
API Reference

Conductor Live

Version 3.22.0 and later

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Conductor Live API Reference

Conductor Live: API Reference

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Conductor Live API Reference

Table of Contents

About This Manual .. 1
Working with the API .. 2

The API Protocol ... 2
Entities, Attributes, Elements, Properties, Parameters .. 2

Requests .. 3
Request URLs ... 3
Header Content - Standard Elements .. 4
Header Content for User Authentication ... 5
Body Content ... 5
Encoding String Parameters in the URL Request ... 6
Versioning ... 6
Case Sensitivity of Names and Values .. 6
Boolean Values in Attributes .. 6
Arrays ... 6
Null Values .. 7

Using the API with User Authentication Enabled .. 7
Hashing the API Key ... 8
AuthCurl Scripts ... 8
Authentication Error Messages ... 9

Node Changes with SSL Enabled .. 10
“Clean” Requests .. 10
Responses ... 10

Content of Responses .. 10
Success Response .. 11
Error Response ... 11

IDs of Entities .. 11
Obtaining an ID ... 11
Multiple Identities ... 12
Uniqueness of IDs ... 12

Commands .. 13
Profiles .. 13
Channels ... 14
Channel Schedules ... 14
Bulk Tasks .. 15

Version 3.22.0 and later iii

Conductor Live API Reference

MPTS ... 16
Members of an MPTS .. 17
Nodes .. 18
Router ... 18
Router Inputs .. 19
Router Outputs ... 20
Redundancy Groups ... 21
Members of a Redundancy Group .. 21
Conductor Redundancy Groups .. 22
Members of a Conductor Redundancy Group .. 23
Pass Through to AWS Elemental Live .. 24

Passing Through to AWS Elemental Live ... 26
Passthrough of Live Event POST Commands ... 26

HTTP Request and Response ... 26
Example ... 29

Passthrough of Live Event GET Commands ... 30
HTTP Request and Response ... 30
Example ... 31

Passthrough of Live System Status .. 31
HTTP Request and Response ... 31
Example ... 32

Validating Your Generated XML ... 33
Working with the Cluster .. 34

Working with Profiles .. 34
Recommended Method for Working with Profiles .. 34
POST: Create a Profile ... 38
Modify a Profile .. 40
GET List: Get a List of Profiles ... 40
GET: Get the Attributes of a Profile ... 42
DELETE: Delete a Profile ... 43

Working with Channels ... 43
POST: Create a Channel .. 44
PUT: Modify the Attributes of a Channel .. 48
GET List: Get List of Channels ... 49
GET: Get the Attributes of a Channel .. 52
DELETE: Delete a Channel .. 54

Version 3.22.0 and later iv

Conductor Live API Reference

Channel Scheduling ... 54
CRON Syntax Summary ... 55
POST: Create a One-Time Schedule ... 58
POST: Create a Repeating Schedule ... 60
POST: Activate a Schedule .. 63
DELETE: Deactivate a Schedule ... 63
PUT: Update a Schedule ... 64
GET List: Get List of All Channel Schedules .. 65
GET: Get the Attributes of a Schedule ... 68
GET: Get Schedule Events ... 69
DELETE: Delete a Schedule ... 71

Performing Bulk Tasks on a Channel ... 72
POST Start: Start One or More Channels .. 72
POST Stop: Stop One or More Channels ... 74
Monitoring Bulk Tasks: GET List of Task Reports ... 75
Monitoring Bulk Tasks: GET One Task Report .. 79

Controlling Ad Avail on a Channel ... 82
POST Ad Avail State: Start or Stop Ad Avail on a Channel .. 82

Working with MPTS ... 83
POST: Create an MPTS .. 83
PUT: Modify the Attributes of an MPTS .. 95
GET List: Get a List of MPTS Outputs .. 95
GET: Get the Attributes of an MPTS Output .. 98
DELETE: Delete an MPTS Output .. 99
GET Status List: Get the Status of a List of MPTS Outputs ... 100
GET Status: Get the Status of an MPTS Output .. 101
GET Bitrate: Get the Bitrate of an MPTS Output ... 101
POST Start: Start an MPTS .. 105
DELETE Stop: Stop an MPTS .. 106
PUT: Swap Allocation .. 107

Working with Members of an MPTS .. 108
POST: Add an SPTS to an MPTS ... 109
PUT: Modify an SPTS Program .. 114
PUT: MPTS Channel Swap .. 115
GET List: Get All SPTS of an MPTS ... 122
GET: Get an SPTS Program .. 129

Version 3.22.0 and later v

Conductor Live API Reference

DELETE: Delete an SPTS Program .. 130
Monitoring Conductor Live ... 132

Managing Channels ... 132
Channel Status Elements .. 132
POST Channel Revert: Resetting the Channel .. 133

Querying Alerts and Messages ... 134
GET Alerts: Get a List of Alerts ... 134
GET Messages: Get a List of Messages .. 144
GET System Information: Get a List of System Details .. 150

Configuring the Cluster ... 155
Setting up Nodes ... 155

POST: Add a Node to the Cluster ... 155
GET List: Get a List of Nodes in the Cluster ... 157
GET: Get the Attributes of a Node ... 162
DELETE: Remove a Node from the Cluster ... 163

Setting Up Routers .. 164
POST: Create a Router .. 164
PUT: Modify a Router .. 167
GET List: Get a List of Routers .. 168
GET: Get Router Attributes ... 171
DELETE: Delete a Router ... 172

Setting Up Router Inputs ... 173
POST: Create a Router Input .. 173
PUT: Modify a Router Input ... 176
GET List: Get a List of Router Inputs ... 177
GET: Get Attributes of a Router Input ... 179
DELETE: Delete a Router Input .. 181

Setting Up Router Outputs ... 181
POST: Create a Router Output .. 182
PUT: Modify a Router Output .. 185
GET List: Get Router Output List .. 186
GET: Get Attributes of a Router Output .. 189
DELETE: Delete a Router Output .. 190

Setting Up Redundancy Groups ... 190
POST: Create a Redundancy Group .. 190
PUT: Modify a Redundancy Group .. 192

Version 3.22.0 and later vi

Conductor Live API Reference

GET List: Get a List of Redundancy Groups .. 193
GET: Get Attributes of a Redundancy Group .. 195
DELETE: Delete a Redundancy Group .. 196

Setting Up Members of a Redundancy Group ... 196
POST: Add a Node to a Redundancy Group ... 197
PUT: Change Role of a Member of a Redundancy Group .. 200
GET List: Get a List of Redundancy Group Members .. 201
GET: Get the Attributes of a Redundancy Group Member ... 204
DELETE: Remove a Node from a Redundancy Group ... 205
POST Initiate Failover .. 205

Setting Up a Conductor Redundancy Group .. 206
POST: Create a Conductor Redundancy Group .. 206
PUT: Modify a Conductor Redundancy Group .. 209
GET: Get the Attributes of the Conductor Redundancy Group ... 210
DELETE: Delete a Conductor Redundancy Group .. 212
POST Enable: Enable Conductor Redundancy Group ... 212
DELETE Disable: Disable Conductor Redundancy Group .. 214

Setting Up Members of a Conductor Redundancy Group ... 216
POST: Add a Node to a Conductor Redundancy Groups .. 216
PUT: Modify a Member of a Conductor Redundancy Group ... 218
GET List: Get a List of Conductor Redundancy Group Members .. 218
GET: Get the Attributes of a Conductor Redundancy Group Member 220
DELETE: Remove a Node from the Conductor Redundancy Group .. 221

Backing Up the Conductor Database ... 222
PUT: Modify Database Backup Settings .. 222
POST: Backup Database Now .. 223

Document History .. 225

Version 3.22.0 and later vii

Conductor Live API Reference

About This Manual

This guide is intended for operators who will set up and create nodes, redundancy groups,
channels, and profiles using the Conductor Live REST API and for operators who run and manage
activity on all the AWS Elemental Live and AWS Elemental Statmux nodes in a cluster using the
REST API.

It is assumed that you are familiar with:

• Working with a REST API and have selected a REST client to use.

• The Conductor Live constructs. If you are not, see the AWS Elemental Conductor Live User Guide.

Related Documentation

For additional information, see the following:

• Conductor Live User Guide

• AWS Elemental Live User and API Guide

• AWS Elemental Statmux User Guide

Version 3.22.0 and later 1

https://docs.aws.amazon.com/elemental-cl3/latest/ug/

Conductor Live API Reference

Working with the API

Topics

• The API Protocol

• Requests

• Using the API with User Authentication Enabled

• Node Changes with SSL Enabled

• “Clean” Requests

• Responses

• IDs of Entities

The API Protocol

The Conductor Live API can be accessed using HTTP or HTTPS. The API follows the REST
architectural framework. In accordance with REST guidelines, the API exposes four types of
operations based on the requesting HTTP(S) method:

• POST

• GET

• PUT

• DELETE

Entities, Attributes, Elements, Properties, Parameters

The entities that the Conductor Live API works with are:

• Redundancy groups

• Channels

• Nodes

• Profiles

• Schedules

• MPTS outputs

The API Protocol Version 3.22.0 and later 2

Conductor Live API Reference

• MPTS members (SPTS programs)

• Routers

These entities have attributes in Conductor Live . In the API, these attributes are passed in the XML
body of the request or response. They are passed as either:

• XML elements (if they are read-write), or

• Properties of an XML element (if they are read-only).

API requests may have parameters, which are presented in angle brackets. For example, <ID of
redundancy group> is a parameter in this POST request:

/redundancy_groups/<ID of redundancy group>/members

Requests

Requests consist of a URL, a header, and a body.

Topics

• Request URLs

• Header Content - Standard Elements

• Header Content for User Authentication

• Body Content

• Encoding String Parameters in the URL Request

• Versioning

• Case Sensitivity of Names and Values

• Boolean Values in Attributes

• Arrays

• Null Values

Request URLs

The request consists of the operation, the IP address of the Conductor Live node, and resources in a
parent/child structure. For example:

Requests Version 3.22.0 and later 3

Conductor Live API Reference

POST http://198.51.100.0/redundancy_groups/3/members

In this example, the URL refers to members of the third redundancy group. That is, “redundancy
groups” is the parent of each redundancy group, “3” is the ID of a particular redundancy group.
The redundancy group “3” is the parent of “members”, which is the group of all members of the
redundancy group 3. This POST command would contain an xml body as a child of “members” that
would represent a particular member of this group.

Specifying Pagination of the Response

For responses that include large amounts of data, use pagination in the request. When you do so,
your data is returned grouped into “pages” with the specified number of elements per page.

To use pagination, append your request with “?page=x&per_page=y”, where x is the number of the
page you want to see and y is the number of items shown per page. For example:

GET http://198.51.100.0/channels?page=2&per_page=15

will return page 2 of the list of channels presented at 15 channels per page. In this example,
198.51.100.0 is the IP address of the Conductor Live system that is managing the channels.

If you include just “page”, the system will use the default of 20 items per page. If you include just
“per_page”, the system with use the default of 1 for page. If you do not include either, the system
will return all available items at once.

Note

Data returned is not necessarily ordered chronologically. Therefore, do not use pagination
as a filter to locate recent data.

Header Content - Standard Elements

For All Requests

• Accept: Set to application/xml

For PUT and POST Requests

Header Content - Standard Elements Version 3.22.0 and later 4

Conductor Live API Reference

• Accept: Set to application/xml

• Content-Type: Set to application/xml

When POSTing xml for a profile originally created with an earlier version of Conductor Live , set
content-type to application/vnd.elemental+xml;version=n.n.n, where n.n.n is the number of the
Conductor Live version used to create the profile. For example, if the profile was created with
Conductor Live version 3.2.1, use:

content-type: application/vnd.elemental+xml;version=3.2.1

For more information on using profiles created with earlier software versions, see the section
called “Versioning”.

Header Content for User Authentication

If your cluster deployment is configured for user authentication (users must log into Conductor
Live), then the header must also include:

• X-Auth-User header.

• X-Auth-Expires header (optional).

• X-Auth-Key header includes the API key of the individual user.

For more information, see the section called “Using the API with User Authentication Enabled”.

Body Content

The body, if required, consists of XML content. The body is:

• Required for most POST requests.

• Required for all PUT requests.

• Not required for a GET or DELETE.

Header Content for User Authentication Version 3.22.0 and later 5

Conductor Live API Reference

Encoding String Parameters in the URL Request

Note

All string parameters in the URL request must be UTF-8 encoded. String parameters
containing non-ASCII characters must be URL-encoded.

Versioning

Compatibility between XML and Conductor Live Client

Starting with version 3.0.3, Conductor Live can accept XML that was generated using a software
release that is up to 2 versions older.

When submitting a request, specify the version of the XML in the header of the request; see above.
When the version is included, the contents of the XML is checked:

• If there are elements that are required in the current version of the client and they are not in the
XML, the client adds them and assigns the default value.

• If there are elements that are not understood by the current version of Conductor Live, AWS
Elemental Live, or AWS Elemental Statmux, the request is rejected.

Compatibility between Conductor Live and AWS Elemental Live/Statmux

Each Conductor Live version is compatible with a specific range of AWS Elemental Live or AWS
Elemental Statmux versions. For example, an AWS Conductor Live version 3.6.x is compatible with
AWS Elemental Live API version 2.13.x for any x.

Case Sensitivity of Names and Values

The names and the values of all Conductor Live attributes are case sensitive.

Boolean Values in Attributes

Boolean values in attributes must be entered as “true” or “false”. 0 and 1 are not acceptable values.

Arrays

In a POST or PUT, an array must include the property type="array". For example:

Encoding String Parameters in the URL Request Version 3.22.0 and later 6

Conductor Live API Reference

<?xml version="1.0" encoding="UTF-8"?>
<hosts type="array">
 <host>10.4.136.15</host>
 <host>10.4.136.[90-92]</host>
</hosts>

Null Values

A null value is not the same as an empty string. To set a null value for an attribute, enter it as
follows:

<error_clear_time nil="true"/>

Using the API with User Authentication Enabled

Your cluster deployment is configured for local or PAM user authentication (users must provide
valid credentials to access Conductor Live). Check with the person who performed the initial
configuration of the cluster, or see the AWS Elemental Conductor Live Configuration Guide.

If authentication is enabled, then the header of each request must also include the following:

Header Description

X-Auth-User The username of the user who is using the API.
Note that the user’s password is not included
in the header.

X-Auth-Expires The date and time at which the individual
REST request expires. Enter the date in Unix
time (POSIX or Epoch time).

The recommended value is 30 seconds in the
future, but, if the client clock and Conductor
node clock are not completely in sync, you
may want to make adjustments to accommoda
te the difference.

X-Auth-Key An MD5 hash of the API key for the user who
is using the API.

Null Values Version 3.22.0 and later 7

https://docs.aws.amazon.com/elemental-cl3/latest/configguide/

Conductor Live API Reference

Header Description

An administrator generates this key as follows:

• Log on via the web interface and go to
Settings > User Profile.

• Click the Reset API Key (key icon) for the
applicable users.

• Provide the individual user with a key, for
example, via email.

For information on hashing the key, see the
next section.

Topics

• Hashing the API Key

• AuthCurl Scripts

• Authentication Error Messages

Hashing the API Key

Construct the X-Auth-Key header as follows:

md5(api_key + md5(url + X-Auth-User + api_key + X-Auth-Expires))

• The + operator indicates string concatenation without any delimiters.

• Enter each parameter in this expression as a string.

• The url parameter is the path portion of the request URL minus any query parameters and
without any API version prefix. It must not have a trailing slash.

The hash is valid for a single access: it is not persisted.

AuthCurl Scripts

Two helper scripts are available to help construct these headers:

Hashing the API Key Version 3.22.0 and later 8

Conductor Live API Reference

• auth_curl.rb

• auth_curl.pl

These scripts are located in the following directory.

/opt/elemental_se/web/public/authentication_scripts

Authentication Error Messages

The following errors describe why authentication requests can fail.

Error Message Reason

X-Auth-Login is required. The request headers are missing “X-Auth-L
ogin” or the values are malformed.

X-Auth-Key is required. The request headers are missing “X-Auth-Key”
or the values are malformed.

X-Auth-Expires is required. The request headers are missing “X-Auth-E
xpires” or the values are malformed.

X-Auth-Login is invalid. Invalid user or the user exists but the role is
invalid.

X-Auth-Key is invalid. The key is not valid.

To troubleshoot:

• Double-check the token generation.

• Ensure UTC Time is used.

• Verify the endpoint URL.

• Verify the api-key.

X-Auth-Expires is invalid. The “expires” value did not pass validation.

To troubleshoot:

• Ensure UTC Time is used.

Authentication Error Messages Version 3.22.0 and later 9

Conductor Live API Reference

Error Message Reason

• Confirm that the server and client time is in
sync with an NTP server.

• Increase the delta value (default is 30ms) on
the client when issuing the request.

Node Changes with SSL Enabled

When SSL (HTTPS) is enabled, the --https command must be used whenever a node is
reconfigured. Without the command, SSL is disabled.

Throughout this guide, use https:// instead of http:// if you have SSL enabled.

“Clean” Requests

A quick way to prepare the body for a new POST is to do a GET on an existing entity,
and include the clean parameter in the request.With this parameter set to true, the GET
response omits the <id> elements and other elements such as <status>, <service_name>, and
<service_provider_name> that do not apply to a POST.

1. Append ?clean=true to the GET command. For example:

GET http://101.4.136.95/profiles/2.xml?clean=true

2. Modify the response as desired and paste the revision in the body of the desired POST request.

Responses

Content of Responses

Responses consist of a header and a body.

The header always contains two elements:

•

• Content-Type: Set to application/xml.

Node Changes with SSL Enabled Version 3.22.0 and later 10

Conductor Live API Reference

• Accept: Set to application/xml. For PUSH and POST requests only

• The body consists of XML content. The body contains:

• Unsuccessful request: a description of the error.

• Successful POST or PUT request: the ID of the entity that was created or changed and a
summary.

• Successful GET request: the requested content.

• Successful DELETE request: present but empty.

Success Response

If a request is valid, Conductor Live returns the appropriate response:

• For a POST, PUT or DELETE: A 200 OK response. The body may be empty or may contain XML
content.

• For a GET: A 200 OK response with XML content in the body.

Error Response

• If a request is not valid (for example, the request or the body are badly formatted), Conductor
Live returns the appropriate HTTP response, typically an error in the 4xx or 5xx range.

• If the URL of the request is invalid (for example, the IP address is wrong), then Conductor Live
returns a 404 response.

• If the request is valid (Conductor Live understands it), but the request cannot be fulfilled for
some reason, then Conductor Live returns a 422 error.

IDs of Entities

When an entity is created, it is automatically assigned an ID that is stored in the <id></id> element.

These unique IDs are typically shown on the Conductor Live web interface under the “ID” column.

Obtaining an ID

The ID is shown in the POST response and can be obtained using GET List. To obtain an ID:

• Obtain a list of IDs for an entity using a GET request.

Success Response Version 3.22.0 and later 11

Conductor Live API Reference

• Parse the response for the desired ID by looking for the ID that corresponds to a piece of data
that you specified, such as the entity name.

The ID must be passed in any PUT, GET, and DELETE. In general, you cannot identify an entity using
the name element.

Multiple Identities

Conductor systems and worker nodes within a cluster are assigned a node ID. Redundancy group
membership assigns a redundancy member ID. It is important that you not conflate the node ID
with the redundancy member ID; they are different IDs.

Any element that is a grouping of attributes is usually assigned a unique ID. The presence of this
ID does not mean you can query this grouping by passing in this ID. You can only query the entities
listed in the section called “Entities, Attributes, Elements, Properties, Parameters”.

Uniqueness of IDs

Each type of entity has its own numbering scheme. For example, redundancy groups are numbered
from 1 and channels are numbered separately, starting from 1.

Numbering increments indefinitely. If an entity is deleted, its number is not recycled.

Multiple Identities Version 3.22.0 and later 12

Conductor Live API Reference

Conductor Live Commands

Topics

• Profiles

• Channels

• Channel Schedules

• Bulk Tasks

• MPTS

• Members of an MPTS

• Nodes

• Router

• Router Inputs

• Router Outputs

• Redundancy Groups

• Members of a Redundancy Group

• Conductor Redundancy Groups

• Members of a Conductor Redundancy Group

• Pass Through to AWS Elemental Live

Profiles

Nickname Action Signature Description

POST Profile POST /profiles Create a profile.

GET Profile List GET /profiles Get the list of
profiles.

GET Profile GET /profiles/<ID of
profile>

Get the attributes of
the specified profile.

DELETE Profile DELETE /profiles/<ID of
profile>

Delete the specified
profile.

Profiles Version 3.22.0 and later 13

Conductor Live API Reference

Channels

Nickname Action Signature Description

POST Channel POST /channels Create a new channel.

PUT Channel PUT /channels/<ID of
channel>

Modify the attribute
s of the specified
channel.

GET Channel List GET /channels Get the list of
channels.

GET Channel GET /channels/<ID of
channel>

Get the attributes of
the specified channel.

DELETE Channel DELETE /channels/<ID of
channel>

Delete the specified
channel.

Channel Schedules

Nickname Action Signature Description

POST POST /channels/<channel
ID>/schedules

Create a repeating or
one-time schedule.

POST Activate
Schedule

POST /channels/<channel
ID>/schedules/<sch
edule ID>/active

Activate a schedule.

DELETE Deactivate
Schedule

DELETE /channels/<channel
ID>/schedules/<sch
edule ID>/active

Deactivate a
schedule.

PUT Update Schedule PUT /channels/<channel
ID>/schedules/<sch
edule ID>

Modify the attribute
s of the specified
schedule.

Channels Version 3.22.0 and later 14

Conductor Live API Reference

Nickname Action Signature Description

GET Schedule List GET /channels/<channel
ID>/schedules

Get the list of all
schedules for a
channel.

GET Schedule GET /channels/<channel
ID>/schedules/<sch
edule ID>

Get the attribute
s of the specified
schedule.

GET Schedule Events
(All)

GET /events Get all schedule
events for the cluster.

GET Schedule Events

(One Schedule)

GET /channels/<channel
ID>/schedules/<sch
edule ID>/events

Get all schedule
events generated
from one schedule.

DELETE Delete
Schedule

DELETE /channels/<channel
ID>/schedules/<sch
edule ID>

Delete the specified
schedule.

Bulk Tasks

Nickname Action Signature Description

POST Start Channel POST /channels/start Start one or more
channels.

POST Stop Channel POST /channels/stop Stop one or more
channels.

GET Task Report List GET /task_reports/<ID of
report>

Get the list of task
reports.

GET Task Report GET /task_reports/<ID of
report>

Get the specified task
report.

Bulk Tasks Version 3.22.0 and later 15

Conductor Live API Reference

MPTS

Nickname Action Signature Description

POST MPTS POST /mpts Create an MPTS
output and optionall
y specify its Single-
Protocol Transport
Service (SPTS)
programs.

PUT MPTS PUT /mpts/<ID of MPTS> Change the attribute
s and/or SPTS
programs of the
specified MPTS
output.

GET MPTS List GET /mpts Get the list of MPTS
outputs.

GET MPTS GET /mpts/<ID of MPTS> Get the attributes
and SPTS programs
of one MPTS output.

DELETE MPTS DELETE /mpts/<ID of MPTS> Delete the specified
MPTS output.

GET MPTS Status List GET /mpts/statuses Get the status of all
MPTS outputs.

GET MPTS Status GET /mpts/<ID of MPTS>/
status

Get the status of
the specified MPTS
output.

GET MPTS Bitrate GET /mpts/<ID of MPTS>/
stats

Get bitrate informati
on for the specified
MPTS output.

MPTS Version 3.22.0 and later 16

Conductor Live API Reference

Nickname Action Signature Description

POST Start MPTS POST /mpts/<ID of mpts>/
mux

Start an MPTS
output.

DELETE Stop MPTS GET /mpts/<ID of mpts>/
mux

Stop an MPTS output.

PUT Swap Allocation PUT /mpts/swap_allocat
ion_priority

Swap the allocatio
n values (allocati
on_message_priorit
y element) in two
related MPTS
outputs.

Members of an MPTS

Nickname Action Signature Description

POST MPTS Member POST /mpts/mpts_id/mpts
_members

Add an SPTS to
the specified MPTS
output.

PUT MPTS Member PUT /mpts/mpts_id/
mpts_members/
:<mpts_member_id>

Change the attribute
s of the specified
SPTS program in
the specified MPTS
output.

GET MPTS Member
List

GET /mpts/mpts_id/mpts
_members

Get the list of all the
SPTS programs in
the specified MPTS
output.

GET MPTS Member GET /mpts/mpts_id/
mpts_members/
:<mpts_member_id>

Get the specified
SPTS program from

Members of an MPTS Version 3.22.0 and later 17

Conductor Live API Reference

Nickname Action Signature Description

the specified MPTS
output.

DELETE MPTS
Member

DELETE /mpts/mpts_id/
mpts_members/
:<mpts_member_id>

Delete the specified
SPTS program from
the specified MPTS
output.

Nodes

Nickname Action Signature Description

POST Node POST /nodes Add a node to the
cluster.

GET Node List GET /nodes Get the list of the
nodes in the cluster.

GET Node GET /nodes/<ID of node> Get the attributes on
the specified node.

GET Node Status GET /nodes/<ID of
node>/system_status

Get the status of the
specified node.

DELETE Node DELETE /nodes/<ID of node> Remove the specified
node from the
cluster.

Router

Nickname Action Signature Description

POST Router POST /routers Create a new router.

Nodes Version 3.22.0 and later 18

Conductor Live API Reference

Nickname Action Signature Description

PUT Router PUT /routers/<ID of
router>

Modify the attribute
s of the specified
router.

GET Router List GET /routers Get the list of routers.

GET Router GET /routers/<ID of
router>

Get the attributes of
the specified router.

DELETE Router DELETE /routers/<ID of
router>

Delete the specified
router.

Router Inputs

Nickname Action Signature Description

POST Router Input POST /routers/<ID of
router>/inputs

Create a new input
for the specified
router.

PUT Router Input PUT /routers/<ID of
router>/inputs/<ID of
input>

Modify the attribute
s of the specified
input on the specified
router.

GET Router Input List GET /routers/<ID of
router>/inputs

Get the list of inputs
for the specified
router.

GET Router Input GET /routers/<ID of
router>/inputs/<ID of
input>

Get the attributes of
the specified input on
the specified router.

Router Inputs Version 3.22.0 and later 19

Conductor Live API Reference

Nickname Action Signature Description

DELETE Router Input DELETE /routers/<ID of
router>/inputs/<ID of
input>

Delete the specified
input on the specified
router

Router Outputs

Nickname Action Signature Description

POST Router Output POST /routers/<ID of
router>/outputs

Create a new output
for the specified
router.

PUT Router Output PUT /routers/<ID of
router>/outputs/<ID
of output>

Modify the attribute
s of the specified
output on the
specified router.

GET Router Output
List

GET /routers/<ID of
router>/outputs

Get the list of
outputs for the
specified router.

GET Router Output GET /routers/<ID of
router>/outputs/<ID
of output>

Get the attributes of
the specified output
on the specified
router.

