
AWS Nitro Enclaves User Guide

AWS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS AWS Nitro Enclaves User Guide

AWS: AWS Nitro Enclaves User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS AWS Nitro Enclaves User Guide

Table of Contents

What is Nitro Enclaves? ... 1
Learn more ... 2
Requirements ... 2
Considerations ... 3
Pricing ... 3
Related services .. 3

Nitro Enclaves concepts .. 5
Enclave .. 5
Enclave ID ... 5
Parent instance ... 6
Enclave image file .. 6
AWS Nitro Enclaves CLI ... 6
AWS Nitro Enclaves SDK ... 6
Cryptographic attestation ... 6
Attestation document .. 6
Platform configuration registers ... 7
KMS proxy .. 7
Vsock socket .. 7

Getting started: Hello enclave .. 8
Step 1: Prepare the enclave-enabled parent instance .. 8
Step 2: Build the enclave image file .. 9
Step 3: Run the enclave ... 11
Step 4: Validate the enclave .. 12
Step 5: Terminate the enclave .. 13

Using enclaves ... 14
Enclaves workflow .. 14

Involved parties ... 14
Data and environment preparation .. 15
Attestation and data decryption ... 16

Building an enclave image file .. 16
Creating an enclave ... 18

Launch the parent instance .. 19
Create the enclave .. 20

Working with multiple enclaves .. 21

iii

AWS AWS Nitro Enclaves User Guide

Nitro Enclaves and Amazon EKS ... 22
Prerequisites ... 24
Step 1: Create a launch template ... 25
Step 2: Create Kubernetes cluster and node .. 26
Step 3: Install the Nitro Enclaves Kubernetes device plugin ... 28
Step 4: Prepare the image .. 29
Step 5: Deploy the application to the cluster .. 31

Cryptographic attestation ... 35
Integration with AWS KMS .. 35
Where to get an enclave's measurements .. 36

PCR0, PCR1, and PCR2 .. 37
PCR3 ... 38
PCR4 ... 38
PCR8 ... 39

How to get an enclave's attestation document ... 41
Using cryptographic attestation with AWS KMS .. 41

Secret data preparation ... 15
KMS key preparation .. 42

Getting started with cryptographic attestation: KMS Tool sample application 44
Nitro Enclaves application development ... 45

Nitro Enclaves Developer AMI ... 45
Nitro Enclaves SDK .. 45
Application development on Linux .. 45

Getting started with the vsock: Vsock tutorial ... 46
Application development on Windows .. 48

Considerations for Windows instances ... 49
Nitro Enclaves for Windows release notes .. 50
Subscribe to notifications of new versions ... 53
Working with the vsock socket in Windows .. 54

Verifying the root of trust .. 61
Attestation in the Nitro Enclaves world .. 61
The attestation document .. 61

Attestation document specification .. 62
Attestation document validation .. 63

COSE and CBOR .. 64
Semantical validity ... 65

iv

AWS AWS Nitro Enclaves User Guide

Certificate validity ... 65
Certificate chain validity .. 65

ACM for Nitro Enclaves ... 67
Pricing and billing .. 68
Considerations ... 68
Installing and configuring ACM for Nitro Enclaves ... 68

Step 1: Create the ACM certificate .. 69
Step 2: Prepare the enclaves-enabled parent instance ... 70
Step 3: Prepare the IAM role ... 71
Step 4: Associate the role with the ACM certificate .. 72
Step 5: Grant the role permission to access the certificate and encryption key 72
Step 6: Attach the role to the instance ... 73
Step 7: Configure the web server to use ACM for Nitro Enclaves ... 75
Using multiple certificates .. 80

Updating ACM for Nitro Enclaves ... 83
Uninstalling ACM for Nitro Enclaves .. 83

Security .. 84
Shared responsibility ... 84
Amazon EC2 security ... 84
Enclave security .. 85
Logging API calls with AWS CloudTrail ... 85

Nitro Enclaves information in CloudTrail ... 86
Understanding Nitro Enclaves log file entries .. 87

Nitro Enclaves CLI .. 91
Installing the CLI on Linux ... 91

Install AWS Nitro Enclaves CLI ... 91
Uninstall AWS Nitro Enclaves CLI .. 95

Installing the CLI on Windows .. 96
Install AWS Nitro Enclaves CLI ... 96
Uninstall AWS Nitro Enclaves CLI .. 97

Nitro CLI Reference .. 97
nitro-cli build-enclave .. 97
nitro-cli run-enclave ... 100
nitro-cli describe-enclaves .. 107
nitro-cli console .. 109
nitro-cli describe-eif ... 111

v

AWS AWS Nitro Enclaves User Guide

nitro-cli pcr .. 112
nitro-cli terminate-enclave ... 114

Error codes .. 116
Document history .. 124
AWS Glossary ... 126

vi

AWS AWS Nitro Enclaves User Guide

What is AWS Nitro Enclaves?

AWS Nitro Enclaves is an Amazon EC2 feature that allows you to create isolated execution
environments, called enclaves, from Amazon EC2 instances. Enclaves are separate, hardened, and
highly-constrained virtual machines. They provide only secure local socket connectivity with their
parent instance. They have no persistent storage, interactive access, or external networking. Users
cannot SSH into an enclave, and the data and applications inside the enclave cannot be accessed
by the processes, applications, or users (root or admin) of the parent instance. Using Nitro Enclaves,
you can secure your most sensitive data, such as personally identifiable information (PII), and your
data processing applications.

Note

Nitro Enclaves is processor agnostic and it is supported on most Intel, AMD, and AWS
Graviton-based Amazon EC2 instance types built on the AWS Nitro System.

Nitro Enclaves also supports an attestation feature, which allows you to verify an enclave's identity
and ensure that only authorized code is running inside it. Nitro Enclaves is integrated with the
AWS Key Management Service, which provides built-in support for attestation and enables you to
prepare and protect your sensitive data for processing inside enclaves. Nitro Enclaves can also be
used with other key management services.

1

AWS AWS Nitro Enclaves User Guide

Nitro Enclaves use the same Nitro Hypervisor technology that provides CPU and memory isolation
for Amazon EC2 instances in order to isolate the vCPUs and memory for an enclave from a parent
instance. The Nitro Hypervisor ensures that the parent instance has no access to the isolated vCPUs
and memory of the enclave.

To learn more about creating your first enclave using a sample enclave application, see Getting
started: Hello enclave.

Topics

• Learn more

• Requirements

• Considerations

• Pricing

• Related services

Learn more

• To learn about the concepts used in Nitro Enclaves, see Nitro Enclaves concepts.

• To get started with your first enclave using a sample enclave application, see Getting started:
Hello enclave.

• To learn about using the AWS Nitro Enclaves CLI to manage the lifecycle of enclaves, see Nitro
Enclaves Command Line Interface.

• To learn about developing custom enclave applications and the AWS Nitro Enclaves SDK, see
Nitro Enclaves application development.

• To learn about multiple enclaves, see Working with multiple enclaves.

Requirements

Nitro Enclaves has the following requirements:

• Parent instance requirements:

• Virtualized Nitro-based instance

• Intel or AMD-based instances with at least 4 vCPUs, excluding C7a, C7i, G4ad, M7a, M7i,
M7i-Flex, R7a, R7i, R7iz, T3, T3a, Trn1, Trn1n, U-*, VT1

Learn more 2

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#ec2-nitro-instances

AWS AWS Nitro Enclaves User Guide

• AWS Graviton-based instances with at least 2 vCPUs, excluding A1, C7gd, C7gn, G5g, Hpc7g,
Im4gn, Is4gen, M7g, M7gd, R7g, R7gd, T4g

• Linux or Windows (2016 or later) operating system

• Enclave requirements:

• Linux operating system only

Considerations

Keep the following in mind when using Nitro Enclaves:

• Nitro Enclaves is supported in the following Regions: US East (Ohio), US East (N. Virginia),
US West (N. California), US West (Oregon), Africa (Cape Town), Asia Pacific (Hong Kong), Asia
Pacific (Hyderabad), Asia Pacific (Jakarta), Asia Pacific (Mumbai), Asia Pacific (Osaka), Asia Pacific
(Seoul), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central),
Europe (Frankfurt), Europe (Ireland), Europe (London), Europe (Milan), Europe (Paris), Europe
(Stockholm), Middle East (Bahrain), South America (São Paulo), AWS GovCloud (US-East), and
AWS GovCloud (US-West).

• You can create up to four individual enclaves per parent instance.

• Enclaves can communicate only with the parent instance. Enclaves running on the same or
different parent instances cannot communicate with each other.

• Enclaves are active only while their parent instance is in the running state. If the parent
instance is stopped or terminated, its enclaves are terminated.

• You cannot enable hibernation and enclaves on the same instance.

• Nitro Enclaves is not supported on Outposts.

• Nitro Enclaves is not supported in Local Zones or Wavelength Zones.

Pricing

There are no additional charges for using Nitro Enclaves. You are billed the standard charges for
the Amazon EC2 instance and for the other AWS services that you use.

Related services

Nitro Enclaves is integrated with the following AWS services:

Considerations 3

AWS AWS Nitro Enclaves User Guide

AWS Key Management Service

AWS Key Management Service (KMS) makes it easy for you to create and manage cryptographic
keys and control their use across a wide range of AWS services and in your applications. Nitro
Enclaves integrates with AWS KMS and it allows you to perform selected KMS operations
from the enclave using the AWS Nitro Enclaves SDK. These operations can be tied to the
cryptographic attestation process of Nitro Enclaves by setting a AWS KMS key policy to ensure
that the operation works only when the measurements of the enclave match the KMS key
policy. For more information, see AWS KMS condition keys for Nitro Enclaves in the AWS Key
Management Service Developer Guide.

AWS Certificate Manager

AWS Certificate Manager (ACM) is a service that lets you easily provision, manage, and deploy
public and private Secure Sockets Layer/Transport Layer Security (SSL/TLS) certificates for
use with AWS services and your internal connected resources. SSL/TLS certificates are used to
secure network communications and to establish the identity of websites over the internet,
as well as resources on private networks. ACM removes the time-consuming manual process
of purchasing, uploading, and renewing SSL/TLS certificates. For more information, see Nitro
Enclaves application: AWS Certificate Manager for Nitro Enclaves.

Related services 4

https://github.com/aws/aws-nitro-enclaves-sdk-c
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-nitro-enclaves

AWS AWS Nitro Enclaves User Guide

Nitro Enclaves concepts

The following concepts are important to your understanding and use of AWS Nitro Enclaves.

Concepts

• Enclave

• Enclave ID

• Parent instance

• Enclave image file

• AWS Nitro Enclaves CLI

• AWS Nitro Enclaves SDK

• Cryptographic attestation

• Attestation document

• Platform configuration registers

• KMS proxy

• Vsock socket

Enclave

An enclave is a virtual machine with its own kernel, memory, and CPUs. It is created by partitioning
memory and vCPUs from a Nitro-based parent instance. An enclave has no external network
connectivity, and no persistent storage. The enclave's isolated vCPUs and memory can't be
accessed by the processes, applications, kernel, or users of the parent instance.

Enclave ID

An enclave ID is a unique identifier across AWS. It consists of the parent instance ID and
an identifier for each enclave created by the instance. For example, an enclave created
by a parent instance with an ID of i-1234567890abcdef0 could have an enclave ID of
i-1234567890abcdef0-enc9876543210abcde.

Enclave 5

AWS AWS Nitro Enclaves User Guide

Parent instance

The parent instance is the Amazon EC2 instance that is used to allocate CPU cores and memory to
the enclave. The resources are allocated to the enclave for the duration of its lifetime. The parent
instance is the only instance that can communicate with its enclave.

Enclave image file

An enclave image file (.eif) includes a Linux operating system, libraries, and enclave applications
that will be booted into an enclave when it is launched.

AWS Nitro Enclaves CLI

The AWS Nitro Enclaves CLI (Nitro CLI) is a command line tool that is used to create, manage, and
terminate enclaves. The Nitro CLI must be installed and used on the parent instance. For more
information, see Nitro Enclaves Command Line Interface.

AWS Nitro Enclaves SDK

The AWS Nitro Enclaves SDK is an open-source library that you can use to develop enclave
applications, or to update existing applications to run in an enclave. The SDKs also integrate with
AWS KMS and provide built-in support for cryptographic attestation and other cryptographic
operations. For more information, see Nitro Enclaves application development.

Cryptographic attestation

Cryptographic attestation is the process that an enclave uses to prove its identity and build trust
with an external service. Attestation is accomplished using a signed attestation document that
is generated by the Nitro Hypervisor. The values in an enclave's attestation document can be
used as a condition for an authorization decision by an external party. AWS KMS allows you to
use attestation document values in conditions keys to grant access to specific cryptographic
operations. For more information, see Cryptographic attestation.

Attestation document

An attestation document is generated and signed by the Nitro Hypervisor. It contains information
about the enclave, including platform configuration registers (PCRs), a cryptographic nonce, and

Parent instance 6

AWS AWS Nitro Enclaves User Guide

additional information that you can define. It can be used by an external service to verify the
identity of an enclave and to establish trust. You can use the attestation document to build your
own cryptographic attestation mechanisms, or you can use it with AWS KMS, which provides built-
in support for authorizing cryptographic requests based on values in the attestation document. For
more information, see Cryptographic attestation.

