creation, but they require new
instances or other resources to be provisioned and can take a long time to apply:

• Instance type, root volume, key pair, and AWS Identity and Access Management (IAM) role

• Internal Amazon RDS database

• Load balancer

For details on all available settings, see The create new environment wizard.

14. Choose Submit at the bottom of the page to initialize the creation of your new environment.

Getting started 166

AWS Elastic Beanstalk Developer Guide

Create IAM Role for EC2 instance profile

To create a an IAM Role for EC2 instance profile selection

1. Choose View permission details. This displays under the EC2 instance profile dropdown list.

A modal window titled View instance profile permissions displays. This window lists the
managed profiles that you'll need to attach to the new EC2 instance profile that you create. It
also provides a link to launch the IAM console.

2. Choose the IAM console link displayed at the top of the window.

3. In the IAM console navigation pane, choose Roles.

4. Choose Create role.

5. Under Trusted entity type, choose AWS service.

6. Under Use case, choose EC2.

7. Choose Next.

8. Attach the appropriate managed policies. Scroll in the View instance profile permissions
modal window to see the managed policies. The policies are also listed here:

• AWSElasticBeanstalkWebTier

Getting started 167

AWS Elastic Beanstalk Developer Guide

• AWSElasticBeanstalkWorkerTier

• AWSElasticBeanstalkMulticontainerDocker

9. Choose Next.

10. Enter a name for the role.

11. (Optional) Add tags to the role.

12. Choose Create role.

13. Return to the Elastic Beanstalk console window that is open.

14. Close the modal window View instance profile permissions.

Important

Do not close the browser page that displays the Elastic Beanstalk console.

15. Choose

(refresh), next to the EC2 instance profile dropdown list.

This refreshes the dropdown list, so that the Role you just created will display in the dropdown
list.

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a different application at any time. Deploying a new application version is very quick
because it doesn't require provisioning or restarting EC2 instances.

After you deploy a sample application or two and are ready to start developing and running Go
applications locally, see Setting up your Go development environment.

Setting up your Go development environment

Set up a Go development environment to test your application locally before you deploy it to AWS
Elastic Beanstalk. This topic describes the setup steps for your development environment and
provides links to installation pages for useful tools.

For common setup steps and tools that apply to all languages, see Configuring your development
machine for use with Elastic Beanstalk.

Development environment 168

AWS Elastic Beanstalk Developer Guide

Installing Go

To run Go applications locally, install Go. If you don't need a specific version, get the latest version
that Elastic Beanstalk supports. For a list of supported versions, see Go in the AWS Elastic Beanstalk
Platforms document.

Download Go at https://golang.org/doc/install.

Installing the AWS SDK for Go

If you need to manage AWS resources from within your application, install the AWS SDK for Go by
using the following command.

$ go get github.com/aws/aws-sdk-go

For more information, see AWS SDK for Go.

Using the Elastic Beanstalk Go platform

You can use AWS Elastic Beanstalk to run, build, and configure Go-based applications. For simple
Go applications, there are two ways to deploy your application:

• Provide a source bundle with a source file at the root called application.go that contains
the main package for your application. Elastic Beanstalk builds the binary using the following
command:

go build -o bin/application application.go

After the application is built, Elastic Beanstalk starts it on port 5000.

• Provide a source bundle with a binary file called application. The binary file can be located
either at the root of the source bundle or in the bin/ directory of the source bundle. If you
place the application binary file in both locations, Elastic Beanstalk uses the file in the bin/
directory.

Elastic Beanstalk launches this application on port 5000.

In both cases, with Go 1.11 or later, you can also provide module requirements in a file called
go.mod. For more information, see Migrating to Go Modules in the Go blog.

The Go platform 169

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.go
https://golang.org/doc/install
https://aws.amazon.com/sdk-for-go/
https://blog.golang.org/migrating-to-go-modules

AWS Elastic Beanstalk Developer Guide

For more complex Go applications, there are two ways to deploy your application:

• Provide a source bundle that includes your application source files, along with a Buildfile and
a Procfile. The Buildfile includes a command to build the application, and the Procfile includes
instructions to run the application.

• Provide a source bundle that includes your application binary files, along with a Procfile. The
Procfile includes instructions to run the application.

The Go platform includes a proxy server to serve static assets and forward traffic to your
application. You can extend or override the default proxy configuration for advanced scenarios.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called “Extending Linux platforms”.

Configuring your Go environment

The Go platform settings let you fine-tune the behavior of your Amazon EC2 instances. You can
edit the Elastic Beanstalk environment's Amazon EC2 instance configuration using the Elastic
Beanstalk console.

Use the Elastic Beanstalk console to enable log rotation to Amazon S3 and configure variables that
your application can read from the environment.

To configure your Go environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Log options

The Log Options section has two settings:

The Go platform 170

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

• Instance profile – Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Static files

To improve performance, you can use the Static files section to configure the proxy server to serve
static files (for example, HTML or images) from a set of directories inside your web application.
For each directory, you set the virtual path to directory mapping. When the proxy server receives a
request for a file under the specified path, it serves the file directly instead of routing the request
to your application.

For details about configuring static files using configuration files or the Elastic Beanstalk console,
see the section called “Static files”.

Environment properties

The Environment Properties section lets you specify environment configuration settings on the
Amazon EC2 instances that are running your application. Environment properties are passed in as
key-value pairs to the application.

Inside the Go environment running in Elastic Beanstalk, environment variables are accessible using
the os.Getenv function. For example, you could read a property named API_ENDPOINT to a
variable with the following code:

endpoint := os.Getenv("API_ENDPOINT")

See Environment properties and other software settings for more information.

Go configuration namespace

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

The Go platform doesn't define any platform-specific namespaces. You can configure the proxy to
serve static files by using the aws:elasticbeanstalk:environment:proxy:staticfiles
namespace. For details and an example, see the section called “Static files”.

The Go platform 171

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

The Amazon Linux AMI (preceding Amazon Linux 2) Go platform

If your Elastic Beanstalk Go environment uses an Amazon Linux AMI platform version (preceding
Amazon Linux 2), read the additional information in this section.

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Go configuration namespaces — Amazon Linux AMI (AL1)

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

Note

The information in this topic only applies to platform branches based on Amazon Linux AMI
(AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux AMI
(AL1) platform versions and require different configuration settings.

The Amazon Linux AMI Go platform supports one platform-specific configuration
namespace in addition to the namespaces supported by all platforms. The
aws:elasticbeanstalk:container:golang:staticfiles namespace lets you define
options that map paths on your web application to folders in your application source bundle that
contain static content.

The Go platform 172

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

For example, this configuration file tells the proxy server to serve files in the staticimages folder
at the path /images:

Example .ebextensions/go-settings.config

option_settings:
 aws:elasticbeanstalk:container:golang:staticfiles:
 /html: statichtml
 /images: staticimages

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

Configuring the application process with a Procfile

To specify custom commands to start a Go application, include a file called Procfile at the root
of your source bundle.

For details about writing and using a Procfile, expand the Buildfile and Procfile section in the
section called “Extending Linux platforms”.

Example Procfile

web: bin/server
queue_process: bin/queue_processor
foo: bin/fooapp

You must call the main application web, and list it as the first command in your Procfile. Elastic
Beanstalk exposes the main web application on the root URL of the environment; for example,
http://my-go-env.elasticbeanstalk.com.

Elastic Beanstalk also runs any application whose name does not have the web_ prefix, but these
applications are not available from outside of your instance.

Elastic Beanstalk expects processes run from the Procfile to run continuously. Elastic Beanstalk
monitors these applications and restarts any process that terminates. For short-running processes,
use a Buildfile command.

The Go platform 173

AWS Elastic Beanstalk Developer Guide

Using a Procfile on Amazon Linux AMI (preceding Amazon Linux 2)

If your Elastic Beanstalk Go environment uses an Amazon Linux AMI platform version (preceding
Amazon Linux 2), read the additional information in this section.

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Port passing — Amazon Linux AMI (AL1)

Note

The information in this topic only applies to platform branches based on Amazon Linux AMI
(AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux AMI
(AL1) platform versions and require different configuration settings.

Elastic Beanstalk configures the nginx proxy to forward requests to your application on the port
number specified in the PORT environment property for your application. Your application should
always listen on that port. You can access this variable within your application by calling the
os.Getenv("PORT") method.

Elastic Beanstalk uses the port number specified in the PORT environment property for the port for
the first application in the Procfile, and then increments the port number for each subsequent
application in the Procfile by 100. If the PORT environment property is not set, Elastic Beanstalk
uses 5000 for the initial port.

In the preceding example, the PORT environment property for the web application is 5000, the
queue_process application is 5100, and the foo application is 5200.

The Go platform 174

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

You can specify the initial port by setting the PORT option with the
aws:elasticbeanstalk:application:environment namespace, as shown in the following example.

option_settings:
 - namespace: aws:elasticbeanstalk:application:environment
 option_name: PORT
 value: <first_port_number>

For more information about setting environment properties for your application, see Option
settings.

Building executable on-server with a Buildfile

To specify a custom build and configuration command for your Go application, include a file called
Buildfile at the root of your source bundle. The file name is case sensitive. Use the following
format for the Buildfile:

<process_name>: <command>

The command in your Buildfile must match the following regular expression: ^[A-Za-
z0-9_]+:\s*.+$.

Elastic Beanstalk doesn't monitor the application that is run with a Buildfile. Use a Buildfile
for commands that run for short periods and terminate after completing their tasks. For long-
running application processes that should not exit, use the Procfile instead.

In the following example of a Buildfile, build.sh is a shell script that is located at the root of
the source bundle:

make: ./build.sh

All paths in the Buildfile are relative to the root of the source bundle. If you know in advance
where the files reside on the instance, you can include absolute paths in the Buildfile.

Configuring the reverse proxy

Elastic Beanstalk uses nginx as the reverse proxy to map your application to your Elastic Load
Balancing load balancer on port 80. Elastic Beanstalk provides a default nginx configuration that
you can either extend or override completely with your own configuration.

The Go platform 175

AWS Elastic Beanstalk Developer Guide

By default, Elastic Beanstalk configures the nginx proxy to forward requests to your application on
port 5000. You can override the default port by setting the PORT environment property to the port
on which your main application listens.

Note

The port that your application listens on doesn't affect the port that the nginx server
listens to receive requests from the load balancer.

Configuring the proxy server on your platform version

All AL2023/AL2 platforms support a uniform proxy configuration feature. For more information
about configuring the proxy server on your platform versions running AL2023/AL2, expand the
Reverse Proxy Configuration section in the section called “Extending Linux platforms”.

Configuring the proxy on Amazon Linux AMI (preceding Amazon Linux 2)

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

If your Elastic Beanstalk Go environment uses an Amazon Linux AMI platform version (preceding
Amazon Linux 2), read the information in this section.

Extending and overriding the default proxy configuration — Amazon Linux AMI (AL1)

Elastic Beanstalk uses nginx as the reverse proxy to map your application to your load balancer
on port 80. If you want to provide your own nginx configuration, you can override the default
configuration provided by Elastic Beanstalk by including the .ebextensions/nginx/
nginx.conf file in your source bundle. If this file is present, Elastic Beanstalk uses it in place of
the default nginx configuration file.

The Go platform 176

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

If you want to include directives in addition to those in the nginx.conf http block, you can also
provide additional configuration files in the .ebextensions/nginx/conf.d/ directory of your
source bundle. All files in this directory must have the .conf extension.

To take advantage of functionality provided by Elastic Beanstalk, such as Enhanced health
reporting and monitoring, automatic application mappings, and static files, you must include the
following line in the server block of your nginx configuration file:

include conf.d/elasticbeanstalk/*.conf;

Deploying a Go application to Elastic Beanstalk

This tutorial walks you through the process of creating a Go application and deploying it to an AWS
Elastic Beanstalk environment.

Sections

• Prerequisites

• Create a Go application

• Deploy your Go application with the EB CLI

• Clean up

Prerequisites

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Getting started using Elastic
Beanstalk to launch your first Elastic Beanstalk environment.

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows 10, you
can install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and
Bash.

Tutorial for Go 177

https://docs.microsoft.com/en-us/windows/wsl/install-win10

AWS Elastic Beanstalk Developer Guide

This tutorial uses the Elastic Beanstalk Command Line Interface (EB CLI). For details on installing
and configuring the EB CLI, see Install the EB CLI and Configure the EB CLI.

Create a Go application

Create a project directory.

~$ mkdir eb-go
~$ cd eb-go

Next, create an application that you'll deploy using Elastic Beanstalk. We'll create a "Hello World"
RESTful web service.

This example prints a customized greeting that varies based on the path used to access the service.

Create a text file in this directory named application.go with the following contents.

Example ~/eb-go/application.go

package main

import (
 "fmt"
 "net/http"
)

func handler(w http.ResponseWriter, r *http.Request) {
 if r.URL.Path == "/" {
 fmt.Fprintf(w, "Hello World! Append a name to the URL to say hello. For example, use
 %s/Mary to say hello to Mary.", r.Host)
 } else {
 fmt.Fprintf(w, "Hello, %s!", r.URL.Path[1:])
 }
}

func main() {
 http.HandleFunc("/", handler)
 http.ListenAndServe(":5000", nil)
}

Tutorial for Go 178

AWS Elastic Beanstalk Developer Guide

Deploy your Go application with the EB CLI

Next, you create your application environment and deploy your configured application with Elastic
Beanstalk.

To create an environment and deploy your Go application

1. Initialize your EB CLI repository with the eb init command.

~/eb-go$ eb init -p go go-tutorial --region us-east-2
Application go-tutorial has been created.

This command creates an application named go-tutorial, and configures your local
repository to create environments with the latest Go platform version.

2. (Optional) Run eb init again to configure a default key pair so that you can use SSH to connect
to the EC2 instance running your application.

~/eb-go$ eb init
Do you want to set up SSH for your instances?
(y/n): y
Select a keypair.
1) my-keypair
2) [Create new KeyPair]

Select a key pair if you have one already, or follow the prompts to create one. If you don't see
the prompt or need to change your settings later, run eb init -i.

3. Create an environment and deploy your application to it with eb create. Elastic Beanstalk
automatically builds a binary file for your application and starts it on port 5000.

~/eb-go$ eb create go-env

Environment creation takes about five minutes and creates the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either

Tutorial for Go 179

AWS Elastic Beanstalk Developer Guide

Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the AWS CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com
domain is registered in the Public Suffix List (PSL). For further security, we recommend
that you use cookies with a __Host- prefix if you ever need to set sensitive cookies in
the default domain name for your Elastic Beanstalk applications. This practice will help
to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

Tutorial for Go 180

https://console.aws.amazon.com/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk manages all of these resources. When you terminate your environment, Elastic
Beanstalk terminates all the resources that it contains.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

When the environment creation process completes, open your website with eb open.

~/eb-go$ eb open

This opens a browser window using the domain name created for your application.

If you don't see your application running, or get an error message, see Troubleshooting
Deployments for help with how to determine the cause of the error.

If you do see your application running, then congratulations, you've deployed a Go application with
Elastic Beanstalk!

Clean up

When you finish working with Elastic Beanstalk, you can terminate your environment. Elastic
Beanstalk terminates all AWS resources associated with your environment, such as Amazon EC2
instances, database instances, load balancers, security groups, and alarms.

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

Tutorial for Go 181

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

4. Use the on-screen dialog box to confirm environment termination.

With Elastic Beanstalk, you can easily create a new environment for your application at any time.

Or, with the EB CLI, do the following.

~/eb-go$ eb terminate

Creating and deploying Java applications on Elastic Beanstalk

AWS Elastic Beanstalk supports two platforms for Java applications.

• Tomcat – A platform based on Apache Tomcat, an open source web container for applications
that use Java servlets and JavaServer Pages (JSPs) to serve HTTP requests. Tomcat facilitates
web application development by providing multithreading, declarative security configuration,
and extensive customization. Elastic Beanstalk has platform branches for each of Tomcat's
current major versions. For more information, see The Tomcat platform.

• Java SE – A platform for applications that don't use a web container, or use one other than
Tomcat, such as Jetty or GlassFish. You can include any library Java Archives (JARs) used by your
application in the source bundle that you deploy to Elastic Beanstalk. For more information, see
The Java SE platform.

Recent branches of both the Tomcat and Java SE platforms are based on Amazon Linux 2 and later,
and use Corretto—the AWS Java SE distribution. Names of these branches in the platform lists
include the word Corretto instead of Java, for example, Corretto 11 with Tomcat 8.5.

For a list of current platform versions, see Tomcat and Java SE in the AWS Elastic Beanstalk
Platforms guide.

AWS provides several tools for working with Java and Elastic Beanstalk. Regardless of the platform
branch that you choose, you can use the AWS SDK for Java to use other AWS services from within
your Java application. The AWS SDK for Java is a set of libraries that allow you to use AWS APIs
from your application code without writing the raw HTTP calls from scratch.

If you use the Eclipse integrated development environment (IDE) to develop your Java application,
you can also get the AWS Toolkit for Eclipse. The AWS Toolkit for Eclipse is an open source plug-
in that lets you manage AWS resources, including Elastic Beanstalk applications and environments,
from within the Eclipse IDE.

Working with Java 182

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.java
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.javase

AWS Elastic Beanstalk Developer Guide

If the command line is more your style, install the Elastic Beanstalk Command Line Interface (EB
CLI) and use it to create, monitor, and manage your Elastic Beanstalk environments from the
command line. If you run multiple environments for your application, the EB CLI integrates with Git
to let you associate each of your environments with a different Git branch.

The topics in this chapter assume that you have some knowledge of Elastic Beanstalk
environments. If you haven't used Elastic Beanstalk before, try the getting started tutorial to learn
the basics.

Topics

• Getting started with Java on Elastic Beanstalk

• Setting up your Java development environment

• Using the Elastic Beanstalk Tomcat platform

• Using the Elastic Beanstalk Java SE platform

• Adding an Amazon RDS DB instance to your Java application environment

• Using the AWS Toolkit for Eclipse

• Resources

Getting started with Java on Elastic Beanstalk

To get started with Java applications on AWS Elastic Beanstalk, all you need is an application
source bundle to upload as your first application version and to deploy to an environment. When
you create an environment, Elastic Beanstalk allocates all of the AWS resources needed to run a
scalable web application.

Launching an environment with a sample Java application

Elastic Beanstalk provides single page sample applications for each platform as well as more
complex examples that show the use of additional AWS resources such as Amazon RDS and
language or platform-specific features and APIs.

The single page samples are the same code that you get when you create an environment without
supplying your own source code. The more complex examples are hosted on GitHub and may need
to be compiled or built prior to deploying to an Elastic Beanstalk environment.

Getting started 183

AWS Elastic Beanstalk Developer Guide

Samples

Name Supported versions Environme
nt
type

Source Description

Tomcat
(single
page)

All Tomcat with Corretto
platform branches

Web
Server

Worker

tomcat.zi
p

Tomcat web application with a single page
(index.jsp) configured to be displayed
at the website root.

For worker environments, this sample
includes a cron.yaml file that
configures a scheduled task that calls
scheduled.jsp once per minute. When
scheduled.jsp is called, it writes to
a log file at /tmp/sample-app.log .
Finally, a configuration file is included
in .ebextensions that copies the
logs from /tmp/ to the locations read
by Elastic Beanstalk when you request
environment logs.

If you enable X-Ray integration on an
environment running this sample, the
application shows additional content
regarding X-Ray and provides an option to
generate debug information that you can
view in the X-Ray console.

Corretto
(single
page)

Corretto 11

Corretto 8

Web
Server

corretto.
zip

Corretto application with Buildfile
and Procfile configuration files.

If you enable X-Ray integration on an
environment running this sample, the
application shows additional content
regarding X-Ray and provides an option to
generate debug information that you can
view in the X-Ray console.

Getting started 184

samples/tomcat.zip
samples/tomcat.zip
samples/corretto.zip
samples/corretto.zip

AWS Elastic Beanstalk Developer Guide

Name Supported versions Environme
nt
type

Source Description

ScorekeepJava 8 Web
Server

Clone
the
repo at
GitHub.co
m

Scorekeep is a RESTful web API that
uses the Spring framework to provide
an interface for creating and managing
users, sessions, and games. The API is
bundles with an Angular 1.5 web app that
consumes the API over HTTP.

The application uses features of the Java
SE platform to download dependencies
and build on-instance, minimizing the
size of the souce bundle. The application
also includes nginx configuration files that
override the default configuration to serve
the frontend web app statically on port 80
through the proxy, and route requests to
paths under /api to the API running on
localhost:5000 .

Scorekeep also includes an xray branch
that shows how to instrument a Java
application for use with AWS X-Ray.
It shows instrumentation of incoming
HTTP requests with a servlet filter,
automatic and manual AWS SDK client
instrumentation, recorder configuration,
and instrumentation of outgoing HTTP
requests and SQL clients.

See the readme for instructions or use the
AWS X-Ray getting started tutorial to try
the application with X-Ray.

Getting started 185

https://github.com/awslabs/eb-java-scorekeep
https://github.com/awslabs/eb-java-scorekeep
https://github.com/awslabs/eb-java-scorekeep
https://github.com/awslabs/eb-java-scorekeep
https://github.com/awslabs/eb-java-scorekeep
https://docs.aws.amazon.com/xray/latest/devguide/xray-gettingstarted.html

AWS Elastic Beanstalk Developer Guide

Name Supported versions Environme
nt
type

Source Description

Does
it
Have
Snakes?

Tomcat 8 with Java 8 Web
Server

Clone
the
repo at
GitHub.co
m

Does it Have Snakes? is a Tomcat web
application that shows the use of Elastic
Beanstalk configuration files, Amazon
RDS, JDBC, PostgreSQL, Servlets, JSPs,
Simple Tag Support, Tag Files, Log4J,
Bootstrap, and Jackson.

The source code for this project includes
a minimal build script that compiles
the servlets and models into class files
and packages the required files into a
Web Archive that you can deploy to an
Elastic Beanstalk environment. See the
readme file in the project repository for
full instructions.

Locust
Load
Generator

Java 8 Web
Server

Clone
the
repo at
GitHub.co
m

Web application that you can use to load
test another web application running in
a different Elastic Beanstalk environme
nt. Shows the use of Buildfile and
Procfile files, DynamoDB, and Locust,
an open source load testing tool.

Download any of the sample applications and deploy it to Elastic Beanstalk by following these
steps:

To launch an environment with a sample application (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose an existing application's name in
the list or create one.

3. On the application overview page, choose Create new environment.

Getting started 186

https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-locustio-sample
https://github.com/awslabs/eb-locustio-sample
https://github.com/awslabs/eb-locustio-sample
https://github.com/awslabs/eb-locustio-sample
https://github.com/awslabs/eb-locustio-sample
http://locust.io/
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

This launches the Create environment wizard. The wizard provides a set of steps for you to
create a new environment.

Getting started 187

AWS Elastic Beanstalk Developer Guide

Getting started 188

AWS Elastic Beanstalk Developer Guide

4. For environment tier, choose the Web server environment or Worker environment
environment tier. You can't change an environment's tier after creation.

Note

The .NET on Windows Server platform doesn't support the worker environment tier.

5. For Platform, select the platform and platform branch that match the language your
application uses.

Note

Elastic Beanstalk supports multiple versions for most of the platforms that are
listed. By default, the console selects the recommended version for the platform and
platform branch you choose. If your application requires a different version, you can
select it here. For information about supported platform versions, see the section
called “Supported platforms”.

6. For Application code, choose Sample application.

7. For Configuration presets, choose Single instance.

8. Choose Next.

9. The Configure service access page displays.

Getting started 189

AWS Elastic Beanstalk Developer Guide

10. Choose Use an existing service role for Service Role.

11. Next, we'll focus on the EC2 instance profile dropdown list. The values displayed in this
dropdown list may vary, depending on whether you account has previously created a new
environment.

Choose one of the following, based on the values displayed in your list.

• If aws-elasticbeanstalk-ec2-role displays in the dropdown list, select it from the
EC2 instance profile dropdown list.

• If another value displays in the list, and it’s the default EC2 instance profile intended for
your environments, select it from the EC2 instance profile dropdown list.

• If the EC2 instance profile dropdown list doesn't list any values to choose from, expand
the procedure that follows, Create IAM Role for EC2 instance profile.

Complete the steps in Create IAM Role for EC2 instance profile to create an IAM Role that
you can subsequently select for the EC2 instance profile. Then return back to this step.

Now that you've created an IAM Role, and refreshed the list, it displays as a choice in
the dropdown list. Select the IAM Role you just created from the EC2 instance profile
dropdown list.

Getting started 190

AWS Elastic Beanstalk Developer Guide

12. Choose Skip to Review on the Configure service access page.

This will select the default values for this step and skip the optional steps.

13. The Review page displays a summary of all your choices.

To further customize your environment, choose Edit next to the step that includes any items
you want to configure. You can set the following options only during environment creation:

• Environment name

• Domain name

• Platform version

• Processor

• VPC

• Tier

You can change the following settings after environment creation, but they require new
instances or other resources to be provisioned and can take a long time to apply:

• Instance type, root volume, key pair, and AWS Identity and Access Management (IAM) role

• Internal Amazon RDS database

• Load balancer

For details on all available settings, see The create new environment wizard.

14. Choose Submit at the bottom of the page to initialize the creation of your new environment.

Getting started 191

AWS Elastic Beanstalk Developer Guide

Create IAM Role for EC2 instance profile

To create a an IAM Role for EC2 instance profile selection

1. Choose View permission details. This displays under the EC2 instance profile dropdown list.

A modal window titled View instance profile permissions displays. This window lists the
managed profiles that you'll need to attach to the new EC2 instance profile that you create. It
also provides a link to launch the IAM console.

2. Choose the IAM console link displayed at the top of the window.

3. In the IAM console navigation pane, choose Roles.

4. Choose Create role.

5. Under Trusted entity type, choose AWS service.

6. Under Use case, choose EC2.

7. Choose Next.

8. Attach the appropriate managed policies. Scroll in the View instance profile permissions
modal window to see the managed policies. The policies are also listed here:

• AWSElasticBeanstalkWebTier

Getting started 192

AWS Elastic Beanstalk Developer Guide

• AWSElasticBeanstalkWorkerTier

• AWSElasticBeanstalkMulticontainerDocker

9. Choose Next.

10. Enter a name for the role.

11. (Optional) Add tags to the role.

12. Choose Create role.

13. Return to the Elastic Beanstalk console window that is open.

14. Close the modal window View instance profile permissions.

Important

Do not close the browser page that displays the Elastic Beanstalk console.

15. Choose

(refresh), next to the EC2 instance profile dropdown list.

This refreshes the dropdown list, so that the Role you just created will display in the dropdown
list.

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a completely different application at any time. Deploying a new application version
is very quick because it doesn't require provisioning or restarting EC2 instances.

After you've deployed a sample application or two and are ready to start developing and running
Java applications locally, see the next section to set up a Java development environment with all of
the tools and libraries that you will need.

Setting up your Java development environment

Set up a Java development environment to test your application locally prior to deploying it to
AWS Elastic Beanstalk. This topic outlines development environment setup steps and links to
installation pages for useful tools.

Development environment 193

AWS Elastic Beanstalk Developer Guide

For common setup steps and tools that apply to all languages, see Configuring your development
machine.

Sections

• Installing the Java development kit

• Installing a web container

• Downloading libraries

• Installing the AWS SDK for Java

• Installing an IDE or text editor

• Installing the AWS toolkit for Eclipse

Installing the Java development kit

Install the Java Development Kit (JDK). If you don't have a preference, get the latest version.
Download the JDK at oracle.com

The JDK includes the Java compiler, which you can use to build your source files into class files that
can be executed on an Elastic Beanstalk web server.

Installing a web container

If you don't already have another web container or framework, install the appropriate version of
Tomcat:

• Download Tomcat 8 (requires Java 7 or later)

• Download Tomcat 7 (requires Java 6 or later)

Downloading libraries

Elastic Beanstalk platforms include few libraries by default. Download libraries that your
application will use and save them in your project folder to deploy in your application source
bundle.

If you've installed Tomcat locally, you can copy the servlet API and JavaServer Pages (JSP) API
libraries from the installation folder. If you deploy to a Tomcat platform version, you don't need
to include these files in your source bundle, but you do need to have them in your classpath to
compile any classes that use them.

Development environment 194

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://tomcat.apache.org/download-80.cgi
http://tomcat.apache.org/download-70.cgi

AWS Elastic Beanstalk Developer Guide

JUnit, Google Guava, and Apache Commons provide several useful libraries. Visit their home pages
to learn more:

• Download JUnit

• Download Google Guava

• Download Apache Commons

Installing the AWS SDK for Java

If you need to manage AWS resources from within your application, install the AWS SDK for
Java. For example, with the AWS SDK for Java, you can use Amazon DynamoDB (DynamoDB)
to share session states of Apache Tomcat applications across multiple web servers. For more
information, see Manage Tomcat Session State with Amazon DynamoDB in the AWS SDK for Java
documentation.

Visit the AWS SDK for Java home page for more information and installation instructions.

Installing an IDE or text editor

Integrated development environments (IDEs) provide a wide range of features that facilitate
application development. If you haven't used an IDE for Java development, try Eclipse and IntelliJ
and see which works best for you.

• Install Eclipse IDE for Java EE Developers

• Install IntelliJ

Note

An IDE might add files to your project folder that you might not want to commit to source
control. To prevent committing these files to source control, use .gitignore or your
source control tool's equivalent.

If you just want to begin coding and don't need all of the features of an IDE, consider installing
Sublime Text.

Development environment 195

https://github.com/junit-team/junit/wiki/Download-and-Install
https://code.google.com/p/guava-libraries/
http://commons.apache.org/downloads/
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-tomcat-session-manager.html
https://aws.amazon.com/sdk-for-java/
https://www.eclipse.org/downloads/
https://www.jetbrains.com/idea/
http://www.sublimetext.com/
http://www.sublimetext.com/

AWS Elastic Beanstalk Developer Guide

Installing the AWS toolkit for Eclipse

The AWS Toolkit for Eclipse is an open source plug-in for the Eclipse Java IDE that makes it easier
for developers to develop, debug, and deploy Java applications using AWS. Visit the AWS Toolkit
for Eclipse home page for installation instructions.

Using the Elastic Beanstalk Tomcat platform

Important

AWS Elastic Beanstalk installs Log4j from the Amazon Linux default package repositories
in its Tomcat platforms for Amazon Linux 1 and Amazon Linux 2. The versions of Log4j
available in the Amazon Linux 1 and Amazon Linux 2 repositories are not affected by
CVE-2021-44228 or CVE-2021-45046 in their default configuration.
If you've made configuration changes to your application’s use of log4j, or installed newer
versions of log4j, then we recommend that you take action to update your application’s code
to mitigate this issue.
Out of caution, Elastic Beanstalk released new platform versions that use the latest
Amazon Linux default package repositories, which include the Log4j hotpatched JDK, in
our Amazon Linux platform release on December 21, 2021. If you've customized log4j
installation as your application dependency, we recommend that you upgrade to the latest
Elastic Beanstalk platform version to mitigate CVE-2021-44228 or CVE-2021-45046. You
can also enable automated managed updates as part of normal update practices.
For more information about security-related software updates for Amazon Linux, see the
Amazon Linux Security Center.

The AWS Elastic Beanstalk Tomcat platform is a set of platform versions for Java web applications
that can run in a Tomcat web container. Tomcat runs behind an nginx proxy server. Each platform
branch corresponds to a major version of Tomcat, like Java 8 with Tomcat 8.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate
it, you can use saved configurations to save your settings and later apply them to another
environment.

To save settings in your source code, you can include configuration files. Settings in configuration
files are applied every time you create an environment or deploy your application. You can also

The Tomcat platform 196

https://aws.amazon.com/eclipse/
https://aws.amazon.com/eclipse/
https://www.cve.org/CVERecord?id=CVE-2021-44228
https://www.cve.org/CVERecord?id=CVE-2021-45046
https://aws.amazon.com/blogs/opensource/hotpatch-for-apache-log4j/
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2021-12-21-linux.html
https://alas.aws.amazon.com/
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.java

AWS Elastic Beanstalk Developer Guide

use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

The Elastic Beanstalk Tomcat platform includes a reverse proxy that forwards requests to your
application. You can use configuration options to configure the proxy server to serve static assets
from a folder in your source code to reduce the load on your application. For advanced scenarios,
you can include your own .conf files in your source bundle to extend the Elastic Beanstalk proxy
configuration or overwrite it completely.

Note

Elastic Beanstalk supports nginx (the default) and Apache HTTP Server as the proxy servers
on the Tomcat platform. If your Elastic Beanstalk Tomcat environment uses an Amazon
Linux AMI platform branch (preceding Amazon Linux 2), you also have the option of using
Apache HTTP Server Version 2.2. Apache (latest) is the default on these older platform
branches.
On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired. For more information about migrating to a current and fully
supported Amazon Linux 2023 platform branch, see Migrating your Elastic Beanstalk Linux
application to Amazon Linux 2023 or Amazon Linux 2.

You must package Java applications in a web application archive (WAR) file with a specific
structure. For information on the required structure and how it relates to the structure of your
project directory, see Structuring your project folder.

To run multiple applications on the same web server, you can bundle multiple WAR files into a
single source bundle. Each application in a multiple WAR source bundle runs at the root path
(ROOT.war runs at myapp.elasticbeanstalk.com/) or at a path directly beneath it (app2.war
runs at myapp.elasticbeanstalk.com/app2/), as determined by the name of the WAR. In a
single WAR source bundle, the application always runs at the root path.

Settings applied in the Elastic Beanstalk console override the same settings in configuration files,
if they exist. This lets you have default settings in configuration files, and override them with
environment-specific settings in the console. For more information about precedence, and other
methods of changing settings, see Configuration options.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called “Extending Linux platforms”.

The Tomcat platform 197

https://www.nginx.com/
https://httpd.apache.org/
https://httpd.apache.org/docs/2.2/
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

Topics

• Configuring your Tomcat environment

• Tomcat configuration namespaces

• Bundling multiple WAR files for Tomcat environments

• Structuring your project folder

• Configuring your Tomcat environment's proxy server

Configuring your Tomcat environment

The Elastic Beanstalk Tomcat platform provides a few platform-specific options in addition to the
standard options that all platforms have. These options enable you to configure the Java virtual
machine (JVM) that runs on your environment's web servers, and define system properties that
provide information configuration strings to your application.

You can use the Elastic Beanstalk console to enable log rotation to Amazon S3 and configure
variables that your application can read from the environment.

To configure your Tomcat environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Container options

You can specify these platform-specific options:

• Proxy server – The proxy server to use on your environment instances. By default, nginx is used.

The Tomcat platform 198

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

JVM container options

The heap size in the Java virtual machine (JVM) determines how many objects your application can
create in memory before garbage collection occurs. You can modify the Initial JVM Heap Size (-
Xms option) and a Maximum JVM Heap Size (-Xmx option). A larger initial heap size allows more
objects to be created before garbage collection occurs, but it also means that the garbage collector
will take longer to compact the heap. The maximum heap size specifies the maximum amount of
memory the JVM can allocate when expanding the heap during heavy activity.

Note

The available memory depends on the Amazon EC2 instance type. For more information
about the EC2 instance types available for your Elastic Beanstalk environment, see Instance
Types in the Amazon Elastic Compute Cloud User Guide for Linux Instances.

The permanent generation is a section of the JVM heap that stores class definitions and associated
metadata. To modify the size of the permanent generation, type the new size in the Maximum
JVM PermGen Size (-XX:MaxPermSize) option. This setting applies only to Java 7 and
earlier. This option was deprecated in JDK 8 and superseded by the MaxMetaspace Size (-
XX:MaxMetaspaceSize) option.

Important

JDK 17 removed support of the Java -XX:MaxPermSize option. Usage of this option with
an environment running on an Elastic Beanstalk platform branch with Corretto 17 will
result in an error. Elastic Beanstalk released its first platform branch running Tomcat with
Corretto 17 on July 13, 2023.
For more information see the following resources.

• Oracle Java documentation website: Removed Java Options

• Oracle Java documentation website: Class Metadata section in Other Considerations

For more information about Elastic Beanstalk platforms and their components, see Supported
Platforms in the AWS Elastic Beanstalk Platforms guide.

The Tomcat platform 199

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/introduction.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2023-07-13-al2023.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/java.html#removed-java-options
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/considerations.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html

AWS Elastic Beanstalk Developer Guide

Log options

The Log Options section has two settings:

• Instance profile – Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Static files

To improve performance, you can use the Static files section to configure the proxy server to serve
static files (for example, HTML or images) from a set of directories inside your web application.
For each directory, you set the virtual path to directory mapping. When the proxy server receives a
request for a file under the specified path, it serves the file directly instead of routing the request
to your application.

For details about configuring static files using configuration files or the Elastic Beanstalk console,
see the section called “Static files”.

Environment properties

In the Environment Properties section, you can specify environment configuration settings on the
Amazon EC2 instances that are running your application. Environment properties are passed in as
key-value pairs to the application.

The Tomcat platform defines a placeholder property named JDBC_CONNECTION_STRING for
Tomcat environments for passing a connection string to an external database.

Note

If you attach an RDS DB instance to your environment, construct the JDBC connection
string dynamically from the Amazon Relational Database Service (Amazon RDS)
environment properties provided by Elastic Beanstalk. Use JDBC_CONNECTION_STRING
only for database instances that are not provisioned using Elastic Beanstalk.
For more information about using Amazon RDS with your Java application, see Adding an
Amazon RDS DB instance to your Java application environment.

The Tomcat platform 200

AWS Elastic Beanstalk Developer Guide

Inside the Tomcat environment running in Elastic Beanstalk, environment variables are
accessible using the System.getProperty(). For example, you could read a property named
API_ENDPOINT to a variable with the following code.

String endpoint = System.getProperty("API_ENDPOINT");

See Environment properties and other software settings for more information.

Tomcat configuration namespaces

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

The Tomcat platform supports options in the following namespaces, in addition to the options
supported for all Elastic Beanstalk environments:

• aws:elasticbeanstalk:container:tomcat:jvmoptions – Modify JVM settings. Options
in this namespace correspond to options in the management console, as follows:

• Xms – JVM command line options

• JVM Options – JVM command line options

• aws:elasticbeanstalk:environment:proxy – Choose the environment's proxy server.

The following example configuration file shows the use of the Tomcat-specific configuration
options.

Example .ebextensions/tomcat-settings.config

option_settings:
 aws:elasticbeanstalk:container:tomcat:jvmoptions:
 Xms: 512m
 JVM Options: '-Xmn128m'
 aws:elasticbeanstalk:application:environment:
 API_ENDPOINT: mywebapi.zkpexsjtmd.us-west-2.elasticbeanstalk.com
 aws:elasticbeanstalk:environment:proxy:
 ProxyServer: apache

The Tomcat platform 201

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

The Amazon Linux AMI (preceding Amazon Linux 2) Tomcat platform

If your Elastic Beanstalk Tomcat environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Tomcat configuration namespaces — Amazon Linux AMI (AL1)

The Tomcat Amazon Linux AMI platform supports additional options in the following namespaces:

• aws:elasticbeanstalk:container:tomcat:jvmoptions – In addition to the options
mentioned earlier on this page for this namespace, older Amazon Linux AMI platform versions
also support:

• XX:MaxPermSize – Maximum JVM permanent generation size

• aws:elasticbeanstalk:environment:proxy – In addition to choosing the proxy server,
also configure response compression.

The following example configuration file shows the use of the proxy namespace configuration
options.

Example .ebextensions/tomcat-settings.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:

The Tomcat platform 202

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

 GzipCompression: 'true'
 ProxyServer: nginx

Include Elastic Beanstalk configurations files — Amazon Linux AMI (AL1)

To deploy .ebextensions configuration files, include them in your application source. For a
single application, add your .ebextensions to a compressed WAR file by running the following
command:

Example

zip -ur your_application.war .ebextensions

For an application requiring multiple WAR files, see Bundling multiple WAR files for Tomcat
environments for further instructions.

Bundling multiple WAR files for Tomcat environments

If your web app comprises multiple web application components, you can simplify deployments
and reduce operating costs by running components in a single environment, instead of running a
separate environment for each component. This strategy is effective for lightweight applications
that don't require a lot of resources, and for development and test environments.

To deploy multiple web applications to your environment, combine each component's web
application archive (WAR) files into a single source bundle.

To create an application source bundle that contains multiple WAR files, organize the WAR files
using the following structure.

MyApplication.zip
.ebextensions
.platform
foo.war
bar.war
ROOT.war

When you deploy a source bundle containing multiple WAR files to an AWS Elastic Beanstalk
environment, each application is accessible from a different path off of the root domain name.
The preceding example includes three applications: foo, bar, and ROOT. ROOT.war is a special
file name that tells Elastic Beanstalk to run that application at the root domain, so that the

The Tomcat platform 203

AWS Elastic Beanstalk Developer Guide

three applications are available at http://MyApplication.elasticbeanstalk.com/
foo, http://MyApplication.elasticbeanstalk.com/bar, and http://
MyApplication.elasticbeanstalk.com.

The source bundle can include WAR files, an optional .ebextensions folder, and an optional
.platform folder. For details about these optional configuration folders, see the section called
“Extending Linux platforms”.

To launch an environment (console)

1. Open the Elastic Beanstalk console with this preconfigured link:
console.aws.amazon.com/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application, or the Docker platform for container-based applications.

3. For Application code, choose Upload your code.

4. Choose Local file, choose Choose file, and then open the source bundle.

5. Choose Review and launch.

6. Review the available settings, and then choose Create app.

For information about creating source bundles, see Create an application source bundle.

Structuring your project folder

To work when deployed to a Tomcat server, compiled Java Platform Enterprise Edition (Java EE)
web application archives (WAR files) must be structured according to certain guidelines. Your
project directory doesn't have to meet the same standards, but it's a good idea to structure it in the
same way to simplify compiling and packaging. Structuring your project folder like the WAR file
contents also helps you understand how files are related and how they behave on a web server.

In the following recommended hierarchy, the source code for the web application is placed in a src
directory, to isolate it from the build script and the WAR file it generates.

~/workspace/my-app/
|-- build.sh - Build script that compiles classes and creates a WAR
|-- README.MD - Readme file with information about your project, notes
|-- ROOT.war - Source bundle artifact created by build.sh
`-- src - Source code folder

The Tomcat platform 204

https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://docs.oracle.com/javaee/7/tutorial/packaging003.htm

AWS Elastic Beanstalk Developer Guide

 |-- WEB-INF - Folder for private supporting files
 | |-- classes - Compiled classes
 | |-- lib - JAR libraries
 | |-- tags - Tag files
 | |-- tlds - Tag Library Descriptor files
 | `-- web.xml - Deployment Descriptor
 |-- com - Uncompiled classes
 |-- css - Style sheets
 |-- images - Image files
 |-- js - JavaScript files
 `-- default.jsp - JSP (JavaServer Pages) webpage

The src folder contents match what you will package and deploy to the server, with the exception
of the com folder. The com folder contains your uncompiled classes (.java files). These need to be
compiled and placed in the WEB-INF/classes directory to be accessible from your application
code.

The WEB-INF directory contains code and configurations that are not served publicly on the web
server. The other folders at the root of the source directory (css, images, and js) are publicly
available at the corresponding path on the web server.

The following example is identical to the preceding project directory, except that it contains more
files and subdirectories. This example project includes simple tags, model and support classes, and
a Java Server Pages (JSP) file for a record resource. It also includes a style sheet and JavaScript for
Bootstrap, a default JSP file, and an error page for 404 errors.

WEB-INF/lib includes a Java Archive (JAR) file containing the Java Database Connectivity (JDBC)
driver for PostgreSQL. WEB-INF/classes is empty because class files have not been compiled yet.

~/workspace/my-app/
|-- build.sh
|-- README.MD
|-- ROOT.war
`-- src
 |-- WEB-INF
 | |-- classes
 | |-- lib
 | | `-- postgresql-9.4-1201.jdbc4.jar
 | |-- tags
 | | `-- header.tag
 | |-- tlds
 | | `-- records.tld

The Tomcat platform 205

http://getbootstrap.com/

AWS Elastic Beanstalk Developer Guide

 | `-- web.xml
 |-- com
 | `-- myapp
 | |-- model
 | | `-- Record.java
 | `-- web
 | `-- ListRecords.java
 |-- css
 | |-- bootstrap.min.css
 | `-- myapp.css
 |-- images
 | `-- myapp.png
 |-- js
 | `-- bootstrap.min.js
 |-- 404.jsp
 |-- default.jsp
 `-- records.jsp

Building a WAR file with a shell script

build.sh is a very simple shell script that compiles Java classes, constructs a WAR file, and copies
it to the Tomcat webapps directory for local testing.

cd src
javac -d WEB-INF/classes com/myapp/model/Record.java
javac -classpath WEB-INF/lib/*:WEB-INF/classes -d WEB-INF/classes com/myapp/model/
Record.java
javac -classpath WEB-INF/lib/*:WEB-INF/classes -d WEB-INF/classes com/myapp/web/
ListRecords.java

jar -cvf ROOT.war *.jsp images css js WEB-INF
cp ROOT.war /Library/Tomcat/webapps
mv ROOT.war ../

Inside the WAR file, you find the same structure that exists in the src directory in the preceding
example, excluding the src/com folder. The jar command automatically creates the META-INF/
MANIFEST.MF file.

~/workspace/my-app/ROOT.war
|-- META-INF
| `-- MANIFEST.MF
|-- WEB-INF

The Tomcat platform 206

AWS Elastic Beanstalk Developer Guide

| |-- classes
| | `-- com
| | `-- myapp
| | |-- model
| | | `-- Records.class
| | `-- web
| | `-- ListRecords.class
| |-- lib
| | `-- postgresql-9.4-1201.jdbc4.jar
| |-- tags
| | `-- header.tag
| |-- tlds
| | `-- records.tld
| `-- web.xml
|-- css
| |-- bootstrap.min.css
| `-- myapp.css
|-- images
| `-- myapp.png
|-- js
| `-- bootstrap.min.js
|-- 404.jsp
|-- default.jsp
`-- records.jsp

Using .gitignore

To avoid committing compiled class files and WAR files to your Git repository, or seeing messages
about them appear when you run Git commands, add the relevant file types to a file named
.gitignore in your project folder.

~/workspace/myapp/.gitignore

*.zip
*.class

Configuring your Tomcat environment's proxy server

The Tomcat platform uses nginx (the default) or Apache HTTP Server as the reverse proxy to relay
requests from port 80 on the instance to your Tomcat web container listening on port 8080. Elastic
Beanstalk provides a default proxy configuration that you can extend or override completely with
your own configuration.

The Tomcat platform 207

https://www.nginx.com/
https://httpd.apache.org/

AWS Elastic Beanstalk Developer Guide

Configuring the proxy server on your platform version

All AL2023/AL2 platforms support a uniform proxy configuration feature. For more information
about configuring the proxy server on your platform versions running AL2023/AL2, expand the
Reverse Proxy Configuration section in the section called “Extending Linux platforms”.

Configuring the proxy on the Amazon Linux AMI (preceding Amazon Linux 2) Tomcat platform

If your Elastic Beanstalk Tomcat environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Choosing a proxy server for your Tomcat environment — Amazon Linux AMI (AL1)

Tomcat platform versions based on Amazon Linux AMI (preceding Amazon Linux 2) use Apache 2.4
for the proxy by default. You can choose to use Apache 2.2 or nginx by including a configuration
file in your source code. The following example configures Elastic Beanstalk to use nginx.

Example .ebextensions/nginx-proxy.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:
 ProxyServer: nginx

Migrating from Apache 2.2 to Apache 2.4 — Amazon Linux AMI (AL1)

If your application was developed for Apache 2.2, read this section to learn about migrating to
Apache 2.4.

The Tomcat platform 208

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html
https://httpd.apache.org/docs/2.4/
https://httpd.apache.org/docs/2.2/
https://www.nginx.com/
https://httpd.apache.org/docs/2.2/
https://httpd.apache.org/docs/2.4/

AWS Elastic Beanstalk Developer Guide

Starting with Tomcat platform version 3.0.0 configurations, which were released with the Java
with Tomcat platform update on May 24, 2018, Apache 2.4 is the default proxy of the Tomcat
platform. The Apache 2.4 .conf files are mostly, but not entirely, backward compatible with those
of Apache 2.2. Elastic Beanstalk includes default .conf files that work correctly with each Apache
version. If your application doesn't customize Apache's configuration, as explained in Extending
and overriding the default Apache configuration — Amazon Linux AMI (AL1), it should migrate to
Apache 2.4 without any issues.

If your application extends or overrides Apache's configuration, you might have to make some
changes to migrate to Apache 2.4. For more information, see Upgrading to 2.4 from 2.2 on The
Apache Software Foundation's site. As a temporary measure, until you successfully migrate to
Apache 2.4, you can choose to use Apache 2.2 with your application by including the following
configuration file in your source code.

Example .ebextensions/apache-legacy-proxy.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:
 ProxyServer: apache/2.2

For a quick fix, you can also select the proxy server in the Elastic Beanstalk console.

To select the proxy in your Tomcat environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. For Proxy server, choose Apache 2.2 (deprecated).

6. To save the changes choose Apply at the bottom of the page.

The Tomcat platform 209

https://aws.amazon.com/releasenotes/release-aws-elastic-beanstalk-platform-update-for-the-java-with-tomcat-platform-on-may-24-2018/
https://aws.amazon.com/releasenotes/release-aws-elastic-beanstalk-platform-update-for-the-java-with-tomcat-platform-on-may-24-2018/
https://httpd.apache.org/docs/current/upgrading.html
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Extending and overriding the default Apache configuration — Amazon Linux AMI (AL1)

You can extend the Elastic Beanstalk default Apache configuration with your additional
configuration files. Alternatively, you can override the Elastic Beanstalk default Apache
configuration completely.

Note

• All Amazon Linux 2 platforms support a uniform proxy configuration feature. For details
about configuring the proxy server on Tomcat platform versions running Amazon Linux
2, expand the Reverse Proxy Configuration section in the section called “Extending Linux
platforms”.

• If you're migrating your Elastic Beanstalk application to an Amazon Linux 2 platform, be
sure to also read the information in the section called “Migrate to AL2023/AL2”.

To extend the Elastic Beanstalk default Apache configuration, add .conf configuration files to
a folder named .ebextensions/httpd/conf.d in your application source bundle. The Elastic
Beanstalk Apache configuration includes .conf files in this folder automatically.

~/workspace/my-app/
|-- .ebextensions
| -- httpd
| -- conf.d
| -- myconf.conf
| -- ssl.conf
-- index.jsp

For example, the following Apache 2.4 configuration adds a listener on port 5000.

The Tomcat platform 210

AWS Elastic Beanstalk Developer Guide

Example .ebextensions/httpd/conf.d/port5000.conf

listen 5000
<VirtualHost *:5000>
 <Proxy *>
 Require all granted
 </Proxy>
 ProxyPass / http://localhost:8080/ retry=0
 ProxyPassReverse / http://localhost:8080/
 ProxyPreserveHost on

 ErrorLog /var/log/httpd/elasticbeanstalk-error_log
</VirtualHost>

To override the Elastic Beanstalk default Apache configuration completely, include a configuration
in your source bundle at .ebextensions/httpd/conf/httpd.conf.

~/workspace/my-app/
|-- .ebextensions
| `-- httpd
| `-- conf
| `-- httpd.conf
`-- index.jsp

If you override the Elastic Beanstalk Apache configuration, add the following lines to your
httpd.conf to pull in the Elastic Beanstalk configurations for Enhanced health reporting and
monitoring, response compression, and static files.

IncludeOptional conf.d/*.conf
IncludeOptional conf.d/elasticbeanstalk/*.conf

If your environment uses Apache 2.2 as its proxy, replace the IncludeOptional directives with
Include. For details about the behavior of these two directives in the two Apache versions, see
Include in Apache 2.4, IncludeOptional in Apache 2.4, and Include in Apache 2.2.

Note

To override the default listener on port 80, include a file named 00_application.conf
at .ebextensions/httpd/conf.d/elasticbeanstalk/ to overwrite the Elastic
Beanstalk configuration.

The Tomcat platform 211

https://httpd.apache.org/docs/2.4/mod/core.html#include
https://httpd.apache.org/docs/2.4/mod/core.html#includeoptional
https://httpd.apache.org/docs/2.2/mod/core.html#include

AWS Elastic Beanstalk Developer Guide

For a working example, take a look at the Elastic Beanstalk default configuration file at /etc/
httpd/conf/httpd.conf on an instance in your environment. All files in the .ebextensions/
httpd folder in your source bundle are copied to /etc/httpd during deployments.

Extending the default nginx configuration — Amazon Linux AMI (AL1)

To extend Elastic Beanstalk's default nginx configuration, add .conf configuration files to a folder
named .ebextensions/nginx/conf.d/ in your application source bundle. The Elastic Beanstalk
nginx configuration includes .conf files in this folder automatically.

~/workspace/my-app/
|-- .ebextensions
| `-- nginx
| `-- conf.d
| |-- elasticbeanstalk
| | `-- my-server-conf.conf
| `-- my-http-conf.conf
`-- index.jsp

Files with the .conf extension in the conf.d folder are included in the http block of the default
configuration. Files in the conf.d/elasticbeanstalk folder are included in the server block
within the http block.

To override the Elastic Beanstalk default nginx configuration completely, include a configuration in
your source bundle at .ebextensions/nginx/nginx.conf.

~/workspace/my-app/
|-- .ebextensions
| `-- nginx
| `-- nginx.conf
`-- index.jsp

Notes

• If you override the Elastic Beanstalk nginx configuration, add the following line to your
configuration's server block to pull in the Elastic Beanstalk configurations for the port
80 listener, response compression, and static files.

 include conf.d/elasticbeanstalk/*.conf;

The Tomcat platform 212

AWS Elastic Beanstalk Developer Guide

• To override the default listener on port 80, include a file named 00_application.conf
at .ebextensions/nginx/conf.d/elasticbeanstalk/ to overwrite the Elastic
Beanstalk configuration.

• Also include the following line in your configuration's http block to pull in the Elastic
Beanstalk configurations for Enhanced health reporting and monitoring and logging.

 include conf.d/*.conf;

For a working example, take a look at the Elastic Beanstalk default configuration file at /etc/
nginx/nginx.conf on an instance in your environment. All files in the .ebextensions/nginx
folder in your source bundle are copied to /etc/nginx during deployments.

Using the Elastic Beanstalk Java SE platform

The AWS Elastic Beanstalk Java SE platform is a set of platform versions for Java web applications
that can run on their own from a compiled JAR file. You can compile your application locally or
upload the source code with a build script to compile it on-instance. Java SE platform versions are
grouped into platform branches, each of which corresponds to a major version of Java, for example
Java 8 and Java 7.

Note

Elastic Beanstalk doesn't parse your application's JAR file. Keep files that Elastic Beanstalk
needs outside of the JAR file. For example, include the cron.yaml file of a worker
environment at the root of your application's source bundle, next to the JAR file.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate
it, you can use saved configurations to save your settings and later apply them to another
environment.

To save settings in your source code, you can include configuration files. Settings in configuration
files are applied every time you create an environment or deploy your application. You can also
use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

The Java SE platform 213

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.javase

AWS Elastic Beanstalk Developer Guide

The Elastic Beanstalk Java SE platform includes an nginx server that acts as a reverse proxy,
serving cached static content and passing requests to your application. The platform provides
configuration options to configure the proxy server to serve static assets from a folder in your
source code to reduce the load on your application. For advanced scenarios, you can include your
own .conf files in your source bundle to extend Elastic Beanstalk's proxy configuration or overwrite
it completely.

If you only provide a single JAR file for your application source (on its own, not within a source
bundle), Elastic Beanstalk renames your JAR file to application.jar, and then runs it using
java -jar application.jar. To configure the processes that run on the server instances in
your environment, include an optional Procfile in your source bundle. A Procfile is required
if you have more than one JAR in your source bundle root, or if you want to customize the java
command to set JVM options.

We recommend that you always provide a Procfile in the source bundle alongside your
application. This way you precisely control which processes Elastic Beanstalk runs for your
application and which arguments these processes receive.

To compile Java classes and run other build commands on the EC2 instances in your environment
at deploy time, include a Buildfile in your application source bundle. A Buildfile lets you deploy
your source code as-is and build on the server instead of compiling JARs locally. The Java SE
platform includes common build tools to let you build on-server.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called “Extending Linux platforms”.

Configuring your Java SE environment

The Java SE platform settings let you fine-tune the behavior of your Amazon EC2 instances. You
can edit the Elastic Beanstalk environment's Amazon EC2 instance configuration using the Elastic
Beanstalk console.

Use the Elastic Beanstalk console to enable log rotation to Amazon S3 and configure variables that
your application can read from the environment.

To configure your Java SE environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

The Java SE platform 214

https://www.nginx.com/
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Log options

The Log Options section has two settings:

• Instance profile – Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Static files

To improve performance, you can use the Static files section to configure the proxy server to serve
static files (for example, HTML or images) from a set of directories inside your web application.
For each directory, you set the virtual path to directory mapping. When the proxy server receives a
request for a file under the specified path, it serves the file directly instead of routing the request
to your application.

For details about configuring static files using configuration files or the Elastic Beanstalk console,
see the section called “Static files”.

Environment properties

The Environment Properties section lets you specify environment configuration settings on the
Amazon EC2 instances that are running your application. Environment properties are passed in as
key-value pairs to the application.

Inside the Java SE environment running in Elastic Beanstalk, environment variables are accessible
using the System.getenv(). For example, you could read a property named API_ENDPOINT to a
variable with the following code:

String endpoint = System.getenv("API_ENDPOINT");

The Java SE platform 215

AWS Elastic Beanstalk Developer Guide

See Environment properties and other software settings for more information.

Java SE configuration namespace

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

The Java SE platform doesn't define any platform-specific namespaces. You can configure the
proxy to serve static files by using the
aws:elasticbeanstalk:environment:proxy:staticfiles namespace. For details and an
example, see the section called “Static files”.

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

The Amazon Linux AMI (preceding Amazon Linux 2) Java SE platform

If your Elastic Beanstalk Java SE environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Java SE configuration namespaces — Amazon Linux AMI (AL1)

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

The Java SE platform 216

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

The Java SE platform supports one platform-specific configuration
namespace in addition to the namespaces supported by all platforms. The
aws:elasticbeanstalk:container:java:staticfiles namespace lets you define options
that map paths on your web application to folders in your application source bundle that contain
static content.

For example, this option_settings snippet defines two options in the static files namespace. The
first maps the path /public to a folder named public, and the second maps the path /images
to a folder named img:

option_settings:
 aws:elasticbeanstalk:container:java:staticfiles:
 /html: statichtml
 /images: staticimages

The folders that you map using this namespace must be actual folders in the root of your source
bundle. You cannot map a path to a folder in a JAR file.

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

Building JARs on-server with a Buildfile

You can build your application's class files and JAR(s) on the EC2 instances in your environment by
invoking a build command from a Buildfile file in your source bundle.

Commands in a Buildfile are only run once and must terminate upon completion, whereas
commands in a Procfile are expected to run for the life of the application and will be restarted if
they terminate. To run the JARs in your application, use a Procfile.

For details about the placement and syntax of a Buildfile, expand the Buildfile and Procfile
section in the section called “Extending Linux platforms”.

The following Buildfile example runs Apache Maven to build a web application from source
code. For a sample application that uses this feature, see Java web application samples.

Example Buildfile

build: mvn assembly:assembly -DdescriptorId=jar-with-dependencies

The Java SE platform 217

AWS Elastic Beanstalk Developer Guide

The Java SE platform includes the following build tools, which you can invoke from your build
script:

• javac – Java compiler

• ant – Apache Ant

• mvn – Apache Maven

• gradle – Gradle

Configuring the application process with a Procfile

If you have more than one JAR file in the root of your application source bundle, you must
include a Procfile file that tells Elastic Beanstalk which JAR(s) to run. You can also include a
Procfile file for a single JAR application to configure the Java virtual machine (JVM) that runs
your application.

We recommend that you always provide a Procfile in the source bundle alongside your
application. This way you precisely control which processes Elastic Beanstalk runs for your
application and which arguments these processes receive.

For details about writing and using a Procfile, expand the Buildfile and Procfile section in the
section called “Extending Linux platforms”.

Example Procfile

web: java -Xms256m -jar server.jar
cache: java -jar mycache.jar
web_foo: java -jar other.jar

The command that runs the main JAR in your application must be called web, and it must be
the first command listed in your Procfile. The nginx server forwards all HTTP requests that it
receives from your environment's load balancer to this application.

Elastic Beanstalk assumes that all entries in the Procfile should run at all times and automatically
restarts any application defined in the Procfile that terminates. To run commands that will
terminate and should not be restarted, use a Buildfile.

The Java SE platform 218

AWS Elastic Beanstalk Developer Guide

Using a Procfile on Amazon Linux AMI (preceding Amazon Linux 2)

If your Elastic Beanstalk Java SE environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Port passing — Amazon Linux AMI (AL1)

By default, Elastic Beanstalk configures the nginx proxy to forward requests to your application on
port 5000. You can override the default port by setting the PORT environment property to the port
on which your main application listens.

If you use a Procfile to run multiple applications, Elastic Beanstalk on Amazon Linux AMI
platform versions expects each additional application to listen on a port 100 higher than the
previous one. Elastic Beanstalk sets the PORT variable accessible from within each application
to the port that it expects the application to run on. You can access this variable within your
application code by calling System.getenv("PORT").

In the preceding Procfile example, the web application listens on port 5000, cache listens on
port 5100, and web_foo listens on port 5200. web configures its listening port by reading the
PORT variable, and adds 100 to that number to determine which port cache is listening on so that
it can send it requests.

Configuring the reverse proxy

Elastic Beanstalk uses nginx as the reverse proxy to map your application to your Elastic Load
Balancing load balancer on port 80. Elastic Beanstalk provides a default nginx configuration that
you can either extend or override completely with your own configuration.

The Java SE platform 219

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html
https://www.nginx.com/

AWS Elastic Beanstalk Developer Guide

By default, Elastic Beanstalk configures the nginx proxy to forward requests to your application on
port 5000. You can override the default port by setting the PORT environment property to the port
on which your main application listens.

Note

The port that your application listens on doesn't affect the port that the nginx server
listens to receive requests from the load balancer.

Configuring the proxy server on your platform version

All AL2023/AL2 platforms support a uniform proxy configuration feature. For more information
about configuring the proxy server on your platform versions running AL2023/AL2, expand the
Reverse Proxy Configuration section in the section called “Extending Linux platforms”.

Configuring the proxy on Amazon Linux AMI (preceding Amazon Linux 2)

If your Elastic Beanstalk Java SE environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the additional information in this section.

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Extending and overriding the default proxy configuration — Amazon Linux AMI (AL1)

To extend Elastic Beanstalk's default nginx configuration, add .conf configuration files to a folder
named .ebextensions/nginx/conf.d/ in your application source bundle. Elastic Beanstalk's
nginx configuration includes .conf files in this folder automatically.

~/workspace/my-app/

The Java SE platform 220

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

|-- .ebextensions
| `-- nginx
| `-- conf.d
| `-- myconf.conf
`-- web.jar

To override Elastic Beanstalk's default nginx configuration completely, include a configuration in
your source bundle at .ebextensions/nginx/nginx.conf:

~/workspace/my-app/
|-- .ebextensions
| `-- nginx
| `-- nginx.conf
`-- web.jar

If you override Elastic Beanstalk's nginx configuration, add the following line to your nginx.conf
to pull in Elastic Beanstalk's configurations for Enhanced health reporting and monitoring,
automatic application mappings, and static files.

 include conf.d/elasticbeanstalk/*.conf;

The following example configuration from the Scorekeep sample application overrides Elastic
Beanstalk's default configuration to serve a static web application from the public subdirectory
of /var/app/current, where the Java SE platform copies the application source code. The /api
location forwards traffic to routes under /api/ to the Spring application listening on port 5000.
All other traffic is served by the web app at the root path.

Example

user nginx;
error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;
worker_processes auto;
worker_rlimit_nofile 33282;

events {
 worker_connections 1024;
}

http {
 include /etc/nginx/mime.types;

The Java SE platform 221

https://github.com/aws-samples/eb-java-scorekeep/

AWS Elastic Beanstalk Developer Guide

 default_type application/octet-stream;

 log_format main '$remote_addr - $remote_user [$time_local] "$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"';

 include conf.d/*.conf;

 map $http_upgrade $connection_upgrade {
 default "upgrade";
 }

 server {
 listen 80 default_server;
 root /var/app/current/public;

 location / {
 }git pull

 location /api {
 proxy_pass http://127.0.0.1:5000;
 proxy_http_version 1.1;

 proxy_set_header Connection $connection_upgrade;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }

 access_log /var/log/nginx/access.log main;

 client_header_timeout 60;
 client_body_timeout 60;
 keepalive_timeout 60;
 gzip off;
 gzip_comp_level 4;

 # Include the Elastic Beanstalk generated locations
 include conf.d/elasticbeanstalk/01_static.conf;
 include conf.d/elasticbeanstalk/healthd.conf;
 }

The Java SE platform 222

AWS Elastic Beanstalk Developer Guide

}

Adding an Amazon RDS DB instance to your Java application
environment

You can use an Amazon Relational Database Service (Amazon RDS) DB instance to store data that
your application gathers and modifies. The database can be attached to your environment and
managed by Elastic Beanstalk, or created and managed externally.

If you are using Amazon RDS for the first time, add a DB instance to a test environment by using
the Elastic Beanstalk console and verify that your application can connect to it.

To add a DB instance to your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. Choose a DB engine, and enter a user name and password.

6. To save the changes choose Apply at the bottom of the page.

Adding a DB instance takes about 10 minutes. When the environment update is complete, the DB
instance's hostname and other connection information are available to your application through
the following environment properties:

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

Adding a database 223

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Property name Description Property value

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab on
the Amazon RDS console: DB
Name.

RDS_USERNAME The username that you
configured for your database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your database.

Not available for reference in
the Amazon RDS console.

For more information about configuring an internal DB instance, see Adding a database to your
Elastic Beanstalk environment. For instructions on configuring an external database for use with
Elastic Beanstalk, see Using Elastic Beanstalk with Amazon RDS.

To connect to the database, add the appropriate driver JAR file to your application, load the driver
class in your code, and create a connection object with the environment properties provided by
Elastic Beanstalk.

Sections

• Downloading the JDBC driver

• Connecting to a database (Java SE platforms)

• Connecting to a database (Tomcat platforms)

• Troubleshooting database connections

Downloading the JDBC driver

You will need the JAR file of the JDBC driver for the DB engine that you choose. Save the JAR
file in your source code and include it in your classpath when you compile the class that creates
connections to the database.

Adding a database 224

AWS Elastic Beanstalk Developer Guide

You can find the latest driver for your DB engine in the following locations:

• MySQL – MySQL Connector/J

• Oracle SE-1 – Oracle JDBC Driver

• Postgres – PostgreSQL JDBC Driver

• SQL Server – Microsoft JDBC Driver

To use the JDBC driver, call Class.forName() to load it before creating the connection with
DriverManager.getConnection() in your code.

JDBC uses a connection string in the following format:

jdbc:driver://hostname:port/dbName?user=userName&password=password

You can retrieve the hostname, port, database name, user name, and password from the
environment variables that Elastic Beanstalk provides to your application. The driver name is
specific to your database type and driver version. The following are example driver names:

• mysql for MySQL

• postgresql for PostgreSQL

• oracle:thin for Oracle Thin

• oracle:oci for Oracle OCI

• oracle:oci8 for Oracle OCI 8

• oracle:kprb for Oracle KPRB

• sqlserver for SQL Server

Connecting to a database (Java SE platforms)

In a Java SE environment, use System.getenv() to read the connection variables from the
environment. The following example code shows a class that creates a connection to a PostgreSQL
database.

private static Connection getRemoteConnection() {
 if (System.getenv("RDS_HOSTNAME") != null) {
 try {
 Class.forName("org.postgresql.Driver");
 String dbName = System.getenv("RDS_DB_NAME");

Adding a database 225

https://dev.mysql.com/downloads/connector/j/
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
https://jdbc.postgresql.org/
https://msdn.microsoft.com/en-us/sqlserver/aa937724.aspx

AWS Elastic Beanstalk Developer Guide

 String userName = System.getenv("RDS_USERNAME");
 String password = System.getenv("RDS_PASSWORD");
 String hostname = System.getenv("RDS_HOSTNAME");
 String port = System.getenv("RDS_PORT");
 String jdbcUrl = "jdbc:postgresql://" + hostname + ":" + port + "/" + dbName + "?
user=" + userName + "&password=" + password;
 logger.trace("Getting remote connection with connection string from environment
 variables.");
 Connection con = DriverManager.getConnection(jdbcUrl);
 logger.info("Remote connection successful.");
 return con;
 }
 catch (ClassNotFoundException e) { logger.warn(e.toString());}
 catch (SQLException e) { logger.warn(e.toString());}
 }
 return null;
 }

Connecting to a database (Tomcat platforms)

In a Tomcat environment, environment properties are provided as system properties that are
accessible with System.getProperty().

The following example code shows a class that creates a connection to a PostgreSQL database.

private static Connection getRemoteConnection() {
 if (System.getProperty("RDS_HOSTNAME") != null) {
 try {
 Class.forName("org.postgresql.Driver");
 String dbName = System.getProperty("RDS_DB_NAME");
 String userName = System.getProperty("RDS_USERNAME");
 String password = System.getProperty("RDS_PASSWORD");
 String hostname = System.getProperty("RDS_HOSTNAME");
 String port = System.getProperty("RDS_PORT");
 String jdbcUrl = "jdbc:postgresql://" + hostname + ":" + port + "/" + dbName + "?
user=" + userName + "&password=" + password;
 logger.trace("Getting remote connection with connection string from environment
 variables.");
 Connection con = DriverManager.getConnection(jdbcUrl);
 logger.info("Remote connection successful.");
 return con;
 }
 catch (ClassNotFoundException e) { logger.warn(e.toString());}

Adding a database 226

AWS Elastic Beanstalk Developer Guide

 catch (SQLException e) { logger.warn(e.toString());}
 }
 return null;
 }

If you have trouble getting a connection or running SQL statements, try placing the following code
in a JSP file. This code connects to a DB instance, creates a table, and writes to it.

<%@ page import="java.sql.*" %>
<%
 // Read RDS connection information from the environment
 String dbName = System.getProperty("RDS_DB_NAME");
 String userName = System.getProperty("RDS_USERNAME");
 String password = System.getProperty("RDS_PASSWORD");
 String hostname = System.getProperty("RDS_HOSTNAME");
 String port = System.getProperty("RDS_PORT");
 String jdbcUrl = "jdbc:mysql://" + hostname + ":" +
 port + "/" + dbName + "?user=" + userName + "&password=" + password;

 // Load the JDBC driver
 try {
 System.out.println("Loading driver...");
 Class.forName("com.mysql.jdbc.Driver");
 System.out.println("Driver loaded!");
 } catch (ClassNotFoundException e) {
 throw new RuntimeException("Cannot find the driver in the classpath!", e);
 }

 Connection conn = null;
 Statement setupStatement = null;
 Statement readStatement = null;
 ResultSet resultSet = null;
 String results = "";
 int numresults = 0;
 String statement = null;

 try {
 // Create connection to RDS DB instance
 conn = DriverManager.getConnection(jdbcUrl);

 // Create a table and write two rows
 setupStatement = conn.createStatement();
 String createTable = "CREATE TABLE Beanstalk (Resource char(50));";

Adding a database 227

AWS Elastic Beanstalk Developer Guide

 String insertRow1 = "INSERT INTO Beanstalk (Resource) VALUES ('EC2 Instance');";
 String insertRow2 = "INSERT INTO Beanstalk (Resource) VALUES ('RDS Instance');";

 setupStatement.addBatch(createTable);
 setupStatement.addBatch(insertRow1);
 setupStatement.addBatch(insertRow2);
 setupStatement.executeBatch();
 setupStatement.close();

 } catch (SQLException ex) {
 // Handle any errors
 System.out.println("SQLException: " + ex.getMessage());
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("VendorError: " + ex.getErrorCode());
 } finally {
 System.out.println("Closing the connection.");
 if (conn != null) try { conn.close(); } catch (SQLException ignore) {}
 }

 try {
 conn = DriverManager.getConnection(jdbcUrl);

 readStatement = conn.createStatement();
 resultSet = readStatement.executeQuery("SELECT Resource FROM Beanstalk;");

 resultSet.first();
 results = resultSet.getString("Resource");
 resultSet.next();
 results += ", " + resultSet.getString("Resource");

 resultSet.close();
 readStatement.close();
 conn.close();

 } catch (SQLException ex) {
 // Handle any errors
 System.out.println("SQLException: " + ex.getMessage());
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("VendorError: " + ex.getErrorCode());
 } finally {
 System.out.println("Closing the connection.");
 if (conn != null) try { conn.close(); } catch (SQLException ignore) {}
 }

Adding a database 228

AWS Elastic Beanstalk Developer Guide

%>

To display the results, place the following code in the body of the HTML portion of the JSP file.

<p>Established connection to RDS. Read first two rows: <%= results %></p>

Troubleshooting database connections

If you run into issues connecting to a database from within your application, review the web
container log and database.

Reviewing logs

You can view all the logs from your Elastic Beanstalk environment from within Eclipse. If you don't
have the AWS Explorer view open, choose the arrow next to the orange AWS icon in the toolbar,
and then choose Show AWS Explorer View. Expand AWS Elastic Beanstalk and your environment
name, and then open the context (right-click) menu for the server. Choose Open in WTP Server
Editor.

Choose the Log tab of the Server view to see the aggregate logs from your environment. To open
the latest logs, choose the Refresh button at the upper right corner of the page.

Scroll down to locate the Tomcat logs in /var/log/tomcat7/catalina.out. If you loaded the
webpage from our earlier example several times, you might see the following.

/var/log/tomcat7/catalina.out

INFO: Server startup in 9285 ms
Loading driver...
Driver loaded!
SQLException: Table 'Beanstalk' already exists
SQLState: 42S01
VendorError: 1050
Closing the connection.
Closing the connection.

All information that the web application sends to standard output appears in the web container
log. In the previous example, the application tries to create the table every time the page loads.
This results in catching a SQL exception on every page load after the first one.

Adding a database 229

AWS Elastic Beanstalk Developer Guide

As an example, the preceding is acceptable. But in actual applications, keep your database
definitions in schema objects, perform transactions from within model classes, and coordinate
requests with controller servlets.

Connecting to an RDS DB Instance

You can connect directly to the RDS DB instance in your Elastic Beanstalk environment by using the
MySQL client application.

First, open the security group to your RDS DB instance to allow traffic from your computer.

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. Next to Endpoint, choose the Amazon RDS console link.

6. On the RDS Dashboard instance details page, under Security and Network, choose the
security group starting with rds- next to Security Groups.

Note

The database might have multiple entries labeled Security Groups. Use the first,
which starts with awseb, only if you have an older account that doesn't have a default
Amazon Virtual Private Cloud (Amazon VPC).

7. In Security group details, choose the Inbound tab, and then choose Edit.

8. Add a rule for MySQL (port 3306) that allows traffic from your IP address, specified in CIDR
format.

9. Choose Save. The changes take effect immediately.

Return to the Elastic Beanstalk configuration details for your environment and note the endpoint.
You will use the domain name to connect to the RDS DB instance.

Adding a database 230

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/vpc/latest/userguide/

AWS Elastic Beanstalk Developer Guide

Install the MySQL client and initiate a connection to the database on port 3306. On Windows,
install MySQL Workbench from the MySQL home page and follow the prompts.

On Linux, install the MySQL client using the package manager for your distribution. The following
example works on Ubuntu and other Debian derivatives.

// Install MySQL client
$ sudo apt-get install mysql-client-5.5
...
// Connect to database
$ mysql -h aas839jo2vwhwb.cnubrrfwfka8.us-west-2.rds.amazonaws.com -u username -
ppassword ebdb
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 117
Server version: 5.5.40-log Source distribution
...

After you have connected, you can run SQL commands to see the status of the database, whether
your tables and rows were created, and other information.

mysql> SELECT Resource from Beanstalk;
+--------------+
| Resource |
+--------------+
| EC2 Instance |
| RDS Instance |
+--------------+
2 rows in set (0.01 sec)

Using the AWS Toolkit for Eclipse

The AWS Toolkit for Eclipse integrates AWS Elastic Beanstalk management features with your
Tomcat development environment to facilitate environment creation, configuration, and
code deployment. The toolkit includes support for multiple AWS accounts, managing existing
environments, and connecting directly to instances in your environment for troubleshooting.

Eclipse toolkit 231

AWS Elastic Beanstalk Developer Guide

Note

The AWS Toolkit for Eclipse only supports projects that use the Java with Tomcat platform,
not the Java SE platform.

For more information about prerequisites and installing the AWS Toolkit for Eclipse, go to https://
aws.amazon.com/eclipse. You can also check out the Using AWS Elastic Beanstalk with the AWS
Toolkit for Eclipse video. This topic also provides useful information covering tools, how-to topics,
and additional resources for Java developers.

Importing existing environments into Eclipse

You can import existing environments that you created in the AWS Management Console into
Eclipse.

To import existing environments, expand the AWS Elastic Beanstalk node and double-click on
an environment in the AWS Explorer inside Eclipse. You can now deploy your Elastic Beanstalk
applications to this environment.

Managing Elastic Beanstalk application environments

Topics

• Changing environment configuration settings

• Changing environment type

• Configuring EC2 server instances using AWS Toolkit for Eclipse

• Configuring Elastic Load Balancing using AWS Toolkit for Eclipse

• Configuring Auto Scaling using AWS Toolkit for Eclipse

• Configuring notifications using AWS Toolkit for Eclipse

• Configuring Java containers using AWS Toolkit for Eclipse

• Setting system properties with AWS Toolkit for Eclipse

With the AWS Toolkit for Eclipse, you can change the provisioning and configuration of the AWS
resources that are used by your application environments. For information on how to manage your
application environments using the AWS Management Console, see Managing environments. This
section discusses the specific service settings you can edit in the AWS Toolkit for Eclipse as part

Eclipse toolkit 232

https://aws.amazon.com/eclipse
https://aws.amazon.com/eclipse
http://d1un85p0f2qstc.cloudfront.net/eclipse/elasticbeanstalk/index.html
http://d1un85p0f2qstc.cloudfront.net/eclipse/elasticbeanstalk/index.html

AWS Elastic Beanstalk Developer Guide

of your application environment configuration. For more about AWS Toolkit for Eclipse, see AWS
Toolkit for Eclipse Getting Started Guide.

Changing environment configuration settings

When you deploy your application, Elastic Beanstalk configures a number of AWS cloud computing
services. You can control how these individual services are configured using the AWS Toolkit for
Eclipse.

To edit an application's environment settings

1. If Eclipse isn't displaying the AWS Explorer view, in the menu choose Window, Show View,
AWS Explorer. Expand the Elastic Beanstalk node and your application node.

2. In AWS Explorer, double-click your Elastic Beanstalk environment.

3. At the bottom of the pane, click the Configuration tab.

You can now configure settings for the following:

• EC2 server instances

• Load balancer

• Autoscaling

• Notifications

• Environment types

• Environment properties

Eclipse toolkit 233

https://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/
https://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/

AWS Elastic Beanstalk Developer Guide

Changing environment type

In AWS Toolkit for Eclipse, the Environment Type section of your environment's Configuration tab
lets you select either Load balanced, auto scaled or a Single instance environment, depending on
the requirements of the application that you deploy. For an application that requires scalability,
select Load balanced, auto scaled. For a simple, low traffic application, select Single instance. For
more information, see Environment types.

Configuring EC2 server instances using AWS Toolkit for Eclipse

Amazon Elastic Compute Cloud (EC2) is a web service for launching and managing server instances
in Amazon's data centers. You can use Amazon EC2 server instances at any time, for as long as you
need, and for any legal purpose. Instances are available in different sizes and configurations. For
more information, go to the Amazon EC2 product page.

Under Server, on your environment's Configuration tab inside the Toolkit for Eclipse, you can edit
the Elastic Beanstalk environment's Amazon EC2 instance configuration.

Eclipse toolkit 234

https://aws.amazon.com/ec2/

AWS Elastic Beanstalk Developer Guide

Amazon EC2 instance types

Instance type displays the instance types available to your Elastic Beanstalk application. Change
the instance type to select a server with the characteristics (including memory size and CPU power)
that are most appropriate to your application. For example, applications with intensive and long-
running operations can require more CPU or memory.

For more information about the Amazon EC2 instance types available for your Elastic Beanstalk
application, see Instance Types in the Amazon Elastic Compute Cloud User Guide.

Amazon EC2 security groups

You can control access to your Elastic Beanstalk application using an Amazon EC2 Security Group.
A security group defines firewall rules for your instances. These rules specify which ingress (i.e.,
incoming) network traffic should be delivered to your instance. All other ingress traffic will be
discarded. You can modify rules for a group at any time. The new rules are automatically enforced
for all running instances and instances launched in the future.

You can set up your Amazon EC2 security groups using the AWS Management Console or by using
the AWS Toolkit for Eclipse. You can specify which Amazon EC2 security groups control access to
your Elastic Beanstalk application by entering the names of one or more Amazon EC2 security
group names (delimited by commas) into the EC2 Security Groups box.

Note

If you are running your application using a legacy container type, make sure port 80
(HTTP) is accessible from 0.0.0.0/0 as the source CIDR range if you want to enable health
checks for your application. For more information about health checks, see Health checks.
To check if you are using a legacy container type, see the section called “Why are some
platform versions marked legacy?”

To create a security group using the AWS Toolkit for Eclipse

1. In the AWS Toolkit for Eclipse, click AWS Explorer tab. Expand the Amazon EC2 node, and
then double-click Security Groups.

2. Right-click anywhere in the left table, and then click New Group.

Eclipse toolkit 235

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

AWS Elastic Beanstalk Developer Guide

3. In the Security Group dialog box, type the security group name and description and then click
OK.

For more information on Amazon EC2 Security Groups, see Using Security Groups in the Amazon
Elastic Compute Cloud User Guide.

Amazon EC2 key pairs

You can securely log in to the Amazon EC2 instances provisioned for your Elastic Beanstalk
application with an Amazon EC2 key pair.

Important

You must create an Amazon EC2 key pair and configure your Elastic Beanstalk-provisioned
Amazon EC2 instances to use the Amazon EC2 key pair before you can access your
Elastic Beanstalk-provisioned Amazon EC2 instances. You can create your key pair using
the Publish to Beanstalk Wizard inside AWS Toolkit for Eclipse when you deploy your
application to Elastic Beanstalk. Alternatively, you can set up your Amazon EC2 key pairs
using the AWS Management Console. For instructions on creating a key pair for Amazon
EC2, see the Amazon Elastic Compute Cloud Getting Started Guide.

For more information on Amazon EC2 key pairs, go to Using Amazon EC2 Credentials in the
Amazon Elastic Compute Cloud User Guide. For more information on connecting to Amazon EC2
instances, go to Connecting to Instances and Connecting to a Linux/UNIX Instance from Windows
using PuTTY in the Amazon Elastic Compute Cloud User Guide.

CloudWatch metrics

By default, only basic Amazon CloudWatch metrics are enabled. They return data in five-minute
periods. You can enable more granular one-minute CloudWatch metrics by selecting 1 minute for
the Monitoring Interval in the Server section of the Configuration tab for your environment in the
AWS Toolkit for Eclipse.

Eclipse toolkit 236

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://console.aws.amazon.com/
http://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-credentials.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html

AWS Elastic Beanstalk Developer Guide

Note

Amazon CloudWatch service charges can apply for one-minute interval metrics. See
Amazon CloudWatch for more information.

Custom AMI ID

You can override the default AMI used for your Amazon EC2 instances with your own custom AMI
by entering the identifier of your custom AMI into the Custom AMI ID box in the Server section of
the Configuration tab for your environment in the AWS Toolkit for Eclipse.

Important

Using your own AMI is an advanced task that you should do with care. If you need a custom
AMI, we recommend you start with the default Elastic Beanstalk AMI and then modify it.
To be considered healthy, Elastic Beanstalk expects Amazon EC2 instances to meet a set of
requirements, including having a running host manager. If these requirements are not met,
your environment might not work properly.

Configuring Elastic Load Balancing using AWS Toolkit for Eclipse

Elastic Load Balancing is an Amazon web service that improves the availability and scalability of
your application. With Elastic Load Balancing, you can distribute application loads between two or
more Amazon EC2 instances. Elastic Load Balancing improves availability through redundancy, and
it supports traffic growth for your application.

Elastic Load Balancing automatically distributes and balances incoming application traffic among
all the EC2 server instances you are running. The service also makes it easy to add new instances
when you need to increase the capacity of your application.

Elastic Beanstalk automatically provisions Elastic Load Balancing when you deploy an application.
Under Load Balancing, on the Configuration tab for your environment inside the Toolkit for
Eclipse, you can edit the Elastic Beanstalk environment's load balancing configuration.

Eclipse toolkit 237

https://aws.amazon.com/cloudwatch/

AWS Elastic Beanstalk Developer Guide

The following sections describe the Elastic Load Balancing parameters you can configure for your
application.

Ports

The load balancer provisioned to handle requests for your Elastic Beanstalk application sends
requests to the Amazon EC2 instances that are running your application. The provisioned load
balancer can listen for requests on HTTP and HTTPS ports and route requests to the Amazon EC2
instances in your AWS Elastic Beanstalk application. By default, the load balancer handles requests
on the HTTP port. At least one of the ports (either HTTP or HTTPS) must be turned on.

Important

Make sure that the port you specified is not locked down; otherwise, users will not be able
to connect to your Elastic Beanstalk application.

Eclipse toolkit 238

AWS Elastic Beanstalk Developer Guide

Controlling the HTTP port

To turn off the HTTP port, you select OFF for HTTP Listener Port. To turn on the HTTP port, you
select an HTTP port (for example, 80).

Note

To access your environment using a port other than the default port 80, such as port 8080,
add a listener to the existing load balancer and configure the new listener to listen on that
port.
For example, using the AWS CLI for Classic load balancers, type the following command,
replacing LOAD_BALANCER_NAME with the name of your load balancer for Elastic
Beanstalk.

aws elb create-load-balancer-listeners --load-balancer-name LOAD_BALANCER_NAME
 --listeners "Protocol=HTTP, LoadBalancerPort=8080, InstanceProtocol=HTTP,
 InstancePort=80"

For example, using the AWS CLI for Application Load Balancers, type the following
command, replacing LOAD_BALANCER_ARN with the ARN of your load balancer for Elastic
Beanstalk.

aws elbv2 create-listener --load-balancer-arn LOAD_BALANCER_ARN --protocol HTTP
 --port 8080

If you want Elastic Beanstalk to monitor your environment, do not remove the listener on
port 80.

Controlling the HTTPS port

Elastic Load Balancing supports the HTTPS/TLS protocol to enable traffic encryption for client
connections to the load balancer. Connections from the load balancer to the EC2 instances are
done using plain text. By default, the HTTPS port is turned off.

To turn on the HTTPS port

1. Create a new certificate using AWS Certificate Manager (ACM) or upload a certificate and key
to AWS Identity and Access Management (IAM). For more information about requesting an

Eclipse toolkit 239

https://docs.aws.amazon.com/cli/latest/reference/elb/create-load-balancer-listeners.html
https://docs.aws.amazon.com/cli/latest/reference/elbv2/create-listener.html

AWS Elastic Beanstalk Developer Guide

ACM certificate, see Request a Certificate in the AWS Certificate Manager User Guide. For more
information about importing third-party certificates into ACM, see Importing Certificates
in the AWS Certificate Manager User Guide. If ACM isn't available in your AWS Region, use
AWS Identity and Access Management (IAM) to upload a third-party certificate. The ACM
and IAM services store the certificate and provide an Amazon Resource Name (ARN) for the
SSL certificate. For more information about creating and uploading certificates to IAM, see
Working with Server Certificates in IAM User Guide.

2. Specify the HTTPS port by selecting a port from the HTTPS Listener Port drop-down list.

3. In the SSL Certificate ID text box, enter the Amazon Resources Name (ARN) of
your SSL certificate. For example, arn:aws:iam::123456789012:server-
certificate/abc/certs/build or arn:aws:acm:us-
east-2:123456789012:certificate/12345678-12ab-34cd-56ef-12345678. Use the
SSL certificate that you created and uploaded in step 1.

To turn off the HTTPS port, select OFF for HTTPS Listener Port.

Health checks

You can control the settings for the health check using the EC2 Instance Health Check section of
the Load Balancing panel.

The following list describes the health check parameters you can set for your application.

• To determine instance health, Elastic Beanstalk looks for a 200 response code on a URL it
queries. By default, Elastic Beanstalk checks TCP:80 for nonlegacy containers and HTTP:80 for
legacy containers. You can override to match an existing resource in your application (e.g., /
myapp/index.jsp) by entering it in the Application Health Check URL box. If you override the
default URL, Elastic Beanstalk uses HTTP to query the resource. To check if you are using a legacy
container type, see the section called “Why are some platform versions marked legacy?”

Eclipse toolkit 240

https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingServerCerts.html

AWS Elastic Beanstalk Developer Guide

• For Health Check Interval (seconds), enter the number of seconds between your application's
Amazon EC2 instances health checks.

• For Health Check Timeout, specify the number of seconds for Elastic Load Balancing to wait for
a response before it considers an instance unresponsive.

• Use the Healthy Check Count Threshold and Unhealthy Check Count Threshold boxes, specify
the number of consecutive successful or unsuccessful URL probes before Elastic Load Balancing
changes the instance health status. For example, specifying 5 in the Unhealthy Check Count
Threshold text box means that the URL would have to return an error message or timeout five
consecutive times before Elastic Load Balancing considers the health check "failed."

Sessions

By default, a load balancer routes each request independently to the server instance with the
smallest load. By comparison, a sticky session binds a user's session to a specific server instance so
that all requests coming from the user during the session are sent to the same server instance.

Elastic Beanstalk uses load balancer–generated HTTP cookies when sticky sessions are enabled
for an application. The load balancer uses a special load balancer–generated cookie to track the
application instance for each request. When the load balancer receives a request, it first checks
to see if this cookie is present in the request. If so, the request is sent to the application instance
specified in the cookie. If it finds no cookie, the load balancer chooses an application instance
based on the existing load balancing algorithm. A cookie is inserted into the response for binding
subsequent requests from the same user to that application instance. The policy configuration
defines a cookie expiry, which establishes the duration of validity for each cookie.

Under Load Balancer in the Sessions section, specify whether or not the load balancer for your
application allows session stickiness and the duration for each cookie.

For more information on Elastic Load Balancing, see the Elastic Load Balancing Developer Guide.

Configuring Auto Scaling using AWS Toolkit for Eclipse

Amazon EC2 Auto Scaling is an Amazon web service designed to automatically launch or terminate
Amazon EC2 instances based on user-defined triggers. Users can set up Auto Scaling groups

Eclipse toolkit 241

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/

AWS Elastic Beanstalk Developer Guide

and associate triggers with these groups to automatically scale computing resources based on
metrics such as bandwidth usage or CPU utilization. Amazon EC2 Auto Scaling works with Amazon
CloudWatch to retrieve metrics for the server instances running your application.

Amazon EC2 Auto Scaling lets you take a group of Amazon EC2 instances and set various
parameters to have this group automatically increase or decrease in number. Amazon EC2 Auto
Scaling can add or remove Amazon EC2 instances from that group to help you seamlessly deal with
traffic changes to your application.

Amazon EC2 Auto Scaling also monitors the health of each Amazon EC2 instance that it launches.
If any instance terminates unexpectedly, Amazon EC2 Auto Scaling detects the termination and
launches a replacement instance. This capability enables you to maintain a fixed, desired number of
Amazon EC2 instances automatically.

Elastic Beanstalk provisions Amazon EC2 Auto Scaling for your application. Under Auto Scaling,
on your environment's Configuration tab inside the Toolkit for Eclipse, you can edit the Elastic
Beanstalk environment's Auto Scaling configuration.

The following sections discuss how to configure Auto Scaling parameters for your application.

Launch configuration

You can edit the launch configuration to control how your Elastic Beanstalk application provisions
Amazon EC2 Auto Scaling resources.

Eclipse toolkit 242

AWS Elastic Beanstalk Developer Guide

Use the Minimum Instance Count and Maximum Instance Count settings to specify the minimum
and maximum size of the Auto Scaling group that your Elastic Beanstalk application uses.

Note

To maintain a fixed number of Amazon EC2 instances, set the Minimum Instance Count
and Maximum Instance Count text boxes to the same value.

For Availability Zones, specify the number of Availability Zones you want your Amazon EC2
instances to be in. It is important to set this number if you want to build fault-tolerant applications:
If one Availability Zone goes down, your instances will still be running in your other Availability
Zones.

Note

Currently, it is not possible to specify which Availability Zone your instance will be in.

Triggers

A trigger is an Amazon EC2 Auto Scaling mechanism that you set to tell the system when to
increase (scale out) and decrease (scale in) the number of instances. You can configure triggers
to fire on any metric published to Amazon CloudWatch, such as CPU utilization, and determine
whether the specified conditions have been met. When your upper or lower thresholds for the
metric have been breached for the specified period of time, the trigger launches a long-running
process called a scaling activity.

You can define a scaling trigger for your Elastic Beanstalk application using the AWS Toolkit for
Eclipse.

Eclipse toolkit 243

AWS Elastic Beanstalk Developer Guide

You can configure the following list of trigger parameters in the Scaling Trigger section of the
Configuration tab for your environment inside the Toolkit for Eclipse.

• For Trigger Measurement, specify the metric for your trigger.

• For Trigger Statistic, specify which statistic the trigger will use—Minimum, Maximum, Sum, or
Average.

• For Unit of Measurement, specify the units for the trigger measurement.

• For Measurement Period, specify how frequently Amazon CloudWatch measures the metrics for
your trigger. For Breach Duration, specify the amount of time a metric can be beyond its defined
limit (as specified for Upper Threshold and Lower Threshold) before the trigger fires.

• For Scale-up Increment and Scale-down Increment, specify how many Amazon EC2 instances to
add or remove when performing a scaling activity.

For more information on Amazon EC2 Auto Scaling, see the Amazon EC2 Auto Scaling section on
Amazon Elastic Compute Cloud Documentation.

Configuring notifications using AWS Toolkit for Eclipse

Elastic Beanstalk uses the Amazon Simple Notification Service (Amazon SNS) to notify you of
important events affecting your application. To enable Amazon SNS notifications, simply enter
your email address in the Email Address text box under Notifications on the Configuration tab for
your environment inside the Toolkit for Eclipse. To disable Amazon SNS notifications, remove your
email address from the text box.

Eclipse toolkit 244

https://aws.amazon.com/documentation/ec2/

AWS Elastic Beanstalk Developer Guide

Configuring Java containers using AWS Toolkit for Eclipse

The Container/JVM Options panel lets you fine-tune the behavior of the Java Virtual Machine on
your Amazon EC2 instances and enable or disable Amazon S3 log rotation. You can use the AWS
Toolkit for Eclipse to configure your container information. For more information on the options
available for Tomcat environments, see the section called “Configuring your Tomcat environment”.

Note

You can modify your configuration settings with zero downtime by swapping the CNAME
for your environments. For more information, see Blue/Green deployments with Elastic
Beanstalk.

To access the Container/JVM options panel for your Elastic Beanstalk application

1. If Eclipse isn't displaying the AWS Explorer view, in the menu choose Window, Show View,
AWS Explorer. Expand the Elastic Beanstalk node and your application node.

2. In the AWS Explorer, double-click your Elastic Beanstalk environment.

3. At the bottom of the pane, click the Configuration tab.

4. Under Container, you can configure container options.

Eclipse toolkit 245

AWS Elastic Beanstalk Developer Guide

Remote debugging

To test your application remotely, you can run your application in debug mode.

To enable remote debugging

1. Select Enable remote debugging.

2. For Remote debugging port, specify the port number to use for remote debugging.

The Additional Tomcat JVM command line options setting is filled automatically.

To start remote debugging

1. In the AWS Toolkit for Eclipse menu, choose Window, Show View, Other.

2. Expand the Server folder, and then choose Servers. Choose OK.

3. In the Servers pane, right-click the server your application is running on, and then click Restart
in Debug.

Setting system properties with AWS Toolkit for Eclipse

The following example sets the JDBC_CONNECTION_STRING system property in the AWS Toolkit
for Eclipse. After you set this properties, it becomes available to your Elastic Beanstalk application
as system properties called JDBC_CONNECTION_STRING.

Note

The AWS Toolkit for Eclipse does not yet support modifying environment configuration,
including system properties, for environments in a VPC. Unless you have an older account
using EC2 Classic, you must use the AWS Management Console (described in the next
section) or the EB CLI.

Note

Environment configuration settings can contain any printable ASCII character except the
grave accent (`, ASCII 96) and cannot exceed 200 characters in length.

Eclipse toolkit 246

AWS Elastic Beanstalk Developer Guide

To set system properties for your Elastic Beanstalk application

1. If Eclipse isn't displaying the AWS Explorer view, choose Window, Show View, Other. Expand
AWS Toolkit and then choose AWS Explorer.

2. In the AWS Explorer pane, expand Elastic Beanstalk, expand the node for your application,
and then double-click your Elastic Beanstalk environment.

3. At the bottom of the pane for your environment, click the Advanced tab.

4. Under aws:elasticbeanstalk:application:environment, click JDBC_CONNECTION_STRING
and then type a connection string. For example, the following JDBC connection string would
connect to a MySQL database instance on port 3306 of localhost, with a user name of me and
a password of mypassword:

jdbc:mysql://localhost:3306/mydatabase?user=me&password=mypassword

This will be accessible to your Elastic Beanstalk application as a system property called
JDBC_CONNECTION_STRING.

5. Press Ctrl+C on the keyboard or choose File, Save to save your changes to the environment
configuration. Changes are reflected in about one minute.

Managing multiple AWS accounts

You might want to set up different AWS accounts to perform different tasks, such as testing,
staging, and production. You can use the AWS Toolkit for Eclipse to add, edit, and delete accounts
easily.

To add an AWS account with the AWS Toolkit for Eclipse

1. In Eclipse, make sure the toolbar is visible. On the toolbar, click the arrow next to the AWS icon
and select Preferences.

2. Click Add account.

Eclipse toolkit 247

AWS Elastic Beanstalk Developer Guide

3. In the Account Name text box, type the display name for the account.

4. In the Access Key ID text box, type your AWS access key ID.

5. In the Secret Access Key text box, type your AWS secret key.

For API access, you need an access key ID and secret access key. Use IAM user access keys
instead of AWS account root user access keys. For more information about creating access
keys, see Managing access keys for IAM users in the IAM User Guide.

6. Click OK.

To use a different account to deploy an application to Elastic Beanstalk

1. In the Eclipse toolbar, click the arrow next to the AWS icon and select Preferences.

2. For Default Account, select the account you want to use to deploy applications to Elastic
Beanstalk.

3. Click OK.

4. In the Project Explorer pane, right-click the application you want to deploy, and then select
Amazon Web Services > Deploy to Elastic Beanstalk.

Eclipse toolkit 248

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS Elastic Beanstalk Developer Guide

Viewing events

You can use the AWS Toolkit for Eclipse to access events and notifications associated with your
application.

To view application events

1. If Eclipse isn't displaying the AWS Explorer view, in the menu click Window > Show View >
AWS Explorer. Expand the Elastic Beanstalk node and your application node.

2. In the AWS Explorer, double-click your Elastic Beanstalk environment.

3. At the bottom of the pane, click the Events tab.

A list of the events for all environments for your application is displayed.

Listing and connecting to server instances

You can view a list of Amazon EC2 instances running your Elastic Beanstalk application
environment through the AWS Toolkit for Eclipse or from the AWS Management Console. You can
connect to these instances using Secure Shell (SSH). For information about listing and connecting
to your server instances using the AWS Management Console, see Listing and connecting to server
instances. The following section steps you through viewing and connecting you to your server
instances using the AWS Toolkit for Eclipse.

To view and connect to Amazon EC2 instances for an environment

1. In the AWS Toolkit for Eclipse, click AWS Explorer. Expand the Amazon EC2 node, and then
double-click Instances.

Eclipse toolkit 249

AWS Elastic Beanstalk Developer Guide

2. In the Amazon EC2 Instances window, in the Instance ID column, right-click the Instance ID for
the Amazon EC2 instance running in your application's load balancer. Then click Open Shell.

Eclipse automatically opens the SSH client and makes the connection to the EC2 instance.

For more information on connecting to an Amazon EC2 instance, see the Amazon Elastic
Compute Cloud Getting Started Guide.

Terminating an environment

To avoid incurring charges for unused AWS resources, you can use the AWS Toolkit for Eclipse to
terminate a running environment. For details about environment termination, see Terminate an
Elastic Beanstalk environment.

To terminate an environment

1. In the AWS Toolkit for Eclipse, click the AWS Explorer pane. Expand the Elastic Beanstalk
node.

2. Expand the Elastic Beanstalk application and right-click on the Elastic Beanstalk environment.

3. Click Terminate Environment. It will take a few minutes for Elastic Beanstalk to terminate the
AWS resources running in the environment.

Resources

There are several places you can go to get additional help when developing your Java applications.

Resource Description

The AWS Java Development Forum Post your questions and get feedback.

Resources 250

http://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/
http://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/
https://forums.aws.amazon.com/forum.jspa?forumID=70

AWS Elastic Beanstalk Developer Guide

Resource Description

Java Developer Center One-stop shop for sample code, documentation, tools,
and additional resources.

Working with .NET Core on Linux

This section provides information about deploying .NET core applications on Linux using AWS
Elastic Beanstalk.

The topics in this chapter assume that you have some knowledge of Elastic Beanstalk
environments. If you haven't used Elastic Beanstalk before, try the getting started tutorial to learn
the basics.

Topics

• Getting started with .NET Core on Linux

• Setting up your .NET Core on Linux development environment

• Using the .NET Core on Linux platform

• Tutorial: Deploying an ASP.NET core application on Linux using Elastic Beanstalk

• The AWS Toolkit for Visual Studio - Working with .Net Core

• Migrating from .NET on Windows Server platforms to the .NET Core on Linux platform

Getting started with .NET Core on Linux

To get started with .NET Core on Linux applications on AWS Elastic Beanstalk, all you need is an
application source bundle to upload as your first application version, and then to deploy it to an
environment. When you create an environment, Elastic Beanstalk allocates all of the AWS resources
needed to run a highly scalable web application.

Launching an environment with a sample .NET Core on Linux application

Elastic Beanstalk provides single-page sample applications for each platform.

Working with .NET Core on Linux 251

https://aws.amazon.com/java/

AWS Elastic Beanstalk Developer Guide

Samples

Supported
configura
tions

Environme
nt type

Source
bundle

Description

.NET Core on
Linux

Web
server

dotnet-core-
linux.zip

Single-page application.

.NET Core on
Linux

Web
server

dotnet-co
re-linux-
multiple-
apps.zip

Two web applications that run on the same web
server.

Download the sample application and deploy it to Elastic Beanstalk by following these steps.

To launch an environment with a sample application (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose an existing application's name in
the list or create one.

3. On the application overview page, choose Create new environment.

This launches the Create environment wizard. The wizard provides a set of steps for you to
create a new environment.

Getting started 252

samples/dotnet-core-linux.zip
samples/dotnet-core-linux.zip
samples/dotnet-core-linux-multiple-apps.zip
samples/dotnet-core-linux-multiple-apps.zip
samples/dotnet-core-linux-multiple-apps.zip
samples/dotnet-core-linux-multiple-apps.zip
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Getting started 253

AWS Elastic Beanstalk Developer Guide

4. For environment tier, choose the Web server environment or Worker environment
environment tier. You can't change an environment's tier after creation.

Note

The .NET on Windows Server platform doesn't support the worker environment tier.

5. For Platform, select the platform and platform branch that match the language your
application uses.

Note

Elastic Beanstalk supports multiple versions for most of the platforms that are
listed. By default, the console selects the recommended version for the platform and
platform branch you choose. If your application requires a different version, you can
select it here. For information about supported platform versions, see the section
called “Supported platforms”.

6. For Application code, choose Sample application.

7. For Configuration presets, choose Single instance.

8. Choose Next.

9. The Configure service access page displays.

Getting started 254

AWS Elastic Beanstalk Developer Guide

10. Choose Use an existing service role for Service Role.

11. Next, we'll focus on the EC2 instance profile dropdown list. The values displayed in this
dropdown list may vary, depending on whether you account has previously created a new
environment.

Choose one of the following, based on the values displayed in your list.

• If aws-elasticbeanstalk-ec2-role displays in the dropdown list, select it from the
EC2 instance profile dropdown list.

• If another value displays in the list, and it’s the default EC2 instance profile intended for
your environments, select it from the EC2 instance profile dropdown list.

• If the EC2 instance profile dropdown list doesn't list any values to choose from, expand
the procedure that follows, Create IAM Role for EC2 instance profile.

Complete the steps in Create IAM Role for EC2 instance profile to create an IAM Role that
you can subsequently select for the EC2 instance profile. Then return back to this step.

Now that you've created an IAM Role, and refreshed the list, it displays as a choice in
the dropdown list. Select the IAM Role you just created from the EC2 instance profile
dropdown list.

Getting started 255

AWS Elastic Beanstalk Developer Guide

12. Choose Skip to Review on the Configure service access page.

This will select the default values for this step and skip the optional steps.

13. The Review page displays a summary of all your choices.

To further customize your environment, choose Edit next to the step that includes any items
you want to configure. You can set the following options only during environment creation:

• Environment name

• Domain name

• Platform version

• Processor

• VPC

• Tier

You can change the following settings after environment creation, but they require new
instances or other resources to be provisioned and can take a long time to apply:

• Instance type, root volume, key pair, and AWS Identity and Access Management (IAM) role

• Internal Amazon RDS database

• Load balancer

For details on all available settings, see The create new environment wizard.

14. Choose Submit at the bottom of the page to initialize the creation of your new environment.

Getting started 256

AWS Elastic Beanstalk Developer Guide

Create IAM Role for EC2 instance profile

To create a an IAM Role for EC2 instance profile selection

1. Choose View permission details. This displays under the EC2 instance profile dropdown list.

A modal window titled View instance profile permissions displays. This window lists the
managed profiles that you'll need to attach to the new EC2 instance profile that you create. It
also provides a link to launch the IAM console.

2. Choose the IAM console link displayed at the top of the window.

3. In the IAM console navigation pane, choose Roles.

4. Choose Create role.

5. Under Trusted entity type, choose AWS service.

6. Under Use case, choose EC2.

7. Choose Next.

8. Attach the appropriate managed policies. Scroll in the View instance profile permissions
modal window to see the managed policies. The policies are also listed here:

• AWSElasticBeanstalkWebTier

Getting started 257

AWS Elastic Beanstalk Developer Guide

• AWSElasticBeanstalkWorkerTier

• AWSElasticBeanstalkMulticontainerDocker

9. Choose Next.

10. Enter a name for the role.

11. (Optional) Add tags to the role.

12. Choose Create role.

13. Return to the Elastic Beanstalk console window that is open.

14. Close the modal window View instance profile permissions.

Important

Do not close the browser page that displays the Elastic Beanstalk console.

15. Choose

(refresh), next to the EC2 instance profile dropdown list.

This refreshes the dropdown list, so that the Role you just created will display in the dropdown
list.

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a different application at any time. Deploying a new application version is very quick
because it doesn't require provisioning or restarting Amazon EC2 instances.

After you deploy a sample application or two and are ready to start developing and running .NET
Core applications locally, see Setting up your .NET Core on Linux development environment.

Setting up your .NET Core on Linux development environment

Set up a .NET Core development environment to test your application locally before you deploy
it to AWS Elastic Beanstalk. This topic outlines development environment setup steps and links to
installation pages for useful tools.

For common setup steps and tools that apply to all languages, see Configuring your development
machine for use with Elastic Beanstalk.

Development environment 258

AWS Elastic Beanstalk Developer Guide

Sections

• Installing the .NET Core SDK

• Installing an IDE

• Installing the AWS Toolkit for Visual Studio

Installing the .NET Core SDK

You can use the .NET Core SDK to develop applications that run on Linux.

See the .NET downloads page to download and install the .NET Core SDK.

Installing an IDE

Integrated development environments (IDEs) provide a range of features that facilitate application
development. If you haven't used an IDE for .NET development, try Visual Studio Community to get
started.

See the Visual Studio Community page to download and install Visual Studio Community.

Installing the AWS Toolkit for Visual Studio

The AWS Toolkit for Visual Studio is an open source plugin for the Visual Studio IDE that makes it
easier for developers to develop, debug, and deploy .NET applications using AWS. See the Toolkit
for Visual Studio homepage for installation instructions.

Using the .NET Core on Linux platform

The AWS Elastic Beanstalk .NET Core on Linux platform is a set of platform versions for .NET Core
applications that run on the Linux operating system.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform,
see the section called “Extending Linux platforms”. Following are some platform-specific
considerations.

Introduction to the .NET Core on Linux platform

Proxy server

The Elastic Beanstalk .NET Core on Linux platform includes a reverse proxy that forwards requests
to your application. By default, Elastic Beanstalk uses nginx as the proxy server. You can choose

The .NET Core on Linux platform 259

https://dotnet.microsoft.com/download
https://www.visualstudio.com/vs/community/
https://aws.amazon.com/visualstudio/
https://aws.amazon.com/visualstudio/
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.dotnetlinux
https://www.nginx.com/

AWS Elastic Beanstalk Developer Guide

to use no proxy server, and configure Kestrel as your web server. Kestrel is included by default in
ASP.NET Core project templates.

Application structure

You can publish runtime-dependent applications that use the .NET Core runtime provided by Elastic
Beanstalk. You can also publish self-contained applications that include the .NET Core runtime
and your application's dependencies in the source bundle. To learn more, see the section called
“Bundling applications”.

Platform configuration

To configure the processes that run on the server instances in your environment, include an
optional Procfile in your source bundle. A Procfile is required if you have more than one
application in your source bundle.

We recommend that you always provide a Procfile in the source bundle with your application.
This way you precisely control which processes Elastic Beanstalk runs for your application.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate
it, you can use saved configurations to save your settings and later apply them to another
environment.

To save settings in your source code, you can include configuration files. Settings in configuration
files are applied every time you create an environment or deploy your application. You can also
use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

Settings applied in the Elastic Beanstalk console override the same settings in configuration files,
if they exist. This lets you have default settings in configuration files, and override them with
environment-specific settings in the console. For more information about precedence, and other
methods of changing settings, see Configuration options.

Configuring your .NET Core on Linux environment

The .NET Core on Linux platform settings enable you to fine-tune the behavior of your Amazon
EC2 instances. You can edit the Elastic Beanstalk environment's Amazon EC2 instance configuration
using the Elastic Beanstalk console.

The .NET Core on Linux platform 260

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel

AWS Elastic Beanstalk Developer Guide

Use the Elastic Beanstalk console to enable log rotation to Amazon S3 and configure variables that
your application can read from the environment.

To configure your .NET Core on Linux environment using the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Log options

The Log Options section has two settings:

• Instance profile – Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Environment properties

The Environment Properties section enables you to specify environment configuration settings on
the Amazon EC2 instances that are running your application. Environment properties are passed in
as key-value pairs to the application.

Inside the .NET Core on Linux environment running in Elastic Beanstalk, environment variables are
accessible using Environment.GetEnvironmentVariable("variable-name"). For example,
you could read a property named API_ENDPOINT to a variable with the following code.

string endpoint = Environment.GetEnvironmentVariable("API_ENDPOINT");

See Environment properties and other software settings for more information.

The .NET Core on Linux platform 261

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

.NET Core on Linux configuration namespace

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

The .NET Core on Linux platform supports options in the following namespace, in addition to the
options supported for all Elastic Beanstalk environments:

• aws:elasticbeanstalk:environment:proxy – Choose to use nginx or no proxy server.
Valid values are nginx or none.

The following example configuration file shows the use of the .NET Core on Linux-specific
configuration options.

Example .ebextensions/proxy-settings.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:
 ProxyServer: none

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

Bundling applications for the .NET Core on Linux platform

You can run both runtime-dependent and self-contained .NET Core applications on AWS Elastic
Beanstalk.

A runtime-dependent application uses a .NET Core runtime that Elastic Beanstalk provides to run
your application. Elastic Beanstalk uses the runtimeconfig.json file in your source bundle to
determine the runtime to use for your application. Elastic Beanstalk chooses the latest compatible
runtime available for your application.

A self-contained application includes the .NET Core runtime, your application, and its
dependencies. To use a version of the .NET Core runtime that Elastic Beanstalk doesn't include in its
platforms, provide a self-contained application.

The .NET Core on Linux platform 262

AWS Elastic Beanstalk Developer Guide

Examples

You can compile both self-contained and runtime-dependent applications with the dotnet
publish command. To learn more about publishing .NET Core apps, see .NET Core application
publishing overview in the .NET Core documentation.

The following example file structure defines a single application that uses a .NET Core runtime that
Elastic Beanstalk provides.

appsettings.Development.json
appsettings.json
dotnetcoreapp.deps.json
dotnetcoreapp.dll
dotnetcoreapp.pdb
dotnetcoreapp.runtimeconfig.json
web.config
Procfile
.ebextensions
.platform

You can include multiple applications in your source bundle. The following example defines two
applications to run on the same web server. To run multiple applications, you must include a
Procfile in your source bundle. For a full example application, see dotnet-core-linux-multiple-
apps.zip.

DotnetMultipleApp1
Amazon.Extensions.Configuration.SystemsManager.dll
appsettings.Development.json
appsettings.json
AWSSDK.Core.dll
AWSSDK.Extensions.NETCore.Setup.dll
AWSSDK.SimpleSystemsManagement.dll
DotnetMultipleApp1.deps.json
DotnetMultipleApp1.dll
DotnetMultipleApp1.pdb
DotnetMultipleApp1.runtimeconfig.json
Microsoft.Extensions.PlatformAbstractions.dll
Newtonsoft.Json.dll
web.config
DotnetMultipleApp2
Amazon.Extensions.Configuration.SystemsManager.dll
appsettings.Development.json

The .NET Core on Linux platform 263

https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying
samples/dotnet-core-linux-multiple-apps.zip
samples/dotnet-core-linux-multiple-apps.zip

AWS Elastic Beanstalk Developer Guide

appsettings.json
AWSSDK.Core.dll
AWSSDK.Extensions.NETCore.Setup.dll
AWSSDK.SimpleSystemsManagement.dll
DotnetMultipleApp2.deps.json
DotnetMultipleApp2.dll
DotnetMultipleApp2.pdb
DotnetMultipleApp2.runtimeconfig.json
Microsoft.Extensions.PlatformAbstractions.dll
Newtonsoft.Json.dll
web.config
Procfile
.ebextensions
.platform

Using a Procfile to configure your .NET Core on Linux environment

To run multiple applications on the same web server, you must include a Procfile in your source
bundle that tells Elastic Beanstalk which applications to run.

We recommend that you always provide a Procfile in the source bundle with your application.
This way you precisely control which processes Elastic Beanstalk runs for your application and
which arguments these processes receive.

The following example uses a Procfile to specify two applications for Elastic Beanstalk to run on
the same web server.

Example Procfile

web: dotnet ./dotnet-core-app1/dotnetcoreapp1.dll
web2: dotnet ./dotnet-core-app2/dotnetcoreapp2.dll

For details about writing and using a Procfile, expand the Buildfile and Procfile section in the
section called “Extending Linux platforms”.

Configuring the proxy server for your .NET Core on Linux environment

AWS Elastic Beanstalk uses nginx as the reverse proxy to relay requests to your application. Elastic
Beanstalk provides a default nginx configuration that you can either extend or override completely
with your own configuration.

The .NET Core on Linux platform 264

https://www.nginx.com/

AWS Elastic Beanstalk Developer Guide

By default, Elastic Beanstalk configures the nginx proxy to forward requests to your application on
port 5000. You can override the default port by setting the PORT environment property to the port
on which your main application listens.

Note

The port that your application listens on doesn't affect the port that the nginx server
listens on to receive requests from the load balancer.

Configuring the proxy server on your platform version

All AL2023/AL2 platforms support a uniform proxy configuration feature. For more information
about configuring the proxy server on your platform versions running AL2023/AL2, expand the
Reverse Proxy Configuration section in the section called “Extending Linux platforms”.

The following example configuration file extends your environment's nginx configuration. The
configuration directs requests to /api to a second web application that listens on port 5200 on
the web server. By default, Elastic Beanstalk forwards requests to a single application that listens
on port 5000.

Example 01_custom.conf

location /api {
 proxy_pass http://127.0.0.1:5200;
 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection $http_connection;
 proxy_set_header Host $host;
 proxy_cache_bypass $http_upgrade;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
}

Tutorial: Deploying an ASP.NET core application on Linux using Elastic
Beanstalk

This tutorial describes the process of building a new ASP.NET Core application and deploying it to
an Amazon Linux 2 environment with Elastic Beanstalk.

Tutorial - .NET core on Linux 265

AWS Elastic Beanstalk Developer Guide

In this tutorial, you first use the .NET Core SDK's dotnet command line tool to do the following:

• Generate an application that serves HTTP requests with ASP.NET.

• Install runtime dependencies.

• Compile and run your web application locally.

• Publish your application artifacts to an output directory. The artifacts include the compiled
source code, runtime dependencies and configuration files.

Next, you do the following with your newly created application:

• Create an application source bundle that contains your published artifacts.

• Create an Amazon Linux 2 environment and deploy your application to it with Elastic Beanstalk.

• Open the site URL created by Elastic Beanstalk to run your application.

The application source code is available here: dotnet-core-linux-tutorial-source.zip.

The deployable source bundle is available here: dotnet-core-linux-tutorial-bundle.

Sections

• Prerequisites

• Generate a .NET core project as a web application

• Launch an Elastic Beanstalk environment and deploy your application

• Cleanup

• Next steps

Prerequisites

This tutorial uses the .NET Core SDK to generate a basic .NET Core web application, run it locally,
and build a deployable package.

Requirements

• .NET Core 3.1 or later

Tutorial - .NET core on Linux 266

samples/dotnet-core-linux-tutorial-source.zip
samples/dotnet-core-linux-tutorial-bundle.zip

AWS Elastic Beanstalk Developer Guide

To install the .NET core SDK

1. Download the installer from microsoft.com/net/core. Choose your development platform.
Choose Download .NET Core SDK.

2. Run the installer and follow the instructions.

Note

Although the examples in this tutorial are listings from the Windows command line,
the .NET Core SDK supports development platforms on several operating systems. The
dotnet commands shown in this tutorial are consistent across different development
platforms.

This tutorial uses a command line ZIP utility to create a source bundle that you can deploy to
Elastic Beanstalk. To use the zip command in Windows, you can install UnxUtils. (UnxUtils is a
lightweight collection of useful command line utilities like zip and ls.) Alternatively, you can use
Windows Explorer or any other ZIP utility to create source bundle archives.

To install UnxUtils

1. Download UnxUtils.

2. Extract the archive to a local directory. For example, C:\Program Files (x86).

3. Add the path to the binaries to your Windows PATH user variable. For example, C:\Program
Files (x86)\UnxUtils\usr\local\wbin.

a. Press the Windows key, and then enter environment variables.

b. Choose Edit environment variables for your account.

c. Choose PATH, and then choose Edit.

d. Add paths to the Variable value field, separated by semicolons. For example: C:
\item1\path;C:\item2\path

e. Choose OK twice to apply the new settings.

f. Close any running Command Prompt windows, and then reopen a Command Prompt
window.

4. Open a new command prompt window and run the zip command to verify that it works.

Tutorial - .NET core on Linux 267

https://www.microsoft.com/net/core#windows
https://sourceforge.net/projects/unxutils/

AWS Elastic Beanstalk Developer Guide

> zip -h
Copyright (C) 1990-1999 Info-ZIP
Type 'zip "-L"' for software license.
...

Generate a .NET core project as a web application

Use the dotnet command line tool to generate a new C# .NET Core web application project and
run it locally. The default .NET Core web application displays Hello World!.

To generate a new .NET core project

1. Open a new command prompt window and navigate to your user folder.

> cd %USERPROFILE%

2. Use the dotnet new command to generate a new .NET Core project.

C:\Users\username> dotnet new web -o dotnet-core-tutorial
The template "ASP.NET Core Empty" was created successfully.

Processing post-creation actions...
Running 'dotnet restore' on dotnet-core-tutorial\dotnet-core-tutorial.csproj...
 Determining projects to restore...
 Restored C:\Users\username\dotnet-core-tutorial\dotnet-core-tutorial.csproj (in
 154 ms).

Restore succeeded.

To run the website locally

1. Use the dotnet restore command to install dependencies.

C:\Users\username> cd dotnet-core-tutorial
C:\Users\username\dotnet-core-tutorial> dotnet restore
 Determining projects to restore...
 All projects are up-to-date for restore.

Tutorial - .NET core on Linux 268

AWS Elastic Beanstalk Developer Guide

2. Use the dotnet run command to build and start the application locally.

C:\Users\username\dotnet-core-tutorial> dotnet run
info: Microsoft.Hosting.Lifetime[0]
 Now listening on: https://localhost:5001
info: Microsoft.Hosting.Lifetime[0]
 Now listening on: http://localhost:5000
info: Microsoft.Hosting.Lifetime[0]
 Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
 Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
 Content root path: C:\Users\username\dotnet-core-tutorial

3. Open localhost:5000 to view the site from your default web browser.

The application returns Hello World!, which is displayed on your web browser.

To run the application on a web server, you must bundle the compiled source code with a
web.config configuration file and runtime dependencies. The dotnet tool provides a publish
command that gathers these files in a directory based on the configuration in dotnet-core-
tutorial.csproj.

To build your website

• Use the dotnet publish command to output compiled code and dependencies to a folder
named site.

C:\users\username\dotnet-core-tutorial> dotnet publish -o site
Microsoft (R) Build Engine version 16.7.0-preview-20360-03+188921e2f for .NET
Copyright (C) Microsoft Corporation. All rights reserved.

 Determining projects to restore...
 All projects are up-to-date for restore.
 dotnet-core-tutorial -> C:\Users\username\dotnet-core-tutorial\bin\Debug
\netcoreapp3.1\dotnet-core-tutorial.dll
 dotnet-core-tutorial -> C:\Users\username\dotnet-core-tutorial\site\

Tutorial - .NET core on Linux 269

http://localhost:5000

AWS Elastic Beanstalk Developer Guide

To create a source bundle

• Use the zip command to create a source bundle named dotnet-core-tutorial.zip.

The source bundle contains all of the files published to the site folder.

Note

If you use a different ZIP utility, be sure to add all files to the root folder of the
resulting ZIP archive. This is required for a successful deployment of the application to
your Elastic Beanstalk environment.

C:\users\username\dotnet-core-tutorial> cd site
C:\users\username\dotnet-core-tutorial\site>zip -r ../dotnet-core-tutorial.zip .
 adding: appsettings.Development.json (164 bytes security) (deflated 38%)
 adding: appsettings.json (164 bytes security) (deflated 39%)
 adding: dotnet-core-tutorial.deps.json (164 bytes security) (deflated 93%)
 adding: dotnet-core-tutorial.dll (164 bytes security) (deflated 58%)
 adding: dotnet-core-tutorial.exe (164 bytes security) (deflated 57%)
 adding: dotnet-core-tutorial.pdb (164 bytes security) (deflated 48%)
 adding: dotnet-core-tutorial.runtimeconfig.json (164 bytes security) (deflated
 33%)
 adding: web.config (164 bytes security) (deflated 41%)

Note

In this tutorial, you are only running one application on the web server, so a Procfile
is not required in your source bundle. However, to deploy multiple applications on
the same web server, you must include a Procfile. For more information, see Using a
Procfile to configure your .NET Core on Linux environment.

Launch an Elastic Beanstalk environment and deploy your application

Use the Elastic Beanstalk console to launch an Elastic Beanstalk environment and deploy the
source bundle.

You can download the source bundle here: dotnet-core-linux-tutorial-bundle

Tutorial - .NET core on Linux 270

samples/dotnet-core-linux-tutorial-bundle.zip

AWS Elastic Beanstalk Developer Guide

To launch an environment and deploy your code (console)

1. Open the Elastic Beanstalk console with this preconfigured link:
console.aws.amazon.com/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select .NET Core on Linux.

3. Choose Local file, choose Choose file, and then open the source bundle.

4. Choose Review and launch.

5. Review the available settings, and then choose Create app. The application writes Hello
World! to the response and returns.

It takes about 10 minutes to create the environment and deploy your code.

Launching an environment creates the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

Tutorial - .NET core on Linux 271

https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

AWS Elastic Beanstalk Developer Guide

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the AWS CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com
domain is registered in the Public Suffix List (PSL). For further security, we recommend
that you use cookies with a __Host- prefix if you ever need to set sensitive cookies in
the default domain name for your Elastic Beanstalk applications. This practice will help
to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

Elastic Beanstalk manages all of these resources. When you terminate your environment, Elastic
Beanstalk terminates all the resources that it contains.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
isn't deleted when you terminate the environment. For more information, see Using Elastic
Beanstalk with Amazon S3.

Cleanup

When you finish working with Elastic Beanstalk, you can terminate your environment. Elastic
Beanstalk terminates all AWS resources associated with your environment, such as Amazon EC2
instances, database instances, load balancers, security groups, and alarms.

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

Tutorial - .NET core on Linux 272

https://console.aws.amazon.com/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

With Elastic Beanstalk, you can easily create a new environment for your application at any time.

Next steps

As you continue to develop your application, you might want to manage your environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic
Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line interface.

If you use Visual Studio to develop your application, you can also use the AWS Toolkit for Visual
Studio to deploy changes in your code, manage your Elastic Beanstalk environments, and manage
other AWS resources. See The AWS Toolkit for Visual Studio for more information.

For developing and testing purposes, you can consider leveraging the deployment functionality
ofElastic Beanstalk to add a managed DB instance directly to your environment. For information
on setting up a database inside your environment, see Adding a database to your Elastic Beanstalk
environment.

Last, if you plan to use your application in a production environment, we recommend that you
configure a custom domain name for your environment and enable HTTPS for secure connections.

The AWS Toolkit for Visual Studio - Working with .Net Core

The AWS Toolkit for Visual Studio is a plugin to the Visual Studio IDE. With the toolkit you can
deploy and manage applications in Elastic Beanstalk while you are working in your Visual Studio
environment.

This topic shows how you can do the following tasks using the AWS Toolkit for Visual Studio:

The AWS Toolkit for Visual Studio 273

AWS Elastic Beanstalk Developer Guide

• Create an ASP.NET Core web application using a Visual Studio template.

• Create an Elastic Beanstalk Amazon Linux environment.

• Deploy the ASP.NET Core web application to the new Amazon Linux environment.

This topic also explores how you can use the AWS Toolkit for Visual Studio to manage your Elastic
Beanstalk application environments and monitor your application's health.

Sections

• Prerequisites

• Create a new application project

• Create an Elastic Beanstalk environment and deploy your application

• Terminating an environment

• Managing your Elastic Beanstalk application environments

• Monitoring application health

Prerequisites

Before you begin this tutorial, you need to install the AWS Toolkit for Visual Studio. For
instructions, see Setting up the AWS Toolkit for Visual Studio.

If you have never used the toolkit before, the first thing you'll need to do after installing the toolkit
is to register your AWS credentials with the toolkit. For more information about this, see Providing
AWS Credentials.

Create a new application project

If you don't have a .NET Core application project in Visual Studio, you can easily create one using
one of the Visual Studio project templates.

To create a new ASP.NET Core web application project

1. In Visual Studio, on the File menu, choose New and then choose Project.

2. In the Create a new project dialog box, select C#, select Linux, and then select Cloud.

3. From the list of project templates that displays select ASP.NET Core Web Application, and
then select Next.

The AWS Toolkit for Visual Studio 274

https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/getting-set-up.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/credentials.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/credentials.html

AWS Elastic Beanstalk Developer Guide

Note

If you don't see ASP.NET Core Web Application listed in the project templates, you can
install it in Visual Studio.

1. Scroll to the bottom of the template list and select the Install more tools and
features link that is located under the template list.

2. If you are prompted to allow the Visual Studio application to make changes to your
device, select Yes.

3. Choose the Workloads tab, then select ASP.NET and web development.

4. Select the Modify button. The Visual Studio Installer installs the project template.

5. After the installer completes, exit the panel to return to where you left off in Visual
Studio .

4. In the Configure your new project dialog box, enter a Project name. The Solution name
defaults to your project name. Next, choose Create.

5. In the Create a new ASP.NET Core web application dialog box, select .NET Core, and then
select ASP.NET Core 3.1. From the list of application types that are displayed, select Web
Application, then select the Create button.

The AWS Toolkit for Visual Studio 275

AWS Elastic Beanstalk Developer Guide

Visual Studio displays the Creating Project dialog box when it creates your application. After Visual
Studio completes generating your application, a panel with your application name is displayed.

Create an Elastic Beanstalk environment and deploy your application

This section describes how to create an Elastic Beanstalk environment for your application and
deploy your application to that environment.

The AWS Toolkit for Visual Studio 276

AWS Elastic Beanstalk Developer Guide

To create a new environment and deploy your application

1. In Visual Studio select View, then Solution Explorer.

2. In Solution Explorer, open the context (right-click) menu for your application, and then select
Publish to AWS Elastic Beanstalk.

3. In the Publish to AWS Elastic Beanstalk wizard, enter your account information.

a. For Account profile to use, select your default account or choose the Add another
account icon to enter new account information.

b. For Region, select the Region where you want to deploy your application. For information
about available AWS Regions, see AWS Elastic Beanstalk Endpoints and Quotas in the AWS
General Reference. If you select a Region that is not supported by Elastic Beanstalk, then
the option to deploy to Elastic Beanstalk is unavailable.

c. Select Create a new application environment, then choose Next.

The AWS Toolkit for Visual Studio 277

https://docs.aws.amazon.com/general/latest/gr/elasticbeanstalk.html

AWS Elastic Beanstalk Developer Guide

4. On the Application Environment dialog box, enter the details for your new application
environment.

5. On the next AWS options dialog box, set Amazon EC2 options and other AWS related options
for your deployed application.

a. For Container type select 64bit Amazon Linux 2 v<n.n.n> running .NET Core.

Note

We recommend you select the current platform version of Linux. This version
contains the most recent security and bug fixes that are included in our latest
Amazon Machine Image (AMI).

b. For Instance Type, select t2.micro. (Choosing a micro instance type minimizes the cost
associated with running the instance.)

c. For Key pair, select Create new key pair. Enter a name for the new key pair, and then
choose OK. (In this example, we use myuseastkeypair.) A key pair enables remote-

The AWS Toolkit for Visual Studio 278

AWS Elastic Beanstalk Developer Guide

desktop access to your Amazon EC2 instances. For more information about Amazon EC2
key pairs, see Using Credentials in the Amazon Elastic Compute Cloud User Guide.

d. For a simple, low traffic application, select Single instance environment. For more
information, see Environment types

e. Select Next.

For more information about the AWS options that are not used in this example consider the
following pages:

• For Use custom AMI, see Using a custom Amazon machine image (AMI).

• If you don't select Single instance environment, you need to choose a Load balance type.
See Load balancer for your Elastic Beanstalk environment for more information.

• Elastic Beanstalk uses the default Amazon VPC (Amazon Virtual Private Cloud) configuration
if you didn't choose Use non-default VPC. For more information see Using Elastic Beanstalk
with Amazon VPC.

The AWS Toolkit for Visual Studio 279

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-credentials.html
https://docs.aws.amazon.com/vpc/latest/userguide/

AWS Elastic Beanstalk Developer Guide

• Choosing the Enable Rolling Deployments option splits a deployment into batches to avoid
potential downtime during deployments. For more information, see Deploying applications
to Elastic Beanstalk environments.

• Choosing the Relational Database Access option connects your Elastic Beanstalk
environment to a previously created Amazon RDS database with Amazon RDS DB Security
Groups. For more information, see Controlling Access with Security Groups in the Amazon
RDS User Guide.

6. Select Next on the Permissions dialog box.

7. Select Next on the Applications Options dialog box.

8. Review your deployment options. After you've verified your settings are correct, select Deploy.

Your ASP.NET Core web application is exported as a web deploy file. This file is then uploaded
to Amazon S3 and registered as a new application version with Elastic Beanstalk. The Elastic
Beanstalk deployment feature monitors your environment until it is available with the newly
deployed code. The Status for your environment is displayed on the Env:<environment name> tab.
After the status updates to Environment is healthy, you can select the URL address to launch the
web application.

The AWS Toolkit for Visual Studio 280

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.RDSSecurityGroups.html

AWS Elastic Beanstalk Developer Guide

Terminating an environment

To avoid incurring charges for unused AWS resources, you can use the AWS Toolkit for Visual Studio
to terminate a running environment.

Note

You can always launch a new environment using the same version later.

To terminate an environment

1. Expand the Elastic Beanstalk node and the application node. In AWS Explorer open
the context (right-click) menu for your application environment and select Terminate
Environment.

2. When prompted, select Yes to confirm that you want to terminate the environment. It takes a
few minutes for Elastic Beanstalk to terminate the AWS resources running in the environment.

The Status for your environment on the Env:<environment name> tab changes to Terminating and
is eventually Terminated.

Note

When you terminate your environment, the CNAME associated with the terminated
environment becomes available for anyone to use.

Managing your Elastic Beanstalk application environments

With the AWS Toolkit for Visual Studio and the AWS Management Console, you can change the
provisioning and configuration of the AWS resources used by your application environments.

The AWS Toolkit for Visual Studio 281

AWS Elastic Beanstalk Developer Guide

For information on how to manage your application environments using the AWS Management
Console, see Managing environments. This section describes the specific service settings you can
edit in the AWS Toolkit for Visual Studio as part of your application environment configuration.

Changing environment configurations settings

When you deploy your application, Elastic Beanstalk configures several connected AWS cloud
computing services. You can control how these individual services are configured by using the AWS
Toolkit for Visual Studio.

To edit an application's environment settings

1. In Visual Studio, on the File menu, choose AWS Explorer.

2. Expand the Elastic Beanstalk node and your application node. Open the context (right-click)
menu for your application environment and select View Status.

You can now configure settings for the following:

• AWS X-Ray

• Server

• Load Balancer (only applies to multiple-instance environments)

• Auto Scaling (only applies to multiple-instance environments)

The AWS Toolkit for Visual Studio 282

AWS Elastic Beanstalk Developer Guide

• Notifications

• Container

• Advanced Configuration Options

Configuring AWS X-Ray using the AWS toolkit for Visual Studio

AWS X-Ray provides request tracing, exception collection, and profiling capabilities. With the AWS
X-Ray panel, you can enable or disable X-Ray for your application. For more information about X-
Ray, see the AWS X-Ray Developer Guide.

Configuring EC2 instances using the AWS toolkit for Visual Studio

You can use Amazon Elastic Compute Cloud (Amazon EC2) to launch and manage server instances
in Amazon's data centers. You can use Amazon EC2 server instances at any time, for as long as you
need, and for any legal purpose. Instances are available in different sizes and configurations. For
more information, see Amazon EC2.

You can edit your Amazon EC2 instance configuration with the Server tab inside your application
environment tab in the AWS Toolkit for Visual Studio.

The AWS Toolkit for Visual Studio 283

https://docs.aws.amazon.com/xray/latest/devguide/
https://aws.amazon.com/ec2/

AWS Elastic Beanstalk Developer Guide

Amazon EC2 instance types

Instance type displays the instance types available to your Elastic Beanstalk application. Change
the instance type to select a server with the characteristics (including memory size and CPU power)
that are most appropriate to your application. For example, applications with intensive and long-
running operations can require more CPU or memory.

For more information about the Amazon EC2 instance types available for your Elastic Beanstalk
application, see Instance Types in the Amazon Elastic Compute Cloud User Guide.

Amazon EC2 security groups

You can control access to your Elastic Beanstalk application using an Amazon EC2 Security Group. A
security group defines firewall rules for your instances. These rules specify which incoming network
traffic should be delivered to your instance. All other incoming traffic is discarded. You can modify
rules for a group at any time. The new rules are automatically enforced for all running instances
and instances launched in the future.

You can specify which Amazon EC2 Security Groups control access to your Elastic Beanstalk
application. To do this, enter the names of specific Amazon EC2 security groups (separating
multiple secruity groups with commas) into the EC2 Security Groups text box. You can do this
either by using the AWS Management Console or the AWS Toolkit for Visual Studio.

To create a security group using the AWS toolkit for Visual Studio

1. In Visual Studio, in AWS Explorer, expand the Amazon EC2 node, and then select Security
Groups.

2. Select Create Security Group, and enter a name and description for your security group.

3. Select OK.

The AWS Toolkit for Visual Studio 284

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

AWS Elastic Beanstalk Developer Guide

For more information on Amazon EC2 Security Groups, see Using Security Groups in the Amazon
Elastic Compute Cloud User Guide.

Amazon EC2 key pairs

You can securely log in to the Amazon EC2 instances provisioned for your Elastic Beanstalk
application with an Amazon EC2 key pair.

Important

You must create an Amazon EC2 key pair and configure your Amazon EC2 instances
provisioned by Elastic Beanstalk to be able to access these instances. You can create your
key pair using the Publish to AWS wizard inside the AWS Toolkit for Visual Studio when
you deploy your application to Elastic Beanstalk. If you want to create additional key
pairs using the Toolkit, follow the steps described here. Alternatively, you can set up your
Amazon EC2 key pairs using the AWS Management Console. For instructions on creating a
key pair for Amazon EC2, see the Amazon Elastic Compute Cloud Getting Started Guide.

The Existing Key Pair text box lets you specify the name of an Amazon EC2 key pair that you
can use to securely log in to the Amazon EC2 instances that are running your Elastic Beanstalk
application.

To specify the name of an Amazon EC2 key pair

1. Expand the Amazon EC2 node and select Key Pairs.

2. Select Create Key Pair and enter the key pair name.

3. Select OK.

For more information about Amazon EC2 key pairs, go to Using Amazon EC2 Credentials in the
Amazon Elastic Compute Cloud User Guide. For more information about connecting to Amazon EC2
instances, see

Monitoring interval

By default, only basic Amazon CloudWatch metrics are enabled. They return data in five-minute
periods. You can enable more granular one-minute CloudWatch metrics by selecting 1 minute for
the Monitoring Interval in the Server section of the Configuration tab for your environment in the
AWS Toolkit for Eclipse.

The AWS Toolkit for Visual Studio 285

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://console.aws.amazon.com/
http://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-credentials.html

AWS Elastic Beanstalk Developer Guide

Note

Amazon CloudWatch service charges can apply for one-minute interval metrics. See
Amazon CloudWatch for more information.

Custom AMI ID

You can override the default AMI used for your Amazon EC2 instances with your own custom AMI
by entering the identifier of your custom AMI into the Custom AMI ID box in the Server section of
the Configuration tab for your environment in the AWS Toolkit for Eclipse.

Important

Using your own AMI is an advanced task that you should do with care. If you need a custom
AMI, we recommend you start with the default Elastic Beanstalk AMI and then modify it.
To be considered healthy, Elastic Beanstalk expects Amazon EC2 instances to meet a set of
requirements, including having a running host manager. If these requirements are not met,
your environment might not work properly.

Configuring Elastic Load Balancing using the AWS toolkit for Visual Studio

Elastic Load Balancing is an Amazon web service that helps you improve the availability and
scalability of your application. This service makes it easy for you to distribute application loads
between two or more Amazon EC2 instances. Elastic Load Balancing improves availability through
providing additional redundancy and supports traffic growth for your application.

With Elastic Load Balancing, you can automatically distribute and balance incoming application
traffic among all your running instances. You can also easily add new instances when increasing the
capacity of your application is required.

Elastic Beanstalk automatically provisions Elastic Load Balancing when you deploy an application.
You can edit the Elastic Beanstalk environment's Amazon EC2 instance configuration with the Load
Balancer tab inside your application environment tab in AWS Toolkit for Visual Studio.

The AWS Toolkit for Visual Studio 286

https://aws.amazon.com/cloudwatch/

AWS Elastic Beanstalk Developer Guide

The following sections describe the Elastic Load Balancing parameters you can configure for your
application.

Ports

The load balancer provisioned to handle requests for your Elastic Beanstalk application sends
requests to the Amazon EC2 instances that are running your application. The provisioned load
balancer can listen for requests on HTTP and HTTPS ports and route requests to the Amazon
EC2 instances in your AWS Elastic Beanstalk application. By default, the load balancer handles
requests on the HTTP port. For this to work, at least one of the ports (either HTTP or HTTPS) must
be turned on.

Important

Make sure that the port that you specified is not locked down; otherwise, you won't be able
to connect to your Elastic Beanstalk application.

The AWS Toolkit for Visual Studio 287

AWS Elastic Beanstalk Developer Guide

Controlling the HTTP port

To turn off the HTTP port, select OFF for HTTP Listener Port. To turn on the HTTP port, you select
an HTTP port (for example, 80) from the list.

Note

To access your environment using a port other than the default port 80, such as port 8080,
add a listener to the existing load balancer and configure the new listener to listen on that
port.
For example, using the AWS CLI for Classic load balancers, type the following command,
replacing LOAD_BALANCER_NAME with the name of your load balancer for Elastic
Beanstalk.

aws elb create-load-balancer-listeners --load-balancer-name LOAD_BALANCER_NAME
 --listeners "Protocol=HTTP, LoadBalancerPort=8080, InstanceProtocol=HTTP,
 InstancePort=80"

For example, using the AWS CLI for Application Load Balancers, type the following
command, replacing LOAD_BALANCER_ARN with the ARN of your load balancer for Elastic
Beanstalk.

aws elbv2 create-listener --load-balancer-arn LOAD_BALANCER_ARN --protocol HTTP
 --port 8080

If you want Elastic Beanstalk to monitor your environment, do not remove the listener on
port 80.

Controlling the HTTPS port

Elastic Load Balancing supports the HTTPS/TLS protocol to enable traffic encryption for client
connections to the load balancer. Connections from the load balancer to the EC2 instances use
plaintext encryption. By default, the HTTPS port is turned off.

To turn on the HTTPS port

1. Create a new certificate using AWS Certificate Manager (ACM) or upload a certificate and key
to AWS Identity and Access Management (IAM). For more information about requesting an

The AWS Toolkit for Visual Studio 288

https://docs.aws.amazon.com/cli/latest/reference/elb/create-load-balancer-listeners.html
https://docs.aws.amazon.com/cli/latest/reference/elbv2/create-listener.html

AWS Elastic Beanstalk Developer Guide

ACM certificate, see Request a Certificate in the AWS Certificate Manager User Guide. For more
information about importing third-party certificates into ACM, see Importing Certificates
in the AWS Certificate Manager User Guide. If ACM is not available in your region, use AWS
Identity and Access Management (IAM) to upload a third-party certificate. The ACM and
IAM services store the certificate and provide an Amazon Resource Name (ARN) for the
SSL certificate. For more information about creating and uploading certificates to IAM, see
Working with Server Certificates in IAM User Guide.

2. Specify the HTTPS port by selecting a port for HTTPS Listener Port.

3. For SSL Certificate ID, enter the Amazon Resources Name (ARN) of your
SSL certificate. For example, arn:aws:iam::123456789012:server-
certificate/abc/certs/build or arn:aws:acm:us-
east-2:123456789012:certificate/12345678-12ab-34cd-56ef-12345678. Use the
SSL certificate that you created or uploaded in step 1.

To turn off the HTTPS port, select OFF for HTTPS Listener Port.

Health checks

The health check definition includes a URL to be queried for instance health. By default, Elastic
Beanstalk uses TCP:80 for nonlegacy containers and HTTP:80 for legacy containers. You can
override the default URL to match an existing resource in your application (for example, /myapp/
default.aspx) by entering it in the Application Health Check URL box. If you override the
default URL, then Elastic Beanstalk uses HTTP to query the resource. To check if you are using a
legacy container type, see the section called “Why are some platform versions marked legacy?”

You can control the settings for the health check using the EC2 Instance Health Check section of
the Load Balancing panel.

The AWS Toolkit for Visual Studio 289

https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingServerCerts.html

AWS Elastic Beanstalk Developer Guide

The health check definition includes a URL to be queried for instance health. Override the default
URL to match an existing resource in your application (for example, /myapp/index.jsp) by
entering it in the Application Health Check URL box.

The following list describes the health check parameters you can set for your application.

• For Health Check Interval (seconds), enter the number of seconds Elastic Load Balancing waits
between health checks for your application's Amazon EC2 instances.

• For Health Check Timeout (seconds), specify the number of seconds Elastic Load Balancing
waits for a response before it considers the instance unresponsive.

• For Healthy Check Count Threshold and Unhealthy Check Count Threshold, specify the
number of consecutive successful or unsuccessful URL probes before Elastic Load Balancing
changes the instance health status. For example, specifying 5 for Unhealthy Check Count
Threshold means that the URL must return an error message or timeout five consecutive times
before Elastic Load Balancing considers the health check as failed.

Sessions

By default, a load balancer routes each request independently to the server instance with the
smallest load. By comparison, a sticky session binds a user's session to a specific server instance so
that all requests coming from the user during the session are sent to the same server instance.

Elastic Beanstalk uses load balancer–generated HTTP cookies when sticky sessions are enabled
for an application. The load balancer uses a special load balancer–generated cookie to track
the application instance for each request. When the load balancer receives a request, it first
checks to see if this cookie is present in the request. If it is present, the request is sent to the
application instance that is specified in the cookie. If there is no cookie, the load balancer chooses
an application instance based on the existing load balancing algorithm. A cookie is inserted into
the response for binding subsequent requests from the same user to that application instance.
The policy configuration defines a cookie expiry, which establishes the duration of validity for each
cookie.

You can use the Sessions section on the Load Balancer tab to specify whether the load balancer
for your application allows session stickiness.

The AWS Toolkit for Visual Studio 290

AWS Elastic Beanstalk Developer Guide

For more information on Elastic Load Balancing, see the Elastic Load Balancing Developer Guide.

Configuring Auto Scaling using the AWS toolkit for Visual Studio

Amazon EC2 Auto Scaling is an Amazon web service that is designed to automatically launch or
terminate Amazon EC2 instances based on user-defined triggers. You can set up Auto Scaling
groups and associate triggers with these groups to automatically scale computing resources based
on metrics such as bandwidth usage or CPU utilization. Amazon EC2 Auto Scaling works with
Amazon CloudWatch to retrieve metrics for the server instances running your application.

Amazon EC2 Auto Scaling lets you take a group of Amazon EC2 instances and set various
parameters to have this group automatically increase or decrease in number. Amazon EC2 Auto
Scaling can add or remove Amazon EC2 instances from that group to help you seamlessly deal with
traffic changes to your application.

Amazon EC2 Auto Scaling also monitors the health of each Amazon EC2 instance that it launches.
If any instance terminates unexpectedly, Amazon EC2 Auto Scaling detects the termination and
launches a replacement instance. This capability enables you to maintain a fixed, desired number of
Amazon EC2 instances automatically.

Elastic Beanstalk provisions Amazon EC2 Auto Scaling for your application. You can edit the Elastic
Beanstalk environment's Amazon EC2 instance configuration with the Auto Scaling tab inside your
application environment tab in the AWS Toolkit for Visual Studio.

The AWS Toolkit for Visual Studio 291

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/

AWS Elastic Beanstalk Developer Guide

The following section discusses how to configure Auto Scaling parameters for your application.

Launch the configuration

You can edit the launch configuration to control how your Elastic Beanstalk application provisions
Amazon EC2 Auto Scaling resources.

The Minimum Instance Count and Maximum Instance Count boxes let you specify the minimum
and maximum size of the Auto Scaling group that your Elastic Beanstalk application uses.

Note

To maintain a fixed number of Amazon EC2 instances, set Minimum Instance Count and
Maximum Instance Count to the same value.

The Availability Zones box lets you specify the number of Availability Zones you want your
Amazon EC2 instances to be in. It is important to set this number if you want to build fault-
tolerant applications. If one Availability Zone goes down, your instances will still run in your other
Availability Zones.

Note

Currently, it is not possible to specify which Availability Zone your instance will be in.

Triggers

A trigger is an Amazon EC2 Auto Scaling mechanism that you set to tell the system when you want
to increase (scale out) or decrease (scale in) the number of instances. You can configure triggers to
fire on any metric published to Amazon CloudWatch (for example, CPU utilization) and determine if

The AWS Toolkit for Visual Studio 292

AWS Elastic Beanstalk Developer Guide

the conditions you specified have been met. When the upper or lower thresholds of the conditions
you have specified for the metric have been breached for the specified period of time, the trigger
launches a long-running process called a Scaling Activity.

You can define a scaling trigger for your Elastic Beanstalk application using AWS Toolkit for Visual
Studio.

Amazon EC2 Auto Scaling triggers work by monitoring a specific Amazon CloudWatch metric of
a particular instance. Metrics include CPU utilization, network traffic, and disk activity. Use the
Trigger Measurement setting to select a metric for your trigger.

The following list describes the trigger parameters you can configure using the AWS Management
Console.

• You can specify which statistic the trigger should use. You can select Minimum, Maximum, Sum,
or Average for Trigger Statistic.

• For Unit of Measurement, specify the unit for the trigger measurement.

• The value in the Measurement Period box specifies how frequently Amazon CloudWatch
measures the metrics for your trigger. The Breach Duration is the amount of time a metric can
go beyond its defined limit (as specified for the Upper Threshold and Lower Threshold) before
the trigger fires.

• For Upper Breach Scale Increment and Lower Breach Scale Increment, specify how many
Amazon EC2 instances to add or remove when performing a scaling activity.

For more information on Amazon EC2 Auto Scaling, see the Amazon EC2 Auto Scaling section on
Amazon Elastic Compute Cloud Documentation.

Configuring notifications using AWS toolkit for Visual Studio

Elastic Beanstalk uses the Amazon Simple Notification Service (Amazon SNS) to notify you of
important events affecting your application. To enable Amazon SNS notifications, enter your email

The AWS Toolkit for Visual Studio 293

https://aws.amazon.com/documentation/ec2/

AWS Elastic Beanstalk Developer Guide

address in the Email Address box. To disable these notifications, remove your email address from
the box.

Configuring additional environment options using AWS toolkit for Visual Studio

Elastic Beanstalk defines a large number of configuration options that you can use to configure
your environment's behavior and the resources that it contains. Configuration options are
organized into namespaces like aws:autoscaling:asg. Each namespace defines options for an
environment's Auto Scaling group. The Advanced panel lists the configuration option namespaces
in alphabetical order that you can update after environment creation.

For a complete list of namespaces and options, including default and supported values for each,
see General options for all environments and .NET Core on Linux platform options.

Configuring .NET Core containers using the AWS toolkit for Visual Studio

The Container panel lets you specify environment variables that you can read from your
application code.

The AWS Toolkit for Visual Studio 294

AWS Elastic Beanstalk Developer Guide

Monitoring application health

It is important to know that your production website is available and responding to requests.
Elastic Beanstalk provides features to help you monitor your application's responsiveness. It
monitors statistics about your application and alerts you when thresholds are exceeded.

For information about the health monitoring provided by Elastic Beanstalk, see Basic health
reporting.

You can access operational information about your application by using either the AWSToolkit for
Visual Studio or the AWS Management Console.

The toolkit displays your environment's status and application health in the Status field.

To monitor application health

1. In the AWS Toolkit for Visual Studio, in AWS Explorer, expand the Elastic Beanstalk node, and
then expand your application node.

2. Open the context (right-click) menu for your application environment and select View Status.

3. On your application environment tab, select Monitoring.

The Monitoring panel includes a set of graphs showing resource usage for your particular
application environment.

The AWS Toolkit for Visual Studio 295

AWS Elastic Beanstalk Developer Guide

Note

By default, the time range is set to the last hour. To modify this setting, in the Time
Range list, select a different time range.

You can use the AWS Toolkit for Visual Studio or the AWS Management Console to view events
associated with your application.

To view application events

1. In the AWS Toolkit for Visual Studio, in AWS Explorer, expand the Elastic Beanstalk node and
your application node.

2. Open the context (right-click) menu for your application environment and select View Status.

3. In your application environment tab, select Events.

The AWS Toolkit for Visual Studio 296

AWS Elastic Beanstalk Developer Guide

Migrating from .NET on Windows Server platforms to the .NET Core on
Linux platform

You can migrate applications that run on .NET on Windows Server platforms to the .NET Core
on Linux platforms. Following are some considerations when migrating from Windows to Linux
platforms.

Considerations for migrating to the .NET Core on Linux platform

Area Changes and information

Applicati
on
configura
tion

On Windows platforms, you use a deployment manifest to specify the applicati
ons that run in your environment. The .NET Core on Linux platforms use a Procfile
to specify the applications that run on your environment's instances. For details
on bundling applications, see the section called “Bundling applications”.

Proxy
server

On Windows platforms, you use IIS as your application's proxy server. The .NET
Core on Linux platforms include nginx as a reverse proxy by default. You can
choose to use no proxy server and use Kestrel as your application's web server. To
learn more, see the section called “Proxy server”.

Routing On Windows platforms, you use IIS in your application code and include a
deployment manifest to configure the IIS path. For the .NET Core on Linux
platform, you use ASP .NET Core routing in your application code, and update
your environment's nginx configuration. To learn more, see the section called
“Proxy server”.

Logs The Linux and Windows platforms stream different logs. For details, see the
section called “How Elastic Beanstalk sets up CloudWatch Logs”.

Creating and deploying .NET applications on Elastic Beanstalk

Important

TLS 1.2 Compatibility

Migration from Windows to Linux 297

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-3.1

AWS Elastic Beanstalk Developer Guide

As of December 31, 2023, AWS started fully enforcing TLS 1.2 across all AWS API
endpoints. This removed the ability to use TLS versions 1.0 and 1.1 with all AWS APIs. This
was originally communicated on June 28, 2022. To avoid the risk of availability impact,
upgrade your platform versions to a newer version as soon as possible.

Potential impact

Elastic Beanstalk platforms versions that run TLS v1.1 or earlier will be impacted. This
change will impact environment actions that include but are not limited to the following:
configuration deployments, application deployments, auto scaling, new environment
launch, log rotation, enhanced health reports, and publishing application logs to the
Amazon S3 bucket that's associated with your applications.

Affected Windows Platform Versions

Customers with Elastic Beanstalk environments on the following platform version are
advised to upgrade each of their corresponding environments to Windows platform version
2.8.3 or later, released on Feb 18, 2022.

• Windows Server 2019 — platform version 2.8.2 or prior versions

Customers with Elastic Beanstalk environments on the following platform versions are
advised to upgrade each of their corresponding environments to Windows platform version
2.10.7 or later, released on Dec 28, 2022.

• Windows Server 2016 — platform version 2.10.6 or prior versions

• Windows Server 2012 — all platform versions; this platform was retired on December 4,
2023

• Windows Server 2008 — all platform versions; this platform was retired on October 28,
2019

For a list of the most recent and supported Windows Server platform versions, see
Supported Platforms in the AWS Elastic Beanstalk Platforms guide.

Working with .NET on Windows server 298

https://aws.amazon.com/blogs/security/tls-1-2-required-for-aws-endpoints/
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-02-18-windows.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-12-28-windows.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2023-12-04-windows-2012-retire.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2023-12-04-windows-2012-retire.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2019-10-28-windows.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2019-10-28-windows.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net

AWS Elastic Beanstalk Developer Guide

For details and best practices about updating your environment, see Updating your Elastic
Beanstalk environment's platform version.

AWS Elastic Beanstalk for .NET makes it easier to deploy, manage, and scale your ASP.NET web
applications that use Amazon Web Services. Elastic Beanstalk for .NET is available to anyone who is
developing or hosting a web application that uses IIS.

Get started now: To get started with a tutorial, you can go directly to Tutorial: Deploying an
ASP.NET Core application with Elastic Beanstalk. In this tutorial, you will deploy a sample ASP.NET
Web Application to an AWS Elastic Beanstalk application.

The rest of this section presents instructions for creating, testing, deploying, and redeploying your
ASP.NET web application to Elastic Beanstalk. Some examples demonstrate using the AWS Toolkit
for Visual Studio, and the section called “The AWS Toolkit for Visual Studio” subsection explains
how to manage and configure your applications and environments using the toolkit. For more
information about prerequisites, installation instructions, and running code samples, go to the AWS
Toolkit for Microsoft Visual Studio. This site also provides useful information about tools, how-to
topics, and additional resources for ASP.NET developers.

Note

This platform doesn't support the following Elastic Beanstalk features:

• Worker environments. For details, see Elastic Beanstalk worker environments.

• Bundle logs. For details, see View instance logs.

In addition, platform versions earlier than v2.0.0 don't support enhanced health reporting,
managed platform updates, immutable updates, immutable deployments, and rolling
deployments with an additional batch.

The topics in this chapter assume that you have some knowledge of Elastic Beanstalk
environments. If you haven't used Elastic Beanstalk before, try the getting started tutorial to learn
the basics.

Topics

• Getting started with Windows .NET on Elastic Beanstalk

Working with .NET on Windows server 299

https://aws.amazon.com/visualstudio/
https://aws.amazon.com/visualstudio/

AWS Elastic Beanstalk Developer Guide

• Setting up your .NET development environment

• Using the Elastic Beanstalk .NET platform

• Tutorial: Deploying an ASP.NET Core application with Elastic Beanstalk

• Adding an Amazon RDS DB instance to your .NET application environment

• The AWS Toolkit for Visual Studio

• Migrating your on-premises .NET application to Elastic Beanstalk

• Resources

Getting started with Windows .NET on Elastic Beanstalk

To get started with .NET applications on AWS Elastic Beanstalk, you only need an application
source bundle to upload as your first application version and deploy to an environment. When you
create an environment, Elastic Beanstalk allocates all of the AWS resources needed to run a highly
scalable web application.

Launching an environment with a sample Windows .NET application

Elastic Beanstalk provides single page sample applications for each platform.

Samples

Name Supported configura
tions

Environme
nt
type

Source Description

.NET
Default

WS 2022

WS 2022 Server Core

WS 2019

WS 2019 Server Core

WS 2016

WS 2016 Server Core

Web
Server

dotnet-
asp-
windows
.zip

ASP.NET Core sample application with a
single page configured to be displayed at
the website root.

Windows Server 2012 R2 platform branches retirement

Getting started 300

samples/dotnet-asp-windows.zip
samples/dotnet-asp-windows.zip
samples/dotnet-asp-windows.zip
samples/dotnet-asp-windows.zip

AWS Elastic Beanstalk Developer Guide

The following Elastic Beanstalk platform branches are now retired:

• Windows Server 2012 R2 running IIS 8.5

• Windows Server Core 2012 R2 running IIS 8.5

If you currently use these retiring platform branches, we strongly recommend that you start
planning your migration to one of the following Windows Server platform branches, which are
current and fully supported:

• Windows Server 2022 with IIS 10.0 version 2.x

• Windows Server 2019 with IIS 10.0 version 2.x

For full migration considerations, see Migrating from earlier major versions of the Windows server
platform.

For more information about platform deprecation, see Elastic Beanstalk platform support policy.

Note

Once retired, the Windows Server 2012 platform branches are no longer available from the
Elastic Beanstalk console. You can continue to operate your existing environments that are
based on these retired platform branches until March 4, 2024, which is 90 days after the
December 4 retirement date.
Elastic Beanstalk will make Beanstalk Windows 2012 AMIs private after March 4, 2024. This
action will prevent the launching of instances in your Windows 2012 environments that
use the default Beanstalk AMI. In order to retain access to the AMIs, you may copy the AMIs
into your accounts for use in your Beanstalk environments. For detailed instructions, see
Preserving access to an Amazon Machine Image (AMI) for a retired platform.

Download any of the sample applications and deploy it to Elastic Beanstalk by using the following
procedure.

To launch an environment with a sample application (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

Getting started 301

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Applications, and then choose an existing application's name in
the list or create one.

3. On the application overview page, choose Create new environment.

This launches the Create environment wizard. The wizard provides a set of steps for you to
create a new environment.

Getting started 302

AWS Elastic Beanstalk Developer Guide

Getting started 303

AWS Elastic Beanstalk Developer Guide

4. For environment tier, choose the Web server environment or Worker environment
environment tier. You can't change an environment's tier after creation.

Note

The .NET on Windows Server platform doesn't support the worker environment tier.

5. For Platform, select the platform and platform branch that match the language your
application uses.

Note

Elastic Beanstalk supports multiple versions for most of the platforms that are
listed. By default, the console selects the recommended version for the platform and
platform branch you choose. If your application requires a different version, you can
select it here. For information about supported platform versions, see the section
called “Supported platforms”.

6. For Application code, choose Sample application.

7. For Configuration presets, choose Single instance.

8. Choose Next.

9. The Configure service access page displays.

Getting started 304

AWS Elastic Beanstalk Developer Guide

10. Choose Use an existing service role for Service Role.

11. Next, we'll focus on the EC2 instance profile dropdown list. The values displayed in this
dropdown list may vary, depending on whether you account has previously created a new
environment.

Choose one of the following, based on the values displayed in your list.

• If aws-elasticbeanstalk-ec2-role displays in the dropdown list, select it from the
EC2 instance profile dropdown list.

• If another value displays in the list, and it’s the default EC2 instance profile intended for
your environments, select it from the EC2 instance profile dropdown list.

• If the EC2 instance profile dropdown list doesn't list any values to choose from, expand
the procedure that follows, Create IAM Role for EC2 instance profile.

Complete the steps in Create IAM Role for EC2 instance profile to create an IAM Role that
you can subsequently select for the EC2 instance profile. Then return back to this step.

Now that you've created an IAM Role, and refreshed the list, it displays as a choice in
the dropdown list. Select the IAM Role you just created from the EC2 instance profile
dropdown list.

Getting started 305

AWS Elastic Beanstalk Developer Guide

12. Choose Skip to Review on the Configure service access page.

This will select the default values for this step and skip the optional steps.

13. The Review page displays a summary of all your choices.

To further customize your environment, choose Edit next to the step that includes any items
you want to configure. You can set the following options only during environment creation:

• Environment name

• Domain name

• Platform version

• Processor

• VPC

• Tier

You can change the following settings after environment creation, but they require new
instances or other resources to be provisioned and can take a long time to apply:

• Instance type, root volume, key pair, and AWS Identity and Access Management (IAM) role

• Internal Amazon RDS database

• Load balancer

For details on all available settings, see The create new environment wizard.

14. Choose Submit at the bottom of the page to initialize the creation of your new environment.

Getting started 306

AWS Elastic Beanstalk Developer Guide

Create IAM Role for EC2 instance profile

To create a an IAM Role for EC2 instance profile selection

1. Choose View permission details. This displays under the EC2 instance profile dropdown list.

A modal window titled View instance profile permissions displays. This window lists the
managed profiles that you'll need to attach to the new EC2 instance profile that you create. It
also provides a link to launch the IAM console.

2. Choose the IAM console link displayed at the top of the window.

3. In the IAM console navigation pane, choose Roles.

4. Choose Create role.

5. Under Trusted entity type, choose AWS service.

6. Under Use case, choose EC2.

7. Choose Next.

8. Attach the appropriate managed policies. Scroll in the View instance profile permissions
modal window to see the managed policies. The policies are also listed here:

• AWSElasticBeanstalkWebTier

Getting started 307

AWS Elastic Beanstalk Developer Guide

• AWSElasticBeanstalkWorkerTier

• AWSElasticBeanstalkMulticontainerDocker

9. Choose Next.

10. Enter a name for the role.

11. (Optional) Add tags to the role.

12. Choose Create role.

13. Return to the Elastic Beanstalk console window that is open.

14. Close the modal window View instance profile permissions.

Important

Do not close the browser page that displays the Elastic Beanstalk console.

15. Choose

(refresh), next to the EC2 instance profile dropdown list.

This refreshes the dropdown list, so that the Role you just created will display in the dropdown
list.

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a completely different application at any time. Deploying a new application version
is quick because it doesn't require provisioning or restarting EC2 instances.

After you've deployed a sample application or two and you're ready to start developing locally, you
can follow the instructions in the next section to set up a .NET development environment.

Setting up your .NET development environment

Set up a .NET development environment to test your application locally prior to deploying it to
AWS Elastic Beanstalk. This topic outlines development environment setup steps and links to
installation pages for useful tools.

For common setup steps and tools that apply to all languages, see Configuring your development
machine for use with Elastic Beanstalk.

Development environment 308

AWS Elastic Beanstalk Developer Guide

Sections

• Installing an IDE

• Installing the AWS Toolkit for Visual Studio

If you need to manage AWS resources from within your application, install the AWS SDK for .NET.
For example, you can use Amazon S3 to store and retrieve data.

With the AWS SDK for .NET, you can get started in minutes with a single, downloadable package
complete with Visual Studio project templates, the AWS .NET library, C# code samples, and
documentation. Practical examples are provided in C# for how to use the libraries to build
applications. Online video tutorials and reference documentation are provided to help you learn
how to use the libraries and code samples.

Visit the AWS SDK for .NET homepage for more information and installation instructions.

Installing an IDE

Integrated development environments (IDEs) provide a wide range of features that facilitate
application development. If you haven't used an IDE for .NET development, try Visual Studio
Community to get started.

Visit the Visual Studio Community page to download and install Visual Studio Community.

Installing the AWS Toolkit for Visual Studio

The AWS Toolkit for Visual Studio is an open source plug-in for the Visual Studio IDE that makes it
easier for developers to develop, debug, and deploy .NET applications using AWS. Visit the Toolkit
for Visual Studio homepage for installation instructions.

Using the Elastic Beanstalk .NET platform

AWS Elastic Beanstalk supports a number of platforms for different versions of the .NET
programming framework and Windows Server. See .NET on Windows Server with IIS in the AWS
Elastic Beanstalk Platforms document for a full list.

Elastic Beanstalk provides configuration options that you can use to customize the software that
runs on the EC2 instances in your Elastic Beanstalk environment. You can configure environment
variables needed by your application, enable log rotation to Amazon S3, and set .NET framework
settings.

The .NET platform 309

https://aws.amazon.com/sdk-for-net/
https://www.visualstudio.com/vs/community/
https://aws.amazon.com/visualstudio/
https://aws.amazon.com/visualstudio/
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net

AWS Elastic Beanstalk Developer Guide

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate
it, you can use saved configurations to save your settings and later apply them to another
environment.

To save settings in your source code, you can include configuration files. Settings in configuration
files are applied every time you create an environment or deploy your application. You can also
use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

Settings applied in the Elastic Beanstalk console override the same settings in configuration files,
if they exist. This lets you have default settings in configuration files, and override them with
environment-specific settings in the console. For more information about precedence, and other
methods of changing settings, see Configuration options.

Configuring your .NET environment in the Elastic Beanstalk console

You can use the Elastic Beanstalk console to enable log rotation to Amazon S3, configure variables
that your application can read from the environment, and change .NET framework settings.

To configure your .NET environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Container options

• Target .NET runtime – Set to 2.0 to run CLR v2.

• Enable 32-bit applications – Set to True to run 32-bit applications.

The .NET platform 310

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Log options

The Log Options section has two settings:

• Instance profile – Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Environment properties

The Environment Properties section lets you specify environment configuration settings on the
Amazon EC2 instances that are running your application. These settings are passed in as key-value
pairs to the application. Use System.GetEnvironmentVariable to read them. Identical keys
can exist in both web.config and as environment properties. Use the System.Configuration
namespace to read values from web.config.

NameValueCollection appConfig = ConfigurationManager.AppSettings;
string endpoint = appConfig["API_ENDPOINT"];

See Environment properties and other software settings for more information.

The aws:elasticbeanstalk:container:dotnet:apppool namespace

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

The .NET platform defines options in the
aws:elasticbeanstalk:container:dotnet:apppool namespace that you can use to
configure the .NET runtime.

The following example configuration file shows settings for each of the options available in this
namespace:

Example .ebextensions/dotnet-settings.config

option_settings:
 aws:elasticbeanstalk:container:dotnet:apppool:
 Target Runtime: 2.0

The .NET platform 311

AWS Elastic Beanstalk Developer Guide

 Enable 32-bit Applications: True

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

Migrating across major versions of the Elastic Beanstalk Windows server platform

AWS Elastic Beanstalk has had several major versions of its Windows Server platform. This page
covers the main improvements for each major version, and what to consider before you migrate to
a later version.

The Windows Server platform is currently at version 2 (v2). If your application uses any Windows
Server platform version earlier than v2, we recommend that you migrate to v2.

What's new in major versions of the Windows server platform

Windows server platform V2

Version 2 (v2) of the Elastic Beanstalk Windows Server platform was released in February 2019.
V2 brings the behavior of the Windows Server platform closer to that of the Elastic Beanstalk
Linux-based platforms in several important ways. V2 is fully backward compatible with v1, making
migration from v1 easy.

The Windows Server platform now supports the following:

• Versioning – Each release gets a new version number, and you can refer to past versions (that are
still available to you) when creating and managing environments.

• Enhanced health – For details, see Enhanced health reporting and monitoring.

• Immutable and Rolling with an Additional Batch deployments – For details about deployment
policies, see Deploying applications to Elastic Beanstalk environments.

• Immutable updates – For details about update types, see Configuration changes.

• Managed platform updates – For details, see Managed platform updates.

Note

The new deployment and update features depend on enhanced health. Enable enhanced
health to use them. For details, see Enabling Elastic Beanstalk enhanced health reporting.

The .NET platform 312

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2019-02-21-windows-v2.html

AWS Elastic Beanstalk Developer Guide

Windows server platform V1

Version 1.0.0 (v1) of the Elastic Beanstalk Windows Server platform was released in October 2015.
This version changes the order in which Elastic Beanstalk processes commands in configuration
files during environment creation and updates.

Previous platform versions don't have a version number in the solution stack name:

• 64bit Windows Server 2012 R2 running IIS 8.5

• 64bit Windows Server Core 2012 R2 running IIS 8.5

• 64bit Windows Server 2012 running IIS 8

• 64bit Windows Server 2008 R2 running IIS 7.5

In earlier versions, the processing order for configuration files is inconsistent. During environment
creation, Container Commands run after the application source is deployed to IIS. During
a deployment to a running environment, container commands run before the new version is
deployed. During a scale up, configuration files are not processed at all.

In addition to this, IIS starts up before container commands run. This behavior has led some
customers to implement workarounds in container commands, pausing the IIS server before
commands run, and starting it again after they complete.

Version 1 fixes the inconsistency and brings the behavior of the Windows Server platform closer
to that of the Elastic Beanstalk Linux-based platforms. In the v1 platform, Elastic Beanstalk always
runs container commands before starting the IIS server.

The v1 platform solution stacks have a v1 after the Windows Server version:

• 64bit Windows Server 2012 R2 v1.1.0 running IIS 8.5

• 64bit Windows Server Core 2012 R2 v1.1.0 running IIS 8.5

• 64bit Windows Server 2012 v1.1.0 running IIS 8

• 64bit Windows Server 2008 R2 v1.1.0 running IIS 7.5

Additionally, the v1 platform extracts the contents of your application source bundle to C:
\staging\ before running container commands. After container commands complete, the
contents of this folder are compressed into a .zip file and deployed to IIS. This workflow allows
you to modify the contents of your application source bundle with commands or a script before
deployment.

The .NET platform 313

AWS Elastic Beanstalk Developer Guide

Migrating from earlier major versions of the Windows server platform

Read this section for migration considerations before you update your environment. To update
your environment's platform to a newer version, see Updating your Elastic Beanstalk environment's
platform version.

From V1 to V2

The Windows Server platform v2 doesn't support .NET Core 1.x and 2.0. If you're migrating your
application from Windows Server v1 to v2, and your application uses one of these .NET Core
versions, update your application to a .NET Core version that v2 supports. For a list of supported
versions, see .NET on Windows Server with IIS in the AWS Elastic Beanstalk Platforms.

If your application uses a custom Amazon Machine Image (AMI), create a new custom AMI based
on a Windows Server platform v2 AMI. To learn more, see Using a custom Amazon machine image
(AMI).

Note

The deployment and update features that are new to Windows Server v2 depend on
enhanced health. When you migrate an environment to v2, enhanced health is disabled.
Enable it to use these features. For details, see Enabling Elastic Beanstalk enhanced health
reporting.

From pre-V1

In addition to considerations for migrating from v1, if you're migrating your application from a
Windows Server solution stack that's earlier than v1, and you currently use container commands,
remove any commands that you added to work around the processing inconsistencies when
you migrate to a newer version. Starting with v1, container commands are guaranteed to run
completely before the application source that is deployed and before IIS starts. This enables you to
make any changes to the source in C:\staging and modify IIS configuration files during this step
without issue.

For example, you can use the AWS CLI to download a DLL file to your application source from
Amazon S3:

.ebextensions\copy-dll.config

The .NET platform 314

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net

AWS Elastic Beanstalk Developer Guide

container_commands:
 copy-dll:
 command: aws s3 cp s3://DOC-EXAMPLE-BUCKET/dlls/large-dll.dll .\lib\

For more information on using configuration files, see Advanced environment customization with
configuration files (.ebextensions).

Running multiple applications and ASP.NET core applications with a deployment
manifest

You can use a deployment manifest to tell Elastic Beanstalk how to deploy your application. By
using this method, you don't need to use MSDeploy to generate a source bundle for a single
ASP.NET application that runs at the root path of your website. Rather, you can use a manifest file
to run multiple applications at different paths. Or, alternatively, you can tell Elastic Beanstalk to
deploy and run the app with ASP.NET Core. You can also use a deployment manifest to configure
an application pool where to run your applications.

Deployment manifests add support for .NET Core applications to Elastic Beanstalk. You can deploy
a .NET Framework application without a deployment manifest. However, .NET Core applications
require a deployment manifest to run on Elastic Beanstalk. When you use a deployment manifest,
you create a site archive for each application, and then bundle the site archives in a second ZIP
archive that contains the deployment manifest.

Deployment manifests also add the ability to run multiple applications at different paths. A
deployment manifest defines an array of deployment targets, each with a site archive and a
path at which IIS should run it. For example, you could run a web API at the /api path to serve
asynchronous requests, and a web app at the root path that consumes the API.

You can also use a deployment manifest to run multiple applications using application pools in IIS
or Kestrel. You can configure an application pool to restart your applications periodically, run 32-bit
applications, or use a specific version of the .NET Framework runtime.

For full customization, you can write your own deployment scripts in Windows PowerShell and tell
Elastic Beanstalk which scripts to run to install, uninstall, and restart your application.

Deployment manifests and related features require a Windows Server platform version 1.2.0 or
newer.

Sections

The .NET platform 315

AWS Elastic Beanstalk Developer Guide

• .NET core apps

• Run multiple applications

• Configure application pools

• Define custom deployments

.NET core apps

You can use a deployment manifest to run .NET Core applications on Elastic Beanstalk. .NET Core is
a cross-platform version of .NET that comes with a command line tool (dotnet). You can use it to
generate an application, run it locally, and prepare it for publishing.

Note

See Tutorial: Deploying an ASP.NET Core application with Elastic Beanstalk for a tutorial
and sample application that use a deployment manifest to run a .NET Core application on
Elastic Beanstalk.

To run a .NET Core application on Elastic Beanstalk, you can run dotnet publish and package
the output in a ZIP archive, not including any containing directories. Place the site archive in a
source bundle with a deployment manifest with a deployment target of type aspNetCoreWeb.

The following deployment manifest runs a .NET Core application from a site archive named
dotnet-core-app.zip at the root path.

Example aws-windows-deployment-manifest.json - .NET core

{
 "manifestVersion": 1,
 "deployments": {
 "aspNetCoreWeb": [
 {
 "name": "my-dotnet-core-app",
 "parameters": {
 "archive": "dotnet-core-app.zip",
 "iisPath": "/"
 }
 }
]

The .NET platform 316

AWS Elastic Beanstalk Developer Guide

 }
}

Bundle the manifest and site archive in a ZIP archive to create a source bundle.

Example dotnet-core-bundle.zip

.
|-- aws-windows-deployment-manifest.json
`-- dotnet-core-app.zip

The site archive contains the compiled application code, dependencies, and web.config file.

Example dotnet-core-app.zip

.
|-- Microsoft.AspNetCore.Hosting.Abstractions.dll
|-- Microsoft.AspNetCore.Hosting.Server.Abstractions.dll
|-- Microsoft.AspNetCore.Hosting.dll
|-- Microsoft.AspNetCore.Http.Abstractions.dll
|-- Microsoft.AspNetCore.Http.Extensions.dll
|-- Microsoft.AspNetCore.Http.Features.dll
|-- Microsoft.AspNetCore.Http.dll
|-- Microsoft.AspNetCore.HttpOverrides.dll
|-- Microsoft.AspNetCore.Server.IISIntegration.dll
|-- Microsoft.AspNetCore.Server.Kestrel.dll
|-- Microsoft.AspNetCore.WebUtilities.dll
|-- Microsoft.Extensions.Configuration.Abstractions.dll
|-- Microsoft.Extensions.Configuration.EnvironmentVariables.dll
|-- Microsoft.Extensions.Configuration.dll
|-- Microsoft.Extensions.DependencyInjection.Abstractions.dll
|-- Microsoft.Extensions.DependencyInjection.dll
|-- Microsoft.Extensions.FileProviders.Abstractions.dll
|-- Microsoft.Extensions.FileProviders.Physical.dll
|-- Microsoft.Extensions.FileSystemGlobbing.dll
|-- Microsoft.Extensions.Logging.Abstractions.dll
|-- Microsoft.Extensions.Logging.dll
|-- Microsoft.Extensions.ObjectPool.dll
|-- Microsoft.Extensions.Options.dll
|-- Microsoft.Extensions.PlatformAbstractions.dll
|-- Microsoft.Extensions.Primitives.dll
|-- Microsoft.Net.Http.Headers.dll
|-- System.Diagnostics.Contracts.dll

The .NET platform 317

AWS Elastic Beanstalk Developer Guide

|-- System.Net.WebSockets.dll
|-- System.Text.Encodings.Web.dll
|-- dotnet-core-app.deps.json
|-- dotnet-core-app.dll
|-- dotnet-core-app.pdb
|-- dotnet-core-app.runtimeconfig.json
`-- web.config

See the tutorial for a full example.

Run multiple applications

You can run multiple applications with a deployment manifest by defining multiple deployment
targets.

The following deployment manifest configures two .NET Core applications. The WebAPITest
application implements a few web APIs and serves asynchronous requests at the /api path. The
ASPNetTest application is a web application that serves requests at the root path.

Example aws-windows-deployment-manifest.json - multiple apps

{
 "manifestVersion": 1,
 "deployments": {
 "aspNetCoreWeb": [
 {
 "name": "WebAPITest",
 "parameters": {
 "appBundle": "webapi.zip",
 "iisPath": "/api"
 }
 },
 {
 "name": "ASPNetTest",
 "parameters": {
 "appBundle": "aspnet.zip",
 "iisPath": "/"
 }
 }
]
 }
}

The .NET platform 318

AWS Elastic Beanstalk Developer Guide

A sample application with multiple applications is available here:

• Deployable source bundle - dotnet-multiapp-sample-bundle-v2.zip

• Source code - dotnet-multiapp-sample-source-v2.zip

Configure application pools

You can support multiple applications in your Windows environment. Two approaches are
available:

• You can use the out-of-process hosting model with the Kestrel web server. With this model, you
configure multiple applications to run in one application pool.

• You can use the in-process hosting model.With this model, you use multiple application pools
to run multiple applications with only one application in each pool. If you're using IIS server and
need to run multiple applications, you must use this approach.

To configure Kestrel to run multiple applications in one application pool, add
hostingModel="OutofProcess" in the web.config file. Consider the following examples.

Example web.config - for Kestrel out-of-process hosting model

<configuration>
<location path="." inheritInChildApplications="false">
<system.webServer>
<handlers>
<add
 name="aspNetCore"
 path="*" verb="*"
 modules="AspNetCoreModuleV2"
 resourceType="Unspecified" />
</handlers>
<aspNetCore
 processPath="dotnet"
 arguments=".\CoreWebApp-5-0.dll"
 stdoutLogEnabled="false"
 stdoutLogFile=".\logs\stdout"
 hostingModel="OutofProcess" />
</system.webServer>
</location>
</configuration>

The .NET platform 319

samples/dotnet-multiapp-sample-bundle-v2.zip
samples/dotnet-multiapp-sample-source-v2.zip

AWS Elastic Beanstalk Developer Guide

Example aws-windows-deployment-manifest.json - multiple applications

{
"manifestVersion": 1,
 "deployments": {"msDeploy": [
 {"name": "Web-app1",
 "parameters": {"archive": "site1.zip",
 "iisPath": "/"
 }
 },
 {"name": "Web-app2",
 "parameters": {"archive": "site2.zip",
 "iisPath": "/app2"
 }
 }
]
 }
}

IIS doesn't support multiple applications in one application pool because it uses the in-process
hosting model. Therefore, you need to configure multiple applications by assigning each
application to one application pool. In other words, assign only one application to one application
pool.

You can configure IIS to use different application pools in the aws-windows-deployment-
manifest.json file. Make the following updates as you refer to the next example file:

• Add an iisConfig section that includes a subsection called appPools.

• In the appPools block, list the application pools.

• In the deployments section, define a parameters section for each application.

• For each application the parameters section specifies an archive, a path to run it, and an
appPool in which to run.

The following deployment manifest configures two application pools that restart their application
every 10 minutes. They also attach their applications to a .NET Framework web application that
runs at the path specified.

Example aws-windows-deployment-manifest.json - one application per application pool

{

The .NET platform 320

AWS Elastic Beanstalk Developer Guide

"manifestVersion": 1,
 "iisConfig": {"appPools": [
 {"name": "MyFirstPool",
 "recycling": {"regularTimeInterval": 10}
 },
 {"name": "MySecondPool",
 "recycling": {"regularTimeInterval": 10}
 }
]
 },
 "deployments": {"msDeploy": [
 {"name": "Web-app1",
 "parameters": {
 "archive": "site1.zip",
 "iisPath": "/",
 "appPool": "MyFirstPool"
 }
 },
 {"name": "Web-app2",
 "parameters": {
 "archive": "site2.zip",
 "iisPath": "/app2",
 "appPool": "MySecondPool"
 }
 }
]
 }
}

Define custom deployments

For even more control, you can completely customize an application deployment by defining a
custom deployment.

The following deployment manifest tells Elastic Beanstalk to run an install script named
siteInstall.ps1. This script installs the website during instance launch and deployments.
In addition to this, the deployment manifest also tells Elastic Beanstalk to run an uninstall
script before installing a new version during a deployment and a restart script to restart the
application when you choose Restart App Server in the AWS management console.

Example aws-windows-deployment-manifest.json - custom deployment

{

The .NET platform 321

AWS Elastic Beanstalk Developer Guide

 "manifestVersion": 1,
 "deployments": {
 "custom": [
 {
 "name": "Custom site",
 "scripts": {
 "install": {
 "file": "siteInstall.ps1"
 },
 "restart": {
 "file": "siteRestart.ps1"
 },
 "uninstall": {
 "file": "siteUninstall.ps1"
 }
 }
 }
]
 }
}

Include any artifacts required to run the application in your source bundle with the manifest and
scripts.

Example Custom-site-bundle.zip

.
|-- aws-windows-deployment-manifest.json
|-- siteInstall.ps1
|-- siteRestart.ps1
|-- siteUninstall.ps1
`-- site-contents.zip

Tutorial: Deploying an ASP.NET Core application with Elastic Beanstalk

In this tutorial, you will walk through the process of building a new ASP.NET Core application and
deploying it to AWS Elastic Beanstalk.

First, you will use the .NET Core SDK's dotnet command line tool to generate a basic .NET Core
command line application, install dependencies, compile code, and run applications locally.
Next, you will create the default Program.cs class, and add an ASP.NET Startup.cs class and
configuration files to make an application that serves HTTP requests with ASP.NET and IIS.

Tutorial - ASP.NET Core 322

AWS Elastic Beanstalk Developer Guide

Finally, Elastic Beanstalk uses a deployment manifest to configure deployments for .NET Core
applications, custom applications, and multiple .NET Core or MSBuild applications on a single
server. To deploy a .NET Core application to a Windows Server environment, you add a site archive
to an application source bundle with a deployment manifest. The dotnet publish command
generates compiled classes and dependencies that you can bundle with a web.config file to
create a site archive. The deployment manifest tells Elastic Beanstalk the path at which the
site should run and can be used to configure application pools and run multiple applications at
different paths.

The source code is available here: dotnet-core-windows-tutorial.zip

Sections

• Prerequisites

• Generate a .NET core project

• Launch an Elastic Beanstalk environment

• Update the source code

• Deploy your application

• Cleanup

• Next steps

Prerequisites

This tutorial uses the .NET Core SDK to generate a basic .NET Core application, run it locally, and
build a deployable package.

Requirements

• .NET Core (x64) 1.0.1, 2.0.0, or later

To install the .NET core SDK

1. Download the installer from microsoft.com/net/core. Choose Windows. Choose
Download .NET SDK.

2. Run the installer and follow the instructions.

Tutorial - ASP.NET Core 323

samples/dotnet-core-windows-tutorial.zip
https://www.microsoft.com/net/core#windows

AWS Elastic Beanstalk Developer Guide

This tutorial uses a command line ZIP utility to create a source bundle that you can deploy to
Elastic Beanstalk. To use the zip command in Windows, you can install UnxUtils, a lightweight
collection of useful command line utilities like zip and ls. Alternatively, you can use Windows
Explorer or any other ZIP utility to create source bundle archives.

To install UnxUtils

1. Download UnxUtils.

2. Extract the archive to a local directory. For example, C:\Program Files (x86).

3. Add the path to the binaries to your Windows PATH user variable. For example, C:\Program
Files (x86)\UnxUtils\usr\local\wbin.

a. Press the Windows key, and then enter environment variables.

b. Choose Edit environment variables for your account.

c. Choose PATH, and then choose Edit.

d. Add paths to the Variable value field, separated by semicolons. For example: C:
\item1\path;C:\item2\path

e. Choose OK twice to apply the new settings.

f. Close any running Command Prompt windows, and then reopen a Command Prompt
window.

4. Open a new command prompt window and run the zip command to verify that it works.

> zip -h
Copyright (C) 1990-1999 Info-ZIP
Type 'zip "-L"' for software license.
...

Generate a .NET core project

Use the dotnet command line tool to generate a new C# .NET Core project and run it locally. The
default .NET Core application is a command line utility that prints Hello World! and then exits.

To generate a new .NET core project

1. Open a new command prompt window and navigate to your user folder.

Tutorial - ASP.NET Core 324

https://sourceforge.net/projects/unxutils/

AWS Elastic Beanstalk Developer Guide

> cd %USERPROFILE%

2. Use the dotnet new command to generate a new .NET Core project.

C:\Users\username> dotnet new console -o dotnet-core-tutorial
Content generation time: 65.0152 ms
The template "Console Application" created successfully.
C:\Users\username> cd dotnet-core-tutorial

3. Use the dotnet restore command to install dependencies.

C:\Users\username\dotnet-core-tutorial> dotnet restore
Restoring packages for C:\Users\username\dotnet-core-tutorial\dotnet-core-
tutorial.csproj...
Generating MSBuild file C:\Users\username\dotnet-core-tutorial\obj\dotnet-core-
tutorial.csproj.nuget.g.props.
Generating MSBuild file C:\Users\username\dotnet-core-tutorial\obj\dotnet-core-
tutorial.csproj.nuget.g.targets.
Writing lock file to disk. Path: C:\Users\username\dotnet-core-tutorial\obj
\project.assets.json
Restore completed in 1.25 sec for C:\Users\username\dotnet-core-tutorial\dotnet-
core-tutorial.csproj.

NuGet Config files used:
 C:\Users\username\AppData\Roaming\NuGet\NuGet.Config
 C:\Program Files (x86)\NuGet\Config\Microsoft.VisualStudio.Offline.config
Feeds used:
 https://api.nuget.org/v3/index.json
 C:\Program Files (x86)\Microsoft SDKs\NuGetPackages\

4. Use the dotnet run command to build and run the application locally.

C:\Users\username\dotnet-core-tutorial> dotnet run
Hello World!

Launch an Elastic Beanstalk environment

Use the Elastic Beanstalk console to launch an Elastic Beanstalk environment. For this example, you
will launch with a .NET platform. After you launch and configure your environment, you can deploy
new source code at any time.

Tutorial - ASP.NET Core 325

AWS Elastic Beanstalk Developer Guide

To launch an environment (console)

1. Open the Elastic Beanstalk console using this preconfigured link:
console.aws.amazon.com/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application.

3. For Application code, choose Sample application.

4. Choose Review and launch.

5. Review the available options. Choose the available option you want to use, and when you're
ready, choose Create app.

Environment creation takes about 10 minutes. During this time you can update your source code.

Update the source code

Modify the default application into a web application that uses ASP.NET and IIS.

• ASP.NET is the website framework for .NET.

• IIS is the web server that runs the application on the Amazon EC2 instances in your Elastic
Beanstalk environment.

The source code examples to follow are available here: dotnet-core-tutorial-source.zip

Note

The following procedure shows how to convert the project code into a web application.
To simplify the process, you can generate the project as a web application right from the
start. In the previous section Generate a .NET core project, modify the dotnet new step's
command with the following command.

C:\Users\username> dotnet new web -o dotnet-core-tutorial -n WindowsSampleApp

To add ASP.NET and IIS support to your code

1. Copy Program.cs to your application directory to run as a web host builder.

Tutorial - ASP.NET Core 326

https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
samples/dotnet-core-tutorial-source.zip

AWS Elastic Beanstalk Developer Guide

Example c:\users\username\dotnet-core-tutorial\Program.cs

namespace Microsoft.AspNetCore.Hosting;
using WindowsSampleApp;

public static class Program
{
 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args).UseStartup<Startup>();
}

2. Add Startup.cs to run an ASP.NET website.

Example c:\users\username\dotnet-core-tutorial\Startup.cs

namespace WindowsSampleApp
{
 public class Startup
 {
 public void Configure(IApplicationBuilder app)
 {
 app.UseRouting();
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapGet("/", () => "Hello World from Elastic Beanstalk");
 });
 }
 }
}

3. Add WindowsSampleApp.csproj, which includes IIS middleware and includes the
web.config file from the output of dotnet publish.

Note

The following example was developed using .NET Core Runtime 2.2.1. You might
need to modify the TargetFramework or the Version attribute values in the

Tutorial - ASP.NET Core 327

AWS Elastic Beanstalk Developer Guide

PackageReference elements to match the version of .NET Core Runtime that you are
using in your custom projects.

Example c:\users\username\dotnet-core-tutorial\WindowsSampleApp.csproj

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>net6.0</TargetFramework>
 <RollForward>LatestMajor</RollForward>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 <RootNamespace>WindowsSampleApp</RootNamespace>
 </PropertyGroup>

</Project>

Next, install the new dependencies and run the ASP.NET website locally.

To run the website locally

1. Use the dotnet restore command to install dependencies.

2. Use the dotnet run command to build and run the app locally.

3. Open localhost:5000 to view the site.

To run the application on a web server, you need to bundle the compiled source code with a
web.config configuration file and runtime dependencies. The dotnet tool provides a publish
command that gathers these files in a directory based on the configuration in dotnet-core-
tutorial.csproj.

To build your website

• Use the dotnet publish command to output compiled code and dependencies to a folder
named site.

C:\users\username\dotnet-core-tutorial> dotnet publish -o site

Tutorial - ASP.NET Core 328

http://localhost:5000

AWS Elastic Beanstalk Developer Guide

To deploy the application to Elastic Beanstalk, bundle the site archive with a deployment manifest.
This tells Elastic Beanstalk how to run it.

To create a source bundle

1. Add the files in the site folder to a ZIP archive.

Note

If you use a different ZIP utility, be sure to add all files to the root folder of the
resulting ZIP archive. This is required for a successful deployment of the application to
your Elastic Beanstalk environment.

C:\users\username\dotnet-core-tutorial> cd site
C:\users\username\dotnet-core-tutorial\site> zip ../site.zip *
 adding: dotnet-core-tutorial.deps.json (164 bytes security) (deflated 84%)
 adding: dotnet-core-tutorial.dll (164 bytes security) (deflated 59%)
 adding: dotnet-core-tutorial.pdb (164 bytes security) (deflated 28%)
 adding: dotnet-core-tutorial.runtimeconfig.json (164 bytes security) (deflated
 26%)
 adding: Microsoft.AspNetCore.Authentication.Abstractions.dll (164 bytes security)
 (deflated 49%)
 adding: Microsoft.AspNetCore.Authentication.Core.dll (164 bytes security)
 (deflated 57%)
 adding: Microsoft.AspNetCore.Connections.Abstractions.dll (164 bytes security)
 (deflated 51%)
 adding: Microsoft.AspNetCore.Hosting.Abstractions.dll (164 bytes security)
 (deflated 49%)
 adding: Microsoft.AspNetCore.Hosting.dll (164 bytes security) (deflated 60%)
 adding: Microsoft.AspNetCore.Hosting.Server.Abstractions.dll (164 bytes security)
 (deflated 44%)
 adding: Microsoft.AspNetCore.Http.Abstractions.dll (164 bytes security) (deflated
 54%)
 adding: Microsoft.AspNetCore.Http.dll (164 bytes security) (deflated 55%)
 adding: Microsoft.AspNetCore.Http.Extensions.dll (164 bytes security) (deflated
 50%)
 adding: Microsoft.AspNetCore.Http.Features.dll (164 bytes security) (deflated
 50%)
 adding: Microsoft.AspNetCore.HttpOverrides.dll (164 bytes security) (deflated
 49%)

Tutorial - ASP.NET Core 329

AWS Elastic Beanstalk Developer Guide

 adding: Microsoft.AspNetCore.Server.IISIntegration.dll (164 bytes security)
 (deflated 46%)
 adding: Microsoft.AspNetCore.Server.Kestrel.Core.dll (164 bytes security)
 (deflated 63%)
 adding: Microsoft.AspNetCore.Server.Kestrel.dll (164 bytes security) (deflated
 46%)
 adding: Microsoft.AspNetCore.Server.Kestrel.Https.dll (164 bytes security)
 (deflated 44%)
 adding: Microsoft.AspNetCore.Server.Kestrel.Transport.Abstractions.dll (164 bytes
 security) (deflated 56%)
 adding: Microsoft.AspNetCore.Server.Kestrel.Transport.Sockets.dll (164 bytes
 security) (deflated 51%)
 adding: Microsoft.AspNetCore.WebUtilities.dll (164 bytes security) (deflated 55%)
 adding: Microsoft.Extensions.Configuration.Abstractions.dll (164 bytes security)
 (deflated 48%)
 adding: Microsoft.Extensions.Configuration.Binder.dll (164 bytes security)
 (deflated 47%)
 adding: Microsoft.Extensions.Configuration.dll (164 bytes security) (deflated
 46%)
 adding: Microsoft.Extensions.Configuration.EnvironmentVariables.dll (164 bytes
 security) (deflated 46%)
 adding: Microsoft.Extensions.Configuration.FileExtensions.dll (164 bytes
 security) (deflated 47%)
 adding: Microsoft.Extensions.DependencyInjection.Abstractions.dll (164 bytes
 security) (deflated 54%)
 adding: Microsoft.Extensions.DependencyInjection.dll (164 bytes security)
 (deflated 53%)
 adding: Microsoft.Extensions.FileProviders.Abstractions.dll (164 bytes security)
 (deflated 46%)
 adding: Microsoft.Extensions.FileProviders.Physical.dll (164 bytes security)
 (deflated 47%)
 adding: Microsoft.Extensions.FileSystemGlobbing.dll (164 bytes security)
 (deflated 49%)
 adding: Microsoft.Extensions.Hosting.Abstractions.dll (164 bytes security)
 (deflated 47%)
 adding: Microsoft.Extensions.Logging.Abstractions.dll (164 bytes security)
 (deflated 54%)
 adding: Microsoft.Extensions.Logging.dll (164 bytes security) (deflated 48%)
 adding: Microsoft.Extensions.ObjectPool.dll (164 bytes security) (deflated 45%)
 adding: Microsoft.Extensions.Options.dll (164 bytes security) (deflated 53%)
 adding: Microsoft.Extensions.Primitives.dll (164 bytes security) (deflated 50%)
 adding: Microsoft.Net.Http.Headers.dll (164 bytes security) (deflated 53%)
 adding: System.IO.Pipelines.dll (164 bytes security) (deflated 50%)

Tutorial - ASP.NET Core 330

AWS Elastic Beanstalk Developer Guide

 adding: System.Runtime.CompilerServices.Unsafe.dll (164 bytes security) (deflated
 43%)
 adding: System.Text.Encodings.Web.dll (164 bytes security) (deflated 57%)
 adding: web.config (164 bytes security) (deflated 39%)
C:\users\username\dotnet-core-tutorial\site> cd ../

2. Add a deployment manifest that points to the site archive.

Example c:\users\username\dotnet-core-tutorial\aws-windows-deployment-manifest.json

{
 "manifestVersion": 1,
 "deployments": {
 "aspNetCoreWeb": [
 {
 "name": "test-dotnet-core",
 "parameters": {
 "appBundle": "site.zip",
 "iisPath": "/",
 "iisWebSite": "Default Web Site"
 }
 }
]
 }
}

3. Use the zip command to create a source bundle named dotnet-core-tutorial.zip.

C:\users\username\dotnet-core-tutorial> zip dotnet-core-tutorial.zip site.zip aws-
windows-deployment-manifest.json
 adding: site.zip (164 bytes security) (stored 0%)
 adding: aws-windows-deployment-manifest.json (164 bytes security) (deflated 50%)

Deploy your application

Deploy the source bundle to the Elastic Beanstalk environment that you created.

You can download the source bundle here: dotnet-core-tutorial-bundle.zip

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

Tutorial - ASP.NET Core 331

samples/dotnet-core-tutorial-bundle.zip
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

The application simply writes Hello from ASP.NET Core! to the response and returns.

Launching an environment creates the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

Tutorial - ASP.NET Core 332

AWS Elastic Beanstalk Developer Guide

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the AWS CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com
domain is registered in the Public Suffix List (PSL). For further security, we recommend
that you use cookies with a __Host- prefix if you ever need to set sensitive cookies in
the default domain name for your Elastic Beanstalk applications. This practice will help
to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments
and isn't deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

Tutorial - ASP.NET Core 333

https://console.aws.amazon.com/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

AWS Elastic Beanstalk Developer Guide

Cleanup

When you finish working with Elastic Beanstalk, you can terminate your environment. Elastic
Beanstalk terminates all AWS resources associated with your environment, such as Amazon EC2
instances, database instances, load balancers, security groups, and alarms.

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

With Elastic Beanstalk, you can easily create a new environment for your application at any time.

Next steps

As you continue to develop your application, you'll probably want to manage environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic
Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line.

If you use Visual Studio to develop your application, you can also use the AWS Toolkit for Visual
Studio to deploy changed, manage your Elastic Beanstalk environments, and manage other AWS
resources. See The AWS Toolkit for Visual Studio for more information.

For developing and testing, you might want to use the Elastic Beanstalk functionality for adding a
managed DB instance directly to your environment. For instructions on setting up a database inside
your environment, see Adding a database to your Elastic Beanstalk environment.

Finally, if you plan to use your application in a production environment, configure a custom domain
name for your environment and enable HTTPS for secure connections.

Tutorial - ASP.NET Core 334

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Adding an Amazon RDS DB instance to your .NET application
environment

You can use an Amazon Relational Database Service (Amazon RDS) DB instance to store data
gathered and modified by your application. The database can be coupled to your environment
and managed by Elastic Beanstalk, or it can be created as decoupled and managed externally
by another service. This topic provides instructions to create an Amazon RDS using the Elastic
Beanstalk console. The database will be coupled to your environment and managed by Elastic
Beanstalk. For more information about integrating an Amazon RDS with Elastic Beanstalk, see
Adding a database to your Elastic Beanstalk environment.

Sections

• Adding a DB instance to your environment

• Downloading a driver

• Connecting to a database

Adding a DB instance to your environment

To add a DB instance to your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. Choose a DB engine, and enter a user name and password.

6. To save the changes choose Apply at the bottom of the page.

Adding a DB instance takes about 10 minutes. When the environment update is complete, the DB
instance's hostname and other connection information are available to your application through
the following environment properties:

Adding a database 335

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab on
the Amazon RDS console: DB
Name.

RDS_USERNAME The username that you
configured for your database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your database.

Not available for reference in
the Amazon RDS console.

For more information about configuring a database instance coupled with an Elastic Beanstalk
environment, see Adding a database to your Elastic Beanstalk environment.

Downloading a driver

Download and install the EntityFramework package and a database driver for your development
environment with NuGet.

Common entity framework database providers for .NET

• SQL Server – Microsoft.EntityFrameworkCore.SqlServer

• MySQL – Pomelo.EntityFrameworkCore.MySql

• PostgreSQL – Npgsql.EntityFrameworkCore.PostgreSQL

Adding a database 336

AWS Elastic Beanstalk Developer Guide

Connecting to a database

Elastic Beanstalk provides connection information for attached DB instances in environment
properties. Use ConfigurationManager.AppSettings to read the properties and configure a
database connection.

Example Helpers.cs - connection string method

using System;
using System.Collections.Generic;
using System.Configuration;
using System.Linq;
using System.Web;

namespace MVC5App.Models
{
 public class Helpers
 {
 public static string GetRDSConnectionString()
 {
 var appConfig = ConfigurationManager.AppSettings;

 string dbname = appConfig["RDS_DB_NAME"];

 if (string.IsNullOrEmpty(dbname)) return null;

 string username = appConfig["RDS_USERNAME"];
 string password = appConfig["RDS_PASSWORD"];
 string hostname = appConfig["RDS_HOSTNAME"];
 string port = appConfig["RDS_PORT"];

 return "Data Source=" + hostname + ";Initial Catalog=" + dbname + ";User ID=" +
 username + ";Password=" + password + ";";
 }
 }
}

Use the connection string to initialize your database context.

Example DBContext.cs

using System.Data.Entity;

Adding a database 337

AWS Elastic Beanstalk Developer Guide

using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNet.Identity;
using Microsoft.AspNet.Identity.EntityFramework;

namespace MVC5App.Models
{
 public class RDSContext : DbContext
 {
 public RDSContext()
 : base(GetRDSConnectionString())
 {
 }

 public static RDSContext Create()
 {
 return new RDSContext();
 }
 }
}

The AWS Toolkit for Visual Studio

Visual Studio provides templates for different programming languages and application types. You
can start with any of these templates. The AWS Toolkit for Visual Studio also provides three project
templates that bootstrap development of your application: AWS Console Project, AWS Web Project,
and AWS Empty Project. For this example, you'll create a new ASP.NET Web Application.

To create a new ASP.NET web application project

1. In Visual Studio, on the File menu, click New and then click Project.

2. In the New Project dialog box, click Installed Templates, click Visual C#, and then click Web.
Click ASP.NET Empty Web Application, type a project name, and then click OK.

To run a project

Do one of the following:

1. Press F5.

2. Select Start Debugging from the Debug menu.

The AWS Toolkit for Visual Studio 338

AWS Elastic Beanstalk Developer Guide

Test locally

Visual Studio makes it easy for you to test your application locally. To test or run ASP.NET
web applications, you need a web server. Visual Studio offers several options, such as Internet
Information Services (IIS), IIS Express, or the built-in Visual Studio Development Server. To learn
about each of these options and to decide which one is best for you, see Web Servers in Visual
Studio for ASP.NET Web Projects.

Create an Elastic Beanstalk environment

After testing your application, you are ready to deploy it to Elastic Beanstalk.

Note

Configuration file needs to be part of the project to be included in the archive.
Alternatively, instead of including the configuration files in the project, you can use Visual
Studio to deploy all files in the project folder. In Solution Explorer, right-click the project
name, and then click Properties. Click the Package/Publish Web tab. In the Items to
deploy section, select All Files in the Project Folder in the drop-down list.

To deploy your application to Elastic Beanstalk using the AWS toolkit for Visual Studio

1. In Solution Explorer, right-click your application and then select Publish to AWS.

2. In the Publish to AWS wizard, enter your account information.

a. For AWS account to use for deployment, select your account or select Other to enter new
account information.

b. For Region, select the region where you want to deploy your application. For information
about available AWS Regions, see AWS Elastic Beanstalk Endpoints and Quotas in the AWS
General Reference. If you select a region that is not supported by Elastic Beanstalk, then
the option to deploy to Elastic Beanstalk will become unavailable.

c. Click Deploy new application with template and select Elastic Beanstalk. Then click
Next.

The AWS Toolkit for Visual Studio 339

http://msdn.microsoft.com/en-us/library/58wxa9w5.aspx
http://msdn.microsoft.com/en-us/library/58wxa9w5.aspx
https://docs.aws.amazon.com/general/latest/gr/elasticbeanstalk.html

AWS Elastic Beanstalk Developer Guide

3. On the Application page, enter your application details.

a. For Name, type the name of the application.

b. For Description, type a description of the application. This step is optional.

c. The version label of the application automatically appears in the Deployment version
label.

d. Select Deploy application incrementally to deploy only the changed files. An incremental
deployment is faster because you are updating only the files that changed instead of all
the files. If you choose this option, an application version will be set from the Git commit
ID. If you choose to not deploy your application incrementally, then you can update the
version label in the Deployment version label box.

The AWS Toolkit for Visual Studio 340

AWS Elastic Beanstalk Developer Guide

e. Click Next.

4. On the Environment page, describe your environment details.

a. Select Create a new environment for this application.

b. For Name, type a name for your environment.

c. For Description, characterize your environment. This step is optional.

d. Select the Type of environment that you want.

You can select either Load balanced, auto scaled or a Single instance environment. For
more information, see Environment types.

Note

For single-instance environments, load balancing, auto scaling, and the health
check URL settings don't apply.

e. The environment URL automatically appears in the Environment URL once you move your
cursor to that box.

f. Click Check availability to make sure the environment URL is available.

The AWS Toolkit for Visual Studio 341

AWS Elastic Beanstalk Developer Guide

g. Click Next.

5. On the AWS Options page, configure additional options and security information for your
deployment.

a. For Container Type, select 64bit Windows Server 2012 running IIS 8 or 64bit Windows
Server 2008 running IIS 7.5.

b. For Instance Type, select Micro.

c. For Key pair, select Create new key pair. Type a name for the new key pair—in this
example, we use myuswestkeypair—and then click OK. A key pair enables remote-
desktop access to your Amazon EC2 instances. For more information on Amazon EC2 key
pairs, see Using Credentials in the Amazon Elastic Compute Cloud User Guide.

d. Select an instance profile.

The AWS Toolkit for Visual Studio 342

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-credentials.html

AWS Elastic Beanstalk Developer Guide

If you do not have an instance profile, select Create a default instance profile. For
information about using instance profiles with Elastic Beanstalk, see Managing Elastic
Beanstalk instance profiles.

e. If you have a custom VPC that you would like to use with your environment, click Launch
into VPC. You can configure the VPC information on the next page. For more information
about Amazon VPC, go to Amazon Virtual Private Cloud (Amazon VPC). For a list of
supported nonlegacy container types, see the section called “Why are some platform
versions marked legacy?”

f. Click Next.

6. If you selected to launch your environment inside a VPC, the VPC Options page appears;
otherwise, the Additional Options page appears. Here you'll configure your VPC options.

The AWS Toolkit for Visual Studio 343

https://aws.amazon.com/vpc/

AWS Elastic Beanstalk Developer Guide

The AWS Toolkit for Visual Studio 344

AWS Elastic Beanstalk Developer Guide

a. Select the VPC ID of the VPC in which you would like to launch your environment.

b. For a load-balanced, scalable environment, select private for ELB Scheme if you do not
want your elastic load balancer to be available to the Internet.

For a single-instance environment, this option is not applicable because the environment
doesn't have a load balancer. For more information, see Environment types.

c. For a load-balanced, scalable environment, select the subnets for the elastic load balancer
and the EC2 instances. If you created public and private subnets, make sure the elastic
load balancer and the EC2 instances are associated with the correct subnet. By default,
Amazon VPC creates a default public subnet using 10.0.0.0/24 and a private subnet using
10.0.1.0/24. You can view your existing subnets in the Amazon VPC console at https://
console.aws.amazon.com/vpc/.

The AWS Toolkit for Visual Studio 345

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

AWS Elastic Beanstalk Developer Guide

For a single-instance environment, your VPC only needs a public subnet for the instance.
Selecting a subnet for the load balancer is not applicable because the environment
doesn't have a load balancer. For more information, see Environment types.

d. For a load-balanced, scalable environment, select the security group you created for your
instances, if applicable.

For a single-instance environment, you don't need a NAT device. Select the default
security group. Elastic Beanstalk assigns an Elastic IP address to the instance that lets the
instance access the Internet.

e. Click Next.

7. On the Application Options page, configure your application options.

a. For Target framework, select .NET Framework 4.0.

b. Elastic Load Balancing uses a health check to determine whether the Amazon EC2
instances running your application are healthy. The health check determines an instance's
health status by probing a specified URL at a set interval. You can override the default URL
to match an existing resource in your application (e.g., /myapp/index.aspx) by entering
it in the Application health check URL box. For more information about application
health checks, see Health check.

c. Type an email address if you want to receive Amazon Simple Notification Service (Amazon
SNS) notifications of important events affecting your application.

d. The Application Environment section lets you specify environment variables on the
Amazon EC2 instances that are running your application. This setting enables greater
portability by eliminating the need to recompile your source code as you move between
environments.

e. Select the application credentials option you want to use to deploy your application.

The AWS Toolkit for Visual Studio 346

AWS Elastic Beanstalk Developer Guide

f. Click Next.

8. If you have previously set up an Amazon RDS database, the Amazon RDS DB Security Group
page appears. If you want to connect your Elastic Beanstalk environment to your Amazon RDS
DB Instance, then select one or more security groups. Otherwise, go on to the next step. When
you're ready, click Next.

9. Review your deployment options. If everything is as you want, click Deploy.

The AWS Toolkit for Visual Studio 347

AWS Elastic Beanstalk Developer Guide

Your ASP.NET project will be exported as a web deploy file, uploaded to Amazon S3,
and registered as a new application version with Elastic Beanstalk. The Elastic Beanstalk
deployment feature will monitor your environment until it becomes available with the newly
deployed code. On the env:<environment name> tab, you will see status for your environment.

Terminating an environment

To avoid incurring charges for unused AWS resources, you can terminate a running environment
using the AWS Toolkit for Visual Studio.

Note

You can always launch a new environment using the same version later.

The AWS Toolkit for Visual Studio 348

AWS Elastic Beanstalk Developer Guide

To terminate an environment

1. Expand the Elastic Beanstalk node and the application node in AWS Explorer. Right-click your
application environment and select Terminate Environment.

2. When prompted, click Yes to confirm that you want to terminate the environment. It will
take a few minutes for Elastic Beanstalk to terminate the AWS resources running in the
environment.

Note

When you terminate your environment, the CNAME associated with the terminated
environment becomes available for anyone to use.

Deploying to your environment

Now that you have tested your application, it is easy to edit and redeploy your application and see
the results in moments.

To edit and redeploy your ASP.NET web application

1. In Solution Explorer, right-click your application, and then click Republish to Environment
<your environment name>. The Re-publish to AWS Elastic Beanstalk wizard opens.

The AWS Toolkit for Visual Studio 349

AWS Elastic Beanstalk Developer Guide

2. Review your deployment details and click Deploy.

Note

If you want to change any of your settings, you can click Cancel and use the Publish to
AWS wizard instead. For instructions, see Create an Elastic Beanstalk environment.

Your updated ASP.NET web project will be exported as a web deploy file with the new version
label, uploaded to Amazon S3, and registered as a new application version with Elastic
Beanstalk. The Elastic Beanstalk deployment feature monitors your existing environment until
it becomes available with the newly deployed code. On the env:<environment name> tab,
you will see the status of your environment.

You can also deploy an existing application to an existing environment if, for instance, you need to
roll back to a previous application version.

To deploy an application version to an existing environment

1. Right-click your Elastic Beanstalk application by expanding the Elastic Beanstalk node in AWS
Explorer. Select View Status.

2. In the App: <application name> tab, click Versions.

The AWS Toolkit for Visual Studio 350

AWS Elastic Beanstalk Developer Guide

3. Click the application version you want to deploy and click Publish Version.

4. In the Publish Application Version wizard, click Next.

5. Review your deployment options, and click Deploy.

The AWS Toolkit for Visual Studio 351

AWS Elastic Beanstalk Developer Guide

Your ASP.NET project will be exported as a web deploy file and uploaded to Amazon S3. The
Elastic Beanstalk deployment feature will monitor your environment until it becomes available
with the newly deployed code. On the env:<environment name> tab, you will see status for
your environment.

Managing your Elastic Beanstalk application environments

With the AWS Toolkit for Visual Studio and the AWS Management Console, you can change the
provisioning and configuration of the AWS resources used by your application environments.
For information on how to manage your application environments using the AWS Management
Console, see Managing environments. This section discusses the specific service settings you can
edit in the AWS Toolkit for Visual Studio as part of your application environment configuration.

Changing environment configurations settings

When you deploy your application, Elastic Beanstalk configures a number of AWS cloud computing
services. You can control how these individual services are configured using the AWS Toolkit for
Visual Studio.

To edit an application's environment settings

• Expand the Elastic Beanstalk node and your application node. Then right-click your Elastic
Beanstalk environment in AWS Explorer. Select View Status.

You can now configure settings for the following:

• Server

• Load balancing

• Autoscaling

• Notifications

• Environment properties

Configuring EC2 server instances using the AWS toolkit for Visual Studio

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that you use to launch and manage
server instances in Amazon's data centers. You can use Amazon EC2 server instances at any time,

The AWS Toolkit for Visual Studio 352

AWS Elastic Beanstalk Developer Guide

for as long as you need, and for any legal purpose. Instances are available in different sizes and
configurations. For more information, go to Amazon EC2.

You can edit the Elastic Beanstalk environment's Amazon EC2 instance configuration with the
Server tab inside your application environment tab in the AWS Toolkit for Visual Studio.

Amazon EC2 instance types

Instance type displays the instance types available to your Elastic Beanstalk application. Change
the instance type to select a server with the characteristics (including memory size and CPU power)
that are most appropriate to your application. For example, applications with intensive and long-
running operations can require more CPU or memory.

For more information about the Amazon EC2 instance types available for your Elastic Beanstalk
application, see Instance Types in the Amazon Elastic Compute Cloud User Guide.

Amazon EC2 security groups

You can control access to your Elastic Beanstalk application using an Amazon EC2 Security Group.
A security group defines firewall rules for your instances. These rules specify which ingress (i.e.,
incoming) network traffic should be delivered to your instance. All other ingress traffic will be
discarded. You can modify rules for a group at any time. The new rules are automatically enforced
for all running instances and instances launched in the future.