DELETE Router
Output

DELETE /routers/<ID of
router>/outputs/<ID
of output>

Delete the specified
output on the
specified router

Router Outputs Version 3.22.0 and later 20

Conductor Live API Reference

Redundancy Groups

Nickname Action Signature Description

POST Group POST /redundancy_groups Create a new
redundancy group.

PUT Group PUT /redundancy_groups
/<ID of redundancy
group>

Modify the specified
redundancy group.

GET Group List GET /redundancy_groups Get the list of
redundancy groups.

GET Group GET /redundancy_groups
/<ID of redundancy
group>

Get the attribute
s of the specified
redundancy group.

DELETE Group DELETE /redundancy_groups
/<ID of redundancy
group>

Delete the redundanc
y group that has the
specified ID.

Members of a Redundancy Group

Nickname Action Signature Description

POST Member POST /redundancy_groups
/<ID of redundancy
group>/members

Add a new node
to the specified
redundancy group.

PUT Member PUT /redundancy_groups
/<ID of redundancy
group>/members/
<ID of member
node>

Modify the attribute
s of the specified
node in the specified
redundancy group.

Redundancy Groups Version 3.22.0 and later 21

Conductor Live API Reference

Nickname Action Signature Description

GET Member List GET /redundancy_groups
/<ID of redundancy
group>/members

Get the list of the
nodes in the specified
redundancy group.

GET Member GET /redundancy_groups
/<ID of redundancy
group>/members/
<ID of member
node>

Get the attribute
s of the specified
node in the specified
redundancy group.

DELETE Member DELETE /redundancy_groups
/<ID of redundancy
group>/members/
<ID of member
node>

Delete the node
with the specified ID
from the specified
redundancy group.

POST Initiate Failover POST /nodes/<ID of
node>/redundancy

Test redundancy
set up by initiatin
g failover of the
specified node.

Conductor Redundancy Groups

Nickname Action Signature Description

POST Group POST /conductor_redunda
ncy_groups

Create a new
Conductor redundanc
y group.

PUT Group PUT /conductor_redunda
ncy_groups/<ID of
group>

Modify the specified
Conductor redundanc
y group.

Conductor Redundancy Groups Version 3.22.0 and later 22

Conductor Live API Reference

Nickname Action Signature Description

GET Group List GET /conductor_redunda
ncy_groups

Get the list of
Conductor redundanc
y groups.

GET Group GET /conductor_redunda
ncy_groups/<ID of
group>

Get the attribute
s of the specified
Conductor redundanc
y group.

DELETE Group DELETE /conductor_redunda
ncy_groups/<ID of
group>

Delete the Conductor
redundancy group
that has the specified
ID.

POST Enable Group POST conductor_
redundancy_groups/
<ID of group>/enable

Enable redundanc
y on the two
Conductor nodes
in the Conductor
redundancy group.

DELETE Disable
Group

DELETE conductor_
redundancy_groups/
<ID of group>/di
sable

Disable redundanc
y on the Conductor
redundancy group.

Members of a Conductor Redundancy Group

Nickname Action Signature Description

POST Member POST /conductor_redunda
ncy_groups/

<ID of group>/me
mbers

Add a new node
to the specified
Conductor redundanc
y group.

Members of a Conductor Redundancy Group Version 3.22.0 and later 23

Conductor Live API Reference

Nickname Action Signature Description

GET Member List GET /conductor_redunda
ncy_groups/

<ID of group>/me
mbers

Get the list of the
nodes in the specified
Conductor redundanc
y group.

GET Member GET /conductor_redunda
ncy_groups/

<ID of group>/
members/<ID of
member node>

Get the attribute
s of the specified
node in the specified
Conductor redundanc
y group.

DELETE Member DELETE /conductor_redunda
ncy_groups/

<ID of group>/
members/<ID of
member node>

Delete the node
with the specified ID
from the specified
Conductor redundanc
y group.

GET Alerts GET /alerts Get a list of the alerts
that have occurred.

GET Messages GET /messages Get a list of the
messages that have
occurred.

Pass Through to AWS Elemental Live

Nickname Action Signature Description

POST Live action POST http://<Conductor IP
address>/channels/
<ID of channel>/
live_events/<action>

Pass an AWS
Elemental Live API
event command to

Pass Through to AWS Elemental Live Version 3.22.0 and later 24

Conductor Live API Reference

Nickname Action Signature Description

the Live node via the
Conductor Live API.

GET System Status GET http://<Conductor
IP address>/nodes/
<ID of node>/sys
tem_status

Get status informati
on on an AWS
Elemental Live node
in the cluster.

GET Inputs GET http://<Conductor IP
address> /channels
/<ID of channel>/
live_events/inputs

Get the ID of an
event input.

Pass Through to AWS Elemental Live Version 3.22.0 and later 25

Conductor Live API Reference

Passing Through to AWS Elemental Live

You can use the Conductor Live API to submit some AWS Elemental Live API commands to an AWS
Elemental Live node being controlled by this Conductor node.

Topics

• Passthrough of Live Event POST Commands

• Passthrough of Live Event GET Commands

• Passthrough of Live System Status

Passthrough of Live Event POST Commands

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/channels/<ID of channel>/live_events/<action>

where:

• ID of channel is the ID of a channel known to the Conductor Live API.

• /live_events/<action> is the command from the AWS Elemental Live API. See the table below for
a complete list of commands.

When the command is submitted, the Conductor Live API determines the Live event that
corresponds to the Conductor Live channel and then submits the appropriately formed command
to the Live API.

Action Signature in AWS Elemental
Live

Signature in Conductor Live

POST /live_events/<id>/activate_
input

/channels/<ID of channel>/
live_events/activate_input

Passthrough of Live Event POST Commands Version 3.22.0 and later 26

Conductor Live API Reference

Action Signature in AWS Elemental
Live

Signature in Conductor Live

POST /live_events/<id>/adjust_au
dio_gain

/channels/<ID of channel>/
live_events/adjust_audio_ga
in

POST /live_events/<id>/avail_ima
ge

/channels/<ID of channel>/
live_events/avail_image

POST /live_events/<id>/blackout_
image

/channels/<ID of channel>/
live_events/blackout_image

POST /live_events/<id>/bulk_meta
data

/channels/<ID of channel>/
live_events/bulk_metadata

POST /live_events/<id>/cue_point /channels/<ID of channel>/
live_events/cue_point

POST /live_events/<id>/motion_im
age_inserter

/channels/<ID of channel>/
live_events/motion_image_in
serter

POST /live_events/<id>/mute_audi
o

/channels/<ID of channel>/
live_events/mute_audio

POST /live_events/<id>/unmute_au
dio

/channels/<ID of channel>/
live_events/unmute_audio

POST /live_events/<id>/pause_out
put

/channels/<ID of channel>/
live_events/pause_output

POST /live_events/<id>/unpause_o
utput

/channels/<ID of channel>/
live_events/unpause_output

POST /live_events/<id>/pause_out
put_group

/channels/<ID of channel>/
live_events/pause_output_gr
oup

HTTP Request and Response Version 3.22.0 and later 27

Conductor Live API Reference

Action Signature in AWS Elemental
Live

Signature in Conductor Live

POST /live_events/<id>/unpause_o
utput_group

/channels/<ID of channel>/
live_events/unpause_output_
group

POST /live_events/<id>/private_m
etadata

/channels/<ID of channel>/
live_events/private_metadata

POST /live_events/<id>/reset_vid
eo_buffer_stats

/channels/<ID of channel>/
live_events/reset_video_buf
fer_stats

POST /live_events/<id>/rollover_
output

/channels/<ID of channel>/
live_events/rollover_output

POST /live_events/<id>/start_out
put

/channels/<ID of channel>/
live_events/start_output

POST /live_events/<id>/start_out
put_group

/channels/<ID of channel>/
live_events/start_output_gr
oup

POST /live_events/<id>/stop_outp
ut

/channels/<ID of channel>/
live_events/stop_output

POST /live_events/<id>/stop_outp
ut_group

/channels/<ID of channel>/
live_events/stop_output_gro
up

POST /live_events/<id>/time_signal /channels/<ID of channel>/
live_events/time_signal

POST /live_events/<id>/timed_met
adata

/channels/<ID of channel>/
live_events/timed_metadata

POST /live_events/<id>/image_ins
erter

/channels/<ID of channel>/
live_events/image_inserter

HTTP Request and Response Version 3.22.0 and later 28

Conductor Live API Reference

Action Signature in AWS Elemental
Live

Signature in Conductor Live

POST /live_events/<id>/image_ins
erter/input

/channels/<ID of channel>/
live_events/image_inserter/
input

POST /live_events/<id>/prepare_i
nput

/channels/<ID of channel>/
live_events/prepare_input

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

Include a request body only if the original AWS Elemental Live command includes a body.Format
the body in exactly the same way.

Response

The response repeats back the response received from the Live API, exactly as received from that
API.

Example

AWS Elemental Live REST call:

POST http://<Live IP address>/live_events/<ID of event>/mute_audio

Conductor Live passthrough of this call:

POST http://<Conductor IP address>/channels/3/live_events/mute_audio

Example Version 3.22.0 and later 29

Conductor Live API Reference

Passthrough of Live Event GET Commands

HTTP Request and Response

Request URL

GET http://<Conductor IP address> /channels/<ID of channel>/live_events/<action>

where:

• ID of channel is the ID of a channel known to the Conductor Live API.

• /live_events/<action> is the command from the AWS Elemental Live API. See below for a list.

When the command is submitted, the Conductor Live API determines the Live event that
corresponds to the Conductor Live channel, then submits the appropriately formed command to
the Live API.

Action Signature in AWS Elemental
Live

Signature in Conductor Live

GET /live_events/<id>/inputs /channels/<ID of channel>/
live_events/inputs

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

Include a body only if the original AWS Elemental Live command includes a body. Format the body
in exactly the same way.

Passthrough of Live Event GET Commands Version 3.22.0 and later 30

Conductor Live API Reference

Response

The response repeats back the response received from the Live API, exactly as received from that
API.

Example

AWS Elemental Live REST call:

GET http:/live_events/13/inputs

Conductor Live passthrough of this call:

GET http://192.0.2.16/channels/13/live_events/inputs

Passthrough of Live System Status

You can pass through a request for the status of an AWS Elemental Live system within the
Conductor cluster as well. This passthrough command is structured slightly differently from a
live_event command.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/nodes/<ID of node>/system_status

where <ID of node> is the ID of the node as assigned by Conductor Live.

When the command is submitted, the Conductor Live API queries the appropriate AWS Elemental
Live node and returns the system status as reported by that node.

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Example Version 3.22.0 and later 31

Conductor Live API Reference

Request Body

There is no body in the system_status command.

Response

The response repeats back the response received from the Live API, exactly as received from that
API.

Example

GET http://198.51.100.0/nodes/13/system_status

Example Version 3.22.0 and later 32

Conductor Live API Reference

Validating Your Generated XML

If you have written a script to automatically generate your profiles in xml, validate your output as
follows.

To validate your generated XML

1. Generate a profile from your code and save it in your current directory.

2. Copy this .xsd file into your current directory: /opt/elemental_se/web/public/schema/
Live247Profile.xsd.

3. Run the following command against your generated profile:

xmllint --sax -noout -valid --schema Live247Profile.xsd <your xml filename>

The system returns a response indicating whether the profile does or does not validate.

Version 3.22.0 and later 33

Conductor Live API Reference

Working with the Cluster

The entities in this chapter are those that you work with “in production”, in order to set up
Conductor Live to control the worker nodes and in order to instruct the worker nodes to process
video. For background information on these entities, see the AWS Elemental Conductor Live User
Guide.

Topics

• Working with Profiles

• Working with Channels

• Channel Scheduling

• Performing Bulk Tasks on a Channel

• Controlling Ad Avail on a Channel

• Working with MPTS

• Working with Members of an MPTS

Working with Profiles

Topics

• Recommended Method for Working with Profiles

• POST: Create a Profile

• Modify a Profile

• GET List: Get a List of Profiles

• GET: Get the Attributes of a Profile

• DELETE: Delete a Profile

Recommended Method for Working with Profiles

The body of a POST or PUT profile request can contain a lot of elements (attributes of the profile).
We recommend that you follow the procedures in this section to create the body.

Working with Profiles Version 3.22.0 and later 34

https://docs.aws.amazon.com/elemental-cl3/latest/ug/
https://docs.aws.amazon.com/elemental-cl3/latest/ug/

Conductor Live API Reference

Create a Profile Base

1. Use the Conductor Live web interface to create a profile that contains most of the content you
want:

• The desired inputs, including the desired number and types of video, audio, and caption
streams as well as the desired hot backup fields.

• The desired output groups.

• Within each output group, the desired outputs.

• Within each output, the desired video, audio and captioning.

Give the profile a descriptive name, perhaps including the term “template” and including a
description of the inputs, outputs, codecs used, and so on.

See the AWS Elemental Conductor Live User Guide for information on the contents of a profile.

2. Do a GET Profile List and make a note of the ID for this profile.

Create a Template

1. Use the GET Profile command to get this profile with the clean parameter set to true. For
example, to get the profile that has the ID 2, use this command.

GET http://198.51.100.0/profiles/2.xml?clean=true

The response removes the ID, which makes it valid for re-use in a POST or PUT.

2. Inspect the XML document that is returned. You will notice that it is structured as shown
below.Make sure that it has all the information that you want in the template.

3. You can now store this XML as a template and re-use it in the body of a POST.

Re-use the Template

Templates can be used for current version of Conductor Live up to two major versions back.
When the profile is uploaded, it is migrated to the current version with field selections and values
maintained.

1. To re-use the template, you must:

• Change the <name>. This name must be unique.

Recommended Method for Working with Profiles Version 3.22.0 and later 35

https://docs.aws.amazon.com/elemental-cl3/latest/ug/

Conductor Live API Reference

• Change the <permalink>. This must be the <name> converted to lowercase and with spaces
converted to underscores. For example, if the <name> is “Profile A”, then the <permalink>
must be “profile_a”.

• If you are on version 3.2 or higher, you must enter default values for all channel parameters.
For more information, see the section called “POST: Create a Profile”.

2. Change any other elements, as desired. Include this XML in the body of a POST or PUT request.
For more information, see the section called “POST: Create a Profile”.

XML Structure of a Profile

<profile href=> //information about the profile and Conductor Live product and version
 <name>aa</name>
 <permalink>bb</permalink>
 <description>cc</description>
 <input>
 .
 .
 .
 <network_input>
 .
 .
 .
 </network_input>
 <video_selector> //one or more
 .
 .
 .
 </video_selector>
 <audio_selector> // one or more
 .
 .
 .
 </audio_selector>
 .
 .
 .
 <caption_selector> // zero or more
 .
 .
 .
 </caption_selector>

Recommended Method for Working with Profiles Version 3.22.0 and later 36

Conductor Live API Reference

 .
 .
 .
 <stream_assembly> //one or more
 <video_description>
 .
 .
 .
 <h264_settings> //where h264 could be the name of any codec
 .
 .
 .
 </h264_settings>
 .
 .
 .
 </video_description>
 <audio_description>
 .
 .
 .
 <aac_settings> //where aac could be the name of any audio codec
 .
 .
 .
 </aac_settings>
 .
 .
 .
 </audio_description>
 </stream_assembly>
 <output_group>
 <archive_group_settings> //where "archive" could be any output group type
 .
 .
 .
 </archive_group_settings>
 <output>
 .
 .
 .
 </output>
 </output_group>

Recommended Method for Working with Profiles Version 3.22.0 and later 37

Conductor Live API Reference

</profile>

POST: Create a Profile

Create a profile.

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/profiles

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

When POSTing xml for a profile originally created with an earlier version of Conductor Live, set
content-type to application/vnd.elemental+xml;version=n.n.n, where n.n.n is the number of the
Conductor Live version used to create the profile. For example, if the profile was created with
Conductor Live version 3.2.1, use:

content-type: application/vnd.elemental+xml;version=3.2.1

For more information on using profiles created with earlier software versions, see Versioning, the
section called “Header Content for User Authentication”.

If you are implementing user authentication, you must also include three authorization headers as
described on the section called “Header Content for User Authentication”.

Request Body

The request body contains XML content. For more information, see the section called “XML
Structure of a Profile”.

Response

The response repeats back the data that you posted with the addition of:

• id: The newly assigned ID for the group.

POST: Create a Profile Version 3.22.0 and later 38

Conductor Live API Reference

The response is identical to the response to a GET Profile. See below for an example.

Example

Response

The response to a valid request presents the new profile element with all the information from
the new profile.

In this example, the input type is “network_input,” and the URI of that input has been set to a
channel parameter “input network location,” and the default value is udp://255.255.255.255:5001.
For information on channel parameters, see the section on setting up channels in the Conductor
Live User Guide. For information on how these parameters are set in a channel, see the section
called “POST: Create a Channel”.

POST http://198.51.100.0/channels
--
Content-type:application/vnd.elemental+xml;version=3.2.1
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<profile>
 <id>9</id>
 <name>Profile X</name>
 <permalink>profile_x</permalink>
 <description/>
 <parameters>
 <parameter>
 <name>input network location</name>
 <default>udp://255.255.255.255:5001</default>
 </parameter>
 </parameters>
 <input>
 <network_input>
 <uri>{{input network location}}</uri>
 </network_input>
 <name>input_1</name>
.
.
.
 </input>
.
.

POST: Create a Profile Version 3.22.0 and later 39

Conductor Live API Reference

.
</profile>

Creating a Profile for a Channel Used by an MPTS

For important information on the requirements for creating a profile that will be used to create
a channel that will become an SPTS in an MPTS output, see Setting up MPTS outputs in the AWS
Elemental Conductor Live User Guide.

Modify a Profile

You cannot modify a profile once it has been created, so there is no PUT command.

GET List: Get a List of Profiles

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/profiles

Call Header

• Accept: Set to application/xml

Response

The response contains XML content consisting of one profiles element with the following.

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• Zero or more profile elements, one for each profile found. Each element contains several
elements, including these key elements. For details on other elements, see the section called
“Recommended Method for Working with Profiles”.

Element Value Description

id Integer The ID for this profile,
assigned by the system when
the profile is created.

Modify a Profile Version 3.22.0 and later 40

https://docs.aws.amazon.com/elemental-cl3/latest/ug/setting-up-mpts-outputs.html

Conductor Live API Reference

Element Value Description

name String The name that you assigned
to the profile.

permalink String The ID of the node, assigned
by the system. For profiles,
the ID is a string (not an
integer) and is created
by taking the name you
assigned, converting it to
lower case, and changing
spaces and illegal characters
to underscores.

Example

The response to this request specifies that there are three profiles set up in the cluster.

<?xml version="1.0" encoding="UTF-8"?>
<profiles href="/profiles" product="AWS Elemental Conductor Live" version="3.3.nnnnn">
<profile href="/profiles/1">
 <id>1</id>
 <name>Profile A</name>
 <permalink>profile_a</permalink>
 <description></description>
 <input>
.
.
.
</profile>
<profile href="/profiles/4">
 <id>4</id>
 <name>Profile C</name>
 <permalink>profile_c</permalink>
 <description></description>
 <input>
.
.
.

GET List: Get a List of Profiles Version 3.22.0 and later 41

Conductor Live API Reference

</profile>
<profile href="/profiles/5">
 <id>5</id>
 <name>Profile D</name>
 <permalink>profile_d</permalink>
 <description></description>
 <input>
.
.
</profile>
</profile_list>

GET: Get the Attributes of a Profile

Get the attributes of the specified profile.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/profiles/<ID of profile>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response contains XML content consisting of one profile, with the same elements as the
response for GET Profile List, above. For a sketch of XML structure, see the section called
“Recommended Method for Working with Profiles”.

Example

This example shows the contents of a profile with the name Profile A, with the permalink
“profile_a” (the name in lowercase with spaces replaced by underscores).

<?xml version="1.0" encoding="UTF-8"?>
<profile href="/profiles/2" product="AWS Elemental Conductor Live" version="3.0.nnnnn">

GET: Get the Attributes of a Profile Version 3.22.0 and later 42

Conductor Live API Reference

 <name>Profile A</name>
 <permalink>profile_a</permalink>
 <description></description>
.
.
.
</profile>

DELETE: Delete a Profile

Delete the specified profile.

You must first verify that the profile is not being used: do a GET Channel List and make sure this
profile is not associated with any channel. If it is, do a PUT Channel on that channel so that the
channel uses a different profile before you delete this profile.

Request URL

DELETE http://<Conductor IP address>/profiles/<ID of profile>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Example

This request deletes the profile with the ID 14.

DELETE http://198.51.100.0/profiles/14

Working with Channels

Topics

• POST: Create a Channel

• PUT: Modify the Attributes of a Channel

• GET List: Get List of Channels

DELETE: Delete a Profile Version 3.22.0 and later 43

Conductor Live API Reference

• GET: Get the Attributes of a Channel

• DELETE: Delete a Channel

POST: Create a Channel

Create a new channel.

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/channels

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The request body contains XML content consisting of one channel element and some or all of the
following elements.

Element Value Description

name String [Required] A name you assign
which must be unique in the
cluster.

profle_id Integer [Required] The ID of the
profile to associate with this
channel.

To obtain the ID of a specific
profile, see the section

POST: Create a Channel Version 3.22.0 and later 44

Conductor Live API Reference

Element Value Description

called “GET List: Get a List of
Profiles”.

node_id Integer [Optional] The ID of the node
to associate with this channel.

To obtain the ID of a specific
node, see the section called
“GET List: Get a List of Nodes
in the Cluster”.

permalink_name String [Optional] A name for the
permalink. A permalink
provides a mechanism for
referencing a channel in a
PUT, GET, or DELETE. With a
permalink, you can reference
a channel immediately after
creating it because you
already know its value; you
don’t have to first do a GET in
order to get the automatically
assigned ID.

If you specify a value in this
element, the permalink takes
that name.

If you leave this element
empty, the value is set to be
identical to the name element
(converted to lower case and
with spaces converted to
underscores).

POST: Create a Channel Version 3.22.0 and later 45

Conductor Live API Reference

Element Value Description

channel_params Array [Optional] Required if the
specified profile contains
channel parameters, in which
case you must provide values
for each of these parameters.

Each channel parameter is
represented by a name-valu
e pair. Note that the default
value set at profile creation
is only for profile validation
purposes and is not present in
the channel.

See below for an example.

Response

The response repeats back the data that you posted with the addition of:

• id: element containing the newly assigned ID for the channel.

• status: the current status of the channel. See the section called “Channel Status Elements” for a
list of states.

The response is identical to the response to a GET Channel. See below for an example.

Example

Request

This request creates one channel with the name “Channel C”, associated with the profile
that has the ID 3 and the node that that has the ID 10. The profile has a channel parameter
called {{input network location}}, so the channel must provide a value for that parameter:
udp://239.255.1.10:5001.

POST: Create a Channel Version 3.22.0 and later 46

Conductor Live API Reference

For information on channel parameters, see Setting Up Channels in the AWS Elemental Conductor
Live User Guide. For a list of channel parameters, see Supported Channel Parameters for Conductor
Live in the AWS Elemental Conductor Live User Guide.

POST http://198.51.100.0/channels
--
Content-type:application/xml
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<channel>
 <name>Channel C</name>
 <profile_id>3</profile_id>
 <node_id>10</node_id>
 <permalink_name>Mendis_News_Channel</permalink_name>
 <channel_params type="array">
 <channel_param>
 <name>input network location</name>
 <value>udp://239.255.10.23:5001</value>
 </channel_param>
 <channel_param>
 .
 .
 .
 </channel_param>
 /channel_params>
</channel>

Response

In this example, the channel is given the ID 2.

<?xml version="1.0" encoding="UTF-8"?>
<channel href="/channels" product="AWS Elemental Conductor Live" version="3.3.0.nnnnn">
 <id>2</id>
 <name>Channel C</name>
 <profile_id>3</profile_id>
 <channel_params type="array">
 <channel_param>
 <name>input network location</name>
 <value>udp://239.255.10.23:5001</value>
 </channel_param>
 </channel_params>

POST: Create a Channel Version 3.22.0 and later 47

https://docs.aws.amazon.com/elemental-cl3/latest/ug/setting-up-channels.html
https://docs.aws.amazon.com/elemental-cl3/latest/ug/channel-parameters.html
https://docs.aws.amazon.com/elemental-cl3/latest/ug/channel-parameters.html

Conductor Live API Reference

 <node_id>10</node_id>
 <permalink_name>Mendis_News_Channel</permalink_name>
 <status>idle</status>
</channel>

PUT: Modify the Attributes of a Channel

Modify the attributes of the specified channel. The channel must be in a state that allows
modifications. To check the status, use GET Channel. For information on the status, see the section
called “Channel Status Elements”.

HTTP Request and Response

Request URL

PUT http://<Conductor IP address>/channels/<ID of channel>

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The body contains only the elements to change; see POST above.

Example

This request changes the name of the channel with the ID 3. It modifies it to use the node that has
the ID 1.

PUT http://198.51.100.0/channels/3
--
Content-type:application/xml
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>

PUT: Modify the Attributes of a Channel Version 3.22.0 and later 48

Conductor Live API Reference

<channel>
 <node_id>1</node_id>
</channel>

GET List: Get List of Channels

Get a list of all channels, including the attributes of each channel. The attributes include a status.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/channels?metacounts=true

where :

• ?metacounts=true is optional.

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response is XML content consisting of one channels element with the following.

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• Zero or more channel elements, one for each channel found. Each element contains several
elements.

Element Value Description

id Integer The ID for this channel,
assigned by the system when
the channel is created.

GET List: Get List of Channels Version 3.22.0 and later 49

Conductor Live API Reference

Element Value Description

name String The name you assigned to the
channel

profile_id Integer The ID of the profile associate
d with this channel.

channel_params Array The channel parameters
contained in the specified
 profile, if any.

node_id Integer The ID of the node associated
with this channel.

status String The current status of the
channel. See the table below.

permalink_name String The name of the permalink
associated with this channel.

service_name String The service name associate
d with this channel if the
associated profile has the
Extract SDT field enabled.
Empty if the service name
is not part of the source or
if the Extract SDT field is
disabled.

service_provider_name String The service name associate
d with this channel if the
associated profile has the
Extract SDT field enabled.
Empty if the service provider
name is not part of the source
or if the Extract SDT field is
disabled.

GET List: Get List of Channels Version 3.22.0 and later 50

Conductor Live API Reference

Element Value Description

active_alerts Integer This setting is included only
if the request includes ?
metacounts=true.

The count of alerts that
are currently active for this
channel.

recent_error_messages Integer This setting is included only
if the request includes ?
metacounts=true.

The count of recent error
messages for this channel.

Example

This response shows two channels:

• One channel has the ID 1 and that is associated with profile ID 2 and with node ID 3. This
channel also has one channel parameter.

• The other channel has the ID 5 and that is associated with profile ID 4 and with node ID 6. It has
no channel parameters.

Also note that the channel with ID 1 has a user-specified permalink while the channel with ID 5 has
a permalink that is identical to the channel named: this indicates that the permalink was assigned
by the system.