Platform configuration registers

Platform configuration registers (PCRs) are cryptographic measurements that are unique to an
enclave. Some PCRs are automatically generated when the enclave is created, and they can be
used to verify that no changes have been made to the enclave since it was created. You can also
manually create additional PCRs that can be used to ensure that the enclave is running on the
instance on which you expect it to run. PCRs are included in the attestation document that is
generated by the Nitro Hypervisor. You can use PCRs to create condition keys for AWS KMS keys.
For more information, see Where to get an enclave's measurements.

KMS proxy

The KMS proxy is used by enclaves running in a parent instance to call AWS KMS through the
parent instance's networking. The proxy ships with Nitro CLI and it runs on the parent instance. The
proxy is required only if you use AWS KMS as your key management service and you perform AWS
KMS operations (kms-decrypt, kms-generate-data-key, and kms-generate-random) using
the Nitro Enclaves SDK. Sessions with KMS are established logically between AWS KMS and the
enclave itself, and all session traffic is protected from the parent instance and from other enclaves.

Vsock socket

Vsock is a local communication channel between a parent instance and its enclaves. It is the only
channel of communication that an enclave can use to interact with external services. An enclave
launched from a parent instance will share the vsock with other enclaves launched from the same
parent instance. An enclave's vsock address is defined by a context identifier (CID) that you can set
when launching an enclave. Each enclave running on a parent instance gets a unique CID. The CID
used by the parent instance is always 3.

On Linux, Vsock utilizes standard, well-defined POSIX socket APIs, such as connect, listen, and
accept. On Windows, the Vsock uses the standard Windows sockets (Winsock2) API.

Platform configuration registers 7

AWS AWS Nitro Enclaves User Guide

Getting started: Hello enclave

The following tutorial walks you through the basics of using AWS Nitro Enclaves. It shows you how
to launch an enclave-enabled parent instance, how to build an enclave image file, how to validate
that an enclave is running, and how to terminate an enclave when it is no longer needed.

The tutorial uses the Hello Enclaves sample application.

Important

The steps for Windows and Linux parent instances are mostly similar. However, the nitro-
cli build-enclave command referenced in Step 2: Build the enclave image file is
not supported on Windows instances. If you are using a Windows instance, you must
complete this step on a Linux instance and then transfer the enclave image file (.eif) to
your Windows parent instance before continuing with the remainder of the tutorial.

Steps

• Step 1: Prepare the enclave-enabled parent instance

• Step 2: Build the enclave image file

• Step 3: Run the enclave

• Step 4: Validate the enclave

• Step 5: Terminate the enclave

Step 1: Prepare the enclave-enabled parent instance

Launch the parent instance that you will use to create the enclave, and prepare the instance to run
Nitro Enclaves.

To prepare the parent instance

1. Launch the instance using the run-instances command and set the --enclave-options
parameter to true. At a minimum, you must also specify a Windows or Linux AMI and a
supported instance type. For more information, see Requirements.

Step 1: Prepare the enclave-enabled parent instance 8

https://docs.aws.amazon.com/cli/latest/reference/ec2/run-instances.html

AWS AWS Nitro Enclaves User Guide

The following example command launches an m5.xlarge instance using the Amazon Linux 2
Kernel 5.10 AMI.

$ aws ec2 run-instances \
--image-id ami-0b5eea76982371e91 \
--count 1 \
--instance-type m5.xlarge \
--key-name your_key_pair \
--enclave-options 'Enabled=true'

2. Connect to the parent instance. For more information about connecting to an instance, see the
following topics in the Amazon EC2 User Guide.

• Connect to your Linux instance

• Connect to your Windows instance

3. Install the AWS Nitro Enclaves CLI on the parent instance.

• If you are using a Linux parent instance, you must preallocate the memory and vCPUs. For
the purposes of this tutorial, you must preallocate at least 2 vCPUs and 512 MiB of memory.
For more information, see Installing the Nitro Enclaves CLI on Linux.

• If you are using a Windows parent instance, see Installing the Nitro Enclaves CLI on
Windows.

Step 2: Build the enclave image file

Important

Only Linux-based operating systems can run inside an enclave. Therefore, you must use
a Linux instance to build your enclave image file .eif. As a result of this, the nitro-
cli build-enclave command referenced in this section is not supported on Windows
instances. If you are using a Windows parent instance, you must complete this step on a
Linux instance and then transfer the resulting enclave image file (.eif) to your Windows
parent instance.
In this case, you must launch a temporary Linux instance and install the AWS Nitro Enclaves
CLI on that instance. For more information, see Installing the Nitro Enclaves CLI on Linux.
After you have launched the temporary Linux instance and you have installed the AWS
Nitro Enclaves CLI, connect to that instance and perform the steps described here. After

Step 2: Build the enclave image file 9

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html

AWS AWS Nitro Enclaves User Guide

you have completed the steps, transfer the enclave image file (.eif) to your Windows
parent instance, reconnect to your Windows parent instance and continue with Step 3: Run
the enclave.

The Hello Enclave application is located in the /usr/share/nitro_enclaves/examples/
hello directory.

To build the enclave image file

1. Build a docker image from the application. The following command builds a Docker image
named hello with a tag of latest.

$ docker build /usr/share/nitro_enclaves/examples/hello -t hello

2. Run the following command to verify that the Docker image has been built.

$ docker image ls

3. Convert the Docker image to an enclave image file by using the nitro-cli build-enclave
command. The following command builds an enclave image file named hello.eif.

$ nitro-cli build-enclave --docker-uri hello:latest --output-file hello.eif

Example output

Start building the Enclave Image...
Enclave Image successfully created.
"Measurements": {
 "HashAlgorithm": "Sha384 { ... }",
 "PCR0":
 "2bb885ee2104203393c0d2f335f14061a9cd9154e4ede772a6a474d3679348fb33c4917d54fee3f11f9e7a49a0ef305c",
 "PCR1":
 "aca6e62ffbf5f7deccac452d7f8cee1b94048faf62afc16c8ab68c9fed8c38010c73a669f9a36e596032f0b973d21895",
 "PCR2":
 "40686da348b450210dcdd234fbb95826ecf81f67e4496b6182ba8eb7ab018977dce07448cd0b7ef44346dc1e283e3e64"
 }
}

Step 2: Build the enclave image file 10

AWS AWS Nitro Enclaves User Guide

The hello.eif enclave image file has now been built. Note that the command output
includes a set of hashes—PCR0, PCR1, and PCR2. These hashes are measurements of the
enclave image and boot up process, and they can be used in the attestation process. The
attestation process will not be used in this tutorial.

Step 3: Run the enclave

You can now use the hello.eif enclave image file to run the enclave. In this tutorial, you will run
an enclave with 2 vCPUs and 512 MiB of memory using the hello.eif enclave image file. You will
also create the enclave in debug mode.

Note

Enclaves booted in debug mode generate attestation documents with PCRs that are made
up entirely of zeros (00).
These attestation documents cannot be used for cryptographic attestation.

Use the nitro-cli run-enclave command. Specify the vCPUs, memory, and the path to the enclave
image file, and include the --debug-mode option.

$ nitro-cli run-enclave --cpu-count 2 --memory 512 --enclave-cid 16 --eif-path
 hello.eif --debug-mode

Example output

Start allocating memory...
Started enclave with enclave-cid: 16, memory: 512 MiB, cpu-ids: [1, 3]
{
 "EnclaveID": "i-05f6ed443aEXAMPLE-enc173dfe3eEXAMPLE",
 "ProcessID": 7077,
 "EnclaveCID": 16,
 "NumberOfCPUs": 2,
 "CPUIDs": [
 1,
 3
],
 "MemoryMiB": 512

Step 3: Run the enclave 11

AWS AWS Nitro Enclaves User Guide

}

The enclave is now running. In this sample output, the enclave is created with an ID of
i-05f6ed443aEXAMPLE-enc173dfe3eEXAMPLE, and an enclave context identifier (EnclaveCID)
of 16. The EnclaveCID is like an IP address for the local socket (vsock) between the parent instance
and the enclave.

Step 4: Validate the enclave

Now that you have created the enclave, you can use the nitro-cli describe-enclaves command to
verify that it is running.

$ nitro-cli describe-enclaves

{
 "EnclaveID": "i-05f6ed443aEXAMPLE-enc173dfe3eEXAMPLE",
 "ProcessID": 7077,
 "EnclaveCID": 16,
 "NumberOfCPUs": 2,
 "CPUIDs": [
 1,
 3
],
 "MemoryMiB": 512,
 "State": "RUNNING",
 "Flags": "DEBUG_MODE"
}

The command provides information about the enclave, including the enclave ID, number of vCPUs,
amount of memory, and its state. In this case, the enclave is in the RUNNING state.

Additionally, because you created the enclave in debug mode, you can use the nitro-cli console
command to view the read-only console output of the enclave.

$ nitro-cli console --enclave-id i-05f6ed443aEXAMPLE-enc173dfe3eEXAMPLE

Example output

Hello from the enclave side!

Step 4: Validate the enclave 12

AWS AWS Nitro Enclaves User Guide

Hello from the enclave side!
Hello from the enclave side!

In this case, the Hello Enclave application is designed to print Hello from the enclave side!
to the console every five seconds.

Step 5: Terminate the enclave

If you no longer need the enclave, you can use the nitro-cli terminate-enclave command
to terminate it.

$ nitro-cli terminate-enclave --enclave-id i-05f6ed443aEXAMPLE-enc173dfe3eEXAMPLE

Example output

Successfully terminated enclave i-05f6ed443aEXAMPLE-enc173dfe3eEXAMPLE.
{
 "EnclaveID": "i-05f6ed443aEXAMPLE-enc173dfe3eEXAMPLE",
 "Terminated": true
}

Step 5: Terminate the enclave 13

AWS AWS Nitro Enclaves User Guide

Using enclaves

The following section provides an overview of working with AWS Nitro Enclaves.

Topics

• Enclaves workflow

• Building an enclave image file

• Creating an enclave

• Working with multiple enclaves

• Using Enclaves with Amazon EKS

Enclaves workflow

The following topic explains some of the roles and basic workflows of AWS Nitro Enclaves, using
AWS KMS as the key management service, and Amazon S3 as the data storage service.

Topics

• Involved parties

• Data and environment preparation

• Attestation and data decryption

Involved parties

A typical Nitro Enclaves use case involves multiple parties. Each party is responsible for completing
certain tasks to ensure that the enclave is operational. A typical use case includes the following
parties:

• Data owner—Owns the AWS KMS key and the secret data. The owner is responsible for creating
the KMS key in AWS KMS, encrypting the secret data, and making the encrypted data and the
encrypted data key available.

• Parent instance administrator—Owns the parent instance and manages the enclave's lifecycle.
This party launches the parent instance and then creates the enclave using the enclave image
file or Docker image, which is provided by the application developer. The parent instance
administrator should not have permission to perform cryptographic actions using the KMS key,

Enclaves workflow 14

AWS AWS Nitro Enclaves User Guide

and they should not have permission to change the KMS key policy. The parent instance however,
will need permissions to call kms-decrypt using the KMS key, but the request will only succeed
if it is made from inside the enclave, and it includes values that match the condition keys in the
KMS key policy.

• Application developer—Develops the applications that run in the enclave and on the parent
instance. The developer packages the application into an enclave image file or Docker image
and provides it to the parent instance administrator, who uses it to create the enclave. The
application developer might also develop applications that run on the parent instance itself.

Data and environment preparation

The following section provides an overview of the data encryption process, attestation set up, and
enclave creation process.

1. Create a AWS KMS key in AWS KMS. For more information, see Creating Keys in the AWS Key
Management Service Developer Guide.

2. Generate a plaintext and encrypted data key using the KMS key. For more information, see
generate-data-key in the AWS KMS AWS CLI Command Reference.

3. Encrypt the secret data under the KMS key using the plaintext data key and a client-side
cryptographic library, such as the AWS Encryption SDK. For more information, see Encrypt data
with a data key in the AWS Key Management Service Developer Guide. You will need to modify the
key policy of the KMS key to give the IAM principal you’re using in your client permission to call
the GenerateDataKey API action

4. Upload the encrypted secret data and the encrypted data key to a storage location, such as
Amazon S3. If you’re using the AWS Encryption SDK, the encrypted data key is automatically
included in the header of the encrypted message.

5. Inspect the enclave application. This could be a pre-packaged enclave application, an existing
application that has been refactored to run in an enclave, or a brand new enclave application.

6. If you are satisfied with the security properties of the application, package the application into
a Docker file, and then use the AWS Nitro Enclaves CLI to convert the Docker file into an enclave
image file. For more information, see Building an enclave image file.

Make a note of the platform configuration registers (PCRs) that are generated when the enclave
image is created.

7. Use the PCRs to add attestation-based condition keys to the KMS key that you used to encrypt
the data. For more information, see Cryptographic attestation.

Data and environment preparation 15

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/cli/latest/reference/kms/generate-data-key.html
https://docs.aws.amazon.com/cli/latest/reference/kms/generate-data-key.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys-encrypt
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys-encrypt

AWS AWS Nitro Enclaves User Guide

8. Launch the enclave-enabled parent instance and boot the enclave using the enclave image. For
more information, see Creating an enclave.

Attestation and data decryption

The following section provides an overview of the attestation and data decryption process.