You can set up your Amazon EC2 security groups using the AWS Management Console or by using
the AWS Toolkit for Visual Studio. You can specify which Amazon EC2 Security Groups control

The AWS Toolkit for Visual Studio 353

https://aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

AWS Elastic Beanstalk Developer Guide

access to your Elastic Beanstalk application by entering the names of one or more Amazon EC2
security group names (delimited by commas) into the EC2 Security Groups text box.

Note

Make sure port 80 (HTTP) is accessible from 0.0.0.0/0 as the source CIDR range if you want
to enable health checks for your application. For more information about health checks, see
Health checks.

To create a security group using the AWS toolkit for Visual Studio

1. In Visual Studio, in AWS Explorer, expand the Amazon EC2 node, and then double-click
Security Groups.

2. Click Create Security Group, and enter a name and description for your security group.

3. Click OK.

For more information on Amazon EC2 Security Groups, see Using Security Groups in the Amazon
Elastic Compute Cloud User Guide.

Amazon EC2 key pairs

You can securely log in to the Amazon EC2 instances provisioned for your Elastic Beanstalk
application with an Amazon EC2 key pair.

Important

You must create an Amazon EC2 key pair and configure your Elastic Beanstalk–provisioned
Amazon EC2 instances to use the Amazon EC2 key pair before you can access your Elastic
Beanstalk–provisioned Amazon EC2 instances. You can create your key pair using the
Publish to AWS wizard inside the AWS Toolkit for Visual Studio when you deploy your
application to Elastic Beanstalk. If you want to create additional key pairs using the Toolkit,
follow the steps below. Alternatively, you can set up your Amazon EC2 key pairs using the
AWS Management Console. For instructions on creating a key pair for Amazon EC2, see the
Amazon Elastic Compute Cloud Getting Started Guide.

The AWS Toolkit for Visual Studio 354

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://console.aws.amazon.com/
http://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/

AWS Elastic Beanstalk Developer Guide

The Existing Key Pair text box lets you specify the name of an Amazon EC2 key pair you can use to
securely log in to the Amazon EC2 instances running your Elastic Beanstalk application.

To specify the name of an Amazon EC2 key pair

1. Expand the Amazon EC2 node and double-click Key Pairs.

2. Click Create Key Pair and enter the key pair name.

3. Click OK.

For more information about Amazon EC2 key pairs, go to Using Amazon EC2 Credentials in the
Amazon Elastic Compute Cloud User Guide. For more information about connecting to Amazon EC2
instances, see Listing and connecting to server instances.

Monitoring interval

By default, only basic Amazon CloudWatch metrics are enabled. They return data in five-minute
periods. You can enable more granular one-minute CloudWatch metrics by selecting 1 minute for
the Monitoring Interval in the Server section of the Configuration tab for your environment in the
AWS Toolkit for Eclipse.

Note

Amazon CloudWatch service charges can apply for one-minute interval metrics. See
Amazon CloudWatch for more information.

Custom AMI ID

You can override the default AMI used for your Amazon EC2 instances with your own custom AMI
by entering the identifier of your custom AMI into the Custom AMI ID box in the Server section of
the Configuration tab for your environment in the AWS Toolkit for Eclipse.

Important

Using your own AMI is an advanced task that you should do with care. If you need a custom
AMI, we recommend you start with the default Elastic Beanstalk AMI and then modify it.
To be considered healthy, Elastic Beanstalk expects Amazon EC2 instances to meet a set of

The AWS Toolkit for Visual Studio 355

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-credentials.html
https://aws.amazon.com/cloudwatch/

AWS Elastic Beanstalk Developer Guide

requirements, including having a running host manager. If these requirements are not met,
your environment might not work properly.

Configuring Elastic Load Balancing using the AWS toolkit for Visual Studio

Elastic Load Balancing is an Amazon web service that helps you improve the availability and
scalability of your application. This service makes it easy for you to distribute application loads
between two or more Amazon EC2 instances. Elastic Load Balancing enables availability through
redundancy and supports traffic growth for your application.

Elastic Load Balancing lets you automatically distribute and balance the incoming application
traffic among all the instances you are running. The service also makes it easy to add new instances
when you need to increase the capacity of your application.

Elastic Beanstalk automatically provisions Elastic Load Balancing when you deploy an application.
You can edit the Elastic Beanstalk environment's Amazon EC2 instance configuration with the Load
Balancer tab inside your application environment tab in AWS Toolkit for Visual Studio.

The following sections describe the Elastic Load Balancing parameters you can configure for your
application.

Ports

The load balancer provisioned to handle requests for your Elastic Beanstalk application sends
requests to the Amazon EC2 instances that are running your application. The provisioned load
balancer can listen for requests on HTTP and HTTPS ports and route requests to the Amazon EC2

The AWS Toolkit for Visual Studio 356

AWS Elastic Beanstalk Developer Guide

instances in your AWS Elastic Beanstalk application. By default, the load balancer handles requests
on the HTTP port. At least one of the ports (either HTTP or HTTPS) must be turned on.

Important

Make sure that the port you specified is not locked down; otherwise, users will not be able
to connect to your Elastic Beanstalk application.

Controlling the HTTP port

To turn off the HTTP port, select OFF for HTTP Listener Port. To turn on the HTTP port, you select
an HTTP port (for example, 80) from the list.

Note

To access your environment using a port other than the default port 80, such as port 8080,
add a listener to the existing load balancer and configure the new listener to listen on that
port.
For example, using the AWS CLI for Classic load balancers, type the following command,
replacing LOAD_BALANCER_NAME with the name of your load balancer for Elastic
Beanstalk.

aws elb create-load-balancer-listeners --load-balancer-name LOAD_BALANCER_NAME
 --listeners "Protocol=HTTP, LoadBalancerPort=8080, InstanceProtocol=HTTP,
 InstancePort=80"

For example, using the AWS CLI for Application Load Balancers, type the following
command, replacing LOAD_BALANCER_ARN with the ARN of your load balancer for Elastic
Beanstalk.

aws elbv2 create-listener --load-balancer-arn LOAD_BALANCER_ARN --protocol HTTP
 --port 8080

The AWS Toolkit for Visual Studio 357

https://docs.aws.amazon.com/cli/latest/reference/elb/create-load-balancer-listeners.html
https://docs.aws.amazon.com/cli/latest/reference/elbv2/create-listener.html

AWS Elastic Beanstalk Developer Guide

If you want Elastic Beanstalk to monitor your environment, do not remove the listener on
port 80.

Controlling the HTTPS port

Elastic Load Balancing supports the HTTPS/TLS protocol to enable traffic encryption for client
connections to the load balancer. Connections from the load balancer to the EC2 instances use
plaintext encryption. By default, the HTTPS port is turned off.

To turn on the HTTPS port

1. Create a new certificate using AWS Certificate Manager (ACM) or upload a certificate and key
to AWS Identity and Access Management (IAM). For more information about requesting an
ACM certificate, see Request a Certificate in the AWS Certificate Manager User Guide. For more
information about importing third-party certificates into ACM, see Importing Certificates
in the AWS Certificate Manager User Guide. If ACM is not available in your region, use AWS
Identity and Access Management (IAM) to upload a third-party certificate. The ACM and
IAM services store the certificate and provide an Amazon Resource Name (ARN) for the
SSL certificate. For more information about creating and uploading certificates to IAM, see
Working with Server Certificates in IAM User Guide.

2. Specify the HTTPS port by selecting a port for HTTPS Listener Port.

3. For SSL Certificate ID, enter the Amazon Resources Name (ARN) of your
SSL certificate. For example, arn:aws:iam::123456789012:server-
certificate/abc/certs/build or arn:aws:acm:us-
east-2:123456789012:certificate/12345678-12ab-34cd-56ef-12345678. Use the
SSL certificate that you created or uploaded in step 1.

To turn off the HTTPS port, select OFF for HTTPS Listener Port.

The AWS Toolkit for Visual Studio 358

https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingServerCerts.html

AWS Elastic Beanstalk Developer Guide

Health checks

The health check definition includes a URL to be queried for instance health. By default, Elastic
Beanstalk uses TCP:80 for nonlegacy containers and HTTP:80 for legacy containers. You can
override the default URL to match an existing resource in your application (e.g., /myapp/
default.aspx) by entering it in the Application Health Check URL box. If you override the
default URL, then Elastic Beanstalk uses HTTP to query the resource. To check if you are using a
legacy container type, see the section called “Why are some platform versions marked legacy?”

You can control the settings for the health check using the EC2 Instance Health Check section of
the Load Balancing panel.

The health check definition includes a URL to be queried for instance health. Override the default
URL to match an existing resource in your application (e.g., /myapp/index.jsp) by entering it in
the Application Health Check URL box.

The following list describes the health check parameters you can set for your application.

• For Health Check Interval (seconds), enter the number of seconds Elastic Load Balancing waits
between health checks for your application's Amazon EC2 instances.

• For Health Check Timeout (seconds), specify the number of seconds Elastic Load Balancing
waits for a response before it considers the instance unresponsive.

• For Healthy Check Count Threshold and Unhealthy Check Count Threshold, specify the
number of consecutive successful or unsuccessful URL probes before Elastic Load Balancing
changes the instance health status. For example, specifying 5 for Unhealthy Check Count
Threshold means that the URL would have to return an error message or timeout five
consecutive times before Elastic Load Balancing considers the health check failed.

Sessions

By default, a load balancer routes each request independently to the server instance with the
smallest load. By comparison, a sticky session binds a user's session to a specific server instance so
that all requests coming from the user during the session are sent to the same server instance.

The AWS Toolkit for Visual Studio 359

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk uses load balancer–generated HTTP cookies when sticky sessions are enabled
for an application. The load balancer uses a special load balancer–generated cookie to track the
application instance for each request. When the load balancer receives a request, it first checks
to see if this cookie is present in the request. If so, the request is sent to the application instance
specified in the cookie. If there is no cookie, the load balancer chooses an application instance
based on the existing load balancing algorithm. A cookie is inserted into the response for binding
subsequent requests from the same user to that application instance. The policy configuration
defines a cookie expiry, which establishes the duration of validity for each cookie.

You can use the Sessions section on the Load Balancer tab to specify whether or not the load
balancer for your application allows session stickiness.

For more information on Elastic Load Balancing, go to the Elastic Load Balancing Developer Guide.

Configuring Auto Scaling using the AWS toolkit for Visual Studio

Amazon EC2 Auto Scaling is an Amazon web service designed to automatically launch or terminate
Amazon EC2 instances based on user-defined triggers. Users can set up Auto Scaling groups
and associate triggers with these groups to automatically scale computing resources based on
metrics such as bandwidth usage or CPU utilization. Amazon EC2 Auto Scaling works with Amazon
CloudWatch to retrieve metrics for the server instances running your application.

Amazon EC2 Auto Scaling lets you take a group of Amazon EC2 instances and set various
parameters to have this group automatically increase or decrease in number. Amazon EC2 Auto
Scaling can add or remove Amazon EC2 instances from that group to help you seamlessly deal with
traffic changes to your application.

Amazon EC2 Auto Scaling also monitors the health of each Amazon EC2 instance that it launches.
If any instance terminates unexpectedly, Amazon EC2 Auto Scaling detects the termination and
launches a replacement instance. This capability enables you to maintain a fixed, desired number of
Amazon EC2 instances automatically.

Elastic Beanstalk provisions Amazon EC2 Auto Scaling for your application. You can edit the Elastic
Beanstalk environment's Amazon EC2 instance configuration with the Auto Scaling tab inside your
application environment tab in the AWS Toolkit for Visual Studio.

The AWS Toolkit for Visual Studio 360

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/

AWS Elastic Beanstalk Developer Guide

The following section discusses how to configure Auto Scaling parameters for your application.

Launch the configuration

You can edit the launch configuration to control how your Elastic Beanstalk application provisions
Amazon EC2 Auto Scaling resources.

The Minimum Instance Count and Maximum Instance Count boxes let you specify the minimum
and maximum size of the Auto Scaling group that your Elastic Beanstalk application uses.

Note

To maintain a fixed number of Amazon EC2 instances, set Minimum Instance Count and
Maximum Instance Count to the same value.

The AWS Toolkit for Visual Studio 361

AWS Elastic Beanstalk Developer Guide

The Availability Zones box lets you specify the number of Availability Zones you want your
Amazon EC2 instances to be in. It is important to set this number if you want to build fault-tolerant
applications. If one Availability Zone goes down, your instances will still be running in your other
Availability Zones.

Note

Currently, it is not possible to specify which Availability Zone your instance will be in.

Triggers

A trigger is an Amazon EC2 Auto Scaling mechanism that you set to tell the system when you
want to increase (scale out) the number of instances, and when you want to decrease (scale in)
the number of instances. You can configure triggers to fire on any metric published to Amazon
CloudWatch, such as CPU utilization, and determine if the conditions you specified have been met.
When the upper or lower thresholds of the conditions you have specified for the metric have been
breached for the specified period of time, the trigger launches a long-running process called a
Scaling Activity.

You can define a scaling trigger for your Elastic Beanstalk application using AWS Toolkit for Visual
Studio.

Amazon EC2 Auto Scaling triggers work by watching a specific Amazon CloudWatch metric for
an instance. Triggers include CPU utilization, network traffic, and disk activity. Use the Trigger
Measurement setting to select a metric for your trigger.

The following list describes the trigger parameters you can configure using the AWS Management
Console.

• You can specify which statistic the trigger should use. You can select Minimum, Maximum, Sum,
or Average for Trigger Statistic.

The AWS Toolkit for Visual Studio 362

AWS Elastic Beanstalk Developer Guide

• For Unit of Measurement, specify the unit for the trigger measurement.

• The value in the Measurement Period box specifies how frequently Amazon CloudWatch
measures the metrics for your trigger. The Breach Duration is the amount of time a metric can
be beyond its defined limit (as specified for the Upper Threshold and Lower Threshold) before
the trigger fires.

• For Upper Breach Scale Increment and Lower Breach Scale Increment, specify how many
Amazon EC2 instances to add or remove when performing a scaling activity.

For more information on Amazon EC2 Auto Scaling, see the Amazon EC2 Auto Scaling section on
Amazon Elastic Compute Cloud Documentation.

Configuring notifications using AWS toolkit for Visual Studio

Elastic Beanstalk uses the Amazon Simple Notification Service (Amazon SNS) to notify you of
important events affecting your application. To enable Amazon SNS notifications, simply enter
your email address in the Email Address box. To disable these notifications, remove your email
address from the box.

Configuring .NET containers using the AWS toolkit for Visual Studio

The Container/.NET Options panel lets you fine-tune the behavior of your Amazon EC2 instances
and enable or disable Amazon S3 log rotation. You can use the AWS Toolkit for Visual Studio to
configure your container information.

Note

You can modify your configuration settings with zero downtime by swapping the CNAME
for your environments. For more information, see Blue/Green deployments with Elastic
Beanstalk.

The AWS Toolkit for Visual Studio 363

https://aws.amazon.com/documentation/ec2/

AWS Elastic Beanstalk Developer Guide

If you want to, you can extend the number of parameters. For information about extending
parameters, see Option settings.

To access the Container/.NET options panel for your Elastic Beanstalk application

1. In AWS Toolkit for Visual Studio, expand the Elastic Beanstalk node and your application node.

2. In AWS Explorer, double-click your Elastic Beanstalk environment.

3. At the bottom of the Overview pane, click the Configuration tab.

4. Under Container, you can configure container options.

.NET container options

You can choose the version of .NET Framework for your application. Choose either 2.0 or 4.0 for
Target runtime. Select Enable 32-bit Applications if you want to enable 32-bit applications.

Application settings

The Application Settings section lets you specify environment variables that you can read from
your application code.

The AWS Toolkit for Visual Studio 364

AWS Elastic Beanstalk Developer Guide

Managing accounts

If you want to set up different AWS accounts to perform different tasks, such as testing, staging,
and production, you can add, edit, and delete accounts using the AWS Toolkit for Visual Studio.

To manage multiple accounts

1. In Visual Studio, on the View menu, click AWS Explorer.

2. Beside the Account list, click the Add Account button.

The Add Account dialog box appears.

3. Fill in the requested information.

4. Your account information now appears on the AWS Explorer tab. When you publish to Elastic
Beanstalk, you can select which account you would like to use.

Listing and connecting to server instances

You can view a list of Amazon EC2 instances running your Elastic Beanstalk application
environment through the AWS Toolkit for Visual Studio or from the AWS Management Console.
You can connect to these instances using Remote Desktop Connection. For information about
listing and connecting to your server instances using the AWS Management Console, see Listing
and connecting to server instances. The following section steps you through viewing and
connecting you to your server instances using the AWS Toolkit for Visual Studio.

The AWS Toolkit for Visual Studio 365

AWS Elastic Beanstalk Developer Guide

To view and connect to Amazon EC2 instances for an environment

1. In Visual Studio, in AWS Explorer, expand the Amazon EC2 node and double-click Instances.

2. Right-click the instance ID for the Amazon EC2 instance running in your application's load
balancer in the Instance column and select Open Remote Desktop from the context menu.

3. Select Use EC2 keypair to log on and paste the contents of your private key file that you used
to deploy your application in the Private key box. Alternatively, enter your user name and
password in the User name and Password text boxes.

Note

If the key pair is stored inside the Toolkit, the text box does not appear.

4. Click OK.

The AWS Toolkit for Visual Studio 366

AWS Elastic Beanstalk Developer Guide

Monitoring application health

When you are running a production website, it is important to know that your application is
available and responding to requests. To assist with monitoring your application’s responsiveness,
Elastic Beanstalk provides features where you can monitor statistics about your application and
create alerts that trigger when thresholds are exceeded.

For information about the health monitoring provided by Elastic Beanstalk, see Basic health
reporting.

You can access operational information about your application by using either the AWS Toolkit for
Visual Studio or the AWS Management Console.

The toolkit displays your environment's status and application health in the Status field.

To monitor application health

1. In the AWS Toolkit for Visual Studio, in AWS Explorer, expand the Elastic Beanstalk node, and
then expand your application node.

2. Right-click your Elastic Beanstalk environment, and then click View Status.

3. On your application environment tab, click Monitoring.

The Monitoring panel includes a set of graphs showing resource usage for your particular
application environment.

The AWS Toolkit for Visual Studio 367

AWS Elastic Beanstalk Developer Guide

Note

By default, the time range is set to the last hour. To modify this setting, in the Time
Range list, click a different time range.

You can use the AWS Toolkit for Visual Studio or the AWS Management Console to view events
associated with your application.

To view application events

1. In the AWS Toolkit for Visual Studio, in AWS Explorer, expand the Elastic Beanstalk node and
your application node.

2. Right-click your Elastic Beanstalk environment in AWS Explorer and then click View Status.

3. In your application environment tab, click Events.

Deploying Elastic Beanstalk applications in .NET using the deployment tool

The AWS Toolkit for Visual Studio includes a deployment tool, a command line tool that provides
the same functionality as the deployment wizard in the AWS Toolkit. You can use the deployment
tool in your build pipeline or in other scripts to automate deployments to Elastic Beanstalk.

The deployment tool supports both initial deployments and redeployments. If you previously
deployed your application using the deployment tool, you can redeploy using the deployment
wizard within Visual Studio. Similarly, if you have deployed using the wizard, you can redeploy
using the deployment tool.

The AWS Toolkit for Visual Studio 368

AWS Elastic Beanstalk Developer Guide

Note

The deployment tool does not apply recommended values for configuration options like
the console or EB CLI. Use configuration files to ensure that any settings that you need are
configured when you launch your environment.

This chapter walks you through deploying a sample .NET application to Elastic Beanstalk using
the deployment tool, and then redeploying the application using an incremental deployment.
For a more in-depth discussion about the deployment tool, including the parameter options, see
Deployment Tool.

Prerequisites

To use the deployment tool, you need to install the AWS Toolkit for Visual Studio. For information
on prerequisites and installation instructions, see AWS Toolkit for Microsoft Visual Studio.

The deployment tool is typically installed in one of the following directories on Windows:

32-bit 64-bit

C:\Program Files\AWS
Tools\Deployment Tool
\awsdeploy.exe

C:\Program Files (x86)\AWS Tools\Dep
loyment Tool\awsdeploy.exe

Deploy to Elastic Beanstalk

To deploy the sample application to Elastic Beanstalk using the deployment tool, you first need to
modify the ElasticBeanstalkDeploymentSample.txt configuration file, which is provided in
the Samples directory. This configuration file contains the information necessary to deploy your
application, including the application name, application version, environment name, and your AWS
access credentials. After modifying the configuration file, you then use the command line to deploy
the sample application. Your web deploy file is uploaded to Amazon S3 and registered as a new
application version with Elastic Beanstalk. It will take a few minutes to deploy your application.
Once the environment is healthy, the deployment tool outputs a URL for the running application.

The AWS Toolkit for Visual Studio 369

http://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/tkv-deploy-beanstalk.html
https://aws.amazon.com/visualstudio/

AWS Elastic Beanstalk Developer Guide

To deploy a .NET application to Elastic Beanstalk

1. From the Samples subdirectory where the deployment tool is installed, open
ElasticBeanstalkDeploymentSample.txt and enter your AWS access key and AWS
secret key as in the following example.

AWS Access Key and Secret Key used to create and deploy the application
 instance
AWSAccessKey = AKIAIOSFODNN7EXAMPLE
AWSSecretKey = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Note

For API access, you need an access key ID and secret access key. Use IAM user access
keys instead of AWS account root user access keys. For more information about
creating access keys, see Managing access keys for IAM users in the IAM User Guide.

2. At the command line prompt, type the following:

C:\Program Files (x86)\AWS Tools\Deployment Tool>awsdeploy.exe /w Samples
\ElasticBeanstalkDeploymentSample.txt

It takes a few minutes to deploy your application. If the deployment succeeds, you will see the
message, Application deployment completed; environment health is Green.

Note

If you receive the following error, the CNAME already exists.

[Error]: Deployment to AWS Elastic Beanstalk failed with exception: DNS name
 (MyAppEnv.elasticbeanstalk.com) is not available.

Because a CNAME must be unique, you need to change Environment.CNAME in
ElasticBeanstalkDeploymentSample.txt.

3. In your web browser, navigate to the URL of your running application. The URL will be in the
form <CNAME.elasticbeanstalk.com> (e.g., MyAppEnv.elasticbeanstalk.com).

The AWS Toolkit for Visual Studio 370

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS Elastic Beanstalk Developer Guide

Migrating your on-premises .NET application to Elastic Beanstalk

If you're thinking about migrating your .NET application from on-premises servers to Amazon Web
Services (AWS), the .NET Migration Assistant for AWS Elastic Beanstalk might be useful for you. The
assistant is an interactive PowerShell utility that migrates a .NET application from Windows Server
with IIS running on premises to AWS Elastic Beanstalk. The assistant can migrate an entire website
to Elastic Beanstalk with minimal or no changes needed.

For more information about the .NET Migration Assistant for AWS Elastic Beanstalk and to
download it, see the https://github.com/awslabs/windows-web-app-migration-assistant
repository on GitHub.

If your application includes Microsoft SQL Server databases, the assistant's documentation on
GitHub includes several options for migrating them.

Resources

There are several places you can go to get additional help when developing your .NET applications:

Resource Description

.NET Development Forum Post your questions and get feedback.

.NET Developer Center One-stop shop for sample code, documentation, tools,
and additional resources.

AWS SDK for .NET Documentation Read about setting up the SDK and running code
samples, features of the SDK, and detailed information
about the API operations for the SDK.

Deploying Node.js applications to Elastic Beanstalk

AWS Elastic Beanstalk for Node.js makes it easy to deploy, manage, and scale your Node.js web
applications using Amazon Web Services. Elastic Beanstalk for Node.js is available to anyone
developing or hosting a web application using Node.js. This chapter provides step-by-step
instructions for deploying your Node.js web application to Elastic Beanstalk using the Elastic
Beanstalk management console, and provides walkthroughs for common tasks such as database
integration and working with the Express framework.

Migrating on-premises application 371

https://github.com/awslabs/windows-web-app-migration-assistant
https://forums.aws.amazon.com/forum.jspa?forumID=61
https://aws.amazon.com/net/
https://aws.amazon.com/documentation/sdk-for-net/

AWS Elastic Beanstalk Developer Guide

After you deploy your Elastic Beanstalk application, you can continue to use EB CLI to manage your
application and environment, or you can use the Elastic Beanstalk console, AWS CLI, or the APIs.

Topics

• Getting started with Node.js on Elastic Beanstalk

• Setting up your Node.js development environment

• Using the Elastic Beanstalk Node.js platform

• Deploying an Express application to Elastic Beanstalk

• Deploying an Express application with clustering to Elastic Beanstalk

• Deploying a Node.js application with DynamoDB to Elastic Beanstalk

• Adding an Amazon RDS DB instance to your Node.js application environment

• Resources

The topics in this chapter assume that you have some knowledge of Elastic Beanstalk
environments. If you haven't used Elastic Beanstalk before, try the getting started tutorial to learn
the basics.

Getting started with Node.js on Elastic Beanstalk

To get started with Node.js applications on AWS Elastic Beanstalk, all you need is an application
source bundle to upload as your first application version and to deploy to an environment. When
you create an environment, Elastic Beanstalk allocates all of the AWS resources needed to run a
highly scalable web application.

Launching an environment with a sample Node.js application

Elastic Beanstalk provides single page sample applications for each platform as well as more
complex examples that show the use of additional AWS resources such as Amazon RDS and
language or platform-specific features and APIs.

Note

Follow the steps in the source bundle README.md file to deploy it.

Getting started 372

AWS Elastic Beanstalk Developer Guide

Samples

Environment
type

Source
bundle

Description

Web Server nodejs.zi
p

Single page application.

Use the procedure at Create an Example Application to
launch this example.

Web Server
with Amazon
RDS

nodejs-
ex
ample-
express-
rds.zip

Hiking log application that uses the Express framework
and an Amazon Relational Database Service (RDS).

Tutorial

Web Server
with Amazon
ElastiCache

nodejs-
ex
ample-
express-
elas
ticache.z
ip

Express web application that uses Amazon ElastiCache
for clustering. Clustering enhances your web applicati
on's high availability, performance, and security.

Tutorial

Web
Server with
DynamoDB,
Amazon SNS
and Amazon
SQS

nodejs-
ex
ample-
dyn
amo.zip

Express web site that collects user contact informati
on for a new company's marketing campaign. Uses the
AWS SDK for JavaScript in Node.js to write entries to a
DynamoDB table, and Elastic Beanstalk configuration
files to create resources in DynamoDB, Amazon SNS
and Amazon SQS.

Tutorial

Next steps

After you have an environment running an application, you can deploy a new version of the
application or a completely different application at any time. Deploying a new application version

Getting started 373

samples/nodejs.zip
samples/nodejs.zip
samples/nodejs-example-express-rds.zip
samples/nodejs-example-express-rds.zip
samples/nodejs-example-express-rds.zip
samples/nodejs-example-express-rds.zip
samples/nodejs-example-express-rds.zip
samples/nodejs-example-express-elasticache.zip
samples/nodejs-example-express-elasticache.zip
samples/nodejs-example-express-elasticache.zip
samples/nodejs-example-express-elasticache.zip
samples/nodejs-example-express-elasticache.zip
samples/nodejs-example-express-elasticache.zip
samples/nodejs-example-express-elasticache.zip
samples/nodejs-example-dynamo.zip
samples/nodejs-example-dynamo.zip
samples/nodejs-example-dynamo.zip
samples/nodejs-example-dynamo.zip
samples/nodejs-example-dynamo.zip

AWS Elastic Beanstalk Developer Guide

is very quick because it doesn't require provisioning or restarting EC2 instances. For details about
application deployment, see Deploy a New Version of Your Application.

After you've deployed a sample application or two and are ready to start developing and running
Node.js applications locally, see the next section to set up a Node.js development environment with
all of the tools that you will need.

Setting up your Node.js development environment

Set up a Node.js development environment to test your application locally prior to deploying it
to AWS Elastic Beanstalk. This topic outlines development environment setup steps and links to
installation pages for useful tools.

For common setup steps and tools that apply to all languages, see Configuring your development
machine.

Topics

• Install Node.js

• Confirm npm installation

• Install the AWS SDK for Node.js

• Install the Express generator

• Set up an Express framework and server

Install Node.js

Install Node.js to run Node.js applications locally. If you don't have a preference, get the latest
version supported by Elastic Beanstalk. See Node.js in the AWS Elastic Beanstalk Platforms
document for a list of supported versions.

Download Node.js at nodejs.org.

Confirm npm installation

Node.js uses the npm package manager to help you install tools and frameworks for use in
your application. Since npm is distributed with Node.js, you will automatically install it when
you download and install Node.js. To confirm you have npm installed you can run the following
command:

Development environment 374

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.nodejs
https://nodejs.org/en/

AWS Elastic Beanstalk Developer Guide

$ npm -v

For more information on npm, visit the npmjs website.

Install the AWS SDK for Node.js

If you need to manage AWS resources from within your application, install the AWS SDK for
JavaScript in Node.js. Install the SDK with npm:

$ npm install aws-sdk

Visit the AWS SDK for JavaScript in Node.js homepage for more information.

Install the Express generator

Express is a web application framework that runs on Node.js. To use it, first install the Express
generator command line application. Once the Express generator is installed, you can run the
express command to generate a base project structure for your web application. Once the base
project, files, and dependencies are installed you can start up a local Express server on your
development machine.

Note

• These steps walk you through installing the Express generator on a Linux operating
system.

• For Linux, depending on your permission level to system directories, you might need to
prefix some of these commands with sudo.

To install the Express generator on your development environment

1. Create a working directory for your Express framework and server.

~$ mkdir node-express
~$ cd node-express

2. Install Express globally so that you have access to the express command.

Development environment 375

https://www.npmjs.com/get-npm
https://aws.amazon.com/sdk-for-node-js/

AWS Elastic Beanstalk Developer Guide

~/node-express$ npm install -g express-generator

3. Depending on your operating system, you may need to set your path to run the express
command. The output from the previous step provides information if you need to set your
path variable. The following is an example for Linux.

~/node-express$ export PATH=$PATH:/usr/local/share/npm/bin/express

When you follow the tutorials in this chapter, you'll need to run the express command from
different directories. Each tutorial sets up a base Express project structure in it's own directory.

You have now installed the Express command line generator. You can use it to create a framework
directory for your web application, set up dependencies, and start up the web app server. Next,
we'll go through the steps to accomplish this in the node-express directory that we created.

Set up an Express framework and server

Follow these steps to create the base Express framework directories and contents. The tutorials in
this chapter also include these steps to set up the base Express framework in each of the tutorial's
application directories.

To set up an Express framework and server

1. Run the express command. This generates package.json, app.js, and a few directories.

~/node-express$ express

When prompted, type y if you want to continue.

2. Set up local dependencies.

~/node-express$ npm install

3. Verify the web app server starts up.

~/node-express$ npm start

You should see output similar to the following:

Development environment 376

AWS Elastic Beanstalk Developer Guide

> nodejs@0.0.0 start /home/local/user/node-express
> node ./bin/www

The server runs on port 3000 by default. To test it, run curl http://localhost:3000 in
another terminal, or open a browser on the local computer and enter URL address http://
localhost:3000.

Press Ctrl+C to stop the server.

Using the Elastic Beanstalk Node.js platform

The AWS Elastic Beanstalk Node.js platform is a set of platform versions for Node.js web
applications that run behind an NGINX proxy server.

Elastic Beanstalk provides configuration options that you can use to customize the software that
runs on the EC2 instances in your Elastic Beanstalk environment. You can configure environment
variables required by your application, enable log rotation to Amazon S3, and map folders in your
application source that contain static files to paths served by the proxy server.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate
it, you can use saved configurations to save your settings and later apply them to another
environment.

To save settings in your source code, you can include configuration files. Settings in configuration
files are applied every time you create an environment or deploy your application. You can also
use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

You can include a Package.json file in your source bundle to install packages during deployment,
to provide a start command, and to specify the Node.js version that you want your application to
use. You can include an npm-shrinkwrap.json file to lock down dependency versions.

The Node.js platform includes a proxy server to serve static assets, forward traffic to your
application, and compress responses. You can extend or override the default proxy configuration
for advanced scenarios.

There are several options to start your application. You can add a Procfile to your source bundle
to specify the command that starts your application. If you don't provide a Procfile but provide

The Node.js platform 377

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.nodejs

AWS Elastic Beanstalk Developer Guide

a package.json file, Elastic Beanstalk runs npm start. If you don't provide that either, Elastic
Beanstalk looks for the app.js or server.js file, in this order, and runs the script.

Settings applied in the Elastic Beanstalk console override the same settings in configuration files,
if they exist. This lets you have default settings in configuration files, and override them with
environment-specific settings in the console. For more information about precedence, and other
methods of changing settings, see Configuration options.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called “Extending Linux platforms”.

Configuring your Node.js environment

You can use the Node.js platform settings to fine-tune the behavior of your Amazon EC2 instances.
You can edit the Amazon EC2 instance configuration for your Elastic Beanstalk environment using
the Elastic Beanstalk console.

Use the Elastic Beanstalk console to enable log rotation to Amazon S3 and configure variables that
your application can read from the environment.

To configure your Node.js environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Container options

You can specify these platform-specific options:

• Proxy server – The proxy server to use on your environment instances. By default, NGNIX is used.

The Node.js platform 378

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Log options

The Log Options section has two settings:

• Instance profile – Specifies the instance profile that has permission to access the Amazon S3
bucket that's associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Static files

To improve performance, you can use the Static files section to configure the proxy server to serve
static files (for example, HTML or images) from a set of directories inside your web application.
For each directory, you set the virtual path to directory mapping. When the proxy server receives a
request for a file under the specified path, it serves the file directly instead of routing the request
to your application.

For details about configuring static files using configuration files or the Elastic Beanstalk console,
see the section called “Static files”.

Environment properties

Use the Environment Properties section to specify environment configuration settings on the
Amazon EC2 instances that are running your application. These settings are passed in as key-value
pairs to the application.

Inside the Node.js environment that runs in AWS Elastic Beanstalk, you can access the environment
variables by running process.env.ENV_VARIABLE.

var endpoint = process.env.API_ENDPOINT

The Node.js platform sets the PORT environment variable to the port that the proxy server passes
traffic to. For more information, see Configuring the proxy server.

See Environment properties and other software settings for more information.

Configuring an Amazon Linux AMI (preceding Amazon Linux 2) Node.js environment

The following console software configuration categories are supported only on an Elastic Beanstalk
Node.js environment that uses an Amazon Linux AMI platform version (preceding Amazon Linux 2).

The Node.js platform 379

AWS Elastic Beanstalk Developer Guide

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Container options — Amazon Linux AMI (AL1)

On the configuration page, specify the following:

• Proxy server – Specifies which web server to use to proxy connections to Node.js. By default,
NGINX is used. If you select none, static file mappings don't take effect, and GZIP compression is
disabled.

• Node.js version – Specifies the version of Node.js. For a list of supported Node.js versions, see
Node.js in the AWS Elastic Beanstalk Platforms guide.

• GZIP compression – Specifies whether GZIP compression is enabled. By default, GZIP
compression is enabled.

• Node command – Lets you enter the command used to start the Node.js application. An empty
string (the default) means Elastic Beanstalk uses app.js, then server.js, and then npm
start.

Node.js configuration namespace

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

You can choose the proxy to use on the instances for your environment by using the
aws:elasticbeanstalk:environment:proxy namespace. The following example configures
your environment to use the Apache HTTPD proxy server.

The Node.js platform 380

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.nodejs

AWS Elastic Beanstalk Developer Guide

Example .ebextensions/nodejs-settings.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:
 ProxyServer: apache

You can configure the proxy to serve static files by using the
aws:elasticbeanstalk:environment:proxy:staticfiles namespace. For more
information and an example, see the section called “Static files”.

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

The Amazon Linux AMI (preceding Amazon Linux 2) Node.js platform

If your Elastic Beanstalk Node.js environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), consider the specific configurations and recommendations in this
section.

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Node.js platform-specific configuration options — Amazon Linux AMI (AL1)

Elastic Beanstalk supports some platform-specific configurations options for Amazon Linux AMI
Node.js platform versions. You can choose which proxy server to run in front of your application,
choose a specific version of Node.js to run, and choose the command used to run your application.

For proxy server, you can use an NGINX or Apache proxy server. You can set the none value to the
ProxyServer option. With this setting, Elastic Beanstalk runs your application as standalone, not

The Node.js platform 381

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

behind any proxy server. If your environment runs a standalone application, update your code to
listen to the port that NGINX forwards traffic to.

var port = process.env.PORT || 8080;

app.listen(port, function() {
 console.log('Server running at http://127.0.0.1:%s', port);
});

Node.js language versions — Amazon Linux AMI (AL1)

In terms of supported language version, the Node.js Amazon Linux AMI platform is different to
other Elastic Beanstalk managed platforms. This is because each Node.js platform version supports
only a few Node.js language versions. For a list of supported Node.js versions, see Node.js in the
AWS Elastic Beanstalk Platforms guide.

You can use a platform-specific configuration option to set the language version. For instructions,
see the section called “Configuring your Node.js environment”. Alternatively, use the Elastic
Beanstalk console to update the Node.js version that your environment uses as part of updating
your platform version.

Note

When support for the version of Node.js that you are using is removed from the platform,
you must change or remove the version setting prior to doing a platform update. This
might occur when a security vulnerability is identified for one or more versions of Node.js.
When this happens, attempting to update to a new version of the platform that doesn't
support the configured NodeVersion fails. To avoid needing to create a new environment,
change the NodeVersion configuration option to a Node.js version that is supported by both
the old platform version and the new one, or remove the option setting, and then perform
the platform update.

To configure your environment's Node.js version in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

The Node.js platform 382

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.nodejs
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Note

If you have many environments, use the search bar to filter the environment list.

3. On the environment overview page, under Platform, choose Change.

4. On the Update platform version dialog box, select a Node.js version.

5. Choose Save.

Node.js configuration namespaces — Amazon Linux AMI (AL1)

The Node.js Amazon Linux AMI platform defines additional options in
the aws:elasticbeanstalk:container:nodejs:staticfiles and
aws:elasticbeanstalk:container:nodejs namespaces.

The following configuration file tells Elastic Beanstalk to use npm start to run the application.
It also sets the proxy type to Apache and enables compression. Last, it configures the proxy to
serve static files from two source directories. One source is HTML files at the html path under

The Node.js platform 383

AWS Elastic Beanstalk Developer Guide

the website's root from the statichtml source directory. The other source is image files at the
images path under the website's root from the staticimages source directory.

Example .ebextensions/node-settings.config

option_settings:
 aws:elasticbeanstalk:container:nodejs:
 NodeCommand: "npm start"
 ProxyServer: apache
 GzipCompression: true
 aws:elasticbeanstalk:container:nodejs:staticfiles:
 /html: statichtml
 /images: staticimages

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

Configuring the application process with a Procfile

You can include a file that's called Procfile at the root of your source bundle to specify the
command that starts your application.

Example Procfile

web: node index.js

For information about Procfile usage, expand the Buildfile and Procfile section in the section
called “Extending Linux platforms”.

Note

This feature replaces the legacy NodeCommand option in the
aws:elasticbeanstalk:container:nodejs namespace.

Configuring your application's dependencies

Your application might have dependencies on some Node.js modules, such as the ones you specify
in require() statements. These modules are stored in a node_modules directory. When your

The Node.js platform 384

AWS Elastic Beanstalk Developer Guide

application runs, Node.js loads the modules from this directory. For more information, see Loading
from node_modules folders in the Node.js documentation.

You can specify these module dependencies using a package.json file. If Elastic Beanstalk
detects this file and a node_modules directory isn't present, Elastic Beanstalk runs npm install
as the webapp user. The npm install command installs the dependencies in the node_modules
directory, which Elastic Beanstalk creates beforehand. The npm install command accesses the
packages listed in the package.json file from the public npm registry or other locations. For
more information, see the npm Docs website.

If Elastic Beanstalk detects the node_modules directory, Elastic Beanstalk doesn't run npm
install, even if a package.json file exists. Elastic Beanstalk assumes that the dependency
packages are available in the node_modules directory for Node.js to access and load.

The following sections provide more information about establishing your Node.js module
dependencies for your application.

Note

If you experience any deployment issues when Elastic Beanstalk is running npm install,
consider an alternate approach. Include the node_modules directory with the dependency
modules in your application source bundle. Doing so can circumvent issues with installing
dependencies from the public npm registry while you investigate the issue. Because
the dependency modules are sourced from a local directory, dong this might also help
reduce deployment time. For more information, see Including Node.js dependencies in a
node_modules directory

Specifying Node.js dependencies with a package.json file

Include a package.json file in the root of your project source to specify dependency packages
and to provide a start command. When a package.json file is present, and a node_modules
directory isn't present in the root of your project source, Elastic Beanstalk runs npm install as
the webapp user to install dependencies from the public npm registry. Elastic Beanstalk also uses
the start command to start your application. For more information about the package.json
file, see Specifying dependencies in a package.json file in the npm Docs website.

The Node.js platform 385

https://nodejs.org/api/modules.html#modules_loading_from_node_modules_folders
https://nodejs.org/api/modules.html#modules_loading_from_node_modules_folders
https://docs.npmjs.com/about-the-public-npm-registry
https://docs.npmjs.com/specifying-dependencies-and-devdependencies-in-a-package-json-file

AWS Elastic Beanstalk Developer Guide

Use the scripts keyword to provide a start command. Currently, the scripts keyword is used
instead of the legacy NodeCommand option in the aws:elasticbeanstalk:container:nodejs
namespace.

Example package.json – Express

{
 "name": "my-app",
 "version": "0.0.1",
 "private": true,
 "dependencies": {
 "ejs": "latest",
 "aws-sdk": "latest",
 "express": "latest",
 "body-parser": "latest"
 },
 "scripts": {
 "start": "node app.js"
 }
 }

Production mode and dev dependencies

To specify your dependencies in the package.json file use the dependencies and devDependencies
attributes. The dependencies attribute designates packages required by your application in
production. The devDependencies attribute designates packages that are only needed for local
development and testing.

Elastic Beanstalk runs npm install as the webapp user with the following commands. The
command options vary depending on the npm version included on platform branch that your
application runs on.

• npm v6 — Elastic Beanstalk installs dependencies in production mode by default. It uses the
command npm install --production.

• npm v7 or greater — Elastic Beanstalk omits the devDependencies. It uses the command npm
install --omit=dev.

Both of the commands listed above do not install the packages that are devDependencies.

The Node.js platform 386

AWS Elastic Beanstalk Developer Guide

If you need to install the devDependencies packages, set the NPM_USE_PRODUCTION environment
property to false. With this setting we will not use the above options when running npm install.
This will result in the devDependencies packages being installed.

SSH and HTTPS

Starting with the March 7, 2023 Amazon Linux 2 platform release, you can also use the SSH and
HTTPS protocols to retrieve packages from a Git repository. Platform branch Node.js 16 supports
both the SSH and HTTPS protocols. Node.js 14 only supports the HTTPS protocol.

Example package.json – Node.js 16 supports both HTTPS and SSH

 ...
 "dependencies": {
 "aws-sdk": "https://github.com/aws/aws-sdk-js.git",
 "aws-chime": "git+ssh://git@github.com:aws/amazon-chime-sdk-js.git"
 }

Versions and version ranges

Important

The feature to specify version ranges is not available for Node.js platform branches running
on AL2023. We only support one Node.js version within a specific Node.js branch on
AL2023. If your package.json file specifies a version range, we'll ignore it and default to
the platform branch version of Node.js.

Use the engines keyword in the package.json file to specify the Node.js version that you
want your application to use. You can also specify a version range using npm notation. For more
information about the syntax for version ranges, see Semantic Versioning using npm on the
Node.js website. The engines keyword in the Node.js package.json file replaces the legacy
NodeVersion option in the aws:elasticbeanstalk:container:nodejs namespace.

Example package.json – Single Node.js version

{
 ...
 "engines": { "node" : "14.16.0" }

The Node.js platform 387

https://nodejs.dev/learn/semantic-versioning-using-npm

AWS Elastic Beanstalk Developer Guide

 }

Example package.json – Node.js version range

{
 ...
 "engines": { "node" : ">=10 <11" }
 }

When a version range is indicated, Elastic Beanstalk installs the latest Node.js version that the
platform has available within the range. In this example, the range indicates that the version
must be greater than or equal to version 10, but less than version 11. As a result, Elastic Beanstalk
installs the latest Node.js version 10.x.y, which is available on the supported platform.

Be aware that you can only specify a Node.js version that corresponds with your platform branch.
For example, if you're using the Node.js 16 platform branch, you can only specify a 16.x.y Node.js
version. You can use the version range options supported by npm to allow for more flexibility. For
valid Node.js versions for each platform branch, see Node.js in the AWS Elastic Beanstalk Platforms
guide.

Note

When support for the version of Node.js that you are using is removed from the platform,
you must change or remove the Node.js version setting prior to doing a platform update.
This might occur when a security vulnerability is identified for one or more versions of
Node.js.
When this happens, attempting to update to a new version of the platform that doesn't
support the configured Node.js version fails. To avoid needing to create a new environment,
change the Node.js version setting in package.json to a Node.js version that is supported
by both the old platform version and the new one. You have the option to specify a Node.js
version range that includes a supported version, as described earlier in this topic. You also
have the option to remove the setting, and then deploy the new source bundle.

Including Node.js dependencies in a node_modules directory

To deploy dependency packages to environment instances together with your application code,
include them in a directory that's named node_modules in the root of your project source. For
more information, see Downloading and installing packages locally in the npm Docs website.

The Node.js platform 388

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.nodejs
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.nodejs
https://docs.npmjs.com/downloading-and-installing-packages-locally

AWS Elastic Beanstalk Developer Guide

When you deploy a node_modules directory to an Amazon Linux 2 Node.js platform version,
Elastic Beanstalk assumes that you're providing your own dependency packages, and avoids
installing dependencies that are specified in a package.json file. Node.js looks for dependencies in
the node_modules directory. For more information, see Loading from node_modules Folders in
the Node.js documentation.

Note

If you experience any deployment issues when Elastic Beanstalk is running npm install,
consider using the approach described in this topic as a workaround while you investigate
the issue.

Locking dependencies with npm shrinkwrap

The Node.js platform runs npm install as the webapp user each time you deploy. When new
versions of your dependencies are available, they're installed when you deploy your application,
potentially causing the deployment to take a long time.

You can avoid upgrading dependencies by creating an npm-shrinkwrap.json file that locks
down your application's dependencies to the current version.

$ npm install
$ npm shrinkwrap
wrote npm-shrinkwrap.json

Include this file in your source bundle to ensure that dependencies are only installed once.

Configuring the proxy server

Elastic Beanstalk can use NGINX or Apache HTTPD as the reverse proxy to map your application
to your Elastic Load Balancing load balancer on port 80. The default is NGINX. Elastic Beanstalk
provides a default proxy configuration that you can either extend or completely override with your
own configuration.

By default, Elastic Beanstalk configures the proxy to forward requests to your application on port
5000. You can override the default port by setting the PORT environment property to the port that
your main application listens on.

The Node.js platform 389

https://nodejs.org/api/modules.html#modules_loading_from_node_modules_folders

AWS Elastic Beanstalk Developer Guide

Note

The port that your application listens on doesn't affect the port that the NGINX server
listens to receive requests from the load balancer.

Configuring the proxy server on your platform version

All AL2023/AL2 platforms support a uniform proxy configuration feature. For more information
about configuring the proxy server on your platform versions running AL2023/AL2, expand the
Reverse Proxy Configuration section in the section called “Extending Linux platforms”.

Configuring the proxy on Amazon Linux AMI (preceding Amazon Linux 2)

If your Elastic Beanstalk Node.js environment uses an Amazon Linux AMI platform version
(preceding Amazon Linux 2), read the information in this section.

Notes

• The information in this topic only applies to platform branches based on Amazon Linux
AMI (AL1). AL2023/AL2 platform branches are incompatible with previous Amazon Linux
AMI (AL1) platform versions and require different configuration settings.

• On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. For more information about migrating to a current
and fully supported Amazon Linux 2023 platform branch, see Migrating your Elastic
Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2.

Extending and overriding the default proxy configuration — Amazon Linux AMI (AL1)

The Node.js platform uses a reverse proxy to relay requests from port 80 on the instance to your
application that's listening on port 8081. Elastic Beanstalk provides a default proxy configuration
that you can either extend or completely override with your own configuration.

To extend the default configuration, add .conf files to /etc/nginx/conf.d with a configuration
file. For a specific example, see Terminating HTTPS on EC2 instances running Node.js.

The Node.js platform sets the PORT environment variable to the port that the proxy server passes
traffic to. Read this variable in your code to configure the port for your application.

The Node.js platform 390

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

 var port = process.env.PORT || 3000;

 var server = app.listen(port, function () {
 console.log('Server running at http://127.0.0.1:' + port + '/');
 });

The default NGINX configuration forwards traffic to an upstream server that's named nodejs at
127.0.0.1:8081. It's possible to remove the default configuration and provide your own in a
configuration file.

Example .ebextensions/proxy.config

The following example removes the default configuration and adds a custom configuration that
forwards traffic to port 5000, instead of 8081.

files:
 /etc/nginx/conf.d/proxy.conf:
 mode: "000644"
 owner: root
 group: root
 content: |
 upstream nodejs {
 server 127.0.0.1:5000;
 keepalive 256;
 }

 server {
 listen 8080;

 if ($time_iso8601 ~ "^(\d{4})-(\d{2})-(\d{2})T(\d{2})") {
 set $year $1;
 set $month $2;
 set $day $3;
 set $hour $4;
 }
 access_log /var/log/nginx/healthd/application.log.$year-$month-$day-$hour
 healthd;
 access_log /var/log/nginx/access.log main;

 location / {
 proxy_pass http://nodejs;
 proxy_set_header Connection "";
 proxy_http_version 1.1;

The Node.js platform 391

AWS Elastic Beanstalk Developer Guide

 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }

 gzip on;
 gzip_comp_level 4;
 gzip_types text/html text/plain text/css application/json application/x-
javascript text/xml application/xml application/xml+rss text/javascript;

 location /static {
 alias /var/app/current/static;
 }

 }

 /opt/elasticbeanstalk/hooks/configdeploy/post/99_kill_default_nginx.sh:
 mode: "000755"
 owner: root
 group: root
 content: |
 #!/bin/bash -xe
 rm -f /etc/nginx/conf.d/00_elastic_beanstalk_proxy.conf
 service nginx stop
 service nginx start

container_commands:
 removeconfig:
 command: "rm -f /tmp/deployment/config/
#etc#nginx#conf.d#00_elastic_beanstalk_proxy.conf /etc/nginx/
conf.d/00_elastic_beanstalk_proxy.conf"

The example configuration (/etc/nginx/conf.d/proxy.conf) uses the default configuration at
/etc/nginx/conf.d/00_elastic_beanstalk_proxy.conf as a base to include the default
server block with compression and log settings, and a static file mapping.

The removeconfig command removes the default configuration for the container so that the
proxy server uses the custom configuration. Elastic Beanstalk recreates the default configuration
when each configuration is deployed. To account for this, in the following example, a post-
configuration-deployment hook (/opt/elasticbeanstalk/hooks/configdeploy/
post/99_kill_default_nginx.sh) is added. This removes the default configuration and
restarts the proxy server.

The Node.js platform 392

AWS Elastic Beanstalk Developer Guide

Note

The default configuration might change in future versions of the Node.js platform.
Use the latest version of the configuration as a base for your customizations to ensure
compatibility.

If you override the default configuration, you must define any static file mappings and GZIP
compression. This is because the platform can't apply the standard settings.

Deploying an Express application to Elastic Beanstalk

This section walks you through deploying a sample application to Elastic Beanstalk using Elastic
Beanstalk Command Line Interface (EB CLI) and then updating the application to use the Express
framework.

Prerequisites

This tutorial requires the following prerequisites:

• The Node.js runtimes

• The default Node.js package manager software, npm

• The Express command line generator

• The Elastic Beanstalk Command Line Interface (EB CLI)

For details about installing the first three listed components and setting up your local development
environment, see Setting up your Node.js development environment. For this tutorial, you don't
need to install the AWS SDK for Node.js, which is also mentioned in the referenced topic.

For details about installing and configuring the EB CLI, see Install the EB CLI and Configure the EB
CLI.

Create an Elastic Beanstalk environment

Your application directory

This tutorial uses a directory called nodejs-example-express-rds for the application source
bundle. Create the nodejs-example-express-rds directory for this tutorial.

Tutorial - Express 393

http://expressjs.com/

AWS Elastic Beanstalk Developer Guide

~$ mkdir nodejs-example-express-rds

Note

Each tutorial in this chapter uses it's own directory for the application source bundle. The
directory name matches the name of the sample application used by the tutorial.

Change your current working directory to nodejs-example-express-rds.

~$ cd nodejs-example-express-rds

Now, let's set up an Elastic Beanstalk environment running the Node.js platform and the sample
application. We'll use the Elastic Beanstalk command line interface (EB CLI).

To configure an EB CLI repository for your application and create an Elastic Beanstalk
environment running the Node.js platform

1. Create a repository with the eb init command.

~/nodejs-example-express-rds$ eb init --platform node.js --region <region>

This command creates a configuration file in a folder named .elasticbeanstalk that
specifies settings for creating environments for your application, and creates an Elastic
Beanstalk application named after the current folder.

2. Create an environment running a sample application with the eb create command.

~/nodejs-example-express-rds$ eb create --sample nodejs-example-express-rds

This command creates a load-balanced environment with the default settings for the Node.js
platform and the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured
to run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support
a specific language version, framework, web container, or combination of these. Most

Tutorial - Express 394

AWS Elastic Beanstalk Developer Guide

platforms use either Apache or NGINX as a reverse proxy that sits in front of your web app,
forwards requests to it, serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic
on port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance
running your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose
your instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer.
By default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is
terminated or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that
are created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the
instances in your environment and that are triggered if the load is too high or too low. When
an alarm is triggered, your Auto Scaling group scales up or down in response.

• AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are
defined in a template that you can view in the AWS CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Note

To augment the security of your Elastic Beanstalk applications, the
elasticbeanstalk.com domain is registered in the Public Suffix List (PSL). For further
security, we recommend that you use cookies with a __Host- prefix if you ever
need to set sensitive cookies in the default domain name for your Elastic Beanstalk
applications. This practice will help to defend your domain against cross-site request
forgery attempts (CSRF). For more information see the Set-Cookie page in the
Mozilla Developer Network.

Tutorial - Express 395

https://console.aws.amazon.com/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

AWS Elastic Beanstalk Developer Guide

3. When environment creation completes, use the eb open command to open the environment's
URL in the default browser.

~/nodejs-example-express-rds$ eb open

You have now created a Node.js Elastic Beanstalk environment with a sample application. You can
update it with your own application. Next, we update the sample application to use the Express
framework.

Update the application to use Express

After you've created an environment with a sample application, you can update it with your own
application. In this procedure, we first run the express and npm install commands to set up the
Express framework in your application directory. Then we use the EB CLI to update your Elastic
Beanstalk environment with the updated application.

To update your application to use Express

1. Run the express command. This generates package.json, app.js, and a few directories.

~/nodejs-example-express-rds$ express

When prompted, type y if you want to continue.

Note

If the express command doesn't work, you may not have installed the Express
command line generator as described in the earlier Prerequisites section. Or the
directory path setting for your local machine may need to be set up to run the express
command. See the Prerequisites section for detailed steps about setting up your
development environment, so you can proceed with this tutorial.

2. Set up local dependencies.

~/nodejs-example-express-rds$ npm install

3. (Optional) Verify the web app server starts up.

Tutorial - Express 396

AWS Elastic Beanstalk Developer Guide

~/nodejs-example-express-rds$ npm start

You should see output similar to the following:

> nodejs@0.0.0 start /home/local/user/node-express
> node ./bin/www

The server runs on port 3000 by default. To test it, run curl http://localhost:3000 in
another terminal, or open a browser on the local computer and enter URL address http://
localhost:3000.

Press Ctrl+C to stop the server.

4. Deploy the changes to your Elastic Beanstalk environment with the eb deploy command.

~/nodejs-example-express-rds$ eb deploy

5. Once the environment is green and ready, refresh the URL to verify it worked. You should see a
web page that says Welcome to Express.

Next, let's update the Express application to serve static files and add a new page.

To configure static files and add a new page to your Express application

1. Add a second configuration file in the .ebextensions folder with the following content:

nodejs-example-express-rds/.ebextensions/staticfiles.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:staticfiles:
 /stylesheets: public/stylesheets

This setting configures the proxy server to serve files in the public folder at the /public
path of the application. Serving files statically from the proxy server reduces the load on your
application. For more information, see Static files earlier in this chapter.

2. (Optional) To confirm that static mappings are configured correctly, comment out the static
mapping configuration in nodejs-example-express-rds/app.js. This removes the
mapping from the node application.

Tutorial - Express 397

AWS Elastic Beanstalk Developer Guide

// app.use(express.static(path.join(__dirname, 'public')));

The static file mappings in the staticfiles.config file from the previous step should still
load the stylesheet successfully, even after you comment this line out. To verify that the static
file mappings are loaded through the proxy static file configuration, rather than the express
application, remove the values following option_settings:. After it has been removed from
both the static file configuration and the node application, the stylesheet will fail to load.

Remember to reset the contents of both the nodejs-example-express-rds/app.js and
staticfiles.config when you're done testing.

3. Add nodejs-example-express-rds/routes/hike.js. Type the following:

exports.index = function(req, res) {
 res.render('hike', {title: 'My Hiking Log'});
};

exports.add_hike = function(req, res) {
};

4. Update nodejs-example-express-rds/app.js to include three new lines.

First, add the following line to add a require for this route:

var hike = require('./routes/hike');

Your file should look similar to the following snippet:

var express = require('express');
var path = require('path');
var hike = require('./routes/hike');

Then, add the following two lines to nodejs-example-express-rds/app.js after var
app = express();

app.get('/hikes', hike.index);
app.post('/add_hike', hike.add_hike);

Your file should look similar to the following snippet:

Tutorial - Express 398

AWS Elastic Beanstalk Developer Guide

var app = express();
app.get('/hikes', hike.index);
app.post('/add_hike', hike.add_hike);

5. Copy nodejs-example-express-rds/views/index.jade to nodejs-example-
express-rds/views/hike.jade.

~/nodejs-example-express-rds$ cp views/index.jade views/hike.jade

6. Deploy the changes with the eb deploy command.

~/nodejs-example-express-rds$ eb deploy

7. Your environment will be updated after a few minutes. After your environment is green and
ready, verify it worked by refreshing your browser and appending hikes at the end of the URL
(e.g., http://node-express-env-syypntcz2q.elasticbeanstalk.com/hikes).

You should see a web page titled My Hiking Log.

You have now created a web application that uses the Express framework. In the next section, we'll
modify the application to use an Amazon Relational Database Service (RDS) to store a hiking log.

Update the application to use Amazon RDS

In this next step we update the application to use Amazon RDS for MySQL.

To update your application to use RDS for MySQL

1. To create an RDS for MySQL database coupled to your Elastic Beanstalk environment, follow
the instructions in the Adding a database topic included later in this chapter. Adding a
database instance takes about 10 minutes.

2. Update the dependencies section in the package.json with the following contents:

"dependencies": {
 "async": "^3.2.4",
 "express": "4.18.2",
 "jade": "1.11.0",
 "mysql": "2.18.1",
 "node-uuid": "^1.4.8",
 "body-parser": "^1.20.1",

Tutorial - Express 399

AWS Elastic Beanstalk Developer Guide

 "method-override": "^3.0.0",
 "morgan": "^1.10.0",
 "errorhandler": "^1.5.1"
 }

3. Run npm install.

~/nodejs-example-express-rds$ npm install

4. Update app.js to connect to the database, create a table, and insert a single default hiking
log. Every time this app is deployed it will drop the previous hikes table and recreate it.

/**
 * Module dependencies.
 */

 const express = require('express')
 , routes = require('./routes')
 , hike = require('./routes/hike')
 , http = require('http')
 , path = require('path')
 , mysql = require('mysql')
 , async = require('async')
 , bodyParser = require('body-parser')
 , methodOverride = require('method-override')
 , morgan = require('morgan')
 , errorhandler = require('errorhandler');

const { connect } = require('http2');

const app = express()

app.set('views', __dirname + '/views')
app.set('view engine', 'jade')
app.use(methodOverride())
app.use(bodyParser.json())
app.use(bodyParser.urlencoded({ extended: true }))
app.use(express.static(path.join(__dirname, 'public')))

app.set('connection', mysql.createConnection({
host: process.env.RDS_HOSTNAME,
user: process.env.RDS_USERNAME,

Tutorial - Express 400

AWS Elastic Beanstalk Developer Guide

password: process.env.RDS_PASSWORD,
port: process.env.RDS_PORT}));

function init() {
 app.get('/', routes.index);
 app.get('/hikes', hike.index);
 app.post('/add_hike', hike.add_hike);
}

const client = app.get('connection');
async.series([
 function connect(callback) {
 client.connect(callback);
 console.log('Connected!');
 },
 function clear(callback) {
 client.query('DROP DATABASE IF EXISTS mynode_db', callback);
 },
 function create_db(callback) {
 client.query('CREATE DATABASE mynode_db', callback);
 },
 function use_db(callback) {
 client.query('USE mynode_db', callback);
 },
 function create_table(callback) {
 client.query('CREATE TABLE HIKES (' +
 'ID VARCHAR(40), ' +
 'HIKE_DATE DATE, ' +
 'NAME VARCHAR(40), ' +
 'DISTANCE VARCHAR(40), ' +
 'LOCATION VARCHAR(40), ' +
 'WEATHER VARCHAR(40), ' +
 'PRIMARY KEY(ID))', callback);
 },
 function insert_default(callback) {
 const hike = {HIKE_DATE: new Date(), NAME: 'Hazard Stevens',
 LOCATION: 'Mt Rainier', DISTANCE: '4,027m vertical', WEATHER:'Bad', ID:
 '12345'};
 client.query('INSERT INTO HIKES set ?', hike, callback);
 }
], function (err, results) {
 if (err) {
 console.log('Exception initializing database.');
 throw err;

Tutorial - Express 401

AWS Elastic Beanstalk Developer Guide

 } else {
 console.log('Database initialization complete.');
 init();
 }
});

module.exports = app

5. Add the following content to routes/hike.js. This will enable the routes to insert new
hiking logs into the HIKES database.

const uuid = require('node-uuid');
exports.index = function(req, res) {
 res.app.get('connection').query('SELECT * FROM HIKES', function(err,
rows) {
 if (err) {
 res.send(err);
 } else {
 console.log(JSON.stringify(rows));
 res.render('hike', {title: 'My Hiking Log', hikes: rows});
 }});
};
exports.add_hike = function(req, res){
 const input = req.body.hike;
 const hike = { HIKE_DATE: new Date(), ID: uuid.v4(), NAME: input.NAME,
 LOCATION: input.LOCATION, DISTANCE: input.DISTANCE, WEATHER: input.WEATHER};
 console.log('Request to log hike:' + JSON.stringify(hike));
 req.app.get('connection').query('INSERT INTO HIKES set ?', hike, function(err) {
 if (err) {
 res.send(err);
 } else {
 res.redirect('/hikes');
 }
 });
};

6. Replace the content of routes/index.js with the following:

/*
 * GET home page.
 */

exports.index = function(req, res){

Tutorial - Express 402

AWS Elastic Beanstalk Developer Guide

 res.render('index', { title: 'Express' });
};

7. Add the following jade template to views/hike.jade to provide the user interface for
adding hiking logs.

extends layout

block content
 h1= title
 p Welcome to #{title}

 form(action="/add_hike", method="post")
 table(border="1")
 tr
 td Your Name
 td
 input(name="hike[NAME]", type="textbox")
 tr
 td Location
 td
 input(name="hike[LOCATION]", type="textbox")
 tr
 td Distance
 td
 input(name="hike[DISTANCE]", type="textbox")
 tr
 td Weather
 td
 input(name="hike[WEATHER]", type="radio", value="Good")
 | Good
 input(name="hike[WEATHER]", type="radio", value="Bad")
 | Bad
 input(name="hike[WEATHER]", type="radio", value="Seattle", checked)
 | Seattle
 tr
 td(colspan="2")
 input(type="submit", value="Record Hike")

 div
 h3 Hikes
 table(border="1")
 tr

Tutorial - Express 403

AWS Elastic Beanstalk Developer Guide

 td Date
 td Name
 td Location
 td Distance
 td Weather
 each hike in hikes
 tr
 td #{hike.HIKE_DATE.toDateString()}
 td #{hike.NAME}
 td #{hike.LOCATION}
 td #{hike.DISTANCE}
 td #{hike.WEATHER}

8. Deploy the changes with the eb deploy command.

~/nodejs-example-express-rds$ eb deploy

Clean up

If you're done working with Elastic Beanstalk, you can terminate your environment.

Use the eb terminate command to terminate your environment and all of the resources that it
contains.

~/nodejs-example-express-rds$ eb terminate
The environment "nodejs-example-express-rds-env" and all associated instances will be
 terminated.
To confirm, type the environment name: nodejs-example-express-rds-env
INFO: terminateEnvironment is starting.
...

Deploying an Express application with clustering to Elastic Beanstalk

This tutorial walks you through deploying a sample application to Elastic Beanstalk using the
Elastic Beanstalk Command Line Interface (EB CLI), and then updating the application to use
the Express framework, Amazon ElastiCache, and clustering. Clustering enhances your web
application's high availability, performance, and security. To learn more about Amazon ElastiCache,
go to What Is Amazon ElastiCache for Memcached? in the Amazon ElastiCache for Memcached User
Guide.

Tutorial - Express with clustering 404

http://expressjs.com/
https://aws.amazon.com/elasticache/
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Introduction.html

AWS Elastic Beanstalk Developer Guide

Note

This example creates AWS resources, which you might be charged for. For more information
about AWS pricing, see https://aws.amazon.com/pricing/. Some services are part of the
AWS Free Usage Tier. If you are a new customer, you can test drive these services for free.
See https://aws.amazon.com/free/ for more information.

Prerequisites

This tutorial requires the following prerequisites:

• The Node.js runtimes

• The default Node.js package manager software, npm

• The Express command line generator

• The Elastic Beanstalk Command Line Interface (EB CLI)

For details about installing the first three listed components and setting up your local development
environment, see Setting up your Node.js development environment. For this tutorial, you don't
need to install the AWS SDK for Node.js, which is also mentioned in the referenced topic.

For details about installing and configuring the EB CLI, see Install the EB CLI and Configure the EB
CLI.

Create an Elastic Beanstalk environment

Your application directory

This tutorial uses a directory called nodejs-example-express-elasticache for the
application source bundle. Create the nodejs-example-express-elasticache directory for
this tutorial.

~$ mkdir nodejs-example-express-elasticache

Note

Each tutorial in this chapter uses it's own directory for the application source bundle. The
directory name matches the name of the sample application used by the tutorial.

Tutorial - Express with clustering 405

https://aws.amazon.com/pricing/
https://aws.amazon.com/free/

AWS Elastic Beanstalk Developer Guide

Change your current working directory to nodejs-example-express-elasticache.

~$ cd nodejs-example-express-elasticache

Now, let's set up an Elastic Beanstalk environment running the Node.js platform and the sample
application. We'll use the Elastic Beanstalk command line interface (EB CLI).

To configure an EB CLI repository for your application and create an Elastic Beanstalk
environment running the Node.js platform

1. Create a repository with the eb init command.

~/nodejs-example-express-elasticache$ eb init --platform node.js --region <region>

This command creates a configuration file in a folder named .elasticbeanstalk that
specifies settings for creating environments for your application, and creates an Elastic
Beanstalk application named after the current folder.

2. Create an environment running a sample application with the eb create command.

~/nodejs-example-express-elasticache$ eb create --sample nodejs-example-express-
elasticache

This command creates a load-balanced environment with the default settings for the Node.js
platform and the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured
to run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support
a specific language version, framework, web container, or combination of these. Most
platforms use either Apache or NGINX as a reverse proxy that sits in front of your web app,
forwards requests to it, serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic
on port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance
running your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose
your instances directly to the internet.

Tutorial - Express with clustering 406

AWS Elastic Beanstalk Developer Guide

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer.
By default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is
terminated or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that
are created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the
instances in your environment and that are triggered if the load is too high or too low. When
an alarm is triggered, your Auto Scaling group scales up or down in response.

• AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are
defined in a template that you can view in the AWS CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Note

To augment the security of your Elastic Beanstalk applications, the
elasticbeanstalk.com domain is registered in the Public Suffix List (PSL). For further
security, we recommend that you use cookies with a __Host- prefix if you ever
need to set sensitive cookies in the default domain name for your Elastic Beanstalk
applications. This practice will help to defend your domain against cross-site request
forgery attempts (CSRF). For more information see the Set-Cookie page in the
Mozilla Developer Network.

3. When environment creation completes, use the eb open command to open the environment's
URL in the default browser.

~/nodejs-example-express-elasticache$ eb open

You have now created a Node.js Elastic Beanstalk environment with a sample application. You can
update it with your own application. Next, we update the sample application to use the Express
framework.

Tutorial - Express with clustering 407

https://console.aws.amazon.com/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

AWS Elastic Beanstalk Developer Guide

Update the application to use Express

Update the sample application in the Elastic Beanstalk environment to use the Express framework.

You can download the final source code from nodejs-example-express-elasticache.zip.

To update your application to use Express

After you've created an environment with a sample application, you can update it with your own
application. In this procedure, we first run the express and npm install commands to set up the
Express framework in your application directory.

1. Run the express command. This generates package.json, app.js, and a few directories.

~/nodejs-example-express-elasticache$ express

When prompted, type y if you want to continue.

Note

If the express command doesn't work, you may not have installed the Express
command line generator as described in the earlier Prerequisites section. Or the
directory path setting for your local machine may need to be set up to run the express
command. See the Prerequisites section for detailed steps about setting up your
development environment, so you can proceed with this tutorial.

2. Set up local dependencies.

~/nodejs-example-express-elasticache$ npm install

3. (Optional) Verify the web app server starts up.

~/nodejs-example-express-elasticache$ npm start

You should see output similar to the following:

> nodejs@0.0.0 start /home/local/user/node-express
> node ./bin/www

Tutorial - Express with clustering 408

samples/nodejs-example-express-elasticache.zip

AWS Elastic Beanstalk Developer Guide

The server runs on port 3000 by default. To test it, run curl http://localhost:3000 in
another terminal, or open a browser on the local computer and enter URL address http://
localhost:3000.

Press Ctrl+C to stop the server.

4. Rename nodejs-example-express-elasticache/app.js to nodejs-example-
express-elasticache/express-app.js.

~/nodejs-example-express-elasticache$ mv app.js express-app.js

5. Update the line var app = express(); in nodejs-example-express-elasticache/
express-app.js to the following:

var app = module.exports = express();

6. On your local computer, create a file named nodejs-example-express-elasticache/
app.js with the following code.

/**
 * Module dependencies.
 */

 const express = require('express'),
 session = require('express-session'),
 bodyParser = require('body-parser'),
 methodOverride = require('method-override'),
 cookieParser = require('cookie-parser'),
 fs = require('fs'),
 filename = '/var/nodelist',
 app = express();

let MemcachedStore = require('connect-memcached')(session);

function setup(cacheNodes) {
 app.use(bodyParser.raw());
 app.use(methodOverride());
 if (cacheNodes.length > 0) {
 app.use(cookieParser());

 console.log('Using memcached store nodes:');
 console.log(cacheNodes);

Tutorial - Express with clustering 409

AWS Elastic Beanstalk Developer Guide

 app.use(session({
 secret: 'your secret here',
 resave: false,
 saveUninitialized: false,
 store: new MemcachedStore({ 'hosts': cacheNodes })
 }));
 } else {
 console.log('Not using memcached store.');
 app.use(session({
 resave: false,
 saveUninitialized: false, secret: 'your secret here'
 }));
 }

 app.get('/', function (req, resp) {
 if (req.session.views) {
 req.session.views++
 resp.setHeader('Content-Type', 'text/html')
 resp.send(`You are session: ${req.session.id}. Views: ${req.session.views}`)
 } else {
 req.session.views = 1
 resp.send(`You are session: ${req.session.id}. No views yet, refresh the page!
`)
 }
 });

 if (!module.parent) {
 console.log('Running express without cluster. Listening on port %d',
 process.env.PORT || 5000)
 app.listen(process.env.PORT || 5000)
 }
}

console.log("Reading elastic cache configuration")
// Load elasticache configuration.
fs.readFile(filename, 'UTF8', function (err, data) {
 if (err) throw err;

 let cacheNodes = []
 if (data) {
 let lines = data.split('\n');
 for (let i = 0; i < lines.length; i++) {
 if (lines[i].length > 0) {

Tutorial - Express with clustering 410

AWS Elastic Beanstalk Developer Guide

 cacheNodes.push(lines[i])
 }
 }
 }

 setup(cacheNodes)
});

module.exports = app;

7. Replace the contents of the nodejs-example-express-elasticache/bin/www file with
the following:

#!/usr/bin/env node

/**
 * Module dependencies.
 */

const app = require('../app');
const cluster = require('cluster');
const debug = require('debug')('nodejs-example-express-elasticache:server');
const http = require('http');
const workers = {},
 count = require('os').cpus().length;

function spawn() {
 const worker = cluster.fork();
 workers[worker.pid] = worker;
 return worker;
}

/**
 * Get port from environment and store in Express.
 */

const port = normalizePort(process.env.PORT || '3000');
app.set('port', port);

if (cluster.isMaster) {
 for (let i = 0; i < count; i++) {
 spawn();

Tutorial - Express with clustering 411

AWS Elastic Beanstalk Developer Guide

 }

 // If a worker dies, log it to the console and start another worker.
 cluster.on('exit', function (worker, code, signal) {
 console.log('Worker ' + worker.process.pid + ' died.');
 cluster.fork();
 });

 // Log when a worker starts listening
 cluster.on('listening', function (worker, address) {
 console.log('Worker started with PID ' + worker.process.pid + '.');
 });

} else {
 /**
 * Create HTTP server.
 */

 let server = http.createServer(app);

 /**
 * Event listener for HTTP server "error" event.
 */

 function onError(error) {
 if (error.syscall !== 'listen') {
 throw error;
 }

 const bind = typeof port === 'string'
 ? 'Pipe ' + port
 : 'Port ' + port;

 // handle specific listen errors with friendly messages
 switch (error.code) {
 case 'EACCES':
 console.error(bind + ' requires elevated privileges');
 process.exit(1);
 break;
 case 'EADDRINUSE':
 console.error(bind + ' is already in use');
 process.exit(1);
 break;
 default:

Tutorial - Express with clustering 412

AWS Elastic Beanstalk Developer Guide

 throw error;
 }
 }

 /**
 * Event listener for HTTP server "listening" event.
 */

 function onListening() {
 const addr = server.address();
 const bind = typeof addr === 'string'
 ? 'pipe ' + addr
 : 'port ' + addr.port;
 debug('Listening on ' + bind);
 }

 /**
 * Listen on provided port, on all network interfaces.
 */

 server.listen(port);
 server.on('error', onError);
 server.on('listening', onListening);
}

/**
 * Normalize a port into a number, string, or false.
 */

function normalizePort(val) {
 const port = parseInt(val, 10);

 if (isNaN(port)) {
 // named pipe
 return val;
 }

 if (port >= 0) {
 // port number
 return port;
 }

 return false;

Tutorial - Express with clustering 413

AWS Elastic Beanstalk Developer Guide

}

8. Deploy the changes to your Elastic Beanstalk environment with the eb deploy command.

~/nodejs-example-express-elasticache$ eb deploy

9. Your environment will be updated after a few minutes. Once the environment is green and
ready, refresh the URL to verify it worked. You should see a web page that says "Welcome to
Express".

You can access the logs for your EC2 instances running your application. For instructions on
accessing your logs, see Viewing logs from Amazon EC2 instances in your Elastic Beanstalk
environment.

Next, let's update the Express application to use Amazon ElastiCache.

To update your Express application to use Amazon ElastiCache

1. On your local computer, create an .ebextensions directory in the top-level
directory of your source bundle. In this example, we use nodejs-example-express-
elasticache/.ebextensions.

2. Create a configuration file nodejs-example-express-elasticache/.ebextensions/
elasticache-iam-with-script.config with the following snippet. For more information
about the configuration file, see Node.js configuration namespace. This creates an IAM user
with the permissions required to discover the elasticache nodes and writes to a file anytime
the cache changes. You can also copy the file from nodejs-example-express-elasticache.zip. For
more information on the ElastiCache properties, see Example: ElastiCache.

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

Resources:
 MyCacheSecurityGroup:
 Type: 'AWS::EC2::SecurityGroup'
 Properties:

Tutorial - Express with clustering 414

samples/nodejs-example-express-elasticache.zip

AWS Elastic Beanstalk Developer Guide

 GroupDescription: "Lock cache down to webserver access only"
 SecurityGroupIngress:
 - IpProtocol: tcp
 FromPort:
 Fn::GetOptionSetting:
 OptionName: CachePort
 DefaultValue: 11211
 ToPort:
 Fn::GetOptionSetting:
 OptionName: CachePort
 DefaultValue: 11211
 SourceSecurityGroupName:
 Ref: AWSEBSecurityGroup
 MyElastiCache:
 Type: 'AWS::ElastiCache::CacheCluster'
 Properties:
 CacheNodeType:
 Fn::GetOptionSetting:
 OptionName: CacheNodeType
 DefaultValue: cache.t2.micro
 NumCacheNodes:
 Fn::GetOptionSetting:
 OptionName: NumCacheNodes
 DefaultValue: 1
 Engine:
 Fn::GetOptionSetting:
 OptionName: Engine
 DefaultValue: redis
 VpcSecurityGroupIds:
 -
 Fn::GetAtt:
 - MyCacheSecurityGroup
 - GroupId
 AWSEBAutoScalingGroup :
 Metadata :
 ElastiCacheConfig :
 CacheName :
 Ref : MyElastiCache
 CacheSize :
 Fn::GetOptionSetting:
 OptionName : NumCacheNodes
 DefaultValue: 1
 WebServerUser :
 Type : AWS::IAM::User

Tutorial - Express with clustering 415

AWS Elastic Beanstalk Developer Guide

 Properties :
 Path : "/"
 Policies:
 -
 PolicyName: root
 PolicyDocument :
 Statement :
 -
 Effect : Allow
 Action :
 - cloudformation:DescribeStackResource
 - cloudformation:ListStackResources
 - elasticache:DescribeCacheClusters
 Resource : "*"
 WebServerKeys :
 Type : AWS::IAM::AccessKey
 Properties :
 UserName :
 Ref: WebServerUser

Outputs:
 WebsiteURL:
 Description: sample output only here to show inline string function parsing
 Value: |
 http://`{ "Fn::GetAtt" : ["AWSEBLoadBalancer", "DNSName"] }`
 MyElastiCacheName:
 Description: Name of the elasticache
 Value:
 Ref : MyElastiCache
 NumCacheNodes:
 Description: Number of cache nodes in MyElastiCache
 Value:
 Fn::GetOptionSetting:
 OptionName : NumCacheNodes
 DefaultValue: 1

files:
 "/etc/cfn/cfn-credentials" :
 content : |
 AWSAccessKeyId=`{ "Ref" : "WebServerKeys" }`
 AWSSecretKey=`{ "Fn::GetAtt" : ["WebServerKeys", "SecretAccessKey"] }`
 mode : "000400"
 owner : root
 group : root

Tutorial - Express with clustering 416

AWS Elastic Beanstalk Developer Guide

 "/etc/cfn/get-cache-nodes" :
 content : |
 # Define environment variables for command line tools
 export AWS_ELASTICACHE_HOME="/home/ec2-user/elasticache/$(ls /home/ec2-user/
elasticache/)"
 export AWS_CLOUDFORMATION_HOME=/opt/aws/apitools/cfn
 export PATH=$AWS_CLOUDFORMATION_HOME/bin:$AWS_ELASTICACHE_HOME/bin:$PATH
 export AWS_CREDENTIAL_FILE=/etc/cfn/cfn-credentials
 export JAVA_HOME=/usr/lib/jvm/jre

 # Grab the Cache node names and configure the PHP page
 aws cloudformation list-stack-resources --stack `{ "Ref" :
 "AWS::StackName" }` --region `{ "Ref" : "AWS::Region" }` --output text | grep
 MyElastiCache | awk '{print $4}' | xargs -I {} aws elasticache describe-cache-
clusters --cache-cluster-id {} --region `{ "Ref" : "AWS::Region" }` --show-
cache-node-info --output text | grep '^ENDPOINT' | awk '{print $2 ":" $3}' >
 `{ "Fn::GetOptionSetting" : { "OptionName" : "NodeListPath", "DefaultValue" : "/
var/www/html/nodelist" } }`
 mode : "000500"
 owner : root
 group : root

 "/etc/cfn/hooks.d/cfn-cache-change.conf" :
 "content": |
 [cfn-cache-size-change]
 triggers=post.update
 path=Resources.AWSEBAutoScalingGroup.Metadata.ElastiCacheConfig
 action=/etc/cfn/get-cache-nodes
 runas=root

sources :
 "/home/ec2-user/elasticache" : "https://elasticache-downloads.s3.amazonaws.com/
AmazonElastiCacheCli-latest.zip"

commands:
 make-elasticache-executable:
 command: chmod -R ugo+x /home/ec2-user/elasticache/*/bin/*

packages :
 "yum" :
 "aws-apitools-cfn" : []

container_commands:

Tutorial - Express with clustering 417

AWS Elastic Beanstalk Developer Guide

 initial_cache_nodes:
 command: /etc/cfn/get-cache-nodes

3. On your local computer, create a configuration file nodejs-example-express-
elasticache/.ebextensions/elasticache_settings.config with the following
snippet to configure ElastiCache.

option_settings:
 "aws:elasticbeanstalk:customoption":
 CacheNodeType: cache.t2.micro
 NumCacheNodes: 1
 Engine: memcached
 NodeListPath: /var/nodelist

4. On your local computer, replace nodejs-example-express-elasticache/express-
app.js with the following snippet. This file reads the nodes list from disk (/var/nodelist)
and configures express to use memcached as a session store if nodes are present. Your file
should look like the following.

/**
 * Module dependencies.
 */

var express = require('express'),
 session = require('express-session'),
 bodyParser = require('body-parser'),
 methodOverride = require('method-override'),
 cookieParser = require('cookie-parser'),
 fs = require('fs'),
 filename = '/var/nodelist',
 app = module.exports = express();

var MemcachedStore = require('connect-memcached')(session);

function setup(cacheNodes) {
 app.use(bodyParser.raw());
 app.use(methodOverride());
 if (cacheNodes) {
 app.use(cookieParser());

 console.log('Using memcached store nodes:');
 console.log(cacheNodes);

Tutorial - Express with clustering 418

AWS Elastic Beanstalk Developer Guide

 app.use(session({
 secret: 'your secret here',
 resave: false,
 saveUninitialized: false,
 store: new MemcachedStore({'hosts': cacheNodes})
 }));
 } else {
 console.log('Not using memcached store.');
 app.use(cookieParser('your secret here'));
 app.use(session());
 }

 app.get('/', function(req, resp){
 if (req.session.views) {
 req.session.views++
 resp.setHeader('Content-Type', 'text/html')
 resp.write('Views: ' + req.session.views)
 resp.end()
 } else {
 req.session.views = 1
 resp.end('Refresh the page!')
 }
 });

 if (!module.parent) {
 console.log('Running express without cluster.');
 app.listen(process.env.PORT || 5000);
 }
}

// Load elasticache configuration.
fs.readFile(filename, 'UTF8', function(err, data) {
 if (err) throw err;

 var cacheNodes = [];
 if (data) {
 var lines = data.split('\n');
 for (var i = 0 ; i < lines.length ; i++) {
 if (lines[i].length > 0) {
 cacheNodes.push(lines[i]);
 }
 }
 }

Tutorial - Express with clustering 419

AWS Elastic Beanstalk Developer Guide

 setup(cacheNodes);
});

5. On your local computer, update package.json with the following contents:

 "dependencies": {
 "cookie-parser": "~1.4.4",
 "debug": "~2.6.9",
 "express": "~4.16.1",
 "http-errors": "~1.6.3",
 "jade": "~1.11.0",
 "morgan": "~1.9.1",
 "connect-memcached": "*",
 "express-session": "*",
 "body-parser": "*",
 "method-override": "*"
 }

6. Run npm install.

~/nodejs-example-express-elasticache$ npm install

7. Deploy the updated application.

~/nodejs-example-express-elasticache$ eb deploy

8. Your environment will be updated after a few minutes. After your environment is green and
ready, verify that the code worked.

a. Check the Amazon CloudWatch console to view your ElastiCache metrics. To view your
ElastiCache metrics, select Metrics in the left pane, and then search for CurrItems. Select
ElastiCache > Cache Node Metrics, and then select your cache node to view the number
of items in the cache.

Tutorial - Express with clustering 420

https://console.aws.amazon.com/cloudwatch/home

AWS Elastic Beanstalk Developer Guide

Note

Make sure you are looking at the same region that you deployed your application
to.

If you copy and paste your application URL into another web browser and refresh the
page, you should see your CurrItem count go up after 5 minutes.

b. Take a snapshot of your logs. For more information about retrieving logs, see Viewing logs
from Amazon EC2 instances in your Elastic Beanstalk environment.

c. Check the file /var/log/nodejs/nodejs.log in the log bundle. You should see
something similar to the following:

Using memcached store nodes:
['aws-my-1oys9co8zt1uo.1iwtrn.0001.use1.cache.amazonaws.com:11211']

Clean up

If you no longer want to run your application, you can clean up by terminating your environment
and deleting your application.

Tutorial - Express with clustering 421

AWS Elastic Beanstalk Developer Guide

Use the eb terminate command to terminate your environment and the eb delete command
to delete your application.

To terminate your environment

From the directory where you created your local repository, run eb terminate.

$ eb terminate

This process can take a few minutes. Elastic Beanstalk displays a message once the environment is
successfully terminated.

Deploying a Node.js application with DynamoDB to Elastic Beanstalk

This tutorial and its example application nodejs-example-dynamo.zip walks you through the
process of deploying a Node.js application that uses the AWS SDK for JavaScript in Node.js to
interact with the Amazon DynamoDB service. You'll create a DynamoDB table that's in a database
that's decoupled, or external, from the AWS Elastic Beanstalk environment. You'll also configure
the application to use a decoupled database. In a production environment, it's best practice to use
a database that's decoupled from the Elastic Beanstalk environment so that it's independent from
the environment's life cycle. This practice also enables you to perform blue/green deployments.

The example application illustrates the following:

• A DynamoDB table that stores user-provided text data.

• The configuration files to create the table.

• An Amazon Simple Notification Service topic.

• Use of a package.json file to install packages during deployment.

Sections

• Prerequisites

• Create an Elastic Beanstalk environment

• Add permissions to your environment's instances

• Deploy the example application

• Create a DynamoDB table

• Update the application's configuration files

Tutorial - Node.js w/ DynamoDB 422

samples/nodejs-example-dynamo.zip

AWS Elastic Beanstalk Developer Guide

• Configure your environment for high availability

• Cleanup

• Next steps

Prerequisites

This tutorial requires the following prerequisites:

• The Node.js runtimes

• The default Node.js package manager software, npm

• The Express command line generator

• The Elastic Beanstalk Command Line Interface (EB CLI)

For details about installing the first three listed components and setting up your local development
environment, see Setting up your Node.js development environment. For this tutorial, you don't
need to install the AWS SDK for Node.js, which is also mentioned in the referenced topic.

For details about installing and configuring the EB CLI, see Install the EB CLI and Configure the EB
CLI.

Create an Elastic Beanstalk environment

Your application directory

This tutorial uses a directory called nodejs-example-dynamo for the application source bundle.
Create the nodejs-example-dynamo directory for this tutorial.

~$ mkdir nodejs-example-dynamo

Note

Each tutorial in this chapter uses it's own directory for the application source bundle. The
directory name matches the name of the sample application used by the tutorial.

Change your current working directory to nodejs-example-dynamo.

Tutorial - Node.js w/ DynamoDB 423

AWS Elastic Beanstalk Developer Guide

~$ cd nodejs-example-dynamo

Now, let's set up an Elastic Beanstalk environment running the Node.js platform and the sample
application. We'll use the Elastic Beanstalk command line interface (EB CLI).

To configure an EB CLI repository for your application and create an Elastic Beanstalk
environment running the Node.js platform

1. Create a repository with the eb init command.

~/nodejs-example-dynamo$ eb init --platform node.js --region <region>

This command creates a configuration file in a folder named .elasticbeanstalk that
specifies settings for creating environments for your application, and creates an Elastic
Beanstalk application named after the current folder.

2. Create an environment running a sample application with the eb create command.

~/nodejs-example-dynamo$ eb create --sample nodejs-example-dynamo

This command creates a load-balanced environment with the default settings for the Node.js
platform and the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured
to run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support
a specific language version, framework, web container, or combination of these. Most
platforms use either Apache or NGINX as a reverse proxy that sits in front of your web app,
forwards requests to it, serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic
on port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance
running your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose
your instances directly to the internet.

Tutorial - Node.js w/ DynamoDB 424

AWS Elastic Beanstalk Developer Guide

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer.
By default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is
terminated or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that
are created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the
instances in your environment and that are triggered if the load is too high or too low. When
an alarm is triggered, your Auto Scaling group scales up or down in response.

• AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are
defined in a template that you can view in the AWS CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Note

To augment the security of your Elastic Beanstalk applications, the
elasticbeanstalk.com domain is registered in the Public Suffix List (PSL). For further
security, we recommend that you use cookies with a __Host- prefix if you ever
need to set sensitive cookies in the default domain name for your Elastic Beanstalk
applications. This practice will help to defend your domain against cross-site request
forgery attempts (CSRF). For more information see the Set-Cookie page in the
Mozilla Developer Network.

3. When environment creation completes, use the eb open command to open the environment's
URL in the default browser.

~/nodejs-example-dynamo$ eb open

You have now created a Node.js Elastic Beanstalk environment with a sample application. You can
update it with your own application. Next, we update the sample application to use the Express
framework.

Tutorial - Node.js w/ DynamoDB 425

https://console.aws.amazon.com/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

AWS Elastic Beanstalk Developer Guide

Add permissions to your environment's instances

Your application runs on one or more EC2 instances behind a load balancer, serving HTTP requests
from the Internet. When it receives a request that requires it to use AWS services, the application
uses the permissions of the instance it runs on to access those services.

The sample application uses instance permissions to write data to a DynamoDB table, and to send
notifications to an Amazon SNS topic with the SDK for JavaScript in Node.js. Add the following
managed policies to the default instance profile to grant the EC2 instances in your environment
permission to access DynamoDB and Amazon SNS:

• AmazonDynamoDBFullAccess

• AmazonSNSFullAccess

To add policies to the default instance profile

1. Open the Roles page in the IAM console.

2. Choose aws-elasticbeanstalk-ec2-role.

3. On the Permissions tab, choose Attach policies.

4. Select the managed policy for the additional services that your application uses. For this
tutorial, select AmazonSNSFullAccess and AmazonDynamoDBFullAccess.

5. Choose Attach policy.

See Managing Elastic Beanstalk instance profiles for more on managing instance profiles.

Deploy the example application

Now your environment is ready for you to deploy and run the example application for this tutorial:
nodejs-example-dynamo.zip .

To deploy and run the tutorial example application

1. Change your current working directory to the application directory nodejs-example-
dynamo.

~$ cd nodejs-example-dynamo

Tutorial - Node.js w/ DynamoDB 426

https://console.aws.amazon.com/iam/home#roles
samples/nodejs-example-dynamo.zip

AWS Elastic Beanstalk Developer Guide

2. Download and extract the contents of the example application source bundle nodejs-example-
dynamo.zip to the application directory nodejs-example-dynamo.

3. Deploy the example application to your Elastic Beanstalk environment with the eb deploy
command.

~/nodejs-example-dynamo$ eb deploy

Note

By default, the eb deploy command creates a ZIP file of your project folder. You can
configure the EB CLI to deploy an artifact from your build process instead of creating a
ZIP file of your project folder. For more information, see Deploying an artifact instead
of the project folder.

4. When environment creation completes, use the eb open command to open the environment's
URL in the default browser.

~/nodejs-example-dynamo$ eb open

The site collects user contact information and uses a DynamoDB table to store the data. To add an
entry, choose Sign up today, enter a name and email address, and then choose Sign Up!. The web
app writes the form contents to the table and triggers an Amazon SNS email notification.

Tutorial - Node.js w/ DynamoDB 427

samples/nodejs-example-dynamo.zip
samples/nodejs-example-dynamo.zip

AWS Elastic Beanstalk Developer Guide

Right now, the Amazon SNS topic is configured with a placeholder email for notifications. You
will update the configuration soon, but in the meantime you can verify the DynamoDB table and
Amazon SNS topic in the AWS Management Console.

To view the table

1. Open the Tables page in the DynamoDB console.

2. Find the table that the application created. The name starts with awseb and contains
StartupSignupsTable.

3. Select the table, choose Items, and then choose Start search to view all items in the table.

Tutorial - Node.js w/ DynamoDB 428

https://console.aws.amazon.com/dynamodb/home?#tables:

AWS Elastic Beanstalk Developer Guide

The table contains an entry for every email address submitted on the signup site. In addition
to writing to the table, the application sends a message to an Amazon SNS topic that has two
subscriptions, one for email notifications to you, and another for an Amazon Simple Queue Service
queue that a worker application can read from to process requests and send emails to interested
customers.

To view the topic

1. Open the Topics page in the Amazon SNS console.

2. Find the topic that the application created. The name starts with awseb and contains
NewSignupTopic.

3. Choose the topic to view its subscriptions.

The application (app.js) defines two routes. The root path (/) returns a webpage rendered from
an Embedded JavaScript (EJS) template with a form that the user fills out to register their name
and email address. Submitting the form sends a POST request with the form data to the /signup
route, which writes an entry to the DynamoDB table and publishes a message to the Amazon SNS
topic to notify the owner of the signup.

The sample application includes configuration files that create the DynamoDB table, Amazon SNS
topic, and Amazon SQS queue used by the application. This lets you create a new environment
and test the functionality immediately, but has the drawback of tying the DynamoDB table
to the environment. For a production environment, you should create the DynamoDB table
outside of your environment to avoid losing it when you terminate the environment or update its
configuration.

Create a DynamoDB table

To use an external DynamoDB table with an application running in Elastic Beanstalk, first create
a table in DynamoDB. When you create a table outside of Elastic Beanstalk, it is completely
independent of Elastic Beanstalk and your Elastic Beanstalk environments, and will not be
terminated by Elastic Beanstalk.

Create a table with the following settings:

• Table name – nodejs-tutorial

• Primary key – email

• Primary key type – String

Tutorial - Node.js w/ DynamoDB 429

https://console.aws.amazon.com/sns/v2/home?#/topics
https://github.com/awslabs/eb-node-express-sample/blob/master/app.js

AWS Elastic Beanstalk Developer Guide

To create a DynamoDB table

1. Open the Tables page in the DynamoDB management console.

2. Choose Create table.

3. Type a Table name and Primary key.

4. Choose the primary key type.

5. Choose Create.

Update the application's configuration files

Update the configuration files in the application source to use the nodejs-tutorial table instead of
creating a new one.

To update the example application for production use

1. Change your current working directory to the application directory nodejs-example-
dynamo.

~$ cd nodejs-example-dynamo

2. Open .ebextensions/options.config and change the values of the following settings:

• NewSignupEmail – Your email address.

• STARTUP_SIGNUP_TABLE – nodejs-tutorial

Example .ebextensions/options.config

option_settings:
 aws:elasticbeanstalk:customoption:
 NewSignupEmail: you@example.com
 aws:elasticbeanstalk:application:environment:
 THEME: "flatly"
 AWS_REGION: '`{"Ref" : "AWS::Region"}`'
 STARTUP_SIGNUP_TABLE: nodejs-tutorial
 NEW_SIGNUP_TOPIC: '`{"Ref" : "NewSignupTopic"}`'
 aws:elasticbeanstalk:container:nodejs:
 ProxyServer: nginx
 aws:elasticbeanstalk:container:nodejs:staticfiles:

Tutorial - Node.js w/ DynamoDB 430

https://console.aws.amazon.com/dynamodb/home?#tables:

AWS Elastic Beanstalk Developer Guide

 /static: /static
 aws:autoscaling:asg:
 Cooldown: "120"
 aws:autoscaling:trigger:
 Unit: "Percent"
 Period: "1"
 BreachDuration: "2"
 UpperThreshold: "75"
 LowerThreshold: "30"
 MeasureName: "CPUUtilization"

This applies the following configurations for the application:

• The email address that the Amazon SNS topic uses for notifications is set to your address, or
the one you enter in the options.config file.

• The nodejs-tutorial table will be used instead of the one created by .ebextensions/
create-dynamodb-table.config.

3. Remove .ebextensions/create-dynamodb-table.config.

~/nodejs-tutorial$ rm .ebextensions/create-dynamodb-table.config

The next time you deploy the application, the table created by this configuration file will be
deleted.

4. Deploy the updated application to your Elastic Beanstalk environment with the eb deploy
command.

~/nodejs-example-dynamo$ eb deploy

5. When environment creation completes, use the eb open command to open the environment's
URL in the default browser.

~/nodejs-example-dynamo$ eb open

When you deploy, Elastic Beanstalk updates the configuration of the Amazon SNS topic and
deletes the DynamoDB table that it created when you deployed the first version of the application.

Tutorial - Node.js w/ DynamoDB 431

AWS Elastic Beanstalk Developer Guide

Now, when you terminate the environment, the nodejs-tutorial table will not be deleted. This
lets you perform blue/green deployments, modify configuration files, or take down your website
without risking data loss.

Open your site in a browser and verify that the form works as you expect. Create a few entries, and
then check the DynamoDB console to verify the table.

To view the table

1. Open the Tables page in the DynamoDB console.

2. Find the nodejs-tutorial table.

3. Select the table, choose Items, and then choose Start search to view all items in the table.

You can also see that Elastic Beanstalk deleted the table that it created previously.

Configure your environment for high availability

Finally, configure your environment's Auto Scaling group with a higher minimum instance count.
Run at least two instances at all times to prevent the web servers in your environment from being a
single point of failure, and to allow you to deploy changes without taking your site out of service.

To configure your environment's Auto Scaling group for high availability

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Capacity configuration category, choose Edit.

5. In the Auto Scaling group section, set Min instances to 2.

6. To save the changes choose Apply at the bottom of the page.

Tutorial - Node.js w/ DynamoDB 432

https://console.aws.amazon.com/dynamodb/home?#tables:
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Cleanup

When you finish working with Elastic Beanstalk, you can terminate your environment. Elastic
Beanstalk terminates all AWS resources associated with your environment, such as Amazon EC2
instances, database instances, load balancers, security groups, and alarms.

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

With Elastic Beanstalk, you can easily create a new environment for your application at any time.

You can also delete the external DynamoDB tables that you created.

To delete a DynamoDB table

1. Open the Tables page in the DynamoDB console.

2. Select a table.

3. Choose Actions, and then choose Delete table.

4. Choose Delete.

Next steps

The example application uses configuration files to configure software settings and create
AWS resources as part of your environment. See Advanced environment customization with
configuration files (.ebextensions) for more information about configuration files and their use.

The example application for this tutorial uses the Express web framework for Node.js. For more
information about Express, see the official documentation at expressjs.com.

Tutorial - Node.js w/ DynamoDB 433

https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/dynamodb/home?#tables:
https://expressjs.com

AWS Elastic Beanstalk Developer Guide

Finally, if you plan on using your application in a production environment, configure a custom
domain name for your environment and enable HTTPS for secure connections.

Adding an Amazon RDS DB instance to your Node.js application
environment

You can use an Amazon Relational Database Service (Amazon RDS) DB instance to store data
gathered and modified by your application. The database can be coupled to your environment
and managed by Elastic Beanstalk, or it can be created as decoupled and managed externally
by another service. This topic provides instructions to create an Amazon RDS using the Elastic
Beanstalk console. The database will be coupled to your environment and managed by Elastic
Beanstalk. For more information about integrating an Amazon RDS with Elastic Beanstalk, see
Adding a database to your Elastic Beanstalk environment.

Sections

• Adding a DB instance to your environment

• Downloading a driver

• Connecting to a database

Adding a DB instance to your environment

To add a DB instance to your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. Choose a DB engine, and enter a user name and password.

6. To save the changes choose Apply at the bottom of the page.

Adding a database 434

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Adding a DB instance takes about 10 minutes. When the environment update is complete, the DB
instance's hostname and other connection information are available to your application through
the following environment properties:

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab on
the Amazon RDS console: DB
Name.

RDS_USERNAME The username that you
configured for your database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your database.

Not available for reference in
the Amazon RDS console.

For more information about configuring a database instance coupled with an Elastic Beanstalk
environment, see Adding a database to your Elastic Beanstalk environment.

Downloading a driver

Add the database driver to your project's package.json file under dependencies.

Example package.json – Express with MySQL

{
 "name": "my-app",
 "version": "0.0.1",
 "private": true,

Adding a database 435

AWS Elastic Beanstalk Developer Guide

 "dependencies": {
 "ejs": "latest",
 "aws-sdk": "latest",
 "express": "latest",
 "body-parser": "latest",
 "mysql": "latest"
 },
 "scripts": {
 "start": "node app.js"
 }
}

Common driver packages for Node.js

• MySQL – mysql

• PostgreSQL – node-postgres

• SQL Server – node-mssql

• Oracle – node-oracledb

Connecting to a database

Elastic Beanstalk provides connection information for attached DB instances in environment
properties. Use process.env.VARIABLE to read the properties and configure a database
connection.

Example app.js – MySQL database connection

var mysql = require('mysql');

var connection = mysql.createConnection({
 host : process.env.RDS_HOSTNAME,
 user : process.env.RDS_USERNAME,
 password : process.env.RDS_PASSWORD,
 port : process.env.RDS_PORT
});

connection.connect(function(err) {
 if (err) {
 console.error('Database connection failed: ' + err.stack);
 return;
 }

Adding a database 436

https://www.npmjs.com/package/mysql
https://www.npmjs.com/package/pg
https://www.npmjs.com/package/mssql
https://www.npmjs.com/package/oracledb

AWS Elastic Beanstalk Developer Guide

 console.log('Connected to database.');
});

connection.end();

For more information about constructing a connection string using node-mysql, see npmjs.org/
package/mysql.

Resources

There are several places you can go to get additional help when developing your Node.js
applications:

Resource Description

GitHub Install the AWS SDK for Node.js using GitHub.

Node.js Development Forum Post your questions and get feedback.

AWS SDK for Node.js (Developer
Preview)

One-stop shop for sample code, documentation, tools,
and additional resources.

Creating and deploying PHP applications on Elastic Beanstalk

AWS Elastic Beanstalk for PHP makes it easy to deploy, manage, and scale your PHP web
applications using Amazon Web Services. Elastic Beanstalk for PHP is available to anyone
developing or hosting a web application using PHP. This section provides instructions for deploying
your PHP web application to Elastic Beanstalk. You can deploy your application in just a few
minutes using the Elastic Beanstalk Command Line Interface (EB CLI) or by using the Elastic
Beanstalk Management Console. It also provides walkthroughs for common frameworks such as
CakePHP and Symfony.

The topics in this chapter assume that you have some knowledge of Elastic Beanstalk
environments. If you haven't used Elastic Beanstalk before, try the getting started tutorial to learn
the basics.

If you need help with PHP application development, there are several places you can go:

Resources 437

https://npmjs.org/package/mysql
https://npmjs.org/package/mysql
https://github.com/aws/aws-sdk-js
https://forums.aws.amazon.com/forum.jspa?forumID=148
https://aws.amazon.com/sdkfornodejs/
https://aws.amazon.com/sdkfornodejs/

AWS Elastic Beanstalk Developer Guide

Resource Description

GitHub Install the AWS SDK for PHP using GitHub.

PHP Development Forum Post your questions and get feedback.

PHP Developer Center One-stop shop for sample code, documentation, tools,
and additional resources.

AWS SDK for PHP FAQs Get answers to commonly asked questions.

Topics

• Setting up your PHP development environment

• Using the Elastic Beanstalk PHP platform

• Deploying a Laravel application to Elastic Beanstalk

• Deploying a CakePHP application to Elastic Beanstalk

• Deploying a Symfony application to Elastic Beanstalk

• Deploying a high-availability PHP application with an external Amazon RDS database to Elastic
Beanstalk

• Deploying a high-availability WordPress website with an external Amazon RDS database to
Elastic Beanstalk

• Deploying a high-availability Drupal website with an external Amazon RDS database to Elastic
Beanstalk

• Adding an Amazon RDS DB instance to your PHP application environment

Setting up your PHP development environment

Set up a PHP development environment to test your application locally prior to deploying it to
AWS Elastic Beanstalk. This topic outlines development environment setup steps and links to
installation pages for useful tools.

For common setup steps and tools that apply to all languages, see Configuring your development
machine.

Sections

Development environment 438

https://github.com/amazonwebservices/aws-sdk-for-php/
https://forums.aws.amazon.com/forum.jspa?forumID=80
https://aws.amazon.com/php/
http://docs.aws.amazon.com/aws-sdk-php/guide/latest/faq.html

AWS Elastic Beanstalk Developer Guide

• Installing PHP

• Install Composer

• Installing the AWS SDK for PHP

• Installing an IDE or text editor

Installing PHP

Install PHP and some common extensions. If you don't have a preference, get the latest version.
Depending on your platform and available package manager, the steps will vary.

On Amazon Linux, use yum:

$ sudo yum install php
$ sudo yum install php-mbstring
$ sudo yum install php-intl

Note

To get specific PHP package versions that match the version on your Elastic Beanstalk PHP
platform version, use the command yum search php to find available package versions,
such as php72, php72-mbstring, and php72-intl. Then use sudo yum install
package to install them.

On Ubuntu, use apt:

$ sudo apt install php-all-dev
$ sudo apt install php-intl
$ sudo apt install php-mbstring

On OS-X, use brew:

$ brew install php
$ brew install php-intl

Development environment 439

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.PHP
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.PHP

AWS Elastic Beanstalk Developer Guide

Note

To get specific PHP package versions that match the version on your Elastic Beanstalk PHP
platform version, see Homebrew Formulae for available PHP versions, such as php@7.2.
Then use brew install package to install them.
Depending on the version, php-intl might be included in the main PHP package and not
exist as a separate package.

On Windows 10, install the Windows Subsystem for Linux to get Ubuntu and install PHP with apt.
For earlier versions, visit the download page at windows.php.net to get PHP, and read this page for
information about extensions.

After installing PHP, reopen your terminal and run php --version to ensure that the new version
has been installed and is the default.

Install Composer

Composer is a dependency manager for PHP. You can use it to install libraries, track your
application's dependencies, and generate projects for popular PHP frameworks.

Install composer with the PHP script from getcomposer.org.

$ curl -s https://getcomposer.org/installer | php

The installer generates a PHAR file in the current directory. Move this file to a location in your
environment PATH so that you can use it as an executable.

$ mv composer.phar ~/.local/bin/composer

Install libraries with the require command.

$ composer require twig/twig

Composer adds libraries that you install locally to your project's composer.json file. When you
deploy your project code, Elastic Beanstalk uses Composer to install the libraries listed in this file
on your environment's application instances.

If you run into issues installing Composer, see the composer documentation.

Development environment 440

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.PHP
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.PHP
https://formulae.brew.sh/formula/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
http://windows.php.net/download/
http://php.net/manual/en/install.windows.legacy.index.php#install.windows.legacy.extensions
https://getcomposer.org/

AWS Elastic Beanstalk Developer Guide

Installing the AWS SDK for PHP

If you need to manage AWS resources from within your application, install the AWS SDK for PHP.
For example, with the SDK for PHP, you can use Amazon DynamoDB (DynamoDB) to store user and
session information without creating a relational database.

Install the SDK for PHP with Composer.

$ composer require aws/aws-sdk-php

Visit the AWS SDK for PHP homepage for more information and installation instructions.

Installing an IDE or text editor

Integrated development environments (IDEs) provide a wide range of features that facilitate
application development. If you haven't used an IDE for PHP development, try Eclipse and
PHPStorm and see which works best for you.

• Install Eclipse

• Install PhpStorm

Note

An IDE might add files to your project folder that you might not want to commit to source
control. To prevent committing these files to source control, use .gitignore or your
source control tool's equivalent.

If you just want to begin coding and don't need all of the features of an IDE, consider installing
Sublime Text.

Using the Elastic Beanstalk PHP platform

AWS Elastic Beanstalk supports a number of platforms for different versions of the PHP
programming language. These platforms support PHP web applications that can run alone or
under Composer. Learn more at PHP in the AWS Elastic Beanstalk Platforms document.

Elastic Beanstalk provides configuration options that you can use to customize the software that
runs on the EC2 instances in your Elastic Beanstalk environment. You can configure environment

The PHP platform 441

https://aws.amazon.com/sdk-for-php/
https://www.eclipse.org/downloads/
https://www.jetbrains.com/phpstorm/
http://www.sublimetext.com/
http://www.sublimetext.com/
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.PHP

AWS Elastic Beanstalk Developer Guide

variables required by your application, enable log rotation to Amazon S3, map folders in your
application source that contain static files to paths served by the proxy server, and set common
PHP initialization settings.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate
it, you can use saved configurations to save your settings and later apply them to another
environment.

To save settings in your source code, you can include configuration files. Settings in configuration
files are applied every time you create an environment or deploy your application. You can also
use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

If you use Composer, you can include a composer.json file in your source bundle to install
packages during deployment.

For advanced PHP configuration and PHP settings that are not provided as configuration options,
you can use configuration files to provide an INI file that can extend and override the default
settings applied by Elastic Beanstalk, or install additional extensions.

Settings applied in the Elastic Beanstalk console override the same settings in configuration files,
if they exist. This lets you have default settings in configuration files, and override them with
environment-specific settings in the console. For more information about precedence, and other
methods of changing settings, see Configuration options.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called “Extending Linux platforms”.

Considerations for PHP 8.1 on Amazon Linux 2

Read this section if you're using the PHP 8.1 on Amazon Linux 2 platform branch.

Considerations for PHP 8.1 on Amazon Linux 2

Note

The information in this topic only applies to the PHP 8.1 on Amazon Linux 2 platform
branch. It does not apply to the PHP platform branches based on AL2023. It also does not
apply to the PHP 8.0 Amazon Linux 2 platform branch.

The PHP platform 442

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk stores the PHP 8.1 related RPM packages for the PHP 8.1 on Amazon Linux 2
platform branch on the EC2 instances in a local directory, instead of the Amazon Linux repository.
You can use rpm -i to install packages. Starting with PHP 8.1 Platform Version 3.5.0, Elastic
Beanstalk stores the PHP 8.1 related RPM packages in the following local EC2 directory.

/opt/elasticbeanstalk/RPMS

The following example installs the php-debuginfo package.

$rpm -i /opt/elasticbeanstalk/RPMS/php-debuginfo-8.1.8-1.amzn2.x86_64.rpm

The version in the package name will vary according to the actual version that's listed in the EC2
local directory /opt/elasticbeanstalk/RPMS. Use the same syntax to install other PHP 8.1
RPM packages.

Expand the following section to display a list of RPM packages we provide.

RPM Packages

The following list provides the RMP packages that the Elastic Beanstalk PHP 8.1 platform provides
on Amazon Linux 2. These are located in the local directory /opt/elasticbeanstalk/RPMS.

The version numbers 8.1.8-1 and 3.7.0-1 in the listed package names are only an example.

• php-8.1.8-1.amzn2.x86_64.rpm

• php-bcmath-8.1.8-1.amzn2.x86_64.rpm

• php-cli-8.1.8-1.amzn2.x86_64.rpm

• php-common-8.1.8-1.amzn2.x86_64.rpm

• php-dba-8.1.8-1.amzn2.x86_64.rpm

• php-dbg-8.1.8-1.amzn2.x86_64.rpm

• php-debuginfo-8.1.8-1.amzn2.x86_64.rpm

• php-devel-8.1.8-1.amzn2.x86_64.rpm

• php-embedded-8.1.8-1.amzn2.x86_64.rpm

• php-enchant-8.1.8-1.amzn2.x86_64.rpm

• php-fpm-8.1.8-1.amzn2.x86_64.rpm

• php-gd-8.1.8-1.amzn2.x86_64.rpm

The PHP platform 443

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-10-03-linux.html

AWS Elastic Beanstalk Developer Guide

• php-gmp-8.1.8-1.amzn2.x86_64.rpm

• php-intl-8.1.8-1.amzn2.x86_64.rpm

• php-ldap-8.1.8-1.amzn2.x86_64.rpm

• php-mbstring-8.1.8-1.amzn2.x86_64.rpm

• php-mysqlnd-8.1.8-1.amzn2.x86_64.rpm

• php-odbc-8.1.8-1.amzn2.x86_64.rpm

• php-opcache-8.1.8-1.amzn2.x86_64.rpm

• php-pdo-8.1.8-1.amzn2.x86_64.rpm

• php-pear-1.10.13-1.amzn2.noarch.rpm

• php-pgsql-8.1.8-1.amzn2.x86_64.rpm

• php-process-8.1.8-1.amzn2.x86_64.rpm

• php-pspell-8.1.8-1.amzn2.x86_64.rpm

• php-snmp-8.1.8-1.amzn2.x86_64.rpm

• php-soap-8.1.8-1.amzn2.x86_64.rpm

• php-sodium-8.1.8-1.amzn2.x86_64.rpm

• php-xml-8.1.8-1.amzn2.x86_64.rpm

• php-pecl-imagick-3.7.0-1.amzn2.x86_64.rpm

• php-pecl-imagick-debuginfo-3.7.0-1.amzn2.x86_64.rpm

• php-pecl-imagick-devel-3.7.0-1.amzn2.noarch.rpm

You can use the PEAR and PECL packages to install common extensions. For more information
about PEAR, see the PEAR PHP Extension and Application Repository website. For more
information about PECL, see the PECL extension website.

The following example commands install the Memcached extensions.

$pecl install memcache

Or you could also use the following:

$pear install pecl/memcache

The PHP platform 444

https://pear.php.net
https://pecl.php.net

AWS Elastic Beanstalk Developer Guide

The following example commands install the Redis extensions.

$pecl install redis

Or you could also use the following:

$pear install pecl/redis

Configuring your PHP environment

You can use the Elastic Beanstalk console to enable log rotation to Amazon S3, configure variables
that your application can read from the environment, and change PHP settings.

To configure your PHP environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

PHP settings

• Proxy server – The proxy server to use on your environment instances. By default, nginx is used.

• Document root – The folder that contains your site's default page. If your welcome page is not
at the root of your source bundle, specify the folder that contains it relative to the root path. For
example, /public if the welcome page is in a folder named public.

• Memory limit – The maximum amount of memory that a script is allowed to allocate. For
example, 512M.

• Zlib output compression – Set to On to compress responses.

• Allow URL fopen – Set to Off to prevent scripts from downloading files from remote locations.

The PHP platform 445

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

• Display errors – Set to On to show internal error messages for debugging.

• Max execution time – The maximum time in seconds that a script is allowed to run before the
environment terminates it.

Log options

The Log Options section has two settings:

• Instance profile– Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Static files

To improve performance, you can use the Static files section to configure the proxy server to serve
static files (for example, HTML or images) from a set of directories inside your web application.
For each directory, you set the virtual path to directory mapping. When the proxy server receives a
request for a file under the specified path, it serves the file directly instead of routing the request
to your application.

For details about configuring static files using configuration files or the Elastic Beanstalk console,
see the section called “Static files”.

Environment properties

The Environment Properties section lets you specify environment configuration settings on the
Amazon EC2 instances that are running your application. These settings are passed in as key-value
pairs to the application.

Your application code can access environment properties by using $_SERVER or the get_cfg_var
function.

$endpoint = $_SERVER['API_ENDPOINT'];

See Environment properties and other software settings for more information.

The PHP platform 446

AWS Elastic Beanstalk Developer Guide

The aws:elasticbeanstalk:container:php:phpini namespace

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

You can use the aws:elasticbeanstalk:environment:proxy namespace to choose the
environment's proxy server.

You can use the aws:elasticbeanstalk:environment:proxy:staticfiles namespace
to configure the environment proxy to serve static files. You define mappings of virtual paths to
application directories.

The PHP platform defines options in the aws:elasticbeanstalk:container:php:phpini
namespace, including one that is not available in the Elastic Beanstalk console.
composer_options sets custom options to use when installing dependencies using Composer
through composer.phar install. For more information including available options, go to
http://getcomposer.org/doc/03-cli.md#install.

The following example configuration file specifies a static files option that maps a directory named
staticimages to the path /images, and shows settings for each of the options available in the
aws:elasticbeanstalk:container:php:phpini namespace:

Example .ebextensions/php-settings.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:
 ProxyServer: apache
 aws:elasticbeanstalk:environment:proxy:staticfiles:
 /images: staticimages
 aws:elasticbeanstalk:container:php:phpini:
 document_root: /public
 memory_limit: 128M
 zlib.output_compression: "Off"
 allow_url_fopen: "On"
 display_errors: "Off"
 max_execution_time: 60
 composer_options: vendor/package

The PHP platform 447

http://getcomposer.org/doc/03-cli.md#install

AWS Elastic Beanstalk Developer Guide

Note

The aws:elasticbeanstalk:environment:proxy:staticfiles namespace isn't
defined on Amazon Linux AMI PHP platform branches (preceding Amazon Linux 2).

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

Installing your application's dependencies

Your application might have dependencies on other PHP packages. You can configure your
application to install these dependencies on the environment's Amazon Elastic Compute Cloud
(Amazon EC2) instances. Alternatively, you can include your application's dependencies in the
source bundle and deploy them with the application. The following section discuss both of these
ways.

Use a Composer file to install dependencies on instances

Use a composer.json file in the root of your project source to use composer to install packages
that your application requires on your environment's Amazon EC2 instances.

Example composer.json

{
 "require": {
 "monolog/monolog": "1.0.*"
 }
}

When a composer.json file is present, Elastic Beanstalk runs composer.phar install
to install dependencies. You can add options to append to the command by setting the
composer_options option in the aws:elasticbeanstalk:container:php:phpini
namespace.

Include dependencies in source bundle

If your application has a large number of dependencies, installing them might take a long time.
This can increase deployment and scaling operations, because dependencies are installed on every
new instance.

The PHP platform 448

AWS Elastic Beanstalk Developer Guide

To avoid the negative impact on deployment time, use Composer in your development
environment to resolve dependencies and install them into the vendor folder.

To include dependencies in your application source bundle

1. Run the following command:

% composer install

2. Include the generated vendor folder in the root of your application source bundle.

When Elastic Beanstalk finds a vendor folder on the instance, it ignores the composer.json file
(even if it exists). Your application then uses dependencies from the vendor folder.

Updating Composer

You may have to update Composer if you see an error when you try to install packages with a
Composer file, or if you're unable to use the latest platform version. Between platform updates,
you can use a configuration file to update Composer on the instances in your environment.

Example .ebextensions/composer.config

commands:
 01updateComposer:
 command: export COMPOSER_HOME=/home/webapp/composer-home && /usr/bin/composer.phar
 self-update 2.7.0

option_settings:
 - namespace: aws:elasticbeanstalk:application:environment
 option_name: COMPOSER_HOME
 value: /home/webapp/composer-home

This configuration file configures composer to update itself to version 2.7.0. Check the Composer
releases page on GitHub to find the latest version.

For more information about the Elastic Beanstalk PHP Platforms, including the version of
Composer, see PHP platform versions in the document AWS Elastic Beanstalk Platforms.

The PHP platform 449

https://github.com/composer/composer/releases
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.PHP

AWS Elastic Beanstalk Developer Guide

Note

Starting with the AL2 February 22, 2024 release, the COMPOSER_HOME environment
variable is no longer set to /root by default, and the Composer install command will
fail if the COMPOSER_HOME environment variable is set to /root. If you have a custom
configuration that sets this variable, you may need to update it. If you don't have a custom
configuration that sets this value, you don't need to make any changes.

Important

If you omit the version number from the composer.phar self-update command,
Composer will update to the latest version available every time you deploy your source
code, and when new instances are provisioned by Auto Scaling. This could cause scaling
operations and deployments to fail if a version of Composer is released that is incompatible
with your application.

Extending php.ini

Use a configuration file with a files block to add a .ini file to /etc/php.d/ on the instances in
your environment. The main configuration file, php.ini, pulls in settings from files in this folder in
alphabetical order. Many extensions are enabled by default by files in this folder.

Example .ebextensions/mongo.config

files:
 "/etc/php.d/99mongo.ini":
 mode: "000755"
 owner: root
 group: root
 content: |
 extension=mongo.so

Deploying a Laravel application to Elastic Beanstalk

Laravel is an open source, model-view-controller (MVC) framework for PHP. This tutorial walks you
through the process of generating a Laravel application, deploying it to an AWS Elastic Beanstalk

Tutorial - Laravel 450

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2024-02-22-al2023.html
https://getcomposer.org/doc/03-cli.md#composer-home

AWS Elastic Beanstalk Developer Guide

environment, and configuring it to connect to an Amazon Relational Database Service (Amazon
RDS) database instance.

Sections

• Prerequisites

• Launch an Elastic Beanstalk environment

• Install Laravel and generate a website

• Deploy your application

• Configure Composer settings

• Add a database to your environment

• Cleanup

• Next steps

Prerequisites

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Getting started using Elastic
Beanstalk to launch your first Elastic Beanstalk environment.

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows 10, you
can install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and
Bash.

Laravel 6 requires PHP 7.2 or later. It also requires the PHP extensions listed in the server
requirements topic in the official Laravel documentation. Follow the instructions in the topic
Setting up your PHP development environment to install PHP and Composer.

For Laravel support and maintenance information, see the support policy topic on the official
Laravel documentation.

Tutorial - Laravel 451

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://laravel.com/docs/6.x/installation#server-requirements
https://laravel.com/docs/6.x/installation#server-requirements
https://laravel.com/docs/master/releases#support-policy

AWS Elastic Beanstalk Developer Guide

Launch an Elastic Beanstalk environment

Use the Elastic Beanstalk console to create an Elastic Beanstalk environment. Choose the PHP
platform and accept the default settings and sample code.

To launch an environment (console)

1. Open the Elastic Beanstalk console using this preconfigured link:
console.aws.amazon.com/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application.

3. For Application code, choose Sample application.

4. Choose Review and launch.

5. Review the available options. Choose the available option you want to use, and when you're
ready, choose Create app.

Environment creation takes about 5 minutes and creates the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

Tutorial - Laravel 452

https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

AWS Elastic Beanstalk Developer Guide

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the AWS CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com
domain is registered in the Public Suffix List (PSL). For further security, we recommend
that you use cookies with a __Host- prefix if you ever need to set sensitive cookies in
the default domain name for your Elastic Beanstalk applications. This practice will help
to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

Install Laravel and generate a website

Composer can install Laravel and create a working project with one command:

Tutorial - Laravel 453

https://console.aws.amazon.com/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

AWS Elastic Beanstalk Developer Guide

~$ composer create-project --prefer-dist laravel/laravel eb-laravel

Composer installs Laravel and its dependencies, and generates a default project.

If you run into any issues installing Laravel, go to the installation topic in the official
documentation: https://laravel.com/docs/6.x.

Deploy your application

Create a source bundle containing the files created by Composer. The following command creates
a source bundle named laravel-default.zip. It excludes files in the vendor folder, which take
up a lot of space and are not necessary for deploying your application to Elastic Beanstalk.

~/eb-laravel$ zip ../laravel-default.zip -r * .[^.]* -x "vendor/*"

Upload the source bundle to Elastic Beanstalk to deploy Laravel to your environment.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Note

To optimize the source bundle further, initialize a Git repository and use the git archive
command to create the source bundle. The default Laravel project includes a .gitignore

Tutorial - Laravel 454

https://laravel.com/docs/6.x
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

file that tells Git to exclude the vendor folder and other files that are not required for
deployment.

Configure Composer settings

When the deployment completes, click the URL to open your Laravel application in the browser:

What's this? By default, Elastic Beanstalk serves the root of your project at the root path of the
website. In this case, though, the default page (index.php) is one level down in the public
folder. You can verify this by adding /public to the URL. For example, http://laravel.us-
east-2.elasticbeanstalk.com/public.

To serve the Laravel application at the root path, use the Elastic Beanstalk console to configure the
document root for the website.

To configure your website's document root

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. For Document Root, enter /public.

6. To save the changes choose Apply at the bottom of the page.

7. When the update is complete, click the URL to reopen your site in the browser.

Tutorial - Laravel 455

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

So far, so good. Next you'll add a database to your environment and configure Laravel to connect
to it.

Add a database to your environment

Launch an RDS DB instance in your Elastic Beanstalk environment. You can use MySQL, SQLServer,
or PostgreSQL databases with Laravel on Elastic Beanstalk. For this example, we'll use MySQL.

To add an RDS DB instance to your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. For Engine, choose mysql.

6. Type a master username and password. Elastic Beanstalk will provide these values to your
application using environment properties.

7. To save the changes choose Apply at the bottom of the page.

Tutorial - Laravel 456

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Creating a database instance takes about 10 minutes. For more information about databases
coupled to an Elastic Beanstalk environment, see Adding a database to your Elastic Beanstalk
environment.

In the meantime, you can update your source code to read connection information from the
environment. Elastic Beanstalk provides connection details using environment variables, such as
RDS_HOSTNAME, that you can access from your application.

Laravel's database configuration is stored in a file named database.php in the config folder
in your project code. Find the mysql entry and modify the host, database, username, and
password variables to read the corresponding values from Elastic Beanstalk:

Example ~/Eb-laravel/config/database.php

...
 'connections' => [

 'sqlite' => [
 'driver' => 'sqlite',
 'database' => env('DB_DATABASE', database_path('database.sqlite')),
 'prefix' => '',
],

 'mysql' => [
 'driver' => 'mysql',
 'host' => env('RDS_HOSTNAME', '127.0.0.1'),
 'port' => env('RDS_PORT', '3306'),
 'database' => env('RDS_DB_NAME', 'forge'),
 'username' => env('RDS_USERNAME', 'forge'),
 'password' => env('RDS_PASSWORD', ''),
 'unix_socket' => env('DB_SOCKET', ''),
 'charset' => 'utf8mb4',
 'collation' => 'utf8mb4_unicode_ci',
 'prefix' => '',
 'strict' => true,
 'engine' => null,
],
...

To verify that the database connection is configured correctly, add code to index.php to connect
to the database and add some code to the default response:

Tutorial - Laravel 457

AWS Elastic Beanstalk Developer Guide

Example ~/Eb-laravel/public/index.php

...
if(DB::connection()->getDatabaseName())
{
 echo "Connected to database ".DB::connection()->getDatabaseName();
}
$response->send();
...

When the DB instance has finished launching, bundle and deploy the updated application to your
environment.

To update your Elastic Beanstalk environment

1. Create a new source bundle:

~/eb-laravel$ zip ../laravel-v2-rds.zip -r * .[^.]* -x "vendor/*"

2. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

3. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

4. Choose Upload and Deploy.

5. Choose Browse, and upload laravel-v2-rds.zip.

6. Choose Deploy.

Deploying a new version of your application takes less than a minute. When the deployment is
complete, refresh the web page again to verify that the database connection succeeded:

Tutorial - Laravel 458

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Cleanup

When you finish working with Elastic Beanstalk, you can terminate your environment. Elastic
Beanstalk terminates all AWS resources associated with your environment, such as Amazon EC2
instances, database instances, load balancers, security groups, and alarms.

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

With Elastic Beanstalk, you can easily create a new environment for your application at any time.

In addition, you can terminate database resources that you created outside of your Elastic
Beanstalk environment. When you terminate an Amazon RDS DB instance, you can take a snapshot
and restore the data to another instance later.

To terminate your RDS DB instance

1. Open the Amazon RDS console.

2. Choose Databases.

Tutorial - Laravel 459

https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/rds

AWS Elastic Beanstalk Developer Guide

3. Choose your DB instance.

4. Choose Actions, and then choose Delete.

5. Choose whether to create a snapshot, and then choose Delete.

Next steps

For more information about Laravel, go to the Laravel official website at laravel.com.

As you continue to develop your application, you'll probably want a way to manage environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic
Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line.

In this tutorial, you used the Elastic Beanstalk console to configure composer options. To make this
configuration part of your application source, you can use a configuration file like the following.

Example .ebextensions/composer.config

option_settings:
 aws:elasticbeanstalk:container:php:phpini:
 document_root: /public

For more information, see Advanced environment customization with configuration files
(.ebextensions).

Running an Amazon RDS DB instance in your Elastic Beanstalk environment is great for
development and testing, but it ties the lifecycle of your database to your environment. See Adding
an Amazon RDS DB instance to your PHP application environment for instructions on connecting to
a database running outside of your environment.

Finally, if you plan on using your application in a production environment, you will want to
configure a custom domain name for your environment and enable HTTPS for secure connections.

Deploying a CakePHP application to Elastic Beanstalk

CakePHP is an open source, MVC framework for PHP. This tutorial walks you through the process of
generating a CakePHP project, deploying it to an Elastic Beanstalk environment, and configuring it
to connect to an Amazon RDS database instance.

Tutorial - CakePHP 460

https://laravel.com/

AWS Elastic Beanstalk Developer Guide

Sections

• Prerequisites

• Launch an Elastic Beanstalk environment

• Install CakePHP and generate a website

• Deploy your application

• Add a database to your environment

• Cleanup

• Next steps

Prerequisites

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Getting started using Elastic
Beanstalk to launch your first Elastic Beanstalk environment.

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows 10, you
can install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and
Bash.

CakePHP 4 requires PHP 7.2 or later. It also requires the PHP extensions listed in the official
CakePHP installation documentation. Follow the instructions in the Setting up your PHP
development environment topic to install PHP and Composer.

Launch an Elastic Beanstalk environment

Use the Elastic Beanstalk console to create an Elastic Beanstalk environment. Choose the PHP
platform and accept the default settings and sample code.

Tutorial - CakePHP 461

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://book.cakephp.org/4/en/installation.html

AWS Elastic Beanstalk Developer Guide

To launch an environment (console)

1. Open the Elastic Beanstalk console using this preconfigured link:
console.aws.amazon.com/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application.

3. For Application code, choose Sample application.

4. Choose Review and launch.

5. Review the available options. Choose the available option you want to use, and when you're
ready, choose Create app.

Environment creation takes about 5 minutes and creates the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

Tutorial - CakePHP 462

https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

AWS Elastic Beanstalk Developer Guide

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the AWS CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com
domain is registered in the Public Suffix List (PSL). For further security, we recommend
that you use cookies with a __Host- prefix if you ever need to set sensitive cookies in
the default domain name for your Elastic Beanstalk applications. This practice will help
to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

Install CakePHP and generate a website

Composer can install CakePHP and create a working project with one command:

~$ composer create-project --prefer-dist cakephp/app eb-cake

Composer installs CakePHP and around 20 dependencies, and generates a default project.

Tutorial - CakePHP 463

https://console.aws.amazon.com/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

AWS Elastic Beanstalk Developer Guide

If you run into any issues installing CakePHP, visit the installation topic in the official
documentation: http://book.cakephp.org/4.0/en/installation.html

Deploy your application

Create a source bundle containing the files created by Composer. The following command creates a
source bundle named cake-default.zip. It excludes files in the vendor folder, which take up a
lot of space and are not necessary for deploying your application to Elastic Beanstalk.

eb-cake zip ../cake-default.zip -r * .[^.]* -x "vendor/*"

Upload the source bundle to Elastic Beanstalk to deploy CakePHP to your environment.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Note

To optimize the source bundle further, initialize a Git repository and use the git
archive command to create the source bundle. The default Symfony project includes a
.gitignore file that tells Git to exclude the vendor folder and other files that are not
required for deployment.

When the process completes, click the URL to open your CakePHP application in the browser.

Tutorial - CakePHP 464

http://book.cakephp.org/4.0/en/installation.html
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

So far, so good. Next you'll add a database to your environment and configure CakePHP to connect
to it.

Add a database to your environment

Launch an Amazon RDS database instance in your Elastic Beanstalk environment. You can use
MySQL, SQLServer, or PostgreSQL databases with CakePHP on Elastic Beanstalk. For this example,
we'll use PostgreSQL.

To add an Amazon RDS DB instance to your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. Under Database, choose Edit.

5. For DB engine, choose postgres.

6. Type a master username and password. Elastic Beanstalk will provide these values to your
application using environment properties.

7. To save the changes choose Apply at the bottom of the page.

Creating a database instance takes about 10 minutes. In the meantime, you can update your
source code to read connection information from the environment. Elastic Beanstalk provides
connection details using environment variables such as RDS_HOSTNAME that you can access from
your application.

CakePHP's database configuration is in a file named app.php in the config folder in your project
code. Open this file and add some code that reads the environment variables from $_SERVER and
assigns them to local variables. Insert the highlighted lines in the below example after the first line
(<?php):

Tutorial - CakePHP 465

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Example ~/Eb-cake/config/app.php

<?php
if (!defined('RDS_HOSTNAME')) {
 define('RDS_HOSTNAME', $_SERVER['RDS_HOSTNAME']);
 define('RDS_USERNAME', $_SERVER['RDS_USERNAME']);
 define('RDS_PASSWORD', $_SERVER['RDS_PASSWORD']);
 define('RDS_DB_NAME', $_SERVER['RDS_DB_NAME']);
}
return [
...

The database connection is configured further down in app.php. Find the following section and
modify the default datasources configuration with the name of the driver that matches your
database engine (Mysql, Sqlserver, or Postgres), and set the host, username, password and
database variables to read the corresponding values from Elastic Beanstalk:

Example ~/Eb-cake/config/app.php

...
 /**
 * Connection information used by the ORM to connect
 * to your application's datastores.
 * Drivers include Mysql Postgres Sqlite Sqlserver
 * See vendor\cakephp\cakephp\src\Database\Driver for complete list
 */
 'Datasources' => [
 'default' => [
 'className' => 'Cake\Database\Connection',
 'driver' => 'Cake\Database\Driver\Postgres',
 'persistent' => false,
 'host' => RDS_HOSTNAME,
 /*
 * CakePHP will use the default DB port based on the driver selected
 * MySQL on MAMP uses port 8889, MAMP users will want to uncomment
 * the following line and set the port accordingly
 */
 //'port' => 'non_standard_port_number',
 'username' => RDS_USERNAME,
 'password' => RDS_PASSWORD,
 'database' => RDS_DB_NAME,
 /*

Tutorial - CakePHP 466

AWS Elastic Beanstalk Developer Guide

 * You do not need to set this flag to use full utf-8 encoding (internal
 default since CakePHP 3.6).
 */
 //'encoding' => 'utf8mb4',
 'timezone' => 'UTC',
 'flags' => [],
 'cacheMetadata' => true,
 'log' => false,
...

When the DB instance has finished launching, bundle up and deploy the updated application to
your environment:

To update your Elastic Beanstalk environment

1. Create a new source bundle:

~/eb-cake$ zip ../cake-v2-rds.zip -r * .[^.]* -x "vendor/*"

2. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

3. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

4. Choose Upload and Deploy.

5. Choose Browse and upload cake-v2-rds.zip.

6. Choose Deploy.

Deploying a new version of your application takes less than a minute. When the deployment is
complete, refresh the web page again to verify that the database connection succeeded:

Tutorial - CakePHP 467

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Cleanup

When you finish working with Elastic Beanstalk, you can terminate your environment. Elastic
Beanstalk terminates all AWS resources associated with your environment, such as Amazon EC2
instances, database instances, load balancers, security groups, and alarms.

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

With Elastic Beanstalk, you can easily create a new environment for your application at any time.

In addition, you can terminate database resources that you created outside of your Elastic
Beanstalk environment. When you terminate an Amazon RDS DB instance, you can take a snapshot
and restore the data to another instance later.

To terminate your RDS DB instance

1. Open the Amazon RDS console.

2. Choose Databases.

3. Choose your DB instance.

4. Choose Actions, and then choose Delete.

5. Choose whether to create a snapshot, and then choose Delete.

Next steps

For more information about CakePHP, read the book at book.cakephp.org.

Tutorial - CakePHP 468

https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/rds
http://book.cakephp.org/4.0/en/index.html

AWS Elastic Beanstalk Developer Guide

As you continue to develop your application, you'll probably want a way to manage environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic
Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line.

Running an Amazon RDS DB instance in your Elastic Beanstalk environment is great for
development and testing, but it ties the lifecycle of your database to your environment. See Adding
an Amazon RDS DB instance to your PHP application environment for instructions on connecting to
a database running outside of your environment.

Finally, if you plan on using your application in a production environment, you will want to
configure a custom domain name for your environment and enable HTTPS for secure connections.

Deploying a Symfony application to Elastic Beanstalk

Symfony is an open-source framework for developing dynamic PHP web applications. This tutorial
walks you through the process of generating a Symfony application and deploying it to an AWS
Elastic Beanstalk environment.

Sections

• Prerequisites

• Launch an Elastic Beanstalk environment

• Install Symfony and generate a website

• Deploy your application

• Configure Composer settings

• Cleanup

• Next steps

Prerequisites

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Getting started using Elastic
Beanstalk to launch your first Elastic Beanstalk environment.

Tutorial - Symfony 469

http://symfony.com/

AWS Elastic Beanstalk Developer Guide

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows 10, you
can install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and
Bash.

Symfony 4.4.9 requires PHP 7.1.3 or later. It also requires the PHP extensions listed in the technical
requirements topic in the official Symfony installation documentation. In this tutorial, we use PHP
7.2 and the corresponding Elastic Beanstalk platform version. Follow the instructions in the Setting
up your PHP development environment topic to install PHP and Composer.

For Symfony support and maintenance information, see the symfony releases topic on the
Symfony website. For more information about updates related to PHP version support for Symfony
4.4.9, see the Symfony 4.4.9 release notes topic on the Symfony website.

Launch an Elastic Beanstalk environment

Use the Elastic Beanstalk console to create an Elastic Beanstalk environment. Choose the PHP
platform and accept the default settings and sample code.

To launch an environment (console)

1. Open the Elastic Beanstalk console using this preconfigured link:
console.aws.amazon.com/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application.

3. For Application code, choose Sample application.

4. Choose Review and launch.

5. Review the available options. Choose the available option you want to use, and when you're
ready, choose Create app.

Environment creation takes about 5 minutes and creates the following resources:

Tutorial - Symfony 470

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://symfony.com/doc/4.4/setup.html
https://symfony.com/doc/4.4/setup.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.PHP
https://symfony.com/releases
https://symfony.com/blog/symfony-4-4-9-released
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

AWS Elastic Beanstalk Developer Guide

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the AWS CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com
domain is registered in the Public Suffix List (PSL). For further security, we recommend
that you use cookies with a __Host- prefix if you ever need to set sensitive cookies in
the default domain name for your Elastic Beanstalk applications. This practice will help

Tutorial - Symfony 471

https://console.aws.amazon.com/cloudformation
https://publicsuffix.org/

AWS Elastic Beanstalk Developer Guide

to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

Install Symfony and generate a website

Composer can install Symfony and create a working project with one command:

~$ composer create-project symfony/website-skeleton eb-symfony

Composer installs Symfony and its dependencies, and generates a default project.

If you run into any issues installing Symfony, go to the installation topic in the official Symfony
documentation.

Deploy your application

Go to the project directory.

~$ cd eb-symfony

Create a source bundle containing the files created by Composer. The following command creates
a source bundle named symfony-default.zip. It excludes files in the vendor folder, which take
up a lot of space and are not necessary for deploying your application to Elastic Beanstalk.

eb-symfony$ zip ../symfony-default.zip -r * .[^.]* -x "vendor/*"

Upload the source bundle to Elastic Beanstalk to deploy Symfony to your environment.

Tutorial - Symfony 472

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes
https://symfony.com/doc/4.4/setup.html

AWS Elastic Beanstalk Developer Guide

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Note

To optimize the source bundle further, initialize a Git repository and use the git
archive command to create the source bundle. The default Symfony project includes a
.gitignore file that tells Git to exclude the vendor folder and other files that are not
required for deployment.

Configure Composer settings

When the deployment completes, click the URL to open your Symfony application in the browser.

What's this? By default, Elastic Beanstalk serves the root of your project at the root path of
the web site. In this case, though, the default page (app.php) is one level down in the web
folder. You can verify this by adding /public to the URL. For example, http://symfony.us-
east-2.elasticbeanstalk.com/public.

To serve the Symfony application at the root path, use the Elastic Beanstalk console to configure
the document root for the web site.

Tutorial - Symfony 473

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

To configure your web site's document root

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. For Document root, enter /public.

6. To save the changes choose Apply at the bottom of the page.

7. When the update is complete, click the URL to reopen your site in the browser.

Cleanup

When you finish working with Elastic Beanstalk, you can terminate your environment. Elastic
Beanstalk terminates all AWS resources associated with your environment, such as Amazon EC2
instances, database instances, load balancers, security groups, and alarms.

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

With Elastic Beanstalk, you can easily create a new environment for your application at any time.

Tutorial - Symfony 474

https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Next steps

For more information about Symfony, see What is Symfony? at symfony.com.

As you continue to develop your application, you'll probably want a way to manage environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic
Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line.

In this tutorial, you used the Elastic Beanstalk console to configure composer options. To make this
configuration part of your application source, you can use a configuration file like the following.

Example .ebextensions/composer.config

option_settings:
 aws:elasticbeanstalk:container:php:phpini:
 document_root: /public

For more information, see Advanced environment customization with configuration files
(.ebextensions).

Symfony uses its own configuration files to configure database connections. For instructions on
connecting to a database with Symfony, see Connecting to a database with Symfony.

Finally, if you plan on using your application in a production environment, you will want to
configure a custom domain name for your environment and enable HTTPS for secure connections.

Deploying a high-availability PHP application with an external Amazon
RDS database to Elastic Beanstalk

This tutorial walks you through the process of launching an RDS DB instance external to AWS
Elastic Beanstalk, and configuring a high-availability environment running a PHP application to
connect to it. Running a DB instance external to Elastic Beanstalk decouples the database from
the lifecycle of your environment. This lets you connect to the same database from multiple
environments, swap out one database for another, or perform a blue/green deployment without
affecting your database.

The tutorial uses a sample PHP application that uses a MySQL database to store user-provided
text data. The sample application uses configuration files to configure PHP settings and to create a

Tutorial - HA production 475

https://symfony.com/what-is-symfony
https://github.com/awslabs/eb-demo-php-simple-app

AWS Elastic Beanstalk Developer Guide

table in the database for the application to use. It also shows how to use a Composer file to install
packages during deployment.

Sections

• Prerequisites

• Launch a DB instance in Amazon RDS

• Create an Elastic Beanstalk environment

• Configure security groups, environment properties, and scaling

• Deploy the sample application

• Cleanup

• Next steps

Prerequisites

Before you start, download the sample application source bundle from GitHub: eb-demo-php-
simple-app-1.3.zip

The procedures in this tutorial for Amazon Relational Database Service (Amazon RDS) tasks assume
that you are launching resources in a default Amazon Virtual Private Cloud (Amazon VPC). All new
accounts include a default VPC in each region. If you don't have a default VPC, the procedures will
vary. See Using Elastic Beanstalk with Amazon RDS for instructions for EC2-Classic and custom VPC
platforms.

Launch a DB instance in Amazon RDS

To use an external database with an application running in Elastic Beanstalk, first launch a DB
instance with Amazon RDS. When you launch an instance with Amazon RDS, it is completely
independent of Elastic Beanstalk and your Elastic Beanstalk environments, and will not be
terminated or monitored by Elastic Beanstalk.

Use the Amazon RDS console to launch a Multi-AZ MySQL DB instance. Choosing a Multi-AZ
deployment ensures that your database will fail over and continue to be available if the source DB
instance goes out of service.

To launch an RDS DB instance in a default VPC

1. Open the RDS console.

Tutorial - HA production 476

https://github.com/aws-samples/eb-demo-php-simple-app/releases/download/v1.3/eb-demo-php-simple-app-v1.3.zip
https://github.com/aws-samples/eb-demo-php-simple-app/releases/download/v1.3/eb-demo-php-simple-app-v1.3.zip
https://docs.aws.amazon.com/vpc/latest/userguide/
https://console.aws.amazon.com/rds/home

AWS Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Databases.

3. Choose Create database.

4. Choose Standard Create.

Important

Do not choose Easy Create. If you choose it, you can't configure the necessary settings
to launch this RDS DB.

5. Under Additional configuration, for Initial database name, type ebdb.

6. Review the default settings and adjust these settings according to your specific requirements.
Pay attention to the following options:

• DB instance class – Choose an instance size that has an appropriate amount of memory and
CPU power for your workload.

• Multi-AZ deployment – For high availability, set this to Create an Aurora Replica/Reader
node in a different AZ.

• Master username and Master password – The database username and password. Make a
note of these settings because you will use them later.

7. Verify the default settings for the remaining options, and then choose Create database.

Next, modify the security group attached to your DB instance to allow inbound traffic on the
appropriate port. This is the same security group that you will attach to your Elastic Beanstalk
environment later, so the rule that you add will grant ingress permission to other resources in the
same security group.

To modify the inbound rules on the security group that's attached to your RDS instance

1. Open the Amazon RDS console.

2. Choose Databases.

3. Choose the name of your DB instance to view its details.

4. In the Connectivity section, make a note of the Subnets, Security groups, and Endpoint that
are displayed on this page. This is so you can use this information later.

5. Under Security, you can see the security group that's associated with the DB instance. Open
the link to view the security group in the Amazon EC2 console.

Tutorial - HA production 477

https://console.aws.amazon.com/rds/home

AWS Elastic Beanstalk Developer Guide

6. In the security group details, choose Inbound.

7. Choose Edit.

8. Choose Add Rule.

9. For Type, choose the DB engine that your application uses.

10. For Source, type sg- to view a list of available security groups. Choose the security group
that's associated with the Auto Scaling group that's used with your Elastic Beanstalk
environment. This is so that Amazon EC2 instances in the environment can have access to the
database.

11. Choose Save.

Tutorial - HA production 478

AWS Elastic Beanstalk Developer Guide

Creating a DB instance takes about 10 minutes. In the meantime, create your Elastic Beanstalk
environment.

Create an Elastic Beanstalk environment

Use the Elastic Beanstalk console to create an Elastic Beanstalk environment. Choose the PHP
platform and accept the default settings and sample code. After you launch the environment, you
can configure the environment to connect to the database, then deploy the sample application
that you downloaded from GitHub.

To launch an environment (console)

1. Open the Elastic Beanstalk console using this preconfigured link:
console.aws.amazon.com/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application.

3. For Application code, choose Sample application.

4. Choose Review and launch.

5. Review the available options. Choose the available option you want to use, and when you're
ready, choose Create app.

Environment creation takes about 5 minutes and creates the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

Tutorial - HA production 479

https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

AWS Elastic Beanstalk Developer Guide

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the AWS CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com
domain is registered in the Public Suffix List (PSL). For further security, we recommend
that you use cookies with a __Host- prefix if you ever need to set sensitive cookies in
the default domain name for your Elastic Beanstalk applications. This practice will help
to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains. The RDS DB instance that you
launched is outside of your environment, so you are responsible for managing its lifecycle.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

Tutorial - HA production 480

https://console.aws.amazon.com/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

AWS Elastic Beanstalk Developer Guide

Configure security groups, environment properties, and scaling

Add the security group of your DB instance to your running environment. This procedure causes
Elastic Beanstalk to reprovision all instances in your environment with the additional security group
attached.

To add a security group to your environment

• Do one of the following:

• To add a security group using the Elastic Beanstalk console

a. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

b. In the navigation pane, choose Environments, and then choose the name of your
environment from the list.

Note

If you have many environments, use the search bar to filter the environment
list.

c. In the navigation pane, choose Configuration.

d. In the Instances configuration category, choose Edit.

e. Under EC2 security groups, choose the security group to attach to the instances, in
addition to the instance security group that Elastic Beanstalk creates.

f. To save the changes choose Apply at the bottom of the page.

g. Read the warning, and then choose Confirm.

• To add a security group using a configuration file, use the securitygroup-
addexisting.config example file.

Next, use environment properties to pass the connection information to your environment. The
sample application uses a default set of properties that match the ones that Elastic Beanstalk
configures when you provision a database within your environment.

To configure environment properties for an Amazon RDS DB instance

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

Tutorial - HA production 481

https://console.aws.amazon.com/elasticbeanstalk
https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. In the Environment properties section, define the variables that your application reads to
construct a connection string. For compatibility with environments that have an integrated
RDS DB instance, use the following names and values. You can find all values, except for your
password, in the RDS console.

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab
on the Amazon RDS console:
DB Name.

RDS_USERNAME The username that you
configured for your
database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your
database.

Not available for reference
in the Amazon RDS console.

Tutorial - HA production 482

https://console.aws.amazon.com/rds/home

AWS Elastic Beanstalk Developer Guide

6. To save the changes choose Apply at the bottom of the page.

Finally, configure your environment's Auto Scaling group with a higher minimum instance count.
Run at least two instances at all times to prevent the web servers in your environment from being a
single point of failure, and to allow you to deploy changes without taking your site out of service.

To configure your environment's Auto Scaling group for high availability

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Capacity configuration category, choose Edit.

Tutorial - HA production 483

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

5. In the Auto Scaling group section, set Min instances to 2.

6. To save the changes choose Apply at the bottom of the page.

Deploy the sample application

Now your environment is ready to run the sample application and connect to Amazon RDS. Deploy
the sample application to your environment.

Note

Download the source bundle from GitHub, if you haven't already: eb-demo-php-simple-
app-1.3.zip

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

The site collects user comments and uses a MySQL database to store the data. To add a comment,
choose Share Your Thought, enter a comment, and then choose Submit Your Thought. The web
app writes the comment to the database so that any instance in the environment can read it, and it
won't be lost if instances go out of service.

Tutorial - HA production 484

https://github.com/aws-samples/eb-demo-php-simple-app/releases/download/v1.3/eb-demo-php-simple-app-v1.3.zip
https://github.com/aws-samples/eb-demo-php-simple-app/releases/download/v1.3/eb-demo-php-simple-app-v1.3.zip
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Cleanup

When you finish working with Elastic Beanstalk, you can terminate your environment. Elastic
Beanstalk terminates all AWS resources associated with your environment, such as Amazon EC2
instances, database instances, load balancers, security groups, and alarms.

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

With Elastic Beanstalk, you can easily create a new environment for your application at any time.

In addition, you can terminate database resources that you created outside of your Elastic
Beanstalk environment. When you terminate an Amazon RDS DB instance, you can take a snapshot
and restore the data to another instance later.

Tutorial - HA production 485

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

To terminate your RDS DB instance

1. Open the Amazon RDS console.

2. Choose Databases.

3. Choose your DB instance.

4. Choose Actions, and then choose Delete.

5. Choose whether to create a snapshot, and then choose Delete.

Next steps

As you continue to develop your application, you'll probably want a way to manage environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic
Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line.

The sample application uses configuration files to configure PHP settings and create a table in
the database if it doesn't already exist. You can also use a configuration file to configure the
security group settings of your instances during environment creation to avoid time-consuming
configuration updates. See Advanced environment customization with configuration files
(.ebextensions) for more information.

For development and testing, you might want to use the Elastic Beanstalk functionality for adding
a managed DB instance directly to your environment. For instructions on setting up a database
inside your environment, see Adding a database to your Elastic Beanstalk environment.

If you need a high-performance database, consider using Amazon Aurora. Amazon Aurora is a
MySQL-compatible database engine that offers commercial database features at low cost. To
connect your application to a different database, repeat the security group configuration steps and
update the RDS-related environment properties.

Finally, if you plan on using your application in a production environment, you will want to
configure a custom domain name for your environment and enable HTTPS for secure connections.

Tutorial - HA production 486

https://console.aws.amazon.com/rds
https://aws.amazon.com/rds/aurora/

AWS Elastic Beanstalk Developer Guide

Deploying a high-availability WordPress website with an external
Amazon RDS database to Elastic Beanstalk

This tutorial describes how to launch an Amazon RDS DB instance that is external to AWS Elastic
Beanstalk, then how to configure a high-availability environment running a WordPress website to
connect to it. The website uses Amazon Elastic File System (Amazon EFS) as the shared storage for
uploaded files.

Running a DB instance external to Elastic Beanstalk decouples the database from the lifecycle
of your environment. This lets you connect to the same database from multiple environments,
swap out one database for another, or perform a blue/green deployment without affecting your
database.

Note

For current information about the compatibility of PHP releases with WordPress versions,
see PHP Compatibility and WordPress Versions on the WordPress website. You should
refer to this information before you upgrade to a new release of PHP for your WordPress
implementations.

Topics

• Prerequisites

• Launch a DB instance in Amazon RDS

• Download WordPress

• Launch an Elastic Beanstalk environment

• Configure security groups and environment properties

• Configure and deploy your application

• Install WordPress

• Update keys and salts

• Remove access restrictions

• Configure your Auto Scaling group

• Upgrade WordPress

• Clean up

• Next steps

Tutorial - HA WordPress 487

https://make.wordpress.org/core/handbook/references/php-compatibility-and-wordpress-versions/

AWS Elastic Beanstalk Developer Guide

Prerequisites

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Getting started using Elastic
Beanstalk to launch your first Elastic Beanstalk environment.

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows 10, you
can install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and
Bash.

Default VPC

The Amazon Relational Database Service (Amazon RDS) procedures in this tutorial assume that you
are launching resources in a default Amazon Virtual Private Cloud (Amazon VPC). All new accounts
include a default VPC in each AWS Region. If you don't have a default VPC, the procedures will
vary. See Using Elastic Beanstalk with Amazon RDS for instructions for EC2-Classic and custom VPC
platforms.

AWS Regions

The sample application uses Amazon EFS, which only works in AWS Regions that support Amazon
EFS. To learn about supported AWS Regions, see Amazon Elastic File System Endpoints and Quotas
in the AWS General Reference.

Launch a DB instance in Amazon RDS

When you launch an instance with Amazon RDS, it's completely independent of Elastic Beanstalk
and your Elastic Beanstalk environments, and will not be terminated or monitored by Elastic
Beanstalk.

In the following steps you'll use the Amazon RDS console to:

• Launch a database with the MySQL engine.

Tutorial - HA WordPress 488

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/general/latest/gr/elasticfilesystem.html

AWS Elastic Beanstalk Developer Guide

• Enable a Multi-AZ deployment. This creates a standby in a different Availability Zone (AZ) to
provide data redundancy, eliminate I/O freezes, and minimize latency spikes during system
backups.

To launch an RDS DB instance in a default VPC

1. Open the RDS console.

2. In the navigation pane, choose Databases.

3. Choose Create database.

4. Choose Standard Create.

Important

Do not choose Easy Create. If you choose it, you can't configure the necessary settings
to launch this RDS DB.

5. Under Additional configuration, for Initial database name, type ebdb.

6. Review the default settings and adjust these settings according to your specific requirements.
Pay attention to the following options:

• DB instance class – Choose an instance size that has an appropriate amount of memory and
CPU power for your workload.

• Multi-AZ deployment – For high availability, set this to Create an Aurora Replica/Reader
node in a different AZ.

• Master username and Master password – The database username and password. Make a
note of these settings because you will use them later.

7. Verify the default settings for the remaining options, and then choose Create database.

After your DB instance is created, modify the security group attached to it in order to allow
inbound traffic on the appropriate port..

Tutorial - HA WordPress 489

https://console.aws.amazon.com/rds/home

AWS Elastic Beanstalk Developer Guide

Note

This is the same security group that you'll attach to your Elastic Beanstalk environment
later, so the rule that you add now will grant ingress permission to other resources in the
same security group.

To modify the inbound rules on the security group that's attached to your RDS instance

1. Open the Amazon RDS console.

2. Choose Databases.

3. Choose the name of your DB instance to view its details.

4. In the Connectivity section, make a note of the Subnets, Security groups, and Endpoint that
are displayed on this page. This is so you can use this information later.

5. Under Security, you can see the security group that's associated with the DB instance. Open
the link to view the security group in the Amazon EC2 console.

6. In the security group details, choose Inbound.

7. Choose Edit.

8. Choose Add Rule.

9. For Type, choose the DB engine that your application uses.

Tutorial - HA WordPress 490

https://console.aws.amazon.com/rds/home

AWS Elastic Beanstalk Developer Guide

10. For Source, type sg- to view a list of available security groups. Choose the security group
that's associated with the Auto Scaling group that's used with your Elastic Beanstalk
environment. This is so that Amazon EC2 instances in the environment can have access to the
database.

11. Choose Save.

Creating a DB instance takes about 10 minutes. In the meantime, download WordPress and create
your Elastic Beanstalk environment.

Download WordPress

To prepare to deploy WordPress using AWS Elastic Beanstalk, you must copy the WordPress files to
your computer and provide the correct configuration information.

To create a WordPress project

1. Download WordPress from wordpress.org.

~$curl https://wordpress.org/wordpress-6.2.tar.gz -o wordpress.tar.gz

2. Download the configuration files from the sample repository.

~$ wget https://github.com/aws-samples/eb-php-wordpress/releases/download/v1.1/eb-
php-wordpress-v1.zip

3. Extract WordPress and change the name of the folder.

 ~$ tar -xvf wordpress.tar.gz
 ~$ mv wordpress wordpress-beanstalk

Tutorial - HA WordPress 491

https://wordpress.org/download/

AWS Elastic Beanstalk Developer Guide

 ~$ cd wordpress-beanstalk

4. Extract the configuration files over the WordPress installation.

 ~/wordpress-beanstalk$ unzip ../eb-php-wordpress-v1.zip
 creating: .ebextensions/
 inflating: .ebextensions/dev.config
 inflating: .ebextensions/efs-create.config
 inflating: .ebextensions/efs-mount.config
 inflating: .ebextensions/loadbalancer-sg.config
 inflating: .ebextensions/wordpress.config
 inflating: LICENSE
 inflating: README.md
 inflating: wp-config.php

Launch an Elastic Beanstalk environment

Use the Elastic Beanstalk console to create an Elastic Beanstalk environment. After you launch the
environment, you can configure it to connect to the database, then deploy the WordPress code to
the environment.

In the following steps, you'll use the Elastic Beanstalk console to:

• Create an Elastic Beanstalk application using the managed PHP platform.

• Accept the default settings and sample code.

To launch an environment (console)

1. Open the Elastic Beanstalk console using this preconfigured link:
console.aws.amazon.com/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application.

3. For Application code, choose Sample application.

4. Choose Review and launch.

5. Review the available options. Choose the available option you want to use, and when you're
ready, choose Create app.

Tutorial - HA WordPress 492

https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

AWS Elastic Beanstalk Developer Guide

Environment creation takes about five minutes and creates the following resources.

Elastic Beanstalk created resources

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the AWS CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Tutorial - HA WordPress 493

https://console.aws.amazon.com/cloudformation

AWS Elastic Beanstalk Developer Guide

Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com
domain is registered in the Public Suffix List (PSL). For further security, we recommend
that you use cookies with a __Host- prefix if you ever need to set sensitive cookies in
the default domain name for your Elastic Beanstalk applications. This practice will help
to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains.

Because the Amazon RDS instance that you launched is outside of your environment, you are
responsible for managing its lifecycle.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

Configure security groups and environment properties

Add the security group of your DB instance to your running environment. This procedure causes
Elastic Beanstalk to reprovision all instances in your environment with the additional security group
attached.

To add a security group to your environment

• Do one of the following:

• To add a security group using the Elastic Beanstalk console

a. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

b. In the navigation pane, choose Environments, and then choose the name of your
environment from the list.

Tutorial - HA WordPress 494

https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Note

If you have many environments, use the search bar to filter the environment
list.

c. In the navigation pane, choose Configuration.

d. In the Instances configuration category, choose Edit.

e. Under EC2 security groups, choose the security group to attach to the instances, in
addition to the instance security group that Elastic Beanstalk creates.

f. To save the changes choose Apply at the bottom of the page.

g. Read the warning, and then choose Confirm.

• To add a security group using a configuration file, use the securitygroup-
addexisting.config example file.

Next, use environment properties to pass the connection information to your environment.

The WordPress application uses a default set of properties that match the ones that Elastic
Beanstalk configures when you provision a database within your environment.

To configure environment properties for an Amazon RDS DB instance

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. In the Environment properties section, define the variables that your application reads to
construct a connection string. For compatibility with environments that have an integrated
RDS DB instance, use the following names and values. You can find all values, except for your
password, in the RDS console.

Tutorial - HA WordPress 495

https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/rds/home

AWS Elastic Beanstalk Developer Guide

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab
on the Amazon RDS console:
DB Name.

RDS_USERNAME The username that you
configured for your
database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your
database.

Not available for reference
in the Amazon RDS console.

Tutorial - HA WordPress 496

AWS Elastic Beanstalk Developer Guide

6. To save the changes choose Apply at the bottom of the page.

Configure and deploy your application

Verify that the structure of your wordpress-beanstalk folder is correct, as shown.

wordpress-beanstalk$ tree -aL 1
.
.ebextensions
index.php
LICENSE
license.txt
readme.html
README.md
wp-activate.php
wp-admin
wp-blog-header.php
wp-comments-post.php
wp-config.php
wp-config-sample.php

Tutorial - HA WordPress 497

AWS Elastic Beanstalk Developer Guide

wp-content
wp-cron.php
wp-includes
wp-links-opml.php
wp-load.php
wp-login.php
wp-mail.php
wp-settings.php
wp-signup.php
wp-trackback.php
xmlrpc.php

The customized wp-config.php file from the project repo uses the environment variables that
you defined in the previous step to configure the database connection. The .ebextensions
folder contains configuration files that create additional resources within your Elastic Beanstalk
environment.

The configuration files require modification to work with your account. Replace the placeholder
values in the files with the appropriate IDs and create a source bundle.

To update configuration files and create a source bundle

1. Modify the configuration files as follows.

• .ebextensions/dev.config – Restricts access to your environment to protect it during
the WordPress installation process. Replace the placeholder IP address near the top of
the file with the public IP address of the computer you'll use to access your environment's
website to complete your WordPress installation.

Note

Depending on your network, you might need to use an IP address block.

• .ebextensions/efs-create.config – Creates an EFS file system and mount points in
each Availability Zone/subnet in your VPC. Identify your default VPC and subnet IDs in the
Amazon VPC console.

2. Create a source bundle containing the files in your project folder. The following command
creates a source bundle named wordpress-beanstalk.zip.

~/eb-wordpress$ zip ../wordpress-beanstalk.zip -r * .[^.]*

Tutorial - HA WordPress 498

https://console.aws.amazon.com/vpc/home#subnets:filter=default

AWS Elastic Beanstalk Developer Guide

Upload the source bundle to Elastic Beanstalk to deploy WordPress to your environment.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Install WordPress

To complete your WordPress installation

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose the environment URL to open your site in a browser. You are redirected to a WordPress
installation wizard because you haven't configured the site yet.

4. Perform a standard installation. The wp-config.php file is already present in the source
code and configured to read the database connection information from the environment. You
shouldn't be prompted to configure the connection.

Installation takes about a minute to complete.

Tutorial - HA WordPress 499

https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Update keys and salts

The WordPress configuration file wp-config.php also reads values for keys and salts from
environment properties. Currently, these properties are all set to test by the wordpress.config
file in the .ebextensions folder.

The hash salt can be any value that meets the environment property requirements, but you should
not store it in source control. Use the Elastic Beanstalk console to set these properties directly on
the environment.

To update environment properties

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. On the navigation pane, choose Configuration.

4. Under Software, choose Edit.

5. For Environment properties, modify the following properties:

• AUTH_KEY – The value chosen for AUTH_KEY.

• SECURE_AUTH_KEY – The value chosen for SECURE_AUTH_KEY.

• LOGGED_IN_KEY – The value chosen for LOGGED_IN_KEY.

• NONCE_KEY – The value chosen for NONCE_KEY.

• AUTH_SALT – The value chosen for AUTH_SALT.

• SECURE_AUTH_SALT – The value chosen for SECURE_AUTH_SALT.

• LOGGED_IN_SALT – The value chosen for LOGGED_IN_SALT.

• NONCE_SALT — The value chosen for NONCE_SALT.

6. To save the changes choose Apply at the bottom of the page.

Tutorial - HA WordPress 500

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Note

Setting the properties on the environment directly overrides the values in
wordpress.config.

Remove access restrictions

The sample project includes the configuration file loadbalancer-sg.config. It creates a
security group and assigns it to the environment's load balancer, using the IP address that you
configured in dev.config. It restricts HTTP access on port 80 to connections from your network.
Otherwise, an outside party could potentially connect to your site before you have installed
WordPress and configured your admin account.

Now that you've installed WordPress, remove the configuration file to open the site to the world.

To remove the restriction and update your environment

1. Delete the .ebextensions/loadbalancer-sg.config file from your project directory.

~/wordpress-beanstalk$ rm .ebextensions/loadbalancer-sg.config

2. Create a source bundle.

~/eb-wordpress$ zip ../wordpress-beanstalk-v2.zip -r * .[^.]*

Upload the source bundle to Elastic Beanstalk to deploy WordPress to your environment.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. On the environment overview page, choose Upload and deploy.

Tutorial - HA WordPress 501

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Configure your Auto Scaling group

Finally, configure your environment's Auto Scaling group with a higher minimum instance count.
Run at least two instances at all times to prevent the web servers in your environment from being
a single point of failure. This also allows you to deploy changes without taking your site out of
service.

To configure your environment's Auto Scaling group for high availability

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Capacity configuration category, choose Edit.

5. In the Auto Scaling group section, set Min instances to 2.

6. To save the changes choose Apply at the bottom of the page.

To support content uploads across multiple instances, the sample project uses Amazon EFS to
create a shared file system. Create a post on the site and upload content to store it on the shared
file system. View the post and refresh the page multiple times to hit both instances and verify that
the shared file system is working.

Upgrade WordPress

To upgrade to a new version of WordPress, back up your site and deploy it to a new environment.

Tutorial - HA WordPress 502

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Important

Do not use the update functionality within WordPress or update your source files to use a
new version. Both of these actions can result in your post URLs returning 404 errors even
though they are still in the database and file system.

To upgrade WordPress

1. In the WordPress admin console, use the export tool to export your posts to an XML file.

2. Deploy and install the new version of WordPress to Elastic Beanstalk with the same steps that
you used to install the previous version. To avoid downtime, you can create an environment
with the new version.

3. On the new version, install the WordPress Importer tool in the admin console and use it to
import the XML file containing your posts. If the posts were created by the admin user on the
old version, assign them to the admin user on the new site instead of trying to import the
admin user.

4. If you deployed the new version to a separate environment, do a CNAME swap to redirect users
from the old site to the new site.

Clean up

When you finish working with Elastic Beanstalk, you can terminate your environment. Elastic
Beanstalk terminates all AWS resources associated with your environment, such as Amazon EC2
instances, database instances, load balancers, security groups, and alarms.

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

Tutorial - HA WordPress 503

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

4. Use the on-screen dialog box to confirm environment termination.

With Elastic Beanstalk, you can easily create a new environment for your application at any time.

In addition, you can terminate database resources that you created outside of your Elastic
Beanstalk environment. When you terminate an Amazon RDS DB instance, you can take a snapshot
and restore the data to another instance later.

To terminate your RDS DB instance

1. Open the Amazon RDS console.

2. Choose Databases.

3. Choose your DB instance.

4. Choose Actions, and then choose Delete.

5. Choose whether to create a snapshot, and then choose Delete.

Next steps

As you continue to develop your application, you'll probably want a way to manage environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic
Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line.

The sample application uses configuration files to configure PHP settings and create a table in
the database, if it doesn't already exist. You can also use a configuration file to configure the
security group settings of your instances during environment creation to avoid time-consuming
configuration updates. See Advanced environment customization with configuration files
(.ebextensions) for more information.

For development and testing, you might want to use the Elastic Beanstalk functionality for adding
a managed DB instance directly to your environment. For instructions on setting up a database
inside your environment, see Adding a database to your Elastic Beanstalk environment.

If you need a high-performance database, consider using Amazon Aurora. Amazon Aurora is a
MySQL-compatible database engine that offers commercial database features at low cost. To
connect your application to a different database, repeat the security group configuration steps and
update the RDS-related environment properties.

Tutorial - HA WordPress 504

https://console.aws.amazon.com/rds
https://aws.amazon.com/rds/aurora/

AWS Elastic Beanstalk Developer Guide

Finally, if you plan on using your application in a production environment, you will want to
configure a custom domain name for your environment and enable HTTPS for secure connections.

Deploying a high-availability Drupal website with an external Amazon
RDS database to Elastic Beanstalk

This tutorial walks you through the process of launching an RDS DB instance external to AWS
Elastic Beanstalk. Then it describes configuring a high-availability environment running a Drupal
website to connect to it. The website uses Amazon Elastic File System (Amazon EFS) as shared
storage for uploaded files. Running a DB instance external to Elastic Beanstalk decouples the
database from the lifecycle of your environment, and lets you connect to the same database from
multiple environments, swap out one database for another, or perform a blue/green deployment
without affecting your database.

Sections

• Prerequisites

• Launch a DB instance in Amazon RDS

• Launch an Elastic Beanstalk environment

• Configure security settings and environment properties

• Configure and deploy your application

• Install Drupal

• Update Drupal configuration and remove access restrictions

• Configure your Auto Scaling group

• Cleanup

• Next steps

Prerequisites

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Getting started using Elastic
Beanstalk to launch your first Elastic Beanstalk environment.

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

Tutorial - HA Drupal 505

AWS Elastic Beanstalk Developer Guide

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows 10, you
can install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and
Bash.

The procedures in this tutorial for Amazon Relational Database Service (Amazon RDS) tasks assume
that you are launching resources in a default Amazon Virtual Private Cloud (Amazon VPC). All new
accounts include a default VPC in each region. If you don't have a default VPC, the procedures will
vary. See Using Elastic Beanstalk with Amazon RDS for instructions for EC2-Classic and custom VPC
platforms.

The sample application uses Amazon EFS. It only works in AWS Regions that support Amazon EFS.
To learn about supporting AWS Regions, see Amazon Elastic File System Endpoints and Quotas in
the AWS General Reference.

If the platform of your Elastic Beanstalk environment uses PHP 7.4 or earlier, we recommend that
you use Drupal version 8.9.13 for this tutorial. For platforms installed with PHP 8.0 or later, we
recommend that you use Drupal 9.1.5.

For more information about Drupal releases and the PHP versions that they support, see PHP
requirements on the Drupal website. The core versions that Drupal recommends are listed on the
website https://www.drupal.org/project/drupal.

Launch a DB instance in Amazon RDS

To use an external database with an application running in Elastic Beanstalk, first launch a DB
instance with Amazon RDS. When you launch an instance with Amazon RDS, it is completely
independent of Elastic Beanstalk and your Elastic Beanstalk environments, and will not be
terminated or monitored by Elastic Beanstalk.

Use the Amazon RDS console to launch a Multi-AZ MySQL DB instance. Choosing a Multi-AZ
deployment ensures that your database will failover and continue to be available if the source DB
instance goes out of service.

To launch an RDS DB instance in a default VPC

1. Open the RDS console.

Tutorial - HA Drupal 506

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/general/latest/gr/elasticfilesystem.html
https://www.drupal.org/docs/system-requirements/php-requirements#php_required
https://www.drupal.org/docs/system-requirements/php-requirements#php_required
https://www.drupal.org/project/drupal
https://console.aws.amazon.com/rds/home

AWS Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Databases.

3. Choose Create database.

4. Choose Standard Create.

Important

Do not choose Easy Create. If you choose it, you can't configure the necessary settings
to launch this RDS DB.

5. Under Additional configuration, for Initial database name, type ebdb.

6. Review the default settings and adjust these settings according to your specific requirements.
Pay attention to the following options:

• DB instance class – Choose an instance size that has an appropriate amount of memory and
CPU power for your workload.

• Multi-AZ deployment – For high availability, set this to Create an Aurora Replica/Reader
node in a different AZ.

• Master username and Master password – The database username and password. Make a
note of these settings because you will use them later.

7. Verify the default settings for the remaining options, and then choose Create database.

Next, modify the security group attached to your DB instance to allow inbound traffic on the
appropriate port. This is the same security group that you will attach to your Elastic Beanstalk
environment later, so the rule that you add will grant ingress permission to other resources in the
same security group.

To modify the inbound rules on the security group that's attached to your RDS instance

1. Open the Amazon RDS console.

2. Choose Databases.

3. Choose the name of your DB instance to view its details.

4. In the Connectivity section, make a note of the Subnets, Security groups, and Endpoint that
are displayed on this page. This is so you can use this information later.

5. Under Security, you can see the security group that's associated with the DB instance. Open
the link to view the security group in the Amazon EC2 console.

Tutorial - HA Drupal 507

https://console.aws.amazon.com/rds/home

AWS Elastic Beanstalk Developer Guide

6. In the security group details, choose Inbound.

7. Choose Edit.

8. Choose Add Rule.

9. For Type, choose the DB engine that your application uses.

10. For Source, type sg- to view a list of available security groups. Choose the security group
that's associated with the Auto Scaling group that's used with your Elastic Beanstalk
environment. This is so that Amazon EC2 instances in the environment can have access to the
database.

11. Choose Save.

Tutorial - HA Drupal 508

AWS Elastic Beanstalk Developer Guide

Creating a DB instance takes about 10 minutes. In the meantime, launch your Elastic Beanstalk
environment.

Launch an Elastic Beanstalk environment

Use the Elastic Beanstalk console to create an Elastic Beanstalk environment. Choose the PHP
platform and accept the default settings and sample code. After you launch the environment, you
can configure the environment to connect to the database, then deploy the Drupal code to the
environment.

To launch an environment (console)

1. Open the Elastic Beanstalk console using this preconfigured link:
console.aws.amazon.com/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application.

3. For Application code, choose Sample application.

4. Choose Review and launch.

5. Review the available options. Choose the available option you want to use, and when you're
ready, choose Create app.

Environment creation takes about 5 minutes and creates the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

Tutorial - HA Drupal 509

https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

AWS Elastic Beanstalk Developer Guide

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the AWS CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com
domain is registered in the Public Suffix List (PSL). For further security, we recommend
that you use cookies with a __Host- prefix if you ever need to set sensitive cookies in
the default domain name for your Elastic Beanstalk applications. This practice will help
to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains. The RDS DB instance that you
launched is outside of your environment, so you are responsible for managing its lifecycle.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

Tutorial - HA Drupal 510

https://console.aws.amazon.com/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

AWS Elastic Beanstalk Developer Guide

Configure security settings and environment properties

Add the security group of your DB instance to your running environment. This procedure causes
Elastic Beanstalk to reprovision all instances in your environment with the additional security group
attached.

To add a security group to your environment

• Do one of the following:

• To add a security group using the Elastic Beanstalk console

a. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

b. In the navigation pane, choose Environments, and then choose the name of your
environment from the list.

Note

If you have many environments, use the search bar to filter the environment
list.

c. In the navigation pane, choose Configuration.

d. In the Instances configuration category, choose Edit.

e. Under EC2 security groups, choose the security group to attach to the instances, in
addition to the instance security group that Elastic Beanstalk creates.

f. To save the changes choose Apply at the bottom of the page.

g. Read the warning, and then choose Confirm.

• To add a security group using a configuration file, use the securitygroup-
addexisting.config example file.

Next, use environment properties to pass the connection information to your environment. The
sample application uses a default set of properties that match the ones that Elastic Beanstalk
configures when you provision a database within your environment.

To configure environment properties for an Amazon RDS DB instance

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

Tutorial - HA Drupal 511

https://console.aws.amazon.com/elasticbeanstalk
https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. In the Environment properties section, define the variables that your application reads to
construct a connection string. For compatibility with environments that have an integrated
RDS DB instance, use the following names and values. You can find all values, except for your
password, in the RDS console.

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab
on the Amazon RDS console:
DB Name.

RDS_USERNAME The username that you
configured for your
database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your
database.

Not available for reference
in the Amazon RDS console.

Tutorial - HA Drupal 512

https://console.aws.amazon.com/rds/home

AWS Elastic Beanstalk Developer Guide

6. To save the changes choose Apply at the bottom of the page.

After installing Drupal, you need to connect to the instance with SSH to retrieve some
configuration details. Assign an SSH key to your environment's instances.

To configure SSH

1. If you haven't previously created a key pair, open the key pairs page of the Amazon EC2
console and follow the instructions to create one.

2. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

3. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

4. In the navigation pane, choose Configuration.

Tutorial - HA Drupal 513

https://console.aws.amazon.com/ec2/v2/home#KeyPairs
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

5. Under Security, choose Edit.

6. For EC2 key pair, choose your key pair.

7. To save the changes choose Apply at the bottom of the page.

Configure and deploy your application

To create a Drupal project for Elastic Beanstalk, download the Drupal source code and combine it
with the files in the aws-samples/eb-php-drupal repository on GitHub.

To create a Drupal project

1. Run the follwing command to download Drupal from www.drupal.org/download. To learn more
about downloads, see the the Drupal website.

If the platform of your Elastic Beanstalk environment uses PHP 7.4 or earlier, we recommend
that you download Drupal version 8.9.13 for this tutorial. You can run the following command
to download it.

~$ curl https://ftp.drupal.org/files/projects/drupal-8.9.13.tar.gz -o drupal.tar.gz

If your platform uses PHP 8.0 or later, we recommend that you download Drupal 9.1.5. You can
use this command to download it.

~$ curl https://ftp.drupal.org/files/projects/drupal-9.1.5.tar.gz -o drupal.tar.gz

For more information about Drupal releases and the PHP versions that they support, see PHP
requirements in the official Drupal documentation. The core versions that Drupal recommends
are listed on the Drupal website.

2. Use the following command to download the configuration files from the sample repository:

~$ wget https://github.com/aws-samples/eb-php-drupal/releases/download/v1.1/eb-php-
drupal-v1.zip

3. Extract Drupal and change the name of the folder.

If you downloaded Drupal 8.9.13:

 ~$ tar -xvf drupal.tar.gz

Tutorial - HA Drupal 514

https://github.com/aws-samples/eb-php-drupal
https://www.drupal.org/download
https://www.drupal.org/docs/system-requirements/php-requirements#php_required
https://www.drupal.org/docs/system-requirements/php-requirements#php_required
https://www.drupal.org/project/drupal

AWS Elastic Beanstalk Developer Guide

 ~$ mv drupal-8.9.13 drupal-beanstalk
 ~$ cd drupal-beanstalk

If you downloaded Drupal 9.1.5:

 ~$ tar -xvf drupal.tar.gz
 ~$ mv drupal-9.1.5 drupal-beanstalk
 ~$ cd drupal-beanstalk

4. Extract the configuration files over the Drupal installation.

 ~/drupal-beanstalk$ unzip ../eb-php-drupal-v1.zip
 creating: .ebextensions/
 inflating: .ebextensions/dev.config
 inflating: .ebextensions/drupal.config
 inflating: .ebextensions/efs-create.config
 inflating: .ebextensions/efs-filesystem.template
 inflating: .ebextensions/efs-mount.config
 inflating: .ebextensions/loadbalancer-sg.config
 inflating: LICENSE
 inflating: README.md
 inflating: beanstalk-settings.php

Verify that the structure of your drupal-beanstalk folder is correct, as shown.

drupal-beanstalk$ tree -aL 1
.
autoload.php
beanstalk-settings.php
composer.json
composer.lock
core
.csslintrc
.ebextensions
.ebextensions
.editorconfig
.eslintignore
.eslintrc.json
example.gitignore
.gitattributes
.htaccess

Tutorial - HA Drupal 515

AWS Elastic Beanstalk Developer Guide

.ht.router.php
index.php
LICENSE
LICENSE.txt
modules
profiles
README.md
README.txt
robots.txt
sites
themes
update.php
vendor
web.config

The beanstalk-settings.php file from the project repo uses the environment variables that
you defined in the previous step to configure the database connection. The .ebextensions
folder contains configuration files that create additional resources within your Elastic Beanstalk
environment.

The configuration files require modification to work with your account. Replace the placeholder
values in the files with the appropriate IDs and create a source bundle.

To update configuration files and create a source bundle.

1. Modify the configuration files as follows.

• .ebextensions/dev.config – restricts access to your environment to your IP address to
protect it during the Drupal installation process. Replace the placeholder IP address near the
top of the file with your public IP address.

• .ebextensions/efs-create.config – creates an EFS file system and mount points in
each Availability Zone / subnet in your VPC. Identify your default VPC and subnet IDs in the
Amazon VPC console.

2. Create a source bundle containing the files in your project folder. The following command
creates a source bundle named drupal-beanstalk.zip. It excludes files in the vendor
folder, which take up a lot of space and are not necessary for deploying your application to
Elastic Beanstalk.

~/eb-drupal$ zip ../drupal-beanstalk.zip -r * .[^.]* -x "vendor/*"

Tutorial - HA Drupal 516

https://console.aws.amazon.com/vpc/home#subnets:filter=default

AWS Elastic Beanstalk Developer Guide

Upload the source bundle to Elastic Beanstalk to deploy Drupal to your environment.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Install Drupal

To complete your Drupal installation

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose the environment URL to open your site in a browser. You are redirected to a Drupal
installation wizard because the site has not been configured yet.

4. Perform a standard installation with the following settings for the database:

• Database name – The DB Name shown in the Amazon RDS console.

• Database username and password – The Master Username and Master Password values
you entered when creating your database.

Tutorial - HA Drupal 517

https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

• Advanced Options > Host – The Endpoint of the DB instance shown in the Amazon RDS
console.

Installation takes about a minute to complete.

Update Drupal configuration and remove access restrictions

The Drupal installation process created a file named settings.php in the sites/default folder
on the instance. You need this file in your source code to avoid resetting your site on subsequent
deployments, but the file currently contains secrets that you don't want to commit to source.
Connect to the application instance to retrieve information from the settings file.

To connect to your application instance with SSH

1. Open the instances page of the Amazon EC2 console.

2. Choose the application instance. It is the one named after your Elastic Beanstalk environment.

3. Choose Connect.

4. Follow the instructions to connect the instance with SSH. The command looks similar to the
following.

$ ssh -i ~/.ssh/mykey ec2-user@ec2-00-55-33-222.us-west-2.compute.amazonaws.com

Get the sync directory id from the last line of the settings file.

[ec2-user ~]$ tail -n 1 /var/app/current/sites/default/settings.php
$config_directories['sync'] = 'sites/default/files/
config_4ccfX2sPQm79p1mk5IbUq9S_FokcENO4mxyC-L18-4g_xKj_7j9ydn31kDOYOgnzMu071Tvc4Q/
sync';

The file also contains the sites current hash key, but you can ignore the current value and use your
own.

Assign the sync directory path and hash key to environment properties. The customized settings
file from the project repo reads these properties to configure the site during deployment, in
addition to the database connection properties that you set earlier.

Tutorial - HA Drupal 518

https://console.aws.amazon.com/ec2/v2/home#Instances:sort=tag:Name

AWS Elastic Beanstalk Developer Guide

Drupal configuration properties

• SYNC_DIR – The path to the sync directory.

• HASH_SALT – Any string value that meets environment property requirements.

To configure environment properties in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Scroll down to Environment properties.

6. Select Add environment property.

7. Enter the property Name and Value pairs.

8. If you need to add more variables repeat Step 6 and Step 7.

9. To save the changes choose Apply at the bottom of the page.

Finally, the sample project includes a configuration file (loadbalancer-sg.config) that creates
a security group and assigns it to the environment's load balancer, using the IP address that you
configured in dev.config to restrict HTTP access on port 80 to connections from your network.
Otherwise, an outside party could potentially connect to your site before you have installed Drupal
and configured your admin account.

To update Drupal's configuration and remove access restrictions

1. Delete the .ebextensions/loadbalancer-sg.config file from your project directory.

~/drupal-beanstalk$ rm .ebextensions/loadbalancer-sg.config

2. Copy the customized settings.php file into the sites folder.

Tutorial - HA Drupal 519

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

~/drupal-beanstalk$ cp beanstalk-settings.php sites/default/settings.php

3. Create a source bundle.

~/eb-drupal$ zip ../drupal-beanstalk-v2.zip -r * .[^.]* -x "vendor/*"

Upload the source bundle to Elastic Beanstalk to deploy Drupal to your environment.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Configure your Auto Scaling group

Finally, configure your environment's Auto Scaling group with a higher minimum instance count.
Run at least two instances at all times to prevent the web servers in your environment from being a
single point of failure, and to allow you to deploy changes without taking your site out of service.

To configure your environment's Auto Scaling group for high availability

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Tutorial - HA Drupal 520

https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Capacity configuration category, choose Edit.

5. In the Auto Scaling group section, set Min instances to 2.

6. To save the changes choose Apply at the bottom of the page.

To support content uploads across multiple instances, the sample project uses Amazon Elastic File
System to create a shared file system. Create a post on the site and upload content to store it on
the shared file system. View the post and refresh the page multiple times to hit both instances and
verify that the shared file system is working.

Cleanup

When you finish working with Elastic Beanstalk, you can terminate your environment. Elastic
Beanstalk terminates all AWS resources associated with your environment, such as Amazon EC2
instances, database instances, load balancers, security groups, and alarms.

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

With Elastic Beanstalk, you can easily create a new environment for your application at any time.

Tutorial - HA Drupal 521

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

In addition, you can terminate database resources that you created outside of your Elastic
Beanstalk environment. When you terminate an Amazon RDS DB instance, you can take a snapshot
and restore the data to another instance later.

To terminate your RDS DB instance

1. Open the Amazon RDS console.

2. Choose Databases.

3. Choose your DB instance.

4. Choose Actions, and then choose Delete.

5. Choose whether to create a snapshot, and then choose Delete.

Next steps

As you continue to develop your application, you'll probably want a way to manage environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic
Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line.

The sample application uses configuration files to configure PHP settings and create a table in the
database if it doesn't already exist. You can also use a configuration file to configure your instances'
security group settings during environment creation to avoid time-consuming configuration
updates. See Advanced environment customization with configuration files (.ebextensions) for
more information.

For development and testing, you might want to use the Elastic Beanstalk functionality for adding
a managed DB instance directly to your environment. For instructions on setting up a database
inside your environment, see Adding a database to your Elastic Beanstalk environment.

If you need a high-performance database, consider using Amazon Aurora. Amazon Aurora is a
MySQL-compatible database engine that offers commercial database features at low cost. To
connect your application to a different database, repeat the security group configuration steps and
update the RDS-related environment properties.

Finally, if you plan on using your application in a production environment, you will want to
configure a custom domain name for your environment and enable HTTPS for secure connections.

Tutorial - HA Drupal 522

https://console.aws.amazon.com/rds
https://aws.amazon.com/rds/aurora/

AWS Elastic Beanstalk Developer Guide

Adding an Amazon RDS DB instance to your PHP application
environment

You can use an Amazon Relational Database Service (Amazon RDS) DB instance to store data
gathered and modified by your application. The database can be coupled to your environment
and managed by Elastic Beanstalk, or it can be created as decoupled and managed externally
by another service. This topic provides instructions to create an Amazon RDS using the Elastic
Beanstalk console. The database will be coupled to your environment and managed by Elastic
Beanstalk. For more information about integrating an Amazon RDS with Elastic Beanstalk, see
Adding a database to your Elastic Beanstalk environment.

Sections

• Adding a DB instance to your environment

• Downloading a driver

• Connecting to a database with a PDO or MySQLi

• Connecting to a database with Symfony

Adding a DB instance to your environment

To add a DB instance to your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. Choose a DB engine, and enter a user name and password.

6. To save the changes choose Apply at the bottom of the page.

Adding a database 523

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Adding a DB instance takes about 10 minutes. When the environment update is complete, the DB
instance's hostname and other connection information are available to your application through
the following environment properties:

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab on
the Amazon RDS console: DB
Name.

RDS_USERNAME The username that you
configured for your database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your database.

Not available for reference in
the Amazon RDS console.

For more information about configuring a database instance coupled with an Elastic Beanstalk
environment, see Adding a database to your Elastic Beanstalk environment.

Downloading a driver

To use PHP Data Objects (PDO) to connect to the database, install the driver that matches the
database engine that you chose.

• MySQL – PDO_MYSQL

• PostgreSQL – PDO_PGSQL

• Oracle – PDO_OCI

• SQL Server – PDO_SQLSRV

Adding a database 524

http://php.net/manual/en/ref.pdo-mysql.php
http://php.net/manual/en/ref.pdo-pgsql.php
http://php.net/manual/en/ref.pdo-oci.php
http://php.net/manual/en/ref.pdo-sqlsrv.php

AWS Elastic Beanstalk Developer Guide

For more information, see http://php.net/manual/en/pdo.installation.php.

Connecting to a database with a PDO or MySQLi

You can use $_SERVER[`VARIABLE`] to read connection information from the environment.

For a PDO, create a Data Source Name (DSN) from the host, port, and name. Pass the DSN to the
constructor for the PDO with the database user name and password.

Example Connect to an RDS database with PDO - MySQL

<?php
$dbhost = $_SERVER['RDS_HOSTNAME'];
$dbport = $_SERVER['RDS_PORT'];
$dbname = $_SERVER['RDS_DB_NAME'];
$charset = 'utf8' ;

$dsn = "mysql:host={$dbhost};port={$dbport};dbname={$dbname};charset={$charset}";
$username = $_SERVER['RDS_USERNAME'];
$password = $_SERVER['RDS_PASSWORD'];

$pdo = new PDO($dsn, $username, $password);
?>

For other drivers, replace mysql with the name of your driver – pgsql, oci, or sqlsrv.

For MySQLi, pass the hostname, user name, password, database name, and port to the mysqli
constructor.

Example Connect to an RDS database with mysqli_connect()

$link = new mysqli($_SERVER['RDS_HOSTNAME'], $_SERVER['RDS_USERNAME'],
 $_SERVER['RDS_PASSWORD'], $_SERVER['RDS_DB_NAME'], $_SERVER['RDS_PORT']);

Connecting to a database with Symfony

For Symfony version 3.2 and newer, you can use %env(PROPERTY_NAME)% to set database
parameters in a configuration file based on the environment properties set by Elastic Beanstalk.

Example app/config/parameters.yml

parameters:
 database_driver: pdo_mysql

Adding a database 525

http://php.net/manual/en/pdo.installation.php
https://php.net/manual/en/pdo.construct.php

AWS Elastic Beanstalk Developer Guide

 database_host: '%env(RDS_HOSTNAME)%'
 database_port: '%env(RDS_PORT)%'
 database_name: '%env(RDS_DB_NAME)%'
 database_user: '%env(RDS_USERNAME)%'
 database_password: '%env(RDS_PASSWORD)%'

See External Parameters (Symfony 3.4) for more information.

For earlier versions of Symfony, environment variables are only accessible if they start with
SYMFONY__. This means that the Elastic Beanstalk-defined environment properties are not
accessible, and you must define your own environment properties to pass the connection
information to Symfony.

To connect to a database with Symfony 2, create an environment property for each parameter.
Then, use %property.name% to access the Symfony-transformed variable in a configuration
file. For example, an environment property named SYMFONY__DATABASE__USER is accessible as
database.user.

 database_user: "%database.user%"

See External Parameters (Symfony 2.8) for more information.

Working with Python

This section provides tutorials and information about deploying Python applications using AWS
Elastic Beanstalk.

The topics in this chapter assume that you have some knowledge of Elastic Beanstalk
environments. If you haven't used Elastic Beanstalk before, try the getting started tutorial to learn
the basics.

Topics

• Setting up your Python development environment

• Using the Elastic Beanstalk Python platform

• Deploying a Flask application to Elastic Beanstalk

• Deploying a Django application to Elastic Beanstalk

• Adding an Amazon RDS DB instance to your Python application environment

• Python tools and resources

Working with Python 526

http://symfony.com/doc/3.4/configuration/external_parameters.html
http://symfony.com/doc/2.8/configuration/external_parameters.html

AWS Elastic Beanstalk Developer Guide

Setting up your Python development environment

Set up a Python development environment to test your application locally prior to deploying it
to AWS Elastic Beanstalk. This topic outlines development environment setup steps and links to
installation pages for useful tools.

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows 10, you
can install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and
Bash.

For common setup steps and tools that apply to all languages, see Configuring your development
machine.

Sections

• Prerequisites

• Using a virtual environment

• Configuring a Python project for Elastic Beanstalk

Prerequisites

For all Python applications that you'll deploy with Elastic Beanstalk, these prerequisites are
common:

1. A Python version matching the Elastic Beanstalk Python platform version your application will
use.

2. The pip utility, matching your Python version. This is used to install and list dependencies for
your project, so that Elastic Beanstalk knows how to set up your application's environment.

3. The AWS Elastic Beanstalk Command Line Interface (EB CLI). This is used to initialize your
application with the files necessary for deploying with Elastic Beanstalk.

Development environment 527

https://docs.microsoft.com/en-us/windows/wsl/install-win10

AWS Elastic Beanstalk Developer Guide

4. A working ssh installation. This is used to connect with your running instances when you need
to examine or debug a deployment.

5. The virtualenv package. This is used to create an environment used to develop and test your
application, so that the environment can be replicated by Elastic Beanstalk without installing
extra packages that aren't needed by your application. Install this package with the following
command:

$ pip install virtualenv

For instructions on installing Python, pip, and the EB CLI, see Install the EB CLI.

Using a virtual environment

Once you have the prerequisites installed, set up a virtual environment with virtualenv to install
your application's dependencies. By using a virtual environment, you can discern exactly which
packages are needed by your application so that the required packages are installed on the EC2
instances that are running your application.

To set up a virtual environment

1. Open a command-line window and type:

$ virtualenv /tmp/eb_python_app

Replace eb_python_app with a name that makes sense for your application (using your
application's name is a good idea). The virtualenv command creates a virtual environment
for you in the specified directory and prints the results of its actions:

Running virtualenv with interpreter /usr/bin/python
New python executable in /tmp/eb_python_app/bin/python3.7
Also creating executable in /tmp/eb_python_app/bin/python
Installing setuptools, pip...done.

2. Once your virtual environment is ready, start it by running the activate script located in the
environment's bin directory. For example, to start the eb_python_app environment created in
the previous step, you would type:

$ source /tmp/eb_python_app/bin/activate

Development environment 528

AWS Elastic Beanstalk Developer Guide

The virtual environment prints its name (for example: (eb_python_app)) at the beginning of
each command prompt, reminding you that you're in a virtual Python environment.

3. To stop using your virtual environment and go back to the system’s default Python interpreter
with all its installed libraries, run the deactivate command.

(eb_python_app) $ deactivate

Note

Once created, you can restart the virtual environment at any time by running its activate
script again.

Configuring a Python project for Elastic Beanstalk

You can use the Elastic Beanstalk CLI to prepare your Python applications for deployment with
Elastic Beanstalk.

To configure a Python application for deployment with Elastic Beanstalk

1. From within your virtual environment, return to the top of your project's directory tree
(python_eb_app), and type:

pip freeze >requirements.txt

This command copies the names and versions of the packages that are installed in your virtual
environment to requirements.txt, For example, if the PyYAML package, version 3.11 is
installed in your virtual environment, the file will contain the line:

PyYAML==3.11

This allows Elastic Beanstalk to replicate your application's Python environment using the
same packages and same versions that you used to develop and test your application.

2. Configure the EB CLI repository with the eb init command. Follow the prompts to choose a
region, platform and other options. For detailed instructions, see Managing Elastic Beanstalk
environments with the EB CLI.

Development environment 529

AWS Elastic Beanstalk Developer Guide

By default, Elastic Beanstalk looks for a file called application.py to start your application. If
this doesn't exist in the Python project that you've created, some adjustment of your application's
environment is necessary. You will also need to set environment variables so that your application's
modules can be loaded. See Using the Elastic Beanstalk Python platform for more information.

Using the Elastic Beanstalk Python platform

The AWS Elastic Beanstalk Python platform is a set of platform versions for Python web
applications that can run behind a proxy server with WSGI. Each platform branch corresponds to a
version of Python, such as Python 3.8.

Starting with Amazon Linux 2 platform branches, Elastic Beanstalk provides Gunicorn as the
default WSGI server.

You can add a Procfile to your source bundle to specify and configure the WSGI server for your
application. For details, see the section called “Procfile”.

You can use the Pipfile and Pipfile.lock files created by Pipenv to specify Python package
dependencies and other requirements. For details about specifying dependencies, see the section
called “Specifying dependencies”.

Elastic Beanstalk provides configuration options that you can use to customize the software that
runs on the EC2 instances in your Elastic Beanstalk environment. You can configure environment
variables needed by your application, enable log rotation to Amazon S3, and map folders in your
application source that contain static files to paths served by the proxy server.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate
it, you can use saved configurations to save your settings and later apply them to another
environment.

To save settings in your source code, you can include configuration files. Settings in configuration
files are applied every time you create an environment or deploy your application. You can also
use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

Settings applied in the Elastic Beanstalk console override the same settings in configuration files,
if they exist. This lets you have default settings in configuration files, and override them with
environment-specific settings in the console. For more information about precedence, and other
methods of changing settings, see Configuration options.

The Python platform 530

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.python
https://gunicorn.org/

AWS Elastic Beanstalk Developer Guide

For Python packages available from pip, you can include a requirements file in the root of
your application source code. Elastic Beanstalk installs any dependency packages specified in a
requirements file during deployment. For details, see the section called “Specifying dependencies”.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called “Extending Linux platforms”.

Configuring your Python environment

The Python platform settings let you fine-tune the behavior of your Amazon EC2 instances. You
can edit the Elastic Beanstalk environment's Amazon EC2 instance configuration using the Elastic
Beanstalk console.

Use the Elastic Beanstalk console to configure Python process settings, enable AWS X-Ray, enable
log rotation to Amazon S3, and configure variables that your application can read from the
environment.

To configure your Python environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Python settings

• Proxy server – The proxy server to use on your environment instances. By default, nginx is used.

• WSGI Path – The name of or path to your main application file. For example, application.py,
or django/wsgi.py.

• NumProcesses – The number of processes to run on each application instance.

• NumThreads – The number of threads to run in each process.

The Python platform 531

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

AWS X-Ray settings

• X-Ray daemon – Run the AWS X-Ray daemon to process trace data from the AWS X-Ray SDK for
Python.

Log options

The Log Options section has two settings:

• Instance profile– Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Static files

To improve performance, you can use the Static files section to configure the proxy server to serve
static files (for example, HTML or images) from a set of directories inside your web application.
For each directory, you set the virtual path to directory mapping. When the proxy server receives a
request for a file under the specified path, it serves the file directly instead of routing the request
to your application.

For details about configuring static files using configuration files or the Elastic Beanstalk console,
see the section called “Static files”.

By default, the proxy server in a Python environment serves any files in a folder named
static at the /static path. For example, if your application source contains a file
named logo.png in a folder named static, the proxy server serves it to users at
subdomain.elasticbeanstalk.com/static/logo.png. You can configure additional
mappings as explained in this section.

Environment properties

You can use environment properties to provide information to your application and configure
environment variables. For example, you can create an environment property named
CONNECTION_STRING that specifies a connection string that your application can use to connect
to a database.

The Python platform 532

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-python.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-python.html

AWS Elastic Beanstalk Developer Guide

Inside the Python environment running in Elastic Beanstalk, these values are accessible using
Python's os.environ dictionary. For more information, see http://docs.python.org/library/
os.html.

You can use code that looks similar to the following to access the keys and parameters:

import os
endpoint = os.environ['API_ENDPOINT']

Environment properties can also provide information to a framework. For example, you can
create a property named DJANGO_SETTINGS_MODULE to configure Django to use a specific
settings module. Depending on the environment, the value could be development.settings,
production.settings, etc.

See Environment properties and other software settings for more information.

Python configuration namespaces

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

The Python platform defines options in the aws:elasticbeanstalk:environment:proxy,
aws:elasticbeanstalk:environment:proxy:staticfiles, and
aws:elasticbeanstalk:container:python namespaces.

The following example configuration file specifies configuration option settings to create an
environment property named DJANGO_SETTINGS_MODULE, choose the Apache proxy server,
specify two static files options that map a directory named statichtml to the path /html and
a directory named staticimages to the path /images, and specify additional settings in the
aws:elasticbeanstalk:container:python namespace. This namespace contains options
that let you specify the location of the WSGI script in your source code, and the number of threads
and processes to run in WSGI.

option_settings:
 aws:elasticbeanstalk:application:environment:
 DJANGO_SETTINGS_MODULE: production.settings
 aws:elasticbeanstalk:environment:proxy:
 ProxyServer: apache
 aws:elasticbeanstalk:environment:proxy:staticfiles:

The Python platform 533

http://docs.python.org/library/os.html
http://docs.python.org/library/os.html

AWS Elastic Beanstalk Developer Guide

 /html: statichtml
 /images: staticimages
 aws:elasticbeanstalk:container:python:
 WSGIPath: ebdjango.wsgi:application
 NumProcesses: 3
 NumThreads: 20

Notes

• If you're using an Amazon Linux AMI Python platform version (preceding Amazon Linux
2), replace the value for WSGIPath with ebdjango/wsgi.py. The value in the example
works with the Gunicorn WSGI server, which isn't supported on Amazon Linux AMI
platform versions.

• In addition, these older platform versions use a different namespace for configuring
static files—aws:elasticbeanstalk:container:python:staticfiles. It has the
same option names and semantics as the standard static file namespace.

Configuration files also support several keys to further modify the software on your environment's
instances. This example uses the packages key to install Memcached with yum and container
commands to run commands that configure the server during deployment:

packages:
 yum:
 libmemcached-devel: '0.31'

container_commands:
 collectstatic:
 command: "django-admin.py collectstatic --noinput"
 01syncdb:
 command: "django-admin.py syncdb --noinput"
 leader_only: true
 02migrate:
 command: "django-admin.py migrate"
 leader_only: true
 03wsgipass:
 command: 'echo "WSGIPassAuthorization On" >> ../wsgi.conf'
 99customize:
 command: "scripts/customize.sh"

The Python platform 534

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

Configuring the WSGI server with a Procfile

You can add a Procfile to your source bundle to specify and configure the WSGI server for your
application. The following example uses a Procfile to specify uWSGI as the server and configure
it.

Example Procfile

web: uwsgi --http :8000 --wsgi-file application.py --master --processes 4 --threads 2

The following example uses a Procfile to configure Gunicorn, the default WSGI server.

Example Procfile

web: gunicorn --bind :8000 --workers 3 --threads 2 project.wsgi:application

Notes

• If you configure any WSGI server other than Gunicorn, be sure to also specify it as a
dependency of your application, so that it is installed on your environment instances. For
details about dependency specification, see the section called “Specifying dependencies”.

• The default port for the WSGI server is 8000. If you specify a different port number in
your Procfile command, set the PORT environment property to this port number too.

When you use a Procfile, it overrides aws:elasticbeanstalk:container:python
namespace options that you set using configuration files.

For details about Procfile usage, expand the Buildfile and Procfile section in the section called
“Extending Linux platforms”.

The Python platform 535

AWS Elastic Beanstalk Developer Guide

Specifying dependencies using a requirements file

A typical Python application has dependencies on other third-party Python packages. With the
Elastic Beanstalk Python platform, you have a few ways to specify Python packages that your
application depends on.

Use pip and requirements.txt

The standard tool for installing Python packages is pip. It has a feature that allows you to
specify all the packages you need (as well as their versions) in a single requirements file. For more
information about the requirements file, see Requirements File Format on the pip documentation
website.

Create a file named requirements.txt and place it in the top-level directory of your source
bundle. The following is an example requirements.txt file for Django.

Django==2.2
mysqlclient==2.0.3

In your development environment, you can use the pip freeze command to generate your
requirements file.

~/my-app$ pip freeze > requirements.txt

To ensure that your requirements file only contains packages that are actually used by your
application, use a virtual environment that only has those packages installed. Outside of a
virtual environment, the output of pip freeze will include all pip packages installed on your
development machine, including those that came with your operating system.

Note

On Amazon Linux AMI Python platform versions, Elastic Beanstalk doesn't natively support
Pipenv or Pipfiles. If you use Pipenv to manage your application's dependencies, run the
following command to generate a requirements.txt file.

~/my-app$ pipenv lock -r > requirements.txt

To learn more, see Generating a requirements.txt in the Pipenv documentation.

The Python platform 536

https://pip.pypa.io/en/latest/reference/requirements-file-format/#requirements-file-format
https://pipenv.readthedocs.io/en/latest/advanced/#generating-a-requirements-txt

AWS Elastic Beanstalk Developer Guide

Use Pipenv and Pipfile

Pipenv is a modern Python packaging tool. It combines package installation with the creation and
management of a dependency file and a virtualenv for your application. For more information, see
Pipenv: Python Dev Workflow for Humans.

Pipenv maintains two files:

• Pipfile — This file contains various types of dependencies and requirements.

• Pipfile.lock — This file contains a version snapshot that enables deterministic builds.

You can create these files on your development environment and include them in the top-level
directory of the source bundle that you deploy to Elastic Beanstalk. For more information about
these two files, see Example Pipfile and Pipfile.lock.

The following example uses Pipenv to install Django and the Django REST framework. These
commands create the files Pipfile and Pipfile.lock.

~/my-app$ pipenv install django
~/my-app$ pipenv install djangorestframework

Precedence

If you include more than one of the requirements files described in this topic, Elastic Beanstalk uses
just one of them. The following list shows the precedence, in descending order.

1. requirements.txt

2. Pipfile.lock

3. Pipfile

Note

Starting with the March 7, 2023 Amazon Linux 2 platform release, if you provide more than
one of these files, Elastic Beanstalk will issue a console message stating which one of the
dependency files was used during a deployment.

The Python platform 537

https://pipenv.readthedocs.io/en/latest/
https://pipenv.pypa.io/en/latest/basics/#

AWS Elastic Beanstalk Developer Guide

The following steps describe the logic that Elastic Beanstalk follows to install the dependencies
when it's deploying an instance.

• If there is a requirements.txt file, we use the command pip install -r
requirements.txt.

• Starting with the March 7, 2023 Amazon Linux 2 platform release, if there is no
requirements.txt file, but there is a Pipfile.lock, we use the command pipenv sync.
Prior to that release, we used pipenv install --ignore-pipfile.

• If there is neither a requirements.txt file nor a Pipfile.lock, but there is a Pipfile, we
use the command pipenv install --skip-lock.

• If none of the three requirements files are found, we don't install any application dependencies.

Deploying a Flask application to Elastic Beanstalk

Flask is an open source web application framework for Python. This tutorial walks you through
the process of generating a Flask application and deploying it to an AWS Elastic Beanstalk
environment.

In this tutorial, you’ll do the following:

• Set up a Python virtual environment with Flask

• Create a Flask application

• Deploy your site with the EB CLI

• Cleanup

Prerequisites

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Getting started using Elastic
Beanstalk to launch your first Elastic Beanstalk environment.

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command

Tutorial - flask 538

AWS Elastic Beanstalk Developer Guide

this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows 10, you
can install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and
Bash.

Flask requires Python 3.7 or later. In this tutorial we use Python 3.7 and the corresponding Elastic
Beanstalk platform version. Install Python by following the instructions at Setting up your Python
development environment.

The Flask framework will be installed as part of the tutorial.

This tutorial also uses the Elastic Beanstalk Command Line Interface (EB CLI). For details on
installing and configuring the EB CLI, see Install the EB CLI and Configure the EB CLI.

Set up a Python virtual environment with Flask

Create a project directory and virtual environment for your application, and install Flask.

To set up your project environment

1. Create a project directory.

~$ mkdir eb-flask
~$ cd eb-flask

2. Create and activate a virtual environment named virt:

~/eb-flask$ virtualenv virt
~$ source virt/bin/activate
(virt) ~/eb-flask$

You will see (virt) prepended to your command prompt, indicating that you're in a virtual
environment. Use the virtual environment for the rest of this tutorial.

3. Install Flask with pip install:

(virt)~/eb-flask$ pip install flask==2.0.3

4. View the installed libraries with pip freeze:

(virt)~/eb-flask$ pip freeze

Tutorial - flask 539

https://docs.microsoft.com/en-us/windows/wsl/install-win10
http://flask.pocoo.org/

AWS Elastic Beanstalk Developer Guide

click==8.1.1
Flask==2.0.3
itsdangerous==2.1.2
Jinja2==3.1.1
MarkupSafe==2.1.1
Werkzeug==2.1.0

This command lists all of the packages installed in your virtual environment. Because you are
in a virtual environment, globally installed packages like the EB CLI are not shown.

5. Save the output from pip freeze to a file named requirements.txt.

(virt)~/eb-flask$ pip freeze > requirements.txt

This file tells Elastic Beanstalk to install the libraries during deployment. For more information,
see Specifying dependencies using a requirements file.

Create a Flask application

Next, create an application that you'll deploy using Elastic Beanstalk. We'll create a "Hello World"
RESTful web service.

Create a new text file in this directory named application.py with the following contents:

Example ~/eb-flask/application.py

from flask import Flask

print a nice greeting.
def say_hello(username = "World"):
 return '<p>Hello %s!</p>\n' % username

some bits of text for the page.
header_text = '''
 <html>\n<head> <title>EB Flask Test</title> </head>\n<body>'''
instructions = '''
 <p>Hint: This is a RESTful web service! Append a username
 to the URL (for example: <code>/Thelonious</code>) to say hello to
 someone specific.</p>\n'''
home_link = '<p>Back</p>\n'
footer_text = '</body>\n</html>'

Tutorial - flask 540

AWS Elastic Beanstalk Developer Guide

EB looks for an 'application' callable by default.
application = Flask(__name__)

add a rule for the index page.
application.add_url_rule('/', 'index', (lambda: header_text +
 say_hello() + instructions + footer_text))

add a rule when the page is accessed with a name appended to the site
URL.
application.add_url_rule('/<username>', 'hello', (lambda username:
 header_text + say_hello(username) + home_link + footer_text))

run the app.
if __name__ == "__main__":
 # Setting debug to True enables debug output. This line should be
 # removed before deploying a production app.
 application.debug = True
 application.run()

This example prints a customized greeting that varies based on the path used to access the service.

Note

By adding application.debug = True before running the application, debug output
is enabled in case something goes wrong. It's a good practice for development, but you
should remove debug statements in production code, since debug output can reveal
internal aspects of your application.

Using application.py as the filename and providing a callable application object (the Flask
object, in this case) allows Elastic Beanstalk to easily find your application's code.

Run application.py with Python:

(virt) ~/eb-flask$ python application.py
 * Serving Flask app "application" (lazy loading)
 * Environment: production
 WARNING: Do not use the development server in a production environment.
 Use a production WSGI server instead.
 * Debug mode: on

Tutorial - flask 541

AWS Elastic Beanstalk Developer Guide

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 313-155-123

Open http://127.0.0.1:5000/ in your web browser. You should see the application running,
showing the index page:

Check the server log to see the output from your request. You can stop the web server and return
to your virtual environment by typing Ctrl+C.

If you got debug output instead, fix the errors and make sure the application is running locally
before configuring it for Elastic Beanstalk.

Deploy your site with the EB CLI

You've added everything you need to deploy your application on Elastic Beanstalk. Your project
directory should now look like this:

~/eb-flask/
|-- virt
|-- application.py
`-- requirements.txt

The virt folder, however, is not required for the application to run on Elastic Beanstalk. When you
deploy, Elastic Beanstalk creates a new virtual environment on the server instances and installs the
libraries listed in requirements.txt. To minimize the size of the source bundle that you upload
during deployment, add an .ebignore file that tells the EB CLI to leave out the virt folder.

Tutorial - flask 542

AWS Elastic Beanstalk Developer Guide

Example ~/eb-flask/.ebignore

virt

Next, you'll create your application environment and deploy your configured application with
Elastic Beanstalk.

To create an environment and deploy your Flask application

1. Initialize your EB CLI repository with the eb init command:

~/eb-flask$ eb init -p python-3.7 flask-tutorial --region us-east-2
Application flask-tutorial has been created.

This command creates a new application named flask-tutorial and configures your local
repository to create environments with the latest Python 3.7 platform version.

2. (optional) Run eb init again to configure a default keypair so that you can connect to the EC2
instance running your application with SSH:

~/eb-flask$ eb init
Do you want to set up SSH for your instances?
(y/n): y
Select a keypair.
1) my-keypair
2) [Create new KeyPair]

Select a key pair if you have one already, or follow the prompts to create a new one. If you
don't see the prompt or need to change your settings later, run eb init -i.

3. Create an environment and deploy your application to it with eb create:

~/eb-flask$ eb create flask-env

Environment creation takes about 5 minutes and creates the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Tutorial - flask 543

AWS Elastic Beanstalk Developer Guide

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the AWS CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com
domain is registered in the Public Suffix List (PSL). For further security, we recommend
that you use cookies with a __Host- prefix if you ever need to set sensitive cookies in
the default domain name for your Elastic Beanstalk applications. This practice will help
to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

Tutorial - flask 544

https://console.aws.amazon.com/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

AWS Elastic Beanstalk Developer Guide

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

When the environment creation process completes, open your web site with eb open:

~/eb-flask$ eb open

This will open a browser window using the domain name created for your application. You should
see the same Flask website that you created and tested locally.

If you don't see your application running, or get an error message, see Troubleshooting
Deployments for help with how to determine the cause of the error.

If you do see your application running, then congratulations, you've deployed your first Flask
application with Elastic Beanstalk!

Cleanup

When you finish working with Elastic Beanstalk, you can terminate your environment. Elastic
Beanstalk terminates all AWS resources associated with your environment, such as Amazon EC2
instances, database instances, load balancers, security groups, and alarms.

Tutorial - flask 545

AWS Elastic Beanstalk Developer Guide

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

With Elastic Beanstalk, you can easily create a new environment for your application at any time.

Or, with the EB CLI:

~/eb-flask$ eb terminate flask-env

Next steps

For more information about Flask, visit flask.pocoo.org.

If you'd like to try out another Python web framework, check out Deploying a Django application to
Elastic Beanstalk.

Deploying a Django application to Elastic Beanstalk

This tutorial walks through the deployment of a default, autogenerated Django website to an AWS
Elastic Beanstalk environment running Python. This tutorial shows you how to host a Python web
app in the cloud by using an Elastic Beanstalk environment.

In this tutorial, you’ll do the following:

• Set up a Python virtual environment and install Django

• Create a Django project

• Configure your Django application for Elastic Beanstalk

• Deploy your site with the EB CLI

Tutorial - Django 546

https://console.aws.amazon.com/elasticbeanstalk
http://flask.pocoo.org/
https://www.djangoproject.com/

AWS Elastic Beanstalk Developer Guide

• Update your application

• Clean up

Prerequisites

To use any AWS service, including Elastic Beanstalk, you need to have an AWS account and
credentials. To learn more and to sign up, visit https://aws.amazon.com/.

To follow this tutorial, you should have all of the Common Prerequisites for Python installed,
including the following packages:

• Python 3.7 or later

• pip

• virtualenv

• awsebcli

The Django framework is installed as part of the tutorial.