GET http://198.51.100.0/channels?metacounts=true
--
Content-type:application/xml
--
<channels href="/channels" product="AWS Elemental Conductor Live" version="3.0.nnnnn">
 <channel>
 <id>1</id>
 <name>Channel A</name>

GET List: Get List of Channels Version 3.22.0 and later 51

Conductor Live API Reference

 <profile_id>2</profile_id>
 <channel_params type="array">
 <channel_param>
 <name>input network location</name>
 <value>udp://239.255.1.10:5001</value>
 </channel_param>
 </channel_params>
 <node_id>3</node_id>
 <permalink_name>Mendis_News_Channel/permalink_name>
 <service_name>MendisNewsChannel</service_name>
 <service_provider_name>MendisNetworks</service_provider_name>
 <status>running</status>
 <active_alerts>2</active_alerts>
 <recent_error_messages>0</recent_error_messages>
 </channel>
 <channel>
 <id>5</id>
 <name>Channel C</name>
 <profile_id>4</profile_id>
 <channel_params type="array"/>
 <node_id>6</node_id>
 <permalink_name>Channel C</permalink_name>
 <service_name>MendisNatureChannel</service_name>
 <service_provider_name>MendisNetworks</service_provider_name>
 <status>idle</status>
 </active_alerts>
 </recent_error_messages>
 </channel>
 </channel>
</channels>

GET: Get the Attributes of a Channel

Get the attributes of the specified channel.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/channels/<ID of channel>?metacounts=true

where:

GET: Get the Attributes of a Channel Version 3.22.0 and later 52

Conductor Live API Reference

• ?metacounts=true is optional but adds additional information to the response.

Response

The response contains XML content consisting of one channel element with the same elements as
the response for GET Channel List, above.

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Example

This response shows the information for the channel with the ID 1.

GET http://198.51.100.0/channels/1
--
Content-type:application/xml
--
<channel href="/channels/1" product="AWS Elemental Conductor Live" version="3.3.nnnnn">
 <id>1</id>
 <name>Channel A</name>
 <profile_id>2</profile_id>
 <channel_params type="array">
 <channel_param>
 <name>input network location</name>
 <value>udp://239.255.1.10:5001</value>
 </channel_param>
 </channel_params>
 <node_id>3</node_id>
 <permalink_name>Mendis_News_Channel/permalink_name>
 <service_name>MendisNewsChannel</service_name>
 <service_provider_name>MendisNetworks</service_provider_name>
 <status>running</status>
 <active_alerts>2</active_alerts>
 <recent_error_messages>0</recent_error_messages>
</channel>

GET: Get the Attributes of a Channel Version 3.22.0 and later 53

Conductor Live API Reference

DELETE: Delete a Channel

Delete the channel that has the specified ID. To get the ID of a specific channel, see the section
called “GET List: Get List of Channels”.

The channel must be in a state that allows it to be deleted. To check the status, use GET Channel.
For information on the status, see the section called “Channel Status Elements”.

HTTP Request and Response

Request URL

DELETE http://<Conductor IP address>/channels/<ID of channel>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Example

This request deletes the channel with the ID 2.

DELETE http://198.51.100.0/channels/2

Channel Scheduling

Conductor Live schedules channels to run either at a specific time or on a repeating schedule.
Specific times are provided via the REST interface within <run_at> tags in the format
specified in the ISO 8601 standard as combined date and time with UTC offset, such as
“2016-07-05T10:09:00-07:00”.

Repeating schedules are provided within <cron> tags and represented as CRON elements as
specified at crontab.org. The syntax for the schedules is summarized below.

Topics

DELETE: Delete a Channel Version 3.22.0 and later 54

http://crontab.org/

Conductor Live API Reference

• CRON Syntax Summary

• POST: Create a One-Time Schedule

• POST: Create a Repeating Schedule

• POST: Activate a Schedule

• DELETE: Deactivate a Schedule

• PUT: Update a Schedule

• GET List: Get List of All Channel Schedules

• GET: Get the Attributes of a Schedule

• GET: Get Schedule Events

• DELETE: Delete a Schedule

CRON Syntax Summary

The CRON expression is composed of five parts, separated by spaces, representing minute, hour,
day of month, month, and day of week respectively, as illustrated below.

The channel runs when the fields in the expression match the current time and date. An asterisk (*)
acts as a wildcard and represents all values. If both “day of month” and “day of week” are specified
(not *s), then the schedule will run for both.

Each part can specify either one value or a repeating value. A number by itself represents a single
value while a number preceded by an asterisk and a forward slash represents a repeating value. For
example, in the second position, “5” means “on the fifth hour (5:00 AM)” and “*/5” means “every
fifth hour (5:00 AM, 10:00 AM, 3:00 PM, etc).” The table below provides some examples.

CRON Syntax Summary Version 3.22.0 and later 55

Conductor Live API Reference

Position 1

(min)

Position 2

(hour)

Position 3

(day of
month)

Position 4
(month)

Position 5

(day of
week)

Resulting
Schedule

0 3 * * 1 Every
Monday
at 8:00
PM Pacific
Daylight
Time
(UTC-07:00)

Note: The
hour in
position 2
must be
provided in
UTC, not your
local time.

0 3 * * 1,2,3,4,5 Every
weekday
at 8:00
PM Pacific
Daylight
Time
(UTC-07:00)

Note: The
hour in
position 2
must be
provided in
UTC, not your
local time.

CRON Syntax Summary Version 3.22.0 and later 56

Conductor Live API Reference

Position 1

(min)

Position 2

(hour)

Position 3

(day of
month)

Position 4
(month)

Position 5

(day of
week)

Resulting
Schedule

15 1 * * 1,2,3,4,5 Every
weekday
at 8:15 PM
Eastern
Standard
Time
(UTC-05:00)

Note: The
hour in
position 2
must be
provided in
UTC, not your
local time.

17 */4 * * * Every four
hours on the
17th minute
every day.
4:17 AM,
8:17 AM, etc.

0 */1 * * 1 Every
Monday, each
hour at the
top of the
hour.

CRON Syntax Summary Version 3.22.0 and later 57

Conductor Live API Reference

POST: Create a One-Time Schedule

Create a schedule that runs only once. Will only run if active. See also the section called “POST:
Create a Repeating Schedule”.

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/channels/<channel ID>/schedules

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The request body contains XML content consisting of one schedule element, consisting of some or
all of the following elements.

Element Value Type Description

name String [Required] A name you assign
which must be unique in the
channel.

active Boolean [Optional] If unspecified,
defaults to false. A switch
indicating whether the
schedule will run. “True” for
active schedules that run at
the appointed time; “false”
for inactive schedules that do
not run but are saved in the

POST: Create a One-Time Schedule Version 3.22.0 and later 58

Conductor Live API Reference

Element Value Type Description

system and can be activated
later.

duration Integer [Optional] Length of time in
seconds that the channel will
run. If unspecified, defaults
to nil="true", which results in
a schedule that continues to
run without stopping.

repeat Boolean [Required] The Boolean value
for repeat which must be
“false” for schedules that run
only once.

run_at Datetime [Required for one-time
schedules] The date and
time , in ISO 8601 format,
that the schedule begins,in
cluding UTC offset. This is
present only for schedules
that run only once.

Response

The response repeats back the data that you posted with the addition of:

• id: element containing the newly assigned ID for the schedule.

• Any elements not specified in the request body, with default values.

Example

POST http://192.0.2.16/channels/1/schedules
--
Content-type:application/xml
Accept: application/xml

POST: Create a One-Time Schedule Version 3.22.0 and later 59

Conductor Live API Reference

--
<?xml version="1.0" encoding="UTF-8"?>
<schedule>
 <name>RunOneHour</name>
 <active>true</active>
 <duration>3600</duration>
 <repeat>false</repeat>
 <run_at>2017-09-06T13:24:00-07:00</run_at>
</schedule>

POST: Create a Repeating Schedule

Create a schedule that repeats regularly. Will only run if active. (See also the section called “POST:
Create a One-Time Schedule”.

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/channels/<channel ID>/schedules

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

XML content consisting of one schedule element, consisting of some or all of the following
elements:

Element Value Type Description

name String [Required] A name you assign
which must be unique in the
channel.

POST: Create a Repeating Schedule Version 3.22.0 and later 60

Conductor Live API Reference

Element Value Type Description

active Boolean [Optional] If unspecified,
defaults to false. A switch
indicating whether the
schedule will run. “True” for
active schedules that run
at the appointed time and
false for inactive schedules
that do not run but are saved
in the system and can be
activated later.

duration Integer [Required for repeating
schedules] The length of
time in seconds that the
channel will run. If unspecifi
ed, defaults to nil="true",
which results in a schedule
that continues to run without
stopping.

repeat Boolean [Required] The Boolean value
for repeat which must be
“true” for repeating schedules
.

cron CRON expression [Required for repeating
schedules] The expression
which specifies the schedule
according to the cron
standard, as summarized in
the section called “CRON
Syntax Summary”.

POST: Create a Repeating Schedule Version 3.22.0 and later 61

Conductor Live API Reference

Response

The response repeats back the data that you posted with the addition of:

• id: element containing the newly assigned ID for the schedule.

• If not specified in the request, the active element, defaulted to “false.”

Examples

Create a schedule repeating every Monday 8:00 PM Pacific Daylight Time (UTC-07:00) for an hour:

POST http://192.0.2.16/channels/1/schedules
--
Content-type:application/xml
Accept: application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<schedule>
 <name>MondaysAtEight</name>
 <active type="boolean">false</active>
 <cron>0 3 * * 1</cron>
 <duration type="integer">3600</duration>
 <repeat type="boolean">true</repeat>
</schedule>

Create a schedule repeating every Monday—Friday 8:00 PM Eastern Standard Time (UTC-05:00) for
an hour:

POST http://192.0.2.16/channels/1/schedules
--
Content-type:application/xml
Accept: application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<schedule>
 <name>WeekdaysAtEight</name>
 <active type="boolean">false</active>
 <cron>0 1 * * 1,2,3,4,5</cron>
 <duration type="integer">3600</duration>
 <repeat type="boolean">true</repeat>
</schedule>

POST: Create a Repeating Schedule Version 3.22.0 and later 62

Conductor Live API Reference

POST: Activate a Schedule

Inactive schedules can be activated as follows.

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/channels/<channel ID>/schedules/<schedule ID>/active

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response shows the schedule element with <active> set to “true” and other elements as
described in the section called “POST: Create a One-Time Schedule” and the section called “POST:
Create a Repeating Schedule”. The response also includes the following elements, which are used
internally by the system: <args>, <schedulable_type>, and <schedulable_id>. The response is
otherwise identical to the response to a GET Schedule. For an example response, see GET List
Example.

Example

To activate schedule 17 on channel 1, use this URL.

POST http://192.0.2.16/channels/1/schedules/17/active

DELETE: Deactivate a Schedule

Active schedules can be deactivated as follows.

POST: Activate a Schedule Version 3.22.0 and later 63

Conductor Live API Reference

HTTP Request and Response

Request URL

DELETE http://<Conductor IP address>/channels/<channel ID>/schedules/<schedule ID>/
active

Call Header

• Accept: application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The system deactivates the schedule but does not return a response. To confirm that the schedule
has been deactivated, run a GET on the schedule as described in the section called “GET: Get the
Attributes of a Schedule”.

Example

To deactivate schedule 17 on channel 1, use this URL.

DELETE http://192.0.2.16/channels/1/schedules/17/active

PUT: Update a Schedule

HTTP Request and Response

Request URL

PUT http://<Conductor IP Address>/channels/<channel ID>/schedules/<schedule ID>

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

PUT: Update a Schedule Version 3.22.0 and later 64

Conductor Live API Reference

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

One schedule element that contains the elements to be changed, enclosing the new value.

Response

The system updates the schedule but does not return a response. To confirm that the schedule
has been changed, run a GET on the schedule as described in the section called “GET: Get the
Attributes of a Schedule”.

Example

To change the name of schedule 17 on channel 1 to “NewName” send the following:

PUT http://198.51.100.0/channels/1/schedules/17
--
Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<schedule>
 <name>NewName</name>
</schedule>

GET List: Get List of All Channel Schedules

Get a list of active and inactive schedules for a given channel.

HTTP Request and Response

Request URL

GET http://<Conductor IP Address>/channels/<channel ID>/schedules

Call Header

• Accept: Set to application/xml

GET List: Get List of All Channel Schedules Version 3.22.0 and later 65

Conductor Live API Reference

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response contains XML content consisting of one schedules element with the following.

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• Zero or more schedule elements, one for each schedule found. Each element contains several
elements, as follows.

Element Value Type Description

id Integer The ID for this schedule,
assigned by the system when
the schedule is created.

name String The name that you assigned
to the schedule.

active Boolean A switch indicating whether
the schedule will run. “True”
for active schedules that run
at the appointed time and
“false” for inactive schedules
that do not run but are saved
in the system and can be
activated later.

duration Integer The length of time, in
seconds, that the channel will
run.

repeat Boolean A switch indicating whether
the schedule will run more
than one time.“True” for
repeating schedules and

GET List: Get List of All Channel Schedules Version 3.22.0 and later 66

Conductor Live API Reference

Element Value Type Description

“false” for schedules that run
only once.

run_at Datetime The date and time that the
schedule begins. This is
present only for schedules
that run only once.

cron CRON expression The expression which
specifies the schedule
according to the cron
standard, as summarized in
the section called “CRON
Syntax Summary”. This is
present only for repeating
schedules.

Example

This response shows two schedules:

• One schedule has the ID 13 and is a repeating schedule that runs the channel on weekdays for an
hour.

• The other schedule has the ID 20 and will run the channel one time for half an hour.

GET http://198.51.100.0/channels/1/schedules
--
Content-type:application/xml
<?xml version="1.0" encoding="UTF-8"?>
<schedules href="/channels/1/schedules" product="AWS Elemental Conductor Live +
 Cable Package + Audio Package + Audio Normalization Package + Audio Decode Package
 + HEVC Package + AWS Elemental Statmux Package + Motion Image Inserter Package"
 version="3.2.0.41691" type="array">
 <schedule>
 <id type="integer">13</id>
 <name>MthruF</name>

GET List: Get List of All Channel Schedules Version 3.22.0 and later 67

Conductor Live API Reference

 <active type="boolean">false</active>
 <cron>0 3 * * 1,2,3,4,5</cron>
 <duration type="integer">3600</duration>
 <repeat type="boolean">true</repeat>
 </schedule>
 <schedule>
 <id type="integer">20</id>
 <name>OneTime</name>
 <active type="boolean">false</active>
 <duration type="integer">1800</duration>
 <repeat type="boolean">false</repeat>
 <run_at type="datetime">2016-07-07T15:22:00-07:00</run_at>
 </schedule>
</schedules>

GET: Get the Attributes of a Schedule

Get the details of a specific schedule.

HTTP Request and Response

Request URL

GET http://<Conductor IP Address>/channels/<channel ID>/schedules/<schedule ID>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

XML content consisting of one schedule element containing the same elements as the response
for GET List of All Channel Schedules above.

Example

This response shows the information for the schedule with the ID 13.

GET: Get the Attributes of a Schedule Version 3.22.0 and later 68

Conductor Live API Reference

<schedule>
 <id type="integer">13</id>
 <name>MthruF</name>
 <active type="boolean">false</active>
 <cron>0 3 * * 1,2,3,4,5</cron>
 <duration type="integer">3600</duration>
 <repeat type="boolean">true</repeat>
</schedule>

GET: Get Schedule Events

Within the system, active repeating schedules result in “schedule events”. A schedule event is an
individual instance of the schedule and represents one time on the calendar when the channel will
run. When new schedules are created or updated, and every hour after that, the system generates
schedule events to bring the total queued schedule events to 24.

HTTP Request and Response

Request URL

To get all schedule events in the cluster:

GET http://<Conductor IP Address>/events

To get all schedule events from a single schedule:

GET http://<Conductor IP Address>/channels/<channel ID>/schedules/<schedule ID>/events

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response contains XML content consisting of one schedule_events element with the
following.

GET: Get Schedule Events Version 3.22.0 and later 69

Conductor Live API Reference

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• Zero or more schedule_event elements, one for each schedule event found. Each element
contains several elements, as follows.

Element Value Type Description

id Integer The ID for this schedule
event, assigned by the system
when the schedule event was
generated.

start_at Datetime The date and time that the
channel will start, in ISO 8601
format, including the UTC
offset.

stop_at Integer The date and time that the
channel will stop, in ISO 8601
format, including the UTC
offset.

state String An indication of the current
state or progress of schedulin
g. Possible values are:
queued, pending, started,
stopped, and failed.

message String System messages about any
unexpected errors which
appear here.

schedule_id Integer The ID for the schedule that
spawned this schedule event.

Example

This response shows the information for the schedule with the ID 15.

GET: Get Schedule Events Version 3.22.0 and later 70

Conductor Live API Reference

<?xml version="1.0" encoding="UTF-8"?>
<schedule_events href="/events" product="AWS Elemental Conductor Live + Cable Package
 + Audio Package + Audio Normalization Package + Audio Decode Package + HEVC Package +
 AWS Elemental Statmux Package + Motion Image Inserter Package" version="3.2.0.41691"
 type="array">
 <schedule_event>
 <id type="integer">801</id>
 <start_at type="datetime">2016-07-08T10:00:00-07:00</start_at>
 <stop_at type="datetime">2016-07-08T10:01:00-07:00</stop_at>
 <state type="integer">1</state>
 <message></message>
 <schedule_id type="integer">15</schedule_id>
 </schedule_event>
</schedule_events>

DELETE: Delete a Schedule

Permanently delete a schedule.

HTTP Request and Response

Request URL

DELETE http://<Conductor IP Address>/channels/<channel ID>/schedules/<schedule ID>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The system deletes the schedule but does not return a response. To confirm that the schedule
has been changed, run a GET on the schedule as described in the section called “GET: Get the
Attributes of a Schedule”. The GET should return an error similar to this one:

<errors>

DELETE: Delete a Schedule Version 3.22.0 and later 71

Conductor Live API Reference

 <error>Couldn't find Elemental::Live247::Schedule with id=13 [WHERE
 "live247_schedules"."schedulable_id" = 1 AND "live247_schedules"."schedulable_type" =
 'Elemental::Live247::Channel']</error>
</errors>

Example

This request deletes the schedule with ID 5 on channel 1.

DELETE http://198.51.100.0/channels/1/schedules/5

Performing Bulk Tasks on a Channel

This section covers commands for the channels entity (starting and stopping channels) and for the
task_report entity (monitoring the status of bulk tasks).

Topics

• POST Start: Start One or More Channels

• POST Stop: Stop One or More Channels

• Monitoring Bulk Tasks: GET List of Task Reports

• Monitoring Bulk Tasks: GET One Task Report

POST Start: Start One or More Channels

Start one or more channels. If the specified channels are currently idle on their nodes, then they
will start. If the channels are currently running, they simply continue running.

The channel must be in a state that allows it to be started. To check the status, use GET Channel.
For information on the status, see the section called “Channel Status Elements”.

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/channels/start

Call Header

• Accept: Set to application/xml

Performing Bulk Tasks on a Channel Version 3.22.0 and later 72

Conductor Live API Reference

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The request contains XML content consisting of one channel_ids element (of type “array”) with
the following.

• One or more channel_id elements, one for each channel to start.

Response

The response contains XML content consisting of one task_report element, containing the same
elements as the response for GET One Task Report. The failed count and success count may both
specify 0. The entire element may be missing, indicating that no actions have been performed yet.

Example

Request

This request starts the channels with the IDs 14, 8 and 10.

POST http://198.51.100.0/channels/start
--
Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<channel_ids type="array">
 <channel_id>14</channel_id>
 <channel_id>8</channel_id>
 <channel_id>10</channel_id>
</channel_ids>

Response

<task_report>
 <id>43</id>

POST Start: Start One or More Channels Version 3.22.0 and later 73

Conductor Live API Reference

 <created_at>2015-05-28T11:29:56-07:00</created_at>
 <description>Channel Start</description>
 <failed_count>0</failed_count>
 <successful_count>0</successful_count>
 <task_count>1</task_count>
 <updated_at>2015-05-28T11:29:56-07:00</updated_at>
</task_report>

POST Stop: Stop One or More Channels

Stop one or more channels. If the specified channels are currently running on their nodes, then
they will stop. If the channels are not running, nothing happens.

The channel must be in a state that allows it to be stopped. To check the state and determine its
status, use GET Channel. For information on the status, see the section called “Channel Status
Elements”.

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/channels/stop/

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The request contains XML content consisting of one channel_ids element (of type “array”)

with the following.

• One or more channel_id elements, one for each channel to stop.

POST Stop: Stop One or More Channels Version 3.22.0 and later 74

Conductor Live API Reference

Response

The response contains XML content consisting of one task_report element, containing the same
elements as the response for GET One Task Report. The failed count and success count may both
specify 0. The entire element may be missing, indicating that no actions have been performed yet.

Example

Request

This request starts the channels with the IDs 14 and 10.

POST http://198.51.100.0/stop/
--
Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<channel_ids type="array">
 <channel_id>14</channel_id>
 <channel_id>10</channel_id>
</channel_ids>

Response

<task_report>
 <id>43</id>
 <created_at>2015-05-28T11:29:56-07:00</created_at>
 <description>Channel Start</description>
 <failed_count>0</failed_count>
 <successful_count>0</successful_count>
 <task_count>1</task_count>
 <updated_at>2015-05-28T11:29:56-07:00</updated_at>
</task_report>

Monitoring Bulk Tasks: GET List of Task Reports

Get the list of bulk tasks. Each time one of the following commands is performed, a task_report is
created:

• POST Start Channel

• POST Stop Channel

Monitoring Bulk Tasks: GET List of Task Reports Version 3.22.0 and later 75

Conductor Live API Reference

A task report shows information about the bulk task. The bulk task is made up of individual task
items. For example, a POST Start Channel is a bulk task that is made up of one or more task, each
to start a different channel.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/task_reports

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response contains XML content consisting of one task_reports element

with the following.

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• Zero or more task_reports elements, one for each bulk task that is in progress or is
completed. Each element contains several elements as listed.

Element Value Description

id Integer The unique ID for this
task_report.

created_at String The time this bulk task was
created (the POST Start or
Stop was received by the
system). Time is in ISO 8601
format, with the timezone
designator indicated as an

Monitoring Bulk Tasks: GET List of Task Reports Version 3.22.0 and later 76

Conductor Live API Reference

Element Value Description

offset from UTC. For example,
2015-08-17T11:59:35-07:00
is the time in the timezone
that is 7 hours behind UTC.

updated_at String The time the most recent
change was made to this task
report. In other words, the
last time one or more of the
count elements was updated.

description String “Channel Start” or “Channel
Stop”.”.

complete Boolean True means the bulk task has
completed, with successes
 and/or failures.

False means not all the
individual task items have
completed yet.

task_count Integer The total number of task
items in the bulk task. For
example, if there are three
“start channel” commands,
this element specifies 3.

failed_count Integer The number of actions that
have failed.

successful_count Integer The number of actions that
have succeeded.

Monitoring Bulk Tasks: GET List of Task Reports Version 3.22.0 and later 77

Conductor Live API Reference

Element Value Description

tasks Array One or more task elements.
Each task represents an
individual task within the bulk
task. See below.

Recommended Procedure

1. Send a GET task_reports as soon as a bulk task is POSTed.

2. Parse the response for the desired <id> and store that ID for later use. This ID is the ID of the
individual bulk task.

3. Parse the response for the complete Boolean .

4. Before that final resolution, you may want to check on the status of individual task items: send
a GET task_reports/<task ID>, passing in the ID you saved earlier. Parse the <tasks> array of the
response for tasks that are not successful or failed. If necessary for a status of a channel, check
the ID within the individual <task> for the channel.

Example

The response to this request provides information on two bulk tasks. One task_report has the ID 4;
all of its 10 actions have completed. The other task_report has the ID 5; three of its seven actions
have completed.

GET http://198.51.100.0/task_reports
--
Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>
<task_reports>
 <task_report>
 <created_at>2015-04-09T04:12:12-07:00</created_at>
 <description>Channel Start</description>
 <failed_count>1</failed_count>
 <id>4</id>
 <successful_count>9</successful_count>
 <task_count>10</task_count>
 <updated_at>2015-04-09T04:12:13-07:00</updated_at>

Monitoring Bulk Tasks: GET List of Task Reports Version 3.22.0 and later 78

Conductor Live API Reference

 </task_report>
 <task_report>
 <created_at>2015-04-09T04:14:12-07:00</created_at>
 <description>Channel Start</description>
 <failed_count>0</failed_count>
 <id>5</id>
 <successful_count>3</successful_count>
 <task_count>7</task_count>
 <updated_at>2015-04-09T04:16:12-07:00</updated_at>
 </task_report>
</task_reports>

Monitoring Bulk Tasks: GET One Task Report

Get the specified task report related to one bulk task.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/task_reports/<ID of task_report>

where <ID of task_report> can be obtained from a GET Task Report List.

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response contains XML content consisting of one task_report element with the following.

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• Several elements are shown in the table below.

Monitoring Bulk Tasks: GET One Task Report Version 3.22.0 and later 79

Conductor Live API Reference

Element Value Description

id

created_at

updated_at

description

complete

task_count

failed_count

successful_count

The same elements as in the
response to GET List of Tasks

tasks Array One or more task elements.
Each task represents an
individual action within the
bulk task. See below.

Task Elements

Element Value Description

id Integer The ID for this task. IDs are
unique within the Tasks
element.

description String The type of bulk task for this
task report: “Channel Start”
or “Channel Stop.”

state String The state of this bulk task.
When the state changes
to "Success," the <successf
ul_count> increments; when

Monitoring Bulk Tasks: GET One Task Report Version 3.22.0 and later 80

Conductor Live API Reference

Element Value Description

the state changes to "Failure,
" then <failure_count>
increments.

message String “Success” or “Failure.”

Example

The response to this request provides information about the task_report with the ID 5; three of its
seven actions have completed. The bulk task with ID 3 belongs to Channel 13 and has succeeded,
the bulk task with ID 4 belongs to Channel 15 and is pending, and so on.

GET http://198.51.100.0/task_reports
--
Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>
<task_report>
 <created_at>2015-04-09T04:14:12-07:00</created_at>
 <description>Channel Start</description>
 <failed_count>0</failed_count>
 <id>5</id>
 <successful_count>3</successful_count>
 <task_count>7</task_count>
 <updated_at>2015-04-09T04:16:12-07:00</updated_at>
 <tasks type="array">
 <task>
 <id type="integer">3</id>
 <description>Channel Start for Channel 13</description>
 <state>successful</state>
 <message>Success</message>
 </task>
 <task>
 <id type="integer">4</id>
 <description>Channel Start for Channel 51</description>
 <state>pending</state>
 <message>Pending...</message>
 </task>
 <task>

Monitoring Bulk Tasks: GET One Task Report Version 3.22.0 and later 81

Conductor Live API Reference

.

.

.
 </task>
 </tasks>
</task_report>

Controlling Ad Avail on a Channel

This section describes the commands available for controlling ad avail blanking on a channel.

Topics

• POST Ad Avail State: Start or Stop Ad Avail on a Channel

POST Ad Avail State: Start or Stop Ad Avail on a Channel

Start or stop the ad avail blanking on a channel.

The channel must be running to change the ad avail state. To check the status, use GET Channel.
For information on the status, see the section called “Channel Status Elements”.