1. Download the encrypted data and the encrypted data key from Amazon S3 to the parent
instance.

2. Transfer the encrypted data and the encrypted data key to the enclave over the vsock socket.

3. Call the kms-decrypt Nitro Enclaves SDK, which sends the encrypted data key and the
attestation document to AWS KMS. The attestation document includes the enclave's PCRs and
public key. The request is sent over the vsock socket to the parent instance, and the parent
instance forwards the request to AWS KMS via the AWS KMS proxy.

4. AWS KMS receives the request and verifies that the attached attestation document is signed by
the Nitro Hypervisor. AWS KMS then compares the PCRs in the attestation document with the
PCRs in the condition keys in the policy of the requested KMS key.

5. If the PCRs in the attestation document match the PCRs in the condition keys of the KMS
key policy, AWS KMS encrypts the plaintext data key with the enclave's public key from the
attestation document.

6. The encrypted plaintext data key is returned to the parent instance over the KMS proxy, and the
parent instance sends it to the enclave over the vsock socket.

7. The encrypted plaintext data key is decrypted using the enclave's private key.

8. The plaintext data key is used to decrypt the encrypted data.

9. The data is now ready to be processed inside the enclave.

Building an enclave image file

After you have developed an enclave application, you are ready to package it as an enclave image
file (.eif). An enclave image file provides the information that is required to launch an enclave.
It contains everything that is needed to run the application inside the enclave, including the
application code, runtimes, dependencies, operating system, and file system.

This section explains how to create an enclave image file.

Attestation and data decryption 16

AWS AWS Nitro Enclaves User Guide

First, you need to package the enclave application and its dependencies into a Docker image. A
Docker image is a read-only template that provides instructions for creating a Docker container.
Nitro Enclaves uses Docker images as a convenient file format for packaging your applications.
Docker images are typically used to create Docker containers. However, in this case, you use the
Docker image to create an enclave image file instead. For more information about Docker, see the
following resources:

• Docker overview

• Orientation and setup

• Build and run your image

• Best practices for writing Docker images

After you have packaged your enclave application into a Docker image, you need to convert
the Docker image to an enclave image file. To do this, use the nitro-cli build-enclave AWS Nitro
Enclaves CLI command.

Important

The nitro-cli build-enclave command is not supported on Windows instances.
If you are using a Windows instance, you must complete this step on a temporary Linux
instance and then transfer the resulting enclave image file (.eif) to your Windows parent
instance.
After you have launched the temporary Linux instance and you have installed the AWS
Nitro Enclaves CLI, connect to that instance and run the nitro-cli build-enclave
command. After you have run the command, transfer the enclave image file (.eif) to your
Windows parent instance where you will create the enclave.

The nitro-cli build-enclave creates an enclave image file and it provides the enclave's
measurements. The enclave image file is used to launch the enclave on the parent instance, and the

Building an enclave image file 17

https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/part2/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

AWS AWS Nitro Enclaves User Guide

measurements are used to set up the attestation process. For more information, see Cryptographic
attestation.

For example, to create an enclave image file from the hello-world sample Docker image, use the
following command.

$ nitro-cli build-enclave --docker-uri hello-world:latest --output-file hello-
world.eif

This command creates an enclave image file named hello-world.eif, along with the following
output.

Start building the Enclave Image...
Enclave Image successfully created.
{
"Measurements": {
 "HashAlgorithm": "Sha384 { ... }",

 "PCR0":"7fb5EXAMPLEcbb68ed99a13d7122abfc0666b926a79d537EXAMPLE445c84217f59cfdd36c08b2c79552928702EXAMPLE",

 "PCR1":"235cEXAMPLEbf6b993c915505f3220e2d82b51aff830ad1EXAMPLEeec1bf0b4ae749d311c663f464cde9f718aEXAMPLE",

 "PCR2":"0f0aEXAMPLE289e872e6ac4d19b0b5ac4a9b020c9829564EXAMPLE610750ce6a86f7edff24e3c0a4a445f2ff8EXAMPLE"
}
}

Creating an enclave

After your enclave applications have been packaged as an enclave image file (.eif), you are ready
to create the enclave.

To create the enclave, you need to do the following:

Steps

• Launch the parent instance

• Create the enclave

Creating an enclave 18

AWS AWS Nitro Enclaves User Guide

Launch the parent instance

First, you need to launch the parent instance. The parent instance is the instance from which you
allocate the resources for the enclave. You also use this instance to manage the lifecycle of the
enclave. For more information about the supported instance types and sizes, see Requirements.

After you launch the parent instance, make a note of the instance ID. You'll need it to generate
PCR4, which is needed for attestation. For more information, see Where to get an enclave's
measurements.

You can launch the parent instance using the Amazon EC2 console or the AWS CLI.

Amazon EC2 console

To launch the parent instance using the Amazon EC2 console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Launch Instance.

3. On the Choose an AMI page, choose a Linux or Windows operating system.

4. On the Choose an Instance Type page, select a supported instance type and then choose
Next: Configure Instance Details.

5. On the Configure Instance Details page, for Nitro Enclaves, choose Enable, and then
choose Review and Launch.

6. On the Review Instance Launch page, review the settings, and then choose Launch to
choose a key pair and to launch your instance.

AWS CLI

To launch a parent instance using the AWS CLI

Use the run-instances command and set the --enclave-options parameter to
Enabled=true.

For example, the following command launches a single m5.2xlarge instance using an AMI
with an ID of ami-12345abcde67890a1 and a key pair named my_key, and it enables Nitro
Enclaves.

$ C:\> aws ec2 run-instances --image-id ami-12345abcde67890a1 --count 1 --instance-
type m5.2xlarge --key-name my_key --enclave-options 'Enabled=true'

Launch the parent instance 19

https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/cli/latest/reference/ec2/run-instances.html

AWS AWS Nitro Enclaves User Guide

After you launch the parent instance, you must install the AWS Nitro Enclaves CLI and the
development tools. If you're using a Linux parent instance, see Installing the Nitro Enclaves CLI on
Linux. If you're using a Windows parent instance, see Installing the Nitro Enclaves CLI on Windows.

Create the enclave

After you have launched the parent instance, you can create the enclave using the enclave image
file (.eif). When you create the enclave, it boots the enclave application and its dependencies
from the enclave image file into the enclave.

Note

You must have the Nitro Enclaves CLI installed on the parent instance in order to create the
enclave. For more information, see Nitro Enclaves Command Line Interface.

To create the enclave

On the parent instance, use the nitro-cli run-enclave CLI command and, at a minimum, specify the
following:

• The number of vCPUs to allocate to the enclave

• The amount of memory (in MiB) to allocate to the enclave

• An enclave image file

For example, the following command creates an enclave with 4 vCPUs, 1600 MiB of memory, a
context ID of 10, and it uses an enclave image file named sample.eif, which is located in the
same directory from which the command is being run.

$ C:\> nitro-cli run-enclave --cpu-count 2 --memory 1600 --eif-path sample.eif --
enclave-cid 10

Example output

Instance CPUs [1, 3] going offline
Started enclave with enclave-cid: 10, memory: 1600 MiB, cpu-ids: [1, 3]
Sending image to cid: 10 port: 7000
{
"EnclaveID": "i-abc12345def67890a-enc9876abcd543210ef12",

Create the enclave 20

AWS AWS Nitro Enclaves User Guide

"EnclaveCID": 10,
"NumberOfCPUs": 2,
"CPUIDs": [
 1,
 3
],
"MemoryMiB": 1600
}

Working with multiple enclaves

You can create up to four separate enclaves from a single Amazon EC2 parent instance. Consider
the following before using multiple enclaves.

• When launching a parent instance, choose an instance type that has enough vCPUs and memory
for both the parent instance and the additional enclaves. If multi-threading is enabled, you
must leave at least 2 vCPUs for the parent instance. If multi-threading is not enabled, you must
leave at least 1 vCPU for the parent instance. For example, if multi-threading is enabled and you
intend to run 4 enclaves with 4 vCPUs each, you must select an instance type that has at least 18
vCPUs (2 for the parent instance and 16 for the enclaves).

• When you install the Nitro CLI, you must configure the allocator service to preallocate enough
vCPUs and memory for all of the enclaves. For example, if you intend to run 3 enclaves with 4
vCPUs and 2 GiB memory each, you must preallocate 12 vCPUs and 6 GiB of memory. For more
information, see step 7 in Install AWS Nitro Enclaves CLI.

• Each enclave communicates with the parent instance over vsock. Each enclave has its own vsock
address that is defined by a context identifier (CID). There is no vsock connection between the
enclaves.

• Each enclave has its own unique ID.

• Each enclave can be individually terminated by specifying its enclave ID.

• Each enclave can be configured with a different number of vCPUs or amount of memory.

• Each enclave on a parent instance can be created from the same or a different enclave image file.

The following image illustrates an example of using multiple enclaves. In this example, there is
a single parent instance with 3 running enclaves. The parent instance is a m6g.2xlarge, which
has 8 vCPUs and 32 GiB memory, running Amazon Linux 2. The parent instance has a CID of 3,
and enclaves 1, 2, and 3 have unique CIDs of 14, 15, 16 respectively. Each enclave has a unique

Working with multiple enclaves 21

AWS AWS Nitro Enclaves User Guide

enclave ID; each ID is prefixed with the parent instance ID. Enclaves 1 and 3 were launched with the
same enclave image file (FileA.eif), while enclave 2 was launched with a different enclave image
file (FileB.eif). Enclave 1 has been launched with 2 vCPUs and 1600 MiB memory, enclave 2
with 1 vCPU and 700 MiB memory, and enclave 3 with 2 vCPUs and 2000 MiB memory. In total,
the enclaves have been allocated with 5 vCPUs and 4300 MiB (4.2 GiB) of memory, which leaves
the parent instance with 3 vCPUs and 27.8 GiB of memory. Each enclave has a vsock channel to
communicate with the parent instance.

Using Enclaves with Amazon EKS

You can use Amazon Elastic Kubernetes Service to orchestrate, scale, and deploy Nitro Enclaves
from a Kubernetes pod. Kubernetes is an open source platform for container orchestration. The
following diagram provides a conceptual overview of how Nitro Enclaves integrates with Amazon
EKS.

Nitro Enclaves and Amazon EKS 22

AWS AWS Nitro Enclaves User Guide

Important

All pods and containers in the same Amazon EKS node or Amazon EC2 instance that has
the Nitro Enclaves Kubernetes device plugin installed will be able to communicate with the
enclave that is attached to that parent Amazon EC2 instance.

For more information about Amazon EKS see the Amazon Elastic Kubernetes Service User Guide.

This tutorial shows how to create an Amazon EKS cluster with a managed node group and one
enclave-enabled node. It shows how to install the Nitro Enclaves Kubernetes device plugin, how to
prepare the Hello Enclaves sample application for deployment, and how to deploy the prepared
Hello Enclaves Docker image to the cluster.

There are two key components to this process:

• Launch templates. The process requires a launch template that is properly configured. The
launch template must have enclaves enabled and an it must include specific user data that is
provided in Step 1: Create a launch template. This launch template will be used to create the
enclave-enabled nodes in the cluster.

Nitro Enclaves and Amazon EKS 23

https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html

AWS AWS Nitro Enclaves User Guide

• The Nitro Enclaves Kubernetes device plugin. This device plugin gives your pods and containers
the ability to create and terminate enclaves using the Nitro Enclaves Command Line Interface.
The device plugin works with both Amazon EKS and self-managed Kubernetes nodes.

Tip

To simplify the build process, we also provide an open source tool called enclavectl that
you can use to build and deploy your enclave applications to an Amazon EKS cluster.
Using enclavectl, you can create an enclave-enabled Amazon EKS cluster and install the
Nitro Enclaves device plugin as a daemonset. We also provide some sample applications
and a tutorial to demonstrate how to build and run your own enclave applications in an
Amazon EKS cluster. For more information about enclavectl, see the Nitro Enclaves with
Kubernetes GitHub repo.

Topics

• Prerequisites

• Step 1: Create a launch template

• Step 2: Create Kubernetes cluster and node

• Step 3: Install the Nitro Enclaves Kubernetes device plugin

• Step 4: Prepare the image

• Step 5: Deploy the application to the cluster

Prerequisites

• This tutorial assumes familiarity with Kubernetes concepts. For more information, see the
Kubernetes documentation.

• The following tools are required to complete this tutorial:

• bash shell

• AWS CLI version 2. For more information about installing the AWS CLI, see Getting started
with the AWS CLI.

• eksctl, a simple command line tool for creating and managing Kubernetes clusters on Amazon
EKS. For more information, see Installing or updating eksctl.

Prerequisites 24

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://github.com/aws/aws-nitro-enclaves-with-k8s
https://github.com/aws/aws-nitro-enclaves-with-k8s
https://kubernetes.io/docs/concepts/overview/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/eks/latest/userguide/eksctl.html

AWS AWS Nitro Enclaves User Guide

• Docker, an open platform used for packaging your enclave applications into images that can
be deployed into containers on your worker nodes. For more information, see Get Docker.

• jq, a command line JSON processor. For more information, see Download jq.

• kubectl version 1.20 and later versions that include the Docker runtime. kubectl is the
Kubernetes command line tool that enables you to deploy applications, inspect and manage
cluster resources, and view logs. For more information, see Installing or updating kubectl in
the Amazon EKS User Guide.