Note

Creating environments with the EB CLI requires a service role. You can create a service role
by creating an environment in the Elastic Beanstalk console. If you don't have a service role,
the EB CLI attempts to create one when you run eb create.

Set up a Python virtual environment and install Django

Create a virtual environment with virtualenv and use it to install Django and its dependencies.
By using a virtual environment, you can know exactly which packages your application needs,
so that the required packages are installed on the Amazon EC2 instances that are running your
application.

The following steps demonstrate the commands you must enter for Unix-based systems and
Windows, shown on separate tabs.

To set up your virtual environment

1. Create a virtual environment named eb-virt.

Tutorial - Django 547

https://aws.amazon.com/
https://www.djangoproject.com/

AWS Elastic Beanstalk Developer Guide

Unix-based systems

~$ virtualenv ~/eb-virt

Windows

C:\> virtualenv %HOMEPATH%\eb-virt

2. Activate the virtual environment.

Unix-based systems

~$ source ~/eb-virt/bin/activate
(eb-virt) ~$

Windows

C:\>%HOMEPATH%\eb-virt\Scripts\activate
(eb-virt) C:\>

You'll see (eb-virt) prepended to your command prompt, indicating that you're in a virtual
environment.

Note

The rest of these instructions show the Linux command prompt in your home directory
~$. On Windows this is C:\Users\USERNAME>, where USERNAME is your Windows
login name.

3. Use pip to install Django.

(eb-virt)~$ pip install django==2.2

Tutorial - Django 548

AWS Elastic Beanstalk Developer Guide

Note

The Django version you install must be compatible with the Python version on the
Elastic Beanstalk Python configuration that you choose for deploying your application.
For information about deployment, see ??? in this topic.
For more information about current Python platform versions, see Python in the AWS
Elastic Beanstalk Platforms document.
For Django version compatibility with Python, see What Python version can I use with
Django?

4. To verify that Django is installed, enter the following.

(eb-virt)~$ pip freeze
Django==2.2
...

This command lists all of the packages installed in your virtual environment. Later, you use the
output of this command to configure your project for use with Elastic Beanstalk.

Create a Django project

Now you are ready to create a Django project and run it on your machine, using the virtual
environment.

Note

This tutorial uses SQLite, which is a database engine included in Python. The database is
deployed with your project files. For production environments, we recommend that you
use Amazon Relational Database Service (Amazon RDS), and that you separate it from
your environment. For more information, see Adding an Amazon RDS DB instance to your
Python application environment.

To generate a Django application

1. Activate your virtual environment.

Tutorial - Django 549

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.python
https://docs.djangoproject.com/en/3.1/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/3.1/faq/install/#what-python-version-can-i-use-with-django

AWS Elastic Beanstalk Developer Guide

Unix-based systems

~$ source ~/eb-virt/bin/activate
(eb-virt) ~$

Windows

C:\>%HOMEPATH%\eb-virt\Scripts\activate
(eb-virt) C:\>

You'll see the (eb-virt) prefix prepended to your command prompt, indicating that you're in
a virtual environment.

Note

The rest of these instructions show the Linux command prompt ~$ in your home
directory and the Linux home directory ~/. On Windows these are C:\Users
\USERNAME>, where USERNAME is your Windows login name.

2. Use the django-admin startproject command to create a Django project named
ebdjango.

(eb-virt)~$ django-admin startproject ebdjango

This command creates a standard Django site named ebdjango with the following directory
structure.

~/ebdjango
 |-- ebdjango
 | |-- __init__.py
 | |-- settings.py
 | |-- urls.py
 | `-- wsgi.py
 `-- manage.py

3. Run your Django site locally with manage.py runserver.

Tutorial - Django 550

AWS Elastic Beanstalk Developer Guide

(eb-virt) ~$ cd ebdjango

(eb-virt) ~/ebdjango$ python manage.py runserver

4. In a web browser, open http://127.0.0.1:8000/ to view the site.

5. Check the server log to see the output from your request. To stop the web server and return to
your virtual environment, press Ctrl+C.

Django version 2.2, using settings 'ebdjango.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.
[07/Sep/2018 20:14:09] "GET / HTTP/1.1" 200 16348
Ctrl+C

Configure your Django application for Elastic Beanstalk

Now that you have a Django-powered site on your local machine, you can configure it for
deployment with Elastic Beanstalk.

By default, Elastic Beanstalk looks for a file named application.py to start your application.
Because this doesn't exist in the Django project that you've created, you need to make some
adjustments to your application's environment. You also must set environment variables so that
your application's modules can be loaded.

To configure your site for Elastic Beanstalk

1. Activate your virtual environment.

Unix-based systems

~/ebdjango$ source ~/eb-virt/bin/activate

Windows

C:\Users\USERNAME\ebdjango>%HOMEPATH%\eb-virt\Scripts\activate

2. Run pip freeze, and then save the output to a file named requirements.txt.

Tutorial - Django 551

AWS Elastic Beanstalk Developer Guide

(eb-virt) ~/ebdjango$ pip freeze > requirements.txt

Elastic Beanstalk uses requirements.txt to determine which package to install on the EC2
instances that run your application.

3. Create a directory named .ebextensions.

(eb-virt) ~/ebdjango$ mkdir .ebextensions

4. In the .ebextensions directory, add a configuration file named django.config with the
following text.

Example ~/ebdjango/.ebextensions/django.config

option_settings:
 aws:elasticbeanstalk:container:python:
 WSGIPath: ebdjango.wsgi:application

This setting, WSGIPath, specifies the location of the WSGI script that Elastic Beanstalk uses to
start your application.

Note

If you're using an Amazon Linux AMI Python platform version (preceding Amazon
Linux 2), replace the value for WSGIPath with ebdjango/wsgi.py. The value in the
example works with the Gunicorn WSGI server, which isn't supported on Amazon Linux
AMI platform versions.

5. Deactivate your virtual environment with the deactivate command.

(eb-virt) ~/ebdjango$ deactivate

Reactivate your virtual environment whenever you need to add packages to your application
or run your application locally.

Tutorial - Django 552

AWS Elastic Beanstalk Developer Guide

Deploy your site with the EB CLI

You've added everything you need to deploy your application on Elastic Beanstalk. Your project
directory should now look like this.

~/ebdjango/
|-- .ebextensions
| `-- django.config
|-- ebdjango
| |-- __init__.py
| |-- settings.py
| |-- urls.py
| `-- wsgi.py
|-- db.sqlite3
|-- manage.py
`-- requirements.txt

Next, you'll create your application environment and deploy your configured application with
Elastic Beanstalk.

Immediately after deployment, you'll edit Django's configuration to add the domain name that
Elastic Beanstalk assigned to your application to Django's ALLOWED_HOSTS. Then you'll redeploy
your application. This is a Django security requirement, designed to prevent HTTP Host header
attacks. For more information, see Host header validation.

To create an environment and deploy your Django application

Note

This tutorial uses the EB CLI as a deployment mechanism, but you can also use the Elastic
Beanstalk console to deploy a .zip file containing your project's contents.

1. Initialize your EB CLI repository with the eb init command.

~/ebdjango$ eb init -p python-3.7 django-tutorial
Application django-tutorial has been created.

This command creates an application named django-tutorial. It also configures your local
repository to create environments with the latest Python 3.7 platform version.

Tutorial - Django 553

https://docs.djangoproject.com/en/2.2/topics/security/#host-headers-virtual-hosting

AWS Elastic Beanstalk Developer Guide

2. (Optional) Run eb init again to configure a default key pair so that you can use SSH to connect
to the EC2 instance running your application.

~/ebdjango$ eb init
Do you want to set up SSH for your instances?
(y/n): y
Select a keypair.
1) my-keypair
2) [Create new KeyPair]

Select a key pair if you have one already, or follow the prompts to create one. If you don't see
the prompt or need to change your settings later, run eb init -i.

3. Create an environment and deploy your application to it with eb create.

~/ebdjango$ eb create django-env

Note

If you see a "service role required" error message, run eb create interactively
(without specifying an environment name) and the EB CLI creates the role for you.

This command creates a load-balanced Elastic Beanstalk environment named django-env.
Creating an environment takes about 5 minutes. As Elastic Beanstalk creates the resources
needed to run your application, it outputs informational messages that the EB CLI relays to
your terminal.

4. When the environment creation process completes, find the domain name of your new
environment by running eb status.

~/ebdjango$ eb status
Environment details for: django-env
 Application name: django-tutorial
 ...
 CNAME: eb-django-app-dev.elasticbeanstalk.com
 ...

Your environment's domain name is the value of the CNAME property.

Tutorial - Django 554

AWS Elastic Beanstalk Developer Guide

5. Open the settings.py file in the ebdjango directory. Locate the ALLOWED_HOSTS setting,
and then add your application's domain name that you found in the previous step to the
setting's value. If you can't find this setting in the file, add it to a new line.

...
ALLOWED_HOSTS = ['eb-django-app-dev.elasticbeanstalk.com']

6. Save the file, and then deploy your application by running eb deploy. When you run eb
deploy, the EB CLI bundles up the contents of your project directory and deploys it to your
environment.

~/ebdjango$ eb deploy

Note

If you are using Git with your project, see Using the EB CLI with Git.

7. When the environment update process completes, open your website with eb open.

~/ebdjango$ eb open

This opens a browser window using the domain name created for your application. You should
see the same Django website that you created and tested locally.

If you don't see your application running, or get an error message, see Troubleshooting
deployments for help with how to determine the cause of the error.

If you do see your application running, then congratulations, you've deployed your first Django
application with Elastic Beanstalk!

Update your application

Now that you have a running application on Elastic Beanstalk, you can update and redeploy your
application or its configuration, and Elastic Beanstalk does the work of updating your instances and
starting your new application version.

For this example, we'll enable Django's admin console and configure a few other settings.

Tutorial - Django 555

AWS Elastic Beanstalk Developer Guide

Modify your site settings

By default, your Django website uses the UTC time zone to display time. You can change this by
specifying a time zone in settings.py.

To change your site's time zone

1. Modify the TIME_ZONE setting in settings.py.

Example ~/ebdjango/ebdjango/settings.py

...
Internationalization
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'US/Pacific'
USE_I18N = True
USE_L10N = True
USE_TZ = True

For a list of time zones, visit this page.

2. Deploy the application to your Elastic Beanstalk environment.

~/ebdjango/$ eb deploy

Create a site administrator

You can create a site administrator for your Django application to access the admin console directly
from the website. Administrator login details are stored securely in the local database image
included in the default project that Django generates.

To create a site administrator

1. Initialize your Django application's local database.

(eb-virt) ~/ebdjango$ python manage.py migrate
Operations to perform:
 Apply all migrations: admin, auth, contenttypes, sessions
Running migrations:
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK

Tutorial - Django 556

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

AWS Elastic Beanstalk Developer Guide

 Applying admin.0001_initial... OK
 Applying admin.0002_logentry_remove_auto_add... OK
 Applying admin.0003_logentry_add_action_flag_choices... OK
 Applying contenttypes.0002_remove_content_type_name... OK
 Applying auth.0002_alter_permission_name_max_length... OK
 Applying auth.0003_alter_user_email_max_length... OK
 Applying auth.0004_alter_user_username_opts... OK
 Applying auth.0005_alter_user_last_login_null... OK
 Applying auth.0006_require_contenttypes_0002... OK
 Applying auth.0007_alter_validators_add_error_messages... OK
 Applying auth.0008_alter_user_username_max_length... OK
 Applying auth.0009_alter_user_last_name_max_length... OK
 Applying sessions.0001_initial... OK

2. Run manage.py createsuperuser to create an administrator.

(eb-virt) ~/ebdjango$ python manage.py createsuperuser
Username: admin
Email address: me@mydomain.com
Password: ********
Password (again): ********
Superuser created successfully.

3. To tell Django where to store static files, define STATIC_ROOT in settings.py.

Example ~/ebdjango/ebdjango/settings.py

Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/2.2/howto/static-files/
STATIC_URL = '/static/'
STATIC_ROOT = 'static'

4. Run manage.py collectstatic to populate the static directory with static assets
(JavaScript, CSS, and images) for the admin site.

(eb-virt) ~/ebdjango$ python manage.py collectstatic
119 static files copied to ~/ebdjango/static

5. Deploy your application.

~/ebdjango$ eb deploy

Tutorial - Django 557

AWS Elastic Beanstalk Developer Guide

6. View the admin console by opening the site in your browser, appending /admin/ to the site
URL, such as the following.

http://djang-env.p33kq46sfh.us-west-2.elasticbeanstalk.com/admin/

7. Log in with the username and password that you configured in step 2.

You can use a similar procedure of local updating/testing followed by eb deploy. Elastic Beanstalk
does the work of updating your live servers, so you can focus on application development instead
of server administration!

Tutorial - Django 558

AWS Elastic Beanstalk Developer Guide

Add a database migration configuration file

You can add commands to your .ebextensions script that are run when your site is updated. This
enables you to automatically generate database migrations.

To add a migrate step when your application is deployed

1. Create a configuration file named db-migrate.config with the following content.

Example ~/ebdjango/.ebextensions/db-migrate.config

container_commands:
 01_migrate:
 command: "source /var/app/venv/*/bin/activate && python3 manage.py migrate"
 leader_only: true
option_settings:
 aws:elasticbeanstalk:application:environment:
 DJANGO_SETTINGS_MODULE: ebdjango.settings

This configuration file activates the server's virtual environment and runs the manage.py
migrate command during the deployment process, before starting your application. Because
it runs before the application starts, you must also configure the DJANGO_SETTINGS_MODULE
environment variable explicitly (usually wsgi.py takes care of this for you during startup).
Specifying leader_only: true in the command ensures that it is run only once when you're
deploying to multiple instances.

2. Deploy your application.

~/ebdjango$ eb deploy

Clean up

To save instance hours and other AWS resources between development sessions, terminate your
Elastic Beanstalk environment with eb terminate.

~/ebdjango$ eb terminate django-env

This command terminates the environment and all of the AWS resources that run within it. It
doesn't delete the application, however, so you can always create more environments with the

Tutorial - Django 559

AWS Elastic Beanstalk Developer Guide

same configuration by running eb create again. For more information on EB CLI commands, see
Managing Elastic Beanstalk environments with the EB CLI.

If you're done with the sample application, you can also remove the project folder and virtual
environment.

~$ rm -rf ~/eb-virt
~$ rm -rf ~/ebdjango

Next steps

For more information about Django, including an in-depth tutorial, see the official documentation.

If you want to try out another Python web framework, check out Deploying a Flask application to
Elastic Beanstalk.

Adding an Amazon RDS DB instance to your Python application
environment

You can use an Amazon Relational Database Service (Amazon RDS) DB instance to store data
gathered and modified by your application. The database can be coupled to your environment
and managed by Elastic Beanstalk, or it can be created as decoupled and managed externally
by another service. This topic provides instructions to create an Amazon RDS using the Elastic
Beanstalk console. The database will be coupled to your environment and managed by Elastic
Beanstalk. For more information about integrating an Amazon RDS with Elastic Beanstalk, see
Adding a database to your Elastic Beanstalk environment.

Sections

• Adding a DB instance to your environment

• Downloading a driver

• Connecting to a database

Adding a DB instance to your environment

To add a DB instance to your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

Adding a database 560

https://docs.djangoproject.com/en/2.2/
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. Choose a DB engine, and enter a user name and password.

6. To save the changes choose Apply at the bottom of the page.

Adding a DB instance takes about 10 minutes. When the environment update is complete, the DB
instance's hostname and other connection information are available to your application through
the following environment properties:

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab on
the Amazon RDS console: DB
Name.

RDS_USERNAME The username that you
configured for your database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your database.

Not available for reference in
the Amazon RDS console.

Adding a database 561

AWS Elastic Beanstalk Developer Guide

For more information about configuring a database instance coupled with an Elastic Beanstalk
environment, see Adding a database to your Elastic Beanstalk environment.

Downloading a driver

Add the database driver to your project's requirements file.

Example requirements.txt – Django with MySQL

Django==2.2
mysqlclient==2.0.3

Common driver packages for Python

• MySQL – mysqlclient

• PostgreSQL – psycopg2

• Oracle – cx_Oracle

• SQL Server – adodbapi

For more information see Python DatabaseInterfaces and Django 2.2 - supported databases.

Connecting to a database

Elastic Beanstalk provides connection information for attached DB instances in environment
properties. Use os.environ['VARIABLE'] to read the properties and configure a database
connection.

Example Django settings file – DATABASES dictionary

import os

if 'RDS_HOSTNAME' in os.environ:
 DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': os.environ['RDS_DB_NAME'],
 'USER': os.environ['RDS_USERNAME'],
 'PASSWORD': os.environ['RDS_PASSWORD'],
 'HOST': os.environ['RDS_HOSTNAME'],

Adding a database 562

https://wiki.python.org/moin/DatabaseInterfaces
https://docs.djangoproject.com/en/2.2/ref/databases

AWS Elastic Beanstalk Developer Guide

 'PORT': os.environ['RDS_PORT'],
 }
 }

Python tools and resources

There are several places you can go to get additional help when developing your Python
applications:

Resource Description

Boto (the AWS SDK for Python) Install Boto using GitHub.

Python Development Forum Post your questions and get feedback.

Python Developer Center One-stop shop for sample code, documentation, tools,
and additional resources.

Creating and deploying Ruby applications on Elastic Beanstalk

AWS Elastic Beanstalk for Ruby makes it easy to deploy, manage, and scale your Ruby web
applications using Amazon Web Services. Elastic Beanstalk is available to anyone developing or
hosting a web application using Ruby. This section provides step-by-step instructions for deploying
a sample application to Elastic Beanstalk using the Elastic Beanstalk command line interface (EB
CLI), and then updating the application to use the Rails and Sinatra web application frameworks.

The topics in this chapter assume that you have some knowledge of Elastic Beanstalk
environments. If you haven't used Elastic Beanstalk before, try the getting started tutorial to learn
the basics.

Topics

• Setting up your Ruby development environment

• Using the Elastic Beanstalk Ruby platform

• Deploying a rails application to Elastic Beanstalk

• Deploying a sinatra application to Elastic Beanstalk

• Adding an Amazon RDS DB instance to your Ruby application environment

Resources 563

https://github.com/boto/boto/downloads/
https://forums.aws.amazon.com/forum.jspa?forumID=132
https://aws.amazon.com/python/
http://rubyonrails.org/
http://www.sinatrarb.com/

AWS Elastic Beanstalk Developer Guide

Setting up your Ruby development environment

Set up a Ruby development environment to test your application locally prior to deploying it to
AWS Elastic Beanstalk. This topic outlines development environment setup steps and links to
installation pages for useful tools.

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows 10, you
can install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and
Bash.

For common setup steps and tools that apply to all languages, see Configuring your development
machine for use with Elastic Beanstalk

Sections

• Installing Ruby

• Installing the AWS SDK for Ruby

• Installing an IDE or text editor

Installing Ruby

Install GCC if you don't have a C compiler. On Ubuntu, use apt.

~$ sudo apt install gcc

On Amazon Linux, use yum.

~$ sudo yum install gcc

Install RVM to manage Ruby language installations on your machine. Use the commands at rvm.io
to get the project keys and run the installation script.

Development environment 564

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://rvm.io/

AWS Elastic Beanstalk Developer Guide

~$ gpg2 --recv-keys key1 key2
~$ curl -sSL https://get.rvm.io | bash -s stable

This script installs RVM in a folder named .rvm in your user directory, and modifies your shell
profile to load a setup script whenever you open a new terminal. Load the script manually to get
started.

~$ source ~/.rvm/scripts/rvm

Use rvm get head to get the latest version.

~$ rvm get head

View the available versions of Ruby.

~$ rvm list known
MRI Rubies
...
[ruby-]2.6[.8]
[ruby-]2.7[.4]
[ruby-]3[.0.2]
...

Check Ruby in the AWS Elastic Beanstalk Platforms document to find the latest version of Ruby
available on an Elastic Beanstalk platform. Install that version.

~$ rvm install 3.0.2
Searching for binary rubies, this might take some time.
Found remote file https://rubies.travis-ci.org/ubuntu/20.04/x86_64/ruby-3.0.2.tar.bz2
Checking requirements for ubuntu.
Updating system..
...
Requirements installation successful.
ruby-3.0.2 - #configure
ruby-3.0.2 - #download
...

Test your Ruby installation.

~$ ruby --version

Development environment 565

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.ruby

AWS Elastic Beanstalk Developer Guide

ruby 3.0.2p107 (2021-07-07 revision 0db68f0233) [x86_64-linux]

Installing the AWS SDK for Ruby

If you need to manage AWS resources from within your application, install the AWS SDK for Ruby.
For example, with the SDK for Ruby, you can use Amazon DynamoDB (DynamoDB) to store user
and session information without creating a relational database.

Install the SDK for Ruby and its dependencies with the gem command.

$ gem install aws-sdk

Visit the AWS SDK for Ruby homepage for more information and installation instructions.

Installing an IDE or text editor

Integrated development environments (IDEs) provide a wide range of features that facilitate
application development. If you haven't used an IDE for Ruby development, try Aptana and
RubyMine and see which works best for you.

• Install Aptana

• RubyMine

Note

An IDE might add files to your project folder that you might not want to commit to source
control. To prevent committing these files to source control, use .gitignore or your
source control tool's equivalent.

If you just want to begin coding and don't need all of the features of an IDE, consider installing
Sublime Text.

Using the Elastic Beanstalk Ruby platform

The AWS Elastic Beanstalk Ruby platform is a set of environment configurations for Ruby web
applications that can run behind an NGNIX proxy server under a Puma application server. Each
platform branch corresponds to a version of Ruby. If you use RubyGems, you can include a
Gemfile file in your source bundle to install packages during deployment.

The Ruby platform 566

https://aws.amazon.com/sdk-for-ruby/
https://github.com/aptana/studio3
https://www.jetbrains.com/ruby/
http://www.sublimetext.com/
http://www.sublimetext.com/
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.ruby

AWS Elastic Beanstalk Developer Guide

Application server configuration

Elastic Beanstalk installs the Puma application server based on the Ruby platform branch that you
choose when you create your environment. For more information about the components provided
with the Ruby platform versions, see Supported Platforms in the AWS Elastic Beanstalk Platforms
guide.

You can configure your application with your own provided Puma server. This provides the option
to use a version of Puma other than the one pre-installed with the Ruby platform branch. You can
also configure your application to use a different application server, such as Passenger. To do so,
you must include and customize a Gemfile in your deployment. You're also required to configure
a Procfile to start the application server. For more information see Configuring the application
process with a Procfile.

Other configuration options

Elastic Beanstalk provides configuration options that you can use to customize the software that
runs on the Amazon Elastic Compute Cloud (Amazon EC2) instances in your Elastic Beanstalk
environment. You can configure environment variables needed by your application, enable log
rotation to Amazon S3, and map folders in your application source that contain static files to paths
served by the proxy server. The platform also predefines some common environment variables
related to Rails and Rack for ease of discovery and use.

Configuration options are available in the Elastic Beanstalk console for modifying the configuration
of a running environment. To avoid losing your environment's configuration when you terminate
it, you can use saved configurations to save your settings and later apply them to another
environment.

To save settings in your source code, you can include configuration files. Settings in configuration
files are applied every time you create an environment or deploy your application. You can also
use configuration files to install packages, run scripts, and perform other instance customization
operations during deployments.

Settings applied in the Elastic Beanstalk console override the same settings in configuration files,
if they exist. This lets you have default settings in configuration files, and override them with
environment-specific settings in the console. For more information about precedence, and other
methods of changing settings, see Configuration options.

For details about the various ways you can extend an Elastic Beanstalk Linux-based platform, see
the section called “Extending Linux platforms”.

The Ruby platform 567

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.ruby
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ruby-platform-procfile.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ruby-platform-procfile.html

AWS Elastic Beanstalk Developer Guide

Configuring your Ruby environment

You can use the Elastic Beanstalk console to enable log rotation to Amazon S3 and configure
variables that your application can read from the environment.

To access the software configuration settings for your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

Log options

The Log options section has two settings:

• Instance profile– Specifies the instance profile that has permission to access the Amazon S3
bucket associated with your application.

• Enable log file rotation to Amazon S3 – Specifies whether log files for your application's
Amazon EC2 instances are copied to the Amazon S3 bucket associated with your application.

Static files

To improve performance, you can use the Static files section to configure the proxy server to serve
static files (for example, HTML or images) from a set of directories inside your web application.
For each directory, you set the virtual path to directory mapping. When the proxy server receives a
request for a file under the specified path, it serves the file directly instead of routing the request
to your application.

For details about configuring static files using configuration files or the Elastic Beanstalk console,
see the section called “Static files”.

By default, the proxy server in a Ruby environment is configured to serve static files as follows:

The Ruby platform 568

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

• Files in the public folder are served from the /public path and the domain root (/ path).

• Files in the public/assets subfolder are served from the /assets path.

The following examples illustrate how the default configuration works:

• If your application source contains a file named logo.png in a folder named public, the proxy
server serves it to users from subdomain.elasticbeanstalk.com/public/logo.png and
subdomain.elasticbeanstalk.com/logo.png.

• If your application source contains a file named logo.png in a folder named assets inside the
public folder, the proxy server serves it from subdomain.elasticbeanstalk.com/assets/
logo.png.

You can configure additional mappings for static files. For more information, see Ruby
configuration namespaces later in this topic.

Note

For platform versions prior to Ruby 2.7 AL2 version 3.3.7, the default Elastic Beanstalk
nginx proxy server configuration doesn't support serving static files from the domain
root (subdomain.elasticbeanstalk.com/). This platform version was released on
October 21, 2021. For more information see New platform versions - Ruby in the AWS
Elastic Beanstalk Release Notes.

Environment properties

The Environment Properties section lets you specify environment configuration settings on the
Amazon EC2 instances that are running your application. Environment properties are passed in as
key-value pairs to the application.

The Ruby platform defines the following properties for environment configuration:

• BUNDLE_WITHOUT – A colon-separated list of groups to ignore when installing dependencies
from a Gemfile.

• BUNDLER_DEPLOYMENT_MODE – Set to true (the default) to install dependencies in
deployment mode using Bundler. Set to false to run bundle install in development mode.

The Ruby platform 569

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2021-10-21-linux.html#release-2021-10-21-linux.platforms.ruby
http://bundler.io/bundle_install.html
http://bundler.io/v1.15/man/gemfile.5.html
https://bundler.io/man/bundle-install.1.html#DEPLOYMENT-MODE

AWS Elastic Beanstalk Developer Guide

Note

This environment property isn't defined on Amazon Linux AMI Ruby platform branches
(preceding Amazon Linux 2).

• RAILS_SKIP_ASSET_COMPILATION – Set to true to skip running rake assets:precompile
during deployment.

• RAILS_SKIP_MIGRATIONS – Set to true to skip running rake db:migrate during
deployment.

• RACK_ENV – Specify the environment stage for Rack. For example, development, production,
or test.

Inside the Ruby environment running in Elastic Beanstalk, environment variables are accessible
using the ENV object. For example, you could read a property named API_ENDPOINT to a variable
with the following code:

endpoint = ENV['API_ENDPOINT']

See Environment properties and other software settings for more information.

Ruby configuration namespaces

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

You can use the aws:elasticbeanstalk:environment:proxy:staticfiles namespace
to configure the environment proxy to serve static files. You define mappings of virtual paths to
application directories.

The Ruby platform doesn't define any platform-specific namespaces. Instead, it defines
environment properties for common Rails and Rack options.

The following configuration file specifies a static files option that maps a directory named
staticimages to the path /images, sets each of the platform defined environment properties,
and sets an additional environment property named LOGGING.

The Ruby platform 570

http://guides.rubyonrails.org/asset_pipeline.html#precompiling-assets
http://guides.rubyonrails.org/active_record_migrations.html#running-migrations

AWS Elastic Beanstalk Developer Guide

Example .ebextensions/ruby-settings.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:staticfiles:
 /images: staticimages
 aws:elasticbeanstalk:application:environment:
 BUNDLE_WITHOUT: test
 BUNDLER_DEPLOYMENT_MODE: true
 RACK_ENV: development
 RAILS_SKIP_ASSET_COMPILATION: true
 RAILS_SKIP_MIGRATIONS: true
 LOGGING: debug

Note

The BUNDLER_DEPLOYMENT_MODE environment property and the
aws:elasticbeanstalk:environment:proxy:staticfiles namespace aren't
defined on Amazon Linux AMI Ruby platform branches (preceding Amazon Linux 2).

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

Installing packages with a Gemfile

Use a Gemfile file in the root of your project source to use RubyGems to install packages that your
application requires.

Example Gemfile

source "https://rubygems.org"
gem 'sinatra'
gem 'json'
gem 'rack-parser'

When a Gemfile file is present, Elastic Beanstalk runs bundle install to install dependencies.
For more information, see the Gemfiles and Bundle pages on the Bundler.io website.

The Ruby platform 571

https://bundler.io/man/gemfile.5.html
https://bundler.io/man/bundle.1.html

AWS Elastic Beanstalk Developer Guide

Note

You can use a different version of Puma besides the default that's pre-installed with the
Ruby platform. To do so, include an entry in a Gemfile that specifies the version. You
can also specify a different application server, such as Passenger, by using a customized
Gemfile.
For both of these cases you're required to configure a Procfile to start the application
server.
For more information see Configuring the application process with a Procfile.

Configuring the application process with a Procfile

To specify the command that starts your Ruby application, include a file called Procfile at the
root of your source bundle.

Note

Elastic Beanstalk doesn't support this feature on Amazon Linux AMI Ruby platform
branches (preceding Amazon Linux 2). Platform branches with names containing with Puma
or with Passenger, regardless of their Ruby versions, precede Amazon Linux 2 and don't
support the Procfile feature.

For details about writing and using a Procfile, expand the Buildfile and Procfile section in the
section called “Extending Linux platforms”.

When you don't provide a Procfile, Elastic Beanstalk generates the following default file, which
assumes you're using the pre-installed Puma application server.

web: puma -C /opt/elasticbeanstalk/config/private/pumaconf.rb

If you want to use your own provided Puma server, you can install it using a Gemfile. The following
example Procfile shows how to start it.

Example Procfile

web: bundle exec puma -C /opt/elasticbeanstalk/config/private/pumaconf.rb

The Ruby platform 572

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ruby-platform-procfile.html

AWS Elastic Beanstalk Developer Guide

If you want to use the Passenger application server, use the following example files to configure
your Ruby environment to install and use Passenger.

1. Use this example file to install Passenger.

Example Gemfile

source 'https://rubygems.org'
gem 'passenger'

2. Use this example file to instruct Elastic Beanstalk to start Passenger.

Example Procfile

web: bundle exec passenger start /var/app/current --socket /var/run/puma/my_app.sock

Note

You don't have to change anything in the configuration of the nginx proxy server to
use Passenger. To use other application servers, you might need to customize the nginx
configuration to properly forward requests to your application.

Deploying a rails application to Elastic Beanstalk

Rails is an open source, model-view-controller (MVC) framework for Ruby. This tutorial walks you
through the process of generating a Rails application and deploying it to an AWS Elastic Beanstalk
environment.

Sections

• Prerequisites

• Launch an Elastic Beanstalk environment

• Install rails and generate a website

• Configure rails settings

• Deploy your application

• Cleanup

Tutorial - rails 573

AWS Elastic Beanstalk Developer Guide

• Next steps

Prerequisites

Basic Elastic Beanstalk knowledge

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Getting started using Elastic
Beanstalk to launch your first Elastic Beanstalk environment.

Command line

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

On Linux and macOS, you can use your preferred shell and package manager. On Windows 10, you
can install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and
Bash.

Rails dependencies

The Rails framework 6.1.4.1 has the following dependencies. Be sure you have all of them installed.

• Ruby 2.5.0 or newer – For installation instructions, see Setting up your Ruby development
environment.

In this tutorial we use Ruby 3.0.2 and the corresponding Elastic Beanstalk platform version.

• Node.js – For installation instructions, see Installing Node.js via package manager.

• Yarn – For installation instructions, see Installation on the Yarn website.

Launch an Elastic Beanstalk environment

Use the Elastic Beanstalk console to create an Elastic Beanstalk environment. Choose the Ruby
platform and accept the default settings and sample code.

Tutorial - rails 574

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://nodejs.org/en/download/package-manager/
https://yarnpkg.com/lang/en/docs/install/

AWS Elastic Beanstalk Developer Guide

To launch an environment (console)

1. Open the Elastic Beanstalk console using this preconfigured link:
console.aws.amazon.com/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application.

3. For Application code, choose Sample application.

4. Choose Review and launch.

5. Review the available options. Choose the available option you want to use, and when you're
ready, choose Create app.

Environment creation takes about 5 minutes and creates the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

Tutorial - rails 575

https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

AWS Elastic Beanstalk Developer Guide

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the AWS CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com
domain is registered in the Public Suffix List (PSL). For further security, we recommend
that you use cookies with a __Host- prefix if you ever need to set sensitive cookies in
the default domain name for your Elastic Beanstalk applications. This practice will help
to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains.

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

Install rails and generate a website

Install Rails and its dependencies with the gem command.

~$ gem install rails
Fetching: concurrent-ruby-1.1.9.gem
Successfully installed concurrent-ruby-1.1.9
Fetching: rack-2.2.3.gem
Successfully installed rack-2.2.3

Tutorial - rails 576

https://console.aws.amazon.com/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

AWS Elastic Beanstalk Developer Guide

...

Test your Rails installation.

~$ rails --version
Rails 6.1.4.1

Use rails new with the name of the application to create a new Rails project.

~$ rails new ~/eb-rails

Rails creates a directory with the name specified, generates all of the files needed to run a sample
project locally, and then runs bundler to install all of the dependencies (Gems) defined in the
project's Gemfile.

Note

This process installs the latest Puma version for the project. This version might be different
from the version that Elastic Beanstalk provides on the Ruby platform version of your
environment. To see the Puma versions provided by Elastic Beanstalk, see Ruby Platform
History in the AWS Elastic Beanstalk Platforms guide. For more information about the
latest Puma version, see the Puma.io website. If there’s a mismatch between the two Puma
versions, use one of the following options:

• Use the Puma version installed by the prior rails new command. In this case you must
add a Procfile for the platform to use your own provided Puma server version. For
more information, see Configuring the application process with a Procfile.

• Update the Puma version to be consistent with the version pre-installed on your
environment’s Ruby platform version. To do so, modify the Puma version in the Gemfile
located in the root of your project source directory. Then run bundle update. For more
information see the bundle update page on the Bundler.io website.

Test your Rails installation by running the default project locally.

~$ cd eb-rails
~/eb-rails$ rails server
=> Booting Puma
=> Rails 6.1.4.1 application starting in development

Tutorial - rails 577

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platform-history-ruby.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platform-history-ruby.html
http://puma.io
https://bundler.io/man/bundle-update.1.html

AWS Elastic Beanstalk Developer Guide

=> Run `bin/rails server --help` for more startup options
Puma starting in single mode...
* Puma version: 5.5.2 (ruby 3.0.2-p107) ("Zawgyi")
* Min threads: 5
* Max threads: 5
* Environment: development
* PID: 77857
* Listening on http://127.0.0.1:3000
* Listening on http://[::1]:3000
Use Ctrl-C to stop
...

Open http://localhost:3000 in a web browser to see the default project in action.

This page is only visible in development mode. Add some content to the front page of the
application to support production deployment to Elastic Beanstalk. Use rails generate to
create a controller, route, and view for your welcome page.

~/eb-rails$ rails generate controller WelcomePage welcome

Tutorial - rails 578

AWS Elastic Beanstalk Developer Guide

 create app/controllers/welcome_page_controller.rb
 route get 'welcome_page/welcome'
 invoke erb
 create app/views/welcome_page
 create app/views/welcome_page/welcome.html.erb
 invoke test_unit
 create test/controllers/welcome_page_controller_test.rb
 invoke helper
 create app/helpers/welcome_page_helper.rb
 invoke test_unit
 invoke assets
 invoke coffee
 create app/assets/javascripts/welcome_page.coffee
 invoke scss
 create app/assets/stylesheets/welcome_page.scss.

This gives you all you need to access the page at /welcome_page/welcome. Before you publish
the changes, however, change the content in the view and add a route to make this page appear at
the top level of the site.

Use a text editor to edit the content in app/views/welcome_page/welcome.html.erb. For this
example, you'll use cat to simply overwrite the content of the existing file.

Example app/views/welcome_page/welcome.html.erb

<h1>Welcome!</h1>
<p>This is the front page of my first Rails application on Elastic Beanstalk.</p>

Finally, add the following route to config/routes.rb:

Example config/routes.rb

Rails.application.routes.draw do
 get 'welcome_page/welcome'
 root 'welcome_page#welcome'

This tells Rails to route requests to the root of the website to the welcome page controller's
welcome method, which renders the content in the welcome view (welcome.html.erb).

In order for Elastic Beanstalk to successfully deploy the application on the Ruby platform, we need
to update Gemfile.lock. Some dependencies of Gemfile.lock might be platform specific.

Tutorial - rails 579

AWS Elastic Beanstalk Developer Guide

Therefore, we need to add platform ruby to Gemfile.lock so that all required dependencies
are installed with the deployment.

Example

~/eb-rails$ bundle lock --add-platform ruby
Fetching gem metadata from https://rubygems.org/............
Resolving dependencies...
Writing lockfile to /Users/janedoe/EBDPT/RubyApps/eb-rails-doc-app/Gemfile.lock

Configure rails settings

Use the Elastic Beanstalk console to configure Rails with environment properties. Set the
SECRET_KEY_BASE environment property to a string of up to 256 alphanumeric characters.

Rails uses this property to create keys. Therefore you should keep it a secret and not store it in
source control in plain text. Instead, you provide it to Rails code on your environment through an
environment property.

To configure environment properties in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Scroll down to Environment properties.

6. Select Add environment property.

7. Enter the property Name and Value pairs.

8. If you need to add more variables repeat Step 6 and Step 7.

9. To save the changes choose Apply at the bottom of the page.

Now you're ready to deploy the site to your environment.

Tutorial - rails 580

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Deploy your application

Create a source bundle containing the files created by Rails. The following command creates a
source bundle named rails-default.zip.

~/eb-rails$ zip ../rails-default.zip -r * .[^.]*

Upload the source bundle to Elastic Beanstalk to deploy Rails to your environment.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Cleanup

When you finish working with Elastic Beanstalk, you can terminate your environment. Elastic
Beanstalk terminates all AWS resources associated with your environment, such as Amazon EC2
instances, database instances, load balancers, security groups, and alarms.

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Tutorial - rails 581

https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

With Elastic Beanstalk, you can easily create a new environment for your application at any time.

Next steps

For more information about Rails, visit rubyonrails.org.

As you continue to develop your application, you'll probably want a way to manage environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic
Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line.

Finally, if you plan on using your application in a production environment, you will want to
configure a custom domain name for your environment and enable HTTPS for secure connections.

Deploying a sinatra application to Elastic Beanstalk

This walkthrough shows how to deploy a simple Sinatra web application to AWS Elastic Beanstalk.

Prerequisites

This tutorial assumes you have knowledge of the basic Elastic Beanstalk operations and the Elastic
Beanstalk console. If you haven't already, follow the instructions in Getting started using Elastic
Beanstalk to launch your first Elastic Beanstalk environment.

To follow the procedures in this guide, you will need a command line terminal or shell to run
commands. Commands are shown in listings preceded by a prompt symbol ($) and the name of the
current directory, when appropriate.

~/eb-project$ this is a command
this is output

Tutorial - sinatra 582

https://rubyonrails.org/
http://www.sinatrarb.com/

AWS Elastic Beanstalk Developer Guide

On Linux and macOS, you can use your preferred shell and package manager. On Windows 10, you
can install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and
Bash.

Sinatra 2.1.0 requires Ruby 2.3.0 or newer. In this tutorial we use Ruby 3.0.2 and the corresponding
Elastic Beanstalk platform version. Install Ruby by following the instructions at Setting up your
Ruby development environment.

Launch an Elastic Beanstalk environment

Use the Elastic Beanstalk console to create an Elastic Beanstalk environment. Choose the Ruby
platform and accept the default settings and sample code.

To launch an environment (console)

1. Open the Elastic Beanstalk console using this preconfigured link:
console.aws.amazon.com/elasticbeanstalk/home#/newApplication?
applicationName=tutorials&environmentType=LoadBalanced

2. For Platform, select the platform and platform branch that match the language used by your
application.

3. For Application code, choose Sample application.

4. Choose Review and launch.

5. Review the available options. Choose the available option you want to use, and when you're
ready, choose Create app.

Environment creation takes about 5 minutes and creates the following resources:

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

Tutorial - sinatra 583

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced
https://console.aws.amazon.com/elasticbeanstalk/home#/newApplication?applicationName=tutorials&environmentType=LoadBalanced

AWS Elastic Beanstalk Developer Guide

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the AWS CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com
domain is registered in the Public Suffix List (PSL). For further security, we recommend
that you use cookies with a __Host- prefix if you ever need to set sensitive cookies in
the default domain name for your Elastic Beanstalk applications. This practice will help
to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

All of these resources are managed by Elastic Beanstalk. When you terminate your environment,
Elastic Beanstalk terminates all the resources that it contains.

Tutorial - sinatra 584

https://console.aws.amazon.com/cloudformation
https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

AWS Elastic Beanstalk Developer Guide

Note

The Amazon S3 bucket that Elastic Beanstalk creates is shared between environments and
is not deleted during environment termination. For more information, see Using Elastic
Beanstalk with Amazon S3.

Write a basic sinatra website

To create and deploy a sinatra application

1. Create a configuration file named config.ru with the following contents.

Example config.ru

require './helloworld'
run Sinatra::Application

2. Create a Ruby code file named helloworld.rb with the following contents.

Example helloworld.rb

require 'sinatra'
get '/' do
 "Hello World!"
end

3. Create a Gemfile with the following contents.

Example Gemfile

source 'https://rubygems.org'
gem 'sinatra'
gem 'puma'

4. Run bundle install to generate the Gemfile.lock

Example

~/eb-sinatra$ bundle install
Fetching gem metadata from https://rubygems.org/....

Tutorial - sinatra 585

AWS Elastic Beanstalk Developer Guide

Resolving dependencies...
Using bundler 2.2.22
Using rack 2.2.3
...

5. In order for Elastic Beanstalk to successfully deploy the application on the Ruby platform, we
need to update Gemfile.lock. Some dependencies of Gemfile.lock might be platform
specific. Therefore, we need to add platform ruby to Gemfile.lock so that all required
dependencies are installed with the deployment.

Example

~/eb-sinatra$ bundle lock --add-platform ruby
Fetching gem metadata from https://rubygems.org/....
Resolving dependencies...
Writing lockfile to /Users/janedoe/EBDPT/RubyApps/eb-sinatra/Gemfile.lock

6. Create a Procfile with the following contents.

Example Procfile

web: bundle exec puma -C /opt/elasticbeanstalk/config/private/pumaconf.rb

Deploy your application

Create a source bundle containing the your source files. The following command creates a source
bundle named sinatra-default.zip.

~/eb-sinatra$ zip ../sinatra-default.zip -r * .[^.]*

Upload the source bundle to Elastic Beanstalk to deploy Sinatra to your environment.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Tutorial - sinatra 586

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Note

If you have many environments, use the search bar to filter the environment list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Cleanup

When you finish working with Elastic Beanstalk, you can terminate your environment. Elastic
Beanstalk terminates all AWS resources associated with your environment, such as Amazon EC2
instances, database instances, load balancers, security groups, and alarms.

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

With Elastic Beanstalk, you can easily create a new environment for your application at any time.

Next steps

For more information about Sinatra, visit sinatrarb.com.

As you continue to develop your application, you'll probably want a way to manage environments
and deploy your application without manually creating a .zip file and uploading it to the Elastic

Tutorial - sinatra 587

https://console.aws.amazon.com/elasticbeanstalk
http://sinatrarb.com/

AWS Elastic Beanstalk Developer Guide

Beanstalk console. The Elastic Beanstalk Command Line Interface (EB CLI) provides easy-to-use
commands for creating, configuring, and deploying applications to Elastic Beanstalk environments
from the command line.

Finally, if you plan on using your application in a production environment, you will want to
configure a custom domain name for your environment and enable HTTPS for secure connections.

Adding an Amazon RDS DB instance to your Ruby application
environment

You can use an Amazon Relational Database Service (Amazon RDS) DB instance to store data
gathered and modified by your application. The database can be coupled to your environment
and managed by Elastic Beanstalk, or it can be created as decoupled and managed externally
by another service. This topic provides instructions to create an Amazon RDS using the Elastic
Beanstalk console. The database will be coupled to your environment and managed by Elastic
Beanstalk. For more information about integrating an Amazon RDS with Elastic Beanstalk, see
Adding a database to your Elastic Beanstalk environment.

Sections

• Adding a DB instance to your environment

• Downloading an adapter

• Connecting to a database

Adding a DB instance to your environment

To add a DB instance to your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

Adding a database 588

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

5. Choose a DB engine, and enter a user name and password.

6. To save the changes choose Apply at the bottom of the page.

Adding a DB instance takes about 10 minutes. When the environment update is complete, the DB
instance's hostname and other connection information are available to your application through
the following environment properties:

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab on
the Amazon RDS console: DB
Name.

RDS_USERNAME The username that you
configured for your database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your database.

Not available for reference in
the Amazon RDS console.

For more information about configuring a database instance coupled with an Elastic Beanstalk
environment, see Adding a database to your Elastic Beanstalk environment.

Downloading an adapter

Add the database adapter to your project's gem file.

Adding a database 589

AWS Elastic Beanstalk Developer Guide

Example Gemfile – Rails with MySQL

source 'https://rubygems.org'
gem 'puma'
gem 'rails', '~> 6.1.4', '>= 6.1.4.1'
gem 'mysql2'

Common adapter gems for Ruby

• MySQL – mysql2

• PostgreSQL – pg

• Oracle – activerecord-oracle_enhanced-adapter

• SQL Server – activerecord-sqlserver-adapter

Connecting to a database

Elastic Beanstalk provides connection information for attached DB instances in environment
properties. Use ENV['VARIABLE'] to read the properties and configure a database connection.

Example config/database.yml – Ruby on rails database configuration (MySQL)

production:
 adapter: mysql2
 encoding: utf8
 database: <%= ENV['RDS_DB_NAME'] %>
 username: <%= ENV['RDS_USERNAME'] %>
 password: <%= ENV['RDS_PASSWORD'] %>
 host: <%= ENV['RDS_HOSTNAME'] %>
 port: <%= ENV['RDS_PORT'] %>

Adding a database 590

https://rubygems.org/gems/mysql2
https://rubygems.org/gems/pg
https://rubygems.org/gems/activerecord-oracle_enhanced-adapter
https://rubygems.org/gems/activerecord-sqlserver-adapter

AWS Elastic Beanstalk Developer Guide

Tutorials and samples

Language and framework specific tutorials are spread throughout the AWS Elastic Beanstalk
Developer Guide. New and updated tutorials are added to this list as they are published. The most
recent updates are shown first.

These tutorials are targeted at intermediate users and may not contain instructions for basic steps
such as signing up for AWS. If this is your first time using AWS or Elastic Beanstalk, check out the
Getting Started walkthrough to get your first Elastic Beanstalk environment up and running.

• Ruby on Rails - Deploying a rails application to Elastic Beanstalk

• Ruby and Sinatra - Deploying a sinatra application to Elastic Beanstalk

• PHP and MySQL HA Configuration - Deploying a high-availability PHP application with an
external Amazon RDS database to Elastic Beanstalk

• PHP and Laravel - Deploying a Laravel application to Elastic Beanstalk

• PHP and CakePHP - Deploying a CakePHP application to Elastic Beanstalk

• PHP and Drupal HA Configuration - Deploying a high-availability Drupal website with an
external Amazon RDS database to Elastic Beanstalk

• PHP and WordPress HA Configuration - Deploying a high-availability WordPress website with
an external Amazon RDS database to Elastic Beanstalk

• Node.js with DynamoDB HA Configuration - Deploying a Node.js application with DynamoDB to
Elastic Beanstalk

• ASP.NET Core - Tutorial: Deploying an ASP.NET Core application with Elastic Beanstalk

• Python and Flask - Deploying a Flask application to Elastic Beanstalk

• Python and Django - Deploying a Django application to Elastic Beanstalk

• Node.js and Express - Deploying an Express application to Elastic Beanstalk

• Docker, PHP and nginx - ECS managed Docker environments with the Elastic Beanstalk console

You can download the sample applications used by Elastic Beanstalk when you create an
environment without providing a source bundle with the following links:

• Docker – docker.zip

• Multicontainer Docker – docker-multicontainer-v2.zip

• Preconfigured Docker (Glassfish) – docker-glassfish-v1.zip

591

samples/docker.zip
samples/docker-multicontainer-v2.zip
samples/docker-glassfish-v1.zip

AWS Elastic Beanstalk Developer Guide

• Go – go.zip

• Corretto – corretto.zip

• Tomcat – tomcat.zip

• .NET Core on Linux – dotnet-core-linux.zip

• .NET Core – dotnet-asp-windows.zip

• Node.js – nodejs.zip

• PHP – php.zip

• Python – python.zip

• Ruby – ruby.zip

More involved sample applications that show the use of additional web frameworks, libraries and
tools are available as open source projects on GitHub:

• Load-balanced WordPress (tutorial) – Configuration files for installing WordPress securely and
running it in a load-balanced Elastic Beanstalk environment.

• Load-balanced Drupal (tutorial) – Configuration files and instructions for installing Drupal
securely and running it in a load-balanced Elastic Beanstalk environment.

• Scorekeep - RESTful web API that uses the Spring framework and the AWS SDK for Java to
provide an interface for creating and managing users, sessions, and games. The API is bundled
with an Angular 1.5 web app that consumes the API over HTTP. Includes branches that show
integration with Amazon Cognito, AWS X-Ray, and Amazon Relational Database Service.

The application uses features of the Java SE platform to download dependencies and build
on-instance, minimizing the size of the souce bundle. The application also includes nginx
configuration files that override the default configuration to serve the frontend web app
statically on port 80 through the proxy, and route requests to paths under /api to the API
running on localhost:5000.

• Does it Have Snakes? - Tomcat application that shows the use of RDS in a Java EE web
application in Elastic Beanstalk. The project shows the use of Servlets, JSPs, Simple Tag Support,
Tag Files, JDBC, SQL, Log4J, Bootstrap, Jackson, and Elastic Beanstalk configuration files.

• Locust Load Generator - This project shows the use of Java SE platform features to install and
run Locust, a load generating tool written in Python. The project includes configuration files that
install and configure Locust, a build script that configures a DynamoDB table, and a Procfile that
runs Locust.

592

samples/go.zip
samples/corretto.zip
samples/tomcat.zip
samples/dotnet-core-linux.zip
samples/dotnet-asp-windows.zip
samples/nodejs.zip
samples/php.zip
samples/python.zip
samples/ruby.zip
https://github.com/awslabs/eb-php-wordpress
https://github.com/awslabs/eb-php-drupal
https://github.com/awslabs/eb-java-scorekeep
https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-locustio-sample
http://locust.io/

AWS Elastic Beanstalk Developer Guide

• Share Your Thoughts (tutorial) - PHP application that shows the use of MySQL on Amazon RDS,
Composer, and configuration files.

• A New Startup (tutorial) - Node.js sample application that shows the use of DynamoDB, the AWS
SDK for JavaScript in Node.js, npm package management, and configuration files.

593

https://github.com/awslabs/eb-demo-php-simple-app
https://github.com/awslabs/eb-node-express-sample

AWS Elastic Beanstalk Developer Guide

Managing and configuring Elastic Beanstalk applications

The first step in using AWS Elastic Beanstalk is to create an application, which represents your web
application in AWS. In Elastic Beanstalk an application serves as a container for the environments
that run your web app and for versions of your web app's source code, saved configurations, logs,
and other artifacts that you create while using Elastic Beanstalk.

To create an application

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose Create application.

3. Use the on-screen form to provide an application name.

4. Optionally, provide a description, and add tag keys and values.

5. Choose Create.

594

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

After creating the application, the console prompts you to create an environment for it. For
detailed information about all of the options available, see Creating an Elastic Beanstalk
environment.

If you no longer need an application, you can delete it.

Warning

Deleting an application terminates all associated environments and deletes all application
versions and saved configurations that belong to the application.

595

AWS Elastic Beanstalk Developer Guide

To delete an application

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then select your application on the list.

3. Choose Actions, and then choose Delete application.

Topics

• Elastic Beanstalk application management console

• Managing application versions

• Create an application source bundle

• Tagging Elastic Beanstalk application resources

Elastic Beanstalk application management console

You can use the AWS Elastic Beanstalk console to manage applications, application versions, and
saved configurations.

To access the application management console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

Note

If you have many applications, use the search bar to filter the application list.

The application overview page shows a list with an overview of all environments associated
with the application.

Application management console 596

https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

3. You have a few ways to continue:

a. Choose the Actions drop-down menu, and then choose one of the application
management actions. To launch an environment in this application, you can directly
choose Create a new environment. For details, see the section called “Creating
environments”.

b. Choose an environment name to go to the environment management console for that
environment, where you can configure, monitor, or manage the environment.

c. Choose Application versions following the application name in the navigation pane to
view and manage the application versions for your application.

An application version is an uploaded version of your application code. You can upload
new versions, deploy an existing version to any of the application's environments, or
delete old versions. For more information, see Managing application versions.

d. Choose Saved configurations following the application name in the navigation pane to
view and manage configurations saved from running environments.

A saved configuration is a collection of settings that you can use to restore an
environment's settings to a previous state, or to create an environment with the same
settings. For more information see Using Elastic Beanstalk saved configurations.

Managing application versions

Elastic Beanstalk creates an application version whenever you upload source code. This usually
occurs when you create an environment or upload and deploy code using the environment
management console or EB CLI. Elastic Beanstalk deletes these application versions according to
the application's lifecycle policy and when you delete the application. For details about application
lifecycle policy, see Configuring application version lifecycle settings.

Managing application versions 597

AWS Elastic Beanstalk Developer Guide

You can also upload a source bundle without deploying it from the application management
console or with the EB CLI command eb appversion. Elastic Beanstalk stores source bundles in
Amazon Simple Storage Service (Amazon S3) and doesn't automatically delete them.

You can apply tags to an application version when you create it, and edit tags of existing
application versions. For details, see Tagging application versions.

To create a new application version

You can also create a new application version using the EB CLI. For more information, see eb
appversion in the EB CLI commands chapter.

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

Note

If you have many applications, use the search bar to filter the application list.

3. In the navigation pane, find your application's name and choose Application versions.

4. Choose Upload. Use the on-screen form to upload your application's source bundle.

Note

The source bundle's file size limit is 500 MB.

5. Optionally, provide a brief description, and add tag keys and values.

6. Choose Upload.

The file you specified is associated with your application. You can deploy the application version to
a new or existing environment.

Over time, your application can accumulate many application versions. To save storage space and
avoid hitting the application version quota, it's a good idea to delete application versions that you
no longer need.

Managing application versions 598

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_elastic_beanstalk

AWS Elastic Beanstalk Developer Guide

Note

Deleting an application version doesn't affect environments currently running that version.

To delete an application version

You can also delete an application version using the EB CLI. For more information, see eb
appversion in the EB CLI commands chapter.

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

Note

If you have many applications, use the search bar to filter the application list.

3. In the navigation pane, find your application's name and choose Application versions.

4. Select one or more application versions that you want to delete.

5. Choose Actions, then choose Delete.

6. (Optional) To leave the application source bundle for these application versions in your
Amazon Simple Storage Service (Amazon S3) bucket, clear the box for Delete versions from
Amazon S3.

Managing application versions 599

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

7. Choose Delete.

You can also configure Elastic Beanstalk to delete old versions automatically by configuring
application version lifecycle settings. If you configure these lifecycle settings, they're applied when
you create new application versions. For example, if you configure a maximum of 25 application
versions, Elastic Beanstalk deletes the oldest version when you upload a 26th version. If you set
a maximum age of 90 days, any versions older than 90 days are deleted when you upload a new
version. For details, see the section called “Version lifecycle”.

If you don't choose to delete the source bundle from Amazon S3, Elastic Beanstalk still deletes the
version from its records. However, the source bundle is left in your Elastic Beanstalk storage bucket.
The application version quota applies only to versions Elastic Beanstalk tracks. Therefore, you can
delete versions to stay within the quota, but retain all source bundles in Amazon S3.

Note

The application version quota doesn't apply to source bundles, but you might still incur
Amazon S3 charges, and retain personal information beyond the time you need it. Elastic
Beanstalk never deletes source bundles automatically. You should delete source bundles
when you no longer need them.

Configuring application version lifecycle settings

Each time you upload a new version of your application with the Elastic Beanstalk console or the
EB CLI, Elastic Beanstalk creates an application version. If you don't delete versions that you no
longer use, you will eventually reach the application version quota and be unable to create new
versions of that application.

Version lifecycle 600

https://docs.aws.amazon.com/general/latest/gr/elasticbeanstalk.html#limits_elastic_beanstalk

AWS Elastic Beanstalk Developer Guide

You can avoid hitting the quota by applying an application version lifecycle policy to your
applications. A lifecycle policy tells Elastic Beanstalk to delete application versions that are old,
or to delete application versions when the total number of versions for an application exceeds a
specified number.

Elastic Beanstalk applies an application's lifecycle policy each time you create a new application
version, and deletes up to 100 versions each time the lifecycle policy is applied. Elastic Beanstalk
deletes old versions after creating the new version, and does not count the new version towards
the maximum number of versions defined in the policy.

Elastic Beanstalk does not delete application versions that are currently being used by an
environment, or application versions deployed to environments that were terminated less than ten
weeks before the policy was triggered.

The application version quota applies across all applications in a region. If you have several
applications, configure each application with a lifecycle policy appropriate to avoid reaching the
quota. For example, if you have 10 applications in a region and the quota is 1,000 application
versions, consider setting a lifecycle policy with a quota of 99 application versions for all
applications, or set other values in each application as long as the total is less than 1,000
application versions. Elastic Beanstalk only applies the policy if the application version creation
succeeds, so if you have already reached the quota, you must delete some versions manually prior
to creating a new version.

By default, Elastic Beanstalk leaves the application version's source bundle in Amazon S3 to
prevent loss of data. You can delete the source bundle to save space.

You can set the lifecycle settings through the Elastic Beanstalk CLI and APIs. See eb
appversion, CreateApplication (using the ResourceLifecycleConfig parameter), and
UpdateApplicationResourceLifecycle for details.

Setting the application lifecycle settings in the console

You can specify the lifecycle settings in the Elastic Beanstalk console.

To specify your application lifecycle settings

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

Version lifecycle 601

https://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_CreateApplication.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_UpdateApplicationResourceLifecycle.html
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Note

If you have many applications, use the search bar to filter the application list.

3. In the navigation pane, find your application's name and choose Application versions.

4. Choose Settings.

5. Use the on-screen form to configure application lifecycle settings.

6. Choose Save.

On the settings page, you can do the following.

Version lifecycle 602

AWS Elastic Beanstalk Developer Guide

• Configure lifecycle settings based on the total count of application versions or the age of
application versions.

• Specify whether to delete the source bundle from S3 when the application version is deleted.

• Specify the service role under which the application version is deleted. To include all permissions
required for version deletion, choose the default Elastic Beanstalk service role, named aws-
elasticbeanstalk-service-role, or another service role using the Elastic Beanstalk
managed service policies. For more information, see Managing Elastic Beanstalk service roles.

Tagging application versions

You can apply tags to your AWS Elastic Beanstalk application versions. Tags are key-value pairs
associated with AWS resources. For information about Elastic Beanstalk resource tagging, use
cases, tag key and value constraints, and supported resource types, see Tagging Elastic Beanstalk
application resources.

You can specify tags when you create an application version. In an existing application version, you
can add or remove tags, and update the values of existing tags. You can add up to 50 tags to each
application version.

Adding tags during application version creation

When you use the Elastic Beanstalk console to create an environment, and you choose to upload
a version of your application code, you can specify tag keys and values to associate with the new
application version.

You can also use the Elastic Beanstalk console to upload an application version without
immediately using it in an environment. You can specify tag keys and values when you upload an
application version.

With the AWS CLI or other API-based clients, add tags by using the --tags parameter on the
create-application-version command.

$ aws elasticbeanstalk create-application-version \
 --tags Key=mytag1,Value=value1 Key=mytag2,Value=value2 \
 --application-name my-app --version-label v1

When you use the EB CLI to create or update an environment, an application version is created
from the code that you deploy. There isn't a direct way to tag an application version during its

Tagging application versions 603

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/create-application-version.html

AWS Elastic Beanstalk Developer Guide

creation through the EB CLI. See the following section to learn about adding tags to an existing
application version.

Managing tags of an existing application version

You can add, update, and delete tags in an existing Elastic Beanstalk application version.

To manage an application version's tags using the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

Note

If you have many applications, use the search bar to filter the application list.

3. In the navigation pane, find your application's name and choose Application versions.

4. Select the application version you want to manage.

5. Choose Actions, and then choose Manage tags.

6. Use the on-screen form to add, update, or delete tags.

7. To save the changes choose Apply at the bottom of the page.

If you use the EB CLI to update your application version, use eb tags to add, update, delete, or list
tags.

For example, the following command lists the tags in an application version.

~/workspace/my-app$ eb tags --list --resource "arn:aws:elasticbeanstalk:us-east-2:my-
account-id:applicationversion/my-app/my-version"

The following command updates the tag mytag1 and deletes the tag mytag2.

~/workspace/my-app$ eb tags --update mytag1=newvalue --delete mytag2 \
 --resource "arn:aws:elasticbeanstalk:us-east-2:my-account-
id:applicationversion/my-app/my-version"

For a complete list of options and more examples, see eb tags.

Tagging application versions 604

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

With the AWS CLI or other API-based clients, use the list-tags-for-resource command to list the
tags of an application version.

$ aws elasticbeanstalk list-tags-for-resource --resource-arn
 "arn:aws:elasticbeanstalk:us-east-2:my-account-id:applicationversion/my-app/my-
version"

Use the update-tags-for-resource command to add, update, or delete tags in an application
version.

$ aws elasticbeanstalk update-tags-for-resource \
 --tags-to-add Key=mytag1,Value=newvalue --tags-to-remove mytag2 \
 --resource-arn "arn:aws:elasticbeanstalk:us-east-2:my-account-
id:applicationversion/my-app/my-version"

Specify both tags to add and tags to update in the --tags-to-add parameter of update-tags-
for-resource. A nonexisting tag is added, and an existing tag's value is updated.

Note

To use some of the EB CLI and AWS CLI commands with an Elastic Beanstalk application
version, you need the application version's ARN. You can retrieve the ARN by using the
following command.

$ aws elasticbeanstalk describe-application-versions --application-name my-app
 --version-label my-version

Create an application source bundle

When you use the AWS Elastic Beanstalk console to deploy a new application or an application
version, you'll need to upload a source bundle. Your source bundle must meet the following
requirements:

• Consist of a single ZIP file or WAR file (you can include multiple WAR files inside your ZIP file)

• Not exceed 500 MB

• Not include a parent folder or top-level directory (subdirectories are fine)

Create a source bundle 605

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/list-tags-for-resource.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/update-tags-for-resource.html

AWS Elastic Beanstalk Developer Guide

If you want to deploy a worker application that processes periodic background tasks, your
application source bundle must also include a cron.yaml file. For more information, see Periodic
tasks.

If you are deploying your application with the Elastic Beanstalk Command Line Interface (EB
CLI), the AWS Toolkit for Eclipse, or the AWS Toolkit for Visual Studio, the ZIP or WAR file will
automatically be structured correctly. For more information, see Using the Elastic Beanstalk
command line interface (EB CLI), Creating and deploying Java applications on Elastic Beanstalk,
and The AWS Toolkit for Visual Studio.

Sections

• Creating a source bundle from the command line

• Creating a source bundle with Git

• Zipping files in Mac OS X Finder or Windows explorer

• Creating a source bundle for a .NET application

• Testing your source bundle

Creating a source bundle from the command line

Create a source bundle using the zip command. To include hidden files and folders, use a pattern
like the following.

~/myapp$ zip ../myapp.zip -r * .[^.]*
 adding: app.js (deflated 63%)
 adding: index.js (deflated 44%)
 adding: manual.js (deflated 64%)
 adding: package.json (deflated 40%)
 adding: restify.js (deflated 85%)
 adding: .ebextensions/ (stored 0%)
 adding: .ebextensions/xray.config (stored 0%)

This ensures that Elastic Beanstalk configuration files and other files and folders that start with a
period are included in the archive.

For Tomcat web applications, use jar to create a web archive.

~/myapp$ jar -cvf myapp.war .

Creating a source bundle from the command line 606

AWS Elastic Beanstalk Developer Guide

The above commands include hidden files that may increase your source bundle size unnecessarily.
For more control, use a more detailed file pattern, or create your source bundle with Git.

Creating a source bundle with Git

If you're using Git to manage your application source code, use the git archive command to
create your source bundle.

$ git archive -v -o myapp.zip --format=zip HEAD

git archive only includes files that are stored in git, and excludes ignored files and git files. This
helps keep your source bundle as small as possible. For more information, go to the git-archive
manual page.

Zipping files in Mac OS X Finder or Windows explorer

When you create a ZIP file in Mac OS X Finder or Windows Explorer, make sure you zip the files and
subfolders themselves, rather than zipping the parent folder.

Note

The graphical user interface (GUI) on Mac OS X and Linux-based operating systems does
not display files and folders with names that begin with a period (.). Use the command line
instead of the GUI to compress your application if the ZIP file must include a hidden folder,
such as .ebextensions. For command line procedures to create a ZIP file on Mac OS X or
a Linux-based operating system, see Creating a source bundle from the command line.

Example

Suppose you have a Python project folder labeled myapp, which includes the following files and
subfolders:

myapplication.py
README.md
static/
static/css
static/css/styles.css

Creating a source bundle with Git 607

http://git-scm.com/docs/git-archive
http://git-scm.com/docs/git-archive

AWS Elastic Beanstalk Developer Guide

static/img
static/img/favicon.ico
static/img/logo.png
templates/
templates/base.html
templates/index.html

As noted in the list of requirements above, your source bundle must be compressed without a
parent folder, so that its decompressed structure does not include an extra top-level directory.
In this example, no myapp folder should be created when the files are decompressed (or, at the
command line, no myapp segment should be added to the file paths).

This sample file structure is used throughout this topic to illustrate how to zip files.

To zip files in Mac OS X Finder

1. Open your top-level project folder and select all the files and subfolders within it. Do not
select the top-level folder itself.

2. Right-click the selected files, and then choose Compress X items, where X is the number of
files and subfolders you've selected.

Zipping files in Mac OS X Finder or Windows explorer 608

AWS Elastic Beanstalk Developer Guide

To zip files in Windows explorer

1. Open your top-level project folder and select all the files and subfolders within it. Do not
select the top-level folder itself.

Zipping files in Mac OS X Finder or Windows explorer 609

AWS Elastic Beanstalk Developer Guide

2. Right-click the selected files, choose Send to, and then choose Compressed (zipped) folder.

Creating a source bundle for a .NET application

If you use Visual Studio, you can use the deployment tool included in the AWS Toolkit for Visual
Studio to deploy your .NET application to Elastic Beanstalk. For more information, see Deploying
Elastic Beanstalk applications in .NET using the deployment tool.

If you need to manually create a source bundle for your .NET application, you cannot simply create
a ZIP file that contains the project directory. You must create a web deployment package for your
project that is suitable for deployment to Elastic Beanstalk. There are several methods you can use
to create a deployment package:

• Create the deployment package using the Publish Web wizard in Visual Studio. For more
information, go to How to: Create a Web Deployment Package in Visual Studio.

Important

When creating the web deployment package, you must start the Site name with
Default Web Site.

Creating a source bundle for a .NET application 610

http://msdn.microsoft.com/en-us/library/dd465323.aspx

AWS Elastic Beanstalk Developer Guide

• If you have a .NET project, you can create the deployment package using the msbuild command
as shown in the following example.

Important

The DeployIisAppPath parameter must begin with Default Web Site.

C:/> msbuild <web_app>.csproj /t:Package /p:DeployIisAppPath="Default Web Site"

• If you have a website project, you can use the IIS Web Deploy tool to create the deployment
package. For more information, go to Packaging and Restoring a Web site.

Important

The apphostconfig parameter must begin with Default Web Site.

If you are deploying multiple applications or an ASP.NET Core application, put your
.ebextensions folder in the root of the source bundle, side by side with the application bundles
and manifest file:

~/workspace/source-bundle/
|-- .ebextensions
| |-- environmentvariables.config
| `-- healthcheckurl.config
|-- AspNetCore101HelloWorld.zip
|-- AspNetCoreHelloWorld.zip
|-- aws-windows-deployment-manifest.json
`-- VS2015AspNetWebApiApp.zip

Testing your source bundle

You may want to test your source bundle locally before you upload it to Elastic Beanstalk. Because
Elastic Beanstalk essentially uses the command line to extract the files, it's best to do your tests
from the command line rather than with a GUI tool.

Testing your source bundle 611

http://www.iis.net/learn/publish/using-web-deploy/packaging-and-restoring-a-web-site

AWS Elastic Beanstalk Developer Guide

To test the file extraction in Mac OS X or Linux

1. Open a terminal window (Mac OS X) or connect to the Linux server. Navigate to the directory
that contains your source bundle.

2. Using the unzip or tar xf command, decompress the archive.

3. Ensure that the decompressed files appear in the same folder as the archive itself, rather than
in a new top-level folder or directory.

Note

If you use Mac OS X Finder to decompress the archive, a new top-level folder will
be created, no matter how you structured the archive itself. For best results, use the
command line.

To test the file extraction in Windows

1. Download or install a program that allows you to extract compressed files via the command
line. For example, you can download the free unzip.exe program from http://stahlforce.com/
dev/index.php?tool=zipunzip.

2. If necessary, copy the executable file to the directory that contains your source bundle. If
you've installed a system-wide tool, you can skip this step.

3. Using the appropriate command, decompress the archive. If you downloaded unzip.exe using
the link in step 1, the command is unzip <archive-name>.

4. Ensure that the decompressed files appear in the same folder as the archive itself, rather than
in a new top-level folder or directory.

Tagging Elastic Beanstalk application resources

You can apply tags to resources of your AWS Elastic Beanstalk applications. Tags are key-value pairs
associated with AWS resources. Tags can help you categorize resources. They're particularly useful
if you manage many resources as part of multiple AWS applications.

Here are some ways to use tagging with Elastic Beanstalk resources:

• Deployment stages – Identify resources associated with different stages of your application, such
as development, beta, and production.

Tagging resources 612

http://stahlforce.com/dev/index.php?tool=zipunzip
http://stahlforce.com/dev/index.php?tool=zipunzip

AWS Elastic Beanstalk Developer Guide

• Cost allocation – Use cost allocation reports to track your usage of AWS resources associated with
various expense accounts. The reports include both tagged and untagged resources, and they
aggregate costs according to tags. For information about how cost allocation reports use tags,
see Use Cost Allocation Tags for Custom Billing Reports in the AWS Billing and Cost Management
User Guide.

• Access control – Use tags to manage permissions to requests and resources. For example, a user
who can only create and manage beta environments should only have access to beta stage
resources. For details, see Using tags to control access to Elastic Beanstalk resources.

You can add up to 50 tags to each resource. Environments are slightly different: Elastic Beanstalk
adds three default system tags to environments, and you can't edit or delete these tags. In addition
to the default tags, you can add up to 47 additional tags to each environment.

The following constraints apply to tag keys and values:

• Keys and values can contain letters, numbers, white space, and the following symbols: _ . : /
= + - @

• Keys can contain up to 127 characters. Values can contain up to 255 characters.

Note

These length limits are for Unicode characters in UTF-8. For other multibyte encodings,
the limits might be lower.

• Keys are case sensitive.

• Keys cannot begin with aws: or elasticbeanstalk:.

Tag propagation to launch templates

Elastic Beanstalk provides an option to enable the propagation of environment tags to launch
templates. This option provides continued support for tag-based access control (TBAC) with launch
templates.

Tag propagation to launch templates 613

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/allocation.html

AWS Elastic Beanstalk Developer Guide

Note

Launch configurations are being phased out and replaced by launch templates. For more
information, see Launch configurations in the Amazon EC2 Auto Scaling User Guide.

To prevent down-time of running EC2 instances AWS CloudFormation doesn’t propagate tags
to existing launch templates. If there's a use case that requires tags for your environment’s
resources, you can enable Elastic Beanstalk to create launch templates with tags for these
resources. To do so, set the LaunchTemplateTagPropagationEnabled option in the
aws:autoscaling:launchconfiguration namespace to true. The default value is false.

The following configuration file example enables the propagation of tags to launch templates.

option_settings:
 aws:autoscaling:launchconfiguration:
 LaunchTemplateTagPropagationEnabled: true

Elastic Beanstalk can only propagate tags to launch templates for the following resources:

• EBS volumes

• EC2 instances

• EC2 network interfaces

• AWS CloudFormation launch templates that define a resource

This constraint exists because CloudFormation only allows tags on template creation for specific
resources. For more information see TagSpecification in the AWS CloudFormation User Guide.

Important

• Changing this option value from false to true for an existing environment may be a
breaking change for previously existing tags.

• When this feature is enabled, the propagation of tags will require EC2 replacement,
which can result in downtime. You can enable rolling updates to apply configuration
changes in batches and prevent downtime during the update process. For more
information, see Configuration changes.

Tag propagation to launch templates 614

https://docs.aws.amazon.com/autoscaling/ec2/userguide/launch-configurations.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-launchtemplate-tagspecification.html

AWS Elastic Beanstalk Developer Guide

For more information about launch templates, see the following:

• Launch templates in the Amazon EC2 Auto Scaling User Guide

• Working with templates in the AWS CloudFormation User Guide

• Elastic Beanstalk template snippets in the AWS CloudFormation User Guide

Resources you can tag

The following are the types of Elastic Beanstalk resources that you can tag, and links to specific
topics about managing tags for each of them:

• Applications

• Environments

• Application versions

• Saved configurations

• Custom platform versions

Tagging applications

You can apply tags to your AWS Elastic Beanstalk applications. Tags are key-value pairs associated
with AWS resources. For information about Elastic Beanstalk resource tagging, use cases, tag key
and value constraints, and supported resource types, see Tagging Elastic Beanstalk application
resources.

You can specify tags when you create an application. In an existing application, you can add or
remove tags, and update the values of existing tags. You can add up to 50 tags to each application.

Adding tags during application creation

When you use the Elastic Beanstalk console to create an application, you can specify tag keys and
values in the Create New Application dialog box.

Resources you can tag 615

https://docs.aws.amazon.com/autoscaling/ec2/userguide/launch-templates.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-elasticbeanstalk.html

AWS Elastic Beanstalk Developer Guide

If you use the EB CLI to create an application, use the --tags option with eb init to add tags.

~/workspace/my-app$ eb init --tags mytag1=value1,mytag2=value2

With the AWS CLI or other API-based clients, add tags by using the --tags parameter on the
create-application command.

$ aws elasticbeanstalk create-application \
 --tags Key=mytag1,Value=value1 Key=mytag2,Value=value2 \
 --application-name my-app --version-label v1

Tagging applications 616

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/create-application.html

AWS Elastic Beanstalk Developer Guide

Managing tags of an existing application

You can add, update, and delete tags in an existing Elastic Beanstalk application.

To manage an application's tags in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

Note

If you have many applications, use the search bar to filter the application list.

3. Choose Actions, and then choose Manage tags.

4. Use the on-screen form to add, update, or delete tags.

5. To save the changes choose Apply at the bottom of the page.

If you use the EB CLI to update your application, use eb tags to add, update, delete, or list tags.

For example, the following command lists the tags in an application.

~/workspace/my-app$ eb tags --list --resource "arn:aws:elasticbeanstalk:us-east-2:my-
account-id:application/my-app"

The following command updates the tag mytag1 and deletes the tag mytag2.

~/workspace/my-app$ eb tags --update mytag1=newvalue --delete mytag2 \
 --resource "arn:aws:elasticbeanstalk:us-east-2:my-account-id:application/my-app"

For a complete list of options and more examples, see eb tags.

With the AWS CLI or other API-based clients, use the list-tags-for-resource command to list the
tags of an application.

$ aws elasticbeanstalk list-tags-for-resource --resource-arn
 "arn:aws:elasticbeanstalk:us-east-2:my-account-id:application/my-app"

Use the update-tags-for-resource command to add, update, or delete tags in an application.

Tagging applications 617

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/list-tags-for-resource.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/update-tags-for-resource.html

AWS Elastic Beanstalk Developer Guide

$ aws elasticbeanstalk update-tags-for-resource \
 --tags-to-add Key=mytag1,Value=newvalue --tags-to-remove mytag2 \
 --resource-arn "arn:aws:elasticbeanstalk:us-east-2:my-account-id:application/my-
app"

Specify both tags to add and tags to update in the --tags-to-add parameter of update-tags-
for-resource. A nonexisting tag is added, and an existing tag's value is updated.

Note

To use some of the EB CLI and AWS CLI commands with an Elastic Beanstalk application,
you need the application's ARN. You can retrieve the ARN by using the following command.

$ aws elasticbeanstalk describe-applications --application-names my-app

Tagging applications 618

AWS Elastic Beanstalk Developer Guide

Managing environments

AWS Elastic Beanstalk makes it easy to create new environments for your application. You can
create and manage separate environments for development, testing, and production use, and you
can deploy any version of your application to any environment. Environments can be long-running
or temporary. When you terminate an environment, you can save its configuration to recreate it
later.

As you develop your application, you will deploy it often, possibly to several different environments
for different purposes. Elastic Beanstalk lets you configure how deployments are performed. You
can deploy to all of the instances in your environment simultaneously, or split a deployment into
batches with rolling deployments.

Configuration changes are processed separately from deployments, and have their own scope. For
example, if you change the type of the EC2 instances running your application, all of the instances
must be replaced. On the other hand, if you modify the configuration of the environment's load
balancer, that change can be made in-place without interrupting service or lowering capacity. You
can also apply configuration changes that modify the instances in your environment in batches
with rolling configuration updates.

Note

Modify the resources in your environment only by using Elastic Beanstalk. If you modify
resources using another service's console, CLI commands, or SDKs, Elastic Beanstalk won't
be able to accurately monitor the state of those resources, and you won't be able to save
the configuration or reliably recreate the environment. Out-of band-changes can also cause
issues when updating or terminating an environment.

When you launch an environment, you choose a platform version. We update platforms
periodically with new platform versions to provide performance improvements and new features.
You can update your environment to the latest platform version at any time.

As your application grows in complexity, you can split it into multiple components, each running
in a separate environment. For long-running workloads, you can launch worker environments that
process jobs from an Amazon Simple Queue Service (Amazon SQS) queue.

Topics

619

AWS Elastic Beanstalk Developer Guide

• Using the Elastic Beanstalk environment management console

• Creating an Elastic Beanstalk environment

• Deploying applications to Elastic Beanstalk environments

• Configuration changes

• Updating your Elastic Beanstalk environment's platform version

• Canceling environment configuration updates and application deployments

• Rebuilding Elastic Beanstalk environments

• Environment types

• Elastic Beanstalk worker environments

• Creating links between Elastic Beanstalk environments

Using the Elastic Beanstalk environment management console

The Elastic Beanstalk console provides an Environment overview page for you to manage each
of your AWS Elastic Beanstalk environments. From the Environment overview page, you can
manage your environment's configuration and perform common actions. These actions include
restarting the web servers running in your environment, cloning your environment, or rebuilding
your environment from scratch.

To access the environment management console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

Environment management console 620

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

You see the Environment overview page. The console's navigation pane shows the name of the
application where the environment belongs, with related application management pages, and the
environment name, with environment management pages.

Topics

• Environment overview

• Environment actions

• Events

• Health

• Logs

• Monitoring

• Alarms

• Managed updates

• Tags

• Configuration

Environment overview

To view the Environment overview page, choose the environment name on the navigation pane,
if it's the current environment. Alternatively, navigate to the environment from the Applications
page or from the main environment list on the Environments page.

The top pane on the environment overview page shows top-level information about your
environment. This includes its name, URL, and current health status, as well as the name of the
currently deployed application version, and the platform version that the application is running on.
You can see the most recent environment events below the overview pane.

Environment overview 621

AWS Elastic Beanstalk Developer Guide

Choose Refresh to update the information shown. The overview page contains the following
information and options.

Health

The overall health of the environment. If the health of your environment degrades, the View
causes link displays next to the environment health. Select this link to view the Health tab with
more details.

Domain

The environment's Domain, or URL, is located in the upper portion of the Environment overview
page, below the environment's Health. This is the URL of the web application that the environment
is running.

Environment id

The environment ID. This is an internal ID that's generated when the environment is created.

Application name

The name of the application that is deployed and running on your environment.

Running version

The name of the application version that is deployed and running on your environment. Choose
Upload and deploy to upload a source bundle and deploy it to your environment. This option
creates a new application version.

Platform

The name of the platform version running on your environment. Typically, this comprises the
architecture, operating system (OS), language, and application server (collectively known as the
platform branch), with a specific platform version number.

Environment overview 622

AWS Elastic Beanstalk Developer Guide

If your platform version is not the most recently available, then a status label displays next to it in
the Platform section. The Update label indicates that although the platform version is supported
a newer version is available. The platform version may also be labeled as Deprecated or Retired.
Select Change version to update your platform branch to a newer version. For more information
about the states of a platform version, see the Platform Branch section in the Elastic Beanstalk
platforms glossary.

Environment overview tabs

The tabs displayed on the bottom half of the page contain more detailed information about your
environment and provide access to additional features:

• Events – Shows information or error messages from the Elastic Beanstalk service and from other
services whose resources this environment uses.

• Health – Shows the status of and detailed health information about the Amazon EC2 instances
running your application.

• Logs – Retrieve and download logs from the Amazon EC2 in your environment. You can retrieve
full logs or recent activity. The retrieved logs are available for 15 minutes.

• Monitoring – Shows statistics for the environment, such as average latency and CPU utilization.

• Alarms – Shows the alarms that you configured for environment metrics. You can add, modify or
delete alarms on this page.

• Managed updates – Shows information about upcoming and completed managed platform
updates and instance replacement.

• Tags – Shows environment tags and allows you to manage them. Tags are key-value pairs that
are applied to your environment.

Environment overview 623

AWS Elastic Beanstalk Developer Guide

Note

The navigation pane on the left side of the console lists links with the same name as the
tabs. Selecting any of these links will display the contents of the corresponding tab.

Environment actions

The environment overview page contains an Actions menu that you can use to perform common
operations on your environment. This menu is shown on the right side of the environment header
next to the Create a new environment option.

Note

Some actions are only available under certain conditions, remaining disabled until the right
conditions are met.

Load configuration

Load a previously saved configuration. Configurations are saved to your application and can
be loaded by any associated environment. If you've made changes to your environment's
configuration, you can load a saved configuration to undo those changes. You can also load
a configuration that you saved from a different environment running the same application to
propagate configuration changes between them.

Save configuration

Save the current configuration of your environment to your application. Before you make changes
to your environment's configuration, save the current configuration so that you can roll back later,
if needed. You can also apply a saved configuration when you launch a new environment.

Swap environment Domains (URLs)

Swap the CNAME of the current environment with a new environment. After a CNAME swap, all
traffic to the application using the environment URL goes to the new environment. When you are
ready to deploy a new version of your application, you can launch a separate environment under
the new version. When the new environment is ready to start taking requests, perform a CNAME

Environment actions 624

AWS Elastic Beanstalk Developer Guide

swap to start routing traffic to the new environment. Doing this doesn't interrupt your services. For
more information, see Blue/Green deployments with Elastic Beanstalk.

Clone environment

Launch a new environment with the same configuration as your currently running environment.

Clone with latest platform

Clone your current environment with the latest version of the in-use Elastic Beanstalk platform.
This option is available only when a newer version of the current environment's platform is
available for use.

Abort current operation

Stop an in-progress environment update. Stopping an operation can cause some of the instances
in your environment to be in a different state than others, depending on how far the operation
progressed. This option is available only when your environment is being updated.

Restart app servers

Restart the web server that is running on your environment's instances. This option doesn't
terminate or restart any AWS resources. If your environment is acting strangely in response to
some bad requests, restarting the application server can restore functionality temporarily while
you troubleshoot the root cause.

Rebuild environment

Terminate all resources in the running environment and build a new environment with the
same settings. This operation takes several minutes, similar to the amount of time needed for
deploying a new environment from scratch. Any Amazon RDS instances that are running in your
environment's data tier are deleted during a rebuild. If you need the data, create a snapshot. You
can create a snapshot manually in the RDS console or configure your data tier's Deletion Policy to
create a snapshot automatically before deleting the instance. This is the default setting when you
create a data tier.

Terminate environment

Terminate all resources in the running environment and remove the environment from the
application. If you have an RDS instance that is running in a data tier and you need to retain

Environment actions 625

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html

AWS Elastic Beanstalk Developer Guide

its data, make sure the database deletion policy is set to either Snapshot or Retain. For more
information, see Database lifecycle in the Configuring environments chapter of this guide.

Restore environment

If the environment has been terminated in the last hour, you can restore it from this page. After an
hour, you can restore it from the application overview page.

Events

The Events tab shows the event stream for your environment. Elastic Beanstalk outputs event
messages whenever you interact with the environment, and when any of your environment's
resources are created or modified as a result.

For more information, see Viewing an Elastic Beanstalk environment's event stream.

Health

If enhanced health monitoring is enabled this page shows live health information for your
instances. The Overall health pane shows health data as an average for all of your environment’s
instances combined. The Enhanced instance health pane shows live health information for each
individual instance in your environment. Enhanced health monitoring enables Elastic Beanstalk
to closely monitor the resources in your environment so that it can assess the health of your
application more accurately.

Events 626

AWS Elastic Beanstalk Developer Guide

When enhanced health monitoring is enabled, this page shows information about the requests
served by the instances in your environment and metrics from the operating system, including
latency, load, and CPU utilization.

For more information, see Enhanced health reporting and monitoring.

Logs

The Logs page lets you retrieve logs from the EC2 instances in your environment. When you
request logs, Elastic Beanstalk sends a command to the instances, which then upload logs to
your Elastic Beanstalk storage bucket in Amazon S3. When you request logs on this page, Elastic
Beanstalk automatically deletes them from Amazon S3 after 15 minutes.

You can also configure your environment's instances to upload logs to Amazon S3 for permanent
storage after they have been rotated locally.

For more information, see Viewing logs from Amazon EC2 instances in your Elastic Beanstalk
environment.

Logs 627

AWS Elastic Beanstalk Developer Guide

Monitoring

The Monitoring page shows an overview of health information for your environment. This includes
the default set of metrics provided by Elastic Load Balancing and Amazon EC2, and graphs that
show how the environment's health has changed over time.

For more information, see Monitoring environment health in the AWS management console.

Alarms

The Existing alarms page shows information about any alarms that you have configured for your
environment. You can use the options on this page to create or delete alarms.

For more information, see Manage alarms.

Monitoring 628

AWS Elastic Beanstalk Developer Guide

Managed updates

The Managed updates overview page shows information about upcoming and completed
managed platform updates and instance replacement.

The managed update feature lets you configure your environment to update to the latest platform
version automatically during a weekly maintenance window that you choose. In between platform
releases, you can choose to have your environment replace all of its Amazon EC2 instances during
the maintenance window. This can alleviate issues that occur when your application runs for
extended periods of time.

For more information, see Managed platform updates.

For more information, see Managed platform updates.

Tags

The Tags page shows the tags that Elastic Beanstalk applied to the environment when you created
it, and any tags that you added. You can add, edit, and delete custom tags. You can't edit or delete
the tags that Elastic Beanstalk applied.

Environment tags are applied to every resource that Elastic Beanstalk creates to support your
application.

Managed updates 629

AWS Elastic Beanstalk Developer Guide

For more information, see Tagging resources in your Elastic Beanstalk environments.

Configuration

The Configuration page shows the current configuration of your environment and its resources,
including Amazon EC2 instances, a load balancer, notifications, and health monitoring settings.
Use the settings on this page to customize the behavior of your environment during deployments,
enable additional features, and modify the instance type and other settings that you chose during
environment creation.

Configuration 630

AWS Elastic Beanstalk Developer Guide

For more information, see Configuring Elastic Beanstalk environments.

Configuration 631

AWS Elastic Beanstalk Developer Guide

Creating an Elastic Beanstalk environment

An AWS Elastic Beanstalk environment is a collection of AWS resources running an application
version. You can deploy multiple environments when you need to run multiple versions of an
application. For example, you might have development, integration, and production environments.

The following procedure launches a new environment running the default application. These steps
are simplified to get your environment up and running quickly, using default option values. For
detailed instructions with descriptions of the many options you can use to configure the resources
that Elastic Beanstalk deploys on your behalf, see The create new environment wizard.

Notes

• For instructions on creating and managing environments with the EB CLI, see Managing
Elastic Beanstalk environments with the EB CLI.

• Creating an environment requires the permissions in the Elastic Beanstalk full access
managed policy. See Elastic Beanstalk user policy for details.

To launch an environment with a sample application (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose an existing application's name in
the list or create one.

3. On the application overview page, choose Create new environment.

This launches the Create environment wizard. The wizard provides a set of steps for you to
create a new environment.

Creating environments 632

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Creating environments 633

AWS Elastic Beanstalk Developer Guide

4. For environment tier, choose the Web server environment or Worker environment
environment tier. You can't change an environment's tier after creation.

Note

The .NET on Windows Server platform doesn't support the worker environment tier.

5. For Platform, select the platform and platform branch that match the language your
application uses.

Note

Elastic Beanstalk supports multiple versions for most of the platforms that are
listed. By default, the console selects the recommended version for the platform and
platform branch you choose. If your application requires a different version, you can
select it here. For information about supported platform versions, see the section
called “Supported platforms”.

6. For Application code, choose Sample application.

7. For Configuration presets, choose Single instance.

8. Choose Next.

9. The Configure service access page displays.

Creating environments 634

AWS Elastic Beanstalk Developer Guide

10. Choose Use an existing service role for Service Role.

11. Next, we'll focus on the EC2 instance profile dropdown list. The values displayed in this
dropdown list may vary, depending on whether you account has previously created a new
environment.

Choose one of the following, based on the values displayed in your list.

• If aws-elasticbeanstalk-ec2-role displays in the dropdown list, select it from the
EC2 instance profile dropdown list.

• If another value displays in the list, and it’s the default EC2 instance profile intended for
your environments, select it from the EC2 instance profile dropdown list.

• If the EC2 instance profile dropdown list doesn't list any values to choose from, expand
the procedure that follows, Create IAM Role for EC2 instance profile.

Complete the steps in Create IAM Role for EC2 instance profile to create an IAM Role that
you can subsequently select for the EC2 instance profile. Then return back to this step.

Now that you've created an IAM Role, and refreshed the list, it displays as a choice in
the dropdown list. Select the IAM Role you just created from the EC2 instance profile
dropdown list.

Creating environments 635

AWS Elastic Beanstalk Developer Guide

12. Choose Skip to Review on the Configure service access page.

This will select the default values for this step and skip the optional steps.

13. The Review page displays a summary of all your choices.

To further customize your environment, choose Edit next to the step that includes any items
you want to configure. You can set the following options only during environment creation:

• Environment name

• Domain name

• Platform version

• Processor

• VPC

• Tier

You can change the following settings after environment creation, but they require new
instances or other resources to be provisioned and can take a long time to apply:

• Instance type, root volume, key pair, and AWS Identity and Access Management (IAM) role

• Internal Amazon RDS database

• Load balancer

For details on all available settings, see The create new environment wizard.

14. Choose Submit at the bottom of the page to initialize the creation of your new environment.

Creating environments 636

AWS Elastic Beanstalk Developer Guide

Create IAM Role for EC2 instance profile

To create a an IAM Role for EC2 instance profile selection

1. Choose View permission details. This displays under the EC2 instance profile dropdown list.

A modal window titled View instance profile permissions displays. This window lists the
managed profiles that you'll need to attach to the new EC2 instance profile that you create. It
also provides a link to launch the IAM console.

2. Choose the IAM console link displayed at the top of the window.

3. In the IAM console navigation pane, choose Roles.

4. Choose Create role.

5. Under Trusted entity type, choose AWS service.

6. Under Use case, choose EC2.

7. Choose Next.

8. Attach the appropriate managed policies. Scroll in the View instance profile permissions
modal window to see the managed policies. The policies are also listed here:

• AWSElasticBeanstalkWebTier

Creating environments 637

AWS Elastic Beanstalk Developer Guide

• AWSElasticBeanstalkWorkerTier

• AWSElasticBeanstalkMulticontainerDocker

9. Choose Next.

10. Enter a name for the role.

11. (Optional) Add tags to the role.

12. Choose Create role.

13. Return to the Elastic Beanstalk console window that is open.

14. Close the modal window View instance profile permissions.

Important

Do not close the browser page that displays the Elastic Beanstalk console.

15. Choose

(refresh), next to the EC2 instance profile dropdown list.

This refreshes the dropdown list, so that the Role you just created will display in the dropdown
list.

While Elastic Beanstalk creates your environment, you are redirected to the Elastic Beanstalk
console. When the environment health turns green, choose the URL next to the environment name
to view the running application. This URL is generally accessible from the internet unless you
configure your environment to use a custom VPC with an internal load balancer.

Topics

• The create new environment wizard

• Clone an Elastic Beanstalk environment

• Terminate an Elastic Beanstalk environment

• Creating Elastic Beanstalk environments with the AWS CLI

• Creating Elastic Beanstalk environments with the API

• Constructing a Launch Now URL

• Creating and updating groups of Elastic Beanstalk environments

Creating environments 638

AWS Elastic Beanstalk Developer Guide

The create new environment wizard

In Creating an Elastic Beanstalk environment we show how to open the Create environment wizard
and quickly create an environment. Choose Create environment to launch an environment with
a default environment name, automatically generated domain, sample application code, and
recommended settings.

This topic describes the Create environment wizard and all the ways you can use it to configure the
environment you want to create.

Wizard page

The Create environment wizard provides a set of steps for you to create a new environment.

The create new environment wizard 639

AWS Elastic Beanstalk Developer Guide

The create new environment wizard 640

AWS Elastic Beanstalk Developer Guide

Environment tier

For environment tier, choose the Web server environment or Worker environment environment
tier. You can't change an environment's tier after creation.

Note

The .NET on Windows Server platform doesn't support the worker environment tier.

Application information

If you launched the wizard by selecting Create new environment from the Application overview
page, then the Application name is prefilled. Otherwise, enter an application name. Optionally,
add application tags.

Environment information

The create new environment wizard 641

AWS Elastic Beanstalk Developer Guide

Set the environment's name and domain, and create a description for your environment. Be aware
that these environment settings cannot change after the environment is created.

• Name – Enter a name for the environment. The form provides a generated name.

• Domain – (web server environments) Enter a unique domain name for your environment.
The default name is the environment's name. You can enter a different domain name. Elastic
Beanstalk uses this name to create a unique CNAME for the environment. To check whether the
domain name you want is available, choose Check Availability.

• Description – Enter a description for this environment.

Select a platform for the new environment

You can create a new environment from two types of platforms:

• Managed platform

• Custom platform

Managed platform

In most cases you use an Elastic Beanstalk managed platform for your new environment. When the
new environment wizard starts, it selects the Managed platform option by default.

The create new environment wizard 642

AWS Elastic Beanstalk Developer Guide

Select a platform, a platform branch within that platform, and a specific platform version in
the branch. When you select a platform branch, the recommended version within the branch is
selected by default. In addition, you can select any platform version you've used before.

Note

For a production environment, we recommend that you choose a platform version in a
supported platform branch. For details about platform branch states, see the Platform
Branch definition in the the section called “Platforms glossary”.

Custom platform

If an off-the-shelf platform doesn't meet your needs, you can create a new environment from a
custom platform. To specify a custom platform, choose the Custom platform option, and then
select one of the available custom platforms. If there are no custom platforms available, this
option is dimmed.

Provide application code

Now that you have selected the platform to use, the next step is to provide your application code.

The create new environment wizard 643

AWS Elastic Beanstalk Developer Guide

You have several options:

• You can use the sample application that Elastic Beanstalk provides for each platform.

• You can use code that you already deployed to Elastic Beanstalk. Choose Existing version and
your application in the Application code section.

• You can upload new code. Choose Upload your code, and then choose Upload. You can upload
new application code from a local file, or you can specify the URL for the Amazon S3 bucket that
contains your application code.

Note

Depending on the platform version you selected, you can upload your application in a ZIP
source bundle, a WAR file, or a plaintext Docker configuration. The file size limit is 500
MB.

When you choose to upload new code, you can also provide tags to associate with your new
code. For more information about tagging an application version, see the section called “Tagging
application versions”.

The create new environment wizard 644

AWS Elastic Beanstalk Developer Guide

The create new environment wizard 645

AWS Elastic Beanstalk Developer Guide

For quick environment creation using default configuration options, you can now choose Create
environment. Choose Configure more options to make additional configuration changes, as
described in the following sections.

Wizard configuration page

When you choose Configure more options, the wizard shows the Configure page. On this page
you can select a configuration preset, change the platform version you want your environment to
use, or make specific configuration choices for the new environment.

Choose a preset configuration

On the Presets section of the page, Elastic Beanstalk provides several configuration presets for
different use cases. Each preset includes recommended values for several configuration options.

The High availability presets include a load balancer, and are recommended for production
environments. Choose them if you want an environment that can run multiple instances for high
availability and scale in response to load. The Single instance presets are primarily recommended
for development. Two of the presets enable Spot Instance requests. For details about Elastic
Beanstalk capacity configuration, see Auto Scaling group.

The last preset, Custom configuration, removes all recommended values except role settings and
uses the API defaults. Choose this option if you are deploying a source bundle with configuration
files that set configuration options. Custom configuration is also selected automatically if you
modify either the Low cost or High availability configuration presets.

The create new environment wizard 646

AWS Elastic Beanstalk Developer Guide

Customize your configuration

In addition to (or instead of) choosing a configuration preset, you can fine-tune configuration
options in your environment. The Configure wizard wizard shows several configuration categories.
Each configuration category displays a summary of values for a group of configuration settings.
Choose Edit to edit this group of settings.

Configuration Categories

• Software settings

• Instances

• Capacity

• Load balancer

• Rolling updates and deployments

• Security

• Monitoring

• Managed updates

• Notifications

• Network

• Database

• Tags

• Worker environment

Software settings

Use the Modify software configuration page to configure the software on the Amazon Elastic
Compute Cloud (Amazon EC2) instances that run your application. You can configure environment
properties, AWS X-Ray debugging, instance log storing and streaming, and platform-specific
settings. For details, see the section called “Environment properties and software settings”.

The create new environment wizard 647

AWS Elastic Beanstalk Developer Guide

Instances

Use the Modify instances configuration page to configure the Amazon EC2 instances that run your
application. For details, see the section called “Amazon EC2 instances”.

Capacity

Use the Modify capacity configuration page to configure the compute capacity of your
environment and Auto Scaling group settings to optimize the number and type of instances you're
using. You can also change your environment capacity based on triggers or on a schedule.

The create new environment wizard 648

AWS Elastic Beanstalk Developer Guide

A load-balanced environment can run multiple instances for high availability and prevent
downtime during configuration updates and deployments. In a load-balanced environment, the
domain name maps to the load balancer. In a single-instance environment, it maps to an elastic IP
address on the instance.

Warning

A single-instance environment isn't production ready. If the instance becomes unstable
during deployment, or Elastic Beanstalk terminates and restarts the instance during
a configuration update, your application can be unavailable for a period of time. Use
single-instance environments for development, testing, or staging. Use load-balanced
environments for production.

For more information about environment capacity settings, see the section called “Auto Scaling
group” and the section called “Amazon EC2 instances”.

The create new environment wizard 649

AWS Elastic Beanstalk Developer Guide

Load balancer

Use the Modify load balancer configuration page to select a load balancer type and to configure
settings for it. In a load-balanced environment, your environment's load balancer is the entry point
for all traffic headed for your application. Elastic Beanstalk supports several types of load balancer.
By default, the Elastic Beanstalk console creates an Application Load Balancer and configures it to
serve HTTP traffic on port 80.

Note

You can only select your environment's load balancer type during environment creation.

For more information about load balancer types and settings, see the section called “Load
balancer” and the section called “HTTPS”.

The create new environment wizard 650

AWS Elastic Beanstalk Developer Guide

Note

The Classic Load Balancer (CLB) option is disabled on the Create Environment console
wizard. If you have an existing environment configured with a Classic Load Balancer you
can create a new one by cloning the existing environment using either the Elastic Beanstalk
console or the EB CLI. You also have the option to use the EB CLI or the AWS CLI to create
a new environment configured with a Classic Load Balancer. These command line tools will
create a new environment with a CLB even if one doesn’t already exist in your account.

The create new environment wizard 651

AWS Elastic Beanstalk Developer Guide

Rolling updates and deployments

Use the Modify rolling updates and deployments configuration page to configure how Elastic
Beanstalk processes application deployments and configuration updates for your environment.

Application deployments happen when you upload an updated application source bundle and
deploy it to your environment. For more information about configuring deployments, see the
section called “Deployment options”.

Configuration changes that modify the launch configuration or VPC settings require terminating all
instances in your environment and replacing them. For more information about setting the update
type and other options, see the section called “Configuration changes”.

The create new environment wizard 652

AWS Elastic Beanstalk Developer Guide

Security

Use the Configure service access page to configure service and instance security settings.

For a description of Elastic Beanstalk security concepts, see Permissions.

The first time you create an environment in the Elastic Beanstalk console, you must create an EC2
instance profile with a default set of permissions. If the EC2 instance profile dropdown list doesn't
show any values to choose from, expand the procedure that follows. It provides steps to create a
Role that you can subsequently select for the EC2 instance profile.

Create IAM Role for EC2 instance profile

To create a an IAM Role for EC2 instance profile selection

1. Choose View permission details. This displays under the EC2 instance profile dropdown list.

A modal window titled View instance profile permissions displays. This window lists the
managed profiles that you'll need to attach to the new EC2 instance profile that you create. It
also provides a link to launch the IAM console.

2. Choose the IAM console link displayed at the top of the window.

The create new environment wizard 653

AWS Elastic Beanstalk Developer Guide

3. In the IAM console navigation pane, choose Roles.

4. Choose Create role.

5. Under Trusted entity type, choose AWS service.

6. Under Use case, choose EC2.

7. Choose Next.

8. Attach the appropriate managed policies. Scroll in the View instance profile permissions
modal window to see the managed policies. The policies are also listed here:

• AWSElasticBeanstalkWebTier

• AWSElasticBeanstalkWorkerTier

• AWSElasticBeanstalkMulticontainerDocker

9. Choose Next.

10. Enter a name for the role.

11. (Optional) Add tags to the role.

12. Choose Create role.

13. Return to the Elastic Beanstalk console window that is open.

14. Close the modal window View instance profile permissions.

Important

Do not close the browser page that displays the Elastic Beanstalk console.

15. Choose

(refresh), next to the EC2 instance profile dropdown list.

This refreshes the dropdown list, so that the Role you just created will display in the dropdown
list.

The create new environment wizard 654

AWS Elastic Beanstalk Developer Guide

Monitoring

Use the Modify monitoring configuration page to configure health reporting, monitoring rules,
and health event streaming. For details, see the section called “Enable enhanced health”, the
section called “Enhanced health rules”, and the section called “Streaming environment health”.

The create new environment wizard 655

AWS Elastic Beanstalk Developer Guide

Managed updates

Use the Modify managed updates configuration page to configure managed platform updates.
You can decide if you want them enabled, set the schedule, and configure other properties. For
details, see the section called “Managed updates”.

The create new environment wizard 656

AWS Elastic Beanstalk Developer Guide

Notifications

Use the Modify notifications configuration page to specify an email address to receive email
notifications for important events from your environment.

The create new environment wizard 657

AWS Elastic Beanstalk Developer Guide

Network

If you have created a custom VPC, the Modify network configuration page to configure your
environment to use it. If you don't choose a VPC, Elastic Beanstalk uses the default VPC and
subnets.

The create new environment wizard 658

AWS Elastic Beanstalk Developer Guide

Database

Use the Modify database configuration page to add an Amazon Relational Database Service
(Amazon RDS) database to your environment for development and testing. Elastic Beanstalk
provides connection information to your instances by setting environment properties for the
database hostname, user name, password, table name, and port.

For details, see the section called “Database”.

The create new environment wizard 659

AWS Elastic Beanstalk Developer Guide

Tags

Use the Modify tags configuration page to add tags to the resources in your environment. For
more information about environment tagging, see Tagging resources in your Elastic Beanstalk
environments.

The create new environment wizard 660

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html

AWS Elastic Beanstalk Developer Guide

Worker environment

If you're creating a worker tier environment, use the Modify worker configuration page to configure
the worker environment. The worker daemon on the instances in your environment pulls items
from an Amazon Simple Queue Service (Amazon SQS) queue and relays them as post messages to
your worker application. You can choose the Amazon SQS queue that the worker daemon reads
from (auto-generated or existing). You can also configure the messages that the worker daemon
sends to your application.

For more information, see the section called “Worker environments”.

The create new environment wizard 661

AWS Elastic Beanstalk Developer Guide

Clone an Elastic Beanstalk environment

You can use an existing Elastic Beanstalk environment as the basis for a new environment by
cloning the existing environment. For example, you might want to create a clone so that you
can use a newer version of the platform branch used by the original environment's platform.
Elastic Beanstalk configures the clone with the same environment settings used by the original
environment. By cloning an existing environment instead of creating a new environment, you don't
have to manually configure option settings, environment variables, and other settings. Elastic
Beanstalk also creates a copy of any AWS resource associated with the original environment.
However, during the cloning process, Elastic Beanstalk doesn't copy data from Amazon RDS to the
clone. After you create the clone environment, you can modify environment configuration settings
as needed.

You can only clone an environment to a different platform version of the same platform branch. A
different platform branch isn't guaranteed to be compatible. To use a different platform branch,
you have to manually create a new environment, deploy your application code, and make any
necessary changes in code and options to ensure your application works correctly on the new
platform branch.

Note

Elastic Beanstalk doesn't include any unmanaged changes to resources in the clone.
Changes to AWS resources that you make using tools other than the Elastic Beanstalk
console, command-line tools, or API are considered unmanaged changes.

AWS management console

To clone an environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

Clone an environment 662

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

3. On the environment overview page, choose Actions.

4. Choose Clone environment.

5. On the Clone environment page, review the information in the Original Environment section
to verify that you chose the environment from which you want to create a clone.

6. In the New Environment section, you can optionally change the Environment name,
Environment URL, Description, Platform version, and Service role values that Elastic
Beanstalk automatically set based on the original environment.

Note

If the platform version used in the original environment isn't the one recommended
for use in the platform branch, you are warned that a different platform version is
recommended. Choose Platform version, and you can see the recommended platform
version on the list—for example, 3.3.2 (Recommended).

Clone an environment 663

AWS Elastic Beanstalk Developer Guide

Clone an environment 664

AWS Elastic Beanstalk Developer Guide

7. When you are ready, choose Clone.

Elastic Beanstalk command line interface (EB CLI)

Use the eb clone command to clone a running environment, as follows.

~/workspace/my-app$ eb clone my-env1
Enter name for Environment Clone
(default is my-env1-clone): my-env2
Enter DNS CNAME prefix
(default is my-env1-clone): my-env2

You can specify the name of the source environment in the clone command, or leave it out to clone
the default environment for the current project folder. The EB CLI prompts you to enter a name
and DNS prefix for the new environment.

By default, eb clone creates the new environment with the latest available version of the source
environment's platform. To force the EB CLI to use the same version, even if there is a newer
version available, use the --exact option.

~/workspace/my-app$ eb clone --exact

For more information about this command, see eb clone.

Terminate an Elastic Beanstalk environment

You can terminate a running AWS Elastic Beanstalk environment using the Elastic Beanstalk
console. By doing this, you avoid incurring charges for unused AWS resources.

Note

You can always launch a new environment using the same version later.

If you have data from an environment that you want to preserve, set the database deletion policy
to Retain before terminating the environment. This keeps the database operational outside of
Elastic Beanstalk. After this, any Elastic Beanstalk environments must connect to it as an external
database. If you want to back up the data without keeping the database operational, set the

Terminate an environment 665

AWS Elastic Beanstalk Developer Guide

deletion policy to take a snapshot of the database before terminating the environment. For more
information, see Database lifecycle in the Configuring environments chapter of this guide.

Elastic Beanstalk might fail to terminate your environment. One common reason is that the
security group of another environment has a dependency on the security group of the environment
that you want to terminate. For instructions on how to avoid this problem, see Security groups on
the EC2 Instances page of this guide.

Important

If you terminate an environment, you must also delete any CNAME mappings that you
created, as other customers can reuse an available hostname. Be sure to delete DNS records
that point to your terminated environment to prevent a dangling DNS entry. A dangling
DNS entry can expose internet traffic destined for your domain to security vulnerabilities. It
can also present other risks.
For more information, see Protection from dangling delegation records in Route 53 in the
Amazon Route 53 Developer Guide. You can also learn more about dangling DNS entries in
Enhanced Domain Protections for Amazon CloudFront Requests in the AWS Security Blog.

Elastic Beanstalk console

To terminate an environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

Terminate an environment 666

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/protection-from-dangling-dns.html
https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Note

When you terminate your environment, the CNAME that's associated with the
terminated environment is freed up to be used by anyone.

It takes a few minutes for Elastic Beanstalk to terminate the AWS resources that are running in
the environment.

AWS CLI

To terminate an environment

• Run the following command.

$ aws elasticbeanstalk terminate-environment --environment-name my-env

API

To terminate an environment

• Call TerminateEnvironment with the following parameter:

EnvironmentName = SampleAppEnv

https://elasticbeanstalk.us-west-2.amazon.com/?EnvironmentName=SampleAppEnv
&Operation=TerminateEnvironment
&AuthParams

Creating Elastic Beanstalk environments with the AWS CLI

For details about the AWS CLI commands for Elastic Beanstalk, see the AWS CLI Command
Reference.

1. Check if the CNAME for the environment is available.

With the AWS CLI 667

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

$ aws elasticbeanstalk check-dns-availability --cname-prefix my-cname
{
 "Available": true,
 "FullyQualifiedCNAME": "my-cname.elasticbeanstalk.com"
}

2. Make sure your application version exists.

$ aws elasticbeanstalk describe-application-versions --application-name my-app --
version-label v1

If you don't have an application version for your source yet, create it. For example, the
following command creates an application version from a source bundle in Amazon Simple
Storage Service (Amazon S3).

$ aws elasticbeanstalk create-application-version --application-name my-app --
version-label v1 --source-bundle S3Bucket=DOC-EXAMPLE-BUCKET,S3Key=my-source-
bundle.zip

3. Create a configuration template for the application.

$ aws elasticbeanstalk create-configuration-template --application-name my-app --
template-name v1 --solution-stack-name "64bit Amazon Linux 2015.03 v2.0.0 running
 Ruby 2.2 (Passenger Standalone)"

4. Create environment.

$ aws elasticbeanstalk create-environment --cname-prefix my-cname --application-
name my-app --template-name v1 --version-label v1 --environment-name v1clone --
option-settings file://options.txt

Option Settings are defined in the options.txt file:

[
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "IamInstanceProfile",
 "Value": "aws-elasticbeanstalk-ec2-role"
 }
]

With the AWS CLI 668

AWS Elastic Beanstalk Developer Guide

The above option setting defines the IAM instance profile. You can specify the ARN or the
profile name.

5. Determine if the new environment is Green and Ready.

$ aws elasticbeanstalk describe-environments --environment-names my-env

If the new environment does not come up Green and Ready, you should decide if you want to
retry the operation or leave the environment in its current state for investigation. Make sure to
terminate the environment after you are finished, and clean up any unused resources.

Note

You can adjust the timeout period if the environment doesn't launch in a reasonable
time.

Creating Elastic Beanstalk environments with the API

1. Call CheckDNSAvailability with the following parameter:

• CNAMEPrefix = SampleApp

Example

https://elasticbeanstalk.us-east-2.amazonaws.com/?CNAMEPrefix=sampleapplication
&Operation=CheckDNSAvailability
&AuthParams

2. Call DescribeApplicationVersions with the following parameters:

• ApplicationName = SampleApp

• VersionLabel = Version2

Example

https://elasticbeanstalk.us-east-2.amazonaws.com/?ApplicationName=SampleApp
&VersionLabel=Version2

With the API 669

AWS Elastic Beanstalk Developer Guide

&Operation=DescribeApplicationVersions
&AuthParams

3. Call CreateConfigurationTemplate with the following parameters:

• ApplicationName = SampleApp

• TemplateName = MyConfigTemplate

• SolutionStackName = 64bit%20Amazon%20Linux%202015.03%20v2.0.0%20running
%20Ruby%202.2%20(Passenger%20Standalone)

Example

https://elasticbeanstalk.us-east-2.amazonaws.com/?ApplicationName=SampleApp
&TemplateName=MyConfigTemplate
&Operation=CreateConfigurationTemplate
&SolutionStackName=64bit%20Amazon%20Linux%202015.03%20v2.0.0%20running%20Ruby
%202.2%20(Passenger%20Standalone)
&AuthParams

4. Call CreateEnvironment with one of the following sets of parameters.

a. Use the following for a web server environment tier:

• EnvironmentName = SampleAppEnv2

• VersionLabel = Version2

• Description = description

• TemplateName = MyConfigTemplate

• ApplicationName = SampleApp

• CNAMEPrefix = sampleapplication

• OptionSettings.member.1.Namespace =
aws:autoscaling:launchconfiguration

• OptionSettings.member.1.OptionName = IamInstanceProfile

• OptionSettings.member.1.Value = aws-elasticbeanstalk-ec2-role

Example

https://elasticbeanstalk.us-east-2.amazonaws.com/?ApplicationName=SampleAppWith the API 670

AWS Elastic Beanstalk Developer Guide

&VersionLabel=Version2
&EnvironmentName=SampleAppEnv2
&TemplateName=MyConfigTemplate
&CNAMEPrefix=sampleapplication
&Description=description
&Operation=CreateEnvironment
&OptionSettings.member.1.Namespace=aws%3Aautoscaling%3Alaunchconfiguration
&OptionSettings.member.1.OptionName=IamInstanceProfile
&OptionSettings.member.1.Value=aws-elasticbeanstalk-ec2-role
&AuthParams

b. Use the following for a worker environment tier:

• EnvironmentName = SampleAppEnv2

• VersionLabel = Version2

• Description = description

• TemplateName = MyConfigTemplate

• ApplicationName = SampleApp

• Tier = Worker

• OptionSettings.member.1.Namespace =
aws:autoscaling:launchconfiguration

• OptionSettings.member.1.OptionName = IamInstanceProfile

• OptionSettings.member.1.Value = aws-elasticbeanstalk-ec2-role

• OptionSettings.member.2.Namespace = aws:elasticbeanstalk:sqsd

• OptionSettings.member.2.OptionName = WorkerQueueURL

• OptionSettings.member.2.Value = sqsd.elasticbeanstalk.us-
east-2.amazonaws.com

• OptionSettings.member.3.Namespace = aws:elasticbeanstalk:sqsd

• OptionSettings.member.3.OptionName = HttpPath

• OptionSettings.member.3.Value = /

• OptionSettings.member.4.Namespace = aws:elasticbeanstalk:sqsd

• OptionSettings.member.4.OptionName = MimeType

• OptionSettings.member.4.Value = application/json

• OptionSettings.member.5.Namespace = aws:elasticbeanstalk:sqsd

• OptionSettings.member.5.OptionName = HttpConnections
With the API 671

AWS Elastic Beanstalk Developer Guide

• OptionSettings.member.5.Value = 75

• OptionSettings.member.6.Namespace = aws:elasticbeanstalk:sqsd

• OptionSettings.member.6.OptionName = ConnectTimeout

• OptionSettings.member.6.Value = 10

• OptionSettings.member.7.Namespace = aws:elasticbeanstalk:sqsd

• OptionSettings.member.7.OptionName = InactivityTimeout

• OptionSettings.member.7.Value = 10

• OptionSettings.member.8.Namespace = aws:elasticbeanstalk:sqsd

• OptionSettings.member.8.OptionName = VisibilityTimeout

• OptionSettings.member.8.Value = 60

• OptionSettings.member.9.Namespace = aws:elasticbeanstalk:sqsd

• OptionSettings.member.9.OptionName = RetentionPeriod

• OptionSettings.member.9.Value = 345600

Example

https://elasticbeanstalk.us-east-2.amazonaws.com/?ApplicationName=SampleApp
&VersionLabel=Version2
&EnvironmentName=SampleAppEnv2
&TemplateName=MyConfigTemplate
&Description=description
&Tier=Worker
&Operation=CreateEnvironment
&OptionSettings.member.1.Namespace=aws%3Aautoscaling%3Alaunchconfiguration
&OptionSettings.member.1.OptionName=IamInstanceProfile
&OptionSettings.member.1.Value=aws-elasticbeanstalk-ec2-role
&OptionSettings.member.2.Namespace=aws%3Aelasticbeanstalk%3Asqsd
&OptionSettings.member.2.OptionName=WorkerQueueURL
&OptionSettings.member.2.Value=sqsd.elasticbeanstalk.us-east-2.amazonaws.com
&OptionSettings.member.3.Namespace=aws%3elasticbeanstalk%3sqsd
&OptionSettings.member.3.OptionName=HttpPath
&OptionSettings.member.3.Value=%2F
&OptionSettings.member.4.Namespace=aws%3Aelasticbeanstalk%3Asqsd
&OptionSettings.member.4.OptionName=MimeType
&OptionSettings.member.4.Value=application%2Fjson
&OptionSettings.member.5.Namespace=aws%3Aelasticbeanstalk%3Asqsd
&OptionSettings.member.5.OptionName=HttpConnections

With the API 672

AWS Elastic Beanstalk Developer Guide

&OptionSettings.member.5.Value=75
&OptionSettings.member.6.Namespace=aws%3Aelasticbeanstalk%3Asqsd
&OptionSettings.member.6.OptionName=ConnectTimeout
&OptionSettings.member.6.Value=10
&OptionSettings.member.7.Namespace=aws%3Aelasticbeanstalk%3Asqsd
&OptionSettings.member.7.OptionName=InactivityTimeout
&OptionSettings.member.7.Value=10
&OptionSettings.member.8.Namespace=aws%3Aelasticbeanstalk%3Asqsd
&OptionSettings.member.8.OptionName=VisibilityTimeout
&OptionSettings.member.8.Value=60
&OptionSettings.member.9.Namespace=aws%3Aelasticbeanstalk%3Asqsd
&OptionSettings.member.9.OptionName=RetentionPeriod
&OptionSettings.member.9.Value=345600
&AuthParams

Constructing a Launch Now URL

You can construct a custom URL so that anyone can quickly deploy and run a predetermined web
application in AWS Elastic Beanstalk. This URL is called a Launch Now URL. You might need a
Launch Now URL, for example, to demonstrate a web application that's built to run on Elastic
Beanstalk. With a Launch Now URL, you can use parameters to add the required information to
the Create Application wizard in advance. After you add this information to the wizard, anyone
can use the URL link to launch an Elastic Beanstalk environment with your web application source
in only a few steps. This means users don't need to manually upload or specify the location of
the application source bundle. They also don't need to provide any additional information to the
wizard.

A Launch Now URL gives Elastic Beanstalk the minimum information that's required to create an
application: the application name, solution stack, instance type, and environment type. Elastic
Beanstalk uses default values for other configuration details that aren't explicitly specified in your
custom Launch Now URL.

A Launch Now URL uses standard URL syntax. For more information, see RFC 3986 - Uniform
Resource Identifier (URI): Generic Syntax.

URL parameters

The URL must contain the following parameters, which are case sensitive:

Launch Now URL 673

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986

AWS Elastic Beanstalk Developer Guide

• region – Specify an AWS Region. For a list of Regions that are supported by Elastic Beanstalk, see
AWS Elastic Beanstalk Endpoints and Quotas in the AWS General Reference.

• applicationName – Specify the name of your application. Elastic Beanstalk displays the
application name in the Elastic Beanstalk console to distinguish it from other applications. By
default, the application name also forms the basis of the environment name and environment
URL.

• platform – Specify the platform version to use for the environment. Use one of the following
methods, then URL-encode your choice:

• Specify a platform ARN without a version. Elastic Beanstalk selects the latest platform version
of the corresponding platform major version. For example, to select the latest Python 3.6
platform version, specify Python 3.6 running on 64bit Amazon Linux.

• Specify the platform name. Elastic Beanstalk selects the latest version of the platform's latest
language runtime (for example, Python).

For a description of all available platforms and their versions, see Elastic Beanstalk supported
platforms.

You can use the AWS Command Line Interface (AWS CLI) to get a list of all the available platform
versions with their respective ARNs. The list-platform-versions command lists detailed
information about all the available platform versions. Use the --filters argument to scope
down the list. For example, you can scope the list to only show the platform versions of a specific
language.

The following example queries all the Python platform versions, and pipes the output through a
series of commands. The result is a list of platform version ARNs (without the /version tail), in
a human-readable format, without URL encoding.

$ aws elasticbeanstalk list-platform-versions --filters
 'Type="PlatformName",Operator="contains",Values="Python"' | grep PlatformArn | awk -
F '"' '{print $4}' | awk -F '/' '{print $2}'
Preconfigured Docker - Python 3.4 running on 64bit Debian
Preconfigured Docker - Python 3.4 running on 64bit Debian
Python 2.6 running on 32bit Amazon Linux
Python 2.6 running on 32bit Amazon Linux 2014.03
...
Python 3.6 running on 64bit Amazon Linux

The following example adds a Perl command to the last example to URL-encode the output.

Launch Now URL 674

https://docs.aws.amazon.com/general/latest/gr/elasticbeanstalk.html
https://docs.aws.amazon.com/cli/latest/userguide/

AWS Elastic Beanstalk Developer Guide

$ aws elasticbeanstalk list-platform-versions --filters
 'Type="PlatformName",Operator="contains",Values="Python"' | grep PlatformArn | awk
 -F '"' '{print $4}' | awk -F '/' '{print $2}' | perl -MURI::Escape -ne 'chomp;print
 uri_escape($_),"\n"'
Preconfigured%20Docker%20-%20Python%203.4%20running%20on%2064bit%20Debian
Preconfigured%20Docker%20-%20Python%203.4%20running%20on%2064bit%20Debian
Python%202.6%20running%20on%2032bit%20Amazon%20Linux
Python%202.6%20running%20on%2032bit%20Amazon%20Linux%202014.03
...
Python%203.6%20running%20on%2064bit%20Amazon%20Linux

A Launch Now URL can optionally contain the following parameters. If you don't include the
optional parameters in your Launch Now URL, Elastic Beanstalk uses default values to create and
run your application. When you don't include the sourceBundleUrl parameter, Elastic Beanstalk
uses the default sample application for the specified platform.

• sourceBundleUrl – Specify the location of your web application source bundle in URL format.
For example, if you uploaded your source bundle to an Amazon S3 bucket, you might specify
the value of the sourceBundleUrl parameter as https://mybucket.s3.amazonaws.com/
myobject.

Note

You can specify the value of the sourceBundleUrl parameter as an HTTP URL, but the
user's web browser will convert characters as needed by applying HTML URL encoding.

• environmentType – Specify whether the environment is load balanced and scalable or
just a single instance. For more information, see Environment types. You can specify either
LoadBalancing or SingleInstance as the parameter value.

• tierName – Specify whether the environment supports a web application that processes web
requests or a web application that runs background jobs. For more information, see Elastic
Beanstalk worker environments. You can specify either WebServer or Worker,

• instanceType – Specify a server with the characteristics (including memory size and CPU power)
that are most appropriate to your application. For more information about Amazon EC2 instance
families and types, see Instance types in the Amazon EC2 User Guide for Linux Instances or
Instance types in the Amazon EC2 User Guide for Windows Instances. For more information about
the available instance types across Regions, see Available instance types in the Amazon EC2 User

Launch Now URL 675

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes

AWS Elastic Beanstalk Developer Guide

Guide for Linux Instances or Available instance types in the Amazon EC2 User Guide for Windows
Instances.

• withVpc – Specify whether to create the environment in an Amazon VPC. You can specify either
true or false. For more information about using Elastic Beanstalk with Amazon VPC, see Using
Elastic Beanstalk with Amazon VPC.

• withRds – Specify whether to create an Amazon RDS database instance with this environment.
For more information, see Using Elastic Beanstalk with Amazon RDS. You can specify either true
or false.

• rdsDBEngine – Specify the database engine that you want to use for your Amazon EC2 instances
in this environment. You can specify mysql, oracle-sel, sqlserver-ex, sqlserver-web, or
sqlserver-se. The default value is mysql.

• rdsDBAllocatedStorage – Specify the allocated database storage size in gigabytes (GB). You can
specify the following values:

• MySQL – 5 to 1024. The default is 5.

• Oracle – 10 to 1024. The default is 10.

• Microsoft SQL Server Express Edition – 30.

• Microsoft SQL Server Web Edition – 30.

• Microsoft SQL Server Standard Edition – 200.

• rdsDBInstanceClass – Specify the database instance type. The default value is db.t2.micro
(db.m1.large is for an environment that's not running in an Amazon VPC). For a list of
database instance classes that are supported by Amazon RDS, see DB Instance Class in the
Amazon Relational Database Service User Guide.

• rdsMultiAZDatabase – Specify whether Elastic Beanstalk needs to create the database instance
across multiple Availability Zones. You can specify either true or false. For more information
about multiple Availability Zone deployments with Amazon RDS, see Regions and Availability
Zones in the Amazon Relational Database Service User Guide.

• rdsDBDeletionPolicy – Specify whether to delete or snapshot the database instance on
environment termination. You can specify either Delete or Snapshot.

Example

The following is an example Launch Now URL. After you construct your own, you can give it to your
users. For example, you can embed the URL on a webpage or in training materials. When users

Launch Now URL 676

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html#AvailableInstanceTypes
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html

AWS Elastic Beanstalk Developer Guide

create an application using the Launch Now URL, the Elastic Beanstalk Create an Application wizard
requires no additional input.

https://console.aws.amazon.com/elasticbeanstalk/home?region=us-west-2#/
newApplication?applicationName=YourCompanySampleApp&platform=PHP%207.3%20running
%20on%2064bit%20Amazon%20Linux&sourceBundleUrl=http://s3.amazonaws.com/mybucket/
myobject&environmentType=SingleInstance&tierName=WebServer&instanceType=m1.small&withVpc=true&withRds=true&rdsDBEngine=postgres&rdsDBAllocatedStorage=6&rdsDBInstanceClass=db.m1.small&rdsMultiAZDatabase=true&rdsDBDeletionPolicy=Snapshot

When users choose a Launch Now URL, Elastic Beanstalk displays a page similar to the following.

Launch Now URL 677

AWS Elastic Beanstalk Developer Guide

Launch Now URL 678

AWS Elastic Beanstalk Developer Guide

To use the Launch Now URL

1. Choose the Launch Now URL.

2. After the Elastic Beanstalk console opens, on the Create a web app page, choose Review and
launch to view the settings that Elastic Beanstalk uses to create the application and launch the
environment where the application runs.

3. On the Configure page, choose Create app to create the application.

Creating and updating groups of Elastic Beanstalk environments

With the AWS Elastic Beanstalk Compose Environments API, you can create and update groups
of Elastic Beanstalk environments within a single application. Each environment in the group
can run a separate component of a service-oriented architecture application. The Compose
Environments API takes a list of application versions and an optional group name. Elastic
Beanstalk creates an environment for each application version, or, if the environments already
exist, deploys the application versions to them.

Create links between Elastic Beanstalk environments to designate one environment as
a dependency of another. When you create a group of environments with the Compose
Environments API, Elastic Beanstalk creates dependent environments only after their
dependencies are up and running. For more information on environment links, see Creating links
between Elastic Beanstalk environments.

The Compose Environments API uses an environment manifest to store configuration details
that are shared by groups of environments. Each component application must have an env.yaml
configuration file in its application source bundle that specifies the parameters used to create its
environment.

Compose Environments requires the EnvironmentName and SolutionStack to be specified in
the environment manifest for each component application.

You can use the Compose Environments API with the Elastic Beanstalk command line interface
(EB CLI), the AWS CLI, or an SDK. See Managing multiple Elastic Beanstalk environments as a group
with the EB CLI for EB CLI instructions.

Using the Compose Environments API

For example, you could make an application named Media Library that lets users upload and
manage images and videos stored in Amazon Simple Storage Service (Amazon S3). The application

Compose environments 679

AWS Elastic Beanstalk Developer Guide

has a front-end environment, front, that runs a web application that lets users upload and
download individual files, view their library, and initiate batch processing jobs.

Instead of processing the jobs directly, the front-end application adds jobs to an Amazon SQS
queue. The second environment, worker, pulls jobs from the queue and processes them. worker
uses a G2 instance type that has a high-performance GPU, while front can run on a more cost-
effective generic instance type.

You would organize the project folder, Media Library, into separate directories for each
component, with each directory containing an environment definition file (env.yaml) with the
source code for each:

~/workspace/media-library
|-- front
| `-- env.yaml
`-- worker
 `-- env.yaml

The following listings show the env.yaml file for each component application.

~/workspace/media-library/front/env.yaml

EnvironmentName: front+
EnvironmentLinks:
 "WORKERQUEUE" : "worker+"
AWSConfigurationTemplateVersion: 1.1.0.0
EnvironmentTier:
 Name: WebServer
 Type: Standard
SolutionStack: 64bit Amazon Linux 2015.09 v2.0.4 running Java 8
OptionSettings:
 aws:autoscaling:launchconfiguration:
 InstanceType: m4.large

~/workspace/media-library/worker/env.yaml

EnvironmentName: worker+
AWSConfigurationTemplateVersion: 1.1.0.0
EnvironmentTier:
 Name: Worker

Compose environments 680

AWS Elastic Beanstalk Developer Guide

 Type: SQS/HTTP
SolutionStack: 64bit Amazon Linux 2015.09 v2.0.4 running Java 8
OptionSettings:
 aws:autoscaling:launchconfiguration:
 InstanceType: g2.2xlarge

After creating an application version for the front-end (front-v1) and worker (worker-v1)
application components, you call the Compose Environments API with the version names. In this
example, we use the AWS CLI to call the API.

Create application versions for each component:
~$ aws elasticbeanstalk create-application-version --application-name media-
library --version-label front-v1 --process --source-bundle S3Bucket="DOC-EXAMPLE-
BUCKET",S3Key="front-v1.zip"
 {
 "ApplicationVersion": {
 "ApplicationName": "media-library",
 "VersionLabel": "front-v1",
 "Description": "",
 "DateCreated": "2015-11-03T23:01:25.412Z",
 "DateUpdated": "2015-11-03T23:01:25.412Z",
 "SourceBundle": {
 "S3Bucket": "DOC-EXAMPLE-BUCKET",
 "S3Key": "front-v1.zip"
 }
 }
 }
~$ aws elasticbeanstalk create-application-version --application-name media-
library --version-label worker-v1 --process --source-bundle S3Bucket="DOC-EXAMPLE-
BUCKET",S3Key="worker-v1.zip"
 {
 "ApplicationVersion": {
 "ApplicationName": "media-library",
 "VersionLabel": "worker-v1",
 "Description": "",
 "DateCreated": "2015-11-03T23:01:48.151Z",
 "DateUpdated": "2015-11-03T23:01:48.151Z",
 "SourceBundle": {
 "S3Bucket": "DOC-EXAMPLE-BUCKET",
 "S3Key": "worker-v1.zip"
 }
 }
 }

Compose environments 681

AWS Elastic Beanstalk Developer Guide

Create environments:
~$ aws elasticbeanstalk compose-environments --application-name media-library --group-
name dev --version-labels front-v1 worker-v1

The third call creates two environments, front-dev and worker-dev. The API creates the names
of the environments by concatenating the EnvironmentName specified in the env.yaml file with
the group name option specified in the Compose Environments call, separated by a hyphen.
The total length of these two options and the hyphen must not exceed the maximum allowed
environment name length of 23 characters.

The application running in the front-dev environment can access the name of the Amazon SQS
queue attached to the worker-dev environment by reading the WORKERQUEUE variable. For more
information on environment links, see Creating links between Elastic Beanstalk environments.

Deploying applications to Elastic Beanstalk environments

You can use the AWS Elastic Beanstalk console to upload an updated source bundle and deploy it
to your Elastic Beanstalk environment, or redeploy a previously uploaded version.

Each deployment is identified by a deployment ID. Deployment IDs start at 1 and increment by
one with each deployment and instance configuration change. If you enable enhanced health
reporting, Elastic Beanstalk displays the deployment ID in both the health console and the EB CLI
when it reports instance health status. The deployment ID helps you determine the state of your
environment when a rolling update fails.

Elastic Beanstalk provides several deployment policies and settings. For details about configuring
a policy and additional settings, see the section called “Deployment options”. The following table
lists the policies and the kinds of environments that support them.

Supported deployment policies

Deployment policy Load-balanced
environments

Single-instance
environments

Legacy Windows
Server environme
nts†

All at once ✓ Yes ✓ Yes ✓ Yes

Rolling ✓ Yes ☓ No ✓ Yes

Deployments 682

AWS Elastic Beanstalk Developer Guide

Deployment policy Load-balanced
environments

Single-instance
environments

Legacy Windows
Server environme
nts†

Rolling with an
additional batch

✓ Yes ☓ No ☓ No

Immutable ✓ Yes ✓ Yes ☓ No

Traffic splitting ✓ Yes (Application
Load Balancer)

☓ No ☓ No

† In this table, a Legacy Windows Server environment is an environment based on a Windows Server
platform configuration that uses an IIS version earlier than IIS 8.5.

Warning

Some policies replace all instances during the deployment or update. This causes all
accumulated Amazon EC2 burst balances to be lost. It happens in the following cases:

• Managed platform updates with instance replacement enabled

• Immutable updates

• Deployments with immutable updates or traffic splitting enabled

Choosing a deployment policy

Choosing the right deployment policy for your application is a tradeoff of a few considerations,
and depends on your particular needs. The the section called “Deployment options” page has more
information about each policy, and a detailed description of the workings of some of them.

The following list provides summary information about the different deployment policies and adds
related considerations.

• All at once – The quickest deployment method. Suitable if you can accept a short loss of service,
and if quick deployments are important to you. With this method, Elastic Beanstalk deploys the
new application version to each instance. Then, the web proxy or application server might need

Choosing a deployment policy 683

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net
https://docs.aws.amazon.com/AWSEC2/latest/DeveloperGuide/burstable-performance-instances.html

AWS Elastic Beanstalk Developer Guide

to restart. As a result, your application might be unavailable to users (or have low availability) for
a short time.

• Rolling – Avoids downtime and minimizes reduced availability, at a cost of a longer deployment
time. Suitable if you can't accept any period of completely lost service. With this method, your
application is deployed to your environment one batch of instances at a time. Most bandwidth is
retained throughout the deployment.

• Rolling with additional batch – Avoids any reduced availability, at a cost of an even longer
deployment time compared to the Rolling method. Suitable if you must maintain the same
bandwidth throughout the deployment. With this method, Elastic Beanstalk launches an extra
batch of instances, then performs a rolling deployment. Launching the extra batch takes time,
and ensures that the same bandwidth is retained throughout the deployment.

• Immutable – A slower deployment method, that ensures your new application version is always
deployed to new instances, instead of updating existing instances. It also has the additional
advantage of a quick and safe rollback in case the deployment fails. With this method, Elastic
Beanstalk performs an immutable update to deploy your application. In an immutable update,
a second Auto Scaling group is launched in your environment and the new version serves traffic
alongside the old version until the new instances pass health checks.

• Traffic splitting – A canary testing deployment method. Suitable if you want to test the health
of your new application version using a portion of incoming traffic, while keeping the rest of the
traffic served by the old application version.

The following table compares deployment method properties.

Deployment methods

Method Impact of failed deployment Deploy time Zero
downtime

No
DNS
change

Rollback
process

Code
deployed
to

All at
once

Downtime ☓ No ✓ Yes Manual
redeploy

Existing
instances

Rolling Single batch out of service; any
successful batches before failure
running new application version

†✓ Yes ✓ Yes Manual
redeploy

Existing
instances

Choosing a deployment policy 684

AWS Elastic Beanstalk Developer Guide

Method Impact of failed deployment Deploy time Zero
downtime

No
DNS
change

Rollback
process

Code
deployed
to

Rolling
with
an
additiona
l
batch

Minimal if first batch fails;
otherwise, similar to Rolling

†✓ Yes ✓ Yes Manual
redeploy

New
and
existing
instances

ImmutableMinimal ✓ Yes ✓ Yes Terminate
new
instances

New
instances

Traffic
splitting

Percentage of client traffic routed
to new version temporarily
impacted

††✓ Yes ✓ Yes Reroute
traffic
and
terminate
new
instances

New
instances

Blue/
green

Minimal ✓ Yes ☓ No Swap
URL

New
instances

† Varies depending on batch size.

†† Varies depending on evaluation time option setting.

Deploying a new application version

You can perform deployments from your environment's dashboard.

To deploy a new application version to an Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Deploying a new application version 685

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Upload and deploy.

4. Use the on-screen form to upload the application source bundle.

5. Choose Deploy.

Redeploying a previous version

You can also deploy a previously uploaded version of your application to any of its environments
from the application versions page.

To deploy an existing application version to an existing environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

Note

If you have many applications, use the search bar to filter the application list.

3. In the navigation pane, find your application's name and choose Application versions.

4. Select the application version to deploy.

5. Choose Actions, and then choose Deploy.

6. Select an environment, and then choose Deploy.

Other ways to deploy your application

If you deploy often, consider using the Elastic Beanstalk Command Line Interface (EB CLI) to
manage your environments. The EB CLI creates a repository alongside your source code. It can also
create a source bundle, upload it to Elastic Beanstalk, and deploy it with a single command.

Redeploying a previous version 686

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

For deployments that depend on resource configuration changes or a new version that can't run
alongside the old version, you can launch a new environment with the new version and perform a
CNAME swap for a blue/green deployment.

Deployment policies and settings

AWS Elastic Beanstalk provides several options for how deployments are processed, including
deployment policies (All at once, Rolling, Rolling with additional batch, Immutable, and Traffic
splitting) and options that let you configure batch size and health check behavior during
deployments. By default, your environment uses all-at-once deployments. If you created the
environment with the EB CLI and it's a scalable environment (you didn't specify the --single
option), it uses rolling deployments.

With rolling deployments, Elastic Beanstalk splits the environment's Amazon EC2 instances into
batches and deploys the new version of the application to one batch at a time. It leaves the rest
of the instances in the environment running the old version of the application. During a rolling
deployment, some instances serve requests with the old version of the application, while instances
in completed batches serve other requests with the new version. For details, see the section called
“How rolling deployments work”.

To maintain full capacity during deployments, you can configure your environment to launch
a new batch of instances before taking any instances out of service. This option is known as a
rolling deployment with an additional batch. When the deployment completes, Elastic Beanstalk
terminates the additional batch of instances.

Immutable deployments perform an immutable update to launch a full set of new instances
running the new version of the application in a separate Auto Scaling group, alongside the
instances running the old version. Immutable deployments can prevent issues caused by partially
completed rolling deployments. If the new instances don't pass health checks, Elastic Beanstalk
terminates them, leaving the original instances untouched.

Traffic-splitting deployments let you perform canary testing as part of your application
deployment. In a traffic-splitting deployment, Elastic Beanstalk launches a full set of new instances
just like during an immutable deployment. It then forwards a specified percentage of incoming
client traffic to the new application version for a specified evaluation period. If the new instances
stay healthy, Elastic Beanstalk forwards all traffic to them and terminates the old ones. If the new
instances don't pass health checks, or if you choose to abort the deployment, Elastic Beanstalk
moves traffic back to the old instances and terminates the new ones. There's never any service
interruption. For details, see the section called “How traffic-splitting deployments work”.

Deployment options 687

AWS Elastic Beanstalk Developer Guide

Warning

Some policies replace all instances during the deployment or update. This causes all
accumulated Amazon EC2 burst balances to be lost. It happens in the following cases:

• Managed platform updates with instance replacement enabled

• Immutable updates

• Deployments with immutable updates or traffic splitting enabled

If your application doesn't pass all health checks, but still operates correctly at a lower health
status, you can allow instances to pass health checks with a lower status, such as Warning, by
modifying the Healthy threshold option. If your deployments fail because they don't pass health
checks and you need to force an update regardless of health status, specify the Ignore health
check option.

When you specify a batch size for rolling updates, Elastic Beanstalk also uses that value for rolling
application restarts. Use rolling restarts when you need to restart the proxy and application servers
running on your environment's instances without downtime.

Configuring application deployments

In the environment management console, enable and configure batched application version
deployments by editing Updates and Deployments on the environment's Configuration page.

To configure deployments (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Rolling updates and deployments configuration category, choose Edit.

Deployment options 688

https://docs.aws.amazon.com/AWSEC2/latest/DeveloperGuide/burstable-performance-instances.html
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

5. In the Application Deployments section, choose a Deployment policy, batch settings, and
health check options.

6. To save the changes choose Apply at the bottom of the page.

The Application deployments section of the Rolling updates and deployments page has the
following options for application deployments:

• Deployment policy – Choose from the following deployment options:

• All at once – Deploy the new version to all instances simultaneously. All instances in your
environment are out of service for a short time while the deployment occurs.

• Rolling – Deploy the new version in batches. Each batch is taken out of service during the
deployment phase, reducing your environment's capacity by the number of instances in a
batch.

• Rolling with additional batch – Deploy the new version in batches, but first launch a new
batch of instances to ensure full capacity during the deployment process.

• Immutable – Deploy the new version to a fresh group of instances by performing an
immutable update.

• Traffic splitting – Deploy the new version to a fresh group of instances and temporarily split
incoming client traffic between the existing application version and the new one.

For the Rolling and Rolling with additional batch deployment policies you can configure:

• Batch size – The size of the set of instances to deploy in each batch.

Choose Percentage to configure a percentage of the total number of EC2 instances in the Auto
Scaling group (up to 100 percent), or choose Fixed to configure a fixed number of instances (up
to the maximum instance count in your environment's Auto Scaling configuration).

For the Traffic splitting deployment policy you can configure the following:

• Traffic split – The initial percentage of incoming client traffic that Elastic Beanstalk shifts to
environment instances running the new application version you're deploying.

• Traffic splitting evaluation time – The time period, in minutes, that Elastic Beanstalk waits after
an initial healthy deployment before proceeding to shift all incoming client traffic to the new
application version that you're deploying.

Deployment options 689

AWS Elastic Beanstalk Developer Guide

The Deployment preferences section contains options related to health checks.

• Ignore health check – Prevents a deployment from rolling back when a batch fails to become
healthy within the Command timeout.

• Healthy threshold – Lowers the threshold at which an instance is considered healthy during
rolling deployments, rolling updates, and immutable updates.

• Command timeout – The number of seconds to wait for an instance to become healthy before
canceling the deployment or, if Ignore health check is set, to continue to the next batch.

Deployment options 690

AWS Elastic Beanstalk Developer Guide

How rolling deployments work

When processing a batch, Elastic Beanstalk detaches all instances in the batch from the load
balancer, deploys the new application version, and then reattaches the instances. If you enable
connection draining, Elastic Beanstalk drains existing connections from the Amazon EC2 instances
in each batch before beginning the deployment.

After reattaching the instances in a batch to the load balancer, Elastic Load Balancing waits until
they pass a minimum number of Elastic Load Balancing health checks (the Healthy check count
threshold value), and then starts routing traffic to them. If no health check URL is configured, this
can happen very quickly, because an instance will pass the health check as soon as it can accept a
TCP connection. If a health check URL is configured, the load balancer doesn't route traffic to the
updated instances until they return a 200 OK status code in response to an HTTP GET request to
the health check URL.

Elastic Beanstalk waits until all instances in a batch are healthy before moving on to the next
batch. With basic health reporting, instance health depends on the Elastic Load Balancing health
check status. When all instances in the batch pass enough health checks to be considered healthy
by Elastic Load Balancing, the batch is complete. If enhanced health reporting is enabled, Elastic
Beanstalk considers several other factors, including the result of incoming requests. With enhanced
health reporting, all instances must pass 12 consecutive health checks with an OK status within
two minutes for web server environments, and 18 health checks within three minutes for worker
environments.

Deployment options 691

AWS Elastic Beanstalk Developer Guide

If a batch of instances does not become healthy within the command timeout, the deployment
fails. After a failed deployment, check the health of the instances in your environment for
information about the cause of the failure. Then perform another deployment with a fixed or
known good version of your application to roll back.

If a deployment fails after one or more batches completed successfully, the completed batches run
the new version of your application while any pending batches continue to run the old version. You
can identify the version running on the instances in your environment on the health page in the
console. This page displays the deployment ID of the most recent deployment that executed on
each instance in your environment. If you terminate instances from the failed deployment, Elastic
Beanstalk replaces them with instances running the application version from the most recent
successful deployment.

How traffic-splitting deployments work

Traffic-splitting deployments allow you to perform canary testing. You direct some incoming client
traffic to your new application version to verify the application's health before committing to the
new version and directing all traffic to it.

During a traffic-splitting deployment, Elastic Beanstalk creates a new set of instances in a separate
temporary Auto Scaling group. Elastic Beanstalk then instructs the load balancer to direct a certain
percentage of your environment's incoming traffic to the new instances. Then, for a configured
amount of time, Elastic Beanstalk tracks the health of the new set of instances. If all is well, Elastic
Beanstalk shifts remaining traffic to the new instances and attaches them to the environment's
original Auto Scaling group, replacing the old instances. Then Elastic Beanstalk cleans up—
terminates the old instances and removes the temporary Auto Scaling group.

Note

The environment's capacity doesn't change during a traffic-splitting deployment. Elastic
Beanstalk launches the same number of instances in the temporary Auto Scaling group
as there are in the original Auto Scaling group at the time the deployment starts. It then
maintains a constant number of instances in both Auto Scaling groups for the deployment
duration. Take this fact into account when configuring the environment's traffic splitting
evaluation time.

Rolling back the deployment to the previous application version is quick and doesn't impact
service to client traffic. If the new instances don't pass health checks, or if you choose to abort the

Deployment options 692

AWS Elastic Beanstalk Developer Guide

deployment, Elastic Beanstalk moves traffic back to the old instances and terminates the new ones.
You can abort any deployment by using the environment overview page in the Elastic Beanstalk
console, and choosing Abort current operation in Environment actions. You can also call the
AbortEnvironmentUpdate API or the equivalent AWS CLI command.

Traffic-splitting deployments require an Application Load Balancer. Elastic Beanstalk uses this load
balancer type by default when you create your environment using the Elastic Beanstalk console or
the EB CLI.

Deployment option namespaces

You can use the configuration options in the aws:elasticbeanstalk:command namespace to
configure your deployments. If you choose the traffic-splitting policy, additional options for this
policy are available in the aws:elasticbeanstalk:trafficsplitting namespace.

Use the DeploymentPolicy option to set the deployment type. The following values are
supported:

• AllAtOnce – Disables rolling deployments and always deploys to all instances simultaneously.

• Rolling – Enables standard rolling deployments.

• RollingWithAdditionalBatch – Launches an extra batch of instances, before starting the
deployment, to maintain full capacity.

• Immutable – Performs an immutable update for every deployment.

• TrafficSplitting – Performs traffic-splitting deployments to canary-test your application
deployments.

When you enable rolling deployments, set the BatchSize and BatchSizeType options to
configure the size of each batch. For example, to deploy 25 percent of all instances in each batch,
specify the following options and values.

Example .ebextensions/rolling-updates.config

option_settings:
 aws:elasticbeanstalk:command:
 DeploymentPolicy: Rolling
 BatchSizeType: Percentage
 BatchSize: 25

Deployment options 693

https://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_AbortEnvironmentUpdate.html

AWS Elastic Beanstalk Developer Guide

To deploy to five instances in each batch, regardless of the number of instances running, and to
bring up an extra batch of five instances running the new version before pulling any instances out
of service, specify the following options and values.

Example .ebextensions/rolling-additionalbatch.config

option_settings:
 aws:elasticbeanstalk:command:
 DeploymentPolicy: RollingWithAdditionalBatch
 BatchSizeType: Fixed
 BatchSize: 5

To perform an immutable update for each deployment with a health check threshold of Warning,
and proceed with the deployment even if instances in a batch don't pass health checks within a
timeout of 15 minutes, specify the following options and values.

Example .ebextensions/immutable-ignorehealth.config

option_settings:
 aws:elasticbeanstalk:command:
 DeploymentPolicy: Immutable
 HealthCheckSuccessThreshold: Warning
 IgnoreHealthCheck: true
 Timeout: "900"

To perform traffic-splitting deployments, forwarding 15 percent of client traffic to the new
application version and evaluating health for 10 minutes, specify the following options and values.

Example .ebextensions/traffic-splitting.config

option_settings:
 aws:elasticbeanstalk:command:
 DeploymentPolicy: TrafficSplitting
 aws:elasticbeanstalk:trafficsplitting:
 NewVersionPercent: "15"
 EvaluationTime: "10"

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding options.
You must remove these settings if you want to use configuration files to configure the same. See
Recommended values for details.

Deployment options 694

AWS Elastic Beanstalk Developer Guide

Blue/Green deployments with Elastic Beanstalk

Because AWS Elastic Beanstalk performs an in-place update when you update your application
versions, your application might become unavailable to users for a short period of time. To
avoid this, perform a blue/green deployment. To do this, deploy the new version to a separate
environment, and then swap the CNAMEs of the two environments to redirect traffic to the new
version instantly.

A blue/green deployment is also required if you want to update an environment to an
incompatible platform version. For more information, see the section called “Platform updates”.

Blue/green deployments require that your environment runs independently of your production
database, if your application uses one. If your environment includes a database that Elastic
Beanstalk created on your behalf, the database and connection of the environment isn't preserved
unless you take specific actions. If you have a database that you want to retain, use one of the
Elastic Beanstalk database lifecycle options. You can choose the Retain option to keep the database
and environment operational after decoupling the database. For more information see Database
lifecycle in the Configuring environments chapter of this guide.

For instructions on how to configure your application to connect to an Amazon RDS instance that's
not managed by Elastic Beanstalk, see Using Elastic Beanstalk with Amazon RDS.

To perform a blue/green deployment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. Clone your current environment, or launch a new environment to run the platform version you
want.

3. Deploy the new application version to the new environment.

4. Test the new version on the new environment.

5. On the environment overview page, choose Actions, and then choose Swap environment
URLs.

6. For Environment name, select the current environment.

Blue/Green deployments 695

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

7. Choose Swap.

Elastic Beanstalk swaps the CNAME records of the old and new environments, redirecting traffic
from the old version to the new version.

After Elastic Beanstalk completes the swap operation, verify that the new environment responds
when you try to connect to the old environment URL. However, do not terminate your old
environment until the DNS changes are propagated and your old DNS records expire. DNS servers
don't always clear old records from their cache based on the time to live (TTL) that you set on your
DNS records.

Blue/Green deployments 696

AWS Elastic Beanstalk Developer Guide

Configuration changes

When you modify configuration option settings in the Configuration section of the environment
management console, AWS Elastic Beanstalk propagates the change to all affected resources.
These resources include the load balancer that distributes traffic to the Amazon EC2 instances
running your application, the Auto Scaling group that manages those instances, and the EC2
instances themselves.

Many configuration changes can be applied to a running environment without replacing existing
instances. For example, setting a health check URL triggers an environment update to modify
the load balancer settings, but doesn't cause any downtime because the instances running your
application continue serving requests while the update is propagated.

Configuration changes that modify the launch configuration or VPC settings require terminating
all instances in your environment and replacing them. For example, when you change the instance
type or SSH key setting for your environment, the EC2 instances must be terminated and replaced.
Elastic Beanstalk provides several policies that determine how this replacement is done.

• Rolling updates – Elastic Beanstalk applies your configuration changes in batches, keeping a
minimum number of instances running and serving traffic at all times. This approach prevents
downtime during the update process. For details, see Rolling updates.

• Immutable updates – Elastic Beanstalk launches a temporary Auto Scaling group outside of
your environment with a separate set of instances running with the new configuration. Then
Elastic Beanstalk places these instances behind your environment's load balancer. Old and new
instances both serve traffic until the new instances pass health checks. At that time, Elastic
Beanstalk moves the new instances into your environment's Auto Scaling group and terminates
the temporary group and old instances. For details, see Immutable updates.

• Disabled – Elastic Beanstalk makes no attempt to avoid downtime. It terminates your
environment's existing instances and replaces them with new instances running with the new
configuration.

Warning

Some policies replace all instances during the deployment or update. This causes all
accumulated Amazon EC2 burst balances to be lost. It happens in the following cases:

• Managed platform updates with instance replacement enabled

Configuration changes 697

https://docs.aws.amazon.com/AWSEC2/latest/DeveloperGuide/burstable-performance-instances.html

AWS Elastic Beanstalk Developer Guide

• Immutable updates

• Deployments with immutable updates or traffic splitting enabled

Supported update types

Rolling update
setting

Load-balanced
environments

Single-instance
environments

Legacy Windows
server environme
nts†

Disabled ✓ Yes ✓ Yes ✓ Yes

Rolling Based on
Health

✓ Yes ☓ No ✓ Yes

Rolling Based on
Time

✓ Yes ☓ No ✓ Yes

Immutable ✓ Yes ✓ Yes ☓ No

† For the purpose of this table, a Legacy Windows Server Environment is an environment based on a
Windows Server platform configuration that use an IIS version earlier than IIS 8.5.

Topics

• Elastic Beanstalk rolling environment configuration updates

• Immutable environment updates

Elastic Beanstalk rolling environment configuration updates

When a configuration change requires replacing instances, Elastic Beanstalk can perform the
update in batches to avoid downtime while the change is propagated. During a rolling update,
capacity is only reduced by the size of a single batch, which you can configure. Elastic Beanstalk
takes one batch of instances out of service, terminates them, and then launches a batch with the
new configuration. After the new batch starts serving requests, Elastic Beanstalk moves on to the
next batch.

Rolling updates 698

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net

AWS Elastic Beanstalk Developer Guide

Rolling configuration update batches can be processed periodically (time-based), with a delay
between each batch, or based on health. For time-based rolling updates, you can configure the
amount of time that Elastic Beanstalk waits after completing the launch of a batch of instances
before moving on to the next batch. This pause time allows your application to bootstrap and start
serving requests.

With health-based rolling updates, Elastic Beanstalk waits until instances in a batch pass health
checks before moving on to the next batch. The health of an instance is determined by the health
reporting system, which can be basic or enhanced. With basic health, a batch is considered healthy
as soon as all instances in it pass Elastic Load Balancing (ELB) health checks.

With enhanced health reporting, all of the instances in a batch must pass multiple consecutive
health checks before Elastic Beanstalk will move on to the next batch. In addition to ELB health
checks, which check only your instances, enhanced health monitors application logs and the state
of your environment's other resources. In a web server environment with enhanced health, all
instances must pass 12 health checks over the course of two minutes (18 checks over three minutes
for worker environments). If any instance fails one health check, the count resets.

If a batch doesn't become healthy within the rolling update timeout (default is 30
minutes), the update is canceled. Rolling update timeout is a configuration option
that is available in the aws:autoscaling:updatepolicy:rollingupdate
namespace. If your application doesn't pass health checks with Ok status but is stable
at a different level, you can set the HealthCheckSuccessThreshold option in the
aws:elasticbeanstalk:healthreporting:system namespace to change the level at which
Elastic Beanstalk considers an instance to be healthy.

If the rolling update process fails, Elastic Beanstalk starts another rolling update to roll back to the
previous configuration. A rolling update can fail due to failed health checks or if launching new
instances causes you to exceed the quotas on your account. If you hit a quota on the number of
Amazon EC2 instances, for example, the rolling update can fail when it attempts to provision a
batch of new instances. In this case, the rollback fails as well.

A failed rollback ends the update process and leaves your environment in an unhealthy state.
Unprocessed batches are still running instances with the old configuration, while any batches
that completed successfully have the new configuration. To fix an environment after a failed
rollback, first resolve the underlying issue that caused the update to fail, and then initiate another
environment update.

Rolling updates 699

AWS Elastic Beanstalk Developer Guide

An alternative method is to deploy the new version of your application to a different environment
and then perform a CNAME swap to redirect traffic with zero downtime. See Blue/Green
deployments with Elastic Beanstalk for more information.

Rolling updates versus rolling deployments

Rolling updates occur when you change settings that require new Amazon EC2 instances to be
provisioned for your environment. This includes changes to the Auto Scaling group configuration,
such as instance type and key-pair settings, and changes to VPC settings. In a rolling update, each
batch of instances is terminated before a new batch is provisioned to replace it.

Rolling deployments occur whenever you deploy your application and can typically be performed
without replacing instances in your environment. Elastic Beanstalk takes each batch out of service,
deploys the new application version, and then places it back in service.

The exception to this is if you change settings that require instance replacement at the same
time you deploy a new application version. For example, if you change the key name settings in
a configuration file in your source bundle and deploy it to your environment, you trigger a rolling
update. Instead of deploying your new application version to each batch of existing instances,
a new batch of instances is provisioned with the new configuration. In this case, a separate
deployment doesn't occur because the new instances are brought up with the new application
version.

Anytime new instances are provisioned as part of an environment update, there is a deployment
phase where your application's source code is deployed to the new instances and any configuration
settings that modify the operating system or software on the instances are applied. Deployment
health check settings (Ignore health check, Healthy threshold, and Command timeout) also apply
to health-based rolling updates and immutable updates during the deployment phase.

Configuring rolling updates

You can enable and configure rolling updates in the Elastic Beanstalk console.

To enable rolling updates

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Rolling updates 700

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Rolling updates and deployments configuration category, choose Edit.

5. In the Configuration updates section, for Rolling update type, select one of the Rolling
options.

6. Choose Batch size, Minimum capacity, and Pause time settings.

7. To save the changes choose Apply at the bottom of the page.

The Configuration updates section of the Rolling updates and deployments page has the
following options for rolling updates:

• Rolling update type – Elastic Beanstalk waits after it finishes updating a batch of instances
before moving on to the next batch, to allow those instances to finish bootstrapping and start
serving traffic. Choose from the following options:

• Rolling based on Health – Wait until instances in the current batch are healthy before placing
instances in service and starting the next batch.

Rolling updates 701

AWS Elastic Beanstalk Developer Guide

• Rolling based on Time – Specify an amount of time to wait between launching new instances
and placing them in service before starting the next batch.

• Immutable – Apply the configuration change to a fresh group of instances by performing an
immutable update.

• Batch size – The number of instances to replace in each batch, between 1 and 10000. By default,
this value is one-third of the minimum size of the Auto Scaling group, rounded up to a whole
number.

• Minimum capacity – The minimum number of instances to keep running while other instances
are updated, between 0 and 9999. The default value is either the minimum size of the Auto
Scaling group or one less than the maximum size of the Auto Scaling group, whichever number is
lower.

• Pause time (time-based only) – The amount of time to wait after a batch is updated before
moving on to the next batch, to allow your application to start receiving traffic. Between 0
seconds and one hour.

The aws:autoscaling:updatepolicy:rollingupdate namespace

You can also use the configuration options in the
aws:autoscaling:updatepolicy:rollingupdate namespace to configure rolling updates.

Use the RollingUpdateEnabled option to enable rolling updates, and RollingUpdateType to
choose the update type. The following values are supported for RollingUpdateType:

• Health – Wait until instances in the current batch are healthy before placing instances in service
and starting the next batch.

• Time – Specify an amount of time to wait between launching new instances and placing them in
service before starting the next batch.

• Immutable – Apply the configuration change to a fresh group of instances by performing an
immutable update.

When you enable rolling updates, set the MaxBatchSize and MinInstancesInService options
to configure the size of each batch. For time-based and health-based rolling updates, you can also
configure a PauseTime and Timeout, respectively.

Rolling updates 702

AWS Elastic Beanstalk Developer Guide

For example, to launch up to five instances at a time, while maintaining at least two instances in
service, and wait five minutes and 30 seconds between batches, specify the following options and
values.

Example .ebextensions/timebased.config

option_settings:
 aws:autoscaling:updatepolicy:rollingupdate:
 RollingUpdateEnabled: true
 MaxBatchSize: 5
 MinInstancesInService: 2
 RollingUpdateType: Time
 PauseTime: PT5M30S

To enable health-based rolling updates, with a 45-minute timeout for each batch, specify the
following options and values.

Example .ebextensions/healthbased.config

option_settings:
 aws:autoscaling:updatepolicy:rollingupdate:
 RollingUpdateEnabled: true
 MaxBatchSize: 5
 MinInstancesInService: 2
 RollingUpdateType: Health
 Timeout: PT45M

Timeout and PauseTime values must be specified in ISO8601 duration: PT#H#M#S, where each #
is the number of hours, minutes, or seconds, respectively.

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding options.
You must remove these settings if you want to use configuration files to configure the same. See
Recommended values for details.

Immutable environment updates

Immutable environment updates are an alternative to rolling updates. Immutable environment
updates ensure that configuration changes that require replacing instances are applied efficiently
and safely. If an immutable environment update fails, the rollback process requires only
terminating an Auto Scaling group. A failed rolling update, on the other hand, requires performing
an additional rolling update to roll back the changes.

Immutable updates 703

http://en.wikipedia.org/wiki/ISO_8601#Durations

AWS Elastic Beanstalk Developer Guide

To perform an immutable environment update, Elastic Beanstalk creates a second, temporary Auto
Scaling group behind your environment's load balancer to contain the new instances. First, Elastic
Beanstalk launches a single instance with the new configuration in the new group. This instance
serves traffic alongside all of the instances in the original Auto Scaling group that are running the
previous configuration.

When the first instance passes health checks, Elastic Beanstalk launches additional instances with
the new configuration, matching the number of instances running in the original Auto Scaling
group. When all of the new instances pass health checks, Elastic Beanstalk transfers them to the
original Auto Scaling group, and terminates the temporary Auto Scaling group and old instances.

Note

During an immutable environment update, the capacity of your environment doubles for
a short time when the instances in the new Auto Scaling group start serving requests and
before the original Auto Scaling group's instances are terminated. If your environment
has many instances, or you have a low on-demand instance quota, ensure that you have
enough capacity to perform an immutable environment update. If you are near the quota,
consider using rolling updates instead.

Immutable updates require enhanced health reporting to evaluate your environment's health
during the update. Enhanced health reporting combines standard load balancer health checks
with instance monitoring to ensure that the instances running the new configuration are serving
requests successfully.

You can also use immutable updates to deploy new versions of your application, as an alternative
to rolling deployments. When you configure Elastic Beanstalk to use immutable updates for
application deployments, it replaces all instances in your environment every time you deploy a new
version of your application. If an immutable application deployment fails, Elastic Beanstalk reverts
the changes immediately by terminating the new Auto Scaling group. This can prevent partial fleet
deployments, which can occur when a rolling deployment fails after some batches have already
completed.

Warning

Some policies replace all instances during the deployment or update. This causes all
accumulated Amazon EC2 burst balances to be lost. It happens in the following cases:

Immutable updates 704

https://aws.amazon.com/ec2/faqs/#How_many_instances_can_I_run_in_Amazon_EC2
https://docs.aws.amazon.com/AWSEC2/latest/DeveloperGuide/burstable-performance-instances.html

AWS Elastic Beanstalk Developer Guide

• Managed platform updates with instance replacement enabled

• Immutable updates

• Deployments with immutable updates or traffic splitting enabled

If an immutable update fails, the new instances upload bundle logs to Amazon S3 before Elastic
Beanstalk terminates them. Elastic Beanstalk leaves logs from a failed immutable update in
Amazon S3 for one hour before deleting them, instead of the standard 15 minutes for bundle and
tail logs.

Note

If you use immutable updates for application version deployments, but not for
configuration, you might encounter an error if you attempt to deploy an application version
that contains configuration changes that would normally trigger a rolling update (for
example, configurations that change instance type). To avoid this, make the configuration
change in a separate update, or configure immutable updates for both deployments and
configuration changes.

You can't perform an immutable update in concert with resource configuration changes. For
example, you can't change settings that require instance replacement while also updating other
settings, or perform an immutable deployment with configuration files that change configuration
settings or additional resources in your source code. If you attempt to change resource settings (for
example, load balancer settings) and concurrently perform an immutable update, Elastic Beanstalk
returns an error.

If your resource configuration changes aren't dependent on your source code change or on
instance configuration, perform them in two updates. If they are dependent, perform a blue/green
deployment instead.

Configuring immutable updates

You can enable and configure immutable updates in the Elastic Beanstalk console.

To enable immutable updates (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

Immutable updates 705

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Rolling updates and deployments configuration category, choose Edit.

5. In the Configuration Updates section, set Rolling update type to Immutable.

6. To save the changes choose Apply at the bottom of the page.

The aws:autoscaling:updatepolicy:rollingupdate namespace

You can also use the options in the aws:autoscaling:updatepolicy:rollingupdate
namespace to configure immutable updates. The following example configuration file enables
immutable updates for configuration changes.

Example .ebextensions/immutable-updates.config

option_settings:

Immutable updates 706

AWS Elastic Beanstalk Developer Guide

 aws:autoscaling:updatepolicy:rollingupdate:
 RollingUpdateType: Immutable

The following example enables immutable updates for both configuration changes and
deployments.

Example .ebextensions/immutable-all.config

option_settings:
 aws:autoscaling:updatepolicy:rollingupdate:
 RollingUpdateType: Immutable
 aws:elasticbeanstalk:command:
 DeploymentPolicy: Immutable

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding options.
You must remove these settings if you want to use configuration files to configure the same. See
Recommended values for details.

Updating your Elastic Beanstalk environment's platform
version

Important

TLS 1.2 Compatibility

As of December 31, 2023, AWS started fully enforcing TLS 1.2 across all AWS API
endpoints. This removed the ability to use TLS versions 1.0 and 1.1 with all AWS APIs. This
was originally communicated on June 28, 2022. To avoid the risk of availability impact,
upgrade your platform versions to a newer version as soon as possible.

Potential impact

Elastic Beanstalk platforms versions that run TLS v1.1 or earlier will be impacted. This
change will impact environment actions that include but are not limited to the following:
configuration deployments, application deployments, auto scaling, new environment
launch, log rotation, enhanced health reports, and publishing application logs to the
Amazon S3 bucket that's associated with your applications.

Affected Windows Platform Versions

Platform updates 707

https://aws.amazon.com/blogs/security/tls-1-2-required-for-aws-endpoints/

AWS Elastic Beanstalk Developer Guide

Customers with Elastic Beanstalk environments on the following platform version are
advised to upgrade each of their corresponding environments to Windows platform version
2.8.3 or later, released on Feb 18, 2022.

• Windows Server 2019 — platform version 2.8.2 or prior versions

Customers with Elastic Beanstalk environments on the following platform versions are
advised to upgrade each of their corresponding environments to Windows platform version
2.10.7 or later, released on Dec 28, 2022.

• Windows Server 2016 — platform version 2.10.6 or prior versions

• Windows Server 2012 — all platform versions; this platform was retired on December 4,
2023

• Windows Server 2008 — all platform versions; this platform was retired on October 28,
2019

For a list of the most recent and supported Windows Server platform versions, see
Supported Platforms in the AWS Elastic Beanstalk Platforms guide.
For details and best practices about updating your environment, read the information in
this topic.

Amazon Linux AMI (AL1) Platforms

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on
Amazon Linux AMI (AL1) to retired. Variations of Amazon Linux AMI (AL1) platforms may be
impacted by this change. To avoid availability impact, we advise that you upgrade your AL1
based Beanstalk environments the latest Amazon Linux 2 or Amazon Linux 2023 platform
release.
For a list of the most recent and supported Elastic Beanstalk platform versions, see
Supported Platforms in the AWS Elastic Beanstalk Platforms guide.
For more information about migrating to a current and fully supported Amazon Linux
platform branch, see Migrating your Elastic Beanstalk Linux application to Amazon Linux
2023 or Amazon Linux 2.

Platform updates 708

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-02-18-windows.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-12-28-windows.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2023-12-04-windows-2012-retire.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2023-12-04-windows-2012-retire.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2019-10-28-windows.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2019-10-28-windows.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk regularly releases new platform versions to update all Linux-based and Windows
Server-based platforms. New platform versions provide updates to existing software components
and support for new features and configuration options. To learn about platforms and platform
versions, see Elastic Beanstalk platforms glossary.

You can use the Elastic Beanstalk console or the EB CLI to update your environment's platform
version. Depending on the platform version you'd like to update to, Elastic Beanstalk recommends
one of two methods for performing platform updates.

• Method 1 – Update your environment's platform version. We recommend this method when
you're updating to the latest platform version within a platform branch—with the same runtime,
web server, application server, and operating system, and without a change in the major
platform version. This is the most common and routine platform update.

• Method 2 – Perform a Blue/Green deployment. We recommend this method when you're
updating to a platform version in a different platform branch—with a different runtime, web
server, application server, or operating system, or to a different major platform version. This is
a good approach when you want to take advantage of new runtime capabilities or the latest
Elastic Beanstalk functionality, or when you want to move off of a deprecated or retired platform
branch.

Migrating from a legacy platform version requires a blue/green deployment, because these
platform versions are incompatible with currently supported versions.

Migrating a Linux application to Amazon Linux 2 requires a blue/green deployment, because
Amazon Linux 2 platform versions are incompatible with previous Amazon Linux AMI platform
versions.

For more help with choosing the best platform update method, expand the section for your
environment's platform.

Docker

Use Method 1 to perform platform updates.

Multicontainer Docker

Use Method 1 to perform platform updates.

Platform updates 709

AWS Elastic Beanstalk Developer Guide

Preconfigured Docker

Consider the following cases:

• If you're migrating your application to another platform, for example from Go 1.4 (Docker) to Go
1.11 or from Python 3.4 (Docker) to Python 3.6, use Method 2.

• If you're migrating your application to a different Docker container version, for example from
Glassfish 4.1 (Docker) to Glassfish 5.0 (Docker), use Method 2.

• If you're updating to a latest platform version with no change in container version or major
version, use Method 1.

Go

Use Method 1 to perform platform updates.

Java SE

Consider the following cases:

• If you're migrating your application to a different Java runtime version, for example from Java 7
to Java 8, use Method 2.

• If you're updating to a latest platform version with no change in runtime version, use Method 1.

Java with Tomcat

Consider the following cases:

• If you're migrating your application to a different Java runtime version or Tomcat application
server version, for example from Java 7 with Tomcat 7 to Java 8 with Tomcat 8.5, use Method 2.

• If you're migrating your application across major Java with Tomcat platform versions (v1.x.x,
v2.x.x, and v3.x.x), use Method 2.

• If you're updating to a latest platform version with no change in runtime version, application
server version, or major version, use Method 1.

.NET on Windows server with IIS

Consider the following cases:

Platform updates 710

AWS Elastic Beanstalk Developer Guide

• If you're migrating your application to a different Windows operating system version, for
example from Windows Server 2008 R2 to Windows Server 2016, use Method 2.

• If you're migrating your application across major Windows Server platform versions, see
Migrating from earlier major versions of the Windows server platform, and use Method 2.

• If your application is currently running on a Windows Server platform V2.x.x and you're updating
to a latest platform version, use Method 1.

Note

Windows Server platform versions earlier than v2 aren't semantically versioned. You can
only launch the latest version of each of these Windows Server major platform versions
and can't roll back after an upgrade.

Node.js

Use Method 2 to perform platform updates.

PHP

Consider the following cases:

• If you're migrating your application to a different PHP runtime version, for example from PHP 5.6
to PHP 7.2, use Method 2.

• If you're migrating your application across major PHP platform versions (v1.x.x and v2.x.x), use
Method 2.

• If you're updating to a latest platform version with no change in runtime version or major
version, use Method 1.

Python

Consider the following cases:

• If you're migrating your application to a different Python runtime version, for example from
Python 2.7 to Python 3.6, use Method 2.

• If you're migrating your application across major Python platform versions (v1.x.x and v2.x.x), use
Method 2.

Platform updates 711

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net

AWS Elastic Beanstalk Developer Guide

• If you're updating to a latest platform version with no change in runtime version or major
version, use Method 1.

Ruby

Consider the following cases:

• If you're migrating your application to a different Ruby runtime version or application server
version, for example from Ruby 2.3 with Puma to Ruby 2.6 with Puma, use Method 2.

• If you're migrating your application across major Ruby platform versions (v1.x.x and v2.x.x), use
Method 2.

• If you're updating to a latest platform version with no change in runtime version, application
server version, or major version, use Method 1.

Method 1 – Update your environment's platform version

Use this method to update to the latest version of your environment's platform branch. If you've
previously created an environment using an older platform version, or upgraded your environment
from an older version, you can also use this method to revert to a previous platform version,
provided that it's in the same platform branch.

To update your environment's platform version

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. On the environment overview page, under Platform, choose Change.

Method 1 – Update your environment's platform version 712

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

4. On the Update platform version dialog, select a platform version. The newest (recommended)
platform version in the branch is selected automatically. You can update to any version that
you've used in the past.

5. Choose Save.

Method 1 – Update your environment's platform version 713

AWS Elastic Beanstalk Developer Guide

To further simplify platform updates, Elastic Beanstalk can manage them for you. You can
configure your environment to apply minor and patch version updates automatically during a
configurable weekly maintenance window. Elastic Beanstalk applies managed updates with no
downtime or reduction in capacity, and cancels the update immediately if instances running your
application on the new version fail health checks. For details, see Managed platform updates.

Method 2 – Perform a Blue/Green deployment

Use this method to update to a different platform branch—with a different runtime, web server,
application server, or operating system, or to a different major platform version. This is typically
necessary when you want to take advantage of new runtime capabilities or the latest Elastic
Beanstalk functionality. It's also required when you're migrating off of a deprecated or retired
platform branch.

When you migrate across major platform versions or to platform versions with major component
updates, there's a greater likelihood that your application, or some aspects of it, might not function
as expected on the new platform version, and might require changes.

Before performing the migration, update your local development machine to the newer runtime
versions and other components of the platform you plan on migrating to. Verify that your
application still works as expected, and make any necessary code fixes and changes. Then use the
following best practice procedure to safely migrate your environment to the new platform version.

To migrate your environment to a platform version with major updates

1. Create a new environment, using the new target platform version, and deploy your application
code to it. The new environment should be in the Elastic Beanstalk application that contains
the environment you're migrating. Don't terminate the existing environment yet.

2. Use the new environment to migrate your application. In particular:

• Find and fix any application compatibility issues that you couldn't discover during the
development phase.

• Ensure that any customizations that your application makes using configuration files work
correctly in the new environment. These might include option settings, additional installed
packages, custom security policies, and script or configuration files installed on environment
instances.

• If your application uses a custom Amazon Machine Image (AMI), create a new custom AMI
based on the AMI of the new platform version. To learn more, see Using a custom Amazon

Method 2 – Perform a Blue/Green deployment 714

AWS Elastic Beanstalk Developer Guide

machine image (AMI). Specifically, this is required if your application uses the Windows
Server platform with a custom AMI, and you're migrating to a Windows Server V2 platform
version. In this case, see also Migrating from earlier major versions of the Windows server
platform.

Iterate on testing and deploying your fixes until you're satisfied with the application on the
new environment.

3. Turn the new environment into your production environment by swapping its CNAME with
the existing production environment's CNAME. For details, see Blue/Green deployments with
Elastic Beanstalk.

4. When you're satisfied with the state of your new environment in production, terminate the old
environment. For details, see Terminate an Elastic Beanstalk environment.

Managed platform updates

AWS Elastic Beanstalk regularly releases platform updates to provide fixes, software updates,
and new features. With managed platform updates, you can configure your environment to
automatically upgrade to the latest version of a platform during a scheduled maintenance window.
Your application remains in service during the update process with no reduction in capacity.
Managed updates are available on both single-instance and load-balanced environments.

Note

This feature isn't available on Windows Server platform versions earlier than version 2 (v2).

You can configure your environment to automatically apply patch version updates, or both patch
and minor version updates. Managed platform updates don't support updates across platform
branches (updates to different major versions of platform components such as operating system,
runtime, or Elastic Beanstalk components), because these can introduce changes that are backward
incompatible.

You can also configure Elastic Beanstalk to replace all instances in your environment during the
maintenance window, even if a platform update isn't available. Replacing all instances in your
environment is helpful if your application encounters bugs or memory issues when running for a
long period.

Managed updates 715

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net

AWS Elastic Beanstalk Developer Guide

On environments created on November 25, 2019 or later using the Elastic Beanstalk console,
managed updates are enabled by default whenever possible. Managed updates require enhanced
health to be enabled. Enhanced health is enabled by default when you select one of the
configuration presets, and disabled when you select Custom configuration. The console can't
enable managed updates for older platform versions that don't support enhanced health, or when
enhanced health is disabled. When the console enables managed updates for a new environment,
the Weekly update window is set to a random day of the week at a random time. Update level
is set to Minor and patch, and Instance replacement is disabled. You can disable or reconfigure
managed updates before the final environment creation step.

For an existing environment, use the Elastic Beanstalk console anytime to configure managed
platform updates.

Important

A high number of Beanstalk environments in one AWS account may present a risk of
throttling issues during managed updates. High number is a relative amount that depends
on how closely you schedule the managed updates for your environments. Over 200
environments in one account scheduled closely could cause throttling issues, although a
lower number may also be problematic.
To balance the resource load for managed updates, we advise that you spread out the
scheduled maintenance windows for the environments in one account.
Also, consider a multi‐account strategy. For more information, see Organizing Your AWS
Environment Using Multiple Accounts on the AWS Whitepapers & Guides website.

To configure managed platform updates

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Managed updates category, choose Edit.

Managed updates 716

https://docs.aws.amazon.com/whitepapers/latest/organizing-your-aws-environment/organizing-your-aws-environment.html
https://docs.aws.amazon.com/whitepapers/latest/organizing-your-aws-environment/organizing-your-aws-environment.html
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

5. Disable or enable Managed updates.

6. If managed updates are enabled, select a maintenance window, and then select an Update
level.

7. (Optional) Select Instance replacement to enable weekly instance replacement.

8. To save the changes choose Apply at the bottom of the page.

Managed platform updates depend on enhanced health reporting to determine that your
application is healthy enough to consider the platform update successful. See Enabling Elastic
Beanstalk enhanced health reporting for instructions.

Sections

• Permissions required to perform managed platform updates

• Managed update maintenance window

• Minor and patch version updates

• Immutable environment updates

Managed updates 717

AWS Elastic Beanstalk Developer Guide

• Managing managed updates

• Managed action option namespaces

Permissions required to perform managed platform updates

Elastic Beanstalk needs permission to initiate a platform update on your behalf. To
gain these permissions, Elastic Beanstalk assumes the managed-updates service role.
When you use the default service role for your environment, the Elastic Beanstalk
console uses it as the managed-updates service role too. The console assigns the
AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy managed policy to your service
role. This policy has all permissions that Elastic Beanstalk needs to perform managed platform
updates.

For details about other ways to set the managed-updates service role, see the section called
“Service roles”.

Note

If you use configuration files to extend your environment to include additional resources,
you might need to add permissions to your environment's managed-updates service role.
Typically you need to add permissions when you reference these resources by name in
other sections or files.

If an update fails, you can find the reason for the failure on the Managed updates page.

Managed update maintenance window

When AWS releases a new version of your environment's platform, Elastic Beanstalk schedules a
managed platform update during the next weekly maintenance window. Maintenance windows are
two hours long. Elastic Beanstalk starts a scheduled update during the maintenance window. The
update might not complete until after the window ends.

Note

In most cases, Elastic Beanstalk schedules your managed update to occur during your
coming weekly maintenance window. The system considers various aspects of update
safety and service availability when scheduling managed updates. In rare cases, an update

Managed updates 718

AWS Elastic Beanstalk Developer Guide

might not be scheduled for the first coming maintenance window. If this happens, the
system tries again during the next maintenance window. To manually apply the managed
update, choose Apply now as explained in Managing managed updates on this page.

Minor and patch version updates

You can enable managed platform updates to apply patch version updates only, or for both
minor and patch version updates. Patch version updates provide bug fixes and performance
improvements, and can include minor configuration changes to the on-instance software, scripts,
and configuration options. Minor version updates provide support for new Elastic Beanstalk
features. You can't apply major version updates, which might make changes that are backward
incompatible, with managed platform updates.

In a platform version number, the second number is the minor update version, and the third
number is the patch version. For example, a version 2.0.7 platform version has a minor version of 0
and a patch version of 7.

Immutable environment updates

Managed platform updates perform immutable environment updates to upgrade your
environment to a new platform version. Immutable updates update your environment without
taking any instances out of service or modifying your environment, before confirming that
instances running the new version pass health checks.

In an immutable update, Elastic Beanstalk deploys as many instances as are currently running with
the new platform version. The new instances begin to take requests alongside those running the
old version. If the new set of instances passes all health checks, Elastic Beanstalk terminates the
old set of instances, leaving only instances with the new version.

Managed platform updates always perform immutable updates, even when you apply them
outside of the maintenance window. If you change the platform version from the Dashboard,
Elastic Beanstalk applies the update policy that you've chosen for configuration updates.

Warning

Some policies replace all instances during the deployment or update. This causes all
accumulated Amazon EC2 burst balances to be lost. It happens in the following cases:

• Managed platform updates with instance replacement enabled

Managed updates 719

https://docs.aws.amazon.com/AWSEC2/latest/DeveloperGuide/burstable-performance-instances.html

AWS Elastic Beanstalk Developer Guide

• Immutable updates

• Deployments with immutable updates or traffic splitting enabled

Managing managed updates

The Elastic Beanstalk console shows detailed information about managed updates on the Managed
updates overview page.

To view information about managed updates (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Managed updates.

The Managed updates overview section provides information about scheduled and pending
managed updates. The History section lists successful updates and failed attempts.

You can choose to apply a scheduled update immediately, instead of waiting until the maintenance
window.

To apply a managed platform update immediately (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Managed updates.

Managed updates 720

https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

4. Choose Apply now.

5. Verify the update details, and then choose Apply.

When you apply a managed platform update outside of the maintenance window, Elastic Beanstalk
performs an immutable update. If you update the environment's platform from the Dashboard,
or by using a different client, Elastic Beanstalk uses the update type that you selected for
configuration changes.

If you don't have a managed update scheduled, your environment might already be running the
latest version. Other reasons for not having an update scheduled include:

• A minor version update is available, but your environment is configured to automatically apply
only patch version updates.

• Your environment hasn't been scanned since the update was released. Elastic Beanstalk typically
checks for updates every hour.

• An update is pending or already in progress.

When your maintenance window starts or when you choose Apply now, scheduled updates go into
pending status before execution.

Managed action option namespaces

You can use configuration options in the aws:elasticbeanstalk:managedactions and
aws:elasticbeanstalk:managedactions:platformupdate namespaces to enable and
configure managed platform updates.

The ManagedActionsEnabled option turns on managed platform updates. Set this option
to true to enable managed platform updates, and use the other options to configure update
behavior.

Use PreferredStartTime to configure the beginning of the weekly maintenance window in
day:hour:minute format.

Set UpdateLevel to minor or patch to apply both minor and patch version updates, or just
patch version updates, respectively.

When managed platform updates are enabled, you can enable instance replacement by setting
the InstanceRefreshEnabled option to true. When this setting is enabled, Elastic Beanstalk

Managed updates 721

AWS Elastic Beanstalk Developer Guide

runs an immutable update on your environment every week, regardless of whether there is a new
platform version available.

The following example configuration file enables managed platform updates for patch version
updates with a maintenance window starting at 9:00 AM UTC each Tuesday.

Example .ebextensions/managed-platform-update.config

option_settings:
 aws:elasticbeanstalk:managedactions:
 ManagedActionsEnabled: true
 PreferredStartTime: "Tue:09:00"
 aws:elasticbeanstalk:managedactions:platformupdate:
 UpdateLevel: patch
 InstanceRefreshEnabled: true

Migrating your application from a legacy platform version

If you have deployed an Elastic Beanstalk application that uses a legacy platform version, you
should migrate your application to a new environment using a non-legacy platform version so that
you can get access to new features. If you are unsure whether you are running your application
using a legacy platform version, you can check in the Elastic Beanstalk console. For instructions, see
To check if you are using a legacy platform version.

What new features are legacy platform versions missing?

Legacy platforms do not support the following features:

• Configuration files, as described in the Advanced environment customization with configuration
files (.ebextensions) topic

• ELB health checks, as described in the Basic health reporting topic

• Instance Profiles, as described in the Managing Elastic Beanstalk instance profiles topic

• VPCs, as described in the Using Elastic Beanstalk with Amazon VPC topic

• Data Tiers, as described in the Adding a database to your Elastic Beanstalk environment topic

• Worker Tiers, as described in the Worker environments topic

• Single Instance Environments, as described in the Environment types topic

• Tags, as described in the Tagging resources in your Elastic Beanstalk environments topic

Upgrade a legacy environment 722

AWS Elastic Beanstalk Developer Guide

• Rolling Updates, as described in the Elastic Beanstalk rolling environment configuration updates
topic

Why are some platform versions marked legacy?

Some older platform versions do not support the latest Elastic Beanstalk features. These versions
are marked (legacy) on the environment overview page in the Elastic Beanstalk console.

To check if you are using a legacy platform version

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. On the environment overview page, view the Platform name.

Your application is using a legacy platform version if you see (legacy) next to the platform's
name.

To migrate your application

1. Deploy your application to a new environment. For instructions, go to Creating an Elastic
Beanstalk environment.

2. If you have an Amazon RDS DB Instance, update your database security group to allow access
to your EC2 security group for your new environment. For instructions on how to find the
name of your EC2 security group using the AWS Management Console, see Security groups. For
more information about configuring your EC2 security group, go to the "Authorizing Network
Access to an Amazon EC2 Security Group" section of Working with DB Security Groups in the
Amazon Relational Database Service User Guide.

3. Swap your environment URL. For instructions, go to Blue/Green deployments with Elastic
Beanstalk.

4. Terminate your old environment. For instructions, go to Terminate an Elastic Beanstalk
environment.

Upgrade a legacy environment 723

https://console.aws.amazon.com/elasticbeanstalk
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithSecurityGroups.html

AWS Elastic Beanstalk Developer Guide

Note

If you use AWS Identity and Access Management (IAM) then you will need to update
your policies to include AWS CloudFormation and Amazon RDS (if applicable). For more
information, see Using Elastic Beanstalk with AWS Identity and Access Management.

Migrating your Elastic Beanstalk Linux application to Amazon Linux
2023 or Amazon Linux 2

This section describes how to migrate your application using one of the following migration paths.

• Migrate from an Amazon Linux 2 platform branch to an Amazon Linux 2023 platform branch.

• Migrate from an Amazon Linux AMI (AL1) platform branch to either an Amazon Linux 2023
(recommended) or an Amazon Linux 2 platform branch.

Topics

• Migration from Amazon Linux 2 to Amazon Linux 2023

• Migration from Amazon Linux AMI (AL1) to AL2 or AL2023

Migration from Amazon Linux 2 to Amazon Linux 2023

This topic provides guidance to migrate your application from an Amazon Linux 2 platform branch
to an Amazon Linux 2023 platform branch.

Differences and compatibility

Between the Elastic Beanstalk AL2 and AL2023 platforms

There is a high degree of compatibility between Elastic Beanstalk Amazon Linux 2 and Amazon
Linux 2023 platforms. Although there are some differences to note:

• Instance Metadata Service Version 1 (IMDSv1) – The DisableIMDSv1 option setting defaults to
true on AL2023 platforms. The default is false on AL2 platforms.

• pkg-repo instance tool – The pkg-repo tool is not available for environments running on AL2023
platforms. However,you can manually apply package and operating system updates to an

Migrate to AL2023/AL2 724

AWS Elastic Beanstalk Developer Guide

AL2023 instance. For more information, see Managing packages and operating system updates
in the Amazon Linux 2023 User Guide.

• Apache HTTPd configuration – The Apache httpd.conf file for AL2023 platforms has some
configuration settings that are different from those for AL2:

• Deny access to the server’s entire file system by default. These settings are described in Protect
Server Files by Default on the Apache website Security Tips page.

• Stop users from overriding security features you've configured. The configuration denies access
to set up of .htaccess in all directories, except for those specifically enabled. This setting is
described in Protecting System Settings on the Apache website Security Tips page. The Apache
HTTP Server Tutorial: .htaccess files page states this setting may help improve performance.

• Deny access to files with name pattern .ht*. This setting prevents web clients from viewing
.htaccess and .htpasswd files.

You can change any of the above configuration settings for your environment. For more
information, see Extending Elastic Beanstalk Linux platforms. Expand the Reverse Proxy topic to see
the Configuring Apache HTTPD section.

Between the Amazon Linux operating systems

For more information about the differences between the Amazon Linux 2 and Amazon Linux 2023
operating systems, see Comparing Amazon Linux 2 and Amazon Linux 2023 in the Amazon Linux
2023 User Guide.

For more information about Amazon Linux 2023, see What is Amazon Linux 2023? in the Amazon
Linux 2023 User Guide.

General migration process

When you're ready to go to production, Elastic Beanstalk requires a blue/green deployment to
perform the upgrade. The following are the general best practice steps that we recommend for
migration with a blue/green deployment procedure.

Preparing to test for your migration

Before you deploy your application and start testing, review the information in the prior section
Differences and compatibility. Also review the reference cited in that section, Comparing Amazon
Linux 2 and Amazon Linux 2023 in the Amazon Linux 2023 User Guide. Make a note of the specific
information from this content that applies or may apply to your application and configuration set
up.

Migrate to AL2023/AL2 725

https://docs.aws.amazon.com/linux/al2023/ug/managing-repos-os-updates.html
https://httpd.apache.org/docs/2.4/misc/security_tips.html
https://httpd.apache.org/docs/2.4/misc/security_tips.html
https://httpd.apache.org/docs/2.4/howto/htaccess.html
https://httpd.apache.org/docs/2.4/howto/htaccess.html
https://docs.aws.amazon.com/linux/al2023/ug/compare-with-al2.html
https://docs.aws.amazon.com/linux/al2023/ug/what-is-amazon-linux.html
https://docs.aws.amazon.com/linux/al2023/ug/compare-with-al2.html
https://docs.aws.amazon.com/linux/al2023/ug/compare-with-al2.html

AWS Elastic Beanstalk Developer Guide

High level migration steps

1. Create a new environment that's based on an AL2023 platform branch.

2. Deploy your application to the target AL2023 environment.

Your existing production environment will remain active and unaffected, while you iterate
through testing and making adjustments to the new environment.

3. Test your application thoroughly in the new environment.

4. When your destination AL2023 environment is ready to go to production, swap the CNAMEs of
the two environments to redirect traffic to the new AL2023 environment.

More detailed migration steps and best practices

For a more detailed blue/green deployment procedure, see Blue/Green deployments with Elastic
Beanstalk.

For more specific guidance and detailed best practice steps, see Blue/Green method.

More references to help plan your migration

The following references can offer additional information to plan your migration.

• Elastic Beanstalk supported platforms in AWS Elastic Beanstalk Platforms

• Retired platform branch history

• the section called “Linux platforms”

• Platform retirement FAQ

Migration from Amazon Linux AMI (AL1) to AL2 or AL2023

If your Elastic Beanstalk application is based on an Amazon Linux AMI platform branch, use this
section to learn how to migrate your application's environments to Amazon Linux 2 or Amazon
Linux 2023. Previous generation platform branches based on Amazon Linux AMI are now retired.

We highly recommend that you migrate to Amazon Linux 2023, since it's more recent than Amazon
Linux 2. The Amazon Linux 2 operating system will reach end of support before Amazon Linux
2023 does, so you'll benefit from a longer time frame of support if you migrate to Amazon Linux
2023.

Migrate to AL2023/AL2 726

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html
https://aws.amazon.com/amazon-linux-ami/

AWS Elastic Beanstalk Developer Guide

It's worthwhile to note that there is a high degree of compatibility between the Elastic Beanstalk
Amazon Linux 2 and Amazon Linux 2023 platforms. Although some areas do have differences: the
Instance Metadata Service Version 1 (IMDSv1) option default, support for the pkg-repo instance
tool, and some Apache HTTPd configuration. For more information, see Amazon Linux 2023

Differences and compatibility

The AL2023/AL2 based platform branches aren't guaranteed to be backward compatible with your
existing application. It's also important to be aware that even if your application code successfully
deploys to the new platform version, it might behave or perform differently due to operating
system and run time differences.

Although Amazon Linux AMI and AL2023/AL2 share the same Linux kernel, they differ in the
following aspects: their initialization system, the libc versions, the compiler tool chain, and
various packages. For more information, see Amazon Linux 2 FAQs.

The Elastic Beanstalk service has also updated platform specific versions of runtime, build tools,
and other dependencies.

Therefore we recommend that you take your time, test your application thoroughly in a
development environment, and make any necessary adjustments.

General migration process

When you're ready to go to production, Elastic Beanstalk requires a blue/green deployment to
perform the upgrade. The following are the general best practice steps that we recommend for
migration with a blue/green deployment procedure.

Preparing to test for your migration

Before you deploy your application and start testing, review the information in Considerations
for all Linux platforms, which follows later in this topic. Also, review the information that applies
to your platform in the Platform specific considerations section that follows. Make a note of
the specific information from this content that applies or may apply to your application and
configuration set up.

High level migration steps

1. Create a new environment that's based on an AL2 or AL2023 platform branch. We recommend
that you migrate to an AL2023 platform branch.

Migrate to AL2023/AL2 727

https://aws.amazon.com//amazon-linux-2/faqs/

AWS Elastic Beanstalk Developer Guide

2. Deploy your application to the target AL2023/AL2 environment.

Your existing production environment will remain active and unaffected, while you iterate
through testing and making adjustments to the new environment.

3. Test your application thoroughly in the new environment.

4. When your destination AL2023/AL2 environment is ready to go to production, swap the
CNAMEs of the two environments to redirect traffic to the new environment.

More detailed migration steps and best practices

For a more detailed blue/green deployment procedure, see Blue/Green deployments with Elastic
Beanstalk.

For more specific guidance and detailed best practice steps, see Blue/Green method.

More references to help plan your migration

The following references can offer additional information to plan your migration.

• Comparing Amazon Linux 2 and Amazon Linux 2023 Amazon Linux 2023 User Guide.

• What is Amazon Linux 2023? in the Amazon Linux 2023 User Guide

• Elastic Beanstalk supported platforms in AWS Elastic Beanstalk Platforms

• Retired platform branch history

• the section called “Linux platforms”

• Platform retirement FAQ

Considerations for all Linux platforms

The following table discusses considerations you should be aware of when planning an application
migration to AL2023/AL2. These considerations apply to any of the Elastic Beanstalk Linux
platforms, regardless of specific programming languages or application servers.

Area Changes and information

Configura
tion Files

On AL2023/AL2 platforms, you can use configuration files as before, and all
sections work the same way. However, specific settings might not work the same
as they did on previous Amazon Linux AMI platforms. For example:

Migrate to AL2023/AL2 728

https://docs.aws.amazon.com/linux/al2023/ug/compare-with-al2.html
https://docs.aws.amazon.com/linux/al2023/ug/what-is-amazon-linux.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html

AWS Elastic Beanstalk Developer Guide

Area Changes and information

• Some software packages that you install using a configuration file might not be
available on AL2023/AL2, or their names might have changed.

• Some platform specific configuration options have moved from their platform
specific namespaces to different, platform agnostic namespaces.

• Proxy configuration files provided in the .ebextensions/nginx directory
should move to the .platform/nginx platform hooks directory. For details,
expand the Reverse Proxy Configuration section in the section called “Extending
Linux platforms”.

We recommend using platform hooks to run custom code on your environment
instances. You can still use commands and container commands in .ebextens
ions configuration files, but they aren't as easy to work with. For example,
writing command scripts inside a YAML file can be cumbersome and difficult to
test.

You still need to use .ebextensions configuration files for any script that
needs a reference to an AWS CloudFormation resource.

Platform
hooks

AL2 platforms introduced a new way to extend your environment's platform by
adding executable files to hook directories on the environment's instances. With
previous Linux platform versions, you might have used custom platform hooks.
These hooks weren't designed for managed platforms and weren't supported, but
could work in useful ways in some cases. With AL2023/AL2 platform versions,
custom platform hooks don't work. You should migrate any hooks to the new
platform hooks. For details, expand the Platform Hooks section in the section
called “Extending Linux platforms”.

Migrate to AL2023/AL2 729

AWS Elastic Beanstalk Developer Guide

Area Changes and information

Supported
proxy
servers

AL2023/AL2 platform versions support the same reverse proxy servers as each
platform supported in its Amazon Linux AMI platform versions. All AL2023/AL
2; platform versions use nginx as their default reverse proxy server, with the
exception of the ECS and Docker platforms. The Tomcat, Node.js, PHP, and Python
platform also support Apache HTTPD as an alternative. All platforms enable
proxy server configuration in a uniform way, as described in this section. However,
configuring the proxy server is slightly different than it was on Amazon Linux AMI.
These are the differences for all platforms:

• Default is nginx – The default proxy server on all AL2023/AL2 platform
versions is nginx. On Amazon Linux AMI platform versions of Tomcat, PHP, and
Python, the default proxy server was Apache HTTPD.

• Consistent namespace – All AL2023/AL2 platform versions use the aws:elast
icbeanstalk:environment:proxy namespace to configure the
proxy server. On Amazon Linux AMI platform versions this was a per-platform
decision, and Node.js used a different namespace.

• Configuration file location – You should place proxy configuration files in the
.platform/nginx and .platform/httpd directories on all AL2023/AL2
platform versions. On Amazon Linux AMI platform versions these locations were
.ebextensions/nginx and .ebextensions/httpd , respectively.

For platform-specific proxy configuration changes, see the section called
“Platform specific considerations”. For information about proxy configuration on
AL2023/AL2 platforms, expand the Reverse Proxy Configuration section in the
section called “Extending Linux platforms”.

Proxy
Configura
tion
Changes

There are proxy configuration changes that apply uniformly to all platforms in
addition to proxy configuration changes that are specific to each platform. It's
important to refer to both to accurately configure your environments.

• All platforms – expand the Reverse Proxy Configuration section in the section
called “Extending Linux platforms”.

• Platform-specific – see the section called “Platform specific considerations”.

Migrate to AL2023/AL2 730

AWS Elastic Beanstalk Developer Guide

Area Changes and information

Instance
profile

AL2023/AL2 platforms require an instance profile to be configured. Environment
creation might temporarily succeed without one, but the environment might show
errors soon after creation when actions requiring an instance profile start failing.
For details, see the section called “Instance profiles”.

Enhanced
health

AL2023/AL2 platform versions enable enhanced health by default. This is a
change if you don't use the Elastic Beanstalk console to create your environments.
The console enables enhanced health by default whenever possible, regardless of
platform version. For details, see the section called “Enhanced health reporting
and monitoring”.

Custom
AMI

If your environment uses a custom AMI, create a new AMI based on AL2023/AL2
for your new environment using an Elastic Beanstalk AL2023/AL2 platform.

Custom
platforms

The managed AMIs of AL2023/AL2 platform versions don't support custom
platforms.

Platform specific considerations

This section discusses migration considerations specific to particular Elastic Beanstalk Linux
platforms.

Docker

The Docker platform branch family based on Amazon Linux AMI (AL1) includes three platform
branches. We recommend a different migration path for each.

AL1
Platform
branch

Migration Path to AL2023/AL2

Multi-
container
Docker
managed
by Amazon

ECS based Docker AL2023/AL2 platform branches

The ECS based Docker AL2023/AL2 platform branches offer a straightforward
migration path for environments running on the Multi-container Docker AL1
platform branch.

Migrate to AL2023/AL2 731

AWS Elastic Beanstalk Developer Guide

AL1
Platform
branch

Migration Path to AL2023/AL2

ECS
running on
Amazon
Linux AMI
(AL1)

• Like the previous Multi-container Docker AL1 branch, the AL2023/AL2 platform
branches use Amazon ECS to coordinate deployment of multiple Docker
containers to an Amazon ECS cluster in an Elastic Beanstalk environment.

• The AL2023/AL2 platform branches support all of the features in the previous
Multi-container Docker AL1 branch.

• The AL2023/AL2 platform branches also support the same Dockerrun
.aws.json v2 file.

For more information about migrating your applications running on the Multi-
container Docker Amazon Linux platform branch to an Amazon ECS running on
AL2023/AL2 platform branch, see ???.

Migrate to AL2023/AL2 732

AWS Elastic Beanstalk Developer Guide

AL1
Platform
branch

Migration Path to AL2023/AL2

Docker
running on
Amazon
Linux AMI
(AL1)

Preconfig
ured
Docker
(Glassfis
h 5.0)
running
Amazon
Linux AMI
(AL1)

Docker Running on AL2023/AL2 platform branch

We recommend that you migrate your applications running on environments
based on Preconfigured Docker (Glassfish 5.0) or Docker running on Amazon Linux
AMI (AL1) to environments that are based on the Docker Running on Amazon
Linux 2 or Docker Running on AL2023 platform branches.

If your environment is based on the Preconfigured Docker (Glassfish 5.0) platform
branch, see the section called “Tutorial - GlassFish on Docker: path to Amazon
Linux 2023”.

The following table lists migration information specific to the platform branch
Docker Running on AL2023/AL2.

Area Changes and information

Storage Elastic Beanstalk configures Docker to use storage drivers to
store Docker images and container data. On Amazon Linux AMI,
Elastic Beanstalk used the Device Mapper storage driver. To
improve performance, Elastic Beanstalk provisioned an extra
Amazon EBS volume. On AL2023/AL2 Docker platform versions,
Elastic Beanstalk uses the OverlayFS storage driver, and achieves
even better performance while not requiring a separate volume
anymore.

With Amazon Linux AMI, if you used the BlockDeviceMapping
s option of the aws:autoscaling:launchconfiguration
namespace to add custom storage volumes to a Docker environme
nt, we advised you to also add the /dev/xvdcz Amazon EBS
volume that Elastic Beanstalk provisions. Elastic Beanstalk doesn't
provision this volume anymore, so you should remove it from
your configuration files. For details, see the section called “Docker
configuration on Amazon Linux AMI (preceding Amazon Linux 2)”.

Migrate to AL2023/AL2 733

https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/device-mapper-driver/
https://docs.docker.com/storage/storagedriver/overlayfs-driver/

AWS Elastic Beanstalk Developer Guide

AL1
Platform
branch

Migration Path to AL2023/AL2

Area Changes and information

Private
repositor
y
authentic
ation

When you provide a Docker-generated authentication file to
connect to a private repository, you no longer need to convert it to
the older format that Amazon Linux AMI Docker platform versions
required. AL2023/AL2 Docker platform versions support the new
format. For details, see the section called “Using images from a
private repository”.

Proxy
server

AL2023/AL2 Docker platform versions don't support standalone
containers that don't run behind a proxy server. On Amazon Linux
AMI Docker platform versions, this used to be possible through
the none value of the ProxyServer option in the aws:elast
icbeanstalk:environment:proxy namespace.

Go

The following table lists migration information for the AL2023/AL2 platform versions in the Go
platform.

Area Changes and information

Port
passing

On AL2023/AL2 platforms, Elastic Beanstalk doesn't pass a port value to your
application process through the PORT environment variable. You can simulate
this behavior for your process by configuring a PORT environment property
yourself. However, if you have multiple processes, and you're counting on Elastic
Beanstalk passing incremental port values to your processes (5000, 5100, 5200
etc.), you should modify your implementation. For details, expand the Reverse
proxy configuration section in the section called “Extending Linux platforms”.

Migrate to AL2023/AL2 734

AWS Elastic Beanstalk Developer Guide

Amazon Corretto

The following table lists migration information for the Corretto platform branches in the Java SE
platform.

Area Changes and information

Corretto
vs.
OpenJDK

To implement the Java Platform, Standard Edition (Java SE), AL2023/AL2
platform branches use Amazon Corretto, an AWS distribution of the Open Java
Development Kit (OpenJDK). Prior Elastic Beanstalk Java SE platform branches
use the OpenJDK packages included with Amazon Linux AMI.

Build tools AL2023/AL2 platforms have newer versions of the build tools: gradle, maven,
and ant.

JAR file
handling

On AL2023/AL2 platforms, if your source bundle (ZIP file) contains a single
JAR file and no other files, Elastic Beanstalk no longer renames the JAR file to
application.jar . Renaming occurs only if you submit a JAR file on its own,
not within a ZIP file.

Port
passing

On AL2023/AL2 platforms, Elastic Beanstalk doesn't pass a port value to your
application process through the PORT environment variable. You can simulate
this behavior for your process by configuring a PORT environment property
yourself. However, if you have multiple processes, and you're counting on Elastic
Beanstalk passing incremental port values to your processes (5000, 5100, 5200
etc.), you should modify your implementation. For details, expand the Reverse
proxy configuration section in the section called “Extending Linux platforms”.

Java 7 Elastic Beanstalk doesn't support an AL2023/AL2 Java 7 platform branch. If you
have a Java 7 application, migrate it to Corretto 8 or Corretto 11.

Tomcat

The following table lists migration information for the AL2023/AL2 platform versions in the
Tomcat platform.

Migrate to AL2023/AL2 735

https://aws.amazon.com/corretto

AWS Elastic Beanstalk Developer Guide

Area Changes and information

Configura
tion
options

On AL2023/AL2 platform versions, Elastic Beanstalk supports only a subset of
the configuration options and option values in the aws:elasticbeansta
lk:environment:proxy namespace. Here's the migration information for
each option.

Option Migration information

GzipCompr
ession

Unsupported on AL2023/AL2 platform versions.

ProxyServ
er

AL2023/AL2 Tomcat platform versions support both the nginx
and the Apache HTTPD version 2.4 proxy servers. However, Apache
version 2.2 isn't supported.

On Amazon Linux AMI platform versions, the default proxy was
Apache 2.4. If you used the default proxy setting and added custom
proxy configuration files, your proxy configuration should still work
on AL2023/AL2. However, if you used the apache/2.2 option
value, you now have to migrate your proxy configuration to Apache
version 2.4.

The XX:MaxPermSize option in the aws:elasticbeanstalk:contai
ner:tomcat:jvmoptions namespace isn't supported on AL2023/AL2
platform versions. The JVM setting to modify the size of the permanent generatio
n applies only to Java 7 and earlier, and is therefore not applicable to AL2023/AL2
platform versions.

Applicati
on path

On AL2023/AL2 platforms, the path to the application's directory on Amazon
EC2 instances of your environment is /var/app/current . It was /var/lib/
tomcat8/webapps on Amazon Linux AMI platforms.

Migrate to AL2023/AL2 736

AWS Elastic Beanstalk Developer Guide

Node.js

The following table lists migration information for the AL2023/AL2 platform versions in the
Node.js platform.

Area Changes and information

Installed
Node.js
versions

On AL2023/AL2 platforms, Elastic Beanstalk maintains several Node.js platform
branches, and only installs the latest version of the Node.js major version
corresponding with the platform branch on each platform version. For example,
each platform version in the Node.js 12 platform branch only has Node.js 12.x.y
installed by default. On Amazon Linux AMI platform versions, we installed the
multiple versions of multiple Node.js versions on each platform version, and only
maintained a single platform branch.

Choose the Node.js platform branch that corresponds with the Node.js major
version that your application needs.

Apache
HTTPD log
file names

On AL2023/AL2 platforms, if you use the Apache HTTPD proxy server, the HTTPD
log file names are access_log and error_log , which is consistent with all
other platforms that support Apache HTTPD. On Amazon Linux AMI platform
versions, these log files were named access.log and error.log , respectiv
ely.

For details about log file names and locations for all platforms, see the section
called “How Elastic Beanstalk sets up CloudWatch Logs”.

Configura
tion
options

On AL2023/AL2 platforms, Elastic Beanstalk doesn't support the configuration
options in the aws:elasticbeanstalk:container:nodejs namespace.
Some of the options have alternatives. Here's the migration information for each
option.

Option Migration information

NodeComma
nd

Use a Procfile or the scripts keyword in a package.json
file to specify the start script.

Migrate to AL2023/AL2 737

AWS Elastic Beanstalk Developer Guide

Area Changes and information

Option Migration information

NodeVersi
on

Use the engines keyword in a package.json file to specify
the Node.js version. Be aware that you can only specify a Node.js
version that correspondes with your platform branch. For example,
if you're using the Node.js 12 platform branch, you can specify only
a 12.x.y Node.js version. For details, see the section called “Specifyi
ng Node.js dependencies with a package.json file”.

GzipCompr
ession

Unsupported on AL2023/AL2 platform versions.

ProxyServ
er

On AL2023/AL2 Node.js platform versions, this option moved
to the aws:elasticbeanstalk:environment:proxy
namespace. You can choose between nginx (the default) and
apache.

AL2023/AL2 Node.js platform versions don't support standalone
applications that don't run behind a proxy server. On Amazon Linux
AMI Node.js platform versions, this used to be possible through
the none value of the ProxyServer option in the aws:elast
icbeanstalk:container:nodejs namespace. If your
environment runs a standalone application, update your code to
listen to the port that the proxy server (nginx or Apache) forwards
traffic to.

var port = process.env.PORT || 5000;

app.listen(port, function() {
 console.log('Server running at http://127.0.0.1:%s',
 port);
});

Migrate to AL2023/AL2 738

AWS Elastic Beanstalk Developer Guide

PHP

The following table lists migration information for the AL2023/AL2 platform versions in the PHP
platform.

Area Changes and information

PHP file
processing

On AL2023/AL2 platforms, PHP files are processed using PHP-FPM (a CGI process
manager). On Amazon Linux AMI platforms we used mod_php (an Apache
module).

Proxy
server

AL2023/AL2 PHP platform versions support both the nginx and the Apache
HTTPD proxy servers. The default is nginx.

Amazon Linux AMI PHP platform versions supported only Apache HTTPD. If you
added custom Apache configuration files, you can set the ProxyServer option
in the aws:elasticbeanstalk:environment:proxy namespace to
apache.

Python

The following table lists migration information for the AL2023/AL2 platform versions in the
Python platform.

Area Changes and information

WSGI
server

On AL2023/AL2 platforms, Gunicorn is the default WSGI server. By default,
Gunicorn listens on port 8000. The port might be different than what your
application used on the Amazon Linux AMI platform. If you're setting the
WSGIPath option of the aws:elasticbeanstalk:container:python
namespace, replace the value with Gunicorn's syntax. For details, see the section
called “Python configuration namespaces”.

Alternatively, you can use a Procfile to specify and configure the WSGI server.
For details, see the section called “Procfile”.

Migrate to AL2023/AL2 739

https://gunicorn.org/

AWS Elastic Beanstalk Developer Guide

Area Changes and information

Applicati
on path

On AL2023/AL2 platforms, the path to the application's directory on Amazon EC2
instances of your environment is /var/app/current . It was /opt/python/
current/app on Amazon Linux AMI platforms.

Proxy
server

AL2023/AL2 Python platform versions support both the nginx and the Apache
HTTPD proxy servers. The default is nginx.

Amazon Linux AMI Python platform versions supported only Apache HTTPD. If
you added custom Apache configuration files, you can set the ProxyServer
option in the aws:elasticbeanstalk:environment:proxy namespace
to apache.

Ruby

The following table lists migration information for the AL2023/AL2 platform versions in the Ruby
platform.

Area Changes and information

Installed
Ruby
versions

On AL2023/AL2 platforms, Elastic Beanstalk only installs the latest version of a
single Ruby version, corresponding with the platform branch, on each platform
version. For example, each platform version in the Ruby 2.6 platform branch only
has Ruby 2.6.x installed. On Amazon Linux AMI platform versions, we installed the
latest versions of multiple Ruby versions, for example, 2.4.x, 2.5.x, and 2.6.x.

If your application uses a Ruby version that doesn't correspond to the platform
branch you're using, we recommend that you switch to a platform branch that has
the correct Ruby version for your application.

Applicati
on server

On AL2023/AL2 platforms, Elastic Beanstalk only installs the Puma application
server on all Ruby platform versions. You can use a Procfile to start a different
application server, and a Gemfile to install it.

On the Amazon Linux AMI platform, we supported two flavors of platform
branches for each Ruby version—one with the Puma application server and the

Migrate to AL2023/AL2 740

AWS Elastic Beanstalk Developer Guide

Area Changes and information

other with the Passenger application server. If your application uses Passenger,
you can configure your Ruby environment to install and use Passenger.

For more information and examples, see the section called “The Ruby platform”.

Platform retirement FAQ

Note

Elastic Beanstalk retired all platform branches based on Amazon Linux AMI (AL1) on July
18, 2022 .

The answers in this FAQ reference the following topics:

• Elastic Beanstalk platform support policy

• Retired platform branch history

• Elastic Beanstalk supported platforms in AWS Elastic Beanstalk Platforms

• Migrating your Elastic Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2

• Amazon Linux 2 FAQs.

1. What does retirement of a platform branch mean?

Following the announced retirement date of a platform branch, you will no longer be able to
create a new environment based on the retired platform branch, unless you already have an active
environment based on that platform branch. For more information, see FAQ #11. Elastic Beanstalk
will stop providing new maintenance updates for these platform branches. A retired platform
branch isn't recommended for use in production environments. For more information, see FAQ #5.

2. Why has AWS retired the AL1-based platforms branches?

Elastic Beanstalk retires platform branches when platform components are deprecated or retired
by their vendors. In this case, the Amazon Linux AMI (AL1) has ended standard support as of
December 31, 2020. While Elastic Beanstalk continued to offer AL1 based platforms through 2022,
we have since released AL2 and AL2023 and based platforms that have the latest features. In order

Platform retirement FAQ 741

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html
https://aws.amazon.com//amazon-linux-2/faqs/
https://aws.amazon.com/blogs/aws/update-on-amazon-linux-ami-end-of-life/

AWS Elastic Beanstalk Developer Guide

for customers to continue to benefit from the latest security and features going forward, it's critical
for customers to migrate to our AL2 or AL2023 based platforms.

3. Which platform branches are retired?

For a list of platform components and platform branches that have been retired, see Retired
platform branch history.

4. Which platforms are currently supported?

See Elastic Beanstalk supported platforms in AWS Elastic Beanstalk Platforms.

5. Will Elastic Beanstalk remove or terminate any components of my environment
after retirement?

We would never remove access or delete the environment's resources. However, an environment
based on a retired platform branch can end up in an unpredictable situation, because Elastic
Beanstalk isn't able to provide security updates, technical support, or hotfixes for retired platform
branches due to the supplier marking their component as End of Life (EOL). For example, a
detrimental and critical security vulnerability may surface in an environment running on a
retired platform branch. Or an EB API action may stop working for the environment if it becomes
incompatible with the Elastic Beanstalk service over time. The opportunity for these types of risks
increases the longer an environment based on a retired platform branch remains active.