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/channels/<channel ID>/ad_avail_state/start

or

POST http://<Conductor IP address>/channels/<channel ID>/ad_avail_state/stop

Call Header

• Accept: Set to application/xml

• Content-Type:Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Controlling Ad Avail on a Channel Version 3.22.0 and later 82

Conductor Live API Reference

Response

A response is only given if you POST to a channel that is not running or that does not have avail
blanking enabled.

Working with MPTS

Topics

• POST: Create an MPTS

• PUT: Modify the Attributes of an MPTS

• GET List: Get a List of MPTS Outputs

• GET: Get the Attributes of an MPTS Output

• DELETE: Delete an MPTS Output

• GET Status List: Get the Status of a List of MPTS Outputs

• GET Status: Get the Status of an MPTS Output

• GET Bitrate: Get the Bitrate of an MPTS Output

• POST Start: Start an MPTS

• DELETE Stop: Stop an MPTS

• PUT: Swap Allocation

POST: Create an MPTS

Create an MPTS output. Note that its SPTS programs (members) must be added after the MPTS is
created. Use instruction for POST MPTS member.

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/mpts

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

Working with MPTS Version 3.22.0 and later 83

Conductor Live API Reference

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The request contains XML content consisting of one mpts element, with the following elements.

Element Value Description

name String A name for the MPTS

node_id String The node where the MPTS
will be created: where the
muxing of the individual
programs occurs.

Specify a node that is not
set up as backup nodes in a
redundancy group. To obtain
the ID of a specific node, see
the section called “GET List:
Get a List of Nodes in the
Cluster”.

Select the correct node. Be
aware of the type and choose:

• Any AWS Elemental Live
node, if you are creating
an MPTS consisting only
of Constant Bitrate (CBR)
programs.

• An AWS Elemental Live
node with the AWS
Elemental Statmux option
if you are creating an MPTS
that includes at least one
AWS Elemental Statmux
program.

POST: Create an MPTS Version 3.22.0 and later 84

Conductor Live API Reference

Element Value Description

• An AWS Elemental Statmux
stand-alone node if you
are creating an MPTS
that includes at least one
AWS Elemental Statmux
program.

permalink_name String A name for the permalink
. A permalink provides a
mechanism for referencing
an MPTS in a PUT, GET, or
DELETE. With a permalink,
you can reference an MPTS
immediately after creating it
because you already know its
value; you don’t have to first
do a GET in order to get the
automatically assigned ID.

If you specify a value in this
element, the permalink takes
that name.

If you leave this element
empty, the value is set to be
identical to the name element
(converted to lower case and
with spaces converted to
underscores).

bitrate Integer The total bitrate for the MPTS
in bits/second.

video_allocation Integer The bitrate to allocate for
video traffic in bits/second.

POST: Create an MPTS Version 3.22.0 and later 85

Conductor Live API Reference

Element Value Description

transport_stream_id Integer The value for the transport
stream ID field in the Program
Map Table. Range 0 to 65535.

udp_buffer_size String Size of network output buffer.
This buffer is used to limit
PCR jitter on the network.

• Auto: Selects optimal
size based on the video
elementary stream
properties.

• Custom: Establishes a non-
negative integer for the
number of bits to use for
the buffer.

• Off: Smooths bursts in
the network output but
does not attempt to limit
PCR jitter; this can be used
to achieve low-latency
streams where output
devices do not require
buffer-compliant outputs.

POST: Create an MPTS Version 3.22.0 and later 86

Conductor Live API Reference

Element Value Description

output_listening String This field is used to set up
for output redundancy with
output listening and applies
only if your Statmux statmux
deployment involves AWS
Elemental Live nodes as
the encoders and an AWS
Elemental Statmux node as
the muxer; see Setting Up
MPTS Outputs in the AWS
Elemental Conductor Live
User Guide.

If you are not setting up for
this type of redundancy or
if the AWS Elemental Live
node is both the encoder and
muxer, omit this field.

output_listening_interval Boolean The specified detection
interval for the output
listening feature, in milliseco
nds. See above for details.

POST: Create an MPTS Version 3.22.0 and later 87

https://docs.aws.amazon.com/elemental-cl3/latest/ug/setting-up-mpts-outputs.html
https://docs.aws.amazon.com/elemental-cl3/latest/ug/setting-up-mpts-outputs.html

Conductor Live API Reference

Element Value Description

allocation_message_priority String This field is used to set up
for multiplexer redundanc
y and applies only if your
Statmux deployment involves
AWS Elemental Live nodes
as the encoders and an AWS
Elemental Statmux node as
the muxer; see Setting Up
MPTS Outputs in the AWS
Elemental Conductor Live
User Guide.

If you are not setting up for
this type of redundancy or
if the AWS Elemental Live
node is both the encoder and
muxer, omit this field.

pat_interval Integer The PAT interval in ms for the
entire MPTS.

Range: 10 – 1000 (Default is
100).

destination/uri String The primary destination for
the MPTS output. This can
be a UDP or RTP location.
Format:

<protocol>://<IP address>:
<port>

destination/username String The username for the
destination, if required.

POST: Create an MPTS Version 3.22.0 and later 88

https://docs.aws.amazon.com/elemental-cl3/latest/ug/setting-up-mpts-outputs.html
https://docs.aws.amazon.com/elemental-cl3/latest/ug/setting-up-mpts-outputs.html

Conductor Live API Reference

Element Value Description

destination/password String The password for the
destination, if required.

secondary_destination/

uri

String

secondary_destination/

username

String

secondary_destination/

password

String

Optional. The secondary
destination, interface, and
virtual source address.

Completing a secondary
destination provides “network
failure redundancy” for the
MPTS. The muxer sends the
output to both destination
1 and destination 2; if one
destination fails, downstrea
m systems can obtain it from
the other. See Setting Up
MPTS Outputs in the AWS
Elemental Conductor Live
User Guide.

If you are not setting up for
network failure redundancy,
omit these fields.

fec_output_settings String See below for details.

POST: Create an MPTS Version 3.22.0 and later 89

https://docs.aws.amazon.com/elemental-cl3/latest/ug/setting-up-mpts-outputs.html
https://docs.aws.amazon.com/elemental-cl3/latest/ug/setting-up-mpts-outputs.html

Conductor Live API Reference

Element Value Description

additional_system_latency String Specify additional time (in
milliseconds) to add to the
“maximum encoding latency”
– the time between when
the SPTS channels send their
complexity data to the muxer
and when the muxer expects
the related encoded content
for all channels.

Typically, specify additiona
l time only if the Buffer Size
(set in the video stream) for
one of the SPTS channels is
longer than typical,or if an
SPTS channel is set up for 4
Quadrant-4k HEVC encoding
via bonded Live 401 or 402
encoders.

Note that you will not be able
to change this value while
the MPTS is running; you will
have to stop the MPTS output
and then restart it. This is
the only field on the MPTS
that you cannot change after
creation.

dvb_sdt_settings/rep_interval Integer The SDT interval in ms, for
the entire MPTS.

Range: 25 – 2000 (Default is
500)

POST: Create an MPTS Version 3.22.0 and later 90

Conductor Live API Reference

Element Value Description

dvb_tdt_settings/rep_interval Integer The TDT interval in ms, for
the entire MPTS.

Range: 1000 – 30000 (Default
is 1000)

dvb_nit_settings/rep_interval Integer The NIT interval in ms, for the
entire MPTS.

Range: 25 – 10000 (Default is
500)

dvb_nit_settings/network_id Integer The numeric identifier of the
network to which the MPTS
belongs.

dvb_nit_settings/network_na
me

String The network name.

fec_output_settings

Element Value Description

include_column_fec Boolean True means enable column-
based FEC; must be true.

include_row_fec Boolean True means enables row-
based FEC; enabled by
default.

column_depth Integer Parameter D from SMPTE
2022-1. Range 4-20. The
height of the FEC protectio
n matrix. The number of
transport stream packets

POST: Create an MPTS Version 3.22.0 and later 91

Conductor Live API Reference

Element Value Description

per column error correction
packet.

row_length Integer Parameter L from SMPTE
2022-1. Range 1-20. The
width of the FEC protectio
n matrix. This must be
between 1 and 20, inclusive
. If only Column FEC is used,
then larger values increase
robustness.

If Row FEC is used, then this
is the number of transport
stream packets per row error
correction packet.

Response

The response repeats back the data that you posted, with the addition of:

• id: The newly assigned ID for the MPTS .

The response is identical to the response to a GET MPTS. For a complete example, see the section
called “GET: Get the Attributes of an MPTS Output”.

Example

Request

This request creates one MPTS with the name “mpts_A”, associated with the node that has the ID 3.
The MPTS will contain three channels with channel IDs 3, 6, 7.

POST http://198.51.100.0/mpts
--
<?xml version="1.0" encoding="UTF-8"?>
<mpts>

POST: Create an MPTS Version 3.22.0 and later 92

Conductor Live API Reference

 <name>mpts_A</name>
 <node_id>3</node_id>
 <permalink_name>MendisChannelsMPTS</permalink_name>
 <bitrate>38800000</bitrate>
 <video_allocation>35000000</video_allocation>
 <transport_stream_id>1</transport_stream_id>
 <udp_buffer_size>Auto</udp_buffer_size>
 <output_listening>false</output_listening>
 <pat_interval>40</pat_interval>
 <destination
 <uri>udp://10.10.10.1:5000</uri>
 </destination>
 <secondary_destination>
 <uri>udp://10.10.10.40:5000</uri>
 </secondary_destination>
 <fec_output_settings>
 <include_column_fec>true</include_column_fec>
 <include_row_fec>true</include_row_fec>
 <column_depth>4</column_depth>
 <row_length>6</row_length>
 </fec_output_settings>
 <allocation_message_priority>primary</allocation_message_priority>
 <mpts_members type="array">
 <mpts_member>
 <channel_id>3</channel_id>
 <pid_map>
 <pmt_pid>200</pmt_pid>
 <audio_pids type="array">
 <audio_pid>240</audio_pid>
 <audio_pid>241</audio_pid>
 </audio_pids>
 </pid_map>
 <program_number>1</program_number>
 <type>conductor</type>
 </mpts_member>
 <mpts_member>
 <channel_id>6</channel_id>
 <pid_map>
 <pmt_pid>300</pmt_pid>
 <audio_pids type="array">
 <audio_pid>340</audio_pid>
 <audio_pid>341</audio_pid>
 </audio_pids>
 </pid_map>

POST: Create an MPTS Version 3.22.0 and later 93

Conductor Live API Reference

 <program_number>2</program_number>
 <type>conductor</type>
 </mpts_member>
 <mpts_member>
 <channel_id>7</channel_id>
 <pid_map>
 <pmt_pid>400</pmt_pid>
 <audio_pids type="array">
 <audio_pid>440</audio_pid>
 <audio_pid>441</audio_pid>
 </audio_pids>
 </pid_map>
 <program_number>3</program_number>
 <type>conductor</type>
 </mpts_member>
 </mpts_members>
</mpts>

Response

The response returns the data you specified, along with:

• A unique mpts_id for the MPTS. In this example, the MPTS has been given the ID 12.

• A created_at element and updated_at element that shows the date and time in ISO
8601 format, with the timezone designator indicated as an offset from UTC. For example,
2015-08-17T11:59:35-07:00 is the time in the time zone that is 7 hours behind UTC.

• An alerts element. Typically, this element is empty after initial creation (because the MPTS has
not been started).

<?xml version="1.0" encoding="UTF-8"?>
<mpts href="/mpts" product="AWS Elemental Conductor Live version="3.3.nnnnn">
 <id>12</id>
 <name>mpts_A</name>
 <node_id>3</node_id>
.
.
.
</mpts>

POST: Create an MPTS Version 3.22.0 and later 94

Conductor Live API Reference

PUT: Modify the Attributes of an MPTS

HTTP Request and Response

Request URL

Change any of the attributes of the specified MPTS output, except the list of SPTS programs. To
work with the SPTS programs in the MPTS, use the MPTS Member commands.

PUT http://<Conductor IP address>/mpts/<ID of mpts>

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The body contains only the elements to change; see POST above.

Example

This request changes the bitrate and video_allocation of the MPTS with ID 3.

PUT http://198.51.100.0/mpts/3
--
Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<mpts>
 <bitrate>30000000</bitrate>
 <video_allocation>25000000</video_allocation>
</mpts>

GET List: Get a List of MPTS Outputs

Get the attributes and SPTS programs of all MPTS outputs.

PUT: Modify the Attributes of an MPTS Version 3.22.0 and later 95

Conductor Live API Reference

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/mpts

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response contains XML content consisting of one mpts_list element with the following.

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• Zero or more mpts elements, one for each MPTS found. Each element contains several
elements.

Element Value Description

id Integer The ID for this MPTS output
assigned by the system when
the MPTS is created.

Other elements See the section called “POST:
Create an MPTS”.

Example

Request

GET http://198.51.100.0/mpts

Response

GET List: Get a List of MPTS Outputs Version 3.22.0 and later 96

Conductor Live API Reference

<?xml version="1.0" encoding="UTF-8"?>
<mpts_list href="/mpts_list" product="AWS Elemental Conductor Live"
 version="3.3.nnnnn">
<mpts>
 <name>mpts_A</name>
 <node_id>3</node_id>
 <permalink_name>MendisChannelsMPTS</permalink_name>
 <bitrate>38800000</bitrate>
 <video_allocation>35000000</video_allocation>
 <transport_stream_id>1</transport_stream_id>
 <udp_buffer_size>Auto</udp_buffer_size>
 <output_listening>false</output_listening>
 <pat_interval>40</pat_interval>
 <destination
 <uri>udp://10.10.10.1:5000</uri>
 </destination>
 <secondary_destination>
 <uri>udp://10.10.10.40:5000</uri>
 </secondary_destination>
 <fec_output_settings>
 <include_column_fec>true</include_column_fec>
 <include_row_fec>true</include_row_fec>
 <column_depth>4</column_depth>
 <row_length>6</row_length>
 </fec_output_settings>
 <additional_system_latency>0</additional_system_latency>
 <allocation_message_priority>primary</allocation_message_priority>
 <alerts type ="array">
 <mpts_members type="array">
 <mpts_member>
 <channel_id>3</channel_id>
 <pid_map>
 <pmt_pid>200</pmt_pid>
 <audio_pids type="array">
 <audio_pid>240</audio_pid>
 <audio_pid>241</audio_pid>
 </audio_pids>
 </pid_map>
 <program_number>1</program_number>
 <type>conductor</type>
 </mpts_member>
 <mpts_member>
 <channel_id>6</channel_id>

GET List: Get a List of MPTS Outputs Version 3.22.0 and later 97

Conductor Live API Reference

 <pid_map>
 <pmt_pid>300</pmt_pid>
 <audio_pids type="array">
 <audio_pid>340</audio_pid>
 <audio_pid>341</audio_pid>
 </audio_pids>
 </pid_map>
 <program_number>2</program_number>
 <type>conductor</type>
 </mpts_member>
 <mpts_member>
 <channel_id>7</channel_id>
 <pid_map>
 <pmt_pid>400</pmt_pid>
 <audio_pids type="array">
 <audio_pid>440</audio_pid>
 <audio_pid>441</audio_pid>
 </audio_pids>
 </pid_map>
 <program_number>3</program_number>
 <type>conductor</type>
 </mpts_member>
 </mpts_members>
</mpts>
<mpts>
 <mpts_id>
 <name>mpts_B</name>
 <node_id>3</node_id>
.
.
.
 </mpts_members>
</mpts>
<mpts_list>

GET: Get the Attributes of an MPTS Output

Get the attributes and SPTS programs of one MPTS output.

GET: Get the Attributes of an MPTS Output Version 3.22.0 and later 98

Conductor Live API Reference

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/mpts/<ID of mpts>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication” .

Response

The response contains XML content consisting of one mpts element, with the same elements as
the response for GET MPTS List above.

DELETE: Delete an MPTS Output

HTTP Request and Response

Request URL

Delete the MPTS output that has the specified ID. To get the ID of a specific MPTS output, see the
section called “GET List: Get a List of MPTS Outputs”.

DELETE http://<Conductor IP address>/mpts/<id of mpts>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Example

This request deletes the MPTS output with the ID 2.

DELETE: Delete an MPTS Output Version 3.22.0 and later 99

Conductor Live API Reference

DELETE http://198.51.100.0/mpts/2

GET Status List: Get the Status of a List of MPTS Outputs

Get the status of all MPTS outputs.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/mpts/statuses

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Example

This request returns information for the two MPTS outputs that exist in the cluster.

GET http://198.51.100.0/mpts/statuses
--
Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>
<mpts_statuses href="/mpts/statuses" product="AWS Elemental Conductor Live
 version="3.3.nnnnn">
 <mpts_status>
 <id type="integer">1</id>
 <status>running</status>
 </mpts_status>
 <mpts_status>
 <id type="integer">4</id>
 <status>running</status>
 </mpts_status>
</mpts_statuses>

GET Status List: Get the Status of a List of MPTS Outputs Version 3.22.0 and later 100

Conductor Live API Reference

GET Status: Get the Status of an MPTS Output

HTTP Request and Response

Request URL

Get the status of the specified MPTS output.

GET http://<Conductor IP address>/mpts/<ID of mpts>/status

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response contains XML content consisting of one mpts_status element,with the same
elements as the response for GET MPTS Status above.

GET Bitrate: Get the Bitrate of an MPTS Output

HTTP Request and Response

Request URL

Get the status of the specified MPTS output.

GET http://<Conductor IP address>/mpts/<ID of mpts>/status

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

GET Status: Get the Status of an MPTS Output Version 3.22.0 and later 101

Conductor Live API Reference

Response

If the MPTS output has not been running in the last hour (meaning no bitrate information exists),
then the response is XML content consisting of one mpts_stats that contains:

• id_type

• an empty mpts_members array

If there is bitrate information within the last hour for the MPTS output, then the response is XML
content consisting of one mpts_stats elements (of type “array”) that contains:

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• One mpts_stats element that contains the following.

Element Value Description

mpts_stats One instance

id Integer A temporary ID for the
specified MPTS. This ID is
ephemeral and should not be
stored.

mpts_members Array 1 or more instances

mpts_member Array 1 or more instances

id Integer A temporary ID for the MPTS
member in the specified
MPTS. This ID is ephemeral
and should not be stored.

name String The name of the MPTS
member, which is identical
 to the name attribute of
the channel that is associate
d with this MPTS member.
So, if the MPTS member is

GET Bitrate: Get the Bitrate of an MPTS Output Version 3.22.0 and later 102

Conductor Live API Reference

Element Value Description

associated with Channel_C
, the name of the MPTS
member is Channel_C.

series_data 1 instance for each
mpts_member.

series_datum 1 or more instances.

Each mpts_member contains
one series_data that itself
contains several series_da
tum elements. All the
MPTS members contain the
same number of series_da
tum. In other words, every
member has a snapshot
at timestamp “14189398
84” (the timestamp may
vary by 1 second in different
mpts_members).

timestamp Integer The timestamp for this piece
of data in Unix time.

mpts_id Integer Same as the first id: A
temporary ID for the
specified MPTS.

channel_id Integer The ID of the channel that
is associated with this MPTS
member. So the name
(above) and this channel_i
d refer to the same channel
entity.

GET Bitrate: Get the Bitrate of an MPTS Output Version 3.22.0 and later 103

Conductor Live API Reference

Element Value Description

bitrate Float The bitrate (in bits/second)
for this MPTS member at
the point identified by the
timestamp.

Example

This request returns the statistics for the MPTS with the ID 5. This MPTS contains two MPTS
members (IDs 30 and 29).

GET http://198.51.100.0/mpts/5/stats
--
Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>
<mpts_stats>
 <id type="integer">10</id>
 <mpts_members type="array">
 <mpts_member>
 <id type="integer">30</id>
 <name>Channel_C</name>
 <series_data type="array">
 <series_datum>
 <timestamp type="integer">1418939884</timestamp>
 <mpts_id type="integer">10</mpts_id>
 <channel_id type="integer">8</channel_id>
 <bitrate type="float">0</bitrate>
 </series_datum>
 <series_datum>
 <timestamp type="integer">1418939886</timestamp>
 <mpts_id type="integer">5</mpts_id>
 <channel_id type="integer">8</channel_id>
 <bitrate type="float">7045000.0</bitrate>
 </series_datum>
 <series_datum>
.
.
.
 </series_datum>

GET Bitrate: Get the Bitrate of an MPTS Output Version 3.22.0 and later 104

Conductor Live API Reference

 </series_data>
 </mpts_member>
 <mpts_member>
 <id type="integer">29</id>
 <name>Channel_F</name>
 <series_data type="array">
 <series_datum>
 <timestamp type="integer">1418939884</timestamp>
 <series_datum>
.
.
.
 </series_datum>
 </series_data>
 </mpts_member>
 </mpts_members>
</mpts_stats>

POST Start: Start an MPTS

Start an MPTS output. If the specified MPTS output is currently idle, then it will start. If the MPTS
output is currently running, it will simply continue running.

When an MPTS output is started, the system looks for the video output from each SPTS program
associated with the MPTS output. It looks for this output at the destination specified in that SPTS
program. All the SPTS programs are then muxed into one video output.

If there is no output for a given SPTS program, the muxing continues without that SPTS program’s
content.

If all the SPTS program outputs are missing, the muxing continues without any content. In other
words, no content is produced for this MPTS output. Note that a lack of content from all SPTS
programs does not cause the MPTS muxing to fail.

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/mpts/<ID of MPTS>/mux

POST Start: Start an MPTS Version 3.22.0 and later 105

Conductor Live API Reference

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Example

This request starts the MPTS with the ID 4.

POST http://198.51.100.0/mpts/4/mux

DELETE Stop: Stop an MPTS

Stop an MPTS output. If the specified MPTS output is currently running, it will stop. If the specified
MPTS output is currently idle, it will simply remain idle.

Stopping the MPTS output does not stop the individual SPTS programs associated with the MPTS
output.

HTTP Request and Response

Request URL

DELETE http://<Conductor IP address>/mpts/<ID of MPTS>/mux

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Example

This request stops the MPTS with the ID 4.

DELETE http://198.51.100.0/mpts/4/mux

DELETE Stop: Stop an MPTS Version 3.22.0 and later 106

Conductor Live API Reference

PUT: Swap Allocation

Swap the allocation values (values of the allocation_message_priority element) in two
related MPTS outputs.

This command is useful when you have set up two MPTS outputs for output listening, in order
to support MPTS output redundancy. The two MPTS outputs are a “redundant pair.” This output
listening feature is set up as follows:

• Both MPTS outputs are identical with one exception: one of the outputs has its
allocation_message_priority set to “primary” while the other has it set to “secondary.”
Importantly, the two MPTS outputs contain exactly the same SPTS programs and the same
destination, so that they are nearly duplicates of each other.

• On the MPTS that is the “secondary”, the output_listening element is set to true and the
output_listening_interval element has a value. In this way, the secondary MPTS output is
set up to listen to the primary MPTS output.

This Swap Allocation command lets you switch the roles of the two pairs of MPTS outputs. This
switch is achieved by simultaneously setting the allocation_message_priority value on the
primary output to “secondary” and the value on the secondary output to “primary.”

For this command to succeed, the following conditions must be met:

• The two MPTS outputs must be identical in all values except for the
allocation_message_priority element.

• The allocation_message_priority value must be “primary” for one output and “secondary” for the
other.

• Every SPTS program in the two MPTS outputs must be used only in these two MPTS outputs.

HTTP Request and Response

Request URL

PUT http://<Conductor IP address>/mpts/swap_allocaton_priority

Call Header

• Accept: Set to application/xml

PUT: Swap Allocation Version 3.22.0 and later 107

Conductor Live API Reference

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The request body contains XML content consisting of one mpts_ids element with the following.

• Two mpts_id elements, each containing the ID of an MPTS output.

Example

This request swaps the allocation_message_priority values of the MPTS with ID 3 and the MPTS
with the ID 4.

PUT http://198.51.100.0/mpts/swap_allocation_priority
--
Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<mpts_ids>
 <mpts_id>1</mpts_id>
 <mpts_id>3</mpts_id>
</mpts_ids>

Working with Members of an MPTS

Topics

• POST: Add an SPTS to an MPTS

• PUT: Modify an SPTS Program

• PUT: MPTS Channel Swap

• GET List: Get All SPTS of an MPTS

• GET: Get an SPTS Program

• DELETE: Delete an SPTS Program

Working with Members of an MPTS Version 3.22.0 and later 108

Conductor Live API Reference

POST: Add an SPTS to an MPTS

Add an SPTS to the specified MPTS output.

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/mpts/<ID of mpts>/mpts_members

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The request body contains XML content consisting of one mpts_member element with the
following elements.

Element Value Description

type String The type is always “conducto
r.”

program_number Integer The program number to use
for this SPTS program. 1 –
65535. This must be unique
within this MPTS output.

pid_map See below. The PID assignments to
use for this member in the
MPTS output. If no values are
provided, PIDs are assigned
automatically.

POST: Add an SPTS to an MPTS Version 3.22.0 and later 109

Conductor Live API Reference

Element Value Description

All PIDs must be unique
among all SPTS programs in
the MPTS output (not just
unique within the individual
SPTS program).

Support is provided for both
PID keys with single values
and those with multiple
values. See below for details.

POST: Add an SPTS to an MPTS Version 3.22.0 and later 110

Conductor Live API Reference

Element Value Description

channel_id Integer The ID of the Conductor Live
channel that produces the
desired SPTS. To obtain the ID
of a specific channel, see the
section called “GET List: Get
List of Channels”.

This channel:

• Can belong to a maximum
of two different MPTS
outputs.

• Must include at least one
UDP output that is set up
to produce input into an
MPTS: in other words, the
MPTS field is set to Remote
(not to Local or None).

For information on all the
special requirements for the
channel, see Create a Profile
for MPTS Channels in the
AWS Elemental Conductor
Live User Guide.

PID Map

The PID map is XML content consisting of one <pid_map> element that contains the following
elements.

<pid_map> 0 or 1 instances Object

<pmt_pid> 0 or 1 instances Integer

POST: Add an SPTS to an MPTS Version 3.22.0 and later 111

https://docs.aws.amazon.com/elemental-cl3/latest/ug/setting-up-mpts-outputs.html#step-b-create-a-profile-for-mpts-channels
https://docs.aws.amazon.com/elemental-cl3/latest/ug/setting-up-mpts-outputs.html#step-b-create-a-profile-for-mpts-channels

Conductor Live API Reference

<video_pid>

<pcr_pid>

<scte35_pid>

<klv_data_pid>

<dvb_tele
text_pid>

<etv_plat
form_pid>

<etv_sign
al_pid>

<timed_me
tadata_pid>

<private_
metadata_pid>

<ecm_pid>

<arib_cap
tions_pid>

<audio_pids> 0 or 1 instances Object

<audio_pid> 1 or more
instances

Integer

<dvb_sub_pids> 0 or 1 instances Object

<dvb_sub_pid> 1 or more
instances

Integer

For example:

<pid_map>

POST: Add an SPTS to an MPTS Version 3.22.0 and later 112

Conductor Live API Reference

 <pmt_pid>888</pmt_pid>
 <audio_pids type="array">
 <audio_pid>240</audio_pid>
 <audio_pid>241</audio_pid>
 </audio_pids>
</pid_map>

Response

The response repeats back the data that you posted with the addition of:

• id: The newly assigned ID for the mpts_member.