Step 1: Create a launch template

Create a launch template that will be used to launch the enclave-enabled worker nodes (Amazon
EC2 instances) in the cluster. You can create the launch template using either the create-
launch-template AWS CLI command or the Amazon EC2 console.

When you create the launch template, you must do the following:

1. Specify a supported instance type.

2. Enable Nitro Enclaves.

3. Specify the following user data, which automates the AWS Nitro Enclaves CLI installation, and
preallocates the memory and the vCPUs for enclaves on the instance.

The CPU_COUNT and MEMORY_MIB variables in the user data specify the number of vCPUs and
amount of memory (in MiB) respectively. For the purpose of this tutorial, the user data below
specifies 2 vCPUs and 768 MiB of memory.

Note

You can specify a custom number of vCPUs and amount of memory, depending on
your workload and instance type. When you create an enclave on the worker node, the
requested memory and vCPUs can't exceed the values that you specified here.
You can also include any other instructions in the user data that are required for your
application.

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="==MYBOUNDARY=="

Step 1: Create a launch template 25

https://docs.docker.com/get-docker/
https://stedolan.github.io/jq/download/
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/create-launch-template.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/create-launch-template.html

AWS AWS Nitro Enclaves User Guide

--==MYBOUNDARY==
Content-Type: text/x-shellscript; charset="us-ascii"

#!/bin/bash -e
readonly NE_ALLOCATOR_SPEC_PATH="/etc/nitro_enclaves/allocator.yaml"
Node resources that will be allocated for Nitro Enclaves
readonly CPU_COUNT=2
readonly MEMORY_MIB=768

This step below is needed to install nitro-enclaves-allocator service.
amazon-linux-extras install aws-nitro-enclaves-cli -y

Update enclave's allocator specification: allocator.yaml
sed -i "s/cpu_count:.*/cpu_count: $CPU_COUNT/g" $NE_ALLOCATOR_SPEC_PATH
sed -i "s/memory_mib:.*/memory_mib: $MEMORY_MIB/g" $NE_ALLOCATOR_SPEC_PATH
Restart the nitro-enclaves-allocator service to take changes effect.
systemctl restart nitro-enclaves-allocator.service
echo "NE user data script has finished successfully."
--==MYBOUNDARY==

Note

If you create the launch template using the AWS CLI, you must provide the user data as
base64-encoded text.

4. Note the launch template ID (for example, lt-01234567890abcdef; you'll need it in the
following step.

For more information about creating a launch template, see Create a launch template in the
Amazon EC2 User Guide.

Step 2: Create Kubernetes cluster and node

Create the cluster with node groups and worker nodes. In this tutorial, we use the eksctl command
line tool to create an Amazon EKS cluster with one managed node group with one worker node
using the launch template created in the previous step.

To create the cluster, node group, and worker node

1. Create a cluster configuration file named cluster_config.yaml and add the following
configuration, which specifies the following:

Step 2: Create Kubernetes cluster and node 26

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-templates.html#create-launch-template

AWS AWS Nitro Enclaves User Guide

• The name of the cluster (metadata:name)

• The AWS Region in which to create the cluster (region)

• The name of the node group (managedNodeGroups:name)

• The ID and version of the launch template to use to create the worker nodes (id and
version)

• The number of nodes in the node group (desiredCapacity)

For the purpose of this tutorial, the configuration file creates a cluster named ne-cluster
in us-east-1, it creates 1 node in a node group named ne-group using version 1 of launch
template lt-01234567890abcdef.

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
 name: ne-cluster
 region: us-east-1
 version: "1.22"

managedNodeGroups:
 - name: ne-group
 launchTemplate:
 id: lt-01234567890abcdef
 version: "1"
 desiredCapacity: 1

For more information about cluster configuration files, see Using Config Files in the eksctl
documentation.

2. Create the cluster, node group, and worker node using the cluster configuration file. Run the
following eksctl command and specify the cluster configuration file created in the previous
step.

$ eksctl create cluster -f cluster_config.yaml

After the cluster is created, you will see output similar to the following.

...

Step 2: Create Kubernetes cluster and node 27

https://eksctl.io/usage/creating-and-managing-clusters/#using-config-files

AWS AWS Nitro Enclaves User Guide

[#] EKS cluster "ne-cluster" in us-east-1 region is ready

Note

When you create an Amazon EKS cluster using eksctl, the tool automatically preconfigures
kubectl so that it can find and access the Amazon EKS cluster. If you create a self-managed
cluster using other tooling, you might need to manually configure kubectl so that it
can communicate with your cluster. To check the kubectl configuration, run kubectl
cluster-info. If you see a URL response, kubectl is correctly configured to access your
cluster. For more information, see Organizing Cluster Access Using kubeconfig Files in the
Kubernetes documentation.

Step 3: Install the Nitro Enclaves Kubernetes device plugin

Deploy the Nitro Enclaves Kubernetes device plugin to the cluster and then enable it on each
worker node in the cluster using kubectl. The plugin enables the pods on each worker node to
access the Nitro Enclaves device driver. The plugin is deployed to the Kubernetes cluster as a
daemonset.

To deploy and enable the Nitro Enclaves Kubernetes device plugin

1. Deploy the Nitro Enclaves Kubernetes device plugin to the cluster using the following
command.

$ kubectl apply -f https://raw.githubusercontent.com/aws/aws-nitro-enclaves-k8s-
device-plugin/main/aws-nitro-enclaves-k8s-ds.yaml

2. Get the name of the worker node on which to install the Nitro Enclaves Kubernetes device
plugin using the following command.

$ kubectl get nodes

The following is example output.

NAME STATUS ROLES AGE VERSION

Step 3: Install the Nitro Enclaves Kubernetes device plugin 28

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://docs.kernel.org/virt/ne_overview.html
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

AWS AWS Nitro Enclaves User Guide

ip-123-123-123-123.us-east-1.compute.internal Ready <none> 21h v1.22.15-eks-
fb459a0

3. Enable the Nitro Enclaves Kubernetes device plugin on the worker node. Use the following
kubectl command and specify the node name from the previous step.

$ kubectl label node node_name aws-nitro-enclaves-k8s-dp=enabled

For example:

$ kubectl label node ip-123-123-123-123.us-east-1.compute.internal aws-nitro-
enclaves-k8s-dp=enabled

Step 4: Prepare the image

Nitro Enclaves uses Docker images as a convenient file format for packaging your applications. You
must build the Docker image that includes your enclave application and any other commands that
are needed to run the application. This Docker image will be deployed to the worker node in the
following step.

AWS provides a command line tool, enclavectl that automates the steps that are needed to build
an enclave image file and to package your enclave image file into a Docker image. Additionally, the
tool includes features that automate Amazon EKS cluster and node group creation, and application
deployment. For an end-to-end tutorial on how to use the enclavectl tool to automate cluster
creation, application packaging, and application deployment, see the aws-nitro-enclaves-with-k8s
readme file.

Note

You can also perform these steps manually using Docker and the Nitro CLI. For more
information, see Building an enclave image file.

In this tutorial, we use the enclavectl tool to package the Hello Enclaves sample application into a
Docker image.

Step 4: Prepare the image 29

https://github.com/aws/aws-nitro-enclaves-with-k8s/blob/main/README.md
https://github.com/aws/aws-nitro-enclaves-with-k8s/blob/main/README.md

AWS AWS Nitro Enclaves User Guide

To prepare the image

1. The enclavectl utility can be found in the aws-nitro-enclaves-with-k8s GitHub repo.
Clone the GitHub repo and navigate into the directory.

$ git clone git@github.com:aws/aws-nitro-enclaves-with-k8s.git && cd aws-nitro-
enclaves-with-k8s

2. Source the env.sh script to add the enclavectl tool to you PATH variable.

$ source env.sh

3. Configure the enclavectl for the tutorial. The settings.json file includes some default
parameters that are used only if you create a cluster using enclavectl. Since the cluster was
created manually in the previous steps, the parameters in the settings.json are not used;
but you must run this command to configure the tool before using it.

$ enclavectl configure --file settings.json

4. Build the Hello Enclaves enclave image file and package it into a Docker image. The required
files are located in the /container/hello directory. Use the enclavectl build command
and specify the name of the directory.

$ enclavectl build --image hello

Tip

You can also use the enclavectl tool to package your own enclave applications into
a Docker image. To do this, you must create a new directory with the name of your
application in the /container directory. For example, /aws-nitro-enclaves-
with-k8s/container/my-app. Then, you must create your Dockerfile and an
enclave_manifest.json file in this directory. Then, when you run the enclavectl
build command, for --image specify the name of the directory that you created. For
example, enclavectl build --image my-app.
For more information about how to use the enclavectl tool to package you
applications, see How to create your own application

Step 4: Prepare the image 30

https://github.com/aws/aws-nitro-enclaves-with-k8s/blob/main/container/README.md

AWS AWS Nitro Enclaves User Guide

5. The Docker image is created with a name in the following format: hello-unique_uuid. To
view the full name of the image, run the following command.

$ docker image ls | grep hello

Step 5: Deploy the application to the cluster

Finally, you need to deploy the application to your cluster.

To deploy the application to the cluster

1. Create a deployment specification. Create a new file named deployment_spec.yaml and
add the following content.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: unique_deployment_name
spec:
 replicas: 1
 selector:
 matchLabels:
 app: application_name
 template:
 metadata:
 labels:
 app: application_name
 spec:
 containers:
 - name: unique container_name
 image: docker_image_name:image_tag
 command: ["docker_image_entry_point"]
 resources:
 limits:
 aws.ec2.nitro/nitro_enclaves: "1"
 hugepages-2Mi: 768Mi
 cpu: 250m
 requests:
 aws.ec2.nitro/nitro_enclaves: "1"
 hugepages-2Mi: 768Mi
 volumeMounts:

Step 5: Deploy the application to the cluster 31

AWS AWS Nitro Enclaves User Guide

 - mountPath: /dev/hugepages
 name: hugepage
 readOnly: false
 volumes:
 - name: hugepage-2mi
 emptyDir:
 medium: HugePages-2Mi
 - name: hugepage-1gi
 emptyDir:
 medium: HugePages-1Gi
 tolerations:
 - effect: NoSchedule
 operator: Exists
 - effect: NoExecute
 operator: Exists

The deployment specification must include the following Nitro Enclaves specific sections:

• limits:
 aws.ec2.nitro/nitro_enclaves: "1"
 hugepages-2Mi: 768Mi

The limits section defines the resource limits for the container. A container can't use more
resources than what is defined in the limits. For more information, see Requests and limits.

aws.ec2.nitro/nitro_enclaves is the resource name of the enclaves device driver
defined in the device plugin. When the device plugin is registered, it advertises this name
to kubelet. The resource name can be requested as part of a specification any time. In the
template above, we specify 1 so that only one application can use the enclaves device driver
at the same time. You can modify this value depending on your requirements.

hugepages specifies the huge page size limit for your application. Nitro Enclaves uses large
contiguous memory regions and therefore requires huge pages support. In the template
above, the huge page size limit for the application is set to 768 MiB of memory. Keep in
mind that the nitro-enclaves-allocator service, which was installed to the node
through the user data specified in the launch template, already allocated a huge page size
based the value specified for MEMORY_MIB in the user data. For example, if the value for
MEMORY_MIB in the user data is 1024, the nitro-enclaves allocator allocated one
page of 1 GiB huge page type for the whole node. In this case, the field in the deployment
spec be defined as hugepages-1Gi: 1Gi.

Step 5: Deploy the application to the cluster 32

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#requests-and-limits
https://docs.kernel.org/virt/ne_overview.html
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

AWS AWS Nitro Enclaves User Guide

For more information, see Managing huge pages.

• requests:
 aws.ec2.nitro/nitro_enclaves: "1"
 hugepages-2Mi: 768Mi

The requests section is used to define the node on which to place the pod For more
information, see Requests and limits.

In the template above, we request a pod that has one enclave device (aws.ec2.nitro/
nitro_enclaves: "1"), and a huge page size of 768 MiB (hugepages-2Mi: 768Mi).

The following is an example deployment specification for the Hello Enclaves application
created in the previous steps.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello_deployment
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hello
 template:
 metadata:
 labels:
 app: hello
 spec:
 containers:
 - name: hello_container
 image: 123456789012.dkr.ecr.eu-central-1.amazonaws.com/hello-
b0f89e0a-7d83-4928-853c-9a3f941fa769:latest
 command: ["/home/run.sh"]
 resources:
 limits:
 aws.ec2.nitro/nitro_enclaves: "1"
 hugepages-2Mi: 768Mi
 cpu: 250m
 requests:
 aws.ec2.nitro/nitro_enclaves: "1"

Step 5: Deploy the application to the cluster 33

https://kubernetes.io/docs/tasks/manage-hugepages/scheduling-hugepages/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#requests-and-limits

AWS AWS Nitro Enclaves User Guide

 hugepages-2Mi: 768Mi
 volumeMounts:
 - mountPath: /dev/hugepages
 name: hugepage
 readOnly: false
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages-2Mi
 tolerations:
 - effect: NoSchedule
 operator: Exists
 - effect: NoExecute
 operator: Exists

2. Apply the deployment specification to the cluster and deploy the application. Use the
kubectl apply command and specify the deployment specification file.