If a circumstance like the ones just described should arise for an application that you must keep
running and that you're not able to update to a supported Elastic Beanstalk platform, you'll need
to consider and employ other alternatives. Workarounds include encapsulating the application
into a Docker image to run it as a Docker container. This would allow a customer to use any of our
Docker solutions, such as our Elastic Beanstalk AL2023/AL2 Docker platforms, or other Docker
based services such as Amazon ECS, Amazon EKS, or AWS App Runner. Non-Docker alternatives
include our AWS CodeDeploy service, which allows complete customization of the runtimes you
desire.

6. Can I submit a request to extend the retirement date?

No. After the retirement date existing environments will continue to function. However, Elastic
Beanstalk will no longer provide platform maintenance and security updates. Therefore, it’s critical
to migrate to AL2 or AL2023 if you are still running applications on an AL1-based platform. For
more information about risks and workarounds, see FAQ #5.

Platform retirement FAQ 742

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html

AWS Elastic Beanstalk Developer Guide

7. What are the workarounds if I can't complete my AL2 or AL2023 migration in
time?

Customers may continue to run the environment, although we strongly encourage you to plan
to migrate all of your Elastic Beanstalk environments to a supported platform version. Doing
so will minimize risk and provide continued benefit from important security, performance, and
functionality enhancements offered in more recent releases. For more information about risks and
workarounds, see FAQ #5.

8. What is the recommended process to migrate to AL2 or AL2023 platforms?

For comprehensive AL1 to AL2023/AL2 migration instructions, see Migrating your Elastic Beanstalk
Linux application to Amazon Linux 2023 or Amazon Linux 2. This topic explains that Elastic
Beanstalk requires a blue/green deployment to perform the upgrade.

9. If I have an environment running on a retired platform, what would be the
impact?

An environment based on a retired platform branch can end up in an unpredictable situation,
because Elastic Beanstalk isn't able to provide security updates, technical support, or hotfixes for
retired platform branches due to the supplier marking their component as End of Life (EOL). For
example, a detrimental and critical security vulnerability may surface in an environment running on
a retired platform branch. Or an EB API action may stop working for the environment if it becomes
incompatible with the Elastic Beanstalk service over time. The opportunity for these types of
risks increases the longer an environment on a retired platform branch remains active. For more
information, see FAQ #5.

10. What happens 90 days after the retirement date?

Active environments running on a retired platform may remain active after the 90 day grace
period. However, be aware that an environment based on a retired platform branch can end up
in an unpredictable situation, because Elastic Beanstalk isn't able to provide security updates,
technical support, or hotfixes for retired platform branches due to the supplier marking their
component as End of Life (EOL). For example, a detrimental and critical security vulnerability may
surface in an environment running on a retired platform branch. Or an EB API action may stop
working for the environment if it becomes incompatible with the Elastic Beanstalk service over
time. The opportunity for these types of risks increases the longer an environment on a retired
platform branch remains active. For more information see FAQ #5.

Platform retirement FAQ 743

AWS Elastic Beanstalk Developer Guide

11. Can I create a new environment based on a retired platform?

You can create a new environment based on a retired platform branch, if you've already used that
platform branch to create an existing environment using the same account and in the same region.
The retired platform branch will not be available in the Create environment wizard. However, for
customers that have existing environments based on a retired platform branch, it will be available
through the EB CLI, EB API, and AWS CLI. Also, existing customers can use the Clone environment
and Rebuild environment consoles. However, be aware that an environment based on a retired
platform branch can end up in an unpredictable situation. For more information, see FAQ #5.

12. If I’m an existing customer, until when can I create a new environment based
on retired platform branch? Can I do so using the console, CLI or API?

You can create the environment past the 90 day grace period. However, keep in mind that a
retired platform branch can end up in an unpredictable situation. The further out in time such
an environment an environment is created or active, the higher the risk for the environment to
encounter unexpected issues. For more information about creating a new environment, see FAQ
#11.

13. Can I clone or rebuild my environment which is based on retired platform?

Yes. You can do so using the Clone environment and Rebuild environment consoles. You can also
use the EB CLI, EB API, and AWS CLI. For more information about creating a new environment, see
FAQ #11.

However, we strongly encourage you to plan to migrate all your Elastic Beanstalk environments
to a supported platform version. Doing so will minimize risk and provide continued benefit from
important security, performance, and functionality enhancements offered in more recent releases.
For more information about risks and workarounds, see FAQ #5.

14. After the retirement date, what would happen to the AWS resources of my
Elastic Beanstalk environment that is based on a retired platform branch? For
example, if the running EC2 instance gets terminated, would Elastic Beanstalk be
able to launch a new AL1 based EC2 instance to maintain capacity?

The environment’s resources would remain active and continue to function. And, yes, Elastic
Beanstalk will auto scale for AL1 EC2 instances in the environment. However, Elastic Beanstalk
will stop providing new platform maintenance updates to the environment, which can lead to the
environment ending up in an unpredictable situation over time. For more information, see FAQ #5.

Platform retirement FAQ 744

AWS Elastic Beanstalk Developer Guide

15. What are key differences between the AL2023/AL2 and Amazon Linux AMI
(AL1) operating systems? How are the Elastic Beanstalk AL2023/AL2 platform
branches affected?

Although Amazon Linux AMI and AL2023/AL2 share the same Linux kernel, they differ in their
initialization system, libc versions, the compiler tool chain, and various packages. For more
information, see Amazon Linux 2 FAQs.

The Elastic Beanstalk service has also updated platform specific versions of runtime, build tools,
and other dependencies. The AL2023/AL2 based platform branches aren't guaranteed to be
backward compatible with your existing application. Furthermore, even if your application code
successfully deploys to the new platform version, it might behave or perform differently due
to operating system and run time differences. For a list and description of configurations and
customizations that you'll need to review and test, see Migrating your Elastic Beanstalk Linux
application to Amazon Linux 2023 or Amazon Linux 2.

Canceling environment configuration updates and application
deployments

You can cancel in-progress updates that are triggered by environment configuration changes.
You can also cancel the deployment of a new application version in progress. For example, you
might want to cancel an update if you decide you want to continue using the existing environment
configuration instead of applying new environment configuration settings. Or, you might realize
that the new application version that you are deploying has problems that will cause it to not start
or not run properly. By canceling an environment update or application version update, you can
avoid waiting until the update or deployment process is done before you begin a new attempt to
update the environment or application version.

Note

During the cleanup phase in which old resources that are no longer needed are removed,
after the last batch of instances has been updated, you can no longer cancel the update.

Elastic Beanstalk performs the rollback the same way that it performed the last successful update.
For example, if you have time-based rolling updates enabled in your environment, then Elastic

Cancel an update 745

https://aws.amazon.com//amazon-linux-2/faqs/

AWS Elastic Beanstalk Developer Guide

Beanstalk will wait the specified pause time between rolling back changes on one batch of
instances before rolling back changes on the next batch. Or, if you recently turned on rolling
updates, but the last time you successfully updated your environment configuration settings was
without rolling updates, Elastic Beanstalk will perform the rollback on all instances simultaneously.

You cannot stop Elastic Beanstalk from rolling back to the previous environment configuration
once it begins to cancel the update. The rollback process continues until all instances in the
environment have the previous environment configuration or until the rollback process fails.
For application version deployments, canceling the deployment simply stops the deployment;
some instances will have the new application version and others will continue to run the existing
application version. You can deploy the same or another application version later.

For more information about rolling updates, see Elastic Beanstalk rolling environment
configuration updates. For more information about batched application version deployments, see
Deployment policies and settings.

To cancel an update

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. On the environment overview page, choose Actions, and then choose Abort current
operation.

Rebuilding Elastic Beanstalk environments

Your AWS Elastic Beanstalk environment can become unusable if you don't use Elastic Beanstalk
functionality to modify or terminate the environment's underlying AWS resources. If this happens,
you can rebuild the environment to attempt to restore it to a working state. Rebuilding an
environment terminates all of its resources and replaces them with new resources with the same
configuration.

Rebuild an environment 746

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

You can also rebuild terminated environments within six weeks (42 days) of their termination.
When you rebuild, Elastic Beanstalk attempts to create a new environment with the same name, ID,
and configuration.

Rebuilding a running environment

You can rebuild an environment through the Elastic Beanstalk console or by using the
RebuildEnvironment API.

To rebuild a running environment (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Rebuild environment.

4. Choose Rebuild.

Rebuilding a running environment creates new resources that have the same configuration as the
old resources; however, the resource IDs are different, and any data on the old resources is not
restored. For example, rebuilding an environment with an Amazon RDS database instance creates a
new database with the same configuration, but does not apply a snapshot to the new database.

To rebuild a running environment with the Elastic Beanstalk API, use the RebuildEnvironment
action with the AWS CLI or the AWS SDK.

$ aws elasticbeanstalk rebuild-environment --environment-id e-vdnftxubwq

Rebuilding a terminated environment

You can rebuild and restore a terminated environment by using the Elastic Beanstalk console, the
EB CLI, or the RebuildEnvironment API.

Rebuilding a running environment 747

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_RebuildEnvironment.html

AWS Elastic Beanstalk Developer Guide

Note

Unless you are using your own custom domain name with your terminated environment,
the environment uses a subdomain of elasticbeanstalk.com. These subdomains are shared
within an Elastic Beanstalk region. Therefore, they can be used by any environment created
by any customer in the same region. While your environment was terminated, another
environment could use its subdomain. In this case, the rebuild would fail.
You can avoid this issue by using a custom domain. See Your Elastic Beanstalk
environment's Domain name for details.

Recently terminated environments appear in the application overview for up to an hour. During
this time, you can view events for the environment in its dashboard, and use the Restore
environment action to rebuild it.

To rebuild an environment that is no longer visible, use the Restore terminated environment
option from the application page.

To rebuild a terminated environment (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

Note

If you have many applications, use the search bar to filter the application list.

3. Choose Actions, and then choose Restore terminated environment.

Rebuilding a terminated environment 748

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

4. Choose a terminated environment.

5. Choose Restore.

Elastic Beanstalk attempts to create a new environment with the same name, ID, and configuration.
If an environment with the same name or URL exists when you attempt to rebuild, the rebuild fails.
Deleting the application version that was deployed to the environment will also cause the rebuild
to fail.

If you use the EB CLI to manage your environment, use the eb restore command to rebuild a
terminated environment.

$ eb restore e-vdnftxubwq

See eb restore for more information.

To rebuild a terminated environment with the Elastic Beanstalk API, use the
RebuildEnvironment action with the AWS CLI or the AWS SDK.

Rebuilding a terminated environment 749

https://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_RebuildEnvironment.html

AWS Elastic Beanstalk Developer Guide

$ aws elasticbeanstalk rebuild-environment --environment-id e-vdnftxubwq

Environment types

In AWS Elastic Beanstalk, you can create a load-balanced, scalable environment or a single-instance
environment. The type of environment that you require depends on the application that you
deploy. For example, you can develop and test an application in a single-instance environment to
save costs and then upgrade that environment to a load-balanced, scalable environment when the
application is ready for production.

Note

A worker environment tier for a web application that processes background tasks doesn't
include a load balancer. However, a worker environment does effectively scale out by
adding instances to the Auto Scaling group to process data from the Amazon SQS queue
when the load necessitates it.

Load-balanced, scalable environment

A load-balanced and scalable environment uses the Elastic Load Balancing and Amazon EC2
Auto Scaling services to provision the Amazon EC2 instances that are required for your deployed
application. Amazon EC2 Auto Scaling automatically starts additional instances to accommodate
increasing load on your application. If the load on your application decreases, Amazon EC2 Auto
Scaling stops instances but always leaves your specified minimum number of instances running. If
your application requires scalability with the option of running in multiple Availability Zones, use a
load-balanced, scalable environment. If you're not sure which environment type to select, you can
pick one and, if required, switch the environment type later.

Single-instance environment

A single-instance environment contains one Amazon EC2 instance with an Elastic IP address.
A single-instance environment doesn't have a load balancer, which can help you reduce costs
compared to a load-balanced, scalable environment. Although a single-instance environment
does use the Amazon EC2 Auto Scaling service, settings for the minimum number of instances,
maximum number of instances, and desired capacity are all set to 1. Consequently, new instances
are not started to accommodate increasing load on your application.

Environment types 750

AWS Elastic Beanstalk Developer Guide

Use a single-instance environment if you expect your production application to have low traffic
or if you are doing remote development. If you're not sure which environment type to select, you
can pick one and, if required, you can switch the environment type later. For more information, see
Changing environment type.

Changing environment type

You can change your environment type to a single-instance or load-balanced, scalable environment
by editing your environment's configuration. In some cases, you might want to change your
environment type from one type to another. For example, let's say that you developed and tested
an application in a single-instance environment to save costs. When your application is ready for
production, you can change the environment type to a load-balanced, scalable environment so that
it can scale to meet the demands of your customers.

To change an environment's type

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Capacity category, choose Edit.

5. From the Environment Type list, select the type of environment that you want.

Changing environment type 751

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

6. Choose Save.

It can take several minutes for the environment to update while Elastic Beanstalk provisions
AWS resources.

If your environment is in a VPC, select subnets to place Elastic Load Balancing and Amazon EC2
instances in. Each Availability Zone that your application runs in must have both. See Using Elastic
Beanstalk with Amazon VPC for details.

Elastic Beanstalk worker environments

If your AWS Elastic Beanstalk application performs operations or workflows that take a long time
to complete, you can offload those tasks to a dedicated worker environment. Decoupling your web
application front end from a process that performs blocking operations is a common way to ensure
that your application stays responsive under load.

A long-running task is anything that substantially increases the time it takes to complete a request,
such as processing images or videos, sending email, or generating a ZIP archive. These operations
can take only a second or two to complete, but a delay of a few seconds is a lot for a web request
that would otherwise complete in less than 500 ms.

Worker environments 752

AWS Elastic Beanstalk Developer Guide

One option is to spawn a worker process locally, return success, and process the task
asynchronously. This works if your instance can keep up with all of the tasks sent to it. Under
high load, however, an instance can become overwhelmed with background tasks and become
unresponsive to higher priority requests. If individual users can generate multiple tasks, the
increase in load might not correspond to an increase in users, making it hard to scale out your web
server tier effectively.

To avoid running long-running tasks locally, you can use the AWS SDK for your programming
language to send them to an Amazon Simple Queue Service (Amazon SQS) queue, and run the
process that performs them on a separate set of instances. You then design these worker instances
to take items from the queue only when they have capacity to run them, preventing them from
becoming overwhelmed.

Elastic Beanstalk worker environments simplify this process by managing the Amazon SQS
queue and running a daemon process on each instance that reads from the queue for you. When
the daemon pulls an item from the queue, it sends an HTTP POST request locally to http://
localhost/ on port 80 with the contents of the queue message in the body. All that your
application needs to do is perform the long-running task in response to the POST. You can
configure the daemon to post to a different path, use a MIME type other than application/JSON,
connect to an existing queue, or customize connections (maximum concurrent requests), timeouts,
and retries.

Worker environments 753

AWS Elastic Beanstalk Developer Guide

With periodic tasks, you can also configure the worker daemon to queue messages based on a cron
schedule. Each periodic task can POST to a different path. Enable periodic tasks by including a
YAML file in your source code that defines the schedule and path for each task.

Note

The .NET on Windows Server platform doesn't support worker environments.

Sections

• The worker environment SQS daemon

• Dead-letter queues

• Periodic tasks

• Use Amazon CloudWatch for automatic scaling in worker environment tiers

Worker environments 754

AWS Elastic Beanstalk Developer Guide

• Configuring worker environments

The worker environment SQS daemon

Worker environments run a daemon process provided by Elastic Beanstalk. This daemon is updated
regularly to add features and fix bugs. To get the latest version of the daemon, update to the latest
platform version.

When the application in the worker environment returns a 200 OK response to acknowledge that
it has received and successfully processed the request, the daemon sends a DeleteMessage call
to the Amazon SQS queue to delete the message from the queue. If the application returns any
response other than 200 OK, Elastic Beanstalk waits to put the message back in the queue after
the configured ErrorVisibilityTimeout period. If there is no response, Elastic Beanstalk waits
to put the message back in the queue after the InactivityTimeout period so that the message
is available for another attempt at processing.

Note

The properties of Amazon SQS queues (message order, at-least-once delivery, and message
sampling) can affect how you design a web application for a worker environment. For more
information, see Properties of Distributed Queues in the Amazon Simple Queue Service
Developer Guide.

Amazon SQS automatically deletes messages that have been in a queue for longer than the
configured RetentionPeriod.

The daemon sets the following HTTP headers.

HTTP headers

Name Value

User-Agent aws-sqsd

aws-sqsd/1.1 1

The worker environment SQS daemon 755

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/DistributedQueues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/Welcome.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/Welcome.html

AWS Elastic Beanstalk Developer Guide

HTTP headers

X-Aws-Sqsd-Msgid SQS message ID, used to detect message
storms (an unusually high number of new
messages).

X-Aws-Sqsd-Queue Name of the SQS queue.

X-Aws-Sqsd-First-Received-At UTC time, in ISO 8601 format, when the
message was first received.

X-Aws-Sqsd-Receive-Count SQS message receive count.

X-Aws-Sqsd-Attr- message-a
ttribute-name

Custom message attributes assigned to the
message being processed. The message-a
ttribute-name is the actual message
attribute name. All string and number
message attributes are added to the header.
Binary attributes are discarded and not
included in the header.

Content-Type Mime type configuration; by default,
application/json .

Dead-letter queues

Elastic Beanstalk worker environments support Amazon Simple Queue Service (Amazon SQS) dead-
letter queues. A dead-letter queue is a queue where other (source) queues can send messages
that for some reason could not be successfully processed. A primary benefit of using a dead-
letter queue is the ability to sideline and isolate the unsuccessfully processed messages. You can
then analyze any messages sent to the dead-letter queue to try to determine why they were not
successfully processed.

If you specify an autogenerated Amazon SQS queue at the time you create your worker
environment tier, a dead-letter queue is enabled by default for a worker environment. If you
choose an existing SQS queue for your worker environment, you must use SQS to configure a dead-
letter queue independently. For information about how to use SQS to configure a dead-letter
queue, see Using Amazon SQS Dead Letter Queues.

Dead-letter queues 756

http://www.w3.org/TR/NOTE-datetime
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/SQSDeadLetterQueue.html

AWS Elastic Beanstalk Developer Guide

You cannot disable dead-letter queues. Messages that cannot be delivered are always eventually
sent to a dead-letter queue. You can, however, effectively disable this feature by setting the
MaxRetries option to the maximum valid value of 100.

If a dead-letter queue isn't configured for your worker environment's Amazon SQS queue, Amazon
SQS keeps messages on the queue until the retention period expires. For details about configuring
the retention period, see the section called “Configuring worker environments”.

Note

The Elastic Beanstalk MaxRetries option is equivalent to the SQS MaxReceiveCount
option. If your worker environment doesn't use an autogenerated SQS queue, use the
MaxReceiveCount option in SQS to effectively disable your dead-letter queue. For more
information, see Using Amazon SQS Dead Letter Queues.

For more information about the lifecycle of an SQS message, go to Message Lifecycle.

Periodic tasks

You can define periodic tasks in a file named cron.yaml in your source bundle to add jobs to your
worker environment's queue automatically at a regular interval.

For example, the following cron.yaml file creates two periodic tasks. The first one runs every 12
hours and the second one runs at 11 PM UTC every day.

Example cron.yaml

version: 1
cron:
 - name: "backup-job"
 url: "/backup"
 schedule: "0 */12 * * *"
 - name: "audit"
 url: "/audit"
 schedule: "0 23 * * *"

The name must be unique for each task. The URL is the path to which the POST request is sent to
trigger the job. The schedule is a CRON expression that determines when the task runs.

Periodic tasks 757

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/SQSDeadLetterQueue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/MessageLifecycle.html
http://en.wikipedia.org/wiki/Cron#CRON_expression

AWS Elastic Beanstalk Developer Guide

When a task runs, the daemon posts a message to the environment's SQS queue with a header
indicating the job that needs to be performed. Any instance in the environment can pick up the
message and process the job.

Note

If you configure your worker environment with an existing SQS queue and choose an
Amazon SQS FIFO queue, periodic tasks aren't supported.

Elastic Beanstalk uses leader election to determine which instance in your worker environment
queues the periodic task. Each instance attempts to become leader by writing to an Amazon
DynamoDB table. The first instance that succeeds is the leader, and must continue to write to the
table to maintain leader status. If the leader goes out of service, another instance quickly takes its
place.

For periodic tasks, the worker daemon sets the following additional headers.

HTTP headers

Name Value

X-Aws-Sqsd-Taskname For periodic tasks, the name of the task to
perform.

X-Aws-Sqsd-Scheduled-At Time at which the periodic task was scheduled

X-Aws-Sqsd-Sender-Id AWS account number of the sender of the
message

Use Amazon CloudWatch for automatic scaling in worker environment
tiers

Together, Amazon EC2 Auto Scaling and CloudWatch monitor the CPU utilization of the running
instances in the worker environment. How you configure the automatic scaling limit for CPU
capacity determines how many instances the Auto Scaling group runs to appropriately manage the
throughput of messages in the Amazon SQS queue. Each EC2 instance publishes its CPU utilization

Use Amazon CloudWatch for automatic scaling in worker environment tiers 758

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html

AWS Elastic Beanstalk Developer Guide

metrics to CloudWatch. Amazon EC2 Auto Scaling retrieves from CloudWatch the average CPU
usage across all instances in the worker environment. You configure the upper and lower threshold
as well as how many instances to add or terminate according to CPU capacity. When Amazon EC2
Auto Scaling detects that you have reached the specified upper threshold on CPU capacity, Elastic
Beanstalk creates new instances in the worker environment. The instances are deleted when the
CPU load drops back below the threshold.

Note

Messages that have not been processed at the time an instance is terminated are returned
to the queue where they can be processed by another daemon on an instance that is still
running.

You can also set other CloudWatch alarms, as needed, by using the Elastic Beanstalk console, CLI,
or the options file. For more information, see Using Elastic Beanstalk with Amazon CloudWatch and
Create an Auto Scaling group with Step Scaling Policies.

Configuring worker environments

You can manage a worker environment's configuration by editing the Worker category on the
Configuration page in the environment management console.

Configuring worker environments 759

https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-simple-step.html#policy-creating-asg-console

AWS Elastic Beanstalk Developer Guide

Configuring worker environments 760

AWS Elastic Beanstalk Developer Guide

Note

You can configure the URL path for posting worker queue messages, but you can't
configure the IP port. Elastic Beanstalk always posts worker queue messages on port 80.
The worker environment application or its proxy must listen to port 80.

To configure the worker daemon

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Worker configuration category, choose Edit.

The Modify worker configuration page has the following options.

In the Queue section:

• Worker queue – Specify the Amazon SQS queue from which the daemon reads. If you have one,
you can choose an existing queue. If you choose Autogenerated queue, Elastic Beanstalk creates
a new Amazon SQS queue and a corresponding Worker queue URL.

Note

When you choose Autogenerated queue, the queue that Elastic Beanstalk creates is a
standard Amazon SQS queue. When you choose an existing queue, you can provide either
a standard or a FIFO Amazon SQS queue. Be aware that if you provide a FIFO queue,
periodic tasks aren't supported.

• Worker queue URL – If you choose an existing Worker queue, this setting displays the URL
associated with that Amazon SQS queue.

Configuring worker environments 761

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html

AWS Elastic Beanstalk Developer Guide

In the Messages section:

• HTTP path – Specify the relative path to the application that will receive the data from the
Amazon SQS queue. The data is inserted into the message body of an HTTP POST message. The
default value is /.

• MIME type – Indicate the MIME type that the HTTP POST message uses. The default value is
application/json. However, any value is valid because you can create and then specify your
own MIME type.

• HTTP connections – Specify the maximum number of concurrent connections that the daemon
can make to any application within an Amazon EC2 instance. The default is 50. You can specify 1
to 100.

• Visibility timeout – Indicate the amount of time, in seconds, an incoming message from the
Amazon SQS queue is locked for processing. After the configured amount of time has passed, the
message is again made visible in the queue for another daemon to read. Choose a value that is
longer than you expect your application requires to process messages, up to 43200 seconds.

• Error visibility timeout – Indicate the amount of time, in seconds, that elapses before Elastic
Beanstalk returns a message to the Amazon SQS queue after an attempt to process it fails with
an explicit error. You can specify 0 to 43200 seconds.

In the Advanced options section:

• Max retries – Specify the maximum number of times Elastic Beanstalk attempts to send the
message to the Amazon SQS queue before moving the message to the dead-letter queue. The
default value is 10. You can specify 1 to 100.

Note

The Max retries option only applies to Amazon SQS queues that are configured with a
dead-letter queue. For any Amazon SQS queues that aren't configured with a dead-letter
queue, Amazon SQS retains messages in the queue and processes them until the period
specified by the Retention period option expires.

• Connection timeout – Indicate the amount of time, in seconds, to wait for successful
connections to an application. The default value is 5. You can specify 1 to 60 seconds.

Configuring worker environments 762

AWS Elastic Beanstalk Developer Guide

• Inactivity timeout – Indicate the amount of time, in seconds, to wait for a response on an
existing connection to an application. The default value is 180. You can specify 1 to 36000
seconds.

• Retention period – Indicate the amount of time, in seconds, a message is valid and is actively
processed. The default value is 345600. You can specify 60 to 1209600 seconds.

If you use an existing Amazon SQS queue, the settings that you configure when you create a
worker environment can conflict with settings you configured directly in Amazon SQS. For example,
if you configure a worker environment with a RetentionPeriod value that is higher than the
MessageRetentionPeriod value you set in Amazon SQS, Amazon SQS deletes the message
when it exceeds the MessageRetentionPeriod.

Conversely, if the RetentionPeriod value you configure in the worker environment settings is
lower than the MessageRetentionPeriod value you set in Amazon SQS, the daemon deletes
the message before Amazon SQS can. For VisibilityTimeout, the value that you configure for
the daemon in the worker environment settings overrides the Amazon SQS VisibilityTimeout
setting. Ensure that messages are deleted appropriately by comparing your Elastic Beanstalk
settings to your Amazon SQS settings.

Creating links between Elastic Beanstalk environments

As your application grows in size and complexity, you may want to split it into components that
have different development and operational lifecycles. By running smaller services that interact
with each other over a well defined interface, teams can work independently and deployments can
be lower risk. AWS Elastic Beanstalk lets you link your environments to share information between
components that depend on one another.

Note

Elastic Beanstalk currently supports environment links for all platforms except
Multicontainer Docker.

With environment links, you can specify the connections between your application’s component
environments as named references. When you create an environment that defines a link, Elastic
Beanstalk sets an environment variable with the same name as the link. The value of the variable

Environment links 763

AWS Elastic Beanstalk Developer Guide

is the endpoint that you can use to connect to the other component, which can be a web server or
worker environment.

For example, if your application consists of a frontend that collects email addresses and a worker
that sends a welcome email to the email addresses collected by the frontend, you can create a link
to the worker in your frontend and have the frontend automatically discover the endpoint (queue
URL) for your worker.

Define links to other environments in an environment manifest, a YAML formatted file named
env.yaml in the root of your application source. The following manifest defines a link to an
environment named worker:

~/workspace/my-app/frontend/env.yaml

AWSConfigurationTemplateVersion: 1.1.0.0
EnvironmentLinks:
 "WORKERQUEUE": "worker"

When you create an environment with an application version that includes the above environment
manifest, Elastic Beanstalk looks for an environment named worker that belongs to the same
application. If that environment exists, Elastic Beanstalk creates an environment property
named WORKERQUEUE. The value of WORKERQUEUE is the Amazon SQS queue URL. The frontend
application can read this property in the same manner as an environment variable. See
Environment manifest (env.yaml) for details.

To use environment links, add an environment manifest to your application source and upload it
with the EB CLI, AWS CLI or an SDK. If you use the AWS CLI or an SDK, set the process flag when
you call CreateApplicationVersion:

$ aws elasticbeanstalk create-application-version --process --application-name
 my-app --version-label frontend-v1 --source-bundle S3Bucket="DOC-EXAMPLE-
BUCKET",S3Key="front-v1.zip"

This option tells Elastic Beanstalk to validate the environment manifest and configuration files in
your source bundle when you create the application version. The EB CLI sets this flag automatically
when you have an environment manifest in your project directory.

Create your environments normally using any client. When you need to terminate environments,
terminate the environment with the link first. If an environment is linked to by another

Environment links 764

AWS Elastic Beanstalk Developer Guide

environment, Elastic Beanstalk will prevent the linked environment from being terminated. To
override this protection, use the ForceTerminate flag. This parameter is available in the AWS CLI
as --force-terminate:

$ aws elasticbeanstalk terminate-environment --force-terminate --environment-name
 worker

Environment links 765

AWS Elastic Beanstalk Developer Guide

Configuring Elastic Beanstalk environments

AWS Elastic Beanstalk provides a wide range of options for customizing the resources in your
environment, and Elastic Beanstalk behavior and platform settings. When you create a web
server environment, Elastic Beanstalk creates several resources to support the operation of your
application.

• EC2 instance – An Amazon Elastic Compute Cloud (Amazon EC2) virtual machine configured to
run web apps on the platform that you choose.

Each platform runs a specific set of software, configuration files, and scripts to support a specific
language version, framework, web container, or combination of these. Most platforms use either
Apache or NGINX as a reverse proxy that sits in front of your web app, forwards requests to it,
serves static assets, and generates access and error logs.

• Instance security group – An Amazon EC2 security group configured to allow inbound traffic on
port 80. This resource lets HTTP traffic from the load balancer reach the EC2 instance running
your web app. By default, traffic isn't allowed on other ports.

• Load balancer – An Elastic Load Balancing load balancer configured to distribute requests to
the instances running your application. A load balancer also eliminates the need to expose your
instances directly to the internet.

• Load balancer security group – An Amazon EC2 security group configured to allow inbound
traffic on port 80. This resource lets HTTP traffic from the internet reach the load balancer. By
default, traffic isn't allowed on other ports.

• Auto Scaling group – An Auto Scaling group configured to replace an instance if it is terminated
or becomes unavailable.

• Amazon S3 bucket – A storage location for your source code, logs, and other artifacts that are
created when you use Elastic Beanstalk.

• Amazon CloudWatch alarms – Two CloudWatch alarms that monitor the load on the instances
in your environment and that are triggered if the load is too high or too low. When an alarm is
triggered, your Auto Scaling group scales up or down in response.

• AWS CloudFormation stack – Elastic Beanstalk uses AWS CloudFormation to launch the
resources in your environment and propagate configuration changes. The resources are defined
in a template that you can view in the AWS CloudFormation console.

• Domain name – A domain name that routes to your web app in the form
subdomain.region.elasticbeanstalk.com.

766

https://console.aws.amazon.com/cloudformation

AWS Elastic Beanstalk Developer Guide

Note

To augment the security of your Elastic Beanstalk applications, the elasticbeanstalk.com
domain is registered in the Public Suffix List (PSL). For further security, we recommend
that you use cookies with a __Host- prefix if you ever need to set sensitive cookies in
the default domain name for your Elastic Beanstalk applications. This practice will help
to defend your domain against cross-site request forgery attempts (CSRF). For more
information see the Set-Cookie page in the Mozilla Developer Network.

This topic focuses on the resource configuration options available in the Elastic Beanstalk console.
The following topics show how to configure your environment in the console. They also describe
the underlying namespaces that correspond to the console options for use with configuration files
or API configuration options. To learn about advanced configuration methods, see Configuring
environments (advanced).

Topics

• Environment configuration using the Elastic Beanstalk console

• The Amazon EC2 instances for your Elastic Beanstalk environment

• Auto Scaling group for your Elastic Beanstalk environment

• Load balancer for your Elastic Beanstalk environment

• Adding a database to your Elastic Beanstalk environment

• Your AWS Elastic Beanstalk environment security

• Tagging resources in your Elastic Beanstalk environments

• Environment properties and other software settings

• Elastic Beanstalk environment notifications with Amazon SNS

• Configuring Amazon Virtual Private Cloud (Amazon VPC) with Elastic Beanstalk

• Your Elastic Beanstalk environment's Domain name

Environment configuration using the Elastic Beanstalk console

You can use the Elastic Beanstalk console to view and modify many configuration options of
your environment and its resources. You can customize how the environment behaves during

Configuration using the console 767

https://publicsuffix.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

AWS Elastic Beanstalk Developer Guide

deployments, enable additional features, and modify the instance type and other settings that you
chose during environment creation.

To view a summary of your environment's configuration

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

Configuration page

The Configuration overview page shows a set of configuration categories. Each configuration
category summarizes the current state of a group of related options.

Configuration page 768

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Choose Edit in a configuration category to get to a related configuration page, where you can see
full option values and make changes. When you're done viewing and modifying options, you can
choose one of the following actions:

Configuration page 769

AWS Elastic Beanstalk Developer Guide

• Cancel – Go back to the environment's dashboard without applying your configuration changes.
When you choose Cancel, the console loses any pending changes you made on any configuration
category.

You can also cancel your configuration changes by choosing another console page, like Events
or Logs. In this case, if there are any pending configuration changes, the console prompts you to
confirm that you agree to losing them.

• Review changes – Get a summary of all the pending changes you made in any of the
configuration categories. For details, see Review changes page.

• Apply changes – Apply the changes you made in any of the configuration categories to
your environment. In some cases you're prompted to confirm a consequence of one of your
configuration decisions.

Review changes page

The Review Changes page displays a table showing all the pending option changes you made in
any of the configuration categories and haven't applied to your environment yet.

The tables lists each option as a combination of the Namespace and Option with which Elastic
Beanstalk identifies it. For details, see Configuration options.

When you're done reviewing your changes, you can choose one of the following actions:

• Continue – Go back to the Configuration overview page. You can then continue making changes
or apply pending ones.

Review changes page 770

AWS Elastic Beanstalk Developer Guide

• Apply changes – Apply the changes you made in any of the configuration categories to
your environment. In some cases you're prompted to confirm a consequence of one of your
configuration decisions.

The Amazon EC2 instances for your Elastic Beanstalk
environment

When you create a web server environment, AWS Elastic Beanstalk creates one or more Amazon
Elastic Compute Cloud (Amazon EC2) virtual machines, known as Instances.

The instances in your environment are configured to run web apps on the platform that you
choose. You can make changes to various properties and behaviors of your environment's
instances when you create your environment or after it's already running. Or, you can already make
these changes by modifying the source code that you deploy to the environment. For for more
information, see the section called “Configuration options”.

Note

The Auto Scaling group in your environment manages the Amazon EC2 instances that run
your application. When you make configuration changes that are described on this page,
the launch configuration also changes. The launch configuration is either an Amazon EC2
launch template or an Auto Scaling group launch configuration resource. This change
requires replacement of all instances. It also triggers either a rolling update or immutable
update, depending on which one is configured.

Elastic Beanstalk supports several Amazon EC2 instance purchasing options: On-Demand Instances,
Reserved Instances, and Spot Instances. An On-Demand Instance is a pay-as-you-go resource
—there's no long-term commitment required when you use it. A Reserved Instance is a pre-
purchased billing discount applied automatically to matching On-Demand instances in your
environment. A Spot Instance is an unused Amazon EC2 instance that is available for less than the
On-Demand price. You can enable Spot Instances in your environment by setting a single option.
You can configure Spot Instance usage, including the mix of On-Demand and Spot Instances, using
additional options. For more information, see Auto Scaling group.

Sections

• Amazon EC2 instance types

Amazon EC2 instances 771

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-purchasing-options.html

AWS Elastic Beanstalk Developer Guide

• Configuring Amazon EC2 instances for your environment

• Configuring AWS EC2 instances for your environment using the AWS CLI

• Recommendations for Graviton arm64 first wave environments

• The aws:autoscaling:launchconfiguration namespace

• Configuring the instance metadata service on your environment's instances

Amazon EC2 instance types

When you create a new environment, Elastic Beanstalk provisions Amazon EC2 instances that are
based on the Amazon EC2 instance types that you choose. The instance types that you choose
determine the host hardware that runs your instances. EC2 instance types can be categorized by
which processor architecture each is based on. Elastic Beanstalk supports instance types based
on the following processor architectures: AWS Graviton 64-bit Arm architecture (arm64), 64-
bit architecture (x86), and 32-bit architecture (i386). Elastic Beanstalk selects the x86 processor
architecture by default when you create a new environment.

Note

The i386 32-bit architecture is no longer supported by the majority of Elastic Beanstalk
platforms. We recommended that you choose the x86 or arm64 architecture types instead.
Elastic Beanstalk provides configuration options for i386 processor instance types in the
aws:ec2:instances namespace.

All of the instance types in the configuration for a given Elastic Beanstalk environment must have
the same type of processor architecture. Assume that you add a new instance type to an existing
environment that already has a t2.medium instance type, which is based on x86 architecture.
You can only add another instance type of the same architecture, such as t2.small. If you want
to replace the existing instance types with those from a different architecture, you can do so.
But make sure that all of the instance types in the command are based on the same type of
architecture.

Elastic Beanstalk regularly adds support for new compatible instance types after Amazon EC2
introduces them. For information about instance types that are available, see Instance types in
the Amazon EC2 User Guide for Linux Instances or Instance types in the Amazon EC2 User Guide for
Windows Instances.

Amazon EC2 instance types 772

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html

AWS Elastic Beanstalk Developer Guide

Note

Elastic Beanstalk now offers support for Graviton on all of the latest Amazon Linux 2
platforms across all AWS Graviton supported Regions. For more information about creating
an Elastic Beanstalk environment with arm64 based instances types, see Configuring
Amazon EC2 instances for your environment.
Create new environments that run Amazon EC2 instances on arm64 architecture and
migrate your existing applications to them with the deployment options in Elastic
Beanstalk.
To learn more about Graviton arm64 based processors, see these AWS resources:

• Benefits — The AWS Graviton Processor

• Getting started and other topics, such as Language-specific considerations — Getting
started with AWS Graviton GitHub article

Configuring Amazon EC2 instances for your environment

You can create or modify your Elastic Beanstalk environment's Amazon EC2 instance configuration
in the Elastic Beanstalk console.

Note

Although the Elastic Beanstalk console doesn't provide the option to change the processor
architecture of an existing environment, you can do so with the AWS CLI. For example
commands, see Configuring AWS EC2 instances for your environment using the AWS CLI.

To configure Amazon EC2 instances in the Elastic Beanstalk console during environment
creation

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments.

3. Choose Create a new environment to start creating your environment.

4. On the wizard's main page, before choosing Create environment, choose Configure more
options.

Configuring Amazon EC2 instances for your environment 773

https://aws.amazon.com/ec2/graviton/
https://github.com/aws/aws-graviton-getting-started#getting-started-with-aws-graviton
https://github.com/aws/aws-graviton-getting-started#getting-started-with-aws-graviton
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

5. In the Instances configuration category, choose Edit. Make changes to settings in this
category, and then choose Apply. For setting descriptions, see the section the section called
“Instances category settings” on this page.

6. In the Capacity configuration category, choose Edit. Make changes to settings in this category,
and then choose Continue. For setting descriptions, see the section the section called
“Capacity category settings” on this page.

Selecting processor architecture

Scroll down to Processor to select a processor architecture for your EC2 instances. The
console lists processor architectures that are supported by the platform that you chose
earlier in the Create environment panel.
If you don't see the processor architecture that you need, return to the configuration
category list to select a platform that supports it. From the Modify Capacity panel,
choose Cancel. Then, choose Change platform version to choose new platform
settings. Next, in the Capacity configuration category choose Edit tot see the
processor architecture choices again.

7. Choose Save, and then make any other configuration changes that your environment requires.

8. Choose Create environment.

Configuring Amazon EC2 instances for your environment 774

AWS Elastic Beanstalk Developer Guide

To configure a running environment’s Amazon EC2 instances in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Instances configuration category, choose Edit. Make changes to settings in this
category, and then choose Apply. For setting descriptions, see the section the section called
“Instances category settings” on this page.

5. In the Capacity configuration category, choose Edit. Make changes to settings in this category,
and then choose Continue. For setting descriptions, see the section the section called
“Capacity category settings” on this page.

Instances category settings

The following settings related to Amazon EC2 instances are available in the Instances
configuration category.

Options

• Monitoring interval

• Root volume (boot device)

• Instance metadata service

• Security groups

Configuring Amazon EC2 instances for your environment 775

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Configuring Amazon EC2 instances for your environment 776

AWS Elastic Beanstalk Developer Guide

Monitoring interval

By default, the instances in your environment publish basic health metrics to Amazon CloudWatch
at five-minute intervals at no additional cost.

For more detailed reporting, you can set the Monitoring interval to 1 minute to increase the
frequency that the resources in your environment publish basic health metrics to CloudWatch
at. CloudWatch service charges apply for one-minute interval metrics. For more information, see
Amazon CloudWatch.

Root volume (boot device)

Each instance in your environment is configured with a root volume. The root volume is the
Amazon EBS block device attached to the instance to store the operating system, libraries, scripts,
and your application source code. By default, all platforms use general-purpose SSD block devices
for storage.

You can modify Root volume type to use magnetic storage or provisioned IOPS SSD volume types
and, if needed, increase the volume size. For provisioned IOPS volumes, you must also select the
number of IOPS to provision. Throughput is only applicable to gp3 SSD volume types. You might
enter the desired throughput to provision. It can range between 125 and 1000 mebibytes per
second (MiB/s). Select the volume type that meets your performance and price requirements.

For more information, see Amazon EBS Volume Types in the Amazon EC2 User Guide for Linux
Instances and Amazon EBS Product Details.

Instance metadata service

The instance metadata service (IMDS) is an on-instance component that code on the instance uses
to securely access instance metadata. Code can access instance metadata from a running instance
using one of two methods. They are Instance Metadata Service Version 1 (IMDSv1) or Instance
Metadata Service Version 2 (IMDSv2). IMDSv2 is more secure. Disable IMDSv1 to enforce IMDSv2.
For more information, see the section called “IMDS”.

Note

The IMDS section on this configuration page appears only for platform versions that
support IMDSv2.

Configuring Amazon EC2 instances for your environment 777

https://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://aws.amazon.com/ebs/details/

AWS Elastic Beanstalk Developer Guide

Security groups

The security groups that are attached to your instances determine which traffic is allowed to reach
the instances. They also determine which traffic is allowed to leave the instances. Elastic Beanstalk
creates a security group that allows traffic from the load balancer on the standard ports for HTTP
(80) and HTTPS (443).

You can specify additional security groups that you have created to allow traffic on other ports
or from other sources. For example, you can create a security group for SSH access that allows
inbound traffic on port 22 from a restricted IP address range. Otherwise, for additional security,
create one that allows traffic from a bastion host that only you have access to.

Note

To allow traffic between environment A's instances and environment B's instances, you
can add a rule to the security group that Elastic Beanstalk attached to environment B.
Then, you can specify the security group that Elastic Beanstalk attached to environment
A. This allows inbound traffic from, or outbound traffic to, environment A's instances.
However, doing so creates a dependency between the two security groups. If you later
try to terminate environment A, Elastic Beanstalk can't delete the environment's security
group, because environment B's security group is dependent on it.
Therefore, we recommend that you instead first create a separate security group. Then,
attach it to environment A, and specify it in a rule of environment B's security group.

For more information about Amazon EC2 security groups, see Amazon EC2 Security Groups in the
Amazon EC2 User Guide for Linux Instances.

Capacity category settings

The following settings related to Amazon EC2 instances are available in the Capacity configuration
category.

Options

• Instance types

• AMI ID

Configuring Amazon EC2 instances for your environment 778

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html

AWS Elastic Beanstalk Developer Guide

Instance types

The Instance types setting determines the type of Amazon EC2 instance that's launched to run
your application. This configuration page shows a list of Instance types. You can select one or
more instance types. The Elastic Beanstalk console only displays the instance types based on the
processor architecture that's configured for your environment. Therefore, you can only add instance
types of the same processor architecture.

Note

Although the Elastic Beanstalk console doesn't provide the option to change the processor
architecture of an existing environment, you can do so with the AWS CLI. For example
commands, see Configuring AWS EC2 instances for your environment using the AWS CLI.

Choose an instance that's powerful enough to run your application under load, but not so powerful
that it's idle most of the time. For development purposes, the t2 family of instances provides a
moderate amount of power with the ability to burst for short periods of time. For large-scale,
high-availability applications, use a pool of instances to ensure that capacity isn't too strongly
affected if any single instance goes down. Start with an instance type that you can use to run five
instances under moderate loads during normal hours. If any instance fails, the rest of the instances
can absorb the rest of the traffic. The capacity buffer also allows time for the environment to scale
up as traffic begins to rise during peak hours.

Configuring Amazon EC2 instances for your environment 779

AWS Elastic Beanstalk Developer Guide

For more information about Amazon EC2 instance families and types, see Instance types in
the Amazon EC2 User Guide for Linux Instances or Instance types in the Amazon EC2 User Guide
for Windows Instances. To determine which instance types meet your requirements and their
supported Regions, see Available instance types in the Amazon EC2 User Guide for Linux Instances
or Available instance types in the Amazon EC2 User Guide for Windows Instances.

AMI ID

The Amazon Machine Image (AMI) is the Amazon Linux or Windows Server machine image that
Elastic Beanstalk uses to launch Amazon EC2 instances in your environment. Elastic Beanstalk
provides machine images that contain the tools and resources required to run your application.

Elastic Beanstalk selects a default AMI for your environment based on the Region, platform version
and processor architecture that you choose. If you have created a custom AMI, replace the default
AMI ID with your own default custom one.

Configuring AWS EC2 instances for your environment using the AWS
CLI

Use the AWS Command Line Interface (AWS CLI) to create and configure Elastic Beanstalk
environments using commands in your command-line shell. This section provides examples of the
create-environment and update-environment commands.

The first two examples creates a new environment. The command specifies an Amazon EC2
instances type, t4g.small, that's based on arm64 processor architecture. Elastic Beanstalk defaults
the Image ID (AMI) for the EC2 instances based on the Region, platform version and instance type.
The instance type corresponds to a processor architecture. The solution-stack-name parameter
applies to platform version.

Example 1 — create a new arm64 based environment (namespace options inline)

aws elasticbeanstalk create-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2 v3.4.7 running Docker" \
--option-settings \
Namespace=aws:autoscaling:launchconfiguration,OptionName=IamInstanceProfile,Value=aws-
elasticbeanstalk-ec2-role \
Namespace=aws:ec2:instances,OptionName=InstanceTypes,Value=t4g.small

Configuring AWS EC2 instances for your environment using the AWS CLI 780

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html#AvailableInstanceTypes
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/create-environment.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/update-environment.html

AWS Elastic Beanstalk Developer Guide

As an alternative, use an options.json file to specify the namespace options instead of including
them inline.

Example 2 — create a new arm64 based environment (namespace options in options.json
file)

aws elasticbeanstalk create-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2 v3.4.7 running Docker" \
--option-settings file://options.json

Example

example options.json
[
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "IamInstanceProfile",
 "Value": "aws-elasticbeanstalk-ec2-role"
 },
 {
 "Namespace": "aws:ec2:instances",
 "OptionName": "InstanceTypes",
 "Value": "t4g.small"
 }
]

The next two examples update the configuration for an existing environment with the update-
environment command. In this example we're adding another instance type that's also based on
arm64 processor architecture. For existing environments, all instance types that are added must
have the same processor architecture. If you want to replace the existing instance types with those
from a different architecture, you can do so. But make sure that all of the instance types in the
command have the same type of architecture.

Example 3 — update an existing arm64 based environment (namespace options inline)

aws elasticbeanstalk update-environment \

Configuring AWS EC2 instances for your environment using the AWS CLI 781

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/update-environment.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/update-environment.html

AWS Elastic Beanstalk Developer Guide

--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2 v3.4.7 running Docker" \
--option-settings \
Namespace=aws:autoscaling:launchconfiguration,OptionName=IamInstanceProfile,Value=aws-
elasticbeanstalk-ec2-role \
Namespace=aws:ec2:instances,OptionName=InstanceTypes,Value=t4g.small,t4g.micro

As an alternative, use an options.json file to specify the namespace options instead of including
them inline.

Example 4 — update an existing arm64 based environment (namespace options in
options.json file)

aws elasticbeanstalk update-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2 v3.4.7 running Docker" \
--option-settings file://options.json

Example

example options.json
[
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "IamInstanceProfile",
 "Value": "aws-elasticbeanstalk-ec2-role"
 },
 {
 "Namespace": "aws:ec2:instances",
 "OptionName": "InstanceTypes",
 "Value": "t4g.small, t4g.micro"
 }
]

The next two examples show more create-environment commands. These examples don't provide
values for InstanceTypes. When InstanceTypes values aren't specified, Elastic Beanstalk

Configuring AWS EC2 instances for your environment using the AWS CLI 782

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/create-environment.html

AWS Elastic Beanstalk Developer Guide

defaults to x86 based processor architecture. The Image ID (AMI) for the environment's EC2
instances will default according to the Region, platform version and defaulted instance type. The
instance type corresponds to a processor architecture.

Example 5 — create a new x86 based environment (namespace options inline)

aws elasticbeanstalk create-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2 v3.4.7 running Docker" \
--option-settings \
Namespace=aws:autoscaling:launchconfiguration,OptionName=IamInstanceProfile,Value=aws-
elasticbeanstalk-ec2-role

As an alternative, use an options.json file to specify the namespace options instead of including
them inline.

Example 6 — create a new x86 based environment (namespace options in options.json file)

aws elasticbeanstalk create-environment \
--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2 v3.4.7 running Docker" \
--option-settings file://options.json

Example

example options.json
[
 {
 "Namespace": "aws:autoscaling:launchconfiguration",
 "OptionName": "IamInstanceProfile",
 "Value": "aws-elasticbeanstalk-ec2-role"
 }
]

Configuring AWS EC2 instances for your environment using the AWS CLI 783

AWS Elastic Beanstalk Developer Guide

Recommendations for Graviton arm64 first wave environments

Note

This section only applies to a subset of customers. If you created a new environment with
Graviton arm64 based instance types prior to November 24, 2021, the information in this
section may apply to you.

Recommended actions for Graviton arm64 first wave environments

Starting in October and November 2021, Elastic Beanstalk started to add waves of support for
Graviton arm64 processors in some Regions and for some platform versions. This first wave
was announced in the AWS Elastic Beanstalk Release Notes dated October 13, October 21 and
November 19 of 2021. If you created arm64 based environments then, the instructions told you
to configure the instances with custom AMIs provided in the release notes. Now that enhanced
support for Graviton arm64 is available, Elastic Beanstalk defaults the AMIs for the arm64 instance
types in the latest platform versions.

If you created environments with the custom AMIs provided in the first wave releases, we
recommend you do the following to maintain a healthy and working environment.

1. Remove the custom AMIs from your environment.

2. Update the environment with the most recent platform version.

3. Set up managed platform updates to automatically upgrade to the latest platform version
during a scheduled maintenance window.

Note

Elastic Beanstalk will not automatically replace the custom AMIs. You must delete the
custom AMIs in Step 1, so the next platform update in Step 2 will update them.

The procedure that follows guides you through these steps. The AWS CLI examples apply to an
environment that was created with the following information.

aws elasticbeanstalk create-environment \

Recommendations for Graviton arm64 first wave environments 784

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2021-10-13-graviton-wave1.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2021-10-21-linux.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2021-11-19-linux.html

AWS Elastic Beanstalk Developer Guide

--region us-east-1 \
--application-name my-app \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2 v3.4.7 running Docker" \
--option-settings \
Namespace=aws:autoscaling:launchconfiguration,OptionName=IamInstanceProfile,Value=aws-
elasticbeanstalk-ec2-role \
Namespace=aws:ec2:instances,OptionName=InstanceTypes,Value=t4g.small \
Namespace=aws:autoscaling:launchconfiguration,OptionName=ImageId,Value=ami-
0fbdb88ce139244bf

To update arm64 environments created under first wave of Graviton arm64 support

1. Run update-environment to remove the custom AMIs settings.

aws elasticbeanstalk update-environment \
--region us-east-1 \
--environment-name my-env \
--options-to-remove \
Namespace=aws:autoscaling:launchconfiguration,OptionName=ImageId

2. Update the environment with the most recent platform version. Choose from one of the
following options.

• Console option — Use the Elastic Beanstalk console to update the platform version. For
more information, see Update your environment's platform version.

• AWS CLI Option— Run the AWS update-environment command, specifying the most
recently available platform version.

aws elasticbeanstalk update-environment \
--region us-east-1 \
--environment-name my-env \
--solution-stack-name "64bit Amazon Linux 2 v3.4.9 running Docker"

Note

The list-available-solution-stacks command provides a list of the platform versions
available for your account in an AWS Region.

Recommendations for Graviton arm64 first wave environments 785

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/update-environment.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/update-environment.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/list-available-solution-stacks.html

AWS Elastic Beanstalk Developer Guide

aws elasticbeanstalk list-available-solution-stacks --region us-east-1 --
query SolutionStacks

3. Use the Elastic Beanstalk console to set up managed platform updates for your environment.
Managed platform updates automatically upgrade your environment to the latest platform
version during a scheduled maintenance window. Your application remains in service during
the update process. For more information, see managed platform updates.

The aws:autoscaling:launchconfiguration namespace

You can use the configuration options in the aws:autoscaling:launchconfiguration
namespace to configure the instances for your environment, including additional options that
aren't available in the console.

The following configuration file example uses the basic configuration options that are in this
topic. For example, it uses the DisableIMDSv1 option, which is discussed in IMDS. It also uses
the EC2KeyName and IamInstanceProfile options that are discussed in Security, and the
BlockDeviceMappings option, which isn't available in the console.

option_settings:
 aws:autoscaling:launchconfiguration:
 SecurityGroups: my-securitygroup
 MonitoringInterval: "1 minute"
 DisableIMDSv1: false
 EC2KeyName: my-keypair
 IamInstanceProfile: "aws-elasticbeanstalk-ec2-role"
 BlockDeviceMappings: "/dev/sdj=:100,/dev/sdh=snap-51eef269,/dev/sdb=ephemeral0"

You can use BlockDeviceMappings to configure additional block devices for your instances. For
more information, see Block Device Mapping in the Amazon EC2 User Guide for Linux Instances.

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding options.
You must remove these settings if you want to use configuration files to configure the same. See
Recommended values for details.

The aws:autoscaling:launchconfiguration namespace 786

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/block-device-mapping-concepts.html

AWS Elastic Beanstalk Developer Guide

Configuring the instance metadata service on your environment's
instances

Instance metadata is data that's related to an Amazon Elastic Compute Cloud (Amazon EC2)
instance that applications can use to configure or manage the running instance. The instance
metadata service (IMDS) is an on-instance component that code on the instance uses to securely
access instance metadata. This code can be Elastic Beanstalk platform code on your environment
instances, the AWS SDK that your application might be using, or even your application's own code.
For more information, see Instance metadata and user data in the Amazon EC2 User Guide for Linux
Instances.

Code can access instance metadata from a running instance using one of two methods: Instance
Metadata Service Version 1 (IMDSv1) or Instance Metadata Service Version 2 (IMDSv2). IMDSv2 uses
session-oriented requests and mitigates several types of vulnerabilities that could be used to try to
access the IMDS. For information about these two methods, see Configuring the instance metadata
service in the Amazon EC2 User Guide for Linux Instances.

Sections

• Platform support for IMDS

• Choosing IMDS methods

• Configuring IMDS using the Elastic Beanstalk console

• The aws:autoscaling:launchconfiguration namespace

Platform support for IMDS

Older Elastic Beanstalk platform versions supported IMDSv1. Newer Elastic Beanstalk platform
versions (all Amazon Linux 2 platform versions) support both IMDSv1 and IMDSv2. You can
configure your environment to support both methods (the default) or disable IMDSv1.

Note

Disabling IMDSv1 requires using Amazon EC2 launch templates.When you configure this
feature during environment creation or updates, Elastic Beanstalk attempts to configure
your environment to use Amazon EC2 launch templates (if the environment isn't using
them already). In this case, if your user policy lacks the necessary permissions, environment
creation or updates might fail. Therefore, we recommend that you use our managed

IMDS 787

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html

AWS Elastic Beanstalk Developer Guide

user policy or add the required permissions to your custom policies. For details about the
required permissions, see the section called “Creating a custom user policy”.

Choosing IMDS methods

When making a decision about the IMDS methods that you want your environment to support,
consider the following use cases:

• AWS SDK – If your application uses an AWS SDK, make sure you use an the latest version of the
SDK. The AWS SDKs make IMDS calls, and newer SDK versions use IMDSv2 whenever possible. If
you ever disable IMDSv1, or if your application uses an old SDK version, IMDS calls might fail.

• Your application code – If your application makes IMDS calls, consider using the AWS SDK so that
you can make the calls instead of making direct HTTP requests. This way, you don't need to make
code changes to switch between IMDS methods. The AWS SDK uses IMDSv2 whenever possible.

• Elastic Beanstalk platform code – Our code makes IMDS calls through the AWS SDK, and
therefore uses IMDSv2 on all supporting platform versions. If your code uses an up-to-date AWS
SDK and makes all IMDS calls through the SDK, you can safely disable IMDSv1.

Configuring IMDS using the Elastic Beanstalk console

You can modify your Elastic Beanstalk environment's Amazon EC2 instance configuration in the
Elastic Beanstalk console.

To configure IMDS on your Amazon EC2 instances in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Instances configuration category, choose Edit.

IMDS 788

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

5. Set Disable IMDSv1 to enforce IMDSv2. Clear Disable IMDSv1 to enable both IMDSv1 and
IMDSv2.

6. To save the changes choose Apply at the bottom of the page.

The aws:autoscaling:launchconfiguration namespace

You can use a configuration option in the aws:autoscaling:launchconfiguration
namespace to configure IMDS on your environment's instances.

The following configuration file example disables IMDSv1 using the DisableIMDSv1 option.

option_settings:
 aws:autoscaling:launchconfiguration:
 DisableIMDSv1: true

Auto Scaling group for your Elastic Beanstalk environment

Your AWS Elastic Beanstalk environment includes an Auto Scaling group that manages the Amazon
EC2 instances in your environment. In a single-instance environment, the Auto Scaling group
ensures that there is always one instance running. In a load-balanced environment, you configure
the group with a range of instances to run, and Auto Scaling adds or removes instances as needed,
based on load.

The Auto Scaling group also applies the launch configuration for the instances in your
environment. You can modify the launch configuration to change the instance type, key pair,
Amazon Elastic Block Store (Amazon EBS) storage, and other settings that can only be configured
when you launch an instance.

Auto Scaling group 789

AWS Elastic Beanstalk Developer Guide

The Auto Scaling group uses two Amazon CloudWatch alarms to trigger scaling operations. The
default triggers scale when the average outbound network traffic from each instance is higher than
6 MiB or lower than 2 MiB over a period of five minutes. To use Auto Scaling effectively, configure
triggers that are appropriate for your application, instance type, and service requirements. You can
scale based on several statistics including latency, disk I/O, CPU utilization, and request count.

To optimize your environment's use of Amazon EC2 instances through predictable periods of peak
traffic, configure your Auto Scaling group to change its instance count on a schedule. You can
schedule changes to your group's configuration that recur daily or weekly, or schedule one-time
changes to prepare for marketing events that will drive a lot of traffic to your site.

As an option, Elastic Beanstalk can combine On-Demand and Spot Instances for your environment.
You can configure Amazon EC2 Auto Scaling to monitor and automatically respond to changes that
affect the availability of your Spot Instances by enabling Capacity Rebalancing.

Auto Scaling monitors the health of each Amazon EC2 instance that it launches. If any instance
terminates unexpectedly, Auto Scaling detects the termination and launches a replacement
instance. To configure the group to use the load balancer's health check mechanism, see Auto
Scaling health check setting.

You can configure Auto Scaling for your environment using the Elastic Beanstalk console, the EB
CLI, or configuration options.

Topics

• Spot instance support

• Auto Scaling group configuration using the Elastic Beanstalk console

• Auto Scaling group configuration using the EB CLI

• Configuration options

• Auto Scaling triggers

• Scheduled Auto Scaling actions

• Auto Scaling health check setting

Spot instance support

To take advantage of Amazon EC2 Spot Instances, you can enable a Spot option for your
environment. Your environment's Auto Scaling group then combines Amazon EC2 purchase options
and maintains a mix of On-Demand and Spot Instances.

Spot instance support 790

https://docs.aws.amazon.com/autoscaling/ec2/userguide/capacity-rebalance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

AWS Elastic Beanstalk Developer Guide

This topic describes the following methods to enable Spot Instance requests for your environment:

• The Elastic Beanstalk console – For more information, see Fleet composition in the section called
“Auto Scaling group configuration using the Elastic Beanstalk console”.

• The EB CLI – For more information, see the section called “Auto Scaling group configuration
using the EB CLI”.

• The aws:ec2:instances namespace configuration option – For more information, see the
section called “Configuration options”.

Important

Demand for Spot Instances can vary significantly from moment to moment, and the
availability of Spot Instances can also vary significantly depending on how many unused
Amazon EC2 instances are available. It's always possible that your Spot Instance might be
interrupted.
To help minimize the impact of these interruptions to your application, you can enable the
Capacity Rebalancing option included with Amazon EC2 Auto Scaling. With this feature
enabled, EC2 automatically attempts to replace Spot Instances in an Auto Scaling group
before they are interrupted. To enable this feature use the Elastic Beanstalk console
to configure the Auto Scaling group. Alternatively, you can set the Elastic Beanstalk
EnableCapacityRebalancing configuration option to true in the aws:autoscaling:asg
namespace.
For more information, see Capacity Rebalancing in the Amazon EC2 Auto Scaling User Guide
and Spot Instance Interruptions in the Amazon EC2 User Guide for Linux Instances.

Elastic Beanstalk provides several configuration options to support the Spot feature. They're
discussed in the following sections that explain configuration of your Auto Scaling group.

Two of these options, in the aws:ec2:instances namespace, deserve special attention:

• SpotFleetOnDemandBase

• SpotFleetOnDemandAboveBasePercentage

These two options correlate with the MinSize option in the aws:autoscaling:asg namespace:

Spot instance support 791

https://docs.aws.amazon.com/autoscaling/ec2/userguide/capacity-rebalance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html

AWS Elastic Beanstalk Developer Guide

• Only MinSize determines your environment’s initial capacity—the number of instances you
want running at a minimum.

• SpotFleetOnDemandBase doesn't affect initial capacity. When Spot is enabled, this option
only determines how many On-Demand Instances are provisioned before any Spot Instances are
considered.

• Consider when SpotFleetOnDemandBase is less than MinSize. You'll still get exactly MinSize
instances as initial capacity. At least SpotFleetOnDemandBase of them must be On-Demand
Instances.

• Consider when SpotFleetOnDemandBase is greater than MinSize. As your environment scales
out, you're guaranteed to get at least an additional amount of instances equal to the difference
between the two values. In other words, you're guaranteed to get at least an additional
(SpotFleetOnDemandBase - MinSize) instances that are On-Demand before satisfying the
SpotFleetOnDemandBase requirement.

In production environments, Spot Instances are particularly useful as part of a scalable, load-
balanced environment. We don't recommend using Spot in a single-instance environment. If
Spot Instances aren't available, you might lose the entire capacity (a single instance) of your
environment. You may still wish to use a Spot Instance in a single instance environment for
development or testing. When you do, be sure to set both SpotFleetOnDemandBase and
SpotFleetOnDemandAboveBasePercentage to zero. Any other settings result in an On-Demand
Instance.

Notes

• Some older AWS accounts might provide Elastic Beanstalk with default instance types
that don't support Spot Instances (for example, t1.micro). If you enable Spot Instance
requests and you see the error None of the instance types you specified supports Spot,
be sure to configure instance types that support Spot. To choose Spot Instance types, use
the Spot Instance Advisor.

• Enabling Spot Instance requests requires using Amazon EC2 launch templates. When
you configure this feature during environment creation or updates, Elastic Beanstalk
attempts to configure your environment to use Amazon EC2 launch templates (if the
environment isn't using them already). In this case, if your user policy lacks the necessary
permissions, environment creation or updates might fail. Therefore, we recommend that
you use our managed user policy or add the required permissions to your custom policies.

Spot instance support 792

https://aws.amazon.com/ec2/spot/instance-advisor/

AWS Elastic Beanstalk Developer Guide

For details about the required permissions, see the section called “Creating a custom user
policy”.

The following examples demonstrate different scenarios of setting the various scaling options. All
examples assume a load-balanced environment with Spot Instance requests enabled.

Example 1: On-Demand and Spot as part of initial capacity

Option settings

Option Namespace Value

MinSize aws:autoscaling:as
g

10

MaxSize aws:autoscaling:as
g

24

SpotFleetOnDemandBase aws:ec2:instances 4

SpotFleetOnDemandAboveBasePercentage aws:ec2:instances 50

In this example, the environment starts with ten instances, of which seven are On-Demand (four
base, and 50% of the six above base) and three are Spot. The environment can scale out up to 24
instances. As it scales out, the portion of On-Demand in the part of the fleet above the four base
On-Demand instances is kept at 50%, up to a maximum of 24 instances overall, of which 14 are
On-Demand (four base, and 50% of the 20 above base) and ten are Spot.

Example 2: All On-Demand initial capacity

Option settings

Option Namespace Value

MinSize aws:autoscaling:as
g

4

MaxSize aws:autoscaling:as
g

24

Spot instance support 793

AWS Elastic Beanstalk Developer Guide

Option Namespace Value

SpotFleetOnDemandBase aws:ec2:instances 4

SpotFleetOnDemandAboveBasePercentage aws:ec2:instances 50

In this example, the environment starts with four instances, all of which are On-Demand. The
environment can scale out up to 24 instances. As it scales out, the portion of On-Demand in the
part of the fleet above the four base On-Demand instances is kept at 50%, up to a maximum of 24
instances overall, of which 14 are On-Demand (four base, and 50% of the 20 above base) and ten
are Spot.

Example 3: Additional On-Demand base beyond initial capacity

Option settings

Option Namespace Value

MinSize aws:autoscaling:as
g

3

MaxSize aws:autoscaling:as
g

24

SpotFleetOnDemandBase aws:ec2:instances 4

SpotFleetOnDemandAboveBasePercentage aws:ec2:instances 50

In this example, the environment starts with three instances, all of which are On-Demand. The
environment can scale out up to 24 instances. The first additional instance above the initial three is
On-Demand, to complete the four base On-Demand instances. As it scales out further, the portion
of On-Demand in the part of the fleet above the four base On-Demand instances is kept at 50%,
up to a maximum of 24 instances overall, of which 14 are On-Demand (four base, and 50% of the
20 above base) and ten are Spot.

Spot instance support 794

AWS Elastic Beanstalk Developer Guide

Auto Scaling group configuration using the Elastic Beanstalk console

You can configure how Auto Scaling works by editing Capacity on the environment's Configuration
page in the Elastic Beanstalk console.

To configure the Auto Scaling group in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Capacity configuration category, choose Edit.

5. In the Auto Scaling group section, configure the following settings.

• Environment type – Select Load balanced.

• Min instances – The minimum number of EC2 instances that the group should contain at
any time. The group starts with the minimum count and adds instances when the scale-up
trigger condition is met.

• Max instances – The maximum number of EC2 instances that the group should contain at
any time.

Note

If you use rolling updates, be sure that the maximum instance count is higher than
the Minimum instances in service setting for rolling updates.

• Fleet composition – The default is On-Demand Instances. To enable Spot Instance requests,
select Combined purchase options and instances.

The following options are enabled if you select to enable Spot Instance requests:

• Maximum spot price – For recommendations about maximum price options for Spot
Instances, see Spot Instance pricing history in the Amazon EC2 User Guide for Linux
Instances.

Auto Scaling group configuration using the Elastic Beanstalk console 795

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html

AWS Elastic Beanstalk Developer Guide

• On-Demand base – The minimum number of On-Demand Instances that your Auto
Scaling group provisions before considering Spot Instances as your environment scales
out.

• On-Demand above base – The percentage of On-Demand Instances as part of any
additional capacity that your Auto Scaling group provisions beyond the On-Demand base
instances.

Note

The options On-Demand base and On-Demand above base correlate to the Min
and Max Instances options listed earlier. For more information about these options
and examples, see the section called “Spot instance support”.

• Enable Capacity Rebalancing – This option is only relevant when there is at least one
Spot Instance in your Auto Scaling group. When this feature is enabled, EC2 automatically
attempts to replace Spot Instances in the Auto Scaling group before they are interrupted,
minimizing Spot Instance interruptions to your applications. For more information, see
Capacity Rebalancing in the Amazon EC2 Auto Scaling User Guide.

• Instance type – The type of Amazon EC2 instance launched to run your application. For
details, see the section called “Instance types”.

• AMI ID – The machine image that Elastic Beanstalk uses to launch Amazon EC2 instances in
your environment. For details, see the section called “AMI ID”.

• Availability Zones – Choose the number of Availability Zones to spread your environment's
instances across. By default, the Auto Scaling group launches instances evenly across all
usable zones. To concentrate your instances in fewer zones, choose the number of zones to
use. For production environments, use at least two zones to ensure that your application is
available in case one Availability Zone goes out.

• Placement (optional) – Choose the Availability Zones to use. Use this setting if your
instances need to connect to resources in specific zones, or if you have purchased reserved
instances, which are zone-specific. If you launch your environment in a custom VPC, you
cannot configure this option. In a custom VPC, you choose Availability Zones for the subnets
that you assign to your environment.

• Scaling cooldown – The amount of time, in seconds, to wait for instances to launch or
terminate after scaling, before continuing to evaluate triggers. For more information, see
Scaling Cooldowns.

Auto Scaling group configuration using the Elastic Beanstalk console 796

https://docs.aws.amazon.com/autoscaling/ec2/userguide/capacity-rebalance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts-on-demand-reserved-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts-on-demand-reserved-instances.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/Cooldown.html

AWS Elastic Beanstalk Developer Guide

6. To save the changes choose Apply at the bottom of the page.

Auto Scaling group configuration using the Elastic Beanstalk console 797

AWS Elastic Beanstalk Developer Guide

Auto Scaling group configuration using the EB CLI

When creating an environment using the eb create command, you can specify a few options that
are related to your environment's Auto Scaling group. These are some of the options that help you
control the capacity of your environment.

--single

Creates the environment with one Amazon EC2 instance and no load balancer. If you don't use
this option, a load-balancer is added to the environment that's created.

--enable-spot

Enables Spot Instance requests for your environment.

The following options for the eb create command can only be used with --enable-spot.

--instance-types

Lists the Amazon EC2 instance types that you want your environment to use.

--spot-max-price

The maximum price per unit hour, in US dollars, that you're willing to pay for a Spot
Instance. For recommendations about maximum price options for Spot Instances, see Spot
Instance pricing history in the Amazon EC2 User Guide for Linux Instances.

--on-demand-base-capacity

The minimum number of On-Demand Instances that your Auto Scaling group provisions
before considering Spot Instances as your environment scales up.

--on-demand-above-base-capacity

The percentage of On-Demand Instances as part of additional capacity that your Auto
Scaling group provisions that's more than the number of instances that's specified by the --
on-demand-base-capacity option.

The following example creates an environment and configures the Auto Scaling group to enable
Spot Instance requests for the new environment. For this example, three possible instance types
can be used.

$ eb create --enable-spot --instance-types "t2.micro,t3.micro,t3.small"

Auto Scaling group configuration using the EB CLI 798

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html

AWS Elastic Beanstalk Developer Guide

Important

There is another similarly named option that's called --instance-type (no “s”) that the
EB CLI only recognizes when processing On-Demand Instances. Don't use --instance-
type (no "s") with the --enable-spot option. If you do, the EB CLI ignores it. Instead use
--instance-types (with "s") with the --enable-spot option.

Configuration options

Elastic Beanstalk provides configuration options for Auto Scaling settings in two namespaces:
aws:autoscaling:asg and aws:ec2:instances.

The aws:autoscaling:asg namespace

The aws:autoscaling:asg namespace provides options for overall scale and availability.

The following configuration file example configures the Auto Scaling group to use two to four
instances, specific availability zones, and a cooldown period of 12 minutes (720 seconds). Capacity
Rebalancing for Spot Instances is enabled. This last option only takes effect if EnableSpot is
set to true in the aws:ec2:instances namespace, as shown in the configuration file example
following this one.

option_settings:
 aws:autoscaling:asg:
 Availability Zones: Any
 Cooldown: '720'
 Custom Availability Zones: 'us-west-2a,us-west-2b'
 MaxSize: '4'
 MinSize: '2'
 EnableCapacityRebalancing: true

The aws:ec2:instances namespace

The aws:ec2:instances namespace provides options related to your
environment's instances, including Spot Instance management. It complements
aws:autoscaling:launchconfiguration and aws:autoscaling:asg.

When you update your environment configuration and remove one or more instance types from
the InstanceTypes option, Elastic Beanstalk terminates any Amazon EC2 instances running on

Configuration options 799

AWS Elastic Beanstalk Developer Guide

any of the removed instance types. Your environment's Auto Scaling group then launches new
instances, as necessary to complete the desired capacity, using your current specified instance
types.

The following configuration file example configures the Auto Scaling group to enable Spot
Instance requests for your environment. Three possible instance types can be used. At least one
On-Demand Instance is used for baseline capacity, and a sustained 33% of On-Demand Instances is
used for any additional capacity.

option_settings:
 aws:ec2:instances:
 EnableSpot: true
 InstanceTypes: 't2.micro,t3.micro,t3.small'
 SpotFleetOnDemandBase: '1'
 SpotFleetOnDemandAboveBasePercentage: '33'

To choose Spot Instance types, use the Spot Instance Advisor.

Auto Scaling triggers

The Auto Scaling group in your Elastic Beanstalk environment uses two Amazon CloudWatch
alarms to trigger scaling operations. The default triggers scale when the average outbound
network traffic from each instance is higher than 6 MB or lower than 2 MB over a period of five
minutes. To use Amazon EC2 Auto Scaling effectively, configure triggers that are appropriate for
your application, instance type, and service requirements. You can scale based on several statistics
including latency, disk I/O, CPU utilization, and request count.

For more information about CloudWatch metrics and alarms, see Amazon CloudWatch Concepts in
the Amazon CloudWatch User Guide.

Configuring Auto Scaling triggers

You can configure the triggers that adjust the number of instances in your environment's Auto
Scaling group in the Elastic Beanstalk console.

To configure triggers in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Triggers 800

https://aws.amazon.com/ec2/spot/instance-advisor/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Capacity configuration category, choose Edit.

5. In the Scaling triggers section, configure the following settings:

• Metric – Metric used for your Auto Scaling trigger.

• Statistic – Statistic calculation the trigger should use, such as Average.

• Unit – Unit for the trigger metric, such as Bytes.

• Period – Specifies how frequently Amazon CloudWatch measures the metrics for your
trigger.

• Breach duration – Amount of time, in minutes, a metric can be outside of the upper and
lower thresholds before triggering a scaling operation.

• Upper threshold – If the metric exceeds this number for the breach duration, a scaling
operation is triggered.

• Scale up increment – The number of Amazon EC2 instances to add when performing a
scaling activity.

• Lower threshold – If the metric falls below this number for the breach duration, a scaling
operation is triggered.

• Scale down increment – The number of Amazon EC2 instances to remove when performing
a scaling activity.

Triggers 801

AWS Elastic Beanstalk Developer Guide

6. To save the changes choose Apply at the bottom of the page.

The aws:autoscaling:trigger namespace

Elastic Beanstalk provides configuration options for Auto Scaling settings in the
aws:autoscaling:trigger namespace. Settings in this namespace are organized by the
resource that they apply to.

option_settings:
 AWSEBAutoScalingScaleDownPolicy.aws:autoscaling:trigger:

Triggers 802

AWS Elastic Beanstalk Developer Guide

 LowerBreachScaleIncrement: '-1'
 AWSEBAutoScalingScaleUpPolicy.aws:autoscaling:trigger:
 UpperBreachScaleIncrement: '1'
 AWSEBCloudwatchAlarmHigh.aws:autoscaling:trigger:
 UpperThreshold: '6000000'
 AWSEBCloudwatchAlarmLow.aws:autoscaling:trigger:
 BreachDuration: '5'
 EvaluationPeriods: '1'
 LowerThreshold: '2000000'
 MeasureName: NetworkOut
 Period: '5'
 Statistic: Average
 Unit: Bytes

Scheduled Auto Scaling actions

To optimize your environment's use of Amazon EC2 instances through predictable periods of peak
traffic, configure your Amazon EC2 Auto Scaling group to change its instance count on a schedule.
You can configure your environment with a recurring action to scale up each day in the morning,
and scale down at night when traffic is low. For example, if you have a marketing event that will
drive traffic to your site for a limited period of time, you can schedule a one-time event to scale up
when it starts, and another to scale down when it ends.

You can define up to 120 active scheduled actions per environment. Elastic Beanstalk also retains
up to 150 expired scheduled actions, which you can reuse by updating their settings.

Configuring scheduled actions

You can create scheduled actions for your environment's Auto Scaling group in the Elastic
Beanstalk console.

To configure scheduled actions in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

Scheduled actions 803

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

3. In the navigation pane, choose Configuration.

4. In the Capacity configuration category, choose Edit.

5. In the Time-based scaling section, choose Add scheduled action.

6. Fill in the following scheduled action settings:

• Name – Specify a unique name of up to 255 alphanumeric characters, with no spaces.

• Instances – Choose the minimum and maximum instance count to apply to the Auto Scaling
group.

• Desired capacity (optional) – Set the initial desired capacity for the Auto Scaling group.
After the scheduled action is applied, triggers adjust the desired capacity based on their
settings.

• Occurrence – Choose Recurring to repeat the scaling action on a schedule.

• Start time – For one-time actions, choose the date and time to run the action.

For recurrent actions, a start time is optional. Specify it to choose the earliest time
the action is performed. After this time, the action recurs according to the Recurrence
expression.

• Recurrence – Use a Cron expression to specify the frequency with which you want the
scheduled action to occur. For example, 30 6 * * 2 runs the action every Tuesday at 6:30
AM UTC.

Scheduled actions 804

http://en.wikipedia.org/wiki/Cron#CRON_expression

AWS Elastic Beanstalk Developer Guide

• End time (optional) – Optional for recurrent actions. If specified, the action recurs according
to the Recurrence expression, and is not performed again after this time.

When a scheduled action ends, Auto Scaling doesn't automatically go back to its previous
settings. Configure a second scheduled action to return Auto Scaling to the original settings
as needed.

7. Choose Add.

8. To save the changes choose Apply at the bottom of the page.

Note

Scheduled actions will not be saved until applied.

The aws:autoscaling:scheduledaction namespace

If you need to configure a large number of scheduled actions, you can use configuration files or the
Elastic Beanstalk API to apply the configuration option changes from a YAML or JSON file. These
methods also let you access the Suspend option to temporarily deactivate a recurrent scheduled
action.

Note

When working with scheduled action configuration options outside of the console,
use ISO 8601 time format to specify start and end times in UTC. For example,
2015-04-28T04:07:02Z. For more information about ISO 8601 time format, see Date and
Time Formats. The dates must be unique across all scheduled actions.

Elastic Beanstalk provides configuration options for scheduled action settings in the
aws:autoscaling:scheduledaction namespace. Use the resource_name field to specify the
name of the scheduled action.

Example Scheduled-scale-up-specific-time-long.config

This configuration file instructs Elastic Beanstalk to scale out from five instances to 10 instances at
2015-12-12T00:00:00Z.

option_settings:

Scheduled actions 805

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

AWS Elastic Beanstalk Developer Guide

 - namespace: aws:autoscaling:scheduledaction
 resource_name: ScheduledScaleUpSpecificTime
 option_name: MinSize
 value: '5'
 - namespace: aws:autoscaling:scheduledaction
 resource_name: ScheduledScaleUpSpecificTime
 option_name: MaxSize
 value: '10'
 - namespace: aws:autoscaling:scheduledaction
 resource_name: ScheduledScaleUpSpecificTime
 option_name: DesiredCapacity
 value: '5'
 - namespace: aws:autoscaling:scheduledaction
 resource_name: ScheduledScaleUpSpecificTime
 option_name: StartTime
 value: '2015-12-12T00:00:00Z'

Example Scheduled-scale-up-specific-time.config

To use the shorthand syntax with the EB CLI or configuration files, prepend the resource name to
the namespace.

option_settings:
 ScheduledScaleUpSpecificTime.aws:autoscaling:scheduledaction:
 MinSize: '5'
 MaxSize: '10'
 DesiredCapacity: '5'
 StartTime: '2015-12-12T00:00:00Z'

Example Scheduled-scale-down-specific-time.config

This configuration file instructs Elastic Beanstalk to scale in at 2015-12-12T07:00:00Z.

option_settings:
 ScheduledScaleDownSpecificTime.aws:autoscaling:scheduledaction:
 MinSize: '1'
 MaxSize: '1'
 DesiredCapacity: '1'
 StartTime: '2015-12-12T07:00:00Z'

Scheduled actions 806

AWS Elastic Beanstalk Developer Guide

Example Scheduled-periodic-scale-up.config

This configuration file instructs Elastic Beanstalk to scale out every day at 9AM. The action is
scheduled to begin May 14, 2015 and end January 12, 2016.

option_settings:
 ScheduledPeriodicScaleUp.aws:autoscaling:scheduledaction:
 MinSize: '5'
 MaxSize: '10'
 DesiredCapacity: '5'
 StartTime: '2015-05-14T07:00:00Z'
 EndTime: '2016-01-12T07:00:00Z'
 Recurrence: 0 9 * * *

Example Scheduled-periodic-scale-down.config

This configuration file instructs Elastic Beanstalk to scale in to no running instance every day at
6PM. If you know that your application is mostly idle outside of business hours, you can create
a similar scheduled action. If your application must be down outside of business hours, change
MaxSize to 0.

option_settings:
 ScheduledPeriodicScaleDown.aws:autoscaling:scheduledaction:
 MinSize: '0'
 MaxSize: '1'
 DesiredCapacity: '0'
 StartTime: '2015-05-14T07:00:00Z'
 EndTime: '2016-01-12T07:00:00Z'
 Recurrence: 0 18 * * *

Example Scheduled-weekend-scale-down.config

This configuration file instructs Elastic Beanstalk to scale in every Friday at 6PM. If you know
that your application doesn’t receive as much traffic over the weekend, you can create a similar
scheduled action.

option_settings:
 ScheduledWeekendScaleDown.aws:autoscaling:scheduledaction:
 MinSize: '1'
 MaxSize: '4'
 DesiredCapacity: '1'

Scheduled actions 807

AWS Elastic Beanstalk Developer Guide

 StartTime: '2015-12-12T07:00:00Z'
 EndTime: '2016-01-12T07:00:00Z'
 Recurrence: 0 18 * * 5

Auto Scaling health check setting

Amazon EC2 Auto Scaling monitors the health of each Amazon Elastic Compute Cloud (Amazon
EC2) instance that it launches. If any instance terminates unexpectedly, Auto Scaling detects the
termination and launches a replacement instance. By default, the Auto Scaling group created for
your environment uses Amazon EC2 status checks. If an instance in your environment fails an
Amazon EC2 status check, Auto Scaling takes it down and replaces it.

Amazon EC2 status checks only cover an instance's health, not the health of your application,
server, or any Docker containers running on the instance. If your application crashes, but the
instance that it runs on is still healthy, it may be kicked out of the load balancer, but Auto Scaling
won't replace it automatically. The default behavior is good for troubleshooting. If Auto Scaling
replaced the instance as soon as the application crashed, you might not realize that anything went
wrong, even if it crashed quickly after starting up.

If you want Auto Scaling to replace instances whose application has stopped responding, you can
use a configuration file to configure the Auto Scaling group to use Elastic Load Balancing health
checks. The following example sets the group to use the load balancer's health checks, in addition
to the Amazon EC2 status check, to determine an instance's health.

Example .ebextensions/autoscaling.config

Resources:
 AWSEBAutoScalingGroup:
 Type: "AWS::AutoScaling::AutoScalingGroup"
 Properties:
 HealthCheckType: ELB
 HealthCheckGracePeriod: 300

For more information about the HealthCheckType and HealthCheckGracePeriod properties,
see AWS::AutoScaling::AutoScalingGroup in the AWS CloudFormation User Guide and Health Checks
for Auto Scaling Instances in the Amazon EC2 Auto Scaling User Guide.

By default, the Elastic Load Balancing health check is configured to attempt a TCP connection to
your instance over port 80. This confirms that the web server running on the instance is accepting

Health check setting 808

https://docs.aws.amazon.com/autoscaling/latest/userguide/healthcheck.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-as-group.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/healthcheck.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/healthcheck.html

AWS Elastic Beanstalk Developer Guide

connections. However, you might want to customize the load balancer health check to ensure
that your application, and not just the web server, is in a good state. The grace period setting sets
the number of seconds that an instance can fail the health check without being terminated and
replaced. Instances can recover after being kicked out of the load balancer, so give the instance an
amount of time that is appropriate for your application.

Load balancer for your Elastic Beanstalk environment

A load balancer distributes traffic among your environment's instances. When you enable load
balancing, AWS Elastic Beanstalk creates an Elastic Load Balancing load balancer dedicated to your
environment. Elastic Beanstalk fully manages this load balancer, taking care of security settings
and of terminating the load balancer when you terminate your environment.

Alternatively, you can choose to share a load balancer across several Elastic Beanstalk
environments. With a shared load balancer, you save on operational cost by avoiding a dedicated
load balancer for each environment. You also assume more of the management responsibility for
the shared load balancer that your environments use.

Elastic Load Balancing has these load balancer types:

• Classic Load Balancer – The previous-generation load balancer. Routes HTTP, HTTPS, or TCP
request traffic to different ports on environment instances.

• Application Load Balancer – An application layer load balancer. Routes HTTP or HTTPS request
traffic to different ports on environment instances based on the request path.

• Network Load Balancer – A network layer load balancer. Routes TCP request traffic to different
ports on environment instances. Supports both active and passive health checks.

Elastic Beanstalk supports all three load balancer types. The following table shows which types you
can use with the two usage patterns:

Load balancer type Dedicated Shared

Classic Load Balancer ✓ Yes ☓ No

Application Load Balancer ✓ Yes ✓ Yes

Network Load Balancer ✓ Yes ☓ No

Load balancer 809

https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/

AWS Elastic Beanstalk Developer Guide

Note

The Classic Load Balancer (CLB) option is disabled on the Create Environment console
wizard. If you have an existing environment configured with a Classic Load Balancer you
can create a new one by cloning the existing environment using either the Elastic Beanstalk
console or the EB CLI. You also have the option to use the EB CLI or the AWS CLI to create
a new environment configured with a Classic Load Balancer. These command line tools will
create a new environment with a CLB even if one doesn’t already exist in your account.

By default, Elastic Beanstalk creates an Application Load Balancer for your environment when
you enable load balancing with the Elastic Beanstalk console or the EB CLI. It configures the load
balancer to listen for HTTP traffic on port 80 and forward this traffic to instances on the same port.
You can choose the type of load balancer that your environment uses only during environment
creation. Later, you can change settings to manage the behavior of your running environment's
load balancer, but you can't change its type.

Note

Your environment must be in a VPC with subnets in at least two Availability Zones to create
an Application Load Balancer. All new AWS accounts include default VPCs that meet this
requirement.

See the following topics to learn about each load balancer type that Elastic Beanstalk supports,
its functionality, how to configure and manage it in an Elastic Beanstalk environment, and how to
configure a load balancer to upload access logs to Amazon S3.

Topics

• Configuring a Classic Load Balancer

• Configuring an Application Load Balancer

• Configuring a shared Application Load Balancer

• Configuring a Network Load Balancer

• Configuring access logs

Load balancer 810

AWS Elastic Beanstalk Developer Guide

Configuring a Classic Load Balancer

When you enable load balancing, your AWS Elastic Beanstalk environment is equipped with an
Elastic Load Balancing load balancer to distribute traffic among the instances in your environment.
Elastic Load Balancing supports several load balancer types. To learn about them, see the Elastic
Load Balancing User Guide. Elastic Beanstalk can create a load balancer for you, or let you specify a
shared load balancer that you've created.

This topic describes the configuration of a Classic Load Balancer that Elastic Beanstalk creates and
dedicates to your environment. For information about configuring all the load balancer types that
Elastic Beanstalk supports, see Load balancer for your Elastic Beanstalk environment.

Note

You can choose the type of load balancer that your environment uses only during
environment creation. Later, you can change settings to manage the behavior of your
running environment's load balancer, but you can't change its type.

Introduction

A Classic Load Balancer is the Elastic Load Balancing previous-generation load balancer. It supports
routing HTTP, HTTPS, or TCP request traffic to different ports on environment instances.

When your environment uses a Classic Load Balancer, Elastic Beanstalk configures it by default
to listen for HTTP traffic on port 80 and forward it to instances on the same port. Although you
cannot delete the port 80 default listener, you can disable it, which achieves the same functionality
by blocking traffic. Note that you can add or delete other listeners. To support secure connections,
you can configure your load balancer with a listener on port 443 and a TLS certificate.

The load balancer uses a health check to determine whether the Amazon EC2 instances running
your application are healthy. The health check makes a request to a specified URL at a set interval.
If the URL returns an error message, or fails to return within a specified timeout period, the health
check fails.

If your application performs better by serving multiple requests from the same client on a single
server, you can configure your load balancer to use sticky sessions. With sticky sessions, the load
balancer adds a cookie to HTTP responses that identifies the Amazon EC2 instance that served the

Classic Load Balancer 811

https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-listener-config.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-healthchecks.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-sticky-sessions.html

AWS Elastic Beanstalk Developer Guide

request. When a subsequent request is received from the same client, the load balancer uses the
cookie to send the request to the same instance.

With cross-zone load balancing, each load balancer node for your Classic Load Balancer distributes
requests evenly across the registered instances in all enabled Availability Zones. If cross-zone load
balancing is disabled, each load balancer node distributes requests evenly across the registered
instances in its Availability Zone only.

When an instance is removed from the load balancer because it has become unhealthy or the
environment is scaling down, connection draining gives the instance time to complete requests
before closing the connection between the instance and the load balancer. You can change the
amount of time given to instances to send a response, or disable connection draining completely.

Note

Connection draining is enabled by default when you create an environment with the Elastic
Beanstalk console or the EB CLI. For other clients, you can enable it with configuration
options.

You can use advanced load balancer settings to configure listeners on arbitrary ports, modify
additional sticky session settings, and configure the load balancer to connect to EC2 instances
securely. These settings are available through configuration options that you can set by using
configuration files in your source code, or directly on an environment by using the Elastic Beanstalk
API. Many of these settings are also available in the Elastic Beanstalk console. In addition, you can
configure a load balancer to upload access logs to Amazon S3.

Configuring a Classic Load Balancer using the Elastic Beanstalk console

You can use the Elastic Beanstalk console to configure a Classic Load Balancer's ports, HTTPS
certificate, and other settings, during environment creation or later when your environment is
running.

Note

The Classic Load Balancer (CLB) option is disabled on the Create Environment console
wizard. If you have an existing environment configured with a Classic Load Balancer you
can create a new one by cloning the existing environment using either the Elastic Beanstalk

Classic Load Balancer 812

https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-disable-crosszone-lb.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/config-conn-drain.html

AWS Elastic Beanstalk Developer Guide

console or the EB CLI. You also have the option to use the EB CLI or the AWS CLI to create
a new environment configured with a Classic Load Balancer. These command line tools will
create a new environment with a CLB even if one doesn’t already exist in your account.

To configure a running environment's Classic Load Balancer in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Load balancer configuration category, choose Edit.

Note

If the Load balancer configuration category doesn't have an Edit button, your
environment doesn't have a load balancer. To learn how to set one up, see Changing
environment type.

5. Make the Classic Load Balancer configuration changes that your environment requires.

6. To save the changes choose Apply at the bottom of the page.

Classic Load Balancer settings

• Listeners

• Sessions

• Cross-zone load balancing

• Connection draining

• Health check

Classic Load Balancer 813

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Listeners

Use this list to specify listeners for your load balancer. Each listener routes incoming client traffic
on a specified port using a specified protocol to your instances. Initially, the list shows the default
listener, which routes incoming HTTP traffic on port 80 to your environment's instance servers that
are listening to HTTP traffic on port 80.

Note

Although you cannot delete the port 80 default listener, you can disable it, which achieves
the same functionality by blocking traffic.

To configure an existing listener

1. Select the check box next to its table entry, choose Actions, and then choose the action you
want.

2. If you chose Edit, use the Classic Load Balancer listener dialog box to edit settings, and then
choose Save.

For example, you can edit the default listener and change the Protocol from HTTP to TCP if you
want the load balancer to forward a request as is. This prevents the load balancer from rewriting
headers (including X-Forwarded-For). The technique doesn't work with sticky sessions.

Classic Load Balancer 814

AWS Elastic Beanstalk Developer Guide

To add a listener

1. Choose Add listener.

2. In the Classic Load Balancer listener dialog box, configure the settings you want, and then
choose Add.

Adding a secure listener is a common use case. The example in the following image adds a listener
for HTTPS traffic on port 443. This listener routes the incoming traffic to environment instance
servers listening to HTTPS traffic on port 443.

Before you can configure an HTTPS listener, ensure that you have a valid SSL certificate. Do one of
the following:

Classic Load Balancer 815

AWS Elastic Beanstalk Developer Guide

• If AWS Certificate Manager (ACM) is available in your AWS Region, create or import a certificate
using ACM. For more information about requesting an ACM certificate, see Request a Certificate
in the AWS Certificate Manager User Guide. For more information about importing third-party
certificates into ACM, see Importing Certificates in the AWS Certificate Manager User Guide.

• If ACM isn't available in your AWS Region, upload your existing certificate and key to IAM. For
more information about creating and uploading certificates to IAM, see Working with Server
Certificates in the IAM User Guide.

For more detail on configuring HTTPS and working with certificates in Elastic Beanstalk, see
Configuring HTTPS for your Elastic Beanstalk environment.

For SSL certificate, choose the ARN of your SSL certificate. For example,
arn:aws:iam::123456789012:server-certificate/abc/certs/build, or
arn:aws:acm:us-
east-2:123456789012:certificate/12345678-12ab-34cd-56ef-12345678.

Classic Load Balancer 816

https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingServerCerts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingServerCerts.html

AWS Elastic Beanstalk Developer Guide

For details about configuring HTTPS and working with certificates in Elastic Beanstalk, see
Configuring HTTPS for your Elastic Beanstalk environment.

Sessions

Select or clear the Session stickiness enabled box to enable or disable sticky sessions. Use Cookie
duration to configure a sticky session's duration, up to 1000000 seconds. On the Load balancer
ports list, select listener ports that the default policy (AWSEB-ELB-StickinessPolicy) applies
to.

Classic Load Balancer 817

AWS Elastic Beanstalk Developer Guide

Cross-zone load balancing

Select or clear the Load balancing across multiple Availability Zones enabled box to enable or
disable cross-zone load balancing.

Connection draining

Select or clear the Connection draining enabled box to enable or disable connection draining. Set
the Draining timeout, up to 3600 seconds.

Classic Load Balancer 818

AWS Elastic Beanstalk Developer Guide

Health check

Use the following settings to configure load balancer health checks:

• Health check path – The path to which the load balancer sends health check requests. If you
don't set the path, the load balancer attempts to make a TCP connection on port 80 to verify
health.

• Timeout – The amount of time, in seconds, to wait for a health check response.

• Interval – The amount of time, in seconds, between health checks of an individual instance. The
interval must be greater than the timeout.

• Unhealthy threshold, Healthy threshold – The number of health checks that must fail or pass,
respectively, before Elastic Load Balancing changes an instance's health state.

Classic Load Balancer 819

AWS Elastic Beanstalk Developer Guide

Note

The Elastic Load Balancing health check doesn't affect the health check behavior of an
environment's Auto Scaling group. Instances that fail an Elastic Load Balancing health
check are not automatically replaced by Amazon EC2 Auto Scaling unless you manually
configure Amazon EC2 Auto Scaling to do so. See Auto Scaling health check setting for
details.

For more information about health checks and how they influence your environment's overall
health, see Basic health reporting.

Configuring a Classic Load Balancer using the EB CLI

The EB CLI prompts you to choose a load balancer type when you run eb create.

$ eb create
Enter Environment Name
(default is my-app): test-env
Enter DNS CNAME prefix
(default is my-app): test-env-DLW24ED23SF

Select a load balancer type
1) classic
2) application
3) network
(default is 1):

Press Enter to select classic.

You can also specify a load balancer type by using the --elb-type option.

$ eb create test-env --elb-type classic

Classic Load Balancer configuration namespaces

You can find settings related to Classic Load Balancers in the following namespaces:

• aws:elb:healthcheck – Configure the thresholds, check interval, and timeout for load
balancer health checks.

Classic Load Balancer 820

AWS Elastic Beanstalk Developer Guide

• aws:elasticbeanstalk:application – Configure the health check URL.

• aws:elb:loadbalancer – Enable cross-zone load balancing. Assign security groups to the load
balancer and override the default security group that Elastic Beanstalk creates. This namespace
also includes deprecated options for configuring the standard and secure listeners that have
been replaced by options in the aws:elb:listener namespace.

• aws:elb:listener – Configure the default listener on port 80, a secure listener on port 443,
or additional listeners for any protocol on any port. If you specify aws:elb:listener as the
namespace, settings apply to the default listener on port 80. If you specify a port (for example,
aws:elb:listener:443), a listener is configured on that port.

• aws:elb:policies – Configure additional settings for your load balancer. Use options in this
namespace to configure listeners on arbitrary ports, modify additional sticky session settings,
and configure the load balancer to connect to Amazon EC2 instances securely.

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding options.
You must remove these settings if you want to use configuration files to configure the same. See
Recommended values for details.

Example .ebextensions/loadbalancer-terminatehttps.config

The following example configuration file creates an HTTPS listener on port 443, assigns a
certificate that the load balancer uses to terminate the secure connection, and disables the default
listener on port 80. The load balancer forwards the decrypted requests to the EC2 instances in your
environment on HTTP:80.

option_settings:
 aws:elb:listener:443:
 ListenerProtocol: HTTPS
 SSLCertificateId: arn:aws:acm:us-
east-2:123456789012:certificate/12345678-12ab-34cd-56ef-12345678
 InstancePort: 80
 InstanceProtocol: HTTP
 aws:elb:listener:
 ListenerEnabled: false

Configuring an Application Load Balancer

When you enable load balancing, your AWS Elastic Beanstalk environment is equipped with an
Elastic Load Balancing load balancer to distribute traffic among the instances in your environment.

Application Load Balancer 821

AWS Elastic Beanstalk Developer Guide

Elastic Load Balancing supports several load balancer types. To learn about them, see the Elastic
Load Balancing User Guide. Elastic Beanstalk can create a load balancer for you, or let you specify a
shared load balancer that you've created.

This topic describes the configuration of an Application Load Balancer that Elastic Beanstalk
creates and dedicates to your environment. See also the section called “Shared Application Load
Balancer”. For information about configuring all the load balancer types that Elastic Beanstalk
supports, see the section called “Load balancer”.

Note

You can choose the type of load balancer that your environment uses only during
environment creation. You can change settings to manage the behavior of your running
environment's load balancer, but you can't change its type. You also can't switch from a
dedicated to a shared load balancer or vice versa.

Introduction

An Application Load Balancer inspects traffic at the application network protocol layer to identify
the request's path so that it can direct requests for different paths to different destinations.

When your environment uses an Application Load Balancer, Elastic Beanstalk configures it by
default to perform the same function as a Classic Load Balancer. The default listener accepts
HTTP requests on port 80 and distributes them to the instances in your environment. You can
add a secure listener on port 443 with a certificate to decrypt HTTPS traffic, configure health
check behavior, and push access logs from the load balancer to an Amazon Simple Storage Service
(Amazon S3) bucket.

Note

Unlike a Classic Load Balancer or a Network Load Balancer, an Application Load Balancer
can't have transport layer (layer 4) TCP or SSL/TLS listeners. It supports only HTTP and
HTTPS listeners. Additionally, it can't use backend authentication to authenticate HTTPS
connections between the load balancer and backend instances.

In an Elastic Beanstalk environment, you can use an Application Load Balancer to direct traffic for
certain paths to a different process on your web server instances. With a Classic Load Balancer,

Application Load Balancer 822

https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/

AWS Elastic Beanstalk Developer Guide

all traffic to a listener is routed to a single process on the backend instances. With an Application
Load Balancer, you can configure multiple rules on the listener to route requests to certain paths to
different backend process. You configure each process with the port that the process listens on.

For example, you could run a login process separately from your main application. While the main
application on your environment's instances accepts the majority of requests and listens on port
80, your login process listens on port 5000 and accepts requests to the /login path. All incoming
requests from clients come in on port 80. With an Application Load Balancer, you can configure
a single listener for incoming traffic on port 80, with two rules that route traffic to two separate
processes, depending on the path in the request. You add a custom rule that routes traffic to /
login to the login process listening on port 5000. The default rule routes all other traffic to the
main application process listening on port 80.

An Application Load Balancer rule maps a request to a target group. In Elastic Beanstalk, a target
group is represented by a process. You can configure a process with a protocol, port, and health
check settings. The process represents the process running on the instances in your environment.
The default process is a listener on port 80 of the reverse proxy (nginx or Apache) that runs in front
of your application.

Note

Outside of Elastic Beanstalk, a target group maps to a group of instances. A listener can
use rules and target groups to route traffic to different instances based on the path. Within
Elastic Beanstalk, all of your instances in your environment are identical, so the distinction
is made between processes listening on different ports.

A Classic Load Balancer uses a single health check path for the entire environment. With an
Application Load Balancer, each process has a separate health check path that is monitored by the
load balancer and Elastic Beanstalk-enhanced health monitoring.

To use an Application Load Balancer, your environment must be in a default or
custom VPC, and must have a service role with the standard set of permissions.
If you have an older service role, you might need to update the permissions
on it to include elasticloadbalancing:DescribeTargetHealth and
elasticloadbalancing:DescribeLoadBalancers. For more information about Application
Load Balancers, see What is an Application Load Balancer?.

Application Load Balancer 823

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/

AWS Elastic Beanstalk Developer Guide

Note

The Application Load Balancer health check doesn't use the Elastic Beanstalk health check
path. Instead, it uses the specific path configured for each process separately.

Configuring an Application Load Balancer using the Elastic Beanstalk console

You can use the Elastic Beanstalk console to configure an Application Load Balancer's listeners,
processes, and rules, during environment creation or later when your environment is running.

To configure an Application Load Balancer in the Elastic Beanstalk console during environment
creation

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments.

3. Choose Create a new environment to start creating your environment.

4. On the wizard's main page, before choosing Create environment, choose Configure more
options.

5. Choose the High availability configuration preset.

Alternatively, in the Capacity configuration category, configure a Load balanced environment
type. For details, see Capacity.

6. In the Load balancer configuration category, choose Edit.

7. Select the Application Load Balancer and Dedicated options, if they aren't already selected.

Application Load Balancer 824

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

8. Make any Application Load Balancer configuration changes that your environment requires.

9. Choose Save, and then make any other configuration changes that your environment requires.

10. Choose Create environment.

To configure a running environment's Application Load Balancer in the Elastic Beanstalk
console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Load balancer configuration category, choose Edit.

Application Load Balancer 825

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Note

If the Load balancer configuration category doesn't have an Edit button, your
environment doesn't have a load balancer. To learn how to set one up, see Changing
environment type.

5. Make the Application Load Balancer configuration changes that your environment requires.

6. To save the changes choose Apply at the bottom of the page.

Application Load Balancer settings

• Listeners

• Processes

• Rules

• Access log capture

Listeners

Use this list to specify listeners for your load balancer. Each listener routes incoming client traffic
on a specified port using a specified protocol to one or more processes on your instances. Initially,
the list shows the default listener, which routes incoming HTTP traffic on port 80 to a process
named default.

To configure an existing listener

1. Select the check box next to its table entry, and then choose Actions, Edit.

Application Load Balancer 826

AWS Elastic Beanstalk Developer Guide

2. Use the Application Load Balancer listener dialog box to edit settings, and then choose Save.

To add a listener

1. Choose Add listener.

2. In the Application Load Balancer listener dialog box, configure the settings you want, and
then choose Add.

Use the Application Load Balancer listener dialog box settings to choose the port and protocol on
which the listener listens to traffic, and the process to route the traffic to. If you choose the HTTPS
protocol, configure SSL settings.

Before you can configure an HTTPS listener, ensure that you have a valid SSL certificate. Do one of
the following:

• If AWS Certificate Manager (ACM) is available in your AWS Region, create or import a certificate
using ACM. For more information about requesting an ACM certificate, see Request a Certificate
in the AWS Certificate Manager User Guide. For more information about importing third-party
certificates into ACM, see Importing Certificates in the AWS Certificate Manager User Guide.

Application Load Balancer 827

https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html

AWS Elastic Beanstalk Developer Guide

• If ACM isn't available in your AWS Region, upload your existing certificate and key to IAM. For
more information about creating and uploading certificates to IAM, see Working with Server
Certificates in the IAM User Guide.

For more detail on configuring HTTPS and working with certificates in Elastic Beanstalk, see
Configuring HTTPS for your Elastic Beanstalk environment.

Processes

Use this list to specify processes for your load balancer. A process is a target for listeners to route
traffic to. Each listener routes incoming client traffic on a specified port using a specified protocol
to one or more processes on your instances. Initially, the list shows the default process, which
listens to incoming HTTP traffic on port 80.

You can edit the settings of an existing process, or add a new process. To start editing a process on
the list or adding a process to it, use the same steps listed for the listener list. The Environment
process dialog box opens.

Application Load Balancer's environment process dialog box settings

• Definition

• Health check

• Sessions

Definition

Use these settings to define the process: its Name, and the Port and Protocol on which it listens to
requests.

Application Load Balancer 828

https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingServerCerts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingServerCerts.html

AWS Elastic Beanstalk Developer Guide

Health check

Use the following settings to configure process health checks:

• HTTP code – The HTTP status code designating a healthy process.

• Path – The health check request path for the process.

• Timeout – The amount of time, in seconds, to wait for a health check response.

• Interval – The amount of time, in seconds, between health checks of an individual instance. The
interval must be greater than the timeout.

• Unhealthy threshold, Healthy threshold – The number of health checks that must fail or pass,
respectively, before Elastic Load Balancing changes an instance's health state.

• Deregistration delay – The amount of time, in seconds, to wait for active requests to complete
before deregistering an instance.

Application Load Balancer 829

AWS Elastic Beanstalk Developer Guide

Application Load Balancer 830

AWS Elastic Beanstalk Developer Guide

Note

The Elastic Load Balancing health check doesn't affect the health check behavior of an
environment's Auto Scaling group. Instances that fail an Elastic Load Balancing health
check are not automatically replaced by Amazon EC2 Auto Scaling unless you manually
configure Amazon EC2 Auto Scaling to do so. See Auto Scaling health check setting for
details.

For more information about health checks and how they influence your environment's overall
health, see Basic health reporting.

Sessions

Select or clear the Stickiness policy enabled box to enable or disable sticky sessions. Use Cookie
duration to configure a sticky session's duration, up to 604800 seconds.

Application Load Balancer 831

AWS Elastic Beanstalk Developer Guide

Rules

Use this list to specify custom listener rules for your load balancer. A rule maps requests that the
listener receives on a specific path pattern to a target process. Each listener can have multiple
rules, routing requests on different paths to different processes on your instances.

Rules have numeric priorities that determine the precedence in which they are applied to incoming
requests. For each new listener you add, Elastic Beanstalk adds a default rule that routes all the
listener's traffic to the default process. The default rule's precedence is the lowest; it's applied if
no other rule for the same listener matches the incoming request. Initially, if you haven't added
custom rules, the list is empty. Default rules of all listeners aren't displayed.

You can edit the settings of an existing rule, or add a new rule. To start editing a rule on the list
or adding a rule to it, use the same steps listed for the listener list. The Listener rule dialog box
opens, with the following settings:

• Name – The rule's name.

• Listener port – The port of the listener that the rule applies to.

• Priority – The rule's priority. A lower priority number has higher precedence. Priorities of a
listener's rules must be unique.

• Match conditions – A list of request URL conditions that the rule applies to. There are two types
of conditions: HostHeader (the URL's domain part), and PathPattern (the URL's path part). You
can add up to five conditions. Each condition value is up to 128 characters long, and can include
wildcard characters.

• Process – The process to which the load balancer routes requests that match the rule.

Application Load Balancer 832

AWS Elastic Beanstalk Developer Guide

When editing any existing rule, you can't change its Name and Listener port.

Access log capture

Use these settings to configure Elastic Load Balancing to capture logs with detailed information
about requests sent to your Application Load Balancer. Access log capture is disabled by default.
When Store logs is enabled, Elastic Load Balancing stores the logs in the S3 bucket that you
configure. The Prefix setting specifies a top-level folder in the bucket for the logs. Elastic Load
Balancing places the logs in a folder named AWSLogs under your prefix. If you don't specify a
prefix, Elastic Load Balancing places its folder at the root level of the bucket.

Application Load Balancer 833

AWS Elastic Beanstalk Developer Guide

Note

If the Amazon S3 bucket that you configure for access log capture isn't the bucket that
Elastic Beanstalk created for your account, be sure to add a user policy with the appropriate
permissions to your AWS Identity and Access Management (IAM) users. The managed
user policies that Elastic Beanstalk provides only cover permissions to Elastic Beanstalk-
managed resources.

For details about access logs, including permissions and other requirements, see Access logs for
your Application Load Balancer.

Example: Application Load Balancer with a secure listener and two processes

In this example, your application requires end-to-end traffic encryption and a separate process for
handling administrative requests.

To configure your environment's Application Load Balancer to meet these requirements, you
remove the default listener, add an HTTPS listener, indicate that the default process listens to port
443 on HTTPS, and add a process and a listener rule for admin traffic on a different path.

Application Load Balancer 834

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html

AWS Elastic Beanstalk Developer Guide

To configure the load balancer for this example

1. Add a secure listener. For Port, type 443. For Protocol, select HTTPS. For SSL certificate, select
the ARN of your SSL certificate. For example, arn:aws:iam::123456789012:server-
certificate/abc/certs/build, or arn:aws:acm:us-
east-2:123456789012:certificate/12345678-12ab-34cd-56ef-12345678.

For Default process, keep default selected.

You can now see your additional listener on the list.

Application Load Balancer 835

AWS Elastic Beanstalk Developer Guide

2. Disable the default port 80 HTTP listener. For the default listener, turn off the Enabled option.

3. Configure the default process to HTTPS. Select the default process, and then for Actions,
choose Edit. For Port, type 443. For Protocol, select HTTPS.

4. Add an admin process. For Name, type admin. For Port, type 443. For Protocol, select HTTPS.
Under Health check, for Path type /admin.

Application Load Balancer 836

AWS Elastic Beanstalk Developer Guide

5. Add a rule for admin traffic. For Name, type admin. For Listener port, type 443. For Match
conditions, add a PathPattern with the value /admin/*. For Process, select admin.

Application Load Balancer 837

AWS Elastic Beanstalk Developer Guide

Configuring an Application Load Balancer using the EB CLI

The EB CLI prompts you to choose a load balancer type when you run eb create.

$ eb create
Enter Environment Name
(default is my-app): test-env
Enter DNS CNAME prefix
(default is my-app): test-env-DLW24ED23SF

Select a load balancer type

Application Load Balancer 838

AWS Elastic Beanstalk Developer Guide

1) classic
2) application
3) network
(default is 2):

You can also specify a load balancer type with the --elb-type option.

$ eb create test-env --elb-type application

Application Load Balancer namespaces

You can find settings related to Application Load Balancers in the following namespaces:

• aws:elasticbeanstalk:environment – Choose the load balancer type for the environment.
The value for an Application Load Balancer is application.

You can't set this option in configuration files (.Ebextensions).

• aws:elbv2:loadbalancer – Configure access logs and other settings that apply to the
Application Load Balancer as a whole.

• aws:elbv2:listener – Configure listeners on the Application Load Balancer. These settings
map to the settings in aws:elb:listener for Classic Load Balancers.

• aws:elbv2:listenerrule – Configure rules that route traffic to different processes,
depending on the request path. Rules are unique to Application Load Balancers.

• aws:elasticbeanstalk:environment:process – Configure health checks and specify
the port and protocol for the processes that run on your environment's instances. The
port and protocol settings map to the instance port and instance protocol settings in
aws:elb:listener for a listener on a Classic Load Balancer. Health check settings map to
the settings in the aws:elb:healthcheck and aws:elasticbeanstalk:application
namespaces.

Example .ebextensions/alb-access-logs.config

The following configuration file enables access log uploads for an environment with an Application
Load Balancer.

option_settings:
 aws:elbv2:loadbalancer:

Application Load Balancer 839

AWS Elastic Beanstalk Developer Guide

 AccessLogsS3Bucket: DOC-EXAMPLE-BUCKET
 AccessLogsS3Enabled: 'true'
 AccessLogsS3Prefix: beanstalk-alb

Example .ebextensions/alb-default-process.config

The following configuration file modifies health check and stickiness settings on the default
process.

option_settings:
 aws:elasticbeanstalk:environment:process:default:
 DeregistrationDelay: '20'
 HealthCheckInterval: '15'
 HealthCheckPath: /
 HealthCheckTimeout: '5'
 HealthyThresholdCount: '3'
 UnhealthyThresholdCount: '5'
 Port: '80'
 Protocol: HTTP
 StickinessEnabled: 'true'
 StickinessLBCookieDuration: '43200'

Example .ebextensions/alb-secure-listener.config

The following configuration file adds a secure listener and a matching process on port 443.

option_settings:
 aws:elbv2:listener:443:
 DefaultProcess: https
 ListenerEnabled: 'true'
 Protocol: HTTPS
 SSLCertificateArns: arn:aws:acm:us-
east-2:123456789012:certificate/21324896-0fa4-412b-bf6f-f362d6eb6dd7
 aws:elasticbeanstalk:environment:process:https:
 Port: '443'
 Protocol: HTTPS

Example .ebextensions/alb-admin-rule.config

The following configuration file adds a secure listener with a rule that routes traffic with a request
path of /admin to a process named admin that listens on port 4443.

Application Load Balancer 840

AWS Elastic Beanstalk Developer Guide

option_settings:
 aws:elbv2:listener:443:
 DefaultProcess: https
 ListenerEnabled: 'true'
 Protocol: HTTPS
 Rules: admin
 SSLCertificateArns: arn:aws:acm:us-
east-2:123456789012:certificate/21324896-0fa4-412b-bf6f-f362d6eb6dd7
 aws:elasticbeanstalk:environment:process:https:
 Port: '443'
 Protocol: HTTPS
 aws:elasticbeanstalk:environment:process:admin:
 HealthCheckPath: /admin
 Port: '4443'
 Protocol: HTTPS
 aws:elbv2:listenerrule:admin:
 PathPatterns: /admin/*
 Priority: 1
 Process: admin

Configuring a shared Application Load Balancer

When you enable load balancing, your AWS Elastic Beanstalk environment is equipped with an
Elastic Load Balancing load balancer to distribute traffic among the instances in your environment.
Elastic Load Balancing supports several load balancer types. To learn about them, see the Elastic
Load Balancing User Guide. Elastic Beanstalk can create a load balancer for you, or enable you to
specify a shared load balancer that you've created.

This topic describes the configuration of a shared Application Load Balancer that you create and
associate with your environment. See also the section called “Application Load Balancer”. For
information about configuring all the load balancer types that Elastic Beanstalk supports, see Load
balancer for your Elastic Beanstalk environment.

Note

You can choose the type of load balancer that your environment uses only during
environment creation. You can change settings to manage the behavior of your running
environment's load balancer, but you can't change its type. You also can't switch from a
dedicated to a shared load balancer or vice versa.

Shared Application Load Balancer 841

https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/

AWS Elastic Beanstalk Developer Guide

Introduction

A shared load balancer is a load balancer that you create and manage yourself using the
Amazon Elastic Compute Cloud (Amazon EC2) service, and then use in multiple Elastic Beanstalk
environments.

When you create a load-balanced, scaling environment and choose to use an Application Load
Balancer, Elastic Beanstalk creates a load balancer dedicated to your environment by default. To
learn what an Application Load Balancer is and how it works in an Elastic Beanstalk environment,
see the introduction to configuring an Application Load Balancer for Elastic Beanstalk.

In some situations you might want to save the cost of having multiple dedicated load balancers.
This can be helpful when you have multiple environments, for example, if your application is a suite
of microservices instead of a monolithic service. In such cases you can choose to use a shared load
balancer.

To use a shared load balancer, first create it in Amazon EC2 and add one or more listeners. During
the creation of an Elastic Beanstalk environment, you then provide the load balancer and choose a
listener port. Elastic Beanstalk associates the listener with the default process in your environment.
You can add custom listener rules to route traffic from specific host headers and paths to other
environment processes.

Elastic Beanstalk adds a tag to the shared load balancer. The tag name is
elasticbeanstalk:shared-elb-environment-count, and its value is the number of
environments sharing this load balancer.

Using a shared load balancer is different from using a dedicated one in several ways.

Regarding Dedicated Application Load
Balancer

Shared Application Load Balancer

Managemen
t

Elastic Beanstalk creates and
manages the load balancer,
listeners, listener rules, and
processes (target groups).
Elastic Beanstalk also removes
them when you terminate your
environment. Elastic Beanstalk

You create and manage the load balancer and
listeners outside of Elastic Beanstalk. Elastic
Beanstalk creates and manages a default rule
and a default process, and you can add rules
and processes. Elastic Beanstalk removes the
listener rules and processes that were added
during environment creation.

Shared Application Load Balancer 842

AWS Elastic Beanstalk Developer Guide

Regarding Dedicated Application Load
Balancer

Shared Application Load Balancer

can set load balancer access log
capture, if you choose that option.

Listener
rules

Elastic Beanstalk creates a default
rule for each listener, to route all
traffic to the listener's default
process.

Elastic Beanstalk associates a default rule only
with a port 80 listener, if one exists. If you
choose a different default listener port, you
have to associate the default rule with it (the
Elastic Beanstalk console and EB CLI do this
for you).

To resolve listener rule condition conflicts
across environments sharing the load
balancer, Elastic Beanstalk adds the environme
nt's CNAME to the listener rule as a host
header condition.

Elastic Beanstalk treats rule priority settings as
relative across environments sharing the load
balancer, and maps them to absolute priorities
during creation.

Security
groups

Elastic Beanstalk creates a default
security group and attaches it to
the load balancer.

You can configure one or more security groups
to use for the load balancer. If you don't,
Elastic Beanstalk checks if an existing security
group that Elastic Beanstalk manages is
already attached to the load balancer. If not,
Elastic Beanstalk creates a security group
and attaches it to the load balancer. Elastic
Beanstalk deletes this security group when the
last environment sharing the load balancer
terminates.

Shared Application Load Balancer 843

AWS Elastic Beanstalk Developer Guide

Regarding Dedicated Application Load
Balancer

Shared Application Load Balancer

Updates You can update your Application
Load Balancer after environment
creation. You can edit listeners,
listener rules, and processes. You
can configure load balancer access
log capture.

You can't use Elastic Beanstalk to configure
access log capture in your Application Load
Balancer, and you can't update listeners and
listener rules after environment creation. You
can only update processes (target groups). To
configure access log capture, and to update
listeners and listener rules, use Amazon EC2.

Configuring a shared Application Load Balancer using the Elastic Beanstalk
console

You can use the Elastic Beanstalk console to configure a shared Application Load Balancer during
environment creation. You can select one of your account's sharable load balancers for use in the
environment, select the default listener port, and configure additional processes and listener rules.

You can't edit your shared Application Load Balancer configuration in the Application Load
Balancer console after your environment is created. To configure listeners, listener rules, processes
(target groups), and access log capture, use Amazon EC2.

To configure an Application Load Balancer in the Elastic Beanstalk console during environment
creation

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments.

3. Choose Create a new environment to start creating your environment.

4. On the wizard's main page, before choosing Create environment, choose Configure more
options.

5. Choose the High availability configuration preset.

Alternatively, in the Capacity configuration category, configure a Load balanced environment
type. For details, see Capacity.

6. In the Load balancer configuration category, choose Edit.

Shared Application Load Balancer 844

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

7. Select the Application Load Balancer option, if it isn't already selected, and then select the
Shared option.

8. Make any shared Application Load Balancer configuration changes that your environment
requires.

9. Choose Save, and then make any other configuration changes that your environment requires.

10. Choose Create environment.

Shared Application Load Balancer settings

• Shared Application Load Balancer

• Processes

• Rules

Shared Application Load Balancer

Use this section to choose a shared Application Load Balancer for your environment and configure
default traffic routing.

Before you can configure a shared Application Load Balancer here, use Amazon EC2 to define at
least one Application Load Balancer for sharing, with at least one listener, in your account. If you

Shared Application Load Balancer 845

AWS Elastic Beanstalk Developer Guide

haven't done so already, you can choose Manage load balancers. Elastic Beanstalk opens the
Amazon EC2 console in a new browser tab.

When you're done configuring shared load balancers outside of Elastic Beanstalk, configure the
following settings on this console section:

• Load balancer ARN – The shared load balancer to use in this environment. Select from a list of
load balancers or enter a load balancer Amazon Resource Name (ARN).

• Default listener port – A listener port that the shared load balancer listens on. Select from a
list of existing listener ports. Traffic from this listener with the environment's CNAME in the host
header is routed to a default process in this environment.

Processes

Use this list to specify processes for your shared load balancer. A process is a target for listeners to
route traffic to. Initially, the list shows the default process, which receives traffic from the default
listener.

Shared Application Load Balancer 846

AWS Elastic Beanstalk Developer Guide

To configure an existing process

1. Select the check box next to its table entry, and then choose Actions, Edit.

2. Use the Environment process dialog box to edit settings, and then choose Save.

To add a process

1. Choose Add process.

2. In the Environment process dialog box, configure the settings you want, and then choose Add.

Application Load Balancer's environment process dialog box settings

• Definition

• Health check

• Sessions

Definition

Use these settings to define the process: its Name, and the Port and Protocol on which it listens to
requests.

Shared Application Load Balancer 847

AWS Elastic Beanstalk Developer Guide

Health check

Use the following settings to configure process health checks:

• HTTP code – The HTTP status code designating a healthy process.

• Path – The health check request path for the process.

• Timeout – The amount of time, in seconds, to wait for a health check response.

• Interval – The amount of time, in seconds, between health checks of an individual instance. The
interval must be greater than the timeout.

• Unhealthy threshold, Healthy threshold – The number of health checks that must fail or pass,
respectively, before Elastic Load Balancing changes an instance's health state.

• Deregistration delay – The amount of time, in seconds, to wait for active requests to complete
before deregistering an instance.

Shared Application Load Balancer 848

AWS Elastic Beanstalk Developer Guide

Shared Application Load Balancer 849

AWS Elastic Beanstalk Developer Guide

Note

The Elastic Load Balancing health check doesn't affect the health check behavior of an
environment's Auto Scaling group. Instances that fail an Elastic Load Balancing health
check are not automatically replaced by Amazon EC2 Auto Scaling unless you manually
configure Amazon EC2 Auto Scaling to do so. See Auto Scaling health check setting for
details.

For more information about health checks and how they influence your environment's overall
health, see Basic health reporting.

Sessions

Select or clear the Stickiness policy enabled box to enable or disable sticky sessions. Use Cookie
duration to configure a sticky session's duration, up to 604800 seconds.

Rules

Use this list to specify custom listener rules for your shared load balancer. A rule maps requests
that the listener receives on a specific path pattern to a target process. Each listener can have

Shared Application Load Balancer 850

AWS Elastic Beanstalk Developer Guide

multiple rules, routing requests on different paths to different processes on instances of the
different environments sharing the listener.

Rules have numeric priorities that determine the precedence in which they are applied to incoming
requests. Elastic Beanstalk adds a default rule that routes all the default listener's traffic to the
default process of your new environment. The default rule's precedence is the lowest; it's applied
if no other rule for the same listener matches the incoming request. Initially, if you haven't added
custom rules, the list is empty. The default rule isn't displayed.

You can edit the settings of an existing rule, or add a new rule. To start editing a rule on the list
or adding a rule to it, use the same steps listed for the process list. The Listener rule dialog box
opens, with the following settings:

• Name – The rule's name.

• Listener port – The port of the listener that the rule applies to.

• Priority – The rule's priority. A lower priority number has higher precedence. Priorities of a
listener's rules must be unique. Elastic Beanstalk treats rule priorities as relative across sharing
environments, and maps them to absolute priorities during creation.

Shared Application Load Balancer 851

AWS Elastic Beanstalk Developer Guide

• Match conditions – A list of request URL conditions that the rule applies to. There are two types
of conditions: HostHeader (the URL's domain part), and PathPattern (the URL's path part). One
condition is reserved for the environment subdomain, and you can add up to four conditions.
Each condition value is up to 128 characters in length, and can include wildcard characters.

• Process – The process to which the load balancer routes requests that match the rule.

Shared Application Load Balancer 852

AWS Elastic Beanstalk Developer Guide

Example: use a shared Application Load Balancer for a secure micro-service-based
application

In this example, your application consists of several micro services, each implemented as an Elastic
Beanstalk environment. In addition, you require end-to-end traffic encryption. We'll demonstrate
one of the micro-service environments, which has a main process for user requests and a separate
process for handling administrative requests.

To meet these requirements, use Amazon EC2 to create an Application Load Balancer that you'll
share among your micro services. Add a secure listener on port 443 and the HTTPS protocol. Then
add multiple SSL certificates to the listener—one per micro-service domain. For details about
creating the Application Load Balancer and secure listener, see Create an Application Load Balancer
and Create an HTTPS listener for your Application Load Balancer in the User Guide for Application
Load Balancers.

In Elastic Beanstalk, configure each micro-service environment to use the shared Application Load
Balancer and set the default listener port to 443. In the case of the particular environment that
we're demonstrating here, indicate that the default process listens to port 443 on HTTPS, and add
a process and a listener rule for admin traffic on a different path.

To configure the shared load balancer for this example

1. In the Shared Application Load Balancer section, select your load balancer, and then, for
Default listener port, select 443. The listener port should already be selected if it's the only
listener that the load balancer has.

Shared Application Load Balancer 853

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-application-load-balancer.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-https-listener.html

AWS Elastic Beanstalk Developer Guide

2. Configure the default process to HTTPS. Select the default process, and then for Actions,
choose Edit. For Port, enter 443. For Protocol, select HTTPS.

3. Add an admin process. For Name, enter admin. For Port, enter 443. For Protocol, select HTTPS.
Under Health check, for Path enter /admin.

Shared Application Load Balancer 854

AWS Elastic Beanstalk Developer Guide

4. Add a rule for admin traffic. For Name, enter admin. For Listener port, enter 443. For Match
conditions, add a PathPattern with the value /admin/*. For Process, select admin.

Shared Application Load Balancer 855

AWS Elastic Beanstalk Developer Guide

Configuring a shared Application Load Balancer using the EB CLI

The EB CLI prompts you to choose a load balancer type when you run eb create. If you choose
application (the default), and if your account has at least one sharable Application Load
Balancer, the EB CLI also asks you if you want to use a shared Application Load Balancer. If you
answer y, you are also prompted to select the load balancer and default port.

$ eb create
Enter Environment Name
(default is my-app): test-env

Shared Application Load Balancer 856

AWS Elastic Beanstalk Developer Guide

Enter DNS CNAME prefix
(default is my-app): test-env-DLW24ED23SF

Select a load balancer type
1) classic
2) application
3) network
(default is 2):

Your account has one or more sharable load balancers. Would you like your new
 environment to use a shared load balancer?(y/N) y

Select a shared load balancer
1)MySharedALB1 - arn:aws:elasticloadbalancing:us-east-2:123456789012:loadbalancer/app/
MySharedALB1/6d69caa75b15d46e
2)MySharedALB2 - arn:aws:elasticloadbalancing:us-east-2:123456789012:loadbalancer/app/
MySharedALB2/e574ea4c37ad2ec8
(default is 1): 2

Select a listener port for your shared load balancer
1) 80
2) 100
3) 443
(default is 1): 3

You can also specify a shared load balancer using command options.

$ eb create test-env --elb-type application --shared-lb MySharedALB2 --shared-lb-
port 443

Shared Application Load Balancer namespaces

You can find settings related to shared Application Load Balancers in the following namespaces:

• aws:elasticbeanstalk:environment – Choose the load balancer type for the environment,
and tell Elastic Beanstalk that you'll use a shared load balancer.

You can't set these two options in configuration files (.Ebextensions).

• aws:elbv2:loadbalancer – Configure the shared Application Load Balancer ARN and security
groups.

Shared Application Load Balancer 857

AWS Elastic Beanstalk Developer Guide

• aws:elbv2:listener – Associate listeners of the shared Application Load Balancer with
environment processes by listing listener rules.

• aws:elbv2:listenerrule – Configure listener rules that route traffic to different processes,
depending on the request path. Rules are unique to Application Load Balancers—both dedicated
and shared.

• aws:elasticbeanstalk:environment:process – Configure health checks and specify the
port and protocol for the processes that run on your environment's instances.

Example .ebextensions/application-load-balancer-shared.config

To get started with a shared Application Load Balancer, use the Elastic Beanstalk console, EB CLI, or
API to set the load balancer type to application and choose to use a shared load balancer. Use a
configuration file to configure the shared load balancer.

option_settings:
 aws:elbv2:loadbalancer:
 SharedLoadBalancer: arn:aws:elasticloadbalancing:us-
east-2:123456789012:loadbalancer/app/MySharedALB2/e574ea4c37ad2ec8

Note

You can configure this option only during environment creation.

Example .ebextensions/alb-shared-secure-listener.config

The following configuration file selects a default secure listener on port 443 for the shared load
balancer, and sets the default process to listen to port 443.

option_settings:
 aws:elbv2:loadbalancer:
 SharedLoadBalancer: arn:aws:elasticloadbalancing:us-
east-2:123456789012:loadbalancer/app/MySharedALB2/e574ea4c37ad2ec8
 aws:elbv2:listener:443:
 rules: default
 aws:elasticbeanstalk:environment:process:default:
 Port: '443'
 Protocol: HTTPS

Shared Application Load Balancer 858

AWS Elastic Beanstalk Developer Guide

Example .ebextensions/alb-shared-admin-rule.config

The following configuration file builds on the previous example and adds a rule that routes traffic
with a request path of /admin to a process named admin that listens on port 4443.

option_settings:
 aws:elbv2:loadbalancer:
 SharedLoadBalancer: arn:aws:elasticloadbalancing:us-
east-2:123456789012:loadbalancer/app/MySharedALB2/e574ea4c37ad2ec8
 aws:elbv2:listener:443:
 rules: default,admin
 aws:elasticbeanstalk:environment:process:default:
 Port: '443'
 Protocol: HTTPS
 aws:elasticbeanstalk:environment:process:admin:
 HealthCheckPath: /admin
 Port: '4443'
 Protocol: HTTPS
 aws:elbv2:listenerrule:admin:
 PathPatterns: /admin/*
 Priority: 1
 Process: admin

Configuring a Network Load Balancer

When you enable load balancing, your AWS Elastic Beanstalk environment is equipped with an
Elastic Load Balancing load balancer to distribute traffic among the instances in your environment.
Elastic Load Balancing supports several load balancer types. To learn about them, see the Elastic
Load Balancing User Guide. Elastic Beanstalk can create a load balancer for you, or let you specify a
shared load balancer that you've created.

This topic describes the configuration of a Network Load Balancer that Elastic Beanstalk creates
and dedicates to your environment. For information about configuring all the load balancer types
that Elastic Beanstalk supports, see Load balancer for your Elastic Beanstalk environment.

Note

You can choose the type of load balancer that your environment uses only during
environment creation. You can change settings to manage the behavior of your running
environment's load balancer, but you can't change its type.

Network Load Balancer 859

https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/

AWS Elastic Beanstalk Developer Guide

Introduction

With a Network Load Balancer, the default listener accepts TCP requests on port 80 and distributes
them to the instances in your environment. You can configure health check behavior, configure the
listener port, or add a listener on another port.

Note

Unlike a Classic Load Balancer or an Application Load Balancer, a Network Load Balancer
can't have application layer (layer 7) HTTP or HTTPS listeners. It only supports transport
layer (layer 4) TCP listeners. HTTP and HTTPS traffic can be routed to your environment
over TCP. To establish secure HTTPS connections between web clients and your
environment, install a self-signed certificate on the environment's instances, and configure
the instances to listen on the appropriate port (typically 443) and terminate HTTPS
connections. The configuration varies per platform. See Configuring your application to
terminate HTTPS connections at the instance for instructions. Then configure your Network
Load Balancer to add a listener that maps to a process listening on the appropriate port.

A Network Load Balancer supports active health checks. These checks are based on messages
to the root (/) path. In addition, a Network Load Balancer supports passive health checks. It
automatically detects faulty backend instances and routes traffic only to healthy instances.

Configuring a Network Load Balancer using the Elastic Beanstalk console

You can use the Elastic Beanstalk console to configure a Network Load Balancer's listeners and
processes during environment creation, or later when your environment is running.

To configure a Network Load Balancer in the Elastic Beanstalk console during environment
creation

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments.

3. Choose Create a new environment to start creating your environment.

4. On the wizard's main page, before choosing Create environment, choose Configure more
options.

5. Choose the High availability configuration preset.

Network Load Balancer 860

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Alternatively, in the Capacity configuration category, configure a Load balanced environment
type. For details, see Capacity.

6. In the Load balancer configuration category, choose Edit.

7. Select the Network Load Balancer option, if it isn't already selected.

8. Make any Network Load Balancer configuration changes that your environment requires.

9. Choose Save, and then make any other configuration changes that your environment requires.

10. Choose Create environment.

To configure a running environment's Network Load Balancer in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Load balancer configuration category, choose Edit.

Network Load Balancer 861

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Note

If the Load balancer configuration category doesn't have an Edit button, your
environment doesn't have a load balancer. To learn how to set one up, see Changing
environment type.

5. Make the Network Load Balancer configuration changes that your environment requires.

6. To save the changes choose Apply at the bottom of the page.

Network Load Balancer settings

• Listeners

• Processes

Listeners

Use this list to specify listeners for your load balancer. Each listener routes incoming client traffic
on a specified port to a process on your instances. Initially, the list shows the default listener, which
routes incoming traffic on port 80 to a process named default, which listens to port 80.

To configure an existing listener

1. Select the check box next to its table entry, and then choose Actions, Edit.

2. Use the Network Load Balancer listener dialog box to edit settings, and then choose Save.

Network Load Balancer 862

AWS Elastic Beanstalk Developer Guide

To add a listener

1. Choose Add listener.

2. In the Network Load Balancer listener dialog box, configure the required settings, and then
choose Add.

Use the Network Load Balancer listener dialog box to configure the port on which the listener
listens to traffic, and to choose the process to which you want to route traffic (specified by the port
that the process listens to).

Processes

Use this list to specify processes for your load balancer. A process is a target for listeners to route
traffic to. Each listener routes incoming client traffic on a specified port to a process on your
instances. Initially, the list shows the default process, which listens to incoming traffic on port 80.

Network Load Balancer 863

AWS Elastic Beanstalk Developer Guide

You can edit the settings of an existing process, or add a new process. To start editing a process on
the list or adding a process to it, use the same steps listed for the listener list. The Environment
process dialog box opens.

Network Load Balancer's environment process dialog box settings

• Definition

• Health check

Definition

Use these settings to define the process: its Name and the Process port on which it listens to
requests.

Network Load Balancer 864

AWS Elastic Beanstalk Developer Guide

Health check

Use the following settings to configure process health checks:

• Interval – The amount of time, in seconds, between health checks of an individual instance.

• Healthy threshold – The number of health checks that must pass before Elastic Load Balancing
changes an instance's health state. (For Network Load Balancer, Unhealthy threshold is a read-
only setting that is always equal to the healthy threshold value.)

• Deregistration delay – The amount of time, in seconds, to wait for active requests to complete
before deregistering an instance.

Network Load Balancer 865

AWS Elastic Beanstalk Developer Guide

Note

The Elastic Load Balancing health check doesn't affect the health check behavior of an
environment's Auto Scaling group. Instances that fail an Elastic Load Balancing health
check will not automatically be replaced by Amazon EC2 Auto Scaling unless you manually
configure Amazon EC2 Auto Scaling to do so. See Auto Scaling health check setting for
details.

For more information about health checks and how they influence your environment's overall
health, see Basic health reporting.

Example: Network Load Balancer for an environment with end-to-end encryption

In this example, your application requires end-to-end traffic encryption. To configure your
environment's Network Load Balancer to meet these requirements, you configure the default
process to listen to port 443, add a listener to port 443 that routes traffic to the default process,
and disable the default listener.

To configure the load balancer for this example

1. Configure the default process. Select the default process, and then, for Actions, choose Edit.
For Process port, type 443.

2. Add a port 443 listener. Add a new listener. For Listener port, type 443. For Process port, make
sure that 443 is selected.

Network Load Balancer 866

AWS Elastic Beanstalk Developer Guide

You can now see your additional listener on the list.

3. Disable the default port 80 listener. For the default listener, turn off the Enabled option.

Network Load Balancer 867

AWS Elastic Beanstalk Developer Guide

Configuring a Network Load Balancer using the EB CLI

The EB CLI prompts you to choose a load balancer type when you run eb create.

$ eb create
Enter Environment Name
(default is my-app): test-env
Enter DNS CNAME prefix
(default is my-app): test-env-DLW24ED23SF

Select a load balancer type
1) classic
2) application
3) network
(default is 1): 3

You can also specify a load balancer type with the --elb-type option.

$ eb create test-env --elb-type network

Network Load Balancer namespaces

You can find settings related to Network Load Balancers in the following namespaces:

• aws:elasticbeanstalk:environment – Choose the load balancer type for the environment.
The value for a Network Load Balancer is network.

• aws:elbv2:listener – Configure listeners on the Network Load Balancer. These settings map
to the settings in aws:elb:listener for Classic Load Balancers.

• aws:elasticbeanstalk:environment:process – Configure health checks and specify
the port and protocol for the processes that run on your environment's instances. The
port and protocol settings map to the instance port and instance protocol settings in
aws:elb:listener for a listener on a Classic Load Balancer. Health check settings map to
the settings in the aws:elb:healthcheck and aws:elasticbeanstalk:application
namespaces.

Example .ebextensions/network-load-balancer.config

To get started with a Network Load Balancer, use a configuration file to set the load balancer type
to network.

Network Load Balancer 868

AWS Elastic Beanstalk Developer Guide

option_settings:
 aws:elasticbeanstalk:environment:
 LoadBalancerType: network

Note

You can set the load balancer type only during environment creation.

Example .ebextensions/nlb-default-process.config

The following configuration file modifies health check settings on the default process.

option_settings:
 aws:elasticbeanstalk:environment:process:default:
 DeregistrationDelay: '20'
 HealthCheckInterval: '10'
 HealthyThresholdCount: '5'
 UnhealthyThresholdCount: '5'
 Port: '80'
 Protocol: TCP

Example .ebextensions/nlb-secure-listener.config

The following configuration file adds a listener for secure traffic on port 443 and a matching target
process that listens to port 443.

option_settings:
 aws:elbv2:listener:443:
 DefaultProcess: https
 ListenerEnabled: 'true'
 aws:elasticbeanstalk:environment:process:https:
 Port: '443'

The DefaultProcess option is named this way because of Application Load Balancers, which
can have non-default listeners on the same port for traffic to specific paths (see Application Load
Balancer for details). For a Network Load Balancer the option specifies the only target process for
this listener.

In this example, we named the process https because it listens to secure (HTTPS) traffic. The
listener sends traffic to the process on the designated port using the TCP protocol, because a

Network Load Balancer 869

AWS Elastic Beanstalk Developer Guide

Network Load Balancer works only with TCP. This is okay, because network traffic for HTTP and
HTTPS is implemented on top of TCP.

Configuring access logs

You can use configuration files to configure your environment's load balancer to upload access logs
to an Amazon S3 bucket. See the following example configuration files on GitHub for instructions:

• loadbalancer-accesslogs-existingbucket.config – Configure the load balancer to
upload access logs to an existing Amazon S3 bucket.

• loadbalancer-accesslogs-newbucket.config – Configure the load balancer to upload
access logs to a new bucket.

Adding a database to your Elastic Beanstalk environment

Elastic Beanstalk provides integration with Amazon Relational Database Service (Amazon RDS).
You can use Elastic Beanstalk to add a MySQL, PostgreSQL, Oracle, or SQL Server database to
an existing environment or a new one when you create it. When you add a database instance,
Elastic Beanstalk provides the connection information to your application. It does this by setting
the environment properties for the database hostname, port, user name, password, and database
name.

If you haven't used a database instance with your application before, we recommend that you first
use the process described in this topic to add a database to a test environment using the Elastic
Beanstalk service. By doing this, you can verify that your application can read the environment
properties, construct a connection string, and connect to a database instance, without the
additional configuration work required for a database external to Elastic Beanstalk.

After you verify that your application works correctly with the database, you may consider moving
towards a production environment. At this point you have the option to decouple the database
from your Elastic Beanstalk environment to move towards a configuration that offers greater
flexibility. The decoupled database can remain operational as an external Amazon RDS database
instance. The health of the environment isn't affected by decoupling the database. If you need
to terminate the environment, you can do so and also choose the option to keep the database
available and operational outside of Elastic Beanstalk.

Using an external database has several advantages. You can connect to the external database
from multiple environments, use database types that aren't supported with integrated databases,

Configuring access logs 870

https://github.com/awslabs/elastic-beanstalk-samples/blob/master/configuration-files/aws-provided/resource-configuration/loadbalancer-accesslogs-existingbucket.config
https://github.com/awslabs/elastic-beanstalk-samples/blob/master/configuration-files/aws-provided/resource-configuration/loadbalancer-accesslogs-newbucket.config
https://aws.amazon.com/rds/

AWS Elastic Beanstalk Developer Guide

and perform blue/green deployments. As an alternative to using a decoupled database that
Elastic Beanstalk created, you can also create a database instance outside of your Elastic Beanstalk
environment. Both options result in a database instance that's external to your Elastic Beanstalk
environment and will require additional security group and connection string configuration. For
more information, see Using Elastic Beanstalk with Amazon RDS.

Sections

• Database lifecycle

• Adding an Amazon RDS DB instance to your environment using the console

• Connecting to the database

• Configuring an integrated RDS DB instance using the console

• Configuring an integrated RDS DB instance using configuration files

• Decoupling an RDS DB instance using the console

• Decoupling an RDS DB instance using configuration files

Database lifecycle

You can choose what you want to happen to the database after you decouple it from your Elastic
Beanstalk environment. The options that you can choose from are collectively referred to as
deletion policies. The following deletion policies apply to a database after you decouple it from an
Elastic Beanstalk environment or terminate the Elastic Beanstalk environment.

• Snapshot — Before Elastic Beanstalk terminates the database, it saves a snapshot of it. You
can restore a database from a snapshot when you add a DB instance to an Elastic Beanstalk
environment or when you create a standalone database. For more information about creating a
new standalone DB instance from a snapshot, see Restoring from a DB snapshot in the Amazon
RDS User Guide. You might incur charges for storing database snapshots. For more information,
see the Backup Storage section of Amazon RDS Pricing.

• Delete — Elastic Beanstalk terminates the database. After it's terminated, the database instance
is no longer available for any operation.

• Retain — The database instance isn't terminated. It remains available and operational, though
decoupled from Elastic Beanstalk. You can then configure one or multiple environments to
connect to the database as an external Amazon RDS database instance. For more information,
see Using Elastic Beanstalk with Amazon RDS.

Database lifecycle 871

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_RestoreFromSnapshot.html
https://aws.amazon.com/rds/pricing/

AWS Elastic Beanstalk Developer Guide

Adding an Amazon RDS DB instance to your environment using the
console

You can add a DB instance to your environment by using the Elastic Beanstalk console.

To add a DB instance to your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

5. Choose a DB engine, and enter a user name and password.

6. To save the changes choose Apply at the bottom of the page.

You can configure the following options:

• Snapshot – Choose an existing database snapshot. Elastic Beanstalk restores the snapshot
and adds it to your environment. The default value is None. When the value is None, you can
configure a new database using the other settings on this page.

• Engine – Choose a database engine.

• Engine version – Choose a specific version of the database engine.

• Instance class – Choose the DB instance class. For information about DB instance classes, see
https://aws.amazon.com/rds/.

• Storage – Choose the amount of storage to provision for your database. You can increase
allocated storage later, but you can't decrease it. For information about storage allocation, see
Features.

• Username – Enter a user name of your choice using a combination of only numbers and letters.

• Password – Enter a password of your choice containing 8–16 printable ASCII characters
(excluding /, \, and @).

Adding an Amazon RDS DB instance to your environment using the console 872

https://console.aws.amazon.com/elasticbeanstalk
http://aws.amazon.com/rds/
https://aws.amazon.com/rds/#features

AWS Elastic Beanstalk Developer Guide

• Availability – Choose High (Multi-AZ) to run a warm backup in a second Availability Zone for
high availability.

• Database deletion policy – The deletion policy determines what happens to the database after
it's decoupled from your environment. It can be set to the following values: Create Snapshot,
Retain, or Delete. These values are described in Database lifecycle in this same topic.

Note

Elastic Beanstalk creates a master user for the database using the user name and password
you provide. To learn more about the master user and its privileges, see Master User
Account Privileges.

It takes about 10 minutes to add a DB instance. When the update is complete the new database is
coupled to your environment. The hostname and other connection information for the DB instance
are available to your application through the following environment properties.

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab on
the Amazon RDS console: DB
Name.

RDS_USERNAME The username that you
configured for your database.

On the Configuration tab
on the Amazon RDS console:
Master username.

Adding an Amazon RDS DB instance to your environment using the console 873

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.MasterAccounts.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.MasterAccounts.html

AWS Elastic Beanstalk Developer Guide

Property name Description Property value

RDS_PASSWORD The password that you
configured for your database.

Not available for reference in
the Amazon RDS console.

Connecting to the database

Use the connectivity information to connect to your database from inside your application through
environment variables. For more information about using Amazon RDS with your applications, see
the following topics.

• Java SE – Connecting to a database (Java SE platforms)

• Java with Tomcat – Connecting to a database (Tomcat platforms)

• Node.js – Connecting to a database

• .NET – Connecting to a database

• PHP – Connecting to a database with a PDO or MySQLi

• Python – Connecting to a database

• Ruby – Connecting to a database

Configuring an integrated RDS DB instance using the console

You can view and modify configuration settings for your database instance in the Database section
on the environment's Configuration page in the Elastic Beanstalk console.

To configure your environment's DB instance in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

Connecting to the database 874

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

You can modify the Instance class, Storage, Password, Availability, and Database deletion policy
settings after database creation. If you change the instance class, Elastic Beanstalk re-provisions
the DB instance.

If you no longer need Elastic Beanstalk to associate the database to the environment, you can
choose to decouple it by selecting Decouple database. It’s important to understand the options
and considerations involved with this operation. For more information, see the section called
“Decoupling an RDS DB instance using the console”.

Warning

Don't modify settings on the coupled database instance outside of the functionality that's
provided by Elastic Beanstalk (for example, in the Amazon RDS console). If you do, your
Amazon RDS DB configuration might be out of sync with your environment's definition.
When you update or restart your environment, the settings specified in the environment
override any settings you made outside of Elastic Beanstalk.
If you need to modify settings that Elastic Beanstalk doesn't directly support, use Elastic
Beanstalk configuration files.

Configuring an integrated RDS DB instance using configuration files

You can configure your environment's database instance using configuration files. Use the options
in the aws:rds:dbinstance namespace. The following example modifies the allocated database
storage size to 100 GB.

Example .ebextensions/db-instance-options.config

option_settings:
 aws:rds:dbinstance:
 DBAllocatedStorage: 100

If you want to configure DB instance properties that Elastic Beanstalk doesn't support, you can still
use a configuration file, and specify your settings using the resources key. The following example
sets values to the StorageType and Iops Amazon RDS properties.

Example .ebextensions/db-instance-properties.config

Resources:

Configuring an integrated RDS DB instance using configuration files 875

AWS Elastic Beanstalk Developer Guide

 AWSEBRDSDatabase:
 Type: AWS::RDS::DBInstance
 Properties:
 StorageType:io1
 Iops: 1000

Decoupling an RDS DB instance using the console

You can decouple your database from an Elastic Beanstalk environment without affecting the
health of the environment. Consider the following requirements before you decouple the database:

• What should happen to the database after it’s decoupled?

You can choose to create a snapshot of the database and then terminate it, retain the database
operational as a standalone database external to Elastic Beanstalk, or permanently delete the
database. The Database deletion policy setting determines this result. For a detailed description
of the deletion policies, see Database lifecycle in this same topic.

• Do you need make any changes to the database configuration settings before decoupling it?

If you need to make any configuration changes to the database, you should apply them before
decoupling the database. This includes changes to the Database deletion policy. Any pending
changes that are submitted simultaneously with the Decouple database setting will be ignored,
while only the decouple setting is applied.

To decouple a DB instance from an environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Database configuration category, choose Edit.

Decoupling an RDS DB instance using the console 876

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

5. Review all of the configurations values in the Database settings section, especially the
Database deletion policy, which determines what happens to the database after it's
decoupled.

If all of the other configuration settings are correct, skip to Step 6 to decouple the database.

Warning

It’s important to apply the Database deletion policy setting separately from Decouple
database. If you select Apply with the intent to save both Decouple database and
a newly selected Database deletion policy, the new deletion policy that you chose
will be ignored. Elastic Beanstalk will decouple the database following the prior-set
deletion policy. If the prior-set deletion policy is Delete or Create Snapshot, you
risk losing the database instead of following the intended pending policy.

Decoupling an RDS DB instance using the console 877

AWS Elastic Beanstalk Developer Guide

If any of the configuration settings require updates do the following:

1. Make the required modifications in the Database settings panel.

2. Choose Apply. It will take a few minutes to save the configuration changes for your
database.

3. Go back to Step 3 and choose Configuration from the navigation pane.

6. Go to the Database connection section of the pane.

7. Choose Decouple database.

8. Choose Apply to initiate the database decoupling operation.

The deletion policy setting determines the outcome for the database and the length of time that's
required to decouple the database.

• If the deletion policy is set to Delete, the database is deleted. The operation can take
approximately 10-20 minutes, depending on the size of database.

• If the deletion policy is set to Snapshot, a snapshot of the database is created. Then, the
database is deleted. The length of time required for this process varies according to the size of
the database.

• If the deletion policy is set to Retain, the database remains operational external to the Elastic
Beanstalk environment. It usually takes less than five minutes to decouple a database.

If you decided to retain the database external to your Elastic Beanstalk environment, you'll need
to take additional steps to configure it. For more information, see Using Elastic Beanstalk with
Amazon RDS. If you plan to use the database that you decouple for a production environment,

Decoupling an RDS DB instance using the console 878

AWS Elastic Beanstalk Developer Guide

verify the storage type that the database uses is suitable for your workload. For more information,
see DB Instance Storage and Modifying a DB instance in the Amazon RDS User Guide.

Decoupling an RDS DB instance using configuration files

You can decouple your DB instance from an Elastic Beanstalk environment without affecting the
health of the environment. The database instance follows the database deletion policy that was
applied when the database was decoupled.

Both of the options required to decouple the database are in the the section called
“aws:rds:dbinstance” namespace. They are as follows:

• The DBDeletionPolicy option sets the deletion policy. It can be set to the following values:
Snapshot, Delete, or Retain. These values are described in Database lifecycle in this same
topic.

• The HasCoupledDatabase option determines if your environment has a coupled database.

• If toggled to true, Elastic Beanstalk creates a new DB instance coupled to your environment.

• If toggled to false, Elastic Beanstalk starts decoupling the DB instance from your
environment.

If you want to change your database configuration before you decouple it, apply any configuration
changes first, in a separate operation. This includes changing the DBDeletionPolicy
configuration. After your changes are applied, run a separate command to set the decoupling
option. If you submit other configuration settings and the decouple setting at the same time, the
other configuration option settings are ignored while the decouple setting is applied.

Warning

It’s important that you run the commands to apply the DBDeletionPolicy and
HasCoupledDatabase settings as two separate operations. If the active deletion policy
is already set to Delete or Snapshot, you risk losing the database. The database follows
the deletion policy that's currently active, rather than the pending deletion policy that you
intended.

Decoupling an RDS DB instance using configuration files 879

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.DBInstance.Modifying.html

AWS Elastic Beanstalk Developer Guide

To decouple a DB instance from an environment

Follow these steps to decouple the database from your Elastic Beanstalk environment. You can use
the EB CLI or the AWS CLI to complete the steps. For more information, see Advanced environment
customization with configuration files.

1. If you want to change the deletion policy, set up a configuration file in the following format. In
this example, the deletion policy is set to retain.

Example

option_settings:
 aws:rds:dbinstance:
 DBDeletionPolicy: Retain

2. Run the command using your preferred tool to complete the configuration update.

3. Set up a configuration file to set HasCoupledDatabase to false.

Example

option_settings:
 aws:rds:dbinstance:
 HasCoupledDatabase: false

4. Run the command using your preferred tool to complete the configuration update.

The deletion policy setting determines the outcome for the database and the length of time that's
required to decouple the database.

• If the deletion policy is set to Delete, the database is deleted. The operation can take
approximately 10-20 minutes, depending on the size of database.

• If the deletion policy is set to Snapshot, a snapshot of the database is created. Then, the
database is deleted. The length of time required for this process varies according to the size of
the database.

• If the deletion policy is set to Retain, the database remains operational external to the Elastic
Beanstalk environment. It usually takes less than five minutes to decouple a database.

If you decided to retain the database external to your Elastic Beanstalk environment, you'll need
to take additional steps to configure it. For more information, see Using Elastic Beanstalk with

Decoupling an RDS DB instance using configuration files 880

AWS Elastic Beanstalk Developer Guide

Amazon RDS. If you plan to use the database that you decouple for a production environment,
verify the storage type that the database uses is suitable for your workload. For more information,
see DB Instance Storage and Modifying a DB instance in the Amazon RDS User Guide.

Your AWS Elastic Beanstalk environment security

Elastic Beanstalk provides several options that control the service access (security) of your
environment and of the Amazon EC2 instances in it. This topic discusses the configuration of these
options.

Sections

• Configuring your environment security

• Environment security configuration namespaces

Configuring your environment security

You can modify your Elastic Beanstalk environment security configuration in the Elastic Beanstalk
console.

To configure environment service access (security) in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Service access configuration category, choose Edit.

The following settings are available.

Settings

• Service role

• EC2 key pair

Security 881

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.DBInstance.Modifying.html
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

• IAM instance profile

Service role

Select a service role to associate with your Elastic Beanstalk environment. Elastic Beanstalk
assumes the service role when it accesses other AWS services on your behalf. For details, see
Managing Elastic Beanstalk service roles.

EC2 key pair

You can securely log in to the Amazon Elastic Compute Cloud (Amazon EC2) instances provisioned
for your Elastic Beanstalk application with an Amazon EC2 key pair. For instructions on creating
a key pair, see Creating a Key Pair Using Amazon EC2 in the Amazon EC2 User Guide for Linux
Instances.

Note

When you create a key pair, Amazon EC2 stores a copy of your public key. If you no longer
need to use it to connect to any environment instances, you can delete it from Amazon

Configuring your environment security 882

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#having-ec2-create-your-key-pair

AWS Elastic Beanstalk Developer Guide

EC2. For details, see Deleting Your Key Pair in the Amazon EC2 User Guide for Linux
Instances.

Choose an EC2 key pair from the drop-down menu to assign it to your environment's instances.
When you assign a key pair, the public key is stored on the instance to authenticate the private key,
which you store locally. The private key is never stored on AWS.

For more information about connecting to Amazon EC2 instances, see Connect to Your Instance
and Connecting to Linux/UNIX Instances from Windows using PuTTY in the Amazon EC2 User Guide
for Linux Instances.

IAM instance profile

An EC2 instance profile is an IAM role that is applied to instances launched in your Elastic Beanstalk
environment. Amazon EC2 instances assume the instance profile role to sign requests to AWS and
access APIs, for example, to upload logs to Amazon S3.

The first time you create an environment in the Elastic Beanstalk console, Elastic Beanstalk
prompts you to create an instance profile with a default set of permissions. You can add
permissions to this profile to provide your instances access to other AWS services. For details, see
Managing Elastic Beanstalk instance profiles.

Note

Previously Elastic Beanstalk created a default EC2 instance profile named aws-
elasticbeanstalk-ec2-role the first time an AWS account created an environment.
This instance profile included default managed policies. If your account already has this
instance profile, it will remain available for you to assign to your environments.
However, recent AWS security guidelines don’t allow an AWS service to automatically create
roles with trust policies to other AWS services, EC2 in this case. Because of these security
guidelines, Elastic Beanstalk no longer creates a default aws-elasticbeanstalk-ec2-
role instance profile.

Environment security configuration namespaces

Elastic Beanstalk provides configuration options in the following namespaces to enable you to
customize the security of your environment:

Environment security configuration namespaces 883

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#delete-key-pair
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html

AWS Elastic Beanstalk Developer Guide

• aws:elasticbeanstalk:environment – Configure the environment's service role using the
ServiceRole option.

• aws:autoscaling:launchconfiguration – Configure permissions for the environment's
Amazon EC2 instances using the EC2KeyName and IamInstanceProfile options.

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding options.
You must remove these settings if you want to use configuration files to configure the same. See
Recommended values for details.

Tagging resources in your Elastic Beanstalk environments

You can apply tags to your AWS Elastic Beanstalk environments. Tags are key-value pairs associated
with AWS resources. For information about Elastic Beanstalk resource tagging, use cases, tag key
and value constraints, and supported resource types, see Tagging Elastic Beanstalk application
resources.

Elastic Beanstalk applies environment tags to the environment resource itself, as well as to other
AWS resources that Elastic Beanstalk creates for the environment. You can use tags to manage
permissions at the specific resource level within an environment. For more information, see
Tagging Your Amazon EC2 Resources in the Amazon EC2 User Guide for Linux Instances.

By default, Elastic Beanstalk applies a few tags to your environment:

• elasticbeanstalk:environment-name – The name of the environment.

• elasticbeanstalk:environment-id – The environment ID.

• Name – Also the name of the environment. Name is used in the Amazon EC2 dashboard to
identify and sort resources.

You can't edit these default tags.

You can specify tags when you create the Elastic Beanstalk environment. In an existing
environment, you can add or remove tags, and update the values of existing tags. An environment
can have up to 50 tags including the default tags.

Adding tags during environment creation

When you use the Elastic Beanstalk console to create an environment, you can specify tag keys and
values on the Modify tags configuration page of the Create New Environment wizard.

Tagging environments 884

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html

AWS Elastic Beanstalk Developer Guide

If you use the EB CLI to create an environment, use the --tags option with eb create to add tags.

~/workspace/my-app$ eb create --tags mytag1=value1,mytag2=value2

With the AWS CLI or other API-based clients, use the --tags parameter on the create-
environment command.

$ aws elasticbeanstalk create-environment \
 --tags Key=mytag1,Value=value1 Key=mytag2,Value=value2 \
 --application-name my-app --environment-name my-env --cname-prefix my-app --
version-label v1 --template-name my-saved-config

Saved configurations include user-defined tags. When you apply a saved configuration that
contains tags during environment creation, those tags are applied to the new environment, as long
as you don't specify any new tags. If you add tags to an environment using one of the preceding
methods, any tags defined in the saved configuration are discarded.

Managing tags of an existing environment

You can add, update, and delete tags in an existing Elastic Beanstalk environment. Elastic Beanstalk
applies the changes to your environment's resources.

However, you can't edit the default tags that Elastic Beanstalk applies to your environment.

To manage an environment's tags in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

Managing tags of an existing environment 885

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/create-environment.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/create-environment.html
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Tags.

The tag management page shows the list of tags that currently exist in the environment.

4. Add, update, or delete tags:

• To add a tag, enter it into the empty boxes at the bottom of the list. To add another tag,
choose Add tag and Elastic Beanstalk adds another pair of empty boxes.

• To update a tag's key or value, edit the respective box in the tag's row.

• To delete a tag, choose Remove next to the tag's value box.

5. To save the changes choose Apply at the bottom of the page.

Managing tags of an existing environment 886

AWS Elastic Beanstalk Developer Guide

If you use the EB CLI to update your environment, use eb tags to add, update, delete, or list tags.

For example, the following command lists the tags in your default environment.

~/workspace/my-app$ eb tags --list

The following command updates the tag mytag1 and deletes the tag mytag2.

~/workspace/my-app$ eb tags --update mytag1=newvalue --delete mytag2

For a complete list of options and more examples, see eb tags.

With the AWS CLI or other API-based clients, use the list-tags-for-resource command to list the
tags of an environment.

$ aws elasticbeanstalk list-tags-for-resource --resource-arn
 "arn:aws:elasticbeanstalk:us-east-2:my-account-id:environment/my-app/my-env"

Use the update-tags-for-resource command to add, update, or delete tags in an environment.

$ aws elasticbeanstalk update-tags-for-resource \
 --tags-to-add Key=mytag1,Value=newvalue --tags-to-remove mytag2 \
 --resource-arn "arn:aws:elasticbeanstalk:us-east-2:my-account-id:environment/my-
app/my-env"

Specify both tags to add and tags to update in the --tags-to-add parameter of update-tags-
for-resource. A nonexisting tag is added, and an existing tag's value is updated.

Note

To use these two AWS CLI commands with an Elastic Beanstalk environment, you need the
environment's ARN. You can retrieve the ARN by using the following command.

$ aws elasticbeanstalk describe-environments

Managing tags of an existing environment 887

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/list-tags-for-resource.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/update-tags-for-resource.html

AWS Elastic Beanstalk Developer Guide

Environment properties and other software settings

The Configure updates, monitoring, and logging configuration page lets you configure the
software on the Amazon Elastic Compute Cloud (Amazon EC2) instances that run your application.
You can configure environment properties, AWS X-Ray debugging, instance log storing and
streaming, and platform-specific settings.

Topics

• Configure platform-specific settings

• Configuring environment properties (environment variables)

• Software setting namespaces

• Accessing environment properties

• Configuring AWS X-Ray debugging

• Viewing your Elastic Beanstalk environment logs

Configure platform-specific settings

In addition to the standard set of options available for all environments, most Elastic Beanstalk
platforms let you specify language-specific or framework-specific settings. These appear in the
Platform software section of the Configure updates, monitoring, and logging page, and can take
the following forms.

• Preset environment properties – The Ruby platform uses environment properties for framework
settings, such as RACK_ENV and BUNDLE_WITHOUT.

• Placeholder environment properties – The Tomcat platform defines an environment property
named JDBC_CONNECTION_STRING that is not set to any value. This type of setting was more
common on older platform versions.

• Configuration options – Most platforms define configuration options in platform-
specific or shared namespaces, such as aws:elasticbeanstalk:xray or
aws:elasticbeanstalk:container:python.

To configure platform-specific settings in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

Environment properties and software settings 888

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Under Platform software, make necessary option setting changes.

6. To save the changes choose Apply at the bottom of the page.

For information about platform-specific options, and about getting environment property values in
your code, see the platform topic for your language or framework:

• Docker – the section called “Environment configuration”

• Go – Using the Elastic Beanstalk Go platform

• Java SE – Using the Elastic Beanstalk Java SE platform

• Tomcat – Using the Elastic Beanstalk Tomcat platform

• .NET Core on Linux – Using the .NET Core on Linux platform

• .NET – Using the Elastic Beanstalk .NET platform

• Node.js – Using the Elastic Beanstalk Node.js platform

• PHP – Using the Elastic Beanstalk PHP platform

• Python – Using the Elastic Beanstalk Python platform

• Ruby – Using the Elastic Beanstalk Ruby platform

Configuring environment properties (environment variables)

You can use environment properties, (also known as environment variables), to pass secrets,
endpoints, debug settings, and other information to your application. Environment properties help
you run your application in multiple environments for different purposes, such as development,
testing, staging, and production.

Configuring environment properties (environment variables) 889

AWS Elastic Beanstalk Developer Guide

In addition, when you add a database to your environment, Elastic Beanstalk sets environment
properties, such as RDS_HOSTNAME, that you can read in your application code to construct a
connection object or string.

Environment variables

In most cases, environment properties are passed to your application as environment
variables, but the behavior is platform dependent. For example, the Java SE platform sets
environment variables that you retrieve with System.getenv, while the Tomcat platform
sets Java system properties that you retrieve with System.getProperty. In general,
properties are not visible if you connect to an instance and run env.

To configure environment properties in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Scroll down to Environment properties.

6. Select Add environment property.

7. Enter the property Name and Value pairs.

8. If you need to add more variables repeat Step 6 and Step 7.

9. To save the changes choose Apply at the bottom of the page.

Environment property limits

• Keys can contain any alphanumeric characters and the following symbols: _ . : / + \ - @

Configuring environment properties (environment variables) 890

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

The symbols listed are valid for environment property keys, but might not be valid for
environment variable names on your environment's platform. For compatibility with all
platforms, limit environment properties to the following pattern: [A-Z_][A-Z0-9_]*

• Values can contain any alphanumeric characters, white space, and the following symbols:
_ . : / = + \ - @ ' "

Note

Some characters in environment property values must be escaped. Use the backslash
character (\) to represent some special characters and control characters. The following
list includes examples for representing some characters that need to be escaped:

• backslash (\) — to represent use \\

• single quote (') — to represent use \'

• double quote (") — to represent use \"

• Keys and values are case sensitive.

• The combined size of all environment properties cannot exceed 4,096 bytes when stored as
strings with the format key=value.

Software setting namespaces

You can use a configuration file to set configuration options and perform other instance
configuration tasks during deployments. Configuration options can be defined by the Elastic
Beanstalk service or the platform that you use and are organized into namespaces.

You can use Elastic Beanstalk configuration files to set environment properties and configuration
options in your source code. Use the aws:elasticbeanstalk:application:environment
namespace to define environment properties.

Example .ebextensions/options.config

option_settings:
 aws:elasticbeanstalk:application:environment:
 API_ENDPOINT: www.example.com/api

If you use configuration files or AWS CloudFormation templates to create custom resources, you
can use an AWS CloudFormation function to get information about the resource and assign it to

Software setting namespaces 891

AWS Elastic Beanstalk Developer Guide

an environment property dynamically during deployment. The following example from the elastic-
beanstalk-samples GitHub repository uses the Ref function to get the ARN of an Amazon SNS topic
that it creates, and assigns it to an environment property named NOTIFICATION_TOPIC.

Notes

• If you use an AWS CloudFormation function to define an environment property, the
Elastic Beanstalk console displays the value of the property before the function is
evaluated. You can use the get-config platform script to confirm the values of
environment properties that are available to your application.

• The Multicontainer Docker platform doesn't use AWS CloudFormation to create container
resources. As a result, this platform doesn't support defining environment properties
using AWS CloudFormation functions.

Example .Ebextensions/sns-topic.config

Resources:
 NotificationTopic:
 Type: AWS::SNS::Topic

option_settings:
 aws:elasticbeanstalk:application:environment:
 NOTIFICATION_TOPIC: '`{"Ref" : "NotificationTopic"}`'

You can also use this feature to propagate information from AWS CloudFormation pseudo
parameters. This example gets the current region and assigns it to a property named AWS_REGION.

Example .Ebextensions/env-regionname.config

option_settings:
 aws:elasticbeanstalk:application:environment:
 AWS_REGION: '`{"Ref" : "AWS::Region"}`'

Most Elastic Beanstalk platforms define additional namespaces with options for configuring
software that runs on the instance, such as the reverse proxy that relays requests to your
application. For more information about the namespaces available for your platform, see the
following:

Software setting namespaces 892

https://github.com/awsdocs/elastic-beanstalk-samples/
https://github.com/awsdocs/elastic-beanstalk-samples/
https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/resource-configuration/sns-topic.config
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/instance-configuration/env-regionname.config

AWS Elastic Beanstalk Developer Guide

• Go – Go configuration namespace

• Java SE – Java SE configuration namespace

• Tomcat – Tomcat configuration namespaces

• .NET Core on Linux – .NET Core on Linux configuration namespace

• .NET – The aws:elasticbeanstalk:container:dotnet:apppool namespace

• Node.js – Node.js configuration namespace

• PHP – The aws:elasticbeanstalk:container:php:phpini namespace

• Python – Python configuration namespaces

• Ruby – Ruby configuration namespaces

Elastic Beanstalk provides many configuration options for customizing your environment. In
addition to configuration files, you can also set configuration options using the console, saved
configurations, the EB CLI, or the AWS CLI. See Configuration options for more information.

Accessing environment properties

In most cases, you access environment properties in your application code like an environment
variable. In general, however, environment properties are passed only to the application and can't
be viewed by connecting an instance in your environment and running env.

• Go – os.Getenv

endpoint := os.Getenv("API_ENDPOINT")

• Java SE – System.getenv

String endpoint = System.getenv("API_ENDPOINT");

• Tomcat – System.getProperty

String endpoint = System.getProperty("API_ENDPOINT");

• .NET Core on Linux – Environment.GetEnvironmentVariable

string endpoint = Environment.GetEnvironmentVariable("API_ENDPOINT");

• .NET – appConfig

Accessing environment properties 893

AWS Elastic Beanstalk Developer Guide

NameValueCollection appConfig = ConfigurationManager.AppSettings;
string endpoint = appConfig["API_ENDPOINT"];

• Node.js – process.env

var endpoint = process.env.API_ENDPOINT

• PHP – $_SERVER

$endpoint = $_SERVER['API_ENDPOINT'];

• Python – os.environ

import os
endpoint = os.environ['API_ENDPOINT']

• Ruby – ENV

endpoint = ENV['API_ENDPOINT']

Outside of application code, such as in a script that runs during deployment, you can access
environment properties with the get-config platform script. See the elastic-beanstalk-samples
GitHub repository for example configurations that use get-config.

Configuring AWS X-Ray debugging

You can use the AWS Elastic Beanstalk console or a configuration file to run the AWS X-Ray
daemon on the instances in your environment. X-Ray is an AWS service that gathers data about the
requests that your application serves, and uses it to construct a service map that you can use to
identify issues with your application and opportunities for optimization.

Note

Some regions don't offer X-Ray. If you create an environment in one of these regions, you
can't run the X-Ray daemon on the instances in your environment.
For information about the AWS services offered in each Region, see Region Table.

Debugging 894

https://github.com/awsdocs/elastic-beanstalk-samples/search?utf8=%E2%9C%93&q=get-config
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

AWS Elastic Beanstalk Developer Guide

X-Ray provides an SDK that you can use to instrument your application code, and a daemon
application that relays debugging information from the SDK to the X-Ray API.

Supported platforms

You can use the X-Ray SDK with the following Elastic Beanstalk platforms:

• Go - version 2.9.1 and later

• Java 8 - version 2.3.0 and later

• Java 8 with Tomcat 8 - version 2.4.0 and later

• Node.js - version 3.2.0 and later

• Windows Server - all platform versions released on or after December 18th, 2016

• Python - version 2.5.0 and later

Debugging 895

AWS Elastic Beanstalk Developer Guide

On supported platforms, you can use a configuration option to run the X-Ray daemon on the
instances in your environment. You can enable the daemon in the Elastic Beanstalk console or by
using a configuration file.

To upload data to X-Ray, the X-Ray daemon requires IAM permissions in the
AWSXrayWriteOnlyAccess managed policy. These permissions are included in the Elastic Beanstalk
instance profile. If you don't use the default instance profile, see Giving the Daemon Permission to
Send Data to X-Ray in the AWS X-Ray Developer Guide.

Debugging with X-Ray requires the use of the X-Ray SDK. See the Getting Started with AWS X-Ray
in the AWS X-Ray Developer Guide for instructions and sample applications.

If you use a platform version that doesn't include the daemon, you can still run it with a script
in a configuration file. For more information, see Downloading and Running the X-Ray Daemon
Manually (Advanced) in the AWS X-Ray Developer Guide.

Sections

• Configuring debugging

• The aws:elasticbeanstalk:xray namespace

Configuring debugging

You can enable the X-Ray daemon on a running environment in the Elastic Beanstalk console.

To enable debugging in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. In the Amazon X-Ray section, select Activated.

Debugging 896

https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon.html#xray-daemon-permissions
https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon.html#xray-daemon-permissions
https://docs.aws.amazon.com/xray/latest/devguide/xray-gettingstarted.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon-beanstalk.html#xray-daemon-beanstalk-manual
https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon-beanstalk.html#xray-daemon-beanstalk-manual
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

6. To save the changes choose Apply at the bottom of the page.

You can also enable this option during environment creation. For more information, see The create
new environment wizard.

The aws:elasticbeanstalk:xray namespace

You can use the XRayEnabled option in the aws:elasticbeanstalk:xray namespace to
enable debugging.

To enable debugging automatically when you deploy your application, set the option in a
configuration file in your source code, as follows.

Example .ebextensions/debugging.config

option_settings:
 aws:elasticbeanstalk:xray:
 XRayEnabled: true

Viewing your Elastic Beanstalk environment logs

AWS Elastic Beanstalk provides two ways to regularly view logs from the Amazon EC2 instances
that run your application:

• Configure your Elastic Beanstalk environment to upload rotated instance logs to the
environment's Amazon S3 bucket.

• Configure the environment to stream instance logs to Amazon CloudWatch Logs.

When you configure instance log streaming to CloudWatch Logs, Elastic Beanstalk creates
CloudWatch Logs log groups for proxy and deployment logs on the Amazon EC2 instances, and
transfers these log files to CloudWatch Logs in real time. For more information about instance logs,
see Viewing logs from Amazon EC2 instances in your Elastic Beanstalk environment.

In addition to instance logs, if you enable enhanced health for your environment, you can configure
the environment to stream health information to CloudWatch Logs. When the environment's
health status changes, Elastic Beanstalk adds a record to a health log group, with the new status
and a description of the cause of the change. For information about environment health streaming,
see Streaming Elastic Beanstalk environment health information to Amazon CloudWatch Logs.

Log viewing 897

AWS Elastic Beanstalk Developer Guide

Configuring instance log viewing

To view instance logs, you can enable instance log rotation and log streaming in the Elastic
Beanstalk console.

To configure instance log rotation and log streaming in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. In the S3 log storage section, select Activated beneath Rotate logs to enable uploading
rotated logs to Amazon S3.

6. in the Instance log streaming to CloudWatch Logs section, configure the following settings:

• Log streaming – Select Activated to enable log streaming.

• Retention – Specify the number of days to retain logs in CloudWatch Logs.

• Lifecycle – Set to Delete logs upon termination to delete logs from CloudWatch Logs
immediately if the environment is terminated, instead of waiting for them to expire.

7. To save the changes choose Apply at the bottom of the page.

After you enable log streaming, you can return to the Software configuration category or page and
find the Log Groups link. Click this link to see your instance logs in the CloudWatch console.

Configuring environment health log viewing

To view environment health logs, you can enable environment health log streaming in the Elastic
Beanstalk console.

To configure environment health log streaming in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

Log viewing 898

https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Go to the Monitoring section.

6. Under Health event streaming to CloudWatch Logs, configure the following settings:

• Log streaming – Choose to Activated to enable log streaming.

• Retention – Specify the number of days to retain logs in CloudWatch Logs.

• Lifecycle – Set to Delete logs upon termination to delete logs from CloudWatch Logs
immediately if the environment is terminated, instead of waiting for them to expire.

7. To save the changes choose Apply at the bottom of the page.

Log viewing namespaces

The following namespaces contain settings for log viewing:

• aws:elasticbeanstalk:hostmanager – Configure uploading rotated logs to Amazon S3.

• aws:elasticbeanstalk:cloudwatch:logs – Configure instance log streaming to
CloudWatch.

• aws:elasticbeanstalk:cloudwatch:logs:health – Configure environment health
streaming to CloudWatch.

Elastic Beanstalk environment notifications with Amazon SNS

You can configure your AWS Elastic Beanstalk environment to use Amazon Simple Notification
Service (Amazon SNS) to notify you of important events that affect your application. To receive
emails from AWS whenever an error occurs or the health of your environment changes, specify an
email address when you create an environment or later on.

Notifications 899

AWS Elastic Beanstalk Developer Guide

Note

Elastic Beanstalk uses Amazon SNS for notifications. For information about Amazon SNS
pricing, see https://aws.amazon.com/sns/pricing/.

When you configure notifications for your environment, Elastic Beanstalk creates an Amazon SNS
topic for your environment on your behalf. To send messages to an Amazon SNS topic, Elastic
Beanstalk must have the required permission. For more information, see Configuring permissions
to send notifications.

When a notable event occurs, Elastic Beanstalk sends a message to the topic. Then, Amazon SNS
relays the messages that it receives to the topic's subscribers. Notable events include environment
creation errors and all changes in environment and instance health. Events for Amazon EC2
Auto Scaling operations (like adding and removing instances from the environment) and other
informational events don't trigger notifications.

You can enter an email address in the Elastic Beanstalk console when you create an environment or
sometime afterwards. This will create an Amazon SNS topic and subscribe to it. Elastic Beanstalk
manages the lifecycle of the topic, and deletes it when your environment is terminated or when
you remove your email address in the environment management console.

The aws:elasticbeanstalk:sns:topics namespace provides options for configuring an
Amazon SNS topic by using configuration files, a CLI, or an SDK. By using one of these methods,
you can configure the type of subscriber and the endpoint. For type of subscriber, you can choose
an Amazon SQS queue or HTTP URL.

You can only turn Amazon SNS notifications on or off. The frequency of notifications sent to the
topic can be high, depending on the size and composition of your environment. For configuring
notifications to be sent on specific circumstances, you have other options. You can set up event-

Notifications 900

https://aws.amazon.com/sns/pricing/

AWS Elastic Beanstalk Developer Guide

driven rules with Amazon EventBridge that notify you when Elastic Beanstalk emits events that
meet specific criteria. Or, alternatively, you can configure your environment to publish custom
metrics and set Amazon CloudWatch alarms to notify you when those metrics reach an unhealthy
threshold.

Configuring notifications using the Elastic Beanstalk console

You can enter an email address in the Elastic Beanstalk console to create an Amazon SNS topic for
your environment.

To configure notifications in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Scroll down to the Email notifications section.

6. Enter an email address.

7. To save the changes choose Apply at the bottom of the page.

When you enter an email address for notifications, Elastic Beanstalk creates an Amazon SNS topic
for your environment and adds a subscription. Amazon SNS sends an email to the subscribed
address to confirm the subscription. You must click the link in the confirmation email to activate
the subscription and receive notifications.

Configuring notifications using configuration options

Use the options in the aws:elasticbeanstalk:sns:topics namespace to configure Amazon
SNS notifications for your environment. You can set these options by using configuration files, a
CLI, or an SDK.

Configuring notifications using the Elastic Beanstalk console 901

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

• Notification Endpoint – The email address, Amazon SQS queue, or URL to send notifications
to. If you set this option, then an SQS queue and a subscription for the specified endpoint
are created. If the endpoint isn't an email address, you must also set the Notification
Protocol option. SNS validates the value of Notification Endpoint based on the value of
Notification Protocol. Setting this option multiple times creates additional subscriptions
to the topic. If you remove this option, the topic is deleted.

• Notification Protocol – The protocol that's used to send notifications to the Notification
Endpoint. This option defaults to email. Set this option to email-json to send JSON-
formatted emails, http or https to post JSON-formatted notifications to an HTTP endpoint, or
sqs to send notifications to an SQS queue.

Note

AWS Lambda notifications aren't supported.

• Notification Topic ARN – After setting a notification endpoint for your environment, read this
setting to get the ARN of the SNS topic. You can also set this option to use an existing SNS topic
for notifications. A topic that you attach to your environment though this option isn't deleted
when you change this option or terminate the environment.

To configure Amazon SNS notifications, you need to have the required permissions. If your IAM
user uses the Elastic Beanstalk AdministratorAccess-AWSElasticBeanstalk managed user policy,
then you should already have the required permissions to configure the default Amazon SNS
topic that Elastic Beanstalk creates for your environment. However, if you configure an Amazon
SNS topic that Elastic Beanstalk doesn't manage, then you need to add the following policy to
your user role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sns:SetTopicAttributes",
 "sns:GetTopicAttributes",
 "sns:Subscribe",
 "sns:Unsubscribe",
 "sns:Publish"
],

Configuring notifications using configuration options 902

AWS Elastic Beanstalk Developer Guide

 "Resource": [
 "arn:aws:sns:us-east-2:123456789012:sns_topic_name"
]
 }
]
}

• Notification Topic Name – Set this option to customize the name of the Amazon SNS topic used
for environment notifications. If a topic with the same name already exists, Elastic Beanstalk
attaches that topic to the environment.

Warning

If you attach an existing SNS topic to an environment with Notification Topic
Name, Elastic Beanstalk will delete the topic in the event that you terminate the
environment or change this setting sometime in the future.

If you change this option, the Notification Topic ARN is also changed. If a topic is already
attached to the environment, Elastic Beanstalk deletes the old topic and creates a new topic and
subscription.

By using a custom topic name, you must also provide an ARN of an externally created custom
topic. The managed user policy doesn't automatically detect a topic with a custom name, so you
must provide custom Amazon SNS permissions to your IAM users. Use a policy similar to the one
that's used for a custom topic ARN, but include the following additions:

• Include two more actions in the Actions list, specifically: sns:CreateTopic,
sns:DeleteTopic

• If you're changing the Notification Topic Name from one custom topic name to another,
you must also include the ARNs of both topics in the Resource list. Alternatively, include a
regular expression that covers both topics. This way Elastic Beanstalk has permissions to delete
the old topic and create the new one.

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding options.
You must remove these settings if you want to use configuration files to configure the same. See
Recommended values for details.

Configuring notifications using configuration options 903

AWS Elastic Beanstalk Developer Guide

Configuring permissions to send notifications

This section discusses security considerations that are related to notifications that use Amazon
SNS. There are two distinct cases:

• Use the default Amazon SNS topic that Elastic Beanstalk creates for your environment.

• Provide an external Amazon SNS topic through configuration options.

The default access policy for an Amazon SNS topic allows only the topic owner to publish or
subscribe to it. However, through the proper policy configuration, Elastic Beanstalk can be granted
permission to publish to an Amazon SNS topic in either one of the two cases described in this
section. The following subsections provide more information.

Permissions for a default topic

When you configure notifications for your environment, Elastic Beanstalk creates an Amazon SNS
topic for your environment. To send messages to an Amazon SNS topic, Elastic Beanstalk must
have the required permission. If your environment uses the service role that the Elastic Beanstalk
console or the EB CLI generated for it, or your account's monitoring service-linked role, then you
don't need to do anything else. These managed roles include the necessary permission that allows
Elastic Beanstalk to send messages to the Amazon SNS topic.

However, if you provided a custom service role when you created your environment, make sure that
this custom service role includes the following policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:us-east-2:123456789012:ElasticBeanstalkNotifications*"
]
 }
]
}

Configuring permissions to send notifications 904

AWS Elastic Beanstalk Developer Guide

Permissions for an external topic

Configuring notifications using configuration options explains how you can replace the Amazon
SNS topic that Elastic Beanstalk provides with another Amazon SNS topic. If you replaced the
topic, Elastic Beanstalk must verify that you have permission to publish to this SNS topic for you
to be able to associate the SNS topic with the environment. You should have sns:Publish. The
service role uses the same permission. To verify that this is the case, Elastic Beanstalk sends a test
notification to SNS as part of your action to create or update the environment. If this test fails,
then your attempt to create or update the environment also fails. Elastic Beanstalk displays a
message that explains the reason for this failure.

If you provide a custom service role for your environment, make sure that your custom service role
includes the following policy to allow Elastic Beanstalk to send messages to the Amazon SNS topic.
In the following code, replace sns_topic_name with the name of the Amazon SNS topic that you
provided in the configuration options.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:us-east-2:123456789012:sns_topic_name"
]
 }
]
}

For more information about Amazon SNS access control, see Example cases for Amazon SNS access
control in the Amazon Simple Notification Service Developer Guide.

Configuring permissions to send notifications 905

https://docs.aws.amazon.com/sns/latest/dg/sns-access-policy-use-cases.html
https://docs.aws.amazon.com/sns/latest/dg/sns-access-policy-use-cases.html

AWS Elastic Beanstalk Developer Guide

Configuring Amazon Virtual Private Cloud (Amazon VPC) with
Elastic Beanstalk

Amazon Virtual Private Cloud (Amazon VPC) is the networking service that routes traffic securely
to the EC2 instances that run your application in Elastic Beanstalk. If you don't configure a VPC
when you launch your environment, Elastic Beanstalk uses the default VPC.

You can launch your environment in a custom VPC to customize networking and security settings.
Elastic Beanstalk lets you choose which subnets to use for your resources, and how to configure
IP addresses for the instances and load balancer in your environment. An environment is locked
to a VPC when you create it, but you can change subnet and IP address settings on a running
environment.

Note

If you created your AWS account before December 4, 2013, you might have environments
using the Amazon EC2-Classic network configuration in some AWS Regions instead of
Amazon VPC. For information on migrating your environments from an EC2-Classic to a
VPC network configuration, see Migrating Elastic Beanstalk environments from EC2-Classic
to a VPC.

Configuring VPC settings in the Elastic Beanstalk console

If you chose a custom VPC when you created your environment, you can modify its VPC settings in
the Elastic Beanstalk console.

To configure your environment's VPC settings

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

Amazon VPC 906

https://docs.aws.amazon.com/vpc/latest/userguide/
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

4. In the Network configuration category, choose Edit.

The following settings are available.

Options

• VPC

• Load balancer visibility

• Load balancer subnets

• Instance public IP address

• Instance subnets

• Database subnets

VPC

Choose a VPC for your environment. You can only change this setting during environment creation.

Load balancer visibility

For a load-balanced environment, choose the load balancer scheme. By default, the load balancer
is public, with a public IP address and domain name. If your application only serves traffic from
within your VPC or a connected VPN, deselect this option and choose private subnets for your load
balancer to make the load balancer internal and disable access from the Internet.

Configuring VPC settings in the Elastic Beanstalk console 907

AWS Elastic Beanstalk Developer Guide

Load balancer subnets

For a load-balanced environment, choose the subnets that your load balancer uses to serve traffic.
For a public application, choose public subnets. Use subnets in multiple availability zones for high
availability. For an internal application, choose private subnets and disable load balancer visibility.

Instance public IP address

If you choose public subnets for your application instances, enable public IP addresses to make
them routable from the Internet.

Instance subnets

Choose subnets for your application instances. Choose at least one subnet for each availability
zone that your load balancer uses. If you choose private subnets for your instances, your VPC must
have a NAT gateway in a public subnet that the instances can use to access the Internet.

Configuring VPC settings in the Elastic Beanstalk console 908

AWS Elastic Beanstalk Developer Guide

Database subnets

When you run an Amazon RDS database attached to your Elastic Beanstalk environment, choose
subnets for your database instances. For high availability, make the database multi-AZ and choose
a subnet for each availability zone. To ensure that your application can connect to your database,
run both in the same subnets.

The aws:ec2:vpc namespace

You can use the configuration options in the aws:ec2:vpc namespace to configure your
environment's network settings.

The following configuration file uses options in this namespace to set the environment's VPC and
subnets for a public-private configuration. In order to set the VPC ID in a configuration file, the
file must be included in the application source bundle during environment creation. See Setting
configuration options during environment creation for other methods of configuring these settings
during environment creation.

The aws:ec2:vpc namespace 909

AWS Elastic Beanstalk Developer Guide

Example .ebextensions/vpc.config – Public-private

option_settings:
 aws:ec2:vpc:
 VPCId: vpc-087a68c03b9c50c84
 AssociatePublicIpAddress: 'false'
 ELBScheme: public
 ELBSubnets: subnet-0fe6b36bcb0ffc462,subnet-032fe3068297ac5b2
 Subnets: subnet-026c6117b178a9c45,subnet-0839e902f656e8bd1

This example shows a public-public configuration, where the load balancer and EC2 instances run
in the same public subnets.

Example .ebextensions/vpc.config – Public-public

option_settings:
 aws:ec2:vpc:
 VPCId: vpc-087a68c03b9c50c84
 AssociatePublicIpAddress: 'true'
 ELBScheme: public
 ELBSubnets: subnet-0fe6b36bcb0ffc462,subnet-032fe3068297ac5b2
 Subnets: subnet-0fe6b36bcb0ffc462,subnet-032fe3068297ac5b2

Migrating Elastic Beanstalk environments from EC2-Classic to a VPC

This topic describes different options for how to migrate your Elastic Beanstalk environments from
an EC2-Classic network platform to an Amazon Virtual Private Cloud (Amazon VPC) network.

If you created your AWS account before December 4, 2013, you might have environments that use
the EC2-Classic network configuration in some AWS Regions. All AWS accounts created on or after
December 4, 2013 are already VPC-only in every AWS Region. The only exemptions are if Amazon
EC2-Classic was enabled as a result of a support request.

Note

You can view the network configuration settings for your environment in the Network
configuration category on the Configuration overview page of the Elastic Beanstalk
console.

Migrating from EC2-Classic to a VPC 910

https://docs.aws.amazon.com/vpc/latest/userguide/
https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Why you should migrate

Amazon EC2-Classic will reach its end of standard support on August 15, 2022. To avoid
interruptions to your workloads, we recommend that you migrate from Amazon EC2-Classic to a
VPC before August 15, 2022. We also request that you don't launch any AWS resources on Amazon
EC2-Classic in the future and use Amazon VPC instead.

When you migrate your Elastic Beanstalk environments from Amazon EC2-Classic to Amazon VPC,
you must create a new AWS account. You must also re-create your AWS EC2-Classic environments
in your new AWS account. No additional configuration work for your environments is required to
use the default VPC. If the default VPC doesn't meet your requirements, manually create a custom
VPC and associate it with your environments.

Alternatively, if your existing AWS account has resources that you can't migrate to a new AWS
account, add a VPC into your current account. Then, configure your environments to use the VPC.

For more information, see the EC2-Classic Networking is Retiring - Here's How to Prepare blog
post.

Migrate an environment from EC2-Classic into a new AWS account
(recommended)

If you don't already have an AWS account that was created on or after December 4, 2013, create a
new account. You will migrate your environments into this new account.

1. Your new AWS account provides a default VPC to its environments. If you don't need to create
a custom VPC, skip to step 2.

You can create a custom VPC in one of the following ways:

• Create a VPC quickly using the Amazon VPC console wizard with one of the available
configuration options. For more information, see Amazon VPC console wizard
configurations.

• Create a custom VPC on the Amazon VPC console if you have more specific requirements
for your VPC. We recommend you do this, for example, if your use case requires a specific
number of subnets. For more information, see VPCs and subnets.

• Create a VPC using the elastic-beanstalk-samples repository on the GitHub website if you
prefer to use AWS CloudFormation templates with your Elastic Beanstalk environments. This

Migrating from EC2-Classic to a VPC 911

https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_wizard.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_wizard.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://github.com/awsdocs/elastic-beanstalk-samples/

AWS Elastic Beanstalk Developer Guide

repository includes AWS CloudFormation templates. For more information, see Using Elastic
Beanstalk with Amazon VPC.

Note

You can also create a custom VPC at the same time you recreate the environment
in your new AWS account using the create new environment wizard. If you use the
wizard and choose to create a custom VPC, the wizard redirects you to the Amazon
VPC console.

2. In your new AWS account, create a new environment. We recommend that the environment
includes the same configuration as your existing environment in the AWS account that you're
migrating from. You can do this by using one of the following approaches.

Note

If your new environment must use the same CNAME after you migrate, terminate the
original environment on the EC2-Classic platform. This releases the CNAME for use.
However, doing so can result in downtime for that environment and can also risk that
another customer might select your CNAME between you terminating your EC2-Classic
environment and creating the new one. For more information, see Terminate an Elastic
Beanstalk environment.
For environments that have their own proprietary domain name, the CNAME doesn't
have this issue. You can just update your Domain Name System (DNS) to forward
requests to your new CNAME.

• Use the create new environment wizard on the Elastic Beanstalk console. The wizard
provides an option to create a custom VPC. If you don't choose to create a custom VPC, a
default VPC is assigned.

• Use the Elastic Beanstalk Command Line Interface (EB CLI) to re-create your environment
in your new AWS account. One of the examples in the eb create command description
demonstrates the creation of an environment in a custom VPC. If you don't provide a VPC
ID, the environment uses the default VPC.

By using this approach, you can use a saved configurations file across the two AWS
accounts. As a result, you don't need to manually enter all the configuration information.

Migrating from EC2-Classic to a VPC 912

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

However, you must save the configuration settings for the EC2-Classic environment that
you're migrating with the eb config save command. Copy the saved configuration file to a
new directory for the new account environment.

Note

You must edit some of the data in the saved configuration file before you can use
it in the new account. You must also update information that pertains to your
previous account with the correct data for your new account. For example, you
must replace the Amazon Resource Name (ARN) of the AWS Identity and Access
Management (IAM) role with the IAM role ARN for the new account.

If you use the eb create command with the cfg, the new environment is created using the
specified saved configuration file. For more information, see Using Elastic Beanstalk saved
configurations.

Migrate an environment from EC2-Classic within your same AWS account

Your existing AWS account might have resources that you can't migrate to a new AWS account.
In this case you must re-create your environments and manually configure a VPC for every
environment you create.

Migrate your environments to a custom VPC

Prerequisites

Before you begin, you must have a VPC. You can create a non-default (custom) VPC in one of the
following ways:

• Create a VPC quickly using the Amazon VPC console wizard with one of the available
configuration options. For more information, see Amazon VPC console wizard configurations.

• Create a custom VPC on the Amazon VPC console if you have more specific requirements for
your VPC. We recommend you do this, for example, if your use case requires a specific number of
subnets. For more information, see VPCs and subnets.

• Create a VPC using the elastic-beanstalk-samples repository on the GitHub website if you prefer
to use AWS CloudFormation templates with your Elastic Beanstalk environments. This repository

Migrating from EC2-Classic to a VPC 913

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_wizard.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
https://github.com/awsdocs/elastic-beanstalk-samples/

AWS Elastic Beanstalk Developer Guide

includes AWS CloudFormation templates. For more information, see Using Elastic Beanstalk with
Amazon VPC.

In the following steps, you use the generated VPC ID and subnet IDs when you configure the VPC in
the new environment.

1. Create a new environment that includes the same configuration as your existing environment.
You can do this by using one of the following approaches.

Note

The Saved Configurations feature can help you re-create your environments in the
new account. This feature can save an environment’s configuration, so you can apply
it when you create or update other environments. For more information, see Using
Elastic Beanstalk saved configurations.

• Using the Elastic Beanstalk console, apply a saved configuration from your EC2-Classic
environment when you configure the new environment. This configuration will use the
VPC. For more information, see Using Elastic Beanstalk saved configurations.

• Using Elastic Beanstalk Command Line Interface (EB CLI), run the eb create command to
re-create your environment. Provide the parameters of your original environment and the
VPC identifier. One of the examples in the eb create command description shows how to
create an environment in a custom VPC.

• Use the AWS Command Line Interface (AWS CLI), and re-create your environment
using the elasticbeanstalk create-environment command. Provide the parameters of
your original environment with the VPC identifier. For instructions, see Creating Elastic
Beanstalk environments with the AWS CLI.

2. Swap the CNAMEs of the existing environment with the new environment. This way, the new
environment that you created can be referenced with the familiar address. You can use the EB
CLI or the AWS CLI.

• Using the EB CLI, swap the environment CNAMEs by running the eb swap command. For
more information, see Using the Elastic Beanstalk command line interface (EB CLI).

• Using the AWS CLI, swap the environment CNAMEs with the elasticbeanstalk swap-
environment-cnames command. For more information, see the AWS CLI Command
Reference.

Migrating from EC2-Classic to a VPC 914

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/swap-environment-cnames.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/swap-environment-cnames.html
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/cli/latest/reference/

AWS Elastic Beanstalk Developer Guide

Your Elastic Beanstalk environment's Domain name

By default, your environment is available to users at a subdomain of elasticbeanstalk.com.
When you create an environment, you can choose a hostname for your application. The subdomain
and domain are autopopulated to region.elasticbeanstalk.com.

To route users to your environment, Elastic Beanstalk registers a CNAME record that points to your
environment's load balancer. You can see URL of your environment's application with the current
value of the CNAME in the environment overview page of the Elastic Beanstalk console.

Choose the URL on the overview page, or choose Go to environment on the navigation pane, to
navigate to your application's web page.

You can change the CNAME on your environment by swapping it with the CNAME of another
environment. For instructions, see Blue/Green deployments with Elastic Beanstalk.

If you own a domain name, you can use Amazon Route 53 to resolve it to your environment. You
can purchase a domain name with Amazon Route 53, or use one that you purchase from another
provider.

To purchase a domain name with Route 53, see Registering a New Domain in the Amazon Route 53
Developer Guide.

To learn more about using a custom domain, see Routing Traffic to an AWS Elastic Beanstalk
Environment in the Amazon Route 53 Developer Guide.

Domain name 915

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-beanstalk-environment.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-beanstalk-environment.html

AWS Elastic Beanstalk Developer Guide

Important

If you terminate an environment, you must also delete any CNAME mappings that you
created, as other customers can reuse an available hostname. Be sure to delete DNS records
that point to your terminated environment to prevent a dangling DNS entry. A dangling
DNS entry can expose internet traffic destined for your domain to security vulnerabilities. It
can also present other risks.
For more information, see Protection from dangling delegation records in Route 53 in the
Amazon Route 53 Developer Guide. You can also learn more about dangling DNS entries in
Enhanced Domain Protections for Amazon CloudFront Requests in the AWS Security Blog.

Domain name 916

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/protection-from-dangling-dns.html
https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/

AWS Elastic Beanstalk Developer Guide

Configuring Elastic Beanstalk environments (advanced)

When you create an AWS Elastic Beanstalk environment, Elastic Beanstalk provisions and
configures all of the AWS resources required to run and support your application. In addition to
configuring your environment's metadata and update behavior, you can customize these resources
by providing values for configuration options. For example, you may want to add an Amazon SQS
queue and an alarm on queue depth, or you might want to add an Amazon ElastiCache cluster.

Most of the configuration options have default values that are applied automatically by Elastic
Beanstalk. You can override these defaults with configuration files, saved configurations, command
line options, or by directly calling the Elastic Beanstalk API. The EB CLI and Elastic Beanstalk
console also apply recommended values for some options.

You can easily customize your environment at the same time that you deploy your application
version by including a configuration file with your source bundle. When customizing the software
on your instance, it is more advantageous to use a configuration file than to create a custom AMI
because you do not need to maintain a set of AMIs.

When deploying your applications, you may want to customize and configure the software that
your application depends on. These files could be either dependencies required by the application
—for example, additional packages from the yum repository—or they could be configuration files
such as a replacement for httpd.conf to override specific settings that are defaulted by AWS Elastic
Beanstalk.

Topics

• Configuration options

• Advanced environment customization with configuration files (.ebextensions)

• Using Elastic Beanstalk saved configurations

• Environment manifest (env.yaml)

• Using a custom Amazon machine image (AMI)

• Serving static files

• Configuring HTTPS for your Elastic Beanstalk environment

917

AWS Elastic Beanstalk Developer Guide

Configuration options

Elastic Beanstalk defines a large number of configuration options that you can use to configure
your environment's behavior and the resources that it contains. Configuration options are
organized into namespaces like aws:autoscaling:asg, which defines options for an
environment's Auto Scaling group.

The Elastic Beanstalk console and EB CLI set configuration options when you create an
environment, including options that you set explicitly, and recommended values defined by the
client. You can also set configuration options in saved configurations and configuration files. If the
same option is set in multiple locations, the value used is determined by the order of precedence.

Configuration option settings can be composed in text format and saved prior to environment
creation, applied during environment creation using any supported client, and added, modified or
removed after environment creation. For a detailed breakdown of all of the available methods for
working with configuration options at each of these three stages, read the following topics:

• Setting configuration options before environment creation

• Setting configuration options during environment creation

• Setting configuration options after environment creation

For a complete list of namespaces and options, including default and supported values for each,
see General options for all environments and Platform specific options.

Precedence

During environment creation, configuration options are applied from multiple sources with the
following precedence, from highest to lowest:

• Settings applied directly to the environment – Settings specified during a create environment
or update environment operation on the Elastic Beanstalk API by any client, including the Elastic
Beanstalk console, EB CLI, AWS CLI, and SDKs. The Elastic Beanstalk console and EB CLI also
apply recommended values for some options that apply at this level unless overridden.

• Saved Configurations – Settings for any options that are not applied directly to the environment
are loaded from a saved configuration, if specified.

Configuration options 918

AWS Elastic Beanstalk Developer Guide

• Configuration Files (.ebextensions) – Settings for any options that are not applied directly to
the environment, and also not specified in a saved configuration, are loaded from configuration
files in the .ebextensions folder at the root of the application source bundle.

Configuration files are executed in alphabetical order. For example,
.ebextensions/01run.config is executed before .ebextensions/02do.config.

• Default Values – If a configuration option has a default value, it only applies when the option is
not set at any of the above levels.

If the same configuration option is defined in more than one location, the setting with the highest
precedence is applied. When a setting is applied from a saved configuration or settings applied
directly to the environment, the setting is stored as part of the environment's configuration. These
settings can be removed with the AWS CLI or with the EB CLI.

Settings in configuration files are not applied directly to the environment and cannot be
removed without modifying the configuration files and deploying a new application version. If a
setting applied with one of the other methods is removed, the same setting will be loaded from
configuration files in the source bundle.

For example, say you set the minimum number of instances in your environment to 5 during
environment creation, using either the Elastic Beanstalk console, a command line option, or a saved
configuration. The source bundle for your application also includes a configuration file that sets the
minimum number of instances to 2.

When you create the environment, Elastic Beanstalk sets the MinSize option in the
aws:autoscaling:asg namespace to 5. If you then remove the option from the environment
configuration, the value in the configuration file is loaded, and the minimum number of instances
is set to 2. If you then remove the configuration file from the source bundle and redeploy, Elastic
Beanstalk uses the default setting of 1.

Recommended values

The Elastic Beanstalk Command Line Interface (EB CLI) and Elastic Beanstalk console provide
recommended values for some configuration options. These values can be different from the
default values and are set at the API level when your environment is created. Recommended
values allow Elastic Beanstalk to improve the default environment configuration without making
backwards incompatible changes to the API.

Recommended values 919

AWS Elastic Beanstalk Developer Guide

For example, both the EB CLI and Elastic Beanstalk console set the configuration option for EC2
instance type (InstanceType in the aws:autoscaling:launchconfiguration namespace).
Each client provides a different way of overriding the default setting. In the console you can choose
a different instance type from a drop down menu on the Configuration Details page of the Create
New Environment wizard. With the EB CLI, you can use the --instance_type parameter for eb
create.

Because the recommended values are set at the API level, they will override values for the same
options that you set in configuration files or saved configurations. The following options are set:

Elastic Beanstalk console

• Namespace: aws:autoscaling:launchconfiguration

Option Names: IamInstanceProfile, EC2KeyName, InstanceType

• Namespace: aws:autoscaling:updatepolicy:rollingupdate

Option Names: RollingUpdateType and RollingUpdateEnabled

• Namespace: aws:elasticbeanstalk:application

Option Name: Application Healthcheck URL

• Namespace: aws:elasticbeanstalk:command

Option Name: DeploymentPolicy, BatchSize and BatchSizeType

• Namespace: aws:elasticbeanstalk:environment

Option Name: ServiceRole

• Namespace: aws:elasticbeanstalk:healthreporting:system

Option Name: SystemType and HealthCheckSuccessThreshold

• Namespace: aws:elasticbeanstalk:sns:topics

Option Name: Notification Endpoint

• Namespace: aws:elasticbeanstalk:sqsd

Option Name: HttpConnections

• Namespace: aws:elb:loadbalancer

Option Name: CrossZone

Recommended values 920

AWS Elastic Beanstalk Developer Guide

• Namespace: aws:elb:policies

Option Names: ConnectionDrainingTimeout and ConnectionDrainingEnabled

EB CLI

• Namespace: aws:autoscaling:launchconfiguration

Option Names: IamInstanceProfile, InstanceType

• Namespace: aws:autoscaling:updatepolicy:rollingupdate

Option Names: RollingUpdateType and RollingUpdateEnabled

• Namespace: aws:elasticbeanstalk:command

Option Name: BatchSize and BatchSizeType

• Namespace: aws:elasticbeanstalk:environment

Option Name: ServiceRole

• Namespace: aws:elasticbeanstalk:healthreporting:system

Option Name: SystemType

• Namespace: aws:elb:loadbalancer

Option Name: CrossZone

• Namespace: aws:elb:policies

Option Names: ConnectionDrainingEnabled

Setting configuration options before environment creation

AWS Elastic Beanstalk supports a large number of configuration options that let you modify the
settings that are applied to resources in your environment. Several of these options have default
values that can be overridden to customize your environment. Other options can be configured to
enable additional features.

Elastic Beanstalk supports two methods of saving configuration option settings. Configuration files
in YAML or JSON format can be included in your application's source code in a directory named
Before environment creation 921

AWS Elastic Beanstalk Developer Guide

.ebextensions and deployed as part of your application source bundle. You create and manage
configuration files locally.

Saved configurations are templates that you create from a running environment or JSON options
file and store in Elastic Beanstalk. Existing saved configurations can also be extended to create a
new configuration.

Note

Settings defined in configuration files and saved configurations have lower precedence
than settings configured during or after environment creation, including recommended
values applied by the Elastic Beanstalk console and EB CLI. See Precedence for details.

Options can also be specified in a JSON document and provided directly to Elastic Beanstalk when
you create or update an environment with the EB CLI or AWS CLI. Options provided directly to
Elastic Beanstalk in this manner override all other methods.

For a full list of available options, see Configuration options.

Methods

• Configuration files (.ebextensions)

• Saved configurations

• JSON document

• EB CLI configuration

Configuration files (.ebextensions)

Use .ebextensions to configure options that are required to make your application work, and
provide default values for other options that can be overridden at a higher level of precedence.
Options specified in .ebextensions have the lowest level of precedence and are overridden by
settings at any other level.

To use configuration files, create a folder named .ebextensions at the top level of your project's
source code. Add a file with the extension .config and specify options in the following manner:

option_settings:
 - namespace: namespace

Before environment creation 922

AWS Elastic Beanstalk Developer Guide

 option_name: option name
 value: option value
 - namespace: namespace
 option_name: option name
 value: option value

For example, the following configuration file sets the application's health check url to /health:

healthcheckurl.config

option_settings:
 - namespace: aws:elasticbeanstalk:application
 option_name: Application Healthcheck URL
 value: /health

In JSON:

{
 "option_settings" :
 [
 {
 "namespace" : "aws:elasticbeanstalk:application",
 "option_name" : "Application Healthcheck URL",
 "value" : "/health"
 }
]
}

This configures the Elastic Load Balancing load balancer in your Elastic Beanstalk environment to
make an HTTP request to the path /health to each EC2 instance to determine if it is healthy or
not.

Note

YAML relies on consistent indentation. Match the indentation level when replacing content
in an example configuration file and ensure that your text editor uses spaces, not tab
characters, to indent.

Include the .ebextensions directory in your Application Source Bundle and deploy it to a new or
existing Elastic Beanstalk environment.

Before environment creation 923

AWS Elastic Beanstalk Developer Guide

Configuration files support several sections in addition to option_settings for customizing
the software and files that run on the servers in your environment. For more information, see
.Ebextensions.

Saved configurations

Create a saved configuration to save settings that you have applied to an existing environment
during or after environment creation by using the Elastic Beanstalk console, EB CLI, or AWS CLI.
Saved configurations belong to an application and can be applied to new or existing environments
for that application.

Clients

• Elastic Beanstalk console

• EB CLI

• AWS CLI

Elastic Beanstalk console

To create a saved configuration (Elastic Beanstalk console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Save configuration.

4. Use the on-screen dialog box to complete the action.

Saved configurations are stored in the Elastic Beanstalk S3 bucket in a folder named after your
application. For example, configurations for an application named my-app in the us-west-2
region for account number 123456789012 can be found at s3://elasticbeanstalk-us-
west-2-123456789012/resources/templates/my-app.

Before environment creation 924

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

EB CLI

The EB CLI also provides subcommands for interacting with saved configurations under eb config:

To create a saved configuration (EB CLI)

1. Save the attached environment's current configuration:

~/project$ eb config save --cfg my-app-v1

The EB CLI saves the configuration to ~/project/.elasticbeanstalk/
saved_configs/my-app-v1.cfg.yml

2. Modify the saved configuration locally if needed.

3. Upload the saved configuration to S3:

~/project$ eb config put my-app-v1

AWS CLI

Create a saved configuration from a running environment with aws elasticbeanstalk
create-configuration-template

To create a saved configuration (AWS CLI)

1. Identify your Elastic Beanstalk environment's environment ID with describe-environments:

$ aws elasticbeanstalk describe-environments --environment-name my-env
{
 "Environments": [
 {
 "ApplicationName": "my-env",
 "EnvironmentName": "my-env",
 "VersionLabel": "89df",
 "Status": "Ready",
 "Description": "Environment created from the EB CLI using \"eb create
\"",
 "EnvironmentId": "e-vcghmm2zwk",
 "EndpointURL": "awseb-e-v-AWSEBLoa-1JUM8159RA11M-43V6ZI1194.us-
west-2.elb.amazonaws.com",

Before environment creation 925

AWS Elastic Beanstalk Developer Guide

 "SolutionStackName": "64bit Amazon Linux 2015.03 v2.0.2 running Multi-
container Docker 1.7.1 (Generic)",
 "CNAME": "my-env-nfptuqaper.elasticbeanstalk.com",
 "Health": "Green",
 "AbortableOperationInProgress": false,
 "Tier": {
 "Version": " ",
 "Type": "Standard",
 "Name": "WebServer"
 },
 "HealthStatus": "Ok",
 "DateUpdated": "2015-10-01T00:24:04.045Z",
 "DateCreated": "2015-09-30T23:27:55.768Z"
 }
]
}

2. Save the environment's current configuration with create-configuration-template:

$ aws elasticbeanstalk create-configuration-template --environment-id e-vcghmm2zwk
 --application-name my-app --template-name v1

Elastic Beanstalk saves the configuration to your Elastic Beanstalk bucket in Amazon S3.

JSON document

If you use the AWS CLI to create and update environments, you can also provide configuration
options in JSON format. A library of configuration files in JSON is useful if you use the AWS CLI to
create and manage environments.

For example, the following JSON document sets the application's health check url to /health:

~/ebconfigs/healthcheckurl.json

[
 {
 "Namespace": "aws:elasticbeanstalk:application",
 "OptionName": "Application Healthcheck URL",
 "Value": "/health"
 }
]

Before environment creation 926

AWS Elastic Beanstalk Developer Guide

EB CLI configuration

In addition to supporting saved configurations and direct environment configuration
with eb config commands, the EB CLI has a configuration file with an option named
default_ec2_keyname that you can use to specify an Amazon EC2 key pair for SSH access to the
instances in your environment. The EB CLI uses this option to set the EC2KeyName configuration
option in the aws:autoscaling:launchconfiguration namespace.

~/workspace/my-app/.elasticbeanstalk/config.yml

branch-defaults:
 master:
 environment: my-env
 develop:
 environment: my-env-dev
deploy:
 artifact: ROOT.war
global:
 application_name: my-app
 default_ec2_keyname: my-keypair
 default_platform: Tomcat 8 Java 8
 default_region: us-west-2
 profile: null
 sc: git

Setting configuration options during environment creation

When you create an AWS Elastic Beanstalk environment by using the Elastic Beanstalk console, EB
CLI, AWS CLI, an SDK, or the Elastic Beanstalk API, you can provide values for configuration options
to customize your environment and the AWS resources that are launched within it.

For anything other than a one-off configuration change, you can store configuration files locally, in
your source bundle, or in Amazon S3.

This topic includes procedures for all of the methods to set configuration options during
environment creation.

Clients

• In the Elastic Beanstalk console

• Using the EB CLI

During creation 927

AWS Elastic Beanstalk Developer Guide

• Using the AWS CLI

In the Elastic Beanstalk console

When you create an Elastic Beanstalk environment in the Elastic Beanstalk console, you can provide
configuration options using configuration files, saved configurations, and forms in the Create New
Environment wizard.

Methods

• Using configuration files (.ebextensions)

• Using a saved configuration

• Using the new environment wizard

Using configuration files (.ebextensions)

Include .config files in your application source bundle in a folder named .ebextensions.

For details about configuration files, see .Ebextensions.

~/workspace/my-app-v1.zip
|-- .ebextensions
| |-- environmentvariables.config
| `-- healthcheckurl.config
|-- index.php
`-- styles.css

Upload the source bundle to Elastic Beanstalk normally, during environment creation.

The Elastic Beanstalk console applies recommended values for some configuration options and has
form fields for others. Options configured by the Elastic Beanstalk console are applied directly to
the environment and override settings in configuration files.

Using a saved configuration

When you create a new environment using the Elastic Beanstalk console, one of the first steps is to
choose a configuration. The configuration can be a predefined configuration, typically the latest
version of a platform such as PHP or Tomcat, or it can be a saved configuration.

During creation 928

AWS Elastic Beanstalk Developer Guide

To apply a saved configuration during environment creation (Elastic Beanstalk console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

Note

If you have many applications, use the search bar to filter the application list.

3. In the navigation pane, find your application's name and choose Saved configurations.

4. Select the saved configuration you want to apply, and then choose Launch environment.

5. Proceed through the wizard to create your environment.

Saved configurations are application-specific. See Saved configurations for details on creating
saved configurations.

Using the new environment wizard

Most of the standard configuration options are presented on the Configure more options page of
the Create New Environment wizard. If you create an Amazon RDS database or configure a VPC for
your environment, additional configuration options are available for those resources.

To set configuration options during environment creation (Elastic Beanstalk console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications.

3. Choose or create an application.

4. Choose Actions, and then choose Create environment.

5. Proceed through the wizard, and choose Configure more options.

6. Choose any of the configuration presets, and then choose Edit in one or more of the
configuration categories to change a group of related configuration options.

7. When you are done making option selections, choose Create environment.

Any options that you set in the new environment wizard are set directly on the environment and
override any option settings in saved configurations or configuration files (.ebextensions) that

During creation 929

https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

you apply. You can remove settings after the environment is created using the EB CLI or AWS CLI to
allow the settings in saved configurations or configuration files to surface.

For details about the new environment wizard, see The create new environment wizard.

Using the EB CLI

Methods

• Using configuration files (.ebextensions)

• Using saved configurations

• Using command line options

Using configuration files (.ebextensions)

Include .config files in your project folder under .ebextensions to deploy them with your
application code.

For details about configuration files, see .Ebextensions.

~/workspace/my-app/
|-- .ebextensions
| |-- environmentvariables.config
| `-- healthcheckurl.config
|-- .elasticbeanstalk
| `-- config.yml
|-- index.php
`-- styles.css

Create your environment and deploy your source code to it with eb create.