The response is identical to the response to a GET MPTS Member. See below for an example.

Example

This example shows the result of adding the channel with the ID 2 as an SPTS program with the
program ID 5 in the MPTS output that has the ID 3.

Request

POST http://198.51.100.0/mpts/3/mpts_members
--
Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<mpts_member>
 <type>conductor</type>
 <program_number>5</program_number>
 <channel_id>2</channel_id
 <pid_map>
 <pmt_pid>400</pmt_pid>
 <audio_pids type="array">
 <audio_pid>440</audio_pid>
 <audio_pid>441</audio_pid>
 </audio_pids>
 </pid_map>
<mpts_member>

Response

POST: Add an SPTS to an MPTS Version 3.22.0 and later 113

Conductor Live API Reference

<?xml version="1.0" encoding="UTF-8"?>
<mpts_member href="/mpts/3/mpts_member/4" product="AWS Elemental Conductor Live"
 version="1.0.3b.12345>
 <id>4</id>
 <channel_id>2</channel_id>
 <pid_map>
 <pmt_pid>400</pmt_pid>
 <audio_pids type="array">
 <audio_pid>440</audio_pid>
 <audio_pid>441</audio_pid>
 </audio_pids>
 </pid_map>
 <program_number>5</program_number>
 <type>conductor</type>
</mpts_member>

PUT: Modify an SPTS Program

Change the PID map and program number of the specified MPTS member.

Do not use PUT to modify the channel ID; instead, delete the MPTS member (DELETE) and recreate
it (POST) with the new channel ID.

HTTP Request and Response

Request URL

PUT http://<Conductor IP address>/mpts/<ID of mpts>/mpts_members/<ID of mpts member>

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The body contains only the elements to change; see POST above.

PUT: Modify an SPTS Program Version 3.22.0 and later 114

Conductor Live API Reference

Example

This example changes the MPTS member with the ID 6 in the MPTS that has the ID 2. The request
changes one of the PID values.

PUT http://198.51.100.0/mpts/2/mpts_members/6
--
Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<mpts_member>
 <pid_map>
 <pmt_pid>600</pmt_pid>
 </pid_map>
</mpts_member>

PUT: MPTS Channel Swap

Swap the channel assigned to the MPTS.

HTTP Request and Response

Request URL

PUT http://<Conductor IP address>/mpts/<ID of mpts>

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The request body contains XML content consisting of one mpts_members element, consisting of
the following.

• Two mpts_member elements:

PUT: MPTS Channel Swap Version 3.22.0 and later 115

Conductor Live API Reference

• One to remove the existing channel assignment, containing the following elements.

Element Value Description

program_number Integer The program number used
for this SPTS program. To
obtain the program number
for a specific channel, see
the section called “GET List:
Get All SPTS of an MPTS”.

pid_map See the PID map. PID assignments to use
for this member in the
MPTS output. If no values
are provided, PIDs will be
assigned automatically.

All PIDs must be unique
among all SPTS programs in
the MPTS output (not just
unique within the individual
SPTS program).

Support is provided for
both PID keys with single
values and those with
multiple values. See below
for details.

PUT: MPTS Channel Swap Version 3.22.0 and later 116

Conductor Live API Reference

Element Value Description

channel_id integer The ID of the new
Conductor Live channel that
will produce the desired
SPTS. To obtain the ID of
a specific channel, see the
section called “GET List: Get
List of Channels”.

This channel:

• Can belong to a maximum
of two different MPTS
outputs.

• Must include at least one
UDP output that is set
up to produce input into
an MPTS: in other words,
the MPTS field is set to
Remote (not to Local or
None).

For information on all the
special requirements for the
channel, see Create a Profile
for MPTS Channels in the
AWS Elemental Conductor
Live User Guide.

• Another to add a new channel assignment, using the following elements.

Element Value Description

type String Always “conductor”

PUT: MPTS Channel Swap Version 3.22.0 and later 117

https://docs.aws.amazon.com/elemental-cl3/latest/ug/setting-up-mpts-outputs.html#step-b-create-a-profile-for-mpts-channels
https://docs.aws.amazon.com/elemental-cl3/latest/ug/setting-up-mpts-outputs.html#step-b-create-a-profile-for-mpts-channels

Conductor Live API Reference

Element Value Description

program_number Integer The program number used
for this SPTS program. To
obtain the program number
for a specific channel, see
the section called “GET List:
Get All SPTS of an MPTS”.

pid_map See the PID map. The PID assignments to use
for this member in the MPTS
output. If no values are
provided, PIDs are assigned
automatically.

All PIDs must be unique
among all SPTS programs in
the MPTS output (not just
unique within the individual
SPTS program).

Support is provided for both
PID keys with single values
and with multiple values.
See below for details.

PUT: MPTS Channel Swap Version 3.22.0 and later 118

Conductor Live API Reference

Element Value Description

channel_id Integer The ID of the new
Conductor Live channel that
produces the desired SPTS.
To obtain the ID of a specific
channel, see the section
called “GET List: Get List of
Channels”.

This channel:

• Can belong to a maximum
of two different MPTS
outputs.

• Must include at least one
UDP output that is set
up to produce input into
an MPTS: in other words,
the MPTS field is set to
Remote (not to Local or
None).

For information on all the
special requirements for
the channel, see the section
on creating a profile for
MPTS in the AWS Elemental
Conductor Live User Guide.

Example

This request swaps channel 3 for channel 4 and uses default PID value (so does not specify any
PIDs).

Request

PUT http://198.51.100.0/mpts/1

PUT: MPTS Channel Swap Version 3.22.0 and later 119

Conductor Live API Reference

--
Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<mpts>
 <mpts_members type="array">
 <mpts_member>
 <channel_id>3</channel_id>
 <_destroy>1</_destroy>
 </mpts_member>
 <mpts_member>
 <type>conductor</type>
 <program_number>1</program_number>
 <channel_id>4</channel_id>
 </mpts_member>
 </mpts_members>
</mpts>

Response

PUT http://198.51.100.0/mpts/1
--
<?xml version="1.0" encoding="UTF-8"?>
<mpts>
 <id type="integer">1</id>
 <node_id type="integer">2</node_id>
 <created_at type="datetime">2016-05-18T07:54:06-07:00</created_at>
 <updated_at type="datetime">2016-05-18T07:54:06-07:00</updated_at>
 <additional_system_latency type="integer">0</additional_system_latency>
 <allocation_message_priority>primary</allocation_message_priority>
 <bitrate type="integer">38800000</bitrate>
 <name>mpts</name>
 <output_listening type="boolean">false</output_listening>
 <controller_only type="boolean">false</controller_only>
 <output_listening_interval type="integer">500</output_listening_interval>
 <pat_interval type="integer">100</pat_interval>
 <transport_stream_id type="integer">1</transport_stream_id>
 <udp_buffer_size>Auto</udp_buffer_size>
 <video_allocation type="integer">35000000</video_allocation>
 <permalink_name>mpts</permalink_name>
 <mpts_members type="array">
 <mpts_member>

PUT: MPTS Channel Swap Version 3.22.0 and later 120

Conductor Live API Reference

 <id type="integer">2</id>
 <mpts_id type="integer">1</mpts_id>
 <created_at type="datetime">2016-05-18T08:06:26-07:00</created_at>
 <updated_at type="datetime">2016-05-18T08:06:27-07:00</updated_at>
 <channel_id type="integer">4</channel_id>
 <name>mpts channel - duplicate</name>
 <pid_map>
 <pmt_pid type="integer">100</pmt_pid>
 <video_pid type="integer">101</video_pid>
 <dvb_teletext_pid type="integer">105</dvb_teletext_pid>
 <audio_pids type="array">
 <audio_pid type="integer">140</audio_pid>
 <audio_pid type="integer">141</audio_pid>
 <audio_pid type="integer">142</audio_pid>
 <audio_pid type="integer">143</audio_pid>
 <audio_pid type="integer">144</audio_pid>
 <audio_pid type="integer">145</audio_pid>
 <audio_pid type="integer">146</audio_pid>
 <audio_pid type="integer">147</audio_pid>
 <audio_pid type="integer">148</audio_pid>
 <audio_pid type="integer">149</audio_pid>
 <audio_pid type="integer">150</audio_pid>
 <audio_pid type="integer">151</audio_pid>
 <audio_pid type="integer">152</audio_pid>
 <audio_pid type="integer">153</audio_pid>
 <audio_pid type="integer">154</audio_pid>
 <audio_pid type="integer">155</audio_pid>
 <audio_pid type="integer">156</audio_pid>
 </audio_pids>
 <ecm_pid type="integer">110</ecm_pid>
 <arib_captions_pid type="integer">111</arib_captions_pid>
 </pid_map>
 <program_number type="integer">1</program_number>
 <type>conductor</type>
 <input>
 <uri>rtp://239.20.20.20:5001</uri>
 </input>
 <secondary_input>
 <uri>rtp://239.20.20.20:5010</uri>
 </secondary_input>
 <allocation_transmit_destination>
 <uri>udp://239.20.30.20:5001</uri>
 </allocation_transmit_destination>
 <secondary_allocation_transmit_destination>

PUT: MPTS Channel Swap Version 3.22.0 and later 121

Conductor Live API Reference

 <uri>udp://239.20.20.80:5001</uri>
 </secondary_allocation_transmit_destination>
 <complexity_receipt_destination>
 <uri>udp://239.10.20.20:5001</uri>
 </complexity_receipt_destination>
 <secondary_complexity_receipt_destination>
 <uri>udp://239.20.40.20:5001</uri>
 </secondary_complexity_receipt_destination>
 </mpts_member>
 </mpts_members>
 <destination>
 <uri>udp://10.10.10.1:5000</uri>
 </destination>
 <secondary_destination nil="true"/>
 <fec_output_settings nil="true"/>
 <dvb_sdt_settings nil="true"/>
 <dvb_tdt_settings nil="true"/>
 <dvb_nit_settings nil="true"/>
</mpts>

GET List: Get All SPTS of an MPTS

Get a list of all the SPTS programs in the specified MPTS output.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/mpts/<ID of mpts>/mpts_members

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response contains XML content consisting of one mpts_members element with the following.

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

GET List: Get All SPTS of an MPTS Version 3.22.0 and later 122

Conductor Live API Reference

• Zero or more mpts_member elements, one for each mpts member found. Each mpts_member
element contains several elements.

Element Value Description

id Integer The ID for this MPTS member,
assigned by the system when
the MPTS member is created
(either as part of the creation
of an MPTS, or when creating
an individual MPTS member).

mpts_id Integer

created_at String The time this bulk task was
created (the POST Start or
Stop was received by the
system).

Time is in ISO 8601 format,
with the timezone designato
r indicated as an offset from
UTC. For example, 2015-08-1
7T11:59:35-07:00 is the time
in the timezone that is 7
hours behind UTC.

updated_at String The time the most recent
change was made to this task
report, in other words, the
last time one or more of the
count elements was updated.

name String The name (value of the name
element) of the channel that
is a member of the MPTS.
You did not specify this name

GET List: Get All SPTS of an MPTS Version 3.22.0 and later 123

Conductor Live API Reference

Element Value Description

in the POST MPTS member;
instead, the system finds it
and includes it in the GET
response.

Elements created by the
POST MPTS Member

See the section called “POST:
Create an MPTS”.

GET List: Get All SPTS of an MPTS Version 3.22.0 and later 124

Conductor Live API Reference

Element Value Description

input String This is identical to the
primary destination that you
specified in the profile used
to create this channel (which
is now an mpts_member).
This primary destination is
specified in the profile XML by
the following:

output_group/output/
udp_settings/destination/uri

output_group/output/
udp_settings/destination/
interface

output_group/output/
udp_settings/destination/
username

output_group/output/
udp_settings/destination/
password output_group/
output/udp_settings/des
tination/certificate file

Keep in mind that the
destination for the profile
(channel) becomes input for
the MPTS.

GET List: Get All SPTS of an MPTS Version 3.22.0 and later 125

Conductor Live API Reference

Element Value Description

secondary_input String This is identical to the
secondary destination that
you specified in the profile
used to create this channel
(which is now an mpts_memb
er). It may be blank. This
secondary destination is
specified in the profile XML by
the following tags:

output_group/output/
udp_settings/secondary_de
stination/uri

output_group/output/
udp_settings/secondary_de
stination/interface

output_group/output/
udp_settings/secondary_de
stination/username

output_group/output/
udp_settings/secondary_de
stination/password output_gr
oup/output/udp_settings/sec
ondary_destination/certific
ate file

Keep in mind that the
destination for the profile
(channel) becomes input for
the MPTS.

GET List: Get All SPTS of an MPTS Version 3.22.0 and later 126

Conductor Live API Reference

Element Value Description

allocation_transmit_destina
tion

String This is identical to the
following tag that you
included in the profile used to
create this channel (which is
now an mpts_member):

output_group/output/
udp_settings/allocation_r
eceipt_destination

Keep in mind that the receipt
destination for the profile
(channel) becomes a transmit
destination for the MPTS.

complexity_receipt_destinat
ion

String This is identical to the
following tag that you
included in the profile used to
create this channel (which is
now an mpts_member):

output_group/output/
udp_settings/complexity_t
ransmit_destination

Keep in mind that the
transmit destination for the
profile (channel) becomes a
receipt destination for the
MPTS.

GET List: Get All SPTS of an MPTS Version 3.22.0 and later 127

Conductor Live API Reference

Element Value Description

secondary_allocation_transm
it_destination

String This is identical to the
following tag that you
included in the profile used to
create this channel (which is
now an mpts_member):

output_group/output/
udp_settings/secondary_al
location_receipt_destination

Keep in mind that the receipt
destination for the profile
(channel) becomes a transmit
destination for the MPTS.

secondary_complexity_receip
t_destination

String This is identical to the
following tag that you
included in the profile used to
create this channel (which is
now an mpts_member):

output_group/output/
udp_settings/secondary_co
mplexity_transmit_destinati
on

Keep in mind that the
transmit destination for the
profile (channel) becomes a
receipt destination for the
MPTS.

Example

Request

GET List: Get All SPTS of an MPTS Version 3.22.0 and later 128

Conductor Live API Reference

GET http://198.51.100.0/mpts/3/mpts_members

Response

<?xml version="1.0" encoding="UTF-8"?>
<mpts_members>
 <mpts_member>
 <id type="integer">3</id>
 <mpts_id type="integer">3</mpts_id>
 <created_at type="datetime">2015-08-18T13:46:23-07:00</created_at>
 <updated_at type="datetime">2015-08-18T13:46:23-07:00</updated_at>
 <channel_id type="integer">6</channel_id>
 <name>Channel_A</name>
 <pid_map>
 <pmt_pid type="integer">100</pmt_pid>
 <video_pid type="integer">101</video_pid>
 </pid_map>
 <program_number type="integer">1</program_number>
 <type>conductor</type>
 <input>
 <uri>udp://127.0.0.1:5004</uri>
 </input>
 <secondary_input nil="true"/>
 <allocation_transmit_destination>
 <uri>udp://127.0.0.1:5005</uri>
 </allocation_transmit_destination>
 <secondary_allocation_transmit_destination nil="true"/>
 <complexity_receipt_destination>
 <uri>udp://127.0.0.1:5002</uri>
 </complexity_receipt_destination>
 <secondary_complexity_receipt_destination nil="true"/>
 </mpts_member>
</mpts_members>

GET: Get an SPTS Program

Get the specified SPTS program from the specified MPTS output.

GET: Get an SPTS Program Version 3.22.0 and later 129

Conductor Live API Reference

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/mpts/<ID of mpts>/mpts_members/<ID of mpts member>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response contains XML content consisting of one mpts_member element, with the same
elements as the response for GET SPTS Program List above.

Example

TEXT

DELETE: Delete an SPTS Program

Delete the specified SPTS program from the specified MPTS output.

HTTP Request and Response

Request URL

DELETE http://<Conductor IP address>/mpts/mpts_id/mpts_members/<mpts_member_id>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

DELETE: Delete an SPTS Program Version 3.22.0 and later 130

Conductor Live API Reference

Example

Delete the SPTS program with the ID 4 from the MPTS with the ID 2.

DELETE http://198.51.100.0/mpts/2/mpts_members/4

DELETE: Delete an SPTS Program Version 3.22.0 and later 131

Conductor Live API Reference

Monitoring Conductor Live

The entities in this chapter are those that you work with “in production”, in order to set up
Conductor Live to control the worker nodes and in order to instruct the worker nodes to process
video. For background information on these entities, see the AWS Elemental Conductor Live User
Guide.

Topics

• Managing Channels

• Querying Alerts and Messages

Managing Channels

Channel Status Elements

The status element of a channel provides information about the current status of the channel.
The status imposes rules about the ability to modify (PUT), delete (DELETE), or start or stop (POST
Start Channel and POST Stop Channel) a channel.

You can obtain the status of a channel using GET Channel List or GET Channel.

Status Modify Delete Start Stop

Active Not allowed Not allowed Not allowed Allowed

Complete Allowed Allowed Allowed Not applicable

Error Allowed. Status
will change to
idle.

Allowed Not allowed Not applicable

Idle Allowed Allowed Allowed Not applicable

Pending Not allowed Not allowed Not allowed Not allowed

Postprocessing Not allowed Not allowed Not allowed Allowed

Preprocessing Not allowed Not allowed Not allowed Allowed

Managing Channels Version 3.22.0 and later 132

https://docs.aws.amazon.com/elemental-cl3/latest/ug/
https://docs.aws.amazon.com/elemental-cl3/latest/ug/

Conductor Live API Reference

Status Modify Delete Start Stop

Running Not allowed Not allowed Not allowed Allowed

Started Not allowed Not allowed Not allowed Allowed

Starting Not allowed Not allowed Not allowed Allowed

Stopping Not allowed Not allowed Not allowed Not applicable

Suspended Not allowed Not allowed Not allowed Allowed

Unknown Not allowed Not allowed Not allowed Not allowed

Unreachable Not allowed Not allowed Not allowed Not allowed

POST Channel Revert: Resetting the Channel

If a channel is in one of the following statuses, you can make it revert to the Idle state:

• Complete

• Error

• Unknown

If you try to revert to Idle from another status, the system ignores the command.

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request URL

POST http://<Conductor IP address>/channels/<ID of channel>/revert

POST Channel Revert: Resetting the Channel Version 3.22.0 and later 133

Conductor Live API Reference

Querying Alerts and Messages

GET Alerts: Get a List of Alerts

Get a list of alerts on one or more nodes in the cluster.

HTTP Request and Response

Request URL

The request URL consists of the operation, the URL of the Conductor Live node, the alerts request,
and optional filter parameters. Use this format:

GET http://<Conductor IP address>/alerts?<filter>=<value>&<filter>=<value>

The following filter parameters are available for the GET request. See the examples, which show a
variety of filter parameters.

Note

Requests for alert data can return very large amounts of information. To receive that
information in manageable chunks, use pagination as described in the section called
“Specifying Pagination of the Response”.

Filter Value Description and Notes

status String Filter for only those alerts
that are “active” or “inactive”.
To show all active alerts, use:

GET http://198.51.100.
0/alerts?status=ac
tive

To show all inactive alerts,
use:

Querying Alerts and Messages Version 3.22.0 and later 134

Conductor Live API Reference

Filter Value Description and Notes

GET http://198.51.100.
0/alerts?status=in
active

In both examples above,
the Conductor IP address is
198.51.100.0.

origin Integer Filter for alerts that originate
from a specific node. See the
section called “Where Alerts
Come From and Where They
Apply” for details.

GET http://198.51.100.
0/alerts?origin=2

Use the IP address of the
Conductor node and the
ID of the node as assigned
by Conductor Live. In
the example above, the
Conductor IP address is
198.51.100.0 and the
originating node ID is 2. To
determine the node ID, send a
GET request.

GET Alerts: Get a List of Alerts Version 3.22.0 and later 135

Conductor Live API Reference

Filter Value Description and Notes

node Integer Filter for alerts that apply to a
specific node. See the section
called “Where Alerts Come
From and Where They Apply”
for details. Typically, you do
not filter for both origin and
node.

GET http://198.51.100.
0/alerts?node=2

In the example above, the
Conductor Live IP address
is 198.51.100.0 and the
originating node ID is 2. To
determine the node ID, send a
GET request.

GET Alerts: Get a List of Alerts Version 3.22.0 and later 136

Conductor Live API Reference

Filter Value Description and Notes

channel Integer Filter for alerts that apply to a
specific channel.

GET http://198.51.100.
0/alerts?channel=4

In the example above, the
Conductor Live IP address
is 198.51.100.0 and the
ID of the channel the alert
is coming from is 4. To
determine the channel ID,
send a GET request as shown
in this example.

To get all alerts originating
from a specific node that
apply to a specific channel,
you can filter for origin and
channel together:

GET http://198.51.100.
0/alerts?channel=4
&origin=2

GET Alerts: Get a List of Alerts Version 3.22.0 and later 137

Conductor Live API Reference

Filter Value Description and Notes

mpts Integer Filter for alerts that apply
to a specific Multi-Program
Transport Stream (MPTS)
output.

GET http://198.51.100.
0/alerts?mpts=3

Enter the ID of the MPTS
output as assigned by
Conductor Live.

You can filter for both an
origin and an MPTS.

type String Filter for alerts by alert type:
CpuAlert, NodeStatusAlert,
DiskAlert, InputAlert, and
so on. All alerts types that
appear in the user interface
under Status>Alerts are valid
type values.

GET http://198.51.100.
0/alerts?type=Disk
Alert

In the example above, the
Conductor Live IP address is
198.51.100.0.

GET Alerts: Get a List of Alerts Version 3.22.0 and later 138

Conductor Live API Reference

Filter Value Description and Notes

code String Filter for only those alerts
with the specified alert codes.
Enter a list of 1 or more
numeric codes. All alerts
codes that appear in the user
interface under Status>Alerts
are valid code values.

GET http://198.51.100.
0/alerts?code=4002

In the example above, the
Conductor Live IP address is
198.51.100.0 and 4002 is the
code for DiskAlert.

Where Alerts Come From and Where They Apply

An alert may originate with an Conductor Live node or it may originate with a worker node and get
pushed to Conductor Live. In both cases, the alert may relate to a node and/or a channel or MPTS
output.

For example, if a channel on Live node live-01 fails, then an alert occurs. The alert originates from
Live node live-01 and applies to node live-01 and channel Channel_A.

Or a node live-01 may fail, resulting in an alert. In this case, the alert originates from the
Conductor node (not from live-01), but it applies to node live-01.

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication” .

GET Alerts: Get a List of Alerts Version 3.22.0 and later 139

Conductor Live API Reference

Response

The response is XML content consisting of one alerts element that holds the following:

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• Zero or more alert elements each containing several elements from this table.

Element Value Description

alertable_id Integer The unique ID for the entity
in alertable_type. This is
the ID that is included in
the response of a GET. For
example, GET Node includes
the ID that uniquely identifies
the node.

alertable_type String The entity that the alert
is associated with: Node,
Channel, MPTS.

eme_id Integer An internal ID.

id Integer A unique ID for this alert,
assigned by Conductor Live.

last_set Time The time that the alert
was last set (either when it
appeared for the first time
or when it changed back to
set after previously being
cleared).

Some alerts are set and
cleared repeatedly, so the
time for these alerts may
change.

GET Alerts: Get a List of Alerts Version 3.22.0 and later 140

Conductor Live API Reference

Element Value Description

Some are not set and cleared
repeatedly, so the time will
never change.

message String A longer description.

name String A short description.

node_id Integer The ID that identifies the
same piece of data as the
origin filter in the request; see
the section called “GET Alerts:
Get a List of Alerts”.

notes String A section that shows whether
the web interface user has
added a note to the alert
(Status > Notifications): it
appears here.

output_id Integer The unique ID for the entity in
output_type.

output_type String The type of the output in
the channel (event) that this
alert specifically applies to.
Otherwise, null.

quiet Boolean The status of suppression
of the alert on the worker
node. True means the alert
has been suppressed on the
worker node. False means it
has not been suppressed.

GET Alerts: Get a List of Alerts Version 3.22.0 and later 141

Conductor Live API Reference

Element Value Description

remote_id Integer The ID of the entity (channel
or MPTS) as assigned by the
worker node that is running
this entity. The ID assigned
by Conductor Live may be
different from the ID assigned
by the worker node.

set Boolean The status of whether the
alert has been set. True
means it is set. False means
it has been cleared or has
never been set.

threshold The indicator which applies
only to alerts that have
a threshold assigned to
the alerting context. For
example, this can be the CPU
Alert, which specifies when
CPU usage is above a given
percentage.

If the alert is the type of alert
that gets set repeatedly, each
time the threshold changes,
then this number shows the
minimum threshold. The alert
does not get set for this first
time until this threshold is
met.

type String The type of the alert.

updated_at Time The last time this alert was
updated.

GET Alerts: Get a List of Alerts Version 3.22.0 and later 142

Conductor Live API Reference

Examples

Example 1

This example requests all active alerts from node 2.

GET http://10.4.138.230/alerts?channel=5&status=active

Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>
<alerts href="/alerts" product="AWS Elemental Conductor Live" version="3.2.0.40946"
 type="array">
 <alert>
 <id type="integer">18</id>
 <type>InputAlert</type>
 <name>Live Event 125 Alert 5302</name>
 <message>Stopped receiving network data on [udp://239.255.10.7:5001]</message>
 <last_set type="datetime">2016-06-01T15:52:17-07:00</last_set>
 <quiet type="boolean">false</quiet>
 <set type="boolean">true</set>
 <threshold nil="true"/>
 <code type="integer">5302</code>
 <notes nil="true"/>
 <alertable_type>Elemental::Live247::Channel</alertable_type>
 <alertable_id type="integer">3</alertable_id>
 <node_id type="integer">2</node_id>
 <updated_at type="datetime">2016-06-01T15:52:18-07:00</updated_at>
 <readable_type>Channel</readable_type>
 <product_type nil="true"/>
 </alert>
 <alert>
 <id type="integer">16</id>
 <type>InputAlert</type>
 <name>Live Event 125 Alert 5201</name>
 <message>[188] Video not detected: Check input signal</message>
 <last_set type="datetime">2016-06-01T15:52:21-07:00</last_set>
 <quiet type="boolean">false</quiet>
 <set type="boolean">true</set>
 <threshold nil="true"/>
 <code type="integer">5201</code>
 <notes nil="true"/>
 <alertable_type>Elemental::Live247::Channel</alertable_type>
 <alertable_id type="integer">3</alertable_id>

GET Alerts: Get a List of Alerts Version 3.22.0 and later 143

Conductor Live API Reference

 <node_id type="integer">2</node_id>
 <updated_at type="datetime">2016-06-01T15:52:21-07:00</updated_at>
 <readable_type>Channel</readable_type>
 <product_type nil="true"/>
 </alert>
</alerts>

Example 2

The following example requests all active input alerts on channel 5 but limits the number to 10
alerts per page.

GET http://10.4.138.230/alerts?channel=5&type=InputAlert&status=active&per_page=10

GET Messages: Get a List of Messages

Get a list of messages on one or more nodes in the cluster.