$ kubectl apply -f deployment_spec.yaml

Tip

The enclavectl tool automates and simplifies the steps required to deploy an
application to a cluster. You can use the enclavectl run --image image_name
command to automatically generate a deployment specification for your application
and to automatically deploy it to your cluster. For example, enclavectl run --
image hello. If you prefer automatically generate a deployment specification for
your application, but deploy it manually, add the --prepare-only flag. For example,
enclavectl run --image hello --prepare-only. Doing this will generate the
deployment specification but it will not deploy the application to the cluster. Once the
deployment specification has been generated, you can deploy the application using the
kubectl apply command.

Step 5: Deploy the application to the cluster 34

AWS AWS Nitro Enclaves User Guide

Cryptographic attestation

Attestation is a unique feature available to Nitro Enclaves. The enclave uses the attestation process
to prove its identity and build trust with an external service.

The attestation process uses a series of measurements that are unique to an enclave. You can
use these measurements to create access policies in external services to grant the enclave
access to special cryptographic operations. For more information, see Where to get an enclave's
measurements.

Using the Nitro Enclaves SDK, an enclave can request a signed attestation document from the Nitro
Hypervisor that includes its unique measurements. This document can be attached to requests
from the enclave to an external service. The external service can validate the measurements
included in the attestation document against the values in the access policy to determine whether
to grant the enclave access to the requested operation. For more information, see How to get an
enclave's attestation document.

Topics

• Integration with AWS KMS

• Where to get an enclave's measurements

• How to get an enclave's attestation document

• Using cryptographic attestation with AWS KMS

• Getting started with cryptographic attestation: KMS Tool sample application

Integration with AWS KMS

Nitro Enclaves includes built-in support for attestation with AWS KMS. AWS KMS has the ability to
ingest attestation documents that are presented by an enclave. Using the AWS KMS APIs included
in the Nitro Enclaves SDK, you can perform AWS KMS actions, such as Decrypt, GenerateDataKey,
and GenerateRandom from within the enclave. For more information about using the KMS APIs
with Nitro Enclaves, see the Nitro Enclaves SDK GitHub repo and the How Nitro Enclaves uses AWS
KMS in the AWS Key Management Service Developer Guide.

For more information about how to use attestation with AWS KMS, see Using cryptographic
attestation with AWS KMS. If you are using a third-party external service, you must implement

Integration with AWS KMS 35

https://github.com/aws/aws-nitro-enclaves-sdk-c/tree/main/docs/kms-apis
https://docs.aws.amazon.com/kms/latest/developerguide/services-nitro-enclaves.html
https://docs.aws.amazon.com/kms/latest/developerguide/services-nitro-enclaves.html

AWS AWS Nitro Enclaves User Guide

your own access policies and mechanisms for attestation using the attestation document and the
enclave's measurements.

Where to get an enclave's measurements

An enclave's measurements includes a series of hashes and platform configuration registers (PCRs)
that are unique to the enclave. An enclave has six measurements:

PCR Hash of ... Description

PCR0 Enclave image file A contiguous measure of the
contents of the image file, without
the section data.

PCR1 Linux kernel and bootstrap A contiguous measurement of the
kernel and boot ramfs data.

PCR2 Application A contiguous, in-order measurement
of the user applications, without the
boot ramfs.

PCR3 IAM role assigned to the parent
instance

A contiguous measurement of the
IAM role assigned to the parent
instance. Ensures that the attestati
on process succeeds only when the
parent instance has the correct IAM
role.

PCR4 Instance ID of the parent instance A contiguous measurement of the ID
of the parent instance. Ensures that
the attestation process succeeds
only when the parent instance has a
specific instance ID.

PCR8 Enclave image file signing certificate A measure of the signing certificate
specified for the enclave image file.
Ensures that the attestation process
succeeds only when the enclave was

Where to get an enclave's measurements 36

AWS AWS Nitro Enclaves User Guide

PCR Hash of ... Description

booted from an enclave image file
signed by a specific certificate.

Some of the measures are exposed when the enclave image file is built, while others need to be
manually generated based on information about the parent instance.

Topics

• PCR0, PCR1, and PCR2

• PCR3

• PCR4

• PCR8

PCR0, PCR1, and PCR2

PCR0, PCR1, and PCR2 are exposed when the enclave image file (.eif) is built. In other words, they
are provided as part of the output of the nitro-cli build-enclave command.

For example, when building the enclave image file for the hello-world sample application, the
output includes the following.

Enclave Image successfully created.
{
 "Measurements": {
 "HashAlgorithm": "Sha384 { ... }",
 "PCR0":
 "7fb5c55bc2ecbb68ed99a13d7122abfc0666b926a79d5379bc58b9445c84217f59cfdd36c08b2c79552928702efe23e4",
 "PCR1":
 "235c9e6050abf6b993c915505f3220e2d82b51aff830ad14cbecc2eec1bf0b4ae749d311c663f464cde9f718acca5286",
 "PCR2":
 "0f0ac32c300289e872e6ac4d19b0b5ac4a9b020c98295643ff3978610750ce6a86f7edff24e3c0a4a445f2ff8a9ea79d"
 }
}

PCR0, PCR1, and PCR2 37

AWS AWS Nitro Enclaves User Guide

PCR3

To further strengthen the security posture of the enclave, you can create and attach an instance
profile to the parent instance. After you create the instance profile and associate an IAM role with
it, you can generate a SHA384 hash based on the Amazon resource name (ARN) of the IAM role
that's associated with the instance profile. You can then use the hash as PCR3 in the condition
keys for your AWS KMS key policies. Doing this ensures that only enclaves running on an instance
that has the correct IAM role can perform specific AWS KMS actions against a KMS key. For more
information, see Using instance profiles in the IAM User Guide.

You can generate the hash using any tool that is capable of converting a string to a SHA384 hash.

For example, the following command generates a SHA384 hash for an IAM role with an ARN of
arn:aws:iam::123456789012:role/Webserver.

Note

In this example, the hash is padded with 48 null (\0) characters.

$ ROLEARN="arn:aws:iam::123456789012:role/Webserver"; \
python -c"import hashlib, sys; \
h=hashlib.sha384(); h.update(b'\0'*48); \
h.update(\"$ROLEARN\".encode('utf-8')); \
print(h.hexdigest())"

Example output

$ 78fce75db17cd4e0a3fb8dad3ad128ca5e77edbb2b2c7f75329dccd99aa5f6ef4fc1f1a452e315b9e98f9e312e6921e6

PCR4

PCR4 is based on a SHA384 of the instance ID of the parent instance. Therefore, you can generate
the PCR after you have launched the parent instance.

You can generate this hash using any tool that is capable of converting a string to a SHA384 hash.

For example, the following command generates a SHA384 hash for a parent instance with an
instance ID of i-1234567890abcdef0.

PCR3 38

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html

AWS AWS Nitro Enclaves User Guide

Note

In this example, the hash is padded with 48 null (\0) characters.

$ INSTANCE_ID="i-1234567890abcdef0"; \
python -c"import hashlib, sys; \
h=hashlib.sha384(); h.update(b'\0'*48); \
h.update(\"$INSTANCE_ID\".encode('utf-8')); \
print(h.hexdigest())"

Example output

$ 08f996b5d43e047a9eb51e7f548bfee7e164fd7dc8f65541f2ac09d6545ac812719327281c401a67a10fcba87ae79ce0

PCR8

You can also sign the enclave image file using your signing certificate and your private key.

PCR8 is exposed only when building a signed enclave image file (.eif) . In other words it is
provided as part of the output of the nitro-cli build-enclave command when the --private-key
and --signing-certificate options are specified. Doing this creates a signed enclave image
file.

Using PCR8 ensures that only enclaves booted from an enclave image file signed by a specific
certificate can perform specific AWS KMS actions against a KMS key. It also enables you to build
more flexible condition keys that remain effective even if the enclave image or parent instance is
changed. We recommend that you use PCR3 and PCR8 together for the best flexibility.

You can use OpenSSL to generate a private key and signing certificate that can be used to sign an
enclave image file.

To generate a private key and signing certificate

1. Generate the private key.

$ openssl ecparam -name secp384r1 -genkey -out key_name.pem

This command generates the private key needed for the --private-key option.

PCR8 39

AWS AWS Nitro Enclaves User Guide

2. Generate a certificate signing request (CSR). You can customize the request information if
needed.

$ openssl req -new -key key_name.pem -sha384 -nodes -subj "/CN=AWS/C=US/ST=WA/
L=Seattle/O=Amazon/OU=AWS" -out csr.pem

3. Generate a certificate based on the CSR. Specify the CSR, the private key, a name for the
certificate, and the number of days for which the certificate is to remain valid.

Important

If you attempt to start an enclave with an enclave image file that is signed with a
certificate that is no longer valid, the nitro-cli run-enclave command fails with
errors E36, E39, and E11.

$ openssl x509 -req -days 20 -in csr.pem -out certificate.pem -sha384 -
signkey key_name.pem

This command generates the signing certificate needed for the --signing-certificate
option.

For example, when building the enclave image file for the hello-world sample application and
specifying a private key and signing certificate, the output includes the following.

$ nitro-cli build-enclave --docker-uri hello-world:latest --output-file hello-
signed.eif --private-key key_name.pem --signing-certificate certificate.pem

Enclave Image successfully created.
{
 "Measurements": {
 "HashAlgorithm": "Sha384 { ... }",
 "PCR0":
 "7fb5c55bc2ecbb68ed99a13d7122abfc0666b926a79d5379bc58b9445c84217f59cfdd36c08b2c79552928702efe23e4",
 "PCR1":
 "235c9e6050abf6b993c915505f3220e2d82b51aff830ad14cbecc2eec1bf0b4ae749d311c663f464cde9f718acca5286",
 "PCR2":
 "0f0ac32c300289e872e6ac4d19b0b5ac4a9b020c98295643ff3978610750ce6a86f7edff24e3c0a4a445f2ff8a9ea79d",

PCR8 40

AWS AWS Nitro Enclaves User Guide

 "PCR8":
 "70da58334a884328944cd806127c7784677ab60a154249fd21546a217299ccfa1ebfe4fa96a163bf41d3bcfaebe68f6f"
 }
}

How to get an enclave's attestation document

An enclave's attestation document is generated by the Nitro Hypervisor. You can request an
enclave's attestation document from inside the enclave only, using the get-attestation-
document API, which is included in the Nitro Enclaves SDK. For more information, see AWS Nitro
Enclaves SDK Github repository.

Important

Enclaves booted in debug mode generate attestation documents with PCRs that are made
up entirely of zeros (00).
These attestation documents cannot be used for cryptographic attestation.

Using cryptographic attestation with AWS KMS

This section explains how to set up attestation to work with AWS Key Management Service. AWS
KMS integrates with Nitro Enclaves to provide built-in attestation support.

Secret data preparation

Before using Nitro Enclaves with AWS KMS, it is important that you encrypt your sensitive data
before sending it to the parent instance or the enclave. This section provides an overview of the
steps needed to prepare your sensitive data for processing inside the enclave.

1. Create a AWS KMS key. For more information, see Creating Keys in the AWS Key Management
Service Developer Guide.

2. Generate a plaintext and encrypted data key using the KMS key. For more information, see
generate-data-key in the AWS KMS AWS CLI Command Reference.

3. Encrypt the secret data under the KMS key using the plaintext data key and a client-side
cryptographic library, such as the AWS Encryption SDK. For more information, see Encrypt data
with a data key in the AWS Key Management Service Developer Guide. You must modify the

How to get an enclave's attestation document 41

https://github.com/aws/aws-nitro-enclaves-sdk-c
https://github.com/aws/aws-nitro-enclaves-sdk-c
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/cli/latest/reference/kms/generate-data-key.html
https://docs.aws.amazon.com/cli/latest/reference/kms/generate-data-key.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys-encrypt
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys-encrypt

AWS AWS Nitro Enclaves User Guide

KMS key policy to grant the IAM principal that you’re using in your client permission to call the
GenerateDataKey API action.

4. Upload the encrypted secret data and the encrypted data key to a storage location, such as
Amazon S3. If you’re using the AWS Encryption SDK, the encrypted data key is automatically
included in the header of the encrypted message.

KMS key preparation

After you have created your KMS key and you have encrypted your sensitive data under it, you need
to ensure that only the enclave can access it to decrypt the encrypted data.

AWS KMS enables you to create KMS key policies with condition keys that are based on an enclave's
measurements. For more information about using condition keys in KMS key policies, see AWS KMS
condition keys for AWS Nitro Enclaves in the AWS Key Management Service Developer Guide.

The Nitro Enclaves SDK includes some APIs (kms-decrypt, kms-generate-data-key, and kms-
generate-random) that integrate with AWS KMS. When these APIs are called against a specific
key, the enclave's attestation document, which includes its measurements, is attached to the
request. AWS KMS receives the request and validates the measurements in the provided attestation
document against the measurements specified in the condition keys of the KMS key policy. It uses
this information to determine whether the enclave should be granted permission to perform the
requested action using the requested KMS key.

To prepare AWS KMS for attestation you must have the enclave's measurements. When you have
the measurements, you can create a KMS key policy that includes condition keys that are based on
those measurements.

AWS KMS provides kms:RecipientAttestation:ImageSha384 and
kms:RecipientAttestation:PCR condition keys that enable you to create attestation-
based condition keys for KMS key policies. These policies ensure that AWS KMS only allows
operations using the KMS key if the enclave provides a signed attestation document that contains
measurements that match the measurements specified in the KMS key policy's condition keys.
For more information about the condition keys, see kms:RecipientAttestation:ImageSha384 and
kms:RecipientAttestation:PCR in the AWS Key Management Service Developer Guide.