~/workspace/my-app$ eb create my-env

Using saved configurations

To apply a saved configuration when you create an environment with eb create, use the --cfg
option.

~/workspace/my-app$ eb create --cfg savedconfig

During creation 930

AWS Elastic Beanstalk Developer Guide

You can store the saved configuration in your project folder or in your Elastic Beanstalk storage
location on Amazon S3. In the previous example, the EB CLI first looks for a saved configuration file
named savedconfig.cfg.yml in the folder .elasticbeanstalk/saved_configs/. Do not
include the file name extensions (.cfg.yml) when applying a saved configuration with --cfg.

~/workspace/my-app/
|-- .ebextensions
| `-- healthcheckurl.config
|-- .elasticbeanstalk
| |-- saved_configs
| | `-- savedconfig.cfg.yml
| `-- config.yml
|-- index.php
`-- styles.css

If the EB CLI does not find the configuration locally, it looks in the Elastic Beanstalk storage
location in Amazon S3. For details on creating, editing, and uploading saved configurations, see
Saved configurations.

Using command line options

The EB CLI eb create command has several options that you can use to set configuration
options during environment creation. You can use these options to add an RDS database to your
environment, configure a VPC, or override recommended values.

For example, the EB CLI uses the t2.micro instance type by default. To choose a different instance
type, use the --instance_type option.

$ eb create my-env --instance_type t2.medium

To create an Amazon RDS database instance and attach it to your environment, use the --
database options.

$ eb create --database.engine postgres --database.username dbuser

If you leave out the environment name, database password, or any other parameters that are
required to create your environment, the EB CLI prompts you to enter them.

See eb create for a full list of available options and usage examples.

During creation 931

AWS Elastic Beanstalk Developer Guide

Using the AWS CLI

When you use the create-environment command to create an Elastic Beanstalk environment
with the AWS CLI, the AWS CLI does not apply any recommended values. All configuration options
are defined in configuration files in the source bundle that you specify.

Methods

• Using configuration files (.ebextensions)

• Using a saved configuration

• Using command line options

Using configuration files (.ebextensions)

To apply configuration files to an environment that you create with the AWS CLI, include them in
the application source bundle that you upload to Amazon S3.

For details about configuration files, see .Ebextensions.

~/workspace/my-app-v1.zip
|-- .ebextensions
| |-- environmentvariables.config
| `-- healthcheckurl.config
|-- index.php
`-- styles.css

To upload an application source bundle and create an environment with the AWS CLI

1. If you don't already have an Elastic Beanstalk bucket in Amazon S3, create one with create-
storage-location.

$ aws elasticbeanstalk create-storage-location
{
 "S3Bucket": "elasticbeanstalk-us-west-2-123456789012"
}

2. Upload your application source bundle to Amazon S3.

$ aws s3 cp sourcebundle.zip s3://elasticbeanstalk-us-west-2-123456789012/my-app/
sourcebundle.zip

During creation 932

AWS Elastic Beanstalk Developer Guide

3. Create the application version.

$ aws elasticbeanstalk create-application-version --application-name my-app --
version-label v1 --description MyAppv1 --source-bundle S3Bucket="elasticbeanstalk-
us-west-2-123456789012",S3Key="my-app/sourcebundle.zip" --auto-create-application

4. Create the environment.

$ aws elasticbeanstalk create-environment --application-name my-app --environment-
name my-env --version-label v1 --solution-stack-name "64bit Amazon Linux 2015.03
 v2.0.0 running Tomcat 8 Java 8"

Using a saved configuration

To apply a saved configuration to an environment during creation, use the --template-name
parameter.

$ aws elasticbeanstalk create-environment --application-name my-app --environment-name
 my-env --template-name savedconfig --version-label v1

When you specify a saved configuration, do not also specify a solution stack name. Saved
configurations already specify a solution stack and Elastic Beanstalk will return an error if you try
to use both options.

Using command line options

Use the --option-settings parameter to specify configuration options in JSON format.

$ aws elasticbeanstalk create-environment --application-name my-app --environment-name
 my-env --version-label v1 --template-name savedconfig --option-settings '[
 {
 "Namespace": "aws:elasticbeanstalk:application",
 "OptionName": "Application Healthcheck URL",
 "Value": "/health"
 }
]

To load the JSON from a file, use the file:// prefix.

During creation 933

AWS Elastic Beanstalk Developer Guide

$ aws elasticbeanstalk create-environment --application-name my-app --environment-
name my-env --version-label v1 --template-name savedconfig --option-settings file://
healthcheckurl.json

Elastic Beanstalk applies option settings that you specify with the --option-settings option
directly to your environment. If the same options are specified in a saved configuration or
configuration file, --option-settings overrides those values.

Setting configuration options after environment creation

You can modify the option settings on a running environment by applying saved configurations,
uploading a new source bundle with configuration files (.ebextensions), or using a JSON
document. The EB CLI and Elastic Beanstalk console also have client-specific functionality for
setting and updating configuration options.

When you set or change a configuration option, you can trigger a full environment
update, depending on the severity of the change. For example, changes to options in the
aws:autoscaling:launchconfiguration, such as InstanceType, require that the Amazon
EC2 instances in your environment are reprovisioned. This triggers a rolling update. Other
configuration changes can be applied without any interruption or reprovisioning.

You can remove option settings from an environment with EB CLI or AWS CLI commands.
Removing an option that has been set directly on an environment at an API level allows settings in
configuration files, which are otherwise masked by settings applied directly to an environment, to
surface and take effect.

Settings in saved configurations and configuration files can be overridden by setting the same
option directly on the environment with one of the other configuration methods. However, these
can only be removed completely by applying an updated saved configuration or configuration
file. When an option is not set in a saved configuration, in a configuration file, or directly on an
environment, the default value applies, if there is one. See Precedence for details.

Clients

• The Elastic Beanstalk console

• The EB CLI

• The AWS CLI

After creation 934

AWS Elastic Beanstalk Developer Guide

The Elastic Beanstalk console

You can update configuration option settings in the Elastic Beanstalk console by deploying an
application source bundle that contains configuration files, applying a saved configuration, or
modifying the environment directly with the Configuration page in the environment management
console.

Methods

• Using configuration files (.ebextensions)

• Using a saved configuration

• Using the Elastic Beanstalk console

Using configuration files (.ebextensions)

Update configuration files in your source directory, create a new source bundle, and deploy the
new version to your Elastic Beanstalk environment to apply the changes.

For details about configuration files, see .Ebextensions.

To deploy a source bundle

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. On the environment overview page, choose Upload and deploy.

4. Use the on-screen dialog box to upload the source bundle.

5. Choose Deploy.

6. When the deployment completes, you can choose the site URL to open your website in a new
tab.

Changes made to configuration files will not override option settings in saved configurations or
settings applied directly to the environment at the API level. See Precedence for details.

After creation 935

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Using a saved configuration

Apply a saved configuration to a running environment to apply option settings that it defines.

To apply a saved configuration to a running environment (Elastic Beanstalk console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

Note

If you have many applications, use the search bar to filter the application list.

3. In the navigation pane, find your application's name and choose Saved configurations.

4. Select the saved configuration you want to apply, and then choose Load.

5. Select an environment, and then choose Load.

Settings defined in a saved configuration override settings in configuration files, and are overridden
by settings configured using the environment management console.

See Saved configurations for details on creating saved configurations.

Using the Elastic Beanstalk console

The Elastic Beanstalk console presents many configuration options on the Configuration page for
each environment.

To change configuration options on a running environment (Elastic Beanstalk console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

After creation 936

https://console.aws.amazon.com/elasticbeanstalk
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

4. Find the configuration page you want to edit:

• If you see the option you're interested in, or you know which configuration category it's in,
choose Edit in the configuration category for it.

• To look for an option, turn on Table View, and then enter search terms into the search
box. As you type, the list gets shorter and shows only options that match your search
terms.

When you see the option you're looking for, choose Edit in the configuration category that
contains it.

5. Change settings, and then choose Save.

6. Repeat the previous two steps in additional configuration categories, as needed.

7. Choose Apply.

Changes made to configuration options in the environment management console are applied
directly to the environment. These changes override settings for the same options in configuration
files or saved configurations. For details, see Precedence.

For details about changing configuration options on a running environment using the Elastic
Beanstalk console, see the topics under Configuring Elastic Beanstalk environments.

The EB CLI

You can update configuration option settings with the EB CLI by deploying source code that
contains configuration files, applying settings from a saved configuration, or modifying the
environment configuration directly with the eb config command.

Methods

After creation 937

AWS Elastic Beanstalk Developer Guide

• Using configuration files (.ebextensions)

• Using a saved configuration

• Using eb config

• Using eb setenv

Using configuration files (.ebextensions)

Include .config files in your project folder under .ebextensions to deploy them with your
application code.

For details about configuration files, see .Ebextensions.

~/workspace/my-app/
|-- .ebextensions
| |-- environmentvariables.config
| `-- healthcheckurl.config
|-- .elasticbeanstalk
| `-- config.yml
|-- index.php
`-- styles.css

Deploy your source code with eb deploy.

~/workspace/my-app$ eb deploy

Using a saved configuration

You can use the eb config command to apply a saved configuration to a running environment.
Use the --cfg option with the name of the saved configuration to apply its settings to your
environment.

$ eb config --cfg v1

In this example, v1 is the name of a previously created and saved configuration file.

Settings applied to an environment with this command override settings that were applied during
environment creation, and settings defined in configuration files in your application source bundle.

After creation 938

AWS Elastic Beanstalk Developer Guide

Using eb config

The EB CLI's eb config command lets you set and remove option settings directly on an
environment by using a text editor.

When you run eb config, the EB CLI shows settings applied to your environment from all sources,
including configuration files, saved configurations, recommended values, options set directly on
the environment, and API defaults.

Note

eb config does not show environment properties. To set environment properties that you
can read from within your application, use eb setenv.

The following example shows settings applied in the
aws:autoscaling:launchconfiguration namespace. These settings include:

• Two recommended values, for IamInstanceProfile and InstanceType, applied by the EB
CLI during environment creation.

• The option EC2KeyName, set directly on the environment during creation based on repository
configuration.

• API default values for the other options.

ApplicationName: tomcat
DateUpdated: 2015-09-30 22:51:07+00:00
EnvironmentName: tomcat
SolutionStackName: 64bit Amazon Linux 2015.03 v2.0.1 running Tomcat 8 Java 8
settings:
...
aws:autoscaling:launchconfiguration:
 BlockDeviceMappings: null
 EC2KeyName: my-key
 IamInstanceProfile: aws-elasticbeanstalk-ec2-role
 ImageId: ami-1f316660
 InstanceType: t2.micro
...

After creation 939

AWS Elastic Beanstalk Developer Guide

To set or change configuration options with eb config

1. Run eb config to view your environment's configuration.

~/workspace/my-app/$ eb config

2. Change any of the setting values using the default text editor.

aws:autoscaling:launchconfiguration:
 BlockDeviceMappings: null
 EC2KeyName: my-key
 IamInstanceProfile: aws-elasticbeanstalk-ec2-role
 ImageId: ami-1f316660
 InstanceType: t2.medium

3. Save the temporary configuration file and exit.

4. The EB CLI updates your environment configuration.

Setting configuration options with eb config overrides settings from all other sources.

You can also remove options from your environment with eb config.

To remove configuration options (EB CLI)

1. Run eb config to view your environment's configuration.

~/workspace/my-app/$ eb config

2. Replace any value shown with the string null. You can also delete the entire line containing
the option that you want to remove.

aws:autoscaling:launchconfiguration:
 BlockDeviceMappings: null
 EC2KeyName: my-key
 IamInstanceProfile: aws-elasticbeanstalk-ec2-role
 ImageId: ami-1f316660
 InstanceType: null

3. Save the temporary configuration file and exit.

4. The EB CLI updates your environment configuration.

After creation 940

AWS Elastic Beanstalk Developer Guide

Removing options from your environment with eb config allows settings for the same options to
surface from configuration files in your application source bundle. See Precedence for details.

Using eb setenv

To set environment properties with the EB CLI, use eb setenv.

~/workspace/my-app/$ eb setenv ENVVAR=TEST
INFO: Environment update is starting.
INFO: Updating environment my-env's configuration settings.
INFO: Environment health has transitioned from Ok to Info. Command is executing on all
 instances.
INFO: Successfully deployed new configuration to environment.

This command sets environment properties in the
aws:elasticbeanstalk:application:environment namespace. Environment properties set
with eb setenv are available to your application after a short update process.

View environment properties set on your environment with eb printenv.

~/workspace/my-app/$ eb printenv
 Environment Variables:
 ENVVAR = TEST

The AWS CLI

You can update configuration option settings with the AWS CLI by deploying a source bundle that
contains configuration files, applying a remotely stored saved configuration, or modifying the
environment directly with the aws elasticbeanstalk update-environment command.

Methods

• Using configuration files (.ebextensions)

• Using a saved configuration

• Using command line options

Using configuration files (.ebextensions)

To apply configuration files to a running environment with the AWS CLI, include them in the
application source bundle that you upload to Amazon S3.

After creation 941

AWS Elastic Beanstalk Developer Guide

For details about configuration files, see .Ebextensions.

~/workspace/my-app-v1.zip
|-- .ebextensions
| |-- environmentvariables.config
| `-- healthcheckurl.config
|-- index.php
`-- styles.css

To upload an application source bundle and apply it to a running environment (AWS CLI)

1. If you don't already have an Elastic Beanstalk bucket in Amazon S3, create one with create-
storage-location:

$ aws elasticbeanstalk create-storage-location
{
 "S3Bucket": "elasticbeanstalk-us-west-2-123456789012"
}

2. Upload your application source bundle to Amazon S3.

$ aws s3 cp sourcebundlev2.zip s3://elasticbeanstalk-us-west-2-123456789012/my-app/
sourcebundlev2.zip

3. Create the application version.

$ aws elasticbeanstalk create-application-version --application-
name my-app --version-label v2 --description MyAppv2 --source-bundle
 S3Bucket="elasticbeanstalk-us-west-2-123456789012",S3Key="my-app/
sourcebundlev2.zip"

4. Update the environment.

$ aws elasticbeanstalk update-environment --environment-name my-env --version-label
 v2

Using a saved configuration

You can apply a saved configuration to a running environment with the --template-name option
on the aws elasticbeanstalk update-environment command.

After creation 942

AWS Elastic Beanstalk Developer Guide

The saved configuration must be in your Elastic Beanstalk bucket in a path named after your
application under resources/templates. For example, the v1 template for the my-app
application in the US West (Oregon) Region (us-west-2) for account 123456789012 is located at
s3://elasticbeanstalk-us-west-2-123456789012/resources/templates/my-app/v1

To apply a saved configuration to a running environment (AWS CLI)

• Specify the saved configuration in an update-environment call with the --template-name
option.

$ aws elasticbeanstalk update-environment --environment-name my-env --template-
name v1

Elastic Beanstalk places saved configurations in this location when you create them with aws
elasticbeanstalk create-configuration-template. You can also modify saved
configurations locally and place them in this location yourself.

Using command line options

To change configuration options with a JSON document (AWS CLI)

1. Define your option settings in JSON format in a local file.

2. Run update-environment with the --option-settings option.

$ aws elasticbeanstalk update-environment --environment-name my-env --option-
settings file://~/ebconfigs/as-zero.json

In this example, as-zero.json defines options that configure the environment with a minimum
and maximum of zero instances. This stops the instances in the environment without terminating
the environment.

~/ebconfigs/as-zero.json

[
 {
 "Namespace": "aws:autoscaling:asg",
 "OptionName": "MinSize",
 "Value": "0"
 },

After creation 943

AWS Elastic Beanstalk Developer Guide

 {
 "Namespace": "aws:autoscaling:asg",
 "OptionName": "MaxSize",
 "Value": "0"
 },
 {
 "Namespace": "aws:autoscaling:updatepolicy:rollingupdate",
 "OptionName": "RollingUpdateEnabled",
 "Value": "false"
 }
]

Note

Setting configuration options with update-environment overrides settings from all other
sources.

You can also remove options from your environment with update-environment.

To remove configuration options (AWS CLI)

• Run the update-environment command with the --options-to-remove option.

$ aws elasticbeanstalk update-environment --environment-name my-env --options-to-
remove Namespace=aws:autoscaling:launchconfiguration,OptionName=InstanceType

Removing options from your environment with update-environment allows settings for the
same options to surface from configuration files in your application source bundle. If an option
isn't configured using any of these methods, the API default value applies, if one exists. See
Precedence for details.

General options for all environments

Namespaces

• aws:autoscaling:asg

• aws:autoscaling:launchconfiguration

• aws:autoscaling:scheduledaction

General options 944

AWS Elastic Beanstalk Developer Guide

• aws:autoscaling:trigger

• aws:autoscaling:updatepolicy:rollingupdate

• aws:ec2:instances

• aws:ec2:vpc

• aws:elasticbeanstalk:application

• aws:elasticbeanstalk:application:environment

• aws:elasticbeanstalk:cloudwatch:logs

• aws:elasticbeanstalk:cloudwatch:logs:health

• aws:elasticbeanstalk:command

• aws:elasticbeanstalk:environment

• aws:elasticbeanstalk:environment:process:default

• aws:elasticbeanstalk:environment:process:process_name

• aws:elasticbeanstalk:environment:proxy:staticfiles

• aws:elasticbeanstalk:healthreporting:system

• aws:elasticbeanstalk:hostmanager

• aws:elasticbeanstalk:managedactions

• aws:elasticbeanstalk:managedactions:platformupdate

• aws:elasticbeanstalk:monitoring

• aws:elasticbeanstalk:sns:topics

• aws:elasticbeanstalk:sqsd

• aws:elasticbeanstalk:trafficsplitting

• aws:elasticbeanstalk:xray

• aws:elb:healthcheck

• aws:elb:loadbalancer

• aws:elb:listener

• aws:elb:listener:listener_port

• aws:elb:policies

• aws:elb:policies:policy_name

• aws:elbv2:listener:default

General options 945

AWS Elastic Beanstalk Developer Guide

• aws:elbv2:listener:listener_port

• aws:elbv2:listenerrule:rule_name

• aws:elbv2:loadbalancer

• aws:rds:dbinstance

aws:autoscaling:asg

Configure your environment's Auto Scaling group. For more information, see the section called
“Auto Scaling group”.

Namespace: aws:autoscaling:asg

Name Description Default Valid values

Availability
Zones

Availability Zones (AZs) are distinct
locations within an AWS Region that
are engineered to be isolated from
failures in other AZs. They provide
inexpensive, low-latency network
connectivity to other AZs in the same
Region. Choose the number of AZs for
your instances.

Any Any

Any 1

Any 2

Any 3

Cooldown Cooldown periods help prevent
Amazon EC2 Auto Scaling from
initiating additional scaling activities
before the effects of previous activitie
s are visible. A cooldown period is
the amount of time, in seconds, after
a scaling activity completes before
another scaling activity can start.

360 0 to 10000

Custom
Availability
Zones

Define the AZs for your instances. None us-east-1a

us-east-1b

us-east-1c

us-east-1d

General options 946

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

us-east-1e

eu-centra
l-1

EnableCap
acityReba
lancing

Specifies whether to enable the
Capacity Rebalancing feature for Spot
Instances in your Auto Scaling Group.
For more information, see Capacity
Rebalancing in the Amazon EC2 Auto
Scaling User Guide.

This option is only relevant when
EnableSpot is set to true in the
aws:ec2:instances namespace,
and there is at least one Spot Instance
in your Auto Scaling group.

false true

false

MinSize The minimum number of instances
that you want in your Auto Scaling
group.

1 1 to 10000

MaxSize The maximum number of instances
that you want in your Auto Scaling
group.

4 1 to 10000

aws:autoscaling:launchconfiguration

Configure the Amazon Elastic Compute Cloud (Amazon EC2) instances for your environment.

The instances that are used for your environment are created using either an Amazon EC2 launch
template or an Auto Scaling group launch configuration resource. The following options work with
both of these resource types.

For more information, see the section called “Amazon EC2 instances”. You can also reference more
information about Amazon Elastic Block Store (EBS) in Amazon EBS chapter in the Amazon EC2
User Guide for Linux Instances.

General options 947

https://docs.aws.amazon.com/autoscaling/ec2/userguide/capacity-rebalance.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/capacity-rebalance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html

AWS Elastic Beanstalk Developer Guide

Namespace: aws:autoscaling:launchconfiguration

Name Description Default Valid values

DisableIM
DSv1

Set to true to disable Instance
Metadata Service Version 1 (IMDSv1).

The instances for your environme
nt default as follows, based on the
platform operating system:

• Windows server, AL2 and earlier –
enable both IMDSv1 and IMDSv2

• AL2023 – enable only IMDSv2

For more information, see Configuri
ng the instance metadata service
(Amazon Linux)
or Configuring the instance metadata
service (Windows server).

false – platforms
based on Windows
server, Amazon
Linux 2 and earlier

true – platforms
based on Amazon
Linux 2023

true

false

EC2KeyNam
e

You can use a key pair to securely log
into your EC2 instance.

Note

If you use the Elastic
Beanstalk console to create
an environment, you can't set
this option in a configuration
file. The console overrides this
option with a recommended
value.

None

IamInstan
ceProfile

An instance profile enables AWS
Identity and Access Managemen
t (IAM) users and AWS services to
access temporary security credentia

None Instance profile
name or ARN.

General options 948

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/configuring-instance-metadata-service.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/configuring-instance-metadata-service.html

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

ls to make AWS API calls. Specify the
instance profile's name or its ARN.

Examples:

• aws-elasticbeanstalk-ec2-
role

• arn:aws:iam::12345
6789012:instance-p
rofile/aws-elastic
beanstalk-ec2-role

Note

If you use the Elastic Beanstalk
console or EB CLI to create
an environment, you can't set
this option in a configuration
file. The console and EB CLI
override this option with a
recommended value.

ImageId You can override the default Amazon
Machine Image (AMI) by specifying
your own custom AMI ID.

Example: ami-1f316660

None

General options 949

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

InstanceT
ype

The instance type that's used to
run your application in an Elastic
Beanstalk environment.

Important

The InstanceType option
is obsolete. It's replaced by
the newer and more powerful
InstanceTypes option in
the aws:ec2:instances
namespace. You can use this
new option to specify a list of
one or more instance types for
your environment. The first
value on that list is equivalent
to the value of the InstanceT
ype option that's included in
the aws:autoscaling:la
unchconfiguration
namespace that's described
here. We recommend that
you specify instance types
by using the new option. If
specified, the new option takes
precedence over the previous
one. For more information,
see the section called “The
aws:ec2:instances namespace”.

The instance types that are available
depend on the Availability Zones and
Region used. If you choose a subnet,
the Availability Zone that contains

Varies by account
and Region.

One EC2
instance type.

Varies by
account, Region,
and Availability
Zone. You can
obtain a list of
Amazon EC2
instance types
filtered by these
values. For more
information,
see Available
instance types in
the Amazon EC2
User Guide for
Linux Instances
 or Available
instance types
in the Amazon
EC2 User Guide
for Windows
Instances.

General options 950

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html#AvailableInstanceTypes
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html#AvailableInstanceTypes

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

that subnet determines the available
instance types.

• Elastic Beanstalk doesn't support
Amazon EC2 Mac instance types.

• For more information about
Amazon EC2 instance families and
types, see Instance types in the
Amazon EC2 User Guide for Linux
Instances or Instance types in the
Amazon EC2 User Guide for Windows
Instances.

• For more information on the
available instance types across
Regions, see Available instance
types in the Amazon EC2 User Guide
for Linux Instances or Available
instance types in the Amazon EC2
User Guide for Windows Instances.

Note

If you use the Elastic Beanstalk
console or EB CLI to create
an environment, you can't set
this option in a configuration
file. The console and EB CLI
override this option with a
recommended value.

General options 951

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html#AvailableInstanceTypes
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html#AvailableInstanceTypes

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

LaunchTem
plateTagP
ropagatio
nEnabled

Set to true to enable the propagati
on of environment tags to the launch
templates for specific resources
provisioned to the environment.

Elastic Beanstalk can only propagate
tags to launch templates for the
following resources:

• EBS volumes

• EC2 instances

• EC2 network interfaces

• AWS CloudFormation launch
templates that define a resource

This constraint exists because
CloudFormation only allows tags
on template creation for specific
resources. For more information
see TagSpecification in the AWS
CloudFormation User Guide.

Important

• Changing this option value
from false to true for an
existing environment may
be a breaking change for
previously existing tags.

• When this feature is
enabled, the propagation
of tags will require EC2
replacement, which can
result in downtime. You can

false true

false

General options 952

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-launchtemplate-tagspecification.html

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

enable rolling updates to
apply configuration changes
in batches and prevent
downtime during the update
process. For more informati
on, see Configuration
changes.

For more information about launch
templates, see the following:

• Launch templates in the Amazon
EC2 Auto Scaling User Guide

• Working with templates in the AWS
CloudFormation User Guide

• Elastic Beanstalk template snippets
in the AWS CloudFormation User
Guide

For more information about this
option, see Tag propagation to launch
templates.

Monitorin
gInterval

The interval (in minutes) that you
want Amazon CloudWatch metrics to
be returned at.

5 minute 1 minute

5 minute

General options 953

https://docs.aws.amazon.com/autoscaling/ec2/userguide/launch-templates.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-elasticbeanstalk.html

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

SecurityG
roups

Lists the Amazon EC2 security groups
to assign to the EC2 instances in the
Auto Scaling group to define firewall
rules for the instances.

You can provide a single string of
comma-separated values that contain
the name of existing Amazon EC2
security groups or references to
AWS::EC2::SecurityGroup resources
created in the template. Security
group names are case sensitive.

If you use Amazon Virtual Private
Cloud (Amazon VPC) with Elastic
Beanstalk so that your instances are
launched within a virtual private
cloud (VPC), specify security group IDs
instead of security group names.

elasticbe
anstalk-d
efault

General options 954

https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/vpc/latest/userguide/

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

 SSHSource
Restriction

Used to lock down SSH access to an
environment. For example, you can
lock down SSH access to the EC2
instances so that only a bastion host
can access the instances in the private
subnet.

This string takes the following form:

protocol, fromPort, toPort,
source_restriction

protocol

The protocol for the ingress rule.

fromPort

The starting port number.

toPort

The ending port number.

source_restriction

The CIDR range or the name
of a security group that traffic
must route through.. To specify
a security group from another
account (EC2-Classic only,
must be in the same Region),
include the account ID before
the security group name. Use the
following format: other_acc
ount_id /security_
group_name . If you use Amazon
Virtual Private Cloud (Amazon
VPC) with Elastic Beanstalk so that

None

General options 955

https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/vpc/latest/userguide/

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

your instances are launched within
a virtual private cloud (VPC),
specify a security group ID instead
of a security group name.

Example: tcp, 22, 22,
54.240.196.185/32

Example: tcp, 22, 22, my-
security-group

Example (EC2-Classic): tcp, 22,
22, 123456789012/their-
security-group

Example (VPC): tcp, 22, 22,
sg-903004f8

General options 956

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

BlockDevi
ceMappings

Attach additional Amazon EBS
volumes or instance store volumes on
all of the instances in the Auto Scaling
group.

When mapping instance store
volumes, you only need to map the
device name to a volume name.
However, we recommend, when
mapping Amazon EBS volumes, you
additionally specify some or all of the
following fields (each field must be
separated by a colon):

• snapshot ID

• size, in GB

• delete on terminate (true or
false)

• storage type (only for gp3, gp2,
standard, st1, sc1, or io1)

• IOPS (only for gp3 or io1)

• throughput (only for gp3)

The following example attaches
three Amazon EBS volumes, one
blank 100GB gp2 volume and one
snapshot, one blank 20GB io1 volume
with 2000 provisioned IOPS, and an
instance store volume ephemeral
0 . Multiple instance store volumes
can be attached if the instance type
supports it.

None • size — must
be between
500 and
16384 GiB

• throughput
— must be
between 125
and 1000
mebibytes per
second (MiB/s)

General options 957

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

/dev/sdj=:100:true:gp2,/dev
/sdh=snap-51eef269,/dev/
sdi=:20:true:io1:2000,/
dev/sdb=ephemeral0

RootVolum
eType

Volume type (magnetic, general
purpose SSD or provisioned IOPS
SSD) to use for the root Amazon EBS
volume attached to the EC2 instances
for your environment.

Varies by platform. standard
for magnetic
storage.

gp2 or gp3 for
general purpose
SSD.

io1 for
provisioned IOPS
SSD.

RootVolum
eSize

The storage capacity of the root
Amazon EBS volume in whole GB.

Required if you set RootVolum
eType to provisioned IOPS SSD.

For example, "64".

Varies per platform
for magnetic
storage and general
purpose SSD.

None for provision
ed IOPS SSD.

10 to 16384
GB for general
purpose and
provisioned IOPS
SSD.

8 to 1024 GB for
magnetic.

RootVolum
eIOPS

The desired input/output operation
s per second (IOPS) for a provisioned
IOPS SSD root volume or for a general
purpose gp3 SSD root volume.

The maximum ratio of IOPS to volume
size is 500 to 1. For example, a volume
with 3000 IOPS must be at least 6 GiB.

None 100 to 20000
for io1 provision
ed IOPS SSD
root volumes.

3000 to 16000
for general
purpose gp3
SSD root
volumes.

General options 958

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

RootVolum
eThroughp
ut

The desired throughput of mebibytes
per second (MiB/s) to provision for the
Amazon EBS root volume attached to
your environment's EC2 instance.

Note

This option is only applicable
to gp3 storage types.

None 125 to 1000

aws:autoscaling:scheduledaction

Configure scheduled actions for your environment's Auto Scaling group. For each action, specify a
resource_name in addition to the option name, namespace, and value for each setting. See The
aws:autoscaling:scheduledaction namespace for examples.

Namespace: aws:autoscaling:scheduledaction

Name Description Default Valid values

StartTime For one-time actions, choose the
date and time to run the action. For
recurrent actions, choose when to
activate the action.

None A ISO-8601
timestamp
 unique across all
scheduled scaling
actions.

EndTime A date and time in the future (in the
UTC/GMT time zone) when you want
the scheduled scaling action to stop
repeating. If you don't specify an
EndTime, the action recurs according
to the Recurrence expression.

Example: 2015-04-28T04:07:2Z

None A ISO-8601
timestamp
 unique across all
scheduled scaling
actions.

General options 959

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

When a scheduled action ends,
Amazon EC2 Auto Scaling doesn't
automatically revert to its previous
settings. Configure a second
scheduled action to return to the
original settings as needed.

MaxSize The maximum instance count to
apply when the action runs.

None 0 to 10000

MinSize The minimum instance count to
apply when the action runs.

None 0 to 10000

DesiredCapacity Set the initial desired capacity for
the Auto Scaling group. After the
scheduled action is applied, triggers
adjust the desired capacity based on
their settings.

None 0 to 10000

Recurrence The frequency that you want the
scheduled action to occur at. If you
don't specify a recurrence, then the
scaling action occurs only once, as
specified by the StartTime .

None A Cron expressio
n.

Suspend Set to true to deactivate a recurrent
scheduled action temporarily.

false true

false

aws:autoscaling:trigger

Configure scaling triggers for your environment's Auto Scaling group.

Note

Three options in this namespace determine how long the metric for a trigger can remain
beyond its defined limits before the trigger initates. These options are related as follows:

General options 960

http://en.wikipedia.org/wiki/Cron

AWS Elastic Beanstalk Developer Guide

BreachDuration = Period * EvaluationPeriods
The default values for these options (5, 5, and 1, respectively) satisfy this equation. If you
specify inconsistent values, Elastic Beanstalk might modify one of the values so that the
equation is still satisfied.

Namespace: aws:autoscaling:trigger

Name Description Default Valid values

BreachDuration The amount of time, in minutes, a
metric can be beyond its defined
limit (as specified in the UpperThre
shold and LowerThreshold)
before the trigger is invoked.

5 1 to 600

LowerBreachScaleIn
crement

How many Amazon EC2 instances to
remove when performing a scaling
activity.

-1

LowerThreshold If the measurement falls below this
number for the breach duration, a
trigger is invoked.

2000000 0 to 20000000

MeasureName The metric that's used for your Auto
Scaling trigger.

Note

HealthyHostCount ,
UnhealthyHostCount
and TargetResponseTime

 are only applicable
for environments with a
dedicated load balancer.
These aren't valid metric
values for environments
configured with a shared load

NetworkOu
t

CPUUtiliz
ation

NetworkIn

NetworkOut

DiskWriteOps

DiskReadB
ytes

DiskReadOps

DiskWrite
Bytes

General options 961

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

balancer. For more informati
on about load balancer types,
see Load balancer for your
Elastic Beanstalk environme
nt.

Latency

RequestCount

HealthyHo
stCount

Unhealthy
HostCount

TargetRes
ponseTime

Period Specifies how frequently Amazon
CloudWatch measures the metrics for
your trigger. The value is the number
of minutes between two consecutive
periods.

5 1 to 600

EvaluationPeriods The number of consecutive evaluatio
n periods that's used to determine if
a breach is occurring.

1 1 to 600

Statistic The Statistic the trigger uses, such as
Average.

Average Minimum

Maximum

Sum

Average

General options 962

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

Unit The unit for the trigger measureme
nt, such as Bytes.

Bytes Seconds

Percent

Bytes

Bits

Count

Bytes/Second

Bits/Second

Count/Second

None

UpperBreachScaleIn
crement

Specifies how many Amazon EC2
instances to add when performing a
scaling activity.

1

UpperThreshold If the measurement is higher than
this number for the breach duration,
a trigger is invoked.

6000000 0 to 20000000

aws:autoscaling:updatepolicy:rollingupdate

Configure rolling updates your environment's Auto Scaling group.

Namespace: aws:autoscaling:updatepolicy:rollingupdate

Name Description Default Valid values

MaxBatchSize The number of
instances included
in each batch of the
rolling update.

One-third of
the minimum
size of the Auto
Scaling group,

1 to 10000

General options 963

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

rounded to the
next highest
integer.

MinInstancesInService The minimum
number of instances
that must be in
service within the
Auto Scaling group
while other instances
are terminated.

The minimum
size of the Auto
Scaling group or
one fewer than
the maximum
size of the Auto
Scaling group,
whichever is
lower.

0 to 9999

General options 964

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

RollingUpdateEnabled If true, it enables
rolling updates for
an environment.
Rolling updates are
useful when you
need to make small,
frequent updates to
your Elastic Beanstalk
software applicati
on and you want to
avoid application
downtime.

Setting this value
to true automatic
ally enables the
MaxBatchS
ize , MinInstan
cesInService ,
and PauseTime
options. Setting any
of those options
also automatically
sets the RollingUp
dateEnabled
option value to true.
Setting this option
to false disables
rolling updates.

Note

If you use
the Elastic
Beanstalk

false true

false

General options 965

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

console or
EB CLI to
create an
environment,
you can't set
this option in
a configura
tion file.
The console
and EB CLI
override this
option with a
recommend
ed value.

General options 966

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

RollingUpdateType This includes three
types: time-base
d rolling updates,
health-based
rolling updates, and
immutable updates.

Time-based rolling
updates apply a
PauseTime between
batches. Health-
based rolling
updates wait for
new instances to
pass health checks
before moving on
to the next batch.
Immutable updates
launch a full set of
instances in a new
Auto Scaling group.

Note

If you use
the Elastic
Beanstalk
console or
EB CLI to
create an
environment,
you can't set
this option in
a configura
tion file.

Time Time

Health

Immutable

General options 967

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

The console
and EB CLI
override this
option with a
recommend
ed value.

PauseTime The amount of
time (in seconds,
minutes, or hours)
the Elastic Beanstalk
service waits after it
completed updates
to one batch of
instances and before
it continues on to the
next batch.

Automatically
computed based
on instance type
and container.

PT0S* (0 seconds)
to PT1H (1 hour)

Timeout The maximum
amount of time
(in minutes or
hours) to wait for all
instances in a batch
of instances to pass
health checks before
canceling the update.

PT30M (30
minutes)

PT5M* (5 minutes)
to PT1H (1 hour)

*ISO8601 duration
format: PT#H#M#S
where each # is the
number of hours,
minutes, and/or
seconds, respectiv
ely.

aws:ec2:instances

Configure your environment's instances, including Spot options. This namespace complements
aws:autoscaling:launchconfiguration and aws:autoscaling:asg.

For more information, see the section called “Auto Scaling group”.

General options 968

http://en.wikipedia.org/wiki/ISO_8601#Durations

AWS Elastic Beanstalk Developer Guide

Namespace: aws:ec2:instances

Name Description DefaultValid values

EnableSpot Enable Spot Instance requests for
your environment. When false,
some options in this namespace don't
take effect.

false true

false

InstanceTypes

A comma-separated list of instance
types that you want your environme
nt to use (for example, t2.micro,
t3.micro).

When Spot Instances are not
activated (EnableSpot is false),
only the first instance type on the list
is used.

The first instance type on the list
in this option is equivalent to the
value of the InstanceType option
in the aws:autoscaling:la
unchconfiguration namespace.
We don't recommend using the latter
option because it's obsolete. If you
specify both, the first instance type
on the list in the InstanceTypes
option is used, and InstanceType
is ignored.

The instance types that are available
depend on the Availability Zones and
Region used. If you choose a subnet,
the Availability Zone that contains
that subnet determines the available
instance types.

A
list
of
two
instance
types.

Varies
by
account
and
Region.

One to ten EC2 instance
types. We recommend
at least two.

Varies by account,
Region, and Availability
Zone. You can obtain
a list of Amazon EC2
instance types filtered
by these values. For
more information, see
Available instance types
in the Amazon EC2 User
Guide for Linux Instances
 or Available instance
types in the Amazon EC2
User Guide for Windows
Instances.

The instance types must
all be part of the same
architecture (arm64,
x86_64, i386).

Supported
Architectures
is also part of this
namespace. If you
provide any values

General options 969

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html#AvailableInstanceTypes
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html#AvailableInstanceTypes

AWS Elastic Beanstalk Developer Guide

Name Description DefaultValid values

• Elastic Beanstalk doesn't support
Amazon EC2 Mac instance types.

• For more information about
Amazon EC2 instance families
and types, see Instance types in
the Amazon EC2 User Guide for
Linux Instances or Instance types
in the Amazon EC2 User Guide for
Windows Instances.

• For more information on the
available instance types across
Regions, see Available instance
types in the Amazon EC2 User Guide
for Linux Instances or Available
instance types in the Amazon EC2
User Guide for Windows Instances.

Note

Some older AWS accounts
might provide Elastic
Beanstalk with default
instance types that don't
support Spot Instances
(for example, t1.micro). If
you activate Spot Instance
requests and you get an error
about an instance type that
doesn’t support Spot, be sure
to configure instance types
that support Spot. To choose
Spot Instance types, use the
Spot Instance Advisor.

for Supported
Architectures ,
the value(s) you enter
for InstanceTypes
must belong to one,
and only one, of the
architectures you
provide for Supported
Architectures .

General options 970

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#AvailableInstanceTypes
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html#AvailableInstanceTypes
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html#AvailableInstanceTypes
https://aws.amazon.com/ec2/spot/instance-advisor/

AWS Elastic Beanstalk Developer Guide

Name Description DefaultValid values

When you update your environme
nt configuration and remove one
or more instance types from the
InstanceTypes option, Elastic
Beanstalk terminates any Amazon
EC2 instances running on any of
the removed instance types. Your
environment's Auto Scaling group
then launches new instances, as
necessary to complete the desired
capacity, using your current specified
instance types.

SpotFleet
OnDemandBase

The minimum number of On-Demand
Instances that your Auto Scaling
group provisions before considering
Spot Instances as your environment
scales up.

This option is relevant only when
EnableSpot is true.

0 0 to MaxSize option
in aws:autos
caling:asg
namespace

General options 971

AWS Elastic Beanstalk Developer Guide

Name Description DefaultValid values

SpotFleet
OnDemandA
boveBaseP
ercentage

The percentage of On-Demand
Instances as part of additional
capacity that your Auto Scaling group
provisions beyond the SpotOnDem
andBase instances.

This option is relevant only when
EnableSpot is true.

0
for a
single-
in
stance
environme
nt

70
for a
load-
bala
nced
environme
nt

0 to 100

SpotMaxPrice The maximum price per unit hour, in
USD, that you're willing to pay for a
Spot Instance. For recommendations
about maximum price options for
Spot Instances, see Spot Instance
pricing history in the Amazon EC2
User Guide for Linux Instances.

This option is relevant only when
EnableSpot is true.

On-
Demand
price,
for
each
instance
type.
The
option's
value
in
this
case
is
null.

0.001 to 20.0

null

General options 972

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html

AWS Elastic Beanstalk Developer Guide

Name Description DefaultValid values

SupportedArchitect
ures

A comma-separated list of EC2
instance architecture types that you'll
use for your environment.

Elastic Beanstalk supports instance
types based on the following
processor architectures:

• AWS Graviton 64-bit Arm architect
ure (arm64)

• 64-bit architecture (x86_64)

• 32-bit architecture (i386)

For more information about
processor architecture and Amazon
EC2 instance types see the section
called “Amazon EC2 instance types”.

None arm64

x86_64

i386

Note

The 32-bit
architecture
i386 is not
supported by
the majority of
Elastic Beanstalk
platforms. We
recommended
that you choose
the x86_64 or
arm64 architect
ure types
instead.

aws:ec2:vpc

Configure your environment to launch resources in a custom Amazon Virtual Private Cloud
(Amazon VPC). If you don't configure settings in this namespace, Elastic Beanstalk launches
resources in the default VPC.

Namespace: aws:ec2:vpc

Name Description Default Valid
values

VPCId The ID for your Amazon VPC. None

General options 973

https://docs.aws.amazon.com/vpc/latest/userguide/

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid
values

Subnets The IDs of the Auto Scaling group subnet or subnets.
If you have multiple subnets, specify the value as
a single comma-separated string of subnet IDs (for
example, "subnet-11111111,subnet-222
22222").

None

ELBSubnets The IDs of the subnet or subnets for the elastic
load balancer. If you have multiple subnets, specify
the value as a single comma-separated string of
subnet IDs (for example, "subnet-11111111,s
ubnet-22222222").

None

ELBScheme Specify internal if you want to create an internal
load balancer in your Amazon VPC so that your Elastic
Beanstalk application can't be accessed from outside
your Amazon VPC. If you specify a value other than
public or internal, Elastic Beanstalk ignores the
value.

public public

internal

DBSubnets Contains the IDs of the database subnets. This is only
used if you want to add an Amazon RDS DB Instance
as part of your application. If you have multiple
subnets, specify the value as a single comma-sep
arated string of subnet IDs (for example, "subnet-1
1111111,subnet-22222222").

None

General options 974

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid
values

Associate
PublicIpA
ddress

Specifies whether to launch instances with public IP
addresses in your Amazon VPC. Instances with public
IP addresses don't require a NAT device to communica
te with the Internet. You must set the value to true if
you want to include your load balancer and instances
in a single public subnet.

This option has no effect on a single-instance
environment, which always has a single Amazon EC2
instance with an Elastic IP address. The option is
relevant to load-balanced, scalable environments.

None true

false

aws:elasticbeanstalk:application

Configure a health check path for your application. For more information, see Basic health
reporting.

Namespace: aws:elasticbeanstalk:application

Name Description DefaultValid values

Application
Healthcheck URL

The path where health check requests
are sent to. If this path isn't set, the
load balancer attempts to make a
TCP connection on port 80 to verify
the health status of your applicati
on. Set to a path starting with / to
send an HTTP GET request to that
path. You can also include a protocol
(HTTP, HTTPS, TCP, or SSL) and port
before the path to check HTTPS
connectivity or use a non-default
port.

None Valid values include:

/ (HTTP GET to root
path)

/health

HTTPS:443/

HTTPS:443/ health

General options 975

AWS Elastic Beanstalk Developer Guide

Name Description DefaultValid values

Note

If you use the Elastic
Beanstalk console to create
an environment, you can't set
this option in a configuration
file. The console overrides this
option with a recommended
value.

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding options.
You must remove these settings if you want to use configuration files to configure the same. See
Recommended values for details.

aws:elasticbeanstalk:application:environment

Configure environment properties for your application.

Namespace: aws:elasticbeanstalk:application:environment

Name Description Default Valid values

Any environment
variable name.

Pass in key-value pairs. None Any environment
variable value.

See Environment properties and other software settings for more information.

aws:elasticbeanstalk:cloudwatch:logs

Configure instance log streaming for your application.

General options 976

AWS Elastic Beanstalk Developer Guide

Namespace: aws:elasticbeanstalk:cloudwatch:logs

Name Description Default Valid
values

StreamLogs Specifies whether to create groups in CloudWatch
Logs for proxy and deployment logs, and stream logs
from each instance in your environment.

false true

false

DeleteOnT
erminate

Specifies whether to delete the log groups when the
environment is terminated. If false, the logs are
kept RetentionInDays days.

false true

false

Retention
InDays

The number of days to keep log events before they
expire.

7 1, 3, 5,
7, 14,
30, 60,
90, 120,
150,
180,
365,
400,
545,
731,
1827,
3653

aws:elasticbeanstalk:cloudwatch:logs:health

Configure environment health log streaming for your application.

Namespace: aws:elasticbeanstalk:cloudwatch:logs:health

Name Description Default Valid
values

HealthStr
eamingEna
bled

For environments with enhanced health reporting
enabled, specifies whether to create a group in
CloudWatch Logs for environment health and archive

false true

false

General options 977

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid
values

Elastic Beanstalk environment health data. For
information about enabling enhanced health, see
aws:elasticbeanstalk:healthreporting
:system .

DeleteOnT
erminate

Specifies whether to delete the log group when the
environment is terminated. If false, the health data
is kept RetentionInDays days.

false true

false

Retention
InDays

The number of days to keep the archived health data
before it expires.

7 1, 3, 5,
7, 14,
30, 60,
90, 120,
150,
180,
365,
400,
545,
731,
1827,
3653

aws:elasticbeanstalk:command

Configure the deployment policy for your application code. For more information, see the section
called “Deployment options”.

Namespace: aws:elasticbeanstalk:command

Name Description Default Valid
values

Deploymen
tPolicy

Choose a deployment policy for application
version deployments.

AllAtOnce AllAtOnce

General options 978

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid
values

Note

If you use the Elastic Beanstalk
console to create an environment, you
can't set this option in a configuration
file. The console overrides this option
with a recommended value.

Rolling

RollingWi
thAdditio
nalBatch

Immutable

TrafficSp
litting

Timeout The amount of time, in seconds, to wait
for an instance to complete executing
commands.

Elastic Beanstalk internally adds 240 seconds
(four minutes) to the Timeout value. For
example, the effective timeout by default is
840 seconds (600 + 240), or 14 minutes.

600 1 to 3600

BatchSizeType The type of number that's specified in
BatchSize.

Note

If you use the Elastic Beanstalk
console or EB CLI to create an
environment, you can't set this option
in a configuration file. The console
and EB CLI override this option with a
recommended value.

Percentag
e

Percentag
e

Fixed

General options 979

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid
values

BatchSize The percentage or the fixed number of
Amazon EC2 instances in the Auto Scaling
group to simultaneously perform deploymen
ts on. Valid values vary depending on the
BatchSizeType setting used.

Note

If you use the Elastic Beanstalk
console or EB CLI to create an
environment, you can't set this option
in a configuration file. The console
and EB CLI override this option with a
recommended value.

100 1 to 100
(Percentag
e).

1 to
aws:autos
caling:as
g::MaxSize
(Fixed)

IgnoreHea
lthCheck

Don't cancel a deployment due to failed
health checks.

false true

false

aws:elasticbeanstalk:environment

Configure your environment's architecture and service role.

Namespace: aws:elasticbeanstalk:environment

Name Description Default Valid values

Environme
ntType

Set to SingleInstance to launch one
EC2 instance with no load balancer.

LoadBalan
ced

SingleIns
tance

LoadBalan
ced

ServiceRole The name of an IAM role that Elastic
Beanstalk uses to manage resources for the

None IAM role
name, path/

General options 980

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

environment. Specify a role name (optional
ly prefixed with a custom path) or its ARN.

Examples:

• aws-elasticbeanstalk-servic
e-role

• custom-path /custom-role

• arn:aws:iam::123456789012:r
ole/aws-elasticbeanstalk-se
rvice-role

Note

If you use the Elastic Beanstalk
console or EB CLI to create an
environment, you can't set this
option in a configuration file. The
console and EB CLI override this
option with a recommended value.

name, or
ARN

LoadBalan
cerType

The type of load balancer for your
environment. For more information, see the
section called “Load balancer”.

classic classic

applicati
on

network

General options 981

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

LoadBalan
cerIsShared

Specifies whether the environment's load
balancer is dedicated or shared. This option
can only be set for an Application Load
Balancer. It can't be changed after the
environment is created.

When false, the environment has its
own dedicated load balancer, created,
and managed by Elastic Beanstalk. When
true, the environment uses a shared load
balancer, created by you and specified in
the SharedLoadBalancer option of the
aws:elbv2:loadbalancer namespace.

false true

false

aws:elasticbeanstalk:environment:process:default

Configure your environment's default process.

Namespace: aws:elasticbeanstalk:environment:process:default

Name Description Default Valid values

DeregistrationDelay The amount of time,
in seconds, to wait
for active requests
to complete before
deregistering.

20 0 to 3600

HealthCheckInterval The interval of
time, in seconds,
that Elastic Load
Balancing checks the
health of the Amazon
EC2 instances of your
application.

With classic or
application load
balancer: 15

With network load
balancer: 30

With classic or
application load
balancer: 5 to 300

With network load
balancer: 10, 30

General options 982

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

HealthCheckPath The path that HTTP
requests for health
checks are sent to.

/ A routable path.

HealthCheckTimeout The amount of time,
in seconds, to wait
for a response during
a health check.

This option is
only applicable to
environments with
an application load
balancer.

5 1 to 60

HealthyThresholdCo
unt

The number
of consecutive
successful requests
before Elastic Load
Balancing changes
the instance health
status.

With classic or
application load
balancer: 3

With network load
balancer: 5

2 to 10

MatcherHTTPCode A comma-separated
list of HTTP code(s)
that indicate that an
instance is healthy.

This option is
only applicable to
environments with a
network or applicati
on load balancer.

200 With application load
balancer: 200 to 499

With network load
balancer: 200 to 399

Port Port that the process
listens on.

80 1 to 65535

General options 983

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

Protocol The protocol that the
process uses.

With an applicati
on load balancer,
you can only set this
option to HTTP or
HTTPS.

With a network load
balancer, you can
only set this option to
TCP.

With classic or
application load
balancer: HTTP

With network load
balancer: TCP

TCP

HTTP

HTTPS

StickinessEnabled Set to true to enable
sticky sessions.

This option is
only applicable to
environments with
an application load
balancer.

'false' 'false'

'true'

StickinessLBCookie
Duration

The lifetime, in
seconds, of the sticky
session cookie.

This option is
only applicable to
environments with
an application load
balancer.

86400 (one day) 1 to 604800

General options 984

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

StickinessType Set to lb_cookie
 to use cookies for

sticky sessions.

This option is
only applicable to
environments with
an application load
balancer.

lb_cookie lb_cookie

UnhealthyThreshold
Count

The number
of consecutive
unsuccessful requests
before Elastic Load
Balancing changes
the instance health
status.

5 2 to 10

aws:elasticbeanstalk:environment:process:process_name

Configure additional processes for your environment.

Namespace: aws:elasticbeanstalk:environment:process:process_name

Name Description Default Valid values

DeregistrationDelay The amount of time,
in seconds, to wait
for active requests
to complete before
deregistering.

20 0 to 3600

HealthCheckInterval The interval, in
seconds, that Elastic
Load Balancing
checks the health

With classic or
application load
balancer: 15

With classic or
application load
balancer: 5 to 300

General options 985

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

of Amazon EC2
instances for your
application.

With network load
balancer: 30

With network load
balancer: 10, 30

HealthCheckPath The path that HTTP
requests for health
checks are sent to.

/ A routable path.

HealthCheckTimeout The amount of time,
in seconds, to wait
for a response during
a health check.

This option is
only applicable to
environments with
an application load
balancer.

5 1 to 60

HealthyThresholdCo
unt

The number
of consecutive
successful requests
before Elastic Load
Balancing changes
the instance health
status.

With classic or
application load
balancer: 3

With network load
balancer: 5

2 to 10

General options 986

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

MatcherHTTPCode A comma-separated
list of HTTP code(s)
that indicates that an
instance is healthy.

This option is
only applicable to
environments with a
network or applicati
on load balancer.

200 With application load
balancer: 200 to 499

With network load
balancer: 200 to 399

Port The port that the
process listens on.

80 1 to 65535

Protocol The protocol that the
process uses.

With an applicati
on load balancer,
you can only set this
option to HTTP or
HTTPS.

With a network load
balancer, you can
only set this option to
TCP.

With classic or
application load
balancer: HTTP

With network load
balancer: TCP

TCP

HTTP

HTTPS

StickinessEnabled Set to true to enable
sticky sessions.

This option is
only applicable to
environments with
an application load
balancer.

'false' 'false'

'true'

General options 987

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

StickinessLBCookie
Duration

The lifetime, in
seconds, of the sticky
session cookie.

This option is
only applicable to
environments with
an application load
balancer.

86400 (one day) 1 to 604800

StickinessType Set to lb_cookie
 to use cookies for

sticky sessions.

This option is
only applicable to
environments with
an application load
balancer.

lb_cookie lb_cookie

UnhealthyThreshold
Count

The number
of consecutive
unsuccessful requests
before Elastic Load
Balancing changes
the instance health
status.

5 2 to 10

aws:elasticbeanstalk:environment:proxy:staticfiles

You can use the following namespace to configure the proxy server to serve static files. When
the proxy server receives a request for a file under the specified path, it serves the file directly
instead of routing the request to your application. This reduces the number of requests that your
application has to process.

General options 988

AWS Elastic Beanstalk Developer Guide

Map a path served by the proxy server to a folder in your source code that contains static assets.
Each option that you define in this namespace maps a different path.

Note

This namespace applies to platform branches based on Amazon Linux 2 and later. If your
environment uses a platform version based on Amazon Linux AMI (preceding Amazon Linux
2), refer to the section called “Platform specific options” for platform-specific static file
namespaces.

Namespace: aws:elasticbeanstalk:environment:proxy:staticfiles

Name Value

The path where the proxy server serves the
files. Start the value with /.

For example, specify /images to serve files at
subdomain .eleasticbeanstalk.com/
images .

The name of the folder containing the files.

For example, specify staticimages to serve
files from a folder named staticimages at
the top level of your source bundle.

aws:elasticbeanstalk:healthreporting:system

Configure enhanced health reporting for your environment.

Namespace: aws:elasticbeanstalk:healthreporting:system

Name Description Default Valid
values

SystemType The health reporting system (basic or
enhanced). Enhanced health reporting requires
a service role and a version 2 or newer platform
version.

basic basic

enhanced

General options 989

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid
values

Note

If you use the Elastic Beanstalk console
or EB CLI to create an environment, you
can't set this option in a configuration
file. The console and EB CLI override this
option with a recommended value.

ConfigDocument A JSON document that describes the environme
nt and instance metrics to publish to CloudWatc
h.

None

EnhancedH
ealthAuthEnabled

Enables authorization for the internal API
that Elastic Beanstalk uses to communica
te enhanced health information from your
environment instances to the Elastic Beanstalk
service.

For more information, see the section called
“Enhanced health roles”.

Note

This option is only applicable to
enhanced health reporting (such
as when SystemType is set to
enhanced).

true true

false

General options 990

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid
values

HealthChe
ckSuccess
Threshold

Lowers the threshold for instances to pass
health checks.

Note

If you use the Elastic Beanstalk console
to create an environment, you can't set
this option in a configuration file. The
console overrides this option with a
recommended value.

Ok Ok

Warning

Degraded

Severe

aws:elasticbeanstalk:hostmanager

Configure the EC2 instances in your environment to upload rotated logs to Amazon S3.

Namespace: aws:elasticbeanstalk:hostmanager

Name Description Default Valid
values

LogPublic
ationControl

Copy the log files of the Amazon EC2 instances
for your application to the Amazon S3 bucket
that's associated with your application.

false true

false

aws:elasticbeanstalk:managedactions

Configure managed platform updates for your environment.

Namespace: aws:elasticbeanstalk:managedactions

Name Description Default Valid values

ManagedActionsEnab
led

Enable managed platform
updates.

false true

false

General options 991

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

When you set this to true, you
must also specify a Preferred
StartTime and UpdateLev
el .

PreferredStartTime Configure a maintenance
window for managed actions in
UTC.

For example, "Tue:09:00" .

None Day and time
in the

day:hour:minute

format.

ServiceRoleForMana
gedUpdates

The name of an IAM role
that Elastic Beanstalk uses to
perform managed platform
updates for your environment.

You can use either the same
role that you specified
for the ServiceRole
option of the aws:elast
icbeanstalk:enviro
nment namespace, or your
account's managed updates
service-linked role. In the latter
case, if the account doesn't
have a managed-updates
service-linked role yet, Elastic
Beanstalk creates it.

None Same as
ServiceRo
le

or

AWSServic
eRoleForE
lasticBea
nstalkMan
agedUpdat
es

aws:elasticbeanstalk:managedactions:platformupdate

Configure managed platform updates for your environment.

General options 992

AWS Elastic Beanstalk Developer Guide

Namespace: aws:elasticbeanstalk:managedactions:platformupdate

Name Description Default Valid values

UpdateLevel The highest level of
update to apply with
managed platform updates.
Platforms are versioned
 major.minor.patch. For
example, 2.0.8 has a major
version of 2, a minor version of
0, and a patch version of 8.

None patch for
patch version
updates only.

minor for
both minor
and patch
version
updates.

InstanceRefreshEna
bled

Enable weekly instance
replacement.

This requires ManagedAc
tionsEnabled to be set to
true.

false true

false

aws:elasticbeanstalk:monitoring

Configure your environment to terminate EC2 instances that fail health checks.

Namespace: aws:elasticbeanstalk:monitoring

Name Description Default Valid values

Automatically
Terminate Unhealthy
Instances

Terminate an instance if it fails
health checks.

Note

This option was only
supported on legacy
environments. It
determined the health
of an instance based on

true true

false

General options 993

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

being able to reach it
and on other instance-
based metrics.
Elastic Beanstalk
doesn't provide a
way to automatically
terminate instances
based on application
health.

aws:elasticbeanstalk:sns:topics

Configure notifications for your environment.

Namespace: aws:elasticbeanstalk:sns:topics

Name Description Default Valid values

Notification
Endpoint

The endpoint where you want to
be notified of important events
affecting your application.

Note

If you use the Elastic
Beanstalk console to
create an environment,
you can't set this option
in a configuration file.
The console overrides this
option with a recommend
ed value.

None

Notification
Protocol

The protocol that's used to send
notifications to your endpoint.

email http

General options 994

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

https

email

email-json

sqs

Notification
Topic ARN

The Amazon Resource Name
(ARN) for the topic you subscribed
to.

None

Notification
Topic Name

The name of the topic you
subscribed to.

None

aws:elasticbeanstalk:sqsd

Configure the Amazon SQS queue for a worker environment.

Namespace: aws:elasticbeanstalk:sqsd

Name Description Default Valid values

WorkerQue
ueURL

The URL of the queue that the
daemon in the worker environme
nt tier reads messages from.

Note

When you don't specify
a value, the queue
that Elastic Beanstalk
automatically creates
is a standard Amazon
SQS queue. When you
provide a value, you can
provide the URL of either

automatic
ally
generated

If you don't specify a value,
then Elastic Beanstalk
automatically creates a
queue.

General options 995

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/standard-queues.html

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

a standard or a FIFO
Amazon SQS queue. Be
aware that if you provide a
FIFO queue, periodic tasks
aren't supported.

HttpPath The relative path to the applicati
on that HTTP POST messages are
sent to.

/

MimeType The MIME type of the message
that's sent in the HTTP POST
request.

applicati
on/
json

application/json

application/x-www-
form-urlencoded

application/xml

text/plain

Custom MIME type.

HttpConne
ctions

The maximum number of
concurrent connections to any
applications that are within an
Amazon EC2 instance.

Note

If you use the Elastic
Beanstalk console to
create an environment,
you can't set this option
in a configuration file.
The console overrides this
option with a recommend
ed value.

50 1 to 100

General options 996

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

ConnectTi
meout

The amount of time, in seconds, to
wait for successful connections to
an application.

5 1 to 60

Inactivit
yTimeout

The amount of time, in seconds, to
wait for a response on an existing
connection to an application.
The message is reprocessed until
the daemon receives a 200 (OK)
response from the application in
the worker environment tier or the
RetentionPeriod expires.

299 1 to 36000

Visibilit
yTimeout

The amount of time, in seconds,
an incoming message from the
Amazon SQS queue is locked for
processing. After the configure
d amount of time has passed,
then the message is again made
visible in the queue for any other
daemon to read.

300 0 to 43200

ErrorVisi
bilityTimeout

The amount of time, in seconds,
that elapses before Elastic
Beanstalk returns a message to
the Amazon SQS queue after a
processing attempt fails with an
explicit error.

2 seconds 0 to 43200 seconds

Retention
Period

The amount of time, in seconds,
a message is valid and is actively
processed for.

345600 60 to 1209600

General options 997

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

MaxRetries The maximum number of
attempts that Elastic Beanstalk
attempts to send the message
to the web application that will
process it before moving the
message to the dead-letter queue.

10 1 to 100

aws:elasticbeanstalk:trafficsplitting

Configure traffic-splitting deployments for your environment.

This namespace applies when you set the DeploymentPolicy option of the
aws:elasticbeanstalk:command namespace to TrafficSplitting. For more information about
deployment policies, see the section called “Deployment options”.

Namespace: aws:elasticbeanstalk:trafficsplitting

Name Description Default Valid values

NewVersio
nPercent

The initial percentage of incoming
client traffic that Elastic Beanstalk
shifts to environment instances
running the new application
version you're deploying.

10 1 to 100

Evaluatio
nTime

The time period, in minutes, that
Elastic Beanstalk waits after an
initial healthy deployment before
proceeding to shift all incoming
client traffic to the new applicati
on version that you're deploying.

5 3 to 600

aws:elasticbeanstalk:xray

Run the AWS X-Ray daemon to relay trace information from your X-Ray integrated application.

General options 998

AWS Elastic Beanstalk Developer Guide

Namespace: aws:elasticbeanstalk:xray

Name Description Default Valid values

XRayEnabled Set to true to run the X-Ray daemon on
the instances in your environment.

false true

false

aws:elb:healthcheck

Configure healthchecks for a Classic Load Balancer.

Namespace: aws:elb:healthcheck

Name Description Default Valid
values

HealthyTh
reshold

The number of consecutive successful requests before
Elastic Load Balancing changes the instance health
status.

3 2 to 10

Interval The interval that Elastic Load Balancing checks the
health of your application's Amazon EC2 instances at.

10 5 to 300

Timeout The amount of time, in seconds, that Elastic Load
Balancing waits for a response before it considers the
instance nonresponsive.

5 2 to 60

Unhealthy
Threshold

The number of consecutive unsuccessful requests
before Elastic Load Balancing changes the instance
health status.

5 2 to 10

(deprecated)
Target

The destination on a backend instance that health
checks are sent to. Use Application Healthche
ck URL in the aws:elasticbeanstalk:applic
ation namespace instead.

TCP:80 Target
in the
format
PROTOCOL:PORT/
PATH

General options 999

AWS Elastic Beanstalk Developer Guide

aws:elb:loadbalancer

Configure your environment's Classic Load Balancer.

Several of the options in this namespace are no longer supported in favor of listener-specific
options in the aws:elb:listener namespace. With these options that aren't supported anymore, you
can only configure two listeners (one secure and one unsecure) on standard ports.

Namespace: aws:elb:loadbalancer

Name Description Default Valid
values

CrossZone Configure the load balancer to route traffic
evenly across all instances in all Availability
Zones rather than only within each zone.

Note

If you use the Elastic Beanstalk
console or EB CLI to create an
environment, you can't set this
option in a configuration file. The
console and EB CLI override this
option with a recommended value.

false true

false

SecurityGroups Assign one or more security groups that
you created to the load balancer.

None One or
more
security
group IDs.

ManagedSecurityGro
up

Assign an existing security group to the
load balancer for your environment,
instead of creating a new one. To use this
setting, update the SecurityGroups
setting in this namespace to include your
security group’s ID, and remove the ID
of the security group that was created
automatically, if one was created.

None A security
group ID.

General options 1000

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid
values

To allow traffic from the load balancer to
your environment’s EC2 instances, Elastic
Beanstalk adds a rule to the security group
of the instances that allows inbound traffic
from the managed security group.

(deprecated)
LoadBalancerHTTPPo
rt

The port to listen on for the unsecure
listener.

80 OFF

80

(deprecated)
LoadBalancerPortPr
otocol

The protocol to use on the unsecure
listener.

HTTP HTTP

TCP

(deprecated)
LoadBalancerHTTPSP
ort

The port to listen on for the secure listener. OFF OFF

443

8443

(deprecated)
LoadBalancerSSLPor
tProtocol

The protocol to use on the secure listener. HTTPS HTTPS

SSL

(deprecated)
SSLCertificateId

The Amazon Resource Name (ARN) of
an SSL certificate to bind to the secure
listener.

None

aws:elb:listener

Configure the default listener (port 80) on a Classic Load Balancer.

General options 1001

AWS Elastic Beanstalk Developer Guide

Namespace: aws:elb:listener

Name Description Default Valid
values

ListenerProtocol The protocol used by the listener. HTTP HTTP TCP

InstancePort The port that this listener uses to
communicate with the EC2 instances.

80 1 to 65535

InstanceProtocol The protocol that this listener uses to
communicate with the EC2 instances.

It must be at the same internet protocol
layer as the ListenerProtocol . It also
must have the same security level as any
other listener using the same InstanceP
ort as this listener.

For example, if ListenerProtocol is
HTTPS (application layer, using a secure
connection), you can set InstanceP
rotocol to HTTP (also at the applicati
on layer, using an insecure connection). If,
in addition, you set InstancePort to
80, you must set InstanceProtocol to
HTTP in all other listeners with InstanceP
ort set to 80.

HTTP
when
ListenerP
rotocol
is HTTP

TCP when
ListenerP
rotocol
is TCP

HTTP or
HTTPS
when
ListenerP
rotocol
is HTTP or
HTTPS

TCP or
SSL when
ListenerP
rotocol
is TCP or
SSL

PolicyNames A comma-separated list of policy names
to apply to the port for this listener. We
recommend that you use the LoadBalan
cerPorts option of the aws:elb:policies
namespace instead.

None

ListenerEnabled Specifies whether this listener is enabled.
If you specify false, the listener isn't
included in the load balancer.

true true

false

General options 1002

AWS Elastic Beanstalk Developer Guide

aws:elb:listener:listener_port

Configure additional listeners on a Classic Load Balancer.

Namespace: aws:elb:listener:listener_port

Name Description Default Valid
values

ListenerProtocol The protocol used by the listener. HTTP HTTP
HTTPS TCP
SSL

InstancePort The port that this listener uses to
communicate with the EC2 instances.

The
same as
listener_
port .

1 to 65535

InstanceProtocol The protocol that this listener uses to
communicate with the EC2 instances.

It must be at the same internet protocol
layer as the ListenerProtocol . It also
must have the same security level as any
other listener using the same InstanceP
ort as this listener.

For example, if ListenerProtocol is
HTTPS (application layer, using a secure
connection), you can set InstanceP
rotocol to HTTP (also at the applicati
on layer, using an insecure connection). If,
in addition, you set InstancePort to
80, you must set InstanceProtocol to
HTTP in all other listeners with InstanceP
ort set to 80.

HTTP
when
ListenerP
rotocol
is HTTP or
HTTPS

TCP when
ListenerP
rotocol
is TCP or
SSL

HTTP or
HTTPS
when
ListenerP
rotocol
is HTTP or
HTTPS

TCP or
SSL when
ListenerP
rotocol
is TCP or
SSL

PolicyNames A comma-separated list of policy names
to apply to the port for this listener.

None

General options 1003

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid
values

We suggest that you use the LoadBalan
cerPorts option of the aws:elb:policies
namespace instead.

SSLCertificateId The Amazon Resource Name (ARN) of an
SSL certificate to bind to the listener.

None

ListenerEnabled Specifies whether this listener is enabled.
If you specify false, the listener isn't
included in the load balancer.

true if
any other
option is
set. false
otherwise.

true
false

aws:elb:policies

Modify the default stickiness and global load balancer policies for a Classic Load Balancer.

Namespace: aws:elb:policies

Name Description Default Valid values

ConnectionDraining
Enabled

Specifies whether the load balancer
maintains existing connections to
instances that have become unhealthy
or deregistered to complete in-progress
requests.

Note

If you use the Elastic Beanstalk
console or EB CLI to create an
environment, you can't set this
option in a configuration file.
The console and EB CLI override

false true

false

General options 1004

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

this option with a recommended
value.

ConnectionDraining
Timeout

The maximum number of seconds that
the load balancer maintains existing
connections to an instance during
connection draining before forcibly
closing the connections.

Note

If you use the Elastic Beanstalk
console to create an environme
nt, you can't set this option in a
configuration file. The console
overrides this option with a
recommended value.

20 1 to 3600

ConnectionSettingI
dleTimeout

The amount of time, in seconds, that the
load balancer waits for any data to be
sent or received over the connection. If
no data has been sent or received after
this time period elapses, the load balancer
closes the connection.

60 1 to 3600

LoadBalancerPorts A comma-separated list of the listener
ports that the default policy (AWSEB-ELB
-StickinessPolicy) applies to.

None You can use
:all to
indicate all
listener ports

Stickiness Cookie
Expiration

The amount of time, in seconds, that each
cookie is valid. Uses the default policy
(AWSEB-ELB-StickinessPolicy) .

0 0 to 1000000

General options 1005

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

Stickiness Policy Binds a user's session to a specific server
instance so that all requests coming
from the user during the session are sent
to the same server instance. Uses the
default policy (AWSEB-ELB-Stickine
ssPolicy) .

false true false

aws:elb:policies:policy_name

Create additional load balancer policies for a Classic Load Balancer.

Namespace: aws:elb:policies:policy_name

Name Description Default Valid values

CookieName The name of the application-genera
ted cookie that controls the session
lifetimes of a AppCookieStickines
sPolicyType policy. This policy can
be associated only with HTTP/HTTPS
listeners.

None

InstancePorts A comma-separated list of the instance
ports that this policy applies to.

None A list of ports,
or :all

LoadBalancerPorts A comma-separated list of the listener
ports that this policy applies to.

None A list of ports,
or :all

ProxyProtocol For a ProxyProtocolPolicyType
policy, specifies whether to include the
IP address and port of the originating
request for TCP messages. This policy can
be associated only with TCP/SSL listeners.

None true false

PublicKey The contents of a public key for a
PublicKeyPolicyType policy to

None

General options 1006

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

use when authenticating the backend
server or servers. This policy can't be
applied directly to backend servers or
listeners. It must be part of a BackendSe
rverAuthenticationPolicyTyp
e policy.

PublicKeyPolicyNam
es

A comma-separated list of policy names
(from the PublicKeyPolicyType
policies) for a BackendServerAuthe
nticationPolicyType policy that
controls authentication to a backend
server or servers. This policy can be
associated only with backend servers that
are using HTTPS/SSL.

None

SSLProtocols A comma-separated list of SSL protocols
to be enabled for a SSLNegoti
ationPolicyType policy that
defines the ciphers and protocols that are
accepted by the load balancer. This policy
can be associated only with HTTPS/SSL
listeners.

None

SSLReferencePolicy The name of a predefined security
policy that adheres to AWS security
best practices and that you want to
activate for a SSLNegotiationPoli
cyType policy that defines the ciphers
and protocols that are accepted by the
load balancer. This policy can be associate
d only with HTTPS/SSL listeners.

None

Stickiness Cookie
Expiration

The amount of time, in seconds, that each
cookie is valid.

0 0 to 1000000

General options 1007

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

Stickiness Policy Binds a user's session to a specific server
instance so that all requests coming from
the user during the session are sent to the
same server instance.

false true false

aws:elbv2:listener:default

Configure the default listener (port 80) on an Application Load Balancer or a Network Load
Balancer.

This namespace doesn't apply to an environment that uses a shared load balancer. Shared load
balancers don't have a default listener.

Namespace: aws:elbv2:listener:default

Name Description Default Valid values

DefaultProcess The name of the
process to forward
traffic to when no
rules match.

default A process name.

ListenerEnabled Set to false to
disable the listener.
You can use this
option to disable the
default listener on
port 80.

true true

false

Protocol The protocol of traffic
to process.

With application load
balancer: HTTP

With network load
balancer: TCP

With application
load balancer: HTTP,
HTTPS

With network load
balancer: TCP

General options 1008

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

Rules A list of rules to apply
to the listener

This option is
only applicable to
environments with
an Application Load
Balancer.

None A comma-separated
list of rule names.

SSLCertificateArns The Amazon
Resource Name (ARN)
of the SSL certifica
te to bind to the
listener.

This option is
only applicable to
environments with
an Application Load
Balancer.

None The ARN of a certifica
te stored in IAM or
ACM.

SSLPolicy Specify a security
policy to apply to the
listener.

This option is
only applicable to
environments with
an Application Load
Balancer.

None (ELB default) The name of a load
balancer security
policy.

aws:elbv2:listener:listener_port

Configure additional listeners on an Application Load Balancer or a Network Load Balancer.

General options 1009

AWS Elastic Beanstalk Developer Guide

Note

For a shared Application Load Balancer, you can specify only the Rule option. The other
options aren't applicable to shared load balancers.

Namespace: aws:elbv2:listener:listener_port

Name Description Default Valid values

DefaultProcess The name of the
process where traffic
is forwarded when no
rules match.

default A process name.

ListenerEnabled Set to false to
disable the listener.
You can use this
option to disable the
default listener on
port 80.

true true

false

Protocol The protocol of traffic
to process.

With application load
balancer: HTTP

With network load
balancer: TCP

With application
load balancer: HTTP,
HTTPS

With network load
balancer: TCP

Rules List of rules to apply
to the listener

This option is
applicable only to
environments with
an Application Load
Balancer.

None A comma-separated
list of rule names.

General options 1010

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

If your environme
nt uses a shared
Application Load
Balancer, and you
don't specify this
option for any
listener, Elastic
Beanstalk automatic
ally associates the
default rule with a
port 80 listener.

SSLCertificateArns The Amazon
Resource Name (ARN)
of the SSL certifica
te to bind to the
listener.

This option is
only applicable to
environments with
an Application Load
Balancer.

None The ARN of a certifica
te stored in IAM or
ACM.

SSLPolicy Specify a security
policy to apply to the
listener.

This option is
only applicable to
environments with
an Application Load
Balancer.

None (ELB default) The name of a load
balancer security
policy.

General options 1011

AWS Elastic Beanstalk Developer Guide

aws:elbv2:listenerrule:rule_name

Define listener rules for an Application Load Balancer. If a request matches the host names or paths
in a rule, the load balancer forwards it to the specified process. To use a rule, add it to a listener
with the Rules option in the aws:elbv2:listener:listener_port namespace.

Note

This namespace isn't applicable to environments with a network load balancer.

Namespace: aws:elbv2:listenerrule:rule_name

Name Description Default Valid values

HostHeade
rs

A list of host names to match. For example,
my.example.com .

Dedicated
load
balancer:
None

Shared load
balancer:
The
environme
nt's CNAME

Each name can
contain up to 128
characters. A pattern
can include both
uppercase and
lowercase letters,
numbers, hyphens
(–), and up to three
wildcard characters (*
matches zero or more
characters; ? matches
exactly one character
). You can list more
than one name,
each separated by
a comma. Applicati
on Load Balancer
supports up to
five combined
HostHeader and
PathPattern rules.

General options 1012

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

For more informati
on, see Host
conditions in the User
Guide for Application
Load Balancers.

PathPatte
rns

The path patterns to match (for example, /
img/*).

This option is only applicable to environme
nts with an application load balancer.

None Each pattern can
contain up to
128 characters. A
pattern can include
uppercase and
lowercase letters,
numbers, hyphens
(–), and up to three
wildcard characters (*
matches zero or more
characters; ? matches
exactly one character
). You can add
multiple comma-sep
arated path patterns.
Application Load
Balancer supports
up to five combined
HostHeader and
PathPattern rules.

For more informati
on, see Path
conditions in the User
Guide for Application
Load Balancers.

General options 1013

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-listeners.html#host-conditions
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-listeners.html#host-conditions
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-listeners.html#path-conditions
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-listeners.html#path-conditions

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

Priority The precedence of this rule when multiple
rules match. The lower number takes
precedence. No two rules can have the
same priority.

With a shared load balancer, Elastic
Beanstalk treats rule priorities as relative
across sharing environments, and maps
them to absolute priorities during creation.

1 1 to 1000

Process The name of the process to forward traffic
when this rule matches the request.

default A process name.

aws:elbv2:loadbalancer

Configure an Application Load Balancer.

For a shared load balancer, only the SharedLoadBalancer and SecurityGroups options are
valid.

Note

This namespace isn't applicable to environments with a Network Load Balancer.

Namespace: aws:elbv2:loadbalancer

Name Description Default Valid values

AccessLogsS3Bucket The Amazon S3 bucket where
access logs are stored. The bucket
must be in the same Region as the
environment and allow the load
balancer write access.

None A bucket name.

AccessLogsS3Enabled Enable access log storage. false true

General options 1014

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

false

AccessLogsS3Prefix A prefix to prepend to access
log names. By default, the load
balancer uploads logs to a directory
named AWSLogs in the bucket you
specify. Specify a prefix to place the
AWSLogs directory inside another
directory.

None

IdleTimeout The amount of time, in seconds,
to wait for a request to complete
before closing connections to client
and instance.

None 1 to 3600

ManagedSecurityGro
up

Assign an existing security group to
your environment’s load balancer,
instead of creating a new one.
To use this setting, update the
SecurityGroups setting in
this namespace to include your
security group’s ID, and remove
the automatically created security
group’s ID, if one exists.

To allow traffic from the load
balancer to the EC2 instances for
your environment, Elastic Beanstalk
adds a rule to the security group of
your instances that allows inbound
traffic from the managed security
group.

The
security
group
that
Elastic
Beanstalk
s
creates
for
your
load
balancer.

A security group ID.

General options 1015

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

SecurityGroups A list of security groups to attach to
the load balancer.

For a shared load balancer, if you
don't specify this value, Elastic
Beanstalk checks if an existing
security group that it manages
is already attached to the load
balancer. If one isn't attached to
the load balancer, Elastic Beanstalk
creates a security group and
attaches it to the load balancer.
Elastic Beanstalk deletes this
security group when the last
environment sharing the load
balancer terminates.

The load balancer security groups
are used to set up the Amazon EC2
instance security group ingress rule.

The
security
group
that
Elastic
Beanstalk
creates
for
your
load
balancer.

Comma-separated
list of security group
IDs.

General options 1016

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

SharedLoadBalancer The Amazon Resource Name
(ARN) of a shared load balancer.
This option is relevant only to an
Application Load Balancer. It's
required when the LoadBalan
cerIsShared option of the
aws:elasticbeanstalk:environment
namespace is set to true. You can't
change the shared load balancer
ARN after the environment is
created.

Criteria for a valid value:

• It must be a valid, active load
balancer in the AWS Region where
the environment is located.

• It must be in the same Amazon
Virtual Private Cloud (Amazon
VPC) as the environment.

• It can't be a load balancer that
was created by Elastic Beanstalk
as the dedicated load balancer
for another environment. You
can identify these dedicated load
balancers by using the prefix
awseb-.

Example:

arn:aws:elasticloa
dbalancing:us-east
-2:123456789012:lo

None ARN of a valid load
balancer that meets
all of the criteria
described here.

General options 1017

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

adbalancer/app/Fro
ntEndLB/0dbf78d8ad96abbc

aws:rds:dbinstance

Configure an attached Amazon RDS DB instance.

Namespace: aws:rds:dbinstance

Name Description Default Valid values

DBAllocat
edStorage

The allocated database storage size,
specified in gigabytes.

MySQL: 5

Oracle: 10

sqlserver-se:
200

sqlserver-ex:
30

sqlserver-web:
30

MySQL: 5-1024

Oracle: 10-1024

sqlserver: cannot
be modified

DBDeletio
nPolicy

Specifies whether to retain, delete, or
create snapshot of the DB instance when
an environment is terminated.

This option works in conjunction with
HasCoupledDatabase , also an option
of this namespace.

Warning

Deleting a DB instance results in
permanent data loss.

Delete Delete

Retain

Snapshot

General options 1018

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

DBEngine The name of the database engine to use
for this instance.

mysql mysql

oracle-se1

sqlserver-
ex

sqlserver-
web

sqlserver-
se

postgres

DBEngineV
ersion

The version number of the database
engine.

5.5

DBInstanc
eClass

The database instance type. db.t2.mic
ro

(db.m1.lar
ge for an
environment
not running
in an Amazon
VPC)

For more
informati
on, see DB
Instance Class
in the Amazon
Relational
Database Service
User Guide.

DBPassword The name of master user password for the
database instance.

None

DBSnapsho
tIdentifier

The identifier for the DB snapshot to
restore from.

None

DBUser The name of master user for the DB
Instance.

ebroot

General options 1019

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

HasCouple
dDatabase

Specifies whether a DB instance is coupled
to your environment. If toggled to true,
Elastic Beanstalk creates a new DB
instance coupled to your environment.
If toggled to false, Elastic Beanstalk
initiates decoupling of the DB instance
from your environment.

This option works in conjunction with
DBDeletionPolicy , also an option of
this namespace.

Note

Note: If you toggle this value
back to true after decoupling
the previous database, Elastic
Beanstalk creates a new database
with the previous database option
settings. However, to maintain the
security of your environment, it
doesn't retain the existing DBUser
and DBPassword settings. You
need to specify DBUser and
DBPassword again.

false true

false

MultiAZDa
tabase

Specifies whether a database instance
Multi-AZ deployment needs to be created.
For more information about Multi-AZ
deployments with Amazon Relationa
l Database Service (RDS), see Regions
and Availability Zones in the Amazon
Relational Database Service User Guide.

false true

false

General options 1020

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html

AWS Elastic Beanstalk Developer Guide

Platform specific options

Some Elastic Beanstalk platforms define option namespaces that are specific to the platform.
These namespaces and their options are listed below for each platform.

Note

Previously, in platform versions based on Amazon Linux AMI (preceding Amazon Linux
2), the following two features and their respective namespaces were considered to be
platform-specific features, and were listed here per platform:

• Proxy configuration for static files –
aws:elasticbeanstalk:environment:proxy:staticfiles

• AWS X-Ray support – aws:elasticbeanstalk:xray

In Amazon Linux 2 platform versions, Elastic Beanstalk implements these features in a
consistent way across all supporting platforms. The related namespace are now listed in
the the section called “General options” page. We only kept mention of them on this page
for platforms who had differently-named namespaces.

Platforms

• Docker platform options

• Go platform options

• Java SE platform options

• Java with Tomcat platform options

• .NET Core on Linux platform options

• .NET platform options

• Node.js platform options

• PHP platform options

• Python platform options

• Ruby platform options

Platform specific options 1021

AWS Elastic Beanstalk Developer Guide

Docker platform options

The following Docker-specific configuration options apply to the Docker and Preconfigured Docker
platforms.

Note

These configuration options do not apply to

• the Docker platform (Amazon Linux 2) with Docker Compose

• the Multicontainer Docker platform (Amazon Linux AMI)

Namespace: aws:elasticbeanstalk:environment:proxy

Name Description Default Valid values

ProxyServ
er

Specifies the web server to use as a proxy. nginx nginx

none – Amazon Linux
AM and Docker w/DC
only

Go platform options

Amazon Linux AMI (pre-Amazon Linux 2) platform options

Namespace: aws:elasticbeanstalk:container:golang:staticfiles

You can use the following namespace to configure the proxy server to serve static files. When
the proxy server receives a request for a file under the specified path, it serves the file directly
instead of routing the request to your application. This reduces the number of requests that your
application has to process.

Map a path served by the proxy server to a folder in your source code that contains static assets.
Each option that you define in this namespace maps a different path.

Platform specific options 1022

AWS Elastic Beanstalk Developer Guide

Name Value

Path where the proxy server will serve the
files.

Example: /images to serve files at
subdomain .eleasticbeanstalk.com/
images .

Name of the folder containing the files.

Example: staticimages to serve files from
a folder named staticimages at the top
level of your source bundle.

Java SE platform options

Amazon Linux AMI (pre-Amazon Linux 2) platform options

Namespace: aws:elasticbeanstalk:container:java:staticfiles

You can use the following namespace to configure the proxy server to serve static files. When
the proxy server receives a request for a file under the specified path, it serves the file directly
instead of routing the request to your application. This reduces the number of requests that your
application has to process.

Map a path served by the proxy server to a folder in your source code that contains static assets.
Each option that you define in this namespace maps a different path.

Name Value

Path where the proxy server will serve the
files.

Example: /images to serve files at
subdomain .eleasticbeanstalk.com/
images .

Name of the folder containing the files.

Example: staticimages to serve files from
a folder named staticimages at the top
level of your source bundle.

Platform specific options 1023

AWS Elastic Beanstalk Developer Guide

Java with Tomcat platform options

Namespace: aws:elasticbeanstalk:application:environment

Name Description Default Valid
values

JDBC_CONN
ECTION_STRING

The connection string to an external database. n/a n/a

See Environment properties and other software settings for more information.

Namespace: aws:elasticbeanstalk:container:tomcat:jvmoptions

Name Description Default Valid
values

JVM Options Pass command-line options to the JVM at
startup.

n/a n/a

Xmx Maximum JVM heap sizes. 256m n/a

XX:MaxPermSize Section of the JVM heap that is used to store
class definitions and associated metadata.

Note

This option only applies to Java
versions earlier than Java 8, and
isn't supported on Elastic Beanstalk
Tomcat platforms based on Amazon
Linux 2 and later.

64m n/a

Xms Initial JVM heap sizes. 256m n/a

optionName Specify arbitrary JVM options in addition to
the those defined by the Tomcat platform.

n/a n/a

Platform specific options 1024

AWS Elastic Beanstalk Developer Guide

Namespace: aws:elasticbeanstalk:environment:proxy

Name Description Default Valid values

GzipCompr
ession

Set to false to disable response compressi
on.

Only valid on Amazon Linux AMI (preceding
Amazon Linux 2) platform versions.

true true

false

ProxyServ
er

Set the proxy to use on your environment's
instances. If you set this option to apache,
Elastic Beanstalk uses Apache 2.4.

Set to apache/2.2 if your application
isn't ready to migrate away from Apache
2.2 due to incompatible proxy configura
tion settings. This value is only valid on
Amazon Linux AMI (preceding Amazon Linux
2) platform versions.

Set to nginx to use nginx. This is the
default starting with Amazon Linux 2
platform versions.

For more information, see Configuring your
Tomcat environment's proxy server.

nginx
(Amazon
Linux 2)

apache
(Amazon
Linux
AMI)

apache

apache/2.2 –
Amazon Linux AMI only

nginx

.NET Core on Linux platform options

Namespace: aws:elasticbeanstalk:environment:proxy

Name Description Default Valid values

ProxyServ
er

Specifies the web server to use as a proxy. nginx nginx

none

Platform specific options 1025

https://httpd.apache.org/docs/2.4/
https://httpd.apache.org/docs/2.2/
https://httpd.apache.org/docs/2.2/
https://www.nginx.com/

AWS Elastic Beanstalk Developer Guide

.NET platform options

Namespace: aws:elasticbeanstalk:container:dotnet:apppool

Name Description Default Valid
values

Target Runtime Choose the version of .NET Framework for
your application.

4.0 2.0

4.0

Enable 32-bit
Applications

Set to True to run 32-bit applications. False True

False

Node.js platform options

Namespace: aws:elasticbeanstalk:environment:proxy

Name Description Default Valid values

ProxyServ
er

Set the proxy to use on your environment's
instances.

nginx apache

nginx

Amazon Linux AMI (pre-Amazon Linux 2) platform options

Namespace: aws:elasticbeanstalk:container:nodejs

Name Description Default Valid values

NodeComma
nd

Command used to start the Node.js
application. If an empty string is specified
, app.js is used, then server.js , then
npm start in that order.

"" n/a

NodeVersi
on

Version of Node.js. For example, 4.4.6

Supported Node.js versions vary between
Node.js platform versions. See Node.js

varies varies

Platform specific options 1026

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.nodejs

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

in the AWS Elastic Beanstalk Platforms
 document for a list of the currently
supported versions.

Note

When support for the version
of Node.js that you are using is
removed from the platform, you
must change or remove the version
setting prior to doing a platform
update. This might occur when a
security vulnerability is identified
for one or more versions of Node.js.
When this happens, attemptin
g to update to a new version of
the platform that doesn't support
the configured NodeVersion fails.
To avoid needing to create a new
environment, change the NodeVersi
on configuration option to a
Node.js version that is supported
by both the old platform version
and the new one, or remove the
option setting, and then perform
the platform update.

GzipCompr
ession

Specifies if gzip compression is enabled.
If ProxyServer is set to none, then gzip
compression is disabled.

false true

false

Platform specific options 1027

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

ProxyServ
er

Specifies which web server should be
used to proxy connections to Node.js. If
ProxyServer is set to none, then static file
mappings doesn't take effect and gzip
compression is disabled.

nginx apache

nginx

none

Namespace: aws:elasticbeanstalk:container:nodejs:staticfiles

You can use the following namespace to configure the proxy server to serve static files. When
the proxy server receives a request for a file under the specified path, it serves the file directly
instead of routing the request to your application. This reduces the number of requests that your
application has to process.

Map a path served by the proxy server to a folder in your source code that contains static assets.
Each option that you define in this namespace maps a different path.

Note

Static file settings do not apply if
aws:elasticbeanstalk:container:nodejs::ProxyFiles is set to none.

Name Value

Path where the proxy server will serve the
files.

Example: /images to serve files at
subdomain .eleasticbeanstalk.com/
images .

Name of the folder containing the files.

Example: staticimages to serve files from
a folder named staticimages at the top
level of your source bundle.

Platform specific options 1028

AWS Elastic Beanstalk Developer Guide

PHP platform options

Namespace: aws:elasticbeanstalk:container:php:phpini

Name Description Default Valid values

document_root Specify the child directory of your
project that is treated as the public-fa
cing web root.

/ A blank string is
treated as /, or
specify a string
starting with /

memory_limit Amount of memory allocated to the PHP
environment.

256M n/a

zlib.outp
ut_compression

Specifies whether or not PHP should use
compression for output.

Off On

Off

true

false

allow_url
_fopen

Specifies if PHP's file functions are
allowed to retrieve data from remote
locations, such as websites or FTP
servers.

On On

Off

true

false

display_errors Specifies if error messages should be
part of the output.

Off On

Off

max_execu
tion_time

Sets the maximum time, in seconds,
a script is allowed to run before it is
terminated by the environment.

60 0 to 922337203
6854775807
(PHP_INT_MAX)

composer_
options

Sets custom options to use when
installing dependencies using Composer
through composer.phar install. For more

n/a n/a

Platform specific options 1029

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid values

information including available options,
go to http://getcomposer.org/doc/03-cli
.md#install.

Namespace: aws:elasticbeanstalk:environment:proxy

Name Description Default Valid values

ProxyServ
er

Set the proxy to use on your environment's
instances.

nginx apache

nginx

Note

For more information about the PHP platform, see Using the Elastic Beanstalk PHP
platform.

Python platform options

Namespace: aws:elasticbeanstalk:application:environment

Name Description Default Valid
values

DJANGO_SETTINGS_MO
DULE

Specifies which settings file to use. n/a n/a

See Environment properties and other software settings for more information.

Platform specific options 1030

http://getcomposer.org/doc/03-cli.md#install
http://getcomposer.org/doc/03-cli.md#install

AWS Elastic Beanstalk Developer Guide

Namespace: aws:elasticbeanstalk:container:python

Name Description Default Valid
values

WSGIPath The file that contains the WSGI application. This file
must have an application callable.

On Amazon
Linux 2
Python
platform
versions:
applicati
on

On Amazon
Linux AMI
Python
platform
versions:
applicati
on.py

n/a

NumProces
ses

The number of daemon processes that should be
started for the process group when running WSGI
applications.

1 n/a

NumThread
s

The number of threads to be created to handle
requests in each daemon process within the process
group when running WSGI applications.

15 n/a

Namespace: aws:elasticbeanstalk:environment:proxy

Name Description Default Valid values

ProxyServ
er

Set the proxy to use on your environment's
instances.

nginx apache

nginx

Platform specific options 1031

AWS Elastic Beanstalk Developer Guide

Amazon Linux AMI (pre-Amazon Linux 2) platform options

Namespace: aws:elasticbeanstalk:container:python:staticfiles

You can use the following namespace to configure the proxy server to serve static files. When
the proxy server receives a request for a file under the specified path, it serves the file directly
instead of routing the request to your application. This reduces the number of requests that your
application has to process.

Map a path served by the proxy server to a folder in your source code that contains static assets.
Each option that you define in this namespace maps a different path.

By default, the proxy server in a Python environment serves any files in a folder named static at
the /static path.

Namespace: aws:elasticbeanstalk:container:python:staticfiles

Name Value

Path where the proxy server will serve the
files.

Example: /images to serve files at
subdomain .eleasticbeanstalk.com/
images .

Name of the folder containing the files.

Example: staticimages to serve files from
a folder named staticimages at the top
level of your source bundle.

Ruby platform options

Namespace: aws:elasticbeanstalk:application:environment

Name Description Default Valid
values

RAILS_SKIP_MIGRATI
ONS

Specifies whether to run `rake
db:migrate` on behalf of the users'
applications; or whether it should be
skipped. This is only applicable to Rails 3
applications.

false true

false

Platform specific options 1032

AWS Elastic Beanstalk Developer Guide

Name Description Default Valid
values

RAILS_SKIP_ASSET_C
OMPILATION

Specifies whether the container should
run `rake assets:precompile`
on behalf of the users' applications; or
whether it should be skipped. This is
also only applicable to Rails 3 applicati
ons.

false true

false

BUNDLE_WITHOUT A colon (:) separated list of groups to
ignore when installing dependencies
from a Gemfile.

test:deve
lopment

n/a

RACK_ENV Specifies what environment stage an
application can be run in. Examples
of common environments include
development, production, test.

productio
n

n/a

See Environment properties and other software settings for more information.

Custom options

Use the aws:elasticbeanstalk:customoption namespace to define options and values that
can be read in Resources blocks in other configuration files. Use custom options to collect user
specified settings in a single configuration file.

For example, you may have a complex configuration file that defines a resource that can be
configured by the user launching the environment. If you use Fn::GetOptionSetting to retrieve
the value of a custom option, you can put the definition of that option in a different configuration
file, where it is more easily discovered and modified by the user.

Also, because they are configuration options, custom options can be set at the API level to override
values set in a configuration file. See Precedence for more information.

Custom options are defined like any other option:

option_settings:
 aws:elasticbeanstalk:customoption:

Custom options 1033

AWS Elastic Beanstalk Developer Guide

 option name: option value

For example, the following configuration file creates an option named ELBAlarmEmail and sets
the value to someone@example.com:

option_settings:
 aws:elasticbeanstalk:customoption:
 ELBAlarmEmail: someone@example.com

Elsewhere, a configuration file defines an SNS topic that reads the option with
Fn::GetOptionSetting to populate the value of the Endpoint attribute:

Resources:
 MySNSTopic:
 Type: AWS::SNS::Topic
 Properties:
 Subscription:
 - Endpoint:
 Fn::GetOptionSetting:
 OptionName: ELBAlarmEmail
 DefaultValue: nobody@example.com
 Protocol: email

You can find more example snippets using Fn::GetOptionSetting at Adding and customizing
Elastic Beanstalk environment resources.

Advanced environment customization with configuration files
(.ebextensions)

You can add AWS Elastic Beanstalk configuration files (.ebextensions) to your web application's
source code to configure your environment and customize the AWS resources that it contains.
Configuration files are YAML- or JSON-formatted documents with a .config file extension that
you place in a folder named .ebextensions and deploy in your application source bundle.

Example .ebextensions/network-load-balancer.config

This example makes a simple configuration change. It modifies a configuration option to set the
type of your environment's load balancer to Network Load Balancer.

option_settings:

.Ebextensions 1034

AWS Elastic Beanstalk Developer Guide

 aws:elasticbeanstalk:environment:
 LoadBalancerType: network

We recommend using YAML for your configuration files, because it's more readable than JSON.
YAML supports comments, multi-line commands, several alternatives for using quotes, and more.
However, you can make any configuration change in Elastic Beanstalk configuration files identically
using either YAML or JSON.

Tip

When you are developing or testing new configuration files, launch a clean environment
running the default application and deploy to that. Poorly formatted configuration files will
cause a new environment launch to fail unrecoverably.

The option_settings section of a configuration file defines values for configuration options.
Configuration options let you configure your Elastic Beanstalk environment, the AWS resources in
it, and the software that runs your application. Configuration files are only one of several ways to
set configuration options.

The Resources section lets you further customize the resources in your application's environment,
and define additional AWS resources beyond the functionality provided by configuration options.
You can add and configure any resources supported by AWS CloudFormation, which Elastic
Beanstalk uses to create environments.

The other sections of a configuration file (packages, sources, files, users, groups,
commands, container_commands, and services) let you configure the EC2 instances that
are launched in your environment. Whenever a server is launched in your environment, Elastic
Beanstalk runs the operations defined in these sections to prepare the operating system and
storage system for your application.

For examples of commonly used .ebextensions, see the Elastic Beanstalk Configuration Files
Repository.

Requirements

• Location – Elastic Beanstalk will ingest all .ebextensions folders present in your deployment.
However, we recommend that you place all of your configuration files in a single folder, named
.ebextensions, in the root of your source bundle. Folders starting with a dot can be hidden

.Ebextensions 1035

https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files
https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files

AWS Elastic Beanstalk Developer Guide

by file browsers, so make sure that the folder is added when you create your source bundle. For
more information, see Create an application source bundle.

• Naming – Configuration files must have the .config file extension.

• Formatting – Configuration files must conform to YAML or JSON specifications.

When using YAML, always use spaces to indent keys at different nesting levels. For more
information about YAML, see YAML Ain't Markup Language (YAML™) Version 1.1.

• Uniqueness – Use each key only once in each configuration file.

Warning

If you use a key (for example, option_settings) twice in the same configuration file,
one of the sections will be dropped. Combine duplicate sections into a single section, or
place them in separate configuration files.

The process for deploying varies slightly depending on the client that you use to manage your
environments. See the following sections for details:

• Elastic Beanstalk console

• EB CLI

• AWS CLI

Topics

• Option settings

• Customizing software on Linux servers

• Customizing software on Windows servers

• Adding and customizing Elastic Beanstalk environment resources

Option settings

You can use the option_settings key to modify the Elastic Beanstalk configuration and
define variables that can be retrieved from your application using environment variables. Some
namespaces allow you to extend the number of parameters, and specify the parameter names. For
a list of namespaces and configuration options, see Configuration options.

Option settings 1036

http://yaml.org/spec/current.html

AWS Elastic Beanstalk Developer Guide

Option settings can also be applied directly to an environment during environment creation or an
environment update. Settings applied directly to the environment override the settings for the
same options in configuration files. If you remove settings from an environment's configuration,
settings in configuration files will take effect. See Precedence for details.

Syntax

The standard syntax for option settings is an array of objects, each having a namespace,
option_name and value key.

option_settings:
 - namespace: namespace
 option_name: option name
 value: option value
 - namespace: namespace
 option_name: option name
 value: option value

The namespace key is optional. If you do not specify a namespace, the default used is
aws:elasticbeanstalk:application:environment:

option_settings:
 - option_name: option name
 value: option value
 - option_name: option name
 value: option value

Elastic Beanstalk also supports a shorthand syntax for option settings that lets you specify options
as key-value pairs underneath the namespace:

option_settings:
 namespace:
 option name: option value
 option name: option value

Examples

The following examples set a Tomcat platform-specific option in the
aws:elasticbeanstalk:container:tomcat:jvmoptions namespace and an environment
property named MYPARAMETER.

Option settings 1037

AWS Elastic Beanstalk Developer Guide

In standard YAML format:

Example .ebextensions/options.config

option_settings:
 - namespace: aws:elasticbeanstalk:container:tomcat:jvmoptions
 option_name: Xmx
 value: 256m
 - option_name: MYPARAMETER
 value: parametervalue

In shorthand format:

Example .ebextensions/options.config

option_settings:
 aws:elasticbeanstalk:container:tomcat:jvmoptions:
 Xmx: 256m
 aws:elasticbeanstalk:application:environment:
 MYPARAMETER: parametervalue

In JSON:

Example .ebextensions/options.config

{
 "option_settings": [
 {
 "namespace": "aws:elasticbeanstalk:container:tomcat:jvmoptions",
 "option_name": "Xmx",
 "value": "256m"
 },
 {
 "option_name": "MYPARAMETER",
 "value": "parametervalue"
 }
]
}

Option settings 1038

AWS Elastic Beanstalk Developer Guide

Customizing software on Linux servers

You may want to customize and configure the software that your application depends on. You
can add commands to be executed during instance provisioning; define Linux users and groups;
and download or directly create files on your environment instances. These files might be either
dependencies required by the application—for example, additional packages from the yum
repository—or they might be configuration files such as a replacement for a proxy configuration
file to override specific settings that are defaulted by Elastic Beanstalk.

This section describes the type of information you can include in a configuration file to customize
the software on your EC2 instances running Linux. For general information about customizing and
configuring your Elastic Beanstalk environments, see Configuring Elastic Beanstalk environments.
For information about customizing software on your EC2 instances running Windows, see
Customizing software on Windows servers.

Notes

• On Amazon Linux 2 platforms, instead of providing files and commands in .ebextensions
configuration files, we highly recommend that you use Buildfile. Procfile, and platform
hooks whenever possible to configure and run custom code on your environment
instances during instance provisioning. For details about these mechanisms, see the
section called “Extending Linux platforms”.

• YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces, not
tab characters, to indent.

Configuration files support the following keys that affect the Linux server your application runs on.

Keys

• Packages

• Groups

• Users

• Sources

• Files

• Commands

Linux server 1039

AWS Elastic Beanstalk Developer Guide

• Services

• Container commands

• Example: Using custom Amazon CloudWatch metrics

Keys are processed in the order that they are listed here.

Watch your environment's events while developing and testing configuration files. Elastic Beanstalk
ignores a configuration file that contains validation errors, like an invalid key, and doesn't process
any of the other keys in the same file. When this happens, Elastic Beanstalk adds a warning event
to the event log.

Packages

You can use the packages key to download and install prepackaged applications and components.

Syntax

packages:
 name of package manager:
 package name: version
 ...
 name of package manager:
 package name: version
 ...
 ...

You can specify multiple packages under each package manager's key.

Supported package formats

Elastic Beanstalk currently supports the following package managers: yum, rubygems, python, and
rpm. Packages are processed in the following order: rpm, yum, and then rubygems and python.
There is no ordering between rubygems and python. Within each package manager, package
installation order isn't guaranteed. Use a package manager supported by your operating system.

Note

Elastic Beanstalk supports two underlying package managers for Python, pip and
easy_install. However, in the syntax of the configuration file, you must specify the package

Linux server 1040

AWS Elastic Beanstalk Developer Guide

manager name as python. When you use a configuration file to specify a Python package
manager, Elastic Beanstalk uses Python 2.7. If your application relies on a different version
of Python, you can specify the packages to install in a requirements.txt file. For more
information, see Specifying dependencies using a requirements file.

Specifying versions

Within each package manager, each package is specified as a package name and a list of versions.
The version can be a string, a list of versions, or an empty string or list. An empty string or list
indicates that you want the latest version. For rpm manager, the version is specified as a path to a
file on disk or a URL. Relative paths are not supported.

If you specify a version of a package, Elastic Beanstalk attempts to install that version even if a
newer version of the package is already installed on the instance. If a newer version is already
installed, the deployment fails. Some package managers support multiple versions, but others may
not. Please check the documentation for your package manager for more information. If you do
not specify a version and a version of the package is already installed, Elastic Beanstalk does not
install a new version—it assumes that you want to keep and use the existing version.

Example snippet

The following snippet specifies a version URL for rpm, requests the latest version from yum, and
version 0.10.2 of chef from rubygems.

packages:
 yum:
 libmemcached: []
 ruby-devel: []
 gcc: []
 rpm:
 epel: http://download.fedoraproject.org/pub/epel/5/i386/epel-release-5-4.noarch.rpm
 rubygems:
 chef: '0.10.2'

Groups

You can use the groups key to create Linux/UNIX groups and to assign group IDs. To create a
group, add a new key-value pair that maps a new group name to an optional group ID. The groups
key can contain one or more group names. The following table lists the available keys.

Linux server 1041

AWS Elastic Beanstalk Developer Guide

Syntax

groups:
 name of group: {}
 name of group:
 gid: "group id"

Options

gid

A group ID number.

If a group ID is specified, and the group already exists by name, the group creation will fail. If
another group has the specified group ID, the operating system may reject the group creation.

Example snippet

The following snippet specifies a group named groupOne without assigning a group ID and a group
named groupTwo that specified a group ID value of 45.

groups:
 groupOne: {}
 groupTwo:
 gid: "45"

Users

You can use the users key to create Linux/UNIX users on the EC2 instance.

Syntax

users:
 name of user:
 groups:
 - name of group
 uid: "id of the user"
 homeDir: "user's home directory"

Linux server 1042

AWS Elastic Beanstalk Developer Guide

Options

uid

A user ID. The creation process fails if the user name exists with a different user ID. If the user ID
is already assigned to an existing user, the operating system may reject the creation request.

groups

A list of group names. The user is added to each group in the list.

homeDir

The user's home directory.

Users are created as noninteractive system users with a shell of /sbin/nologin. This is by design
and cannot be modified.

Example snippet

users:
 myuser:
 groups:
 - group1
 - group2
 uid: "50"
 homeDir: "/tmp"

Sources

You can use the sources key to download an archive file from a public URL and unpack it in a
target directory on the EC2 instance.

Syntax

sources:
 target directory: location of archive file

Supported formats

Supported formats are tar, tar+gzip, tar+bz2, and zip. You can reference external locations such as
Amazon Simple Storage Service (Amazon S3) (e.g., https://mybucket.s3.amazonaws.com/
myobject) as long as the URL is publicly accessible.

Linux server 1043

AWS Elastic Beanstalk Developer Guide

Example snippet

The following example downloads a public .zip file from an Amazon S3 bucket and unpacks it into
/etc/myapp:

sources:
 /etc/myapp: https://mybucket.s3.amazonaws.com/myobject

Note

Multiple extractions should not reuse the same target path. Extracting another source to
the same target path will replace rather than append to the contents.

Files

You can use the files key to create files on the EC2 instance. The content can be either inline
in the configuration file, or the content can be pulled from a URL. The files are written to disk in
lexicographic order.

You can use the files key to download private files from Amazon S3 by providing an instance
profile for authorization.

If the file path you specify already exists on the instance, the existing file is retained with the
extension .bak appended to its name.

Syntax

files:
 "target file location on disk":
 mode: "six-digit octal value"
 owner: name of owning user for file
 group: name of owning group for file
 source: URL
 authentication: authentication name:

 "target file location on disk":
 mode: "six-digit octal value"
 owner: name of owning user for file
 group: name of owning group for file
 content: |
 # this is my

Linux server 1044

AWS Elastic Beanstalk Developer Guide

 # file content
 encoding: encoding format
 authentication: authentication name:

Options

content

String content to add to the file. Specify either content or source, but not both.

source

URL of a file to download. Specify either content or source, but not both.

encoding

The encoding format of the string specified with the content option.

Valid values: plain | base64

group

Linux group that owns the file.

owner

Linux user that owns the file.

mode

A six-digit octal value representing the mode for this file. Not supported for Windows systems.
Use the first three digits for symlinks and the last three digits for setting permissions. To create
a symlink, specify 120xxx, where xxx defines the permissions of the target file. To specify
permissions for a file, use the last three digits, such as 000644.

authentication

The name of a AWS CloudFormation authentication method to use. You can add authentication
methods to the Auto Scaling group metadata with the Resources key. See below for an
example.

Example snippet

files:
 "/home/ec2-user/myfile" :
 mode: "000755"

Linux server 1045

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-authentication.html

AWS Elastic Beanstalk Developer Guide

 owner: root
 group: root
 source: http://foo.bar/myfile

 "/home/ec2-user/myfile2" :
 mode: "000755"
 owner: root
 group: root
 content: |
 this is my
 file content

Example using a symlink. This creates a link /tmp/myfile2.txt that points at the existing file /
tmp/myfile1.txt.

files:
 "/tmp/myfile2.txt" :
 mode: "120400"
 content: "/tmp/myfile1.txt"

The following example uses the Resources key to add an authentication method named S3Auth
and uses it to download a private file from an Amazon S3 bucket:

Resources:
 AWSEBAutoScalingGroup:
 Metadata:
 AWS::CloudFormation::Authentication:
 S3Auth:
 type: "s3"
 buckets: ["elasticbeanstalk-us-west-2-123456789012"]
 roleName:
 "Fn::GetOptionSetting":
 Namespace: "aws:autoscaling:launchconfiguration"
 OptionName: "IamInstanceProfile"
 DefaultValue: "aws-elasticbeanstalk-ec2-role"

files:
 "/tmp/data.json" :
 mode: "000755"
 owner: root
 group: root
 authentication: "S3Auth"

Linux server 1046

AWS Elastic Beanstalk Developer Guide

 source: https://elasticbeanstalk-us-west-2-123456789012.s3-us-west-2.amazonaws.com/
data.json

Commands

You can use the commands key to execute commands on the EC2 instance. The commands run
before the application and web server are set up and the application version file is extracted.

The specified commands run as the root user, and are processed in alphabetical order by name. By
default, commands run in the root directory. To run commands from another directory, use the cwd
option.

To troubleshoot issues with your commands, you can find their output in instance logs.

Syntax

commands:
 command name:
 command: command to run
 cwd: working directory
 env:
 variable name: variable value
 test: conditions for command
 ignoreErrors: true

Options

command

Either an array (block sequence collection in YAML syntax) or a string specifying the command
to run. Some important notes:

• If you use a string, you don't need to enclose the entire string in quotes. If you do use quotes,
escape literal occurrences of the same type of quote.

• If you use an array, you don't need to escape space characters or enclose command
parameters in quotes. Each array element is a single command argument. Don't use an array
to specify multiple commands.

The following examples are all equivalent:

commands:
 command1:

Linux server 1047

http://yaml.org/spec/1.2/spec.html#id2759963

AWS Elastic Beanstalk Developer Guide

 command: git commit -m "This is a comment."
 command2:
 command: "git commit -m \"This is a comment.\""
 command3:
 command: 'git commit -m "This is a comment."'
 command4:
 command:
 - git
 - commit
 - -m
 - This is a comment.

To specify multiple commands, use a literal block scalar, as shown in the following example.

commands:
 command block:
 command: |
 git commit -m "This is a comment."
 git push

env

(Optional) Sets environment variables for the command. This property overwrites, rather than
appends, the existing environment.

cwd

(Optional) The working directory. If not specified, commands run from the root directory (/).

test

(Optional) A command that must return the value true (exit code 0) in order for Elastic
Beanstalk to process the command, such as a shell script, contained in the command key.

ignoreErrors

(Optional) A boolean value that determines if other commands should run if the command
contained in the command key fails (returns a nonzero value). Set this value to true if you want
to continue running commands even if the command fails. Set it to false if you want to stop
running commands if the command fails. The default value is false.

Example snippet

The following example snippet runs a Python script.

Linux server 1048

http://yaml.org/spec/1.2/spec.html#id2760844

AWS Elastic Beanstalk Developer Guide

commands:
 python_install:
 command: myscript.py
 cwd: /home/ec2-user
 env:
 myvarname: myvarvalue
 test: "[-x /usr/bin/python]"

Services

You can use the services key to define which services should be started or stopped when the
instance is launched. The services key also allows you to specify dependencies on sources,
packages, and files so that if a restart is needed due to files being installed, Elastic Beanstalk takes
care of the service restart.

Syntax

services:
 sysvinit:
 name of service:
 enabled: "true"
 ensureRunning: "true"
 files:
 - "file name"
 sources:
 - "directory"
 packages:
 name of package manager:
 "package name[: version]"
 commands:
 - "name of command"

Options

ensureRunning

Set to true to ensure that the service is running after Elastic Beanstalk finishes.

Set to false to ensure that the service is not running after Elastic Beanstalk finishes.

Omit this key to make no changes to the service state.

Linux server 1049

AWS Elastic Beanstalk Developer Guide

enabled

Set to true to ensure that the service is started automatically upon boot.

Set to false to ensure that the service is not started automatically upon boot.

Omit this key to make no changes to this property.

files

A list of files. If Elastic Beanstalk changes one directly via the files block, the service is restarted.

sources

A list of directories. If Elastic Beanstalk expands an archive into one of these directories, the
service is restarted.

packages

A map of the package manager to a list of package names. If Elastic Beanstalk installs or
updates one of these packages, the service is restarted.

commands

A list of command names. If Elastic Beanstalk runs the specified command, the service is
restarted.

Example snippet

The following is an example snippet:

services:
 sysvinit:
 myservice:
 enabled: true
 ensureRunning: true

Container commands

You can use the container_commands key to execute commands that affect your application
source code. Container commands run after the application and web server have been set up
and the application version archive has been extracted, but before the application version is
deployed. Non-container commands and other customization operations are performed prior to
the application source code being extracted.

Linux server 1050

AWS Elastic Beanstalk Developer Guide

The specified commands run as the root user, and are processed in alphabetical order by name.
Container commands are run from the staging directory, where your source code is extracted prior
to being deployed to the application server. Any changes you make to your source code in the
staging directory with a container command will be included when the source is deployed to its
final location.

Note

The output of your container commands are logged in the cfn-init-cmd.log instance
log. For more information about retrieving and viewing instance logs, see Viewing logs
from Amazon EC2 instances.

You can use leader_only to only run the command on a single instance, or configure a test to
only run the command when a test command evaluates to true. Leader-only container commands
are only executed during environment creation and deployments, while other commands and
server customization operations are performed every time an instance is provisioned or updated.
Leader-only container commands are not executed due to launch configuration changes, such as a
change in the AMI Id or instance type.

Syntax

container_commands:
 name of container_command:
 command: "command to run"
 leader_only: true
 name of container_command:
 command: "command to run"

Options

command

A string or array of strings to run.

env

(Optional) Set environment variables prior to running the command, overriding any existing
value.

Linux server 1051

AWS Elastic Beanstalk Developer Guide

cwd

(Optional) The working directory. By default, this is the staging directory of the unzipped
application.

leader_only

(Optional) Only run the command on a single instance chosen by Elastic Beanstalk. Leader-only
container commands are run before other container commands. A command can be leader-only
or have a test, but not both (leader_only takes precedence).

test

(Optional) Run a test command that must return the true in order to run the container
command. A command can be leader-only or have a test, but not both (leader_only takes
precedence).

ignoreErrors

(Optional) Do not fail deployments if the container command returns a value other than 0
(success). Set to true to enable.

Example snippet

The following is an example snippet.

container_commands:
 collectstatic:
 command: "django-admin.py collectstatic --noinput"
 01syncdb:
 command: "django-admin.py syncdb --noinput"
 leader_only: true
 02migrate:
 command: "django-admin.py migrate"
 leader_only: true
 99customize:
 command: "scripts/customize.sh"

Example: Using custom Amazon CloudWatch metrics

Amazon CloudWatch is a web service that enables you to monitor, manage, and publish various
metrics, as well as configure alarm actions based on data from metrics. You can define custom
metrics for your own use, and Elastic Beanstalk will push those metrics to Amazon CloudWatch.

Linux server 1052

AWS Elastic Beanstalk Developer Guide

Once Amazon CloudWatch contains your custom metrics, you can view those in the Amazon
CloudWatch console.

Important

The Amazon CloudWatch monitoring scripts are deprecated. The CloudWatch agent has
now replaced the CloudWatch monitoring scripts to collect metrics and logs.
If you're still migrating from the deprecated monitoring scripts to the agent, and require
information about the monitoring scripts, see Deprecated: Collect metrics using the
CloudWatch monitoring scripts in the Amazon EC2 User Guide for Linux Instances.

The Amazon CloudWatch agent

The Amazon CloudWatch agent enables CloudWatch metric and log collection from both
Amazon EC2 instances and on-premises servers across operating systems. The agent supports
metrics collected at the system level. It also supports custom log and metric collection from
your applications or services. For more information about the Amazon CloudWatch agent, see
Collecting metrics and logs with the CloudWatch agent in the Amazon CloudWatch User Guide.

Note

Elastic Beanstalk Enhanced Health Reporting has native support for publishing a wide
range of instance and environment metrics to CloudWatch. See Publishing Amazon
CloudWatch custom metrics for an environment for details.

Topics

• .Ebextensions configuration file

• Permissions

• Viewing metrics in the CloudWatch console

.Ebextensions configuration file

This example uses files and commands in an .ebextensions configuration file to configure and run
the Amazon CloudWatch agent on the Amazon Linux 2 platform. The agent is prepackaged with
Amazon Linux 2. If you're using a different operating system, additional steps for installing the

Linux server 1053

https://docs.aws.amazon.com/%20AWSEC2/latest/UserGuide/monitoring-scripts-intro.html
https://docs.aws.amazon.com/%20AWSEC2/latest/UserGuide/monitoring-scripts-intro.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html

AWS Elastic Beanstalk Developer Guide

agent may be necessary. For more information, see Installing the CloudWatch agent in the Amazon
CloudWatch User Guide.

To use this sample, save it to a file named cloudwatch.config in a directory named
.ebextensions at the top level of your project directory, then deploy your application using the
Elastic Beanstalk console (include the .ebextensions directory in your source bundle) or the EB CLI.

For more information about configuration files, see Advanced environment customization with
configuration files (.ebextensions).

.ebextensions/cloudwatch.config

files:
 "/opt/aws/amazon-cloudwatch-agent/bin/config.json":
 mode: "000600"
 owner: root
 group: root
 content: |
 {
 "agent": {
 "metrics_collection_interval": 60,
 "run_as_user": "root"
 },
 "metrics": {
 "namespace": "System/Linux",
 "append_dimensions": {
 "AutoScalingGroupName": "${aws:AutoScalingGroupName}"
 },
 "metrics_collected": {
 "mem": {
 "measurement": [
 "mem_used_percent"
]
 }
 }
 }
 }
container_commands:
 start_cloudwatch_agent:
 command: /opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch-agent-ctl -a fetch-
config -m ec2 -s -c file:/opt/aws/amazon-cloudwatch-agent/bin/config.json

This file has two sections:

Linux server 1054

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-on-EC2-Instance.html

AWS Elastic Beanstalk Developer Guide

• files — This section adds the agent configuration file. It indicates which metrics and logs
the agent should send to Amazon CloudWatch. In this example, we're only sending the
mem_used_percent metric. For a complete listing of system level metrics supported by the
Amazon CloudWatch agent, see Metrics collected by the CloudWatch agent in the Amazon
CloudWatch User Guide.

• container_commands — This section contains the command that starts the agent, passing
in the configuration file as a parameter. For more details about container_commands, see
Container commands.

Permissions

The instances in your environment need the proper IAM permissions in order to publish custom
Amazon CloudWatch metrics using the Amazon CloudWatch agent. You grant permissions to
your environment's instances by adding them to the environment's instance profile. You can add
permissions to the instance profile before or after deploying your application.

To grant permissions to publish CloudWatch metrics

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Choose your environment's instance profile role. By default, when you create an environment
with the Elastic Beanstalk console or EB CLI, this is aws-elasticbeanstalk-ec2-role.

4. Choose the Permissions tab.

5. Under Permissions Policies, in the Permissions section, choose Attach policies.

6. Under Attach Permissions, choose the AWS managed policy CloudWatchAgentServerPolicy.
Then click Attach policy.

For more information about managing policies, see Working with Policies in the IAM User Guide.

Viewing metrics in the CloudWatch console

After deploying the CloudWatch configuration file to your environment, check the Amazon
CloudWatch console to view your metrics. Custom metrics will be located in the CWAgent
namespace.

For more information, see Viewing available metrics in the Amazon CloudWatch User Guide.

Linux server 1055

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/metrics-collected-by-CloudWatch-agent.html
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/viewing_metrics_with_cloudwatch.html

AWS Elastic Beanstalk Developer Guide

Customizing software on Windows servers

You may want to customize and configure the software that your application depends on. These
files could be either dependencies required by the application—for example, additional packages
or services that need to be run. For general information on customizing and configuring your
Elastic Beanstalk environments, see Configuring Elastic Beanstalk environments.

Note

YAML relies on consistent indentation. Match the indentation level when replacing content
in an example configuration file and ensure that your text editor uses spaces, not tab
characters, to indent.

Configuration files support the following keys that affect the Windows server on which your
application runs.

Keys

• Packages

• Sources

• Files

• Commands

• Services

• Container commands

Keys are processed in the order that they are listed here.

Note

Older (non-versioned) .NET platform versions do not process configuration files in the
correct order. Learn more at Migrating across major versions of the Elastic Beanstalk
Windows server platform.

Watch your environment's events while developing and testing configuration files. Elastic Beanstalk
ignores a configuration file that contains validation errors, like an invalid key, and doesn't process

Windows server 1056

AWS Elastic Beanstalk Developer Guide

any of the other keys in the same file. When this happens, Elastic Beanstalk adds a warning event
to the event log.

Packages

Use the packages key to download and install prepackaged applications and components.

In Windows environments, Elastic Beanstalk supports downloading and installing MSI packages.
(Linux environments support additional package managers. For details, see Packages on the
Customizing Software on Linux Servers page.)

You can reference any external location, such as an Amazon Simple Storage Service (Amazon S3)
object, as long as the URL is publicly accessible.

If you specify several msi: packages, their installation order isn't guaranteed.

Syntax

Specify a name of your choice as the package name, and a URL to an MSI file location as the value.
You can specify multiple packages under the msi: key.

packages:
 msi:
 package name: package url
 ...

Examples

The following example specifies a URL to download mysql from https://dev.mysql.com/.

packages:
 msi:
 mysql: https://dev.mysql.com/get/Downloads/Connector-Net/mysql-connector-
net-8.0.11.msi

The following example specifies an Amazon S3 object as the MSI file location.

packages:
 msi:
 mymsi: https://mybucket.s3.amazonaws.com/myobject.msi

Windows server 1057

AWS Elastic Beanstalk Developer Guide

Sources

Use the sources key to download an archive file from a public URL and unpack it in a target
directory on the EC2 instance.

Syntax

sources:
 target directory: location of archive file

Supported formats

In Windows environments, Elastic Beanstalk supports the .zip format. (Linux environments support
additional formats. For details, see Sources on the Customizing Software on Linux Servers page.)

You can reference any external location, such as an Amazon Simple Storage Service (Amazon S3)
object, as long as the URL is publicly accessible.

Example

The following example downloads a public .zip file from an Amazon S3 bucket and unpacks it into
c:/myproject/myapp.

sources:
 "c:/myproject/myapp": https://mybucket.s3.amazonaws.com/myobject.zip

Files

Use the files key to create files on the EC2 instance. The content can be either inline in the
configuration file, or from a URL. The files are written to disk in lexicographic order. To download
private files from Amazon S3, provide an instance profile for authorization.

Syntax

files:
 "target file location on disk":
 source: URL
 authentication: authentication name:

 "target file location on disk":
 content: |
 this is my content

Windows server 1058

AWS Elastic Beanstalk Developer Guide

 encoding: encoding format

Options

content

(Optional) A string.

source

(Optional) The URL from which the file is loaded. This option cannot be specified with the
content key.

encoding

(Optional) The encoding format. This option is only used for a provided content key value. The
default value is plain.

Valid values: plain | base64

authentication

(Optional) The name of a AWS CloudFormation authentication method to use. You can add
authentication methods to the Auto Scaling group metadata with the Resources key.

Examples

The following example shows the two ways to provide file content: from a URL, or inline in the
configuration file.

files:
 "c:\\targetdirectory\\targetfile.txt":
 source: http://foo.bar/myfile

 "c:/targetdirectory/targetfile.txt":
 content: |
 # this is my file
 # with content

Note

If you use a backslash (\) in your file path, you must precede that with another backslash
(the escape character) as shown in the previous example.

Windows server 1059

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-authentication.html

AWS Elastic Beanstalk Developer Guide

The following example uses the Resources key to add an authentication method named S3Auth
and uses it to download a private file from an Amazon S3 bucket:

files:
 "c:\\targetdirectory\\targetfile.zip":
 source: https://elasticbeanstalk-us-east-2-123456789012.s3.amazonaws.com/prefix/
myfile.zip
 authentication: S3Auth

Resources:
 AWSEBAutoScalingGroup:
 Metadata:
 AWS::CloudFormation::Authentication:
 S3Auth:
 type: "s3"
 buckets: ["elasticbeanstalk-us-east-2-123456789012"]
 roleName:
 "Fn::GetOptionSetting":
 Namespace: "aws:autoscaling:launchconfiguration"
 OptionName: "IamInstanceProfile"
 DefaultValue: "aws-elasticbeanstalk-ec2-role"

Commands

Use the commands key to execute commands on the EC2 instance. The commands are processed in
alphabetical order by name, and they run before the application and web server are set up and the
application version file is extracted.

The specified commands run as the Administrator user.

To troubleshoot issues with your commands, you can find their output in instance logs.

Syntax

commands:
 command name:
 command: command to run

Windows server 1060

AWS Elastic Beanstalk Developer Guide

Options

command

Either an array or a string specifying the command to run. If you use an array, you don't need to
escape space characters or enclose command parameters in quotation marks.

cwd

(Optional) The working directory. By default, Elastic Beanstalk attempts to find the directory
location of your project. If not found, it uses c:\Windows\System32 as the default.

env

(Optional) Sets environment variables for the command. This property overwrites, rather than
appends, the existing environment.

ignoreErrors

(Optional) A Boolean value that determines if other commands should run if the command
contained in the command key fails (returns a nonzero value). Set this value to true if you want
to continue running commands even if the command fails. Set it to false if you want to stop
running commands if the command fails. The default value is false.

test

(Optional) A command that must return the value true (exit code 0) in order for Elastic
Beanstalk to process the command contained in the command key.

waitAfterCompletion

(Optional) Seconds to wait after the command completes before running the next command.
If the system requires a reboot after the command completes, the system reboots after the
specified number of seconds elapses. If the system reboots as a result of a command, Elastic
Beanstalk will recover to the point after the command in the configuration file. The default
value is 60 seconds. You can also specify forever, but the system must reboot before you can
run another command.

Example

The following example saves the output of the set command to the specified file. If there is a
subsequent command, Elastic Beanstalk runs that command immediately after this command
completes. If this command requires a reboot, Elastic Beanstalk reboots the instance immediately
after the command completes.

Windows server 1061

AWS Elastic Beanstalk Developer Guide

commands:
 test:
 command: set > c:\\myapp\\set.txt
 waitAfterCompletion: 0

Services

Use the services key to define which services should be started or stopped when the instance is
launched. The services key also enables you to specify dependencies on sources, packages, and
files so that if a restart is needed due to files being installed, Elastic Beanstalk takes care of the
service restart.

Syntax

services:
 windows:
 name of service:
 files:
 - "file name"
 sources:
 - "directory"
 packages:
 name of package manager:
 "package name[: version]"
 commands:
 - "name of command"

Options

ensureRunning

(Optional) Set to true to ensure that the service is running after Elastic Beanstalk finishes.

Set to false to ensure that the service is not running after Elastic Beanstalk finishes.

Omit this key to make no changes to the service state.

enabled

(Optional) Set to true to ensure that the service is started automatically upon boot.

Set to false to ensure that the service is not started automatically upon boot.

Windows server 1062

AWS Elastic Beanstalk Developer Guide

Omit this key to make no changes to this property.

files

A list of files. If Elastic Beanstalk changes one directly via the files block, the service is restarted.

sources

A list of directories. If Elastic Beanstalk expands an archive into one of these directories, the
service is restarted.

packages

A map of the package manager to a list of package names. If Elastic Beanstalk installs or
updates one of these packages, the service is restarted.

commands

A list of command names. If Elastic Beanstalk runs the specified command, the service is
restarted.

Example

services:
 windows:
 myservice:
 enabled: true
 ensureRunning: true

Container commands

Use the container_commands key to execute commands that affect your application source
code. Container commands run after the application and web server have been set up and the
application version archive has been extracted, but before the application version is deployed. Non-
container commands and other customization operations are performed prior to the application
source code being extracted.

Container commands are run from the staging directory, where your source code is extracted prior
to being deployed to the application server. Any changes you make to your source code in the
staging directory with a container command will be included when the source is deployed to its
final location.

To troubleshoot issues with your container commands, you can find their output in instance logs.

Windows server 1063

AWS Elastic Beanstalk Developer Guide

Use the leader_only option to only run the command on a single instance, or configure
a test to only run the command when a test command evaluates to true. Leader-only
container commands are only executed during environment creation and deployments, while
other commands and server customization operations are performed every time an instance
is provisioned or updated. Leader-only container commands are not executed due to launch
configuration changes, such as a change in the AMI Id or instance type.

Syntax

container_commands:
 name of container_command:
 command: command to run

Options

command

A string or array of strings to run.

env

(Optional) Set environment variables prior to running the command, overriding any existing
value.

cwd

(Optional) The working directory. By default, this is the staging directory of the unzipped
application.

leader_only

(Optional) Only run the command on a single instance chosen by Elastic Beanstalk. Leader-only
container commands are run before other container commands. A command can be leader-only
or have a test, but not both (leader_only takes precedence).

test

(Optional) Run a test command that must return the true in order to run the container
command. A command can be leader-only or have a test, but not both (leader_only takes
precedence).

ignoreErrors

(Optional) Do not fail deployments if the container command returns a value other than 0
(success). Set to true to enable.

Windows server 1064

AWS Elastic Beanstalk Developer Guide

waitAfterCompletion

(Optional) Seconds to wait after the command completes before running the next command.
If the system requires a reboot after the command completes, the system reboots after the
specified number of seconds elapses. If the system reboots as a result of a command, Elastic
Beanstalk will recover to the point after the command in the configuration file. The default
value is 60 seconds. You can also specify forever, but the system must reboot before you can
run another command.

Example

The following example saves the output of the set command to the specified file. Elastic Beanstalk
runs the command on one instance, and reboots the instance immediately after the command
completes.

container_commands:
 foo:
 command: set > c:\\myapp\\set.txt
 leader_only: true
 waitAfterCompletion: 0

Adding and customizing Elastic Beanstalk environment resources

You may want to customize your environment resources that are part of your Elastic Beanstalk
environment. For example, you may want to add an Amazon SQS queue and an alarm on queue
depth, or you might want to add an Amazon ElastiCache cluster. You can easily customize
your environment at the same time that you deploy your application version by including a
configuration file with your source bundle.

You can use the Resources key in a configuration file to create and customize AWS resources in
your environment. Resources defined in configuration files are added to the AWS CloudFormation
template used to launch your environment. All AWS CloudFormation resources types are
supported.

Note

Whenever you add a resource that isn't managed by Elastic Beanstalk, be sure to add a
user policy with the appropriate permissions to your AWS Identity and Access Management

Custom resources 1065

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html

AWS Elastic Beanstalk Developer Guide

(IAM) users. The managed user policies that Elastic Beanstalk provides only cover
permissions to Elastic Beanstalk-managed resources.

For example, the following configuration file adds an Auto Scaling lifecycle hook to the default
Auto Scaling group created by Elastic Beanstalk:

~/my-app/.ebextensions/as-hook.config

Resources:
 hookrole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument: {
 "Version" : "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": ["autoscaling.amazonaws.com"]
 },
 "Action": ["sts:AssumeRole"]
 }]
 }
 Policies: [{
 "PolicyName": "SNS",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Resource": "*",
 "Action": [
 "sqs:SendMessage",
 "sqs:GetQueueUrl",
 "sns:Publish"
]
 }
]
 }
 }]
 hooktopic:
 Type: AWS::SNS::Topic
 Properties:
 Subscription:

Custom resources 1066

AWS Elastic Beanstalk Developer Guide

 - Endpoint: "my-email@example.com"
 Protocol: email
 lifecyclehook:
 Type: AWS::AutoScaling::LifecycleHook
 Properties:
 AutoScalingGroupName: { "Ref" : "AWSEBAutoScalingGroup" }
 LifecycleTransition: autoscaling:EC2_INSTANCE_TERMINATING
 NotificationTargetARN: { "Ref" : "hooktopic" }
 RoleARN: { "Fn::GetAtt" : ["hookrole", "Arn"] }

This example defines three resources, hookrole, hooktopic and lifecyclehook. The first two
resources are an IAM role, which grants Amazon EC2 Auto Scaling permission to publish messages
to Amazon SNS, and an SNS topic, which relays messages from the Auto Scaling group to an email
address. Elastic Beanstalk creates these resources with the specified properties and types.

The final resource, lifecyclehook, is the lifecycle hook itself:

 lifecyclehook:
 Type: AWS::AutoScaling::LifecycleHook
 Properties:
 AutoScalingGroupName: { "Ref" : "AWSEBAutoScalingGroup" }
 LifecycleTransition: autoscaling:EC2_INSTANCE_TERMINATING
 NotificationTargetARN: { "Ref" : "hooktopic" }
 RoleARN: { "Fn::GetAtt" : ["hookrole", "Arn"] }

The lifecycle hook definition uses two functions to populate values for the hook's properties.
{ "Ref" : "AWSEBAutoScalingGroup" } retrieves the name of the Auto Scaling group
created by Elastic Beanstalk for the environment. AWSEBAutoScalingGroup is one of the
standard resource names provided by Elastic Beanstalk.

For AWS::IAM::Role, Ref only returns the name of the role, not the ARN. To get the ARN for the
RoleARN parameter, you use another intrinsic function, Fn::GetAtt instead, which can get any
attribute from a resource. RoleARN: { "Fn::GetAtt" : ["hookrole", "Arn"] } gets the
Arn attribute from the hookrole resource.

{ "Ref" : "hooktopic" } gets the ARN of the Amazon SNS topic created earlier in the
configuration file. The value returned by Ref varies per resource type and can be found in the AWS
CloudFormation User Guide topic for the AWS::SNS::Topic resource type.

Custom resources 1067

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html#d0e48356
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html#d0e62250

AWS Elastic Beanstalk Developer Guide

Modifying the resources that Elastic Beanstalk creates for your environment

The resources that Elastic Beanstalk creates for your environment have names. You can use
these names to get information about the resources with a function, or modify properties on the
resources to customize their behavior. This topic describes the AWS resources that Elastic Beanstalk
uses in the different types of environments.

Note

The previous topic Custom resources provides some uses cases and examples for
customizing environment resources. You can also find more examples of configuration files
in the later topic Custom resource examples.

Web server environments have the following resources.

Web server environments

• AWSEBAutoScalingGroup (AWS::AutoScaling::AutoScalingGroup) – The Auto Scaling group
attached to your environment.

• One of the following two resources.

• AWSEBAutoScalingLaunchConfiguration (AWS::AutoScaling::LaunchConfiguration) – The
launch configuration attached to your environment's Auto Scaling group.

• AWSEBEC2LaunchTemplate (AWS::EC2::LaunchTemplate) – The Amazon EC2 launch template
used by your environment's Auto Scaling group.

Note

If your environment uses functionality that requires Amazon EC2 launch templates, and
your user policy lacks the required permissions, creating or updating the environment
might fail. Use the AdministratorAccess-AWSElasticBeanstalk managed user policy, or
add the required permissions to your custom policy.

• AWSEBEnvironmentName (AWS::ElasticBeanstalk::Environment) – Your environment.

• AWSEBSecurityGroup (AWS::EC2::SecurityGroup) – The security group attached to your Auto
Scaling group.

• AWSEBRDSDatabase (AWS::RDS::DBInstance) – The Amazon RDS DB instance attached to your
environment (if applicable).

Custom resources 1068

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-as-group.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-as-launchconfig.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-launchtemplate.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-beanstalk-environment.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-security-group.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-rds-database-instance.html

AWS Elastic Beanstalk Developer Guide

In a load-balanced environment, you can access additional resources related to the load balancer.
Classic load balancers have a resource for the load balancer and one for the security group
attached to it. Application and network load balancers have additional resources for the load
balancer's default listener, listener rule, and target group.

Load-balanced environments

• AWSEBLoadBalancer (AWS::ElasticLoadBalancing::LoadBalancer) – Your environment's classic
load balancer.

• AWSEBV2LoadBalancer (AWS::ElasticLoadBalancingV2::LoadBalancer) – Your environment's
application or network load balancer.

• AWSEBLoadBalancerSecurityGroup (AWS::EC2::SecurityGroup) – In a custom Amazon Virtual
Private Cloud (Amazon VPC) only, the name of the security group that Elastic Beanstalk creates
for the load balancer. In a default VPC or EC2 classic, Elastic Load Balancing assigns a default
security group to the load balancer.

• AWSEBV2LoadBalancerListener (AWS::ElasticLoadBalancingV2::Listener) – A listener that
allows the load balancer to check for connection requests and forward them to one or more
target groups.

• AWSEBV2LoadBalancerListenerRule (AWS::ElasticLoadBalancingV2::ListenerRule) – Defines
which requests an Elastic Load Balancing listener takes action on and the action that it takes.

• AWSEBV2LoadBalancerTargetGroup (AWS::ElasticLoadBalancingV2::TargetGroup) – An Elastic
Load Balancing target group that routes requests to one or more registered targets, such as
Amazon EC2 instances.

Worker environments have resources for the SQS queue that buffers incoming requests, and a
Amazon DynamoDB table that the instances use for leader election.

Worker environments

• AWSEBWorkerQueue (AWS::SQS::Queue) – The Amazon SQS queue from which the daemon pulls
requests that need to be processed.

• AWSEBWorkerDeadLetterQueue (AWS::SQS::Queue) – The Amazon SQS queue that stores
messages that cannot be delivered or otherwise were not successfully processed by the daemon.

• AWSEBWorkerCronLeaderRegistry (AWS::DynamoDB::Table) – The Amazon DynamoDB table
that is the internal registry used by the daemon for periodic tasks.

Custom resources 1069

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-elb.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-loadbalancer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-security-group.html
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-listener.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-listenerrule.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-elasticloadbalancingv2-targetgroup.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

AWS Elastic Beanstalk Developer Guide

Other AWS CloudFormation template keys

We've already introduced configuration file keys from AWS CloudFormation such as Resources,
files, and packages. Elastic Beanstalk adds the contents of configurations files to the
AWS CloudFormation template that supports your environment, so you can use other AWS
CloudFormation sections to perform advanced tasks in your configuration files.

Keys

• Parameters

• Outputs

• Mappings

Parameters

Parameters are an alternative to Elastic Beanstalk's own custom options that you can use to define
values that you use in other places in your configuration files. Like custom options, you can use
parameters to gather user configurable values in one place. Unlike custom options, you can not use
Elastic Beanstalk's API to set parameter values, and the number of parameters you can define in a
template is limited by AWS CloudFormation.

One reason you might want to use parameters is to make your configuration files double as
AWS CloudFormation templates. If you use parameters instead of custom options, you can use
the configuration file to create the same resource in AWS CloudFormation as its own stack.
For example, you could have a configuration file that adds an Amazon EFS file system to your
environment for testing, and then use the same file to create an independent file system that isn't
tied to your environment's lifecycle for production use.

The following example shows the use of parameters to gather user-configurable values at the top
of a configuration file.

Example Loadbalancer-accesslogs-existingbucket.config – Parameters

Parameters:
 bucket:
 Type: String
 Description: "Name of the Amazon S3 bucket in which to store load balancer logs"
 Default: "DOC-EXAMPLE-BUCKET"
 bucketprefix:
 Type: String

Custom resources 1070

https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/resource-configuration/loadbalancer-accesslogs-existingbucket.config

AWS Elastic Beanstalk Developer Guide

 Description: "Optional prefix. Can't start or end with a /, or contain the word
 AWSLogs"
 Default: ""

Outputs

You can use an Outputs block to export information about created resources to AWS
CloudFormation. You can then use the Fn::ImportValue function to pull the value into a AWS
CloudFormation template outside of Elastic Beanstalk.

The following example creates an Amazon SNS topic and exports its ARN to AWS CloudFormation
with the name NotificationTopicArn.

Example sns-topic.config

Resources:
 NotificationTopic:
 Type: AWS::SNS::Topic

Outputs:
 NotificationTopicArn:
 Description: Notification topic ARN
 Value: { "Ref" : "NotificationTopic" }
 Export:
 Name: NotificationTopicArn

In a configuration file for a different environment, or a AWS CloudFormation template outside
of Elastic Beanstalk, you can use the Fn::ImportValue function to get the exported ARN. This
example assigns the exported value to an environment property named TOPIC_ARN.

Example env.config

option_settings:
 aws:elasticbeanstalk:application:environment:
 TOPIC_ARN: '`{ "Fn::ImportValue" : "NotificationTopicArn" }`'

Mappings

You can use a mapping to store key-value pairs organized by namespace. A mapping can help you
organize values that you use throughout your configs, or change a parameter value depending on
another value. For example, the following configuration sets the value of an account ID parameter
based on the current region.

Custom resources 1071

https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/resource-configuration/sns-topic.config

AWS Elastic Beanstalk Developer Guide

Example Loadbalancer-accesslogs-newbucket.config – Mappings

Mappings:
 Region2ELBAccountId:
 us-east-1:
 AccountId: "111122223333"
 us-west-2:
 AccountId: "444455556666"
 us-west-1:
 AccountId: "123456789012"
 eu-west-1:
 AccountId: "777788889999"
...
 Principal:
 AWS:
 ? "Fn::FindInMap"
 :
 - Region2ELBAccountId
 -
 Ref: "AWS::Region"
 - AccountId

Functions

You can use functions in your configuration files to populate values for resource properties with
information from other resources or from Elastic Beanstalk configuration option settings. Elastic
Beanstalk supports AWS CloudFormation functions (Ref, Fn::GetAtt, Fn::Join), and one Elastic
Beanstalk-specific function, Fn::GetOptionSetting.

Functions

• Ref

• Fn::GetAtt

• Fn::Join

• Fn::GetOptionSetting

Ref

Use Ref to retrieve the default string representation of an AWS resource. The value returned by
Ref depends on the resource type, and sometimes depends on other factors as well. For example,

Custom resources 1072

https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/resource-configuration/loadbalancer-accesslogs-newbucket.config

AWS Elastic Beanstalk Developer Guide

a security group (AWS::EC2::SecurityGroup) returns either the name or ID of the security group,
depending on if the security group is in a default Amazon Virtual Private Cloud (Amazon VPC), EC2
classic, or a custom VPC.

{ "Ref" : "resource name" }

Note

For details on each resource type, including the return value(s) of Ref, see AWS Resource
Types Reference in the AWS CloudFormation User Guide.

From the sample Auto Scaling lifecycle hook:

Resources:
 lifecyclehook:
 Type: AWS::AutoScaling::LifecycleHook
 Properties:
 AutoScalingGroupName: { "Ref" : "AWSEBAutoScalingGroup" }

You can also use Ref to retrieve the value of a AWS CloudFormation parameter defined elsewhere
in the same file or in a different configuration file.

Fn::GetAtt

Use Fn::GetAtt to retrieve the value of an attribute on an AWS resource.

{ "Fn::GetAtt" : ["resource name", "attribute name"] }

From the sample Auto Scaling lifecycle hook:

Resources:
 lifecyclehook:
 Type: AWS::AutoScaling::LifecycleHook
 Properties:
 RoleARN: { "Fn::GetAtt" : ["hookrole", "Arn"] }

See Fn::GetAtt for more information.

Custom resources 1073

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-security-group.html
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-getatt.html

AWS Elastic Beanstalk Developer Guide

Fn::Join

Use Fn::Join to combine strings with a delimiter. The strings can be hard-coded or use the
output from Fn::GetAtt or Ref.

{ "Fn::Join" : ["delimiter", ["string1", "string2"]] }

See Fn::Join for more information.

Fn::GetOptionSetting

Use Fn::GetOptionSetting to retrieve the value of a configuration option setting applied to the
environment.

"Fn::GetOptionSetting":
 Namespace: "namespace"
 OptionName: "option name"
 DefaultValue: "default value"

From the storing private keys example:

Resources:
 AWSEBAutoScalingGroup:
 Metadata:
 AWS::CloudFormation::Authentication:
 S3Auth:
 type: "s3"
 buckets: ["elasticbeanstalk-us-west-2-123456789012"]
 roleName:
 "Fn::GetOptionSetting":
 Namespace: "aws:autoscaling:launchconfiguration"
 OptionName: "IamInstanceProfile"
 DefaultValue: "aws-elasticbeanstalk-ec2-role"

Custom resource examples

The following is a list of example configuration files that you can use to customize your Elastic
Beanstalk environments:

• DynamoDB, CloudWatch, and SNS

Custom resources 1074

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-join.html
https://elasticbeanstalk.s3.amazonaws.com/extensions/DynamoDB-with-CloudWatch-Alarms.config

AWS Elastic Beanstalk Developer Guide

• Elastic Load Balancing and CloudWatch

• ElastiCache

• RDS and CloudWatch

• SQS, SNS, and CloudWatch

Subtopics of this page provide some extended examples for adding and configuring custom
resources in an Elastic Beanstalk environment.

Examples

• Example: ElastiCache

• Example: SQS, CloudWatch, and SNS

• Example: DynamoDB, CloudWatch, and SNS

Example: ElastiCache

The following samples add an Amazon ElastiCache cluster to EC2-Classic and EC2-VPC (both
default and custom Amazon Virtual Private Cloud (Amazon VPC)) platforms. For more information
about these platforms and how you can determine which ones EC2 supports for your region and
your AWS account, see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-
platforms.html. Then refer to the section in this topic that applies to your platform.

• EC2-classic platforms

• EC2-VPC (default)

• EC2-VPC (custom)

EC2-classic platforms

This sample adds an Amazon ElastiCache cluster to an environment with instances launched into
the EC2-Classic platform. All of the properties that are listed in this example are the minimum
required properties that must be set for each resource type. You can download the example at
ElastiCache example.

Note

This example creates AWS resources, which you might be charged for. For more information
about AWS pricing, see https://aws.amazon.com/pricing/. Some services are part of the

Custom resources 1075

https://elasticbeanstalk.s3.amazonaws.com/extensions/ELB-Alarms.config
https://elasticbeanstalk.s3.amazonaws.com/extensions/ElastiCache.config
https://elasticbeanstalk.s3.amazonaws.com/extensions/RDS-Alarms.config
https://elasticbeanstalk.s3.amazonaws.com/extensions/SNS.config
https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
https://elasticbeanstalk.s3.amazonaws.com/extensions/ElastiCache.config
https://aws.amazon.com/pricing/

AWS Elastic Beanstalk Developer Guide

AWS Free Usage Tier. If you are a new customer, you can test drive these services for free.
See https://aws.amazon.com/free/ for more information.

To use this example, do the following:

1. Create an .ebextensions directory in the top-level directory of your source bundle.

2. Create two configuration files with the .config extension and place them in your
.ebextensions directory. One configuration file defines the resources, and the other
configuration file defines the options.

3. Deploy your application to Elastic Beanstalk.

YAML relies on consistent indentation. Match the indentation level when replacing content in an
example configuration file and ensure that your text editor uses spaces, not tab characters, to
indent.

Create a configuration file (e.g., elasticache.config) that defines the resources. In this
example, we create the ElastiCache cluster by specifying the name of the ElastiCache cluster
resource (MyElastiCache), declaring its type, and then configuring the properties for the cluster.
The example references the name of the ElastiCache security group resource that gets created
and defined in this configuration file. Next, we create an ElastiCache security group. We define the
name for this resource, declare its type, and add a description for the security group. Finally, we
set the ingress rules for the ElastiCache security group to allow access only from instances inside
the ElastiCache security group (MyCacheSecurityGroup) and the Elastic Beanstalk security group
(AWSEBSecurityGroup). The parameter name, AWSEBSecurityGroup, is a fixed resource name
provided by Elastic Beanstalk. You must add AWSEBSecurityGroup to your ElastiCache security
group ingress rules in order for your Elastic Beanstalk application to connect to the instances in
your ElastiCache cluster.

#This sample requires you to create a separate configuration file that defines the
 custom option settings for CacheCluster properties.

Resources:
 MyElastiCache:
 Type: AWS::ElastiCache::CacheCluster
 Properties:
 CacheNodeType:
 Fn::GetOptionSetting:

Custom resources 1076

https://aws.amazon.com/free/

AWS Elastic Beanstalk Developer Guide

 OptionName : CacheNodeType
 DefaultValue: cache.m1.small
 NumCacheNodes:
 Fn::GetOptionSetting:
 OptionName : NumCacheNodes
 DefaultValue: 1
 Engine:
 Fn::GetOptionSetting:
 OptionName : Engine
 DefaultValue: memcached
 CacheSecurityGroupNames:
 - Ref: MyCacheSecurityGroup
 MyCacheSecurityGroup:
 Type: AWS::ElastiCache::SecurityGroup
 Properties:
 Description: "Lock cache down to webserver access only"
 MyCacheSecurityGroupIngress:
 Type: AWS::ElastiCache::SecurityGroupIngress
 Properties:
 CacheSecurityGroupName:
 Ref: MyCacheSecurityGroup
 EC2SecurityGroupName:
 Ref: AWSEBSecurityGroup

For more information about the resources used in this example configuration file, see the following
references:

• AWS::ElastiCache::CacheCluster

• AWS::ElastiCache::SecurityGroup

• AWS::ElastiCache:SecurityGroupIngress

Create a separate configuration file called options.config and define the custom option
settings.

option_settings:
 "aws:elasticbeanstalk:customoption":
 CacheNodeType : cache.m1.small
 NumCacheNodes : 1
 Engine : memcached

Custom resources 1077

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-cache-cluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-security-group.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-security-group-ingress.html

AWS Elastic Beanstalk Developer Guide

These lines tell Elastic Beanstalk to get the values for the CacheNodeType, NumCacheNodes,
and Engine properties from the CacheNodeType, NumCacheNodes, and Engine values in a
config file (options.config in our example) that contains an option_settings section with an
aws:elasticbeanstalk:customoption section that contains a name-value pair that contains the
actual value to use. In the example above, this means cache.m1.small, 1, and memcached would be
used for the values. For more information about Fn::GetOptionSetting, see Functions.

EC2-VPC (default)

This sample adds an Amazon ElastiCache cluster to an environment with instances launched into
the EC2-VPC platform. Specifically, the information in this section applies to a scenario where EC2
launches instances into the default VPC. All of the properties in this example are the minimum
required properties that must be set for each resource type. For more information about default
VPCs, see Your Default VPC and Subnets.

Note

This example creates AWS resources, which you might be charged for. For more information
about AWS pricing, see https://aws.amazon.com/pricing/. Some services are part of the
AWS Free Usage Tier. If you are a new customer, you can test drive these services for free.
See https://aws.amazon.com/free/ for more information.

To use this example, do the following:

1. Create an .ebextensions directory in the top-level directory of your source bundle.

2. Create two configuration files with the .config extension and place them in your
.ebextensions directory. One configuration file defines the resources, and the other
configuration file defines the options.

3. Deploy your application to Elastic Beanstalk.

YAML relies on consistent indentation. Match the indentation level when replacing content in an
example configuration file and ensure that your text editor uses spaces, not tab characters, to
indent.

Now name the resources configuration file elasticache.config. To create the ElastiCache
cluster, this example specifies the name of the ElastiCache cluster resource (MyElastiCache),

Custom resources 1078

https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html
https://aws.amazon.com/pricing/
https://aws.amazon.com/free/

AWS Elastic Beanstalk Developer Guide

declares its type, and then configures the properties for the cluster. The example references the ID
of the security group resource that we create and define in this configuration file.

Next, we create an EC2 security group. We define the name for this resource, declare its type, add
a description, and set the ingress rules for the security group to allow access only from instances
inside the Elastic Beanstalk security group (AWSEBSecurityGroup). (The parameter name,
AWSEBSecurityGroup, is a fixed resource name provided by Elastic Beanstalk. You must add
AWSEBSecurityGroup to your ElastiCache security group ingress rules in order for your Elastic
Beanstalk application to connect to the instances in your ElastiCache cluster.)

The ingress rules for the EC2 security group also define the IP protocol and port numbers on which
the cache nodes can accept connections. For Redis, the default port number is 6379.

#This sample requires you to create a separate configuration file that defines the
 custom option settings for CacheCluster properties.

Resources:
 MyCacheSecurityGroup:
 Type: "AWS::EC2::SecurityGroup"
 Properties:
 GroupDescription: "Lock cache down to webserver access only"
 SecurityGroupIngress :
 - IpProtocol : "tcp"
 FromPort :
 Fn::GetOptionSetting:
 OptionName : "CachePort"
 DefaultValue: "6379"
 ToPort :
 Fn::GetOptionSetting:
 OptionName : "CachePort"
 DefaultValue: "6379"
 SourceSecurityGroupName:
 Ref: "AWSEBSecurityGroup"
 MyElastiCache:
 Type: "AWS::ElastiCache::CacheCluster"
 Properties:
 CacheNodeType:
 Fn::GetOptionSetting:
 OptionName : "CacheNodeType"
 DefaultValue : "cache.t2.micro"
 NumCacheNodes:
 Fn::GetOptionSetting:

Custom resources 1079

AWS Elastic Beanstalk Developer Guide

 OptionName : "NumCacheNodes"
 DefaultValue : "1"
 Engine:
 Fn::GetOptionSetting:
 OptionName : "Engine"
 DefaultValue : "redis"
 VpcSecurityGroupIds:
 -
 Fn::GetAtt:
 - MyCacheSecurityGroup
 - GroupId

Outputs:
 ElastiCache:
 Description : "ID of ElastiCache Cache Cluster with Redis Engine"
 Value :
 Ref : "MyElastiCache"

For more information about the resources used in this example configuration file, see the following
references:

• AWS::ElastiCache::CacheCluster

• AWS::EC2::SecurityGroup

Next, name the options configuration file options.config and define the custom option
settings.

option_settings:
 "aws:elasticbeanstalk:customoption":
 CacheNodeType : cache.t2.micro
 NumCacheNodes : 1
 Engine : redis
 CachePort : 6379

These lines tell Elastic Beanstalk to get the values for the CacheNodeType, NumCacheNodes,
Engine, and CachePort properties from the CacheNodeType, NumCacheNodes, Engine,
and CachePort values in a config file (options.config in our example). That file
includes an aws:elasticbeanstalk:customoption section (under option_settings)
that contains name-value pairs with the actual values to use. In the preceding example,

Custom resources 1080

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-cache-cluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-security-group.html

AWS Elastic Beanstalk Developer Guide

cache.t2.micro, 1, redis, and 6379 would be used for the values. For more information about
Fn::GetOptionSetting, see Functions.

EC2-VPC (custom)

If you create a custom VPC on the EC2-VPC platform and specify it as the VPC into which EC2
launches instances, the process of adding an Amazon ElastiCache cluster to your environment
differs from that of a default VPC. The main difference is that you must create a subnet group for
the ElastiCache cluster. All of the properties in this example are the minimum required properties
that must be set for each resource type.

Note

This example creates AWS resources, which you might be charged for. For more information
about AWS pricing, see https://aws.amazon.com/pricing/. Some services are part of the
AWS Free Usage Tier. If you are a new customer, you can test drive these services for free.
See https://aws.amazon.com/free/ for more information.

To use this example, do the following:

1. Create an .ebextensions directory in the top-level directory of your source bundle.

2. Create two configuration files with the .config extension and place them in your
.ebextensions directory. One configuration file defines the resources, and the other
configuration file defines the options.

3. Deploy your application to Elastic Beanstalk.

YAML relies on consistent indentation. Match the indentation level when replacing content in an
example configuration file and ensure that your text editor uses spaces, not tab characters, to
indent.

Now name the resources configuration file elasticache.config. To create the ElastiCache
cluster, this example specifies the name of the ElastiCache cluster resource (MyElastiCache),
declares its type, and then configures the properties for the cluster. The properties in the example
reference the name of the subnet group for the ElastiCache cluster as well as the ID of security
group resource that we create and define in this configuration file.

Custom resources 1081

https://aws.amazon.com/pricing/
https://aws.amazon.com/free/

AWS Elastic Beanstalk Developer Guide

Next, we create an EC2 security group. We define the name for this resource, declare its type, add
a description, the VPC ID, and set the ingress rules for the security group to allow access only from
instances inside the Elastic Beanstalk security group (AWSEBSecurityGroup). (The parameter
name, AWSEBSecurityGroup, is a fixed resource name provided by Elastic Beanstalk. You must
add AWSEBSecurityGroup to your ElastiCache security group ingress rules in order for your
Elastic Beanstalk application to connect to the instances in your ElastiCache cluster.)

The ingress rules for the EC2 security group also define the IP protocol and port numbers on which
the cache nodes can accept connections. For Redis, the default port number is 6379. Finally, this
example creates a subnet group for the ElastiCache cluster. We define the name for this resource,
declare its type, and add a description and ID of the subnet in the subnet group.

Note

We recommend that you use private subnets for the ElastiCache cluster. For more
information about a VPC with a private subnet, see https://docs.aws.amazon.com/vpc/
latest/userguide/VPC_Scenario2.html.

#This sample requires you to create a separate configuration file that defines the
 custom option settings for CacheCluster properties.

Resources:
 MyElastiCache:
 Type: "AWS::ElastiCache::CacheCluster"
 Properties:
 CacheNodeType:
 Fn::GetOptionSetting:
 OptionName : "CacheNodeType"
 DefaultValue : "cache.t2.micro"
 NumCacheNodes:
 Fn::GetOptionSetting:
 OptionName : "NumCacheNodes"
 DefaultValue : "1"
 Engine:
 Fn::GetOptionSetting:
 OptionName : "Engine"
 DefaultValue : "redis"
 CacheSubnetGroupName:
 Ref: "MyCacheSubnets"
 VpcSecurityGroupIds:

Custom resources 1082

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario2.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario2.html

AWS Elastic Beanstalk Developer Guide

 - Ref: "MyCacheSecurityGroup"
 MyCacheSecurityGroup:
 Type: "AWS::EC2::SecurityGroup"
 Properties:
 GroupDescription: "Lock cache down to webserver access only"
 VpcId:
 Fn::GetOptionSetting:
 OptionName : "VpcId"
 SecurityGroupIngress :
 - IpProtocol : "tcp"
 FromPort :
 Fn::GetOptionSetting:
 OptionName : "CachePort"
 DefaultValue: "6379"
 ToPort :
 Fn::GetOptionSetting:
 OptionName : "CachePort"
 DefaultValue: "6379"
 SourceSecurityGroupId:
 Ref: "AWSEBSecurityGroup"
 MyCacheSubnets:
 Type: "AWS::ElastiCache::SubnetGroup"
 Properties:
 Description: "Subnets for ElastiCache"
 SubnetIds:
 Fn::GetOptionSetting:
 OptionName : "CacheSubnets"
Outputs:
 ElastiCache:
 Description : "ID of ElastiCache Cache Cluster with Redis Engine"
 Value :
 Ref : "MyElastiCache"

For more information about the resources used in this example configuration file, see the following
references:

• AWS::ElastiCache::CacheCluster

• AWS::EC2::SecurityGroup

• AWS::ElastiCache::SubnetGroup

Custom resources 1083

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-cache-cluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-security-group.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-elasticache-subnetgroup.html

AWS Elastic Beanstalk Developer Guide

Next, name the options configuration file options.config and define the custom option
settings.

Note

In the following example, replace the example CacheSubnets and VpcId values with your
own subnets and VPC.

option_settings:
 "aws:elasticbeanstalk:customoption":
 CacheNodeType : cache.t2.micro
 NumCacheNodes : 1
 Engine : redis
 CachePort : 6379
 CacheSubnets:
 - subnet-1a1a1a1a
 - subnet-2b2b2b2b
 - subnet-3c3c3c3c
 VpcId: vpc-4d4d4d4d

These lines tell Elastic Beanstalk to get the values for the CacheNodeType,
NumCacheNodes, Engine, CachePort, CacheSubnets, and VpcId properties from
the CacheNodeType, NumCacheNodes, Engine, CachePort, CacheSubnets, and
VpcId values in a config file (options.config in our example). That file includes an
aws:elasticbeanstalk:customoption section (under option_settings) that contains
name-value pairs with sample values. In the example above, cache.t2.micro, 1, redis, 6379,
subnet-1a1a1a1a, subnet-2b2b2b2b, subnet-3c3c3c3c, and vpc-4d4d4d4d would be used
for the values. For more information about Fn::GetOptionSetting, see Functions.

Example: SQS, CloudWatch, and SNS

This example adds an Amazon SQS queue and an alarm on queue depth to the environment. The
properties that you see in this example are the minimum required properties that you must set for
each of these resources. You can download the example at SQS, SNS, and CloudWatch.

Note

This example creates AWS resources, which you might be charged for. For more information
about AWS pricing, see https://aws.amazon.com/pricing/. Some services are part of the

Custom resources 1084

https://elasticbeanstalk.s3.amazonaws.com/extensions/SNS.config
https://aws.amazon.com/pricing/

AWS Elastic Beanstalk Developer Guide

AWS Free Usage Tier. If you are a new customer, you can test drive these services for free.
See https://aws.amazon.com/free/ for more information.

To use this example, do the following:

1. Create an .ebextensions directory in the top-level directory of your source bundle.

2. Create two configuration files with the .config extension and place them in your
.ebextensions directory. One configuration file defines the resources, and the other
configuration file defines the options.

3. Deploy your application to Elastic Beanstalk.

YAML relies on consistent indentation. Match the indentation level when replacing content in an
example configuration file and ensure that your text editor uses spaces, not tab characters, to
indent.

Create a configuration file (e.g., sqs.config) that defines the resources. In this example, we create
an SQS queue and define the VisbilityTimeout property in the MySQSQueue resource. Next,
we create an SNS Topic and specify that email gets sent to someone@example.com when the
alarm is fired. Finally, we create a CloudWatch alarm if the queue grows beyond 10 messages.
In the Dimensions property, we specify the name of the dimension and the value representing
the dimension measurement. We use Fn::GetAtt to return the value of QueueName from
MySQSQueue.

#This sample requires you to create a separate configuration file to define the custom
 options for the SNS topic and SQS queue.
Resources:
 MySQSQueue:
 Type: AWS::SQS::Queue
 Properties:
 VisibilityTimeout:
 Fn::GetOptionSetting:
 OptionName: VisibilityTimeout
 DefaultValue: 30
 AlarmTopic:
 Type: AWS::SNS::Topic
 Properties:
 Subscription:
 - Endpoint:

Custom resources 1085

https://aws.amazon.com/free/

AWS Elastic Beanstalk Developer Guide

 Fn::GetOptionSetting:
 OptionName: AlarmEmail
 DefaultValue: "nobody@amazon.com"
 Protocol: email
 QueueDepthAlarm:
 Type: AWS::CloudWatch::Alarm
 Properties:
 AlarmDescription: "Alarm if queue depth grows beyond 10 messages"
 Namespace: "AWS/SQS"
 MetricName: ApproximateNumberOfMessagesVisible
 Dimensions:
 - Name: QueueName
 Value : { "Fn::GetAtt" : ["MySQSQueue", "QueueName"] }
 Statistic: Sum
 Period: 300
 EvaluationPeriods: 1
 Threshold: 10
 ComparisonOperator: GreaterThanThreshold
 AlarmActions:
 - Ref: AlarmTopic
 InsufficientDataActions:
 - Ref: AlarmTopic

Outputs :
 QueueURL:
 Description : "URL of newly created SQS Queue"
 Value : { Ref : "MySQSQueue" }
 QueueARN :
 Description : "ARN of newly created SQS Queue"
 Value : { "Fn::GetAtt" : ["MySQSQueue", "Arn"]}
 QueueName :
 Description : "Name newly created SQS Queue"
 Value : { "Fn::GetAtt" : ["MySQSQueue", "QueueName"]}

For more information about the resources used in this example configuration file, see the following
references:

• AWS::SQS::Queue

• AWS::SNS::Topic

• AWS::CloudWatch::Alarm

Custom resources 1086

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html

AWS Elastic Beanstalk Developer Guide

Create a separate configuration file called options.config and define the custom option
settings.

option_settings:
 "aws:elasticbeanstalk:customoption":
 VisibilityTimeout : 30
 AlarmEmail : "nobody@example.com"

These lines tell Elastic Beanstalk to get the values for the VisibilityTimeout and Subscription
Endpoint properties from the VisibilityTimeout and Subscription Endpoint values in a
config file (options.config in our example) that contains an option_settings section with an
aws:elasticbeanstalk:customoption section that contains a name-value pair that contains the
actual value to use. In the example above, this means 30 and "nobody@amazon.com" would be
used for the values. For more information about Fn::GetOptionSetting, see the section called
“Functions”.

Example: DynamoDB, CloudWatch, and SNS

This configuration file sets up the DynamoDB table as a session handler for a PHP-based
application using the AWS SDK for PHP 2. To use this example, you must have an IAM instance
profile, which is added to the instances in your environment and used to access the DynamoDB
table.

You can download the sample that we'll use in this step at DynamoDB session Support example.
The sample contains the following files:

• The sample application, index.php

• A configuration file, dynamodb.config, to create and configure a DynamoDB table and other
AWS resources and install software on the EC2 instances that host the application in an Elastic
Beanstalk environment

• A configuration file, options.config, that overrides the defaults in dynamodb.config with
specific settings for this particular installation

index.php

<?php

// Include the SDK using the Composer autoloader
require '../vendor/autoload.php';

Custom resources 1087

https://elasticbeanstalk.s3.amazonaws.com/extensions/PHP-DynamoDB-Session-Support.zip

AWS Elastic Beanstalk Developer Guide

use Aws\DynamoDb\DynamoDbClient;

// Grab the session table name and region from the configuration file
list($tableName, $region) = file(__DIR__ . '/../sessiontable');
$tableName = rtrim($tableName);
$region = rtrim($region);

// Create a DynamoDB client and register the table as the session handler
$dynamodb = DynamoDbClient::factory(array('region' => $region));
$handler = $dynamodb->registerSessionHandler(array('table_name' => $tableName,
 'hash_key' => 'username'));

// Grab the instance ID so we can display the EC2 instance that services the request
$instanceId = file_get_contents("http://169.254.169.254/latest/meta-data/instance-id");
?>
<h1>Elastic Beanstalk PHP Sessions Sample</h1>
<p>This sample application shows the integration of the Elastic Beanstalk PHP
container and the session support for DynamoDB from the AWS SDK for PHP 2.
Using DynamoDB session support, the application can be scaled out across
multiple web servers. For more details, see the
PHP Developer Center.</p>

<form id="SimpleForm" name="SimpleForm" method="post" action="index.php">
<?php
echo 'Request serviced from instance ' . $instanceId . '
';
echo '
';

if (isset($_POST['continue'])) {
 session_start();
 $_SESSION['visits'] = $_SESSION['visits'] + 1;
 echo 'Welcome back ' . $_SESSION['username'] . '
';
 echo 'This is visit number ' . $_SESSION['visits'] . '
';
 session_write_close();
 echo '
';
 echo '<input type="Submit" value="Refresh" name="continue" id="continue"/>';
 echo '<input type="Submit" value="Delete Session" name="killsession"
 id="killsession"/>';
} elseif (isset($_POST['killsession'])) {
 session_start();
 echo 'Goodbye ' . $_SESSION['username'] . '
';
 session_destroy();
 echo 'Username: <input type="text" name="username" id="username" size="30"/>
';
 echo '
';

Custom resources 1088

AWS Elastic Beanstalk Developer Guide

 echo '<input type="Submit" value="New Session" name="newsession" id="newsession"/>';
} elseif (isset($_POST['newsession'])) {
 session_start();
 $_SESSION['username'] = $_POST['username'];
 $_SESSION['visits'] = 1;
 echo 'Welcome to a new session ' . $_SESSION['username'] . '
';
 session_write_close();
 echo '
';
 echo '<input type="Submit" value="Refresh" name="continue" id="continue"/>';
 echo '<input type="Submit" value="Delete Session" name="killsession"
 id="killsession"/>';
} else {
 echo 'To get started, enter a username.
';
 echo '
';
 echo 'Username: <input type="text" name="username" id="username" size="30"/>
';
 echo '<input type="Submit" value="New Session" name="newsession" id="newsession"/>';
}
?>
</form>

.ebextensions/dynamodb.config

Resources:
 SessionTable:
 Type: AWS::DynamoDB::Table
 Properties:
 KeySchema:
 HashKeyElement:
 AttributeName:
 Fn::GetOptionSetting:
 OptionName : SessionHashKeyName
 DefaultValue: "username"
 AttributeType:
 Fn::GetOptionSetting:
 OptionName : SessionHashKeyType
 DefaultValue: "S"
 ProvisionedThroughput:
 ReadCapacityUnits:
 Fn::GetOptionSetting:
 OptionName : SessionReadCapacityUnits
 DefaultValue: 1
 WriteCapacityUnits:
 Fn::GetOptionSetting:

Custom resources 1089

AWS Elastic Beanstalk Developer Guide

 OptionName : SessionWriteCapacityUnits
 DefaultValue: 1

 SessionWriteCapacityUnitsLimit:
 Type: AWS::CloudWatch::Alarm
 Properties:
 AlarmDescription: { "Fn::Join" : ["", [{ "Ref" : "AWSEBEnvironmentName" }, "
 write capacity limit on the session table."]]}
 Namespace: "AWS/DynamoDB"
 MetricName: ConsumedWriteCapacityUnits
 Dimensions:
 - Name: TableName
 Value: { "Ref" : "SessionTable" }
 Statistic: Sum
 Period: 300
 EvaluationPeriods: 12
 Threshold:
 Fn::GetOptionSetting:
 OptionName : SessionWriteCapacityUnitsAlarmThreshold
 DefaultValue: 240
 ComparisonOperator: GreaterThanThreshold
 AlarmActions:
 - Ref: SessionAlarmTopic
 InsufficientDataActions:
 - Ref: SessionAlarmTopic

 SessionReadCapacityUnitsLimit:
 Type: AWS::CloudWatch::Alarm
 Properties:
 AlarmDescription: { "Fn::Join" : ["", [{ "Ref" : "AWSEBEnvironmentName" }, " read
 capacity limit on the session table."]]}
 Namespace: "AWS/DynamoDB"
 MetricName: ConsumedReadCapacityUnits
 Dimensions:
 - Name: TableName
 Value: { "Ref" : "SessionTable" }
 Statistic: Sum
 Period: 300
 EvaluationPeriods: 12
 Threshold:
 Fn::GetOptionSetting:
 OptionName : SessionReadCapacityUnitsAlarmThreshold
 DefaultValue: 240
 ComparisonOperator: GreaterThanThreshold

Custom resources 1090

AWS Elastic Beanstalk Developer Guide

 AlarmActions:
 - Ref: SessionAlarmTopic
 InsufficientDataActions:
 - Ref: SessionAlarmTopic

 SessionThrottledRequestsAlarm:
 Type: AWS::CloudWatch::Alarm
 Properties:
 AlarmDescription: { "Fn::Join" : ["", [{ "Ref" : "AWSEBEnvironmentName" }, ":
 requests are being throttled."]]}
 Namespace: AWS/DynamoDB
 MetricName: ThrottledRequests
 Dimensions:
 - Name: TableName
 Value: { "Ref" : "SessionTable" }
 Statistic: Sum
 Period: 300
 EvaluationPeriods: 1
 Threshold:
 Fn::GetOptionSetting:
 OptionName: SessionThrottledRequestsThreshold
 DefaultValue: 1
 ComparisonOperator: GreaterThanThreshold
 AlarmActions:
 - Ref: SessionAlarmTopic
 InsufficientDataActions:
 - Ref: SessionAlarmTopic

 SessionAlarmTopic:
 Type: AWS::SNS::Topic
 Properties:
 Subscription:
 - Endpoint:
 Fn::GetOptionSetting:
 OptionName: SessionAlarmEmail
 DefaultValue: "nobody@amazon.com"
 Protocol: email

files:
 "/var/app/sessiontable":
 mode: "000444"
 content: |
 `{"Ref" : "SessionTable"}`
 `{"Ref" : "AWS::Region"}`

Custom resources 1091

AWS Elastic Beanstalk Developer Guide

 "/var/app/composer.json":
 mode: "000744"
 content:
 {
 "require": {
 "aws/aws-sdk-php": "*"
 }
 }

container_commands:
 "1-install-composer":
 command: "cd /var/app; curl -s http://getcomposer.org/installer | php"
 "2-install-dependencies":
 command: "cd /var/app; php composer.phar install"
 "3-cleanup-composer":
 command: "rm -Rf /var/app/composer.*"

In the sample configuration file, we first create the DynamoDB table and configure the primary
key structure for the table and the capacity units to allocate sufficient resources to provide
the requested throughput. Next, we create CloudWatch alarms for WriteCapacity and
ReadCapacity. We create an SNS topic that sends email to "nobody@amazon.com" if the alarm
thresholds are breached.

After we create and configure our AWS resources for our environment, we need to customize
the EC2 instances. We use the files key to pass the details of the DynamoDB table to the EC2
instances in our environment as well as add a "require" in the composer.json file for the AWS
SDK for PHP 2. Finally, we run container commands to install composer, the required dependencies,
and then remove the installer.

.ebextensions/options.config

option_settings:
 "aws:elasticbeanstalk:customoption":
 SessionHashKeyName : username
 SessionHashKeyType : S
 SessionReadCapacityUnits : 1
 SessionReadCapacityUnitsAlarmThreshold : 240
 SessionWriteCapacityUnits : 1
 SessionWriteCapacityUnitsAlarmThreshold : 240
 SessionThrottledRequestsThreshold : 1

Custom resources 1092

AWS Elastic Beanstalk Developer Guide

 SessionAlarmEmail : me@example.com

Replace the SessionAlarmEmail value with the email where you want alarm notifications
sent. The options.config file contains the values used for some of the variables defined in
dynamodb.config. For example, dynamodb.config contains the following lines:

Subscription:
 - Endpoint:
 Fn::GetOptionSetting:
 OptionName: SessionAlarmEmail
 DefaultValue: "nobody@amazon.com"

These lines that tell Elastic Beanstalk to get the value for the Endpoint property from the
SessionAlarmEmail value in a config file (options.config in our sample application) that
contains an option_settings section with an aws:elasticbeanstalk:customoption section that
contains a name-value pair that contains the actual value to use. In the example above, this means
SessionAlarmEmail would be assigned the value nobody@amazon.com.

For more information about the CloudFormation resources used in this example, see the following
references:

• AWS::DynamoDB::Table

• AWS::CloudWatch::Alarm

• AWS::SNS::Topic

Using Elastic Beanstalk saved configurations

You can save your environment's configuration as an object in Amazon Simple Storage Service
(Amazon S3) that can be applied to other environments during environment creation, or applied
to a running environment. Saved configurations are YAML formatted templates that define an
environment's platform version, tier, configuration option settings, and tags.

You can apply tags to a saved configuration when you create it, and edit tags of existing saved
configurations. The tags applied to a saved configuration aren't related to the tags specified in a
saved configuration using the Tags: key. The latter are applied to an environment when you apply
the saved configuration to the environment. For details, see Tagging saved configurations.

Saved configurations 1093

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cw-alarm.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html

AWS Elastic Beanstalk Developer Guide

Note

You can create and apply saved configurations to your Elastic Beanstalk environments using
several methods. These include the Elastic Beanstalk console, the EB CLI, and the AWS CLI.
See the following topics for examples of alternate methods for creating and applying saved
configurations:

• Setting configuration options before environment creation

• Setting configuration options during environment creation

• Setting configuration options after environment creation

Create a saved configuration from the current state of your environment in the Elastic Beanstalk
management console.

To save an environment's configuration

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Save configuration.

4. Use the on-screen form to name the saved configuration. Optionally, provide a brief
description, and add tag keys and values.

5. Choose Save.

Saved configurations 1094

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

The saved configuration includes any settings that you have applied to the environment with
the console or any other client that uses the Elastic Beanstalk API. You can then apply the saved
configuration to your environment at a later date to restore it to its previous state, or apply it to a
new environment during environment creation.

Saved configurations 1095

AWS Elastic Beanstalk Developer Guide

You can download a configuration using the EB CLI the section called “eb config” command, as
shown in the following example. NAME is the name of your saved configuration.

eb config get NAME

To apply a saved configuration during environment creation (Elastic Beanstalk console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

Note

If you have many applications, use the search bar to filter the application list.

3. In the navigation pane, find your application's name and choose Saved configurations.

4. Select the saved configuration you want to apply, and then choose Launch environment.

5. Proceed through the wizard to create your environment.

Saved configurations don't include settings applied with configuration files in your application's
source code. If the same setting is applied in both a configuration file and saved configuration,
the setting in the saved configuration takes precedence. Likewise, options specified in the Elastic
Beanstalk console override options in saved configurations. For more information, see Precedence.

Saved configurations are stored in the Elastic Beanstalk S3 bucket in a folder named after your
application. For example, configurations for an application named my-app in the us-west-2
region for account number 123456789012 can be found at s3://elasticbeanstalk-us-
west-2-123456789012/resources/templates/my-app/.

View the contents of a saved configuration by opening it in a text editor. The following example
configuration shows the configuration of a web server environment launched with the Elastic
Beanstalk management console.

EnvironmentConfigurationMetadata:
 Description: Saved configuration from a multicontainer Docker environment created
 with the Elastic Beanstalk Management Console
 DateCreated: '1520633151000'
 DateModified: '1520633151000'

Saved configurations 1096

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Platform:
 PlatformArn: arn:aws:elasticbeanstalk:us-east-2::platform/Java 8 running on 64bit
 Amazon Linux/2.5.0
OptionSettings:
 aws:elasticbeanstalk:command:
 BatchSize: '30'
 BatchSizeType: Percentage
 aws:elasticbeanstalk:sns:topics:
 Notification Endpoint: me@example.com
 aws:elb:policies:
 ConnectionDrainingEnabled: true
 ConnectionDrainingTimeout: '20'
 aws:elb:loadbalancer:
 CrossZone: true
 aws:elasticbeanstalk:environment:
 ServiceRole: aws-elasticbeanstalk-service-role
 aws:elasticbeanstalk:application:
 Application Healthcheck URL: /
 aws:elasticbeanstalk:healthreporting:system:
 SystemType: enhanced
 aws:autoscaling:launchconfiguration:
 IamInstanceProfile: aws-elasticbeanstalk-ec2-role
 InstanceType: t2.micro
 EC2KeyName: workstation-uswest2
 aws:autoscaling:updatepolicy:rollingupdate:
 RollingUpdateType: Health
 RollingUpdateEnabled: true
EnvironmentTier:
 Type: Standard
 Name: WebServer
AWSConfigurationTemplateVersion: 1.1.0.0
Tags:
 Cost Center: WebApp Dev

You can modify the contents of a saved configuration and save it in the same location in Amazon
S3. Any properly formatted saved configuration stored in the right location can be applied to an
environment by using the Elastic Beanstalk management console.

The following keys are supported.

• AWSConfigurationTemplateVersion (required) – The configuration template version (1.1.0.0).

Saved configurations 1097

AWS Elastic Beanstalk Developer Guide

AWSConfigurationTemplateVersion: 1.1.0.0

• Platform – The Amazon Resource Name (ARN) of the environment's platform version. You can
specify the platform by ARN or solution stack name.

Platform:
 PlatformArn: arn:aws:elasticbeanstalk:us-east-2::platform/Java 8 running on 64bit
 Amazon Linux/2.5.0

• SolutionStack – The full name of the solution stack used to create the environment.

SolutionStack: 64bit Amazon Linux 2017.03 v2.5.0 running Java 8

• OptionSettings – Configuration option settings to apply to the environment. For example, the
following entry sets the instance type to t2.micro.

OptionSettings:
 aws:autoscaling:launchconfiguration:
 InstanceType: t2.micro

• Tags – Up to 47 tags to apply to resources created within the environment.

Tags:
 Cost Center: WebApp Dev

• EnvironmentTier – The type of environment to create. For a web server environment, you can
exclude this section (web server is the default). For a worker environment, use the following.

EnvironmentTier:
 Name: Worker
 Type: SQS/HTTP

Note

You can create and apply saved configurations to your Elastic Beanstalk environments using
several methods. These include the Elastic Beanstalk console, the EB CLI, and the AWS CLI.
See the following topics for examples of alternate methods for creating and applying saved
configurations:

Saved configurations 1098

AWS Elastic Beanstalk Developer Guide

• Setting configuration options before environment creation

• Setting configuration options during environment creation

• Setting configuration options after environment creation

Tagging saved configurations

You can apply tags to your AWS Elastic Beanstalk saved configurations. Tags are key-value pairs
associated with AWS resources. For information about Elastic Beanstalk resource tagging, use
cases, tag key and value constraints, and supported resource types, see Tagging Elastic Beanstalk
application resources.

You can specify tags when you create a saved configuration. In an existing saved configuration, you
can add or remove tags, and update the values of existing tags. You can add up to 50 tags to each
saved configuration.

Adding tags during saved configuration creation

When you use the Elastic Beanstalk console to save a configuration, you can specify tag keys and
values on the Save Configuration page.

If you use the EB CLI to save a configuration, use the --tags option with eb config to add tags.

~/workspace/my-app$ eb config --tags mytag1=value1,mytag2=value2

With the AWS CLI or other API-based clients, add tags by using the --tags parameter on the
create-configuration-template command.

$ aws elasticbeanstalk create-configuration-template \
 --tags Key=mytag1,Value=value1 Key=mytag2,Value=value2 \
 --application-name my-app --template-name my-template --solution-stack-
name solution-stack

Managing tags of an existing saved configuration

You can add, update, and delete tags in an existing Elastic Beanstalk saved configuration.

Tagging saved configurations 1099

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/create-configuration-template.html

AWS Elastic Beanstalk Developer Guide

To manage a saved configuration's tags using the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Applications, and then choose your application's name from
the list.

Note

If you have many applications, use the search bar to filter the application list.

3. In the navigation pane, find your application's name and choose Saved configurations.

4. Select the saved configuration you want to manage.

5. Choose Actions, and then choose Manage tags.

6. Use the on-screen form to add, update, or delete tags.

7. To save the changes choose Apply at the bottom of the page.

If you use the EB CLI to update your saved configuration, use eb tags to add, update, delete, or list
tags.

For example, the following command lists the tags in a saved configuration.

~/workspace/my-app$ eb tags --list --resource "arn:aws:elasticbeanstalk:us-east-2:my-
account-id:configurationtemplate/my-app/my-template"

The following command updates the tag mytag1 and deletes the tag mytag2.

~/workspace/my-app$ eb tags --update mytag1=newvalue --delete mytag2 \
 --resource "arn:aws:elasticbeanstalk:us-east-2:my-account-
id:configurationtemplate/my-app/my-template"

For a complete list of options and more examples, see eb tags.

With the AWS CLI or other API-based clients, use the list-tags-for-resource command to list the
tags of a saved configuration.

$ aws elasticbeanstalk list-tags-for-resource --resource-arn
 "arn:aws:elasticbeanstalk:us-east-2:my-account-id:configurationtemplate/my-app/my-
template"

Tagging saved configurations 1100

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/list-tags-for-resource.html

AWS Elastic Beanstalk Developer Guide

Use the update-tags-for-resource command to add, update, or delete tags in a saved
configuration.

$ aws elasticbeanstalk update-tags-for-resource \
 --tags-to-add Key=mytag1,Value=newvalue --tags-to-remove mytag2 \
 --resource-arn "arn:aws:elasticbeanstalk:us-east-2:my-account-
id:configurationtemplate/my-app/my-template"

Specify both tags to add and tags to update in the --tags-to-add parameter of update-tags-
for-resource. A nonexisting tag is added, and an existing tag's value is updated.

Note

To use some of the EB CLI and AWS CLI commands with an Elastic Beanstalk saved
configuration, you need the saved configuration's ARN. To construct the ARN, first use the
following command to retrieve the saved configuration's name.

$ aws elasticbeanstalk describe-applications --application-names my-app

Look for the ConfigurationTemplates key in the command's output. This element
shows the saved configuration's name. Use this name where my-template is specified in
the commands mentioned on this page.

Environment manifest (env.yaml)

You can include a YAML formatted environment manifest in the root of your application source
bundle to configure the environment name, solution stack and environment links to use when
creating your environment.

This file format includes support for environment groups. To use groups, specify the environment
name in the manifest with a + symbol at the end. When you create or update the environment,
specify the group name with --group-name (AWS CLI) or --env-group-suffix (EB CLI). For
more information on groups, see Creating and updating groups of Elastic Beanstalk environments.

The following example manifest defines a web server environment with a link to a worker
environment component that it is dependent upon. The manifest uses groups to allow creating
multiple environments with the same source bundle:

env.yaml 1101

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/update-tags-for-resource.html

AWS Elastic Beanstalk Developer Guide

~/myapp/frontend/env.yaml

AWSConfigurationTemplateVersion: 1.1.0.0
SolutionStack: 64bit Amazon Linux 2015.09 v2.0.6 running Multi-container Docker 1.7.1
 (Generic)
OptionSettings:
 aws:elasticbeanstalk:command:
 BatchSize: '30'
 BatchSizeType: Percentage
 aws:elasticbeanstalk:sns:topics:
 Notification Endpoint: me@example.com
 aws:elb:policies:
 ConnectionDrainingEnabled: true
 ConnectionDrainingTimeout: '20'
 aws:elb:loadbalancer:
 CrossZone: true
 aws:elasticbeanstalk:environment:
 ServiceRole: aws-elasticbeanstalk-service-role
 aws:elasticbeanstalk:application:
 Application Healthcheck URL: /
 aws:elasticbeanstalk:healthreporting:system:
 SystemType: enhanced
 aws:autoscaling:launchconfiguration:
 IamInstanceProfile: aws-elasticbeanstalk-ec2-role
 InstanceType: t2.micro
 EC2KeyName: workstation-uswest2
 aws:autoscaling:updatepolicy:rollingupdate:
 RollingUpdateType: Health
 RollingUpdateEnabled: true
Tags:
 Cost Center: WebApp Dev
CName: front-A08G28LG+
EnvironmentName: front+
EnvironmentLinks:
 "WORKERQUEUE" : "worker+"

The following keys are supported.

• AWSConfigurationTemplateVersion (required) – The configuration template version (1.1.0.0).

AWSConfigurationTemplateVersion: 1.1.0.0

env.yaml 1102

AWS Elastic Beanstalk Developer Guide

• Platform – The Amazon Resource Name (ARN) of the environment's platform version. You can
specify the platform by ARN or solution stack name.

Platform:
 PlatformArn: arn:aws:elasticbeanstalk:us-east-2::platform/Java 8 running on 64bit
 Amazon Linux/2.5.0

• SolutionStack – The full name of the solution stack used to create the environment.

SolutionStack: 64bit Amazon Linux 2017.03 v2.5.0 running Java 8

• OptionSettings – Configuration option settings to apply to the environment. For example, the
following entry sets the instance type to t2.micro.

OptionSettings:
 aws:autoscaling:launchconfiguration:
 InstanceType: t2.micro

• Tags – Up to 47 tags to apply to resources created within the environment.

Tags:
 Cost Center: WebApp Dev

• EnvironmentTier – The type of environment to create. For a web server environment, you can
exclude this section (web server is the default). For a worker environment, use the following.

EnvironmentTier:
 Name: Worker
 Type: SQS/HTTP

• CName – The CNAME for the environment. Include a + character at the end of the name to
enable groups.

CName: front-A08G28LG+

• EnvironmentName – The name of the environment to create. Include a + character at the end of
the name to enable groups.

EnvironmentName: front+

env.yaml 1103

AWS Elastic Beanstalk Developer Guide

With groups enabled, you must specify a group name when you create the environments. Elastic
Beanstalk appends the group name to the environment name with a hyphen. For example,
with the environment name front+ and the group name dev, Elastic Beanstalk will create the
environment with the name front-dev.

• EnvironmentLinks – A map of variable names and environment names of dependencies. The
following example makes the worker+ environment a dependency and tells Elastic Beanstalk to
save the link information to a variable named WORKERQUEUE.

EnvironmentLinks:
 "WORKERQUEUE" : "worker+"

The value of the link variable varies depending on the type of the linked environment. For a web
server environment, the link is the environment's CNAME. For a worker environment, the link is
the name of the environment's Amazon Simple Queue Service (Amazon SQS) queue.

The CName, EnvironmentName and EnvironmentLinks keys can be used to create environment
groups and links to other environments. These features are currently supported when using the EB
CLI, AWS CLI or an SDK.

Using a custom Amazon machine image (AMI)

When you create an AWS Elastic Beanstalk environment, you can specify an Amazon Machine
Image (AMI) to use instead of the standard Elastic Beanstalk AMI included in your platform version.
A custom AMI can improve provisioning times when instances are launched in your environment if
you need to install a lot of software that isn't included in the standard AMIs.

Using configuration files is great for configuring and customizing your environment quickly and
consistently. Applying configurations, however, can start to take a long time during environment
creation and updates. If you do a lot of server configuration in configuration files, you can reduce
this time by making a custom AMI that already has the software and configuration that you need.

A custom AMI also allows you to make changes to low-level components, such as the Linux kernel,
that are difficult to implement or take a long time to apply in configuration files. To create a
custom AMI, launch an Elastic Beanstalk platform AMI in Amazon EC2, customize the software and
configuration to your needs, and then stop the instance and save an AMI from it.

Custom image 1104

AWS Elastic Beanstalk Developer Guide

Creating a custom AMI

To identify the base Elastic Beanstalk AMI

1. In a command window, run a command like the following. For more information, see describe-
platform-version in the AWS CLI Command Reference.

Specify the AWS Region where you want to use your custom AMI, and replace the platform
ARN and version number with the Elastic Beanstalk platform that your application is based on.

Example - Mac OS / Linux OS

$ aws elasticbeanstalk describe-platform-version --region us-east-2 \
 --platform-arn "arn:aws:elasticbeanstalk:us-east-2::platform/Tomcat 8.5 with
 Java 8 running on 64bit Amazon Linux/3.1.6" \
 --query PlatformDescription.CustomAmiList
[
 {
 "VirtualizationType": "pv",
 "ImageId": ""
 },
 {
 "VirtualizationType": "hvm",
 "ImageId": "ami-020ae06fdda6a0f66"
 }
]

Example - Windows OS

C:\> aws elasticbeanstalk describe-platform-version --region us-east-2 --platform-
arn"arn:aws:elasticbeanstalk:us-east-2::platform/IIS 10.0 running on 64bit Windows
 Server 2019/2.6.4" --query PlatformDescription.CustomAmiList
[
 {
 "VirtualizationType": "pv",
 "ImageId": ""
 },
 {
 "VirtualizationType": "hvm",
 "ImageId": "ami-020ae06fdda6a0f66"
 }

Creating a custom AMI 1105

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/describe-platform-version.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/describe-platform-version.html

AWS Elastic Beanstalk Developer Guide

]

2. Take note of the ImageId value that looks like ami-020ae06fdda6a0f66 in the result.

The value is the stock Elastic Beanstalk AMI for the platform version, EC2 instance architecture,
and AWS Region that are relevant for your application. If you need to create AMIs for multiple
platforms, architectures or AWS Regions, repeat this process to identify the correct base AMI for
each combination.

Notes

• Don't create an AMI from an instance that has been launched in an Elastic Beanstalk
environment. Elastic Beanstalk makes changes to instances during provisioning that can
cause issues in the saved AMI. Saving an image from an instance in an Elastic Beanstalk
environment will also make the version of your application that was deployed to the
instance a fixed part of the image.

• We recommend that you always use the latest platform version. When you update to a
new platform version, we also recommend that you rebase your custom AMI to the new
platform version's AMI. This minimizes deployment failures due to incompatible package
or library versions.

For Linux, it is also possible to create a custom AMI from a community AMI that wasn't published
by Elastic Beanstalk. You can use the latest Amazon Linux AMI as a starting point. When you
launch an environment with a Linux AMI that isn't managed by Elastic Beanstalk, Elastic Beanstalk
attempts to install platform software (language, framework, proxy server, etc.) and additional
components to support features such as Enhanced Health Reporting.

Note

Custom AMIs based on Windows Server require the stock Elastic Beanstalk AMI returned
from describe-platform-version, as shown earlier in Step 1.

Although Elastic Beanstalk can use an AMI that isn't managed by Elastic Beanstalk, the increase in
provisioning time that results from Elastic Beanstalk installing missing components can reduce or
eliminate the benefits of creating a custom AMI in the first place. Other Linux distributions might

Creating a custom AMI 1106

https://aws.amazon.com/amazon-linux-ami/

AWS Elastic Beanstalk Developer Guide

work with some troubleshooting but are not officially supported. If your application requires a
specific Linux distribution, one alternative is to create a Docker image and run it on the Elastic
Beanstalk Docker platform or Multicontainer Docker platform.

To create a custom AMI

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Launch Instance.

3. Choose Community AMIs.

4. If you identified a base Elastic Beanstalk AMI (using describe-platform-version) or an
Amazon Linux AMI, enter its AMI ID in the search box. Then press Enter.

You can also search the list for another community AMI that suits your needs.

Note

We recommend that you choose an AMI that uses HVM virtualization. These AMIs show
Virtualization type: hvm in their description.

For details about instance virtualization types, see Linux AMI Virtualization Types in the
Amazon EC2 User Guide for Linux Instances or Windows AMI Virtualization Types in the
Amazon EC2 User Guide for Windows Instances.

5. Choose Select to select the AMI.

6. Select an instance type, and then choose Next: Configure Instance Details.

7. (For Linux platforms) Expand the Advanced Details section and paste the following text in
the User Data field.

#cloud-config
 repo_releasever: repository version number
 repo_upgrade: none

Creating a custom AMI 1107

https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/virtualization_types.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/windows-ami-version-history.html#virtualization-types

AWS Elastic Beanstalk Developer Guide

The repository version number is the year and month version in the AMI name. For example,
AMIs based on the March 2015 release of Amazon Linux have a repository version number
2015.03. For an Elastic Beanstalk image, this matches the date shown in the solution stack
name for your platform version based on Amazon Linux AMI (preceding Amazon Linux 2).

Note

The repo_releasever setting configures the lock-on-launch feature for an Amazon
Linux AMI. This causes the AMI to use a fixed, specific repository version when it
launches. This feature isn't supported on Amazon Linux 2—don't specify it if your
environment uses a current Amazon Linux 2 platform branch. The setting is required if
you're using a custom AMI with Elastic Beanstalk only on Amazon Linux AMI platform
branches (preceding Amazon Linux 2).
The repo_upgrade setting disables the automatic installation of security updates. It's
required to use a custom AMI with Elastic Beanstalk.

8. Proceed through the wizard to launch the EC2 instance. When prompted, select a key pair that
you have access to so that you can connect to the instance for the next steps.

9. Connect to the instance with SSH or RDP.

10. Perform any customizations you want.

11. (Windows platforms) Run the EC2Config service Sysprep. For information about EC2Config,
see Configuring a Windows Instance Using the EC2Config Service. Ensure that Sysprep is
configured to generate a random password that can be retrieved from the AWS Management
Console.

12. In the Amazon EC2 console, stop the EC2 instance. Then on the Instance Actions menu,
choose Create Image (EBS AMI).

13. To avoid incurring additional AWS charges, terminate the EC2 instance.

To use your custom AMI in an Elastic Beanstalk environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Creating a custom AMI 1108

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-an-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/UsingConfig_WinAMI.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Capacity configuration category, choose Edit.

5. For AMI ID, enter your custom AMI ID.

6. To save the changes choose Apply at the bottom of the page.

When you create a new environment with the custom AMI, you should use the same platform
version that you used as a base to create the AMI. If you later apply a platform update to an
environment using a custom AMI, Elastic Beanstalk attempts to apply the library and configuration
updates during the bootstrapping process.

Cleaning up a custom AMI

When you are done with a custom AMI and don't need it to launch Elastic Beanstalk environments
anymore, consider cleaning it up to minimize storage cost. Cleaning up a custom AMI involves
deregistering it from Amazon EC2 and deleting other associated resources. For details, see
Deregistering Your Linux AMI or Deregistering Your Windows AMI.

Preserving access to an Amazon Machine Image (AMI) for a retired
platform

Elastic Beanstalk sets a platform branch status to retired when the operating system or major
component used by the branch reaches End of Life. The base Elastic Beanstalk AMI for the platform
branch may also be made private to prevent the use of this out-of-date AMI. Environments using
AMIs that have been made private will no longer be able to launch instances.

If you're unable to migrate your application to a supported environment before it's retired, your
environment may be in this situation. The need to update an environment for a Beanstalk platform
branch, where its base Elastic Beanstalk AMI has been made private, may arise. An alternative
approach is available. You can update an existing environment based on a copy of the base Elastic
Beanstalk AMI used by your environment.

This topic offers some steps and a standalone script to update an existing environment based on
a copy of the base Elastic Beanstalk AMI used by your environment. Once you're able to migrate

Cleaning up a custom AMI 1109

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/deregister-ami.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/deregister-ami.html

AWS Elastic Beanstalk Developer Guide

your application to a supported platform you can continue to use the standard procedures for
maintaining your application and supported environments.

Manual steps

To update an environment based on an AMI copy of the base Elastic Beanstalk AMI

1. Determine which AMI your environment is using. This command returns the AMI used by the
Elastic Beanstalk environment that you provide in the parameters. The returned value is used
as the source-ami-id in the next step.

In a command window, run a command like the following. For more information, see describe-
configuration-settings in the AWS CLI Command Reference.

Specify the AWS Region that stores the source AMI you want to copy. Replace the application
name and environment name with those based on the source AMI. Enter the text for the query
parameter as shown.

Example

>aws elasticbeanstalk describe-configuration-settings \
 --application-name my-application \
 --environment-name my-environment \
 --region us-east-2 \
 --query "ConfigurationSettings[0].OptionSettings[?OptionName=='ImageId'] |
 [0].Value"

2. Copy the AMI into your account. This command returns the new AMI that results from
copying the source-ami-id that was returned in the prior step.

Note

Be sure to make a note of the new AMI id that is output by this command. You'll need
to enter it in the next step, replacing copied-ami-id in the example command.

In a command window, run a command like the following. For more information, see copy-
image in the AWS CLI Command Reference.

AMI based on retired platform 1110

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/describe-configuration-settings.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/describe-configuration-settings.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/copy-image.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/copy-image.html

AWS Elastic Beanstalk Developer Guide

Specify the AWS Region of the source AMI you want to copy (--source-region) and the Region
where you want to use your new custom AMI (--region). Replace source-ami-id with the AMI
of the image that you're copying. The source-ami-id was returned by the command in the prior
step. Replace new-ami-name with a name to describe the new AMI in the destination Region.
The script that follows this procedure generates the new AMI name by appending the string
"Copy of" to the beginning of the name of the source-ami-id.

>aws ec2 copy-image \
 --region us-east-2 \
 --source-image-id source-ami-id \
 --source-region us-east-2 \
 --name new-ami-name

3. Update an environment to use the copied AMI. After the command runs it returns the status
of the environment.

In a command window, run a command like the following. For more information, see update-
environment in the AWS CLI Command Reference.

Specify the AWS Region of the environment and application you need to update. Replace the
application name and environment name with those you need to associate with the copied-
ami-id from the prior step. For the --option-setttings parameter, replace copied-ami-id
with the AMI id you noted from the output of the prior command.

>aws elasticbeanstalk update-environment \
 --application-name my-application \
 --environment-name my-environment \
 --region us-east-2 \
 --option-settings
 "Namespace=aws:autoscaling:launchconfiguration,OptionName=ImageId,Value=copied-
ami-id"

Note

To minimize storage costs, consider cleaning up your custom AMI when you don't need it to
launch Elastic Beanstalk environments anymore. For more information, see Cleaning up a
custom AMI.

AMI based on retired platform 1111

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/update-environment.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/update-environment.html

AWS Elastic Beanstalk Developer Guide

Standalone script

The following script provides the same results as the previous manual steps. Download the script
by selecting this link: copy_ami_and_update_env.zip.

Script source: copy_ami_and_update_env.sh

#!/bin/bash

set -ue

USAGE="This script is used to copy an AMI used by your Elastic Beanstalk environment
 into your account to use in your environment.\n\n"
USAGE+="Usage:\n\n"
USAGE+="./$(basename $0) [OPTIONS]\n"
USAGE+="OPTIONS:\n"
USAGE+="\t--application-name <application-name>\tThe name of your Elastic Beanstalk
 application.\n"
USAGE+="\t--environment-name <environment-name>\tThe name of your Elastic Beanstalk
 environment.\n"
USAGE+="\t--region <region> \t\t\tThe AWS region your Elastic Beanstalk environment is
 deployed to.\n"
USAGE+="\n\n"
USAGE+="Script Usage Example(s):\n"
USAGE+="./$(basename $0) --application-name my-application --environment-name my-
environment --region us-east-1\n"

if [$# -eq 0]; then
 echo -e $USAGE
 exit
fi

while [[$# -gt 0]]; do
 case $1 in
 --application-name) APPLICATION_NAME="$2"; shift ;;
 --environment-name) ENVIRONMENT_NAME="$2"; shift ;;
 --region) REGION="$2"; shift ;;
 *) echo "Unknown option $1" ; echo -e $USAGE ; exit ;;
 esac
 shift
done

aws_cli_version="$(aws --version)"

AMI based on retired platform 1112

samples/copy_ami_and_update_env.zip

AWS Elastic Beanstalk Developer Guide

if [$? -ne 0]; then
 echo "aws CLI not found. Please install it: https://docs.aws.amazon.com/cli/latest/
userguide/getting-started-install.html. Exiting."
 exit 1
fi
echo "Using aws CLI version: ${aws_cli_version}"

account=$(aws sts get-caller-identity --query "Account" --output text)
echo "Using account ${account}"

environment_ami_id=$(aws elasticbeanstalk describe-configuration-settings \
 --application-name "$APPLICATION_NAME" \
 --environment-name "$ENVIRONMENT_NAME" \
 --region "$REGION" \
 --query "ConfigurationSettings[0].OptionSettings[?OptionName=='ImageId'] | [0].Value"
 \
 --output text)
echo "Image associated with environment ${ENVIRONMENT_NAME} is ${environment_ami_id}"

owned_image=$(aws ec2 describe-images \
 --owners self \
 --image-ids "$environment_ami_id" \
 --region "$REGION" \
 --query "Images[0]" \
 --output text)
if ["$owned_image" != "None"]; then
 echo "${environment_ami_id} is already owned by account ${account}. Exiting."
 exit
fi

source_image_name=$(aws ec2 describe-images \
 --image-ids "$environment_ami_id" \
 --region "$REGION" \
 --query "Images[0].Name" \
 --output text)
if ["$source_image_name" = "None"]; then
 echo "Cannot find ${environment_ami_id}. Please contact AWS support if you need
 additional help: https://aws.amazon.com/support."
 exit 1
fi

copied_image_name="Copy of ${source_image_name}"
copied_ami_id=$(aws ec2 describe-images \
 --owners self \

AMI based on retired platform 1113

AWS Elastic Beanstalk Developer Guide

 --filters Name=name,Values="${copied_image_name}" \
 --region "$REGION" \
 --query "Images[0].ImageId" \
 --output text)
if ["$copied_ami_id" != "None"]; then
 echo "Detected that ${environment_ami_id} has already been copied by account
 ${account}. Skipping image copy."
else
 echo "Copying ${environment_ami_id} to account ${account} with name
 ${copied_image_name}"
 copied_ami_id=$(aws ec2 copy-image \
 --source-image-id "$environment_ami_id" \
 --source-region "$REGION" \
 --name "$copied_image_name" \
 --region "$REGION" \
 --query "ImageId" \
 --output text)
 echo "New AMI ID is ${copied_ami_id}"

 echo "Waiting for ${copied_ami_id} to become available"
 aws ec2 wait image-available \
 --image-ids "$copied_ami_id" \
 --region "$REGION"
 echo "${copied_ami_id} is now available"
fi

echo "Updating environment ${ENVIRONMENT_NAME} to use ${copied_ami_id}"
environment_status=$(aws elasticbeanstalk update-environment \
 --application-name "$APPLICATION_NAME" \
 --environment-name "$ENVIRONMENT_NAME" \
 --option-settings
 "Namespace=aws:autoscaling:launchconfiguration,OptionName=ImageId,Value=
${copied_ami_id}" \
 --region "$REGION" \
 --query "Status" \
 --output text)
echo "Environment ${ENVIRONMENT_NAME} is now ${environment_status}"

echo "Waiting for environment ${ENVIRONMENT_NAME} update to complete"
aws elasticbeanstalk wait environment-updated \
 --application-name "$APPLICATION_NAME" \
 --environment-names "$ENVIRONMENT_NAME" \
 --region "$REGION"

AMI based on retired platform 1114

AWS Elastic Beanstalk Developer Guide

echo "Environment ${ENVIRONMENT_NAME} update complete"

Note

You must have the AWS CLI installed to execute the script. For installation instructions, see
Install or update the latest version of the AWS CLI in the AWS Command Line Interface User
Guide.
After installing the AWS CLI, you must also configure it to use the AWS account that owns
the environment. For more information, see Configure the AWS CLI in the AWS Command
Line Interface User Guide. The account must also have permissions to create an AMI and
update the Elastic Beanstalk environment.

These steps describe the process that the script follows.

1. Print the account in use.

2. Determine which AMI is used by the environment (source AMI).

3. Check if the source AMI is already owned by the account. If yes, exit.

4. Determine the name of the source AMI so it can be used in the new AMI name. This also serves
to confirm access to the source AMI.

5. Check if the source AMI has already been copied to the account. This is done by searching for
AMIs with the name of the copied AMI owned by the account. If the AMI name has been changed
in between script executions, it will copy the image again.

6. If the source AMI has not already been copied, copy the source AMI to the account and wait for
the new AMI to be available.

7. Update the environment configuration to use the new AMI.

8. Wait for the environment update to complete.

After you extract the script from the copy_ami_and_update_env.zip file, run it by executing the
following example. Replace the application name and environment name in the example with your
own values.

>sh copy_ami_and_update_env.sh \
 --application-name my-application \
 --environment-name my-environment \

AMI based on retired platform 1115

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
samples/copy_ami_and_update_env.zip

AWS Elastic Beanstalk Developer Guide

 --region us-east-1

Note

To minimize storage costs, consider cleaning up your custom AMI when you don't need it to
launch Elastic Beanstalk environments anymore. For more information, see Cleaning up a
custom AMI.

Serving static files

To improve performance, you can configure the proxy server to serve static files (for example,
HTML or images) from a set of directories inside your web application. When the proxy server
receives a request for a file under the specified path, it serves the file directly instead of routing the
request to your application.

Elastic Beanstalk supports configuring the proxy to serve static files on most platform branches
based on Amazon Linux 2. The one exception is Docker.

Note

On the Python and Ruby platforms, Elastic Beanstalk configures some static file folders by
default. For details, see the static file configuration sections for Python and Ruby. You can
configure additional folders as explained on this page.

Configure static files using the console

To configure the proxy server to serve static files

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

Static files 1116

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Scroll to the Platform software section and locate the Static files group.

a. To add a static file mapping, select Add static files. In the extra row that appears you'll
enter a path for serving static files and the directory that contains the static files to serve.

• In the Path field, start the path name with a slash (/) (for example, "/images").

• In the Directory field, specify a directory name located in the root of your application's
source code. Don't start it with a slash (for example, "static/image-files").

Note

If you aren't seeing the Static files section, you have to add at least one mapping
by using a configuration file. For details, see the section called “Configure static
files using configuration options” on this page.

b. To remove a mapping, select Remove.

6. To save the changes choose Apply at the bottom of the page.

Configure static files using configuration options

You can use a configuration file to configure static file paths and directory locations using
configuration options. You can add a configuration file to your application's source bundle and
deploy it during environment creation or a later deployment.

If your environment uses a platform branch based on Amazon Linux 2, use the
aws:elasticbeanstalk:environment:proxy:staticfiles namespace.

The following example configuration file tells the proxy server to serve files in the statichtml
folder at the path /html, and files in the staticimages folder at the path /images.

Example .ebextensions/static-files.config

option_settings:
 aws:elasticbeanstalk:environment:proxy:staticfiles:
 /html: statichtml

Configure static files using configuration options 1117

AWS Elastic Beanstalk Developer Guide

 /images: staticimages

If your Elastic Beanstalk environment uses an Amazon Linux AMI platform version (preceding
Amazon Linux 2), read the following additional information:

Amazon Linux AMI platform-specific namespaces

On Amazon Linux AMI platform branches, static file configuration namespaces vary by platform.
For details, see one of the following pages:

• Go configuration namespace

• Java SE configuration namespace

• Tomcat configuration namespaces

• Node.js configuration namespace

• Python configuration namespaces

Configuring HTTPS for your Elastic Beanstalk environment

If you've purchased and configured a custom domain name for your Elastic Beanstalk environment,
you can use HTTPS to allow users to connect to your web site securely. If you don't own a domain
name, you can still use HTTPS with a self-signed certificate for development and testing purposes.
HTTPS is a must for any application that transmits user data or login information.

The simplest way to use HTTPS with an Elastic Beanstalk environment is to assign a server
certificate to your environment's load balancer. When you configure your load balancer to
terminate HTTPS, the connection between the client and the load balancer is secure. Backend
connections between the load balancer and EC2 instances use HTTP, so no additional configuration
of the instances is required.

Note

With AWS Certificate Manager (ACM), you can create a trusted certificate for your domain
names for free. ACM certificates can only be used with AWS load balancers and Amazon
CloudFront distributions, and ACM is available only in certain AWS Regions.
To use an ACM certificate with Elastic Beanstalk, see Configuring your Elastic Beanstalk
environment's load balancer to terminate HTTPS.

HTTPS 1118

https://aws.amazon.com/certificate-manager/
https://docs.aws.amazon.com/general/latest/gr/acm.html

AWS Elastic Beanstalk Developer Guide

If you run your application in a single instance environment, or need to secure the connection all
the way to the EC2 instances behind the load balancer, you can configure the proxy server that runs
on the instance to terminate HTTPS. Configuring your instances to terminate HTTPS connections
requires the use of configuration files to modify the software running on the instances, and to
modify security groups to allow secure connections.

For end-to-end HTTPS in a load-balanced environment, you can combine instance and load
balancer termination to encrypt both connections. By default, if you configure the load balancer to
forward traffic using HTTPS, it will trust any certificate presented to it by the backend instances.
For maximum security, you can attach policies to the load balancer that prevent it from connecting
to instances that don't present a public certificate that it trusts.

Note

You can also configure the load balancer to relay HTTPS traffic without decrypting it. The
down side to this method is that the load balancer cannot see the requests and thus cannot
optimize routing or report response metrics.

If ACM is not available in your region, you can purchase a trusted certificate from a third party. A
third-party certificate can be used to decrypt HTTPS traffic at your load balancer, on the backend
instances, or both.

For development and testing, you can create and sign a certificate yourself with open source tools.
Self-signed certificates are free and easy to create, but cannot be used for front-end decryption on
public sites. If you attempt to use a self-signed certificate for an HTTPS connection to a client, the
user's browser displays an error message indicating that your web site is unsafe. You can, however,
use a self-signed certificate to secure backend connections without issue.

ACM is the preferred tool to provision, manage, and deploy your server certificates
programmatically or using the AWS CLI. If ACM is not available in your AWS Region, you can upload
a third-party or self-signed certificate and private key to AWS Identity and Access Management
(IAM) by using the AWS CLI. Certificates stored in IAM can be used with load balancers and
CloudFront distributions.

HTTPS 1119

https://docs.aws.amazon.com/general/latest/gr/acm.html

AWS Elastic Beanstalk Developer Guide

Note

The Does it have Snakes? sample application on GitHub includes configuration files and
instructions for each method of configuring HTTPS with a Tomcat web application. See the
readme file and HTTPS instructions for details.

Topics

• Create and sign an X509 certificate

• Upload a certificate to IAM

• Configuring your Elastic Beanstalk environment's load balancer to terminate HTTPS

• Configuring your application to terminate HTTPS connections at the instance

• Configuring end-to-end encryption in a load-balanced Elastic Beanstalk environment

• Configuring your environment's load balancer for TCP Passthrough

• Storing private keys securely in Amazon S3

• Configuring HTTP to HTTPS redirection

Create and sign an X509 certificate

You can create an X509 certificate for your application with OpenSSL. OpenSSL is a standard, open
source library that supports a wide range of cryptographic functions, including the creation and
signing of x509 certificates. For more information about OpenSSL, visit www.openssl.org.

Note

You only need to create a certificate locally if you want to use HTTPS in a single instance
environment or re-encrypt on the backend with a self-signed certificate. If you own
a domain name, you can create a certificate in AWS and use it with a load-balanced
environment for free by using AWS Certificate Manager (ACM). See Request a Certificate in
the AWS Certificate Manager User Guide for instructions.

Run openssl version at the command line to see if you already have OpenSSL installed. If
you don't, you can build and install the source code using the instructions at the public GitHub
repository, or use your favorite package manager. OpenSSL is also installed on Elastic Beanstalk's

Create a certificate 1120

https://github.com/awslabs/eb-tomcat-snakes
https://github.com/awslabs/eb-tomcat-snakes/blob/master/README.md
https://github.com/awslabs/eb-tomcat-snakes/blob/master/src/.ebextensions/inactive/HTTPS.md
https://www.openssl.org/
https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request.html
https://github.com/openssl/openssl
https://github.com/openssl/openssl

AWS Elastic Beanstalk Developer Guide

Linux images, so a quick alternative is to connect to an EC2 instance in a running environment by
using the EB CLI's eb ssh command:

~/eb$ eb ssh
[ec2-user@ip-255-55-55-255 ~]$ openssl version
OpenSSL 1.0.1k-fips 8 Jan 2015

You need to create an RSA private key to create your certificate signing request (CSR). To create
your private key, use the openssl genrsa command:

[ec2-user@ip-255-55-55-255 ~]$ openssl genrsa 2048 > privatekey.pem
Generating RSA private key, 2048 bit long modulus
...
+++
...............+++
e is 65537 (0x10001)

privatekey.pem

The name of the file where you want to save the private key. Normally, the openssl genrsa
command prints the private key contents to the screen, but this command pipes the output to a
file. Choose any file name, and store the file in a secure place so that you can retrieve it later. If
you lose your private key, you won't be able to use your certificate.

A CSR is a file you send to a certificate authority (CA) to apply for a digital server certificate. To
create a CSR, use the openssl req command:

$ openssl req -new -key privatekey.pem -out csr.pem
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Enter the information requested and press Enter. The following table describes and shows
examples for each field.

Create a certificate 1121

AWS Elastic Beanstalk Developer Guide

Name Description Example

Country Name The two-letter ISO abbreviation for your
country.