HTTP Request and Response

Request URL

The request consists of the operation, the URL of the Conductor Live node, the messages request,
and optional filter parameters. If using multiple filters, enter the ampersand (&) between each
filter parameter. For example:

GET http://<Conductor IP address>/messages?<filter>=<value>&<filter>=<value>

The following filter parameters are available for the GET request. See the examplesfor a variety of
filter parameters.

Filter Value Description

origin Integer Filter for messages that were
originate with a specific node.
Enter the ID of the node as
assigned by Conductor Live.

GET Messages: Get a List of Messages Version 3.22.0 and later 144

Conductor Live API Reference

Filter Value Description

See the section called “Where
Alerts Come From and Where
They Apply”.

node Integer Filter for messages that apply
to a specific node. Enter the
ID of the node as assigned by
AWS Elemental Conductor
Live 3.

Typically, for a node, do not
enter both the origin and
node filters.

channel Integer Filter for messages that apply
to a specific channel. Enter
the ID of the channel as
assigned by Conductor Live.

You can enter both an origin
and channel.

mpts Integer Filter for messages that apply
to a specific Multi-Program
Transport Stream (MPTS)
output. Enter the ID of the
MPTS output as assigned by
Conductor Live.

You can enter both an origin
and an MPTS.

type String Case-insensitive match. See
the Status > Messages screen
on the Conductor Live web
interface for a list of applicabl
e types.

GET Messages: Get a List of Messages Version 3.22.0 and later 145

Conductor Live API Reference

Filter Value Description

code String Filter for only those messages
with the specified message
codes. Enter a comma-sep
arated list of 1 or more
numeric codes. For a list
of codes, see the Status
> Messages screen on the
Conductor Live web interface.

page Integer Default is 1.

per_page Integer Default is 20.

Origin, Node, Channel, MPTS

A message may originate with an Conductor Live node or it may originate with a worker node and
get pushed to Conductor Live. In both cases, the message may relate to a node and/or a channel or
Multi-Program Transport Stream (MPTS) output.

For example, if a channel on Live node live-01 fails, then a message may occur. The message
originates from Live node live-01 and applies to node live-01 and channel Channel_A.

Or a node live-01 may fail, resulting in a message. In this case, the message originates from the
Conductor node (not from live-01), but it applies to node live-01.

page and per_page

The per_page parameter chunks messages into groups or “pages” of a given count. For example,
“30” means chunk messages into one page for IDs 1-30, another for 31-60, and so on. The page
parameter identifies a given page. For example, if per_page is “30,” then page 3 contains IDs 61-90.

Enter only the page (per_page uses the default), only the per_page (page uses the default), or both.

Messages are not sorted into any order, so you cannot obtain the newest messages, for example.
The key use for these filter parameters is to retrieve a large number of messages by specifying a
high number in per_page.

GET Messages: Get a List of Messages Version 3.22.0 and later 146

Conductor Live API Reference

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication” .

Response

The response is XML content consisting of one message element with the following.

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• Several elements from the table below.

Element Value Description

id Integer A unique ID for this alert,
assigned by Conductor Live.

type String The type of the message.

code Integer The internal code assigned to
this type of alert.

message String A longer description.

data String A data string that can hold
additional information on the
message.

notes String A notes string that is always
null.

messageable_id Integer The unique ID for the entity
in alertable_type. This is
the ID that is included in
the response of a GET. For
example, GET Node includes

GET Messages: Get a List of Messages Version 3.22.0 and later 147

Conductor Live API Reference

Element Value Description

the ID that uniquely identifies
the node.

messageable_type String The type of the output in
the channel (event) that this
alert specifically applies to.
Otherwise null.

node_id Integer The ID which identifies the
same piece of data as the
origin filter in the request; see
the section called “GET Alerts:
Get a List of Alerts”.

remote_id Integer The ID of the entity (channel
or MPTS) as assigned by the
worker node that is running
this entity. The ID assigned
by Conductor Live may be
different from the ID assigned
by the worker node.

updated_at Time The last time this alert was
updated.

Examples

Example 1

This example requests all active messages for node 2.

GET http://10.4.138.230/messages?node=2&status=active

Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>

GET Messages: Get a List of Messages Version 3.22.0 and later 148

Conductor Live API Reference

<messages href="/messages" product="AWS Elemental Conductor Live" version="3.3.nnnnn"
 type="array">
<messages>
 <message>
 <id type="integer">5</id>
 <type>AuditMessage</type>
 <code type="integer">30</code>
 <message>Node live_1 activated</message>
 <data nil="true"/>
 <notes nil="true"/>
 <messageable_type>Elemental::Live247::Node</messageable_type>
 <messageable_id type="integer">2</messageable_id>
 <remote_id type="integer">280</remote_id>
 <node_id type="integer">2</node_id>
 <updated_at type="datetime">2016-04-28T09:40:18-07:00</updated_at>
 <readable_type>Node</readable_type>
 <ignore type="boolean">false</ignore>
 </message>
 <message>
 <id type="integer">6</id>
 <type>AuditMessage</type>
 <code type="integer">32</code>
 <message>Node live_1 added to cluster</message>
 <data nil="true"/>
 <notes nil="true"/>
 <messageable_type>Elemental::Live247::Node</messageable_type>
 <messageable_id type="integer">2</messageable_id>
 <remote_id type="integer">279</remote_id>
 <node_id type="integer">2</node_id>
 <updated_at type="datetime">2016-04-28T09:38:03-07:00</updated_at>
 <readable_type>Node</readable_type>
 <ignore type="boolean">false</ignore>
 </message>
 <message>
 <id type="integer">7</id>
 <type>AuditMessage</type>
 <code type="integer">31</code>
 <message>Node live_1 is deactivated</message>
 <data nil="true"/>
 <notes nil="true"/>
 <messageable_type>Elemental::Live247::Node</messageable_type>
 <messageable_id type="integer">2</messageable_id>
 <remote_id type="integer">278</remote_id>
 <node_id type="integer">2</node_id>

GET Messages: Get a List of Messages Version 3.22.0 and later 149

Conductor Live API Reference

 <updated_at type="datetime">2016-04-28T09:17:13-07:00</updated_at>
 <readable_type>Node</readable_type>
 <ignore type="boolean">false</ignore>
 </message>
 <message>
 <id type="integer">8</id>
 <type>AuditMessage</type>
 <code type="integer">30</code>
 <message>Node live_1 activated</message>
 <data nil="true"/>
 <notes nil="true"/>
 <messageable_type>Elemental::Live247::Node</messageable_type>
 <messageable_id type="integer">2</messageable_id>
 <remote_id type="integer">86</remote_id>
 <node_id type="integer">2</node_id>
 <updated_at type="datetime">2016-02-15T15:52:53-08:00</updated_at>
 <readable_type>Node</readable_type>
 <ignore type="boolean">false</ignore>
 </message>
 </messages>

Example 2

The following example requests all active code 30 (node activated) messages from node 13, limiting
the responses to 20per page.

GET http://10.4.138.230/messages?status=active&code=30&node=13&per_page=20

GET System Information: Get a List of System Details

Get a list of details about the Conductor Live system, including memory, CPU, and network
information.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/system_info

Call Header

• Accept: Set to application/xml

GET System Information: Get a List of System Details Version 3.22.0 and later 150

Conductor Live API Reference

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication” .

Response

The response is XML content consisting of one hash element with the following.

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• One hash element containing several elements from the table below.

Element Value Description

serial-number String If available, provides the
serial number for the
hardware.

cpu-info Array Provides the model name and
count of the CPU.

cpu-summary String Provides a summary of the
CPU, including model number
and version.

mem-info String Provides memory informati
on, including:

• Total memory

• Used memory

• Free memory

• Shared memory

• Buffers

• Cached

network-info Array Provides network information
such as the Ethernet ports in
use.

GET System Information: Get a List of System Details Version 3.22.0 and later 151

Conductor Live API Reference

Element Value Description

md-raid String Provides Redundant Array
of Independent Disks (RAID)
information, including:

• RAID-Level

• X

• RAID-Devices

• Total-Devices

• State

• Active-Devices

• Working-Devices

hardware-raid Array Provides appliance hardware
RAID information.

mount-info Array Provides information about
the devices that are mounted
to the AWS Elemental
Conductor Live 3 system.
Includes:

• Device name

• Path

• Size

• Used space

• Available space

• Percent space used

Example

GET http://198.51.100.0/system_info

Content-type:application/vnd.elemental+xml;version=3.3.0

GET System Information: Get a List of System Details Version 3.22.0 and later 152

Conductor Live API Reference

--
<?xml version="1.0" encoding="UTF-8"?>
<?xml version="1.0" encoding="UTF-8"?>
<hash>
 <serial-number>None</serial-number>
 <cpu-info type="array">
 <cpu-info>
 <model>Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz</model>
 <count type="integer">8</count>
 </cpu-info>
 </cpu-info>
 <cpu-summary>8x Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz</cpu-summary>
 <mem-info>
 <total type="integer">8254267392</total>
 <used type="integer">5460201472</used>
 <free type="integer">2794065920</free>
 <shared type="integer">0</shared>
 <buffers type="integer">457605120</buffers>
 <cached type="integer">2555064320</cached>
 </mem-info>
 <network-info type="array">
 <network-info>02:00.0 Ethernet controller: Intel Corporation 82545EM Gigabit
 Ethernet Controller (Copper) (rev 01)</network-info>
 <network-info>02:01.0 Ethernet controller: Intel Corporation 82545EM Gigabit
 Ethernet Controller (Copper) (rev 01)</network-info>
 <network-info>02:02.0 Ethernet controller: Intel Corporation 82545EM Gigabit
 Ethernet Controller (Copper) (rev 01)</network-info>
 </network-info>
 <md-raid>
 </md-raid>
 <hardware-raid type="array"/>
 <mount-info type="array">
 <mount-info>
 <device>sda1</device>
 <path>/boot</path>
 <size type="integer">101529600</size>
 <used type="integer">35848192</used>
 <avail type="integer">60438528</avail>
 <percent type="integer">38</percent>
 </mount-info>
 <mount-info>
 <device>VolGroup00-LogVol00</device>
 <path>/</path>
 <size type="integer">20609396736</size>

GET System Information: Get a List of System Details Version 3.22.0 and later 153

Conductor Live API Reference

 <used type="integer">3405201408</used>
 <avail type="integer">16157298688</avail>
 <percent type="integer">18</percent>
 </mount-info>
 <mount-info>
 <device>VolGroup00-LogVol02</device>
 <path>/opt</path>
 <size type="integer">5284429824</size>
 <used type="integer">1384677376</used>
 <avail type="integer">3631316992</avail>
 <percent type="integer">28</percent>
 </mount-info>
 <mount-info>
 <device>VolGroup00-LogVol03</device>
 <path>/var/lib/mysql</path>
 <size type="integer">10568916992</size>
 <used type="integer">179785728</used>
 <avail type="integer">9852260352</avail>
 <percent type="integer">2</percent>
 </mount-info>
 <mount-info>
 <device>VolGroup00-LogVol04</device>
 <path>/data</path>
 <size type="integer">62488891392</size>
 <used type="integer">7324286976</used>
 <avail type="integer">51990355968</avail>
 <percent type="integer">13</percent>
 </mount-info>
 <mount-info>
 <path>total</path>
 <size type="integer">99053164544</size>
 <used type="integer">12329799680</used>
 <avail type="integer">81691670528</avail>
 <percent type="integer">14</percent>
 </mount-info>
 </mount-info>
</hash>

GET System Information: Get a List of System Details Version 3.22.0 and later 154

Conductor Live API Reference

Configuring the Cluster

The entities in this chapter are those that you typically work with only when setting up your
cluster. For background information on these entities, see the AWS Elemental Conductor Live
Configuration Guide.

Topics

• Setting up Nodes

• Setting Up Routers

• Setting Up Router Inputs

• Setting Up Router Outputs

• Setting Up Redundancy Groups

• Setting Up Members of a Redundancy Group

• Setting Up a Conductor Redundancy Group

• Setting Up Members of a Conductor Redundancy Group

• Backing Up the Conductor Database

Setting up Nodes

Topics

• POST: Add a Node to the Cluster

• GET List: Get a List of Nodes in the Cluster

• GET: Get the Attributes of a Node

• DELETE: Remove a Node from the Cluster

POST: Add a Node to the Cluster

HTTP Request and Response

Request URL

Add a node to the cluster.

Setting up Nodes Version 3.22.0 and later 155

https://docs.aws.amazon.com/elemental-cl3/latest/configguide/
https://docs.aws.amazon.com/elemental-cl3/latest/configguide/

Conductor Live API Reference

POST http://<Conductor IP address>/nodes

Request Body

The request body is XML content consisting of one hosts element (of type “array”) that contains:

• One or more host elements, one for each node found. Each element contains:

• One IP address.

• A range of IP addresses (for example, 10.4.136.[90-92]).

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

No response is supplied for a successful node addition. Operators should perform the GET Node
operation to confirm that the node has been added successfully. For assistance, see the section
called “GET: Get the Attributes of a Node”.

Example

Request

This request adds four nodes: 10.4.136.15, 10.4.136.90, 10.4.136.91, 10.4.136.92.

POST http://198.51.100.0/nodes
--
<?xml version="1.0" encoding="UTF-8"?>
<hosts type="array">
 <host>10.4.136.15</host>
 <host>10.4.136.[90-92]</host>
</hosts>

POST: Add a Node to the Cluster Version 3.22.0 and later 156

Conductor Live API Reference

GET List: Get a List of Nodes in the Cluster

Get the list of the nodes in the cluster, including the Conductor Live node and the individual AWS
Elemental Live and AWS Elemental Statmux nodes.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/nodes

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response is XML content consisting of one nodes element that contains:

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• Zero or more node elements, one for each node found (Conductor Live, AWS Elemental Live, and
AWS Elemental Statmux). Each node element contains several elements.

Element Value Description

id Integer The unique ID of the node,
assigned by the system when
the node is created.

hostname String The host name of the node,
assigned via a network
command during setup of
this appliance. Note that
you do not assign this name

GET List: Get a List of Nodes in the Cluster Version 3.22.0 and later 157

Conductor Live API Reference

Element Value Description

when adding the node to the
cluster.

For example, “ecle-123
45678” is a typical name
for an Conductor Live node.
“elae-12345678” is a typical
name for an AWS Elemental
Live node.

ip_addr String The IP address of the node on
the network.

status String The current status of the
node: online, offline, failed,
unknown.

product_name String The product name installed
on this node. Always specifies:

• “Conductor Live” for the
Conductor Live node.

• “Live” for an AWS
Elemental Live node.

• “Statmux” for an AWS
Elemental Statmux node.

version String The version of the product
name installed on this node.

channels Integer The number of channels that
are associated with this node.

Always “0” for the Conductor
Live node.

GET List: Get a List of Nodes in the Cluster Version 3.22.0 and later 158

Conductor Live API Reference

Element Value Description

inflight_channels Integer Number of channels currently
in use for encoding. Always 0
for a Conductor node, 0 or a
number for a worker node.

mptses Integer Number of MPTS outputs
associated with this node.
Always 0 for a Conductor
node, 0 or a number for a
worker node.

active_alerts Integer Number of alerts that are
associated with that node and
that are active (they have not
been automatically cleared by
the system).

recent_error_messages Integer Number of error messages
that are associated with
that node and that have
occurred in the last 168
hours (one week). Does not
include content messages,
audit messages or warning
messages.

GET List: Get a List of Nodes in the Cluster Version 3.22.0 and later 159

Conductor Live API Reference

Element Value Description

redundancy_group The ID assigned to the
redundancy group, the name
of the redundancy group,
and the name of the product
running on the worker
nodes (values are “live” and
“statmux”).

If this node is a worker node
and belongs to a redundancy
group, contains the elements
for that group. See the
section called “GET List: Get a
List of Conductor Redundancy
Group Members”.

If this node is a Conductor
node, nil.

authentication Integer If user authentication is set
up on this node, specifies
the ID of the “API user”
that you created when you
set up for authentication,
as described in the AWS
Elemental Conductor Live
Configuration Guide.

In effect, a value here tells
you that user authentication
is enabled on this node.

GET List: Get a List of Nodes in the Cluster Version 3.22.0 and later 160

Conductor Live API Reference

Example

The response to this request specifies that there are three nodes set up in the cluster: one
Conductor Live node (as indicated by the product_name) and two AWS Elemental Live nodes. All
the nodes have user authentication enabled. In this example, the Conductor Live has the ID 1, but
you cannot rely on this node always being assigned that ID.

GET http://198.51.100.0/nodes
--
Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>
<nodes href="/nodes" product="AWS Elemental Conductor Live" version="3.3.nnnnn">
 <node>
 <id>1</id>
 <hostname>ecle-12345678</hostname>
 <ip_addr>198.51.100.0</ip_addr>
 <status>active</status>
 <product_name>AWS Elemental Conductor Live</product_name>
 <version>3.3.nnnnn</version>
 <channels>0</channels>
 <inflight_channels type="integer">0</inflight_channels>
 <mptses type="integer">0</mptses>
 <active_alerts type="integer">0</active_alerts>
 <recent_error_messages type="integer">0</recent_error_messages>
 <redundancy_group nil="true"/>
 <authentication>
 <user_id type="integer">1</user_id>
 </authentication>
 </node>
 <node>
 <id>2</id>
 <hostname>ecle-12345678</hostname>
 <ip_addr>10.4.136.91</ip_addr>
 <status>active</status>
 <product_name>Live</product_name>
 <version>2.7.0.67890</version>
 <channels>4</channels>
 <inflight_channels type="integer">1</inflight_channels>
 <mptses type="integer">3</mptses>
 <active_alerts type="integer">2</active_alerts>
 <recent_error_messages type="integer">0</recent_error_messages>
 <redundancy_group nil="true"/>

GET List: Get a List of Nodes in the Cluster Version 3.22.0 and later 161

Conductor Live API Reference

 <authentication>
 <user_id type="integer">1</user_id>
 </authentication>
 </node>
 <node>
 <id>3</id>
 <hostname>ecle-22334455</hostname>
 <ip_addr>10.4.136.92</ip_addr>
 <status>active</status>
 <product_name>Live</product_name>
 <version>2.7.0.67890</version>
 <channels>3</channels>
 <inflight_channels type="integer">0</inflight_channels>
 <mptses type="integer">0</mptses>
 <active_alerts type="integer">0</active_alerts>
 <recent_error_messages type="integer">0</recent_error_messages>
 <redundancy_group nil="true"/>
 <authentication>
 <user_id type="integer">1</user_id>
 </authentication>
 </node>
</nodes>

GET: Get the Attributes of a Node

Get the attributes on the specified node.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/nodes/<ID of node>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication” .

GET: Get the Attributes of a Node Version 3.22.0 and later 162

Conductor Live API Reference

Response

The response is XML content consisting of one node element, containing the same elements as the
response for GET Node List above.

Example

This request gets the attributes for the node that has the ID 3.

GET http://198.51.100.0/nodes/3
--
Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>
<node>
 <id>3</id>
 <hostname>ecle-22334455</hostname>
 <ip_addr>10.4.136.92</ip_addr>
 <status>active</status>
 <product_name>Live</product_name>
 <version>2.7.0.67890</version>
 <channels>3</channels>
 <inflight_channels type="integer">0</inflight_channels>
 <mptses type="integer">0</mptses>
 <active_alerts type="integer">0</active_alerts>
 <recent_error_messages type="integer">0</recent_error_messages>
 <redundancy_group nil="true"/>
 <authentication>
 <user_id type="integer">1</user_id>
 </authentication>
</node>

DELETE: Remove a Node from the Cluster

Remove the specified node from the Conductor Live cluster. The node cannot be associated with
any channels, so follow this procedure.

1. Send a GET Channel List request to see which channels use this node.

2. Send a POST Stop request to stop the channels that are running.

3. Send a PUT Channel request on each channel to modify it so that it does not use this node.

4. Delete the channel as described in the section called “DELETE: Delete a Channel”.

DELETE: Remove a Node from the Cluster Version 3.22.0 and later 163

Conductor Live API Reference

HTTP Request and Response

Request URL

DELETE http://<Conductor IP address>/nodes/<ID of node>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Example

This request removes the node with the ID 8.

DELETE http://198.51.100.0/nodes/8

Setting Up Routers

The Router element holds information about a router that is attached to SDI cards on the AWS
Elemental Live node.

Topics

• POST: Create a Router

• PUT: Modify a Router

• GET List: Get a List of Routers

• GET: Get Router Attributes

• DELETE: Delete a Router

POST: Create a Router

This request creates a new router to correspond to a router that is connected to HD-SDI inputs on
one or more AWS Elemental Live nodes. (The same router can have connections to several nodes.)

Setting Up Routers Version 3.22.0 and later 164

Conductor Live API Reference

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/routers

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The request body is XML content consisting of one router element, consisting of the following
elements.

Element Value Description

name String This name appears in the
Inputs drop-down list.

ip String The IP address without any
protocol.

max_inputs Integer The number of inputs you
want to use on this router.
This number must be less
than or equal to the number
of physical inputs on the
router.

max_outputs Integer The number of outputs you
want to use on this router.
This number must be less
than or equal to the number

POST: Create a Router Version 3.22.0 and later 165

Conductor Live API Reference

Element Value Description

of physical outputs on the
router.

router_type String One of these:

• blackmagic_videohub

• miranda_nvision

• harris_panacea

• snell_aurora

level_id Integer This appears only for Harris
Panacea and Miranda nVision.

user_id Integer This appears only for Miranda
nVision.

matrix_id Integer This appears only for Snell
Aurora.

Response

The response repeats back the data that you posted with the addition of <id>: the newly assigned
ID for the router.

The response is identical to the response to a GET Router. See the following example.

Example

Request

This request creates one router with the name “SDI_Router.” This router has 12 inputs and 12
outputs, so these numbers are set in the max_inputs and max_outputs.

POST http://198.51.100.0/routers
--
Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml
--

POST: Create a Router Version 3.22.0 and later 166

Conductor Live API Reference

<router>
 <name>SDI_Router</name>
 <ip>192.168.10.10</ip>
 <router_type>blackmagic_videohub</router_type>
 <max_inputs>12</max_inputs>
 <max_outputs>12</max_outputs>
</router>

Response

In this example, the router is given the ID 1.

<?xml version="1.0" encoding="UTF-8"?>
<router href="/routers" product="AWS Elemental Conductor Live" version="3.3.nnnnn">
 <id>1</id>
 <name>BlackMagic1</name>
 <ip>192.168.10.10</ip>
 <router_type>blackmagic_videohub</router_type>
 <max_inputs>12</max_inputs>
 <max_outputs>12</max_outputs>
<router>

PUT: Modify a Router

Modify the attributes of the specified router. You cannot use this command to modify the inputs or
outputs of the router; to do that, use PUT Router Input and PUT Router Output.

HTTP Request and Response

Request URL

PUT http://<Conductor IP address>/routers/<ID of router>

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

PUT: Modify a Router Version 3.22.0 and later 167

Conductor Live API Reference

Request Body

The request body contains only the elements to change. For a list of available elements, see the
section called “POST: Create a Router”.

Example

This request changes the router with the ID 3. It changes its max_inputs to 8.

PUT http://198.51.100.0/routers/3
--
Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<router>
 <router_type>blackmagic_videohub</router_type>
 <max_inputs>8</max_inputs>
</router>

GET List: Get a List of Routers

Get a list of all video SDI routers, including the data that is contained in the Router Input and
Router Output entities.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/routers

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response is XML content consisting of one routers element that contains:

GET List: Get a List of Routers Version 3.22.0 and later 168

Conductor Live API Reference

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• Zero or more router elements, one for each router found. Each router element consists of
several elements.

Element Value Description

id Integer

name See the section called “POST:
Create a Router”.

ip

router_type

level_id

user_id

The ID for this router,
assigned by the system when
the router is created.

id

name

router_id

input_number

See the section called “POST:
Create a Router Input”.

id

output_number

router_id

device_id

See the section called “POST:
Create a Router Output”.

GET List: Get a List of Routers Version 3.22.0 and later 169

Conductor Live API Reference

Example

Request

GET http://198.51.100.0/routers

Response

<?xml version="1.0" encoding="UTF-8"?>
<routers href="/routers" product="AWS Elemental Conductor Live" version="3.3.nnnnn">>
 <router>
 <id>1</id>
 <name>BlackMagic1</name>
 <ip>192.168.10.10</ip>
 <router_type>blackmagic_videohub</router_type>
 <max_inputs>12</max_inputs>
 <max_outputs>12</max_outputs>
 <inputs>
 <input>
 <id>1</id>
 <name>Input 1</name>
 <router_id>1</router_id>
 <input_number>1</input_number>
 </input>
 <input>
 <id>2</id>
 <name>Input 2</name>
 <router_id>1</router_id>
 <input_number>2</input_number>
 </input>
 </inputs>
 <outputs>
 <output>
 <id>9</id>
 <router_id>1</router_id>
 <output_number>1</output_number>
 <device_id>1</device_id>
 <device_type>Device</device_type>
 </output>
 </outputs>
 </router>
.
.

GET List: Get a List of Routers Version 3.22.0 and later 170

Conductor Live API Reference

.
 <router>
.
.
.
 </router>
</routers>

GET: Get Router Attributes

Get the attributes of the specified video SDI router, including the data that is contained in the
Router Input and Router Output.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/routers/<ID of router>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response contains XML content consisting of one router element, containing the same
elements as the response for the section called “GET List: Get a List of Routers”.

Example

This response shows the information for the router with the ID 1. For this router, two inputs have
been set up, but, so far, no outputs have been set up. The outputs would have to be set up in order
for the router to be useable as an input source.

GET http://198.51.100.0/routers/1

Content-type:application/vnd.elemental+xml;version=3.3.0

GET: Get Router Attributes Version 3.22.0 and later 171

Conductor Live API Reference

--
<?xml version="1.0" encoding="UTF-8"?>
<router href="/routers/2" product="AWS Elemental Conductor Live" version="3.3.nnnnn">
 <id>2</id>
 <name>SDI_Router</name>
 <ip>192.168.10.12</ip>
 <router_type>harris_panacea</router_type>
 <max_inputs>12</max_inputs>
 <max_outputs>12</max_outputs>
 <level_id>0</level_id>
 <inputs>
 <input>
 <id>3</id>
 <name>Input 1</name>
 <router_id>2</router_id>
 <input_number>1</input_number>
 </input>
 <input>
 <id>4</id>
 <name>Input 2</name>
 <router_id>2</router_id>
 <input_number>2</input_number>
 </input>
 </inputs>
 <outputs/>
</router>

DELETE: Delete a Router

Deletes the specified router (identified by its internal router ID) and the associated inputs and
outputs. To get the internal router ID of a specific router, see the section called “GET: Get Router
Attributes”.

HTTP Request and Response

Request URL

DELETE http://<Conductor IP address>/routers/<ID of router>

Call Header

• Accept: Set to application/xml

DELETE: Delete a Router Version 3.22.0 and later 172

Conductor Live API Reference

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Example

This request deletes the router with the ID 2.

DELETE http://198.51.100.0/routers/2

Setting Up Router Inputs

The Router Inputs entity holds information about the router inputs you are using with an AWS
Elemental Live node. You only need to add information about the router inputs that are being or
will be used (that are hooked up to an AWS Elemental Live node).