For example, the following KMS key policy allows enclaves running on instances that have the
data-processing instance profile to use the KMS key for the Decrypt, GenerateDataKey, and
GenerateRandom actions. The condition key allows the operation only when measurements in the

KMS key preparation 42

https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-nitro-enclaves
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-nitro-enclaves
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-recipient-image-sha
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-recipient-pcrs

AWS AWS Nitro Enclaves User Guide

attestation document in the request matches the measurements in the condition. If the request
doesn't include an attestation document, the role doesn't have permission to call the operation
because this condition cannot be satisfied.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid" : "Enable enclave data processing",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::123456789012:role/data-processing"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey",
 "kms:GenerateRandom"
],
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {

 "kms:RecipientAttestation:ImageSha384":"EXAMPLE8abcdef7abcdef6abcdef5abcdef4abcdef3abcdef2abcdef1abcdef1abcdef0abcdef1abcdEXAMPLE",

 "kms:RecipientAttestation:PCR0":"EXAMPLEbc2ecbb68ed99a13d7122abfc0666b926a79d5379bc58b9445c84217f59cfdd36c08b2c79552928702EXAMPLE",

 "kms:RecipientAttestation:PCR1":"EXAMPLE050abf6b993c915505f3220e2d82b51aff830ad14cbecc2eec1bf0b4ae749d311c663f464cde9f718aEXAMPLE",

 "kms:RecipientAttestation:PCR2":"EXAMPLEc300289e872e6ac4d19b0b5ac4a9b020c98295643ff3978610750ce6a86f7edff24e3c0a4a445f2ff8EXAMPLE",

 "kms:RecipientAttestation:PCR3":"EXAMPLE11de9baee597508183477f097ae385d4a2c885aa655432365b53b812694e230bbe8e1bb1b8de748fe1EXAMPLE",

 "kms:RecipientAttestation:PCR4":"EXAMPLE6b9b3d89a53b13f5dfd14a1049ec0b80a9ae4b159adde479e9f7f512f33e835a0b9023ca51ada02160EXAMPLE",

 "kms:RecipientAttestation:PCR8":"EXAMPLE34a884328944cd806127c7784677ab60a154249fd21546a217299ccfa1ebfe4fa96a163bf41d3bcfaeEXAMPLE"
 }
 }
 }]
}

KMS key preparation 43

AWS AWS Nitro Enclaves User Guide

Getting started with cryptographic attestation: KMS Tool
sample application

The AWS Nitro Enclaves SDK ships with a sample application, called KMS Tool, that demonstrates
the cryptographic attestation process. The KMS Tool sample application is supported on both
Windows and Linux parent instances.

KMS Tool includes two applications:

• kmstool-instance—An application that runs on the parent instance. It connects to kmstool-
enclave (over the vsock socket), passes credentials to the enclave, along with a base64-encoded
message for decryption.

• kmstool-enclave—An application that runs in an enclave. It uses the Nitro Enclaves SDK to
call AWS KMS in order to decrypt the base64-encoded message received from the application
running on the parent instance.

For instructions on how to set up and use the KMS Tool sample application, see the tutorial in the
AWS Nitro Enclaves SDK Github repository. This tutorial shows you how to:

• Launch an enclave-enabled parent instance.

• Build a Docker image from a Docker file.

• Convert a Docker image to an enclave image file.

• Create an AWS KMS key.

• Add attestation-based condition keys to a KMS key policy.

• Create an enclave using an enclave image file.

Tip

The tutorial also discusses some best practices for preparing your enclave and KMS key
for attestation. You can use this sample application as a reference for building your own
enclave applications and for preparing your enclave and KMS keys for attestation.

Getting started with cryptographic attestation: KMS Tool sample application 44

https://github.com/aws/aws-nitro-enclaves-sdk-c/blob/main/docs/kmstool.md

AWS AWS Nitro Enclaves User Guide

Nitro Enclaves application development

An enclave application is an application that is designed and developed to run inside the isolated
enclave environment. An enclave application typically consists of at least two components:

• An application that runs on the parent instance

• An application that runs inside the enclave

Due to the isolated environment of the enclave, the only channel of communication between
applications that are running on the instance and applications that are running in the enclave is the
vsock socket.

Topics

• Nitro Enclaves Developer AMI

• Nitro Enclaves SDK

• Nitro Enclaves application development on Linux instances

• Nitro Enclaves Application development on Windows instances

Nitro Enclaves Developer AMI

AWS provides a Nitro Enclaves Developer AMI that contains the tools and components needed to
develop enclave applications and to build enclave image files. It also contains samples applications,
such as hello-enclave, vsock_sample and kmstool, to demonstrate how to use and develop your
own enclave applications. For more information, see AWS Nitro Enclaves Developer AMI.

Nitro Enclaves SDK

The Nitro Enclaves SDK is a set of open-source libraries that you can use to develop your enclave
applications. The SDKs also integrate with AWS KMS and provide built-in support for attestation
and cryptographic operations. For more information about the SDKs and how to use them, see the
Nitro Enclaves SDK Github repository.

Nitro Enclaves application development on Linux instances

This section provides information for Nitro Enclaves application development on Linux instances.

Nitro Enclaves Developer AMI 45

https://aws.amazon.com/marketplace/pp/B08R69DKQ1
https://github.com/aws/aws-nitro-enclaves-sdk-c

AWS AWS Nitro Enclaves User Guide

Getting started with the vsock: Vsock tutorial

Note

The vsock sample application is supported on Linux instances only.

The vsock sample application is a simple client-server application that exchanges information
between the parent instance and the enclave using the vsock socket.

The vsock sample application includes a client application and a server application. The client
application runs on the parent instance, while the server application runs in the enclave. The
client application sends a simple text message over the vsock to the server application. The server
application listens to the vsock and prints the message to the console.

The vsock sample application is available in both Rust and Python. This tutorial shows you how
to set up and run the Rust vsock sample application. For more information about setting up
and running the Python vsock sample application, see the AWS Nitro Enclaves samples GitHub
repository.

Note

The application source is also freely available from the AWS Nitro Enclaves samples
GitHub repository. You can use the application source as a reference for building your own
applications.

Prerequisites

To compile the Rust vsock sample application, you must have Cargo, Rust’s build system and
package manager installed, and you must add the x86_64-unknown-linux-musl target. To
install and configure Rust, use the following commands.

$ curl --proto '=https' --tlsv1.2 https://sh.rustup.rs -sSf | sh

You must disconnect from the instance and then reconnect before running the following
commands.

$ rustup target add x86_64-unknown-linux-musl

Getting started with the vsock: Vsock tutorial 46

https://github.com/aws/aws-nitro-enclaves-samples/tree/main/vsock_sample/py
https://github.com/aws/aws-nitro-enclaves-samples/tree/main/vsock_sample/py
https://github.com/aws/aws-nitro-enclaves-samples/tree/main/vsock_sample
https://github.com/aws/aws-nitro-enclaves-samples/tree/main/vsock_sample

AWS AWS Nitro Enclaves User Guide

$ sudo yum -y install gcc

To try the vsock sample application

1. Download the application source and navigate into the directory.

$ git clone https://github.com/aws/aws-nitro-enclaves-samples.git

$ cd aws-nitro-enclaves-samples/vsock_sample/rs

2. Compile the application code using Cargo.

$ cargo build --target=x86_64-unknown-linux-musl --release

The compiled binary is located in vsock_sample/rs/target/x86_64-unknown-linux-
musl/release/vsock-sample.

3. Navigate two levels up.

$ cd ../..

4. Create a new file named Dockerfile and add the following.

start the Docker image from the Alpine Linux distribution
FROM alpine:latest
copy the vsock-sample binary to the Docker file
COPY vsock_sample/rs/target/x86_64-unknown-linux-musl/release/vsock-sample .
start the server application inside the enclave
CMD ./vsock-sample server --port 5005

5. Convert the Docker file to an enclave image file.

$ nitro-cli build-enclave --docker-dir ./ --docker-uri vsock-sample-server --
output-file vsock_sample.eif

6. Boot the enclave using the enclave image file. You need to access the enclave console to see
the server application output, so you must include the --debug-mode option.

$ nitro-cli run-enclave --eif-path vsock_sample.eif --cpu-count 2 --enclave-cid 6
 --memory 256 --debug-mode

Getting started with the vsock: Vsock tutorial 47

AWS AWS Nitro Enclaves User Guide

Make a note of the enclave ID, because you'll need this to connect to the enclave console.

7. Open the enclave console. The console provides a view of what's happening on the server side
of the application.

$ nitro-cli console --enclave-id enclave_id

8. Open an SSH terminal window for the parent instance. You'll use this terminal to run the client
application.

9. In the parent instance terminal, run the client application. When you start the client
application, it automatically sends some text over the vsock to the server application running
in the enclave. Watch the enclave console terminal for the output.

$./aws-nitro-enclaves-samples/vsock_sample/rs/target/x86_64-unknown-linux-musl/
release/vsock-sample client --cid 6 --port 5005

10. When the server application receives the text over the vsock, it prints the text to the console.

$ [0.127079] Freeing unused kernel memory: 476K
[0.127631] nsm: loading out-of-tree module taints kernel.
[0.128055] nsm: module verification failed: signature and/or required key
 missing - tainting kernel
[0.154010] random: vsock-sample: uninitialized urandom read (16 bytes read)
Hello, world!

Now that you understand how the sample application works, download and customize the source
code to suit your use case.

Nitro Enclaves Application development on Windows instances

This section provides information for Nitro Enclaves application development on Windows
instances.

Topics

• Considerations for using Nitro Enclaves on a Windows parent instance

• Nitro Enclaves for Windows release notes

• Subscribe to notifications of new versions

Application development on Windows 48

AWS AWS Nitro Enclaves User Guide

• Working with the vsock socket in Windows

Considerations for using Nitro Enclaves on a Windows parent instance

The EC2 parent instance and the enclaves operate as separate virtual machines. This means that
each of them (the parent instance and all of its enclaves) must run its own operating system. The
parent instance, supports both Linux and Windows (2016 and later) operating systems. However,
the enclaves support only operating systems that support the Linux boot protocol. This means
that even if you have a Windows parent instance, you must run a Linux environment inside your
enclaves.

This also means that you must use a Linux-based instance to build your enclave image file (.eif).

Keep the following in mind when using a Windows parent instance.

• Only Windows 2016 and later is supported on the parent instance.

• You must run a Linux-based environment inside the enclave.

• The Hello enclaves sample application is supported on Windows parent instances, but the
enclave image file (.eif) must be built on a Linux instance. For more information, see Getting
started: Hello enclave.

• The KMS Tool sample application is supported on Windows parent instances, but the enclave
image file (.eif) must be built on a Linux instance. For more information, see Getting started
with cryptographic attestation: KMS Tool sample application.

• On Windows, the vsock uses the standard Windows sockets (Winsock2) API. For more
information, see Working with the vsock socket in Windows.

Considerations for Windows instances 49

AWS AWS Nitro Enclaves User Guide

• AWS Certificate Manager for Nitro Enclaves is not supported with Windows parent instances.

• To use the AWS Nitro Enclaves CLI software on your parent instance, you must install the
AWSNitroEnclavesWindows package using AWS Systems Manager Distributor. For more
information, see Installing the Nitro Enclaves CLI on Windows.

• The nitro-cli build-enclave command is not supported on Windows parent instances. For
more information, see nitro-cli build-enclave.

Nitro Enclaves for Windows release notes

This section describes Nitro Enclaves (for Windows) features, improvements, and bug fixes by
release date.

Release date version Updates and bug fixes

October 18, 2023 1.2.2 The release improved installat
ion of Nitro Enclaves for
Windows and deprecated
support for Windows Server
2012 R2.

March 27, 2023 1.2.1 The release fixed a bug
related to terminating
multiple enclaves. This is
the last version to support
Windows Server 2012 R2.

May 4, 2022 1.2.0
The release added the
following commands,
arguments, and output for
Nitro CLI:

•
Added pcr and describe-
eif commands.

•
Added --enclave-
name argument for run-

Nitro Enclaves for Windows release notes 50

AWS AWS Nitro Enclaves User Guide

Release date version Updates and bug fixes

enclave , console, and
 terminate-enclave
commands.

•
Added --disconnect-
timeout argument for
console command.

•
Added --config argument
and --attach-console
flag to run-enclave
command

•
Updated describe-
enclaves and run-
enclave commands to
display EnclaveName .

•
Added --metadata flag
to describe-enclaves
command.

The release added the
following bug fixes and
 enhancements:

•
Improved Nitro CLI error
messages.

•
Fixed bugs in vsock
select() when it blocks
or returns certain calls.

•

Nitro Enclaves for Windows release notes 51

AWS AWS Nitro Enclaves User Guide

Release date version Updates and bug fixes

Fixed bug in vsock
shutdown() on
nonblocking sockets, which
can result in connection
reset errors.

July 27, 2021 1.1.0
The release added the
following bug fixes and
enhancements:

•
Improved vsock error
codes and Nitro CLI error
messages.

•
Improved vsock driver
stability when enabling and
disabling the vsock device.

•
Improved Nitro CLI efficienc
y during failed enclave
startups.