US = United States

State or Province The name of the state or province where
your organization is located. You cannot
abbreviate this name.

Washington

Locality Name The name of the city where your organizat
ion is located.

Seattle

Organization
Name

The full legal name of your organization. Do
not abbreviate your organization name.

Example Corporation

Organizational
Unit

Optional, for additional organization
information.

Marketing

Common Name The fully qualified domain name for your
web site. This must match the domain name
that users see when they visit your site,
otherwise certificate errors will be shown.

www.example.com

Email address The site administrator's email address. someone@example.com

You can submit the signing request to a third party for signing, or sign it yourself for development
and testing. Self-signed certificates can also be used for backend HTTPS between a load balancer
and EC2 instances.

To sign the certificate, use the openssl x509 command. The following example uses the private key
from the previous step (privatekey.pem) and the signing request (csr.pem) to create a public
certificate named public.crt that is valid for 365 days.

$ openssl x509 -req -days 365 -in csr.pem -signkey privatekey.pem -out public.crt
Signature ok
subject=/C=us/ST=washington/L=seattle/O=example corporation/OU=marketing/
CN=www.example.com/emailAddress=someone@example.com
Getting Private key

Create a certificate 1122

AWS Elastic Beanstalk Developer Guide

Keep the private key and public certificate for later use. You can discard the signing request. Always
store the private key in a secure location and avoid adding it to your source code.

To use the certificate with the Windows Server platform, you must convert it to a PFX format. Use
the following command to create a PFX certificate from the private key and public certificate files:

$ openssl pkcs12 -export -out example.com.pfx -inkey privatekey.pem -in public.crt
Enter Export Password: password
Verifying - Enter Export Password: password

Now that you have a certificate, you can upload it to IAM for use with a load balancer, or configure
the instances in your environment to terminate HTTPS.

Upload a certificate to IAM

To use your certificate with your Elastic Beanstalk environment's load balancer, upload the
certificate and private key to AWS Identity and Access Management (IAM). You can use a certificate
stored in IAM with Elastic Load Balancing load balancers and Amazon CloudFront distributions.

Note

AWS Certificate Manager (ACM) is the preferred tool to provision, manage, and deploy
your server certificates. For more information about requesting an ACM certificate, see
Request a Certificate in the AWS Certificate Manager User Guide. For more information
about importing third-party certificates into ACM, see Importing Certificates in the AWS
Certificate Manager User Guide. Use IAM to upload a certificate only if ACM is not available
in your AWS Region.

You can use the AWS Command Line Interface (AWS CLI) to upload your certificate. The following
command uploads a self-signed certificate named https-cert.crt with a private key named
private-key.pem:

$ aws iam upload-server-certificate --server-certificate-name elastic-beanstalk-x509 --
certificate-body file://https-cert.crt --private-key file://private-key.pem
{
 "ServerCertificateMetadata": {
 "ServerCertificateId": "AS5YBEIONO2Q7CAIHKNGC",
 "ServerCertificateName": "elastic-beanstalk-x509",
 "Expiration": "2017-01-31T23:06:22Z",

Upload a certificate 1123

https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/general/latest/gr/acm.html

AWS Elastic Beanstalk Developer Guide

 "Path": "/",
 "Arn": "arn:aws:iam::123456789012:server-certificate/elastic-beanstalk-x509",
 "UploadDate": "2016-02-01T23:10:34.167Z"
 }
}

The file:// prefix tells the AWS CLI to load the contents of a file in the current directory.
elastic-beanstalk-x509 specifies the name to call the certificate in IAM.

If you purchased a certificate from a certificate authority and received a certificate chain file,
upload that as well by including the --certificate-chain option:

$ aws iam upload-server-certificate --server-certificate-name elastic-beanstalk-x509 --
certificate-chain file://certificate-chain.pem --certificate-body file://https-cert.crt
 --private-key file://private-key.pem

Make note of the Amazon Resource Name (ARN) for your certificate. You'll use it when you update
your load balancer configuration settings to use HTTPS.

Note

A certificate uploaded to IAM stays stored even after it's no longer used in any
environment's load balancer. It contains sensitive data. When you no longer need the
certificate for any environment, be sure to delete it. For details about deleting a certificate
from IAM, see https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-
certs.html#delete-server-certificate.

For more information about server certificates in IAM, see Working with Server Certificates in the
IAM User Guide.

Configuring your Elastic Beanstalk environment's load balancer to
terminate HTTPS

To update your AWS Elastic Beanstalk environment to use HTTPS, you need to configure an HTTPS
listener for the load balancer in your environment. Two types of load balancer support an HTTPS
listener: Classic Load Balancer and Application Load Balancer.

You can use the Elastic Beanstalk console or a configuration file to configure a secure listener and
assign the certificate.

Terminate at the load balancer 1124

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html#delete-server-certificate
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html#delete-server-certificate
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html

AWS Elastic Beanstalk Developer Guide

Note

Single-instance environments don't have a load balancer and don't support HTTPS
termination at the load balancer.

Configuring a secure listener using the Elastic Beanstalk console

To assign a certificate to your environment's load balancer

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Load balancer configuration category, choose Edit.

Note

If the Load balancer configuration category doesn't have an Edit button, your
environment doesn't have a load balancer.

5. On the Modify load balancer page, the procedure varies depending on the type of load
balancer associated with your environment.

• Classic Load Balancer

a. Choose Add listener.

b. In the Classic Load Balancer listener dialog box, configure the following settings:

• For Listener port, type the incoming traffic port, typically 443.

• For Listener protocol, choose HTTPS.

• For Instance port, type 80.

• For Instance protocol, choose HTTP.
Terminate at the load balancer 1125

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

• For SSL certificate, choose your certificate.

c. Choose Add.

• Application Load Balancer

a. Choose Add listener.

b. In the Application Load Balancer listener dialog box, configure the following
settings:

• For Port, type the incoming traffic port, typically 443.

• For Protocol, choose HTTPS.

• For SSL certificate, choose your certificate.

c. Choose Add.

Note

For Classic Load Balancer and Application Load Balancer, if the drop-down menu
doesn't show any certificates, you should create or upload a certificate for your
custom domain name in AWS Certificate Manager (ACM) (preferred). Alternatively,
upload a certificate to IAM with the AWS CLI.

• Network Load Balancer

a. Choose Add listener.

b. In the Network Load Balancer listener dialog box, for Port, type the incoming traffic
port, typically 443.

c. Choose Add.

6. To save the changes choose Apply at the bottom of the page.

Configuring a secure listener using a configuration file

You can configure a secure listener on your load balancer with one of the following configuration
files.

Terminate at the load balancer 1126

https://docs.aws.amazon.com/acm/latest/userguide/

AWS Elastic Beanstalk Developer Guide

Example .ebextensions/securelistener-clb.config

Use this example when your environment has a Classic Load Balancer. The example uses options in
the aws:elb:listener namespace to configure an HTTPS listener on port 443 with the specified
certificate, and to forward the decrypted traffic to the instances in your environment on port 80.

option_settings:
 aws:elb:listener:443:
 SSLCertificateId: arn:aws:acm:us-east-2:1234567890123:certificate/
####################################
 ListenerProtocol: HTTPS
 InstancePort: 80

Replace the highlighted text with the ARN of your certificate. The certificate can be one that you
created or uploaded in AWS Certificate Manager (ACM) (preferred), or one that you uploaded to
IAM with the AWS CLI.

For more information about Classic Load Balancer configuration options, see Classic Load Balancer
configuration namespaces.

Example .ebextensions/securelistener-alb.config

Use this example when your environment has an Application Load Balancer. The example uses
options in the aws:elbv2:listener namespace to configure an HTTPS listener on port 443 with
the specified certificate. The listener routes traffic to the default process.

option_settings:
 aws:elbv2:listener:443:
 ListenerEnabled: 'true'
 Protocol: HTTPS
 SSLCertificateArns: arn:aws:acm:us-east-2:1234567890123:certificate/
####################################

Example .ebextensions/securelistener-nlb.config

Use this example when your environment has a Network Load Balancer. The example uses options
in the aws:elbv2:listener namespace to configure a listener on port 443. The listener routes
traffic to the default process.

option_settings:
 aws:elbv2:listener:443:

Terminate at the load balancer 1127

AWS Elastic Beanstalk Developer Guide

 ListenerEnabled: 'true'

Configuring a security group

If you configure your load balancer to forward traffic to an instance port other than port 80, you
must add a rule to your security group that allows inbound traffic over the instance port from your
load balancer. If you create your environment in a custom VPC, Elastic Beanstalk adds this rule for
you.

You add this rule by adding a Resources key to a configuration file in the .ebextensions
directory for your application.

The following example configuration file adds an ingress rule to the AWSEBSecurityGroup
security group. This allows traffic on port 1000 from the load balancer's security group.

Example .ebextensions/sg-ingressfromlb.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 1000
 FromPort: 1000
 SourceSecurityGroupName: {"Fn::GetAtt" : ["AWSEBLoadBalancer" ,
 "SourceSecurityGroup.GroupName"]}

Configuring your application to terminate HTTPS connections at the
instance

You can use configuration files to configure the proxy server that passes traffic to your application
to terminate HTTPS connections. This is useful if you want to use HTTPS with a single instance
environment, or if you configure your load balancer to pass traffic through without decrypting it.

To enable HTTPS, you must allow incoming traffic on port 443 to the EC2 instance that your Elastic
Beanstalk application is running on. You do this by using the Resources key in the configuration
file to add a rule for port 443 to the ingress rules for the AWSEBSecurityGroup security group.

The following snippet adds an ingress rule to the AWSEBSecurityGroup security group that
opens port 443 to all traffic for a single instance environment:

Terminate at the instance 1128

AWS Elastic Beanstalk Developer Guide

.ebextensions/https-instance-securitygroup.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

In a load-balanced environment in a default Amazon Virtual Private Cloud (Amazon VPC), you
can modify this policy to only accept traffic from the load balancer. See Configuring end-to-end
encryption in a load-balanced Elastic Beanstalk environment for an example.

Platforms

• Terminating HTTPS on EC2 instances running Docker

• Terminating HTTPS on EC2 instances running Go

• Terminating HTTPS on EC2 instances running Java SE

• Terminating HTTPS on EC2 instances running Node.js

• Terminating HTTPS on EC2 instances running PHP

• Terminating HTTPS on EC2 instances running Python

• Terminating HTTPS on EC2 instances running Ruby

• Terminating HTTPS on EC2 instances running Tomcat

• Terminating HTTPS on Amazon EC2 instances running .NET Core on Linux

• Terminating HTTPS on Amazon EC2 instances running .NET

Terminating HTTPS on EC2 instances running Docker

For Docker containers, you use a configuration file to enable HTTPS.

Add the following snippet to your configuration file, replacing the certificate and private key
material as instructed, and save it in your source bundle's .ebextensions directory. The
configuration file performs the following tasks:

• The files key creates the following files on the instance:

Terminate at the instance 1129

https://docs.aws.amazon.com/vpc/latest/userguide/

AWS Elastic Beanstalk Developer Guide

/etc/nginx/conf.d/https.conf

Configures the nginx server. This file is loaded when the nginx service starts.

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

If you have intermediate certificates, include them in server.crt after your site certificate.

 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 second intermediate certificate
 -----END CERTIFICATE-----

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

Example .ebextensions/https-instance.config

files:
 /etc/nginx/conf.d/https.conf:
 mode: "000644"
 owner: root
 group: root
 content: |

Terminate at the instance 1130

AWS Elastic Beanstalk Developer Guide

 # HTTPS Server

 server {
 listen 443;
 server_name localhost;

 ssl on;
 ssl_certificate /etc/pki/tls/certs/server.crt;
 ssl_certificate_key /etc/pki/tls/certs/server.key;

 ssl_session_timeout 5m;

 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_prefer_server_ciphers on;

 location / {
 proxy_pass http://docker;
 proxy_http_version 1.1;

 proxy_set_header Connection "";
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto https;
 }
 }

 /etc/pki/tls/certs/server.crt:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.

Terminate at the instance 1131

AWS Elastic Beanstalk Developer Guide

 -----END RSA PRIVATE KEY-----

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

In a single instance environment, you must also modify the instance's security group to allow
traffic on port 443. The following configuration file retrieves the security group's ID using an AWS
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminating HTTPS on EC2 instances running Go

For Go container types, you enable HTTPS with a configuration file and an nginx configuration file
that configures the nginx server to use HTTPS.

Add the following snippet to your configuration file, replacing the certificate and private key
placeholders as instructed, and save it in your source bundle's .ebextensions directory. The
configuration file performs the following tasks:

• The Resources key enables port 443 on the security group used by your environment's
instance.

Terminate at the instance 1132

AWS Elastic Beanstalk Developer Guide

• The files key creates the following files on the instance:

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

If you have intermediate certificates, include them in server.crt after your site certificate.

 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 second intermediate certificate
 -----END CERTIFICATE-----

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

• The container_commands key restarts the nginx server after everything is configured so that
the server loads the nginx configuration file.

Example .ebextensions/https-instance.config

files:
 /etc/pki/tls/certs/server.crt:
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents

Terminate at the instance 1133

AWS Elastic Beanstalk Developer Guide

 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

container_commands:
 01restart_nginx:
 command: "service nginx restart"

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

Place the following in a file with the .conf extension in the .ebextensions/nginx/conf.d/
directory of your source bundle (e.g., .ebextensions/nginx/conf.d/https.conf). Replace
app_port with the port number that your application listens on. This example configures the
nginx server to listen on port 443 using SSL. For more information about these configuration files
on the Go platform, see Configuring the reverse proxy.

Example .ebextensions/nginx/conf.d/https.conf

HTTPS server

server {
 listen 443;
 server_name localhost;

 ssl on;
 ssl_certificate /etc/pki/tls/certs/server.crt;
 ssl_certificate_key /etc/pki/tls/certs/server.key;

 ssl_session_timeout 5m;

 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;

Terminate at the instance 1134

AWS Elastic Beanstalk Developer Guide

 ssl_prefer_server_ciphers on;

 location / {
 proxy_pass http://localhost:app_port;
 proxy_set_header Connection "";
 proxy_http_version 1.1;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto https;
 }
}

In a single instance environment, you must also modify the instance's security group to allow
traffic on port 443. The following configuration file retrieves the security group's ID using an AWS
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminating HTTPS on EC2 instances running Java SE

For Java SE container types, you enable HTTPS with an .ebextensions configuration file, and an
nginx configuration file that configures the nginx server to use HTTPS.

All AL2023/AL2 platforms support a uniform proxy configuration feature. For more information
about configuring the proxy server on your platform versions running AL2023/AL2, expand the
Reverse Proxy Configuration section in the section called “Extending Linux platforms”.

Terminate at the instance 1135

AWS Elastic Beanstalk Developer Guide

Add the following snippet to your configuration file, replacing the certificate and private key
placeholders as instructed, and save it in the .ebextensions directory. The configuration file
performs the following tasks:

• The files key creates the following files on the instance:

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

If you have intermediate certificates, include them in server.crt after your site certificate.

 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 second intermediate certificate
 -----END CERTIFICATE-----

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

• The container_commands key restarts the nginx server after everything is configured so that
the server loads the nginx configuration file.

Example .ebextensions/https-instance.config

files:

Terminate at the instance 1136

AWS Elastic Beanstalk Developer Guide

 /etc/pki/tls/certs/server.crt:
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

container_commands:
 01restart_nginx:
 command: "service nginx restart"

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

Place the following in a file with the .conf extension in the .ebextensions/nginx/conf.d/
directory of your source bundle (e.g., .ebextensions/nginx/conf.d/https.conf). Replace
app_port with the port number that your application listens on. This example configures the
nginx server to listen on port 443 using SSL. For more information about these configuration files
on the Java SE platform, see Configuring the reverse proxy.

Example .ebextensions/nginx/conf.d/https.conf

HTTPS server

server {
 listen 443;
 server_name localhost;

 ssl on;
 ssl_certificate /etc/pki/tls/certs/server.crt;
 ssl_certificate_key /etc/pki/tls/certs/server.key;

Terminate at the instance 1137

AWS Elastic Beanstalk Developer Guide

 ssl_session_timeout 5m;

 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_prefer_server_ciphers on;

 location / {
 proxy_pass http://localhost:app_port;
 proxy_set_header Connection "";
 proxy_http_version 1.1;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto https;
 }
}

In a single instance environment, you must also modify the instance's security group to allow
traffic on port 443. The following configuration file retrieves the security group's ID using an AWS
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminating HTTPS on EC2 instances running Node.js

The following example configuration file extends the default nginx configuration to listen on port
443 and terminate SSL/TLS connections with a public certificate and private key.

Terminate at the instance 1138

AWS Elastic Beanstalk Developer Guide

If you configured your environment for enhanced health reporting, you need to configure nginx to
generate access logs. To do that, uncomment the block of lines under the comment that reads #
For enhanced health... by removing the leading # characters.

Example .ebextensions/https-instance.config

files:
 /etc/nginx/conf.d/https.conf:
 mode: "000644"
 owner: root
 group: root
 content: |
 # HTTPS server

 server {
 listen 443;
 server_name localhost;

 ssl on;
 ssl_certificate /etc/pki/tls/certs/server.crt;
 ssl_certificate_key /etc/pki/tls/certs/server.key;

 ssl_session_timeout 5m;

 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_prefer_server_ciphers on;

 # For enhanced health reporting support, uncomment this block:

 #if ($time_iso8601 ~ "^(\d{4})-(\d{2})-(\d{2})T(\d{2})") {
 # set $year $1;
 # set $month $2;
 # set $day $3;
 # set $hour $4;
 #}
 #access_log /var/log/nginx/healthd/application.log.$year-$month-$day-$hour
 healthd;
 #access_log /var/log/nginx/access.log main;

 location / {
 proxy_pass http://nodejs;
 proxy_set_header Connection "";
 proxy_http_version 1.1;

Terminate at the instance 1139

AWS Elastic Beanstalk Developer Guide

 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto https;
 }
 }

 /etc/pki/tls/certs/server.crt:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

The files key creates the following files on the instance:

/etc/nginx/conf.d/https.conf

Configures the nginx server. This file is loaded when the nginx service starts.

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

Terminate at the instance 1140

AWS Elastic Beanstalk Developer Guide

If you have intermediate certificates, include them in server.crt after your site certificate.

 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 second intermediate certificate
 -----END CERTIFICATE-----

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

In a single instance environment, you must also modify the instance's security group to allow
traffic on port 443. The following configuration file retrieves the security group's ID using an AWS
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

Terminate at the instance 1141

AWS Elastic Beanstalk Developer Guide

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminating HTTPS on EC2 instances running PHP

For PHP container types, you use a configuration file to enable the Apache HTTP Server to use
HTTPS.

Add the following snippet to your configuration file, replacing the certificate and private key
material as instructed, and save it in your source bundle's .ebextensions directory.

The configuration file performs the following tasks:

• The packages key uses yum to install mod24_ssl.

• The files key creates the following files on the instance:

/etc/httpd/conf.d/ssl.conf

Configures the Apache server. This file loads when the Apache service starts.

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

If you have intermediate certificates, include them in server.crt after your site certificate.

 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 second intermediate certificate

Terminate at the instance 1142

AWS Elastic Beanstalk Developer Guide

 -----END CERTIFICATE-----

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

Example .ebextensions/https-instance.config

packages:
 yum:
 mod24_ssl : []

files:
 /etc/httpd/conf.d/ssl.conf:
 mode: "000644"
 owner: root
 group: root
 content: |
 LoadModule ssl_module modules/mod_ssl.so
 Listen 443
 <VirtualHost *:443>
 <Proxy *>
 Order deny,allow
 Allow from all
 </Proxy>

 SSLEngine on
 SSLCertificateFile "/etc/pki/tls/certs/server.crt"
 SSLCertificateKeyFile "/etc/pki/tls/certs/server.key"
 SSLCipherSuite EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH
 SSLProtocol All -SSLv2 -SSLv3
 SSLHonorCipherOrder On
 SSLSessionTickets Off

 Header always set Strict-Transport-Security "max-age=63072000;
 includeSubdomains; preload"
 Header always set X-Frame-Options DENY
 Header always set X-Content-Type-Options nosniff

 ProxyPass / http://localhost:80/ retry=0
 ProxyPassReverse / http://localhost:80/

Terminate at the instance 1143

AWS Elastic Beanstalk Developer Guide

 ProxyPreserveHost on
 RequestHeader set X-Forwarded-Proto "https" early

 </VirtualHost>

 /etc/pki/tls/certs/server.crt:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

In a single instance environment, you must also modify the instance's security group to allow
traffic on port 443. The following configuration file retrieves the security group's ID using an AWS
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}

Terminate at the instance 1144

AWS Elastic Beanstalk Developer Guide

 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminating HTTPS on EC2 instances running Python

For Python container types using Apache HTTP Server with the Web Server Gateway Interface
(WSGI), you use a configuration file to enable the Apache HTTP Server to use HTTPS.

Add the following snippet to your configuration file, replacing the certificate and private key
material as instructed, and save it in your source bundle's .ebextensions directory. The
configuration file performs the following tasks:

• The packages key uses yum to install mod24_ssl.

• The files key creates the following files on the instance:

/etc/httpd/conf.d/ssl.conf

Configures the Apache server. If your application is not named application.py, replace the
highlighted text in the value for WSGIScriptAlias with the local path to your application.
For example, a django application's may be at django/wsgi.py. The location should match
the value of the WSGIPath option that you set for your environment.

Depending on your application requirements, you may also need to add other directories to
the python-path parameter.

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

Terminate at the instance 1145

AWS Elastic Beanstalk Developer Guide

If you have intermediate certificates, include them in server.crt after your site certificate.

 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 second intermediate certificate
 -----END CERTIFICATE-----

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

• The container_commands key stops the httpd service after everything has been configured so
that the service uses the new https.conf file and certificate.

Note

The example works only in environments using the Python platform.

Example .ebextensions/https-instance.config

packages:
 yum:
 mod24_ssl : []

files:
 /etc/httpd/conf.d/ssl.conf:
 mode: "000644"
 owner: root
 group: root
 content: |
 LoadModule wsgi_module modules/mod_wsgi.so
 WSGIPythonHome /opt/python/run/baselinenv
 WSGISocketPrefix run/wsgi

Terminate at the instance 1146

AWS Elastic Beanstalk Developer Guide

 WSGIRestrictEmbedded On
 Listen 443
 <VirtualHost *:443>
 SSLEngine on
 SSLCertificateFile "/etc/pki/tls/certs/server.crt"
 SSLCertificateKeyFile "/etc/pki/tls/certs/server.key"

 Alias /static/ /opt/python/current/app/static/
 <Directory /opt/python/current/app/static>
 Order allow,deny
 Allow from all
 </Directory>

 WSGIScriptAlias / /opt/python/current/app/application.py

 <Directory /opt/python/current/app>
 Require all granted
 </Directory>

 WSGIDaemonProcess wsgi-ssl processes=1 threads=15 display-name=%{GROUP} \
 python-path=/opt/python/current/app \
 python-home=/opt/python/run/venv \
 home=/opt/python/current/app \
 user=wsgi \
 group=wsgi
 WSGIProcessGroup wsgi-ssl

 </VirtualHost>

 /etc/pki/tls/certs/server.crt:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN RSA PRIVATE KEY-----

Terminate at the instance 1147

AWS Elastic Beanstalk Developer Guide

 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

container_commands:
 01killhttpd:
 command: "killall httpd"
 02waitforhttpddeath:
 command: "sleep 3"

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

In a single instance environment, you must also modify the instance's security group to allow
traffic on port 443. The following configuration file retrieves the security group's ID using an AWS
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminating HTTPS on EC2 instances running Ruby

For Ruby container types, the way you enable HTTPS depends on the type of application server
used.

Terminate at the instance 1148

AWS Elastic Beanstalk Developer Guide

Topics

• Configure HTTPS for Ruby with Puma

• Configure HTTPS for Ruby with Passenger

Configure HTTPS for Ruby with Puma

For Ruby container types that use Puma as the application server, you use a configuration file to
enable HTTPS.

Add the following snippet to your configuration file, replacing the certificate and private key
material as instructed, and save it in your source bundle's .ebextensions directory. The
configuration file performs the following tasks:

• The files key creates the following files on the instance:

/etc/nginx/conf.d/https.conf

Configures the nginx server. This file is loaded when the nginx service starts.

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

If you have intermediate certificates, include them in server.crt after your site certificate.

 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 second intermediate certificate

Terminate at the instance 1149

AWS Elastic Beanstalk Developer Guide

 -----END CERTIFICATE-----

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

• The container_commands key restarts the nginx server after everything is configured so that
the server uses the new https.conf file.

Example .ebextensions/https-instance.config

files:
 /etc/nginx/conf.d/https.conf:
 content: |
 # HTTPS server

 server {
 listen 443;
 server_name localhost;

 ssl on;
 ssl_certificate /etc/pki/tls/certs/server.crt;
 ssl_certificate_key /etc/pki/tls/certs/server.key;

 ssl_session_timeout 5m;

 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_prefer_server_ciphers on;

 location / {
 proxy_pass http://my_app;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto https;
 }

 location /assets {
 alias /var/app/current/public/assets;
 gzip_static on;
 gzip on;
 expires max;
 add_header Cache-Control public;

Terminate at the instance 1150

AWS Elastic Beanstalk Developer Guide

 }

 location /public {
 alias /var/app/current/public;
 gzip_static on;
 gzip on;
 expires max;
 add_header Cache-Control public;
 }
 }

 /etc/pki/tls/certs/server.crt:
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

container_commands:
 01restart_nginx:
 command: "service nginx restart"

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

In a single instance environment, you must also modify the instance's security group to allow
traffic on port 443. The following configuration file retrieves the security group's ID using an AWS
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:

Terminate at the instance 1151

AWS Elastic Beanstalk Developer Guide

 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Configure HTTPS for Ruby with Passenger

For Ruby container types that use Passenger as the application server, you use both a configuration
file and a JSON file to enable HTTPS.

To configure HTTPS for Ruby with Passenger

1. Add the following snippet to your configuration file, replacing the certificate and private key
material as instructed, and save it in your source bundle's .ebextensions directory. The
configuration file performs the following tasks:

• The files key creates the following files on the instance:

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with
the contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when
replacing content in an example configuration file and ensure that your text
editor uses spaces, not tab characters, to indent.

If you have intermediate certificates, include them in server.crt after your site
certificate.

 -----BEGIN CERTIFICATE-----

Terminate at the instance 1152

AWS Elastic Beanstalk Developer Guide

 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 second intermediate certificate
 -----END CERTIFICATE-----

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with
the contents of the private key used to create the certificate request or self-signed
certificate.

Example .Ebextensions snippet for configuring HTTPS for Ruby with Passenger

files:
 /etc/pki/tls/certs/server.crt:
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

2. Create a text file and add the following JSON to the file. Save it in your source bundle's root
directory with the name passenger-standalone.json. This JSON file configures Passenger
to use HTTPS.

Terminate at the instance 1153

AWS Elastic Beanstalk Developer Guide

Important

This JSON file must not contain a byte order mark (BOM). If it does, the Passenger
JSON library will not read the file correctly and the Passenger service will not start.

Example passenger-standalone.json

{
 "ssl" : true,
 "ssl_port" : 443,
 "ssl_certificate" : "/etc/pki/tls/certs/server.crt",
 "ssl_certificate_key" : "/etc/pki/tls/certs/server.key"
}

In a single instance environment, you must also modify the instance's security group to allow
traffic on port 443. The following configuration file retrieves the security group's ID using an AWS
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminating HTTPS on EC2 instances running Tomcat

For Tomcat container types, you use a configuration file to enable the Apache HTTP Server to use
HTTPS when acting as the reverse proxy for Tomcat.

Terminate at the instance 1154

AWS Elastic Beanstalk Developer Guide

Add the following snippet to your configuration file, replacing the certificate and private key
material as instructed, and save it in your source bundle's .ebextensions directory. The
configuration file performs the following tasks:

• The files key creates the following files on the instance:

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

/opt/elasticbeanstalk/hooks/appdeploy/post/99_start_httpd.sh

Creates a post-deployment hook script to restart the httpd service.

Example .ebextensions/https-instance.config

files:
 /etc/pki/tls/certs/server.crt:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 mode: "000400"
 owner: root

Terminate at the instance 1155

AWS Elastic Beanstalk Developer Guide

 group: root
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

 /opt/elasticbeanstalk/hooks/appdeploy/post/99_start_httpd.sh:
 mode: "000755"
 owner: root
 group: root
 content: |
 #!/usr/bin/env bash
 sudo service httpd restart

You must also configure your environment's proxy server to listen on port 443. The following
Apache 2.4 configuration adds a listener on port 443. To learn more, see Configuring your Tomcat
environment's proxy server.

Example .ebextensions/httpd/conf.d/ssl.conf

Listen 443
<VirtualHost *:443>
 ServerName server-name
 SSLEngine on
 SSLCertificateFile "/etc/pki/tls/certs/server.crt"
 SSLCertificateKeyFile "/etc/pki/tls/certs/server.key"

 <Proxy *>
 Require all granted
 </Proxy>
 ProxyPass / http://localhost:8080/ retry=0
 ProxyPassReverse / http://localhost:8080/
 ProxyPreserveHost on

 ErrorLog /var/log/httpd/elasticbeanstalk-ssl-error_log

</VirtualHost>

Your certificate vendor may include intermediate certificates that you can install for better
compatibility with mobile clients. Configure Apache with an intermediate certificate authority (CA)

Terminate at the instance 1156

AWS Elastic Beanstalk Developer Guide

bundle by adding the following to your SSL configuration file (see Extending and overriding the
default Apache configuration — Amazon Linux AMI (AL1) for the location):

• In the ssl.conf file contents, specify the chain file:

SSLCertificateKeyFile "/etc/pki/tls/certs/server.key"
SSLCertificateChainFile "/etc/pki/tls/certs/gd_bundle.crt"
SSLCipherSuite EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH

• Add a new entry to the files key with the contents of the intermediate certificates:

files:
 /etc/pki/tls/certs/gd_bundle.crt:
 mode: "000400"
 owner: root
 group: root
 content: |
 -----BEGIN CERTIFICATE-----
 First intermediate certificate
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 Second intermediate certificate
 -----END CERTIFICATE-----

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

In a single instance environment, you must also modify the instance's security group to allow
traffic on port 443. The following configuration file retrieves the security group's ID using an AWS
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:

Terminate at the instance 1157

AWS Elastic Beanstalk Developer Guide

 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminating HTTPS on Amazon EC2 instances running .NET Core on Linux

For .NET Core on Linux container types, you enable HTTPS with an .ebextensions configuration
file, and an nginx configuration file that configures the nginx server to use HTTPS.

Add the following snippet to your configuration file, replacing the certificate and private key
placeholders as instructed, and save it in the .ebextensions directory. The configuration file
performs the following tasks:

• The files key creates the following files on the instance:

/etc/pki/tls/certs/server.crt

Creates the certificate file on the instance. Replace certificate file contents with the
contents of your certificate.

Note

YAML relies on consistent indentation. Match the indentation level when replacing
content in an example configuration file and ensure that your text editor uses spaces,
not tab characters, to indent.

If you have intermediate certificates, include them in server.crt after your site certificate.

 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----
 -----BEGIN CERTIFICATE-----
 first intermediate certificate
 -----END CERTIFICATE-----

Terminate at the instance 1158

AWS Elastic Beanstalk Developer Guide

 -----BEGIN CERTIFICATE-----
 second intermediate certificate
 -----END CERTIFICATE-----

/etc/pki/tls/certs/server.key

Creates the private key file on the instance. Replace private key contents with the
contents of the private key used to create the certificate request or self-signed certificate.

• The container_commands key restarts the nginx server after everything is configured so that
the server loads the nginx configuration file.

Example .ebextensions/https-instance.config

files:
 /etc/pki/tls/certs/server.crt:
 content: |
 -----BEGIN CERTIFICATE-----
 certificate file contents
 -----END CERTIFICATE-----

 /etc/pki/tls/certs/server.key:
 content: |
 -----BEGIN RSA PRIVATE KEY-----
 private key contents # See note below.
 -----END RSA PRIVATE KEY-----

container_commands:
 01restart_nginx:
 command: "systemctl restart nginx"

Note

Avoid committing a configuration file that contains your private key to source control.
After you have tested the configuration and confirmed that it works, store your private
key in Amazon S3 and modify the configuration to download it during deployment. For
instructions, see Storing private keys securely in Amazon S3.

Place the following in a file with the .conf extension in the .platform/nginx/conf.d/
directory of your source bundle (for example, .platform/nginx/conf.d/https.conf). Replace

Terminate at the instance 1159

AWS Elastic Beanstalk Developer Guide

app_port with the port number that your application listens on. This example configures the
nginx server to listen on port 443 using SSL. For more information about these configuration files
on the .NET Core on Linux platform, see the section called “Proxy server”.

Example .platform/nginx/conf.d/https.conf

HTTPS server

server {
 listen 443 ssl;
 server_name localhost;

 ssl_certificate /etc/pki/tls/certs/server.crt;
 ssl_certificate_key /etc/pki/tls/certs/server.key;

 ssl_session_timeout 5m;

 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_prefer_server_ciphers on;

 location / {
 proxy_pass http://localhost:app_port;
 proxy_set_header Connection "";
 proxy_http_version 1.1;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto https;
 }
}

In a single instance environment, you must also modify the instance's security group to allow
traffic on port 443. The following configuration file retrieves the security group's ID using an AWS
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}

Terminate at the instance 1160

AWS Elastic Beanstalk Developer Guide

 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Terminating HTTPS on Amazon EC2 instances running .NET

The following configuration file creates and runs a Windows PowerShell script that performs the
following tasks:

• Checks for an existing HTTPS certificate binding to port 443.

• Gets the PFX certificate from an Amazon S3 bucket.

Note

Add an AmazonS3ReadOnlyAccess policy to the aws-elasticbeanstalk-ec2-role
to access the SSL certificate in the Amazon S3 bucket.

• Gets the password from AWS Secrets Manager.

Note

Add a statement in aws-elasticbeanstalk-ec2-role that allows the
secretsmanager:GetSecretValue action for the secret that contains the certificate
password

• Installs the certificate.

• Binds the certificate to port 443.

Note

To remove the HTTP endpoint (port 80), include the Remove-WebBinding command
under the Remove the HTTP binding section of the example.

Terminate at the instance 1161

AWS Elastic Beanstalk Developer Guide

Example .ebextensions/https-instance-dotnet.config

files:
 "C:\\certs\\install-cert.ps1":
 content: |
 import-module webadministration
 ## Settings - replace the following values with your own
 $bucket = "DOC-EXAMPLE-BUCKET" ## S3 bucket name
 $certkey = "example.com.pfx" ## S3 object key for your PFX certificate
 $secretname = "example_secret" ## AWS Secrets Manager name for a secret that
 contains the certificate's password
 ##

 # Set variables
 $certfile = "C:\cert.pfx"
 $pwd = Get-SECSecretValue -SecretId $secretname | select -expand SecretString

 # Clean up existing binding
 if (Get-WebBinding "Default Web Site" -Port 443) {
 Echo "Removing WebBinding"
 Remove-WebBinding -Name "Default Web Site" -BindingInformation *:443:
 }
 if (Get-Item -path IIS:\SslBindings\0.0.0.0!443) {
 Echo "Deregistering WebBinding from IIS"
 Remove-Item -path IIS:\SslBindings\0.0.0.0!443
 }

 # Download certificate from S3
 Read-S3Object -BucketName $bucket -Key $certkey -File $certfile

 # Install certificate
 Echo "Installing cert..."
 $securepwd = ConvertTo-SecureString -String $pwd -Force -AsPlainText
 $cert = Import-PfxCertificate -FilePath $certfile cert:\localMachine\my -Password
 $securepwd

 # Create site binding
 Echo "Creating and registering WebBinding"
 New-WebBinding -Name "Default Web Site" -IP "*" -Port 443 -Protocol https
 New-Item -path IIS:\SslBindings\0.0.0.0!443 -value $cert -Force

 ## Remove the HTTP binding
 ## (optional) Uncomment the following line to unbind port 80
 # Remove-WebBinding -Name "Default Web Site" -BindingInformation *:80:

Terminate at the instance 1162

AWS Elastic Beanstalk Developer Guide

 ##

 # Update firewall
 netsh advfirewall firewall add rule name="Open port 443" protocol=TCP
 localport=443 action=allow dir=OUT

commands:
 00_install_ssl:
 command: powershell -NoProfile -ExecutionPolicy Bypass -file C:\\certs\\install-
cert.ps1

In a single instance environment, you must also modify the instance's security group to allow
traffic on port 443. The following configuration file retrieves the security group's ID using an AWS
CloudFormation function and adds a rule to it.

Example .ebextensions/https-instance-single.config

Resources:
 sslSecurityGroupIngress:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 CidrIp: 0.0.0.0/0

For a load-balanced environment, you configure the load balancer to either pass secure traffic
through untouched, or decrypt and re-encrypt for end-to-end encryption.

Configuring end-to-end encryption in a load-balanced Elastic Beanstalk
environment

Terminating secure connections at the load balancer and using HTTP on the backend might be
sufficient for your application. Network traffic between AWS resources can't be listened to by
instances that are not part of the connection, even if they are running under the same account.

However, if you are developing an application that needs to comply with strict external regulations,
you might be required to secure all network connections. You can use the Elastic Beanstalk console
or configuration files to make your Elastic Beanstalk environment's load balancer connect to

End-to-end encryption 1163

AWS Elastic Beanstalk Developer Guide

backend instances securely to meet these requirements. The following procedure focuses on
configuration files.

First, add a secure listener to your load balancer, if you haven't already.

You must also configure the instances in your environment to listen on the secure port and
terminate HTTPS connections. The configuration varies per platform. See Configuring your
application to terminate HTTPS connections at the instance for instructions. You can use a self-
signed certificate for the EC2 instances without issue.

Next, configure the listener to forward traffic using HTTPS on the secure port used by your
application. Use one of the following configuration files, based on the type of load balancer that
your environment uses.

.ebextensions/https-reencrypt-clb.config

Use this configuration file with a Classic Load Balancer. In addition to configuring the load balancer,
the configuration file also changes the default health check to use port 443 and HTTPS, to ensure
that the load balancer can connect securely.

option_settings:
 aws:elb:listener:443:
 InstancePort: 443
 InstanceProtocol: HTTPS
 aws:elasticbeanstalk:application:
 Application Healthcheck URL: HTTPS:443/

.ebextensions/https-reencrypt-alb.config

Use this configuration file with an Application Load Balancer.

option_settings:
 aws:elbv2:listener:443:
 DefaultProcess: https
 ListenerEnabled: 'true'
 Protocol: HTTPS
 aws:elasticbeanstalk:environment:process:https:
 Port: '443'
 Protocol: HTTPS

.ebextensions/https-reencrypt-nlb.config

End-to-end encryption 1164

AWS Elastic Beanstalk Developer Guide

Use this configuration file with a Network Load Balancer.

option_settings:
 aws:elbv2:listener:443:
 DefaultProcess: https
 ListenerEnabled: 'true'
 aws:elasticbeanstalk:environment:process:https:
 Port: '443'

The DefaultProcess option is named this way because of Application Load Balancers, which
can have nondefault listeners on the same port for traffic to specific paths (see Application Load
Balancer for details). For a Network Load Balancer the option specifies the only target process for
this listener.

In this example, we named the process https because it listens to secure (HTTPS) traffic. The
listener sends traffic to the process on the designated port using the TCP protocol, because a
Network Load Balancer works only with TCP. This is okay, because network traffic for HTTP and
HTTPS is implemented on top of TCP.

Note

The EB CLI and Elastic Beanstalk console apply recommended values for the preceding
options. You must remove these settings if you want to use configuration files to configure
the same. See Recommended values for details.

In the next task, you need to modify the load balancer's security group to allow traffic. Depending
on the Amazon Virtual Private Cloud (Amazon VPC) in which you launch your environment—the
default VPC or a custom VPC—the load balancer's security group will vary. In a default VPC, Elastic
Load Balancing provides a default security group that all load balancers can use. In an Amazon VPC
that you create, Elastic Beanstalk creates a security group for the load balancer to use.

To support both scenarios, you can create a security group and tell Elastic Beanstalk to use it. The
following configuration file creates a security group and attaches it to the load balancer.

.ebextensions/https-lbsecuritygroup.config

option_settings:
 # Use the custom security group for the load balancer

End-to-end encryption 1165

https://docs.aws.amazon.com/vpc/latest/userguide/

AWS Elastic Beanstalk Developer Guide

 aws:elb:loadbalancer:
 SecurityGroups: '`{ "Ref" : "loadbalancersg" }`'
 ManagedSecurityGroup: '`{ "Ref" : "loadbalancersg" }`'

Resources:
 loadbalancersg:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: load balancer security group
 VpcId: vpc-########
 SecurityGroupIngress:
 - IpProtocol: tcp
 FromPort: 443
 ToPort: 443
 CidrIp: 0.0.0.0/0
 - IpProtocol: tcp
 FromPort: 80
 ToPort: 80
 CidrIp: 0.0.0.0/0
 SecurityGroupEgress:
 - IpProtocol: tcp
 FromPort: 80
 ToPort: 80
 CidrIp: 0.0.0.0/0

Replace the highlighted text with your default or custom VPC ID. The previous example includes
ingress and egress over port 80 to allow HTTP connections. You can remove those properties if you
want to allow only secure connections.

Finally, add ingress and egress rules that allow communication over port 443 between the load
balancer's security group and the instances' security group.

.ebextensions/https-backendsecurity.config

Resources:
 # Add 443-inbound to instance security group (AWSEBSecurityGroup)
 httpsFromLoadBalancerSG:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443

End-to-end encryption 1166

AWS Elastic Beanstalk Developer Guide

 SourceSecurityGroupId: {"Fn::GetAtt" : ["loadbalancersg", "GroupId"]}
 # Add 443-outbound to load balancer security group (loadbalancersg)
 httpsToBackendInstances:
 Type: AWS::EC2::SecurityGroupEgress
 Properties:
 GroupId: {"Fn::GetAtt" : ["loadbalancersg", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 DestinationSecurityGroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}

Doing this separately from security group creation enables you to restrict the source and
destination security groups without creating a circular dependency.

After you have completed all the previous tasks, the load balancer connects to your backend
instances securely using HTTPS. The load balancer doesn't care if your instance's certificate is self-
signed or issued by a trusted certificate authority, and will accept any certificate presented to it.

You can change this behavior by adding policies to the load balancer that tell it to trust only a
specific certificate. The following configuration file creates two policies. One policy specifies a
public certificate, and the other tells the load balancer to only trust that certificate for connections
to instance port 443.

.ebextensions/https-backendauth.config

option_settings:
 # Backend Encryption Policy
 aws:elb:policies:backendencryption:
 PublicKeyPolicyNames: backendkey
 InstancePorts: 443
 # Public Key Policy
 aws:elb:policies:backendkey:
 PublicKey: |
 -----BEGIN CERTIFICATE-----
 ##
 ##
 ##
 ##
 ##
 -----END CERTIFICATE-----

Replace the highlighted text with the contents of your EC2 instance's public certificate.

End-to-end encryption 1167

AWS Elastic Beanstalk Developer Guide

Configuring your environment's load balancer for TCP Passthrough

If you don't want the load balancer in your AWS Elastic Beanstalk environment to decrypt HTTPS
traffic, you can configure the secure listener to relay requests to backend instances as-is.

First configure your environment's EC2 instances to terminate HTTPS. Test the configuration on a
single instance environment to make sure everything works before adding a load balancer to the
mix.

Add a configuration file to your project to configure a listener on port 443 that passes TCP packets
as-is to port 443 on backend instances:

.ebextensions/https-lb-passthrough.config

option_settings:
 aws:elb:listener:443:
 ListenerProtocol: TCP
 InstancePort: 443
 InstanceProtocol: TCP

In a default Amazon Virtual Private Cloud (Amazon VPC), you also need to add a rule to the
instances' security group to allow inbound traffic on 443 from the load balancer:

.ebextensions/https-instance-securitygroup.config

Resources:
 443inboundfromloadbalancer:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 GroupId: {"Fn::GetAtt" : ["AWSEBSecurityGroup", "GroupId"]}
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443
 SourceSecurityGroupName: { "Fn::GetAtt": ["AWSEBLoadBalancer",
 "SourceSecurityGroup.GroupName"] }

In a custom VPC, Elastic Beanstalk updates the security group configuration for you.

Storing private keys securely in Amazon S3

The private key that you use to sign your public certificate is private and should not be committed
to source code. You can avoid storing private keys in configuration files by uploading them to

TCP Passthrough 1168

https://docs.aws.amazon.com/vpc/latest/userguide/

AWS Elastic Beanstalk Developer Guide

Amazon S3, and configuring Elastic Beanstalk to download the file from Amazon S3 during
application deployment.

The following example shows the Resources and files sections of a configuration file downloads a
private key file from an Amazon S3 bucket.

Example .ebextensions/privatekey.config

Resources:
 AWSEBAutoScalingGroup:
 Metadata:
 AWS::CloudFormation::Authentication:
 S3Auth:
 type: "s3"
 buckets: ["elasticbeanstalk-us-west-2-123456789012"]
 roleName:
 "Fn::GetOptionSetting":
 Namespace: "aws:autoscaling:launchconfiguration"
 OptionName: "IamInstanceProfile"
 DefaultValue: "aws-elasticbeanstalk-ec2-role"
files:
 # Private key
 "/etc/pki/tls/certs/server.key":
 mode: "000400"
 owner: root
 group: root
 authentication: "S3Auth"
 source: https://elasticbeanstalk-us-west-2-123456789012.s3.us-west-2.amazonaws.com/
server.key

Replace the bucket name and URL in the example with your own. The first entry in this file adds
an authentication method named S3Auth to the environment's Auto Scaling group's metadata. If
you have configured a custom instance profile for your environment, that will be used, otherwise
the default value of aws-elasticbeanstalk-ec2-role is applied. The default instance profile
has permission to read from the Elastic Beanstalk storage bucket. If you use a different bucket, add
permissions to the instance profile.

The second entry uses the S3Auth authentication method to download the private key from the
specified URL and save it to /etc/pki/tls/certs/server.key. The proxy server can then read
the private key from this location to terminate HTTPS connections at the instance.

Store keys securely 1169

AWS Elastic Beanstalk Developer Guide

The instance profile assigned to your environment's EC2 instances must have permission to read
the key object from the specified bucket. Verify that the instance profile has permission to read
the object in IAM, and that the permissions on the bucket and object do not prohibit the instance
profile.

To view a bucket's permissions

1. Open the Amazon S3 Management Console.

2. Choose a bucket.

3. Choose Properties and then choose Permissions.

4. Verify that your account is a grantee on the bucket with read permission.

5. If a bucket policy is attached, choose Bucket policy to view the permissions assigned to the
bucket.

Configuring HTTP to HTTPS redirection

In Configuring HTTPS for your Elastic Beanstalk environment and its subtopics, we discuss
configuring your Elastic Beanstalk environment to use HTTPS to ensure traffic encryption into your
application. This topic describes how to elegantly handle HTTP traffic to your application if end
users still initiate it. You do this by configuring HTTP to HTTPS redirection, sometimes referred to as
forcing HTTPS.

To configure redirection, you first configure your environment to handle HTTPS traffic. Then you
redirect HTTP traffic to HTTPS. These two steps are discussed in the following subsections.

Configure your environment to handle HTTPS traffic

Depending on your environment's load balancing configuration, do one of the following:

• Load-balanced environment – Configure your load balancer to terminate HTTPS.

• Single-instance environment – Configure your application to terminate HTTPS connections at
the instance. This configuration depends on your environment's platform.

Redirect HTTP traffic to HTTPS

You can configure either the web servers on your environment's instances or the environment's
Application Load Balancer to redirect HTTP traffic to HTTPS. Do one of the following:

HTTP to HTTPS redirection 1170

https://console.aws.amazon.com/s3/home

AWS Elastic Beanstalk Developer Guide

• Configure instance web servers – This method works on any web server environment. Configure
web servers on your Amazon Elastic Compute Cloud (Amazon EC2) instances to respond to
HTTP traffic with an HTTP redirection response status. This configuration depends on your
environment's platform. Find the folder for your platform in the https-redirect collection on
GitHub, and use the example configuration file in that folder.

If your environment uses Elastic Load Balancing health checks, the load balancer expects
a healthy instance to respond to the HTTP health check messages with HTTP 200 (OK)
responses. Therefore, your web server shouldn't redirect these messages to HTTPS. The example
configuration files in https-redirect handle this requirement correctly.

• Configure load balancer – This method works if you have a load-balanced environment that
uses an Application Load Balancer. Application Load Balancer can send redirection responses as
HTTP traffic comes in. In this case, you don't need to configure redirection on your environment's
instances. We have two example configuration files on GitHub that show how to configure
Application Load Balancer for redirection. The alb-http-to-https-redirection-
full.config configuration file creates an HTTPS listener on port 443, and modifies the
default port 80 listener to redirect incoming HTTP traffic to HTTPS. The alb-http-to-https-
redirection.config configuration file expects the 443 listener to be defined (you can use
standard Elastic Beanstalk configuration namespaces, or the Elastic Beanstalk console). Then it
takes care of modifying the port 80 listener for redirection.

HTTP to HTTPS redirection 1171

https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/security-configuration/https-redirect
https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/security-configuration/https-redirect
https://github.com/awsdocs/elastic-beanstalk-samples/blob/master/configuration-files/aws-provided/resource-configuration/alb-http-to-https-redirection-full.config
https://github.com/awsdocs/elastic-beanstalk-samples/blob/master/configuration-files/aws-provided/resource-configuration/alb-http-to-https-redirection-full.config
https://github.com/awsdocs/elastic-beanstalk-samples/blob/master/configuration-files/aws-provided/resource-configuration/alb-http-to-https-redirection.config
https://github.com/awsdocs/elastic-beanstalk-samples/blob/master/configuration-files/aws-provided/resource-configuration/alb-http-to-https-redirection.config

AWS Elastic Beanstalk Developer Guide

Monitoring an environment

When you are running a production website, it is important to know that your application is
available and responding to requests. To assist with monitoring your application’s responsiveness,
Elastic Beanstalk provides features that monitor statistics about your application and create alerts
that trigger when thresholds are exceeded.

Topics

• Monitoring environment health in the AWS management console

• Basic health reporting

• Enhanced health reporting and monitoring

• Manage alarms

• Viewing an Elastic Beanstalk environment's change history

• Viewing an Elastic Beanstalk environment's event stream

• Listing and connecting to server instances

• Viewing logs from Amazon EC2 instances in your Elastic Beanstalk environment

Monitoring environment health in the AWS management
console

You can access operational information about your application from the Elastic Beanstalk console.
The console displays your environment's status and application health at a glance. In the console's
Environments page and in each application's page, the environments on the list are color-coded to
indicate status.

To monitor an environment in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

Monitoring console 1172

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

3. In the navigation pane, choose Monitoring.

The Monitoring page shows you overall statistics about your environment, such as CPU utilization
and average latency. In addition to the overall statistics, you can view monitoring graphs that show
resource usage over time. You can click any of the graphs to view more detailed information.

Note

By default, only basic CloudWatch metrics are enabled, which return data in five-minute
periods. You can enable more granular one-minute CloudWatch metrics by editing your
environment's configuration settings.

Monitoring graphs

The Monitoring page shows an overview of health-related metrics for your environment. This
includes the default set of metrics provided by Elastic Load Balancing and Amazon EC2, and graphs
that show how the environment's health has changed over time.

The bar above the graphs provides a variety of time intervals for you to select. For example, select
1w to display information that spans over the last week. Or select 3h to display information that
spans over the last three hours.

For a greater variety of time interval selections, choose Custom. From here you have two range
options: Absolute or Relative. The Absolute option allows you to specify a specific date range, such
as January 1, 2023 to June 30, 2023. The Relative option allows to select an integer with a specific
time unit: Minutes, Hours, Days, Weeks, or Months. Examples include 10 Hours, 10 Days, and 10
Months.

Monitoring graphs 1173

AWS Elastic Beanstalk Developer Guide

Customizing the monitoring console

To create and view custom metrics you must use Amazon CloudWatch. With CloudWatch you can
create custom dashboards to monitor your resources in a single view. Select Add to dashboard
to navigate to the Amazon CloudWatch console from the Monitoring page. Amazon CloudWatch
provides you the option to create a new dashboard or select an existing one. For more information,
see Using Amazon CloudWatch dashboards in the Amazon CloudWatch User Guide.

Customizing the monitoring console 1174

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html

AWS Elastic Beanstalk Developer Guide

Elastic Load Balancing and Amazon EC2 metrics are enabled for all environments.

With enhanced health, the EnvironmentHealth metric is enabled, and a graph is added to the
monitoring console automatically. Enhanced health also adds the Health page to the management
console. For a list of available enhanced health metrics, see Publishing Amazon CloudWatch
custom metrics for an environment.

Basic health reporting

AWS Elastic Beanstalk uses information from multiple sources to determine if your environment is
available and processing requests from the Internet. An environment's health is represented by one
of four colors, and is displayed on the environment overview page of the Elastic Beanstalk console.
It's also available from the DescribeEnvironments API and by calling eb status with the EB CLI.

Prior to version 2 Linux platform versions, the only health reporting system was basic health. The
basic health reporting system provides information about the health of instances in an Elastic
Beanstalk environment based on health checks performed by Elastic Load Balancing for load-
balanced environments, or Amazon Elastic Compute Cloud for single-instance environments.

Basic health reporting 1175

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/elb-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/ec2-metricscollected.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_DescribeEnvironments.html

AWS Elastic Beanstalk Developer Guide

In addition to checking the health of your EC2 instances, Elastic Beanstalk also monitors the other
resources in your environment and reports missing or incorrectly configured resources that can
cause your environment to become unavailable to users.

Metrics gathered by the resources in your environment is published to Amazon CloudWatch in
five minute intervals. This includes operating system metrics from EC2, request metrics from
Elastic Load Balancing. You can view graphs based on these CloudWatch metrics on the Monitoring
page of the environment console. For basic health, these metrics are not used to determine an
environment's health.

Topics

• Health colors

• Elastic Load Balancing health checks

• Single instance and worker tier environment health checks

• Additional checks

• Amazon CloudWatch metrics

Health colors

Elastic Beanstalk reports the health of a web server environment depending on how the
application running in it responds to the health check. Elastic Beanstalk uses one of four colors to
describe status, as shown in the following table:

Color Description

Grey Your environment is being updated.

Green Your environment has passed the most recent health check. At least
one instance in your environment is available and taking requests.

Yellow Your environment has failed one or more health checks. Some requests
to your environment are failing.

Red Your environment has failed three or more health checks, or an
environment resource has become unavailable. Requests are consisten
tly failing.

Health colors 1176

AWS Elastic Beanstalk Developer Guide

These descriptions only apply to environments using basic health reporting. See Health colors and
statuses for details related to enhanced health.

Elastic Load Balancing health checks

In a load-balanced environment, Elastic Load Balancing sends a request to each instance in an
environment every 10 seconds to confirm that instances are healthy. By default, the load balancer
is configured to open a TCP connection on port 80. If the instance acknowledges the connection, it
is considered healthy.

You can choose to override this setting by specifying an existing resource in your application. If
you specify a path, such as /health, the health check URL is set to HTTP:80/health. The health
check URL should be set to a path that is always served by your application. If it is set to a static
page that is served or cached by the web server in front of your application, health checks will
not reveal issues with the application server or web container. For instructions on modifying your
health check URL, see Health check.

If a health check URL is configured, Elastic Load Balancing expects a GET request that it sends to
return a response of 200 OK. The application fails the health check if it fails to respond within
5 seconds or if it responds with any other HTTP status code. After 5 consecutive health check
failures, Elastic Load Balancing takes the instance out of service.

For more information about Elastic Load Balancing health checks, see Health Check in the Elastic
Load Balancing User Guide.

Note

Configuring a health check URL does not change the health check behavior of an
environment's Auto Scaling group. An unhealthy instance is removed from the load
balancer, but is not automatically replaced by Amazon EC2 Auto Scaling unless you
configure Amazon EC2 Auto Scaling to use the Elastic Load Balancing health check as a
basis for replacing instances. To configure Amazon EC2 Auto Scaling to replace instances
that fail an Elastic Load Balancing health check, see Auto Scaling health check setting.

Elastic Load Balancing health checks 1177

https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/TerminologyandKeyConcepts.html#healthcheck

AWS Elastic Beanstalk Developer Guide

Single instance and worker tier environment health checks

In a single instance or worker tier environment, Elastic Beanstalk determines the instance's health
by monitoring its Amazon EC2 instance status. Elastic Load Balancing health settings, including
HTTP health check URLs, cannot be used in these environment types.

For more information on Amazon EC2 instance status checks, see Monitoring Instances with Status
Checks in the Amazon EC2 User Guide for Linux Instances.

Additional checks

In addition to Elastic Load Balancing health checks, Elastic Beanstalk monitors resources in your
environment and changes health status to red if they fail to deploy, are not configured correctly, or
become unavailable. These checks confirm that:

• The environment's Auto Scaling group is available and has a minimum of at least one instance.

• The environment's security group is available and is configured to allow incoming traffic on port
80.

• The environment CNAME exists and is pointing to the right load balancer.

• In a worker environment, the Amazon Simple Queue Service (Amazon SQS) queue is being polled
at least once every three minutes.

Amazon CloudWatch metrics

With basic health reporting, the Elastic Beanstalk service does not publish any metrics to Amazon
CloudWatch. The CloudWatch metrics used to produce graphs on the Monitoring page of the
environment console are published by the resources in your environment.

For example, EC2 publishes the following metrics for the instances in your environment's Auto
Scaling group:

CPUUtilization

Percentage of compute units currently in use.

DiskReadBytes, DiskReadOps, DiskWriteBytes, DiskWriteOps

Number of bytes read and written, and number of read and write operations.

Single instance and worker tier environment health checks 1178

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-system-instance-status-check.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-system-instance-status-check.html

AWS Elastic Beanstalk Developer Guide

NetworkIn, NetworkOut

Number of bytes sent and received.

Elastic Load Balancing publishes the following metrics for your environment's load balancer:

BackendConnectionErrors

Number of connection failures between the load balancer and environment instances.

HTTPCode_Backend_2XX, HTTPCode_Backend_4XX

Number of successful (2XX) and client error (4XX) response codes generated by instances in your
environment.

Latency

Number of seconds between when the load balancer relays a request to an instance and when
the response is received.

RequestCount

Number of completed requests.

These lists are not comprehensive. For a full list of metrics that can be reported for these resources,
see the following topics in the Amazon CloudWatch Developer Guide:

Metrics

Namespace Topic

AWS::ElasticLoadBalancing::LoadBalancer Elastic Load Balancing Metrics and Resources

AWS::AutoScaling::AutoScalingGroup Amazon Elastic Compute Cloud Metrics and
Resources

AWS::SQS::Queue Amazon SQS Metrics and Resources

AWS::RDS::DBInstance Amazon RDS Dimensions and Metrics

Amazon CloudWatch metrics 1179

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/elb-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/ec2-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/ec2-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/sqs-metricscollected.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/rds-metricscollected.html

AWS Elastic Beanstalk Developer Guide

Worker environment health metric

For worker environments only, the SQS daemon publishes a custom metric for environment
health to CloudWatch, where a value of 1 is Green. You can review the CloudWatch health metric
data in your account using the ElasticBeanstalk/SQSD namespace. The metric dimension is
EnvironmentName, and the metric name is Health. All instances publish their metrics to the
same namespace.

To enable the daemon to publish metrics, the environment's instance profile must have permission
to call cloudwatch:PutMetricData. This permission is included in the default instance profile.
For more information, see Managing Elastic Beanstalk instance profiles.

Enhanced health reporting and monitoring

Enhanced health reporting is a feature that you can enable on your environment to allow AWS
Elastic Beanstalk to gather additional information about resources in your environment. Elastic
Beanstalk analyzes the information gathered to provide a better picture of overall environment
health and aid in the identification of issues that can cause your application to become unavailable.

In addition to changes in how health color works, enhanced health adds a status descriptor that
provides an indicator of the severity of issues observed when an environment is yellow or red.
When more information is available about the current status, you can choose the Causes button to
view detailed health information on the health page.

Enhanced health reporting and monitoring 1180

AWS Elastic Beanstalk Developer Guide

To provide detailed health information about the Amazon EC2 instances running in your
environment, Elastic Beanstalk includes a health agent in the Amazon Machine Image (AMI) for
each platform version that supports enhanced health. The health agent monitors web server logs
and system metrics and relays them to the Elastic Beanstalk service. Elastic Beanstalk analyzes
these metrics and data from Elastic Load Balancing and Amazon EC2 Auto Scaling to provide an
overall picture of an environment's health.

In addition to collecting and presenting information about your environment's resources, Elastic
Beanstalk monitors the resources in your environment for several error conditions and provides
notifications to help you avoid failures and resolve configuration issues. Factors that influence your
environment's health include the results of each request served by your application, metrics from
your instances' operating system, and the status of the most recent deployment.

Enhanced health reporting and monitoring 1181

AWS Elastic Beanstalk Developer Guide

You can view health status in real time by using the environment overview page of the Elastic
Beanstalk console or the eb health command in the Elastic Beanstalk command line interface
(EB CLI). To record and track environment and instance health over time, you can configure
your environment to publish the information gathered by Elastic Beanstalk for enhanced health
reporting to Amazon CloudWatch as custom metrics. CloudWatch charges for custom metrics apply
to all metrics other than EnvironmentHealth, which is free of charge.

Enhanced health reporting requires a version 2 or newer platform version. To monitor resources
and publish metrics, your environment must have both an instance profile and service role. The
Multicontainer Docker platform doesn't include a web server by default, but can be used with
enhanced health reporting if you configure your web server to provide logs in the proper format.

Windows platform notes

• This feature isn't available on Windows Server platform versions earlier than version 2
(v2).

• When you enable enhanced health reporting on a Windows Server environment, don't
change IIS logging configuration. For enhanced health monitoring to work correctly, IIS
logging must be configured with the W3C format and the ETW event only or Both log
file and ETW event log event destinations.

In addition, don't disable or stop the Elastic Beanstalk health agent Windows service on
any of your environment's instances. To collect and report enhanced health information
on an instance, this service should be enabled and running.

Enhanced health requires the environment to have an instance profile. The instance profile should
have roles that provide permissions for your environment instances to collect and report enhanced
health information. The first time you create an environment with a v2 platform version in the
Elastic Beanstalk console, Elastic Beanstalk prompts you to create the required roles and enables
enhanced health reporting by default. Continue reading for details on how enhanced health
reporting works, or see Enabling Elastic Beanstalk enhanced health reporting to get started using it
right away.

Amazon Linux 2 platforms require instance profiles, so they can support enhanced health
unconditionally. When you create an environment using an Amazon Linux 2 platform, Elastic
Beanstalk always enables enhanced health. This is true regardless of how you create the
environment—using the Elastic Beanstalk console, the EB CLI, the AWS CLI, or the API.

Enhanced health reporting and monitoring 1182

https://aws.amazon.com/cloudwatch/pricing/
https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platforms-supported.html#platforms-supported.net
https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/configure-logging-in-iis

AWS Elastic Beanstalk Developer Guide

Topics

• The Elastic Beanstalk health agent

• Factors in determining instance and environment health

• Health check rule customization

• Enhanced health roles

• Enhanced health authorization

• Enhanced health events

• Enhanced health reporting behavior during updates, deployments, and scaling

• Enabling Elastic Beanstalk enhanced health reporting

• Enhanced health monitoring with the environment management console

• Health colors and statuses

• Instance metrics

• Configuring enhanced health rules for an environment

• Publishing Amazon CloudWatch custom metrics for an environment

• Using enhanced health reporting with the Elastic Beanstalk API

• Enhanced health log format

• Notifications and troubleshooting

The Elastic Beanstalk health agent

The Elastic Beanstalk health agent is a daemon process (or service, on Windows environments)
that runs on each Amazon EC2 instance in your environment, monitoring operating system and
application-level health metrics and reporting issues to Elastic Beanstalk. The health agent is
included in all platform versions starting with version 2.0 of each platform.

The health agent reports similar metrics to those published to CloudWatch by Amazon EC2 Auto
Scaling and Elastic Load Balancing as part of basic health reporting, including CPU load, HTTP
codes, and latency. The health agent, however, reports directly to Elastic Beanstalk, with greater
granularity and frequency than basic health reporting.

For basic health, these metrics are published every five minutes and can be monitored with graphs
in the environment management console. With enhanced health, the Elastic Beanstalk health
agent reports metrics to Elastic Beanstalk every 10 seconds. Elastic Beanstalk uses the metrics

The Elastic Beanstalk health agent 1183

AWS Elastic Beanstalk Developer Guide

provided by the health agent to determine the health status of each instance in the environment
and, combined with other factors, to determine the overall health of the environment.

The overall health of the environment can be viewed in real time in the environment overview
page of the Elastic Beanstalk console, and is published to CloudWatch by Elastic Beanstalk every
60 seconds. You can view detailed metrics reported by the health agent in real time with the eb
health command in the EB CLI.

For an additional charge, you can choose to publish individual instance and environment-level
metrics to CloudWatch every 60 seconds. Metrics published to CloudWatch can then be used to
create monitoring graphs in the environment management console.

Enhanced health reporting only incurs a charge if you choose to publish enhanced health metrics
to CloudWatch. When you use enhanced health, you still get the basic health metrics published for
free, even if you don't choose to publish enhanced health metrics.

See Instance metrics for details on the metrics reported by the health agent. For details on
publishing enhanced health metrics to CloudWatch, see Publishing Amazon CloudWatch custom
metrics for an environment.

Factors in determining instance and environment health

In addition to the basic health reporting system checks, including Elastic Load Balancing health
checks and resource monitoring, Elastic Beanstalk enhanced health reporting gathers additional
data about the state of the instances in your environment. This includes operating system metrics,
server logs, and the state of ongoing environment operations such as deployments and updates.
The Elastic Beanstalk health reporting service combines information from all available sources and
analyzes it to determine the overall health of the environment.

Operations and commands

When you perform an operation on your environment, such as deploying a new version of an
application, Elastic Beanstalk makes several changes that affect the environment's health status.

For example, when you deploy a new version of an application to an environment that is
running multiple instances, you might see messages similar to the following as you monitor the
environment's health with the EB CLI.

 id status cause
 Overall Info Command is executing on 3 out of 5 instances

Factors in determining instance and environment health 1184

AWS Elastic Beanstalk Developer Guide

 i-bb65c145 Pending 91 % of CPU is in use. 24 % in I/O wait
 Performing application deployment (running for 31 seconds)
 i-ba65c144 Pending Performing initialization (running for 12 seconds)
 i-f6a2d525 Ok Application deployment completed 23 seconds ago and took 26
 seconds
 i-e8a2d53b Pending 94 % of CPU is in use. 52 % in I/O wait
 Performing application deployment (running for 33 seconds)
 i-e81cca40 Ok

In this example, the overall status of the environment is Ok and the cause of this status is that the
Command is executing on 3 out of 5 instances. Three of the instances in the environment have the
status Pending, indicating that an operation is in progress.

When an operation completes, Elastic Beanstalk reports additional information about the
operation. For the example, Elastic Beanstalk displays the following information about an instance
that has already been updated with the new version of the application:

i-f6a2d525 Ok Application deployment completed 23 seconds ago and took 26
 seconds

Instance health information also includes details about the most recent deployment to each
instance in your environment. Each instance reports a deployment ID and status. The deployment
ID is an integer that increases by one each time you deploy a new version of your application or
change settings for on-instance configuration options, such as environment variables. You can
use the deployment information to identify instances that are running the wrong version of your
application after a failed rolling deployment.

In the cause column, Elastic Beanstalk includes informational messages about successful operations
and other healthy states across multiple health checks, but they don't persist indefinitely. Causes
for unhealthy environment statuses persist until the environment returns to a healthy status.

Command timeout

Elastic Beanstalk applies a command timeout from the time an operation begins to allow an
instance to transition into a healthy state. This command timeout is set in your environment's
update and deployment configuration (in the aws:elasticbeanstalk:command namespace) and
defaults to 10 minutes.

During rolling updates, Elastic Beanstalk applies a separate timeout to each batch in the
operation. This timeout is set as part of the environment's rolling update configuration (in the

Factors in determining instance and environment health 1185

AWS Elastic Beanstalk Developer Guide

aws:autoscaling:updatepolicy:rollingupdate namespace). If all instances in the batch are healthy
within the rolling update timeout, the operation continues to the next batch. If not, the operation
fails.

Note

If your application does not pass health checks with an OK status but is stable at
a different level, you can set the HealthCheckSuccessThreshold option in the
aws:elasticbeanstalk:command namespace to change the level at which Elastic
Beanstalk considers an instance to be healthy.

For a web server environment to be considered healthy, each instance in the environment or
batch must pass 12 consecutive health checks over the course of two minutes. For a worker tier
environment, each instance must pass 18 health checks. Before the command times out, Elastic
Beanstalk doesn't lower an environment's health status when health checks fail. If the instances in
the environment become healthy within the command timeout, the operation succeeds.

HTTP requests

When no operation is in progress on an environment, the primary source of information about
instance and environment health is the web server logs for each instance. To determine the health
of an instance and the overall health of the environment, Elastic Beanstalk considers the number of
requests, the result of each request, and the speed at which each request was resolved.

On Linux-based platforms, Elastic Beanstalk reads and parses web server logs to get information
about HTTP requests. On the Windows Server platform, Elastic Beanstalk receives this information
directly from the IIS web server.

Your environment might not have an active web server. For example, the Multicontainer Docker
platform doesn't include a web server. Other platforms include a web server, and your application
might disable it. In these cases, your environment requires additional configuration to provide the
Elastic Beanstalk health agent with logs in the format that it needs to relay health information to
the Elastic Beanstalk service. See Enhanced health log format for details.

Operating system metrics

Elastic Beanstalk monitors operating system metrics reported by the health agent to identify
instances that are consistently low on system resources.

Factors in determining instance and environment health 1186

AWS Elastic Beanstalk Developer Guide

See Instance metrics for details on the metrics reported by the health agent.

Health check rule customization

Elastic Beanstalk enhanced health reporting relies on a set of rules to determine the health of
your environment. Some of these rules might not be appropriate for your particular application. A
common case is an application that returns frequent HTTP 4xx errors by design. Elastic Beanstalk,
using one of its default rules, concludes that something is going wrong, and changes your
environment health status from OK to Warning, Degraded, or Severe, depending on the error
rate. To handle this case correctly, Elastic Beanstalk allows you to configure this rule and ignore
application HTTP 4xx errors. For details, see Configuring enhanced health rules for an environment.

Enhanced health roles

Enhanced health reporting requires two roles—a service role for Elastic Beanstalk and an instance
profile for the environment. The service role allows Elastic Beanstalk to interact with other AWS
services on your behalf to gather information about the resources in your environment. The
instance profile allows the instances in your environment to write logs to Amazon S3 and to
communicate enhanced health information to the Elastic Beanstalk service.

When you create an Elastic Beanstalk environment using the Elastic Beanstalk console or the EB
CLI, Elastic Beanstalk creates a default service role and attaches required managed policies to a
default instance profile for your environment.

If you use the API, an SDK, or the AWS CLI to create environments, you must create these roles in
advance, and specify them during environment creation to use enhanced health. For instructions
on creating appropriate roles for your environments, see Service roles, instance profiles, and user
policies.

We recommend that you use managed policies for your instance profile and service role. Managed
policies are AWS Identity and Access Management (IAM) policies that Elastic Beanstalk maintains.
Using managed policies guarantees that your environment has all permissions it needs to function
properly.

For the instance profile, you can use the AWSElasticBeanstalkWebTier or
AWSElasticBeanstalkWorkerTier managed policy, for a web server tier or worker tier
environment, respectively. For details about these two managed instance profile policies, see the
section called “Instance profiles”.

Health check rule customization 1187

AWS Elastic Beanstalk Developer Guide

Enhanced health authorization

The Elastic Beanstalk instance profile managed policies contain permissions for the
elasticbeanstalk:PutInstanceStatistics action. This action isn't part of the Elastic
Beanstalk API. It's part of a different API that environment instances use internally to communicate
enhanced health information to the Elastic Beanstalk service. You don't call this API directly.

When you create a new environment, authorization for the
elasticbeanstalk:PutInstanceStatistics action is enabled by default. To increase security
of your environment and help prevent health data spoofing on your behalf, we recommend that
you keep authorization for this action enabled. If you use managed policies for your instance
profile, this feature is available for your new environment without any further configuration.
However, If you use a custom instance profile instead of a managed policy, your environment might
display a No Data health status. This happens because the instances aren't authorized for the
action that communicates enhanced health data to the service.

To authorize the action, include the following statement in your instance profile.

 {
 "Sid": "ElasticBeanstalkHealthAccess",
 "Action": [
 "elasticbeanstalk:PutInstanceStatistics"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:*:*:application/*",
 "arn:aws:elasticbeanstalk:*:*:environment/*"
]
 }

If you don’t want to use enhanced health authorization at this time, disable it by
setting set the EnhancedHealthAuthEnabled option in the the section called
“aws:elasticbeanstalk:healthreporting:system” namespace to false. If this option is disabled, the
permissions described previously aren’t required. You can remove them from the instance profile
for least privilege access to your applications and environments.

Note

Previously the default setting for EnhancedHealthAuthEnabled was false, which
resulted in authorization for the elasticbeanstalk:PutInstanceStatistics

Enhanced health authorization 1188

AWS Elastic Beanstalk Developer Guide

action also being disabled by default. To enable this action for an existing
environment, set the EnhancedHealthAuthEnabled option in the the section called
“aws:elasticbeanstalk:healthreporting:system” namespace to true. You can configure this
option by using an option setting in a configuration file.

Enhanced health events

The enhanced health system generates events when an environment transitions between states.
The following example shows events output by an environment transitioning between Info, OK,
and Severe states.

When transitioning to a worse state, the enhanced health event includes a message indicating the
transition cause.

Not all changes in status at an instance level cause Elastic Beanstalk to emit an event. To prevent
false alarms, Elastic Beanstalk generates a health-related event only if an issue persists across
multiple checks.

Real-time environment-level health information, including status, color, and cause, is available
in the environment overview page of the Elastic Beanstalk console and the EB CLI. By attaching
the EB CLI to your environment and running the eb health command, you can also view real-time
statuses from each of the instances in your environment.

Enhanced health events 1189

AWS Elastic Beanstalk Developer Guide

Enhanced health reporting behavior during updates, deployments, and
scaling

Enabling enhanced health reporting can affect how your environment behaves during
configuration updates and deployments. Elastic Beanstalk won't complete a batch of updates
until all of the instances pass health checks consistently. Also, because enhanced health reporting
applies a higher standard for health and monitors more factors, instances that pass basic health
reporting's ELB health check won't necessarily pass with enhanced health reporting. See the topics
on rolling configuration updates and rolling deployments for details on how health checks affect
the update process.

Enhanced health reporting can also highlight the need to set a proper health check URL for Elastic
Load Balancing. When your environment scales up to meet demand, new instances will start taking
requests as soon as they pass enough ELB health checks. If a health check URL is not configured,
this can be as little as 20 seconds after a new instance is able to accept a TCP connection.

If your application hasn't finished starting up by the time the load balancer declares it healthy
enough to receive traffic, you will see a flood of failed requests, and your environment will start
to fail health checks. A health check URL that hits a path served by your application can prevent
this issue. ELB health checks won't pass until a GET request to the health check URL returns a 200
status code.

Enabling Elastic Beanstalk enhanced health reporting

New environments created with the latest platform versions include the AWS Elastic Beanstalk
health agent, which supports enhanced health reporting. If you create your environment in the
Elastic Beanstalk console or with the EB CLI, enhanced health is enabled by default. You can also
set your health reporting preference in your application's source code using configuration files.

Enhanced health reporting requires an instance profile and service role with the standard set of
permissions. When you create an environment in the Elastic Beanstalk console, Elastic Beanstalk
creates the required roles automatically. See Getting started using Elastic Beanstalk for instructions
on creating your first environment.

Topics

• Enabling enhanced health reporting using the Elastic Beanstalk console

• Enabling enhanced health reporting using the EB CLI

• Enabling enhanced health reporting using a configuration file

Enhanced health reporting behavior during updates, deployments, and scaling 1190

AWS Elastic Beanstalk Developer Guide

Enabling enhanced health reporting using the Elastic Beanstalk console

To enable enhanced health reporting in a running environment using the Elastic Beanstalk
console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Monitoring configuration category, choose Edit.

5. Under Health reporting, for System, choose Enhanced.

Note

The options for enhanced health reporting don't appear if you are using an
unsupported platform or version.

6. To save the changes choose Apply at the bottom of the page.

Enable enhanced health 1191

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

The Elastic Beanstalk console defaults to enhanced health reporting when you create a new
environment with a version 2 (v2) platform version. You can disable enhanced health reporting by
changing the health reporting option during environment creation.

To disable enhanced health reporting when creating an environment using the Elastic
Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. Create an application or select an existing one.

3. Create an environment. On the Create a new environment page, before choosing Create
environment, choose Configure more options.

4. In the Monitoring configuration category, choose Edit.

5. Under Health reporting, for System, choose Basic.

6. Choose Save.

Enabling enhanced health reporting using the EB CLI

When you create a new environment with the eb create command, the EB CLI enables enhanced
health reporting by default and applies the default instance profile and service role.

You can specify a different service role by name by using the --service-role option.

Enable enhanced health 1192

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

If you have an environment running with basic health reporting on a v2 platform version and you
want to switch to enhanced health, follow these steps.

To enable enhanced health on a running environment using the EB CLI

1. Use the eb config command to open the configuration file in the default text editor.

~/project$ eb config

2. Locate the aws:elasticbeanstalk:environment namespace in the settings section.
Ensure that the value of ServiceRole is not null and that it matches the name of your service
role.

 aws:elasticbeanstalk:environment:
 EnvironmentType: LoadBalanced
 ServiceRole: aws-elasticbeanstalk-service-role

3. Under the aws:elasticbeanstalk:healthreporting:system: namespace, change the
value of SystemType to enhanced.

 aws:elasticbeanstalk:healthreporting:system:
 SystemType: enhanced

4. Save the configuration file and close the text editor.

5. The EB CLI starts an environment update to apply your configuration changes. Wait for the
operation to complete or press Ctrl+C to exit safely.

~/project$ eb config
Printing Status:
INFO: Environment update is starting.
INFO: Health reporting type changed to ENHANCED.
INFO: Updating environment no-role-test's configuration settings.

Enabling enhanced health reporting using a configuration file

You can enable enhanced health reporting by including a configuration file in your source bundle.
The following example shows a configuration file that enables enhanced health reporting and
assigns the default service and instance profile to the environment:

Enable enhanced health 1193

AWS Elastic Beanstalk Developer Guide

Example .ebextensions/enhanced-health.config

option_settings:
 aws:elasticbeanstalk:healthreporting:system:
 SystemType: enhanced
 aws:autoscaling:launchconfiguration:
 IamInstanceProfile: aws-elasticbeanstalk-ec2-role
 aws:elasticbeanstalk:environment:
 ServiceRole: aws-elasticbeanstalk-service-role

If you created your own instance profile or service role, replace the highlighted text with the names
of those roles.

Enhanced health monitoring with the environment management
console

When you enable enhanced health reporting in AWS Elastic Beanstalk, you can monitor
environment health in the environment management console.

Topics

• Environment overview

• Environment health page

• Monitoring page

Environment overview

The environment overview displays the health status of the environment and lists events that
provide information about recent changes in health status.

To view the environment overview

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

Health console 1194

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

For detailed information about the current environment's health, open the Health page by
choosing Causes. Alternatively, in the navigation pane, choose Health.

Environment health page

The Health page displays health status, metrics, and causes for the environment and for each
Amazon EC2 instance in the environment.

Note

Elastic Beanstalk displays the Health page only if you have enabled enhanced health
monitoring for the environment.

The following image shows the Health page for a Linux environment.

Health console 1195

AWS Elastic Beanstalk Developer Guide

The following image shows the Health page for a Windows environment. Notice that CPU metrics
are different from those on a Linux environment.

At the top of the page you can see the total number of environment instances, as well as the
number of instances per status. To display only instances that have a particular status, chooseFilter
By, and then select a status.

To reboot or terminate an unhealthy instance, choose Instance Actions, and then choose Reboot
or Terminate.

Health console 1196

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk updates the Health page every 10 seconds. It reports information about
environment and instance health.

For each Amazon EC2 instance in the environment, the page displays the instance's ID and status,
the amount of time since the instance was launched, the ID of the most recent deployment
executed on the instance, the responses and latency of requests that the instance served, and
load and CPU utilization information. The Overall row displays average response and latency
information for the entire environment.

The page displays many details in a very wide table. To hide some of the columns, choose

(Preferences). Select or clear column names, and then choose Confirm.

Choose the Instance ID of any instance to view more information about the instance, including its
Availability Zone and instance type.

Health console 1197

AWS Elastic Beanstalk Developer Guide

Choose the Deployment ID of any instance to view information about the last deployment to the
instance.

Health console 1198

AWS Elastic Beanstalk Developer Guide

Deployment information includes the following:

• Deployment ID—The unique identifier for the deployment. Deployment IDs starts at 1 and
increase by one each time you deploy a new application version or change configuration settings
that affect the software or operating system running on the instances in your environment.

• Version—The version label of the application source code used in the deployment.

• Status—The status of the deployment, which can be In Progress, Deployed, or Failed.

• Time— For in-progress deployments, the time that the deployment started. For completed
deployments, the time that the deployment ended.

If you enable X-Ray integration on your environment and instrument your application with the
AWS X-Ray SDK, the Health page adds links to the AWS X-Ray console in the overview row.

Choose a link to view traces related to the highlighted statistic in the AWS X-Ray console.

Monitoring page

The Monitoring page displays summary statistics and graphs for the custom Amazon CloudWatch
metrics generated by the enhanced health reporting system. See Monitoring environment health in
the AWS management console for instructions on adding graphs and statistics to this page.

Health colors and statuses

Enhanced health reporting represents instance and overall environment health by using four
colors, similar to basic health reporting. Enhanced health reporting also provides seven health
statuses, which are single-word descriptors that provide a better indication of the state of your
environment.

Instance status and environment status

Every time Elastic Beanstalk runs a health check on your environment, enhanced health reporting
checks the health of each instance in your environment by analyzing all of the data available. If any
lower-level check fails, Elastic Beanstalk downgrades the health of the instance.

Health colors and statuses 1199

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk displays the health information for the overall environment (color, status, and
cause) in the environment management console. This information is also available in the EB CLI.
Health status and cause messages for individual instances are updated every 10 seconds and are
available from the EB CLI when you view health status with eb health.

Elastic Beanstalk uses changes in instance health to evaluate environment health, but does
not immediately change environment health status. When an instance fails health checks at
least three times in any one-minute period, Elastic Beanstalk may downgrade the health of the
environment. Depending on the number of instances in the environment and the issue identified,
one unhealthy instance can cause Elastic Beanstalk to display an informational message or to
change the environment's health status from green (OK) to yellow (Warning) or red (Degraded or
Severe).

OK (green)

This status is displayed when:

• An instance is passing health checks and the health agent is not reporting any problems.

• Most instances in the environment are passing health checks and the health agent is not
reporting major issues.

• An instance is passing health checks and is completing requests normally.

Example: Your environment was recently deployed and is taking requests normally. Five percent of
requests are returning 400 series errors. Deployment completed normally on each instance.

Message (instance): Application deployment completed 23 seconds ago and took 26 seconds.

Warning (yellow)

This status is displayed when:

• The health agent is reporting a moderate number of request failures or other issues for an
instance or environment.

• An operation is in progress on an instance and is taking a very long time.

Example: One instance in the environment has a status of Severe.

Message (environment): Impaired services on 1 out of 5 instances.

Health colors and statuses 1200

AWS Elastic Beanstalk Developer Guide

Degraded (red)

This status is displayed when the health agent is reporting a high number of request failures or
other issues for an instance or environment.

Example: environment is in the process of scaling up to 5 instances.

Message (environment): 4 active instances is below Auto Scaling group minimum size 5.

Severe (red)

This status is displayed when the health agent is reporting a very high number of request failures
or other issues for an instance or environment.

Example: Elastic Beanstalk is unable to contact the load balancer to get instance health.

Message (environment): ELB health is failing or not available for all instances. None of the instances
are sending data. Unable to assume role "arn:aws:iam::123456789012:role/aws-elasticbeanstalk-
service-role". Verify that the role exists and is configured correctly.

Message (Instances): Instance ELB health has not been available for 37 minutes. No data. Last seen
37 minutes ago.

Info (green)

This status is displayed when:

• An operation is in progress on an instance.

• An operation is in progress on several instances in an environment.

Example: A new application version is being deployed to running instances.

Message (environment): Command is executing on 3 out of 5 instances.

Message (instance): Performing application deployment (running for 3 seconds).

Pending (grey)

This status is displayed when an operation is in progress on an instance within the command
timeout.

Health colors and statuses 1201

AWS Elastic Beanstalk Developer Guide

Example: You have recently created the environment and instances are being bootstrapped.

Message: Performing initialization (running for 12 seconds).

Unknown (grey)

This status is displayed when Elastic Beanstalk and the health agent are reporting an insufficient
amount of data on an instance.

Example: No data is being received.

Suspended (grey)

This status is displayed when Elastic Beanstalk stopped monitoring the environment's health. The
environment might not work correctly. Some severe health conditions, if they last a long time,
cause Elastic Beanstalk to transition the environment to the Suspended status.

Example: Elastic Beanstalk can't access the environment's service role.

Example: The Auto Scaling group that Elastic Beanstalk created for the environment has been
deleted.

Message: Environment health has transitioned from OK to Severe. There are no instances. Auto
Scaling group desired capacity is set to 1.

Instance metrics

Instance metrics provide information about the health of instances in your environment. The
Elastic Beanstalk health agent runs on each instance. It gathers and relays metrics about instances
to Elastic Beanstalk, which analyzes the metrics to determine the health of the instances in your
environments.

The on-instance Elastic Beanstalk health agent gathers metrics about instances from web servers
and the operating system. To get web server information on Linux-based platforms, Elastic
Beanstalk reads and parses web server logs. On the Windows Server platform, Elastic Beanstalk
receives this information directly from the IIS web server. Web servers provide information about
incoming HTTP requests: how many requests came in, how many resulted in errors, and how long
they took to resolve. The operating system provides snapshot information about the state of the
instances' resources: the CPU load and distribution of time spent on each process type.

Instance metrics 1202

AWS Elastic Beanstalk Developer Guide

The health agent gathers web server and operating system metrics and relays them to Elastic
Beanstalk every 10 seconds. Elastic Beanstalk analyzes the data and uses the results to update the
health status for each instance and the environment.

Topics

• Web server metrics

• Operating system metrics

• Web server metrics capture in IIS on Windows server

Web server metrics

On Linux-based platforms, the Elastic Beanstalk health agent reads web server metrics from
logs generated by the web container or server that processes requests on each instance in your
environment. Elastic Beanstalk platforms are configured to generate two logs: one in human-
readable format and one in machine-readable format. The health agent relays machine-readable
logs to Elastic Beanstalk every 10 seconds.

For more information on the log format used by Elastic Beanstalk, see Enhanced health log format.

On the Windows Server platform, Elastic Beanstalk adds a module to the IIS web server's request
pipeline and captures metrics about HTTP request times and response codes. The module
sends these metrics to the on-instance health agent using a high-performance interprocess
communication (IPC) channel. For implementation details, see Web server metrics capture in IIS on
Windows server.

Reported Web Server Metrics

RequestCount

Number of requests handled by the web server per second over the last 10 seconds. Shown as
an average r/sec (requests per second) in the EB CLI and Environment health page.

Status2xx, Status3xx, Status4xx, Status5xx

Number of requests that resulted in each type of status code over the last 10 seconds. For
example, successful requests return a 200 OK, redirects are a 301, and a 404 is returned if the
URL entered doesn't match any resources in the application.

The EB CLI and Environment health page show these metrics both as a raw number of requests
for instances, and as a percentage of overall requests for environments.

Instance metrics 1203

AWS Elastic Beanstalk Developer Guide

p99.9, p99, p95, p90, p85, p75, p50, p10

Average latency for the slowest x percent of requests over the last 10 seconds, where x is the
difference between the number and 100. For example, p99 1.403 indicates the slowest 1% of
requests over the last 10 seconds had an average latency of 1.403 seconds.

Operating system metrics

The Elastic Beanstalk health agent reports the following operating system metrics. Elastic
Beanstalk uses these metrics to identify instances that are under sustained heavy load. The metrics
differ by operating system.

Reported operating system metrics—Linux

Running

The amount of time that has passed since the instance was launched.

Load 1, Load 5

Load average in the last one-minute and five-minute periods. Shown as a decimal value
indicating the average number of processes running during that time. If the number shown is
higher than the number of vCPUs (threads) available, then the remainder is the average number
of processes that were waiting.

For example, if your instance type has four vCPUs, and the load is 4.5, there was an average
of .5 processes in wait during that time period, equivalent to one process waiting 50 percent of
the time.

User %, Nice %, System %, Idle %, I/O Wait %

Percentage of time that the CPU has spent in each state over the last 10 seconds.

Reported operating system metrics—Windows

Running

The amount of time that has passed since the instance was launched.

% User Time, % Privileged Time, % Idle Time

Percentage of time that the CPU has spent in each state over the last 10 seconds.

Instance metrics 1204

AWS Elastic Beanstalk Developer Guide

Web server metrics capture in IIS on Windows server

On the Windows Server platform, Elastic Beanstalk adds a module to the IIS web server's request
pipeline and captures metrics about HTTP request times and response codes. The module
sends these metrics to the on-instance health agent using a high-performance interprocess
communication (IPC) channel. The health agent aggregates these metrics, combines them with
operating system metrics, and sends them to the Elastic Beanstalk service.

Implementation details

To capture metrics from IIS, Elastic Beanstalk implements a managed IHttpModule, and
subscribes to the BeginRequest and EndRequest events. This enables the module to report
HTTP request latency and response codes for all web requests handled by IIS. To add the module to
the IIS request pipeline, Elastic Beanstalk registers the module in the <modules> section of the IIS
configuration file, %windir%\System32\inetsrv\config\applicationHost.config.

The Elastic Beanstalk module in IIS sends the captured web request metrics to the on-instance
health agent, which is a Windows service named HealthD. To send this data, the module uses
NetNamedPipeBinding, which provides a secure and reliable binding that is optimized for on-
machine communication.

Configuring enhanced health rules for an environment

AWS Elastic Beanstalk enhanced health reporting relies on a set of rules to determine the health
of your environment. Some of these rules might not be appropriate for your particular application.
The following are some common examples:

• You use client-side test tools. In this case, frequent HTTP client (4xx) errors are expected.

• You use AWS WAF in conjunction with your environment's Application Load Balancer to block
unwanted incoming traffic. In this case, Application Load Balancer returns HTTP 403 for each
rejected incoming message.

By default, Elastic Beanstalk includes all application HTTP 4xx errors when determining the
environment's health. It changes your environment health status from OK to Warning, Degraded,
or Severe, depending on the error rate. To correctly handle cases such as the examples we
mentioned, Elastic Beanstalk enables you to configure some enhanced health rules. You can choose
to ignore application HTTP 4xx errors on the environment's instances, or to ignore HTTP 4xx errors

Enhanced health rules 1205

https://msdn.microsoft.com/en-us/library/system.web.ihttpmodule%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.web.httpapplication.beginrequest(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.web.httpapplication.endrequest(v=vs.110).aspx
https://docs.microsoft.com/en-us/iis/configuration/system.webserver/modules/
https://msdn.microsoft.com/en-us/library/system.servicemodel.netnamedpipebinding(v=vs.110).aspx
https://docs.aws.amazon.com/waf/latest/developerguide/

AWS Elastic Beanstalk Developer Guide

returned by the environment's load balancer. This topic describes how to make these configuration
changes.

Note

Currently, these are the only available enhanced heath rule customizations. You can't
configure enhanced health to ignore other HTTP errors in addition to 4xx.

Configuring enhanced health rules using the Elastic Beanstalk console

You can use the Elastic Beanstalk console to configure enhanced health rules in your environment.

To configure HTTP 4xx status code checking using the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Monitoring configuration category, choose Edit.

5. Under Health monitoring rule customization, enable or disable the desired Ignore options.

6. To save the changes choose Apply at the bottom of the page.

Enhanced health rules 1206

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

Configuring enhanced health rules using the EB CLI

You can use the EB CLI to configure enhanced health rules by saving your environment's
configuration locally, adding an entry that configures enhanced health rules, and then uploading
the configuration to Elastic Beanstalk. You can apply the saved configuration to an environment
during or after creation.

To configure HTTP 4xx status code checking using the EB CLI and saved configurations

1. Initialize your project folder with eb init.

2. Create an environment by running the eb create command.

3. Save a configuration template locally by running the eb config save command. The following
example uses the --cfg option to specify the name of the configuration.

$ eb config save --cfg 01-base-state
Configuration saved at: ~/project/.elasticbeanstalk/saved_configs/01-base-
state.cfg.yml

4. Open the saved configuration file in a text editor.

5. Under OptionSettings > aws:elasticbeanstalk:healthreporting:system:,
add a ConfigDocument key to list each enhanced health rule to configure. The following
ConfigDocument disables the checking of application HTTP 4xx status codes, while keeping
the checking of load balancer HTTP 4xx code enabled.

OptionSettings:
 ...
 aws:elasticbeanstalk:healthreporting:system:
 ConfigDocument:
 Rules:
 Environment:
 Application:
 ApplicationRequests4xx:
 Enabled: false
 ELB:
 ELBRequests4xx:
 Enabled: true
 Version: 1
 SystemType: enhanced
...

Enhanced health rules 1207

AWS Elastic Beanstalk Developer Guide

Note

You can combine Rules and CloudWatchMetrics in the same ConfigDocument
option setting. CloudWatchMetrics are described in Publishing Amazon CloudWatch
custom metrics for an environment.
If you previously enabled CloudWatchMetrics, the configuration file that you
retrieve using the eb config save command already has a ConfigDocument key with
a CloudWatchMetrics section. Do not delete it—add a Rules section into the same
ConfigDocument option value.

6. Save the configuration file and close the text editor. In this example, the updated configuration
file is saved with a name (02-cloudwatch-enabled.cfg.yml) that's different from the
downloaded configuration file. This creates a separate saved configuration when the file
is uploaded. You can use the same name as the downloaded file to overwrite the existing
configuration without creating a new one.

7. Use the eb config put command to upload the updated configuration file to Elastic Beanstalk.

$ eb config put 02-cloudwatch-enabled

When using the eb config get and put commands with saved configurations, don't include
the file name extension.

8. Apply the saved configuration to your running environment.

$ eb config --cfg 02-cloudwatch-enabled

The --cfg option specifies a named configuration file that is applied to the environment. You
can save the configuration file locally or in Elastic Beanstalk. If a configuration file with the
specified name exists in both locations, the EB CLI uses the local file.

Configuring enhanced health rules using a config document

The configuration (config) document for enhanced health rules is a JSON document that lists the
rules to configure.

The following example shows a config document that disables the checking of application HTTP
4xx status codes and enables the checking of load balancer HTTP 4xx status codes.

Enhanced health rules 1208

AWS Elastic Beanstalk Developer Guide

{
 "Rules": {
 "Environment": {
 "Application": {
 "ApplicationRequests4xx": {
 "Enabled": false
 }
 },
 "ELB": {
 "ELBRequests4xx": {
 "Enabled": true
 }
 }
 }
 },
 "Version": 1
}

For the AWS CLI, you pass the document as a value for the Value key in an option settings
argument, which itself is a JSON object. In this case, you must escape quotation marks in the
embedded document. The following command checks if the configuration settings are valid.

$ aws elasticbeanstalk validate-configuration-settings --application-name my-app --
environment-name my-env --option-settings '[
 {
 "Namespace": "aws:elasticbeanstalk:healthreporting:system",
 "OptionName": "ConfigDocument",
 "Value": "{\"Rules\": { \"Environment\": { \"Application\":
 { \"ApplicationRequests4xx\": { \"Enabled\": false } }, \"ELB\": { \"ELBRequests4xx\":
 {\"Enabled\": true } } } }, \"Version\": 1 }"
 }
]'

For an .ebextensions configuration file in YAML, you can provide the JSON document as is.

 option_settings:
 - namespace: aws:elasticbeanstalk:healthreporting:system
 option_name: ConfigDocument
 value: {
 "Rules": {
 "Environment": {

Enhanced health rules 1209

AWS Elastic Beanstalk Developer Guide

 "Application": {
 "ApplicationRequests4xx": {
 "Enabled": false
 }
 },
 "ELB": {
 "ELBRequests4xx": {
 "Enabled": true
 }
 }
 }
 },
 "Version": 1
}

Publishing Amazon CloudWatch custom metrics for an environment

You can publish the data gathered by AWS Elastic Beanstalk enhanced health reporting to Amazon
CloudWatch as custom metrics. Publishing metrics to CloudWatch lets you monitor changes in
application performance over time and identify potential issues by tracking how resource usage
and request latency scale with load.

By publishing metrics to CloudWatch, you also make them available for use with monitoring graphs
and alarms. One free metric, EnvironmentHealth, is enabled automatically when you use enhanced
health reporting. Custom metrics other than EnvironmentHealth incur standard CloudWatch
charges.

To publish CloudWatch custom metrics for an environment, you must first enable enhanced health
reporting on the environment. See Enabling Elastic Beanstalk enhanced health reporting for
instructions.

Topics

• Enhanced health reporting metrics

• Configuring CloudWatch metrics using the Elastic Beanstalk console

• Configuring CloudWatch custom metrics using the EB CLI

• Providing custom metric config documents

CloudWatch 1210

https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/

AWS Elastic Beanstalk Developer Guide

Enhanced health reporting metrics

When you enable enhanced health reporting in your environment, the enhanced health reporting
system automatically publishes one CloudWatch custom metric, EnvironmentHealth. To publish
additional metrics to CloudWatch, configure your environment with those metrics by using the
Elastic Beanstalk console, EB CLI, or .ebextensions.

You can publish the following enhanced health metrics from your environment to CloudWatch.

Available metrics—all platforms

EnvironmentHealth

Environment only. This is the only CloudWatch metric that the enhanced health reporting
system publishes, unless you configure additional metrics. Environment health is represented by
one of seven statuses. In the CloudWatch console, these statuses map to the following values:

• 0 – OK

• 1 – Info

• 5 – Unknown

• 10 – No data

• 15 – Warning

• 20 – Degraded

• 25 – Severe

InstancesSevere, InstancesDegraded, InstancesWarning, InstancesInfo,
InstancesOk, InstancesPending, InstancesUnknown, InstancesNoData

Environment only. These metrics indicate the number of instances in the environment with each
health status. InstancesNoData indicates the number of instances for which no data is being
received.

ApplicationRequestsTotal, ApplicationRequests5xx, ApplicationRequests4xx,
ApplicationRequests3xx, ApplicationRequests2xx

Instance and environment. Indicates the total number of requests completed by the instance or
environment, and the number of requests that completed with each status code category.

CloudWatch 1211

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/publishingMetrics.html

AWS Elastic Beanstalk Developer Guide

ApplicationLatencyP10, ApplicationLatencyP50, ApplicationLatencyP75,
ApplicationLatencyP85, ApplicationLatencyP90, ApplicationLatencyP95,
ApplicationLatencyP99, ApplicationLatencyP99.9

Instance and environment. Indicates the average amount of time, in seconds, it takes to
complete the fastest x percent of requests.

InstanceHealth

Instance only. Indicates the current health status of the instance. Instance health is represented
by one of seven statuses. In the CloudWatch console, these statuses map to the following
values:

• 0 – OK

• 1 – Info

• 5 – Unknown

• 10 – No data

• 15 – Warning

• 20 – Degraded

• 25 – Severe

Available metrics—Linux

CPUIrq, CPUIdle, CPUUser, CPUSystem, CPUSoftirq, CPUIowait, CPUNice

Instance only. Indicates the percentage of time that the CPU has spent in each state over the
last minute.

LoadAverage1min

Instance only. The average CPU load of the instance over the last minute.

RootFilesystemUtil

Instance only. Indicates the percentage of disk space that's in use.

CloudWatch 1212

AWS Elastic Beanstalk Developer Guide

Available metrics—Windows

CPUIdle, CPUUser, CPUPriveleged

Instance only. Indicates the percentage of time that the CPU has spent in each state over the
last minute.

Configuring CloudWatch metrics using the Elastic Beanstalk console

You can use the Elastic Beanstalk console to configure your environment to publish enhanced
health reporting metrics to CloudWatch and make them available for use with monitoring graphs
and alarms.

To configure CloudWatch custom metrics in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Monitoring configuration category, choose Edit.

5. Under Health reporting, select the instance and environment metrics to publish to
CloudWatch. To select multiple metrics, press the Ctrl key while choosing.

6. To save the changes choose Apply at the bottom of the page.

Enabling CloudWatch custom metrics adds them to the list of metrics available on the Monitoring
page.

Configuring CloudWatch custom metrics using the EB CLI

You can use the EB CLI to configure custom metrics by saving your environment's configuration
locally, adding an entry that defines the metrics to publish, and then uploading the configuration
to Elastic Beanstalk. You can apply the saved configuration to an environment during or after
creation.

CloudWatch 1213

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

To configure CloudWatch custom metrics with the EB CLI and saved configurations

1. Initialize your project folder with eb init.

2. Create an environment by running the eb create command.

3. Save a configuration template locally by running the eb config save command. The following
example uses the --cfg option to specify the name of the configuration.

$ eb config save --cfg 01-base-state
Configuration saved at: ~/project/.elasticbeanstalk/saved_configs/01-base-
state.cfg.yml

4. Open the saved configuration file in a text editor.

5. Under OptionSettings > aws:elasticbeanstalk:healthreporting:system:,
add a ConfigDocument key to enable each of the CloudWatch metrics you want. For
example, the following ConfigDocument publishes ApplicationRequests5xx
and ApplicationRequests4xx metrics at the environment level, and
ApplicationRequestsTotal metrics at the instance level.

OptionSettings:
 ...
 aws:elasticbeanstalk:healthreporting:system:
 ConfigDocument:
 CloudWatchMetrics:
 Environment:
 ApplicationRequests5xx: 60
 ApplicationRequests4xx: 60
 Instance:
 ApplicationRequestsTotal: 60
 Version: 1
 SystemType: enhanced
...

In the example, 60 indicates the number of seconds between measurements. Currently, this is
the only supported value.

CloudWatch 1214

AWS Elastic Beanstalk Developer Guide

Note

You can combine CloudWatchMetrics and Rules in the same ConfigDocument
option setting. Rules are described in Configuring enhanced health rules for an
environment.
If you previously used Rules to configure enhanced health rules, then the
configuration file that you retrieve using the eb config save command already
has a ConfigDocument key with a Rules section. Do not delete it—add a
CloudWatchMetrics section into the same ConfigDocument option value.

6. Save the configuration file and close the text editor. In this example, the updated configuration
file is saved with a name (02-cloudwatch-enabled.cfg.yml) that is different from the
downloaded configuration file. This creates a separate saved configuration when the file
is uploaded. You can use the same name as the downloaded file to overwrite the existing
configuration without creating a new one.

7. Use the eb config put command to upload the updated configuration file to Elastic Beanstalk.

$ eb config put 02-cloudwatch-enabled

When using the eb config get and put commands with saved configurations, don't include
the file extension.

8. Apply the saved configuration to your running environment.

$ eb config --cfg 02-cloudwatch-enabled

The --cfg option specifies a named configuration file that is applied to the environment. You
can save the configuration file locally or in Elastic Beanstalk. If a configuration file with the
specified name exists in both locations, the EB CLI uses the local file.

Providing custom metric config documents

The configuration (config) document for Amazon CloudWatch custom metrics is a JSON document
that lists the metrics to publish at the environment and instance levels. The following example
shows a config document that enables all custom metrics available on Linux.

CloudWatch 1215

AWS Elastic Beanstalk Developer Guide

{
 "CloudWatchMetrics": {
 "Environment": {
 "ApplicationLatencyP99.9": 60,
 "InstancesSevere": 60,
 "ApplicationLatencyP90": 60,
 "ApplicationLatencyP99": 60,
 "ApplicationLatencyP95": 60,
 "InstancesUnknown": 60,
 "ApplicationLatencyP85": 60,
 "InstancesInfo": 60,
 "ApplicationRequests2xx": 60,
 "InstancesDegraded": 60,
 "InstancesWarning": 60,
 "ApplicationLatencyP50": 60,
 "ApplicationRequestsTotal": 60,
 "InstancesNoData": 60,
 "InstancesPending": 60,
 "ApplicationLatencyP10": 60,
 "ApplicationRequests5xx": 60,
 "ApplicationLatencyP75": 60,
 "InstancesOk": 60,
 "ApplicationRequests3xx": 60,
 "ApplicationRequests4xx": 60
 },
 "Instance": {
 "ApplicationLatencyP99.9": 60,
 "ApplicationLatencyP90": 60,
 "ApplicationLatencyP99": 60,
 "ApplicationLatencyP95": 60,
 "ApplicationLatencyP85": 60,
 "CPUUser": 60,
 "ApplicationRequests2xx": 60,
 "CPUIdle": 60,
 "ApplicationLatencyP50": 60,
 "ApplicationRequestsTotal": 60,
 "RootFilesystemUtil": 60,
 "LoadAverage1min": 60,
 "CPUIrq": 60,
 "CPUNice": 60,
 "CPUIowait": 60,
 "ApplicationLatencyP10": 60,
 "LoadAverage5min": 60,
 "ApplicationRequests5xx": 60,

CloudWatch 1216

AWS Elastic Beanstalk Developer Guide

 "ApplicationLatencyP75": 60,
 "CPUSystem": 60,
 "ApplicationRequests3xx": 60,
 "ApplicationRequests4xx": 60,
 "InstanceHealth": 60,
 "CPUSoftirq": 60
 }
 },
 "Version": 1
}

For the AWS CLI, you pass the document as a value for the Value key in an option settings
argument, which itself is a JSON object. In this case, you must escape quotation marks in the
embedded document.

$ aws elasticbeanstalk validate-configuration-settings --application-name my-app --
environment-name my-env --option-settings '[
 {
 "Namespace": "aws:elasticbeanstalk:healthreporting:system",
 "OptionName": "ConfigDocument",
 "Value": "{\"CloudWatchMetrics\": {\"Environment\":
 {\"ApplicationLatencyP99.9\": 60,\"InstancesSevere\": 60,\"ApplicationLatencyP90\":
 60,\"ApplicationLatencyP99\": 60,\"ApplicationLatencyP95\": 60,\"InstancesUnknown
\": 60,\"ApplicationLatencyP85\": 60,\"InstancesInfo\": 60,\"ApplicationRequests2xx
\": 60,\"InstancesDegraded\": 60,\"InstancesWarning\": 60,\"ApplicationLatencyP50\":
 60,\"ApplicationRequestsTotal\": 60,\"InstancesNoData\": 60,\"InstancesPending
\": 60,\"ApplicationLatencyP10\": 60,\"ApplicationRequests5xx\": 60,
\"ApplicationLatencyP75\": 60,\"InstancesOk\": 60,\"ApplicationRequests3xx\": 60,
\"ApplicationRequests4xx\": 60},\"Instance\": {\"ApplicationLatencyP99.9\": 60,
\"ApplicationLatencyP90\": 60,\"ApplicationLatencyP99\": 60,\"ApplicationLatencyP95\":
 60,\"ApplicationLatencyP85\": 60,\"CPUUser\": 60,\"ApplicationRequests2xx\":
 60,\"CPUIdle\": 60,\"ApplicationLatencyP50\": 60,\"ApplicationRequestsTotal\":
 60,\"RootFilesystemUtil\": 60,\"LoadAverage1min\": 60,\"CPUIrq\": 60,\"CPUNice
\": 60,\"CPUIowait\": 60,\"ApplicationLatencyP10\": 60,\"LoadAverage5min\": 60,
\"ApplicationRequests5xx\": 60,\"ApplicationLatencyP75\": 60,\"CPUSystem\": 60,
\"ApplicationRequests3xx\": 60,\"ApplicationRequests4xx\": 60,\"InstanceHealth\": 60,
\"CPUSoftirq\": 60}},\"Version\": 1}"
 }
]'

For an .ebextensions configuration file in YAML, you can provide the JSON document as is.

CloudWatch 1217

AWS Elastic Beanstalk Developer Guide

 option_settings:
 - namespace: aws:elasticbeanstalk:healthreporting:system
 option_name: ConfigDocument
 value: {
 "CloudWatchMetrics": {
 "Environment": {
 "ApplicationLatencyP99.9": 60,
 "InstancesSevere": 60,
 "ApplicationLatencyP90": 60,
 "ApplicationLatencyP99": 60,
 "ApplicationLatencyP95": 60,
 "InstancesUnknown": 60,
 "ApplicationLatencyP85": 60,
 "InstancesInfo": 60,
 "ApplicationRequests2xx": 60,
 "InstancesDegraded": 60,
 "InstancesWarning": 60,
 "ApplicationLatencyP50": 60,
 "ApplicationRequestsTotal": 60,
 "InstancesNoData": 60,
 "InstancesPending": 60,
 "ApplicationLatencyP10": 60,
 "ApplicationRequests5xx": 60,
 "ApplicationLatencyP75": 60,
 "InstancesOk": 60,
 "ApplicationRequests3xx": 60,
 "ApplicationRequests4xx": 60
 },
 "Instance": {
 "ApplicationLatencyP99.9": 60,
 "ApplicationLatencyP90": 60,
 "ApplicationLatencyP99": 60,
 "ApplicationLatencyP95": 60,
 "ApplicationLatencyP85": 60,
 "CPUUser": 60,
 "ApplicationRequests2xx": 60,
 "CPUIdle": 60,
 "ApplicationLatencyP50": 60,
 "ApplicationRequestsTotal": 60,
 "RootFilesystemUtil": 60,
 "LoadAverage1min": 60,
 "CPUIrq": 60,
 "CPUNice": 60,

CloudWatch 1218

AWS Elastic Beanstalk Developer Guide

 "CPUIowait": 60,
 "ApplicationLatencyP10": 60,
 "LoadAverage5min": 60,
 "ApplicationRequests5xx": 60,
 "ApplicationLatencyP75": 60,
 "CPUSystem": 60,
 "ApplicationRequests3xx": 60,
 "ApplicationRequests4xx": 60,
 "InstanceHealth": 60,
 "CPUSoftirq": 60
 }
 },
 "Version": 1
}

Using enhanced health reporting with the Elastic Beanstalk API

Because AWS Elastic Beanstalk enhanced health reporting has role and solution stack
requirements, you must update scripts and code that you used prior to the release of enhanced
health reporting before you can use it. To maintain backward compatibility, enhanced health
reporting is not enabled by default when you create an environment using the Elastic Beanstalk
API.

You configure enhanced health reporting by setting the service role, the instance profile, and
Amazon CloudWatch configuration options for your environment. You can do this in three ways: by
setting the configuration options in the .ebextensions folder, with saved configurations, or by
configuring them directly in the create-environment call's option-settings parameter.

To use the API, SDKs, or AWS command line interface (CLI) to create an environment that supports
enhanced health, you must:

• Create a service role and instance profile with the appropriate permissions

• Create a new environment with a new platform version

• Set the health system type, instance profile, and service role configuration options

Use the following configuration options in the
aws:elasticbeanstalk:healthreporting:system,
aws:autoscaling:launchconfiguration, and aws:elasticbeanstalk:environment
namespaces to configure your environment for enhanced health reporting.

API users 1219

AWS Elastic Beanstalk Developer Guide

Enhanced health configuration options

SystemType

Namespace: aws:elasticbeanstalk:healthreporting:system

To enable enhanced health reporting, set to enhanced.

IamInstanceProfile

Namespace: aws:autoscaling:launchconfiguration

Set to the name of an instance profile configured for use with Elastic Beanstalk.

ServiceRole

Namespace: aws:elasticbeanstalk:environment

Set to the name of a service role configured for use with Elastic Beanstalk.

ConfigDocument (optional)

Namespace: aws:elasticbeanstalk:healthreporting:system

A JSON document that defines the and instance and environment metrics to publish to
CloudWatch. For example:

{
 "CloudWatchMetrics":
 {
 "Environment":
 {
 "ApplicationLatencyP99.9":60,
 "InstancesSevere":60
 }
 "Instance":
 {
 "ApplicationLatencyP85":60,
 "CPUUser": 60
 }
 }
 "Version":1
}

API users 1220

AWS Elastic Beanstalk Developer Guide

Note

Config documents may require special formatting, such as escaping quotes, depending on
how you provide them to Elastic Beanstalk. See Providing custom metric config documents
for examples.

Enhanced health log format

AWS Elastic Beanstalk platforms use a custom web server log format to efficiently relay
information about HTTP requests to the enhanced health reporting system. The system analyzes
the logs, identifies issues, and sets the instance and environment health accordingly. If you disable
the web server proxy on your environment and serve requests directly from the web container, you
can still make full use of enhanced health reporting by configuring your server to output logs in
the location and format that the Elastic Beanstalk health agent uses.

Note

The information on this page is relevant only to Linux-based platforms. On the Windows
Server platform, Elastic Beanstalk receives information about HTTP requests directly from
the IIS web server. For details, see Web server metrics capture in IIS on Windows server.

Web server log configuration

Elastic Beanstalk platforms are configured to output two logs with information about HTTP
requests. The first is in verbose format and provides detailed information about the request,
including the requester's user agent information and a human-readable timestamp.

/var/log/nginx/access.log

The following example is from an nginx proxy running on a Ruby web server environment, but the
format is similar for Apache.

172.31.24.3 - - [23/Jul/2015:00:21:20 +0000] "GET / HTTP/1.1" 200 11 "-" "curl/7.22.0
 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23
 librtmp/2.3" "177.72.242.17"

Enhanced health log format 1221

AWS Elastic Beanstalk Developer Guide

172.31.24.3 - - [23/Jul/2015:00:21:21 +0000] "GET / HTTP/1.1" 200 11 "-" "curl/7.22.0
 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23
 librtmp/2.3" "177.72.242.17"
172.31.24.3 - - [23/Jul/2015:00:21:22 +0000] "GET / HTTP/1.1" 200 11 "-" "curl/7.22.0
 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23
 librtmp/2.3" "177.72.242.17"
172.31.24.3 - - [23/Jul/2015:00:21:22 +0000] "GET / HTTP/1.1" 200 11 "-" "curl/7.22.0
 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23
 librtmp/2.3" "177.72.242.17"
172.31.24.3 - - [23/Jul/2015:00:21:22 +0000] "GET / HTTP/1.1" 200 11 "-" "curl/7.22.0
 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23
 librtmp/2.3" "177.72.242.17"

The second log is in terse format. It includes information relevant only to enhanced health
reporting. This log is output to a subfolder named healthd and rotates hourly. Old logs are
deleted immediately after rotating out.

/var/log/nginx/healthd/application.log.2015-07-23-00

The following example shows a log in the machine-readable format.

1437609879.311"/"200"0.083"0.083"177.72.242.17
1437609879.874"/"200"0.347"0.347"177.72.242.17
1437609880.006"/bad/path"404"0.001"0.001"177.72.242.17
1437609880.058"/"200"0.530"0.530"177.72.242.17
1437609880.928"/bad/path"404"0.001"0.001"177.72.242.17

The enhanced health log format includes the following information:

• The time of the request, in Unix time

• The path of the request

• The HTTP status code for the result

• The request time

• The upstream time

• The X-Forwarded-For HTTP header

For nginx proxies, times are printed in floating-point seconds, with three decimal places. For
Apache, whole microseconds are used.

Enhanced health log format 1222

AWS Elastic Beanstalk Developer Guide

Note

If you see a warning similar to the following in a log file, where DATE-TIME is a date and
time, and you are using a custom proxy, such as in a multi-container Docker environment,
you must use an .ebextension to configure your environment so that healthd can read
your log files:

W, [DATE-TIME #1922] WARN -- : log file "/var/log/nginx/healthd/
application.log.DATE-TIME" does not exist

You can start with the .ebextension in the Multicontainer Docker sample.

/etc/nginx/conf.d/webapp_healthd.conf

The following example shows the log configuration for nginx with the healthd log format
highlighted.

upstream my_app {
 server unix:///var/run/puma/my_app.sock;
}

log_format healthd '$msec"$uri"'
 '$status"$request_time"$upstream_response_time"'
 '$http_x_forwarded_for';

server {
 listen 80;
 server_name _ localhost; # need to listen to localhost for worker tier

 if ($time_iso8601 ~ "^(\d{4})-(\d{2})-(\d{2})T(\d{2})") {
 set $year $1;
 set $month $2;
 set $day $3;
 set $hour $4;
 }

 access_log /var/log/nginx/access.log main;
 access_log /var/log/nginx/healthd/application.log.$year-$month-$day-$hour healthd;

 location / {

Enhanced health log format 1223

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/samples/docker-multicontainer-v2.zip

AWS Elastic Beanstalk Developer Guide

 proxy_pass http://my_app; # match the name of upstream directive which is defined
 above
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }

 location /assets {
 alias /var/app/current/public/assets;
 gzip_static on;
 gzip on;
 expires max;
 add_header Cache-Control public;
 }

 location /public {
 alias /var/app/current/public;
 gzip_static on;
 gzip on;
 expires max;
 add_header Cache-Control public;
 }
}

/etc/httpd/conf.d/healthd.conf

The following example shows the log configuration for Apache.

LogFormat "%{%s}t\"%U\"%s\"%D\"%D\"%{X-Forwarded-For}i" healthd
CustomLog "|/usr/sbin/rotatelogs /var/log/httpd/healthd/application.log.%Y-%m-%d-%H
 3600" healthd

Generating logs for enhanced health reporting

To provide logs to the health agent, you must do the following:

• Output logs in the correct format, as shown in the previous section

• Output logs to /var/log/nginx/healthd/

• Name logs using the following format: application.log.$year-$month-$day-$hour

• Rotate logs once per hour

• Do not truncate logs

Enhanced health log format 1224

AWS Elastic Beanstalk Developer Guide

Notifications and troubleshooting

This page lists example cause messages for common issues and links to more information. Cause
messages appear in the environment overview page of the Elastic Beanstalk console and are
recorded in events when health issues persist across several checks.

Deployments

Elastic Beanstalk monitors your environment for consistency following deployments. If a rolling
deployment fails, the version of your application running on the instances in your environment
may vary. This can occur if a deployment succeeds on one or more batches but fails prior to all
batches completing.

Incorrect application version found on 2 out of 5 instances. Expected version "v1" (deployment 1).

Incorrect application version on environment instances. Expected version "v1" (deployment 1).

The expected application version is not running on some or all instances in an environment.

Incorrect application version "v2" (deployment 2). Expected version "v1" (deployment 1).

The application deployed to an instance differs from the expected version. If a deployment fails,
the expected version is reset to the version from the most recent successful deployment. In the
above example, the first deployment (version "v1") succeeded, but the second deployment (version
"v2") failed. Any instances running "v2" are considered unhealthy.

To solve this issue, start another deployment. You can redeploy a previous version that you know
works, or configure your environment to ignore health checks during deployment and redeploy the
new version to force the deployment to complete.

You can also identify and terminate the instances that are running the wrong application version.
Elastic Beanstalk will launch instances with the correct version to replace any instances that you
terminate. Use the EB CLI health command to identify instances that are running the wrong
application version.

Application server

15% of requests are erroring with HTTP 4xx

20% of the requests to the ELB are erroring with HTTP 4xx.

Notifications and troubleshooting 1225

AWS Elastic Beanstalk Developer Guide

A high percentage of HTTP requests to an instance or environment are failing with 4xx errors.

A 400 series status code indicates that the user made a bad request, such as requesting a page that
doesn't exist (404 File Not Found) or that the user doesn't have access to (403 Forbidden). A low
number of 404s is not unusual but a large number could mean that there are internal or external
links to unavailable pages. These issues can be resolved by fixing bad internal links and adding
redirects for bad external links.

5% of the requests are failing with HTTP 5xx

3% of the requests to the ELB are failing with HTTP 5xx.

A high percentage of HTTP requests to an instance or environment are failing with 500 series
status codes.

A 500 series status code indicates that the application server encountered an internal error. These
issues indicate that there is an error in your application code and should be identified and fixed
quickly.

95% of CPU is in use

On an instance, the health agent is reporting an extremely high percentage of CPU usage and sets
the instance health to Warning or Degraded.

Scale your environment to take load off of instances.

Worker instance

20 messages waiting in the queue (25 seconds ago)

Requests are being added to your worker environment's queue faster than they can be processed.
Scale your environment to increase capacity.

5 messages in Dead Letter Queue (15 seconds ago)

Worker requests are failing repeatedly and being added to the the section called “Dead-letter
queues”. Check the requests in the dead-letter queue to see why they are failing.

Other resources

4 active instances is below Auto Scaling group minimum size 5

Notifications and troubleshooting 1226

AWS Elastic Beanstalk Developer Guide

The number of instances running in your environment is fewer than the minimum configured for
the Auto Scaling group.

Auto Scaling group (groupname) notifications have been deleted or modified

The notifications configured for your Auto Scaling group have been modified outside of Elastic
Beanstalk.

Manage alarms

You can create alarms for metrics that you are monitoring by using the Elastic Beanstalk console.
Alarms help you monitor changes to your AWS Elastic Beanstalk environment so that you can easily
identify and mitigate problems before they occur. For example, you can set an alarm that notifies
you when CPU utilization in an environment exceeds a certain threshold, ensuring that you are
notified before a potential problem occurs. For more information, see Using Elastic Beanstalk with
Amazon CloudWatch.

Note

Elastic Beanstalk uses CloudWatch for monitoring and alarms, meaning CloudWatch costs
are applied to your AWS account for any alarms that you use.

For more information about monitoring specific metrics, see Basic health reporting.

To check the state of your alarms

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Alarms.

Manage alarms 1227

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

The page displays a list of existing alarms. If any alarms are in the alarm state, they are flagged
with

(warning).

4. To filter alarms, choose the drop-down menu, and then select a filter.

5. To edit or delete an alarm, choose

(edit) or

(delete), respectively.

To create an alarm

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

Manage alarms 1228

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

3. In the navigation pane, choose Monitoring.

4. Locate the metric for which you want to create an alarm, and then choose

(alarm). The Add alarm page is displayed.

5. Enter details about the alarm:

• Name: A name for this alarm.

• Description (optional): A short description of what this alarm is.

• Period: The time interval between readings.

Manage alarms 1229

AWS Elastic Beanstalk Developer Guide

• Threshold: Describes the behavior and value that the metric must exceed in order to trigger
an alarm.

• Change state after: The amount a time after a threshold has been exceed that triggers a
change in state of the alarm.

• Notify: The Amazon SNS topic that is notified when an alarm changes state.

• Notify when state changes to:

• OK: The metric is within the defined threshold.

• Alarm: The metric exceeded the defined threshold.

• Insufficient data: The alarm has just started, the metric is not available, or not enough
data is available for the metric to determine the alarm state.

6. Choose Add. The environment status changes to gray while the environment updates. You can
view the alarm that you created by choosing Alarms in the navigation pane.

Viewing an Elastic Beanstalk environment's change history

You can use the AWS Management Console to view a history of configuration changes that have
been made to your Elastic Beanstalk environments. Elastic Beanstalk fetches your change history
from events recorded in AWS CloudTrail and displays them in a list that you can easily navigate and
filter.

The Change History panel displays the following information for changes made to your
environments:

• The date and time when a change was made

• The IAM user that was responsible for a change made

• The source tool (either Elastic Beanstalk command line interface (EB CLI) or console) that was
used to make the change

• The configuration parameter and new values that were set

Any sensitive data that is part of the change, such as the names of database users affected by the
change, aren't displayed in the panel.

To view change history

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

View change history 1230

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Change history.

The Change History page shows a list of configuration changes that were made to your Elastic
Beanstalk environments. You can page through the list by choosing < (previous) or > (next),
or by choosing a specific page number. Under the Configuration changes column, select the
arrow icon to toggle between expanding and collapsing the list of changes under the Changes
made heading. Use the search bar to filter your results from the change history list. You can
enter any string to narrow down the list of changes that are displayed.

Note the following about filtering the displayed results:

• The search filter is not case sensitive.

• You can filter displayed changes based on information under the Configuration changes column,
even when it is not visible due to being collapsed inside Changes made.

• You can only filter the results displayed. However, the filter remains in place even if you select to
go to another page to display more results. Your filtered results also append to the result set of
the next page.

The following examples demonstrate how the data shown on the earlier screen can be filtered:

• Enter GettingStartedApp-env in the search box to narrow down the results to only include
the changes that were made to the environment named GettingStartedApp-env.

View change history 1231

AWS Elastic Beanstalk Developer Guide

• Enter example3 in the search box to narrow down the results to only include changes that were
made by IAM users whose username contains the string example3.

• Enter 2020-10 in the search box to narrow down the results to only include changes that were
made during the month of October 2020. Change the search value to 2020-10-16 to filter
further the displayed results to only include changes that were made on the day of October 16,
2020.

• Enter proxy:staticfiles in the search box to narrow down the results
to only include the changes that were made to the namespace named
aws:elasticbeanstalk:environment:proxy:staticfiles. The rows that are displayed are the result of
the filter. This is true even for results that are collapsed under Changes made.

Viewing an Elastic Beanstalk environment's event stream

You can use the AWS Management Console to access events and notifications associated with your
application.

To view events

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Events.

View events 1232

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

The Events page shows a list of all events that have been recorded for the environment. You
can page through the list choosing < (previous), > (next), or page numbers. You can filter the
type of events shown by using the Severity drop-down list.

The EB CLI and AWS CLI both provide commands for retrieving events. If you are managing your
environment using the EB CLI, use eb events to print a list of events. This command also has a --
follow option that continues to show new events until you press Ctrl+C to stop output.

To pull events using the AWS CLI, use the describe-events command and specify the
environment by name or ID:

$ aws elasticbeanstalk describe-events --environment-id e-gbjzqccra3
{
 "Events": [
 {
 "ApplicationName": "elastic-beanstalk-example",
 "EnvironmentName": "elasticBeanstalkExa-env",

View events 1233

https://aws.amazon.com/cli/

AWS Elastic Beanstalk Developer Guide

 "Severity": "INFO",
 "RequestId": "a4c7bfd6-2043-11e5-91e2-9114455c358a",
 "Message": "Environment update completed successfully.",
 "EventDate": "2015-07-01T22:52:12.639Z"
 },
...

For more information on the command line tools, see Tools.

Listing and connecting to server instances

You can view a list of Amazon EC2 instances running your AWS Elastic Beanstalk application
environment through the Elastic Beanstalk console. You can connect to the instances using any
SSH client. You can connect to the instances running Windows using Remote Desktop.

Some notes about specific development environments:

• For more information about listing and connecting to server instances using the AWS Toolkit for
Eclipse, see Listing and connecting to server instances.

• For more information about listing and connecting to server instances using the AWS Toolkit for
Visual Studio, see Listing and connecting to server instances.

Important

Before you can access your Elastic Beanstalk–provisioned Amazon EC2 instances, you must
create an Amazon EC2 key pair and configure your Elastic Beanstalk–provisioned Amazon
EC2instances to use the Amazon EC2 key pair. You can set up your Amazon EC2 key pairs
using the AWS Management Console. For instructions on creating a key pair for Amazon
EC2, see the Amazon EC2 Getting Started Guide. For more information on how to configure
your Amazon EC2 instances to use an Amazon EC2 key pair, see EC2 key pair.
By default, Elastic Beanstalk does not enable remote connections to EC2 instances in a
Windows container except for those in legacy Windows containers. (Elastic Beanstalk
configures EC2 instances in legacy Windows containers to use port 3389 for RDP
connections.) You can enable remote connections to your EC2 instances running Windows
by adding a rule to a security group that authorizes inbound traffic to the instances. We
strongly recommend that you remove the rule when you end your remote connection. You
can add the rule again the next time you need to log in remotely. For more information,

Monitor instances 1234

https://console.aws.amazon.com/

AWS Elastic Beanstalk Developer Guide

see Adding a Rule for Inbound RDP Traffic to a Windows Instance and Connect to Your
Windows Instance in the Amazon Elastic Compute Cloud User Guide for Microsoft Windows.

To view and connect to Amazon EC2 instances for an environment

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane of the console, choose Load Balancers.

3. Load balancers created by Elastic Beanstalk have awseb in the name. Find the load balancer
for your environment and click it.

4. Choose the Instances tab in the bottom pane of the console.

Monitor instances 1235

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/authorizing-access-to-an-instance.html#authorizing-access-to-an-instance-rdp
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html#connecting_to_windows_instance
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html#connecting_to_windows_instance
https://console.aws.amazon.com/ec2/

AWS Elastic Beanstalk Developer Guide

A list of the instances that the load balancer for your Elastic Beanstalk environment uses is
displayed. Make a note of an instance ID that you want to connect to.

5. In the navigation pane of the Amazon EC2 console, choose Instances, and find your instance ID
in the list.

6. Right-click the instance ID for the Amazon EC2 instance running in your environment's load
balancer, and then select Connect from the context menu.

7. Make a note of the instance's public DNS address on the Description tab.

8. Connect to an instance running Linux by using the SSH client of your choice, and then type ssh
-i .ec2/mykeypair.pem ec2-user@<public-DNS-of-the-instance> .

For more information on connecting to an Amazon EC2 Linux instance, see Getting Started with
Amazon EC2 Linux Instances in the Amazon EC2 User Guide for Linux Instances.

If your Elastic Beanstalk environment uses the .NET on Windows Server platform, see Getting
Started with Amazon EC2 Windows Instances in the Amazon EC2 User Guide for Windows Instances.

Monitor instances 1236

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html

AWS Elastic Beanstalk Developer Guide

Viewing logs from Amazon EC2 instances in your Elastic
Beanstalk environment

The Amazon EC2 instances in your Elastic Beanstalk environment generate logs that you can
view to troubleshoot issues with your application or configuration files. Logs created by the
web server, application server, Elastic Beanstalk platform scripts, and AWS CloudFormation are
stored locally on individual instances. You can easily retrieve them by using the environment
management console or the EB CLI. You can also configure your environment to stream logs to
Amazon CloudWatch Logs in real time.

Tail logs are the last 100 lines of the most commonly used log files—Elastic Beanstalk operational
logs and logs from the web server or application server. When you request tail logs in the
environment management console or with eb logs, an instance in your environment concatenates
the most recent log entries into a single text file and uploads it to Amazon S3.

Bundle logs are full logs for a wider range of log files, including logs from yum and cron and
several logs from AWS CloudFormation. When you request bundle logs, an instance in your
environment packages the full log files into a ZIP archive and uploads it to Amazon S3.

Note

Elastic Beanstalk Windows Server platforms do not support bundle logs.

To upload rotated logs to Amazon S3, the instances in your environment must have an instance
profile with permission to write to your Elastic Beanstalk Amazon S3 bucket. These permissions
are included in the default instance profile that Elastic Beanstalk prompts you to create when you
launch an environment in the Elastic Beanstalk console for the first time.

To retrieve instance logs

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

View instance logs 1237

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

3. In the navigation pane, choose Logs.

4. Choose Request Logs, and then choose the type of logs to retrieve. To get tail logs, choose
Last 100 Lines. To get bundle logs, choose Full Logs.

5. When Elastic Beanstalk finishes retrieving your logs, choose Download.

Elastic Beanstalk stores tail and bundle logs in an Amazon S3 bucket, and generates a presigned
Amazon S3 URL that you can use to access your logs. Elastic Beanstalk deletes the files from
Amazon S3 after a duration of 15 minutes.

Warning

Anyone in possession of the presigned Amazon S3 URL can access the files before they are
deleted. Make the URL available only to trusted parties.

Note

Your user policy must have the s3:DeleteObject permission. Elastic Beanstalk uses your
user permissions to delete the logs from Amazon S3.

To persist logs, you can configure your environment to publish logs to Amazon S3 automatically
after they are rotated. To enable log rotation to Amazon S3, follow the procedure in Configuring
instance log viewing. Instances in your environment will attempt to upload logs that have been
rotated once per hour.

If your application generates logs in a location that isn't part of the default configuration for your
environment's platform, you can extend the default configuration by using configuration files
(.ebextensions). You can add your application's log files to tail logs, bundle logs, or log rotation.

View instance logs 1238

AWS Elastic Beanstalk Developer Guide

For real-time log streaming and long-term storage, configure your environment to stream logs to
Amazon CloudWatch Logs.

Sections

• Log location on Amazon EC2 instances

• Log location in Amazon S3

• Log rotation settings on Linux

• Extending the default log task configuration

• Streaming log files to Amazon CloudWatch Logs

Log location on Amazon EC2 instances

Logs are stored in standard locations on the Amazon EC2 instances in your environment. Elastic
Beanstalk generates the following logs.

Amazon Linux 2

• /var/log/eb-engine.log

Amazon Linux AMI (AL1)

Note

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired. For more information about migrating to a current and fully
supported Amazon Linux 2023 platform branch, see Migrating your Elastic Beanstalk Linux
application to Amazon Linux 2023 or Amazon Linux 2.

• /var/log/eb-activity.log

• /var/log/eb-commandprocessor.log

Windows Server

• C:\Program Files\Amazon\ElasticBeanstalk\logs\

• C:\cfn\log\cfn-init.log

Log location on Amazon EC2 instances 1239

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

These logs contain messages about deployment activities, including messages related to
configuration files (.ebextensions).

Each application and web server stores logs in its own folder:

• Apache – /var/log/httpd/

• IIS – C:\inetpub\wwwroot\

• Node.js – /var/log/nodejs/

• nginx – /var/log/nginx/

• Passenger – /var/app/support/logs/

• Puma – /var/log/puma/

• Python – /opt/python/log/

• Tomcat – /var/log/tomcat/

Log location in Amazon S3

When you request tail or bundle logs from your environment, or when instances upload rotated
logs, they're stored in your Elastic Beanstalk bucket in Amazon S3. Elastic Beanstalk creates
a bucket named elasticbeanstalk-region-account-id for each AWS Region in which
you create environments. Within this bucket, logs are stored under the path resources/
environments/logs/logtype/environment-id/instance-id.

For example, logs from instance i-0a1fd158, in Elastic Beanstalk environment e-mpcwnwheky in
AWS Region us-west-2 in account 123456789012, are stored in the following locations:

• Tail Logs –

s3://elasticbeanstalk-us-west-2-123456789012/resources/environments/logs/
tail/e-mpcwnwheky/i-0a1fd158

• Bundle Logs –

s3://elasticbeanstalk-us-west-2-123456789012/resources/environments/logs/
bundle/e-mpcwnwheky/i-0a1fd158

• Rotated Logs –

s3://elasticbeanstalk-us-west-2-123456789012/resources/environments/logs/
publish/e-mpcwnwheky/i-0a1fd158

Log location in Amazon S3 1240

AWS Elastic Beanstalk Developer Guide

Note

You can find your environment ID in the environment management console.

Elastic Beanstalk deletes tail and bundle logs from Amazon S3 automatically 15 minutes after they
are created. Rotated logs persist until you delete them or move them to S3 Glacier.

Log rotation settings on Linux

On Linux platforms, Elastic Beanstalk uses logrotate to rotate logs periodically. If configured,
after a log is rotated locally, the log rotation task picks it up and uploads it to Amazon S3. Logs
that are rotated locally don't appear in tail or bundle logs by default.

You can find Elastic Beanstalk configuration files for logrotate in /etc/
logrotate.elasticbeanstalk.hourly/. These rotation settings are specific to the platform,
and might change in future versions of the platform. For more information about the available
settings and example configurations, run man logrotate.

The configuration files are invoked by cron jobs in /etc/cron.hourly/. For more information
about cron, run man cron.

Extending the default log task configuration

Elastic Beanstalk uses files in subfolders of /opt/elasticbeanstalk/tasks (Linux) or C:
\Program Files\Amazon\ElasticBeanstalk\config (Windows Server) on the Amazon EC2
instance to configure tasks for tail logs, bundle logs, and log rotation.

On Amazon Linux:

• Tail Logs –

/opt/elasticbeanstalk/tasks/taillogs.d/

• Bundle Logs –

/opt/elasticbeanstalk/tasks/bundlelogs.d/

• Rotated Logs –

/opt/elasticbeanstalk/tasks/publishlogs.d/

Log rotation settings on Linux 1241

AWS Elastic Beanstalk Developer Guide

On Windows Server:

• Tail Logs –

c:\Program Files\Amazon\ElasticBeanstalk\config\taillogs.d\

• Rotated Logs –

c:\Program Files\Amazon\ElasticBeanstalk\config\publogs.d\

For example, the eb-activity.conf file on Linux adds two log files to the tail logs task.

/opt/elasticbeanstalk/tasks/taillogs.d/eb-activity.conf

/var/log/eb-commandprocessor.log
/var/log/eb-activity.log

You can use environment configuration files (.ebextensions) to add your own .conf files to
these folders. A .conf file lists log files specific to your application, which Elastic Beanstalk adds to
the log file tasks.

Use the files section to add configuration files to the tasks that you want to modify. For example,
the following configuration text adds a log configuration file to each instance in your environment.
This log configuration file, cloud-init.conf, adds /var/log/cloud-init.log to tail logs.

files:
 "/opt/elasticbeanstalk/tasks/taillogs.d/cloud-init.conf" :
 mode: "000755"
 owner: root
 group: root
 content: |
 /var/log/cloud-init.log

Add this text to a file with the .config file name extension to your source bundle under a folder
named .ebextensions.

~/workspace/my-app
|-- .ebextensions
| `-- tail-logs.config
|-- index.php
`-- styles.css

Extending the default log task configuration 1242

AWS Elastic Beanstalk Developer Guide

On Linux platforms, you can also use wildcard characters in log task configurations. This
configuration file adds all files with the .log file name extension from the log folder in the
application root to bundle logs.

files:
 "/opt/elasticbeanstalk/tasks/bundlelogs.d/applogs.conf" :
 mode: "000755"
 owner: root
 group: root
 content: |
 /var/app/current/log/*.log

Log task configurations don't support wildcard characters on Windows platforms.

Note

To help familiarize yourself with log customization procedures, you can deploy a sample
application using the EB CLI. For this, the EB CLI creates a local application directory that
contains an .ebextentions subdirectory with a sample configuration. You can also use
the sample application's log files to explore the log retrieval feature described in this topic.
For more information about how to create a sample application with the EB CLI, see EB CLI
basics.

For more information about using configuration files, see Advanced environment customization
with configuration files (.ebextensions).

Much like extending tail logs and bundle logs, you can extend log rotation using a configuration
file. Whenever Elastic Beanstalk rotates its own logs and uploads them to Amazon S3, it also
rotates and uploads your additional logs. Log rotation extension behaves differently depending on
the platform's operating system. The following sections describe the two cases.

Extending log rotation on Linux

As explained in Log rotation settings on Linux, Elastic Beanstalk uses logrotate to rotate logs on
Linux platforms. When you configure your application's log files for log rotation, the application
doesn't need to create copies of log files. Elastic Beanstalk configures logrotate to create a
copy of your application's log files for each rotation. Therefore, the application must keep log files
unlocked when it isn't actively writing to them.

Extending the default log task configuration 1243

AWS Elastic Beanstalk Developer Guide

Extending log rotation on Windows server

On Windows Server, when you configure your application's log files for log rotation, the application
must rotate the log files periodically. Elastic Beanstalk looks for files with names starting with the
pattern you configured, and picks them up for uploading to Amazon S3. In addition, periods in the
file name are ignored, and Elastic Beanstalk considers the name up to the period to be the base log
file name.

Elastic Beanstalk uploads all versions of a base log file except for the newest one, because it
considers that one to be the active application log file, which can potentially be locked. Your
application can, therefore, keep the active log file locked between rotations.

For example, your application writes to a log file named my_log.log, and you specify this name
in your .conf file. The application periodically rotates the file. During the Elastic Beanstalk
rotation cycle, it finds the following files in the log file's folder: my_log.log, my_log.0800.log,
my_log.0830.log. Elastic Beanstalk considers all of them to be versions of the base name
my_log. The file my_log.log has the latest modification time, so Elastic Beanstalk uploads only
the other two files, my_log.0800.log and my_log.0830.log.

Streaming log files to Amazon CloudWatch Logs

You can configure your environment to stream logs to Amazon CloudWatch Logs in the Elastic
Beanstalk console or by using configuration options. With CloudWatch Logs, each instance in your
environment streams logs to log groups that you can configure to be retained for weeks or years,
even after your environment is terminated.

The set of logs streamed varies per environment, but always includes eb-engine.log and access
logs from the nginx or Apache proxy server that runs in front of your application.

You can configure log streaming in the Elastic Beanstalk console either during environment
creation or for an existing environment. In the following example, logs are saved for up to seven
days, even when the environment is terminated.

Streaming log files to Amazon CloudWatch Logs 1244

AWS Elastic Beanstalk Developer Guide

The following configuration file enables log streaming with 180 days retention, even if the
environment is terminated.

Example .ebextensions/log-streaming.config

option_settings:
 aws:elasticbeanstalk:cloudwatch:logs:
 StreamLogs: true
 DeleteOnTerminate: false
 RetentionInDays: 180

Streaming log files to Amazon CloudWatch Logs 1245

AWS Elastic Beanstalk Developer Guide

Using Elastic Beanstalk with other AWS services

To implement your application's environments, Elastic Beanstalk manages resources of other AWS
services or uses their functionality. In addition, Elastic Beanstalk integrates with AWS services that
it doesn't use directly as part of your environments. The topics in this section describe many ways
you can use these additional services with your Elastic Beanstalk application.

Topics

• Architectural overview

• Using Elastic Beanstalk with Amazon CloudFront

• Logging Elastic Beanstalk API calls with AWS CloudTrail

• Using Elastic Beanstalk with Amazon CloudWatch

• Using Elastic Beanstalk with Amazon CloudWatch Logs

• Using Elastic Beanstalk with Amazon EventBridge

• Finding and tracking Elastic Beanstalk resources with AWS Config

• Using Elastic Beanstalk with Amazon DynamoDB

• Using Elastic Beanstalk with Amazon ElastiCache

• Using Elastic Beanstalk with Amazon Elastic File System

• Using Elastic Beanstalk with AWS Identity and Access Management

• Using Elastic Beanstalk with Amazon RDS

• Using Elastic Beanstalk with Amazon S3

• Using Elastic Beanstalk with Amazon VPC

Architectural overview

The following diagram illustrates an example architecture of Elastic Beanstalk across multiple
Availability Zones working with other AWS products such as Amazon CloudFront, Amazon Simple
Storage Service (Amazon S3), and Amazon Relational Database Service (Amazon RDS).

Architectural overview 1246

AWS Elastic Beanstalk Developer Guide

To plan for fault-tolerance, it is advisable to have N+1 Amazon EC2 instances and spread your
instances across multiple Availability Zones. In the unlikely case that one Availability Zone goes
down, you will still have your other Amazon EC2 instances running in another Availability Zone.
You can adjust Amazon EC2 Auto Scaling to allow for a minimum number of instances as well as
multiple Availability Zones. For instructions on how to do this, see Auto Scaling group for your
Elastic Beanstalk environment. For more information about building fault-tolerant applications, go
to Building Fault-Tolerant Applications on AWS.

The following sections discuss in more detail integration with Amazon CloudFront, Amazon
CloudWatch, Amazon DynamoDB Amazon ElastiCache, Amazon RDS, Amazon Route 53, Amazon
Simple Storage Service, Amazon VPC , and IAM.

Using Elastic Beanstalk with Amazon CloudFront

Amazon CloudFront is a web service that speeds up distribution of your static and dynamic web
content, for example, .html, .css, .php, image, and media files, to end users. CloudFront delivers
your content through a worldwide network of edge locations. When an end user requests content
that you're serving with CloudFront, the user is routed to the edge location that provides the
lowest latency, so content is delivered with the best possible performance. If the content is already
in that edge location, CloudFront delivers it immediately. If the content is not currently in that edge
location, CloudFront retrieves it from an Amazon S3 bucket or an HTTP server (for example, a web
server) that you have identified as the source for the definitive version of your content.

CloudFront 1247

http://media.amazonwebservices.com/AWS_Building_Fault_Tolerant_Applications.pdf

AWS Elastic Beanstalk Developer Guide

After you have created and deployed your Elastic Beanstalk application you can sign up for
CloudFront and start using CloudFront to distribute your content. Learn more about CloudFront
from the Amazon CloudFront Developer Guide.

Logging Elastic Beanstalk API calls with AWS CloudTrail

Elastic Beanstalk is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in Elastic Beanstalk. CloudTrail captures all API calls for
Elastic Beanstalk as events, including calls from the Elastic Beanstalk console, from the EB CLI,
and from your code to the Elastic Beanstalk APIs. If you create a trail, you can enable continuous
delivery of CloudTrail events to an Amazon S3 bucket, including events for Elastic Beanstalk. If
you don't configure a trail, you can still view the most recent events in the CloudTrail console in
Event history. Using the information collected by CloudTrail, you can determine the request that
was made to Elastic Beanstalk, the IP address from which the request was made, who made the
request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Elastic Beanstalk information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs
in Elastic Beanstalk, that activity is recorded in a CloudTrail event along with other AWS service
events in Event history. You can view, search, and download recent events in your AWS account.
For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Elastic Beanstalk, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you
create a trail in the console, the trail applies to all regions. The trail logs events from all regions in
the AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally,
you can configure other AWS services to further analyze and act upon the event data collected in
CloudTrail logs. For more information, see:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

CloudTrail 1248

http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

AWS Elastic Beanstalk Developer Guide

All Elastic Beanstalk actions are logged by CloudTrail and are documented in the AWS
Elastic Beanstalk API Reference. For example, calls to the DescribeApplications,
UpdateEnvironment, and ListTagsForResource actions generate entries in the CloudTrail log
files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding Elastic Beanstalk log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files are not an ordered stack trace of the
public API calls, so they do not appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the UpdateEnvironment
action called by an IAM user named intern, for the sample-env environment in the sample-app
application.

{
 "Records": [{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIXDAYQEXAMPLEUMLYNGL",
 "arn": "arn:aws:iam::123456789012:user/intern",
 "accountId": "123456789012",
 "accessKeyId": "ASXIAGXEXAMPLEQULKNXV",
 "userName": "intern",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2016-04-22T00:23:24Z"

Understanding Elastic Beanstalk log file entries 1249

https://docs.aws.amazon.com/elasticbeanstalk/latest/api/
https://docs.aws.amazon.com/elasticbeanstalk/latest/api/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS Elastic Beanstalk Developer Guide

 }
 },
 "invokedBy": "signin.amazonaws.com"
 },
 "eventTime": "2016-04-22T00:24:14Z",
 "eventSource": "elasticbeanstalk.amazonaws.com",
 "eventName": "UpdateEnvironment",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "255.255.255.54",
 "userAgent": "signin.amazonaws.com",
 "requestParameters": {
 "applicationName": "sample-app",
 "environmentName": "sample-env",
 "optionSettings": []
 },
 "responseElements": null,
 "requestID": "84ae9ecf-0280-17ce-8612-705c7b132321",
 "eventID": "e48b6a08-c6be-4a22-99e1-c53139cbfb18",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }]
}

Using Elastic Beanstalk with Amazon CloudWatch

Amazon CloudWatch enables you to monitor, manage, and publish various metrics, as well as
configure alarm actions based on data from metrics. Amazon CloudWatch monitoring enables you
to collect, analyze, and view system and application metrics so that you can make operational and
business decisions more quickly and with greater confidence.

You can use Amazon CloudWatch to collect metrics about your Amazon Web Services (AWS)
resources—such as the performance of your Amazon EC2 instances. You can also publish your own
metrics directly to Amazon CloudWatch. Amazon CloudWatch alarms help you implement decisions
more easily by enabling you to send notifications or automatically make changes to the resources
you are monitoring, based on rules that you define. For example, you can create alarms that initiate
Amazon EC2 Auto Scaling and Amazon Simple Notification Service (Amazon SNS) actions on your
behalf.

Elastic Beanstalk automatically uses Amazon CloudWatch to help you monitor your application and
environment status. You can navigate to the Amazon CloudWatch console to see your dashboard

CloudWatch 1250

AWS Elastic Beanstalk Developer Guide

and get an overview of all of your resources as well as your alarms. You can also choose to view
more metrics or add custom metrics.

For more information about Amazon CloudWatch, go to the Amazon CloudWatch Developer Guide.
For an example of how to use Amazon CloudWatch with Elastic Beanstalk, see the section called
“Example: Using custom Amazon CloudWatch metrics”.

Using Elastic Beanstalk with Amazon CloudWatch Logs

With CloudWatch Logs, you can monitor and archive your Elastic Beanstalk application, system, and
custom log files from Amazon EC2 instances of your environments. You can also configure alarms
that make it easier for you to react to specific log stream events that your metric filters extract.
The CloudWatch Logs agent installed on each Amazon EC2 instance in your environment publishes
metric data points to the CloudWatch service for each log group you configure. Each log group
applies its own filter patterns to determine what log stream events to send to CloudWatch as
data points. Log streams that belong to the same log group share the same retention, monitoring,
and access control settings. You can configure Elastic Beanstalk to automatically stream logs
to the CloudWatch service, as described in Streaming instance logs to CloudWatch Logs. For
more information about CloudWatch Logs, including terminology and concepts, see the Amazon
CloudWatch Logs User Guide.

In addition to instance logs, if you enable enhanced health for your environment, you can configure
the environment to stream health information to CloudWatch Logs. See Streaming Elastic
Beanstalk environment health information to Amazon CloudWatch Logs.

The following figure shows the Monitoring page and graphs for an environment that is
configured with CloudWatch Logs integration. The example metrics in this environment are
named CWLHttp4xx and CWLHttp5xx. One of the graphs shows that the CWLHttp4xx metric has
triggered an alarm based on conditions specified in the configuration files.

CloudWatch Logs 1251

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html

AWS Elastic Beanstalk Developer Guide

The following figure shows the Alarms page and graphs for the example alarms named
AWSEBCWLHttp4xxPercentAlarm and AWSEBCWLHttp5xxCountAlarm that correspond to the
CWLHttp4xx and CWLHttp5xx metrics, respectively.

CloudWatch Logs 1252

AWS Elastic Beanstalk Developer Guide

Topics

• Prerequisites to instance log streaming to CloudWatch Logs

• How Elastic Beanstalk sets up CloudWatch Logs

• Streaming instance logs to CloudWatch Logs

• Troubleshooting CloudWatch Logs integration

• Streaming Elastic Beanstalk environment health information to Amazon CloudWatch Logs

Prerequisites to instance log streaming to CloudWatch Logs

To enable streaming of logs from your environment's Amazon EC2 instances to CloudWatch Logs,
you must meet the following conditions.

• Platform – Because this feature is only available in platform versions released on or after this
release, if you are using an earlier platform version, update your environment to a current one.

Prerequisites to instance log streaming to CloudWatch Logs 1253

https://aws.amazon.com/releasenotes/6677534638371416
https://aws.amazon.com/releasenotes/6677534638371416

AWS Elastic Beanstalk Developer Guide

• If you don't have the AWSElasticBeanstalkWebTier or AWSElasticBeanstalkWorkerTier Elastic
Beanstalk managed policy in your Elastic Beanstalk instance profile, you must add the following
to your profile to enable this feature.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:PutLogEvents",
 "logs:CreateLogStream"
],
 "Resource": [
 "*"
]
 }
]
}

How Elastic Beanstalk sets up CloudWatch Logs

Elastic Beanstalk installs a CloudWatch log agent with the default configuration settings on each
instance it creates. Learn more in the CloudWatch Logs Agent Reference.

When you enable instance log streaming to CloudWatch Logs, Elastic Beanstalk sends log files from
your environment's instances to CloudWatch Logs. Different platforms stream different logs. The
following table lists the logs, by platform.

Platform / Platform Branch Logs

Docker /

Platform Branch: Docker
Running on 64bit Amazon
Linux 2

• /var/log/eb-engine.log

• /var/log/eb-hooks.log

• /var/log/docker

• /var/log/docker-events.log

• /var/log/eb-docker/containers/eb-current-app/stdouterr.log

• /var/log/nginx/access.log

How Elastic Beanstalk sets up CloudWatch Logs 1254

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AgentReference.html

AWS Elastic Beanstalk Developer Guide

Platform / Platform Branch Logs

• /var/log/nginx/error.log

Docker /

Platform Branch: ECS
Running on 64bit Amazon
Linux 2

• /var/log/docker-events.log

• /var/log/eb-ecs-mgr.log

• /var/log/eb-engine.log

• /var/log/eb-hooks.log

• /var/log/ecs/ecs-agent.log

• /var/log/ecs/ecs-init.log

Go

.NET Core on Linux

Java / Platform Branch:
Corretto running on 64bit
Amazon Linux 2

• /var/log/eb-engine.log

• /var/log/eb-hooks.log

• /var/log/web.stdout.log

• /var/log/nginx/access.log

• /var/log/nginx/error.log

Node.js

Python

• /var/log/eb-engine.log

• /var/log/eb-hooks.log

• /var/log/web.stdout.log

• /var/log/httpd/access_log

• /var/log/httpd/error_log

• /var/log/nginx/access.log

• /var/log/nginx/error.log

Tomcat

PHP

• /var/log/eb-engine.log

• /var/log/eb-hooks.log

• /var/log/httpd/access_log

• /var/log/httpd/error_log

• /var/log/nginx/access.log

• /var/log/nginx/error.log

How Elastic Beanstalk sets up CloudWatch Logs 1255

AWS Elastic Beanstalk Developer Guide

Platform / Platform Branch Logs

.NET on Windows Server • C:\inetpub\logs\LogFiles\W3SVC1\u_ex*.log

• C:\Program Files\Amazon\ElasticBeanstalk\logs\A
WSDeployment.log

• C:\Program Files\Amazon\ElasticBeanstalk\logs\Hooks.log

Ruby • /var/log/eb-engine.log

• /var/log/eb-hooks.log

• /var/log/puma/puma.log

• /var/log/web.stdout.log

• /var/log/nginx/access.log

• /var/log/nginx/error.log

Log files on Amazon Linux AMI platforms

Note

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired. For more information about migrating to a current and fully
supported Amazon Linux 2023 platform branch, see Migrating your Elastic Beanstalk Linux
application to Amazon Linux 2023 or Amazon Linux 2.

The following table lists the log files streamed from instances on platform branches based on
Amazon Linux AMI (preceding Amazon Linux 2), by platform.

Platform / Platform Branch Logs

Docker /

Platform Branch: Docker
Running on 64bit Amazon
Linux

• /var/log/eb-activity.log

• /var/log/nginx/error.log

• /var/log/docker-events.log

• /var/log/docker

• /var/log/nginx/access.log

How Elastic Beanstalk sets up CloudWatch Logs 1256

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

Platform / Platform Branch Logs

• /var/log/eb-docker/containers/eb-current-app/stdouterr.log

Docker /

Platform Branch: Multicont
ainer Docker Running on
64bit Amazon Linux

• /var/log/eb-activity.log

• /var/log/ecs/ecs-init.log

• /var/log/eb-ecs-mgr.log

• /var/log/ecs/ecs-agent.log

• /var/log/docker-events.log

Glassfish (Preconfigured
Docker)

• /var/log/eb-activity.log

• /var/log/nginx/error.log

• /var/log/docker-events.log

• /var/log/docker

• /var/log/nginx/access.log

Go • /var/log/eb-activity.log

• /var/log/nginx/error.log

• /var/log/nginx/access.log

Java /

Platform Branch: Java 8
running on 64bit Amazon
Linux

Platform Branch: Java 7
running on 64bit Amazon
Linux

• /var/log/eb-activity.log

• /var/log/nginx/access.log

• /var/log/nginx/error.log

• /var/log/web-1.error.log

• /var/log/web-1.log

Tomcat • /var/log/eb-activity.log

• /var/log/httpd/error_log

• /var/log/httpd/access_log

• /var/log/nginx/error_log

• /var/log/nginx/access_log

How Elastic Beanstalk sets up CloudWatch Logs 1257

AWS Elastic Beanstalk Developer Guide

Platform / Platform Branch Logs

Node.js • /var/log/eb-activity.log

• /var/log/nodejs/nodejs.log

• /var/log/nginx/error.log

• /var/log/nginx/access.log

• /var/log/httpd/error.log

• /var/log/httpd/access.log

PHP • /var/log/eb-activity.log

• /var/log/httpd/error_log

• /var/log/httpd/access_log

Python • /var/log/eb-activity.log

• /var/log/httpd/error_log

• /var/log/httpd/access_log

• /opt/python/log/supervisord.log

Ruby /

Platform Branch: Puma
with Ruby running on 64bit
Amazon Linux

• /var/log/eb-activity.log

• /var/log/nginx/error.log

• /var/log/puma/puma.log

• /var/log/nginx/access.log

Ruby /

Platform Branch: Passenger
with Ruby running on 64bit
Amazon Linux

• /var/log/eb-activity.log

• /var/app/support/logs/passenger.log

• /var/app/support/logs/access.log

• /var/app/support/logs/error.log

Elastic Beanstalk configures log groups in CloudWatch Logs for the various log files that it
streams. To retrieve specific log files from CloudWatch Logs, you have to know the name of the
corresponding log group. The log group naming scheme depends on the platform's operating
system.

How Elastic Beanstalk sets up CloudWatch Logs 1258

AWS Elastic Beanstalk Developer Guide

For Linux platforms, prefix the on-instance log file location with /aws/
elasticbeanstalk/environment_name to get the log group name. For example,
to retrieve the file /var/log/nginx/error.log, specify the log group /aws/
elasticbeanstalk/environment_name/var/log/nginx/error.log.

For Windows platforms, see the following table for the log group corresponding to each log file.

On-instance log file Log group

C:\Program Files\Amazon\Elast
icBeanstalk\logs\AWSDeploym
ent.log

/aws/elasticbeanstalk/<envi
ronment-name>/EBDeploy-Log

C:\Program Files\Amazon\Elast
icBeanstalk\logs\Hooks.log

/aws/elasticbeanstalk/<envi
ronment-name>/EBHooks-Log

C:\inetpub\logs\LogFiles (the entire
directory)

/aws/elasticbeanstalk/<envi
ronment-name>/IIS-Log

Streaming instance logs to CloudWatch Logs

You can enable instance log streaming to CloudWatch Logs using the Elastic Beanstalk console, the
EB CLI, or configuration options.

Before you enable it, set up IAM permissions to use with the CloudWatch Logs agent. You can
attach the following custom policy to the instance profile that you assign to your environment.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "*"

Streaming instance logs to CloudWatch Logs 1259

AWS Elastic Beanstalk Developer Guide

]
 }
]
}

Instance log streaming using the Elastic Beanstalk console

To stream instance logs to CloudWatch Logs

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. Under Instance log streaming to CloudWatch Logs:

• Enable Log streaming.

• Set Retention to the number of days to save the logs.

• Select the Lifecycle setting that determines whether the logs are saved after the
environment is terminated.

6. To save the changes choose Apply at the bottom of the page.

After you enable log streaming, you can return to the Software configuration category or page and
find the Log Groups link. Click this link to see your logs in the CloudWatch console.

Instance log streaming using the EB CLI

To enable instance log streaming to CloudWatch Logs using the EB CLI, use the eb logs command.

$ eb logs --cloudwatch-logs enable

You can also use eb logs to retrieve logs from CloudWatch Logs. You can retrieve all the
environment's instance logs, or use the command's many options to specify subsets of logs to

Streaming instance logs to CloudWatch Logs 1260

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

retrieve. For example, the following command retrieves the complete set of instance logs for your
environment, and saves them to a directory under .elasticbeanstalk/logs.

$ eb logs --all

In particular, the --log-group option enables you to retrieve instance logs of a specific log group,
corresponding to a specific on-instance log file. To do that, you need to know the name of the log
group that corresponds to the log file you want to retrieve. You can find this information in How
Elastic Beanstalk sets up CloudWatch Logs.

Instance log streaming using configuration files

When you create or update an environment, you can use a configuration file to set up and
configure instance log streaming to CloudWatch Logs. The following example configuration file
enables default instance log streaming. Elastic Beanstalk streams the default set of log files for
your environment's platform. To use the example, copy the text into a file with the .config
extension in the .ebextensions directory at the top level of your application source bundle.

option_settings:
 - namespace: aws:elasticbeanstalk:cloudwatch:logs
 option_name: StreamLogs
 value: true

Custom log file streaming

The Elastic Beanstalk integration with CloudWatch Logs doesn't directly support the streaming of
custom log files that your application generates. To stream custom logs, use a configuration file to
directly install the CloudWatch Logs agent and to configure the files to be pushed. For an example
configuration file, see logs-streamtocloudwatch-linux.config.

Note

The example doesn't work on the Windows platform.

For more information about configuring CloudWatch Logs, see the CloudWatch Logs Agent
Reference in the Amazon CloudWatch Logs User Guide.

Streaming instance logs to CloudWatch Logs 1261

https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/instance-configuration/logs-streamtocloudwatch-linux.config
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AgentReference.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AgentReference.html

AWS Elastic Beanstalk Developer Guide

Troubleshooting CloudWatch Logs integration

If you can't find some of the environment's instance logs you expect in CloudWatch Logs, you can
investigate the following common issues:

• Your IAM role lacks the required IAM permissions.

• You launched your environment in an AWS Region that doesn't support CloudWatch Logs.

• One of your custom log files doesn't exist in the path you specified.

Streaming Elastic Beanstalk environment health information to
Amazon CloudWatch Logs

If you enable enhanced health reporting for your environment, you can configure the environment
to stream health information to CloudWatch Logs. This streaming is independent from Amazon
EC2 instance log streaming. This topic describes environment health information streaming. For
information about instance log streaming, see Using Elastic Beanstalk with Amazon CloudWatch
Logs.

When you configure environment health streaming, Elastic Beanstalk creates a
CloudWatch Logs log group for environment health. The log group's name is /aws/
elasticbeanstalk/environment-name/environment-health.log. Within this log group,
Elastic Beanstalk creates log streams named YYYY-MM-DD#<hash-suffix> (there might be more
than one log stream per date).

When the environment's health status changes, Elastic Beanstalk adds a record to the health log
stream. The record represents the health status transition—the new status and a description of the
cause of change. For example, an environment's status might change to Severe because the load
balancer is failing. For a description of enhanced health statuses, see Health colors and statuses.

Prerequisites to environment health streaming to CloudWatch Logs

To enable environment health streaming to CloudWatch Logs, you must meet the following
conditions:

• Platform – You must be using a platform version that supports enhanced health reporting.

• Permissions – You must grant certain logging-related permissions to Elastic Beanstalk
so that it can act on your behalf to stream health information for your environment.
If your environment isn't using a service role that Elastic Beanstalk created for it,

Troubleshooting CloudWatch Logs integration 1262

AWS Elastic Beanstalk Developer Guide

aws-elasticbeanstalk-service-role, or your account's service-linked role,
AWSServiceRoleForElasticBeanstalk, be sure to add the following permissions to your
custom service role.

{
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/elasticbeanstalk/*:log-stream:*"
}

Streaming environment health logs to CloudWatch Logs

You can enable environment health streaming to CloudWatch Logs using the Elastic Beanstalk
console, the EB CLI, or configuration options.

Environment health log streaming using the Elastic Beanstalk console

To stream environment health logs to CloudWatch Logs

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Monitoring configuration category, choose Edit.

5. Under Health reporting, make sure that the reporting System is set to Enhanced.

6. Under Health event streaming to CloudWatch Logs

• Enable Log streaming.

• Set Retention to the number of days to save the logs.

Streaming environment health 1263

https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

• Select the Lifecycle setting that determines whether the logs are saved after the
environment is terminated.

7. To save the changes choose Apply at the bottom of the page.

After you enable log streaming, you can return to the Monitoring configuration category or page
and find the Log Group link. Click this link to see your environment health logs in the CloudWatch
console.

Environment health log streaming using the EB CLI

To enable environment health log streaming to CloudWatch Logs using the EB CLI, use the eb logs
command.

$ eb logs --cloudwatch-logs enable --cloudwatch-log-source environment-health

You can also use eb logs to retrieve logs from CloudWatch Logs. For example, the following
command retrieves all the health logs for your environment, and saves them to a directory under
.elasticbeanstalk/logs.

$ eb logs --all --cloudwatch-log-source environment-health

Environment health log streaming using configuration files

When you create or update an environment, you can use a configuration file to set up and
configure environment health log streaming to CloudWatch Logs. To use the example below, copy
the text into a file with the .config extension in the .ebextensions directory at the top level of
your application source bundle. The example configures Elastic Beanstalk to enable environment
health log streaming, keep the logs after terminating the environment, and save them for 30 days.

Example Health streaming configuration file

##
Sets up Elastic Beanstalk to stream environment health information
to Amazon CloudWatch Logs.
Works only for environments that have enhanced health reporting enabled.
##

option_settings:
 aws:elasticbeanstalk:cloudwatch:logs:health:

Streaming environment health 1264

samples/aws_eb_cloudwatchlogs-envhealth.zip

AWS Elastic Beanstalk Developer Guide

 HealthStreamingEnabled: true
 ### Settings below this line are optional.
 # DeleteOnTerminate: Delete the log group when the environment is
 # terminated. Default is false. If false, the health data is kept
 # RetentionInDays days.
 DeleteOnTerminate: false
 # RetentionInDays: The number of days to keep the archived health data
 # before it expires, if DeleteOnTerminate isn't set. Default is 7 days.
 RetentionInDays: 30

For option defaults and valid values, see aws:elasticbeanstalk:cloudwatch:logs:health.

Using Elastic Beanstalk with Amazon EventBridge

Using Amazon EventBridge, you can set up event-driven rules that monitor your Elastic Beanstalk
resources and initiate target actions that use other AWS services. For example, you can set a rule
for sending out email notifications by signaling an Amazon SNS topic whenever the health of a
production environment changes to a Warning status. Or, you can set a Lambda function to pass
a notification to Slack whenever the health of your environment changes to a Degraded or Severe
status.

You can create rules in Amazon EventBridge to act on any of the following Elastic Beanstalk events:

• State changes for environment operations (including create, update, and terminate operations). The
event specifies if the state change has started, succeeded, or failed.

• State changes for other resources. Besides environments, other resources that are monitored
include load balancers, auto scaling groups, and instances.

• Health transition for environments. The event states where the environment health has
transitioned from one health status to another one.

• State change for managed updates. The event specifies if the state change has started,
succeeded, or failed.

To capture specific Elastic Beanstalk events that you're interested in, define event-specific patterns
that EventBridge can use to detect the events. Event patterns have the same structure as the
events they match. The pattern quotes the fields that you want to match and provides the values
that you're looking for. Events are emitted on a best effort basis. They're delivered from Elastic
Beanstalk to EventBridge in near real-time under normal operational circumstances. However,
situations can arise that may delay or prevent delivery of an event.

EventBridge 1265

AWS Elastic Beanstalk Developer Guide

For a list of fields that are contained in Elastic Beanstalk events and their possible string values,
see Elastic Beanstalk event field mapping. For information about how EventBridge rules work with
event patterns, see Events and Event Patterns in EventBridge.

Monitor an Elastic Beanstalk resource with EventBridge

With EventBridge, you can create rules that define actions to take when Elastic Beanstalk emits
events for its resources. For example, you can create a rule that sends you an email message
whenever the status of an environment changes.

The EventBridge console has a Pre-defined pattern option for building Elastic Beanstalk event
patterns. If you select this option in the EventBridge console when you create a rule, you can build
an Elastic Beanstalk event pattern quickly. You only need to select the event fields and values.
As you make selections, the console builds and displays the event pattern. Alternatively, you can
manually edit the event pattern that you build and can save it as a custom pattern. The console
also provides you the option to display a detailed Sample Event that you can copy and paste to the
event pattern that you're building.

If you prefer to type or copy and paste an event pattern into the EventBridge console, you can
select to use the Custom pattern option in the console. By doing this, you don't need to go
through the steps of selecting fields and values described earlier. This topic offers examples of both
event-matching patterns and Elastic Beanstalk events that you can use.

To create a rule for a resource event

1. Log in to AWS using an account that has permissions to use EventBridge and Elastic Beanstalk.

2. Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

3. In the navigation pane, choose Rules.

4. Choose Create rule.

5. Enter a Name for the rule, and, optionally, a description.

6. For Event bus, choose default. When an AWS service in your account emits an event, it always
goes to your account’s default event bus.

7. For Rule type, choose Rule with an event pattern.

8. Choose Next.

9. For Event source, choose AWS events or EventBridge partner events.

10. (Optional) For Sample event, select AWS events. Enter Elastic Beanstalk in the search field.
This will provide a list of sample Elastic Beanstalk events from which you can choose to

Monitor an Elastic Beanstalk resource with EventBridge 1266

https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html
https://console.aws.amazon.com/events/

AWS Elastic Beanstalk Developer Guide

display. This step simply displays a sample event that you can reference. It doesn't affect the
outcome of the rule creation. The Example Elastic Beanstalk events section later in this topic
provides examples of the same type of events.

11. In the Event pattern section, choose Event pattern form.

Note

If you already have text for an event pattern and don't need the EventBridge console
to build it for you, select Custom pattern (JSON editor). You can then either manually
enter or copy and paste text into the Event pattern box. Choose Next, and go to the
step about entering a target.

12. For Event source, choose AWS services.

13. For AWS service, select Elastic Beanstalk.

14. For Event type, select Status Change.

15. This step covers how you can work with the detail type, status, and severity event fields for
Elastic Beanstalk. As you choose these fields and the values you want to match, the console
builds and displays the event pattern.

• If you select only one value for Specific detail type(s), you can choose one or more values
for the next field in the hierarchy.

• If you choose more than one value for Specific detail type(s), do not choose specific values
for the next fields in the hierarchy. This prevents ambiguous matching logic across fields in
your event pattern.

The environment event field isn't affected by this hierarchy, so it displays as described in the
next step.

16. For environment, select Any environment or Specific environment(s).

• If you select Specific environment(s), you can choose one or more environments from
the dropdown list. EventBridge adds all of the environments that you select inside the
EnvironmentName[] list in the detail section of the event pattern. Then, your rule filters all
events to include only the specific environments that you choose.

• If you select Any environment, then no environments are added to your event pattern.
Because of this, your rule doesn't filter any of the Elastic Beanstalk events based on
environment.

Monitor an Elastic Beanstalk resource with EventBridge 1267

AWS Elastic Beanstalk Developer Guide

17. Choose Next.

18. For Target types, choose AWS service.

19. For Select a target, choose the target action to take when a resource state change event is
received from Elastic Beanstalk.

For example, you can use an Amazon Simple Notification Service (SNS) topic to send an email
or text message when an event occurs. To do this, you need to create an Amazon SNS topic
using the Amazon SNS console. To learn more, see Using Amazon SNS for user notifications.

Important

Some target actions might require the use of other services and incur additional
charges, such as the Amazon SNS or Lambda service. For more information about AWS
pricing, see https://aws.amazon.com/pricing/. Some services are part of the AWS Free
Usage Tier. If you are a new customer, you can test drive these services for free. See
https://aws.amazon.com/free/ for more information.

20. (Optional) Choose Add another target to specify an additional target action for the event rule.

21. Choose Next.

22. (Optional) Enter one or more tags for the rule. For more information, see Amazon EventBridge
tags in the Amazon EventBridge User Guide.

23. Choose Next.

24. Review the details of the rule and choose Create rule.

Example Elastic Beanstalk event patterns

Event patterns have the same structure as the events they match. The pattern quotes the fields
that you want to match and provides the values that you're looking for.

• Health status change for all environments

{
 "source": [
 "aws.elasticbeanstalk"
],
 "detail-type": [
 "Health status change"

Example Elastic Beanstalk event patterns 1268

https://docs.aws.amazon.com/sns/latest/dg/sns-user-notifications.html
https://aws.amazon.com/pricing/
https://aws.amazon.com/free/
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-tagging.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-tagging.html

AWS Elastic Beanstalk Developer Guide

]
}

• Health status change for the following environments: myEnvironment1 and myEnvironment2.
This event pattern filters for these two specific environments, whereas the previous Health status
change example that doesn't filter sends events for all environments.

{"source": [
 "aws.elasticbeanstalk"
],
 "detail-type": [
 "Health status change"
],
 "detail": {
 "EnvironmentName": [
 "myEnvironment1",
 "myEnvironment2"
]
 }
}

• Elastic Beanstalk resource status change for all environments

{
 "source": [
 "aws.elasticbeanstalk"
],
 "detail-type": [
 "Elastic Beanstalk resource status change"
]
}

• Elastic Beanstalk resource status change with Status Environment update failed and Severity
ERROR for the following environments: myEnvironment1 and myEnvironment2

{"source": [
 "aws.elasticbeanstalk"
],
 "detail-type": [
 "Elastic Beanstalk resource status change"
],
 "detail": {
 "Status": [

Example Elastic Beanstalk event patterns 1269

AWS Elastic Beanstalk Developer Guide

 "Environment update failed"
],
 "Severity": [
 "ERROR"
],
 "EnvironmentName": [
 "myEnvironment1",
 "myEnvironment2"
]
 }
}

• Other resource status change for load balancers, auto scaling groups, and instances

{
 "source": [
 "aws.elasticbeanstalk"
],
 "detail-type": [
 "Other resource status change"
]
}

• Managed update status change for all environments

{
 "source": [
 "aws.elasticbeanstalk"
],
 "detail-type": [
 "Managed update status change"
]
}

• To capture all events from Elastic Beanstalk (exclude the detail-type section)

{
 "source": [
 "aws.elasticbeanstalk"
]
}

Example Elastic Beanstalk event patterns 1270

AWS Elastic Beanstalk Developer Guide

Example Elastic Beanstalk events

The following is an example Elastic Beanstalk event for a resource status change:

{
 "version":"0",
 "id":"1234a678-1b23-c123-12fd3f456e78",
 "detail-type":"Elastic Beanstalk resource status change",
 "source":"aws.elasticbeanstalk",
 "account":"111122223333",
 "time":"2020-11-03T00:31:54Z",
 "region":"us-east-1",
 "resources":[
 "arn:was:elasticbeanstalk:us-east-1:111122223333:environment/myApplication/
myEnvironment"
],
 "detail":{
 "Status":"Environment creation started",
 "EventDate":1604363513951,
 "ApplicationName":"myApplication",
 "Message":"createEnvironment is starting.",
 "EnvironmentName":"myEnvironment",
 "Severity":"INFO"
 }
}

The following is an example Elastic Beanstalk event for a health status change:

{
 "version":"0",
 "id":"1234a678-1b23-c123-12fd3f456e78",
 "detail-type":"Health status change",
 "source":"aws.elasticbeanstalk",
 "account":"111122223333",
 "time":"2020-11-03T00:34:48Z",
 "region":"us-east-1",
 "resources":[
 "arn:was:elasticbeanstalk:us-east-1:111122223333:environment/myApplication/
myEnvironment"
],
 "detail":{
 "Status":"Environment health changed",
 "EventDate":1604363687870,

Example Elastic Beanstalk events 1271

AWS Elastic Beanstalk Developer Guide

 "ApplicationName":"myApplication",
 "Message":"Environment health has transitioned from Pending to Ok. Initialization
 completed 1 second ago and took 2 minutes.",
 "EnvironmentName":"myEnvironment",
 "Severity":"INFO"
 }
}

Elastic Beanstalk event field mapping

The following table maps Elastic Beanstalk event fields and their possible string values to the
EventBridge detail-type field. For more information about how EventBridge works with event
patterns for a service, see Events and Event Patterns in EventBridge.

EventBrid
ge field
detail-type

Elastic
Beanstalk
field
Status

Elastic
Beanstalk
field
Severity

Elastic Beanstalk field Message

Environme
nt creation
started

INFO createEnvironment is starting.

Environme
nt creation
successful

INFO createEnvironment completed successfully.

Environme
nt creation
successful

INFO Launched environment: <Environment Name>.
However, there were issues during launch. See event
log for details.

Environme
nt creation
failed

ERROR Failed to launch environment.

Elastic
Beanstalk
resource
status
change

Environme
nt update
started

INFO Environment update is starting.

Elastic Beanstalk event field mapping 1272

https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html

AWS Elastic Beanstalk Developer Guide

EventBrid
ge field
detail-type

Elastic
Beanstalk
field
Status

Elastic
Beanstalk
field
Severity

Elastic Beanstalk field Message

Environme
nt update
successful

INFO Environment update completed successfully.

Environme
nt update
failed

ERROR Failed to deploy configuration.

Environme
nt
terminati
on started

INFO terminateEnvironment is starting.

Environme
nt
terminati
on
successful

INFO terminateEnvironment completed successfully.

Environme
nt
terminati
on failed

INFO The environment termination step failed because at
least one of the environment termination workflows
failed.

Auto
Scaling
group
created

INFO createEnvironment is starting.Other
resource
status
change

Auto
Scaling
group
deleted

INFO createEnvironment is starting.

Elastic Beanstalk event field mapping 1273

AWS Elastic Beanstalk Developer Guide

EventBrid
ge field
detail-type

Elastic
Beanstalk
field
Status

Elastic
Beanstalk
field
Severity

Elastic Beanstalk field Message

Instance
added

INFO Added instance [i-123456789a12b1234] to your
environment.

Instance
removed

INFO Removed instance [i-123456789a12b1234] from
your environment.

Load
balancer
created

INFO Created load balancer named: <LB Name>

Load
balancer
deleted

INFO Deleted load balancer named: <LB Name>

Environme
nt health
changed

INFO/
WARN

Environment health has transitioned to <healthSt
atus>.

Health
status
change

Environme
nt health
changed

INFO/
WARN

Environment health has transitioned from <healthSt
atus> to <healthStatus>.

Managed
updated
started

INFO Managed platform update is in-progress.Managed
update
status
change

Managed
update
failed

INFO Managed update failed, retrying in %s minutes.

Elastic Beanstalk event field mapping 1274

AWS Elastic Beanstalk Developer Guide

Finding and tracking Elastic Beanstalk resources with AWS
Config

AWS Config provides a detailed view of the configuration of AWS resources in your AWS account.
You can see how resources are related, get a history of configuration changes, and see how
relationships and configurations change over time. You can use AWS Config to define rules that
evaluate resource configurations for data compliance.

Several Elastic Beanstalk resource types are integrated with AWS Config:

• Applications

• Application Versions

• Environments

The following section shows how to configure AWS Config to record resources of these types.

For more information about AWS Config, see the AWS Config Developer Guide. For pricing
information, see the AWS Config pricing information page.

Setting up AWS Config

To initially set up AWS Config, see the following topics in the AWS Config Developer Guide.

• Setting up AWS Config with the Console

• Setting up AWS Config with the AWS CLI

Configuring AWS Config to record Elastic Beanstalk resources

By default, AWS Config records configuration changes for all supported types of regional resources
that it discovers in the region in which your environment is running. You can customize AWS Config
to record changes only for specific resource types, or changes to global resources.

For example, you can configure AWS Config to record changes for Elastic Beanstalk resources
and a subset of other AWS resources that Elastic Beanstalk starts for you. Using the AWS Config
Console, you can select Elastic Beanstalk as a resource in the AWS Config Settings page from the
Specific Types field. From there you can choose to record any of the Elastic Beanstalk resource
types: Application, ApplicationVersion, and Environment.

AWS Config 1275

https://aws.amazon.com/config/
https://docs.aws.amazon.com/config/latest/developerguide/
https://aws.amazon.com/config/pricing/
https://docs.aws.amazon.com/config/latest/developerguide/
https://docs.aws.amazon.com/config/latest/developerguide/gs-console.html
https://docs.aws.amazon.com/config/latest/developerguide/gs-cli.html
https://docs.aws.amazon.com/config/latest/developerguide/gs-console.html
https://docs.aws.amazon.com/config/latest/developerguide/gs-console.html

AWS Elastic Beanstalk Developer Guide

The following figure shows the AWS Config Settings page, with Elastic Beanstalk resource types
that you can choose to record: Application, ApplicationVersion, and Environment.

After you select a few resource types, this is how the Specific types list appears.

To learn about regional vs. global resources, and for the full customization procedure, see Selecting
which Resources AWS Config Records.

Viewing Elastic Beanstalk configuration details in the AWS Config
console

You can use the AWS Config console to look for Elastic Beanstalk resources, and get current and
historical details about their configurations. The following example shows how to find information
about an Elastic Beanstalk environment.

Viewing Elastic Beanstalk configuration details in the AWS Config console 1276

https://docs.aws.amazon.com/config/latest/developerguide/select-resources.html
https://docs.aws.amazon.com/config/latest/developerguide/select-resources.html

AWS Elastic Beanstalk Developer Guide

To find an Elastic Beanstalk environment in the AWS Config console

1. Open the AWS Config console.

2. Choose Resources.

3. On the Resource inventory page, choose Resources.

4. Open the Resource type menu, scroll to ElasticBeanstalk, and then choose one or more of the
Elastic Beanstalk resource types.

Note

To view configuration details for other resources that Elastic Beanstalk created for your
application, choose additional resource types. For example, you can choose Instance
under EC2.

5. Choose Look up. See 2 in the following figure.

6. Choose a resource ID in the list of resources that AWS Config displays.

Viewing Elastic Beanstalk configuration details in the AWS Config console 1277

https://console.aws.amazon.com/config

AWS Elastic Beanstalk Developer Guide

AWS Config displays configuration details and other information about the resource you selected.

Viewing Elastic Beanstalk configuration details in the AWS Config console 1278

AWS Elastic Beanstalk Developer Guide

To see the full details of the recorded configuration, choose View Details.

Viewing Elastic Beanstalk configuration details in the AWS Config console 1279

AWS Elastic Beanstalk Developer Guide

To learn more ways to find a resource and view information on this page, see Viewing AWS
Resource Configurations and History in the AWS Config Developer Guide.

Evaluating Elastic Beanstalk resources using AWS Config rules

You can create AWS Config rules, which represent the ideal configuration settings for your Elastic
Beanstalk resources. You can use predefined AWS Managed Config Rules, or define custom rules.
AWS Config continuously tracks changes to the configuration of your resources to determine
whether those changes violate any of the conditions in your rules. The AWS Config console shows
the compliance status of your rules and resources.

If a resource violates a rule and is flagged as noncompliant, AWS Config can alert you using an
Amazon Simple Notification Service (Amazon SNS) topic. To programmatically consume the data
in these AWS Config alerts, use an Amazon Simple Queue Service (Amazon SQS) queue as the
notification endpoint for the Amazon SNS topic. For example, you might want to write code that
starts a workflow when someone modifies your environment's Auto Scaling group configuration.

To learn more about setting up and using rules, see Evaluating Resources with AWS Config Rules in
the AWS Config Developer Guide.

Evaluating Elastic Beanstalk resources using AWS Config rules 1280

https://docs.aws.amazon.com/config/latest/developerguide/view-manage-resource.html
https://docs.aws.amazon.com/config/latest/developerguide/view-manage-resource.html
https://aws.amazon.com/sns/
https://aws.amazon.com/sqs/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html

AWS Elastic Beanstalk Developer Guide

Using Elastic Beanstalk with Amazon DynamoDB

Amazon DynamoDB is a fully managed NoSQL database service that provides fast and predictable
performance with seamless scalability. If you are a developer, you can use DynamoDB to create
a database table that can store and retrieve any amount of data, and serve any level of request
traffic. DynamoDB automatically spreads the data and traffic for the table over a sufficient number
of servers to handle the request capacity specified by the customer and the amount of data stored,
while maintaining consistent and fast performance. All data items are stored on solid state drives
(SSDs) and are automatically replicated across multiple Availability Zones in an AWS Region to
provide built-in high availability and data durability.

If you use periodic tasks in a worker environment, Elastic Beanstalk creates a DynamoDB table
and uses it to perform leader election and store information about the task. Each instance in the
environment attempts to write to the table every few seconds to become leader and perform the
task when scheduled.

You can use configuration files to create a DynamoDB table for your application. See eb-
node-express-sample on GitHub for a sample Node.js application that creates a table with a
configuration file and connects to it with the AWS SDK for JavaScript in Node.js. For an example
walkthrough using DynamoDB with PHP, see Example: DynamoDB, CloudWatch, and SNS. For an
example that uses the AWS SDK for Java, see Manage Tomcat Session State with DynamoDB in the
AWS SDK for Java documentation.

When you create a DynamoDB table using configuration files, the table isn't tied to your
environment's lifecycle, and isn't deleted when you terminate your environment. To ensure that
personal information isn't unnecessarily retained, delete any records that you don't need anymore,
or delete the table.

For more information about DynamoDB, see the DynamoDB Developer Guide.

Using Elastic Beanstalk with Amazon ElastiCache

Amazon ElastiCache is a web service that enables setting up, managing, and scaling distributed
in-memory cache environments in the cloud. It provides a high-performance, scalable, and
cost-effective in-memory cache, while removing the complexity associated with deploying and
managing a distributed cache environment. ElastiCache is protocol-compliant with Redis and
Memcached, so the code, applications, and most popular tools that you use today with your

DynamoDB 1281

https://github.com/awslabs/eb-node-express-sample
https://github.com/awslabs/eb-node-express-sample
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/java-dg-tomcat-session-manager.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/

AWS Elastic Beanstalk Developer Guide

existing Redis and Memcached environments will work seamlessly with the service. For more
information about ElastiCache, go to the Amazon ElastiCache product page.

To use Elastic Beanstalk with Amazon ElastiCache

1. Create an ElastiCache cluster.

• For instructions on how to create an ElastiCache cluster with Redis, go to Getting Started
with Amazon ElastiCache for Redis in the ElastiCache for Redis User Guide.

• For instructions on how to create an ElastiCache cluster with Memcached, go to Getting
Started with Amazon ElastiCache for Memcached in the ElastiCache for Memcached User
Guide.

2. Configure your ElastiCache Security Group to allow access from the Amazon EC2 security
group used by your Elastic Beanstalk application. For instructions on how to find the name of
your EC2 security group using the AWS Management Console, see Security groups on the EC2
Instances document page.

• For more information on Redis, go to Authorize Access in the ElastiCache for Redis User
Guide.

• For more information on Memcached, go to Authorize Access in the ElastiCache for
Memcached User Guide.

You can use configuration files to customize your Elastic Beanstalk environment to use ElastiCache.
For configuration file examples that integrate ElastiCache with Elastic Beanstalk, see Example:
ElastiCache.

Using Elastic Beanstalk with Amazon Elastic File System

With Amazon Elastic File System (Amazon EFS), you can create network file systems that can be
mounted by instances across multiple Availability Zones. An Amazon EFS file system is an AWS
resource that uses security groups to control access over the network that's in your default or
custom VPC.

In an Elastic Beanstalk environment, you can use Amazon EFS to create a shared directory that
stores files for your application that users upload and modify. Your application can treat a mounted
Amazon EFS volume such as local storage. That way, you don't have to change your application
code to scale up to multiple instances.

Amazon EFS 1282

https://aws.amazon.com/elasticache/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/GettingStarted.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/GettingStarted.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/GettingStarted.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/GettingStarted.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/GettingStarted.AuthorizeAccess.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/GettingStarted.AuthorizeAccess.html

AWS Elastic Beanstalk Developer Guide

For more information about Amazon EFS, see the Amazon Elastic File System User Guide.

Note

Elastic Beanstalk creates a webapp user that you can set up as the owner for application
directories on Amazon EC2 instances. For more information, see Persistent Storage in the
Design considerations topic of this guide.

Sections

• Configuration files

• Encrypted file systems

• Sample applications

• Cleaning up file systems

Configuration files

Elastic Beanstalk provides configuration files that you can use to create and mount Amazon EFS file
systems. You can create an Amazon EFS volume as part of your environment, or mount an Amazon
EFS volume that you created independently of Elastic Beanstalk.

• storage-efs-createfilesystem.config – Uses the Resources key to create a new file system and
mount points in Amazon EFS. All instances in your environment can connect to the same file
system for shared, scalable storage. Use storage-efs-mountfilesystem.config to mount
the file system on each instance.

Internal resources

Any resources that you create with configuration files are tied to the lifecycle of your
environment. If you terminate your environment or remove the configuration file, these
resources are lost.

• storage-efs-mountfilesystem.config – Mount an Amazon EFS file system to a local path on
the instances in your environment. You can create the volume as part of the environment with
storage-efs-createfilesystem.config. Or, you can mount it to your environment using
the Amazon EFS console, AWS CLI, or AWS SDK.

Configuration files 1283

https://docs.aws.amazon.com/efs/latest/ug/
https://github.com/awslabs/elastic-beanstalk-samples/blob/master/configuration-files/aws-provided/instance-configuration/storage-efs-createfilesystem.config
https://github.com/awslabs/elastic-beanstalk-samples/blob/master/configuration-files/aws-provided/instance-configuration/storage-efs-mountfilesystem.config

AWS Elastic Beanstalk Developer Guide

To use the configuration files, start by creating your Amazon EFS file system with storage-efs-
createfilesystem.config. Follow the instructions in the configuration file and add it to the
.ebextensions directory in your source code to create the file system in your VPC.

Deploy your updated source code to your Elastic Beanstalk environment. This is to confirm that the
file system was created successfully. Then, add the storage-efs-mountfilesystem.config
to mount the file system to the instances in your environment. Doing this in two separate
deployments ensures that, if the mount operation fails, the file system is kept intact. If you do both
in the same deployment, an issue with either step will cause the file system to terminate when the
deployment fails.

Encrypted file systems

Amazon EFS supports encrypted file systems. The storage-efs-createfilesystem.config
configuration file that's discussed in this topic defines two custom options. You can use these
options to create an Amazon EFS encrypted file system. For more information, refer to the
instructions in the configuration file.

Sample applications

Elastic Beanstalk also provides sample applications that use Amazon EFS for shared storage. The
two projects have configuration files that you can use with a standard WordPress or Drupal installer
to run a blog or other content management system in a load-balanced environment. When a user
uploads a photo or other media, the file is stored on an Amazon EFS file system. This avoids having
to use the alternative, which is using a plugin to store uploaded files in Amazon S3.

• Load-balanced WordPress – This includes the configuration files to install WordPress securely
and run it in a load-balanced Elastic Beanstalk environment.

• Load-balanced Drupal – This includes the configuration files and instructions for installing
Drupal securely and running it in a load-balanced Elastic Beanstalk environment.

Cleaning up file systems

If you created an Amazon EFS file system that uses a configuration file as part of your Elastic
Beanstalk environment, Elastic Beanstalk removes the file system when you terminate the
environment. To minimize storage costs of a running application, routinely delete files that your
application doesn't need. Or, ensure that the application code maintains file lifecycle correctly.

Encrypted file systems 1284

https://github.com/awslabs/elastic-beanstalk-samples/blob/master/configuration-files/aws-provided/instance-configuration/storage-efs-createfilesystem.config
https://github.com/awslabs/eb-php-wordpress
https://github.com/awslabs/eb-php-drupal

AWS Elastic Beanstalk Developer Guide

Important

If you created an Amazon EFS file system that's outside of an Elastic Beanstalk environment
and mounted it to the environment's instances, Elastic Beanstalk doesn't remove the file
system when you terminate the environment. To ensure that your personal information
isn't retained and avoid storage costs, delete the files that your application stored if you
don't need them anymore. Alternatively, you can remove the entire file system.

Using Elastic Beanstalk with AWS Identity and Access
Management

AWS Identity and Access Management (IAM) helps you securely control access to your AWS
resources. This section includes reference materials for working with IAM policies, instance profiles,
and service roles.

For an overview of permissions, see Service roles, instance profiles, and user policies. For most
environments, the service role and instance profile that the Elastic Beanstalk console prompts
you to create when you launch your first environment have all of the permissions that you need.
Likewise, the managed policies provided by Elastic Beanstalk for full access and read-only access
contain all of the user permissions required for daily use.

The IAM User Guide provides in-depth coverage of AWS permissions.

Topics

• Managing Elastic Beanstalk instance profiles

• Managing Elastic Beanstalk service roles

• Using service-linked roles for Elastic Beanstalk

• Managing Elastic Beanstalk user policies

• Amazon resource name format for Elastic Beanstalk

• Resources and conditions for Elastic Beanstalk actions

• Using tags to control access to Elastic Beanstalk resources

• Example policies based on managed policies

• Example policies based on resource permissions

IAM 1285

https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMGettingStarted.html

AWS Elastic Beanstalk Developer Guide

Managing Elastic Beanstalk instance profiles

An instance profile is a container for an AWS Identity and Access Management (IAM) role that you
can use to pass role information to an Amazon EC2 instance when the instance starts.

If your AWS account doesn’t have an EC2 instance profile, you must create one using the IAM
service. You can then assign the EC2 instance profile to new environments that you create. The
Create environment wizard provides information to guide you through the IAM service, so that
you can create an EC2 instance profile with the required permissions. After creating the instance
profile, you can return to the console to select it as the EC2 instance profile and continue the steps
to create your environment.

Note

Previously Elastic Beanstalk created a default EC2 instance profile named aws-
elasticbeanstalk-ec2-role the first time an AWS account created an environment.
This instance profile included default managed policies. If your account already has this
instance profile, it will remain available for you to assign to your environments.
However, recent AWS security guidelines don’t allow an AWS service to automatically create
roles with trust policies to other AWS services, EC2 in this case. Because of these security
guidelines, Elastic Beanstalk no longer creates a default aws-elasticbeanstalk-ec2-
role instance profile.

Managed policies

Elastic Beanstalk provides several managed policies to allow your environment to meet different
use cases. To meet the default use cases for an environment, these policies must be attached to the
role for the EC2 instance profile.

• AWSElasticBeanstalkWebTier – Grants permissions for the application to upload logs to
Amazon S3 and debugging information to AWS X-Ray. To view the managed policy content, see
AWSElasticBeanstalkWebTier in the AWS Managed Policy Reference Guide.

• AWSElasticBeanstalkWorkerTier – Grants permissions for log uploads, debugging, metric
publication, and worker instance tasks, including queue management, leader election, and
periodic tasks. To view the managed policy content, see AWSElasticBeanstalkWorkerTier in the
AWS Managed Policy Reference Guide.

Instance profiles 1286

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSElasticBeanstalkWebTier.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSElasticBeanstalkWorkerTier.html

AWS Elastic Beanstalk Developer Guide

• AWSElasticBeanstalkMulticontainerDocker – Grants permissions for the Amazon Elastic
Container Service to coordinate cluster tasks for Docker environments. To view the managed
policy content, see AWSElasticBeanstalkMulticontainerDocker in the AWS Managed Policy
Reference Guide.

Trust relationship policy for EC2

To allow the EC2 instances in your environment to assume the required role, the instance profile
must specify Amazon EC2 as a trusted entity in the trust relationship policy, as follows.

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

To customize permissions, you can add policies to the role attached to the default instance profile
or create your own instance profile with a restricted set of permissions.

Sections

• Creating an instance profile

• Verifying the permissions assigned your instance profile

• Updating an out-of-date default instance profile

• Adding permissions to the default instance profile

Creating an instance profile

An instance profile is a wrapper around a standard IAM role that allows an EC2 instance to
assume the role. You can create additional instance profiles to customize permissions for different
applications. Or you can create an instance profile that doesn't grant permissions for worker tier or
ECS managed Docker environments, if you don't use those features.

Instance profiles 1287

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSElasticBeanstalkMulticontainerDocker.html

AWS Elastic Beanstalk Developer Guide

To create an instance profile

1. Open the Roles page in the IAM console.

2. Choose Create role.

3. Under Trusted entity type, choose AWS service.

4. Under Use case, choose EC2.

5. Choose Next.

6. Attach the appropriate managed policies provided by Elastic Beanstalk and any additional
policies that provide permissions that your application needs.

7. Choose Next.

8. Enter a name for the role.

9. (Optional) Add tags to the role.

10. Choose Create role.

Verifying the permissions assigned your instance profile

The permissions assigned to your default instance profile can vary depending on when it was
created, the last time you launched an environment, and which client you used. You can verify the
permissions on the default instance profile in the IAM console.

To verify the default instance profile's permissions

1. Open the Roles page in the IAM console.

2. Choose the role assigned as your EC2 instance profile.

3. On the Permissions tab, review the list of policies attached to the role.

4. To see the permissions that a policy grants, choose the policy.

Updating an out-of-date default instance profile

If the default instance profile lacks the required permissions, you can add the managed policies to
the role assigned as your EC2 instance profile manually.

To add managed policies to the role attached to the default instance profile

1. Open the Roles page in the IAM console.

Instance profiles 1288

https://console.aws.amazon.com/iam/home#roles
https://console.aws.amazon.com/iam/home#roles
https://console.aws.amazon.com/iam/home#roles

AWS Elastic Beanstalk Developer Guide

2. Choose the role assigned as your EC2 instance profile.

3. On the Permissions tab, choose Attach policies.

4. Type AWSElasticBeanstalk to filter the policies.

5. Select the following policies, and then choose Attach policy:

• AWSElasticBeanstalkWebTier

• AWSElasticBeanstalkWorkerTier

• AWSElasticBeanstalkMulticontainerDocker

Adding permissions to the default instance profile

If your application accesses AWS APIs or resources to which permissions aren't granted in the
default instance profile, add policies that grant permissions in the IAM console.

To add policies to the role attached to the default instance profile

1. Open the Roles page in the IAM console.

2. Choose the role assigned as your EC2 instance profile.

3. On the Permissions tab, choose Attach policies.

4. Select the managed policy for the additional services that your application uses. For example,
AmazonS3FullAccess or AmazonDynamoDBFullAccess.

5. Choose Attach policy.

Managing Elastic Beanstalk service roles

To manage and monitor your environment, AWS Elastic Beanstalk performs actions on
environment resources on your behalf. Elastic Beanstalk needs certain permissions to perform
these actions, and it assumes AWS Identity and Access Management (IAM) service roles to get these
permissions.

Elastic Beanstalk needs to use temporary security credentials whenever it assumes a service role.
To get these credentials, Elastic Beanstalk sends a request to AWS Security Token Service (AWS
STS) on a Region specific endpoint. For more information, see Temporary Security Credentials in
the IAM User Guide.

Service roles 1289

https://console.aws.amazon.com/iam/home#roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

AWS Elastic Beanstalk Developer Guide

Note

If the AWS STS endpoint for the Region where your environment is located is deactivated,
Elastic Beanstalk sends the request on an alternative endpoint that can't be deactivated.
This endpoint is associated with a different Region. Therefore, the request is a cross-Region
request. For more information, see Activating and Deactivating AWS STS in an AWS Region
in the IAM User Guide.

Managing service roles using the Elastic Beanstalk console and EB CLI

You can use the Elastic Beanstalk console and EB CLI to set up service roles for your environment
with a sufficient set of permissions. They create a default service role and use managed policies in
it.

Managed service role policies

Elastic Beanstalk provides one managed policy for enhanced health monitoring, and another one
with additional permissions required for managed platform updates. The console and EB CLI assign
both of these policies to the default service role that they create for you. These policies should
only be used for this default service role. They should not be used with other users or roles in your
accounts.

AWSElasticBeanstalkEnhancedHealth

This policy grants permissions for Elastic Beanstalk to monitor instance and environment health.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:DescribeInstanceHealth",
 "elasticloadbalancing:DescribeLoadBalancers",
 "elasticloadbalancing:DescribeTargetHealth",
 "ec2:DescribeInstances",
 "ec2:DescribeInstanceStatus",
 "ec2:GetConsoleOutput",
 "ec2:AssociateAddress",
 "ec2:DescribeAddresses",

Service roles 1290

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html

AWS Elastic Beanstalk Developer Guide

 "ec2:DescribeSecurityGroups",
 "sqs:GetQueueAttributes",
 "sqs:GetQueueUrl",
 "autoscaling:DescribeAutoScalingGroups",
 "autoscaling:DescribeAutoScalingInstances",
 "autoscaling:DescribeScalingActivities",
 "autoscaling:DescribeNotificationConfigurations",
 "sns:Publish"
],
 "Resource": [
 "*"
]
 }
]
}

AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy

This policy grants permissions for Elastic Beanstalk to update environments on your behalf to
perform managed platform updates.

Service-level permission groupings

This policy is grouped into statements based on the set of permissions provided.

• ElasticBeanstalkPermissions – This group of permissions is for calling the Elastic
Beanstalk service actions (Elastic Beanstalk APIs).

• AllowPassRoleToElasticBeanstalkAndDownstreamServices – This group of permissions
allows any role to be passed to Elastic Beanstalk and to other downstream services like AWS
CloudFormation.

• ReadOnlyPermissions – This group of permissions is for collecting information about the
running environment.

• *OperationPermissions – Groups with this naming pattern are for calling the necessary
operations to perform platform updates.

• *BroadOperationPermissions – Groups with this naming pattern are for calling the
necessary operations to perform platform updates. They also include broad permissions for
supporting legacy environments.

• *TagResource – Groups with this naming pattern are for calls that use the tag-on-create APIs
to attach tags on resources that are being created in an Elastic Beanstalk environment.

Service roles 1291

AWS Elastic Beanstalk Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ElasticBeanstalkPermissions",
 "Effect": "Allow",
 "Action": [
 "elasticbeanstalk:*"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowPassRoleToElasticBeanstalkAndDownstreamServices",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::*:role/*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "elasticbeanstalk.amazonaws.com",
 "ec2.amazonaws.com",
 "ec2.amazonaws.com.cn",
 "autoscaling.amazonaws.com",
 "elasticloadbalancing.amazonaws.com",
 "ecs.amazonaws.com",
 "cloudformation.amazonaws.com"
]
 }
 }
 },
 {
 "Sid": "ReadOnlyPermissions",
 "Effect": "Allow",
 "Action": [
 "autoscaling:DescribeAccountLimits",
 "autoscaling:DescribeAutoScalingGroups",
 "autoscaling:DescribeAutoScalingInstances",
 "autoscaling:DescribeLaunchConfigurations",
 "autoscaling:DescribeLoadBalancers",
 "autoscaling:DescribeNotificationConfigurations",
 "autoscaling:DescribeScalingActivities",
 "autoscaling:DescribeScheduledActions",
 "ec2:DescribeAccountAttributes",

Service roles 1292

AWS Elastic Beanstalk Developer Guide

 "ec2:DescribeAddresses",
 "ec2:DescribeAvailabilityZones",
 "ec2:DescribeImages",
 "ec2:DescribeInstanceAttribute",
 "ec2:DescribeInstances",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeLaunchTemplates",
 "ec2:DescribeLaunchTemplateVersions",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSnapshots",
 "ec2:DescribeSpotInstanceRequests",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcClassicLink",
 "ec2:DescribeVpcs",
 "elasticloadbalancing:DescribeInstanceHealth",
 "elasticloadbalancing:DescribeLoadBalancers",
 "elasticloadbalancing:DescribeTargetGroups",
 "elasticloadbalancing:DescribeTargetHealth",
 "logs:DescribeLogGroups",
 "rds:DescribeDBEngineVersions",
 "rds:DescribeDBInstances",
 "rds:DescribeOrderableDBInstanceOptions",
 "sns:ListSubscriptionsByTopic"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "EC2BroadOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "ec2:AllocateAddress",
 "ec2:AssociateAddress",
 "ec2:AuthorizeSecurityGroupEgress",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CreateLaunchTemplate",
 "ec2:CreateLaunchTemplateVersion",
 "ec2:CreateSecurityGroup",
 "ec2:DeleteLaunchTemplate",
 "ec2:DeleteLaunchTemplateVersions",
 "ec2:DeleteSecurityGroup",
 "ec2:DisassociateAddress",
 "ec2:ReleaseAddress",

Service roles 1293

AWS Elastic Beanstalk Developer Guide

 "ec2:RevokeSecurityGroupEgress",
 "ec2:RevokeSecurityGroupIngress"
],
 "Resource": "*"
 },
 {
 "Sid": "EC2RunInstancesOperationPermissions",
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "ec2:LaunchTemplate": "arn:aws:ec2:*:*:launch-template/*"
 }
 }
 },
 {
 "Sid": "EC2TerminateInstancesOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "ec2:TerminateInstances"
],
 "Resource": "arn:aws:ec2:*:*:instance/*",
 "Condition": {
 "StringLike": {
 "ec2:ResourceTag/aws:cloudformation:stack-id": [
 "arn:aws:cloudformation:*:*:stack/awseb-e-*",
 "arn:aws:cloudformation:*:*:stack/eb-*"
]
 }
 }
 },
 {
 "Sid": "ECSBroadOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "ecs:CreateCluster",
 "ecs:DescribeClusters",
 "ecs:RegisterTaskDefinition"
],
 "Resource": "*"
 },
 {
 "Sid": "ECSDeleteClusterOperationPermissions",

Service roles 1294

AWS Elastic Beanstalk Developer Guide

 "Effect": "Allow",
 "Action": "ecs:DeleteCluster",
 "Resource": "arn:aws:ecs:*:*:cluster/awseb-*"
 },
 {
 "Sid": "ASGOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "autoscaling:AttachInstances",
 "autoscaling:CreateAutoScalingGroup",
 "autoscaling:CreateLaunchConfiguration",
 "autoscaling:CreateOrUpdateTags",
 "autoscaling:DeleteLaunchConfiguration",
 "autoscaling:DeleteAutoScalingGroup",
 "autoscaling:DeleteScheduledAction",
 "autoscaling:DetachInstances",
 "autoscaling:DeletePolicy",
 "autoscaling:PutScalingPolicy",
 "autoscaling:PutScheduledUpdateGroupAction",
 "autoscaling:PutNotificationConfiguration",
 "autoscaling:ResumeProcesses",
 "autoscaling:SetDesiredCapacity",
 "autoscaling:SuspendProcesses",
 "autoscaling:TerminateInstanceInAutoScalingGroup",
 "autoscaling:UpdateAutoScalingGroup"
],
 "Resource": [
 "arn:aws:autoscaling:*:*:launchConfiguration:*:launchConfigurationName/
awseb-e-*",
 "arn:aws:autoscaling:*:*:launchConfiguration:*:launchConfigurationName/
eb-*",
 "arn:aws:autoscaling:*:*:autoScalingGroup:*:autoScalingGroupName/awseb-
e-*",
 "arn:aws:autoscaling:*:*:autoScalingGroup:*:autoScalingGroupName/eb-*"
]
 },
 {
 "Sid": "CFNOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "cloudformation:*"
],
 "Resource": [
 "arn:aws:cloudformation:*:*:stack/awseb-*",

Service roles 1295

AWS Elastic Beanstalk Developer Guide

 "arn:aws:cloudformation:*:*:stack/eb-*"
]
 },
 {
 "Sid": "ELBOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:AddTags",
 "elasticloadbalancing:ApplySecurityGroupsToLoadBalancer",
 "elasticloadbalancing:ConfigureHealthCheck",
 "elasticloadbalancing:CreateLoadBalancer",
 "elasticloadbalancing:DeleteLoadBalancer",
 "elasticloadbalancing:DeregisterInstancesFromLoadBalancer",
 "elasticloadbalancing:DeregisterTargets",
 "elasticloadbalancing:RegisterInstancesWithLoadBalancer",
 "elasticloadbalancing:RegisterTargets"
],
 "Resource": [
 "arn:aws:elasticloadbalancing:*:*:targetgroup/awseb-*",
 "arn:aws:elasticloadbalancing:*:*:targetgroup/eb-*",
 "arn:aws:elasticloadbalancing:*:*:loadbalancer/awseb-*",
 "arn:aws:elasticloadbalancing:*:*:loadbalancer/eb-*",
 "arn:aws:elasticloadbalancing:*:*:loadbalancer/*/awseb-*/*",
 "arn:aws:elasticloadbalancing:*:*:loadbalancer/*/eb-*/*"
]
 },
 {
 "Sid": "CWLogsOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:DeleteLogGroup",
 "logs:PutRetentionPolicy"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/elasticbeanstalk/*"
 },
 {
 "Sid": "S3ObjectOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:GetObjectAcl",
 "s3:GetObjectVersion",

Service roles 1296

AWS Elastic Beanstalk Developer Guide

 "s3:GetObjectVersionAcl",
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:PutObjectVersionAcl"
],
 "Resource": "arn:aws:s3:::elasticbeanstalk-*/*"
 },
 {
 "Sid": "S3BucketOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetBucketPolicy",
 "s3:ListBucket",
 "s3:PutBucketPolicy"
],
 "Resource": "arn:aws:s3:::elasticbeanstalk-*"
 },
 {
 "Sid": "SNSOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "sns:CreateTopic",
 "sns:GetTopicAttributes",
 "sns:SetTopicAttributes",
 "sns:Subscribe"
],
 "Resource": "arn:aws:sns:*:*:ElasticBeanstalkNotifications-*"
 },
 {
 "Sid": "SQSOperationPermissions",
 "Effect": "Allow",
 "Action": [
 "sqs:GetQueueAttributes",
 "sqs:GetQueueUrl"
],
 "Resource": [
 "arn:aws:sqs:*:*:awseb-e-*",
 "arn:aws:sqs:*:*:eb-*"
]
 },
 {
 "Sid": "CWPutMetricAlarmOperationPermissions",
 "Effect": "Allow",

Service roles 1297

AWS Elastic Beanstalk Developer Guide

 "Action": [
 "cloudwatch:PutMetricAlarm"
],
 "Resource": [
 "arn:aws:cloudwatch:*:*:alarm:awseb-*",
 "arn:aws:cloudwatch:*:*:alarm:eb-*"
]
 },
 {
 "Sid": "AllowECSTagResource",
 "Effect": "Allow",
 "Action": [
 "ecs:TagResource"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ecs:CreateAction": [
 "CreateCluster",
 "RegisterTaskDefinition"
]
 }
 }
 }
]
}

To view the content of a managed policy, you can also use the Policies page in the IAM console.

Note

In the past, Elastic Beanstalk supported the AWSElasticBeanstalkService
managed service role policy. This policy has been replaced by
AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy. You might still be able to see
and use the earlier policy in the IAM console.
To view the managed policy content, see AWSElasticBeanstalkService in the AWS Managed
Policy Reference Guide.
However, we recommend that you transition to using the new managed policy
(AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy). Add custom policies to
grant permissions to custom resources, if you have any.

Service roles 1298

https://console.aws.amazon.com/iam/home#policies
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSElasticBeanstalkService.html

AWS Elastic Beanstalk Developer Guide

Using the Elastic Beanstalk console

When you launch an environment in the Elastic Beanstalk console, the console creates a default
service role that's named aws-elasticbeanstalk-service-role, and attaches managed
policies with default permissions to this service role.

To allow Elastic Beanstalk to assume the aws-elasticbeanstalk-service-role role, the
service role specifies Elastic Beanstalk as a trusted entity in the trust relationship policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "elasticbeanstalk.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "sts:ExternalId": "elasticbeanstalk"
 }
 }
 }
]
}

When you enable managed platform updates for your environment, Elastic Beanstalk assumes
a separate managed-updates service role to perform managed updates. By default, the Elastic
Beanstalk console uses the same generated service role, aws-elasticbeanstalk-service-
role, for the managed-updates service role. If you change your default service role, the
console sets the managed-updates service role to use the managed-updates service-linked role,
AWSServiceRoleForElasticBeanstalkManagedUpdates. For more information about
service-linked roles, see the section called “Using service-linked roles”.

Note

Because of permission issues, the Elastic Beanstalk service doesn't always successfully
create this service-linked role for you. Therefore, the console tries to explicitly create it.
To ensure your account has this service-linked role, create an environment at least once

Service roles 1299

AWS Elastic Beanstalk Developer Guide

using the console, and configure managed updates to be enabled before you create the
environment.

Using the EB CLI

If you launch an environment using the the section called “eb create” command of the
Elastic Beanstalk Command Line Interface (EB CLI) and don't specify a service role through
the --service-role option, Elastic Beanstalk creates the default service role aws-
elasticbeanstalk-service-role. If the default service role already exists, Elastic Beanstalk
uses it for the new environment. The Elastic Beanstalk console also performs similar actions in
these situations.

Unlike in the console, you can't specify a managed-updates service role when using an EB CLI
command option. If you enable managed updates for your environment, you must set the
managed-updates service role though configuration options. The following example enables
managed updates and uses the default service role as a managed-updates service role.

Example .ebextensions/managed-platform-update.config

option_settings:
 aws:elasticbeanstalk:managedactions:
 ManagedActionsEnabled: true
 PreferredStartTime: "Tue:09:00"
 ServiceRoleForManagedUpdates: "aws-elasticbeanstalk-service-role"
 aws:elasticbeanstalk:managedactions:platformupdate:
 UpdateLevel: patch
 InstanceRefreshEnabled: true

Managing service roles using the Elastic Beanstalk API

When you use the CreateEnvironment action of the Elastic Beanstalk API to create an
environment, specify a service role using the ServiceRole configuration option in the
aws:elasticbeanstalk:environment namespace. For more information about using
enhanced health monitoring with the Elastic Beanstalk API, see Using enhanced health reporting
with the Elastic Beanstalk API.

In addition, if you enable managed platform updates for your environment, you can specify a
managed-updates service role using the ServiceRoleForManagedUpdates option of the
aws:elasticbeanstalk:managedactions namespace.

Service roles 1300

AWS Elastic Beanstalk Developer Guide

Using service-linked roles

A service-linked role is a unique type of service role that's predefined by Elastic Beanstalk to
include all the permissions that the service requires to call other AWS services on your behalf. The
service-linked role is associated with your account. Elastic Beanstalk creates it once, then reuses it
when creating additional environments. For more information about using service-linked roles with
Elastic Beanstalk environments, see Using service-linked roles for Elastic Beanstalk.

If you create an environment by using the Elastic Beanstalk API and don't specify a service role,
Elastic Beanstalk creates a monitoring service-linked role for your account, if one doesn't already
exist. Elastic Beanstalk uses this role for the new environment. You can also use IAM to create a
monitoring service-linked role for your account in advance. After your account has this role, you
can use it to create an environment using the Elastic Beanstalk API, the Elastic Beanstalk console,
or the EB CLI.

If you enable managed platform updates for the environment and specify
AWSServiceRoleForElasticBeanstalkManagedUpdates as the value for the
ServiceRoleForManagedUpdates option of the aws:elasticbeanstalk:managedactions
namespace, Elastic Beanstalk creates a managed-updates service-linked role for your account, if
one doesn't already exist. Elastic Beanstalk uses the role to perform managed updates for the new
environment.

Note

When Elastic Beanstalk tries to create the monitoring and managed-updates service-
linked roles for your account when you create an environment, you must have the
iam:CreateServiceLinkedRole permission. If you don't have this permission,
environment creation fails, and a message explaining the issue is displayed.
As an alternative, another user with permission to create service-linked roles can use
IAM to create the service linked-role in advance. Using this method, you don't need the
iam:CreateServiceLinkedRole permission to create your environment.

Verifying the default service role permissions

The permissions granted by your default service role can vary based on when they were created,
the last time you launched an environment, and which client you used. In the IAM console, you can
verify the permissions granted by the default service role.