Topics

• POST: Create a Router Input

• PUT: Modify a Router Input

• GET List: Get a List of Router Inputs

• GET: Get Attributes of a Router Input

• DELETE: Delete a Router Input

POST: Create a Router Input

This request creates a new input for the specified router. Use this command repeatedly to set up all
the router inputs. The total number of Router Input entities for a specified router must not exceed
the max_input on that Router entity: it must not exceed the actual physical inputs on the router.

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/routers/<ID of router>/inputs

Call Header

• Accept: Set to application/xml

Setting Up Router Inputs Version 3.22.0 and later 173

Conductor Live API Reference

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The response is in XML content consisting of one input element, consisting of the following
elements.

Element Value Description

name String A name for this input, of your
choosing. This name appears
in the Inputs drop-down list
on the Conductor Live web
interface.

input_number Integer The ID of the router input
that you want to make known
to Conductor Live. This is the
ID for the input as assigned
by the router (not assigned by
AWS Elemental software).

When adding 4 Quadrant-
4k inputs for HEVC, enter
the first input number in the
sequence.

input_number_end Integer When adding 4 Quadrant-
4k inputs for HEVC, enter the
last (fourth) input number in
the sequence.

For example, if you provided
“1” for input_number, you

POST: Create a Router Input Version 3.22.0 and later 174

Conductor Live API Reference

Element Value Description

would use “4” for input_num
ber_end.

This element is not used
if you are not adding 4
Quadrant-4k inputs.

quad True/False It is not necessary to specify
this if you are not adding 4
Quadrant-4k inputs.

Response

The response repeats back the data that you posted with the addition of:

• id: The newly assigned ID for the router_input.

• router_id: The router that this router input belongs to.

The response is identical to the response to a GET Router Input. See below for an example.

Example

Request

This request is to create a router input for the input that has the router-assigned ID of 1.

POST http://198.51.100.0/routers/2/inputs

Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml

<input>
 <name>Input 1</name>
 <input_number>1</input_number>
</input>

POST: Create a Router Input Version 3.22.0 and later 175

Conductor Live API Reference

Response

In this example, the router input has been automatically assigned the ID 4. The already existing ID
of the router itself is 2.

<input>
 <id>4</id>
 <name>Input 1</name>
 <router_id>2</router_id>
 <input_number>1</input_number>
 <input_number_end nil="true"/>
 <quad>false</quad>
</input>

PUT: Modify a Router Input

Modify the attributes of the specified input on the specified router. If, after the initial setup, you
ever change the cabling on the input side of your router, you must use PUT Router Input to reflect
these changes.

HTTP Request and Response

Request URL

PUT http://<Conductor IP address>/routers/<ID of router>/inputs/<ID of input>

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The body contains only the elements to change. For a list of all elements, see the section called
“POST: Create a Router”

PUT: Modify a Router Input Version 3.22.0 and later 176

Conductor Live API Reference

Example

This request changes the router input number (the number of the physical input port on the router)
to 4. The number 3 at the end of the example URL is the id assigned by Conductor Live when this
input was created in the software. This input belongs to the router with the ID of 2.

This change would only be made to fix an error in the original setup or to reflect a change in the
cabling (so that the router’s 4th input is now being used).

PUT http://198.51.100.0/routers/2/inputs/3
--
Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<input>
 <input_id>4</input_id>
</input>

GET List: Get a List of Router Inputs

Get the list of all the inputs for the specified router.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/routers/<ID of router>/inputs

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response is XML content consisting of one inputs element that contains:

GET List: Get a List of Router Inputs Version 3.22.0 and later 177

Conductor Live API Reference

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• Zero or more input elements, one for each input found. Each input element contains several
elements.

Element Value Description

id Integer The ID for this input, unique
for this router and assigned
by AWS Elemental Conductor
Live 3 when the input is
created.

name String The name for this input.

router_id Integer The router to which this input
belongs.

input_number Integer The ID of the router input
corresponding to the physical
port on the router. This
number is assigned by
the router and specified
to Conductor Live by the
user (not assigned by AWS
Elemental software).

For 4 Quadrant-4k inputs, this
is the first input number in a
sequence of four.

input_number_end Integer For 4 Quadrant-4k inputs,
the last input number in the
sequence of four.

This element is not used
if you are not adding 4
Quadrant-4k inputs.

GET List: Get a List of Router Inputs Version 3.22.0 and later 178

Conductor Live API Reference

Element Value Description

quad True/False It is not necessary to specify
if you are not adding 4
Quadrant-4k inputs.

Example

This request is for the inputs associated with the router with the ID 4. The response specifies that
there are two inputs in this router with IDs 3 and 4.

GET http://198.51.100.0/routers/4/inputs

Content-type:application/vnd.elemental+xml;version=3.3.0

<?xml version="1.0" encoding="UTF-8"?>
<inputs href="/routers/4/inputs" product="AWS Elemental Conductor Live"
 version="3.3.nnnnn">
 <input>
 <id>3</id>
 <name>Input 1</name>
 <router_id>2</router_id>
 <input_number>1</input_number>
 <input_number_end nil="true"/>
 <quad>false</quad>
 </input>
 <input>
 <id>4</id>
 <name>Input 2</name>
 <router_id>2</router_id>
 <input_number>2</input_number>
 <input_number_end nil="true"/>
 <quad>false</quad>
 </input>
</inputs>

GET: Get Attributes of a Router Input

Get the attributes of the specified input on the specified router.

GET: Get Attributes of a Router Input Version 3.22.0 and later 179

Conductor Live API Reference

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/routers/<ID of router>/inputs/<ID of input>

Call Header

• Accept: Set to application/xml.

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response is XML content consisting of one input element, with the same elements as the
response for the section called “GET: Get Router Attributes”.

Example

This request gets the attributes for the input that has the ID 3. The input belongs to the router with
the ID 4.

GET http://198.51.100.0/routers/4/inputs/3
--
Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>
<input href="/routers/4/inputs/3" product="AWS Elemental Conductor Live"
 version="3.3.nnnnn">
 <id>3</id>
 <name>Input 1</name>
 <router_id>4</router_id>
 <input_number>1</input_number>
 <input_number_end nil="true"/>
 <quad>false</quad>
</input>

GET: Get Attributes of a Router Input Version 3.22.0 and later 180

Conductor Live API Reference

DELETE: Delete a Router Input

Delete the specified input on the specified router. To get the ID of the input, use GET Router List
and look for the <id> element (not the <input_number> element!).

HTTP Request and Response

Request URL

DELETE http://<Conductor IP address>/routers/<ID of router>/inputs/<ID of input>

Call Header

• Accept: Set to application/xml.

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Example

This request deletes the input with the ID 1 from the router with the ID 2.

DELETE http://198.51.100.0/routers/2/inputs/1

Setting Up Router Outputs

The Router Outputs entity holds information about each router output that is connected to an SDI
card on an AWS Elemental Live appliance. The information is a mapping from the router output to
the SDI input.

If, after the initial setup, you ever hook up another cable between a router output and an SDI input,
you must set it up using POST Router Input.

Topics

• POST: Create a Router Output

• PUT: Modify a Router Output

• GET List: Get Router Output List

• GET: Get Attributes of a Router Output

DELETE: Delete a Router Input Version 3.22.0 and later 181

Conductor Live API Reference

• DELETE: Delete a Router Output

POST: Create a Router Output

Create a new output for the specified router. Use this command repeatedly to set up all the router
outputs. The total number of Router Output entities for a specified router must not exceed the
actual physical outputs on the router.

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/routers/<ID of router>/outputs

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The request body contains XML content consisting of one output element, consisting of the
following elements.

Element Value Description

output_number Integer An ID on the router.

The ID of the router output
that is connected to an SDI
card on the AWS Elemental
Live node. You specify the
router by its output ID as
assigned by the router (not
assigned by AWS Elemental

POST: Create a Router Output Version 3.22.0 and later 182

Conductor Live API Reference

Element Value Description

software). Check the
manufacturer’s documenta
tion for the numbering
scheme for the router.

For example, the manufactu
rer may number ports
starting from 1 and starting
from the upper left. In this
case, the second output from
the left might be numbered
“2.”

When adding 4 Quadrant-4k
outputs for HEVC, enter the
first output number in the
sequence.

output_number_end Integer When adding 4 Quadrant-4k
outputs for HEVC, enter the
last (fourth) output number in
the sequence.

For example, if you entered
“1” for output_number, you
would use “4” for output_nu
mber_end.

This element is not used if
you are not adding the 4
Quadrant-4k outputs.

POST: Create a Router Output Version 3.22.0 and later 183

Conductor Live API Reference

Element Value Description

device_id String An ID on the SDI card.

The ID of the SDI input
that is connected to the
router output identified by
output_number.

This ID is assigned by AWS
Elemental Live and provided
to Conductor Live when the
SDI card is auto-detected.
Each port on the entire node
is assigned a unique ID (for
example, IDs 1-5 on the first
card, 6-10 on the second).

To obtain the device ID, see
the Settings > Input Devices
page of the Conductor web
interface. The Conductor
API does not expose this
information.

Response

The response repeats back the data that you posted with the addition of:

• id: The newly assigned ID for the router.

• router_id: The router to which this router output belongs.

The response is identical to the response to a GET Router Output. See below for an example.

POST: Create a Router Output Version 3.22.0 and later 184

Conductor Live API Reference

Example

Request

This request creates one output for the router with the ID 2. It specifies that router output ID 3 is
connected to SDI card input ID 4.

POST http://198.51.100.0/routers/2/outputs

Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml

<output>
 <output_number>3</output_number>
 <device_id>4</device_id>
</output>

Response

In this example, the router output is given the ID 4.

<?xml version="1.0" encoding="UTF-8"?>
<output href="/routers/2/output" product="AWS Elemental Conductor Live"
 version="3.3.nnnnn">
 <id>4</id>
 <router_id>1</router_id>
 <output_number>2</output_number>
 <output_number_end nil="true"/>
 <device_id>5</device_id>
 <device_type>Device</device_type>
</output>

PUT: Modify a Router Output

Modify the attributes of the specified output on the specified router. Modify the attributes if a
cable from the router output moves to a different SDI card input.

HTTP Request and Response

Request URL

PUT http://<Conductor IP address>/routers/<ID of router>/outputs/<ID of output>

PUT: Modify a Router Output Version 3.22.0 and later 185

Conductor Live API Reference

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The body contains only the elements to change. For available elements, see the section called
“POST: Create a Router”.

Example

This request changes the router output with the ID 4. This input belongs to the router with the ID
2. It changes its device_id to 3 to indicate that the connection represented by this router output is
actually to the SDI input that has the ID 3.

PUT http://198.51.100.0/routers/2/outputs/4
--
Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<output>
 <device_ID>3</device_id>
</output>

GET List: Get Router Output List

Get the list of outputs for the specified router.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/routers/<ID of router>/outputs

GET List: Get Router Output List Version 3.22.0 and later 186

Conductor Live API Reference

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response contains XML content consisting of one outputs element with the following.

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• Zero or more output elements, one for each input found. Each output element contains several
elements.

Element Value Description

id Integer The ID for this output, unique
for this router and assigned
by the system when the
output is created.

output_number Integer The ID of the router output
that is connected to the SDI
card identified by device_id
(below). This ID is the ID
assigned by the router (not as
assigned by AWS Elemental
Live).

router_id Integer The router that this output
belongs to-- a unique ID
assigned by AWS Elemental
Live.

device_id String The ID the SDI input
that is connected to the
router output identified by

GET List: Get Router Output List Version 3.22.0 and later 187

Conductor Live API Reference

Element Value Description

output_number. This ID is
assigned by AWS Elemental
Live when the SDI card is
auto-detected. Each port on
the entire node is assigned a
unique ID (for example, IDs
1-4 on the first card, 5-8 on
the second).

device_type String A string which always
specifies “Device.”

Example

This request is for the outputs associated with the router with the ID 2. The response specifies that
there are two outputs in this router with IDs 3 and 4.

GET http://198.51.100.0/routers/2/outputs

Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>
<outputs href="/routers/2/outputs" product="AWS Elemental Conductor Live"
 version="3.3.nnnnn">
 <output>
 <id>3</id>
 <output_number>5</output_number>
 <router_id>2</router_id>
 <device_id>1</device_id>
 </output>
 <output>
 <id>4</id>
 <output_number>2</output_number>
 <router_id>2</router_id>
 <device_id>7</device_id>
 </output>
</outputs>

GET List: Get Router Output List Version 3.22.0 and later 188

Conductor Live API Reference

GET: Get Attributes of a Router Output

Get the attributes of the specified output on the specified router.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/routers/<ID of router>/outputs/<ID of output>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response is XML content consisting of one output element, containing the same elements as
the response for the section called “GET: Get Router Attributes”.

Example

This request gets the attributes for the output that has the ID 3. The input belongs to the router
with this ID 4.

GET http://198.51.100.0/routers/4/outputs/3
--
Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>
<output href="/routers/4/outputs/3" product="AWS Elemental Conductor Live"
 version="3.3.nnnnn">
 <id>3</id>
 <router_id>4</router_id>
 <output_number>1</output_number>
 <device_id>1</device_id>
 <device_type>Device</device_type>
</output>

GET: Get Attributes of a Router Output Version 3.22.0 and later 189

Conductor Live API Reference

DELETE: Delete a Router Output

Delete the specified output on the specified router.

HTTP Request and Response

Request URL

DELETE http://<Conductor IP address>/routers/<ID of router>/outputs/<ID of output>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Example

This request deletes the output with the ID 1 from the router with the ID 2.

DELETE http://198.51.100.0/routers/2/outputs/1

Setting Up Redundancy Groups

Topics

• POST: Create a Redundancy Group

• PUT: Modify a Redundancy Group

• GET List: Get a List of Redundancy Groups

• GET: Get Attributes of a Redundancy Group

• DELETE: Delete a Redundancy Group

POST: Create a Redundancy Group

Create a new redundancy group for AWS Elemental Live or AWS Elemental Statmux redundancy
group with the specified attributes.

DELETE: Delete a Router Output Version 3.22.0 and later 190

Conductor Live API Reference

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/redundancy_groups

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The request contains XML content consisting of one redundancy_group element with the
following elements.

Element Value Description

name String A name you assign. This must
be unique in the cluster.

product_name String A name which must specify
“live” if nodes in this group
are running AWS Elemental
Live; specify “statmux”
for nodes running AWS
Elemental Statmux.

This value is case-sensitive
and requires all letters to be
in lower case.

All the nodes that you add to
the redundancy group must
have the same product_name.

POST: Create a Redundancy Group Version 3.22.0 and later 191

Conductor Live API Reference

Response

The response repeats back the data that you posted with the addition of:

• id: The newly assigned ID for the redundancy group.

The response is identical to the response to a GET Redundancy Group. For an example, see the
section called “GET List: Get a List of Redundancy Groups”.

Example

Request

This request creates one redundancy group named “backup” with its product set as “live” and its
product version set at “2.7.0.12345.”

POST http://198.51.100.0/redundancy_groups
--
Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<redundancy_group>
 <name>backup</name>
 <product_name>live</product_name>
</redundancy_group>

PUT: Modify a Redundancy Group

Change the name of the specified redundancy group.

HTTP Request and Response

Request URL

PUT http://<Conductor IP address>/redundancy_groups/<ID of redundancy group>

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

PUT: Modify a Redundancy Group Version 3.22.0 and later 192

Conductor Live API Reference

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The body contains only the elements to change. For the format, see the section called “POST:
Create a Redundancy Group”.

Example

This request changes the name of the redundancy group with the ID 1. It changes the name to
“backup_nodes.”

PUT http://198.51.100.0/redundancy_groups/1
--
Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<redundancy_group>
<name>backup_nodes</name>
</redundancy_group>

GET List: Get a List of Redundancy Groups

Get a list of all redundancy groups, including the attributes of each group.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/redundancy_groups

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

GET List: Get a List of Redundancy Groups Version 3.22.0 and later 193

Conductor Live API Reference

Response

The response is XML content consisting of one redundancy_groups element with the following .

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• Zero or more redundancy_group elements, one for each group found. Each
redundancy_group element contains several elements.

Element Value Description

id Integer The ID of this redundancy
group.

name String The name you assigned to the
group.

product_name String The software type running on
the nodes of the redundanc
y group. Values are “live” or
“statmux.”

Example

The response to this request shows two redundancy groups named “2.5 nodes” (intended for AWS
Elemental Live nodes running version 2.5.x) and “2.4 nodes” (intended for AWS Elemental Live
nodes running version 2.4.x).

GET http://198.51.100.0/redundancy_groups
--
Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>
<redundancy_groups href="/redundancy_groups" product="AWS Elemental Conductor Live"
 version="3.3.43776">
 <redundancy_group>
 <id>1</id>
 <name>2.5 nodes</name>
 <product_name>live</product_name>

GET List: Get a List of Redundancy Groups Version 3.22.0 and later 194

Conductor Live API Reference

 </redundancy_group>
 <id>3</id>
 <name>2.4 nodes</name>
 <product_name>live</product_name>
 </redundancy_group>
</redundancy_groups>

GET: Get Attributes of a Redundancy Group

Get the attributes of the specified redundancy group.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/redundancy_groups/<ID of redundancy group>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response is XML content consisting of one redundancy_group element, with the same
elements as the response for the section called “GET List: Get a List of Redundancy Groups”.

Example

This response shows the attributes for the group that has the ID 1.

GET http://198.51.100.0/redundancy_groups/1
--
Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>
<redundancy_group>
 <id>1</id>

GET: Get Attributes of a Redundancy Group Version 3.22.0 and later 195

Conductor Live API Reference

 <name>2.5 nodes</name>
 <product_name>live</product_name>
</redundancy_group>

DELETE: Delete a Redundancy Group

Delete the redundancy group that has the specified ID.

HTTP Request and Response

Request URL

DELETE http://<Conductor IP address>/redundancy_groups/<ID of redundancy group>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Example

This request deletes the redundancy group with the ID 2 .

DELETE http://198.51.100.0/redundancy_groups/2

Setting Up Members of a Redundancy Group

Topics

• POST: Add a Node to a Redundancy Group

• PUT: Change Role of a Member of a Redundancy Group

• GET List: Get a List of Redundancy Group Members

• GET: Get the Attributes of a Redundancy Group Member

• DELETE: Remove a Node from a Redundancy Group

• POST Initiate Failover

DELETE: Delete a Redundancy Group Version 3.22.0 and later 196

Conductor Live API Reference

POST: Add a Node to a Redundancy Group

Add a node to the specified redundancy group and assign the node’s role as active or backup. The
redundancy group must already exist.

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/redundancy_groups/<ID of redundancy group>/members

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The request contains XML content consisting of one redundancy_groups element with the
following.

• One or more redundancy_group_member elements, each containing the following elements.

Element Value Description

node_id Integer The ID of the node to add.
Use GET Node List to get a
list that shows the ID of each
node.

A node can belong to only
one redundancy group.

If the node’s role will be
“backup,” the node must have

POST: Add a Node to a Redundancy Group Version 3.22.0 and later 197

Conductor Live API Reference

Element Value Description

no channels associated with
it. (You get a “Node is not
reservable” error.)

To verify its channels, do a
GET Channel List and verify if
this node is listed as associate
d with a channel; if it is, do a
PUT Channel on that channel
so that the channel uses a
different node.

role String The initial role of the node
in the redundancy group:
“active” or “backup.”

• A backup node automatic
ally switches to "active" if
it is selected as a failover
node. It then remains active
until you change its role
(perhaps by doing PUT
Member).

• An active node never
automatically changes its
role.

Response

The response repeats back the data that you posted with the addition of:

• id: The newly assigned ID for the member.

The response is identical to the response to a GET Redundancy Member. See below for an example.

POST: Add a Node to a Redundancy Group Version 3.22.0 and later 198

Conductor Live API Reference

Example

Request

Add the node with the ID 2 to the redundancy group that has the ID 3.

POST http://198.51.100.0/redundancy_groups/3/members
--
Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<redundancy_group_member>
<node_id>2</node_id>
<role>active</role>
<redundancy_group_position>1</redundancy_group_position>
</redundancy_group_member>

Response

The response shows the “redundancy group member” data and the standard node data that was
applied to this node. Note that the node has the member ID of “3” (its ID in the redundancy group)
but has the node ID of “2” (its ID in the cluster). For details, see the section called “GET List: Get a
List of Redundancy Group Members”.

<?xml version="1.0" encoding="UTF-8"?>
<redundancy_group_member href="/redundancy_groups/3/members" product="AWS Elemental
 Conductor Live" version="3.3.nnnnn">
 <id type="integer">3</id>
 <role>active</role>
 <node>
 <id type="integer">2</id>
 <hostname>live_3</hostname>
 <ip_addr>10.4.138.233</ip_addr>
 <product_name>Live</product_name>
 <status>online</status>
 <version>2.9.2.40404</version>
 <channels type="integer">3</channels>
 <inflight_channels type="integer">0</inflight_channels>
 <mptses type="integer">1</mptses>
 <active_alerts type="integer">0</active_alerts>
 <recent_error_messages type="integer">0</recent_error_messages>

POST: Add a Node to a Redundancy Group Version 3.22.0 and later 199

Conductor Live API Reference

 </node>
</redundancy_group_member>

PUT: Change Role of a Member of a Redundancy Group

Modify the role of the specified node in the specified redundancy group.

HTTP Request and Response

Request URL

PUT http://<Conductor IP address>/redundancy_groups/<ID of redundancy group>/members/
<ID of member node>

Note

Identify the member to change by specifying the redundancy group member ID within
the redundancy group, not the ID within the cluster (the node ID). See the table under the
section called “GET List: Get a List of Redundancy Group Members” for an explanation of
how to get each kind of ID.

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The request contains XML content consisting of:

• One redundancy_group_member with

• role: “active” or “backup”

PUT: Change Role of a Member of a Redundancy Group Version 3.22.0 and later 200

Conductor Live API Reference

Example

This request changes a property of the redundancy group member identified by the member ID 3
that is in the redundancy group with the ID 1. It changes the node’s role from “backup” to “active.”

PUT http://198.51.100.0/redundancy_groups/1/members/3
--
<?xml version="1.0" encoding="UTF-8"?>
<redundancy_group_member>
<role>active</role>
</redundancy_group_member>

GET List: Get a List of Redundancy Group Members

Get the list of the nodes that are members of the specified redundancy group.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/redundancy_groups/<ID of redundancy group>/members

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response is XML content consisting of one redundancy_group_members element with the
following.

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• Zero or more redundancy_group_member elements, one for each group found. Each
redundancy_group_member element contains several elements:

GET List: Get a List of Redundancy Group Members Version 3.22.0 and later 201

Conductor Live API Reference

Element Value Description

id Integer The member ID for this node.

Note

Within <redundan
cy_group_members>,
<id> is the ID for this
node as identified
inside the redundanc
y group, assigned
with the node that
was added to the
redundancy group.
Within <node>, <id>
is the unique ID for
this node as identifie
d in all of Conductor
Live, assigned when
the node was added
to the cluster.

role String The current role of the node
in the redundancy group:
“active” or “backup.”

node Object The node information for this
member of the redundancy
group; see the section called
“Setting up Nodes”.

Example

The response shows that the redundancy group with the ID 1 has two members–one backup and
one active.

GET List: Get a List of Redundancy Group Members Version 3.22.0 and later 202

Conductor Live API Reference

GET http://198.51.100.0/redundancy_groups/1/members
--
Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>
<redundancy_group_members href="/redundancy_groups/1/members" product="AWS Elemental
 Conductor Live" version="3.3.nnnnn">
 <redundancy_group_member>
 <id type="integer">5</id>
 <role>active</role>
 <node>
 <id type="integer">2</id>
 <hostname>live_1</hostname>
 <ip_addr>10.4.138.233</ip_addr>
 <product_name>Live</product_name>
 <status>online</status>
 <version>2.9.2.40404</version>
 <channels type="integer">0</channels>
 <inflight_channels type="integer">0</inflight_channels>
 <mptses type="integer">1</mptses>
 <active_alerts type="integer">0</active_alerts>
 <recent_error_messages type="integer">0</recent_error_messages>
 </node>
 </redundancy_group_member>
 <redundancy_group_member>
 <id type="integer">6</id>
 <role>backup</role>
 <node>
 <id type="integer">3</id>
 <hostname>live_2</hostname>
 <ip_addr>10.4.138.234</ip_addr>
 <product_name>Live</product_name>
 <status>online</status>
 <version>2.9.2.40404</version>
 <channels type="integer">0</channels>
 <inflight_channels type="integer">0</inflight_channels>
 <mptses type="integer">0</mptses>
 <active_alerts type="integer">0</active_alerts>
 <recent_error_messages type="integer">0</recent_error_messages>
 </node>
 </redundancy_group_member>
</redundancy_group_members>

GET List: Get a List of Redundancy Group Members Version 3.22.0 and later 203

Conductor Live API Reference

GET: Get the Attributes of a Redundancy Group Member

Get the attributes of the specified member in the specified redundancy group.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/redundancy_groups/<ID of redundancy group>/members/
<ID of member node>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response is XML content consisting of one redundancy_group element containing the same
elements as the response for the section called “GET List: Get a List of Redundancy Groups”.

Example

This request gets the attributes for the redundancy group member that has the ID 3 within
the redundancy group and that belongs to the redundancy group with the ID 1. The node’s ID
independent of redundancy group is 2.

GET http://198.51.100.0/redundancy_groups/1/members/3
--
Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>
<redundancy_group_member href="/redundancy_groups/1/members/3" product="AWS Elemental
 Conductor Live" version="3.3.nnnnn">
 <id type="integer">3</id>
 <role>active</role>
 <node>
 <id type="integer">2</id>
 <hostname>live_1</hostname>

GET: Get the Attributes of a Redundancy Group Member Version 3.22.0 and later 204

Conductor Live API Reference

 <ip_addr>10.4.138.233</ip_addr>
 <product_name>Live</product_name>
 <status>online</status>
 <version>2.9.2.40404</version>
 <channels type="integer">0</channels>
 <inflight_channels type="integer">0</inflight_channels>
 <mptses type="integer">1</mptses>
 <active_alerts type="integer">0</active_alerts>
 <recent_error_messages type="integer">0</recent_error_messages>
 </node>
</redundancy_group_member>

DELETE: Remove a Node from a Redundancy Group

Remove the node with the specified member ID from the specified redundancy group.

DELETE http://<Conductor IP address>/redundancy_groups/<ID of redundancy group>/
members/<ID of member node>

POST Initiate Failover

Initiate failover of the specified node. The node must be part of a redundancy group, must have
an “active” role, and must be running a channel. The redundancy group must also have least one
backup node.

When failover is initiated, the node becomes to "idle" and all its channels are moved to a backup
node. That backup node become an active node.

To make the original node active again, associate channels with the node again (using the PUT
Channel command) and change that node’s status to "active."

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/nodes/<ID of node>/backup

Call Header

• Accept: Set to application/xml

DELETE: Remove a Node from a Redundancy Group Version 3.22.0 and later 205

Conductor Live API Reference

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Example

This request initiates failover the node with the ID 8.