•
Improved vsock-proxy
stability.

•
Fixed the bug that
prevented installation using
SSM Distributor after a
failed installation attempt.

April 27, 2021 1.0 Initial release of Nitro
Enclaves for Windows.

Nitro Enclaves for Windows release notes 52

AWS AWS Nitro Enclaves User Guide

Subscribe to notifications of new versions

Amazon SNS can notify you when new versions of Nitro Enclaves for Windows are released. Use
one of the following procedures to subscribe to these notifications.

Amazon SNS console

To subscribe to notifications using the Amazon SNS console

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v3/home.

2. In the navigation bar, change the Region to US West (Oregon), if necessary. You must
select this Region because the SNS notifications that you are subscribing to are in this
Region.

3. In the navigation pane, choose Subscriptions.

4. Choose Create subscription.

5. In the Create subscription dialog box, do the following:

a. For Topic ARN, enter arn:aws:sns:us-west-2:404587003957:aws-nitro-
enclaves-windows.

b. For Protocol, choose Email.

c. For Endpoint, type an email address that you can use to receive the notifications.

d. Choose Create subscription.

6. You'll receive a confirmation email. Open the email and follow the directions to complete
your subscription.

AWS Tools for PowerShell Core

To subscribe to notifications using the Tools for Windows PowerShell

Use the following command.

C:\> Connect-SNSNotification -TopicArn 'arn:aws:sns:us-west-2:404587003957:aws-
nitro-enclaves-windows' -Protocol email -Region us-west-2 -
Endpoint 'your_email_address'

AWS Command Line Interface

To subscribe to notifications using the AWS CLI

Subscribe to notifications of new versions 53

https://console.aws.amazon.com/sns/v3/home

AWS AWS Nitro Enclaves User Guide

Use the following command.

C:\> aws sns subscribe \
--topic-arn arn:aws:sns:us-west-2:404587003957:aws-nitro-enclaves-windows \
--protocol email \
--notification-endpoint your_email_address

If you no longer want to receive these notifications, use the following procedure to unsubscribe.

To unsubscribe to notifications using the Amazon SNS console

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v3/home.

2. In the navigation bar, change the Region to US West (Oregon).

3. In the navigation pane, choose Subscriptions.

4. Select the check box for the subscription and then choose Delete. When prompted for
confirmation, choose Delete.

Working with the vsock socket in Windows

This topic provides information that is specific to working with the vsock socket on Windows
instances.

Topics

• Terminology

• AWS vsock socket implementation

• Using the Winsock2 functions with vsock sockets

• Unsupported Winsock2 functions

• Known issues

Terminology

Service Provider Interface

The Service Provider Interface (SPI) is a library registered with the Windows Sockets 2
(Winsock2) API to support a new address family for the vsock socket. The vsock SPI is available
in a 64-bit version only. Only 64-bit applications can use vsock sockets.

Working with the vsock socket in Windows 54

https://console.aws.amazon.com/sns/v3/home

AWS AWS Nitro Enclaves User Guide

Port

The port component of an address. This is a 32-bit unsigned value.

Local address

The address of a vsock socket on the host on which the application is running. The address
includes a context identifier (CID) and a port. The CID and port value pairs are concatenated
with a '.' when written as a string. For example, a host with CID of 3 that listens on port 1234
has a listening address of 3.1234.

Peer

A host that this host is communicating with over the vsock socket.

Remote address

The address of the vsock socket of the peer. The address includes a context identifier (CID) and
a port. The CID and port value pairs are concatenated with a '.' when written as a string. For
example, a host with CID of 3 that listens on port 1234 has a listening address of 3.1234.

AWS vsock socket implementation

The following are considerations for vsock socket implementation using Winsock2.

Topics

• Build-time dependencies

• Runtime

• Loopback support

Build-time dependencies

Some value definitions are required to create and interact with vsock sockets. These include
the definitions of AF_VSOCK, sockaddr_vm, and some reserved values for CIDs and ports. It is
recommended that you include these definitions by including the VirtioVsock.h header in your
code. For more information, about the header, see the Nitro Enclaves SDK Github repository.

Runtime

To create a Winsock2 socket with the AF_VSOCK address family, the vsock SPI must be registered
with Winsock2. The vsock SPI is registered during the AWS Nitro Enclaves installation. Currently,

Working with the vsock socket in Windows 55

https://github.com/aws/aws-nitro-enclaves-sdk-c/tree/main/include/aws/vsock/VirtioVsock.h

AWS AWS Nitro Enclaves User Guide

the vsock SPI is available in a 64-bit version and supports only 64-bit applications. For more
information about installing AWS Nitro Enclaves on a Windows instance, see Install AWS Nitro
Enclaves CLI.

Loopback support

Loopback is not supported with vsock sockets. Attempts to connect() to a CID that belongs to
the same host could result in an error.

Using the Winsock2 functions with vsock sockets

This section highlights differences between the Winsock2 functions and the AWS implementation
for the vsock SPI.

Note

Functions not listed below follow the Winsock2 implementation and behave as described
in the Winsock2 API documentation without any AWS specific nuances. For a list of the
unsupported Winsock2 functions, see Unsupported Winsock2 functions.

Topics

• WSAAccept()/accept()

• WSAAddressToString()

• WSABind()/bind()

• WSAConnect()/connect()

• WSAEventSelect()

• WSAGetPeerName()

• WSAGetSockName()

• WSAGetSockOpt()/getsockopt()

• WSAIoctl()/ioctlsocket()

• WSAListen()/listen()

• WSASend()/send()

• WSASetSockOpt()/setsockopt()

Working with the vsock socket in Windows 56

https://docs.microsoft.com/en-us/windows/win32/api/Winsock2/

AWS AWS Nitro Enclaves User Guide

• WSASocket()/socket()

• WSAStringToAddress()

• WSARecv()/recv()

WSAAccept()/accept()

If a vsock transport reset or device disable event occurs after receiving a connection request, but
before accept() is called, accept() returns an invalid socket and WSAGetLastError() returns
the value WSAECONNRESET.

WSAAddressToString()

Converts sockaddr_vm to a string in the CID.Port format.

WSABind()/bind()

To create a connection using a specific local port, you must call bind() with a valid local CID
and the desired local port before calling connect(). An enclave-enabled Amazon EC2 instance
is always assigned local CID of 3. A socket bound to SOCKADDR_VM_CID_ANY can only be used
for listening and cannot be used with connect(). SO_REUSEADDR and SO_EXCLUSIVEADDRUSE
are not configurable. AWS vsock sockets behave as if SO_EXCLUSIVEADDRUSE is enabled for
all sockets. That is, if any socket is bound to a local CID.port pair, no other socket can bind
to that same local CID.port except as an accept() from a listening socket that is bound
to SOCKADDR_VM_CID_ANY.port or CID.port. Additionally, sockets cannot be bound to
SOCKADDR_VM_CID_ANY.port when any other socket on the host is bound to an address with the
same local port value and any CID.

WSAConnect()/connect()

Outgoing connection requests have a non-configurable 1 second timeout before the peer responds
with a connection acceptance packet. When using WSAConnect(), caller data and callee data are
not supported. Specifying caller data results in an error and specifying callee data returns a length
of 0. QOS options are also not supported and return an error if specified.

WSAEventSelect()

FD_OOB, FD_QOS, FD_GROUP_QOS, FD_ROUTING_INTERFACE_CHANGE, and
FD_ADDRESS_LIST_CHANGE will never be signaled in the current implementation. However, they
do not return an error if specified.

Working with the vsock socket in Windows 57

AWS AWS Nitro Enclaves User Guide

WSAGetPeerName()

Gets the peer’s socket address as a sockaddr_vm.

WSAGetSockName()

Gets the local socket address as a sockaddr_vm.

WSAGetSockOpt()/getsockopt()

Only the following optname parameters are supported:

• SO_LINGER

• SO_DONTLINGER

• SO_RCVBUF

• SO_ACCEPTCONN

• SO_PROTOCOL_INFOW

• SO_TYPE

For more information, see getsockopt function on the Windows app developer documentation
website.

WSAIoctl()/ioctlsocket()

Only the following ioctls are supported:

• FIONBIO

• FIONREAD

For more information, see ioctlsocket function on the Windows app developer documentation
website.

WSAListen()/listen()

Setting a backlog size of 0 or less sets the backlog size to 0. Setting the backlog size to a value
greater than the implementation-specific maximum backlog size, which is currently 2048, sets
the backlog size to the implementation-specific maximum backlog size. Reducing the backlog size
while connection requests exist on a listening socket rejects some of the connection requests until
the number of connections is equal to, or less than, the new backlog size.

Working with the vsock socket in Windows 58

https://docs.microsoft.com/en-us/windows/win32/api/Winsock2/nf-Winsock2-getsockopt
https://docs.microsoft.com/en-us/windows/win32/api/Winsock2/nf-Winsock2-ioctlsocket

AWS AWS Nitro Enclaves User Guide

WSASend()/send()

No flags are supported for these functions. The flag values must be set to 0. If you specify a
different value, an error is returned.

WSASetSockOpt()/setsockopt()

This function follows the Winsock2 implementation. However, only the following options are
supported:

• SO_LINGER

• SO_DONTLINGER

• SO_RCVBUF

SO_RCVBUF has a minimum value of 4096 bytes and a maximum value of 2 MB. Requested buffer
sizes are rounded down to a power of 2, or to 2 MB if the value is greater than 2 MB. Received
buffer size defaults to 256 KB.

For more information, see ioctlsocket function on the Windows app developer documentation
website.

WSASocket()/socket()

This function returns a new SOCKET. With the AWS vsock SPI, this SOCKET is also a HANDLE that
allows you to call functions, such as ReadFile and WriteFile directly on the SOCKET.

This function must be called with af = AF_VSOCK and type = SOCK_STREAM. Only the
WSA_FLAG_OVERLAPPED flag is supported when calling WSASocket(), which allows overlapped
IO on the SOCKET that is returned. If socket() is called, the WSA_FLAG_OVERLAPPED flag is set.
For more information about overlapped creation of sockets, see socket function on the Windows
app developer documentation website.

WSAStringToAddress()

Converts a string in the format of CID.Port to a sockaddr_vm.

WSARecv()/recv()

Only the MSG_PEEK flag is supported for this function.

Working with the vsock socket in Windows 59

https://docs.microsoft.com/en-us/windows/win32/api/Winsock2/nf-Winsock2-ioctlsocket
https://docs.microsoft.com/en-us/windows/win32/api/Winsock2/nf-Winsock2-socket

AWS AWS Nitro Enclaves User Guide

Unsupported Winsock2 functions

The following Winsock2 functions are not supported with AWS vsock sockets.

• WSACancelBlockingCall()

• WSAAsyncSelect()

• WSAGetQosByName()

• WSAJoinLeaf()

• WSARecvDisconnect()

• WSASendDisconnect()

• WSARecvFrom()

• WSASendTo()

Known issues

Some IOs cannot be canceled

When calling WSASend(), WSARecv(), or WSAIoctl() on an overlapped socket, either with
lpOverlapped omitted or with lpCompletionRoutine specified, the IO cannot be canceled by
the user using CancelIo or CancelIoEx. CancelIoEx returns an error with GetLastError()
returning ERROR_NOT_FOUND. All IOs can be canceled by calling closesocket().

Working with the vsock socket in Windows 60

AWS AWS Nitro Enclaves User Guide

Verifying the root of trust

Note

This topic is intended for users who are using a third-party key management service, and
need to build their own attestation document validation processes.

This topic provides a detailed overview of the entire Nitro Enclaves attestation flow. It also
discusses what is generated by the AWS Nitro system when an attestation document is requested,
and explains how a key management service should process an attestation document.

Topics

• Attestation in the Nitro Enclaves world

• The attestation document

• Attestation document validation

Attestation in the Nitro Enclaves world

The purpose of attestation is to prove that an enclave is a trustworthy entity, based on the code
and configuration that is running within a particular enclave. The root of trust for the enclave
resides within the AWS Nitro system, which provides attestation documents to the enclave.

The root of trust component for the attestation is the Nitro Hypervisor, which contains information
about the enclave, such as its platform configuration registers (PCRs). The Nitro Hypervisor is able
to produce an attestation document that contains details of the enclave, including the enclave
signing key, a hash of the enclave image, a hash of the parent instance ID, and a hash of the ARN of
the attached IAM role.

Attestation documents are signed by the AWS Nitro Attestation Public Key Infrastructure (PKI),
which includes a published certificate authority that can be incorporated into any service.

The attestation document

An enclave can request an attestation document from the Nitro hypervisor that it can use to verify
its identity with an external service. The attestation document that is generated by the Nitro

Attestation in the Nitro Enclaves world 61

AWS AWS Nitro Enclaves User Guide

system is encoded in Concise Binary Object Representation (CBOR), and it is signed using CBOR
Object Signing and Encryption (COSE).

For more information about CBOR, see RFC 8949: Concise Binary Object Representation (CBOR).
For more information about the COSE implementation, see the COSE for AWS Nitro Enclaves
Github repository.

Attestation document specification

The following shows the structure of an attestation document.