Service roles 1301

AWS Elastic Beanstalk Developer Guide

To verify the default service role's permissions

1. In the IAM console, open the Roles page.

2. Choose aws-elasticbeanstalk-service-role.

3. On the Permissions tab, review the list of policies attached to the role.

4. To view the permissions that a policy grants, choose the policy.

Updating an out-of-date default service role

If the default service role lacks the required permissions, you can update it by creating a new
environment in the Elastic Beanstalk environment management console.

Alternatively, you can manually add the managed policies to the default service role.

To add managed policies to the default service role

1. In the IAM console, open the Roles page .

2. Choose aws-elasticbeanstalk-service-role.

3. On the Permissions tab, choose Attach policies.

4. Enter AWSElasticBeanstalk to filter the policies.

5. Select the following policies, and then choose Attach policy:

• AWSElasticBeanstalkEnhancedHealth

• AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy

Adding permissions to the default service role

If your application includes configuration files that refer to AWS resources that permissions aren't
included in the default service role for, Elastic Beanstalk might need additional permissions. These
additional permissions are needed to resolve these references when it processes the configuration
files during a managed update. If the permissions are missing, the update fails, and Elastic
Beanstalk returns a message indicating which permissions it needs. Follow these steps to add
permissions for additional services to the default service role in the IAM console.

To add additional policies to the default service role

1. In the IAM console, open the Roles page.

Service roles 1302

https://console.aws.amazon.com/iam/home#roles
https://console.aws.amazon.com/iam/home#roles
https://console.aws.amazon.com/iam/home#roles

AWS Elastic Beanstalk Developer Guide

2. Choose aws-elasticbeanstalk-service-role.

3. On the Permissions tab, choose Attach policies.

4. Select the managed policy for the additional services that your application uses. For example,
AmazonAPIGatewayAdministrator or AmazonElasticFileSystemFullAccess.

5. Choose Attach policy.

Creating a service role

If you can't use the default service role, create a service role.

To create a service role

1. In the IAM console, open the Roles page.

2. Choose Create role.

3. Under AWS service, choose AWS Elastic Beanstalk, and then select your use case.

4. Choose Next: Permissions.

5. Attach the AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy and
AWSElasticBeanstalkEnhancedHealth managed policies and any additional policies that
provide permissions that your application needs.

6. Choose Next: Tags.

7. (Optional) Add tags to the role.

8. Choose Next: Review.

9. Enter a name for the role.

10. Choose Create role.

Apply your custom service role when you create an environment either using the environment
creation wizard or with the --service-role option for the eb create command.

Using service-linked roles for Elastic Beanstalk

AWS Elastic Beanstalk uses AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to Elastic Beanstalk. Service-
linked roles are predefined by Elastic Beanstalk and include all the permissions that the service
requires to call other AWS services on your behalf.

Using service-linked roles 1303

https://console.aws.amazon.com/iam/home#roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk defines a few types of service-linked roles:

• Monitoring service-linked role – Allows Elastic Beanstalk to monitor the health of running
environments and publish health event notifications.

• Maintenance service-linked role – Allows Elastic Beanstalk to perform regular maintenance
activities for your running environments.

• Managed-updates service-linked role – Allows Elastic Beanstalk to perform scheduled platform
updates of your running environments.

Topics

• The monitoring service-linked role

• The maintenance service-linked role

• The managed-updates service-linked role

The monitoring service-linked role

AWS Elastic Beanstalk uses AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to Elastic Beanstalk. Service-
linked roles are predefined by Elastic Beanstalk and include all the permissions that the service
requires to call other AWS services on your behalf.

A service-linked role makes setting up Elastic Beanstalk easier because you don’t have to manually
add the necessary permissions. Elastic Beanstalk defines the permissions of its service-linked roles,
and unless defined otherwise, only Elastic Beanstalk can assume its roles. The defined permissions
include the trust policy and the permissions policy, and that permissions policy cannot be attached
to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects
your Elastic Beanstalk resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, see AWS Services That Work
with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Using service-linked roles 1304

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Elastic Beanstalk Developer Guide

Service-linked role permissions for Elastic Beanstalk

Elastic Beanstalk uses the service-linked role named AWSServiceRoleForElasticBeanstalk –
Allows Elastic Beanstalk to monitor the health of running environments and publish health event
notifications.

The AWSServiceRoleForElasticBeanstalk service-linked role trusts the following services to assume
the role:

• elasticbeanstalk.amazonaws.com

The permissions policy of the AWSServiceRoleForElasticBeanstalk service-linked role contains all of
the permissions that Elastic Beanstalk needs to complete actions on your behalf:

AllowCloudformationReadOperationsOnElasticBeanstalkStacks

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCloudformationReadOperationsOnElasticBeanstalkStacks",
 "Effect": "Allow",
 "Action": [
 "cloudformation:DescribeStackResource",
 "cloudformation:DescribeStackResources",
 "cloudformation:DescribeStacks"
],
 "Resource": [
 "arn:aws:cloudformation:*:*:stack/awseb-*",
 "arn:aws:cloudformation:*:*:stack/eb-*"
]
 },
 {
 "Sid": "AllowOperations",
 "Effect": "Allow",
 "Action": [
 "autoscaling:DescribeAutoScalingGroups",
 "autoscaling:DescribeAutoScalingInstances",
 "autoscaling:DescribeNotificationConfigurations",
 "autoscaling:DescribeScalingActivities",
 "autoscaling:PutNotificationConfiguration",
 "ec2:DescribeInstanceStatus",

Using service-linked roles 1305

AWS Elastic Beanstalk Developer Guide

 "ec2:AssociateAddress",
 "ec2:DescribeAddresses",
 "ec2:DescribeInstances",
 "ec2:DescribeSecurityGroups",
 "elasticloadbalancing:DescribeInstanceHealth",
 "elasticloadbalancing:DescribeLoadBalancers",
 "elasticloadbalancing:DescribeTargetHealth",
 "elasticloadbalancing:DescribeTargetGroups",
 "sqs:GetQueueAttributes",
 "sqs:GetQueueUrl",
 "sns:Publish"
],
 "Resource": [
 "*"
]
 }
]
}

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

Alternatively, you can use an AWS managed policy to provide full access to Elastic Beanstalk.

Creating a service-linked role for Elastic Beanstalk

You don't need to manually create a service-linked role. When you create an Elastic Beanstalk
environment using the Elastic Beanstalk API and don't specify a service role, Elastic Beanstalk
creates the service-linked role for you.

Important

If you were using the Elastic Beanstalk service before September 27, 2017, when it began
supporting the AWSServiceRoleForElasticBeanstalk service-linked role, and your account
needed it, then Elastic Beanstalk created the AWSServiceRoleForElasticBeanstalk role in
your account. To learn more, see A New Role Appeared in My IAM Account.

When Elastic Beanstalk tries to create the AWSServiceRoleForElasticBeanstalk service-
linked role for your account when you create an environment, you must have the

Using service-linked roles 1306

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared

AWS Elastic Beanstalk Developer Guide

iam:CreateServiceLinkedRole permission. If you don't have this permission, environment
creation fails, and you see a message explaining the issue.

As an alternative, another user with permission to create service-linked roles can use IAM to pre-
create the service linked-role in advance. You can then create your environment even without
having the iam:CreateServiceLinkedRole permission.

You (or another user) can use the IAM console to create a service-linked role with the Elastic
Beanstalk use case. In the IAM CLI or the IAM API, create a service-linked role with the
elasticbeanstalk.amazonaws.com service name. For more information, see Creating a
Service-Linked Role in the IAM User Guide. If you delete this service-linked role, you can use this
same process to create the role again.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create an Elastic Beanstalk environment using the
Elastic Beanstalk API and don't specify a service role, Elastic Beanstalk creates the service-linked
role for you again.

Editing a service-linked role for Elastic Beanstalk

Elastic Beanstalk does not allow you to edit the AWSServiceRoleForElasticBeanstalk service-linked
role. After you create a service-linked role, you cannot change the name of the role because various
entities might reference the role. However, you can edit the description of the role using IAM. For
more information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a service-linked role for Elastic Beanstalk

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first be sure that all Elastic
Beanstalk environments are either using a different service role or are terminated.

Using service-linked roles 1307

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

AWS Elastic Beanstalk Developer Guide

Note

If the Elastic Beanstalk service is using the service-linked role when you try to terminate the
environments, then the termination might fail. If that happens, wait for a few minutes and
try the operation again.

To terminate an Elastic Beanstalk environment that uses the
AWSServiceRoleForElasticBeanstalk (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

See eb terminate for details about terminating an Elastic Beanstalk environment using the EB CLI.

See TerminateEnvironment for details about terminating an Elastic Beanstalk environment using
the API.

Manually delete the service-linked role

Use the IAM console, the IAM CLI, or the IAM API to delete the AWSServiceRoleForElasticBeanstalk
service-linked role. For more information, see Deleting a Service-Linked Role in the IAM User Guide.

Supported regions for Elastic Beanstalk service-linked roles

Elastic Beanstalk supports using service-linked roles in all of the regions where the service is
available. For more information, see AWS Elastic Beanstalk Endpoints and Quotas.

The maintenance service-linked role

AWS Elastic Beanstalk uses AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to Elastic Beanstalk. Service-

Using service-linked roles 1308

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_TerminateEnvironment.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/elasticbeanstalk.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

AWS Elastic Beanstalk Developer Guide

linked roles are predefined by Elastic Beanstalk and include all the permissions that the service
requires to call other AWS services on your behalf.

A service-linked role makes setting up Elastic Beanstalk easier because you don’t have to manually
add the necessary permissions. Elastic Beanstalk defines the permissions of its service-linked roles,
and unless defined otherwise, only Elastic Beanstalk can assume its roles. The defined permissions
include the trust policy and the permissions policy, and that permissions policy cannot be attached
to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects
your Elastic Beanstalk resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, see AWS Services That Work
with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Elastic Beanstalk

Elastic Beanstalk uses the service-linked role named
AWSServiceRoleForElasticBeanstalkMaintenance – Allows Elastic Beanstalk to perform regular
maintenance activities for your running environments.

The AWSServiceRoleForElasticBeanstalkMaintenance service-linked role trusts the following
services to assume the role:

• maintenance.elasticbeanstalk.amazonaws.com

The permissions policy of the AWSServiceRoleForElasticBeanstalkMaintenance service-linked role
contains all of the permissions that Elastic Beanstalk needs to complete actions on your behalf:

{
 "Version": "2012-10-17",
 "Statement":
 {
 "Sid": "AllowCloudformationChangeSetOperationsOnElasticBeanstalkStacks",
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateChangeSet",
 "cloudformation:DescribeChangeSet",

Using service-linked roles 1309

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Elastic Beanstalk Developer Guide

 "cloudformation:ExecuteChangeSet",
 "cloudformation:DeleteChangeSet",
 "cloudformation:ListChangeSets",
 "cloudformation:DescribeStacks"
],
 "Resource": [
 "arn:aws:cloudformation:*:*:stack/awseb-*",
 "arn:aws:cloudformation:*:*:stack/eb-*"
]
 }
}

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

Alternatively, you can use an AWS managed policy to provide full access to Elastic Beanstalk.

Creating a service-linked role for Elastic Beanstalk

You don't need to manually create a service-linked role. When you create an Elastic Beanstalk
environment using the Elastic Beanstalk API and don't specify an instance profile, Elastic Beanstalk
creates the service-linked role for you.

Important

This service-linked role can appear in your account if you completed an action
in another service that uses the features supported by this role. If you were
using the Elastic Beanstalk service before April 18, 2019, when it began
supporting the AWSServiceRoleForElasticBeanstalkMaintenance service-
linked role, and your account needed it, then Elastic Beanstalk created the
AWSServiceRoleForElasticBeanstalkMaintenance role in your account. To learn more, see A
New Role Appeared in My IAM Account.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create an Elastic Beanstalk environment using the
Elastic Beanstalk API and don't specify an instance profile, Elastic Beanstalk creates the service-
linked role for you again.

Using service-linked roles 1310

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared

AWS Elastic Beanstalk Developer Guide

Editing a service-linked role for Elastic Beanstalk

Elastic Beanstalk does not allow you to edit the AWSServiceRoleForElasticBeanstalkMaintenance
service-linked role. After you create a service-linked role, you cannot change the name of the role
because various entities might reference the role. However, you can edit the description of the role
using IAM. For more information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a service-linked role for Elastic Beanstalk

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first terminate any Elastic
Beanstalk environments that uses the role.

Note

If the Elastic Beanstalk service is using the service-linked role when you try to terminate the
environments, then the termination might fail. If that happens, wait for a few minutes and
try the operation again.

To terminate an Elastic Beanstalk environment that uses the
AWSServiceRoleForElasticBeanstalkMaintenance (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate environment.

4. Use the on-screen dialog box to confirm environment termination.

Using service-linked roles 1311

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

See eb terminate for details about terminating an Elastic Beanstalk environment using the EB CLI.

See TerminateEnvironment for details about terminating an Elastic Beanstalk environment using
the API.

Manually delete the service-linked role

Use the IAM console, the IAM CLI, or the IAM API to delete the
AWSServiceRoleForElasticBeanstalkMaintenance service-linked role. For more information, see
Deleting a Service-Linked Role in the IAM User Guide.

Supported regions for Elastic Beanstalk service-linked roles

Elastic Beanstalk supports using service-linked roles in all of the regions where the service is
available. For more information, see AWS Elastic Beanstalk Endpoints and Quotas.

The managed-updates service-linked role

AWS Elastic Beanstalk uses AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to Elastic Beanstalk. Service-
linked roles are predefined by Elastic Beanstalk and include all the permissions that the service
requires to call other AWS services on your behalf.

A service-linked role makes setting up Elastic Beanstalk easier because you don’t have to manually
add the necessary permissions. Elastic Beanstalk defines the permissions of its service-linked roles,
and unless defined otherwise, only Elastic Beanstalk can assume its roles. The defined permissions
include the trust policy and the permissions policy, and that permissions policy cannot be attached
to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects
your Elastic Beanstalk resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, see AWS Services That Work
with IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Elastic Beanstalk

Elastic Beanstalk uses the service-linked role named
AWSServiceRoleForElasticBeanstalkManagedUpdates – Allows Elastic Beanstalk to perform
scheduled platform updates of your running environments.

Using service-linked roles 1312

https://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_TerminateEnvironment.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/elasticbeanstalk.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Elastic Beanstalk Developer Guide

The AWSServiceRoleForElasticBeanstalkManagedUpdates service-linked role trusts the following
services to assume the role:

• managedupdates.elasticbeanstalk.amazonaws.com

The permissions policy of the AWSServiceRoleForElasticBeanstalkManagedUpdates service-linked
role contains all of the permissions that Elastic Beanstalk needs to complete managed update
actions on your behalf:

AWSElasticBeanstalkManagedUpdatesServiceRolePolicy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPassRoleToElasticBeanstalkAndDownstreamServices",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "*",
 "Condition": {
 "StringLikeIfExists": {
 "iam:PassedToService": [
 "elasticbeanstalk.amazonaws.com",
 "ec2.amazonaws.com",
 "autoscaling.amazonaws.com",
 "elasticloadbalancing.amazonaws.com",
 "ecs.amazonaws.com",
 "cloudformation.amazonaws.com"
]
 }
 }
 },
 {
 "Sid": "SingleInstanceAPIs",
 "Effect": "Allow",
 "Action": [
 "ec2:releaseAddress",
 "ec2:allocateAddress",
 "ec2:DisassociateAddress",
 "ec2:AssociateAddress"
],
 "Resource": "*"

Using service-linked roles 1313

AWS Elastic Beanstalk Developer Guide

 },
 {
 "Sid": "ECS",
 "Effect": "Allow",
 "Action": [
 "ecs:RegisterTaskDefinition",
 "ecs:DeRegisterTaskDefinition",
 "ecs:List*",
 "ecs:Describe*"
],
 "Resource": "*"
 },
 {
 "Sid": "ElasticBeanstalkAPIs",
 "Effect": "Allow",
 "Action": [
 "elasticbeanstalk:*"
],
 "Resource": "*"
 },
 {
 "Sid": "ReadOnlyAPIs",
 "Effect": "Allow",
 "Action": [
 "cloudformation:Describe*",
 "cloudformation:List*",
 "ec2:Describe*",
 "autoscaling:Describe*",
 "elasticloadbalancing:Describe*",
 "logs:DescribeLogGroups",
 "sns:GetTopicAttributes",
 "sns:ListSubscriptionsByTopic",
 "rds:DescribeDBEngineVersions",
 "rds:DescribeDBInstances"
],
 "Resource": "*"
 },
 {
 "Sid": "ASG",
 "Effect": "Allow",
 "Action": [
 "autoscaling:AttachInstances",
 "autoscaling:CreateAutoScalingGroup",
 "autoscaling:CreateLaunchConfiguration",

Using service-linked roles 1314

AWS Elastic Beanstalk Developer Guide

 "autoscaling:CreateOrUpdateTags",
 "autoscaling:DeleteAutoScalingGroup",
 "autoscaling:DeleteLaunchConfiguration",
 "autoscaling:DeleteScheduledAction",
 "autoscaling:DetachInstances",
 "autoscaling:PutNotificationConfiguration",
 "autoscaling:PutScalingPolicy",
 "autoscaling:PutScheduledUpdateGroupAction",
 "autoscaling:ResumeProcesses",
 "autoscaling:SuspendProcesses",
 "autoscaling:TerminateInstanceInAutoScalingGroup",
 "autoscaling:UpdateAutoScalingGroup"
],
 "Resource": [
 "arn:aws:autoscaling:*:*:launchConfiguration:*:launchConfigurationName/
awseb-e-*",
 "arn:aws:autoscaling:*:*:autoScalingGroup:*:autoScalingGroupName/awseb-
e-*",
 "arn:aws:autoscaling:*:*:launchConfiguration:*:launchConfigurationName/
eb-*",
 "arn:aws:autoscaling:*:*:autoScalingGroup:*:autoScalingGroupName/eb-*"
]
 },
 {
 "Sid": "CFN",
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateStack",
 "cloudformation:CancelUpdateStack",
 "cloudformation:DeleteStack",
 "cloudformation:GetTemplate",
 "cloudformation:UpdateStack"
],
 "Resource": [
 "arn:aws:cloudformation:*:*:stack/awseb-e-*",
 "arn:aws:cloudformation:*:*:stack/eb-*"
]
 },
 {
 "Sid": "EC2",
 "Effect": "Allow",
 "Action": [
 "ec2:TerminateInstances"
],

Using service-linked roles 1315

AWS Elastic Beanstalk Developer Guide

 "Resource": "arn:aws:ec2:*:*:instance/*",
 "Condition": {
 "StringLike": {
 "ec2:ResourceTag/aws:cloudformation:stack-id": [
 "arn:aws:cloudformation:*:*:stack/awseb-e-*",
 "arn:aws:cloudformation:*:*:stack/eb-*"
]
 }
 }
 },
 {
 "Sid": "S3Obj",
 "Effect": "Allow",
 "Action": [
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:GetObjectAcl",
 "s3:GetObjectVersion",
 "s3:GetObjectVersionAcl",
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:PutObjectVersionAcl"
],
 "Resource": "arn:aws:s3:::elasticbeanstalk-*/*"
 },
 {
 "Sid": "S3Bucket",
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetBucketPolicy",
 "s3:ListBucket",
 "s3:PutBucketPolicy"
],
 "Resource": "arn:aws:s3:::elasticbeanstalk-*"
 },
 {
 "Sid": "CWL",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:DeleteLogGroup",
 "logs:PutRetentionPolicy"
],

Using service-linked roles 1316

AWS Elastic Beanstalk Developer Guide

 "Resource": "arn:aws:logs:*:*:log-group:/aws/elasticbeanstalk/*"
 },
 {
 "Sid": "ELB",
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:RegisterTargets",
 "elasticloadbalancing:DeRegisterTargets",
 "elasticloadbalancing:DeregisterInstancesFromLoadBalancer",
 "elasticloadbalancing:RegisterInstancesWithLoadBalancer"
],
 "Resource": [
 "arn:aws:elasticloadbalancing:*:*:targetgroup/awseb-*",
 "arn:aws:elasticloadbalancing:*:*:loadbalancer/awseb-e-*",
 "arn:aws:elasticloadbalancing:*:*:targetgroup/eb-*",
 "arn:aws:elasticloadbalancing:*:*:loadbalancer/eb-*"
]
 },
 {
 "Sid": "SNS",
 "Effect": "Allow",
 "Action": [
 "sns:CreateTopic"
],
 "Resource": "arn:aws:sns:*:*:ElasticBeanstalkNotifications-Environment-*"
 },
 {
 "Sid": "EC2LaunchTemplate",
 "Effect": "Allow",
 "Action": [
 "ec2:CreateLaunchTemplate",
 "ec2:DeleteLaunchTemplate",
 "ec2:CreateLaunchTemplateVersion",
 "ec2:DeleteLaunchTemplateVersions"
],
 "Resource": "arn:aws:ec2:*:*:launch-template/*"
 },
 {
 "Sid": "AllowLaunchTemplateRunInstances",
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": "*",
 "Condition": {
 "ArnLike": {

Using service-linked roles 1317

AWS Elastic Beanstalk Developer Guide

 "ec2:LaunchTemplate": "arn:aws:ec2:*:*:launch-template/*"
 }
 }
 },
 {
 "Sid": "AllowECSTagResource",
 "Effect": "Allow",
 "Action": [
 "ecs:TagResource"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ecs:CreateAction": [
 "RegisterTaskDefinition"
]
 }
 }
 }
]
}

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

Alternatively, you can use an AWS managed policy to provide full access to Elastic Beanstalk.

Creating a service-linked role for Elastic Beanstalk

You don't need to manually create a service-linked role. When you create an Elastic
Beanstalk environment using the Elastic Beanstalk API, enable managed updates, and
specify AWSServiceRoleForElasticBeanstalkManagedUpdates as the value for the
ServiceRoleForManagedUpdates option of the aws:elasticbeanstalk:managedactions
namespace, Elastic Beanstalk creates the service-linked role for you.

When Elastic Beanstalk tries to create the AWSServiceRoleForElasticBeanstalkManagedUpdates
service-linked role for your account when you create an environment, you must have the
iam:CreateServiceLinkedRole permission. If you don't have this permission, environment
creation fails, and you see a message explaining the issue.

Using service-linked roles 1318

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

AWS Elastic Beanstalk Developer Guide

As an alternative, another user with permission to create service-linked roles can use IAM to pre-
create the service linked-role in advance. You can then create your environment even without
having the iam:CreateServiceLinkedRole permission.

You (or another user) can use the IAM console to create a service-linked role with the Elastic
Beanstalk Managed Updates use case. In the IAM CLI or the IAM API, create a service-linked role
with the managedupdates.elasticbeanstalk.amazonaws.com service name. For more
information, see Creating a Service-Linked Role in the IAM User Guide. If you delete this service-
linked role, you can use this same process to create the role again.

If you delete this service-linked role, and then need to create it again, you can use the
same process to recreate the role in your account. When you create an Elastic Beanstalk
environment using the Elastic Beanstalk API, enable managed updates, and specify
AWSServiceRoleForElasticBeanstalkManagedUpdates as the value for the
ServiceRoleForManagedUpdates option of the aws:elasticbeanstalk:managedactions
namespace, Elastic Beanstalk creates the service-linked role for you again.

Editing a service-linked role for Elastic Beanstalk

Elastic Beanstalk does not allow you to edit the
AWSServiceRoleForElasticBeanstalkManagedUpdates service-linked role. After you create a service-
linked role, you cannot change the name of the role because various entities might reference the
role. However, you can edit the description of the role using IAM. For more information, see Editing
a Service-Linked Role in the IAM User Guide.

Deleting a service-linked role for Elastic Beanstalk

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first be sure that Elastic Beanstalk
environments with managed updates enabled are either using a different service role or are
terminated.

Using service-linked roles 1319

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

AWS Elastic Beanstalk Developer Guide

Note

If the Elastic Beanstalk service is using the service-linked role when you try to terminate the
environments, then the termination might fail. If that happens, wait for a few minutes and
try the operation again.

To terminate an Elastic Beanstalk environment that uses the
AWSServiceRoleForElasticBeanstalkManagedUpdates (console)

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Terminate Environment.

4. Use the on-screen dialog box to confirm environment termination.

See eb terminate for details about terminating an Elastic Beanstalk environment using the EB CLI.

See TerminateEnvironment for details about terminating an Elastic Beanstalk environment using
the API.

Manually delete the service-linked role

Use the IAM console, the IAM CLI, or the IAM API to delete the
AWSServiceRoleForElasticBeanstalkManagedUpdates service-linked role. For more information, see
Deleting a Service-Linked Role in the IAM User Guide.

Supported Regions for Elastic Beanstalk service-linked roles

Elastic Beanstalk supports using service-linked roles in all of the regions where the service is
available. For more information, see AWS Elastic Beanstalk Endpoints and Quotas.

Using service-linked roles 1320

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_TerminateEnvironment.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/elasticbeanstalk.html

AWS Elastic Beanstalk Developer Guide

Managing Elastic Beanstalk user policies

AWS Elastic Beanstalk provides two managed policies that enable you to assign full access or read-
only access to all resources that Elastic Beanstalk manages. You can attach the policies to AWS
Identity and Access Management (IAM) users or groups, or to roles assumed by your users.

Important

Elastic Beanstalk managed policies don't provide granular permissions—they grant all
permissions that are potentially needed for working with Elastic Beanstalk applications.
Our managed policies also don't cover permissions to custom resources that you might
add to your solution, and that aren't managed by Elastic Beanstalk. To implement more
granular permissions, minimum required permissions, or custom resource permissions, use
custom policies.

Managed user policies

• AdministratorAccess-AWSElasticBeanstalk – Gives the user full administrative permissions to
create, modify, and delete Elastic Beanstalk applications, application versions, configuration
settings, environments, and their underlying resources. To view the managed policy content, see
the AdministratorAccess-AWSElasticBeanstalk page in the AWS Managed Policy Reference Guide.

• AWSElasticBeanstalkReadOnly – Allows the user to view applications and environments,
but not to perform operations that modify them. It provides read-only access to all Elastic
Beanstalk resources, and to other AWS resources that the Elastic Beanstalk console retrieves.
Note that read-only access does not enable actions such as downloading Elastic Beanstalk logs
so that you can read them. This is because the logs are staged in the Amazon S3 bucket, where
Elastic Beanstalk would require write permission. See the example at the end of this topic for
information on how to enable access to Elastic Beanstalk logs. To view the managed policy
content, see the AWSElasticBeanstalkReadOnly page in the AWS Managed Policy Reference Guide.

Note

Previously, Elastic Beanstalk supported two other managed user policies,
AWSElasticBeanstalkFullAccess and AWSElasticBeanstalkReadOnlyAccess. We plan on
retiring these previous policies. You might still be able to see and use them in the IAM

User policies 1321

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AdministratorAccess-AWSElasticBeanstalk.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSElasticBeanstalkReadOnly.html

AWS Elastic Beanstalk Developer Guide

console. Nevertheless, we recommend that you transition to using the new managed user
policies, and add custom policies to grant permissions to custom resources, if you have any.

Policies for integration with other services

We also provide more granular policies that allow you to integrate your environment with other
services, if you prefer to use those.

AWSElasticBeanstalkRoleCWL

This policy allows an environment to manage Amazon CloudWatch Logs log groups.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCWL",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:DeleteLogGroup",
 "logs:PutRetentionPolicy"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/elasticbeanstalk/*"
 }
]
}

AWSElasticBeanstalkRoleRDS

This policy allows an environment to integrate an Amazon RDS instance.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowRDS",
 "Effect": "Allow",
 "Action": [
 "rds:CreateDBSecurityGroup",
 "rds:DeleteDBSecurityGroup",
 "rds:AuthorizeDBSecurityGroupIngress",

User policies 1322

AWS Elastic Beanstalk Developer Guide

 "rds:CreateDBInstance",
 "rds:ModifyDBInstance",
 "rds:DeleteDBInstance"
],
 "Resource": [
 "arn:aws:rds:*:*:secgrp:awseb-e-*",
 "arn:aws:rds:*:*:db:*"
]
 }
]
}

AWSElasticBeanstalkRoleWorkerTier

This policy allows a worker environment tier to create an Amazon DynamoDB table and an Amazon
SQS queue.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSQS",
 "Effect": "Allow",
 "Action": [
 "sqs:TagQueue",
 "sqs:DeleteQueue",
 "sqs:GetQueueAttributes",
 "sqs:CreateQueue"
],
 "Resource": "arn:aws:sqs:*:*:awseb-e-*"
 },
 {
 "Sid": "AllowDDB",
 "Effect": "Allow",
 "Action": [
 "dynamodb:CreateTable",
 "dynamodb:TagResource",
 "dynamodb:DescribeTable",
 "dynamodb:DeleteTable"
],
 "Resource": "arn:aws:dynamodb:*:*:table/awseb-e-*"
 }
]

User policies 1323

AWS Elastic Beanstalk Developer Guide

}

AWSElasticBeanstalkRoleECS

This policy allows a multicontainer Docker environment to manage Amazon ECS clusters.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowECS",
 "Effect": "Allow",
 "Action": [
 "ecs:CreateCluster",
 "ecs:DeleteCluster",
 "ecs:DeRegisterTaskDefinition",
 "ecs:RegisterTaskDefinition"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "AllowECSTagResource",
 "Effect": "Allow",
 "Action": [
 "ecs:TagResource"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "ecs:CreateAction": [
 "CreateCluster",
 "RegisterTaskDefinition"
]
 }
 }
 }
]
}

User policies 1324

AWS Elastic Beanstalk Developer Guide

AWSElasticBeanstalkRoleCore

This policy allows core operations of a web service environment.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "TerminateInstances",
 "Effect": "Allow",
 "Action": [
 "ec2:TerminateInstances"
],
 "Resource": "arn:aws:ec2:*:*:instance/*",
 "Condition": {
 "StringLike": {
 "ec2:ResourceTag/aws:cloudformation:stack-id":
 "arn:aws:cloudformation:*:*:stack/awseb-e-*"
 }
 }
 },
 {
 "Sid": "EC2",
 "Effect": "Allow",
 "Action": [
 "ec2:ReleaseAddress",
 "ec2:AllocateAddress",
 "ec2:DisassociateAddress",
 "ec2:AssociateAddress",
 "ec2:CreateTags",
 "ec2:DeleteTags",
 "ec2:CreateSecurityGroup",
 "ec2:DeleteSecurityGroup",
 "ec2:AuthorizeSecurityGroup*",
 "ec2:RevokeSecurityGroup*",
 "ec2:CreateLaunchTemplate*",
 "ec2:DeleteLaunchTemplate*"
],
 "Resource": "*"
 },
 {
 "Sid": "LTRunInstances",
 "Effect": "Allow",
 "Action": "ec2:RunInstances",

User policies 1325

AWS Elastic Beanstalk Developer Guide

 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "ec2:LaunchTemplate": "arn:aws:ec2:*:*:launch-template/*"
 }
 }
 },
 {
 "Sid": "ASG",
 "Effect": "Allow",
 "Action": [
 "autoscaling:AttachInstances",
 "autoscaling:*LoadBalancer*",
 "autoscaling:*AutoScalingGroup",
 "autoscaling:*LaunchConfiguration",
 "autoscaling:DeleteScheduledAction",
 "autoscaling:DetachInstances",
 "autoscaling:PutNotificationConfiguration",
 "autoscaling:PutScalingPolicy",
 "autoscaling:PutScheduledUpdateGroupAction",
 "autoscaling:ResumeProcesses",
 "autoscaling:SuspendProcesses",
 "autoscaling:*Tags"
],
 "Resource": [
 "arn:aws:autoscaling:*:*:launchConfiguration:*:launchConfigurationName/
awseb-e-*",
 "arn:aws:autoscaling:*:*:autoScalingGroup:*:autoScalingGroupName/awseb-
e-*"
]
 },
 {
 "Sid": "ASGPolicy",
 "Effect": "Allow",
 "Action": [
 "autoscaling:DeletePolicy"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "EBSLR",
 "Effect": "Allow",

User policies 1326

AWS Elastic Beanstalk Developer Guide

 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": [
 "arn:aws:iam::*:role/aws-service-role/elasticbeanstalk.amazonaws.com/
AWSServiceRoleForElasticBeanstalk*"
],
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "elasticbeanstalk.amazonaws.com"
 }
 }
 },
 {
 "Sid": "S3Obj",
 "Effect": "Allow",
 "Action": [
 "s3:Delete*",
 "s3:Get*",
 "s3:Put*"
],
 "Resource": [
 "arn:aws:s3:::elasticbeanstalk-*/*",
 "arn:aws:s3:::elasticbeanstalk-env-resources-*/*"
]
 },
 {
 "Sid": "S3Bucket",
 "Effect": "Allow",
 "Action": [
 "s3:GetBucket*",
 "s3:ListBucket",
 "s3:PutBucketPolicy"
],
 "Resource": "arn:aws:s3:::elasticbeanstalk-*"
 },
 {
 "Sid": "CFN",
 "Effect": "Allow",
 "Action": [
 "cloudformation:CreateStack",
 "cloudformation:DeleteStack",
 "cloudformation:GetTemplate",
 "cloudformation:ListStackResources",

User policies 1327

AWS Elastic Beanstalk Developer Guide

 "cloudformation:UpdateStack",
 "cloudformation:ContinueUpdateRollback",
 "cloudformation:CancelUpdateStack"
],
 "Resource": "arn:aws:cloudformation:*:*:stack/awseb-e-*"
 },
 {
 "Sid": "CloudWatch",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms"
],
 "Resource": "arn:aws:cloudwatch:*:*:alarm:awseb-*"
 },
 {
 "Sid": "ELB",
 "Effect": "Allow",
 "Action": [
 "elasticloadbalancing:Create*",
 "elasticloadbalancing:Delete*",
 "elasticloadbalancing:Modify*",
 "elasticloadbalancing:RegisterTargets",
 "elasticloadbalancing:DeRegisterTargets",
 "elasticloadbalancing:DeregisterInstancesFromLoadBalancer",
 "elasticloadbalancing:RegisterInstancesWithLoadBalancer",
 "elasticloadbalancing:*Tags",
 "elasticloadbalancing:ConfigureHealthCheck",
 "elasticloadbalancing:SetRulePriorities",
 "elasticloadbalancing:SetLoadBalancerPoliciesOfListener"
],
 "Resource": [
 "arn:aws:elasticloadbalancing:*:*:targetgroup/awseb-*",
 "arn:aws:elasticloadbalancing:*:*:loadbalancer/awseb-*",
 "arn:aws:elasticloadbalancing:*:*:loadbalancer/app/awseb-*/*",
 "arn:aws:elasticloadbalancing:*:*:loadbalancer/net/awseb-*/*",
 "arn:aws:elasticloadbalancing:*:*:listener/awseb-*",
 "arn:aws:elasticloadbalancing:*:*:listener/app/awseb-*",
 "arn:aws:elasticloadbalancing:*:*:listener/net/awseb-*",
 "arn:aws:elasticloadbalancing:*:*:listener-rule/app/awseb-*/*/*/*"
]
 },
 {
 "Sid": "ListAPIs",

User policies 1328

AWS Elastic Beanstalk Developer Guide

 "Effect": "Allow",
 "Action": [
 "autoscaling:Describe*",
 "cloudformation:Describe*",
 "logs:Describe*",
 "ec2:Describe*",
 "ecs:Describe*",
 "ecs:List*",
 "elasticloadbalancing:Describe*",
 "rds:Describe*",
 "sns:List*",
 "iam:List*",
 "acm:Describe*",
 "acm:List*"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowPassRole",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::*:role/aws-elasticbeanstalk-*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "elasticbeanstalk.amazonaws.com",
 "ec2.amazonaws.com",
 "autoscaling.amazonaws.com",
 "elasticloadbalancing.amazonaws.com",
 "ecs.amazonaws.com",
 "cloudformation.amazonaws.com"
]
 }
 }
 }
]
}

AWSElasticBeanstalkRoleSNS

This policy allows an environment to enable Amazon SNS topic integration.

{
 "Version": "2012-10-17",

User policies 1329

AWS Elastic Beanstalk Developer Guide

 "Statement": [
 {
 "Sid": "AllowBeanstalkManageSNS",
 "Effect": "Allow",
 "Action": [
 "sns:CreateTopic",
 "sns:SetTopicAttributes",
 "sns:DeleteTopic"
],
 "Resource": [
 "arn:aws:sns:*:*:ElasticBeanstalkNotifications-*"
]
 },
 {
 "Sid": "AllowSNSPublish",
 "Effect": "Allow",
 "Action": [
 "sns:GetTopicAttributes",
 "sns:Subscribe",
 "sns:Unsubscribe",
 "sns:Publish"
],
 "Resource": "*"
 }
]
}

Controlling access with managed policies

You can use managed policies to grant full access or read-only access to Elastic Beanstalk. Elastic
Beanstalk updates these policies automatically when additional permissions are required to access
new features.

To apply a managed policy to IAM users or groups

1. Open the Policies page in the IAM console.

2. In the search box, type AWSElasticBeanstalk to filter the policies.

3. In the list of policies, select the check box next to AWSElasticBeanstalkReadOnly or
AdministratorAccess-AWSElasticBeanstalk.

4. Choose Policy actions, and then choose Attach.

User policies 1330

https://console.aws.amazon.com/iam/home#policies

AWS Elastic Beanstalk Developer Guide

5. Select one or more users and groups to attach the policy to. You can use the Filter menu and
the search box to filter the list of principal entities.

6. Choose Attach policy.

Creating a custom user policy

You can create your own IAM policy to allow or deny specific Elastic Beanstalk API actions on
specific Elastic Beanstalk resources, and to control access to custom resources that aren't managed
by Elastic Beanstalk. For more information about attaching a policy to a user or group, see Working
with Policies in the IAM User Guide. For details about creating a custom policy, see Creating IAM
Policies in the IAM User Guide.

Note

While you can restrict how a user interacts with Elastic Beanstalk APIs, there is not currently
an effective way to prevent users who have permission to create the necessary underlying
resources from creating other resources in Amazon EC2 and other services.
Think of these policies as an effective way to distribute Elastic Beanstalk responsibilities,
not as a way to secure all underlying resources.

In November 2019, Elastic Beanstalk released support for Amazon EC2 launch templates. This
is a new resource type that your environment's Auto Scaling group can use to launch Amazon
EC2 instances, and it requires new permissions. Most customers shouldn't be affected, because
environments can still use the legacy resource, launch configurations, if your user policy lacks the
required permissions. However, if you're trying to use a new feature that requires Amazon EC2
launch templates, and you have a custom policy, your environment creation or update might fail. In
this case, ensure that your custom policy has the following permissions.

Required permissions for Amazon EC2 launch templates

• EC2:CreateLaunchTemplate

• EC2:CreateLaunchTemplateVersions

• EC2:DeleteLaunchTemplate

• EC2:DeleteLaunchTemplateVersions

• EC2:DescribeLaunchTemplate

• EC2:DescribeLaunchTemplateVersions

User policies 1331

https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2019-11-25-launchtemplates.html

AWS Elastic Beanstalk Developer Guide

An IAM policy contains policy statements that describe the permissions that you want to grant.
When you create a policy statement for Elastic Beanstalk, you need to understand how to use the
following four parts of a policy statement:

• Effect specifies whether to allow or deny the actions in the statement.

• Action specifies the API operations that you want to control. For example, use
elasticbeanstalk:CreateEnvironment to specify the CreateEnvironment operation.
Certain operations, such as creating an environment, require additional permissions to perform
those actions. For more information, see Resources and conditions for Elastic Beanstalk actions.

Note

To use the UpdateTagsForResource API operation, specify one of the following two
virtual actions (or both) instead of the API operation name:

elasticbeanstalk:AddTags

Controls permission to call UpdateTagsForResource and pass a list of tags to add
in the TagsToAdd parameter.

elasticbeanstalk:RemoveTags

Controls permission to call UpdateTagsForResource and pass a list of tag keys to
remove in the TagsToRemove parameter.

• Resource specifies the resources that you want to control access to. To specify Elastic Beanstalk
resources, list the Amazon Resource Name (ARN) of each resource.

• (optional) Condition specifies restrictions on the permission granted in the statement. For more
information, see Resources and conditions for Elastic Beanstalk actions.

The following sections demonstrate a few cases in which you might consider a custom user policy.

Enabling limited Elastic Beanstalk environment creation

The policy in the following example enables a user to call the CreateEnvironment action
to create an environment whose name begins with Test with the specified application and
application version.

{
 "Version": "2012-10-17",

User policies 1332

https://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_Operations.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_UpdateTagsForResource.html

AWS Elastic Beanstalk Developer Guide

 "Statement": [
 {
 "Sid":"CreateEnvironmentPerm",
 "Action": [
 "elasticbeanstalk:CreateEnvironment"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:environment/My First Elastic
 Beanstalk Application/Test*"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication": ["arn:aws:elasticbeanstalk:us-
east-2:123456789012:application/My First Elastic Beanstalk Application"],
 "elasticbeanstalk:FromApplicationVersion": ["arn:aws:elasticbeanstalk:us-
east-2:123456789012:applicationversion/My First Elastic Beanstalk Application/First
 Release"]
 }
 }
 },
 {
 "Sid":"AllNonResourceCalls",
 "Action":[
 "elasticbeanstalk:CheckDNSAvailability",
 "elasticbeanstalk:CreateStorageLocation"
],
 "Effect":"Allow",
 "Resource":[
 "*"
]
 }
]
}

The above policy shows how to grant limited access to Elastic Beanstalk operations. In order to
actually launch an environment, the user must have permission to create the AWS resources that
power the environment as well. For example, the following policy grants access to the default set
of resources for a web server environment:

{
 "Version": "2012-10-17",
 "Statement": [

User policies 1333

AWS Elastic Beanstalk Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "ec2:*",
 "ecs:*",
 "elasticloadbalancing:*",
 "autoscaling:*",
 "cloudwatch:*",
 "s3:*",
 "sns:*",
 "cloudformation:*",
 "sqs:*"
],
 "Resource": "*"
 }
]
}

Enabling access to Elastic Beanstalk logs stored in Amazon S3

The policy in the following example enables a user to pull Elastic Beanstalk logs, stage them in
Amazon S3, and retrieve them.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:DeleteObject",
 "s3:GetObjectAcl",
 "s3:PutObjectAcl"
],
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::elasticbeanstalk-*"
 }
]
}

Note

To restrict these permissions to only the logs path, use the following resource format.

User policies 1334

AWS Elastic Beanstalk Developer Guide

"arn:aws:s3:::elasticbeanstalk-us-east-2-123456789012/resources/environments/
logs/*"

Enabling management of a specific Elastic Beanstalk application

The policy in the following example enables a user to manage environments and other resources
within one specific Elastic Beanstalk application. The policy denies Elastic Beanstalk actions
on resources of other applications, and also denies creation and deletion of Elastic Beanstalk
applications.

Note

The policy doesn't deny access to any resources through other services. It demonstrates
an effective way to distribute responsibilities for managing Elastic Beanstalk applications
among different users, not as a way to secure the underlying resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "elasticbeanstalk:CreateApplication",
 "elasticbeanstalk:DeleteApplication"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Deny",
 "Action": [
 "elasticbeanstalk:CreateApplicationVersion",
 "elasticbeanstalk:CreateConfigurationTemplate",
 "elasticbeanstalk:CreateEnvironment",
 "elasticbeanstalk:DeleteApplicationVersion",
 "elasticbeanstalk:DeleteConfigurationTemplate",
 "elasticbeanstalk:DeleteEnvironmentConfiguration",

User policies 1335

AWS Elastic Beanstalk Developer Guide

 "elasticbeanstalk:DescribeApplicationVersions",
 "elasticbeanstalk:DescribeConfigurationOptions",
 "elasticbeanstalk:DescribeConfigurationSettings",
 "elasticbeanstalk:DescribeEnvironmentResources",
 "elasticbeanstalk:DescribeEnvironments",
 "elasticbeanstalk:DescribeEvents",
 "elasticbeanstalk:DeleteEnvironmentConfiguration",
 "elasticbeanstalk:RebuildEnvironment",
 "elasticbeanstalk:RequestEnvironmentInfo",
 "elasticbeanstalk:RestartAppServer",
 "elasticbeanstalk:RetrieveEnvironmentInfo",
 "elasticbeanstalk:SwapEnvironmentCNAMEs",
 "elasticbeanstalk:TerminateEnvironment",
 "elasticbeanstalk:UpdateApplicationVersion",
 "elasticbeanstalk:UpdateConfigurationTemplate",
 "elasticbeanstalk:UpdateEnvironment",
 "elasticbeanstalk:RetrieveEnvironmentInfo",
 "elasticbeanstalk:ValidateConfigurationSettings"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringNotEquals": {
 "elasticbeanstalk:InApplication": [
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:application/myapplication"
]
 }
 }
 }
]
}

Amazon resource name format for Elastic Beanstalk

You specify a resource for an IAM policy using that resource's Amazon Resource Name (ARN). For
Elastic Beanstalk, the ARN has the following format.

arn:aws:elasticbeanstalk:region:account-id:resource-type/resource-path

Where:

• region is the region the resource resides in (for example, us-west-2).

ARN format 1336

AWS Elastic Beanstalk Developer Guide

• account-id is the AWS account ID, with no hyphens (for example, 123456789012)

• resource-type identifies the type of the Elastic Beanstalk resource—for example,
environment. See the table below for a list of all Elastic Beanstalk resource types.

• resource-path is the portion that identifies the specific resource. An Elastic Beanstalk resource
has a path that uniquely identifies that resource. See the table below for the format of the
resource path for each resource type. For example, an environment is always associated with an
application. The resource path for the environment myEnvironment in the application myApp
would look like this:

myApp/myEnvironment

Elastic Beanstalk has several types of resources you can specify in a policy. The following table
shows the ARN format for each resource type and an example.

Resource
type

Format for ARN

applicati
on

arn:aws:elasticbeanstalk: region:account-id :applicat
ion/ application-name

Example: arn:aws:elasticbeanstalk:us-east-2:1234567890
12:application/My App

applicati
onversion

arn:aws:elasticbeanstalk: region:account-id :applicat
ionversion/ application-name /version-label

Example: arn:aws:elasticbeanstalk:us-east-2:1234567890
12:applicationversion/My App/My Version

configura
tiontempl
ate

arn:aws:elasticbeanstalk: region:account-id :configur
ationtemplate/ application-name /template-name

Example: arn:aws:elasticbeanstalk:us-east-2:1234567890
12:configurationtemplate/My App/My Template

environme
nt

arn:aws:elasticbeanstalk: region:account-id :environm
ent/ application-name /environment-name

ARN format 1337

AWS Elastic Beanstalk Developer Guide

Resource
type

Format for ARN

Example: arn:aws:elasticbeanstalk:us-east-2:1234567890
12:environment/My App/MyEnvironment

platform arn:aws:elasticbeanstalk: region:account-id :platform
/ platform-name /platform-version

Example: arn:aws:elasticbeanstalk:us-east-2:1234567890
12:platform/MyPlatform/1.0

solutions
tack

arn:aws:elasticbeanstalk: region::solutionstack/ solutions
tack-name

Example: arn:aws:elasticbeanstalk:us-east-2::solutions
tack/32bit Amazon Linux running Tomcat 7

An environment, application version, and configuration template are always contained within a
specific application. You'll notice that these resources all have an application name in their resource
path so that they are uniquely identified by their resource name and the containing application.
Although solution stacks are used by configuration templates and environments, solution stacks
are not specific to an application or AWS account and do not have the application or AWS account
in their ARNs.

Resources and conditions for Elastic Beanstalk actions

This section describes the resources and conditions that you can use in policy statements to
grant permissions that allow specific Elastic Beanstalk actions to be performed on specific Elastic
Beanstalk resources.

Conditions enable you to specify permissions to resources that the action needs to complete.
For example, when you can call the CreateEnvironment action, you must also specify the
application version to deploy as well as the application that contains that application name.
When you set permissions for the CreateEnvironment action, you specify the application
and application version that you want the action to act upon by using the InApplication and
FromApplicationVersion conditions.

Resources and conditions 1338

AWS Elastic Beanstalk Developer Guide

In addition, you can specify the environment configuration with a solution stack
(FromSolutionStack) or a configuration template (FromConfigurationTemplate).
The following policy statement allows the CreateEnvironment action to create an
environment with the name myenv (specified by Resource) in the application My App
(specified by the InApplication condition) using the application version My Version
(FromApplicationVersion) with a 32bit Amazon Linux running Tomcat 7 configuration
(FromSolutionStack):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CreateEnvironment"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:environment/My App/myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication": ["arn:aws:elasticbeanstalk:us-
east-2:123456789012:application/My App"],
 "elasticbeanstalk:FromApplicationVersion": ["arn:aws:elasticbeanstalk:us-
east-2:123456789012:applicationversion/My App/My Version"],
 "elasticbeanstalk:FromSolutionStack": ["arn:aws:elasticbeanstalk:us-
east-2::solutionstack/32bit Amazon Linux running Tomcat 7"]
 }
 }
 }
]
}

Note

Most condition keys mentioned in this topic are specific to Elastic Beanstalk, and their
names contain the elasticbeanstalk: prefix. For brevity, we omit this prefix from the
condition key names when we mention them in the following sections. For example, we
mention InApplication instead of its full name elasticbeanstalk:InApplication.
In contrast, we mention a few condition keys used across AWS services, and we include
their aws: prefix to highlight the exception.

Resources and conditions 1339

AWS Elastic Beanstalk Developer Guide

Policy examples always show full condition key names, including the prefix.

Sections

• Policy information for Elastic Beanstalk actions

• Condition keys for Elastic Beanstalk actions

Policy information for Elastic Beanstalk actions

The following table lists all Elastic Beanstalk actions, the resource that each action acts upon, and
the additional contextual information that can be provided using conditions.

Policy information for Elastic Beanstalk actions, including resources, conditions, examples, and
dependencies

Resource Conditions Example statement

Action: AbortEnvironmentUpdate

application

environment

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows a user to abort environme
nt update operations on environments in an applicati
on named My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:AbortEnvi
ronmentUpdate"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:application/My App"
]
 }
]
}

Resources and conditions 1340

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_AbortEnvironmentUpdate.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

Action: CheckDNSAvailability

"*" N/A {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CheckDNSA
vailability"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Action: ComposeEnvironments

application aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows a user to compose
environments that belong to an application named
My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:ComposeEn
vironments"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App"
]
 }
]
}

Resources and conditions 1341

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_CheckDNSAvailability.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_ComposeEnvironments.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

Action: CreateApplication

application aws:Reque
stTag/ key-
name (Optional)

aws:TagKeys
(Optional)

This example allows the CreateApplication
action to create applications whose names begin with
DivA:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CreateApp
lication"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:application/DivA*"
]
 }
]
}

Action: CreateApplicationVersion

Resources and conditions 1342

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_CreateApplication.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_CreateApplicationVersion.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

applicati
onversion

InApplica
tion

aws:Reque
stTag/ key-
name (Optional)

aws:TagKeys
(Optional)

This example allows the CreateApplicationV
ersion action to create application versions with
any name (*) in the application My App:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CreateApp
licationVersion"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:applicationversion/My
 App/*"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws:elasticbeanstalk:us-east-2
:123456789012:application/My App"]
 }
 }
 }
]
}

Action: CreateConfigurationTemplate

Resources and conditions 1343

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_CreateConfigurationTemplate.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

configura
tiontempl
ate

InApplica
tion

FromAppli
cation

FromAppli
cationVer
sion

FromConfi
gurationT
emplate

FromEnvir
onment

FromSolut
ionStack

aws:Reque
stTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the CreateCon
figurationTemplate action to create
configuration templates whose name begins with My
Template (My Template*) in the application My
App:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CreateCon
figurationTemplate"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:configurationtemplate/
My App/My Template*"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws:elasticbeanstalk:us-east-2
:123456789012:application/My App"],
 "elasticbeanstalk:FromSolut
ionStack": ["arn:aws:elasticbeanstalk:us-
east-2::solutionstack/32bit Amazon Linux
 running Tomcat 7"]
 }
 }
 }
]
}

Action: CreateEnvironment

Resources and conditions 1344

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_CreateEnvironment.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion

FromAppli
cationVer
sion

FromConfi
gurationT
emplate

FromSolut
ionStack

aws:Reque
stTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the CreateEnv
ironment action to create an environment whose
name is myenv in the application My App and using
the solution stack 32bit Amazon Linux running
Tomcat 7:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CreateEnv
ironment"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws:elasticbeanstalk:us-east-2
:123456789012:application/My App"],
 "elasticbeanstalk:FromAppli
cationVersion": ["arn:aws:elasticb
eanstalk:us-east-2:123456789012:appl
icationversion/My App/My Version"],
 "elasticbeanstalk:FromSolut
ionStack": ["arn:aws:elasticbeanstalk:us-
east-2::solutionstack/32bit Amazon Linux
 running Tomcat 7"]
 }
 }
 }
]
}

Resources and conditions 1345

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

Action: CreatePlatformVersion

platform aws:Reque
stTag/ key-
name (Optional)

aws:TagKeys
(Optional)

This example allows the CreatePlatformVers
ion action to create platform versions targeting the
us-east-2 region, whose names begin with us-
east-2_ :

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CreatePla
tformVersion"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:platform/us-east-2_*"
]
 }
]
}

Action: CreateStorageLocation

Resources and conditions 1346

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_CreatePlatformVersion.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_CreateStorageLocation.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

"*" N/A {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CreateSto
rageLocation"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Action: DeleteApplication

application aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DeleteApp
lication action to delete the application My App:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:DeleteApp
lication"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:application/My App"
]
 }
]
}

Action: DeleteApplicationVersion

Resources and conditions 1347

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_DeleteApplication.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_DeleteApplicationVersion.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

applicati
onversion

InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DeleteApp
licationVersion action to delete an application
version whose name is My Version in the applicati
on My App:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:DeleteApp
licationVersion"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:applicationversion/My
 App/My Version"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws:elasticbeanstalk:us-east-2
:123456789012:application/My App"]
 }
 }
 }
]
}

Action: DeleteConfigurationTemplate

Resources and conditions 1348

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_DeleteConfigurationTemplate.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

configura
tiontempl
ate

InApplica
tion (Optional)

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DeleteCon
figurationTemplate action to delete a
configuration template whose name is My Template
in the application My App. Specifying the application
name as a condition is optional.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:DeleteCon
figurationTemplate"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:configurationtemplate/
My App/My Template"
]
 }
]
}

Action: DeleteEnvironmentConfiguration

Resources and conditions 1349

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_DeleteEnvironmentConfiguration.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion (Optional)

The following policy allows the DeleteEnv
ironmentConfiguration action to delete a
draft configuration for the environment myenv in the
application My App. Specifying the application name
as a condition is optional.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:DeleteEnv
ironmentConfiguration"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
myenv"
]
 }
]
}

Action: DeletePlatformVersion

Resources and conditions 1350

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_DeletePlatformVersion.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

platform aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DeletePla
tformVersion action to delete platform versions
targeting the us-east-2 region, whose names
begin with us-east-2_ :

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:DeletePla
tformVersion"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:platform/us-east-2_*"
]
 }
]
}

Action: DescribeApplications

Resources and conditions 1351

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_DescribeApplications.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

application aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DescribeA
pplications action to describe the application
My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:DescribeA
pplications"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:application/My App"
]
 }
]
}

Action: DescribeApplicationVersions

Resources and conditions 1352

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_DescribeApplicationVersions.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

applicati
onversion

InApplica
tion (Optional)

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DescribeA
pplicationVersions action to describe the
application version My Version in the applicati
on My App. Specifying the application name as a
condition is optional.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:DescribeA
pplicationVersions"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:applicationversion/My
 App/My Version"
]
 }
]
}

Action: DescribeConfigurationOptions

Resources and conditions 1353

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_DescribeConfigurationOptions.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment

configura
tiontempl
ate

solutions
tack

InApplica
tion (Optional)

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DescribeC
onfigurationOptions action to describe the
configuration options for the environment myenv in
the application My App. Specifying the application
name as a condition is optional.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "elasticbeanstalk:DescribeC
onfigurationOptions",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
myenv"
]
 }
]
}

Action: DescribeConfigurationSettings

Resources and conditions 1354

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_DescribeConfigurationSettings.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment

configura
tiontempl
ate

InApplica
tion (Optional)

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DescribeC
onfigurationSettings action to describe the
configuration settings for the environment myenv in
the application My App. Specifying the application
name as a condition is optional.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "elasticbeanstalk:DescribeC
onfigurationSettings",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
myenv"
]
 }
]
}

Action: DescribeEnvironmentHealth

Resources and conditions 1355

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_DescribeEnvironmentHealth.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows use of DescribeE
nvironmentHealth to retrieve health informati
on for an environment named myenv.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "elasticbeanstalk:DescribeE
nvironmentHealth",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
myenv"
]
 }
]
}

Action: DescribeEnvironmentResources

Resources and conditions 1356

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_DescribeEnvironmentResources.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion (Optional)

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DescribeE
nvironmentResources action to return list
of AWS resources for the environment myenv in the
application My App. Specifying the application name
as a condition is optional.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "elasticbeanstalk:DescribeE
nvironmentResources",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
myenv"
]
 }
]
}

Action: DescribeEnvironments

Resources and conditions 1357

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_DescribeEnvironments.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion (Optional)

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DescribeE
nvironments action to describe the environme
nts myenv and myotherenv in the application My
App. Specifying the application name as a condition is
optional.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "elasticbeanstalk:DescribeE
nvironments",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
myenv",
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App2/
myotherenv"
]
 }
]
}

Action: DescribeEvents

Resources and conditions 1358

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_DescribeEvents.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

application

applicati
onversion

configura
tiontempl
ate

environment

InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DescribeEvents
action to list event descriptions for the environment
myenv and the application version My Version in
the application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "elasticbeanstalk:DescribeE
vents",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
myenv",
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:applicationversion/My
 App/My Version"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws:elasticbeanstalk:us-east-2
:123456789012:application/My App"]
 }
 }
 }
]
}

Action: DescribeInstancesHealth

Resources and conditions 1359

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_DescribeInstancesHealth.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment N/A The following policy allows use of DescribeI
nstancesHealth to retrieve health information
for instances in an environment named myenv.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "elasticbeanstalk:DescribeI
nstancesHealth",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
myenv"
]
 }
]
}

Action: DescribePlatformVersion

Resources and conditions 1360

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_DescribePlatformVersion.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

platform aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the DescribeP
latformVersion action to describe platform
versions targeting the us-east-2 region, whose
names begin with us-east-2_ :

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:DescribeP
latformVersion"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:platform/us-east-2_*"
]
 }
]
}

Action: ListAvailableSolutionStacks

Resources and conditions 1361

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_ListAvailableSolutionStacks.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

solutions
tack

N/A The following policy allows the ListAvail
ableSolutionStacks action to return only
the solution stack 32bit Amazon Linux running
Tomcat 7.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:ListAvail
ableSolutionStacks"
],
 "Effect": "Allow",
 "Resource": "arn:aws:elasticbe
anstalk:us-east-2::solutionstack/32bit
 Amazon Linux running Tomcat 7"
 }
]
}

Action: ListPlatformVersions

Resources and conditions 1362

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_ListPlatformVersions.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

platform aws:Reque
stTag/ key-
name (Optional)

aws:TagKeys
(Optional)

This example allows the CreatePlatformVers
ion action to create platform versions targeting the
us-east-2 region, whose names begin with us-
east-2_ :

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:ListPlatf
ormVersions"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:platform/us-east-2_*"
]
 }
]
}

Action: ListTagsForResource

Resources and conditions 1363

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_ListTagsForResource.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

application

applicati
onversion

configura
tiontempl
ate

environment

platform

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the ListTagsF
orResource action to list tags of existing
resources only if they have a tag named stage with
the value test:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:ListTagsF
orResource"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/stage": ["test"]
 }
 }
 }
]
}

Action: RebuildEnvironment

Resources and conditions 1364

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_RebuildEnvironment.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the RebuildEn
vironment action to rebuild the environment
myenv in the application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:RebuildEn
vironment"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws:elasticbeanstalk:us-east-2
:123456789012:application/My App"]
 }
 }
 }
]
}

Action: RequestEnvironmentInfo

Resources and conditions 1365

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_RequestEnvironmentInfo.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the RequestEn
vironmentInfo action to compile information
about the environment myenv in the application My
App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:RequestEn
vironmentInfo"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws:elasticbeanstalk:us-east-2
:123456789012:application/My App"]
 }
 }
 }
]
}

Action: RestartAppServer

Resources and conditions 1366

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_RestartAppServer.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion

The following policy allows the RestartAp
pServer action to restart the application container
server for the environment myenv in the application
My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:RestartAppServer"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws:elasticbeanstalk:us-east-2
:123456789012:application/My App"]
 }
 }
 }
]
}

Action: RetrieveEnvironmentInfo

Resources and conditions 1367

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_RetrieveEnvironmentInfo.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the RetrieveE
nvironmentInfo action to retrieve the compiled
information for the environment myenv in the
application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:RetrieveE
nvironmentInfo"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws:elasticbeanstalk:us-east-2
:123456789012:application/My App"]
 }
 }
 }
]
}

Action: SwapEnvironmentCNAMEs

Resources and conditions 1368

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_SwapEnvironmentCNAMEs.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion (Optional)

FromEnvir
onment
(Optional)

The following policy allows the SwapEnvir
onmentCNAMEs action to swap the CNAMEs for
the environments mysrcenv and mydestenv .

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:SwapEnvir
onmentCNAMEs"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
mysrcenv",
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
mydestenv"
]
 }
]
}

Action: TerminateEnvironment

Resources and conditions 1369

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_TerminateEnvironment.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the Terminate
Environment action to terminate the environme
nt myenv in the application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:Terminate
Environment"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws:elasticbeanstalk:us-east-2
:123456789012:application/My App"]
 }
 }
 }
]
}

Action: UpdateApplication

Resources and conditions 1370

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_UpdateApplication.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

application aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the UpdateApp
lication action to update properties of the
application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:UpdateApp
lication"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:application/My App"
]
 }
]
}

Action: UpdateApplicationResourceLifecycle

Resources and conditions 1371

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_UpdateApplicationResourceLifecycle.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

application aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the UpdateApp
licationResourceLifecycle action to
update lifecycle settings of the application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:UpdateApp
licationResourceLifecycle"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:application/My App"
]
 }
]
}

Action: UpdateApplicationVersion

Resources and conditions 1372

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_UpdateApplicationVersion.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

applicati
onversion

InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the UpdateApp
licationVersion action to update the propertie
s of the application version My Version in the
application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:UpdateApp
licationVersion"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:applicationversion/My
 App/My Version"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws:elasticbeanstalk:us-east-2
:123456789012:application/My App"]
 }
 }
 }
]
}

Action: UpdateConfigurationTemplate

Resources and conditions 1373

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_UpdateConfigurationTemplate.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

configura
tiontempl
ate

InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the UpdateCon
figurationTemplate action to update the
properties or options of the configuration template
My Template in the application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:UpdateCon
figurationTemplate"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:configurationtemplate/
My App/My Template"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws:elasticbeanstalk:us-east-2
:123456789012:application/My App"]
 }
 }
 }
]
}

Action: UpdateEnvironment

Resources and conditions 1374

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_UpdateEnvironment.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

environment InApplica
tion

FromAppli
cationVer
sion

FromConfi
gurationT
emplate

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the UpdateEnv
ironment action to update the environment myenv
in the application My App by deploying the applicati
on version My Version.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:UpdateEnv
ironment"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws:elasticbeanstalk:us-east-2
:123456789012:application/My App"],
 "elasticbeanstalk:FromAppli
cationVersion": ["arn:aws:elasticb
eanstalk:us-east-2:123456789012:appl
icationversion/My App/My Version"]
 }
 }
 }
]
}

Action: UpdateTagsForResource – AddTags

Resources and conditions 1375

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_UpdateTagsForResource.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

application

applicati
onversion

configura
tiontempl
ate

environment

platform

aws:Resou
rceTag/ key-
name (Optional)

aws:Reque
stTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The AddTags action is one of two virtual actions
associated with the UpdateTagsForResource
API.

The following policy allows the AddTags action to
modify tags of existing resources only if they have a
tag named stage with the value test:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:AddTags"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/stage": ["test"]
 }
 }
 }
]
}

Action: UpdateTagsForResource – RemoveTags

Resources and conditions 1376

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_UpdateTagsForResource.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_UpdateTagsForResource.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

application

applicati
onversion

configura
tiontempl
ate

environment

platform

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The RemoveTags action is one of two virtual
actions associated with the UpdateTagsForResou
rce API.

The following policy denies the RemoveTags action
to request the removal of a tag named stage from
existing resources:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:RemoveTags"
],
 "Effect": "Deny",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": ["stage"]
 }
 }
 }
]
}

Action: ValidateConfigurationSettings

Resources and conditions 1377

http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_UpdateTagsForResource.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_UpdateTagsForResource.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_ValidateConfigurationSettings.html

AWS Elastic Beanstalk Developer Guide

Resource Conditions Example statement

template

environment

InApplica
tion

aws:Resou
rceTag/ key-
name (Optional)

aws:TagKeys
(Optional)

The following policy allows the ValidateC
onfigurationSettings action to validates
configuration settings against the environment
myenv in the application My App.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:ValidateC
onfigurationSettings"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-
east-2:123456789012:environment/My App/
myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication":
 ["arn:aws:elasticbeanstalk:us-east-2
:123456789012:application/My App"]
 }
 }
 }
]
}

Condition keys for Elastic Beanstalk actions

Keys enable you to specify conditions that express dependencies, restrict permissions, or specify
constraints on the input parameters for an action. Elastic Beanstalk supports the following keys.

InApplication

Specifies the application that contains the resource that the action operates on.

Resources and conditions 1378

AWS Elastic Beanstalk Developer Guide

The following example allows the UpdateApplicationVersion action to update the
properties of the application version My Version. The InApplication condition specifies My
App as the container for My Version.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:UpdateApplicationVersion"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:applicationversion/My App/
My Version"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication": ["arn:aws:elasticbeanstalk:us-
east-2:123456789012:application/My App"]
 }
 }
 }
]
}

FromApplicationVersion

Specifies an application version as a dependency or a constraint on an input parameter.

The following example allows the UpdateEnvironment action to update the environment
myenv in the application My App. The FromApplicationVersion condition constrains the
VersionLabel parameter to allow only the application version My Version to update the
environment.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:UpdateEnvironment"
],

Resources and conditions 1379

AWS Elastic Beanstalk Developer Guide

 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:environment/My App/myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication": ["arn:aws:elasticbeanstalk:us-
east-2:123456789012:application/My App"],
 "elasticbeanstalk:FromApplicationVersion": ["arn:aws:elasticbeanstalk:us-
east-2:123456789012:applicationversion/My App/My Version"]
 }
 }
 }
]
}

FromConfigurationTemplate

Specifies a configuration template as a dependency or a constraint on an input parameter.

The following example allows the UpdateEnvironment action to update the environment
myenv in the application My App. The FromConfigurationTemplate condition constrains
the TemplateName parameter to allow only the configuration template My Template to
update the environment.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:UpdateEnvironment"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:environment/My App/myenv"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication": ["arn:aws:elasticbeanstalk:us-
east-2:123456789012:application/My App"],
 "elasticbeanstalk:FromConfigurationTemplate":
 ["arn:aws:elasticbeanstalk:us-east-2:123456789012:configurationtemplate/My App/My
 Template"]

Resources and conditions 1380

AWS Elastic Beanstalk Developer Guide

 }
 }
 }
]
}

FromEnvironment

Specifies an environment as a dependency or a constraint on an input parameter.

The following example allows the SwapEnvironmentCNAMEs action to swap the CNAMEs in My
App for all environments whose names begin with mysrcenv and mydestenv but not those
environments whose names begin with mysrcenvPROD* and mydestenvPROD*.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:SwapEnvironmentCNAMEs"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:environment/My App/
mysrcenv*",
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:environment/My App/
mydestenv*"
],
 "Condition": {
 "StringNotLike": {
 "elasticbeanstalk:FromEnvironment": [
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:environment/My App/
mysrcenvPROD*",
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:environment/My App/
mydestenvPROD*"
]
 }
 }
 }
]
}

Resources and conditions 1381

AWS Elastic Beanstalk Developer Guide

FromSolutionStack

Specifies a solution stack as a dependency or a constraint on an input parameter.

The following policy allows the CreateConfigurationTemplate action to create
configuration templates whose name begins with My Template (My Template*) in the
application My App. The FromSolutionStack condition constrains the solutionstack
parameter to allow only the solution stack 32bit Amazon Linux running Tomcat 7 as the
input value for that parameter.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "elasticbeanstalk:CreateConfigurationTemplate"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:configurationtemplate/My
 App/My Template*"
],
 "Condition": {
 "StringEquals": {
 "elasticbeanstalk:InApplication": ["arn:aws:elasticbeanstalk:us-
east-2:123456789012:application/My App"],
 "elasticbeanstalk:FromSolutionStack": ["arn:aws:elasticbeanstalk:us-
east-2::solutionstack/32bit Amazon Linux running Tomcat 7"]
 }
 }
 }
]
}

aws:ResourceTag/key-name, aws:RequestTag/key-name, aws:TagKeys

Specify tag-based conditions. For details, see Using tags to control access to Elastic Beanstalk
resources.

Resources and conditions 1382

AWS Elastic Beanstalk Developer Guide

Using tags to control access to Elastic Beanstalk resources

Conditions in AWS Identity and Access Management (IAM) user policy statements are part of the
syntax that you use to specify permissions to resources that Elastic Beanstalk actions need to
complete. For details about specifying policy statement conditions, see Resources and conditions
for Elastic Beanstalk actions. Using tags in conditions is one way to control access to resources and
requests. For information about tagging Elastic Beanstalk resources, see Tagging Elastic Beanstalk
application resources. This topic discusses tag-based access control.

When you design IAM policies, you might be setting granular permissions by granting access to
specific resources. As the number of resources that you manage grows, this task becomes more
difficult. Tagging resources and using tags in policy statement conditions can make this task easier.
You grant access in bulk to any resource with a certain tag. Then you repeatedly apply this tag to
relevant resources, during creation or later.

Tags can be attached to the resource or passed in the request to services that support tagging. In
Elastic Beanstalk, resources can have tags, and some actions can include tags. When you create an
IAM policy, you can use tag condition keys to control:

• Which users can perform actions on an environment, based on tags that it already has.

• What tags can be passed in an action's request.

• Whether specific tag keys can be used in a request.

For the complete syntax and semantics of tag condition keys, see Controlling Access Using Tags in
the IAM User Guide.

The following examples demonstrate how to specify tag conditions in policies for Elastic Beanstalk
users.

Example 1: Limit actions based on tags in the request

The Elastic Beanstalk AdministratorAccess-AWSElasticBeanstalk managed user policy gives users
unlimited permission to perform any Elastic Beanstalk action on any Elastic Beanstalk-managed
resource.

The following policy limits this power and denies unauthorized users permission to create Elastic
Beanstalk production environments. To do that, it denies the CreateEnvironment action if the
request specifies a tag named stage with one of the values gamma or prod. In addition, the policy

Tag-based access control 1383

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

AWS Elastic Beanstalk Developer Guide

prevents these unauthorized users from tampering with the stage of production environments by
not allowing tag modification actions to include these same tag values or to completely remove
the stage tag. A customer's administrator must attach this IAM policy to unauthorized IAM users,
in addition to the managed user policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "elasticbeanstalk:CreateEnvironment",
 "elasticbeanstalk:AddTags"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/stage": ["gamma", "prod"]
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "elasticbeanstalk:RemoveTags"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": ["stage"]
 }
 }
 }
]
}

Example 2: Limit actions based on resource tags

The Elastic Beanstalk AdministratorAccess-AWSElasticBeanstalk managed user policy gives users
unlimited permission to perform any Elastic Beanstalk action on any Elastic Beanstalk-managed
resource.

Tag-based access control 1384

AWS Elastic Beanstalk Developer Guide

The following policy limits this power and denies unauthorized users permission to perform
actions on Elastic Beanstalk production environments. To do that, it denies specific actions if
the environment has a tag named stage with one of the values gamma or prod. A customer's
administrator must attach this IAM policy to unauthorized IAM users, in addition to the managed
user policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "elasticbeanstalk:AddTags",
 "elasticbeanstalk:RemoveTags",
 "elasticbeanstalk:DescribeEnvironments",
 "elasticbeanstalk:TerminateEnvironment",
 "elasticbeanstalk:UpdateEnvironment",
 "elasticbeanstalk:ListTagsForResource"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/stage": ["gamma", "prod"]
 }
 }
 }
]
}

Example 3: Allow actions based on tags in the request

The following policy grants users permission to create Elastic Beanstalk development applications.

To do that, it allows the CreateApplicationand AddTags actions if the request specifies a
tag named stage with the value development. The aws:TagKeys condition ensures that the
user can't add other tag keys. In particular, it ensures case sensitivity of the stage tag key. Notice
that this policy is useful for IAM users that don't have the Elastic Beanstalk AdministratorAccess-
AWSElasticBeanstalk managed user policy attached. The managed policy gives users unlimited
permission to perform any Elastic Beanstalk action on any Elastic Beanstalk-managed resource.

{
 "Version": "2012-10-17",

Tag-based access control 1385

AWS Elastic Beanstalk Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticbeanstalk:CreateApplication",
 "elasticbeanstalk:AddTags"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/stage": "development"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": ["stage"]
 }
 }
 }
]
}

Example 4: Allow actions based on resource tags

The following policy grants users permission to perform actions on, and get information about,
Elastic Beanstalk development applications.

To do that, it allows specific actions if the application has a tag named stage with the value
development. The aws:TagKeys condition ensures that the user can't add other tag keys. In
particular, it ensures case sensitivity of the stage tag key. Notice that this policy is useful for IAM
users that don't have the Elastic Beanstalk AdministratorAccess-AWSElasticBeanstalk managed
user policy attached. The managed policy gives users unlimited permission to perform any Elastic
Beanstalk action on any Elastic Beanstalk-managed resource.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticbeanstalk:UpdateApplication",
 "elasticbeanstalk:DeleteApplication",
 "elasticbeanstalk:DescribeApplications"
],

Tag-based access control 1386

AWS Elastic Beanstalk Developer Guide

 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/stage": "development"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": ["stage"]
 }
 }
 }
]
}

Example policies based on managed policies

This section demonstrates how to control user access to AWS Elastic Beanstalk and includes
example policies that provide the required access for common scenarios. These policies are derived
from the Elastic Beanstalk managed policies. For information about attaching managed policies to
users and groups, see Managing Elastic Beanstalk user policies.

In this scenario, Example Corp. is a software company with three teams responsible for the
company website: administrators who manage the infrastructure, developers who build the
software for the website, and a QA team that tests the website. To help manage permissions to
their Elastic Beanstalk resources, Example Corp. creates three groups to which members of each
respective team belong: Admins, Developers, and Testers. Example Corp. wants the Admins group
to have full access to all applications, environments, and their underlying resources so that they
can create, troubleshoot, and delete all Elastic Beanstalk assets. Developers require permissions to
view all Elastic Beanstalk assets and to create and deploy application versions. Developers should
not be able to create new applications or environments or terminate running environments. Testers
need to view all Elastic Beanstalk resources to monitor and test applications. The Testers should
not be able to make changes to any Elastic Beanstalk resources.

The following example policies provide the required permissions for each group.

Example 1: Admins group – All Elastic Beanstalk and related service APIs

The following policy gives users permissions for all actions required to use Elastic Beanstalk.
This policy also allows Elastic Beanstalk to provision and manage resources on your behalf in the
following services. Elastic Beanstalk relies on these additional services to provision underlying
resources when creating an environment.

Example managed policies 1387

AWS Elastic Beanstalk Developer Guide

• Amazon Elastic Compute Cloud

• Elastic Load Balancing

• Auto Scaling

• Amazon CloudWatch

• Amazon Simple Storage Service

• Amazon Simple Notification Service

• Amazon Relational Database Service

• AWS CloudFormation

Note that this policy is an example. It gives a broad set of permissions to the AWS services that
Elastic Beanstalk uses to manage applications and environments. For example, ec2:* allows
an AWS Identity and Access Management (IAM) user to perform any action on any Amazon EC2
resource in the AWS account. These permissions are not limited to the resources that you use with
Elastic Beanstalk. As a best practice, you should grant individuals only the permissions they need to
perform their duties.

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Effect" : "Allow",
 "Action" : [
 "elasticbeanstalk:*",
 "ec2:*",
 "elasticloadbalancing:*",
 "autoscaling:*",
 "cloudwatch:*",
 "s3:*",
 "sns:*",
 "rds:*",
 "cloudformation:*"
],
 "Resource" : "*"
 }
]
}

Example managed policies 1388

AWS Elastic Beanstalk Developer Guide

Example 2: Developers group – All but highly privileged operations

The following policy denies permission to create applications and environments, and allows all
other Elastic Beanstalk actions.

Note that this policy is an example. It gives a broad set of permissions to the AWS products that
Elastic Beanstalk uses to manage applications and environments. For example, ec2:* allows
an IAM user to perform any action on any Amazon EC2 resource in the AWS account. These
permissions are not limited to the resources that you use with Elastic Beanstalk. As a best practice,
you should grant individuals only the permissions they need to perform their duties.

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Action" : [
 "elasticbeanstalk:CreateApplication",
 "elasticbeanstalk:CreateEnvironment",
 "elasticbeanstalk:DeleteApplication",
 "elasticbeanstalk:RebuildEnvironment",
 "elasticbeanstalk:SwapEnvironmentCNAMEs",
 "elasticbeanstalk:TerminateEnvironment"],
 "Effect" : "Deny",
 "Resource" : "*"
 },
 {
 "Action" : [
 "elasticbeanstalk:*",
 "ec2:*",
 "elasticloadbalancing:*",
 "autoscaling:*",
 "cloudwatch:*",
 "s3:*",
 "sns:*",
 "rds:*",
 "cloudformation:*"],
 "Effect" : "Allow",
 "Resource" : "*"
 }
]
}

Example managed policies 1389

AWS Elastic Beanstalk Developer Guide

Example 3: Testers – View only

The following policy allows read-only access to all applications, application versions, events, and
environments. It doesn't allow performing any actions.

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Effect" : "Allow",
 "Action" : [
 "elasticbeanstalk:Check*",
 "elasticbeanstalk:Describe*",
 "elasticbeanstalk:List*",
 "elasticbeanstalk:RequestEnvironmentInfo",
 "elasticbeanstalk:RetrieveEnvironmentInfo",
 "ec2:Describe*",
 "elasticloadbalancing:Describe*",
 "autoscaling:Describe*",
 "cloudwatch:Describe*",
 "cloudwatch:List*",
 "cloudwatch:Get*",
 "s3:Get*",
 "s3:List*",
 "sns:Get*",
 "sns:List*",
 "rds:Describe*",
 "cloudformation:Describe*",
 "cloudformation:Get*",
 "cloudformation:List*",
 "cloudformation:Validate*",
 "cloudformation:Estimate*"
],
 "Resource" : "*"
 }
]
}

Example policies based on resource permissions

This section walks through a use case for controlling user permissions for Elastic Beanstalk actions
that access specific Elastic Beanstalk resources. We'll walk through the sample policies that support

Example resource-specific policies 1390

AWS Elastic Beanstalk Developer Guide

the use case. For more information policies on Elastic Beanstalk resources, see Creating a custom
user policy. For information about attaching policies to users and groups, go to Managing IAM
Policies in Using AWS Identity and Access Management.

In our use case, Example Corp. is a small consulting firm developing applications for two different
customers. John is the development manager overseeing the development of the two Elastic
Beanstalk applications, app1 and app2. John does development and some testing on the two
applications, and only he can update the production environment for the two applications. These
are the permissions that he needs for app1 and app2:

• View application, application versions, environments, and configuration templates

• Create application versions and deploy them to the staging environment

• Update the production environment

• Create and terminate environments

Jill is a tester who needs access to view the following resources in order to monitor and test the
two applications: applications, application versions, environments, and configuration templates.
However, she should not be able to make changes to any Elastic Beanstalk resources.

Jack is the developer for app1 who needs access to view all resources for app1 and also needs to
create application versions for app1 and deploy them to the staging environment.

Judy is the administrator of the AWS account for Example Corp. She has created IAM users for
John, Jill, and Jack and attaches the following policies to those users to grant the appropriate
permissions to the app1 and app2 applications.

Example 1: John – Development manager for app1, app2

We have broken down John's policy into three separate policies so that they are easier to read and
manage. Together, they give John the permissions he needs to perform development, testing, and
deployment actions on the two applications.

The first policy specifies actions for Auto Scaling, Amazon S3, Amazon EC2, CloudWatch, Amazon
SNS, Elastic Load Balancing, Amazon RDS, and AWS CloudFormation. Elastic Beanstalk relies on
these additional services to provision underlying resources when creating an environment.

Note that this policy is an example. It gives a broad set of permissions to the AWS products that
Elastic Beanstalk uses to manage applications and environments. For example, ec2:* allows

Example resource-specific policies 1391

http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/ManagingPolicies.html

AWS Elastic Beanstalk Developer Guide

an IAM user to perform any action on any Amazon EC2 resource in the AWS account. These
permissions are not limited to the resources that you use with Elastic Beanstalk. As a best practice,
you should grant individuals only the permissions they need to perform their duties.

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "ec2:*",
 "ecs:*",
 "ecr:*",
 "elasticloadbalancing:*",
 "autoscaling:*",
 "cloudwatch:*",
 "s3:*",
 "sns:*",
 "cloudformation:*",
 "dynamodb:*",
 "rds:*",
 "sqs:*",
 "logs:*",
 "iam:GetPolicyVersion",
 "iam:GetRole",
 "iam:PassRole",
 "iam:ListRolePolicies",
 "iam:ListAttachedRolePolicies",
 "iam:ListInstanceProfiles",
 "iam:ListRoles",
 "iam:ListServerCertificates",
 "acm:DescribeCertificate",
 "acm:ListCertificates",
 "codebuild:CreateProject",
 "codebuild:DeleteProject",
 "codebuild:BatchGetBuilds",
 "codebuild:StartBuild"
],
 "Resource":"*"
 }
]
}

Example resource-specific policies 1392

AWS Elastic Beanstalk Developer Guide

The second policy specifies the Elastic Beanstalk actions that John is allowed to perform on
the app1 and app2 resources. The AllCallsInApplications statement allows all Elastic
Beanstalk actions ("elasticbeanstalk:*") performed on all resources within app1 and app2
(for example, elasticbeanstalk:CreateEnvironment). The AllCallsOnApplications
statement allows all Elastic Beanstalk actions ("elasticbeanstalk:*") on the app1 and
app2 application resources (for example, elasticbeanstalk:DescribeApplications,
elasticbeanstalk:UpdateApplication, etc.). The AllCallsOnSolutionStacks statement
allows all Elastic Beanstalk actions ("elasticbeanstalk:*") for solution stack resources (for
example, elasticbeanstalk:ListAvailableSolutionStacks).

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Sid":"AllCallsInApplications",
 "Action":[
 "elasticbeanstalk:*"
],
 "Effect":"Allow",
 "Resource":[
 "*"
],
 "Condition":{
 "StringEquals":{
 "elasticbeanstalk:InApplication":[
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:application/app1",
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:application/app2"
]
 }
 }
 },
 {
 "Sid":"AllCallsOnApplications",
 "Action":[
 "elasticbeanstalk:*"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:application/app1",
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:application/app2"
]
 },

Example resource-specific policies 1393

AWS Elastic Beanstalk Developer Guide

 {
 "Sid":"AllCallsOnSolutionStacks",
 "Action":[
 "elasticbeanstalk:*"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws:elasticbeanstalk:us-east-2::solutionstack/*"
]
 }
]
}

The third policy specifies the Elastic Beanstalk actions that the second policy needs permissions
to in order to complete those Elastic Beanstalk actions. The AllNonResourceCalls
statement allows the elasticbeanstalk:CheckDNSAvailability action, which is
required to call elasticbeanstalk:CreateEnvironment and other actions. It also
allows the elasticbeanstalk:CreateStorageLocation action, which is required for
elasticbeanstalk:CreateApplication, elasticbeanstalk:CreateEnvironment, and
other actions.

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Sid":"AllNonResourceCalls",
 "Action":[
 "elasticbeanstalk:CheckDNSAvailability",
 "elasticbeanstalk:CreateStorageLocation"
],
 "Effect":"Allow",
 "Resource":[
 "*"
]
 }
]
}

Example resource-specific policies 1394

AWS Elastic Beanstalk Developer Guide

Example 2: Jill – Tester for app1, app2

We have broken down Jill's policy into three separate policies so that they are easier to read and
manage. Together, they give Jill the permissions she needs to perform testing and monitoring
actions on the two applications.

The first policy specifies Describe*, List*, and Get* actions on Auto Scaling, Amazon
S3, Amazon EC2, CloudWatch, Amazon SNS, Elastic Load Balancing, Amazon RDS, and AWS
CloudFormation (for non-legacy container types) so that the Elastic Beanstalk actions are able
to retrieve the relevant information about the underlying resources of the app1 and app2
applications.

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "ec2:Describe*",
 "elasticloadbalancing:Describe*",
 "autoscaling:Describe*",
 "cloudwatch:Describe*",
 "cloudwatch:List*",
 "cloudwatch:Get*",
 "s3:Get*",
 "s3:List*",
 "sns:Get*",
 "sns:List*",
 "rds:Describe*",
 "cloudformation:Describe*",
 "cloudformation:Get*",
 "cloudformation:List*",
 "cloudformation:Validate*",
 "cloudformation:Estimate*"
],
 "Resource":"*"
 }
]
}

The second policy specifies the Elastic Beanstalk actions that Jill is allowed to perform on the
app1 and app2 resources. The AllReadCallsInApplications statement allows her to call the

Example resource-specific policies 1395

AWS Elastic Beanstalk Developer Guide

Describe* actions and the environment info actions. The AllReadCallsOnApplications
statement allows her to call the DescribeApplications and DescribeEvents actions on
the app1 and app2 application resources. The AllReadCallsOnSolutionStacks statement
allows viewing actions that involve solution stack resources (ListAvailableSolutionStacks,
DescribeConfigurationOptions, and ValidateConfigurationSettings).

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Sid":"AllReadCallsInApplications",
 "Action":[
 "elasticbeanstalk:Describe*",
 "elasticbeanstalk:RequestEnvironmentInfo",
 "elasticbeanstalk:RetrieveEnvironmentInfo"
],
 "Effect":"Allow",
 "Resource":[
 "*"
],
 "Condition":{
 "StringEquals":{
 "elasticbeanstalk:InApplication":[
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:application/app1",
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:application/app2"
]
 }
 }
 },
 {
 "Sid":"AllReadCallsOnApplications",
 "Action":[
 "elasticbeanstalk:DescribeApplications",
 "elasticbeanstalk:DescribeEvents"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:application/app1",
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:application/app2"
]
 },
 {
 "Sid":"AllReadCallsOnSolutionStacks",

Example resource-specific policies 1396

AWS Elastic Beanstalk Developer Guide

 "Action":[
 "elasticbeanstalk:ListAvailableSolutionStacks",
 "elasticbeanstalk:DescribeConfigurationOptions",
 "elasticbeanstalk:ValidateConfigurationSettings"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws:elasticbeanstalk:us-east-2::solutionstack/*"
]
 }
]
}

The third policy specifies the Elastic Beanstalk actions that the second policy needs permissions
to in order to complete those Elastic Beanstalk actions. The AllNonResourceCalls statement
allows the elasticbeanstalk:CheckDNSAvailability action, which is required for some
viewing actions.

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Sid":"AllNonResourceCalls",
 "Action":[
 "elasticbeanstalk:CheckDNSAvailability"
],
 "Effect":"Allow",
 "Resource":[
 "*"
]
 }
]
}

Example 3: Jack – Developer for app1

We have broken down Jack's policy into three separate policies so that they are easier to read and
manage. Together, they give Jack the permissions he needs to perform testing, monitoring, and
deployment actions on the app1 resource.

The first policy specifies the actions on Auto Scaling, Amazon S3, Amazon EC2, CloudWatch,
Amazon SNS, Elastic Load Balancing, Amazon RDS, and AWS CloudFormation (for non-legacy

Example resource-specific policies 1397

AWS Elastic Beanstalk Developer Guide

container types) so that the Elastic Beanstalk actions are able to view and work with the underlying
resources of app1. For a list of supported non-legacy container types, see the section called “Why
are some platform versions marked legacy?”

Note that this policy is an example. It gives a broad set of permissions to the AWS products that
Elastic Beanstalk uses to manage applications and environments. For example, ec2:* allows
an IAM user to perform any action on any Amazon EC2 resource in the AWS account. These
permissions are not limited to the resources that you use with Elastic Beanstalk. As a best practice,
you should grant individuals only the permissions they need to perform their duties.

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "ec2:*",
 "elasticloadbalancing:*",
 "autoscaling:*",
 "cloudwatch:*",
 "s3:*",
 "sns:*",
 "rds:*",
 "cloudformation:*"
],
 "Resource":"*"
 }
]
}

The second policy specifies the Elastic Beanstalk actions that Jack is allowed to perform on the
app1 resource.

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Sid":"AllReadCallsAndAllVersionCallsInApplications",
 "Action":[
 "elasticbeanstalk:Describe*",
 "elasticbeanstalk:RequestEnvironmentInfo",
 "elasticbeanstalk:RetrieveEnvironmentInfo",

Example resource-specific policies 1398

AWS Elastic Beanstalk Developer Guide

 "elasticbeanstalk:CreateApplicationVersion",
 "elasticbeanstalk:DeleteApplicationVersion",
 "elasticbeanstalk:UpdateApplicationVersion"
],
 "Effect":"Allow",
 "Resource":[
 "*"
],
 "Condition":{
 "StringEquals":{
 "elasticbeanstalk:InApplication":[
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:application/app1"
]
 }
 }
 },
 {
 "Sid":"AllReadCallsOnApplications",
 "Action":[
 "elasticbeanstalk:DescribeApplications",
 "elasticbeanstalk:DescribeEvents"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:application/app1"
]
 },
 {
 "Sid":"UpdateEnvironmentInApplications",
 "Action":[
 "elasticbeanstalk:UpdateEnvironment"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:environment/app1/app1-
staging*"
],
 "Condition":{
 "StringEquals":{
 "elasticbeanstalk:InApplication":[
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:application/app1"
]
 },
 "StringLike":{

Example resource-specific policies 1399

AWS Elastic Beanstalk Developer Guide

 "elasticbeanstalk:FromApplicationVersion":[
 "arn:aws:elasticbeanstalk:us-east-2:123456789012:applicationversion/
app1/*"
]
 }
 }
 },
 {
 "Sid":"AllReadCallsOnSolutionStacks",
 "Action":[
 "elasticbeanstalk:ListAvailableSolutionStacks",
 "elasticbeanstalk:DescribeConfigurationOptions",
 "elasticbeanstalk:ValidateConfigurationSettings"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws:elasticbeanstalk:us-east-2::solutionstack/*"
]
 }
]
}

The third policy specifies the Elastic Beanstalk actions that the second policy needs permissions
to in order to complete those Elastic Beanstalk actions. The AllNonResourceCalls
statement allows the elasticbeanstalk:CheckDNSAvailability action, which is
required to call elasticbeanstalk:CreateEnvironment and other actions. It also
allows the elasticbeanstalk:CreateStorageLocation action, which is required for
elasticbeanstalk:CreateEnvironment, and other actions.

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Sid":"AllNonResourceCalls",
 "Action":[
 "elasticbeanstalk:CheckDNSAvailability",
 "elasticbeanstalk:CreateStorageLocation"
],
 "Effect":"Allow",
 "Resource":[
 "*"
]

Example resource-specific policies 1400

AWS Elastic Beanstalk Developer Guide

 }
]
}

Using Elastic Beanstalk with Amazon RDS

You can use Elastic Beanstalk with Amazon Relational Database Service (Amazon RDS) to set
up, operate, and scale a relational database. There are two options to get started, which are the
following.

• Create a new database in Amazon RDS.

• Start with a database that was previously created by Elastic Beanstalk and subsequently
decoupled from a Beanstalk environment. For more information, see the section called
“Database”.

You can use either approach to run a database instance in Amazon RDS and configure your
application to connect to it on launch. You can connect multiple environments to a database and
also perform seamless updates with blue-green deployments.

Note

If you haven't used a database instance with your application before, we recommend that
you add a database to a test environment with the Elastic Beanstalk console first. By doing
this, you can verify that your application can read the environment properties, construct a
connection string, and connect to a database instance, without the additional configuration
work required for a standalone database. For more information, see Adding a database to
your Elastic Beanstalk environment.

To allow the Amazon EC2 instances in your environment to connect to an outside database,
configure an additional security group for the Auto Scaling group that's associated with your
environment. You can attach the same security group that's attached to your database instance. Or,
you can use a separate security group. If you attach a different security group, you must configure
the security group that's attached to your database to allow inbound access from this security
group.

Amazon RDS 1401

AWS Elastic Beanstalk Developer Guide

Note

You can connect your environment to a database by adding a rule to the security
group that's attached to your database. This rule must allow inbound access from the
autogenerated security group that Elastic Beanstalk attaches to the Auto Scaling group for
your environment. However, know that, by creating this rule, you also create a dependency
between the two security groups. Subsequently, when you attempt to terminate the
environment, Elastic Beanstalk will be unable to delete the environment's security group,
because the database's security group is dependent on it.

After you launch your database instance and configure security groups, you can pass the
connection information, such as the endpoint and password, to your application by using
environment properties. This is the same mechanism that Elastic Beanstalk uses in the background
when you run a database instance in your environment.

For an additional layer of security, you can store your connection information in Amazon S3,
and configure Elastic Beanstalk to retrieve it during deployment. With configuration files
(.ebextensions), you can configure the instances in your environment to securely retrieve files
from Amazon S3 when you deploy your application.

Topics

• Launching and connecting to an external Amazon RDS instance in a default VPC

• Launching and connecting to an external Amazon RDS instance in EC2 classic

• Storing the Amazon RDS credentials in AWS Secrets Manager

• Cleaning up an external Amazon RDS instance

Launching and connecting to an external Amazon RDS instance in a
default VPC

To use an external database with an application that's running in Elastic Beanstalk you have two
options. Either, you can launch a DB instance with Amazon RDS. Any instance that you launch
with Amazon RDS is completely independent of Elastic Beanstalk and your Elastic Beanstalk
environments. This means that you can use any DB engine and instance type supported by Amazon
RDS, even those that aren't used by Elastic Beanstalk.

Amazon RDS in default VPC 1402

AWS Elastic Beanstalk Developer Guide

Or, as an alternative to launching a new DB instance, you can start with a database that was
previously created by Elastic Beanstalk and subsequently decoupled from a Beanstalk environment.
For more information, see the section called “Database”. With this option, you don't need to
complete the procedure for launching a new database. However, you do need to complete the
subsequent procedures that are described in this topic.

The following procedures describe the process for a default VPC. The process is the same if you're
using a custom VPC. The only additional requirements are that your environment and DB instance
are in the same subnet, or in subnets that are allowed to communicate with each other. For more
information about configuring a custom VPC to use with Elastic Beanstalk, see Using Elastic
Beanstalk with Amazon VPC.

Note

• If you’re starting with a database that was created by Elastic Beanstalk and subsequently
decoupled from a Beanstalk environment, you can skip the first group of steps and
continue with the steps grouped under To modify the inbound rules on your RDS
instance's security group.

• If you plan to use the database that you decouple for a production environment,
verify the storage type that the database uses is suitable for your workload. For more
information, see DB Instance Storage and Modifying a DB instance in the Amazon RDS
User Guide.

To launch an RDS DB instance in a default VPC

1. Open the RDS console.

2. In the navigation pane, choose Databases.

3. Choose Create database.

4. Choose Standard Create.

Important

Do not choose Easy Create. If you choose it, you can't configure the necessary settings
to launch this RDS DB.

5. Under Additional configuration, for Initial database name, type ebdb.

Amazon RDS in default VPC 1403

https://docs.aws.amazon.com/vpc/latest/userguide/default-vpc.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.DBInstance.Modifying.html
https://console.aws.amazon.com/rds/home

AWS Elastic Beanstalk Developer Guide

6. Review the default settings and adjust these settings according to your specific requirements.
Pay attention to the following options:

• DB instance class – Choose an instance size that has an appropriate amount of memory and
CPU power for your workload.

• Multi-AZ deployment – For high availability, set this to Create an Aurora Replica/Reader
node in a different AZ.

• Master username and Master password – The database username and password. Make a
note of these settings because you will use them later.

7. Verify the default settings for the remaining options, and then choose Create database.

Next, modify the security group that's attached to your DB instance to allow inbound traffic on
the appropriate port. This is the same security group that you will attach to your Elastic Beanstalk
environment later. As a result, the rule that you add will grant inbound access permission to other
resources in the same security group.

To modify the inbound rules on the security group that's attached to your RDS instance

1. Open the Amazon RDS console.

2. Choose Databases.

3. Choose the name of your DB instance to view its details.

4. In the Connectivity section, make a note of the Subnets, Security groups, and Endpoint that
are displayed on this page. This is so you can use this information later.

5. Under Security, you can see the security group that's associated with the DB instance. Open
the link to view the security group in the Amazon EC2 console.

Amazon RDS in default VPC 1404

https://console.aws.amazon.com/rds/home

AWS Elastic Beanstalk Developer Guide

6. In the security group details, choose Inbound.

7. Choose Edit.

8. Choose Add Rule.

9. For Type, choose the DB engine that your application uses.

10. For Source, type sg- to view a list of available security groups. Choose the security group
that's associated with the Auto Scaling group that's used with your Elastic Beanstalk
environment. This is so that Amazon EC2 instances in the environment can have access to the
database.

11. Choose Save.

Amazon RDS in default VPC 1405

AWS Elastic Beanstalk Developer Guide

Next, add the security group for the DB instance to your running environment. In this procedure
Elastic Beanstalk reprovisions all instances in your environment with the additional security group
attached.

To add a security group to your environment

• Do one of the following:

• To add a security group using the Elastic Beanstalk console

a. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

b. In the navigation pane, choose Environments, and then choose the name of your
environment from the list.

Note

If you have many environments, use the search bar to filter the environment
list.

c. In the navigation pane, choose Configuration.

d. In the Instances configuration category, choose Edit.

e. Under EC2 security groups, choose the security group to attach to the instances, in
addition to the instance security group that Elastic Beanstalk creates.

f. To save the changes choose Apply at the bottom of the page.

g. Read the warning, and then choose Confirm.

• To add a security group using a configuration file, use the securitygroup-
addexisting.config example file.

Next, pass the connection information to your environment by using environment properties.
When you add a DB instance to your environment with the Elastic Beanstalk console, Elastic
Beanstalk uses environment properties, such as RDS_HOSTNAME, to pass connection information
to your application. You can use the same properties. By doing this, you use the same application
code with both integrated DB instances and external DB instances. Or, alternatively, you can choose
your own property names.

To configure environment properties for an Amazon RDS DB instance

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.
Amazon RDS in default VPC 1406

https://console.aws.amazon.com/elasticbeanstalk
https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. In the Environment properties section, define the variables that your application reads to
construct a connection string. For compatibility with environments that have an integrated
RDS DB instance, use the following names and values. You can find all values, except for your
password, in the RDS console.

Property name Description Property value

RDS_HOSTNAME The hostname of the DB
instance.

On the Connectivity &
security tab on the Amazon
RDS console: Endpoint.

RDS_PORT The port where the DB
instance accepts connectio
ns. The default value varies
among DB engines.

On the Connectivity &
security tab on the Amazon
RDS console: Port.

RDS_DB_NAME The database name, ebdb. On the Configuration tab
on the Amazon RDS console:
DB Name.

RDS_USERNAME The username that you
configured for your
database.

On the Configuration tab
on the Amazon RDS console:
Master username.

RDS_PASSWORD The password that you
configured for your
database.

Not available for reference
in the Amazon RDS console.

Amazon RDS in default VPC 1407

https://console.aws.amazon.com/rds/home

AWS Elastic Beanstalk Developer Guide

6. To save the changes choose Apply at the bottom of the page.

If you didn't program your application to read environment properties and construct a connection
string yet, see the following language-specific topics for instructions:

• Java SE – Connecting to a database (Java SE platforms)

• Java with Tomcat – Connecting to a database (Tomcat platforms)

• Node.js – Connecting to a database

• .NET – Connecting to a database

• PHP – Connecting to a database with a PDO or MySQLi

• Python – Connecting to a database

• Ruby – Connecting to a database

Finally, depending on when your application reads environment variables, you might need to
restart the application server on the instances in your environment.

Amazon RDS in default VPC 1408

AWS Elastic Beanstalk Developer Guide

To restart your environment's app servers

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Restart app server(s).

Launching and connecting to an external Amazon RDS instance in EC2
classic

Important

Amazon EC2-Classic will reach its end of standard support on August 15, 2022. To avoid
interruptions to your workloads, we recommend that you migrate from Amazon EC2-
Classic to a VPC before then. We also request that you don’t launch any AWS resources on
Amazon EC2-Classic in the future and use Amazon VPC instead. For more information, see
Migrating from EC2-Classic to a VPC and the EC2-Classic Networking is Retiring - Here's
How to Prepare blog post.

If you use EC2 Classic (no VPC) with AWS Elastic Beanstalk, the procedure changes slightly due to
differences in how security groups work. In EC2 Classic, DB instances can't use EC2 security groups,
so they get a DB security group that works only with Amazon RDS.

You can add rules to a DB security group that allow inbound access from EC2 security groups.
However, you can't attach a DB security group to the Auto Scaling group that's associated with
your environment. To avoid creating a dependency between the DB security group and your
environment, you must create a third security group in Amazon EC2. Then, you need to add a rule
in the DB security group to grant inbound access to the new security group. Last, you should assign
it to the Auto Scaling group in your Elastic Beanstalk environment.

Amazon RDS in EC2 classic 1409

https://console.aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/
https://aws.amazon.com/blogs/aws/ec2-classic-is-retiring-heres-how-to-prepare/

AWS Elastic Beanstalk Developer Guide

Note

• If you’re starting with a database that was created by Elastic Beanstalk and subsequently
decoupled from a Beanstalk environment, you can skip the first group of steps and
continue with the steps grouped under To create a bridge security group.

• If you plan to use the database that you decouple for a production environment,
verify the storage type that the database uses is suitable for your workload. For more
information, see DB Instance Storage and Modifying a DB instance in the Amazon RDS
User Guide.

To launch an RDS instance in EC2 classic (no VPC)

1. Open the RDS management console.

2. Choose Create database.

3. Proceed through the wizard. Note the values that you enter for the following options:

• Master Username

• Master Password

4. When you reach Configure advanced settings, for Network and Security settings, choose the
following:

• VPC – Not in VPC. If this option isn't available, your account might not support EC2-
Classic, or you might have chosen an instance type that is only available in VPC.

• Availability Zone – No Preference

• DB Security Group(s) – Create new Security Group

5. Configure the remaining options and choose Create database. Note the values that you enter
for the following options:

• Database Name

• Database Port

In EC2-Classic, your DB instance has a DB security group instead of a VPC security group. You can't
attach a DB security group to your Elastic Beanstalk environment. Instead you need to create a new

Amazon RDS in EC2 classic 1410

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.DBInstance.Modifying.html
https://console.aws.amazon.com/rds/home
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-vpc.html#vpc-only-instance-types

AWS Elastic Beanstalk Developer Guide

security group that you can authorize to access the DB instance and attach to your environment.
We will refer to this as a bridge security group and name it webapp-bridge.

To create a bridge security group

1. Open the Amazon EC2 console.

2. Choose Security Groups under Network & Security in the navigation sidebar.

3. Choose Create Security Group.

4. For Security group name, type webapp-bridge.

5. For Description, type Provide access to DB instance from Elastic Beanstalk
environment instances.

6. For VPC, leave the default selected.

7. Choose Create

Next, modify the security group attached to your DB instance to allow inbound traffic from the
bridge security group.

To modify the ingress rules on the security group for your RDS instance

1. Open the Amazon RDS console.

2. Choose Databases.

3. Choose the name of your DB instance to view its details.

4. In the Connectivity section, under Security, the security group that's associated with the DB
instance is displayed. Open the link to view the security group in the Amazon EC2 console.

5. In the security group details, set Connection Type to EC2 Security Group.

6. Set EC2 Security Group Name to the name of the bridge security group that you created.

7. Choose Authorize.

Next, add the bridge security group to your running environment. This procedure requires all
instances in your environment to be reprovisioned with the additional security group attached.

To add a security group to your environment

• Do one of the following:

• To add a security group using the Elastic Beanstalk console

Amazon RDS in EC2 classic 1411

https://console.aws.amazon.com/ec2/v2/home
https://console.aws.amazon.com/rds/home

AWS Elastic Beanstalk Developer Guide

a. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

b. In the navigation pane, choose Environments, and then choose the name of your
environment from the list.

Note

If you have many environments, use the search bar to filter the environment
list.

c. In the navigation pane, choose Configuration.

d. In the Instances configuration category, choose Edit.

e. Under EC2 security groups, choose the security group to attach to the instances, in
addition to the instance security group that Elastic Beanstalk creates.

f. To save the changes choose Apply at the bottom of the page.

g. Read the warning, and then choose Confirm.

• To add a security group using a configuration file, use the securitygroup-
addexisting.config example file.

Next, pass the connection information to your environment by using environment properties.
When you add a DB instance to your environment with the Elastic Beanstalk console, Elastic
Beanstalk uses environment properties such as RDS_HOSTNAME to pass connection information
to your application. You can use the same properties in order to use the same application code with
both integrated DB instances and external DB instances. Or, alternatively, you can choose your own
property names.

To configure environment properties

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. In the navigation pane, choose Configuration.

Amazon RDS in EC2 classic 1412

https://console.aws.amazon.com/elasticbeanstalk
https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/configuration-files/aws-provided/security-configuration/securitygroup-addexisting.config
https://console.aws.amazon.com/elasticbeanstalk

AWS Elastic Beanstalk Developer Guide

4. In the Updates, monitoring, and logging configuration category, choose Edit.

5. In the Environment Properties section, define the variables that your application reads to
construct a connection string. For compatibility with environments that have an integrated
RDS instance, use the following:

• RDS_DB_NAME – The DB Name that's in the Amazon RDS console.

• RDS_USERNAME – The Master Username that you enter when you add the database to your
environment.

• RDS_PASSWORD – The Master Password that you enter when you add the database to your
environment.

• RDS_HOSTNAME – The Endpoint of the DB instance that's in the Amazon RDS console.

• RDS_PORT – The Port that's in the Amazon RDS console.

6. Choose Apply

If you didn't already program your application to read environment properties and construct a
connection string, see the following language-specific topics for instructions:

Amazon RDS in EC2 classic 1413

AWS Elastic Beanstalk Developer Guide

• Java SE – Connecting to a database (Java SE platforms)

• Java with Tomcat – Connecting to a database (Tomcat platforms)

• Node.js – Connecting to a database

• .NET – Connecting to a database

• PHP – Connecting to a database with a PDO or MySQLi

• Python – Connecting to a database

• Ruby – Connecting to a database

Finally, depending on when your application reads environment variables, you might need to
restart the application server on the instances in your environment.

To restart the app servers for your environment

1. Open the Elastic Beanstalk console, and in the Regions list, select your AWS Region.

2. In the navigation pane, choose Environments, and then choose the name of your environment
from the list.

Note

If you have many environments, use the search bar to filter the environment list.

3. Choose Actions, and then choose Restart app server(s).

Storing the Amazon RDS credentials in AWS Secrets Manager

AWS Secrets Manager helps you improve your security posture, by providing the ability to store
and retrieve encrypted credentials. Storing the credentials in Secrets Manager helps avoid possible
compromise by anyone who can inspect your application or the components related to it. Your
code can make a runtime call to the Secrets Manager service to retrieve credentials dynamically.
Secrets Manager also offers features like client-side secret caching components for runtime
languages, which include Python, Go, and Java.

For more information, see the following topics in the AWS Secrets Manager User Guide.

• How Amazon RDS uses AWS Secrets Manager

• Create an AWS Secrets Manager database secret

Amazon RDS credentials and Secrets Manager 1414

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/secretsmanager/latest/userguide/integrating_how-services-use-secrets_RDS.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_database_secret.html

AWS Elastic Beanstalk Developer Guide

• Retrieve secrets from AWS Secrets Manager

Cleaning up an external Amazon RDS instance

When you connect an external Amazon RDS instance to your Elastic Beanstalk environment, the
database instance isn't dependent upon your environment's lifecycle, and, therefore, it isn't deleted
when you terminate your environment. To ensure that personal information that you might have
stored in the database instance isn't unnecessarily retained, delete any records that you don't need
anymore. Alternatively, delete the database instance.

Using Elastic Beanstalk with Amazon S3

Amazon Simple Storage Service (Amazon S3) provides highly durable, fault-tolerant data storage.

Elastic Beanstalk creates an Amazon S3 bucket named elasticbeanstalk-region-account-
id for each region in which you create environments. Elastic Beanstalk uses this bucket to store
objects, for example temporary configuration files, that are required for the proper operation of
your application.

Elastic Beanstalk doesn't turn on default encryption for the Amazon S3 bucket that it creates. This
means that by default, objects are stored unencrypted in the bucket (and are accessible only by
authorized users). Some applications require all objects to be encrypted when they are stored—
on a hard drive, in a database, etc. (also known as encryption at rest). If you have this requirement,
you can configure your account's buckets for default encryption. For more details, see Amazon S3
Default Encryption for S3 Buckets in the Amazon Simple Storage Service User Guide.

Contents of the Elastic Beanstalk Amazon S3 bucket

The following table lists some objects that Elastic Beanstalk stores in your elasticbeanstalk-*
Amazon S3 bucket. The table also shows which objects have to be deleted manually. To avoid
unnecessary storage costs, and to ensure that personal information isn't retained, be sure to
manually delete these objects when you no longer need them.

Object When stored? When deleted?

Application
versions

When you create an environment or
deploy your application code to an existing

During application deletion, and
according to Version lifecycle.

Cleaning up an external Amazon RDS instance 1415

https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-encryption.html

AWS Elastic Beanstalk Developer Guide

Object When stored? When deleted?

environment, Elastic Beanstalk stores an
application version in Amazon S3 and
associates it with the environment.

Source
bundles

When you upload a new application
version using the Elastic Beanstalk console
or the EB CLI, Elastic Beanstalk stores a
copy of it in Amazon S3, and sets it as your
environment's source bundle.

Manually. When you delete an
application version, you can choose
Delete versions from Amazon S3
to also delete the related source
bundle. For details, see Managing
application versions.

Custom
platforms

When you create a custom platform,
Elastic Beanstalk temporarily stores
related data in Amazon S3.

Upon successful completion of the
custom platform's creation.

Log files You can request Elastic Beanstalk to
retrieve instance log files (tail or bundle
logs) and store them in Amazon S3.
You can also enable log rotation and
configure your environment to publish
logs automatically to Amazon S3 after
they are rotated.

Tail and bundle logs: 15 minutes
after they are created.

Rotated logs: Manually.

Saved
configura
tions

Manually. Manually.

Deleting objects in the Elastic Beanstalk Amazon S3 bucket

When you terminate an environment or delete an application, Elastic Beanstalk deletes most
related objects from Amazon S3. To minimize storage costs of a running application, routinely
delete objects that your application doesn't need. In addition, pay attention to objects that you
have to delete manually, as listed in Contents of the Elastic Beanstalk Amazon S3 bucket. To ensure
that private information isn't unnecessarily retained, delete these objects when you don't need
them anymore.

Deleting objects in the Elastic Beanstalk Amazon S3 bucket 1416

AWS Elastic Beanstalk Developer Guide

• Delete application versions that you don't expect to use in your application anymore. When you
delete an application version, you can select Delete versions from Amazon S3 to also delete
the related source bundle—a copy of your application's source code and configurations files,
which Elastic Beanstalk uploaded to Amazon S3 when you deployed an application or uploaded
an application version. To learn how to delete an application version, see Managing application
versions.

• Delete rotated logs that you don't need. Alternatively, download them or move them to Amazon
S3 Glacier for further analysis.

• Delete saved configurations that you aren't going to use in any environment anymore.

Deleting the Elastic Beanstalk Amazon S3 bucket

When Elastic Beanstalk creates a bucket it also creates a bucket policy that it applies to the new
bucket. This policy servers two purposes:

• To allow environments to write to the bucket.

• To prevent accidental deletion of the bucket.

Due to the policy that Elastic Beanstalk applies to the buckets that it creates for your
environments, you're not be allowed to delete these buckets, unless you deliberately delete the
bucket policy first. You can delete the bucket policy from the Permissions section of the bucket
properties in the Amazon S3 console.

Warning

If you delete a bucket that Elastic Beanstalk created in your account, and you still have
existing applications and running environments in the corresponding region, your
applications might stop working correctly. For example:

• When an environment scales out, Elastic Beanstalk should be able to find the
environment's application version in the Amazon S3 bucket and use it to start new
Amazon EC2 instances.

• When you create a custom platform, Elastic Beanstalk uses temporary Amazon S3
storage during the creation process.

Deleting the Elastic Beanstalk Amazon S3 bucket 1417

AWS Elastic Beanstalk Developer Guide

We recommend that you delete specific unnecessary objects from your Elastic Beanstalk
Amazon S3 bucket, instead of deleting the entire bucket.

To delete an Elastic Beanstalk storage bucket (console)

The general procedure to delete an S3 bucket is also described in To delete an S3 bucket in the
Amazon S3 User Guide. Since we're deleting a bucket created by Elastic Beanstalk in the following
procedure, we include additional steps to delete the bucket policy first.

1. Open the Amazon S3 console.

2. Open the Elastic Beanstalk storage bucket's page by choosing the bucket name.

3. Choose the Permissions tab.

4. Choose Bucket Policy.

5. Choose Delete.

6. Go back to the Amazon S3 console's main page, and then select the Elastic Beanstalk storage
bucket.

7. Choose Delete Bucket.

8. Confirm that you want to delete the bucket by entering the bucket name into the text field,
and then choose Delete bucket.

Using Elastic Beanstalk with Amazon VPC

You can use an Amazon Virtual Private Cloud (Amazon VPC) to create a secure network for your
Elastic Beanstalk application and related AWS resources. When you create your environment,
you choose which VPC, subnets, and security groups are used for your application instances and
load balancer. You can use any VPC configuration that you like as long as it meets the following
requirements.

VPC requirements

• Internet Access – Instances can have access to the internet through one of the following
methods:

• Public Subnet – Instances have a public IP address and use an internet gateway to access the
internet.

Amazon VPC 1418

https://docs.aws.amazon.com/AmazonS3/latest/userguide/delete-bucket.html
https://console.aws.amazon.com/s3
https://docs.aws.amazon.com/vpc/latest/userguide/

AWS Elastic Beanstalk Developer Guide

• Private Subnet – Instances use a NAT device to access the internet.

Note

If you configure VPC endpoints in your VPC to connect to both the elasticbeanstalk
and elasticbeanstalk-health services, internet access is optional, and is only
required if your application specifically needs it. Without VPC endpoints, your VPC must
have access to the internet.
The default VPC that Elastic Beanstalk sets up for you provides internet access.

Elastic Beanstalk doesn't support proxy settings like HTTPS_PROXY for configuring a web proxy.

• NTP – Instances in your Elastic Beanstalk environment use Network Time Protocol (NTP) to
synchronize the system clock. If instances are unable to communicate on UDP port 123, the clock
may go out of sync, causing issues with Elastic Beanstalk health reporting. Ensure that your VPC
security groups and network ACLs allow inbound and outbound UDP traffic on port 123 to avoid
these issues.

The elastic-beanstalk-samples repository provides AWS CloudFormation templates that you can
use to create a VPC for use with your Elastic Beanstalk environments.

To create resources with a AWS CloudFormation template

1. Clone the samples repository or download a template using the links in the README.

2. Open the AWS CloudFormation console.

3. Choose Create stack.

4. Choose Upload a template to Amazon S3.

5. Choose Upload file and upload the template file from your local machine.

6. Choose Next and follow the instructions to create a stack with the resources in the template.

When stack creation completes, check the Outputs tab to find the VPC ID and subnet IDs. Use
these to configure the VPC in the new environment wizard network configuration category.

Topics

• Public VPC

Amazon VPC 1419

https://github.com/awsdocs/elastic-beanstalk-samples/
https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/cfn-templates/README.md
https://console.aws.amazon.com/cloudformation/home

AWS Elastic Beanstalk Developer Guide

• Public/private VPC

• Private VPC

• Example: Launching an Elastic Beanstalk application in a VPC with bastion hosts

• Example: Launching an Elastic Beanstalk in a VPC with Amazon RDS

• Using Elastic Beanstalk with VPC endpoints

Public VPC

AWS CloudFormation template – vpc-public.yaml

Settings (load balanced)

• Load balancer visibility – Public

• Load balancer subnets – Both public subnets

• Instance public IP – Enabled

• Instance subnets – Both public subnets

• Instance security groups – Add the default security group

Settings (single instance)

• Instance subnets – One of the public subnets

• Instance security groups – Add the default security group

A basic public-only VPC layout includes one or more public subnets, an internet gateway, and
a default security group that allows traffic between resources in the VPC. When you create an
environment in the VPC, Elastic Beanstalk creates additional resources that vary depending on the
environment type.

VPC resources

• Single instance – Elastic Beanstalk creates a security group for the application instance that
allows traffic on port 80 from the internet, and assigns the instance an Elastic IP to give it a
public IP address. The environment's domain name resolves to the instance's public IP address.

• Load balanced – Elastic Beanstalk creates a security group for the load balancer that allows
traffic on port 80 from the internet, and a security group for the application instances that

Public VPC 1420

https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/cfn-templates/vpc-public.yaml

AWS Elastic Beanstalk Developer Guide

allows traffic from the load balancer's security group. The environment's domain name resolves
to the load balancer's public domain name.

This is similar to the way that Elastic Beanstalk manages networking when you use the default VPC.
Security in a public subnet depends on the load balancer and instance security groups created by
Elastic Beanstalk. It is the least expensive configuration as it does not require a NAT Gateway.

Public/private VPC

AWS CloudFormation template – vpc-privatepublic.yaml

Settings (load balanced)

• Load balancer visibility – Public

• Load balancer subnets – Both public subnets

• Instance public IP – Disabled

• Instance subnets – Both private subnets

• Instance security groups – Add the default security group

For additional security, add private subnets to your VPC to create a public-private layout. This
layout requires a load balancer and NAT gateway in the public subnets, and lets you run your
application instances, database, and any other resources in private subnets. Instances in private
subnets can only communicate with the internet through the load balancer and NAT gateway.

Private VPC

AWS CloudFormation template – vpc-private.yaml

Settings (load balanced)

• Load balancer visibility – Private

• Load balancer subnets – Both private subnets

• Instance public IP – Disabled

• Instance subnets – Both private subnets

• Instance security groups – Add the default security group

Public/private VPC 1421

https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/cfn-templates/vpc-privatepublic.yaml
https://github.com/awsdocs/elastic-beanstalk-samples/tree/master/cfn-templates/vpc-private.yaml

AWS Elastic Beanstalk Developer Guide

For internal applications that shouldn't have access from the internet, you can run everything in
private subnets and configure the load balancer to be internally facing (change Load balancer
visibility to Internal). This template creates a VPC with no public subnets and no internet gateway.
Use this layout for applications that should only be accessible from the same VPC or an attached
VPN.

Running an Elastic Beanstalk environment in a private VPC

When you create your Elastic Beanstalk environment in a private VPC, the environment doesn't
have access to the internet. Your application might need access to the Elastic Beanstalk service
or other services. Your environment might use enhanced health reporting, and in this case the
environment instances send health information to the enhanced health service. And Elastic
Beanstalk code on environment instances sends traffic to other AWS services, and other traffic to
non-AWS endpoints (for example, to download dependency packages for your application). Here
are some steps you might need to take in this case to ensure that your environment works properly.

• Configure VPC endpoints for Elastic Beanstalk – Elastic Beanstalk and its enhanced health service
support VPC endpoints, which ensure that traffic to these services stays inside the Amazon
network and doesn't require internet access. For more information, see the section called “VPC
endpoints”.

• Configure VPC endpoints for additional services – Elastic Beanstalk instances send traffic to several
other AWS services on your behalf: Amazon Simple Storage Service (Amazon S3), Amazon Simple
Queue Service (Amazon SQS), AWS CloudFormation, and Amazon CloudWatch Logs. You must
configure VPC endpoints for these services too. For detailed information about VPC endpoints,
including per-service links, see VPC Endpoints in the Amazon VPC User Guide.

Note

Some AWS services, including Elastic Beanstalk, support VPC endpoints in a limited
number of AWS Regions. When you design your private VPC solution, verify that Elastic
Beanstalk and the other dependent services mentioned here support VPC endpoints in
the AWS Region that you choose.

• Provide a private Docker image – In a Docker environment, code on the environment's instances
might try to pull your configured Docker image from the internet during environment creation
and fail. To avoid this failure, build a custom Docker image on your environment, or use a Docker
image stored in Amazon Elastic Container Registry (Amazon ECR) and configure a VPC endpoint
for the Amazon ECR service.

Private VPC 1422

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html

AWS Elastic Beanstalk Developer Guide

• Enable DNS names – Elastic Beanstalk code on environment instances sends traffic to all AWS
services using their public endpoints. To ensure that this traffic goes through, choose the Enable
DNS name option when you configure all interface VPC endpoints. This adds a DNS entry in your
VPC that maps the public service endpoint to the interface VPC endpoint.

Important

If your VPC isn't private and has public internet access, and if Enable DNS name is
disabled for any VPC endpoint, traffic to the respective service travels through the public
internet. This is probably not what you intend. It's easy to detect this issue with a private
VPC, because it prevents this traffic from going through and you receive errors. However,
with a public facing VPC, you get no indication.

• Include application dependencies – If your application has dependencies such as language runtime
packages, it might try to download and install them from the internet during environment
creation and fail. To avoid this failure, include all dependency packages in your application's
source bundle.

• Use a current platform version – Be sure that your environment uses a platform version that was
released on February 24, 2020 or later. Specifically, use a platform version that was released in or
after one of these two updates: Linux Update 2020-02-28, Windows Update 2020-02-24.

Note

The reason for needing an updated platform version is that older versions had an issue
that would prevent DNS entries created by the Enable DNS name option from working
properly for Amazon SQS.

Example: Launching an Elastic Beanstalk application in a VPC with
bastion hosts

If your Amazon EC2 instances are located inside a private subnet, you will not be able to connect
to them remotely. To connect to your instances, you can set up bastion servers in the public subnet
to act as proxies. For example, you can set up SSH port forwarders or RDP gateways in the public
subnet to proxy the traffic going to your database servers from your own network. This section
provides an example of how to create a VPC with a private and public subnet. The instances are

Bastion hosts 1423

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2020-02-28-linux.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2020-02-24-windows.html

AWS Elastic Beanstalk Developer Guide

located inside the private subnet, and the bastion host, NAT gateway, and load balancer are located
inside the public subnet. Your infrastructure will look similar to the following diagram.

To deploy an Elastic Beanstalk application inside a VPC using a bastion host, complete the steps
described in the following subsections.

Steps

• Create a VPC with a public and private subnet

• Create and configure the bastion host security group

• Update the instance security group

• Create a bastion host

Bastion hosts 1424

AWS Elastic Beanstalk Developer Guide

Create a VPC with a public and private subnet

Complete all of the procedures in Public/private VPC. When deploying the application, you must
specify an Amazon EC2 key pair for the instances so you can connect to them remotely. For more
information about how to specify the instance key pair, see The Amazon EC2 instances for your
Elastic Beanstalk environment.

Create and configure the bastion host security group

Create a security group for the bastion host, and add rules that allow inbound SSH traffic from the
Internet, and outbound SSH traffic to the private subnet that contains the Amazon EC2 instances.

To create the bastion host security group

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Security Groups.

3. Choose Create Security Group.

4. In the Create Security Group dialog box, enter the following and choose Yes, Create.

Name tag (Optional)

Enter a name tag for the security group.

Group name

Enter the name of the security group.

Description

Enter a description for the security group.

VPC

Select your VPC.

The security group is created and appears on the Security Groups page. Notice that it has an
ID (e.g., sg-xxxxxxxx). You might have to turn on the Group ID column by clicking Show/
Hide in the top right corner of the page.

Bastion hosts 1425

https://console.aws.amazon.com/vpc/

AWS Elastic Beanstalk Developer Guide

To configure the bastion host security group

1. In the list of security groups, select the check box for the security group you just created for
your bastion host.

2. On the Inbound Rules tab, choose Edit.

3. If needed, choose Add another rule.

4. If your bastion host is a Linux instance, under Type, select SSH.

If your bastion host is a Windows instance, under Type, select RDP.

5. Enter the desired source CIDR range in the Source field and choose Save.

6. On the Outbound Rules tab, choose Edit.

7. If needed, choose Add another rule.

8. Under Type, select the type that you specified for the inbound rule.

9. In the Source field, enter the CIDR range of the subnet of the hosts in the VPC's private subnet.

To find it:

a. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

b. In the navigation pane, choose Subnets.

c. Note the value under IPv4 CIDR for each Availability Zone in which you have hosts that
you want the bastion host to bridge to.

Bastion hosts 1426

https://console.aws.amazon.com/vpc/

AWS Elastic Beanstalk Developer Guide

Note

If you have hosts in multiple availability zones, create an outbound rule for each
one of these availability zones.

10. Choose Save.

Update the instance security group

By default, the security group you created for your instances does not allow incoming traffic. While
Elastic Beanstalk will modify the default group for the instances to allow SSH traffic, you must
modify your custom instance security group to allow RDP traffic if your instances are Windows
instances.

To update the instance security group for RDP

1. In the list of security groups, select the check box for the instance security group.

2. On the Inbound tab, choose Edit.

3. If needed, choose Add another rule.

4. Enter the following values, and choose Save.

Type

RDP

Protocol

TCP

Bastion hosts 1427

AWS Elastic Beanstalk Developer Guide

Port Range

3389

Source

Enter the ID of the bastion host security group (e.g., sg-8a6f71e8) and choose Save.

Create a bastion host

To create a bastion host, you launch an Amazon EC2 instance in your public subnet that will act as
the bastion host.

For more information about setting up a bastion host for Windows instances in the private subnet,
see Controlling Network Access to EC2 Instances Using a Bastion Server .

For more information about setting up a bastion host for Linux instances in the private subnet, see
Securely Connect to Linux Instances Running in a Private Amazon VPC .

Example: Launching an Elastic Beanstalk in a VPC with Amazon RDS

This section walks you through the tasks to deploy an Elastic Beanstalk application with Amazon
RDS in a VPC using a NAT gateway. Your infrastructure will look similar to the following diagram.

Amazon RDS 1428

https://aws.amazon.com/blogs/security/controlling-network-access-to-ec2-instances-using-a-bastion-server/
https://aws.amazon.com/blogs/security/securely-connect-to-linux-instances-running-in-a-private-amazon-vpc/
https://aws.amazon.com/blogs/security/securely-connect-to-linux-instances-running-in-a-private-amazon-vpc/

AWS Elastic Beanstalk Developer Guide

Note

If you haven't used a DB instance with your application before, try adding one to a test
environment, and connecting to an external DB instance before adding a VPC configuration
to the mix.

Create a VPC with a public and private subnet

You can use the Amazon VPC console to create a VPC.

To create a VPC

1. Sign in to the Amazon VPC console.

2. In the navigation pane, choose VPC Dashboard. Then choose Create VPC.

Amazon RDS 1429

https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

AWS Elastic Beanstalk Developer Guide

3. Choose VPC with Public and Private Subnets, and then choose Select.

4. Your Elastic Load Balancing load balancer and your Amazon EC2 instances must be in the same
Availability Zone so they can communicate with each other. Choose the same Availability Zone
from each Availability Zone list.

5. Choose an Elastic IP address for your NAT gateway.

6. Choose Create VPC.

The wizard begins to create your VPC, subnets, and internet gateway. It also updates the main
route table and creates a custom route table. Finally, the wizard creates a NAT gateway in the
public subnet.

Amazon RDS 1430

AWS Elastic Beanstalk Developer Guide

Note

You can choose to launch a NAT instance in the public subnet instead of a NAT
gateway. For more information, see Scenario 2: VPC with Public and Private Subnets
(NAT) in the Amazon VPC User Guide.

7. After the VPC is successfully created, you get a VPC ID. You need this value for the next step.
To view your VPC ID, choose Your VPCs in the left pane of the Amazon VPC console.

Create a DB subnet group

A DB subnet group for a VPC is a collection of subnets (typically private) that you can designate for
your backend RDS DB instances. Each DB subnet group should have at least one subnet for every
Availability Zone in a given AWS Region. To learn more, see Creating a Subnet in Your VPC.

Create a DB subnet group

1. Open the Amazon RDS console.

2. In the navigation pane, choose Subnet groups.

3. Choose Create DB Subnet Group.

4. Choose Name, and then type the name of your DB subnet group.

5. Choose Description, and then describe your DB subnet group.

6. For VPC, choose the ID of the VPC that you created.

7. In Add subnets, choose Add all the subnets related to this VPC.

Amazon RDS 1431

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario2.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Scenario2.html
https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#AddaSubnet
https://console.aws.amazon.com/rds/

AWS Elastic Beanstalk Developer Guide

8. When you are finished, choose Create.

Your new DB subnet group appears in the Subnet groups list of the Amazon RDS console. You
can choose it to see details, such as all of the subnets associated with this group, in the details
pane at the bottom of the page.

Deploy to Elastic Beanstalk

After you set up your VPC, you can create your environment inside it and deploy your application
to Elastic Beanstalk. You can do this using the Elastic Beanstalk console, or you can use the
AWS toolkits, AWS CLI, EB CLI, or Elastic Beanstalk API. If you use the Elastic Beanstalk console,
you just need to upload your .war or .zip file and select the VPC settings inside the wizard.
Elastic Beanstalk then creates your environment inside your VPC and deploys your application.
Alternatively, you can use the AWS toolkits, AWS CLI, EB CLI, or Elastic Beanstalk API to deploy
your application. To do this, you need to define your VPC option settings in a configuration file and
deploy this file with your source bundle. This topic provides instructions for both methods.

Deploying with the Elastic Beanstalk console

The Elastic Beanstalk console walks you through creating your new environment inside your VPC.
You need to provide a .war file (for Java applications) or a .zip file (for all other applications).

Amazon RDS 1432

AWS Elastic Beanstalk Developer Guide

On the VPC Configuration page of the Elastic Beanstalk environment wizard, you must make the
following selections:

VPC

Select your VPC.

VPC security group

Select the instance security group you created above.

ELB visibility

Select External if your load balancer should be publicly available, or select Internal if the
load balancer should be available only within your VPC.

Select the subnets for your load balancer and EC2 instances. Be sure you select the public
subnet for the load balancer, and the private subnet for your Amazon EC2 instances. By default,
the VPC creation wizard creates the public subnet in 10.0.0.0/24 and the private subnet in
10.0.1.0/24.

You can view your subnet IDs by choosing Subnets in the Amazon VPC console.

Deploying with the AWS toolkits, EB CLI, AWS CLI, or API

When deploying your application to Elastic Beanstalk using the AWS toolkits, EB CLI, AWS CLI,
or API, you can specify your VPC option settings in a file and deploy it with your source bundle.

Amazon RDS 1433

https://console.aws.amazon.com/vpc/

AWS Elastic Beanstalk Developer Guide

See Advanced environment customization with configuration files (.ebextensions) for more
information.

When you update the option settings, you need to specify at least the following:

• VPCId–Contains the ID of the VPC.

• Subnets–Contains the ID of the Auto Scaling group subnet. In this example, this is the ID of the
private subnet.

• ELBSubnets–Contains the ID of the subnet for the load balancer. In this example, this is the ID of
the public subnet.

• SecurityGroups–Contains the ID of the security groups.

• DBSubnets–Contains the ID of the DB subnets.

Note

When using DB subnets, you need to create additional subnets in your VPC to cover all
the Availability Zones in the AWS Region.

Optionally, you can also specify the following information:

• ELBScheme – Specify internal to create an internal load balancer inside your VPC so that your
Elastic Beanstalk application can't be accessed from outside your VPC.

The following is an example of the option settings you could use when deploying your Elastic
Beanstalk application inside a VPC. For more information about VPC option settings (including
examples for how to specify them, default values, and valid values), see the aws:ec2:vpc
namespace table in Configuration options.

option_settings:
 - namespace: aws:autoscaling:launchconfiguration
 option_name: EC2KeyName
 value: ec2keypair

 - namespace: aws:ec2:vpc
 option_name: VPCId
 value: vpc-170647c

Amazon RDS 1434

AWS Elastic Beanstalk Developer Guide

 - namespace: aws:ec2:vpc
 option_name: Subnets
 value: subnet-4f195024

 - namespace: aws:ec2:vpc
 option_name: ELBSubnets
 value: subnet-fe064f95

 - namespace: aws:ec2:vpc
 option_name: DBSubnets
 value: subnet-fg148g78

 - namespace: aws:autoscaling:launchconfiguration
 option_name: InstanceType
 value: m1.small

 - namespace: aws:autoscaling:launchconfiguration
 option_name: SecurityGroups
 value: sg-7f1ef110

Note

When using DB subnets, be sure you have subnets in your VPC to cover all the Availability
Zones in the AWS Region.

Using Elastic Beanstalk with VPC endpoints

A VPC endpoint enables you to privately connect your VPC to supported AWS services and VPC
endpoint services powered by AWS PrivateLink, without requiring an internet gateway, NAT device,
VPN connection, or AWS Direct Connect connection.

Instances in your VPC don't require public IP addresses to communicate with resources in the
service. Traffic between your VPC and the other service doesn't leave the Amazon network. For
complete information about VPC endpoints, see VPC Endpoints in the Amazon VPC User Guide.

AWS Elastic Beanstalk supports AWS PrivateLink, which provides private connectivity to the
Elastic Beanstalk service and eliminates exposure of traffic to the public internet. To enable your
application to send requests to Elastic Beanstalk using AWS PrivateLink, you configure a type of
VPC endpoint known as an interface VPC endpoint (interface endpoint). For more information, see
Interface VPC Endpoints (AWS PrivateLink) in the Amazon VPC User Guide.

VPC endpoints 1435

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html

AWS Elastic Beanstalk Developer Guide

Note

Elastic Beanstalk supports AWS PrivateLink and interface VPC endpoints in a limited
number of AWS Regions. We're working to extend support to more AWS Regions in the
near future.

Setting up a VPC endpoint for Elastic Beanstalk

To create the interface VPC endpoint for the Elastic Beanstalk service in your VPC,
follow the Creating an Interface Endpoint procedure. For Service Name, choose
com.amazonaws.region.elasticbeanstalk.

If your VPC is configured with public internet access, your application can still access Elastic
Beanstalk over the internet using the elasticbeanstalk.region.amazonaws.com public
endpoint. You can prevent this by ensuring that Enable DNS name is enabled during endpoint
creation (true by default). This adds a DNS entry in your VPC that maps the public service endpoint
to the interface VPC endpoint.

Setting up a VPC endpoint for enhanced health

If you enabled enhanced health reporting for your environment, you can configure enhanced
health information to be sent over AWS PrivateLink too. Enhanced health information is sent
by the healthd daemon, an Elastic Beanstalk component on your environment instances, to
a separate Elastic Beanstalk enhanced health service. To create an interface VPC endpoint for
this service in your VPC, follow the Creating an Interface Endpoint procedure. For Service Name,
choose com.amazonaws.region.elasticbeanstalk-health.

Important

The healthd daemon sends enhanced health information to the public endpoint,
elasticbeanstalk-health.region.amazonaws.com. If your VPC is configured with
public internet access, and Enable DNS name is disabled for the VPC endpoint, enhanced
health information travels through the public internet. This is probably not your intention
when you set up an enhanced health VPC endpoint. Ensure that Enable DNS name is
enabled (true by default).

VPC endpoints 1436

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint

AWS Elastic Beanstalk Developer Guide

Using VPC endpoints in a private VPC

A private VPC, or a private subnet in a VPC, has no public internet access. You might want to
run your Elastic Beanstalk environment in a private VPC and configure interface VPC endpoints
for enhanced security. In this case, be aware that your environment might try to connect to
the internet for other reasons in addition to contacting the Elastic Beanstalk service. To learn
more about running an environment in a private VPC, see the section called “Running an Elastic
Beanstalk environment in a private VPC”.

Using endpoint policies to control access with VPC endpoints

By default, a VPC endpoint allows full access to the service with which it's associated. When you
create or modify an endpoint, you can attach an endpoint policy to it.

An endpoint policy is an AWS Identity and Access Management (IAM) resource policy that controls
access from the endpoint to the specified service. The endpoint policy is specific to the endpoint.
It's separate from any user or instance IAM policies that your environment might have and doesn't
override or replace them. For details about authoring and using VPC endpoint policies, see
Controlling Access to Services with VPC Endpoints in the Amazon VPC User Guide.

The following example denies all users the permission to terminate an environment through the
VPC endpoint, and allows full access to all other actions.

{
 "Statement": [
 {
 "Action": "*",
 "Effect": "Allow",
 "Resource": "*",
 "Principal": "*"
 },
 {
 "Action": "elasticbeanstalk:TerminateEnvironment",
 "Effect": "Deny",
 "Resource": "*",
 "Principal": "*"
 }
]
}

VPC endpoints 1437

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

AWS Elastic Beanstalk Developer Guide

Note

At this time, only the main Elastic Beanstalk service supports attaching an endpoint policy
to its VPC endpoint. The enhanced health service doesn't support endpoint policies.

VPC endpoints 1438

AWS Elastic Beanstalk Developer Guide

Configuring your development machine for use with
Elastic Beanstalk

This page shows you how to set up your local machine for development of an AWS Elastic
Beanstalk application. It covers folder structure, source control, and CLI tools.

Topics

• Creating a project folder

• Setting up source control

• Configuring a remote repository

• Installing the EB CLI

• Installing the AWS CLI

Creating a project folder

Create a folder for your project. You can store the folder anywhere on your local disk as long as
you have permission to read from and write to it. Creating a folder in your user folder is acceptable.
If you plan on working on multiple applications, create your project folders inside another folder
named something like workspace or projects to keep everything organized:

workspace/
|-- my-first-app
`-- my-second-app

The contents of your project folder will vary depending on the web container or framework that
your application uses.

Note

Avoid folders and paths with single-quote (') or double-quote (") characters in the folder
name or any path element. Some Elastic Beanstalk commands fail when run within a folder
with either character in the name.

Creating a project folder 1439

AWS Elastic Beanstalk Developer Guide

Setting up source control

Set up source control to protect yourself from accidentally deleting files or code in your project
folder, and for a way to revert changes that break your project.

If you don't have a source control system, consider Git, a free and easy-to-use option, and it
integrates well with the Elastic Beanstalk Command Line Interface (CLI). Visit the Git homepage to
install Git.

Follow the instructions on the Git website to install and configure Git, and then run git init in
your project folder to set up a local repository:

~/workspace/my-first-app$ git init
Initialized empty Git repository in /home/local/username/workspace/my-first-app/.git/

As you add content to your project folder and update content, commit the changes to your Git
repository:

~/workspace/my-first-app$ git add default.jsp
~/workspace/my-first-app$ git commit -m "add default JSP"

Every time you commit, you create a snapshot of your project that you can restore later if
anything goes wrong. For much more information on Git commands and workflows, see the Git
documentation.

Configuring a remote repository

What if your hard drive crashes, or you want to work on your project on a different computer? To
back up your source code online and access it from any computer, configure a remote repository to
which you can push your commits.

AWS CodeCommit lets you create a private repository in the AWS cloud. CodeCommit is free in the
AWS free tier for up to five AWS Identity and Access Management (IAM) users in your account. For
pricing details, see AWS CodeCommit Pricing.

Visit the AWS CodeCommit User Guide for instructions on getting set up.

GitHub is another popular option for storing your project code online. It lets you create a public
online repository for free and also supports private repositories for a monthly charge. Sign up for
GitHub at github.com.

Setting up source control 1440

https://git-scm.com/
https://git-scm.com/doc
https://git-scm.com/doc
https://aws.amazon.com/free/
https://aws.amazon.com/codecommit/pricing/
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up.html
https://github.com/

AWS Elastic Beanstalk Developer Guide

After you've created a remote repository for your project, attach it to your local repository with
git remote add:

~/workspace/my-first-app$ git remote add origin ssh://git-codecommit.us-
east-2.amazonaws.com/v1/repos/my-repo

Installing the EB CLI

Use the EB CLI to manage your Elastic Beanstalk environments and monitor health from the
command line. See Install the EB CLI for installation instructions.

By default, the EB CLI packages everything in your project folder and uploads it to Elastic Beanstalk
as a source bundle. When you use Git and the EB CLI together, you can prevent built class files from
being committed to source with .gitignore and prevent source files from being deployed with
.ebignore.

You can also configure the EB CLI to deploy a build artifact (a WAR or ZIP file) instead of the
contents of your project folder.

Installing the AWS CLI

The AWS Command Line Interface (AWS CLI) is a unified client for AWS services that provides
commands for all public API operations. These commands are lower level than those provided by
the EB CLI, so it often takes more commands to do an operation with the AWS CLI. On the other
hand, the AWS Command Line Interface allows you to work with any application or environment
running in your account without setting up a repository on your local machine. Use the AWS CLI to
create scripts that simplify or automate operational tasks.

For more information about supported services and to download the AWS Command Line
Interface, see AWS Command Line Interface.

Installing the EB CLI 1441

https://aws.amazon.com/cli/

AWS Elastic Beanstalk Developer Guide

Using the Elastic Beanstalk command line interface (EB
CLI)

The EB CLI is a command line interface for AWS Elastic Beanstalk that provides interactive
commands that simplify creating, updating and monitoring environments from a local repository.
Use the EB CLI as part of your everyday development and testing cycle as an alternative to the
Elastic Beanstalk console.

Note

The current version of the EB CLI has a different base set of commands than versions prior
to version 3.0. If you are using an older version, see Migrating to EB CLI 3 and CodeCommit
for migration information.

After you install the EB CLI and configure a project directory, you can create environments with a
single command:

~/my-app$ eb create my-env

The source code for the EB CLI is an open-source project. It resides in the aws/aws-elastic-
beanstalk-cli GitHub repository. You can participate by reporting issues, making suggestions,
and submitting pull requests. We value your contributions! For an environment where you only
intend to use the EB CLI as is, we recommend that you install it using one of the EB CLI setup
scripts, as detailed in the section called “Install the EB CLI using setup scripts”.

Previously, Elastic Beanstalk supported a separate CLI that provided direct access to API operations
called the Elastic Beanstalk API CLI. This has been replaced with the AWS CLI, which provides the
same functionality but for all AWS services' APIs.

With the AWS CLI you have direct access to the Elastic Beanstalk API. The AWS CLI is great for
scripting, but is not as easy to use from the command line because of the number of commands
that you need to run and the number of parameters on each command. For example, creating an
environment requires a series of commands:

~$ aws elasticbeanstalk check-dns-availability --cname-prefix my-cname

1442

https://github.com/aws/aws-elastic-beanstalk-cli
https://github.com/aws/aws-elastic-beanstalk-cli

AWS Elastic Beanstalk Developer Guide

~$ aws elasticbeanstalk create-application-version --application-name my-application --
version-label v1 --source-bundle S3Bucket=DOC-EXAMPLE-BUCKET,S3Key=php-proxy-sample.zip
~$ aws elasticbeanstalk create-environment --cname-prefix my-cname --application-name
 my-app --version-label v1 --environment-name my-env --solution-stack-name "64bit
 Amazon Linux 2015.03 v2.0.0 running Ruby 2.2 (Passenger Standalone)"

For information about installing the EB CLI, configuring a repository, and working with
environments, see the following topics.

Topics

• Install the EB CLI

• Configure the EB CLI

• Managing Elastic Beanstalk environments with the EB CLI

• Using the EB CLI with AWS CodeBuild

• Using the EB CLI with Git

• Using the EB CLI with AWS CodeCommit

• Using the EB CLI to monitor environment health

• Managing multiple Elastic Beanstalk environments as a group with the EB CLI

• Troubleshooting issues with the EB CLI

• EB CLI command reference

• EB CLI 2.6 (retired)

• Elastic Beanstalk API command line interface (retired)

Install the EB CLI

The AWS Elastic Beanstalk Command Line Interface (EB CLI) is a command line client that you can
use to create, configure, and manage Elastic Beanstalk environments. For more information about
the EB CLI, see EB CLI.

Topics

• Install the EB CLI using setup scripts

• Manually install the EB CLI

Install the EB CLI 1443

AWS Elastic Beanstalk Developer Guide

Install the EB CLI using setup scripts

The easiest and recommended way to install the EB CLI is to use the EB CLI setup scripts available
on GitHub. Use the scripts to install the EB CLI on Linux, macOS, or Windows. The scripts install
the EB CLI and its dependencies, including Python and pip. The scripts also create a virtual
environment for the EB CLI. For installation instructions, see the aws/aws-elastic-beanstalk-
cli-setup repository on GitHub.

Manually install the EB CLI

To install the EB CLI, we recommend using the EB CLI setup scripts. If the setup scripts aren't
compatible with your development environment, manually install the EB CLI.

The primary distribution method for the EB CLI on Linux, macOS, and Windows is pip. This is a
package manager for Python that provides an easy way to install, upgrade, and remove Python
packages and their dependencies. For macOS, you can also get the latest version of the EB CLI with
Homebrew.

Compatibility notes

The EB CLI is developed in Python and requires Python version 3.11 or later.

We recommend using the EB CLI setup scripts to install the EB CLI and its dependencies. If you
manually install the EB CLI, it can be difficult to manage dependency conflicts in your development
environment.

The EB CLI and the AWS Command Line Interface (AWS CLI) share a dependency on the botocore
Python package. Due to a breaking change in botocore, different versions of these two CLI tools
depend on different versions of botocore.

The latest versions of the two CLIs are compatible. If you need to use an earlier version, see the
following table for a compatible version to use.

EB CLI version Compatible AWS CLI version

3.14.5 or earlier 1.16.9 or earlier

3.14.6 or later 1.16.11 or later

Install the EB CLI using setup scripts 1444

https://github.com/aws/aws-elastic-beanstalk-cli-setup
https://github.com/aws/aws-elastic-beanstalk-cli-setup
https://github.com/aws/aws-elastic-beanstalk-cli-setup
https://github.com/aws/aws-elastic-beanstalk-cli-setup
https://github.com/aws/aws-elastic-beanstalk-cli-setup
https://docs.aws.amazon.com/cli/latest/userguide/
https://botocore.amazonaws.com/v1/documentation/api/latest/index.html

AWS Elastic Beanstalk Developer Guide

Install the EB CLI

If you already have pip and a supported version of Python, use the following procedure to install
the EB CLI.

If you don't have Python and pip, use the procedure for the operating system you're using.

• Install Python, pip, and the EB CLI on Linux

• Install the EB CLI on macOS

• Install Python, pip, and the EB CLI on Windows

To install the EB CLI

1. Run the following command.

$ pip install awsebcli --upgrade --user

The --upgrade option tells pip to upgrade any requirements that are already installed. The
--user option tells pip to install the program to a subdirectory of your user directory to
avoid modifying libraries that your operating system uses.

Note

If you encounter issues when you try to install the EB CLI with pip, you can install
the EB CLI in a virtual environment to isolate the tool and its dependencies, or use a
different version of Python than you normally do.

2. Add the path to the executable file to your PATH variable:

• On Linux and macOS:

Linux – ~/.local/bin

macOS – ~/Library/Python/3.7/bin

To modify your PATH variable (Linux, Unix, or macOS):

a. Find your shell's profile script in your user folder. If you are not sure which shell you
have, run echo $SHELL.

Manual installation 1445

AWS Elastic Beanstalk Developer Guide

$ ls -a ~
. .. .bash_logout .bash_profile .bashrc Desktop Documents Downloads

• Bash – .bash_profile, .profile, or .bash_login.

• Zsh – .zshrc

• Tcsh – .tcshrc, .cshrc or .login.

b. Add an export command to your profile script. The following example adds the path
represented by LOCAL_PATH to the current PATH variable.

export PATH=LOCAL_PATH:$PATH

c. Load the profile script described in the first step into your current session. The
following example loads the profile script represented by PROFILE_SCRIPT.

$ source ~/PROFILE_SCRIPT

• On Windows:

Python 3.7 – %USERPROFILE%\AppData\Roaming\Python\Python37\Scripts

Python earlier versions – %USERPROFILE%\AppData\Roaming\Python\Scripts

To modify your PATH variable (Windows):

a. Press the Windows key, and then enter environment variables.

b. Choose Edit environment variables for your account.

c. Choose PATH, and then choose Edit.

d. Add paths to the Variable value field, separated by semicolons. For example: C:
\item1\path;C:\item2\path

e. Choose OK twice to apply the new settings.

f. Close any running Command Prompt windows, and then reopen a Command Prompt
window.

3. Verify that the EB CLI installed correctly by running eb --version.

$ eb --version
EB CLI 3.14.8 (Python 3.7)

Manual installation 1446

AWS Elastic Beanstalk Developer Guide

The EB CLI is updated regularly to add functionality that supports the latest Elastic Beanstalk
features. To update to the latest version of the EB CLI, run the installation command again.

$ pip install awsebcli --upgrade --user

If you need to uninstall the EB CLI, use pip uninstall.

$ pip uninstall awsebcli

Install Python, pip, and the EB CLI on Linux

The EB CLI requires Python 2.7, 3.4, or later. If your distribution didn't come with Python, or came
with an earlier version, install Python before installing pip and the EB CLI.

To install Python 3.7 on Linux

1. Determine whether Python is already installed.

$ python --version

Note

If your Linux distribution came with Python, you might need to install the Python
developer package to get the headers and libraries required to compile extensions
and install the EB CLI. Use your package manager to install the developer package
(typically named python-dev or python-devel).

2. If Python 2.7 or later isn't installed, install Python 3.7 using your distribution's package
manager. The command and package name vary:

• On Debian derivatives, such as Ubuntu, use APT.

$ sudo apt-get install python3.7

• On Red Hat and derivatives, use yum.

$ sudo yum install python37

• On SUSE and derivatives, use zypper.

Manual installation 1447

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/

AWS Elastic Beanstalk Developer Guide

$ sudo zypper install python3-3.7

3. To verify that Python installed correctly, open a terminal or shell and run the following
command.

$ python3 --version
Python 3.7.3

Install pip by using the script provided by the Python Packaging Authority, and then install the EB
CLI.

To install pip and the EB CLI

1. Download the installation script from pypa.io.

$ curl -O https://bootstrap.pypa.io/get-pip.py

The script downloads and installs the latest version of pip and another required package
named setuptools.

2. Run the script with Python.

$ python3 get-pip.py --user
Collecting pip
 Downloading pip-8.1.2-py2.py3-none-any.whl (1.2MB)
Collecting setuptools
 Downloading setuptools-26.1.1-py2.py3-none-any.whl (464kB)
Collecting wheel
 Downloading wheel-0.29.0-py2.py3-none-any.whl (66kB)
Installing collected packages: pip, setuptools, wheel
Successfully installed pip setuptools wheel

Invoking Python version 3 directly by using the python3 command instead of python ensures
that pip is installed in the proper location, even if an earlier version of Python is present on
your system.

3. Add the executable path, ~/.local/bin, to your PATH variable.

To modify your PATH variable (Linux, Unix, or macOS):

Manual installation 1448

https://www.pypa.io/

AWS Elastic Beanstalk Developer Guide

a. Find your shell's profile script in your user folder. If you are not sure which shell you have,
run echo $SHELL.

$ ls -a ~
. .. .bash_logout .bash_profile .bashrc Desktop Documents Downloads

• Bash – .bash_profile, .profile, or .bash_login.

• Zsh – .zshrc

• Tcsh – .tcshrc, .cshrc or .login.

b. Add an export command to your profile script. The following example adds the path
represented by LOCAL_PATH to the current PATH variable.

export PATH=LOCAL_PATH:$PATH

c. Load the profile script described in the first step into your current session. The following
example loads the profile script represented by PROFILE_SCRIPT.

$ source ~/PROFILE_SCRIPT

4. Verify that pip is installed correctly.

$ pip --version
pip 8.1.2 from ~/.local/lib/python3.7/site-packages (python 3.7)

5. Use pip to install the EB CLI.

$ pip install awsebcli --upgrade --user

6. Verify that the EB CLI installed correctly.

$ eb --version
EB CLI 3.14.8 (Python 3.7)

To upgrade to the latest version, run the installation command again.

$ pip install awsebcli --upgrade --user

Manual installation 1449

AWS Elastic Beanstalk Developer Guide

Install the EB CLI on macOS

If you use the Homebrew package manager, you can install the EB CLI by using the brew command.
You can also install Python and pip, and then use pip to install the EB CLI.

Install the EB CLI with homebrew

The latest version of the EB CLI is typically available from Homebrew a couple of days after it
appears in pip.

To install the EB CLI with Homebrew

1. Ensure you have the latest version of Homebrew.

$ brew update

2. Run brew install awsebcli.

$ brew install awsebcli

3. Verify that the EB CLI is installed correctly.

$ eb --version
EB CLI 3.14.8 (Python 3.7)

Install Python, pip, and the EB CLI on macOS

You can install the latest version of Python and pip and then use them to install the EB CLI.

To install the EB CLI on macOS

1. Download and install Python from the downloads page of Python.org. We use version 3.7 to
demonstrate.

Note

The EB CLI requires Python 2 version 2.7, or Python 3 version in the range of 3.4 to 3.7.

2. Install pip with the script that the Python Packaging Authority provides.

$ curl -O https://bootstrap.pypa.io/get-pip.py

Manual installation 1450

https://www.python.org/downloads/release/python
https://www.python.org

AWS Elastic Beanstalk Developer Guide

$ python3 get-pip.py --user

3. Use pip to install the EB CLI.

$ pip3 install awsebcli --upgrade --user

4. Add the executable path, ~/Library/Python/3.7/bin, to your PATH variable.

To modify your PATH variable (Linux, Unix, or macOS):

a. Find your shell's profile script in your user folder. If you are not sure which shell you have,
run echo $SHELL.

$ ls -a ~
. .. .bash_logout .bash_profile .bashrc Desktop Documents Downloads

• Bash – .bash_profile, .profile, or .bash_login.

• Zsh – .zshrc

• Tcsh – .tcshrc, .cshrc or .login.

b. Add an export command to your profile script. The following example adds the path
represented by LOCAL_PATH to the current PATH variable.

export PATH=LOCAL_PATH:$PATH

c. Load the profile script described in the first step into your current session. The following
example loads the profile script represented by PROFILE_SCRIPT.

$ source ~/PROFILE_SCRIPT

5. Verify that the EB CLI is installed correctly.

$ eb --version
EB CLI 3.14.8 (Python 3.7)

To upgrade to the latest version, run the installation command again.

$ pip3 install awsebcli --upgrade --user

Manual installation 1451

AWS Elastic Beanstalk Developer Guide

Install Python, pip, and the EB CLI on Windows

The Python Software Foundation provides installers for Windows that include pip.

To install Python and pip (Windows)

1. Download the latest Python Windows x86-64 executable installer from the downloads page of
Python.org.

2. Run the Python installer executable that you downloaded in the prior step.

Select the following options from the Python installer window to set up for the EB CLI
installation steps that follow.

a. Choose to add the Python executable to your path.

b. Choose Install Now.

Note

For more information about the installation options, see the Using Python on Windows
page on the Python website.
The documentation website provides a dropdown at the top of the page where you can
select the version of Python for the documentation.

The installer installs Python in your user folder and adds its executable directories to your user
path.

To install the AWS CLI with pip (Windows)

1. From the Start menu, open a Command Prompt window.

2. Verify that Python and pip are both installed correctly by using the following commands.

C:\Users\myname> python --version
Python 3.11.4
C:\Users\myname> pip --version
pip 23.1.2 from C:\Users\myname\AppData\Local\Programs\Python\Python311\Lib\site-
packages\pip (python 3.11)

3. Install the EB CLI using pip.

Manual installation 1452

https://www.python.org/downloads/
https://www.python.org
https://docs.python.org/3.11/using/windows.html

AWS Elastic Beanstalk Developer Guide

C:\Users\myname> pip install awsebcli --upgrade --user

4. Add the following executable path to the Path environment variable in your Windows user
account. The location might be different, depending on whether you install Python for one
user or all users.

%USERPROFILE%\AppData\Roaming\Python\Python311\Scripts

5. Restart a new command shell for the new Path variable to take effect.

6. Verify that the EB CLI is installed correctly.

C:\Users\myname> eb --version
EB CLI 3.14.8 (Python 3.11)

To upgrade to the latest version, run the installation command again.

C:\Users\myname> pip install awsebcli --upgrade --user

Install the EB CLI in a virtual environment

You can avoid version requirement conflicts with other pip packages by installing the EB CLI in a
virtual environment.

To install the EB CLI in a virtual environment

1. Install virtualenv with pip.

$ pip install --user virtualenv

2. Create a virtual environment.

$ virtualenv ~/eb-ve

To use a Python executable other than the default, use the -p option.

$ virtualenv -p /usr/bin/python3.7 ~/eb-ve

3. Activate the virtual environment.

Manual installation 1453

AWS Elastic Beanstalk Developer Guide

Linux, Unix, or macOS

$ source ~/eb-ve/bin/activate

Windows

$ %USERPROFILE%\eb-ve\Scripts\activate

4. Install the EB CLI.

(eb-ve)~$ pip install awsebcli --upgrade

5. Verify that the EB CLI is installed correctly.

$ eb --version
EB CLI 3.14.8 (Python 3.7)

You can use the deactivate command to exit the virtual environment. Whenever you start a new
session, run the activation command again.

To upgrade to the latest version, run the installation command again.

(eb-ve)~$ pip install awsebcli --upgrade

Configure the EB CLI

After installing the EB CLI, you are ready to configure your project directory and the EB CLI by
running eb init.

The following example shows the configuration steps when running eb init for the first time in a
project folder named eb.

To initialize an EB CLI project

1. First, the EB CLI prompts you to select a region. Type the number that corresponds to the
region that you want to use, and then press Enter.

~/eb $ eb init

Configure the EB CLI 1454

AWS Elastic Beanstalk Developer Guide

Select a default region
1) us-east-1 : US East (N. Virginia)
2) us-west-1 : US West (N. California)
3) us-west-2 : US West (Oregon)
4) eu-west-1 : Europe (Ireland)
5) eu-central-1 : Europe (Frankfurt)
6) ap-south-1 : Asia Pacific (Mumbai)
7) ap-southeast-1 : Asia Pacific (Singapore)
...
(default is 3): 3

2. Next, provide your access key and secret key so that the EB CLI can manage resources for you.
Access keys are created in the AWS Identity and Access Management console. If you don't have
keys, see How Do I Get Security Credentials? in the Amazon Web Services General Reference.

You have not yet set up your credentials or your credentials are incorrect.
You must provide your credentials.
(aws-access-id): AKIAJOUAASEXAMPLE
(aws-secret-key): 5ZRIrtTM4ciIAvd4EXAMPLEDtm+PiPSzpoK

3. An application in Elastic Beanstalk is a resource that contains a set of application versions
(source), environments, and saved configurations that are associated with a single web
application. Each time you deploy your source code to Elastic Beanstalk using the EB CLI, a new
application version is created and added to the list.

Select an application to use
1) [Create new Application]
(default is 1): 1

4. The default application name is the name of the folder in which you run eb init. Enter any
name that describes your project.

Enter Application Name
(default is "eb"): eb
Application eb has been created.

5. Select a platform that matches the language or framework that your web application is
developed in. If you haven't started developing an application yet, choose a platform that
you're interested in. You will see how to launch a sample application shortly, and you can
always change this setting later.

Configure the EB CLI 1455

https://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

AWS Elastic Beanstalk Developer Guide

Select a platform.
1) Node.js
2) PHP
3) Python
4) Ruby
5) Tomcat
6) IIS
7) Docker
8) Multi-container Docker
9) GlassFish
10) Go
11) Java
(default is 1): 1

6. Choose yes to assign an SSH key pair to the instances in your Elastic Beanstalk environment.
This allows you to connect directly to them for troubleshooting.

Do you want to set up SSH for your instances?
(y/n): y

7. Choose an existing key pair or create a new one. To use eb init to create a new key pair, you
must have ssh-keygen installed on your local machine and available from the command line.
The EB CLI registers the new key pair with Amazon EC2 for you and stores the private key
locally in a folder named .ssh in your user directory.

Select a keypair.
1) [Create new KeyPair]
(default is 1): 1

Your EB CLI installation is now configured and ready to use. See Managing Elastic Beanstalk
environments with the EB CLI for instructions on creating and working with an Elastic Beanstalk
environment.

Advanced Configuration

• Ignoring files using .ebignore

• Using named profiles

• Deploying an artifact instead of the project folder

• Configuration settings and precedence

Configure the EB CLI 1456

AWS Elastic Beanstalk Developer Guide

• Instance metadata

Ignoring files using .ebignore

You can tell the EB CLI to ignore certain files in your project directory by adding the file
.ebignore to the directory. This file works like a .gitignore file. When you deploy your project
directory to Elastic Beanstalk and create a new application version, the EB CLI doesn't include files
specified by .ebignore in the source bundle that it creates.

If .ebignore isn't present, but .gitignore is, the EB CLI ignores files specified in .gitignore.
If .ebignore is present, the EB CLI doesn't read .gitignore.

When .ebignore is present, the EB CLI doesn't use git commands to create your source bundle.
This means that EB CLI ignores files specified in .ebignore, and includes all other files. In
particular, it includes uncommitted source files.

Note

In Windows, adding .ebignore causes the EB CLI to follow symbolic links and include the
linked file when creating a source bundle. This is a known issue and will be fixed in a future
update.

Using named profiles

If you store your credentials as a named profile in a credentials or config file, you can use the
--profile option to explicitly specify a profile. For example, the following command creates a
new application using the user2 profile.

$ eb init --profile user2

You can also change the default profile by setting the AWS_EB_PROFILE environment variable.
When this variable is set, the EB CLI reads credentials from the specified profile instead of default
or eb-cli.

Linux, macOS, or Unix

$ export AWS_EB_PROFILE=user2

Ignoring files using .ebignore 1457

AWS Elastic Beanstalk Developer Guide

Windows

> set AWS_EB_PROFILE=user2

Deploying an artifact instead of the project folder

You can tell the EB CLI to deploy a ZIP file or WAR file that you generate as part of a separate
build process by adding the following lines to .elasticbeanstalk/config.yml in your project
folder.

deploy:
 artifact: path/to/buildartifact.zip

If you configure the EB CLI in your Git repository, and you don't commit the artifact to source, use
the --staged option to deploy the latest build.

~/eb$ eb deploy --staged

Configuration settings and precedence

The EB CLI uses a provider chain to look for AWS credentials in a number of different places,
including system or user environment variables and local AWS configuration files.

The EB CLI looks for credentials and configuration settings in the following order:

1. Command line options – Specify a named profile by using --profile to override default
settings.

2. Environment variables – AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.

3. The AWS credentials file – Located at ~/.aws/credentials on Linux and OS X systems, or at
C:\Users\USERNAME\.aws\credentials on Windows systems. This file can contain multiple
named profiles in addition to a default profile.

4. The AWS CLI configuration file – Located at ~/.aws/config on Linux and OS X systems or C:
\Users\USERNAME\.aws\config on Windows systems. This file can contain a default profile,
named profiles, and AWS CLI–specific configuration parameters for each.

5. Legacy EB CLI configuration file – Located at ~/.elasticbeanstalk/config on Linux and
OS X systems or C:\Users\USERNAME\.elasticbeanstalk\config on Windows systems.

Deploying an artifact instead of the project folder 1458

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-config-files
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-multiple-profiles

AWS Elastic Beanstalk Developer Guide

6. Instance profile credentials – These credentials can be used on Amazon EC2 instances with
an assigned instance role, and are delivered through the Amazon EC2 metadata service. The
instance profile must have permission to use Elastic Beanstalk.

If the credentials file contains a named profile with the name "eb-cli", the EB CLI will prefer that
profile over the default profile. If no profiles are found, or a profile is found but does not have
permission to use Elastic Beanstalk, the EB CLI prompts you to enter keys.

Instance metadata

To use the EB CLI from an Amazon EC2 instance, create a role that has access to the resources
needed and assign that role to the instance when it is launched. Launch the instance and install the
EB CLI by using pip.

~$ sudo pip install awsebcli

pip comes preinstalled on Amazon Linux.

The EB CLI reads credentials from the instance metadata. For more information, see Granting
Applications that Run on Amazon EC2 Instances Access to AWS Resources in IAM User Guide.

Managing Elastic Beanstalk environments with the EB CLI

After installing the EB CLI and configuring your project directory, you are ready to create an Elastic
Beanstalk environment using the EB CLI, deploy source and configuration updates, and pull logs
and events.

Note

Creating environments with the EB CLI requires a service role. You can create a service role
by creating an environment in the Elastic Beanstalk console. If you don't have a service role,
the EB CLI attempts to create one when you run eb create.

The EB CLI returns a zero (0) exit code for all successful commands, and a non-zero exit code when
it encounters any error.

The following examples use an empty project folder named eb that was initialized with the EB CLI
for use with a sample Docker application.

Instance metadata 1459

https://docs.aws.amazon.com/IAM/latest/UserGuide/role-usecase-ec2app.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/role-usecase-ec2app.html

AWS Elastic Beanstalk Developer Guide

Basic Commands

• Eb create

• Eb status

• Eb health

• Eb events

• Eb logs

• Eb open

• Eb deploy

• Eb config

• Eb terminate

Eb create

To create your first environment, run eb create and follow the prompts. If your project directory
has source code in it, the EB CLI will bundle it up and deploy it to your environment. Otherwise, a
sample application will be used.

~/eb$ eb create
Enter Environment Name
(default is eb-dev): eb-dev
Enter DNS CNAME prefix
(default is eb-dev): eb-dev
WARNING: The current directory does not contain any source code. Elastic Beanstalk is
 launching the sample application instead.
Environment details for: elasticBeanstalkExa-env
 Application name: elastic-beanstalk-example
 Region: us-west-2
 Deployed Version: Sample Application
 Environment ID: e-j3pmc8tscn
 Platform: 64bit Amazon Linux 2015.03 v1.4.3 running Docker 1.6.2
 Tier: WebServer-Standard
 CNAME: eb-dev.elasticbeanstalk.com
 Updated: 2015-06-27 01:02:24.813000+00:00
Printing Status:
INFO: createEnvironment is starting.
 -- Events -- (safe to Ctrl+C) Use "eb abort" to cancel the command.

Eb create 1460

AWS Elastic Beanstalk Developer Guide

Your environment can take several minutes to become ready. Press Ctrl+C to return to the
command line while the environment is created.

Eb status

Run eb status to see the current status of your environment. When the status is ready, the sample
application is available at elasticbeanstalk.com and the environment is ready to be updated.

~/eb$ eb status
Environment details for: elasticBeanstalkExa-env
 Application name: elastic-beanstalk-example
 Region: us-west-2
 Deployed Version: Sample Application
 Environment ID: e-gbzqc3jcra
 Platform: 64bit Amazon Linux 2015.03 v1.4.3 running Docker 1.6.2
 Tier: WebServer-Standard
 CNAME: elasticbeanstalkexa-env.elasticbeanstalk.com
 Updated: 2015-06-30 01:47:45.589000+00:00
 Status: Ready
 Health: Green

Eb health

Use the eb health command to view health information about the instances in your environment
and the state of your environment overall. Use the --refresh option to view health in an
interactive view that updates every 10 seconds.

~/eb$ eb health
 api Ok 2016-09-15 18:39:04
WebServer Java 8
 total ok warning degraded severe info pending unknown
 3 3 0 0 0 0 0 0

 instance-id status cause health
 Overall Ok
 i-0ef05ec54918bf567 Ok
 i-001880c1187493460 Ok
 i-04703409d90d7c353 Ok

 instance-id r/sec %2xx %3xx %4xx %5xx p99 p90 p75
 p50 p10

Eb status 1461

AWS Elastic Beanstalk Developer Guide

 Overall 8.6 100.0 0.0 0.0 0.0 0.083* 0.065 0.053
 0.040 0.019
 i-0ef05ec54918bf567 2.9 29 0 0 0 0.069* 0.066 0.057
 0.050 0.023
 i-001880c1187493460 2.9 29 0 0 0 0.087* 0.069 0.056
 0.050 0.034
 i-04703409d90d7c353 2.8 28 0 0 0 0.051* 0.027 0.024
 0.021 0.015

 instance-id type az running load 1 load 5 user% nice%
 system% idle% iowait%
 i-0ef05ec54918bf567 t2.micro 1c 23 mins 0.19 0.05 3.0 0.0
 0.3 96.7 0.0
 i-001880c1187493460 t2.micro 1a 23 mins 0.0 0.0 3.2 0.0
 0.3 96.5 0.0
 i-04703409d90d7c353 t2.micro 1b 1 day 0.0 0.0 3.6 0.0
 0.2 96.2 0.0

 instance-id status id version ago
 deployments
 i-0ef05ec54918bf567 Deployed 28 app-bc1b-160915_181041 20 mins
 i-001880c1187493460 Deployed 28 app-bc1b-160915_181041 20 mins
 i-04703409d90d7c353 Deployed 28 app-bc1b-160915_181041 27 mins

Eb events

Use eb events to see a list of events output by Elastic Beanstalk.

~/eb$ eb events
2015-06-29 23:21:09 INFO createEnvironment is starting.
2015-06-29 23:21:10 INFO Using elasticbeanstalk-us-east-2-EXAMPLE as Amazon S3
 storage bucket for environment data.
2015-06-29 23:21:23 INFO Created load balancer named: awseb-e-g-AWSEBLoa-EXAMPLE
2015-06-29 23:21:42 INFO Created security group named: awseb-e-gbzqc3jcra-stack-
AWSEBSecurityGroup-EXAMPLE
...

Eb logs

Use eb logs to pull logs from an instance in your environment. By default, eb logs pull logs from
the first instance launched and displays them in standard output. You can specify an instance ID
with the --instance option to get logs from a specific instance.

Eb events 1462

AWS Elastic Beanstalk Developer Guide

The --all option pulls logs from all instances and saves them to subdirectories under
.elasticbeanstalk/logs.

~/eb$ eb logs --all
Retrieving logs...
Logs were saved to /home/local/ANT/mwunderl/ebcli/environments/test/.elasticbeanstalk/
logs/150630_201410
Updated symlink at /home/local/ANT/mwunderl/ebcli/environments/test/.elasticbeanstalk/
logs/latest

Eb open

To open your environment's website in a browser, use eb open:

~/eb$ eb open

In a windowed environment, your default browser will open in a new window. In a terminal
environment, a command line browser (e.g. w3m) will be used if available.

Eb deploy

Once the environment is up and ready, you can update it using eb deploy.

This command works better with some source code to bundle up and deploy, so for this example
we've created a Dockerfile in the project directory with the following content:

~/eb/Dockerfile

FROM ubuntu:12.04

RUN apt-get update
RUN apt-get install -y nginx zip curl

RUN echo "daemon off;" >> /etc/nginx/nginx.conf
RUN curl -o /usr/share/nginx/www/master.zip -L https://codeload.github.com/
gabrielecirulli/2048/zip/master
RUN cd /usr/share/nginx/www/ && unzip master.zip && mv 2048-master/* . && rm -rf 2048-
master master.zip

EXPOSE 80

Eb open 1463

AWS Elastic Beanstalk Developer Guide

CMD ["/usr/sbin/nginx", "-c", "/etc/nginx/nginx.conf"]

This Dockerfile deploys an image of Ubuntu 12.04 and installs the game 2048. Run eb deploy
to upload the application to your environment:

~/eb$ eb deploy
Creating application version archive "app-150630_014338".
Uploading elastic-beanstalk-example/app-150630_014338.zip to S3. This may take a while.
Upload Complete.
INFO: Environment update is starting.
 -- Events -- (safe to Ctrl+C) Use "eb abort" to cancel the command.

When you run eb deploy, the EB CLI bundles up the contents of your project directory and deploys
it to your environment.

Note

If you have initialized a git repository in your project folder, the EB CLI will always deploy
the latest commit, even if you have pending changes. Commit your changes prior to
running eb deploy to deploy them to your environment.

Eb config

Take a look at the configuration options available for your running environment with the eb config
command:

~/eb$ eb config
ApplicationName: elastic-beanstalk-example
DateUpdated: 2015-06-30 02:12:03+00:00
EnvironmentName: elasticBeanstalkExa-env
SolutionStackName: 64bit Amazon Linux 2015.03 v1.4.3 running Docker 1.6.2
settings:
 AWSEBAutoScalingScaleDownPolicy.aws:autoscaling:trigger:
 LowerBreachScaleIncrement: '-1'
 AWSEBAutoScalingScaleUpPolicy.aws:autoscaling:trigger:
 UpperBreachScaleIncrement: '1'
 AWSEBCloudwatchAlarmHigh.aws:autoscaling:trigger:
 UpperThreshold: '6000000'

Eb config 1464

AWS Elastic Beanstalk Developer Guide

...

This command populates a list of available configuration options in a text editor. Many of the
options shown have a null value, these are not set by default but can be modified to update
the resources in your environment. See Configuration options for more information about these
options.

Eb terminate

If you are done using the environment for now, use eb terminate to terminate it.

~/eb$ eb terminate
The environment "eb-dev" and all associated instances will be terminated.
To confirm, type the environment name: eb-dev
INFO: terminateEnvironment is starting.
INFO: Deleted CloudWatch alarm named: awseb-e-jc8t3pmscn-stack-
AWSEBCloudwatchAlarmHigh-1XLMU7DNCBV6Y
INFO: Deleted CloudWatch alarm named: awseb-e-jc8t3pmscn-stack-
AWSEBCloudwatchAlarmLow-8IVI04W2SCXS
INFO: Deleted Auto Scaling group policy named: arn:aws:autoscaling:us-
east-2:123456789012:scalingPolicy:1753d43e-ae87-4df6-
a405-11d31f4c8f97:autoScalingGroupName/awseb-e-jc8t3pmscn-stack-
AWSEBAutoScalingGroup-90TTS2ZL4MXV:policyName/awseb-e-jc8t3pmscn-stack-
AWSEBAutoScalingScaleUpPolicy-A070H1BMUQAJ
INFO: Deleted Auto Scaling group policy named: arn:aws:autoscaling:us-
east-2:123456789012:scalingPolicy:1fd24ea4-3d6f-4373-
affc-4912012092ba:autoScalingGroupName/awseb-e-jc8t3pmscn-stack-
AWSEBAutoScalingGroup-90TTS2ZL4MXV:policyName/awseb-e-jc8t3pmscn-stack-
AWSEBAutoScalingScaleDownPolicy-LSWFUMZ46H1V
INFO: Waiting for EC2 instances to terminate. This may take a few minutes.
 -- Events -- (safe to Ctrl+C)

For a full list of available EB CLI commands, check out the EB CLI command reference.

Important

If you terminate an environment, you must also delete any CNAME mappings that you
created, as other customers can reuse an available hostname. Be sure to delete DNS records
that point to your terminated environment to prevent a dangling DNS entry. A dangling
DNS entry can expose internet traffic destined for your domain to security vulnerabilities. It
can also present other risks.

Eb terminate 1465

AWS Elastic Beanstalk Developer Guide

For more information, see Protection from dangling delegation records in Route 53 in the
Amazon Route 53 Developer Guide. You can also learn more about dangling DNS entries in
Enhanced Domain Protections for Amazon CloudFront Requests in the AWS Security Blog.

Using the EB CLI with AWS CodeBuild

AWS CodeBuild compiles your source code, runs unit tests, and produces artifacts that are ready
to deploy. You can use CodeBuild together with the EB CLI to automate building your application
from its source code. Environment creation and each deployment thereafter start with a build step,
and then deploy the resulting application.

Note

Some regions don't offer CodeBuild. The integration between Elastic Beanstalk and
CodeBuild doesn't work in these regions.
For information about the AWS services offered in each region, see Region Table.

Creating an application

To create an Elastic Beanstalk application that uses CodeBuild

1. Include a CodeBuild build specification file, buildspec.yml, in your application folder.

2. Add an eb_codebuild_settings entry with options specific to Elastic Beanstalk to the file.

3. Run eb init in the folder.

Note

Do not use the period (.) or space () characters in Application name when you use the
EB CLI with CodeBuild.

Elastic Beanstalk extends the CodeBuild build specification file format to include the following
additional settings:

eb_codebuild_settings:

CodeBuild 1466

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/protection-from-dangling-dns.html
https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/
https://docs.aws.amazon.com/codebuild/latest/userguide/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html
https://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html

AWS Elastic Beanstalk Developer Guide

 CodeBuildServiceRole: role-name
 ComputeType: size
 Image: image
 Timeout: minutes

CodeBuildServiceRole

The ARN or name of the AWS Identity and Access Management (IAM) service role that
CodeBuild can use to interact with dependent AWS services on your behalf. This value is
required. If you omit it, any subsequent eb create or eb deploy command fails.

To learn more about creating a service role for CodeBuild, see Create a CodeBuild Service Role
in the AWS CodeBuild User Guide.

Note

You also need permissions to perform actions in CodeBuild itself. The Elastic Beanstalk
AdministratorAccess-AWSElasticBeanstalk managed user policy includes all the
required CodeBuild action permissions. If you're not using the managed policy, be sure
to allow the following permissions in your user policy.

 "codebuild:CreateProject",
 "codebuild:DeleteProject",
 "codebuild:BatchGetBuilds",
 "codebuild:StartBuild"

For details, see Managing Elastic Beanstalk user policies.

ComputeType

The amount of resources used by the Docker container in the CodeBuild build
environment. Valid values are BUILD_GENERAL1_SMALL, BUILD_GENERAL1_MEDIUM, and
BUILD_GENERAL1_LARGE.

Image

The name of the Docker Hub or Amazon ECR image that CodeBuild uses for the build
environment. This Docker image should contain all the tools and runtime libraries required
to build your code, and should match your application's target platform. CodeBuild manages
and maintains a set of images specifically meant to be used with Elastic Beanstalk. It is

Creating an application 1467

https://docs.aws.amazon.com/codebuild/latest/userguide/setting-up.html#setting-up-service-role

AWS Elastic Beanstalk Developer Guide

recommended that you use one of them. For details, see Docker Images Provided by CodeBuild
in the AWS CodeBuild User Guide.

The Image value is optional. If you omit it, the eb init command attempts to choose an image
that best matches your target platform. In addition, if you run eb init in interactive mode and
it fails to choose an image for you, it prompts you to choose one. At the end of a successful
initialization, eb init writes the chosen image into the buildspec.yml file.

Timeout

The duration, in minutes, that the CodeBuild build runs before timing out. This value is optional.
For details about valid and default values, see Create a Build Project in CodeBuild.

Note

This timeout controls the maximum duration for a CodeBuild run, and the EB CLI also
respects it as part of its first step to create an application version. It's distinct from
the value you can specify with the --timeout option of the eb create or eb deploy
commands. The latter value controls the maximum duration that for EB CLI to wait for
environment creation or update.

Building and deploying your application code

Whenever your application code needs to be deployed, the EB CLI uses CodeBuild to run a build,
then deploys the resulting build artifacts to your environment. This happens when you create an
Elastic Beanstalk environment for your application using the eb create command, and each time
you later deploy code changes to the environment using the eb deploy command.

If the CodeBuild step fails, environment creation or deployment doesn't start.

Using the EB CLI with Git

The EB CLI provides integration with Git. This section provides an overview of how to use Git with
the EB CLI.

To install Git and initialize your Git repository

1. Download the most recent version of Git by visiting http://git-scm.com.

Building and deploying your application code 1468

https://docs.aws.amazon.com/codebuild/latest/userguide/build-env-ref-available.html
https://docs.aws.amazon.com/codebuild/latest/userguide/create-project.html
http://git-scm.com

AWS Elastic Beanstalk Developer Guide

2. Initialize your Git repository by typing the following:

~/eb$ git init

EB CLI will now recognize that your application is set up with Git.

3. If you haven't already run eb init, do that now:

~/eb$ eb init

Associating Elastic Beanstalk environments with Git branches

You can associate a different environment with each branch of your code. When you checkout
a branch, changes are deployed to the associated environment. For example, you can type the
following to associate your production environment with your mainline branch, and a separate
development environment with your development branch:

~/eb$ git checkout mainline
~/eb$ eb use prod
~/eb$ git checkout develop
~/eb$ eb use dev

Deploying changes

By default, the EB CLI deploys the latest commit in the current branch, using the commit ID and
message as the application version label and description, respectively. If you want to deploy to your
environment without committing, you can use the --staged option to deploy changes that have
been added to the staging area.

To deploy changes without committing

1. Add new and changed files to the staging area:

~/eb$ git add .

2. Deploy the staged changes with eb deploy:

~/eb$ eb deploy --staged

Associating Elastic Beanstalk environments with Git branches 1469

AWS Elastic Beanstalk Developer Guide

If you have configured the EB CLI to deploy an artifact, and you don't commit the artifact to your
git repository, use the --staged option to deploy the latest build.

Using Git submodules

Some code projects benefit from having Git submodules — repositories within the top-level
repository. When you deploy your code using eb create or eb deploy, the EB CLI can include
submodules in the application version zip file and upload them with the rest of the code.

You can control the inclusion of submodules by using the include_git_submodules option in
the global section of the EB CLI configuration file, .elasticbeanstalk/config.yml in your
project folder.

To include submodules, set this option to true:

global:
 include_git_submodules: true

When the include_git_submodules option is missing or set to false, EB CLI does not include
submodules in the uploaded zip file.

See Git Tools - Submodules for more details about Git submodules.

Default behavior

When you run eb init to configure your project, the EB CLI adds the
include_git_submodules option and sets it to true. This ensures that any submodules
you have in your project are included in your deployments.
The EB CLI did not always support including submodules. To avoid an accidental and
undesirable change to projects that had existed before we added submodule support,
the EB CLI does not include submodules when the include_git_submodules option is
missing. If you have one of these existing projects and you want to include submodules in
your deployments, add the option and set it to true as explained in this section.

Using Git submodules 1470

https://git-scm.com/book/en/v2/Git-Tools-Submodules

AWS Elastic Beanstalk Developer Guide

CodeCommit behavior

Elastic Beanstalk's integration with CodeCommit doesn't support submodules at this time.
If you enabled your environment to integrate with CodeCommit, submodules are not
included in your deployments.

Assigning Git tags to your application version

You can use a Git tag as your version label to identify what application version is running in your
environment. For example, type the following:

~/eb$ git tag -a v1.0 -m "My version 1.0"

Using the EB CLI with AWS CodeCommit

You can use the EB CLI to deploy your application directly from your AWS CodeCommit repository.
With CodeCommit, you can upload only your changes to the repository when you deploy, instead
of uploading your entire project. This can save you time and bandwidth if you have a large project
or limited Internet connectivity. The EB CLI pushes your local commits and uses them to create
application versions when you use eb appversion, eb create or eb deploy.

To deploy your changes, CodeCommit integration requires you to commit changes first. However,
as you develop or debug, you might not want to push changes that you haven't confirmed are
working. You can avoid committing your changes by staging them and using eb deploy --staged
(which performs a standard deployment). Or commit your changes to a development or testing
branch first, and merge to your mainline branch only when your code is ready. With eb use, you
can configure the EB CLI to deploy to one environment from your development branch, and to a
different environment from your mainline branch.

Note

Some regions don't offer CodeCommit. The integration between Elastic Beanstalk and
CodeCommit doesn't work in these regions.
For information about the AWS services offered in each region, see Region Table.

Sections

Assigning Git tags to your application version 1471

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

AWS Elastic Beanstalk Developer Guide

• Prerequisites

• Creating a CodeCommit repository with the EB CLI

• Deploying from your CodeCommit repository

• Configuring additional branches and environments

• Using an existing CodeCommit repository

Prerequisites

To use CodeCommit with AWS Elastic Beanstalk, you need a local Git repository (either one you
have already or a new one you create) with at least one commit, permission to use CodeCommit,
and an Elastic Beanstalk environment in a region that CodeCommit supports. Your environment
and repository must be in the same region.

To initialize a Git repository

1. Run git init in your project folder.

~/my-app$ git init

2. Stage your project files with git add.

~/my-app$ git add .

3. Commit changes with git commit.

~/my-app$ git commit -m "Elastic Beanstalk application"

Creating a CodeCommit repository with the EB CLI

To get started with CodeCommit, run eb init. During repository configuration, the EB CLI prompts
you to use CodeCommit to store your code and speed up deployments. Even if you previously
configured your project with eb init, you can run it again to configure CodeCommit.

To create a CodeCommit repository with the EB CLI

1. Run eb init in your project folder. During configuration, the EB CLI asks if you want to use
CodeCommit to store your code and speed up deployments. If you previously configured your

Prerequisites 1472

https://docs.aws.amazon.com/codecommit/latest/userguide/access-permissions.html

AWS Elastic Beanstalk Developer Guide

project with eb init, you can still run it again to configure CodeCommit. Type y at the prompt
to set up CodeCommit.

~/my-app$ eb init
Note: Elastic Beanstalk now supports AWS CodeCommit; a fully-managed source control
 service. To learn more, see Docs: https://aws.amazon.com/codecommit/
Do you wish to continue with CodeCommit? (y/n)(default is n): y

2. Choose Create new Repository.

Select a repository
1) my-repo
2) [Create new Repository]
(default is 2): 2

3. Type a repository name or press Enter to accept the default name.

Enter Repository Name
(default is "codecommit-origin"): my-app
Successfully created repository: my-app

4. Choose an existing branch for your commits, or use the EB CLI to create a new branch.

Enter Branch Name
***** Must have at least one commit to create a new branch with CodeCommit *****
(default is "mainline"): ENTER
Successfully created branch: mainline

Deploying from your CodeCommit repository

When you configure CodeCommit with your EB CLI repository, the EB CLI uses the contents of the
repository to create source bundles. When you run eb deploy or eb create, the EB CLI pushes new
commits and uses the HEAD revision of your branch to create the archive that it deploys to the EC2
instances in your environment.

To use CodeCommit integration with the EB CLI

1. Create a new environment with eb create.

~/my-app$ eb create my-app-env

Deploying from your CodeCommit repository 1473

AWS Elastic Beanstalk Developer Guide

Starting environment deployment via CodeCommit
--- Waiting for application versions to be pre-processed ---
Finished processing application version app-ac1ea-161010_201918
Setting up default branch
Environment details for: my-app-env
 Application name: my-app
 Region: us-east-2
 Deployed Version: app-ac1ea-161010_201918
 Environment ID: e-pm5mvvkfnd
 Platform: 64bit Amazon Linux 2016.03 v2.1.6 running Java 8
 Tier: WebServer-Standard
 CNAME: UNKNOWN
 Updated: 2016-10-10 20:20:29.725000+00:00
Printing Status:
INFO: createEnvironment is starting.
...

The EB CLI uses the latest commit in the tracked branch to create the application version that
is deployed to the environment.

2. When you have new local commits, use eb deploy to push the commits and deploy to your
environment.

~/my-app$ eb deploy
Starting environment deployment via CodeCommit
INFO: Environment update is starting.
INFO: Deploying new version to instance(s).
INFO: New application version was deployed to running EC2 instances.
INFO: Environment update completed successfully.

3. To test changes before you commit them, use the --staged option to deploy changes that
you added to the staging area with git add.

~/my-app$ git add new-file
~/my-app$ eb deploy --staged

Deploying with the --staged option performs a standard deployment, bypassing
CodeCommit.

Deploying from your CodeCommit repository 1474

AWS Elastic Beanstalk Developer Guide

Configuring additional branches and environments

CodeCommit configuration applies to a single branch. You can use eb use and eb codesource to
configure additional branches or modify the current branch's configuration.

To configure CodeCommit integration with the EB CLI

1. To change the remote branch, use the eb use command's --source option.

~/my-app$ eb use test-env --source my-app/test

2. To create a new branch and environment, check out a new branch, push it to CodeCommit,
create the environment, and then use eb use to connect the local branch, remote branch, and
environment.

~/my-app$ git checkout -b production
~/my-app$ git push --set-upstream production
~/my-app$ eb create production-env
~/my-app$ eb use --source my-app/production production-env

3. To configure CodeCommit interactively, use eb codesource codecommit.

~/my-app$ eb codesource codecommit
Current CodeCommit setup:
 Repository: my-app
 Branch: test
Do you wish to continue (y/n): y

Select a repository
1) my-repo
2) my-app
3) [Create new Repository]
(default is 2): 2

Select a branch
1) mainline
2) test
3) [Create new Branch with local HEAD]
(default is 1): 1

4. To disable CodeCommit integration, use eb codesource local.

Configuring additional branches and environments 1475

AWS Elastic Beanstalk Developer Guide

~/my-app$ eb codesource local
Current CodeCommit setup:
 Repository: my-app
 Branch: mainline
Default set to use local sources

Using an existing CodeCommit repository

If you already have a CodeCommit repository and want to use it with Elastic Beanstalk, run eb init
at the root of your local Git repository.

To use an existing CodeCommit repository with the EB CLI

1. Clone your CodeCommit repository.

~$ git clone ssh://git-codecommit.us-east-2.amazonaws.com/v1/repos/my-app

2. Check out and push a branch to use for your Elastic Beanstalk environment.

~/my-app$ git checkout -b dev-env
~/my-app$ git push --set-upstream origin dev-env

3. Run eb init. Choose the same region, repository, and branch name that you are currently using.

~/my-app$ eb init
Select a default region
1) us-east-1 : US East (N. Virginia)
2) us-west-1 : US West (N. California)
3) us-west-2 : US West (Oregon)
4) eu-west-1 : Europe (Ireland)
5) eu-central-1 : Europe (Frankfurt)
6) ap-south-1 : Asia Pacific (Mumbai)
7) ap-southeast-1 : Asia Pacific (Singapore)
...
(default is 3): 1
...
Note: Elastic Beanstalk now supports AWS CodeCommit; a fully-managed source control
 service. To learn more, see Docs: https://aws.amazon.com/codecommit/
Do you wish to continue with CodeCommit? (y/n)(default is n): y

Using an existing CodeCommit repository 1476

AWS Elastic Beanstalk Developer Guide

Select a repository
1) my-app
2) [Create new Repository]
(default is 1): 1

Select a branch
1) mainline
2) dev-env
3) [Create new Branch with local HEAD]
(default is 2): 2

For more information about using eb init, see Configure the EB CLI.

Using the EB CLI to monitor environment health

The Elastic Beanstalk Command Line Interface (EB CLI) is a command line tool for managing AWS
Elastic Beanstalk environments. You also can use the EB CLI to monitor your environment's health
in real time and with more granularity than is currently available in the Elastic Beanstalk console

After installing and configuring the EB CLI, you can launch a new environment and deploy your
code to it with the eb create command. If you already have an environment that you created in the
Elastic Beanstalk console, you can attach the EB CLI to it by running eb init in a project folder and
following the prompts (the project folder can be empty).

Important

Ensure that you are using the latest version of the EB CLI by running pip install with
the --upgrade option:

$ sudo pip install --upgrade awsebcli

For complete EB CLI installation instructions, see Install the EB CLI.

To use the EB CLI to monitor your environment's health, you must first configure a local project
folder by running eb init and following the prompts. For complete instructions, see Configure the
EB CLI.

Monitoring health 1477

AWS Elastic Beanstalk Developer Guide

If you already have an environment running in Elastic Beanstalk and want to use the EB CLI to
monitor its health, follow these steps to attach it to the existing environment.

To attach the EB CLI to an existing environment

1. Open a command line terminal and navigate to your user folder.

2. Create and open a new folder for your environment.

3. Run the eb init command, and then choose the application and environment whose health you
want to monitor. If you have only one environment running the application you choose, the EB
CLI will select it automatically and you won't need to choose the environment, as shown in the
following example.

~/project$ eb init
Select an application to use
1) elastic-beanstalk-example
2) [Create new Application]
(default is 2): 1
Select the default environment.
You can change this later by typing "eb use [environment_name]".
1) elasticBeanstalkEx2-env
2) elasticBeanstalkExa-env
(default is 1): 1

To monitor health by using the EB CLI

1. Open a command line and navigate to your project folder.

2. Run the eb health command to display the health status of the instances in your environment.
In this example, there are five instances running in a Linux environment.

~/project $ eb health
 elasticBeanstalkExa-env Ok
 2015-07-08 23:13:20
WebServer
 Ruby 2.1 (Puma)
 total ok warning degraded severe info pending unknown
 5 5 0 0 0 0 0 0

 instance-id status cause
 health
 Overall Ok

Monitoring health 1478

AWS Elastic Beanstalk Developer Guide

 i-d581497d Ok
 i-d481497c Ok
 i-136e00c0 Ok
 i-126e00c1 Ok
 i-8b2cf575 Ok

 instance-id r/sec %2xx %3xx %4xx %5xx p99 p90 p75
 p50 p10 requests
 Overall 671.8 100.0 0.0 0.0 0.0 0.003 0.002 0.001
 0.001 0.000
 i-d581497d 143.0 1430 0 0 0 0.003 0.002 0.001
 0.001 0.000
 i-d481497c 128.8 1288 0 0 0 0.003 0.002 0.001
 0.001 0.000
 i-136e00c0 125.4 1254 0 0 0 0.004 0.002 0.001
 0.001 0.000
 i-126e00c1 133.4 1334 0 0 0 0.003 0.002 0.001
 0.001 0.000
 i-8b2cf575 141.2 1412 0 0 0 0.003 0.002 0.001
 0.001 0.000

 instance-id type az running load 1 load 5 user% nice%
 system% idle% iowait% cpu
 i-d581497d t2.micro 1a 12 mins 0.0 0.04 6.2 0.0
 1.0 92.5 0.1
 i-d481497c t2.micro 1a 12 mins 0.01 0.09 5.9 0.0
 1.6 92.4 0.1
 i-136e00c0 t2.micro 1b 12 mins 0.15 0.07 5.5 0.0
 0.9 93.2 0.0
 i-126e00c1 t2.micro 1b 12 mins 0.17 0.14 5.7 0.0
 1.4 92.7 0.1
 i-8b2cf575 t2.micro 1c 1 hour 0.19 0.08 6.5 0.0
 1.2 92.1 0.1

 instance-id status id version ago
 deployments
 i-d581497d Deployed 1 Sample Application 12 mins
 i-d481497c Deployed 1 Sample Application 12 mins
 i-136e00c0 Deployed 1 Sample Application 12 mins
 i-126e00c1 Deployed 1 Sample Application 12 mins
 i-8b2cf575 Deployed 1 Sample Application 1 hour

In this example, there is a single instance running in a Windows environment.

Monitoring health 1479

AWS Elastic Beanstalk Developer Guide

~/project $ eb health
 WindowsSampleApp-env Ok
 2018-05-22 17:33:19
WebServer IIS 10.0 running on 64bit
 Windows Server 2016/2.2.0
 total ok warning degraded severe info pending unknown
 1 1 0 0 0 0 0 0

 instance-id status cause
 health
 Overall Ok
 i-065716fba0e08a351 Ok

 instance-id r/sec %2xx %3xx %4xx %5xx p99 p90
 p75 p50 p10 requests
 Overall 13.7 100.0 0.0 0.0 0.0 1.403 0.970
 0.710 0.413 0.079
 i-065716fba0e08a351 2.4 100.0 0.0 0.0 0.0 1.102* 0.865
 0.601 0.413 0.091

 instance-id type az running % user time % privileged
 time % idle time cpu
 i-065716fba0e08a351 t2.large 1b 4 hours 0.2
 0.1 99.7

 instance-id status id version ago
 deployments
 i-065716fba0e08a351 Deployed 2 Sample Application 4 hours

Reading the output

The output displays the name of the environment, the environment's overall health, and the
current date at the top of the screen.

elasticBeanstalkExa-env Ok
 2015-07-08 23:13:20

The next three lines display the type of environment ("WebServer" in this case), the configuration
(Ruby 2.1 with Puma), and a breakdown of how many instances are in each of the seven states.

Reading the output 1480

AWS Elastic Beanstalk Developer Guide

WebServer
 Ruby 2.1 (Puma)
 total ok warning degraded severe info pending unknown
 5 5 0 0 0 0 0 0

The rest of the output is split into four sections. The first displays the status and the cause of the
status for the environment overall, and then for each instance. The following example shows two
instances in the environment with a status of Info and a cause indicating that a deployment has
started.

 instance-id status cause
 health
 Overall Ok
 i-d581497d Info Performing application deployment (running for 3 seconds)
 i-d481497c Info Performing application deployment (running for 3 seconds)
 i-136e00c0 Ok
 i-126e00c1 Ok
 i-8b2cf575 Ok

For information about health statuses and colors, see Health colors and statuses.

The requests section displays information from the web server logs on each instance. In this
example, each instance is taking requests normally and there are no errors.

 instance-id r/sec %2xx %3xx %4xx %5xx p99 p90 p75 p50
 p10 requests
 Overall 13.7 100.0 0.0 0.0 0.0 1.403 0.970 0.710 0.413
 0.079
 i-d581497d 2.4 100.0 0.0 0.0 0.0 1.102* 0.865 0.601 0.413
 0.091
 i-d481497c 2.7 100.0 0.0 0.0 0.0 0.842* 0.788 0.480 0.305
 0.062
 i-136e00c0 4.1 100.0 0.0 0.0 0.0 1.520* 1.088 0.883 0.524
 0.104
 i-126e00c1 2.2 100.0 0.0 0.0 0.0 1.334* 0.791 0.760 0.344
 0.197
 i-8b2cf575 2.3 100.0 0.0 0.0 0.0 1.162* 0.867 0.698 0.477
 0.076

The cpu section shows operating system metrics for each instance. The output differs by operating
system. Here is the output for Linux environments.

Reading the output 1481

AWS Elastic Beanstalk Developer Guide

 instance-id type az running load 1 load 5 user% nice% system%
 idle% iowait% cpu
 i-d581497d t2.micro 1a 12 mins 0.0 0.03 0.2 0.0 0.0
 99.7 0.1
 i-d481497c t2.micro 1a 12 mins 0.0 0.03 0.3 0.0 0.0
 99.7 0.0
 i-136e00c0 t2.micro 1b 12 mins 0.0 0.04 0.1 0.0 0.0
 99.9 0.0
 i-126e00c1 t2.micro 1b 12 mins 0.01 0.04 0.2 0.0 0.0
 99.7 0.1
 i-8b2cf575 t2.micro 1c 1 hour 0.0 0.01 0.2 0.0 0.1
 99.6 0.1

Here is the output for Windows environments.

 instance-id type az running % user time % privileged time %
 idle time
 i-065716fba0e08a351 t2.large 1b 4 hours 0.2 0.0
 99.8

For information about the server and operating system metrics shown, see Instance metrics.

The final section, deployments, shows the deployment status of each instance. If a rolling
deployment fails, you can use the deployment ID, status, and version label shown to identify
instances in your environment that are running the wrong version.

 instance-id status id version ago
 deployments
 i-d581497d Deployed 1 Sample Application 12 mins
 i-d481497c Deployed 1 Sample Application 12 mins
 i-136e00c0 Deployed 1 Sample Application 12 mins
 i-126e00c1 Deployed 1 Sample Application 12 mins
 i-8b2cf575 Deployed 1 Sample Application 1 hour

Interactive health view

The eb health command displays a snapshot of your environment's health. To refresh the displayed
information every 10 seconds, use the --refresh option.

$ eb health --refresh

Interactive health view 1482

AWS Elastic Beanstalk Developer Guide

 elasticBeanstalkExa-env Ok
 2015-07-09 22:10:04 (1 secs)
WebServer
 Ruby 2.1 (Puma)
 total ok warning degraded severe info pending unknown
 5 5 0 0 0 0 0 0

 instance-id status cause
 health
 Overall Ok
 i-bb65c145 Ok Application deployment completed 35 seconds ago and took 26
 seconds
 i-ba65c144 Ok Application deployment completed 17 seconds ago and took 25
 seconds
 i-f6a2d525 Ok Application deployment completed 53 seconds ago and took 26
 seconds
 i-e8a2d53b Ok Application deployment completed 32 seconds ago and took 31
 seconds
 i-e81cca40 Ok

 instance-id r/sec %2xx %3xx %4xx %5xx p99 p90 p75 p50
 p10 requests
 Overall 671.8 100.0 0.0 0.0 0.0 0.003 0.002 0.001 0.001
 0.000
 i-bb65c145 143.0 1430 0 0 0 0.003 0.002 0.001 0.001
 0.000
 i-ba65c144 128.8 1288 0 0 0 0.003 0.002 0.001 0.001
 0.000
 i-f6a2d525 125.4 1254 0 0 0 0.004 0.002 0.001 0.001
 0.000
 i-e8a2d53b 133.4 1334 0 0 0 0.003 0.002 0.001 0.001
 0.000
 i-e81cca40 141.2 1412 0 0 0 0.003 0.002 0.001 0.001
 0.000

 instance-id type az running load 1 load 5 user% nice% system%
 idle% iowait% cpu
 i-bb65c145 t2.micro 1a 12 mins 0.0 0.03 0.2 0.0 0.0
 99.7 0.1
 i-ba65c144 t2.micro 1a 12 mins 0.0 0.03 0.3 0.0 0.0
 99.7 0.0
 i-f6a2d525 t2.micro 1b 12 mins 0.0 0.04 0.1 0.0 0.0
 99.9 0.0

Interactive health view 1483

AWS Elastic Beanstalk Developer Guide

 i-e8a2d53b t2.micro 1b 12 mins 0.01 0.04 0.2 0.0 0.0
 99.7 0.1
 i-e81cca40 t2.micro 1c 1 hour 0.0 0.01 0.2 0.0 0.1
 99.6 0.1

 instance-id status id version ago
 deployments
 i-bb65c145 Deployed 1 Sample Application 12 mins
 i-ba65c144 Deployed 1 Sample Application 12 mins
 i-f6a2d525 Deployed 1 Sample Application 12 mins
 i-e8a2d53b Deployed 1 Sample Application 12 mins
 i-e81cca40 Deployed 1 Sample Application 1 hour

 (Commands: Help,Quit, # # # #)

This example shows an environment that has recently been scaled up from one to five instances.
The scaling operation succeeded, and all instances are now passing health checks and are ready to
take requests. In interactive mode, the health status updates every 10 seconds. In the upper-right
corner, a timer ticks down to the next update.

In the lower-left corner, the report displays a list of options. To exit interactive mode, press Q. To
scroll, press the arrow keys. To see a list of additional commands, press H.

Interactive health view options

When viewing environment health interactively, you can use keyboard keys to adjust the view and
tell Elastic Beanstalk to replace or reboot individual instances. To see a list of available commands
while viewing the health report in interactive mode, press H .

 up,down,home,end Scroll vertically
 left,right Scroll horizontally
 F Freeze/unfreeze data
 X Replace instance
 B Reboot instance
 <,> Move sort column left/right
 -,+ Sort order descending/ascending
 P Save health snapshot data file
 Z Toggle color/mono mode
 Q Quit this program

 Views
 1 All tables/split view

Interactive health view options 1484

AWS Elastic Beanstalk Developer Guide

 2 Status Table
 3 Request Summary Table
 4 CPU%/Load Table
 H This help menu

(press Q or ESC to return)

Managing multiple Elastic Beanstalk environments as a group
with the EB CLI

You can use the EB CLI to create groups of AWS Elastic Beanstalk environments, each running
a separate component of a service-oriented architecture application. The EB CLI manages such
groups by using the ComposeEnvironments API.

Note

Environment groups are different than multiple containers in a Multicontainer Docker
environment. With environment groups, each component of your application runs in
a separate Elastic Beanstalk environment, with its own dedicated set of Amazon EC2
instances. Each component can scale separately. With Multicontainer Docker, you combine
several components of an application into a single environment. All components share the
same set of Amazon EC2 instances, with each instance running multiple Docker containers.
Choose one of these architectures according to your application's needs.
For details about Multicontainer Docker, see Using the Amazon ECS platform branch.

Organize your application components into the following folder structure:

~/project-name
|-- component-a
| `-- env.yaml
`-- component-b
 `-- env.yaml

Each subfolder contains the source code for an independent component of an application that will
run in its own environment and an environment definition file named env.yaml. For details on the
env.yaml format, see Environment manifest (env.yaml).

Composing environments 1485

https://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_ComposeEnvironments.html

AWS Elastic Beanstalk Developer Guide

To use the Compose Environments API, first run eb init from the project folder, specifying each
component by the name of the folder that contains it with the --modules option:

~/workspace/project-name$ eb init --modules component-a component-b

The EB CLI prompts you to configure each component, and then creates the .elasticbeanstalk
directory in each component folder. EB CLI doesn't create configuration files in the parent
directory.

~/project-name
|-- component-a
| |-- .elasticbeanstalk
| `-- env.yaml
`-- component-b
 |-- .elasticbeanstalk
 `-- env.yaml

Next, run the eb create command with a list of environments to create, one for each component:

~/workspace/project-name$ eb create --modules component-a component-b --env-group-
suffix group-name

This command creates an environment for each component. The names of the environments are
created by concatenating the EnvironmentName specified in the env.yaml file with the group
name, separated by a hyphen. The total length of these two options and the hyphen must not
exceed the maximum allowed environment name length of 23 characters.

To update the environment, use the eb deploy command:

~/workspace/project-name$ eb deploy --modules component-a component-b

You can update each component individually or you can update them as a group. Specify the
components that you want to update with the --modules option.

The EB CLI stores the group name that you used with eb create in the branch-defaults section
of the EB CLI configuration file under /.elasticbeanstalk/config.yml. To deploy your
application to a different group, use the --env-group-suffix option when you run eb deploy. If
the group does not already exist, the EB CLI will create a new group of environments:

Composing environments 1486

AWS Elastic Beanstalk Developer Guide

~/workspace/project-name$ eb deploy --modules component-a component-b --env-group-
suffix group-2-name

To terminate environments, run eb terminate in the folder for each module. By default, the EB
CLI will show an error if you try to terminate an environment that another running environment is
dependent on. Terminate the dependent environment first, or use the --ignore-links option to
override the default behavior:

~/workspace/project-name/component-b$ eb terminate --ignore-links

Troubleshooting issues with the EB CLI

This topic lists common error messages encountered when using the EB CLI and possible solutions.
If you encounter an error message not shown here, use the Feedback links to let us know about it.

ERROR: An error occurred while handling git command. Error code: 128 Error: fatal: Not a valid
object name HEAD

Cause: This error message is shown when you have initialized a Git repository but have not
yet committed. The EB CLI looks for the HEAD revision when your project folder contains a Git
repository.

Solution: Add the files in your project folder to the staging area and commit:

~/my-app$ git add .
~/my-app$ git commit -m "First commit"

ERROR: This branch does not have a default environment. You must either specify an
environment by typing "eb status my-env-name" or set a default environment by typing "eb
use my-env-name".

Cause: When you create a new branch in git, it is not attached to an Elastic Beanstalk environment
by default.

Solution: Run eb list to see a list of available environments. Then run eb use env-name to use one
of the available environments.

ERROR: 2.0+ Platforms require a service role. You can provide one with --service-role option

Troubleshooting 1487

AWS Elastic Beanstalk Developer Guide

Cause: If you specify an environment name with eb create (for example, eb create my-env), the EB
CLI will not attempt to create a service role for you. If you don't have the default service role, the
above error is shown.

Solution: Run eb create without an environment name and follow the prompts to create the
default service role.

Troubleshooting deployments

If your Elastic Beanstalk deployment didn't go quite as smoothly as planned, you may get a 404 (if
your application failed to launch) or 500 (if your application fails during runtime) response, instead
of seeing your website. To troubleshoot many common issues, you can use the EB CLI to check the
status of your deployment, view its logs, gain access to your EC2 instance with SSH, or to open the
AWS Management Console page for your application environment.

To use the EB CLI to help troubleshoot your deployment

1. Run eb status to see the status of your current deployment and health of your EC2 hosts. For
example:

$ eb status --verbose

Environment details for: python_eb_app
 Application name: python_eb_app
 Region: us-west-2
 Deployed Version: app-150206_035343
 Environment ID: e-wa8u6rrmqy
 Platform: 64bit Amazon Linux 2014.09 v1.1.0 running Python 2.7
 Tier: WebServer-Standard-
 CNAME: python_eb_app.elasticbeanstalk.com
 Updated: 2015-02-06 12:00:08.557000+00:00
 Status: Ready
 Health: Green
 Running instances: 1
 i-8000528c: InService

Troubleshooting deployments 1488

AWS Elastic Beanstalk Developer Guide

Note

Using the --verbose switch provides information about the status of your running
instances. Without it, eb status will print only general information about your
environment.

2. Run eb health to view health information about your environment:

$ eb health --refresh
 elasticBeanstalkExa-env Degraded
 2016-03-28 23:13:20
WebServer
 Ruby 2.1 (Puma)
 total ok warning degraded severe info pending unknown
 5 2 0 2 1 0 0 0

 instance-id status cause
 Overall Degraded Incorrect application version found on 3 out of 5
 instances. Expected version "Sample Application" (deployment 1).
 i-d581497d Degraded Incorrect application version "v2" (deployment 2).
 Expected version "Sample Application" (deployment 1).
 i-d481497c Degraded Incorrect application version "v2" (deployment 2).
 Expected version "Sample Application" (deployment 1).
 i-136e00c0 Severe Instance ELB health has not been available for 5 minutes.
 i-126e00c1 Ok
 i-8b2cf575 Ok

 instance-id r/sec %2xx %3xx %4xx %5xx p99 p90 p75
 p50 p10
 Overall 646.7 100.0 0.0 0.0 0.0 0.003 0.002 0.001
 0.001 0.000
 i-dac3f859 167.5 1675 0 0 0 0.003 0.002 0.001
 0.001 0.000
 i-05013a81 161.2 1612 0 0 0 0.003 0.002 0.001
 0.001 0.000
 i-04013a80 0.0 - - - - - - -
 - -
 i-3ab524a1 155.9 1559 0 0 0 0.003 0.002 0.001
 0.001 0.000
 i-bf300d3c 162.1 1621 0 0 0 0.003 0.002 0.001
 0.001 0.000

Troubleshooting deployments 1489

AWS Elastic Beanstalk Developer Guide

 instance-id type az running load 1 load 5 user% nice%
 system% idle% iowait%
 i-d581497d t2.micro 1a 25 mins 0.16 0.1 7.0 0.0
 1.7 91.0 0.1
 i-d481497c t2.micro 1a 25 mins 0.14 0.1 7.2 0.0
 1.6 91.1 0.0
 i-136e00c0 t2.micro 1b 25 mins 0.0 0.01 0.0 0.0
 0.0 99.9 0.1
 i-126e00c1 t2.micro 1b 25 mins 0.03 0.08 6.9 0.0
 2.1 90.7 0.1
 i-8b2cf575 t2.micro 1c 1 hour 0.05 0.41 6.9 0.0
 2.0 90.9 0.0

 instance-id status id version ago
 deployments
 i-d581497d Deployed 2 v2 9 mins
 i-d481497c Deployed 2 v2 7 mins
 i-136e00c0 Failed 2 v2 5 mins
 i-126e00c1 Deployed 1 Sample Application 25 mins
 i-8b2cf575 Deployed 1 Sample Application 1 hour

The above example shows an environment with five instances where the deployment of
version "v2" failed on the third instance. After a failed deployment, the expected version is
reset to the last version that succeeded, which in this case is "Sample Application" from the
first deployment. See Using the EB CLI to monitor environment health for more information.

3. Run eb logs to download and view the logs associated with your application deployment.

$ eb logs

4. Run eb ssh to connect with the EC2 instance that's running your application and examine
it directly. On the instance, your deployed application can be found in the /opt/python/
current/app directory, and your Python environment will be found in /opt/python/run/
venv/.

5. Run eb console to view your application environment on the AWS Management Console. You
can use the web interface to easily examine various aspects of your deployment, including
your application's configuration, status, events, logs. You can also download the current or
past application versions that you've deployed to the server.

Troubleshooting deployments 1490

https://aws.amazon.com/console/

AWS Elastic Beanstalk Developer Guide

EB CLI command reference

You can use the Elastic Beanstalk command line interface (EB CLI) to perform a variety of
operations to deploy and manage your Elastic Beanstalk applications and environments. The EB CLI
integrates with Git if you want to deploy application source code that is under Git source control.
For more information, see Using the Elastic Beanstalk command line interface (EB CLI) and Using
the EB CLI with Git.

Commands

• eb abort

• eb appversion

• eb clone

• eb codesource

• eb config

• eb console

• eb create

• eb deploy

• eb events

• eb health

• eb init

• eb labs

• eb list

• eb local

• eb logs

• eb open

• eb platform

• eb printenv

• eb restore

• eb scale

• eb setenv

• eb ssh

• eb status

EB CLI commands 1491

AWS Elastic Beanstalk Developer Guide

• eb swap

• eb tags

• eb terminate

• eb upgrade

• eb use

• Common options

eb abort

Description

Cancels an upgrade when environment configuration changes to instances are still in progress.

Note

If you have more than two environments that are undergoing a update, you are prompted
to select the name of the environment for which you want to roll back changes.

Syntax

eb abort

eb abort environment-name

Options

Name Description

Common options

Output

The command shows a list of environments currently being updated and prompts you to choose
the update that you want to abort. If only one environment is currently being updated, you do
not need to specify the environment name. If successful, the command reverts environment

eb abort 1492

AWS Elastic Beanstalk Developer Guide

configuration changes. The rollback process continues until all instances in the environment have
the previous environment configuration or until the rollback process fails.

Example

The following example cancels the platform upgrade.

$ eb abort
Aborting update to environment "tmp-dev".
<list of events>

eb appversion

Description

The EB CLI appversion command manages your Elastic Beanstalk application versions. You can
create a new version of the application without deploying, delete a version of the application, or
create the application version lifecycle policy. If you invoke the command without any options, it
enters the interactive mode.

Use the --create option to create a new version of the application.

Use the --delete option to delete a version of the application.

Use the lifecycle option to display or create the application version lifecycle policy. For more
information, see the section called “Version lifecycle”.

Syntax

eb appversion

eb appversion [-c | --create]

eb appversion [-d | --delete] version-label

eb appversion lifecycle [-p | --print]

eb appversion 1493

AWS Elastic Beanstalk Developer Guide

Options

Name Description

Type: String

-a application-name

or

--application_name
application-name

The name of the application. If an application with the
specified name isn't found, the EB CLI creates an application
version for a new application.

Only applicable with the --create option.

Type: String

-c

or

--create

Create a new version of the application.

-d version-label

or

--delete version-label

Delete the version of the application that is labeled version-
label .