POST http://198.51.100.0/nodes/8/backup

Setting Up a Conductor Redundancy Group

Topics

• POST: Create a Conductor Redundancy Group

• PUT: Modify a Conductor Redundancy Group

• GET: Get the Attributes of the Conductor Redundancy Group

• DELETE: Delete a Conductor Redundancy Group

• POST Enable: Enable Conductor Redundancy Group

• DELETE Disable: Disable Conductor Redundancy Group

POST: Create a Conductor Redundancy Group

Create a new Conductor redundancy group with the specified attributes. You can create only one
Conductor redundancy group.

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/conductor_redundancy_groups

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

Setting Up a Conductor Redundancy Group Version 3.22.0 and later 206

Conductor Live API Reference

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The response contains XML content consisting of one conductor_redundancy_group element
with the following elements.

Element Value Description

vip String A valid ipv4 address. This
address is the “cluster ID” for
the two Conductor nodes.

This address must be an
address on your network that
is never allocated to any other
host.

vrid Integer The virtual router ID, a
number from 1-254.

This ID must not conflict
with any other instance
of keepalived (or another
(Virtual Router Redundanc
y Protocol)VRRP-based
service) that is running on
your network.

To check for conflicting VRRP
services, use:

sudo tcpdump vrrp

If you see VRRP advertise
ment packets, do not use the
listed VRIDs.

POST: Create a Conductor Redundancy Group Version 3.22.0 and later 207

Conductor Live API Reference

Element Value Description

name String Choose a name.

Response

The response repeats back the data that you posted with the addition of the following.

• id: The newly assigned ID for the Conductor redundancy group.

• enabled: This setting is always "false" on a newly created group to indicate that Conductor
redundancy is not yet enabled.

• product_name: This setting is always “conductor_live.”

The response is identical to the response to a GET Conductor Redundancy Group. For an example,
see the section called “GET: Get the Attributes of the Conductor Redundancy Group”.

Example

Request

This request creates one Conductor redundancy group that has the VIP 10.4.200.200 and the VRID
2.

POST http://198.51.100.0/conductor_redundancy_groups
--
<?xml version="1.0" encoding="UTF-8"?>
<conductor_redundancy_group>
 <vip>10.4.200.200</vip>
 <vrid>2</vrid>
 <name>Conductor</name>
</conductor_redundancy_group>

Response

<?xml version="1.0" encoding="UTF-8"?>
<conductor_redundancy_groups href="/conductor_redundancy_groups" product="AWS Elemental
 Conductor Live" version="3.3.nnnnn">
 <conductor_redundancy_group>

POST: Create a Conductor Redundancy Group Version 3.22.0 and later 208

Conductor Live API Reference

 <id type="integer">1</id>
 <vip>10.4.200.200</vip>
 <vrid type="integer">2</vrid>
 <name>Conductor</name>
 <product_name>conductor_live</conductor_live>
 </conductor_redundancy_group>
</conductor_redundancy_groups>

PUT: Modify a Conductor Redundancy Group

Change the name, VIP or VRID of the specified Conductor redundancy group.

HTTP Request and Response

Request URL

PUT http://<Conductor IP address>/conductor_redundancy_groups/<ID of Conductor
 redundancy group>

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The body contains only the elements to change: name, VIP or VRID. For the format and other
elements, see the section called “POST: Create a Redundancy Group”.

Example

This request changes the name of the Conductor redundancy group with the ID 1. It changes the
name to RedundancyB.

PUT http://198.51.100.0/conductor_redundancy_groups/1
--

PUT: Modify a Conductor Redundancy Group Version 3.22.0 and later 209

Conductor Live API Reference

Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<conductor_redundancy_group>
 <name>RedundancyB</name>
</conductor_redundancy_group>

GET: Get the Attributes of the Conductor Redundancy Group

Get a list of all Conductor redundancy groups, including the attributes of each group. There is only
ever one Conductor redundancy group, so the list contains only one item. However, you cannot
assume its ID is always going to be 1: if you create a Conductor redundancy group and then delete
it and then create another one, the ID of the new group will be 2.

There is only one Conductor redundancy group, so there is no difference between GET and GET
List; only GET is described in this guide.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/conductor_redundancy_groups

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response is XML content consisting of one conductor_redundancy_groups element with
the following.

• An HREF attribute that specifies the product and version installed on the Conductor Live node.

• Zero or one conductor_redundancy_group elements. Each element contains several
elements.

GET: Get the Attributes of the Conductor Redundancy Group Version 3.22.0 and later 210

Conductor Live API Reference

Element Value Description

id Integer The ID for this Conductor
redundancy group.

vip String A valid IPv4 address. This
address is the “cluster ID” for
the two Conductor nodes.

vrid Integer The Virtual Router ID, a
number from 1-254.

enabled Boolean True if Conductor redundancy
is enabled on the cluster.

False if it is not enabled.

Read only.

name String The name of the group.

product_name String This setting is always
“conductor_live.”

Read -only.

Example

The response to this request shows one Conductor redundancy group with the ID 1.

GET http://198.51.100.0/conductor_redundancy_groups
--
Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>
<conductor_redundancy_groups href="/conductor_redundancy_groups" product="AWS Elemental
 Conductor Live" version="3.3.43776">
 <conductor_redundancy_group>
 <id type="integer">2</id>
 <vip>10.10.10.111</vip>

GET: Get the Attributes of the Conductor Redundancy Group Version 3.22.0 and later 211

Conductor Live API Reference

 <vrid type="integer">13</vrid>
 <enabled type="boolean">false</enabled>
 <name>ConductorRedundancy</name>
 <product_name>conductor_live</product_name>
 </conductor_redundancy_group>
</conductor_redundancy_groups>

DELETE: Delete a Conductor Redundancy Group

Delete the Conductor redundancy group that has the specified ID. The group must first be disabled.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/conductor_redundancy_groups/<ID of Conductor
 redundancy group>

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Example

This request deletes the Conductor redundancy group with the ID 1.

DELETE http://198.51.100.0/conductor_redundancy_groups/1

POST Enable: Enable Conductor Redundancy Group

Enable Conductor Redundancy mode (high availability) on the two Conductor nodes in the
Conductor redundancy group in order to enable the failover mode for the Conductor nodes.

If you are using a VM, take a snapshot before enabling high availability. See the VMware VSphere
help text for more information.

DELETE: Delete a Conductor Redundancy Group Version 3.22.0 and later 212

Conductor Live API Reference

HTTP Request and Response

Request URL

POST http://<IP of primary Conductor node>/conductor_redundancy_groups/<ID of Conductor
 redundancy group>/enable

where:

• <ID of primary Conductor node> is the ID of the node that you want to have the role of primary
once redundancy is enabled. In other words, perform this command from the node that you want
to become the primary Conductor.

The process of enabling Conductor redundancy takes more than a few minutes, so you should only
enable when you are absolutely sure you have performed all the necessary cluster configuration.
While the mode is being enabled, the Conductor nodes cannot take REST API requests.

Once Conductor redundancy is enabled, you must send API requests to the virtual IP address (VIP)
you specified in the POST Conductor Redundancy Group. The virtual IP redirects the request to the
Conductor node that is currently primary.

So the process is:

1. To enable Conductor redundancy, send the POST Enable request to the Conductor node that is
currently primary.

2. Once Conductor redundancy is successfully enabled, send all future API commands to the virtual
IP address.

Warning

When Conductor redundancy is enabled, do not send requests to the individual primary
Conductor node, even if you know which node is currently the primary.

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

POST Enable: Enable Conductor Redundancy Group Version 3.22.0 and later 213

Conductor Live API Reference

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response is returned immediately (the system does not wait for Conductor redundancy to
finish). The response is identical to the response for GET List of Redundancy Groups.

Example

This example enables Conductor redundancy on the Conductor redundancy group (which has ID 1)
by submitting a request from the node 198.51.100.0, which is currently the primary node.

POST http://198.51.100.0/conductor_redundancy_groups/1/enable

DELETE Disable: Disable Conductor Redundancy Group

Disable Conductor Redundancy mode (high availability) on the two Conductor nodes in the
Conductor redundancy group.

If you are using a VM, take a snapshot before disabling high availability. See the VMware VSphere
help text for more information.

HTTP Request and Response

Request URL

DELETE http://<VIP>/conductor_redundancy_groups/<ID of Conductor redundancy group>/
disable

The process of disabling Conductor redundancy takes more than a few minutes, so you should not
disable it unless you have a good reason:

• You must disable Conductor redundancy to change any of the network settings.

• You must disable Conductor redundancy in order to upgrade the Conductor Live software.

DELETE Disable: Disable Conductor Redundancy Group Version 3.22.0 and later 214

Conductor Live API Reference

Note

You do not need to disable Conductor redundancy in order to add or remove worker nodes
from the cluster!

While the mode is being disabled, the Conductor nodes cannot take REST API requests.

Once Conductor redundancy is disabled, you must send API requests to the IP address of the
Conductor node that is currently primary.

So the process is:

1. To disable Conductor redundancy, send the POST Enable request to the virtual IP address.

2. Once Conductor redundancy is successfully enabled, send all future API commands to the
Conductor node that is currently primary.

Warning

When Conductor redundancy is disabled, do not send requests to the VIP.

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response is identical to the response for GET List of Redundancy Groups.

Example

This example disables Conductor redundancy on the Conductor redundancy group (which has ID 1)
by submitting a request from the VIP:

DELETE http://10.4.200.200/conductor_redundancy_groups/1/disable

DELETE Disable: Disable Conductor Redundancy Group Version 3.22.0 and later 215

Conductor Live API Reference

Setting Up Members of a Conductor Redundancy Group

Topics

• POST: Add a Node to a Conductor Redundancy Groups

• PUT: Modify a Member of a Conductor Redundancy Group

• GET List: Get a List of Conductor Redundancy Group Members

• GET: Get the Attributes of a Conductor Redundancy Group Member

• DELETE: Remove a Node from the Conductor Redundancy Group

POST: Add a Node to a Conductor Redundancy Groups

Add a Conductor node to the specified Conductor redundancy group. When setting up a Conductor
redundancy group, you must add exactly two nodes.

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/conductor_redundancy_groups/<ID of Conductor
 redundancy group>/members

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The response contains XML content consisting of the following.

• One conductor_redundancy_groups element that contains:

• One or two conductor_redundancy_group_member elements with the following elements.

Setting Up Members of a Conductor Redundancy Group Version 3.22.0 and later 216

Conductor Live API Reference

Element Value Description

node_id ID of the Conductor node

Response

The response repeats back the data that you posted with the addition of the following.

• id: The newly assigned ID for the member.

Example

Request

Add the node with the ID 2 to the Conductor redundancy group. In this example, the Conductor
redundancy group has the ID 1.

POST http://198.51.100.0/conductor_redundancy_groups/1/members

Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml

<?xml version="1.0" encoding="UTF-8"?>
<conductor_redundancy_group_member>
<node_id>2</node_id>
</conductor_redundancy_group_member>

Response

The response shows the “Conductor redundancy group member” data and the standard node data
that was applied to this node. Note that the node has the member ID of 3 (its ID in the Conductor
redundancy group) but has the node ID of 2 (its ID in the cluster). For details, see the section called
“GET List: Get a List of Redundancy Group Members”.

<?xml version="1.0" encoding="UTF-8"?>
<conductor_redundancy_group_member href="/conductor_redundancy_groups/3/members"
 product="AWS Elemental Conductor Live" version="3.3.nnnnn">
 <id>3</id>
 <node>
 <id>2</id>

POST: Add a Node to a Conductor Redundancy Groups Version 3.22.0 and later 217

Conductor Live API Reference

 <hostname>elae-12345678</hostname>
 <ip_addr>10.4.136.92</ip_addr>
 <status>online</status>
 <product_name>Live</product_name>
 <version>2.7.0.67890</version>
 <channels>0</channels>
 </node>
</conductor_redundancy_group_member>

PUT: Modify a Member of a Conductor Redundancy Group

There is no PUT for members of a Conductor redundancy group. You cannot change any of its
attributes.

GET List: Get a List of Conductor Redundancy Group Members

Get the list of the nodes that are members of the specified Conductor redundancy group.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/conductor_redundancy_groups/<ID of Conductor
 redundancy group>/members

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response is XML content consisting of one conductor_redundancy_group_members
element with the following.

• An HREF attribute that specifies the product and version installed on the Conductor node.

• Zero, one or two conductor_redundancy_group_member elements, one for each Conductor
node found. Each element contains several elements.

PUT: Modify a Member of a Conductor Redundancy Group Version 3.22.0 and later 218

Conductor Live API Reference

Element Value Description

id Integer The member ID for this node,
an ID for this node that is
unique within the Conductor
redundancy group.

rank Integer Each node in the Conductor
redundancy group is assigned
a random number. This
number is used to display
nodes on the Conductor web
interface.

node Object The node information for this
member of the Conductor
 redundancy group; see the
section called “POST: Add a
Node to the Cluster”.

Example

The response to this request shows that the Conductor redundancy group with the ID 1 has two
members – one node that is the backup and one that is active.

GET http://198.51.100.0/conductor_redundancy_groups/1/members
--
Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>
<conductor_redundancy_group_members href="/conductor_redundancy_groups/1/members"
 product="AWS Elemental Conductor Live" version="3.3.nnnnn">
 <conductor_redundancy_group_member>
 <id>2</id>
 <rank>153</rank>
 <node>
 <id>5</id>
 <hostname>elae-12345678</hostname>
 <ip_addr>10.4.136.90</ip_addr>

GET List: Get a List of Conductor Redundancy Group Members Version 3.22.0 and later 219

Conductor Live API Reference

 <status>online</status>
 <product_name>AWS Elemental Conductor Live</product_name>
 <version>3.3.nnnnn</version>
 <channels>0</channels>
 <inflight_channels>0</inflight_channels>
 <mptses>0</mptses>
 <active_alerts>0</active_alerts>
 <recent_error_messages>0</recent_error_messages>
 <redundancy_group nil=’true’>
 <authentication>
 <user_id>1</user_id>
 </authentication>
 </node>
 </conductor_redundancy_group_member>
 <conductor_redundancy_group_member>
 <id>8</id>
 <node>
 <id>2</id>
 <hostname>elae_33445566</hostname>
 <ip_addr>10.4.136.91</ip_addr>
 <status>online</status>
 <product_name>Live</product_name>
 <version>2.7.0.123456</version>
 .
 .
 .
 </node>
 </conductor_redundancy_group_member>
</conductor_redundancy_group_members>

GET: Get the Attributes of a Conductor Redundancy Group Member

Get the attributes of the specified member in the specified Conductor redundancy group.

HTTP Request and Response

Request URL

GET http://<Conductor IP address>/conductor_redundancy_groups/<ID of Conductor
 redundancy group>/members/<ID of member node>

GET: Get the Attributes of a Conductor Redundancy Group Member Version 3.22.0 and later 220

Conductor Live API Reference

Call Header

• Accept: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Response

The response is XML content consisting of one conductor_redundancy_group element with the
same elements as the response for GET Member List above.

Example

This request gets the attributes for the Conductor redundancy group that has the ID 1.

GET http://198.51.100.0/conductor_redundancy_groups/1/members/1
--
Content-type:application/vnd.elemental+xml;version=3.3.0
--
<?xml version="1.0" encoding="UTF-8"?>
<conductor_redundancy_group_member href="/conductor_redundancy_groups/1/members"
 product="AWS Elemental Conductor Live" version="3.3.nnnnn">
 <id>1</id>
 <rank>13</rank>
 <node>
 .
 .
 .
 </node>
 </conductor_redundancy_group_member>

DELETE: Remove a Node from the Conductor Redundancy Group

Remove the Conductor node with the specified member ID from the Conductor redundancy group.
Conductor redundancy must be disabled; if it is currently enabled, disable it as described in the
section called “DELETE Disable: Disable Conductor Redundancy Group”.

DELETE http://<Conductor IP address>/conductor_redundancy_groups/<ID of Conductor
 redundancy group>/members/<ID of member node>

DELETE: Remove a Node from the Conductor Redundancy Group Version 3.22.0 and later 221

Conductor Live API Reference

Backing Up the Conductor Database

Topics

• PUT: Modify Database Backup Settings

• POST: Backup Database Now

PUT: Modify Database Backup Settings

You can view and modify the current backup settings for the conductor database on the web UI at
Settings>Backups. The following command allows you to modify these settings via REST.

HTTP Request and Response

Request URL

PUT http://<Conductor IP address>/cluster/backups

Call Header

• Accept: Set to application/xml

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

The response contains XML content consisting of one backup element with the following
elements.

Element Value Description

database_backup_dir string The directory where backup
files are stored. Default: /
home/elemental/da
tabase_backups

Backing Up the Conductor Database Version 3.22.0 and later 222

Conductor Live API Reference

Element Value Description

database_backup_count integer The number of backups
stored in the system. Default:
5

database_backup_minutes integer The time , in minutes,
between automatic backups.
Default: 1440

Example

This request changes the backup directory to /home/elemental/database_backups, sets the system
to retain the 6 most recent backups and sets the time between backups to three hours.

PUT http://198.51.100.0/cluster/backups
--
Content-type:application/vnd.elemental+xml;version=3.3.0
Accept:application/xml
--
<?xml version="1.0" encoding="UTF-8"?>
<backup>
 <database_backup_dir>/home/elemental/database_backups2</database_backup_dir>
 <database_backup_count>6</database_backup_ count>
 <database_backup_minutes>180</database_backup_minutes>
</backup>

POST: Backup Database Now

To initiate an immediate database backup, send the following command.

HTTP Request and Response

Request URL

POST http://<Conductor IP address>/cluster/backups

Call Header

• Accept: Set to application/xml

POST: Backup Database Now Version 3.22.0 and later 223

Conductor Live API Reference

• Content-Type: Set to application/xml

If you are implementing user authentication, you must also include three authorization headers;
see the section called “Header Content for User Authentication”.

Request Body

There is no body in the backups command.

POST: Backup Database Now Version 3.22.0 and later 224

Conductor Live API Reference

Document History for Conductor Live API Guide

The following table describes the release history of this guide.

• API version: 3.25

• Release notes: current Release Notes

The following table describes the documentation for this release of Conductor Live. For notification
about updates to this documentation, you can subscribe to an RSS feed.

Change Description Date

Version 3.22.0 and later 225

https://docs.aws.amazon.com/elemental-live/

	Conductor Live
	Table of Contents
	About This Manual
	Working with the API
	The API Protocol
	Entities, Attributes, Elements, Properties, Parameters

	Requests
	Request URLs
	Specifying Pagination of the Response

	Header Content - Standard Elements
	Header Content for User Authentication
	Body Content
	Encoding String Parameters in the URL Request
	Versioning
	Case Sensitivity of Names and Values
	Boolean Values in Attributes
	Arrays
	Null Values

	Using the API with User Authentication Enabled
	Hashing the API Key
	AuthCurl Scripts
	Authentication Error Messages

	Node Changes with SSL Enabled
	“Clean” Requests
	Responses
	Content of Responses
	Success Response
	Error Response

	IDs of Entities
	Obtaining an ID
	Multiple Identities
	Uniqueness of IDs

	Conductor Live Commands
	Profiles
	Channels
	Channel Schedules
	Bulk Tasks
	MPTS
	Members of an MPTS
	Nodes
	Router
	Router Inputs
	Router Outputs
	Redundancy Groups
	Members of a Redundancy Group
	Conductor Redundancy Groups
	Members of a Conductor Redundancy Group
	Pass Through to AWS Elemental Live

	Passing Through to AWS Elemental Live
	Passthrough of Live Event POST Commands
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Example

	Passthrough of Live Event GET Commands
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Example

	Passthrough of Live System Status
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Example

	Validating Your Generated XML
	Working with the Cluster
	Working with Profiles
	Recommended Method for Working with Profiles
	Create a Profile Base
	Create a Template
	Re-use the Template
	XML Structure of a Profile

	POST: Create a Profile
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Example
	Response
	Creating a Profile for a Channel Used by an MPTS

	Modify a Profile
	GET List: Get a List of Profiles
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	GET: Get the Attributes of a Profile
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	DELETE: Delete a Profile
	Request URL
	Call Header
	Example

	Working with Channels
	POST: Create a Channel
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Example
	Request
	Response

	PUT: Modify the Attributes of a Channel
	HTTP Request and Response
	Request URL
	Call Header
	Request Body

	Example

	GET List: Get List of Channels
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	GET: Get the Attributes of a Channel
	HTTP Request and Response
	Request URL
	Response
	Call Header

	Example

	DELETE: Delete a Channel
	HTTP Request and Response
	Request URL
	Call Header

	Example

	Channel Scheduling
	CRON Syntax Summary
	POST: Create a One-Time Schedule
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Example

	POST: Create a Repeating Schedule
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Examples

	POST: Activate a Schedule
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	DELETE: Deactivate a Schedule
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	PUT: Update a Schedule
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Example

	GET List: Get List of All Channel Schedules
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	GET: Get the Attributes of a Schedule
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	GET: Get Schedule Events
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	DELETE: Delete a Schedule
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	Performing Bulk Tasks on a Channel
	POST Start: Start One or More Channels
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Example

	POST Stop: Stop One or More Channels
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Example

	Monitoring Bulk Tasks: GET List of Task Reports
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	Monitoring Bulk Tasks: GET One Task Report
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	Controlling Ad Avail on a Channel
	POST Ad Avail State: Start or Stop Ad Avail on a Channel
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Working with MPTS
	POST: Create an MPTS
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Example

	PUT: Modify the Attributes of an MPTS
	HTTP Request and Response
	Request URL
	Call Header
	Request Body

	Example

	GET List: Get a List of MPTS Outputs
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	GET: Get the Attributes of an MPTS Output
	HTTP Request and Response
	Request URL
	Call Header
	Response

	DELETE: Delete an MPTS Output
	HTTP Request and Response
	Request URL
	Call Header

	Example

	GET Status List: Get the Status of a List of MPTS Outputs
	HTTP Request and Response
	Request URL
	Call Header

	Example

	GET Status: Get the Status of an MPTS Output
	HTTP Request and Response
	Request URL
	Call Header
	Response

	GET Bitrate: Get the Bitrate of an MPTS Output
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	POST Start: Start an MPTS
	HTTP Request and Response
	Request URL
	Call Header

	Example

	DELETE Stop: Stop an MPTS
	HTTP Request and Response
	Request URL
	Call Header

	Example

	PUT: Swap Allocation
	HTTP Request and Response
	Request URL
	Call Header
	Request Body

	Example

	Working with Members of an MPTS
	POST: Add an SPTS to an MPTS
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	PID Map

	Response

	Example

	PUT: Modify an SPTS Program
	HTTP Request and Response
	Request URL
	Call Header
	Request Body

	Example

	PUT: MPTS Channel Swap
	HTTP Request and Response
	Request URL
	Call Header
	Request Body

	Example

	GET List: Get All SPTS of an MPTS
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	GET: Get an SPTS Program
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	DELETE: Delete an SPTS Program
	HTTP Request and Response
	Request URL
	Call Header

	Example

	Monitoring Conductor Live
	Managing Channels
	Channel Status Elements
	POST Channel Revert: Resetting the Channel
	Call Header
	Request URL

	Querying Alerts and Messages
	GET Alerts: Get a List of Alerts
	HTTP Request and Response
	Request URL
	Where Alerts Come From and Where They Apply

	Call Header
	Response

	Examples

	GET Messages: Get a List of Messages
	HTTP Request and Response
	Request URL
	Origin, Node, Channel, MPTS
	page and per_page

	Call Header
	Response

	Examples
	Example 1
	Example 2

	GET System Information: Get a List of System Details
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	Configuring the Cluster
	Setting up Nodes
	POST: Add a Node to the Cluster
	HTTP Request and Response
	Request URL
	Request Body
	Call Header
	Response

	Example
	Request

	GET List: Get a List of Nodes in the Cluster
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	GET: Get the Attributes of a Node
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	DELETE: Remove a Node from the Cluster
	HTTP Request and Response
	Request URL
	Call Header

	Example

	Setting Up Routers
	POST: Create a Router
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Example
	Request
	Response

	PUT: Modify a Router
	HTTP Request and Response
	Request URL
	Call Header
	Request Body

	Example

	GET List: Get a List of Routers
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example
	Request
	Response

	GET: Get Router Attributes
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	DELETE: Delete a Router
	HTTP Request and Response
	Request URL
	Call Header

	Example

	Setting Up Router Inputs
	POST: Create a Router Input
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Example
	Request
	Response

	PUT: Modify a Router Input
	HTTP Request and Response
	Request URL
	Call Header
	Request Body

	Example

	GET List: Get a List of Router Inputs
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	GET: Get Attributes of a Router Input
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	DELETE: Delete a Router Input
	HTTP Request and Response
	Request URL
	Call Header

	Example

	Setting Up Router Outputs
	POST: Create a Router Output
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Example
	Request
	Response

	PUT: Modify a Router Output
	HTTP Request and Response
	Request URL
	Call Header
	Request Body

	Example

	GET List: Get Router Output List
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	GET: Get Attributes of a Router Output
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	DELETE: Delete a Router Output
	HTTP Request and Response
	Request URL
	Call Header

	Example

	Setting Up Redundancy Groups
	POST: Create a Redundancy Group
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Example
	Request

	PUT: Modify a Redundancy Group
	HTTP Request and Response
	Request URL
	Call Header
	Request Body

	Example

	GET List: Get a List of Redundancy Groups
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	GET: Get Attributes of a Redundancy Group
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	DELETE: Delete a Redundancy Group
	HTTP Request and Response
	Request URL
	Call Header

	Example

	Setting Up Members of a Redundancy Group
	POST: Add a Node to a Redundancy Group
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Example
	Request
	Response

	PUT: Change Role of a Member of a Redundancy Group
	HTTP Request and Response
	Request URL
	Call Header
	Request Body

	Example

	GET List: Get a List of Redundancy Group Members
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	GET: Get the Attributes of a Redundancy Group Member
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	DELETE: Remove a Node from a Redundancy Group
	POST Initiate Failover
	HTTP Request and Response
	Request URL
	Call Header

	Example

	Setting Up a Conductor Redundancy Group
	POST: Create a Conductor Redundancy Group
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Example
	Request
	Response

	PUT: Modify a Conductor Redundancy Group
	HTTP Request and Response
	Request URL
	Call Header
	Request Body

	Example

	GET: Get the Attributes of the Conductor Redundancy Group
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	DELETE: Delete a Conductor Redundancy Group
	HTTP Request and Response
	Request URL
	Call Header

	Example

	POST Enable: Enable Conductor Redundancy Group
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	DELETE Disable: Disable Conductor Redundancy Group
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	Setting Up Members of a Conductor Redundancy Group
	POST: Add a Node to a Conductor Redundancy Groups
	HTTP Request and Response
	Request URL
	Call Header
	Request Body
	Response

	Example
	Request
	Response

	PUT: Modify a Member of a Conductor Redundancy Group
	GET List: Get a List of Conductor Redundancy Group Members
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	GET: Get the Attributes of a Conductor Redundancy Group Member
	HTTP Request and Response
	Request URL
	Call Header
	Response

	Example

	DELETE: Remove a Node from the Conductor Redundancy Group

	Backing Up the Conductor Database
	PUT: Modify Database Backup Settings
	HTTP Request and Response
	Request URL
	Call Header
	Request Body

	Example

	POST: Backup Database Now
	HTTP Request and Response
	Request URL
	Call Header
	Request Body

	Document History for Conductor Live API Guide