-l version_label

or

--label version_label

Specify a label to use for the version that the EB CLI creates. If
you don't use this option, the EB CLI generates a new unique
label. If you provide a version label, make sure that it's unique.

Only applicable with the --create option.

Type: String

lifecycle Invoke the default editor to create a new application version
lifecycle policy. Use this policy to avoid reaching the applicati
on version quota.

lifecycle -p

or

Display the current application lifecycle policy.

eb appversion 1494

https://docs.aws.amazon.com/general/latest/gr/elasticbeanstalk.html#limits_elastic_beanstalk
https://docs.aws.amazon.com/general/latest/gr/elasticbeanstalk.html#limits_elastic_beanstalk

AWS Elastic Beanstalk Developer Guide

Name Description

Type: String

lifecycle --print

-m "version_descriptio
n "

or

--message "version_d
escription "

The description for the application version. It's enclosed in
double quotation marks.

Only applicable with the --create option.

Type: String

-p

or

--process

Preprocess and validate the environment manifest and
configuration files in the source bundle. Validating configura
tion files can identify issues. We recommend you do this before
deploying the application version to the environment.

Only applicable with the --create option.

--source codecommi
t/ repository-
name/branch-name

CodeCommit repository and branch. For more information, see
Using the EB CLI with AWS CodeCommit.

Only applicable with the --create option.

--staged Use the files staged in the git index, instead of the HEAD
commit, to create the application version.

Only applicable with the --create option.

--timeout minutes The number of minutes before the command times out.

Only applicable with the --create option.

Common options

eb appversion 1495

AWS Elastic Beanstalk Developer Guide

Using the command interactively

If you use the command without any arguments, the output displays the versions of the
application. They're listed in reverse chronological order, with the lastest version listed first. See the
Examples section for examples of what the screen looks like. Note that the status line is displayed
at the bottom. The status line displays context-sensitive information.

Press d to delete an application version, press l to manage the lifecycle policy for your application,
or press q to quit without making any changes.

Note

If the version is deployed to any environment, you can't delete that version.

Output

The command with the --create option displays a message confirming that the application
version was created.

The command with the --delete version-label option displays a message confirming that the
application version was deleted.

Examples

The following example shows the interactive window for an application with no deployments.

The following example shows the interactive window for an application with the fourth version,
with version label Sample Application, deployed.

eb appversion 1496

AWS Elastic Beanstalk Developer Guide

The following example shows the output from an eb appversion lifecycle -p command, where
ACCOUNT-ID is the user's account ID:

Application details for: lifecycle
 Region: sa-east-1
 Description: Application created from the EB CLI using "eb init"
 Date Created: 2016/12/20 02:48 UTC
 Date Updated: 2016/12/20 02:48 UTC
 Application Versions: ['Sample Application']
 Resource Lifecycle Config(s):
 VersionLifecycleConfig:
 MaxCountRule:
 DeleteSourceFromS3: False
 Enabled: False
 MaxCount: 200
 MaxAgeRule:
 DeleteSourceFromS3: False
 Enabled: False
 MaxAgeInDays: 180
 ServiceRole: arn:aws:iam::ACCOUNT-ID:role/aws-elasticbeanstalk-service-role

eb clone

Description

Clones an environment to a new environment so that both have identical environment settings.

Note

By default, regardless of the solution stack version of the environment from which you
create the clone, the eb clone command creates the clone environment with the most

eb clone 1497

AWS Elastic Beanstalk Developer Guide

recent solution stack. You can suppress this by including the --exact option when you run
the command.

Syntax

eb clone

eb clone environment-name

Options

Name Description

-n string

or

--clone_name string

Desired name for the cloned environment.

-c string

or

--cname string

Desired CNAME prefix for the cloned environment.

--envvars Environment properties in a comma-separated list with the
format name=value.

Type: String

Constraints:

• Key-value pairs must be separated by commas.

• Keys and values can contain any alphabetic character in
any language, any numeric character, white space, invisible
separator, and the following symbols: _ . : / + \ - @

• Keys can contain up to 128 characters. Values can contain up
to 256 characters.

eb clone 1498

AWS Elastic Beanstalk Developer Guide

Name Description

• Keys and values are case sensitive.

• Values cannot match the environment name.

• Values cannot include either aws: or elasticbe
anstalk: .

• The combined size of all environment properties cannot
exceed 4096 bytes.

--exact Prevents Elastic Beanstalk from updating the solution stack
version for the new clone environment to the most recent
version available (for the original environment's platform).

--scale number The number of instances to run in the clone environment when
it is launched.

--tags name=value Tags for the resources in your environment in a comma-sep
arated list with the format name=value.

--timeout The number of minutes before the command times out.

Common options

Output

If successful, the command creates an environment that has the same settings as the original
environment or with modifications to the environment as specified by any eb clone options.

Example

The following example clones the specified environment.

$ eb clone
Enter name for Environment Clone
(default is tmp-dev-clone):
Enter DNS CNAME prefix
(default is tmp-dev-clone):
Environment details for: tmp-dev-clone
 Application name: tmp

eb clone 1499

AWS Elastic Beanstalk Developer Guide

 Region: us-west-2
 Deployed Version: app-141029_144740
 Environment ID: e-vjvrqnn5pv
 Platform: 64bit Amazon Linux 2014.09 v1.0.9 running PHP 5.5
 Tier: WebServer-Standard-1.0
 CNAME: tmp-dev-clone.elasticbeanstalk.com
 Updated: 2014-10-29 22:00:23.008000+00:00
Printing Status:
2018-07-11 21:04:20 INFO: createEnvironment is starting.
2018-07-11 21:04:21 INFO: Using elasticbeanstalk-us-west-2-888888888888 as Amazon S3
 storage bucket for environment data.
...
2018-07-11 21:07:10 INFO: Successfully launched environment: tmp-dev-clone

eb codesource

Description

Configures the EB CLI to deploy from a CodeCommit repository, or disables CodeCommit
integration and uploads the source bundle from your local machine.

Note

Some AWS Regions don't offer CodeCommit. The integration between Elastic Beanstalk and
CodeCommit doesn't work in these Regions.
For information about the AWS services offered in each Region, see Region Table.

Syntax

eb codesource

eb codesource codecommit

eb codesource local

eb codesource 1500

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

AWS Elastic Beanstalk Developer Guide

Options

Name Description

Common options

Output

eb codesource prompts you to choose between CodeCommit integration and standard
deployments.

eb codesource codecommit initiates interactive repository configuration for CodeCommit
integration.

eb codesource local shows the original configuration and disables CodeCommit integration.

Examples

Use eb codesource codecommit to configure CodeCommit integration for the current branch.

~/my-app$ eb codesource codecommit
Select a repository
1) my-repo
2) my-app
3) [Create new Repository]
(default is 1): 1

Select a branch
1) mainline
2) test
3) [Create new Branch with local HEAD]
(default is 1): 1

Use eb codesource local to disable CodeCommit integration for the current branch.

~/my-app$ eb codesource local
Current CodeCommit setup:
 Repository: my-app
 Branch: mainline

eb codesource 1501

AWS Elastic Beanstalk Developer Guide

Default set to use local sources

eb config

Description

Manages the active configuration settings and saved configurations of your environment. You can
use this command to upload, download, or list the saved configurations of your environment. You
can also use it to download, display, or update its active configuration settings.

If the root directory contains a platform.yaml file specifying a custom platform, this command
also changes the builder configuration settings. This is done based on the values that are set in
platform.yaml.

Note

eb config doesn't show environment properties. To set environment properties that you
can read from within your application, use eb setenv instead.

Syntax

The following are parts of the syntax that's used for the eb config command to work with the
active configuration settings of your environment. For specific examples, see the Examples section
later in this topic.

• eb config – Displays the active configuration settings of your environment in a text editor that
you configured as the EDITOR environment variable. When you save changes to the file and close
the editor, the environment is updated with the option settings that you saved in the file.

Note

If you didn't configure an EDITOR environment variable, EB CLI displays your option
settings in your default editor for YAML files.

• eb config environment-name – Displays and updates the configuration for the named
environment. The configuration is either displayed in a text editor that you configured or your
default editor YAML files.

eb config 1502

AWS Elastic Beanstalk Developer Guide

• eb config save – Saves the active configuration settings for the current environment
to .elasticbeanstalk/saved_configs/ with the filename [configuration-
name].cfg.yml. By default, the EB CLI saves the configuration settings with a
configuration-name based on the environment name. You can specify a different
configuration name by including the --cfg option with your desired configuration name when
you run the command.

You can tag your saved configuration using the --tags option.

• eb config --display – Writes an environment's active configuration settings to stdout instead
of a file. By default this displays the configuration settings to the terminal.

• eb config --update configuration_string | file_path – Updates the active
configuration settings for the current environment with the information that's specified in
configuration_string or inside the file identified by file_path.

Note

The --display and --update options provide flexibility for reading and revising an
environment's configuration settings programmatically.

The following describes the syntax for using the eb config command to work with saved
configurations. For examples, see the Examples section later in this topic.

• eb config get config-name – Downloads the named saved configuration from Amazon S3.

• eb config delete config-name – Deletes the named saved configuration from Amazon S3. Also
deletes it locally, if you already downloaded it.

• eb config list – Lists the saved configurations that you have in Amazon S3.

• eb config put filename – Uploads the named saved configuration to an Amazon S3 bucket.
The filename must have the file extension .cfg.yml. To specify the file name without a path,
you can save the file to the .elasticbeanstalk folder or to the .elasticbeanstalk/
saved_configs/ folder before you run the command. Alternatively, you can specify the
filename by providing the full path.

eb config 1503

AWS Elastic Beanstalk Developer Guide

Options

Name Description

--cfg config-name The name to use for a saved configuration.

This option works with eb config save only.

-d

or

--display

Displays the configuration settings for the current environment
(writes to stdout).

Use with the --format option to specify the output to be
in JSON or YAML. If you don't specify, the output is in YAML
format.

This option only works if you use the eb config command
without any of the other subcommands.

-f format_type

or

--format format_type

Specifies display format. Valid values are JSON or YAML.

Defaults to YAML.

This option works with the --display option only.

--tags key1=value1[,key2=value2 ...]Tags to add to your saved configuration. When specifying tags
in the list, specify them as key=value pairs and separate each
one with a comma.

For more information, see Tagging saved configurations.

This option works with eb config save only.

--timeout timeout The number of minutes before the command times out.

-u configuration_stri
ng | file_path

or

Updates the active configuration settings for the current
environment.

This option only works if you use the eb config command
without any of the other subcommands.

eb config 1504

AWS Elastic Beanstalk Developer Guide

Name Description

--update configura
tion_string |
file_path

The configuration_string | file_path parameter
is of the type string. The string provides the list of namespace
s and corresponding options to add to, update, or remove from
the configuration settings for your environment. Alternatively,
the input string can represent a file that contains the same
information.

To specify a file name, the input string must follow the format
"file://< path><filename>". To specify the file name
without a path, save the file to the folder where you run the
command. Alternatively, specify the filename by providing the
full path.

The configuration information must meet the following
conditions. At least one of the sections, OptionSettings or
OptionsToRemove, is required. Use OptionSettings to add
or change options. Use OptionsToRemove to remove options
from a namespace. For specific examples, see the Examples
section later in this topic.

Example

YAML Format

OptionSettings:
 namespace1:
 option-name-1: option-value-1
 option-name-2: option-value-2
 ...
OptionsToRemove:
 namespace1:
 option-name-1
 option-name-2
 ...

Example

JSON Format

eb config 1505

AWS Elastic Beanstalk Developer Guide

Name Description

{
 "OptionSettings": {
 "namespace1": {
 "option-name-1": " option-value-1 ",
 "option-name-2": " option-value-2 ",
 ...
 }
 },
 "OptionsToRemove": {
 "namespace1": {
 "option-name-1",
 "option-name-2",
 ...
 }
 }
}

Common options

Output

If the eb config or eb config environment-name command is run successfully with no
subcommands or options added, the command displays your current option settings in the text
editor that you configured as the EDITOR environment variable. If you didn't configure an EDITOR
environment variable, EB CLI displays your option settings in your default editor for YAML files.

When you save changes to the file and close the editor, the environment is updated with the option
settings that you saved in the file. The following output is displayed to confirm the configuration
update.

$ eb config myApp-dev
 Printing Status:
 2021-05-19 18:09:45 INFO Environment update is starting.
 2021-05-19 18:09:55 INFO Updating environment myApp-dev's configuration
 settings.
 2021-05-19 18:11:20 INFO Successfully deployed new configuration to
 environment.

eb config 1506

AWS Elastic Beanstalk Developer Guide

If the command runs successfully with the --display option, it displays the configuration settings
for the current environment (writes to stdout).

If the command runs successfully with the get parameter, the command displays the location of
the local copy that you downloaded.

If the command runs successfully with the save parameter, the command displays the location of
the saved file.

Examples

This section describes how to change the text editor that you use to view and edit your option
settings file.

For Linux and UNIX, the following example changes the editor to vim:

$ export EDITOR=vim

For Linux and UNIX, the following example changes the editor to whatever is installed at /usr/
bin/kate.

$ export EDITOR=/usr/bin/kate

For Windows, the following example changes the editor to Notepad++.

> set EDITOR="C:\Program Files\Notepad++\Notepad++.exe

This section provides examples for the eb config command when it's run with subcommands.

The following example deletes the saved configuration named app-tmp.

$ eb config delete app-tmp

The following example downloads the saved configuration with the name app-tmp from your
Amazon S3 bucket.

$ eb config get app-tmp

The following example lists the names of saved configurations that are stored in your Amazon S3
bucket.

eb config 1507

AWS Elastic Beanstalk Developer Guide

$ eb config list

The following example uploads the local copy of the saved configuration named app-tmp to your
Amazon S3 bucket.

$ eb config put app-tmp

The following example saves configuration settings from the current running environment.
If you don't provide a name to use for the saved configuration, then Elastic Beanstalk names
the configuration file according to the environment name. For example, an environment
named tmp-dev would be called tmp-dev.cfg.yml. Elastic Beanstalk saves the file to the
/.elasticbeanstalk/saved_configs/ folder.

$ eb config save

In the following example, the --cfg option is used to save the configuration settings from the
environment tmp-dev to a file called v1-app-tmp.cfg.yml. Elastic Beanstalk saves the file to
the folder /.elasticbeanstalk/saved_configs/. If you don't specify an environment name,
Elastic Beanstalk saves configuration settings from the current running environment.

$ eb config save tmp-dev --cfg v1-app-tmp

This section provides examples for the eb config command when it's run without subcommands.

The following command displays the option settings of your current environment in a text editor.

$ eb config

The following command displays the option settings for the my-env environment in a text editor.

$ eb config my-env

The following example displays the options settings for your current environment. It outputs in the
YAML format because no specific format was specified with the --format option.

$ eb config --display

eb config 1508

AWS Elastic Beanstalk Developer Guide

The following example updates the options settings for your current environment with the
specifications in the file named example.txt. The file is in either the YAML or JSON format. The
EB CLI automatically detects the file format.

• The Minsize option is set to 1 for the namespace aws:autoscaling:asg.

• The batch size for the namespace aws:elasticbeanstalk:command is set to 30%.

• It removes the option setting of IdleTimeout: None from the namespace
AWSEBV2LoadBalancer.aws:elbv2:loadbalancer.

$ eb config --update "file://example.txt"

Example - filename: example.txt - YAML format

OptionSettings:
 'aws:elasticbeanstalk:command':
 BatchSize: '30'
 BatchSizeType: Percentage
 'aws:autoscaling:asg':
 MinSize: '1'
OptionsToRemove:
 'AWSEBV2LoadBalancer.aws:elbv2:loadbalancer':
 IdleTimeout

Example - filename: example.txt - JSON format

{
 "OptionSettings": {
 "aws:elasticbeanstalk:command": {
 "BatchSize": "30",
 "BatchSizeType": "Percentage"
 },
 "aws:autoscaling:asg": {
 "MinSize": "1"
 }
 },
 "OptionsToRemove": {
 "AWSEBV2LoadBalancer.aws:elbv2:loadbalancer": {
 "IdleTimeout"
 }
 }

eb config 1509

AWS Elastic Beanstalk Developer Guide

}

The following examples update the options settings for your current environment. The command
sets the Minsize option to 1 for theaws:autoscaling:asg namespace.

Note

These examples are specific to Windows PowerShell. They escape literal occurrences of the
double-quote (") character by preceding it with a slash (\) character. Different operating
systems and command-line environments might have different escape sequences. For
this reason, we recommend using the file option that's shown in the previous examples.
Specifying the configuration options in a file doesn't require escaping characters and is
consistent across different operating systems.

The following example is in JSON format. The EB CLI detects if the format is in JSON or YAML.

PS C:\Users\myUser\EB_apps\myApp-env>eb config --update '{\"OptionSettings\":
{\"aws:autoscaling:asg\":{\"MaxSize\":\"1\"}}}'

The following example is in YAML format. To enter the YAML string in the correct format, the
command includes spacing and end-of-line returns that are required in a YAML file.

• End each line with the "enter" or "return" key.

• Start the second line with two spaces, and start the third line with four spaces.

PS C:\Users\myUser\EB_apps\myApp-env>eb config --update 'OptionSettings:
>> aws:autoscaling:asg:
>> MinSize: \"1\"'

eb console

Description

Opens a browser to display the environment configuration dashboard in the Elastic Beanstalk
Management Console.

eb console 1510

AWS Elastic Beanstalk Developer Guide

If the root directory contains a platform.yaml file specifying a custom platform, this command
also displays the builder environment configuration, as specified in platform.yaml, in the Elastic
Beanstalk Management Console.

Syntax

eb console

eb console environment-name

Options

Name Description

Common options

eb create

Description

Creates a new environment and deploys an application version to it.

Note

• To use eb create on a .NET application, you must create a deployment package as
described in Creating a source bundle for a .NET application, then set up the CLI
configuration to deploy the package as an artifact as described in Deploying an artifact
instead of the project folder.

• Creating environments with the EB CLI requires a service role. You can create a service
role by creating an environment in the Elastic Beanstalk console. If you don't have a
service role, the EB CLI attempts to create one when you run eb create.

You can deploy the application version from a few sources:

• By default: From the application source code in the local project directory.

• Using the --version option: From an application version that already exists in your application.

eb create 1511

AWS Elastic Beanstalk Developer Guide

• When your project directory doesn't have application code, or when using the --sample option:
Deployed from a sample application, specific to your environment's platform.

Syntax

eb create

eb create environment-name

An environment name must be between 4 and 40 characters in length. It can only contain letters,
numbers, and hyphens (-). An environment name can't begin or end with a hyphen.

If you include an environment name in the command, the EB CLI doesn't prompt you to make any
selections or create a service role.

If you run the command without an environment name argument, it runs in an interactive flow,
and prompts you to enter or select values for some settings. In this interactive flow, in case you
are deploying a sample application, the EB CLI also asks you if you want to download this sample
application to your local project directory. By downloading it, you can use the EB CLI with the new
environment later to run operations that require the application's code, such as eb deploy.

Some interactive flow prompts are displayed only under certain conditions. For example, if
you choose to use an Application Load Balancer, and your account has at least one sharable
Application Load Balancer, Elastic Beanstalk displays a prompt that asks if you want to use a shared
load balancer. If no sharable Application Load Balancer exists in your account, this prompt isn't
displayed.

Options

None of these options are required. If you run eb create without any options, the EB CLI prompts
you to enter or select a value for each setting.

Name Description

-d

or

--branch_default

Set the environment as the default environment for the
current repository.

eb create 1512

AWS Elastic Beanstalk Developer Guide

Name Description

--cfg config-name Use platform settings from a saved configuration in
.elasticbeanstalk/saved_configs/ or your
Amazon S3 bucket. Specify the name of the file only,
without the .cfg.yml extension.

-c subdomain-name

or

--cname subdomain-name

The subdomain name to prefix the CNAME DNS entry
that routes to your website.

Type: String

Default: The environment name

-db

or

--database

Attaches a database to the environment. If you run
eb create with the --database option, but without
the --database.username and --databas
e.password options, EB CLI prompts you for the
database master user name and password.

-db.engine engine

or

--database.engine engine

The database engine type. If you run eb create with this
option, then EB CLI launches the environment with a
database attached. This is the case even if you didn't run
the command with the --database option.

Type: String

Valid values: mysql, oracle-se1 , postgres,
sqlserver-ex , sqlserver-web , sqlserver-se

eb create 1513

AWS Elastic Beanstalk Developer Guide

Name Description

-db.i instance_type

or

--database.instance
instance_type

The type of Amazon EC2 instance to use for the
database. If you run eb create with this option, then EB
CLI launches the environment with a database attached.
This is the case even if you didn't run the command with
the --database option.

Type: String

Valid values:

Amazon RDS supports a standard set of DB instances.
To select an appropriate DB instance for your DB engine,
you must take into account some specific considerations.
For more information, see DB instance classes in the
Amazon RDS User Guide.

-db.pass password

or

--database.password
password

The password for the database. If you run eb create with
this option, then EB CLI launches the environment with
a database attached. This is the case even if you didn't
run the command with the --database option.

eb create 1514

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html

AWS Elastic Beanstalk Developer Guide

Name Description

-db.size number_of_gigabyte
s

or

--database.size number_of
_gigabytes

The number of gigabytes (GB) to allocate for database
storage. If you run eb create with this option, then EB
CLI launches the environment with a database attached.
This is the case even if you didn't run the command with
the --database option.

Type: Number

Valid values:

• MySQL – 5 to 1024. The default is 5.

• Postgres – 5 to 1024. The default is 5.

• Oracle – 10 to 1024. The default is 10.

• Microsoft SQL Server Express Edition – 30.

• Microsoft SQL Server Web Edition – 30.

• Microsoft SQL Server Standard Edition – 200.

-db.user username

or

--database.username
username

The user name for the database. If you run eb create
with this option, then EB CLI launches the environme
nt with a database attached even if you didn't run the
command with the --database option. If you run
eb create with the --database option, but without
the --database.username and --databas
e.password options, then EB CLI prompts you for
the master database user name and password.

-db.version version

or

--database.version version

Used to specify the database engine version. If this
flag is present, the environment will launch with a
database with the specified version number, even if the
--database flag isn't present.

eb create 1515

AWS Elastic Beanstalk Developer Guide

Name Description

--elb-type type The load balancer type.

Type: String

Valid values: classic, application , network

Default: application

-es

or

--enable-spot

Enable Spot Instance requests for your environment. For
more information, see Auto Scaling group.

Related options:

• --instance-types

• --on-demand-base-capacity

• --on-demand-above-base-capacity

• --spot-max-price

--env-group-suffix
groupname

The group name to append to the environment name.
Only for use with Compose Environments.

--envvars Environment properties in a comma-separated list with
the format name=value. See Configuring environment
properties (environment variables) for limits.

-ip profile_name

or

--instance_profile
profile_name

The instance profile with the IAM role with the
temporary security credentials that your application
needs to access AWS resources.

eb create 1516

AWS Elastic Beanstalk Developer Guide

Name Description

-it

or

--instance-
types type1[,type2 ...]

A comma-separated list of Amazon EC2 instance types
that you want your environment to use. If you don't
specify this option, Elastic Beanstalk provides default
instance types.

For more information, see Amazon EC2 instances and
Auto Scaling group.

Important

The EB CLI only applies this option to Spot
Instances. Unless this option is used with the --
enable-spot option, the EB CLI ignores it.
To specify an instance type for an On-Demand
Instance, use the --intance-type (no "s")
option instead.

-i

or

--instance_type

The Amazon EC2 instance type that you want your
environment to use. If you don't specify this option,
Elastic Beanstalk provides a default instance type.

For more information, see Amazon EC2 instances.

Important

The EB CLI only applies this option to On-
Demand Instances. Don't use this option with
the --enable-spot option, because the
EB CLI ignores it when you do so. To specify
instance types for a Spot Instance, use the --
intance-types (with an "s") option instead.

eb create 1517

AWS Elastic Beanstalk Developer Guide

Name Description

-k key_name

or

--keyname key_name

The name of the Amazon EC2 key pair to use with
the Secure Shell (SSH) client to securely log in to the
Amazon EC2 instances that are running your Elastic
Beanstalk application. If you include this option with the
eb create command, the value you provide overwrites
any key name that you might have specified with eb init.

Valid values: An existing key name that's registered with
Amazon EC2

-im number-of-instances

or

--min-instances number-of-
instances

The minimum number of Amazon EC2 instances that
you require your environment to have.

Type: Number (integer)

Default: 1

Valid values: 1 to 10000

-ix number-of-instances

or

--max-instances number-of-
instances

The maximum number of Amazon EC2 instances you
allow your environment to have.

Type: Number (integer)

Default: 4

Valid values: 1 to 10000

--modules component-a
component-b

A list of component environments to create. This is only
for use with Compose Environments.

eb create 1518

AWS Elastic Beanstalk Developer Guide

Name Description

-sb

or

--on-demand-base-capacity

The minimum number of On-Demand Instances that
your Auto Scaling group provisions before considering
Spot Instances as your environment scales up.

This option can only be specified with the --enable-
spot option. For more information, see Auto Scaling
group.

Type: Number (integer)

Default: 0

Valid values: 0 to --max-instances (when absent:
MaxSize option in aws:autoscaling:asg
namespace)

-sp

or

--on-demand-above-base-
capacity

The percentage of On-Demand Instances as part of
additional capacity that your Auto Scaling group
provisions that's more than the number of instances
that's specified by the --on-demand-base-c
apacity option.

This option can only be specified with the --enable-
spot option. For more details, see Auto Scaling group.

Type: Number (integer)

Default: 0 for a single-instance environment; 70 for a
load-balanced environment

Valid values: 0 to 100

eb create 1519

AWS Elastic Beanstalk Developer Guide

Name Description

-p platform-version

or

--platform platform-
version

The platform version to use. You can specify a platform,
a platform and version, a platform branch, a solution
stack name, or a solution stack ARN. For example:

• php, PHP, node.js – The latest platform version for
the specified platform

• php-7.2, "PHP 7.2" – The recommended (typically
latest) PHP 7.2 platform version

• "PHP 7.2 running on 64bit Amazon Linux"
– The recommended (typically latest) PHP platform
version in this platform branch

• "64bit Amazon Linux 2017.09 v2.6.3
running PHP 7.1" – The PHP platform version
specified by this solution stack name

• "arn:aws:elasticbeanstalk:us-east-2:
:platform/PHP 7.1 running on 64bit
Amazon Linux/2.6.3" – The PHP platform version
specified by this solution stack ARN

Use eb platform list to get a list of available
configurations.

If you specify the --platform option, it overrides the
value that was provided during eb init.

-pr

or

--process

Preprocess and validate the environment manifest and
configuration files in the source bundle. Validating
configuration files can identify issues prior to deploying
the application version to an environment.

eb create 1520

AWS Elastic Beanstalk Developer Guide

Name Description

-r region

or

--region region

The AWS Region where you want to deploy the applicati
on.

For the list of values you can specify for this option, see
AWS Elastic Beanstalk Endpoints and Quotas in the AWS
General Reference.

--sample Deploy the sample application to the new environment
instead of the code in your repository.

--scale number-of-instance
s

Launch with the specified number of instances

--service-role servicerole Assign a non-default service role to the environment.

Note

Don't enter an ARN. Only enter the role name.
Elastic Beanstalk prefixes the role name with
the correct values to create the resulting ARN
internally.

eb create 1521

https://docs.aws.amazon.com/general/latest/gr/elasticbeanstalk.html

AWS Elastic Beanstalk Developer Guide

Name Description

-ls load-balancer

or

--shared-lb load-balancer

Configure the environment to use a shared load
balancer. Provide the name or ARN of a sharable load
balancer in your account—an Application Load Balancer
that you explicitly created, not one created by another
Elastic Beanstalk environment. For more information,
see Shared Application Load Balancer.

Parameter examples:

• FrontEndLB – A load balancer name.

• arn:aws:elasticloadbalancing:us-east
-2:123456789012:loadbalancer/app/Fro
ntEndLB/0dbf78d8ad96abbc – An Application
Load Balancer ARN.

You can specify this option only with --elb-type
application . If you specify that option and don't
specify --shared-lb , Elastic Beanstalk creates a
dedicated load balancer for the environment.

-lp port

or

--shared-lb-port port

The default listener port of the shared load balancer for
this environment. Elastic Beanstalk adds a listener rule
that routes all traffic from this listener to the default
environment process. For more information, see Shared
Application Load Balancer.

Type: Number (integer)

Default: 80

Valid values: Any integer that represents a listener port
of the shared load balancer.

eb create 1522

AWS Elastic Beanstalk Developer Guide

Name Description

--single Create the environment with a single Amazon EC2
instance and without a load balancer.

Warning

A single-instance environment isn't production
ready. If the instance becomes unstable during
deployment, or Elastic Beanstalk terminates
and restarts the instance during a configuration
update, your application can be unavailable for a
period of time. Use single-instance environments
for development, testing, or staging. Use load-
balanced environments for production.

-sm

or

--spot-max-price

The maximum price per unit hour, in US dollars, that
you're willing to pay for a Spot Instance.

This option can only be specified with the --enable-
spot option. For more details, see Auto Scaling group.

Type: Number (float)

Default: The On-Demand price, for each instance type.
The option's value in this case is null.

Valid values: 0.001 to 20.0

For recommendations about maximum price options for
Spot Instances, see Spot Instance pricing history in the
Amazon EC2 User Guide for Linux Instances.

--tags key1=value1[,key2=value2 ...]Tag the resources in your environment. Tags are
specified as a comma-separated list of key=value
pairs.

For more information, see Tagging environments.

eb create 1523

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html

AWS Elastic Beanstalk Developer Guide

Name Description

-t worker

or

--tier worker

Create a worker environment. Omit this option to create
a web server environment.

--timeout minutes Set number of minutes before the command times out.

--version version_label Specifies the application version that you want deployed
to the environment instead of the application source
code in the local project directory.

Type: String

Valid values: An existing application version label

--vpc Configure a VPC for your environment. When you
include this option, the EB CLI prompts you to enter all
required settings prior to launching the environment.

--vpc.dbsubnets subnet1,s
ubnet2

Specifies subnets for database instances in a VPC.
Required when --vpc.id is specified.

--vpc.ec2subnets subnet1,s
ubnet2

Specifies subnets for Amazon EC2 instances in a VPC.
Required when --vpc.id is specified.

--vpc.elbpublic Launches your Elastic Load Balancing load balancer in a
public subnet in your VPC.

You can't specify this option with the --tier worker
or --single options.

--vpc.elbsubnets subnet1,s
ubnet2

Specifies subnets for the Elastic Load Balancing load
balancer in a VPC.

You can't specify this option with the --tier worker
or --single options.

eb create 1524

AWS Elastic Beanstalk Developer Guide

Name Description

--vpc.id ID Launches your environment in the specified VPC.

--vpc.publicip Launches your Amazon EC2 instances in a public subnet
in your VPC.

You can't specify this option with the --tier worker
option.

--vpc.securitygrou
ps securitygroup1,sec
uritygroup2

Specifies security group IDs. Required when --vpc.id is
specified.

Common options

Output

If successful, the command prompts you with questions and then returns the status of the create
operation. If there were problems during the launch, you can use the eb events operation to get
more details.

If you enabled CodeBuild support in your application, eb create displays information from
CodeBuild as your code is built. For information about CodeBuild support in Elastic Beanstalk, see
Using the EB CLI with AWS CodeBuild.

Examples

The following example creates an environment in interactive mode.

$ eb create
Enter Environment Name
(default is tmp-dev): ENTER
Enter DNS CNAME prefix
(default is tmp-dev): ENTER
Select a load balancer type
1) classic
2) application
3) network
(default is 2): ENTER

eb create 1525

AWS Elastic Beanstalk Developer Guide

Environment details for: tmp-dev
 Application name: tmp
 Region: us-east-2
 Deployed Version: app-141029_145448
 Environment ID: e-um3yfrzq22
 Platform: 64bit Amazon Linux 2014.09 v1.0.9 running PHP 5.5
 Tier: WebServer-Standard-1.0
 CNAME: tmp-dev.elasticbeanstalk.com
 Updated: 2014-10-29 21:54:51.063000+00:00
Printing Status:
...

The following example also creates an environment in interactive mode. In this example, your
project directory doesn't have application code. The command deploys a sample application and
downloads it to your local project directory.

$ eb create
Enter Environment Name
(default is tmp-dev): ENTER
Enter DNS CNAME prefix
(default is tmp-dev): ENTER
Select a load balancer type
1) classic
2) application
3) network
(default is 2): ENTER
NOTE: The current directory does not contain any source code. Elastic Beanstalk is
 launching the sample application instead.
Do you want to download the sample application into the current directory?
(Y/n): ENTER
INFO: Downloading sample application to the current directory.
INFO: Download complete.
Environment details for: tmp-dev
 Application name: tmp
 Region: us-east-2
 Deployed Version: Sample Application
 Environment ID: e-um3yfrzq22
 Platform: 64bit Amazon Linux 2014.09 v1.0.9 running PHP 5.5
 Tier: WebServer-Standard-1.0
 CNAME: tmp-dev.elasticbeanstalk.com
 Updated: 2017-11-08 21:54:51.063000+00:00
Printing Status:

eb create 1526

AWS Elastic Beanstalk Developer Guide

...

The following command creates an environment without displaying any prompts.

$ eb create dev-env
Creating application version archive "app-160312_014028".
Uploading test/app-160312_014028.zip to S3. This may take a while.
Upload Complete.
Application test has been created.
Environment details for: dev-env
 Application name: test
 Region: us-east-2
 Deployed Version: app-160312_014028
 Environment ID: e-6fgpkjxyyi
 Platform: 64bit Amazon Linux 2015.09 v2.0.8 running PHP 5.6
 Tier: WebServer-Standard
 CNAME: UNKNOWN
 Updated: 2016-03-12 01:40:33.614000+00:00
Printing Status:
...

The following command creates an environment in a custom VPC.

$ eb create dev-vpc --vpc.id vpc-0ce8dd99 --vpc.elbsubnets subnet-
b356d7c6,subnet-02f74b0c --vpc.ec2subnets subnet-0bb7f0cd,subnet-3b6697c1 --
vpc.securitygroup sg-70cff265
Creating application version archive "app-160312_014309".
Uploading test/app-160312_014309.zip to S3. This may take a while.
Upload Complete.
Environment details for: dev-vpc
 Application name: test
 Region: us-east-2
 Deployed Version: app-160312_014309
 Environment ID: e-pqkcip3mns
 Platform: 64bit Amazon Linux 2015.09 v2.0.8 running Java 8
 Tier: WebServer-Standard
 CNAME: UNKNOWN
 Updated: 2016-03-12 01:43:14.057000+00:00
Printing Status:
...

eb create 1527

AWS Elastic Beanstalk Developer Guide

eb deploy

Description

Deploys the application source bundle from the initialized project directory to the running
application.

If git is installed, EB CLI uses the git archive command to create a .zip file from the contents
of the most recent git commit command.

However, when .ebignore is present in your project directory, the EB CLI doesn't use git
commands and semantics to create your source bundle. This means that EB CLI ignores files
specified in .ebignore, and includes all other files. In particular, it includes uncommitted source
files.

Note

You can configure the EB CLI to deploy an artifact from your build process instead of
creating a ZIP file of your project folder. See Deploying an artifact instead of the project
folder for details.

Syntax

eb deploy

eb deploy environment-name

Options

Name Description

-l version_label

or

--label version_label

Specify a label to use for the version that the EB CLI creates.
If the label has already been used, the EB CLI redeploys the
previous version with that label.

Type: String

--env-group-suffix
groupname

Group name to append to the environment name. Only for use
with Compose Environments.

eb deploy 1528

AWS Elastic Beanstalk Developer Guide

Name Description

-m "version_descriptio
n "

or

--message "version_d
escription "

The description for the application version, enclosed in double
quotation marks.

Type: String

--modules component-a
component-b

List of components to update. Only for use with Compose
Environments.

-p

or

--process

Preprocess and validate the environment manifest and
configuration files in the source bundle. Validating configura
tion files can identify issues prior to deploying the application
version to an environment.

--source codecommi
t/ repository-
name/branch-name

CodeCommit repository and branch. See Using the EB CLI with
AWS CodeCommit.

--staged Deploy files staged in the git index instead of the HEAD
commit.

--timeout minutes The number of minutes before the command times out.

--version version_l
abel

An existing application version to deploy.

Type: String

Common options

Output

If successful, the command returns the status of the deploy operation.

eb deploy 1529

AWS Elastic Beanstalk Developer Guide

If you enabled CodeBuild support in your application, eb deploy displays information from
CodeBuild as your code is built. For information about CodeBuild support in Elastic Beanstalk, see
Using the EB CLI with AWS CodeBuild.

Example

The following example deploys the current application.

$ eb deploy
2018-07-11 21:05:22 INFO: Environment update is starting.
2018-07-11 21:05:27 INFO: Deploying new version to instance(s).
2018-07-11 21:05:53 INFO: New application version was deployed to running EC2
 instances.
2018-07-11 21:05:53 INFO: Environment update completed successfully.

eb events

Description

Returns the most recent events for the environment.

If the root directory contains a platform.yaml file specifying a custom platform, this command
also returns the most recent events for the builder environment.

Syntax

eb events

eb events environment-name

Options

Name Description

-f

or

--follow

Streams events. To cancel, press CTRL+C.

eb events 1530

AWS Elastic Beanstalk Developer Guide

Output

If successful, the command returns recent events.

Example

The following example returns the most recent events.

$ eb events
2014-10-29 21:55:39 INFO createEnvironment is starting.
2014-10-29 21:55:40 INFO Using elasticbeanstalk-us-west-2-111122223333 as Amazon
 S3 storage bucket for environment data.
2014-10-29 21:55:57 INFO Created load balancer named: awseb-e-r-AWSEBLoa-
NSKUOK5X6Z9J
2014-10-29 21:56:16 INFO Created security group named: awseb-e-rxgrhjr9bx-stack-
AWSEBSecurityGroup-1UUHU5LZ20ZY7
2014-10-29 21:57:18 INFO Waiting for EC2 instances to launch. This may take a
 few minutes.
2014-10-29 21:57:18 INFO Created Auto Scaling group named: awseb-e-rxgrhjr9bx-
stack-AWSEBAutoScalingGroup-1TE320ZCJ9RPD
2014-10-29 21:57:22 INFO Created Auto Scaling group policy named:
 arn:aws:autoscaling:us-east-2:11122223333:scalingPolicy:2cced9e6-859b-421a-
be63-8ab34771155a:autoScalingGroupName/awseb-e-rxgrhjr9bx-stack-
AWSEBAutoScalingGroup-1TE320ZCJ9RPD:policyName/awseb-e-rxgrhjr9bx-stack-
AWSEBAutoScalingScaleUpPolicy-1I2ZSNVU4APRY
2014-10-29 21:57:22 INFO Created Auto Scaling group policy named:
 arn:aws:autoscaling:us-east-2:11122223333:scalingPolicy:1f08b863-
bf65-415a-b584-b7fa3a69a0d5:autoScalingGroupName/awseb-e-rxgrhjr9bx-stack-
AWSEBAutoScalingGroup-1TE320ZCJ9RPD:policyName/awseb-e-rxgrhjr9bx-stack-
AWSEBAutoScalingScaleDownPolicy-1E3G7PZKZPSOG
2014-10-29 21:57:25 INFO Created CloudWatch alarm named: awseb-e-rxgrhjr9bx-
stack-AWSEBCloudwatchAlarmLow-VF5EJ549FZBL
2014-10-29 21:57:25 INFO Created CloudWatch alarm named: awseb-e-rxgrhjr9bx-
stack-AWSEBCloudwatchAlarmHigh-LA9YEW3O6WJO
2014-10-29 21:58:50 INFO Added EC2 instance 'i-c7ee492d' to Auto ScalingGroup
 'awseb-e-rxgrhjr9bx-stack-AWSEBAutoScalingGroup-1TE320ZCJ9RPD'.
2014-10-29 21:58:53 INFO Successfully launched environment: tmp-dev
2014-10-29 21:59:14 INFO Environment health has been set to GREEN
2014-10-29 21:59:43 INFO Adding instance 'i-c7ee492d' to your environment.

eb events 1531

AWS Elastic Beanstalk Developer Guide

eb health

Description

Returns the most recent health for the environment.

If the root directory contains a platform.yaml file specifying a custom platform, this command
also returns the most recent health for the builder environment.

Syntax

eb health

eb health environment-name

Options

Name Description

-r

or

--refresh

Show health information interactively and update every 10
seconds as new information is reported.

--mono Don't display color in output.

Output

If successful, the command returns recent health.

Example

The following example returns the most recent health information for a Linux environment.

~/project $ eb health
 elasticBeanstalkExa-env Ok
 2015-07-08 23:13:20
WebServer
 Ruby 2.1 (Puma)
 total ok warning degraded severe info pending unknown
 5 5 0 0 0 0 0 0

eb health 1532

AWS Elastic Beanstalk Developer Guide

 instance-id status cause
 health
 Overall Ok
 i-d581497d Ok
 i-d481497c Ok
 i-136e00c0 Ok
 i-126e00c1 Ok
 i-8b2cf575 Ok

 instance-id r/sec %2xx %3xx %4xx %5xx p99 p90 p75 p50
 p10 requests
 Overall 671.8 100.0 0.0 0.0 0.0 0.003 0.002 0.001 0.001
 0.000
 i-d581497d 143.0 1430 0 0 0 0.003 0.002 0.001 0.001
 0.000
 i-d481497c 128.8 1288 0 0 0 0.003 0.002 0.001 0.001
 0.000
 i-136e00c0 125.4 1254 0 0 0 0.004 0.002 0.001 0.001
 0.000
 i-126e00c1 133.4 1334 0 0 0 0.003 0.002 0.001 0.001
 0.000
 i-8b2cf575 141.2 1412 0 0 0 0.003 0.002 0.001 0.001
 0.000

 instance-id type az running load 1 load 5 user% nice% system%
 idle% iowait% cpu
 i-d581497d t2.micro 1a 12 mins 0.0 0.04 6.2 0.0 1.0
 92.5 0.1
 i-d481497c t2.micro 1a 12 mins 0.01 0.09 5.9 0.0 1.6
 92.4 0.1
 i-136e00c0 t2.micro 1b 12 mins 0.15 0.07 5.5 0.0 0.9
 93.2 0.0
 i-126e00c1 t2.micro 1b 12 mins 0.17 0.14 5.7 0.0 1.4
 92.7 0.1
 i-8b2cf575 t2.micro 1c 1 hour 0.19 0.08 6.5 0.0 1.2
 92.1 0.1

 instance-id status id version ago
 deployments
 i-d581497d Deployed 1 Sample Application 12 mins
 i-d481497c Deployed 1 Sample Application 12 mins
 i-136e00c0 Deployed 1 Sample Application 12 mins
 i-126e00c1 Deployed 1 Sample Application 12 mins

eb health 1533

AWS Elastic Beanstalk Developer Guide

 i-8b2cf575 Deployed 1 Sample Application 1 hour

eb init

Description

Sets default values for Elastic Beanstalk applications created with EB CLI by prompting you with a
series of questions.

Note

The values you set with eb init apply only to the current directory and repository on the
current computer.
The command doesn't create anything in your Elastic Beanstalk account. To create an
Elastic Beanstalk environment, run eb create after running eb init.

Syntax

eb init

eb init application-name

Options

If you run eb init without specifying the --platform option, the EB CLI prompts you to enter a
value for each setting.

Note

To use eb init to create a new key pair, you must have ssh-keygen installed on your local
machine and available from the command line.

Name Description

-i

--interactive

Forces EB CLI to prompt you to provide a value for
every eb init command option.

eb init 1534

AWS Elastic Beanstalk Developer Guide

Name Description

Note

The init command prompts you to provide
values for eb init command options that do
not have a (default) value. After the first time
you run the eb init command in a directory
, EB CLI might not prompt you about any
command options. Therefore, use the --
interactive option when you want to
change a setting that you previously set.

-k keyname

--keyname keyname

The name of the Amazon EC2 key pair to use with
the Secure Shell (SSH) client to securely log in to the
Amazon EC2 instances running your Elastic Beanstalk
 application.

--modules folder-1
folder-2

List of child directories to initialize. Only for use with
Compose Environments.

eb init 1535

AWS Elastic Beanstalk Developer Guide

Name Description

-p platform-
version

--platform
platform-version

The platform version to use. You can specify a
platform, a platform and version, a platform branch,
a solution stack name, or a solution stack ARN. For
example:

• php, PHP, node.js – The latest platform version
for the specified platform

• php-7.2, "PHP 7.2" – The recommended
(typically latest) PHP 7.2 platform version

• "PHP 7.2 running on 64bit Amazon Linux"
– The recommended (typically latest) PHP platform
version in this platform branch

• "64bit Amazon Linux 2017.09 v2.6.3
running PHP 7.1" – The PHP platform version
specified by this solution stack name

• "arn:aws:elasticbeanstalk:us-east-2:
:platform/PHP 7.1 running on 64bit
Amazon Linux/2.6.3" – The PHP platform
version specified by this solution stack ARN

Use eb platform list to get a list of available
configurations.

Specify the --platform option to skip interactive
configuration.

Note

When you specify this option, then EB CLI
does not prompt you for values for any other
options. Instead, it assumes default values
for each option. You can specify options for

eb init 1536

AWS Elastic Beanstalk Developer Guide

Name Description

anything for which you do not want to use
default values.

--source codecommi
t/ repository-
name/branch-name

CodeCommit repository and branch. See Using the EB
CLI with AWS CodeCommit.

--tags key1=value1[,key2=value2 ...]Tag your application. Tags are specified as a comma-
separated list of key=value pairs.

For more details, see Tagging applications.

Common options

CodeBuild support

If you run eb init in a folder that contains a buildspec.yml file, Elastic Beanstalk parses the file for
an eb_codebuild_settings entry with options specific to Elastic Beanstalk. For information about
CodeBuild support in Elastic Beanstalk, see Using the EB CLI with AWS CodeBuild.

Output

If successful, the command guides you through setting up a new Elastic Beanstalk application
through a series of prompts.

Example

The following example request initializes EB CLI and prompts you to enter information about your
application. Replace placeholder text with your own values.

$ eb init -i
Select a default region
1) us-east-1 : US East (N. Virginia)
2) us-west-1 : US West (N. California)
3) us-west-2 : US West (Oregon)
4) eu-west-1 : Europe (Ireland)
5) eu-central-1 : Europe (Frankfurt)

eb init 1537

https://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html

AWS Elastic Beanstalk Developer Guide

6) ap-south-1 : Asia Pacific (Mumbai)
7) ap-southeast-1 : Asia Pacific (Singapore)
...
(default is 3): 3

Select an application to use
1) HelloWorldApp
2) NewApp
3) [Create new Application]
(default is 3): 3

Enter Application Name
(default is "tmp"):
Application tmp has been created.

It appears you are using PHP. Is this correct?
(y/n): y

Select a platform branch.
1) PHP 7.2 running on 64bit Amazon Linux
2) PHP 7.1 running on 64bit Amazon Linux (Deprecated)
3) PHP 7.0 running on 64bit Amazon Linux (Deprecated)
4) PHP 5.6 running on 64bit Amazon Linux (Deprecated)
5) PHP 5.5 running on 64bit Amazon Linux (Deprecated)
6) PHP 5.4 running on 64bit Amazon Linux (Deprecated)
(default is 1): 1
Do you want to set up SSH for your instances?
(y/n): y

Select a keypair.
1) aws-eb
2) [Create new KeyPair]
(default is 2): 1

eb labs

Description

Subcommands of eb labs support work-in-progress or experimental functionality. These
commands may be removed or reworked in future versions of the EB CLI and are not guaranteed to
be forward compatible.

For a list of available subcommands and descriptions, run eb labs --help.

eb labs 1538

AWS Elastic Beanstalk Developer Guide

eb list

Description

Lists all environments in the current application or all environments in all applications, as specified
by the --all option.

If the root directory contains a platform.yaml file specifying a custom platform, this command
also lists the builder environments.

Syntax

eb list

Options

Name Description

-a

or

--all

Lists all environments from all applications.

-v

or

--verbose

Provides more detailed information about all environments,
including instances.

Common options

Output

If successful, the command returns a list of environment names in which your current environment
is marked with an asterisk (*).

Example 1

The following example lists your environments and indicates that tmp-dev is your default
environment.

eb list 1539

AWS Elastic Beanstalk Developer Guide

$ eb list
* tmp-dev

Example 2

The following example lists your environments with additional details.

$ eb list --verbose
Region: us-west-2
Application: tmp
 Environments: 1
 * tmp-dev : ['i-c7ee492d']

eb local

Description

Use eb local run to run your application's containers locally in Docker. Check the application's
container status with eb local status. Open the application in a web browser with eb local open.
Retrieve the location of the application's logs with eb local logs.

eb local setenv and eb local printenv let you set and view environment variables that are provided
to the Docker containers that you run locally with eb local run.

You must run all eb local commands in the project directory of a Docker application that has been
initialized as an EB CLI repository by using eb init.

Note

Use eb local on a local computer running Linux or macOS. The command doesn't support
Windows.
Before using the command on macOS, install Docker for Mac, and ensure that boot2docker
isn't installed (or isn't in the execution path). The eb local command tries to use
boot2docker if it's present, but doesn't work well with it on macOS.

Syntax

eb local run

eb local 1540

AWS Elastic Beanstalk Developer Guide

eb local status

eb local open

eb local logs

eb local setenv

eb local printenv

Options

eb local run

Name Description

--envvars key1=valu
e1,key2=value2

Sets environment variables that the EB CLI will pass to the
local Docker containers. In multicontainer environments, all
variables are passed to all containers.

--port hostport Maps a port on the host to the exposed port on the container
. If you don't specify this option, the EB CLI uses the same port
on both host and container.

This option works only with Docker platform applications. It
doesn't apply to the Multicontainer Docker platform.

Common options

eb local status

eb local open

eb local logs

eb local setenv

eb local printenv

eb local 1541

AWS Elastic Beanstalk Developer Guide

Name Description

Common options

Output

eb local run

Status messages from Docker. Remains active as long as application is running. Press Ctrl+C to stop
the application.

eb local status

The status of each container used by the application, running or not.

eb local open

Opens the application in a web browser and exits.

eb local logs

The location of the logs generated in your project directory by applications running locally under
eb local run.

eb local setenv

None

eb local printenv

The name and values of environment variables set with eb local setenv.

Examples

eb local run

~/project$ eb local run
Creating elasticbeanstalk_phpapp_1...
Creating elasticbeanstalk_nginxproxy_1...
Attaching to elasticbeanstalk_phpapp_1, elasticbeanstalk_nginxproxy_1
phpapp_1 | [23-Apr-2015 23:24:25] NOTICE: fpm is running, pid 1

eb local 1542

AWS Elastic Beanstalk Developer Guide

phpapp_1 | [23-Apr-2015 23:24:25] NOTICE: ready to handle connections

eb local status

View the status of your local containers:

~/project$ eb local status
Platform: 64bit Amazon Linux 2014.09 v1.2.1 running Multi-container Docker 1.3.3
 (Generic)
Container name: elasticbeanstalk_nginxproxy_1
Container ip: 127.0.0.1
Container running: True
Exposed host port(s): 80
Full local URL(s): 127.0.0.1:80

Container name: elasticbeanstalk_phpapp_1
Container ip: 127.0.0.1
Container running: True
Exposed host port(s): None
Full local URL(s): None

eb local logs

View the log path for the current project:

~/project$ eb local logs
Elastic Beanstalk will write logs locally to /home/user/project/.elasticbeanstalk/logs/
local.
Logs were most recently created 3 minutes ago and written to /home/user/
project/.elasticbeanstalk/logs/local/150420_234011665784.

eb local setenv

Set environment variables for use with eb local run.

~/project$ eb local setenv PARAM1=value

Print environment variables set with eb local setenv.

~/project$ eb local printenv
Environment Variables:
PARAM1=value

eb local 1543

AWS Elastic Beanstalk Developer Guide

eb logs

Description

The eb logs command has two distinct purposes: to enable or disable log streaming to CloudWatch
Logs, and to retrieve instance logs or CloudWatch Logs logs. With the --cloudwatch-logs (-cw)
option, the command enables or disables log streaming. Without this option, it retrieves logs.

When retrieving logs, specify the --all, --zip, or --stream option to retrieve complete logs. If
you don't specify any of these options, Elastic Beanstalk retrieves tail logs.

The command processes logs for the specified or default environment. Relevant logs vary by
container type. If the root directory contains a platform.yaml file specifying a custom platform,
this command also processes logs for the builder environment.

For more information, see the section called “CloudWatch Logs”.

Syntax

To enable or disable log streaming to CloudWatch Logs:

eb logs --cloudwatch-logs [enable | disable] [--cloudwatch-log-source instance |
 environment-health | all] [environment-name]

To retrieve instance logs:

eb logs [-all | --zip | --stream] [--cloudwatch-log-source instance] [--
instance instance-id] [--log-group log-group] [environment-name]

To retrieve environment health logs:

eb logs [-all | --zip | --stream] --cloudwatch-log-source environment-health
 [environment-name]

Options

Name Description

-cw [enable | disable] Enables or disables log streaming to CloudWatch Logs. If
no argument is supplied, log streaming is enabled. If the --

eb logs 1544

AWS Elastic Beanstalk Developer Guide

Name Description

or

--cloudwatch-logs
[enable | disable]

cloudwatch-log-source (-cls) option isn't specified in
addition, instance log streaming is enabled or disabled.

-cls instance |
environment-health |
all

or

--cloudwatch-log-
source instance |
environment-health |
all

Specifies the source of logs when working with CloudWatch
Logs. With the enable or disable form of the command, these
are the logs for which to enable or disable CloudWatch Logs
streaming. With the retrieval form of the command, these are
the logs to retrieve from CloudWatch Logs.

Valid values:

• With --cloudwatch-logs (enable or disable) – instance
| environment-health | all

• Without --cloudwatch-logs (retrieve) – instance |
environment-health

Value meanings:

• instance (default) – Instance logs

• environment-health – Environment health logs
(supported only when enhanced health is enabled in the
environment)

• all – Both log sources

-a

or

--all

Retrieves complete logs and saves them to the .elasticb
eanstalk/logs directory.

-z

or

--zip

Retrieves complete logs, compresses them into a .zip file,
and then saves the file to the .elasticbeanstalk/logs
directory.

eb logs 1545

AWS Elastic Beanstalk Developer Guide

Name Description

--stream Streams (continuously outputs) complete logs. With this
option, the command keeps running until you interrupt it
(press Ctrl+C).

-i instance-id

or

--instance instance-
id

Retrieves logs for the specified instance only.

eb logs 1546

AWS Elastic Beanstalk Developer Guide

Name Description

-g log-group

or

--log-group log-group

Specifies the CloudWatch Logs log group from which to
retrieve logs. The option is valid only when instance log
streaming to CloudWatch Logs is enabled.

If instance log streaming is enabled, and you don't specify the
--log-group option, the default log group is one of the
following:

• Amazon Linux 2 – /aws/elasticbeanst
alk/ environment-name /var/log/eb-engine.log

• Windows platforms – /aws/elasticbeanst
alk/ environment-name /EBDeploy-Log

• Amazon Linux AMI (AL1) – /aws/elasticbeanst
alk/ environment-name /var/log/eb-activi
ty.log

Note

On July 18,2022, Elastic Beanstalk set the status
of all platform branches based on Amazon Linux
AMI (AL1) to retired. For more information about
migrating to a current and fully supported Amazon
Linux 2023 platform branch, see Migrating your
Elastic Beanstalk Linux application to Amazon Linux
2023 or Amazon Linux 2.

For information about the log group corresponding to each log
file, see How Elastic Beanstalk sets up CloudWatch Logs.

Common options

eb logs 1547

https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

Output

By default, displays the logs directly in the terminal. Uses a paging program to display the output.
Press Q or q to exit.

With --stream, shows existing logs in the terminal and keeps running. Press Ctrl+C to exit.

With --all and --zip, saves the logs to local files and displays the file location.

Examples

The following example enables instance log streaming to CloudWatch Logs.

$ eb logs -cw enable
Enabling instance log streaming to CloudWatch for your environment
After the environment is updated you can view your logs by following the link:
https://console.aws.amazon.com/cloudwatch/home?region=us-east-1#logs:prefix=/aws/
elasticbeanstalk/environment-name/
Printing Status:
2018-07-11 21:05:20 INFO: Environment update is starting.
2018-07-11 21:05:27 INFO: Updating environment environment-name's configuration
 settings.
2018-07-11 21:06:45 INFO: Successfully deployed new configuration to environment.

The following example retrieves instance logs into a .zip file.

$ eb logs --zip
Retrieving logs...
Logs were saved to /home/workspace/environment/.elasticbeanstalk/logs/150622_173444.zip

eb open

Description

Opens the public URL of your website in the default browser.

Syntax

eb open

eb open environment-name

eb open 1548

AWS Elastic Beanstalk Developer Guide

Options

Name Description

Common options

Output

The command eb open does not have output. Instead, it opens the application in a browser
window.

eb platform

Description

This command supports two different workspaces:

Platform

Use this workspace to manage custom platforms.

Environment

Use this workspace to select a default platform or show information about the current
platform.

Elastic Beanstalk provides the shortcut ebp for eb platform.

Note

Windows PowerShell uses ebp as a command alias. If you're running the EB CLI in Windows
PowerShell, use the long form of this command — eb platform.

Using eb platform for custom platforms

Lists the versions of the current platform and enables you to manage custom platforms.

Syntax

eb platform create [version] [options]

eb platform 1549

AWS Elastic Beanstalk Developer Guide

eb platform delete [version] [options]

eb platform events [version] [options]

eb platform init [platform] [options]

eb platform list [options]

eb platform logs [version] [options]

eb platform status [version] [options]

eb platform use [platform] [options]

Options

Name Description

create [version]
[options]

Build a new version of the platform. Learn more.

delete version
[options]

Delete a platform version. Learn more.

events [version]
[options]

Display the events from a platform version. Learn more.

init [platform]
[options]

Initialize a platform repository. Learn more.

list [options] List the versions of the current platform. Learn more.

logs [version]
[options]

Display logs from the builder environment for a platform
version. Learn more.

status [version]
[options]

Display the status of the a platform version. Learn more.

use [platform]
[options]

Select a different platform from which new versions are built.
Learn more.

Common options

eb platform 1550

AWS Elastic Beanstalk Developer Guide

Common options

All eb platform commands include the following common options.

Name Description

-h

OR

--help

Shows a help message and exits.

--debug Shows additional debugging output.

--quiet Suppresses all output.

-v

OR

--verbose

Shows additional output.

--profile PROFILE Uses the specified PROFILE from your credentials.

-r REGION

OR

--region REGION

Use the region REGION.

--no-verify-ssl Do not verify AWS SSL certificates.

Eb platform create

Builds a new version of the platform and returns the ARN for the new version. If there is no
builder environment running in the current region, this command launches one. The version and
increment options (-M, -m, and -p) are mutually exclusive.

eb platform 1551

AWS Elastic Beanstalk Developer Guide

Options

Name Description

version If version isn't specified, creates a new version based on
the most-recent platform with the patch version (N in n.n.N)
incremented.

-M

OR

--major-increment

Increments the major version number (the N in N.n.n).

-m

OR

--minor-increment

Increments the minor version number (the N in n.N.n).

-p

OR

--patch-increment

Increments the patch version number (the N in n.n.N).

-i INSTANCE_TYPE

OR

--instance-type INSTANCE_
TYPE

Use INSTANCE_TYPE as the instance type, such as
t1.micro.

-ip INSTANCE_PROFILE

OR

--instance-profile
INSTANCE_PROFILE

Use INSTANCE_PROFILE as the instance profile when
creating AMIs for a custom platform.

If the -ip option isn't specified, creates the instance profile
aws-elasticbeanstalk-custom-platforme-ec2-
role and uses it for the custom platform.

eb platform 1552

AWS Elastic Beanstalk Developer Guide

Name Description

--tags key1=value1[,key2=value2 ...]Tag your custom platform version. Tags are specified as a
comma-separated list of key=value pairs.

For more details, see Tagging custom platform versions.

--timeout minutes Set number of minutes before the command times out.

--vpc.id VPC_ID The ID of the VPC in which Packer builds.

--vpc.subnets
VPC_SUBNETS

The VPC subnets in which Packer builds.

--vpc.publicip Associates public IPs to EC2 instances launched.

Eb platform delete

Delete a platform version. The version isn't deleted if an environment is using that version.

Options

Name Description

version The version to delete. This value is required.

--cleanup Remove all platform versions in the Failed state.

--all-platforms If --cleanup is specified, remove all platform versions in the
Failed state for all platforms.

--force Do not require confirmation when deleting a version.

Eb platform events

Display the events from a platform version. If version is specified, display the events from that
version, otherwise display the events from the current version.

eb platform 1553

AWS Elastic Beanstalk Developer Guide

Options

Name Description

version The version for which events are displayed. This value is
required.

-f

OR

--follow

Continue to display events as they occur.

Eb platform init

Initialize a platform repository.

Options

Name Description

platform The name of the platform to initialize. This value is required,
unless -i (interactive mode) is enabled.

-i

OR

--interactive

Use interactive mode.

-k KEYNAME

OR

--keyname KEYNAME

The default EC2 key name.

You can run this command in a directory that has been previously initialized, although you cannot
change the workspace type if run in a directory that has been previously initialized.

To re-initialize with different options, use the -i option.

eb platform 1554

AWS Elastic Beanstalk Developer Guide

Eb platform list

List the versions of the platform associated with a workspace (directory) or a region.

The command returns different results depending on the type of workspace you run it in, as
follows:

• In a platform workspace (a directory initialized by eb platform init), the command returns
a list of all platform versions of the custom platform defined in the workspace. Add the --all-
platforms or --verbose option to get a list of all platform versions of all custom platforms
your account has in the region associated with the workspace.

• In an application workspace (a directory initialized by eb init), the command returns a list of
all platform versions, both for platforms managed by Elastic Beanstalk and for your account's
custom platforms. The list uses short platform version names, and some platform version
variants might be combined. Add the --verbose option to get a detailed list with full names
and all variants listed separately.

• In an uninitialized directory, the command only works with the --region option. It returns a list
of all Elastic Beanstalk-managed platform versions supported in the region. The list uses short
platform version names, and some platform version variants might be combined. Add the --
verbose option to get a detailed list with full names and all variants listed separately.

Options

Name Description

-a

OR

--all-platforms

Valid only in an initialized workspace (a directory initialized by
eb platform init or eb init). Lists the platform versions
of all custom platforms associated with your account.

-s STATUS

OR

--status STATUS

List only the platforms matching STATUS:

• Ready

• Failed

• Deleting

• Creating

eb platform 1555

AWS Elastic Beanstalk Developer Guide

Eb platform logs

Display logs from the builder environment for a platform version.

Options

Name Description

version The version of the platform for which logs are displayed. If
omitted, display logs from the current version.

--stream Stream deployment logs that were set up with CloudWatch.

Eb platform status

Display the status of the a platform version.

Options

Name Description

version The version of the platform for which the status is retrieved. If
omitted, display the status of the current version.

Eb platform use

Select a different platform from which new versions are built.

Options

Name Description

platform Specifies platform as the active version for this workspace.
This value is required.

eb platform 1556

AWS Elastic Beanstalk Developer Guide

Using eb platform for environments

Lists supported platforms and enables you to set the default platform and platform version to use
when you launch an environment. Use eb platform list to view a list of all supported platforms.
Use eb platform select to change the platform for your project. Use eb platform show to view
your project's selected platform.

Syntax

eb platform list

eb platform select

eb platform show

Options

Name Description

list List the version of the current platform.

select Select the default platform.

show Show information about the current platform.

Example 1

The following example lists the names of all configurations for all platforms that Elastic Beanstalk
supports.

$ eb platform list
docker-1.5.0
glassfish-4.0-java-7-(preconfigured-docker)
glassfish-4.1-java-8-(preconfigured-docker)
go-1.3-(preconfigured-docker)
go-1.4-(preconfigured-docker)
iis-7.5
iis-8
iis-8.5
multi-container-docker-1.3.3-(generic)
node.js

eb platform 1557

AWS Elastic Beanstalk Developer Guide

php-5.3
php-5.4
php-5.5
python
python-2.7
python-3.4
python-3.4-(preconfigured-docker)
ruby-1.9.3
ruby-2.0-(passenger-standalone)
ruby-2.0-(puma)
ruby-2.1-(passenger-standalone)
ruby-2.1-(puma)
ruby-2.2-(passenger-standalone)
ruby-2.2-(puma)
tomcat-6
tomcat-7
tomcat-7-java-6
tomcat-7-java-7
tomcat-8-java-8

Example 2

The following example prompts you to choose from a list of platforms and the version that you
want to deploy for the specified platform.

$ eb platform select
Select a platform.
1) PHP
2) Node.js
3) IIS
4) Tomcat
5) Python
6) Ruby
7) Docker
8) Multi-container Docker
9) GlassFish
10) Go
(default is 1): 5

Select a platform version.
1) Python 2.7
2) Python
3) Python 3.4 (Preconfigured - Docker)

eb platform 1558

AWS Elastic Beanstalk Developer Guide

Example 3

The following example shows information about the current default platform.

$ eb platform show
Current default platform: Python 2.7
New environments will be running: 64bit Amazon Linux 2014.09 v1.2.0 running Python 2.7

Platform info for environment "tmp-dev":
Current: 64bit Amazon Linux 2014.09 v1.2.0 running Python
Latest: 64bit Amazon Linux 2014.09 v1.2.0 running Python

eb printenv

Description

Prints all the environment properties in the command window.

Syntax

eb printenv

eb printenv environment-name

Options

Name Description

Common options

Output

If successful, the command returns the status of the printenv operation.

Example

The following example prints environment properties for the specified environment.

$ eb printenv
Environment Variables:

eb printenv 1559

AWS Elastic Beanstalk Developer Guide

 PARAM1 = Value1

eb restore

Description

Rebuilds a terminated environment, creating a new environment with the same name, ID, and
configuration. The environment name, domain name, and application version must be available for
use in order for the rebuild to succeed.

Syntax

eb restore

eb restore environment_id

Options

Name Description

Common options

Output

The EB CLI displays a list of terminated environments that are available to restore.

Example

$ eb restore
Select a terminated environment to restore

 # Name ID Application Version Date Terminated Ago

 3 gamma e-s7mimej8e9 app-77e3-161213_211138 2016/12/14 20:32 PST 13
 mins
 2 beta e-sj28uu2wia app-77e3-161213_211125 2016/12/14 20:32 PST 13
 mins
 1 alpha e-gia8mphu6q app-77e3-161213_211109 2016/12/14 16:21 PST 4
 hours

eb restore 1560

AWS Elastic Beanstalk Developer Guide

 (Commands: Quit, Restore, # #)

Selected environment alpha
Application: scorekeep
Description: Environment created from the EB CLI using "eb create"
CNAME: alpha.h23tbtbm92.us-east-2.elasticbeanstalk.com
Version: app-77e3-161213_211109
Platform: 64bit Amazon Linux 2016.03 v2.1.6 running Java 8
Terminated: 2016/12/14 16:21 PST
Restore this environment? [y/n]: y

2018-07-11 21:04:20 INFO: restoreEnvironment is starting.
2018-07-11 21:04:39 INFO: Created security group named: sg-e2443f72
...

eb scale

Description

Scales the environment to always run on a specified number of instances, setting both the
minimum and maximum number of instances to the specified number.

Syntax

eb scale number-of-instances

eb scale number-of-instances environment-name

Options

Name Description

--timeout The number of minutes before the command times out.

Common options

Output

If successful, the command updates the number of minimum and maximum instances to run to the
specified number.

eb scale 1561

AWS Elastic Beanstalk Developer Guide

Example

The following example sets the number of instances to 2.

$ eb scale 2
2018-07-11 21:05:22 INFO: Environment update is starting.
2018-07-11 21:05:27 INFO: Updating environment tmp-dev's configuration settings.
2018-07-11 21:08:53 INFO: Added EC2 instance 'i-5fce3d53' to Auto Scaling Group
 'awseb-e-2cpfjbra9a-stack-AWSEBAutoScalingGroup-7AXY7U13ZQ6E'.
2018-07-11 21:08:58 INFO: Successfully deployed new configuration to environment.
2018-07-11 21:08:59 INFO: Environment update completed successfully.

eb setenv

Description

Sets environment properties for the default environment.

Syntax

eb setenv key=value

You can include as many properties as you want, but the total size of all properties cannot exceed
4096 bytes. You can delete a variable by leaving the value blank. See Configuring environment
properties (environment variables) for limits.

Note

If the value contains a special character, you must escape that character by preceding it
with a \ character.

Options

Name Description

--timeout The number of minutes before the command times out.

Common options

eb setenv 1562

http://tldp.org/LDP/abs/html/special-chars.html

AWS Elastic Beanstalk Developer Guide

Output

If successful, the command displays that the environment update succeeded.

Example

The following example sets the environment variable ExampleVar.

$ eb setenv ExampleVar=ExampleValue
2018-07-11 21:05:25 INFO: Environment update is starting.
2018-07-11 21:05:29 INFO: Updating environment tmp-dev's configuration settings.
2018-07-11 21:06:50 INFO: Successfully deployed new configuration to environment.
2018-07-11 21:06:51 INFO: Environment update completed successfully.

The following command sets multiple environment properties. It adds the environment property
named foo and sets its value to bar, changes the value of the JDBC_CONNECTION_STRING
property, and deletes the PARAM4 and PARAM5 properties.

$ eb setenv foo=bar JDBC_CONNECTION_STRING=hello PARAM4= PARAM5=

eb ssh

Description

Note

This command does not work with environments running Windows Server instances.

Connect to a Linux Amazon EC2 instance in your environment using Secure Shell (SSH). If an
environment has multiple running instances, EB CLI prompts you to specify which instance you
want to connect to. To use this command, SSH must be installed on your local machine and
available from the command line. Private key files must be located in a folder named .ssh under
your user directory, and the EC2 instances in your environment must have public IP addresses.

If the root directory contains a platform.yaml file specifying a custom platform, this command
also connects to instances in the custom environment.

eb ssh 1563

AWS Elastic Beanstalk Developer Guide

SSH keys

If you have not previously configured SSH, you can use the EB CLI to create a key when
running eb init. If you have already run eb init, run it again with the --interactive
option and select Yes and Create New Keypair when prompted to set up SSH. Keys created
during this process will be stored in the proper folder by the EB CLI.

This command temporarily opens port 22 in your environment's security group for incoming traffic
from 0.0.0.0/0 (all IP addresses) if no rules for port 22 are already in place. If you have configured
your environment's security group to open port 22 to a restricted CIDR range for increased security,
the EB CLI will respect that setting and forgo any changes to the security group. To override this
behavior and force the EB CLI to open port 22 to all incoming traffic, use the --force option.

See Security groups for information on configuring your environment's security group.

Syntax

eb ssh

eb ssh environment-name

Options

Name Description

-i

or

--instance

Specifies the instance ID of the instance to which you connect.
We recommend that you use this option.

-n

or

--number

Specify the instance to connect to by number.

-o

or

Leave port 22 open on the security group after the SSH session
ends.

eb ssh 1564

AWS Elastic Beanstalk Developer Guide

Name Description

--keep_open

--command Execute a shell command on the specified instance instead of
starting an SSH session.

--custom Specify an SSH command to use instead of 'ssh -i keyfile'. Do
not include the remote user and hostname.

--setup Change the key pair assigned to the environment's instances
(requires instances to be replaced).

--force Open port 22 to incoming traffic from 0.0.0.0/0 in the
environment's security group, even if the security group is
already configured for SSH.

Use this option if your environment's security group is
configured to open port 22 to a restricted CIDR range that
does not include the IP address that you are trying to connect
from.

--timeout minutes Set number of minutes before the command times out.

Can only be used with the --setup argument.

Common options

Output

If successful, the command opens an SSH connection to the instance.

Example

The following example connects you to the specified environment.

$ eb ssh
Select an instance to ssh into
1) i-96133799
2) i-5931e053
(default is 1): 1

eb ssh 1565

AWS Elastic Beanstalk Developer Guide

INFO: Attempting to open port 22.
INFO: SSH port 22 open.
The authenticity of host '54.191.45.125 (54.191.45.125)' can't be established.
RSA key fingerprint is ee:69:62:df:90:f7:63:af:52:7c:80:60:1b:3b:51:a9.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '54.191.45.125' (RSA) to the list of known hosts.

 __| __|_)
 _| (/ Amazon Linux AMI
 ___|___|___|

https://aws.amazon.com/amazon-linux-ami/2014.09-release-notes/
No packages needed for security; 1 packages available
Run "sudo yum update" to apply all updates.
[ec2-user@ip-172-31-8-185 ~]$ ls
[ec2-user@ip-172-31-8-185 ~]$ exit
logout
Connection to 54.191.45.125 closed.
INFO: Closed port 22 on ec2 instance security group

eb status

Description

Provides information about the status of the environment.

If the root directory contains a platform.yaml file specifying a custom platform, this command
also provides information about the builder environment.

Syntax

eb status

eb status environment-name

Options

Name Description

-v

or

Provides more information about individual instances, such as
their status with the Elastic Load Balancing load balancer.

eb status 1566

AWS Elastic Beanstalk Developer Guide

Name Description

--verbose

Common options

Output

If successful, the command returns the following information about the environment:

• Environment name

• Application name

• Deployed application version

• Environment ID

• Platform

• Environment tier

• CNAME

• Time the environment was last updated

• Status

• Health

If you use verbose mode, EB CLI also provides you with the number of running Amazon EC2
instances.

Example

The following example shows the status for the environment tmp-dev.

$ eb status
Environment details for: tmp-dev
 Application name: tmp
 Region: us-west-2
 Deployed Version: None
 Environment ID: e-2cpfjbra9a
 Platform: 64bit Amazon Linux 2014.09 v1.0.9 running PHP 5.5
 Tier: WebServer-Standard-1.0
 CNAME: tmp-dev.elasticbeanstalk.com

eb status 1567

AWS Elastic Beanstalk Developer Guide

 Updated: 2014-10-29 21:37:19.050000+00:00
 Status: Launching
 Health: Grey

eb swap

Description

Swaps the environment's CNAME with the CNAME of another environment (for example, to avoid
downtime when you update your application version).

Note

If you have more than two environments, you are prompted to select the name of the
environment that is currently using your desired CNAME from a list of environments. To
suppress this, you can specify the name of the environment to use by including the -n
option when you run the command.

Syntax

eb swap

eb swap environment-name

Note

The environment-name is the environment for which you want a different CNAME. If you
don't specify environment-name as a command line parameter when you run eb swap,
EB CLI updates the CNAME of the default environment.

Options

Name Description

-n

or

Specifies the name of the environment with which you want to
swap CNAMEs. If you run eb swap without this option, then EB
CLI prompts you to choose from a list of your environments.

eb swap 1568

AWS Elastic Beanstalk Developer Guide

Name Description

--destination_name

Common options

Output

If successful, the command returns the status of the swap operation.

Examples

The following example swaps the environment tmp-dev with live-env.

$ eb swap
Select an environment to swap with.
1) staging-dev
2) live-env
(default is 1): 2
2018-07-11 21:05:25 INFO: swapEnvironmentCNAMEs is starting.
2018-07-11 21:05:26 INFO: Swapping CNAMEs for environments 'tmp-dev' and 'live-env'.
2018-07-11 21:05:30 INFO: 'tmp-dev.elasticbeanstalk.com' now points to 'awseb-e-j-
AWSEBLoa-M7U21VXNLWHN-487871449.us-west-2.elb.amazonaws.com'.
2018-07-11 21:05:30 INFO: Completed swapping CNAMEs for environments 'tmp-dev' and
 'live-env'.

The following example swaps the environment tmp-dev with the environment live-env but does
not prompt you to enter or select a value for any settings.

$ eb swap tmp-dev --destination_name live-env
2018-07-11 21:18:12 INFO: swapEnvironmentCNAMEs is starting.
2018-07-11 21:18:13 INFO: Swapping CNAMEs for environments 'tmp-dev' and 'live-env'.
2018-07-11 21:18:17 INFO: 'tmp-dev.elasticbeanstalk.com' now points to 'awseb-e-j-
AWSEBLoa-M7U21VXNLWHN-487871449.us-west-2.elb.amazonaws.com'.
2018-07-11 21:18:17 INFO: Completed swapping CNAMEs for environments 'tmp-dev' and
 'live-env'.

eb swap 1569

AWS Elastic Beanstalk Developer Guide

eb tags

Description

Add, delete, update, and list tags of an Elastic Beanstalk resource.

For details about resource tagging in Elastic Beanstalk, see Tagging Elastic Beanstalk application
resources.

Syntax

eb tags [environment-name] [--resource ARN] -l | --list

eb tags [environment-name] [--resource ARN] -a | --add key1=value1[,key2=value2 ...]

eb tags [environment-name] [--resource ARN] -u | --update key1=value1[,key2=value2 ...]

eb tags [environment-name] [--resource ARN] -d | --delete key1[,key2 ...]

You can combine the --add, --update, and --delete subcommand options in a single
command. At least one of them is required. You can't combined any of these three subcommand
options with --list.

Without any additional arguments, all of these commands list or modify tags of the default
environment in the current directory's application. With an environment-name argument,
the commands list or modify tags of that environment. With the --resource option, the
commands list or modify tags of any Elastic Beanstalk resource – an application, an environment,
an application version, a saved configuration, or a custom platform version. Specify the resource by
its Amazon Resource Name (ARN).

Options

None of these options are required. If you run eb create without any options, you are prompted to
enter or select a value for each setting.

Name Description

-l

or

--list

List all tags that are currently applied to the resource.

eb tags 1570

AWS Elastic Beanstalk Developer Guide

Name Description

-a key1=value1[,key2=value2 ...]

or

--add key1=value1[,key2=value2 ...]

Apply new tags to the resource. Specify tags as a
comma-separated list of key=value pairs. You can't
specify keys of existing tags.

Valid values: See Tagging resources.

-u key1=value1[,key2=value2 ...]

or

--updat
e key1=value1[,key2=value2 ...]

Update the values of existing resource tags. Specify tags
as a comma-separated list of key=value pairs. You
must specify keys of existing tags.

Valid values: See Tagging resources.

-d key1[,key2 ...]

or

--delete key1[,key2 ...]

Delete existing resource tags. Specify tags as a comma-
separated list of keys. You must specify keys of existing
tags.

Valid values: See Tagging resources.

-r region

or

--region region

The AWS Region in which your resource exists.

Default: the configured default region.

For the list of values you can specify for this option, see
AWS Elastic Beanstalk Endpoints and Quotas in the AWS
General Reference.

--resource ARN The ARN of the resource that the command modifies
or lists tags for. If not specified, the command refers
to the (default or specified) environment in the current
directory's application.

Valid values: See one of the sub-topic of Tagging
resources that is specific to the resource you're intereste
d in. These topics show how the resource's ARN is
constructed and explain how to get a list of this
resource's ARNs that exist for your application or
account.

eb tags 1571

https://docs.aws.amazon.com/general/latest/gr/elasticbeanstalk.html

AWS Elastic Beanstalk Developer Guide

Output

The --list subcommand option displays a list of the resource's tags. The output shows both the
tags that Elastic Beanstalk applies by default and your custom tags.

$ eb tags --list
Showing tags for environment 'MyApp-env':

Key Value

Name MyApp-env
elasticbeanstalk:environment-id e-63cmxwjaut
elasticbeanstalk:environment-name MyApp-env
mytag tagvalue
tag2 2nd value

The --add, --update, and --delete subcommand options, when successful, don't have any
output. You can add the --verbose option to see detailed output of the command's activity.

$ eb tags --verbose --update "mytag=tag value"
Updated Tags:

Key Value

mytag tag value

Examples

The following command successfully adds a tag with the key tag1 and the value value1 to the
application's default environment, and at the same time deletes the tag tag2.

$ eb tags --add tag1=value1 --delete tag2

The following command successfully adds a tag to a saved configuration within an application.

$ eb tags --add tag1=value1 \
 --resource "arn:aws:elasticbeanstalk:us-east-2:my-account-
id:configurationtemplate/my-app/my-template"

The following command fails because it tries to update a nonexisting tag.

eb tags 1572

AWS Elastic Beanstalk Developer Guide

$ eb tags --update tag3=newval
ERROR: Tags with the following keys can't be updated because they don't exist:

 tag3

The following command fails because it tries to update and delete the same key.

$ eb tags --update mytag=newval --delete mytag
ERROR: A tag with the key 'mytag' is specified for both '--delete' and '--update'. Each
 tag can be either deleted or updated in a single operation.

eb terminate

Description

Terminates the running environment so that you don't incur charges for unused AWS resources.

Using the --all option, deletes the application that the current directory was initialized to using
eb init. The command terminates all environments in the application. It also terminates the
application versions and saved configurations for the application, and then deletes the application.

If the root directory contains a platform.yaml file specifying a custom platform, this command
terminates the running custom environment.

Note

You can always launch a new environment using the same version later.

If you have data from an environment that you want to preserve, set the database deletion policy
to Retain before terminating the environment. This keeps the database operational outside of
Elastic Beanstalk. After this, any Elastic Beanstalk environments must connect to it as an external
database. If you want to back up the data without keeping the database operational, set the
deletion policy to take a snapshot of the database before terminating the environment. For more
information, see Database lifecycle in the Configuring environments chapter of this guide.

Important

If you terminate an environment, you must also delete any CNAME mappings that you
created, as other customers can reuse an available hostname. Be sure to delete DNS records

eb terminate 1573

AWS Elastic Beanstalk Developer Guide

that point to your terminated environment to prevent a dangling DNS entry. A dangling
DNS entry can expose internet traffic destined for your domain to security vulnerabilities. It
can also present other risks.
For more information, see Protection from dangling delegation records in Route 53 in the
Amazon Route 53 Developer Guide. You can also learn more about dangling DNS entries in
Enhanced Domain Protections for Amazon CloudFront Requests in the AWS Security Blog.

Syntax

eb terminate

eb terminate environment-name

Options

Name Description

--all Terminates all environments in the application, the applicati
on's application versions, and its saved configurations, and
then deletes the application.

--force Terminates the environment without prompting for confirmat
ion.

--ignore-links Terminates the environment even if there are dependent
environments with links to it. See Compose Environments.

--timeout The number of minutes before the command times out.

Output

If successful, the command returns the status of the terminate operation.

Example

The following example request terminates the environment tmp-dev.

$ eb terminate

eb terminate 1574

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/protection-from-dangling-dns.html
https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/

AWS Elastic Beanstalk Developer Guide

The environment "tmp-dev" and all associated instances will be terminated.
To confirm, type the environment name: tmp-dev
2018-07-11 21:05:25 INFO: terminateEnvironment is starting.
2018-07-11 21:05:40 INFO: Deleted CloudWatch alarm named: awseb-e-2cpfjbra9a-stack-
AWSEBCloudwatchAlarmHigh-16V08YOF2KQ7U
2018-07-11 21:05:41 INFO: Deleted CloudWatch alarm named: awseb-e-2cpfjbra9a-stack-
AWSEBCloudwatchAlarmLow-6ZAWH9F20P7C
2018-07-11 21:06:42 INFO: Deleted Auto Scaling group policy named:
 arn:aws:autoscaling:us-east-2:11122223333:scalingPolicy:5d7d3e6b-
d59b-47c5-b102-3e11fe3047be:autoScalingGroupName/awseb-e-2cpfjbra9a-stack-
AWSEBAutoScalingGroup-7AXY7U13ZQ6E:policyName/awseb-e-2cpfjbra9a-stack-AWSEBAutoSca
lingScaleUpPolicy-1876U27JEC34J
2018-07-11 21:06:43 INFO: Deleted Auto Scaling group policy named:
 arn:aws:autoscaling:us-east-2:11122223333:scalingPolicy:29c6e7c7-7ac8-46fc-91f5-
cfabb65b985b:autoScalingGroupName/awseb-e-2cpfjbra9a-stack-
AWSEBAutoScalingGroup-7AXY7U13ZQ6E:policyName/awseb-e-2cpfjbra9a-stack-AWSEBAutoSca
lingScaleDownPolicy-SL4LHODMOMU
2018-07-11 21:06:48 INFO: Waiting for EC2 instances to terminate. This may take a
 few minutes.
2018-07-11 21:08:55 INFO: Deleted Auto Scaling group named: awseb-e-2cpfjbra9a-
stack-AWSEBAutoScalingGroup-7AXY7U13ZQ6E
2018-07-11 21:09:10 INFO: Deleted security group named: awseb-e-2cpfjbra9a-stack-
AWSEBSecurityGroup-XT4YYGFL7I99
2018-07-11 21:09:40 INFO: Deleted load balancer named: awseb-e-2-AWSEBLoa-
AK6RRYFQVV3S
2018-07-11 21:09:42 INFO: Deleting SNS topic for environment tmp-dev.
2018-07-11 21:09:52 INFO: terminateEnvironment completed successfully.

eb upgrade

Description

Upgrades the platform of your environment to the most recent version of the platform on which it
is currently running.

If the root directory contains a platform.yaml file specifying a custom platform, this command
upgrades the environment to the most recent version of the custom platform on which it is
currently running.

Syntax

eb upgrade

eb upgrade 1575

AWS Elastic Beanstalk Developer Guide

eb upgrade environment-name

Options

Name Description

--force Upgrades without requiring you to confirm the environment
name before starting the upgrade process.

--noroll Updates all instances without using rolling updates to keep
some instances in service during the upgrade.

Common options

Output

The command shows an overview of the change and prompts you to confirm the upgrade by
typing the environment name. If successful, your environment is updated and then launched with
the most recent version of the platform.

Example

The following example upgrades the current platform version of the specified environment to the
most recently available platform version.

$ eb upgrade
Current platform: 64bit Amazon Linux 2014.09 v1.0.9 running Python 2.7
Latest platform: 64bit Amazon Linux 2014.09 v1.2.0 running Python 2.7

WARNING: This operation replaces your instances with minimal or zero downtime. You may
 cancel the upgrade after it has started by typing "eb abort".
You can also change your platform version by typing "eb clone" and then "eb swap".

To continue, type the environment name:

eb use

Description

Sets the specified environment as the default environment.

eb use 1576

AWS Elastic Beanstalk Developer Guide

When using Git, eb use sets the default environment for the current branch. Run this command
once in each branch that you want to deploy to Elastic Beanstalk.

Syntax

eb use environment-name

Options

Name Description

--source codecommi
t/ repository-
name/branch-name

CodeCommit repository and branch. See Using the EB CLI with
AWS CodeCommit.

-r region

--region region

Change the region in which you create environments.

Common options

Common options

You can use the following options with all EB CLI commands.

Name Description

--debug Print information for debugging.

-h, --help Show the Help message.

Type: String

Default: None

--no-verify-ssl Skip SSL certificate verification. Use this option if you have
issues using the CLI with a proxy.

--profile Use a specific profile from your AWS credentials file.

Common options 1577

AWS Elastic Beanstalk Developer Guide

Name Description

--quiet Suppress all output from the command.

--region Use the specified region.

-v, --verbose Display verbose information.

EB CLI 2.6 (retired)

This version of the EB CLI and its documentation have been replaced with version 3 (in this section,
EB CLI 3 represents version 3 and later of the EB CLI). For information on the new version, see
Using the Elastic Beanstalk command line interface (EB CLI).

You should migrate to the latest version of EB CLI 3. It can manage environments that you
launched using EB CLI 2.6 or earlier versions of EB CLI.

Differences from version 3 of EB CLI

EB is a command line interface (CLI) tool for Elastic Beanstalk that you can use to deploy
applications quickly and more easily. The latest version of EB was introduced by Elastic Beanstalk
in EB CLI 3. EB CLI automatically retrieves settings from an environment created using EB if the
environment is running. Note that EB CLI 3 does not store option settings locally, as in earlier
versions.

EB CLI introduces the commands eb create, eb deploy, eb open, eb console, eb scale, eb setenv,
eb config, eb terminate, eb clone, eb list, eb use, eb printenv, and eb ssh. In EB CLI 3.1 or later,
you can also use the eb swap command. In EB CLI 3.2 only, you can use the eb abort, eb platform,
and eb upgrade commands. In addition to these new commands, EB CLI 3 commands differ from
EB CLI 2.6 commands in several cases:

• eb init – Use eb init to create an .elasticbeanstalk directory in an existing project directory
and create a new Elastic Beanstalk application for the project. Unlike with previous versions, EB
CLI 3 and later versions do not prompt you to create an environment.

• eb start – EB CLI 3 does not include the command eb start. Use eb create to create an
environment.

• eb stop – EB CLI 3 does not include the command eb stop. Use eb terminate to completely
terminate an environment and clean up.

EB CLI 2.6 (retired) 1578

AWS Elastic Beanstalk Developer Guide

• eb push and git aws.push – EB CLI 3 does not include the commands eb push or git
aws.push. Use eb deploy to update your application code.

• eb update – EB CLI 3 does not include the command eb update. Use eb config to update an
environment.

• eb branch – EB CLI 3 does not include the command eb branch.

For more information about using EB CLI 3 commands to create and manage an application, see EB
CLI command reference. For a walkthrough of how to deploy a sample application using EB CLI 3,
see Managing Elastic Beanstalk environments with the EB CLI.

Migrating to EB CLI 3 and CodeCommit

Elastic Beanstalk has not only retired EB CLI 2.6, but has also removed some 2.6 functionality.
The most significant change from 2.6 is that EB CLI no longer natively supports incremental
code updates (eb push, git aws.push) or branching (eb branch). This section describes how
to migrate from EB CLI 2.6 to the latest version of EB CLI and use CodeCommit as your code
repository.

If you have not done so already, create a code repository in CodeCommit, as described in Migrate to
CodeCommit.

Once you have installed and configured EB CLI, you have two opportunities to associate your
application with your CodeCommit repository, including a specific branch.

• When executing eb init, such in the following example where myRepo is the name of your
CodeCommit repository and myBranch is the branch in CodeCommit.

eb init --source codecommit/myRepo/myBranch

• When executing eb deploy, such in the following example where myRepo is the name of your
CodeCommit repository and myBranch is the branch in CodeCommit.

eb deploy --source codecommit/myRepo/myBranch

For further information, including how to deploy incremental code updates to an Elastic Beanstalk
environment without having to re-upload your entire project, see Using the EB CLI with AWS
CodeCommit.

Migrating to EB CLI 3 and CodeCommit 1579

https://docs.aws.amazon.com/codecommit/latest/userguide/how-to-migrate-repository.html
https://docs.aws.amazon.com/codecommit/latest/userguide/how-to-migrate-repository.html

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk API command line interface (retired)

This tool, the Elastic Beanstalk API command line interface (API CLI), has been replaced by the AWS
CLI, which provides API equivalent commands for all AWS services. See the AWS Command Line
Interface User Guide to get started with the AWS CLI. Also try the EB CLI for a simplified, higher-
level command line experience.

Converting Elastic Beanstalk API CLI scripts

Convert your old EB API CLI scripts to use the AWS CLI or Tools for Windows PowerShell to get
access to the latest Elastic Beanstalk APIs. The following table lists the Elastic Beanstalk API-based
CLI commands and their equivalent commands in the AWS CLI and Tools for Windows PowerShell.

Elastic Beanstalk API CLI AWS CLI AWS Tools for Windows
PowerShell

elastic-beanstalk-
check-dns-
availability

check-dns-availability Get-EBDNSAvailability

elastic-beanstalk-
create-ap
plication

create-application New-EBApplication

elastic-beanstalk-
create-ap
plication-version

create-application-
version

New-EBApplicationV
ersion

elastic-beanstalk-
create-co
nfiguration-
template

create-configuration-
template

New-EBConfiguratio
nTemplate

elastic-beanstalk-
create-en
vironment

create-environment New-EBEnvironment

EB API CLI (retired) 1580

https://docs.aws.amazon.com/cli/latest/reference/check-dns-availability.html
https://docs.aws.amazon.com/cli/latest/reference/create-application.html
https://docs.aws.amazon.com/cli/latest/reference/create-application-version.html
https://docs.aws.amazon.com/cli/latest/reference/create-application-version.html
https://docs.aws.amazon.com/cli/latest/reference/create-configuration-template.html
https://docs.aws.amazon.com/cli/latest/reference/create-configuration-template.html
https://docs.aws.amazon.com/cli/latest/reference/create-environment.html

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk API CLI AWS CLI AWS Tools for Windows
PowerShell

elastic-beanstalk-
create-storage-
location

create-storage-loc
ation

New-EBStorageLocation

elastic-beanstalk-
delete-ap
plication

delete-application Remove-EBApplication

elastic-beanstalk-
delete-ap
plication-version

delete-application-
version

Remove-EBApplicati
onVersion

elastic-beanstalk-
delete-co
nfiguration-
template

delete-configuration-
template

Remove-EBConfigura
tionTemplate

elastic-beanstalk-
delete-en
vironment-
configuration

delete-environment-
configuration

Remove-EBEnvironme
ntConfiguration

elastic-beanstalk-
describe-
application-
versions

describe-application-
versions

Get-EBApplicationV
ersion

elastic-beanstalk-
describe-
applications

describe-applications Get-EBApplication

elastic-beanstalk-
describe-
configuration-
options

describe-configura
tion-options

Get-EBConfiguratio
nOption

Converting Elastic Beanstalk API CLI scripts 1581

https://docs.aws.amazon.com/cli/latest/reference/create-storage-location.html
https://docs.aws.amazon.com/cli/latest/reference/create-storage-location.html
https://docs.aws.amazon.com/cli/latest/reference/delete-application.html
https://docs.aws.amazon.com/cli/latest/reference/delete-application-version.html
https://docs.aws.amazon.com/cli/latest/reference/delete-application-version.html
https://docs.aws.amazon.com/cli/latest/reference/delete-configuration-template.html
https://docs.aws.amazon.com/cli/latest/reference/delete-configuration-template.html
https://docs.aws.amazon.com/cli/latest/reference/delete-environment-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/delete-environment-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/describe-application-versions.html
https://docs.aws.amazon.com/cli/latest/reference/describe-application-versions.html
https://docs.aws.amazon.com/cli/latest/reference/describe-applications.html
https://docs.aws.amazon.com/cli/latest/reference/describe-configuration-options.html
https://docs.aws.amazon.com/cli/latest/reference/describe-configuration-options.html

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk API CLI AWS CLI AWS Tools for Windows
PowerShell

elastic-beanstalk-
describe-
configuration-
settings

describe-configura
tion-settings

Get-EBConfiguratio
nSetting

elastic-beanstalk-
describe-
environment-
resources

describe-environment-
resources

Get-EBEnvironmentR
esource

elastic-beanstalk-
describe-
environments

describe-environments Get-EBEnvironment

elastic-beanstalk-
describe-events

describe-events Get-EBEvent

elastic-beanstalk-
list-available-
solution-stacks

list-available-sol
ution-stacks

Get-EBAvailableSol
utionStack

elastic-beanstalk-
rebuild-e
nvironment

rebuild-environment Start-EBEnvironmen
tRebuild

elastic-beanstalk-
request-e
nvironment-info

request-environment-
info

Request-EBEnvironm
entInfo

elastic-beanstalk-
restart-app-
server

restart-app-server Restart-EBAppServer

Converting Elastic Beanstalk API CLI scripts 1582

https://docs.aws.amazon.com/cli/latest/reference/describe-configuration-settings.html
https://docs.aws.amazon.com/cli/latest/reference/describe-configuration-settings.html
https://docs.aws.amazon.com/cli/latest/reference/describe-environment-resources.html
https://docs.aws.amazon.com/cli/latest/reference/describe-environment-resources.html
https://docs.aws.amazon.com/cli/latest/reference/describe-environments.html
https://docs.aws.amazon.com/cli/latest/reference/describe-events.html
https://docs.aws.amazon.com/cli/latest/reference/list-available-solution-stacks.html
https://docs.aws.amazon.com/cli/latest/reference/list-available-solution-stacks.html
https://docs.aws.amazon.com/cli/latest/reference/rebuild-environment.html
https://docs.aws.amazon.com/cli/latest/reference/request-environment-info.html
https://docs.aws.amazon.com/cli/latest/reference/request-environment-info.html
https://docs.aws.amazon.com/cli/latest/reference/restart-app-server.html

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk API CLI AWS CLI AWS Tools for Windows
PowerShell

elastic-beanstalk-
retrieve-
environment-info

retrieve-environment-
info

Get-EBEnvironmentInfo

elastic-beanstalk-
swap-environment-
cnames

swap-environment-c
names

Set-EBEnvironmentCNAME

elastic-beanstalk-
terminate-
environment

terminate-environment Stop-EBEnvironment

elastic-beanstalk-
update-ap
plication

update-application Update-EBApplication

elastic-beanstalk-
update-ap
plication-version

update-application-
version

Update-EBApplicati
onVersion

elastic-beanstalk-
update-co
nfiguration-
template

update-configuration-
template

Update-EBConfigura
tionTemplate

elastic-beanstalk-
update-en
vironment

update-environment Update-EBEnvironment

elastic-beanstalk-
validate-
configuration-
settings

validate-configura
tion-settings

Test-EBConfigurati
onSetting

Converting Elastic Beanstalk API CLI scripts 1583

https://docs.aws.amazon.com/cli/latest/reference/retrieve-environment-info.html
https://docs.aws.amazon.com/cli/latest/reference/retrieve-environment-info.html
https://docs.aws.amazon.com/cli/latest/reference/swap-environment-cnames.html
https://docs.aws.amazon.com/cli/latest/reference/swap-environment-cnames.html
https://docs.aws.amazon.com/cli/latest/reference/terminate-environment.html
https://docs.aws.amazon.com/cli/latest/reference/update-application.html
https://docs.aws.amazon.com/cli/latest/reference/update-application-version.html
https://docs.aws.amazon.com/cli/latest/reference/update-application-version.html
https://docs.aws.amazon.com/cli/latest/reference/update-configuration-template.html
https://docs.aws.amazon.com/cli/latest/reference/update-configuration-template.html
https://docs.aws.amazon.com/cli/latest/reference/update-environment.html
https://docs.aws.amazon.com/cli/latest/reference/validate-configuration-settings.html
https://docs.aws.amazon.com/cli/latest/reference/validate-configuration-settings.html

AWS Elastic Beanstalk Developer Guide

AWS Elastic Beanstalk security

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The Shared Responsibility Model
describes this as Security of the Cloud and Security in the Cloud.

Security of the Cloud – AWS is responsible for protecting the infrastructure that runs all of the
services offered in the AWS Cloud and providing you with services that you can use securely.
Our security responsibility is the highest priority at AWS, and the effectiveness of our security is
regularly tested and verified by third-party auditors as part of the AWS Compliance Programs.
Review the AWS Services in Scope of AWS assurance programs for information as it relates to
Elastic Beanstalk.

Security in the Cloud – Your responsibility is determined by the AWS service you are using,
and other factors including the sensitivity of your data, your organization’s requirements, and
applicable laws and regulations. This documentation is intended to help you understand how to
apply the Shared Responsibility Model when using Elastic Beanstalk.

Use the following security topics to learn more about the security tasks Elastic Beanstalk is
responsible for, and the security configurations you should consider when using Elastic Beanstalk
to meet your security and compliance objectives.

Topics

• Data protection in Elastic Beanstalk

• Identity and access management for Elastic Beanstalk

• Logging and monitoring in Elastic Beanstalk

• Compliance validation for Elastic Beanstalk

• Resilience in Elastic Beanstalk

• Infrastructure security in Elastic Beanstalk

• Configuration and vulnerability analysis in Elastic Beanstalk

• Security best practices for Elastic Beanstalk

1584

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS Elastic Beanstalk Developer Guide

Data protection in Elastic Beanstalk

The AWS shared responsibility model applies to data protection in AWS Elastic Beanstalk. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Elastic Beanstalk or other AWS services using the console, API, AWS CLI, or
AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used
for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend
that you do not include credentials information in the URL to validate your request to that server.

For other Elastic Beanstalk security topics, see AWS Elastic Beanstalk security.

Topics

• Protecting data using encryption

Data protection 1585

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

AWS Elastic Beanstalk Developer Guide

• Internetwork traffic privacy

Protecting data using encryption

Elastic Beanstalk stores various objects in an Amazon Simple Storage Service (Amazon S3) bucket
that it creates for each AWS Region in which you create environments. For details, see the section
called “Amazon S3”.

You provide some of the stored objects and send them to Elastic Beanstalk, for example,
application versions and source bundles. Elastic Beanstalk generates other objects, for example, log
files. In addition to the data that Elastic Beanstalk stores, your application can transfer and/or store
data as part of its operation.

Data protection refers to protecting data while in transit (as it travels to and from Elastic Beanstalk)
and at rest (while it is stored in AWS data centers).

Encryption in transit

You can achieve data protection in transit in two ways: encrypt the connection using Secure
Sockets Layer (SSL), or use client-side encryption (where the object is encrypted before it is sent).
Both methods are valid for protecting your application data. To secure the connection, encrypt it
using SSL whenever your application, its developers and administrators, and its end users send or
receive any objects. For details about encrypting web traffic to and from your application, see the
section called “HTTPS”.

Client-side encryption isn't a valid method for protecting your source code in application versions
and source bundles that you upload. Elastic Beanstalk needs access to these objects, so they
can't be encrypted. Therefore, be sure to secure the connection between your development or
deployment environment and Elastic Beanstalk.

Encryption at rest

To protect your application's data at rest, learn about data protection in the storage service
that your application uses. For example, see Data Protection in Amazon RDS in the Amazon RDS
User Guide, Data Protection in Amazon S3 in the Amazon Simple Storage Service User Guide, or
Encrypting Data and Metadata in EFS in the Amazon Elastic File System User Guide.

Elastic Beanstalk doesn't turn on default encryption for the Amazon S3 bucket that it creates.
This means that by default, objects are stored unencrypted in the bucket (and are accessible only

Data encryption 1586

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/DataDurability.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/DataDurability.html
https://docs.aws.amazon.com/efs/latest/ug/encryption.html

AWS Elastic Beanstalk Developer Guide

by users authorized to read the bucket). If your application requires encryption at rest, you can
configure your account's buckets for default encryption. For more information, see Amazon S3
Default Encryption for S3 Buckets in the Amazon Simple Storage Service User Guide.

For more information about data protection, see the AWS Shared Responsibility Model and GDPR
blog post on the AWS Security Blog.

For other Elastic Beanstalk security topics, see AWS Elastic Beanstalk security.

Internetwork traffic privacy

You can use Amazon Virtual Private Cloud (Amazon VPC) to create boundaries between resources
in your Elastic Beanstalk application and control traffic between them, your on-premises network,
and the internet. For details, see the section called “Amazon VPC”.

For more information about Amazon VPC security, see Security in the Amazon VPC User Guide.

For more information about data protection, see the AWS Shared Responsibility Model and GDPR
blog post on the AWS Security Blog.

For other Elastic Beanstalk security topics, see AWS Elastic Beanstalk security.

Identity and access management for Elastic Beanstalk

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS Elastic Beanstalk resources. IAM is an AWS service
that you can use with no additional charge.

For details on working with IAM, see Using Elastic Beanstalk with AWS Identity and Access
Management.

For other Elastic Beanstalk security topics, see AWS Elastic Beanstalk security.

AWS managed policies for AWS Elastic Beanstalk

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Internetwork privacy 1587

https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-encryption.html
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Security.html
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

AWS Elastic Beanstalk Developer Guide

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

Elastic Beanstalk updates to AWS managed policies

View details about updates to AWS managed policies for Elastic Beanstalk since March 1, 2021.

Change Description Date

AWSElasticBeanstalkService
–Updated existing policy

This policy was updated to
allow Elastic Beanstalk to tag
resources upon creation for
Elastic Load Balancing, Auto
Scaling groups (ASG), and
Amazon ECS.

Note

This policy has been
previously supersede
d by AWSElasti
cBeanstal
kManagedU
pdatesCus
tomerRole
Policy . Although
this policy is no

May 10, 2023

AWS managed policies 1588

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

AWS Elastic Beanstalk Developer Guide

Change Description Date

longer available for
attachment to new
IAM users, groups,
or roles, it may still
be attached to prior
existing ones.

For more information, see
Managed service role policies.

AWSElasticBeanstal
kMulticontainerDocker –
Updated existing policy

This policy was updated to
allow Elastic Beanstalk to tag
resources upon creation for
Amazon ECS.

For more information, see
Managing Elastic Beanstalk
instance profiles.

March 23, 2023

AWSElasticBeanstalkRoleECS
–Updated existing policy

This policy was updated to
allow Elastic Beanstalk to tag
resources upon creation for
Amazon ECS.

For more information, see
Policies for integration with
other services.

March 23, 2023

AWS managed policies 1589

AWS Elastic Beanstalk Developer Guide

Change Description Date

AdministratorAccess-
AWSElasticBeanstalk –
Updated existing policy

This policy was updated to
allow Elastic Beanstalk to tag
resources upon creation for
Amazon ECS.

For more information, see
Managing Elastic Beanstalk
user policies.

March 23, 2023

AWSElasticBeanstal
kManagedUpdatesSer
viceRolePolicy –Updated
existing policy

This policy was updated to
allow Elastic Beanstalk to add
tags to Amazon ECS resources
when it creates them.

For more information, see
Service-linked role permissio
ns for Elastic Beanstalk.

March 23, 2023

AWSElasticBeanstal
kManagedUpdatesCus
tomerRolePolicy –Updated
existing policy

This policy was updated to
allow Elastic Beanstalk to add
tags to Amazon ECS resources
when it creates them.

For more information, see
Managed service role policies.

March 23, 2023

AWSElasticBeanstal
kManagedUpdatesSer
viceRolePolicy –Updated
existing policy

This policy was updated to
allow Elastic Beanstalk to add
tags to Auto Scaling groups
when it creates them.

For more information, see The
managed-updates service-l
inked role.

January 27, 2023

AWS managed policies 1590

AWS Elastic Beanstalk Developer Guide

Change Description Date

AWSElasticBeanstal
kManagedUpdatesCus
tomerRolePolicy –Updated
existing policy

This policy was updated to
allow Elastic Beanstalk to
add tags on create of an Auto
Scaling group (ASG).

For more information, see
Managed service role policies.

January 23, 2023

AWSElasticBeanstal
kManagedUpdatesCus
tomerRolePolicy –Updated
existing policy

This policy was updated to
allow Elastic Beanstalk to add
tags on create of an elastic
load balancer (ELB).

For more information, see
Managed service role policies.

December 21, 2022

AWS managed policies 1591

AWS Elastic Beanstalk Developer Guide

Change Description Date

AWSElasticBeanstal
kManagedUpdatesSer
viceRolePolicy –Updated
existing policy

Permissions were added to
this policy to allow Elastic
Beanstalk to do the following
during managed updates:

• Create and delete launch
templates and template
versions.

• Launch Amazon EC2
instances with launch
templates.

• If an Amazon RDS is
present, retrieve a list of
the available DB engines
and information about
provisioned RDS instances.

For more information, see The
managed-updates service-l
inked role.

August 23, 2022

AWS managed policies 1592

AWS Elastic Beanstalk Developer Guide

Change Description Date

AWSElasticBeanstal
kReadOnlyAccess –
Deprecated

GovCloud (US) AWS Region

This policy has been replaced
by AWSElasticBeanstal
kReadOnly .

This policy will be phased out
in the GovCloud (US) AWS
Region.

When this policy is phased
out, it will no longer be
available for attachment to
new IAM users, groups, or
roles after June 17, 2021.

For more information, see
User policies.

June 17, 2021

AWSElasticBeanstal
kManagedUpdatesCus
tomerRolePolicy –Updated
existing policy

This policy was updated
to allow Elastic Beanstalk
to read attributes for EC2
Availability Zones. It enables
Elastic Beanstalk to provide
more effective validation of
your instance type selection
across Availability Zones.

For more information, see
Managed service role policies.

June 16, 2021

AWS managed policies 1593

AWS Elastic Beanstalk Developer Guide

Change Description Date

AWSElasticBeanstal
kFullAccess – Deprecated

GovCloud (US) AWS Region

This policy has been replaced
by AdministratorAcces
s-AWSElasticBeanst
alk .

This policy will be phased out
in the GovCloud (US) AWS
Region.

When this policy is phased
out, it will no longer be
available for attachment to
new IAM users, groups, or
roles after June 10, 2021.

For more information, see
User policies.

June 10, 2021

AWS managed policies 1594

AWS Elastic Beanstalk Developer Guide

Change Description Date

The following managed
policies were deprecated in all
of the China AWS Regions:

• AWSElasticBeanstal
kFullAccess

• AWSElasticBeanstal
kReadOnlyAccess

The AWSElasticBeanstal
kFullAccess policy has
been replaced by Administr
atorAccess-AWSElas
ticBeanstalk .

The AWSElasticBeanstal
kReadOnlyAccess
policy has been replaced by
AWSElasticBeanstal
kReadOnly .

These policies were phased
out in all of the China AWS
Regions.

These policies will no longer
be available for attachment
to new IAM users, groups, or
roles after June 3, 2021.

For more information, see
User policies.

June 3, 2021

AWS managed policies 1595

AWS Elastic Beanstalk Developer Guide

Change Description Date

AWSElasticBeanstalkService
– Deprecated

This policy has been
superseded by AWSElasti
cBeanstalkManagedU
pdatesCustomerRole
Policy .

This policy is phased out and
is no longer available for
attachment to new IAM users,
groups, or roles.

For more information, see
Managed service role policies.

June 2021 - January 2022

AWS managed policies 1596

AWS Elastic Beanstalk Developer Guide

Change Description Date

The following managed
policies were deprecated in
all AWS Regions, except for
China and GovCloud (US):

• AWSElasticBeanstal
kFullAccess

• AWSElasticBeanstal
kReadOnlyAccess

The AWSElasticBeanstal
kFullAccess policy has
been replaced by Administr
atorAccess-AWSElas
ticBeanstalk .

The AWSElasticBeanstal
kReadOnlyAccess
policy has been replaced by
AWSElasticBeanstal
kReadOnly .

These policies were phased
out in all the AWS Regions,
except for China and
GovCloud (US).

These policies will no longer
be available for attachment
to new IAM users, groups, or
roles after April 16, 2021.

For more information, see
User policies.

April 16, 2021

AWS managed policies 1597

AWS Elastic Beanstalk Developer Guide

Change Description Date

The following managed
policies were updated:

• AdministratorAccess-
AWSElasticBeanstalk

• AWSElasticBeanstal
kManagedUpdatesCus
tomerRolePolicy

Both of these policies now
support PassRole permissions
in China AWS Regions.

For more information about
AdministratorAccess-
AWSElasticBeanstalk ,
see User policies.

For more information about
AWSElasticBeanstal
kManagedUpdatesCus
tomerRolePolicy , see
Managed service role policies.

March 9, 2021

AWSElasticBeanstal
kManagedUpdatesCus
tomerRolePolicy – New
policy

Elastic Beanstalk added a
new policy to replace the
AWSElasticBeanstal
kService managed policy.

This new managed policy
improves security for your
resources by applying a more
restrictive set of permissions.

For more information, see
Managed service role policies.

March 3, 2021

Elastic Beanstalk started
tracking changes

Elastic Beanstalk started
tracking changes for AWS
managed policies.

March 1, 2021

Logging and monitoring in Elastic Beanstalk

Monitoring is important for maintaining the reliability, availability, and performance of AWS Elastic
Beanstalk and your AWS solutions. You should collect monitoring data from all of the parts of your

Logging and monitoring 1598

AWS Elastic Beanstalk Developer Guide

AWS solution so that you can more easily debug a multipoint failure if one occurs. AWS provides
several tools for monitoring your Elastic Beanstalk resources and responding to potential incidents.

For more information about monitoring, see Monitoring an environment.

For other Elastic Beanstalk security topics, see AWS Elastic Beanstalk security.

Enhanced health reporting

Enhanced health reporting is a feature that you can enable on your environment to allow Elastic
Beanstalk to gather additional information about resources in your environment. Elastic Beanstalk
analyzes the information to provide a better picture of overall environment health and help
identify issues that can cause your application to become unavailable. For more information, see
Enhanced health reporting and monitoring.

Amazon EC2 instance logs

The Amazon EC2 instances in your Elastic Beanstalk environment generate logs that you can
view to troubleshoot issues with your application or configuration files. Logs created by the
web server, application server, Elastic Beanstalk platform scripts, and AWS CloudFormation are
stored locally on individual instances. You can easily retrieve them by using the environment
management console or the EB CLI. You can also configure your environment to stream logs to
Amazon CloudWatch Logs in real time. For more information, see Viewing logs from Amazon EC2
instances in your Elastic Beanstalk environment.

Environment notifications

You can configure your Elastic Beanstalk environment to use Amazon Simple Notification Service
(Amazon SNS) to notify you of important events that affect your application. Specify an email
address during or after environment creation to receive emails from AWS when an error occurs, or
when your environment's health changes. For more information, see Elastic Beanstalk environment
notifications with Amazon SNS.

Amazon CloudWatch alarms

Using CloudWatch alarms, you watch a single metric over a time period that you specify. If the
metric exceeds a given threshold, a notification is sent to an Amazon SNS topic or AWS Auto
Scaling policy. CloudWatch alarms don't invoke actions because they are in a particular state.
Instead, alarms invoke actions when the state changed and was maintained for a specified number
of periods. For more information, see Using Elastic Beanstalk with Amazon CloudWatch.

Enhanced health reporting 1599

AWS Elastic Beanstalk Developer Guide

AWS CloudTrail logs

CloudTrail provides a record of actions taken by a user, role, or an AWS service in Elastic Beanstalk.
Using the information collected by CloudTrail, you can determine the request that was made to
Elastic Beanstalk, the IP address from which the request was made, who made the request, when
it was made, and additional details. For more information, see Logging Elastic Beanstalk API calls
with AWS CloudTrail.

AWS X-Ray debugging

X-Ray is an AWS service that gathers data about the requests that your application serves, and
uses it to construct a service map that you can use to identify issues with your application and
opportunities for optimization. You can use the AWS Elastic Beanstalk console or a configuration
file to run the X-Ray daemon on the instances in your environment. For more information, see
Configuring AWS X-Ray debugging.

Compliance validation for Elastic Beanstalk

The security and compliance of AWS Elastic Beanstalk is assessed by third-party auditors as part
of multiple AWS compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others. AWS
provides a frequently updated list of AWS services in scope of specific compliance programs at AWS
Services in Scope by Compliance Program.

Third-party audit reports are available for you to download using AWS Artifact. For more
information, see Downloading Reports in AWS Artifact.

For more information about AWS compliance programs, see AWS Compliance Programs.

Your compliance responsibility when using Elastic Beanstalk is determined by the sensitivity of your
data, your organization’s compliance objectives, and applicable laws and regulations. If your use
of Elastic Beanstalk is subject to compliance with standards such as HIPAA, PCI, or FedRAMP, AWS
provides resources to help:

• Security and Compliance Quick Start Guides – Deployment guides that discuss architectural
considerations and provide steps for deploying security-focused and compliance-focused
baseline environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – A whitepaper that describes how
companies can use AWS to create HIPAA-compliant applications.

AWS CloudTrail logs 1600

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://d0.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf

AWS Elastic Beanstalk Developer Guide

• AWS Compliance Resources – A collection of compliance workbooks and guides that might apply
to your industry and location.

• AWS Config – A service that assesses how well your resource configurations comply with internal
practices, industry guidelines, and regulations.

• AWS Security Hub – A comprehensive view of your security state within AWS that helps you
check your compliance with security industry standards and best practices.

For other Elastic Beanstalk security topics, see AWS Elastic Beanstalk security.

Resilience in Elastic Beanstalk

The AWS global infrastructure is built around AWS Regions and Availability Zones.

AWS Regions provide multiple physically separated and isolated Availability Zones, which are
connected with low-latency, high-throughput, and highly redundant networking.

With Availability Zones, you can design and operate applications and databases that automatically
fail over between Availability Zones without interruption. Availability Zones are more highly
available, fault tolerant, and scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

AWS Elastic Beanstalk manages and automates the use of the AWS global infrastructure on
your behalf. When using Elastic Beanstalk, you benefit from the availability and fault tolerance
mechanisms that AWS offers.

For other Elastic Beanstalk security topics, see AWS Elastic Beanstalk security.

Infrastructure security in Elastic Beanstalk

As a managed service, AWS Elastic Beanstalk is protected by the AWS global network security
procedures that are described in the Amazon Web Services: Overview of Security Processes
whitepaper.

You use AWS published API calls to access Elastic Beanstalk through the network. Clients must
support Transport Layer Security (TLS) 1.0 or later. We recommend TLS 1.2 or later. Clients must
also support cipher suites with perfect forward secrecy (PFS), such as Ephemeral Diffie-Hellman
(DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern platforms such as Java 7
and later support these modes.

Resilience 1601

https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf

AWS Elastic Beanstalk Developer Guide

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

For other Elastic Beanstalk security topics, see AWS Elastic Beanstalk security.

Configuration and vulnerability analysis in Elastic Beanstalk

AWS and our customers share responsibility for achieving a high level of software component
security and compliance. AWS Elastic Beanstalk helps you perform your side of the shared
responsibility model by providing a managed updates feature. This feature automatically applies
patch and minor updates for an Elastic Beanstalk supported platform version.

For more information, see Shared responsibility model for Elastic Beanstalk platform maintenance.

For other Elastic Beanstalk security topics, see AWS Elastic Beanstalk security.

Security best practices for Elastic Beanstalk

AWS Elastic Beanstalk provides several security features to consider as you develop and implement
your own security policies. The following best practices are general guidelines and don’t represent
a complete security solution. Because these best practices might not be appropriate or sufficient
for your environment, treat them as helpful considerations, not prescriptions.

For other Elastic Beanstalk security topics, see AWS Elastic Beanstalk security.

Preventive security best practices

Preventive security controls attempt to prevent incidents before they occur.

Implement least privilege access

Elastic Beanstalk provides AWS Identity and Access Management (IAM) managed policies for
instance profiles, service roles, and IAM users. These managed policies specify all permissions that
might be necessary for the correct operation of your environment and application.

Your application might not require all the permissions in our managed policies. You can customize
them and grant only the permissions that are required for your environment's instances, the
Elastic Beanstalk service, and your users to perform their tasks. This is particularly relevant to user

Shared responsibility model 1602

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

AWS Elastic Beanstalk Developer Guide

policies, where different user roles might have different permission needs. Implementing least
privilege access is fundamental in reducing security risk and the impact that could result from
errors or malicious intent.

Update your platforms regularly

Elastic Beanstalk regularly releases new platform versions to update all of its platforms. New
platform versions provide operating system, runtime, application server, and web server updates,
and updates to Elastic Beanstalk components. Many of these platform updates include important
security fixes. Ensure that your Elastic Beanstalk environments are running on a supported
platform version (typically the latest version for your platform). For details, see Updating your
Elastic Beanstalk environment's platform version.

The easiest way to keep your environment's platform up to date is to configure the environment to
use managed platform updates.

Enforce IMDSv2 on environment instances

Amazon Elastic Compute Cloud (Amazon EC2) instances in your Elastic Beanstalk environments
use the instance metadata service (IMDS), an on-instance component, to securely access instance
metadata. IMDS supports two methods for accessing data: IMDSv1 and IMDSv2. IMDSv2 uses
session-oriented requests and mitigates several types of vulnerabilities that could be used to try to
access the IMDS. For details about the advantages of IMDSv2, see enhancements to add defense in
depth to the EC2 Instance Metadata Service.

IMDSv2 is more secure, so it's a good idea to enforce the use of IMDSv2 on your instances. To
enforce IMDSv2, ensure that all components of your application support IMDSv2, and then disable
IMDSv1. For more information, see the section called “IMDS”.

Detective security best practices

Detective security controls identify security violations after they have occurred. They can help you
detect a potential security threat or incident.

Implement monitoring

Monitoring is an important part of maintaining the reliability, security, availability, and
performance of your Elastic Beanstalk solutions. AWS provides several tools and services to help
you monitor your AWS services.

Detective security best practices 1603

https://aws.amazon.com/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/
https://aws.amazon.com/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/

AWS Elastic Beanstalk Developer Guide

The following are some examples of items to monitor:

• Amazon CloudWatch metrics for Elastic Beanstalk – Set alarms for key Elastic Beanstalk metrics
and for your application's custom metrics. For details, see Using Elastic Beanstalk with Amazon
CloudWatch.

• AWS CloudTrail entries – Track actions that might impact availability, like UpdateEnvironment
or TerminateEnvironment. For details, see Logging Elastic Beanstalk API calls with AWS
CloudTrail.

Enable AWS Config

AWS Config provides a detailed view of the configuration of AWS resources in your account.
You can see how resources are related, get a history of configuration changes, and see how
relationships and configurations change over time.

You can use AWS Config to define rules that evaluate resource configurations for data compliance.
AWS Config rules represent the ideal configuration settings for your Elastic Beanstalk resources.
If a resource violates a rule and is flagged as noncompliant, AWS Config can alert you using an
Amazon Simple Notification Service (Amazon SNS) topic. For details, see Finding and tracking
Elastic Beanstalk resources with AWS Config.

Detective security best practices 1604

AWS Elastic Beanstalk Developer Guide

Troubleshooting

This chapter provides guidance for troubleshooting issues with your Elastic Beanstalk environment.
It provides the following information.

• An introduction to the AWS Systems Manager tool, plus a procedure to run a predefined Elastic
Beanstalk runbook that outputs troubleshooting steps and recommendations.

• General guidance for actions you can take and resources you can view if your environment status
degrades.

• More specific troubleshooting tips by subject category.

If the health of your environment changes to red, we recommend that you first use the AWS
Systems Manager tool that includes predefined runbooks to troubleshoot Elastic Beanstalk. For
more information see the Using the Systems Manager tool in the next section of this chapter.

Topics

• Using AWS Systems Manager Elastic Beanstalk runbooks

• General guidance

• Categories

Using AWS Systems Manager Elastic Beanstalk runbooks

You can use Systems Manager to troubleshoot your Elastic Beanstalk environments. To help
you get started quickly, Systems Manager provides predefined Automation runbooks for Elastic
Beanstalk. An Automation runbook is a type of Systems Manager document that defines actions to
perform on your environment's instances and other AWS resources.

The document AWSSupport-TroubleshootElasticBeanstalk is an Automation runbook
designed to help identify a number of common issues that can degrade your Elastic Beanstalk
environment. To do so, it checks components of your environment, including the following: EC2
instances, the VPC, AWS CloudFormation stack, load balancers, Auto Scaling groups, and network
configuration associated with security group rules, route tables, and ACLs.

It also provides an option to upload bundled log files from your environment to AWS Support.

Using the Systems Manager tool 1605

AWS Elastic Beanstalk Developer Guide

For more information, see AWSSupport-TroubleshootElasticBeanstalk in the AWS Systems
Manager Automation runbook reference.

Use Systems Manager to run AWSSupport-TroubleshootElasticBeanstalk runbook

Note

Run this procedure in the same AWS Region where your Elastic Beanstalk environment is
located.

1. Open the AWS Systems Manager console.

2. From the navigation pane, in the Change Management section, choose Automation.

3. Choose Execute automation.

4. On the Owned by Amazon tab, in the Automation document search box, enter AWSSupport-
TroubleshootElasticBeanstalk.

5. Select the AWSSupport-TroubleshootElasticBeanstalk card, then choose Next.

6. Select Execute.

7. In the Input parameters section:

a. From the AutomationAssumeRole dropdown, select the ARN of the role that allows
Systems Manager to perform actions on your behalf.

b. For ApplicationName, enter the name of the Elastic Beanstalk application.

c. For Environment Name, enter the Elastic Beanstalk environment.

d. (Optional) For S3UploaderLink, enter a link if an AWS Support Engineer has provided you
an S3 link for log collection.

8. Choose Execute.

If any of the steps fail, select the link under the Step ID column for the step that failed.
This displays an Execution detail page for the step. The VerificationErrorMessage
section will display a summary of the steps that require attention. For example, the
IAMPermissionCheck could display a Warning message. In this case, you could check that
the role selected in the AutomationAssumeRole dropdown has the necessary permissions.

After all of the steps successfully complete, the output gives troubleshooting steps and
recommendations to restore your environment to a healthy state.

Using the Systems Manager tool 1606

https://docs.aws.amazon.com/systems-manager-automation-runbooks/latest/userguide/automation-awssupport-troubleshoot-elastic-beanstalk.html
https://console.aws.amazon.com/systems-manager/home

AWS Elastic Beanstalk Developer Guide

General guidance

Error messages can appear on the Events page in the console, in logs, or on the Health page. You
can also take actions to recover from a degraded environment that was caused by a recent change.
If the health of your environment changes to Red, try the following:

• Review recent environment events. Messages from Elastic Beanstalk about deployment, load,
and configuration issues often appear here.

• Review recent environment change history. Change history lists all of the configuration changes
made to your environments and includes other information, such as which IAM user made
changes and which configuration parameters were set.

• Pull logs to view recent log file entries. Web server logs contain information about incoming
requests and errors.

• Connect to an instance and check system resources.

• Roll back to a previous working version of the application.

• Undo recent configuration changes or restore a saved configuration.

• Deploy a new environment. If the environment appears healthy, perform a CNAME swap to route
traffic to the new environment and continue to debug the previous one.

Categories

This topic provides more specific troubleshooting tips by category.

Topics

• Connectivity

• Environment creation and instance launches

• Deployments

• Health

• Configuration

• Troubleshooting Docker containers

• FAQ

General guidance 1607

AWS Elastic Beanstalk Developer Guide

Connectivity

Issue: Servers that were created in the Elastic Beanstalk console do not appear in the Toolkit for
Eclipse

You can manually import servers by following the instructions at Importing existing environments
into Eclipse.

Issue: Unable to connect to Amazon RDS from Elastic Beanstalk.

To connect a decoupled Amazon RDS to your Elastic Beanstalk application, do the following:

• Make sure RDS is in the same Region as your Elastic Beanstalk application.

• Make sure the RDS security group for your instance has an authorization for the Amazon EC2
security group you are using for your Elastic Beanstalk environment. For instructions on how
to find the name of your EC2 security group using the AWS Management Console, see Security
groups. For more information about configuring your EC2 security group, go to the "Authorizing
Network Access to an Amazon EC2 Security Group" section of Working with DB Security Groups
in the Amazon Relational Database Service User Guide.

• For Java, make sure the MySQL JAR file is in your WEB-INF/lib. See Adding an Amazon RDS DB
instance to your Java application environment for more details.

Environment creation and instance launches

Event: Failed to Launch Environment

This event occurs when Elastic Beanstalk attempts to launch an environment and encounters
failures along the way. Previous events on the Events page will alert you to the root cause of this
issue.

Event: Create environment operation is complete, but with command timeouts. Try increasing the
timeout period.

Your application may take a long time to deploy if you use configuration files that run commands
on the instance, download large files, or install packages. Increase the command timeout to give
your application more time to start running during deployments.

Event: The following resource(s) failed to create: [AWSEBInstanceLaunchWaitCondition]

Connectivity 1608

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithSecurityGroups.html

AWS Elastic Beanstalk Developer Guide

This message indicates that your environment's Amazon EC2 instances did not communicate to
Elastic Beanstalk that they were launched successfully. This can occur if the instances do not have
Internet connectivity. If you configured your environment to launch instances in a private VPC
subnet, ensure that the subnet has a NAT to allow the instances to connect to Elastic Beanstalk.

Event: A Service Role is required in this region. Please add a Service Role option to the environment.

Elastic Beanstalk uses a service role to monitor the resources in your environment and support
managed platform updates. See Managing Elastic Beanstalk service roles for more information.

Deployments

Issue: Application becomes unavailable during deployments

Because Elastic Beanstalk uses a drop-in upgrade process, there might be a few seconds of
downtime. Use rolling deployments to minimize the effect of deployments on your production
environments.

Event: Failed to create the AWS Elastic Beanstalk application version

Your application source bundle may be too large, or you may have reached the application version
quota.

Event: Update environment operation is complete, but with command timeouts. Try increasing the
timeout period.

Your application may take a long time to deploy if you use configuration files that run commands
on the instance, download large files, or install packages. Increase the command timeout to give
your application more time to start running during deployments.

Health

Event: CPU Utilization Exceeds 95.00%

Try running more instances, or choose a different instance type.

Event: Elastic Load Balancer awseb-myapp Has Zero Healthy Instances

If your application appears to be working, make sure that your application’s health check URL is
configured correctly. If not, check the Health screen and environment logs for more information.

Event: Elastic Load Balancer awseb-myapp Cannot Be Found

Deployments 1609

AWS Elastic Beanstalk Developer Guide

Your environment's load balancer may have been removed out-of-band. Only make changes to
your environment's resources with the configuration options and extensibility provided by Elastic
Beanstalk. Rebuild your environment or launch a new one.

Event: EC2 Instance Launch Failure. Waiting for a New EC2 Instance to Launch...

Availability for your environment's instance type may be low, or you may have reached the instance
quota for your account. Check the service health dashboard to ensure that the Elastic Compute
Cloud (Amazon EC2) service is green, or request a quota increase.

Configuration

Event: You cannot configure an Elastic Beanstalk environment with values for both the Elastic Load
Balancing Target option and Application Healthcheck URL option

The Target option in the aws:elb:healthcheck namespace is deprecated. Remove the Target
option namespace) from your environment and try updating again.

Event: ELB cannot be attached to multiple subnets in the same AZ.

This message can be seen if you try to move a load balancer between subnets in the same
Availability Zone. Changing subnets on the load balancer requires moving it out of the original
availability zone(s) and then back into the original with the desired subnets. During the process, all
of your instances will be migrated between AZs, causing significant downtime. Instead, consider
creating a new environment and perform a CNAME swap.

Troubleshooting Docker containers

Event: Failed to pull Docker image :latest: Invalid repository name (), only [a-z0-9-_.] are allowed. Tail
the logs for more details.

Check the syntax of the dockerrun.aws.json file using a JSON validator. Also verify the
dockerfile contents against the requirements described in Docker configuration

Event: No EXPOSE directive found in Dockerfile, abort deployment

The Dockerfile or the dockerrun.aws.json file does not declare the container port. Use the
EXPOSE instruction (Dockerfile) or Ports block (dockerrun.aws.json file) to expose a port
for incoming traffic.

Event: Failed to download authentication credentials repository from bucket name

Configuration 1610

http://status.aws.amazon.com/
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-ec2-instances

AWS Elastic Beanstalk Developer Guide

The dockerrun.aws.json provides an invalid EC2 key pair and/or S3 bucket for the
.dockercfg file. Or, the instance profile does not have GetObject authorization for the S3 bucket.
Verify that the .dockercfg file contains a valid S3 bucket and EC2 key pair. Grant permissions
for the action s3:GetObject to the IAM role in the instance profile. For details, go to Managing
Elastic Beanstalk instance profiles

Event: Activity execution failed, because: WARNING: Invalid auth configuration file

Your authentication file (config.json) is not formatted correctly. See Using images from a
private repository

FAQ

Question: How can I change my application URL from myapp.us-west-2.elasticbeanstalk.com to
www.myapp.com?

In a DNS server, register a CNAME record such as www.mydomain.com CNAME
mydomain.elasticbeanstalk.com.

Question: How do I specify a specific Availability Zone for my Elastic Beanstalk application?

You can pick a specific Availability Zone by using the APIs, CLI, Eclipse plugin, or Visual Studio
plugin. For instructions about using the Elastic Beanstalk console to specify an Availability Zone,
see Auto Scaling group for your Elastic Beanstalk environment.

Question: How do I change my environment's instance type?

To change your environment's instance type go to the environment configuration page and choose
Edit in the Instances configuration category. Then, select a new instance type and choose Apply
to update your environment. After this, Elastic Beanstalk terminates all running instances and
replaces them with new ones.

Question: How do I determine if anyone made configuration changes to an environment?

To see this information, in the navigation pane of the Elastic Beanstalk console choose Change
history to display a list of configuration changes for all environments. This list includes the date
and time of the change, the configuration parameter and value it was changed to, and the IAM user
that made the change. For more information, see Change history.

Question: Can I prevent Amazon EBS volumes from being deleted when instances are terminated?

FAQ 1611

AWS Elastic Beanstalk Developer Guide

Instances in your environment use Amazon EBS for storage; however, the root volume is deleted
when an instance is terminated by Auto Scaling. We don'trecommend that you store state or other
data on your instances. If needed, you can prevent volumes from being deleted with the AWS CLI:
$ aws ec2 modify-instance-attribute -b '/dev/sdc=<vol-id>:false as described in
the AWS CLI Reference.

Question: How do I delete personal information from my Elastic Beanstalk application?

AWS resources that your Elastic Beanstalk application uses might store personal information.
When you terminate an environment, Elastic Beanstalk terminates the resources that it created.
Resources you added using configuration files are also terminated. However, if you created AWS
resources outside of your Elastic Beanstalk environment and associated them with your application,
you might need to manually check that personal information that your application might have
stored isn't retained. Throughout this developer guide, whenever we discuss creating additional
resources, we also mention when you should consider deleting them.

FAQ 1612

https://docs.aws.amazon.com/cli/latest/reference/ec2/modify-instance-attribute.html

AWS Elastic Beanstalk Developer Guide

Elastic Beanstalk resources

The following related resources can help you as you work with this service.

• Elastic Beanstalk API Reference A comprehensive description of all SOAP and Query APIs.
Additionally, it contains a list of all SOAP data types.

• elastic-beanstalk-samples on GitHub – A GitHub repository with Elastic Beanstalk sample
configuration files (.ebextensions). The repository's README.md file has links to additional
GitHub repositories with sample applications.

• Elastic Beanstalk Technical FAQ – The top questions developers have asked about this product.

• AWS Elastic Beanstalk Release Notes – Details about new features, updates, and fixes in Elastic
Beanstalk service, platform, console, and EB CLI releases.

• Classes & Workshops – Links to role-based and specialty courses, in addition to self-paced labs to
help sharpen your AWS skills and gain practical experience.

• AWS Developer Center – Explore tutorials, download tools, and learn about AWS developer
events.

• AWS Developer Tools – Links to developer tools, SDKs, IDE toolkits, and command line tools for
developing and managing AWS applications.

• Getting Started Resource Center – Learn how to set up your AWS account, join the AWS
community, and launch your first application.

• Hands-On Tutorials – Follow step-by-step tutorials to launch your first application on AWS.

• AWS Whitepapers – Links to a comprehensive list of technical AWS whitepapers, covering topics
such as architecture, security, and economics and authored by AWS Solutions Architects or other
technical experts.

• AWS Support Center – The hub for creating and managing your AWS Support cases. Also
includes links to other helpful resources, such as forums, technical FAQs, service health status,
and AWS Trusted Advisor.

• AWS Support – The primary webpage for information about AWS Support, a one-on-one, fast-
response support channel to help you build and run applications in the cloud.

• Contact Us – A central contact point for inquiries concerning AWS billing, account, events, abuse,
and other issues.

1613

https://docs.aws.amazon.com/elasticbeanstalk/latest/api/
https://github.com/awsdocs/elastic-beanstalk-samples/
https://aws.amazon.com/elasticbeanstalk/faqs/
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/
https://aws.amazon.com/training/course-descriptions/
https://aws.amazon.com/developer/?ref=docs_id=res1
https://aws.amazon.com/developer/tools/?ref=docs_id=res1
https://aws.amazon.com/getting-started/?ref=docs_id=res1
https://aws.amazon.com/getting-started/hands-on/?ref=docs_id=res1
https://aws.amazon.com/whitepapers/
https://console.aws.amazon.com/support/home#/
https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/contact-us/

AWS Elastic Beanstalk Developer Guide

• AWS Site Terms – Detailed information about our copyright and trademark; your account, license,
and site access; and other topics.

Sample applications

The following are download links to the sample applications that are deployed as part of Getting
started using Elastic Beanstalk.

Note

Some samples use features that may have been released since the release of the platform
you are using. If the sample fails to run, try updating your platform to a current version, as
described in the section called “Supported platforms”.

• Docker – docker.zip

• Multicontainer Docker – docker-multicontainer-v2.zip

• Preconfigured Docker (Glassfish) – docker-glassfish-v1.zip

• Go – go.zip

• Corretto – corretto.zip

• Tomcat – tomcat.zip

• .NET Core on Linux – dotnet-core-linux.zip

• .NET Core – dotnet-asp-windows.zip

• Node.js – nodejs.zip

• PHP – php.zip

• Python – python.zip

• Ruby – ruby.zip

Sample applications 1614

https://aws.amazon.com/terms/
samples/docker.zip
samples/docker-multicontainer-v2.zip
samples/docker-glassfish-v1.zip
samples/go.zip
samples/corretto.zip
samples/tomcat.zip
samples/dotnet-core-linux.zip
samples/dotnet-asp-windows.zip
samples/nodejs.zip
samples/php.zip
samples/python.zip
samples/ruby.zip

AWS Elastic Beanstalk Developer Guide

Platform history

AWS Elastic Beanstalk platform history has moved. See Platform History in the AWS Elastic
Beanstalk Platforms document.

Topics

• Elastic Beanstalk custom platforms

Elastic Beanstalk custom platforms

Note

On July 18,2022, Elastic Beanstalk set the status of all platform branches based on Amazon
Linux AMI (AL1) to retired. This includes custom platforms. Elastic Beanstalk doesn't
support custom platforms. For more information about Elastic Beanstalk's retirement of
Amazon Linux AMI, see Platform retirement FAQ.

This topic remains in this document as a reference for any customers that used the Elastic
Beanstalk custom platform feature prior to its retirement. In the past, Elastic Beanstalk custom
platforms supported building an AMI from Amazon Linux AMI, RHEL 7, RHEL 6, or Ubuntu 16.04
base AMIs. These operating systems are no longer supported by Elastic Beanstalk. To read more
about the custom platforms feature, which is no longer supported, expand the following topic.

Custom platforms

A custom platform is a more advanced customization than a custom image in several ways. A
custom platform lets you develop an entire new platform from scratch, customizing the operating
system, additional software, and scripts that Elastic Beanstalk runs on platform instances. This
flexibility enables you to build a platform for an application that uses a language or other
infrastructure software, for which Elastic Beanstalk doesn't provide a managed platform. Compare
that to custom images, where you modify an Amazon Machine Image (AMI) for use with an existing
Elastic Beanstalk platform, and Elastic Beanstalk still provides the platform scripts and controls the
platform's software stack. In addition, with custom platforms you use an automated, scripted way
to create and maintain your customization, whereas with custom images you make the changes
manually over a running instance.

Custom platforms 1615

https://docs.aws.amazon.com/elasticbeanstalk/latest/platforms/platform-history.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/relnotes/release-2022-07-18-linux-al1-retire.html

AWS Elastic Beanstalk Developer Guide

To create a custom platform, you build an AMI from one of the supported operating systems—
Ubuntu, RHEL, or Amazon Linux (see the flavor entry in Platform.yaml file format for the exact
version numbers)—and add further customizations. You create your own Elastic Beanstalk platform
using Packer, which is an open-source tool for creating machine images for many platforms,
including AMIs for use with Amazon Elastic Compute Cloud (Amazon EC2). An Elastic Beanstalk
platform comprises an AMI configured to run a set of software that supports an application, and
metadata that can include custom configuration options and default configuration option settings.

Elastic Beanstalk manages Packer as a separate built-in platform, and you don't need to worry
about Packer configuration and versions.

You create a platform by providing Elastic Beanstalk with a Packer template, and the scripts and
files that the template invokes to build an AMI. These components are packaged with a platform
definition file, which specifies the template and metadata, into a ZIP archive, known as a platform
definition archive.

When you create a custom platform, you launch a single instance environment without an Elastic
IP that runs Packer. Packer then launches another instance to build an image. You can reuse this
environment for multiple platforms and multiple versions of each platform.

Note

Custom platforms are AWS Region specific. If you use Elastic Beanstalk in multiple Regions,
you must create your platforms separately in each Region.
In certain circumstances, instances launched by Packer are not cleaned up and have to
be manually terminated. To learn how to manually clean up these instances, see Packer
instance cleanup.

Users in your account can use your custom platforms by specifying a platform ARN during
environment creation. These ARNs are returned by the eb platform create command that you used
to create the custom platform.

Each time you build your custom platform, Elastic Beanstalk creates a new platform version. Users
can specify a platform by name to get only the latest version of the platform, or include a version
number to get a specific version.

Custom platforms 1616

https://www.packer.io/

AWS Elastic Beanstalk Developer Guide

For example, to deploy the latest version of the custom platform with the ARN
MyCustomPlatformARN, which could be version 3.0, your EB CLI command line would look like
this:

eb create -p MyCustomPlatformARN

To deploy version 2.1 your EB CLI command line would look like this:

eb create -p MyCustomPlatformARN --version 2.1

You can apply tags to a custom platform version when you create it, and edit tags of existing
custom platform versions. For details, see Tagging custom platform versions.

Creating a custom platform

To create a custom platform, the root of your application must include a platform definition file,
platform.yaml, which defines the type of builder used to create the custom platform. The
format of this file is described in Platform.yaml file format. You can create your custom platform
from scratch, or use one of the sample custom platforms as a starting point.

Using a sample custom platform

One alternative to creating your own custom platform is to use one of the platform definition
archive samples to bootstrap your custom platform. The only items you have to configure in the
samples before you can use them are a source AMI and a Region.

Note

Do not use an unmodified sample custom platform in production. The goal of the samples
is to show some of the functionality available for a custom platform, but they have not
been hardened for production use.

NodePlatform_Ubuntu.zip

This custom platform is based on Ubuntu 16.04 and supports Node.js 4.4.4. We use this
custom platform for the examples in this section.

NodePlatform_RHEL.zip

This custom platform is based on RHEL 7.2 and supports Node.js 4.4.4.

Custom platforms 1617

https://github.com/awslabs/eb-custom-platforms-samples/releases/download/v1.0.4/NodePlatform_Ubuntu.zip
https://github.com/awslabs/eb-custom-platforms-samples/releases/download/v1.0.4/NodePlatform_RHEL.zip

AWS Elastic Beanstalk Developer Guide

NodePlatform_AmazonLinux.zip

This custom platform is based on Amazon Linux 2016.09.1 and supports Node.js 4.4.4.

TomcatPlatform_Ubuntu.zip

This custom platform is based on Ubuntu 16.04 and supports Tomcat 7/Java 8.

CustomPlatform_NodeSampleApp.zip

A Node.js sample that uses express and ejs to display a static webpage.

CustomPlatform_TomcatSampleApp.zip

A Tomcat sample that displays a static webpage when deployed.

Download the sample platform definition archive: NodePlatform_Ubuntu.zip. This file contains
a platform definition file, Packer template, scripts that Packer runs during image creation, and
scripts and configuration files that Packer copies onto the builder instance during platform
creation.

Example NodePlatform_Ubuntu.zip

|-- builder Contains files used by Packer to create the custom platform
|-- custom_platform.json Packer template
|-- platform.yaml Platform definition file
|-- ReadMe.txt Briefly describes the sample

The platform definition file, platform.yaml, tells Elastic Beanstalk the name of the Packer
template, custom_platform.json.

version: "1.0"

provisioner:
 type: packer
 template: custom_platform.json
 flavor: ubuntu1604

The Packer template tells Packer how to build the AMIs for the platform, using an Ubuntu AMI as
a base for the platform image for HVM instance types. The provisioners section tells Packer to
copy all files in the builder folder within the archive to the instance, and to run the builder.sh

Custom platforms 1618

https://github.com/awslabs/eb-custom-platforms-samples/releases/download/v1.0.4/NodePlatform_AmazonLinux.zip
https://github.com/awslabs/eb-custom-platforms-samples/releases/download/v1.0.4/TomcatPlatform_Ubuntu.zip
https://github.com/awslabs/eb-custom-platforms-samples/releases/download/v1.0.4/CustomPlatform_NodeSampleApp.zip
https://github.com/awslabs/eb-custom-platforms-samples/releases/download/v1.0.4/CustomPlatform_TomcatSampleApp.zip
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

AWS Elastic Beanstalk Developer Guide

script on the instance. When the scripts complete, Packer creates an image from the modified
instance.

Elastic Beanstalk creates three environment variables that can be used to tag AMIs in Packer:

AWS_EB_PLATFORM_ARN

The ARN of the custom platform.

AWS_EB_PLATFORM_NAME

The name of the custom platform.

AWS_EB_PLATFORM_VERSION

The version of the custom platform.

The sample custom_platform.json file uses these variables to define the following values that
it uses in the scripts:

• platform_name, which is set by platform.yaml

• platform_version, which is set by platform.yaml

• platform_arn, which is set by the main build script, builder.sh, which is shown at the end of
the sample custom_platform.json file.

The custom_platform.json file contains two properties that you have to provide values
for: source_ami and region. For details about choosing the right AMI and Region values, see
Updating Packer template in the eb-custom-platforms-samples GitHub repository.

Example custom_platform.json

{
 "variables": {
 "platform_name": "{{env `AWS_EB_PLATFORM_NAME`}}",
 "platform_version": "{{env `AWS_EB_PLATFORM_VERSION`}}",
 "platform_arn": "{{env `AWS_EB_PLATFORM_ARN`}}"
 },
 "builders": [
 {
 ...
 "region": "",
 "source_ami": "",

Custom platforms 1619

https://github.com/aws-samples/eb-custom-platforms-samples#updating-packer-template

AWS Elastic Beanstalk Developer Guide

 ...
 }
],
 "provisioners": [
 {...},
 {
 "type": "shell",
 "execute_command": "chmod +x {{ .Path }}; {{ .Vars }} sudo {{ .Path }}",
 "scripts": [
 "builder/builder.sh"
]
 }
]
}

The scripts and other files that you include in your platform definition archive will vary greatly
depending on the modifications that you want to make to the instance. The sample platform
includes the following scripts:

• 00-sync-apt.sh – Commented out: apt -y update. We commented out the command
because it prompts the user for input, which breaks the automated package update. This might
be an Ubuntu issue. However, running apt -y update is still recommended as a best practice.
For this reason, we left the command in the sample script for reference.

• 01-install-nginx.sh – Installs nginx.

• 02-setup-platform.sh – Installs wget, tree, and git. Copies hooks and logging
configurations to the instance, and creates the following directories:

• /etc/SampleNodePlatform – Where the container configuration file is uploaded during
deployment.

• /opt/elasticbeanstalk/deploy/appsource/ – Where the 00-unzip.sh script
uploads application source code during deployment (see the Platform script tools section for
information about this script).

• /var/app/staging/ – Where application source code is processed during deployment.

• /var/app/current/ – Where application source code runs after processing.

• /var/log/nginx/healthd/ – Where the enhanced health agent writes logs.

• /var/nodejs – Where the Node.js files are uploaded during deployment.

Use the EB CLI to create your first custom platform with the sample platform definition archive.

Custom platforms 1620

AWS Elastic Beanstalk Developer Guide

To create a custom platform

1. Install the EB CLI.

2. Create a directory in which you will extract the sample custom platform.

~$ mkdir ~/custom-platform

3. Extract NodePlatform_Ubuntu.zip to the directory, and then change to the extracted
directory.

~$ cd ~/custom-platform
~/custom-platform$ unzip ~/NodePlatform_Ubuntu.zip
~/custom-platform$ cd NodePlatform_Ubuntu

4. Edit the custom_platform.json file, and provide values for the source_ami and region
properties. For details, see Updating Packer template.

5. Run eb platform init and follow the prompts to initialize a platform repository.

You can shorten eb platform to ebp.

Note

Windows PowerShell uses ebp as a command alias. If you're running the EB CLI in
Windows PowerShell, use the long form of this command: eb platform.

~/custom-platform$ eb platform init

This command also creates the directory .elasticbeanstalk in the current directory and
adds the configuration file config.yml to the directory. Don't change or delete this file,
because Elastic Beanstalk relies on it when creating the custom platform.

By default, eb platform init uses the name of the current folder as the name of the custom
platform, which would be custom-platform in this example.

6. Run eb platform create to launch a Packer environment and get the ARN of the custom
platform. You'll need this value later when you create an environment from the custom
platform.

Custom platforms 1621

https://github.com/aws-samples/eb-custom-platforms-samples#updating-packer-template

AWS Elastic Beanstalk Developer Guide

~/custom-platform$ eb platform create
...

By default, Elastic Beanstalk creates the instance profile aws-elasticbeanstalk-custom-
platform-ec2-role for custom platforms. If, instead, you want to use an existing instance
profile, add the option -ip INSTANCE_PROFILE to the eb platform create command.

Note

Packer will fail to create a custom platform if you use the Elastic Beanstalk default
instance profile aws-elasticbeanstalk-ec2-role.

The EB CLI shows event output of the Packer environment until the build is complete. You can
exit the event view by pressing Ctrl+C.

7. You can check the logs for errors using the eb platform logs command.

~/custom-platform$ eb platform logs
...

8. You can check on the process later with eb platform events.

~/custom-platform$ eb platform events
...

9. Check the status of your platform with eb platform status.

~/custom-platform$ eb platform status
...

When the operation completes, you have a platform that you can use to launch an Elastic
Beanstalk environment.

You can use the custom platform when creating an environment from the console. See The create
new environment wizard.

Custom platforms 1622

AWS Elastic Beanstalk Developer Guide

To launch an environment on your custom platform

1. Create a directory for your application.

~$ mkdir custom-platform-app
~$ cd ~/custom-platform-app

2. Initialize an application repository.

~/custom-platform-app$ eb init
...

3. Download the sample application NodeSampleApp.zip.

4. Extract the sample application.

~/custom-platform-app$ unzip ~/NodeSampleApp.zip

5. Run eb create -p CUSTOM-PLATFORM-ARN, where CUSTOM-PLATFORM-ARN is the ARN
returned by an eb platform create command, to launch an environment running your custom
platform.

~/custom-platform-app$ eb create -p CUSTOM-PLATFORM-ARN
...

Platform definition archive contents

A platform definition archive is the platform equivalent of an application source bundle. The
platform definition archive is a ZIP file that contains a platform definition file, a Packer template,
and the scripts and files used by the Packer template to create your platform.

Note

When you use the EB CLI to create a custom platform, the EB CLI creates a platform
definition archive from the files and folders in your platform repository, so you don't need
to create the archive manually.

Custom platforms 1623

samples/NodeSampleApp.zip

AWS Elastic Beanstalk Developer Guide

The platform definition file is a YAML-formatted file that must be named platform.yaml and be
in the root of your platform definition archive. See Creating a custom platform for a list of required
and optional keys supported in a platform definition file.

You don't need to name the Packer template in a specific way, but the name of the file must
match the provisioner template specified in the platform definition file. See the official Packer
documentation for instructions on creating Packer templates.

The other files in your platform definition archive are scripts and files used by the template to
customize an instance before creating an AMI.

Custom platform hooks

Elastic Beanstalk uses a standardized directory structure for hooks on custom platforms. These
are scripts that are run during lifecycle events and in response to management operations: when
instances in your environment are launched, or when a user initiates a deployment or uses the
restart application server feature.

Place scripts that you want hooks to trigger in one of the subfolders of the /opt/
elasticbeanstalk/hooks/ folder.

Warning

Using custom platform hooks on managed platforms isn't supported. Custom platform
hooks are designed for custom platforms. On Elastic Beanstalk managed platforms they
might work differently or have some issues, and behavior might differ across platforms. On
Amazon Linux AMI platforms (preceding Amazon Linux 2), they might still work in useful
ways in some cases; use them with caution.
Custom platform hooks are a legacy feature that exists on Amazon Linux AMI platforms.
On Amazon Linux 2 platforms, custom platform hooks in the /opt/elasticbeanstalk/
hooks/ folder are entirely discontinued. Elastic Beanstalk doesn't read or execute them.
Amazon Linux 2 platforms support a new kind of platform hooks, specifically designed to
extend Elastic Beanstalk managed platforms. You can add custom scripts and programs
directly to a hooks directory in your application source bundle. Elastic Beanstalk runs them
during various instance provisioning stages. For more information, expand the Platform
Hooks section in the section called “Extending Linux platforms”.

Hooks are organized into the following folders:

Custom platforms 1624

https://www.packer.io/docs/templates/introduction.html
https://www.packer.io/docs/templates/introduction.html

AWS Elastic Beanstalk Developer Guide

• appdeploy — Scripts run during an application deployment. Elastic Beanstalk performs an
application deployment when new instances are launched and when a client initiates a new
version deployment.

• configdeploy — Scripts run when a client performs a configuration update that affects the
software configuration on instance, for example, by setting environment properties or enabling
log rotation to Amazon S3.

• restartappserver — Scripts run when a client performs a restart app server operation.

• preinit — Scripts run during instance bootstrapping.

• postinit — Scripts run after instance bootstrapping.

The appdeploy, configdeploy, and restartappserver folders contain pre, enact, and post
subfolders. In each phase of an operation, all scripts in the pre folder are run in alphabetical order,
then those in the enact folder, and then those in the post folder.

When an instance is launched, Elastic Beanstalk runs preinit, appdeploy, and postinit, in this
order. On subsequent deployments to running instances, Elastic Beanstalk runs appdeploy hooks.
configdeploy hooks are run when a user updates instance software configuration settings.
restartappserver hooks are run only when the user initiates an application server restart.

When your scripts encounter errors, they can exit with a non-zero status and write to stderr to
fail the operation. The message that you write to stderr will appear in the event that is output
when the operation fails. Elastic Beanstalk also captures this information in the log file /var/log/
eb-activity.log If you don't want to fail the operation, return 0 (zero). Messages that you write
to stderr or stdout appear in the deployment logs, but won't appear in the event stream unless
the operation fails.

Packer instance cleanup

In certain circumstances, such as stopping the Packer builder process before it is finished, instances
launched by Packer are not cleaned up. These instances are not part of the Elastic Beanstalk
environment and can be viewed and terminated only by using the Amazon EC2 service.

To manually clean up these instances

1. Open the Amazon EC2 console.

2. Make sure you are in the same AWS Region in which you created the instance with Packer.

Custom platforms 1625

https://console.aws.amazon.com/ec2/

AWS Elastic Beanstalk Developer Guide

3. Under Resources, choose N Running Instances, where N indicates the number of running
instances.

4. Click in the query text box.

5. Select the Name tag.

6. Enter packer.

The query should look like: tag:Name: packer

7. Select any instances that match the query.

8. If the Instance State is running, choose Actions, Instance State, Stop, and then Actions,
Instance State, Terminate.

Platform.yaml file format

The platform.yaml file has the following format.

version: "version-number"

provisioner:
 type: provisioner-type
 template: provisioner-template
 flavor: provisioner-flavor

metadata:
 maintainer: metadata-maintainer
 description: metadata-description
 operating_system_name: metadata-operating_system_name
 operating_system_version: metadata-operating_system_version
 programming_language_name: metadata-programming_language_name
 programming_language_version: metadata-programming_language_version
 framework_name: metadata-framework_name
 framework_version: metadata-framework_version

option_definitions:
 - namespace: option-def-namespace
 option_name: option-def-option_name
 description: option-def-description
 default_value: option-def-default_value

option_settings:
 - namespace: "option-setting-namespace"

Custom platforms 1626

AWS Elastic Beanstalk Developer Guide

 option_name: "option-setting-option_name"
 value: "option-setting-value"

Replace the placeholders with these values:

version-number

Required. The version of the YAML definition. Must be 1.0.

provisioner-type

Required. The type of builder used to create the custom platform. Must be packer.

provisioner-template

Required. The JSON file containing the settings for provisioner-type.

provisioner-flavor

Optional. The base operating system used for the AMI. One of the following:

amazon (default)

Amazon Linux. If not specified, the latest version of Amazon Linux when the platform is
created.

Amazon Linux 2 isn't a supported operating system flavor.

ubuntu1604

Ubuntu 16.04 LTS

rhel7

RHEL 7

rhel6

RHEL 6

metadata-maintainer

Optional. Contact information for the person who owns the platform (100 characters).

metadata-description

Optional. Description of the platform (2,000 characters).

Custom platforms 1627

AWS Elastic Beanstalk Developer Guide

metadata-operating_system_name

Optional. Name of the platform's operating system (50 characters). This value is available when
filtering the output for the ListPlatformVersions API.

metadata-operating_system_version

Optional. Version of the platform's operating system (20 characters).

metadata-programming_language_name

Optional. Programming language supported by the platform (50 characters)

metadata-programming_language_version

Optional. Version of the platform's language (20 characters).

metadata-framework_name

Optional. Name of the web framework used by the platform (50 characters).

metadata-framework_version

Optional. Version of the platform's web framework (20 characters).

option-def-namespace

Optional. A namespace under aws:elasticbeanstalk:container:custom (100
characters).

option-def-option_name

Optional. The option's name (100 characters). You can define up to 50 custom configuration
options that the platform provides to users.

option-def-description

Optional. Description of the option (1,024 characters).

option-def-default_value

Optional. Default value used when the user doesn't specify one.

The following example creates the option NPM_START.

options_definitions:

Custom platforms 1628

https://docs.aws.amazon.com/elasticbeanstalk/latest/api/API_ListPlatformVersions.html

AWS Elastic Beanstalk Developer Guide

 - namespace: "aws:elasticbeanstalk:container:custom:application"
 option_name: "NPM_START"
 description: "Default application startup command"
 default_value: "node application.js"

option-setting-namespace

Optional. Namespace of the option.

option-setting-option_name

Optional. Name of the option. You can specify up to 50 options provided by Elastic Beanstalk.

option-setting-value

Optional. Value used when the user doesn't specify one.

The following example creates the option TEST.

option_settings:
 - namespace: "aws:elasticbeanstalk:application:environment"
 option_name: "TEST"
 value: "This is a test"

Tagging custom platform versions

You can apply tags to your AWS Elastic Beanstalk custom platform versions. Tags are key-value
pairs associated with AWS resources. For information about Elastic Beanstalk resource tagging, use
cases, tag key and value constraints, and supported resource types, see Tagging Elastic Beanstalk
application resources.

You can specify tags when you create a custom platform version. In an existing custom platform
version, you can add or remove tags, and update the values of existing tags. You can add up to 50
tags to each custom platform version.

Adding tags during custom platform version creation

If you use the EB CLI to create your custom platform version, use the --tags option with eb
platform create to add tags.

~/workspace/my-app$ eb platform create --tags mytag1=value1,mytag2=value2

Custom platforms 1629

AWS Elastic Beanstalk Developer Guide

With the AWS CLI or other API-based clients, add tags by using the --tags parameter on the
create-platform-version command.

$ aws elasticbeanstalk create-platform-version \
 --tags Key=mytag1,Value=value1 Key=mytag2,Value=value2 \
 --platform-name my-platform --platform-version 1.0.0 --platform-definition-bundle
 S3Bucket=DOC-EXAMPLE-BUCKET,S3Key=sample.zip

Managing tags of an existing custom platform version

You can add, update, and delete tags in an existing Elastic Beanstalk custom platform version.

If you use the EB CLI to update your custom platform version, use eb tags to add, update, delete,
or list tags.

For example, the following command lists the tags in a custom platform version.

~/workspace/my-app$ eb tags --list --resource "arn:aws:elasticbeanstalk:us-east-2:my-
account-id:platform/my-platform/1.0.0"

The following command updates the tag mytag1 and deletes the tag mytag2.

~/workspace/my-app$ eb tags --update mytag1=newvalue --delete mytag2 \
 --resource "arn:aws:elasticbeanstalk:us-east-2:my-account-id:platform/my-
platform/1.0.0"

For a complete list of options and more examples, see eb tags.

With the AWS CLI or other API-based clients, use the list-tags-for-resource command to list the
tags of a custom platform version.

$ aws elasticbeanstalk list-tags-for-resource --resource-arn
 "arn:aws:elasticbeanstalk:us-east-2:my-account-id:platform/my-platform/1.0.0"

Use the update-tags-for-resource command to add, update, or delete tags in a custom platform
version.

$ aws elasticbeanstalk update-tags-for-resource \
 --tags-to-add Key=mytag1,Value=newvalue --tags-to-remove mytag2 \

Custom platforms 1630

https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/create-platform-version.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/list-tags-for-resource.html
https://docs.aws.amazon.com/cli/latest/reference/elasticbeanstalk/update-tags-for-resource.html

AWS Elastic Beanstalk Developer Guide

 --resource-arn "arn:aws:elasticbeanstalk:us-east-2:my-account-id:platform/my-
platform/1.0.0"

Specify both tags to add and tags to update in the --tags-to-add parameter of update-tags-
for-resource. A nonexisting tag is added, and an existing tag's value is updated.

Note

To use some of the EB CLI and AWS CLI commands with an Elastic Beanstalk custom
platform version, you need the custom platform version's ARN. You can retrieve the ARN by
using the following command.

$ aws elasticbeanstalk list-platform-versions

Use the --filters option to filter the output down to your custom platform's name.

Custom platforms 1631

	AWS Elastic Beanstalk
	Table of Contents
	What is AWS Elastic Beanstalk?
	Pricing
	Where to go next

	Getting started using Elastic Beanstalk
	Setting up: Create an AWS account
	Sign up for an AWS account
	Create an administrative user

	Step 1: Create an example application
	Create an application and an environment
	Create IAM Role for EC2 instance profile

	AWS resources created for the example application

	Step 2: Explore your environment
	Step 3: Deploy a new version of your application
	Step 4: Configure your environment
	Make a configuration change
	Verify the configuration change

	Step 5: Clean up
	Next steps
	EB CLI
	AWS SDK for Java
	AWS Toolkit for Eclipse
	AWS SDK for .NET
	AWS Toolkit for Visual Studio
	AWS SDK for JavaScript in Node.js
	AWS SDK for PHP
	AWS SDK for Python (Boto)
	AWS SDK for Ruby

	Elastic Beanstalk concepts
	Application
	Application version
	Environment
	Environment tier
	Environment configuration
	Saved configuration
	Platform
	Web server environments
	Worker environments
	Design considerations
	Scalability
	Security
	Persistent storage
	Fault tolerance
	Content delivery
	Software updates and patching
	Connectivity

	Service roles, instance profiles, and user policies
	Elastic Beanstalk service role
	AWSElasticBeanstalkEnhancedHealth
	AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy

	Elastic Beanstalk instance profile
	Elastic Beanstalk user policy

	Elastic Beanstalk platforms
	Elastic Beanstalk platforms glossary
	Shared responsibility model for Elastic Beanstalk platform maintenance
	Elastic Beanstalk platform support policy
	Retired platform branches
	Beyond the 90 day grace period
	Retiring platform branch schedule
	Retired platform branch history

	Elastic Beanstalk supported platforms
	Supported platform versions

	Elastic Beanstalk Linux platforms
	Supported Amazon Linux versions
	Amazon Linux 2023

	List of Elastic Beanstalk Linux platforms
	Extending Elastic Beanstalk Linux platforms
	Buildfile and Procfile
	Buildfile
	Procfile

	Platform hooks
	Application deployment platform hooks
	Configuration deployment platform hooks
	More about platform hooks

	Configuration files
	Reverse proxy configuration
	Configuring nginx
	Configuring Apache HTTPD

	Application example with extensions
	Instance deployment workflow
	Instance deployment workflow for ECS running on Amazon Linux 2 and later
	Platform script tools
	get-config
	get-config commands
	optionsettings – Configuration options
	environment – Environment properties
	container – On-instance configuration values
	addons – Add-on configuration values
	platformconfig – Constant configuration values

	get-config output options

	pkg-repo
	pkg-repo commands
	pkg-repo examples

	download-source-bundle (Amazon Linux AMI only)

	Deploying Elastic Beanstalk applications from Docker containers
	The Docker platform branches
	Retired platform branches running on Amazon Linux AMI (AL1)
	Docker (Amazon Linux AMI)
	Multi-container Docker (Amazon Linux AMI)
	Preconfigured Docker containers

	Using the Docker platform branch
	Prerequisites
	Containerize an Elastic Beanstalk application
	Test a container locally
	Deploy a container with a Dockerfile
	Test a remote Docker image
	Deploy using Dockerrun.aws.json v1 (without Docker Compose)

	Deploy a remote Docker image to Elastic Beanstalk
	Clean up
	Running a Docker environment locally with the EB CLI
	Prerequisites for running Docker applications locally
	Preparing a Docker application for use with the EB CLI
	Running a Docker application locally
	Cleaning up after running a Docker application locally

	Docker configuration
	Using images from a private repository
	Using AWS Secrets Manager
	Using the Dockerrun.aws.json v3 file

	Building custom images with a Dockerfile
	Configuration for Docker platforms (without Docker Compose)
	Docker platform Configuration - without Docker Compose
	Dockerrun.aws.json v1
	Using images from a private repository

	Using the Amazon ECS platform branch
	ECS managed Docker platform
	Dockerrun.aws.json file
	Docker images
	Container instance role
	Amazon ECS resources created by Elastic Beanstalk
	Using multiple Elastic Load Balancing listeners
	Failed container deployments
	ECS managed Docker configuration
	Dockerrun.aws.json v2
	Volume format
	Container definition format
	Authentication format – using images from a private repository
	Example Dockerrun.aws.json v2

	ECS managed Docker environments with the Elastic Beanstalk console
	Define ECS managed Docker containers
	Add content
	Deploy to Elastic Beanstalk
	Connect to a container instance
	Inspect the Amazon ECS container agent

	Migrating Multi-container Docker running on Amazon Linux to ECS on Amazon Linux 2023
	Migrate with the Elastic Beanstalk console
	Migrate with the AWS CLI

	(Legacy) Migrating to the Docker running on Amazon Linux 2 platform branch from Multi-container Docker running on Amazon Linux
	Legacy Migration from Multi-container Docker on Amazon Linux to the Docker Amazon Linux 2 platform branch
	The docker-compose.yml file
	Additional Migration Considerations
	Migration Steps

	Preconfigured Docker containers (Amazon Linux AMI)
	Getting started with preconfigured Docker containers - on Amazon Linux AMI (preceding Amazon Linux 2)
	Set up your local development environment
	Develop and test locally
	Deploy to Elastic Beanstalk

	Deploying a GlassFish application to the Docker platform: a migration path to Amazon Linux 2023
	Prerequisites
	Simple example: provide your application code
	Advanced example: provide a prebuilt Docker image

	Configuring Docker environments
	Configuring software in Docker environments
	Container options
	Environment properties and Environment Variables

	Referencing environment variables in containers
	Using interpolate feature for environment variables (Docker Compose)
	Generating logs for enhanced health reporting (Docker Compose)
	Docker container customized logging (Docker Compose)
	Docker images
	Using images from an Amazon ECR repository
	Using images from a private repository

	Configuring managed updates for Docker environments
	Docker configuration namespaces
	Docker configuration on Amazon Linux AMI (preceding Amazon Linux 2)
	Using an authentication file for a private repository
	Configuring additional storage volumes

	Creating and deploying Go applications on Elastic Beanstalk
	Getting started with Go on Elastic Beanstalk
	Launching an environment with a sample Go application
	Create IAM Role for EC2 instance profile

	Next steps

	Setting up your Go development environment
	Installing Go
	Installing the AWS SDK for Go

	Using the Elastic Beanstalk Go platform
	Configuring your Go environment
	Log options
	Static files
	Environment properties

	Go configuration namespace
	The Amazon Linux AMI (preceding Amazon Linux 2) Go platform
	Go configuration namespaces — Amazon Linux AMI (AL1)

	Configuring the application process with a Procfile
	Using a Procfile on Amazon Linux AMI (preceding Amazon Linux 2)
	Port passing — Amazon Linux AMI (AL1)

	Building executable on-server with a Buildfile
	Configuring the reverse proxy
	Configuring the proxy on Amazon Linux AMI (preceding Amazon Linux 2)
	Extending and overriding the default proxy configuration — Amazon Linux AMI (AL1)

	Deploying a Go application to Elastic Beanstalk
	Prerequisites
	Create a Go application
	Deploy your Go application with the EB CLI
	Clean up

	Creating and deploying Java applications on Elastic Beanstalk
	Getting started with Java on Elastic Beanstalk
	Launching an environment with a sample Java application
	Create IAM Role for EC2 instance profile

	Next steps

	Setting up your Java development environment
	Installing the Java development kit
	Installing a web container
	Downloading libraries
	Installing the AWS SDK for Java
	Installing an IDE or text editor
	Installing the AWS toolkit for Eclipse

	Using the Elastic Beanstalk Tomcat platform
	Configuring your Tomcat environment
	Container options
	JVM container options
	Log options
	Static files
	Environment properties

	Tomcat configuration namespaces
	The Amazon Linux AMI (preceding Amazon Linux 2) Tomcat platform
	Tomcat configuration namespaces — Amazon Linux AMI (AL1)
	Include Elastic Beanstalk configurations files — Amazon Linux AMI (AL1)

	Bundling multiple WAR files for Tomcat environments
	Structuring your project folder
	Building a WAR file with a shell script
	Using .gitignore

	Configuring your Tomcat environment's proxy server
	Configuring the proxy on the Amazon Linux AMI (preceding Amazon Linux 2) Tomcat platform
	Choosing a proxy server for your Tomcat environment — Amazon Linux AMI (AL1)
	Migrating from Apache 2.2 to Apache 2.4 — Amazon Linux AMI (AL1)
	Extending and overriding the default Apache configuration — Amazon Linux AMI (AL1)
	Extending the default nginx configuration — Amazon Linux AMI (AL1)

	Using the Elastic Beanstalk Java SE platform
	Configuring your Java SE environment
	Log options
	Static files
	Environment properties

	Java SE configuration namespace
	The Amazon Linux AMI (preceding Amazon Linux 2) Java SE platform
	Java SE configuration namespaces — Amazon Linux AMI (AL1)

	Building JARs on-server with a Buildfile
	Configuring the application process with a Procfile
	Using a Procfile on Amazon Linux AMI (preceding Amazon Linux 2)
	Port passing — Amazon Linux AMI (AL1)

	Configuring the reverse proxy
	Configuring the proxy on Amazon Linux AMI (preceding Amazon Linux 2)
	Extending and overriding the default proxy configuration — Amazon Linux AMI (AL1)

	Adding an Amazon RDS DB instance to your Java application environment
	Downloading the JDBC driver
	Connecting to a database (Java SE platforms)
	Connecting to a database (Tomcat platforms)
	Troubleshooting database connections
	Reviewing logs
	Connecting to an RDS DB Instance

	Using the AWS Toolkit for Eclipse
	Importing existing environments into Eclipse
	Managing Elastic Beanstalk application environments
	Changing environment configuration settings
	Changing environment type
	Configuring EC2 server instances using AWS Toolkit for Eclipse
	Amazon EC2 instance types
	Amazon EC2 security groups
	Amazon EC2 key pairs
	CloudWatch metrics
	Custom AMI ID

	Configuring Elastic Load Balancing using AWS Toolkit for Eclipse
	Ports
	Controlling the HTTP port
	Controlling the HTTPS port

	Health checks
	Sessions

	Configuring Auto Scaling using AWS Toolkit for Eclipse
	Launch configuration
	Triggers

	Configuring notifications using AWS Toolkit for Eclipse
	Configuring Java containers using AWS Toolkit for Eclipse
	Remote debugging

	Setting system properties with AWS Toolkit for Eclipse

	Managing multiple AWS accounts
	Viewing events
	Listing and connecting to server instances
	Terminating an environment

	Resources

	Working with .NET Core on Linux
	Getting started with .NET Core on Linux
	Launching an environment with a sample .NET Core on Linux application
	Create IAM Role for EC2 instance profile

	Next steps

	Setting up your .NET Core on Linux development environment
	Installing the .NET Core SDK
	Installing an IDE
	Installing the AWS Toolkit for Visual Studio

	Using the .NET Core on Linux platform
	Introduction to the .NET Core on Linux platform
	Proxy server
	Application structure
	Platform configuration

	Configuring your .NET Core on Linux environment
	Log options
	Environment properties

	.NET Core on Linux configuration namespace
	Bundling applications for the .NET Core on Linux platform
	Examples

	Using a Procfile to configure your .NET Core on Linux environment
	Configuring the proxy server for your .NET Core on Linux environment

	Tutorial: Deploying an ASP.NET core application on Linux using Elastic Beanstalk
	Prerequisites
	Generate a .NET core project as a web application
	Launch an Elastic Beanstalk environment and deploy your application
	Cleanup
	Next steps

	The AWS Toolkit for Visual Studio - Working with .Net Core
	Prerequisites
	Create a new application project
	Create an Elastic Beanstalk environment and deploy your application
	Terminating an environment
	Managing your Elastic Beanstalk application environments
	Changing environment configurations settings
	Configuring AWS X-Ray using the AWS toolkit for Visual Studio
	Configuring EC2 instances using the AWS toolkit for Visual Studio
	Amazon EC2 instance types
	Amazon EC2 security groups
	Amazon EC2 key pairs
	Monitoring interval
	Custom AMI ID

	Configuring Elastic Load Balancing using the AWS toolkit for Visual Studio
	Ports
	Controlling the HTTP port
	Controlling the HTTPS port

	Health checks
	Sessions

	Configuring Auto Scaling using the AWS toolkit for Visual Studio
	Launch the configuration
	Triggers

	Configuring notifications using AWS toolkit for Visual Studio
	Configuring additional environment options using AWS toolkit for Visual Studio
	Configuring .NET Core containers using the AWS toolkit for Visual Studio

	Monitoring application health

	Migrating from .NET on Windows Server platforms to the .NET Core on Linux platform
	Considerations for migrating to the .NET Core on Linux platform

	Creating and deploying .NET applications on Elastic Beanstalk
	Getting started with Windows .NET on Elastic Beanstalk
	Launching an environment with a sample Windows .NET application
	Create IAM Role for EC2 instance profile

	Next steps

	Setting up your .NET development environment
	Installing an IDE
	Installing the AWS Toolkit for Visual Studio

	Using the Elastic Beanstalk .NET platform
	Configuring your .NET environment in the Elastic Beanstalk console
	Container options
	Log options
	Environment properties

	The aws:elasticbeanstalk:container:dotnet:apppool namespace
	Migrating across major versions of the Elastic Beanstalk Windows server platform
	What's new in major versions of the Windows server platform
	Windows server platform V2
	Windows server platform V1

	Migrating from earlier major versions of the Windows server platform
	From V1 to V2
	From pre-V1

	Running multiple applications and ASP.NET core applications with a deployment manifest
	.NET core apps
	Run multiple applications
	Configure application pools
	Define custom deployments

	Tutorial: Deploying an ASP.NET Core application with Elastic Beanstalk
	Prerequisites
	Generate a .NET core project
	Launch an Elastic Beanstalk environment
	Update the source code
	Deploy your application
	Cleanup
	Next steps

	Adding an Amazon RDS DB instance to your .NET application environment
	Adding a DB instance to your environment
	Downloading a driver
	Connecting to a database

	The AWS Toolkit for Visual Studio
	Test locally
	Create an Elastic Beanstalk environment
	Terminating an environment
	Deploying to your environment
	Managing your Elastic Beanstalk application environments
	Changing environment configurations settings
	Configuring EC2 server instances using the AWS toolkit for Visual Studio
	Amazon EC2 instance types
	Amazon EC2 security groups
	Amazon EC2 key pairs
	Monitoring interval
	Custom AMI ID

	Configuring Elastic Load Balancing using the AWS toolkit for Visual Studio
	Ports
	Controlling the HTTP port
	Controlling the HTTPS port

	Health checks
	Sessions

	Configuring Auto Scaling using the AWS toolkit for Visual Studio
	Launch the configuration
	Triggers

	Configuring notifications using AWS toolkit for Visual Studio
	Configuring .NET containers using the AWS toolkit for Visual Studio
	.NET container options
	Application settings

	Managing accounts
	

	Listing and connecting to server instances
	Monitoring application health
	Deploying Elastic Beanstalk applications in .NET using the deployment tool
	Prerequisites
	Deploy to Elastic Beanstalk

	Migrating your on-premises .NET application to Elastic Beanstalk
	Resources

	Deploying Node.js applications to Elastic Beanstalk
	Getting started with Node.js on Elastic Beanstalk
	Launching an environment with a sample Node.js application
	Next steps

	Setting up your Node.js development environment
	Install Node.js
	Confirm npm installation
	Install the AWS SDK for Node.js
	Install the Express generator
	Set up an Express framework and server

	Using the Elastic Beanstalk Node.js platform
	Configuring your Node.js environment
	Container options
	Log options
	Static files
	Environment properties
	Configuring an Amazon Linux AMI (preceding Amazon Linux 2) Node.js environment
	Container options — Amazon Linux AMI (AL1)

	Node.js configuration namespace
	The Amazon Linux AMI (preceding Amazon Linux 2) Node.js platform
	Node.js platform-specific configuration options — Amazon Linux AMI (AL1)
	Node.js language versions — Amazon Linux AMI (AL1)
	Node.js configuration namespaces — Amazon Linux AMI (AL1)

	Configuring the application process with a Procfile
	Configuring your application's dependencies
	Specifying Node.js dependencies with a package.json file
	Including Node.js dependencies in a node_modules directory

	Locking dependencies with npm shrinkwrap
	Configuring the proxy server
	Configuring the proxy on Amazon Linux AMI (preceding Amazon Linux 2)
	Extending and overriding the default proxy configuration — Amazon Linux AMI (AL1)

	Deploying an Express application to Elastic Beanstalk
	Prerequisites
	Create an Elastic Beanstalk environment
	Update the application to use Express
	Update the application to use Amazon RDS
	Clean up

	Deploying an Express application with clustering to Elastic Beanstalk
	Prerequisites
	Create an Elastic Beanstalk environment
	Update the application to use Express
	Clean up

	Deploying a Node.js application with DynamoDB to Elastic Beanstalk
	Prerequisites
	Create an Elastic Beanstalk environment
	Add permissions to your environment's instances
	Deploy the example application
	Create a DynamoDB table
	Update the application's configuration files
	Configure your environment for high availability
	Cleanup
	Next steps

	Adding an Amazon RDS DB instance to your Node.js application environment
	Adding a DB instance to your environment
	Downloading a driver
	Connecting to a database

	Resources

	Creating and deploying PHP applications on Elastic Beanstalk
	Setting up your PHP development environment
	Installing PHP
	Install Composer
	Installing the AWS SDK for PHP
	Installing an IDE or text editor

	Using the Elastic Beanstalk PHP platform
	Considerations for PHP 8.1 on Amazon Linux 2
	Considerations for PHP 8.1 on Amazon Linux 2
	RPM Packages

	Configuring your PHP environment
	PHP settings
	Log options
	Static files
	Environment properties

	The aws:elasticbeanstalk:container:php:phpini namespace
	Installing your application's dependencies
	Use a Composer file to install dependencies on instances
	Include dependencies in source bundle

	Updating Composer
	Extending php.ini

	Deploying a Laravel application to Elastic Beanstalk
	Prerequisites
	Launch an Elastic Beanstalk environment
	Install Laravel and generate a website
	Deploy your application
	Configure Composer settings
	Add a database to your environment
	Cleanup
	Next steps

	Deploying a CakePHP application to Elastic Beanstalk
	Prerequisites
	Launch an Elastic Beanstalk environment
	Install CakePHP and generate a website
	Deploy your application
	Add a database to your environment
	Cleanup
	Next steps

	Deploying a Symfony application to Elastic Beanstalk
	Prerequisites
	Launch an Elastic Beanstalk environment
	Install Symfony and generate a website
	Deploy your application
	Configure Composer settings
	Cleanup
	Next steps

	Deploying a high-availability PHP application with an external Amazon RDS database to Elastic Beanstalk
	Prerequisites
	Launch a DB instance in Amazon RDS
	Create an Elastic Beanstalk environment
	Configure security groups, environment properties, and scaling
	Deploy the sample application
	Cleanup
	Next steps

	Deploying a high-availability WordPress website with an external Amazon RDS database to Elastic Beanstalk
	Prerequisites
	Launch a DB instance in Amazon RDS
	Download WordPress
	Launch an Elastic Beanstalk environment
	Elastic Beanstalk created resources

	Configure security groups and environment properties
	Configure and deploy your application
	Install WordPress
	Update keys and salts
	Remove access restrictions
	Configure your Auto Scaling group
	Upgrade WordPress
	Clean up
	Next steps

	Deploying a high-availability Drupal website with an external Amazon RDS database to Elastic Beanstalk
	Prerequisites
	Launch a DB instance in Amazon RDS
	Launch an Elastic Beanstalk environment
	Configure security settings and environment properties
	Configure and deploy your application
	Install Drupal
	Update Drupal configuration and remove access restrictions
	Configure your Auto Scaling group
	Cleanup
	Next steps

	Adding an Amazon RDS DB instance to your PHP application environment
	Adding a DB instance to your environment
	Downloading a driver
	Connecting to a database with a PDO or MySQLi
	Connecting to a database with Symfony

	Working with Python
	Setting up your Python development environment
	Prerequisites
	Using a virtual environment
	Configuring a Python project for Elastic Beanstalk

	Using the Elastic Beanstalk Python platform
	Configuring your Python environment
	Python settings
	AWS X-Ray settings
	Log options
	Static files
	Environment properties

	Python configuration namespaces
	Configuring the WSGI server with a Procfile
	Specifying dependencies using a requirements file
	Use pip and requirements.txt
	Use Pipenv and Pipfile
	Precedence

	Deploying a Flask application to Elastic Beanstalk
	Prerequisites
	Set up a Python virtual environment with Flask
	Create a Flask application
	Deploy your site with the EB CLI
	Cleanup
	Next steps

	Deploying a Django application to Elastic Beanstalk
	Prerequisites
	Set up a Python virtual environment and install Django
	Create a Django project
	Configure your Django application for Elastic Beanstalk
	Deploy your site with the EB CLI
	Update your application
	Modify your site settings
	Create a site administrator
	Add a database migration configuration file

	Clean up
	Next steps

	Adding an Amazon RDS DB instance to your Python application environment
	Adding a DB instance to your environment
	Downloading a driver
	Connecting to a database

	Python tools and resources

	Creating and deploying Ruby applications on Elastic Beanstalk
	Setting up your Ruby development environment
	Installing Ruby
	Installing the AWS SDK for Ruby
	Installing an IDE or text editor

	Using the Elastic Beanstalk Ruby platform
	Configuring your Ruby environment
	Log options
	Static files
	Environment properties

	Ruby configuration namespaces
	Installing packages with a Gemfile
	Configuring the application process with a Procfile

	Deploying a rails application to Elastic Beanstalk
	Prerequisites
	Basic Elastic Beanstalk knowledge
	Command line
	Rails dependencies

	Launch an Elastic Beanstalk environment
	Install rails and generate a website
	Configure rails settings
	Deploy your application
	Cleanup
	Next steps

	Deploying a sinatra application to Elastic Beanstalk
	Prerequisites
	Launch an Elastic Beanstalk environment
	Write a basic sinatra website
	Deploy your application
	Cleanup
	Next steps

	Adding an Amazon RDS DB instance to your Ruby application environment
	Adding a DB instance to your environment
	Downloading an adapter
	Connecting to a database

	Tutorials and samples
	Managing and configuring Elastic Beanstalk applications
	Elastic Beanstalk application management console
	Managing application versions
	Configuring application version lifecycle settings
	Setting the application lifecycle settings in the console

	Tagging application versions
	Adding tags during application version creation
	Managing tags of an existing application version

	Create an application source bundle
	Creating a source bundle from the command line
	Creating a source bundle with Git
	Zipping files in Mac OS X Finder or Windows explorer
	Creating a source bundle for a .NET application
	Testing your source bundle

	Tagging Elastic Beanstalk application resources
	Tag propagation to launch templates
	Resources you can tag
	Tagging applications
	Adding tags during application creation
	Managing tags of an existing application

	Managing environments
	Using the Elastic Beanstalk environment management console
	Environment overview
	Environment actions
	Load configuration
	Save configuration
	Swap environment Domains (URLs)
	Clone environment
	Clone with latest platform
	Abort current operation
	Restart app servers
	Rebuild environment
	Terminate environment
	Restore environment

	Events
	Health
	Logs
	Monitoring
	Alarms
	Managed updates
	Tags
	Configuration

	Creating an Elastic Beanstalk environment
	Create IAM Role for EC2 instance profile
	The create new environment wizard
	Wizard page
	Select a platform for the new environment
	Provide application code

	Wizard configuration page
	Choose a preset configuration
	Customize your configuration
	Software settings
	Instances
	Capacity
	Load balancer
	Rolling updates and deployments
	Security
	Create IAM Role for EC2 instance profile

	Monitoring
	Managed updates
	Notifications
	Network
	Database
	Tags
	Worker environment

	Clone an Elastic Beanstalk environment
	AWS management console
	Elastic Beanstalk command line interface (EB CLI)

	Terminate an Elastic Beanstalk environment
	Elastic Beanstalk console
	AWS CLI
	API

	Creating Elastic Beanstalk environments with the AWS CLI
	Creating Elastic Beanstalk environments with the API
	Constructing a Launch Now URL
	URL parameters
	Example

	Creating and updating groups of Elastic Beanstalk environments
	Using the Compose Environments API

	Deploying applications to Elastic Beanstalk environments
	Choosing a deployment policy
	Deploying a new application version
	Redeploying a previous version
	Other ways to deploy your application
	Deployment policies and settings
	Configuring application deployments
	How rolling deployments work
	How traffic-splitting deployments work
	Deployment option namespaces

	Blue/Green deployments with Elastic Beanstalk

	Configuration changes
	Elastic Beanstalk rolling environment configuration updates
	Rolling updates versus rolling deployments
	Configuring rolling updates
	The aws:autoscaling:updatepolicy:rollingupdate namespace

	Immutable environment updates
	Configuring immutable updates
	The aws:autoscaling:updatepolicy:rollingupdate namespace

	Updating your Elastic Beanstalk environment's platform version
	Docker
	Multicontainer Docker
	Preconfigured Docker
	Go
	Java SE
	Java with Tomcat
	.NET on Windows server with IIS
	Node.js
	PHP
	Python
	Ruby
	Method 1 – Update your environment's platform version
	Method 2 – Perform a Blue/Green deployment
	Managed platform updates
	Permissions required to perform managed platform updates
	Managed update maintenance window
	Minor and patch version updates
	Immutable environment updates
	Managing managed updates
	Managed action option namespaces

	Migrating your application from a legacy platform version
	What new features are legacy platform versions missing?
	Why are some platform versions marked legacy?

	Migrating your Elastic Beanstalk Linux application to Amazon Linux 2023 or Amazon Linux 2
	Migration from Amazon Linux 2 to Amazon Linux 2023
	Differences and compatibility
	General migration process
	More references to help plan your migration

	Migration from Amazon Linux AMI (AL1) to AL2 or AL2023
	Differences and compatibility
	General migration process
	More references to help plan your migration
	Considerations for all Linux platforms
	Platform specific considerations
	Docker
	Go
	Amazon Corretto
	Tomcat
	Node.js
	PHP
	Python
	Ruby

	Platform retirement FAQ
	1. What does retirement of a platform branch mean?
	2. Why has AWS retired the AL1-based platforms branches?
	3. Which platform branches are retired?
	4. Which platforms are currently supported?
	5. Will Elastic Beanstalk remove or terminate any components of my environment after retirement?
	6. Can I submit a request to extend the retirement date?
	7. What are the workarounds if I can't complete my AL2 or AL2023 migration in time?
	8. What is the recommended process to migrate to AL2 or AL2023 platforms?
	9. If I have an environment running on a retired platform, what would be the impact?
	10. What happens 90 days after the retirement date?
	11. Can I create a new environment based on a retired platform?
	12. If I’m an existing customer, until when can I create a new environment based on retired platform branch? Can I do so using the console, CLI or API?
	13. Can I clone or rebuild my environment which is based on retired platform?
	14. After the retirement date, what would happen to the AWS resources of my Elastic Beanstalk environment that is based on a retired platform branch? For example, if the running EC2 instance gets terminated, would Elastic Beanstalk be able to launch a new AL1 based EC2 instance to maintain capacity?
	15. What are key differences between the AL2023/AL2 and Amazon Linux AMI (AL1) operating systems? How are the Elastic Beanstalk AL2023/AL2 platform branches affected?

	Canceling environment configuration updates and application deployments
	Rebuilding Elastic Beanstalk environments
	Rebuilding a running environment
	Rebuilding a terminated environment

	Environment types
	Load-balanced, scalable environment
	Single-instance environment
	Changing environment type

	Elastic Beanstalk worker environments
	The worker environment SQS daemon
	Dead-letter queues
	Periodic tasks
	Use Amazon CloudWatch for automatic scaling in worker environment tiers
	Configuring worker environments

	Creating links between Elastic Beanstalk environments

	Configuring Elastic Beanstalk environments
	Environment configuration using the Elastic Beanstalk console
	Configuration page
	Review changes page

	The Amazon EC2 instances for your Elastic Beanstalk environment
	Amazon EC2 instance types
	Configuring Amazon EC2 instances for your environment
	Instances category settings
	Monitoring interval
	Root volume (boot device)
	Instance metadata service
	Security groups

	Capacity category settings
	Instance types
	AMI ID

	Configuring AWS EC2 instances for your environment using the AWS CLI
	Recommendations for Graviton arm64 first wave environments
	Recommended actions for Graviton arm64 first wave environments

	The aws:autoscaling:launchconfiguration namespace
	Configuring the instance metadata service on your environment's instances
	Platform support for IMDS
	Choosing IMDS methods
	Configuring IMDS using the Elastic Beanstalk console
	The aws:autoscaling:launchconfiguration namespace

	Auto Scaling group for your Elastic Beanstalk environment
	Spot instance support
	Auto Scaling group configuration using the Elastic Beanstalk console
	Auto Scaling group configuration using the EB CLI
	Configuration options
	The aws:autoscaling:asg namespace
	The aws:ec2:instances namespace

	Auto Scaling triggers
	Configuring Auto Scaling triggers
	The aws:autoscaling:trigger namespace

	Scheduled Auto Scaling actions
	Configuring scheduled actions
	The aws:autoscaling:scheduledaction namespace

	Auto Scaling health check setting

	Load balancer for your Elastic Beanstalk environment
	Configuring a Classic Load Balancer
	Introduction
	Configuring a Classic Load Balancer using the Elastic Beanstalk console
	Listeners
	Sessions
	Cross-zone load balancing
	Connection draining
	Health check

	Configuring a Classic Load Balancer using the EB CLI
	Classic Load Balancer configuration namespaces

	Configuring an Application Load Balancer
	Introduction
	Configuring an Application Load Balancer using the Elastic Beanstalk console
	Listeners
	Processes
	Definition
	Health check
	Sessions

	Rules
	Access log capture

	Example: Application Load Balancer with a secure listener and two processes
	Configuring an Application Load Balancer using the EB CLI
	Application Load Balancer namespaces

	Configuring a shared Application Load Balancer
	Introduction
	Configuring a shared Application Load Balancer using the Elastic Beanstalk console
	Shared Application Load Balancer
	Processes
	Definition
	Health check
	Sessions

	Rules

	Example: use a shared Application Load Balancer for a secure micro-service-based application
	Configuring a shared Application Load Balancer using the EB CLI
	Shared Application Load Balancer namespaces

	Configuring a Network Load Balancer
	Introduction
	Configuring a Network Load Balancer using the Elastic Beanstalk console
	Listeners
	Processes
	Definition
	Health check

	Example: Network Load Balancer for an environment with end-to-end encryption
	Configuring a Network Load Balancer using the EB CLI
	Network Load Balancer namespaces

	Configuring access logs

	Adding a database to your Elastic Beanstalk environment
	Database lifecycle
	Adding an Amazon RDS DB instance to your environment using the console
	Connecting to the database
	Configuring an integrated RDS DB instance using the console
	Configuring an integrated RDS DB instance using configuration files
	Decoupling an RDS DB instance using the console
	Decoupling an RDS DB instance using configuration files

	Your AWS Elastic Beanstalk environment security
	Configuring your environment security
	Service role
	EC2 key pair
	IAM instance profile

	Environment security configuration namespaces

	Tagging resources in your Elastic Beanstalk environments
	Adding tags during environment creation
	Managing tags of an existing environment

	Environment properties and other software settings
	Configure platform-specific settings
	Configuring environment properties (environment variables)
	Software setting namespaces
	Accessing environment properties
	Configuring AWS X-Ray debugging
	Configuring debugging
	The aws:elasticbeanstalk:xray namespace

	Viewing your Elastic Beanstalk environment logs
	Configuring instance log viewing
	Configuring environment health log viewing
	Log viewing namespaces

	Elastic Beanstalk environment notifications with Amazon SNS
	Configuring notifications using the Elastic Beanstalk console
	Configuring notifications using configuration options
	Configuring permissions to send notifications
	Permissions for a default topic
	Permissions for an external topic

	Configuring Amazon Virtual Private Cloud (Amazon VPC) with Elastic Beanstalk
	Configuring VPC settings in the Elastic Beanstalk console
	VPC
	Load balancer visibility
	Load balancer subnets
	Instance public IP address
	Instance subnets
	Database subnets

	The aws:ec2:vpc namespace
	Migrating Elastic Beanstalk environments from EC2-Classic to a VPC
	Why you should migrate
	Migrate an environment from EC2-Classic into a new AWS account (recommended)
	Migrate an environment from EC2-Classic within your same AWS account
	Migrate your environments to a custom VPC

	Your Elastic Beanstalk environment's Domain name

	Configuring Elastic Beanstalk environments (advanced)
	Configuration options
	Precedence
	Recommended values
	Setting configuration options before environment creation
	Configuration files (.ebextensions)
	Saved configurations
	Elastic Beanstalk console
	EB CLI
	AWS CLI

	JSON document
	EB CLI configuration

	Setting configuration options during environment creation
	In the Elastic Beanstalk console
	Using configuration files (.ebextensions)
	Using a saved configuration
	Using the new environment wizard

	Using the EB CLI
	Using configuration files (.ebextensions)
	Using saved configurations
	Using command line options

	Using the AWS CLI
	Using configuration files (.ebextensions)
	Using a saved configuration
	Using command line options

	Setting configuration options after environment creation
	The Elastic Beanstalk console
	Using configuration files (.ebextensions)
	Using a saved configuration
	Using the Elastic Beanstalk console

	The EB CLI
	Using configuration files (.ebextensions)
	Using a saved configuration
	Using eb config
	Using eb setenv

	The AWS CLI
	Using configuration files (.ebextensions)
	Using a saved configuration
	Using command line options

	General options for all environments
	aws:autoscaling:asg
	aws:autoscaling:launchconfiguration
	aws:autoscaling:scheduledaction
	aws:autoscaling:trigger
	aws:autoscaling:updatepolicy:rollingupdate
	aws:ec2:instances
	aws:ec2:vpc
	aws:elasticbeanstalk:application
	aws:elasticbeanstalk:application:environment
	aws:elasticbeanstalk:cloudwatch:logs
	aws:elasticbeanstalk:cloudwatch:logs:health
	aws:elasticbeanstalk:command
	aws:elasticbeanstalk:environment
	aws:elasticbeanstalk:environment:process:default
	aws:elasticbeanstalk:environment:process:process_name
	aws:elasticbeanstalk:environment:proxy:staticfiles
	aws:elasticbeanstalk:healthreporting:system
	aws:elasticbeanstalk:hostmanager
	aws:elasticbeanstalk:managedactions
	aws:elasticbeanstalk:managedactions:platformupdate
	aws:elasticbeanstalk:monitoring
	aws:elasticbeanstalk:sns:topics
	aws:elasticbeanstalk:sqsd
	aws:elasticbeanstalk:trafficsplitting
	aws:elasticbeanstalk:xray
	aws:elb:healthcheck
	aws:elb:loadbalancer
	aws:elb:listener
	aws:elb:listener:listener_port
	aws:elb:policies
	aws:elb:policies:policy_name
	aws:elbv2:listener:default
	aws:elbv2:listener:listener_port
	aws:elbv2:listenerrule:rule_name
	aws:elbv2:loadbalancer
	aws:rds:dbinstance

	Platform specific options
	Docker platform options
	Go platform options
	Amazon Linux AMI (pre-Amazon Linux 2) platform options
	Namespace: aws:elasticbeanstalk:container:golang:staticfiles

	Java SE platform options
	Amazon Linux AMI (pre-Amazon Linux 2) platform options
	Namespace: aws:elasticbeanstalk:container:java:staticfiles

	Java with Tomcat platform options
	.NET Core on Linux platform options
	.NET platform options
	Node.js platform options
	Amazon Linux AMI (pre-Amazon Linux 2) platform options
	Namespace: aws:elasticbeanstalk:container:nodejs
	Namespace: aws:elasticbeanstalk:container:nodejs:staticfiles

	PHP platform options
	Python platform options
	Amazon Linux AMI (pre-Amazon Linux 2) platform options
	Namespace: aws:elasticbeanstalk:container:python:staticfiles

	Ruby platform options

	Custom options

	Advanced environment customization with configuration files (.ebextensions)
	Option settings
	Syntax
	Examples

	Customizing software on Linux servers
	Packages
	Syntax
	Supported package formats
	Specifying versions
	Example snippet

	Groups
	Syntax
	Options
	Example snippet

	Users
	Syntax
	Options
	Example snippet

	Sources
	Syntax
	Supported formats
	Example snippet

	Files
	Syntax
	Options
	Example snippet

	Commands
	Syntax
	Options
	Example snippet

	Services
	Syntax
	Options
	Example snippet

	Container commands
	Syntax
	Options
	Example snippet

	Example: Using custom Amazon CloudWatch metrics
	.Ebextensions configuration file
	Permissions
	Viewing metrics in the CloudWatch console

	Customizing software on Windows servers
	Packages
	Syntax
	Examples

	Sources
	Syntax
	Supported formats
	Example

	Files
	Syntax
	Options
	Examples

	Commands
	Syntax
	Options
	Example

	Services
	Syntax
	Options
	Example

	Container commands
	Syntax
	Options
	Example

	Adding and customizing Elastic Beanstalk environment resources
	Modifying the resources that Elastic Beanstalk creates for your environment
	Other AWS CloudFormation template keys
	Parameters
	Outputs
	Mappings

	Functions
	Ref
	Fn::GetAtt
	Fn::Join
	Fn::GetOptionSetting

	Custom resource examples
	Example: ElastiCache
	EC2-classic platforms
	EC2-VPC (default)
	EC2-VPC (custom)

	Example: SQS, CloudWatch, and SNS
	Example: DynamoDB, CloudWatch, and SNS

	Using Elastic Beanstalk saved configurations
	Tagging saved configurations
	Adding tags during saved configuration creation
	Managing tags of an existing saved configuration

	Environment manifest (env.yaml)
	Using a custom Amazon machine image (AMI)
	Creating a custom AMI
	Cleaning up a custom AMI
	Preserving access to an Amazon Machine Image (AMI) for a retired platform
	Manual steps
	Standalone script
	Script source: copy_ami_and_update_env.sh

	Serving static files
	Configure static files using the console
	Configure static files using configuration options
	Amazon Linux AMI platform-specific namespaces

	Configuring HTTPS for your Elastic Beanstalk environment
	Create and sign an X509 certificate
	Upload a certificate to IAM
	Configuring your Elastic Beanstalk environment's load balancer to terminate HTTPS
	Configuring a secure listener using the Elastic Beanstalk console
	Configuring a secure listener using a configuration file
	Configuring a security group

	Configuring your application to terminate HTTPS connections at the instance
	Terminating HTTPS on EC2 instances running Docker
	Terminating HTTPS on EC2 instances running Go
	Terminating HTTPS on EC2 instances running Java SE
	Terminating HTTPS on EC2 instances running Node.js
	Terminating HTTPS on EC2 instances running PHP
	Terminating HTTPS on EC2 instances running Python
	Terminating HTTPS on EC2 instances running Ruby
	Configure HTTPS for Ruby with Puma
	Configure HTTPS for Ruby with Passenger

	Terminating HTTPS on EC2 instances running Tomcat
	Terminating HTTPS on Amazon EC2 instances running .NET Core on Linux
	Terminating HTTPS on Amazon EC2 instances running .NET

	Configuring end-to-end encryption in a load-balanced Elastic Beanstalk environment
	Configuring your environment's load balancer for TCP Passthrough
	Storing private keys securely in Amazon S3
	Configuring HTTP to HTTPS redirection
	Configure your environment to handle HTTPS traffic
	Redirect HTTP traffic to HTTPS

	Monitoring an environment
	Monitoring environment health in the AWS management console
	Monitoring graphs
	Customizing the monitoring console

	Basic health reporting
	Health colors
	Elastic Load Balancing health checks
	Single instance and worker tier environment health checks
	Additional checks
	Amazon CloudWatch metrics
	Worker environment health metric

	Enhanced health reporting and monitoring
	The Elastic Beanstalk health agent
	Factors in determining instance and environment health
	Operations and commands
	Command timeout
	HTTP requests
	Operating system metrics

	Health check rule customization
	Enhanced health roles
	Enhanced health authorization
	Enhanced health events
	Enhanced health reporting behavior during updates, deployments, and scaling
	Enabling Elastic Beanstalk enhanced health reporting
	Enabling enhanced health reporting using the Elastic Beanstalk console
	Enabling enhanced health reporting using the EB CLI
	Enabling enhanced health reporting using a configuration file

	Enhanced health monitoring with the environment management console
	Environment overview
	Environment health page
	Monitoring page

	Health colors and statuses
	Instance status and environment status
	OK (green)
	Warning (yellow)
	Degraded (red)
	Severe (red)
	Info (green)
	Pending (grey)
	Unknown (grey)
	Suspended (grey)

	Instance metrics
	Web server metrics
	Operating system metrics
	Web server metrics capture in IIS on Windows server
	Implementation details

	Configuring enhanced health rules for an environment
	Configuring enhanced health rules using the Elastic Beanstalk console
	Configuring enhanced health rules using the EB CLI
	Configuring enhanced health rules using a config document

	Publishing Amazon CloudWatch custom metrics for an environment
	Enhanced health reporting metrics
	Configuring CloudWatch metrics using the Elastic Beanstalk console
	Configuring CloudWatch custom metrics using the EB CLI
	Providing custom metric config documents

	Using enhanced health reporting with the Elastic Beanstalk API
	Enhanced health configuration options

	Enhanced health log format
	Web server log configuration
	Generating logs for enhanced health reporting

	Notifications and troubleshooting
	Deployments
	Application server
	Worker instance
	Other resources

	Manage alarms
	Viewing an Elastic Beanstalk environment's change history
	Viewing an Elastic Beanstalk environment's event stream
	Listing and connecting to server instances
	Viewing logs from Amazon EC2 instances in your Elastic Beanstalk environment
	Log location on Amazon EC2 instances
	Log location in Amazon S3
	Log rotation settings on Linux
	Extending the default log task configuration
	Extending log rotation on Linux
	Extending log rotation on Windows server

	Streaming log files to Amazon CloudWatch Logs

	Using Elastic Beanstalk with other AWS services
	Architectural overview
	Using Elastic Beanstalk with Amazon CloudFront
	Logging Elastic Beanstalk API calls with AWS CloudTrail
	Elastic Beanstalk information in CloudTrail
	Understanding Elastic Beanstalk log file entries

	Using Elastic Beanstalk with Amazon CloudWatch
	Using Elastic Beanstalk with Amazon CloudWatch Logs
	Prerequisites to instance log streaming to CloudWatch Logs
	How Elastic Beanstalk sets up CloudWatch Logs
	Log files on Amazon Linux AMI platforms

	Streaming instance logs to CloudWatch Logs
	Instance log streaming using the Elastic Beanstalk console
	Instance log streaming using the EB CLI
	Instance log streaming using configuration files
	Custom log file streaming

	Troubleshooting CloudWatch Logs integration
	Streaming Elastic Beanstalk environment health information to Amazon CloudWatch Logs
	Prerequisites to environment health streaming to CloudWatch Logs
	Streaming environment health logs to CloudWatch Logs
	Environment health log streaming using the Elastic Beanstalk console
	Environment health log streaming using the EB CLI
	Environment health log streaming using configuration files

	Using Elastic Beanstalk with Amazon EventBridge
	Monitor an Elastic Beanstalk resource with EventBridge
	Example Elastic Beanstalk event patterns
	Example Elastic Beanstalk events
	Elastic Beanstalk event field mapping

	Finding and tracking Elastic Beanstalk resources with AWS Config
	Setting up AWS Config
	Configuring AWS Config to record Elastic Beanstalk resources
	Viewing Elastic Beanstalk configuration details in the AWS Config console
	Evaluating Elastic Beanstalk resources using AWS Config rules

	Using Elastic Beanstalk with Amazon DynamoDB
	Using Elastic Beanstalk with Amazon ElastiCache
	Using Elastic Beanstalk with Amazon Elastic File System
	Configuration files
	Encrypted file systems
	Sample applications
	Cleaning up file systems

	Using Elastic Beanstalk with AWS Identity and Access Management
	Managing Elastic Beanstalk instance profiles
	Creating an instance profile
	Verifying the permissions assigned your instance profile
	Updating an out-of-date default instance profile
	Adding permissions to the default instance profile

	Managing Elastic Beanstalk service roles
	Managing service roles using the Elastic Beanstalk console and EB CLI
	Managed service role policies
	AWSElasticBeanstalkEnhancedHealth
	AWSElasticBeanstalkManagedUpdatesCustomerRolePolicy

	Using the Elastic Beanstalk console
	Using the EB CLI

	Managing service roles using the Elastic Beanstalk API
	Using service-linked roles
	Verifying the default service role permissions
	Updating an out-of-date default service role
	Adding permissions to the default service role
	Creating a service role

	Using service-linked roles for Elastic Beanstalk
	The monitoring service-linked role
	Service-linked role permissions for Elastic Beanstalk
	AllowCloudformationReadOperationsOnElasticBeanstalkStacks

	Creating a service-linked role for Elastic Beanstalk
	Editing a service-linked role for Elastic Beanstalk
	Deleting a service-linked role for Elastic Beanstalk
	Cleaning up a service-linked role
	Manually delete the service-linked role

	Supported regions for Elastic Beanstalk service-linked roles

	The maintenance service-linked role
	Service-linked role permissions for Elastic Beanstalk
	Creating a service-linked role for Elastic Beanstalk
	Editing a service-linked role for Elastic Beanstalk
	Deleting a service-linked role for Elastic Beanstalk
	Cleaning up a service-linked role
	Manually delete the service-linked role

	Supported regions for Elastic Beanstalk service-linked roles

	The managed-updates service-linked role
	Service-linked role permissions for Elastic Beanstalk
	AWSElasticBeanstalkManagedUpdatesServiceRolePolicy

	Creating a service-linked role for Elastic Beanstalk
	Editing a service-linked role for Elastic Beanstalk
	Deleting a service-linked role for Elastic Beanstalk
	Cleaning up a service-linked role
	Manually delete the service-linked role

	Supported Regions for Elastic Beanstalk service-linked roles

	Managing Elastic Beanstalk user policies
	Policies for integration with other services
	AWSElasticBeanstalkRoleCWL
	AWSElasticBeanstalkRoleRDS
	AWSElasticBeanstalkRoleWorkerTier
	AWSElasticBeanstalkRoleECS
	AWSElasticBeanstalkRoleCore
	AWSElasticBeanstalkRoleSNS

	Controlling access with managed policies
	Creating a custom user policy
	Enabling limited Elastic Beanstalk environment creation
	Enabling access to Elastic Beanstalk logs stored in Amazon S3
	Enabling management of a specific Elastic Beanstalk application

	Amazon resource name format for Elastic Beanstalk
	Resources and conditions for Elastic Beanstalk actions
	Policy information for Elastic Beanstalk actions
	Condition keys for Elastic Beanstalk actions

	Using tags to control access to Elastic Beanstalk resources
	Example policies based on managed policies
	Example 1: Admins group – All Elastic Beanstalk and related service APIs
	Example 2: Developers group – All but highly privileged operations
	Example 3: Testers – View only

	Example policies based on resource permissions
	Example 1: John – Development manager for app1, app2
	Example 2: Jill – Tester for app1, app2
	Example 3: Jack – Developer for app1

	Using Elastic Beanstalk with Amazon RDS
	Launching and connecting to an external Amazon RDS instance in a default VPC
	Launching and connecting to an external Amazon RDS instance in EC2 classic
	Storing the Amazon RDS credentials in AWS Secrets Manager
	Cleaning up an external Amazon RDS instance

	Using Elastic Beanstalk with Amazon S3
	Contents of the Elastic Beanstalk Amazon S3 bucket
	Deleting objects in the Elastic Beanstalk Amazon S3 bucket
	Deleting the Elastic Beanstalk Amazon S3 bucket

	Using Elastic Beanstalk with Amazon VPC
	Public VPC
	Public/private VPC
	Private VPC
	Running an Elastic Beanstalk environment in a private VPC

	Example: Launching an Elastic Beanstalk application in a VPC with bastion hosts
	Create a VPC with a public and private subnet
	Create and configure the bastion host security group
	Update the instance security group
	Create a bastion host

	Example: Launching an Elastic Beanstalk in a VPC with Amazon RDS
	Create a VPC with a public and private subnet
	Create a DB subnet group
	Deploy to Elastic Beanstalk
	Deploying with the Elastic Beanstalk console
	Deploying with the AWS toolkits, EB CLI, AWS CLI, or API

	Using Elastic Beanstalk with VPC endpoints
	Setting up a VPC endpoint for Elastic Beanstalk
	Setting up a VPC endpoint for enhanced health
	Using VPC endpoints in a private VPC
	Using endpoint policies to control access with VPC endpoints

	Configuring your development machine for use with Elastic Beanstalk
	Creating a project folder
	Setting up source control
	Configuring a remote repository
	Installing the EB CLI
	Installing the AWS CLI

	Using the Elastic Beanstalk command line interface (EB CLI)
	Install the EB CLI
	Install the EB CLI using setup scripts
	Manually install the EB CLI
	
	Compatibility notes
	Install the EB CLI
	Install Python, pip, and the EB CLI on Linux
	Install the EB CLI on macOS
	Install the EB CLI with homebrew
	Install Python, pip, and the EB CLI on macOS

	Install Python, pip, and the EB CLI on Windows
	Install the EB CLI in a virtual environment

	Configure the EB CLI
	Ignoring files using .ebignore
	Using named profiles
	Deploying an artifact instead of the project folder
	Configuration settings and precedence
	Instance metadata

	Managing Elastic Beanstalk environments with the EB CLI
	Eb create
	Eb status
	Eb health
	Eb events
	Eb logs
	Eb open
	Eb deploy
	Eb config
	Eb terminate

	Using the EB CLI with AWS CodeBuild
	Creating an application
	Building and deploying your application code

	Using the EB CLI with Git
	Associating Elastic Beanstalk environments with Git branches
	Deploying changes
	Using Git submodules
	Assigning Git tags to your application version

	Using the EB CLI with AWS CodeCommit
	Prerequisites
	Creating a CodeCommit repository with the EB CLI
	Deploying from your CodeCommit repository
	Configuring additional branches and environments
	Using an existing CodeCommit repository

	Using the EB CLI to monitor environment health
	Reading the output
	Interactive health view
	Interactive health view options

	Managing multiple Elastic Beanstalk environments as a group with the EB CLI
	Troubleshooting issues with the EB CLI
	Troubleshooting deployments

	EB CLI command reference
	eb abort
	Description
	Syntax
	Options
	Output
	Example

	eb appversion
	Description
	Syntax
	Options
	Using the command interactively
	Output
	Examples

	eb clone
	Description
	Syntax
	Options
	Output
	Example

	eb codesource
	Description
	Syntax
	Options
	Output
	Examples

	eb config
	Description
	Syntax
	Options
	Output
	Examples

	eb console
	Description
	Syntax
	Options

	eb create
	Description
	Syntax
	Options
	Output
	Examples

	eb deploy
	Description
	Syntax
	Options
	Output
	Example

	eb events
	Description
	Syntax
	Options
	Output
	Example

	eb health
	Description
	Syntax
	Options
	Output
	Example

	eb init
	Description
	Syntax
	Options
	CodeBuild support
	Output
	Example

	eb labs
	Description

	eb list
	Description
	Syntax
	Options
	Output
	Example 1
	Example 2

	eb local
	Description
	Syntax
	Options
	Output
	Examples

	eb logs
	Description
	Syntax
	Options
	Output
	Examples

	eb open
	Description
	Syntax
	Options
	Output

	eb platform
	Description
	Using eb platform for custom platforms
	Syntax
	Options
	Common options
	Eb platform create
	Options

	Eb platform delete
	Options

	Eb platform events
	Options

	Eb platform init
	Options

	Eb platform list
	Options

	Eb platform logs
	Options

	Eb platform status
	Options

	Eb platform use
	Options

	Using eb platform for environments
	Syntax
	Options
	Example 1
	Example 2
	Example 3

	eb printenv
	Description
	Syntax
	Options
	Output
	Example

	eb restore
	Description
	Syntax
	Options
	Output
	Example

	eb scale
	Description
	Syntax
	Options
	Output
	Example

	eb setenv
	Description
	Syntax
	Options
	Output
	Example

	eb ssh
	Description
	Syntax
	Options
	Output
	Example

	eb status
	Description
	Syntax
	Options
	Output
	Example

	eb swap
	Description
	Syntax
	Options
	Output
	Examples

	eb tags
	Description
	Syntax
	Options
	Output
	Examples

	eb terminate
	Description
	Syntax
	Options
	Output
	Example

	eb upgrade
	Description
	Syntax
	Options
	Output
	Example

	eb use
	Description
	Syntax
	Options

	Common options

	EB CLI 2.6 (retired)
	Differences from version 3 of EB CLI
	Migrating to EB CLI 3 and CodeCommit

	Elastic Beanstalk API command line interface (retired)
	Converting Elastic Beanstalk API CLI scripts

	AWS Elastic Beanstalk security
	Data protection in Elastic Beanstalk
	Protecting data using encryption
	Encryption in transit
	Encryption at rest

	Internetwork traffic privacy

	Identity and access management for Elastic Beanstalk
	AWS managed policies for AWS Elastic Beanstalk
	Elastic Beanstalk updates to AWS managed policies

	Logging and monitoring in Elastic Beanstalk
	Enhanced health reporting
	Amazon EC2 instance logs
	Environment notifications
	Amazon CloudWatch alarms
	AWS CloudTrail logs
	AWS X-Ray debugging

	Compliance validation for Elastic Beanstalk
	Resilience in Elastic Beanstalk
	Infrastructure security in Elastic Beanstalk
	Configuration and vulnerability analysis in Elastic Beanstalk
	Security best practices for Elastic Beanstalk
	Preventive security best practices
	Implement least privilege access
	Update your platforms regularly
	Enforce IMDSv2 on environment instances

	Detective security best practices
	Implement monitoring
	Enable AWS Config

	Troubleshooting
	Using AWS Systems Manager Elastic Beanstalk runbooks
	General guidance
	Categories
	Connectivity
	Environment creation and instance launches
	Deployments
	Health
	Configuration
	Troubleshooting Docker containers
	FAQ

	Elastic Beanstalk resources
	Sample applications

	Platform history
	Elastic Beanstalk custom platforms
	Custom platforms
	Creating a custom platform
	Using a sample custom platform
	Platform definition archive contents
	Custom platform hooks
	Packer instance cleanup
	Platform.yaml file format
	Tagging custom platform versions
	Adding tags during custom platform version creation
	Managing tags of an existing custom platform version