AttestationDocument = {
 module_id: text, ; issuing Nitro hypervisor module ID
 timestamp: uint .size 8, ; UTC time when document was created, in
 ; milliseconds since UNIX epoch
 digest: digest, ; the digest function used for calculating the
 ; register values
 pcrs: { + index => pcr }, ; map of all locked PCRs at the moment the
 ; attestation document was generated
 certificate: cert, ; the public key certificate for the public key
 ; that was used to sign the attestation document
 cabundle: [* cert], ; issuing CA bundle for infrastructure certificate
 ? public_key: user_data, ; an optional DER-encoded key the attestation
 ; consumer can use to encrypt data with
 ? user_data: user_data, ; additional signed user data, defined by protocol
 ? nonce: user_data, ; an optional cryptographic nonce provided by the
 ; attestation consumer as a proof of authenticity
}

cert = bytes .size (1..1024) ; DER encoded certificate
user_data = bytes .size (0..1024)
pcr = bytes .size (32/48/64) ; PCR content
index = 0..31
digest = "SHA384"

The enclave and the service that wants to attest the enclave first need to agree on a common
protocol to follow. The optional parameters in the attestation document (public_key,
user_data, and nonce) allow the enclave and the entity to set up a variety of protocols
depending on the security properties that the service and the enclave want to guarantee. Services
that rely on attestation need to define a protocol that can meet those guarantees, and the enclave
software needs to agree to and follow these protocols.

Attestation document specification 62

https://www.rfc-editor.org/rfc/rfc8949.html
https://github.com/awslabs/aws-nitro-enclaves-cose

AWS AWS Nitro Enclaves User Guide

An enclave wishing to attest to a specific service first has to open a TLS connection to that service
and verify that the service's certificates are valid. These certificates must then be included in the
enclave during the enclave image file build.

Note

A TLS session is not absolutely required, but it does provide integrity of data between the
enclave and the third-party service.

For more information about the optional fields in the attestation document, see the Nitro Enclaves
Attestation Process.

Attestation document validation

When you request an attestation document from the Nitro Hypervisor, you receive a binary blob
that contains the signed attestation document. The signed attestation document is a CBOR-
encoded, COSE-signed (using the COSE_Sign1 signature structure) object. The overall validation
process includes the following steps:

1. Decode the CBOR object and map it to a COSE_Sign1 structure.

2. Extract the attestation document from the COSE_Sign1 structure.

3. Verify the certificate's chain.

4. Ensure that the attestation document is properly signed.

Attestation documents are signed by the AWS Nitro Attestation PKI, which includes a root
certificate for the commercial AWS partitions. The root certificate can be downloaded from https://
aws-nitro-enclaves.amazonaws.com/AWS_NitroEnclaves_Root-G1.zip, and it can be verified using
the following SHA256 checksum.

8cf60e2b2efca96c6a9e71e851d00c1b6991cc09eadbe64a6a1d1b1eb9faff7c

The root certificate is based on an AWS Certificate Manager Private Certificate Authority (AWS
Private CA) private key and it has a lifetime of 30 years. The subject of the PCA has the following
format.

CN=aws.nitro-enclaves, C=US, O=Amazon, OU=AWS

Attestation document validation 63

https://github.com/aws/aws-nitro-enclaves-nsm-api/blob/main/docs/attestation_process.md
https://github.com/aws/aws-nitro-enclaves-nsm-api/blob/main/docs/attestation_process.md
https://aws-nitro-enclaves.amazonaws.com/AWS_NitroEnclaves_Root-G1.zip
https://aws-nitro-enclaves.amazonaws.com/AWS_NitroEnclaves_Root-G1.zip

AWS AWS Nitro Enclaves User Guide

Topics

• COSE and CBOR

• Semantical validity

• Certificate validity

• Certificate chain validity

COSE and CBOR

Usually, the COSE_Sign1 signature structure is used when only one signature is going to be placed
on a message. The parameters dealing with the content and the signature are placed in the
protected header rather than having the separation of COSE_Sign. The structure can be encoded
as either tagged or untagged, depending on the context it will be used in. A tagged COSE_Sign1
structure is identified by the CBOR tag 18.

The CBOR object that carries the body, the signature, and the information about the body and
signature is called the COSE_Sign1 structure. The COSE_Sign1 structure is a CBOR array. The array
includes the following fields.

[
 protected: Header,
 unprotected: Header,
 payload: This field contains the serialized content to be signed,
 signature: This field contains the computed signature value.
]

In the context of an attestation document, the array includes the following.

18(/* COSE_Sign1 CBOR tag is 18 */
 {1: -35}, /* This is equivalent with {algorithm: ECDS 384} */
 {}, /* We have nothing in unprotected */
 $ATTESTATION_DOCUMENT_CONTENT /* Attestation Document */,
 signature /* This is the signature */
)

For more information about CBOR, see RFC 8949: Concise Binary Object Representation (CBOR).
For more information about the COSE implementation, see the COSE for AWS Nitro Enclaves
Github repository.

COSE and CBOR 64

https://www.rfc-editor.org/rfc/rfc8949.html
https://github.com/awslabs/aws-nitro-enclaves-cose

AWS AWS Nitro Enclaves User Guide

Semantical validity

An attestation document will always have its CA bundle in the following order.

[ROOT_CERT - INTERM_1 - INTERM_2 - INTERM_N]
 0 1 2 N - 1

Keep this ordering in mind, as some existing tools, such as Java’s CertPath from Java PKI API
Programmer’s Guide, might require them to be ordered differently.

To validate the certificates, start from the attestation document CA bundle and generate the
required chain, Where TARGET_CERT is the certificate in the attestation document.

[TARGET_CERT, INTERM_N, , INTERM_2, INTERM_1, ROOT_CERT]

For more information about the optional fields in the attestation document, see the Nitro Enclaves
Attestation Process.

Certificate validity

For all of the certificates in the chain, you must ensure that the current date falls within the validity
period specified in the certificate.

Certificate chain validity

In general, a chain of multiple certificates might be needed, comprising a certificate of the public
key owner signed by one CA, and zero or more additional certificates of CAs signed by other CAs.
Such chains, called certification paths, are required because a public key user is only initialized
with a limited number of assured CA public keys. Certification path validation procedures for
the internet PKI are based on the algorithm supplied in X.509. Certification path processing
verifies the binding between the subject distinguished name and/or subject alternative name and
subject public key. The binding is limited by constraints that are specified in the certificates that
comprise the path and inputs that are specified by the relying party. The basic constraints and
policy constraint extensions allow the certification path processing logic to automate the decision
making process.

Note

CRL must be disabled when doing the validation.

Semantical validity 65

https://docs.oracle.com/javase/8/docs/technotes/guides/security/certpath/CertPathProgGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/certpath/CertPathProgGuide.html
https://github.com/aws/aws-nitro-enclaves-nsm-api/blob/main/docs/attestation_process.md
https://github.com/aws/aws-nitro-enclaves-nsm-api/blob/main/docs/attestation_process.md

AWS AWS Nitro Enclaves User Guide

Using Java, starting from the root path and the generated certificate chain, the chain validation is
as follows.

validateCertsPath(certChain, rootCertficate) {
 /* The trust anchor is the root CA to trust */
 trustAnchors.add(rootCertificate);

 /* We need PKIX parameters to specify the trust anchors
 * and disable the CRL validation
 */
 validationParameters = new PKIXParameters(trustAnchors);
 certPathValidator = CertPathValidator.getInstance(PKIX);
 validationParameters.setRevocationEnabled(false);

 /* We are ensuring that certificates are chained correctly */
 certPathValidator.validate(certPath, validationParameters);
}

Certificate chain validity 66

AWS AWS Nitro Enclaves User Guide

Nitro Enclaves application: AWS Certificate Manager for
Nitro Enclaves

AWS Certificate Manager (ACM) for Nitro Enclaves allows you to use public and private SSL/TLS
certificates with your web applications and web servers running on Amazon EC2 instances with
AWS Nitro Enclaves. SSL/TLS certificates are used to secure network communications and to
establish the identity of websites over the internet, as well as resources on private networks.

Previously, when running a web server on an EC2 instance, you would have created SSL certificates
and stored them as plaintext on your instance. With ACM for Nitro Enclaves, you can now bind AWS
Certificate Manager certificates to an enclave and use those certificates directly with your web
server, without exposing the certificates in plaintext form to the parent instance and its users.

ACM for Nitro Enclaves removes the time-consuming and error-prone manual process of
purchasing, uploading, and renewing SSL/TLS certificates. ACM for Nitro Enclaves creates secure
private keys, distributes the certificate and its private key to your enclave, and manages certificate
renewals. With ACM for Nitro Enclaves, the certificate's private key remains isolated in the enclave,
preventing the instance, and its users, from accessing it.

Currently, ACM for Nitro Enclaves works with NGINX servers and Apache HTTP servers running on
Amazon EC2 instances to install the certificate and seamlessly replace expiring certificates. Support
for additional web servers will be added over time.

Note

ACM for Nitro Enclaves uses the standardized PKCS11 cryptographic interface between the
parent instance and the enclave. Any application that supports the PKCS11 protocol can be
adapted to use ACM for Nitro Enclaves for protecting certificates and keys.
ACM for Nitro Enclaves also includes a “helper” p11-kit based module for using the
PKCS11 protocol over the Nitro Enclaves vsock socket.

Topics

• Pricing and billing

• Considerations

• Installing and configuring ACM for Nitro Enclaves

67

https://www.nginx.com/
https://httpd.apache.org/

AWS AWS Nitro Enclaves User Guide

• Updating ACM for Nitro Enclaves

• Uninstalling ACM for Nitro Enclaves

Pricing and billing

Public SSL/TLS certificates that you provision through ACM for Nitro Enclaves are available at no
additional cost. You pay only for the AWS resources that you create to run your application, such as
Amazon EC2 instances. Private certificates are available at no additional cost per certificate when
you use and pay for ACM Private CA.

Considerations

The following considerations apply when using ACM for Nitro Enclaves:

• ACM for Nitro Enclaves only supports RSA certificates.

• ACM for Nitro Enclaves is available for Linux instances only. It is currently not supported on
Windows instances.

• ACM for Nitro Enclaves is currently not supported in Asia Pacific (Osaka) and Asia Pacific
(Jakarta).

Installing and configuring ACM for Nitro Enclaves

Steps

• Step 1: Create the ACM certificate

• Step 2: Prepare the enclaves-enabled parent instance

• Step 3: Prepare the IAM role

• Step 4: Associate the role with the ACM certificate

• Step 5: Grant the role permission to access the certificate and encryption key

• Step 6: Attach the role to the instance

• Step 7: Configure the web server to use ACM for Nitro Enclaves

• Using multiple certificates

Prerequisites

Pricing and billing 68

https://aws.amazon.com/certificate-manager/pricing/

AWS AWS Nitro Enclaves User Guide

The user performing this configuration must have permission to use the
ec2:AssociateEnclaveCertificateIamRole,
ec2:GetAssociatedEnclaveCertificateIamRoles, and
ec2:DisassociateEnclaveCertificateIamRole actions. To grant the user the required
permissions, use the following IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ec2:AssociateEnclaveCertificateIamRole",
 "ec2:GetAssociatedEnclaveCertificateIamRoles",
 "ec2:DisassociateEnclaveCertificateIamRole"
],
 "Resource": [
 "arn:aws:acm:region:account_id:certificate/*",
 "arn:aws:iam::account_id:role/*"
],
 "Effect": "Allow"
 }
]
}

Step 1: Create the ACM certificate

Create the AWS Certificate Manager (ACM) certificate that you want use with your NGINX or
Apache HTTP server. ACM for Nitro Enclaves supports both private and public certificates. For more
information about creating a certificate, see the following resources in the AWS Certificate Manager
User Guide.

• Requesting a Public Certificate

• Requesting a Private Certificate

After you have created the certificate, make a note of the certificate ARN; as you'll need it later.

Step 1: Create the ACM certificate 69

https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request-public.html
https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request-private.html

AWS AWS Nitro Enclaves User Guide

Step 2: Prepare the enclaves-enabled parent instance

Launch the enclave enabled instance that you will use as the parent instance. You can use either
the ACM for Nitro Enclaves AMI from AWS Marketplace, or you can install ACM for Nitro Enclaves
and the web server using RPM packages.

Tip

After you launch the instance, make a note of the instance ID, as you'll need it later.

Option 1: Using ACM for Nitro Enclaves AMI

To launch an instance using the ACM for Nitro Enclaves AMI from AWS Marketplace

1. Open the ACM for Nitro Enclaves page in the AWS Marketplace.

2. Find the ACM for Nitro Enclaves AMI for your Region, and note the AMI ID. You need the
AMI ID for the next step.

3. Launch the instance using the AMI from the AWS Marketplace and enable it for Nitro
Enclaves using the following command.

$ aws ec2 run-instances --image-id ami_id --count 1 --instance-
type supported_instance_type --key-name your_key_pair --enclave-options
 'Enabled=true'

Option 2: Using RPM packages

To install ACM for Nitro Enclaves from the Amazon Linux Extras repository

1. Connect to the instance.

2. Enable the aws-nitro-enclaves-cli topic in the Amazon Linux Extras library.

$ sudo amazon-linux-extras enable aws-nitro-enclaves-cli

3. Install your preferred web server. Do one of the following:

• NGINX

Step 2: Prepare the enclaves-enabled parent instance 70

https://aws.amazon.com/marketplace/pp/B08S7NZFNF

AWS AWS Nitro Enclaves User Guide

Enable the nginx1 topic in the Amazon Linux Extras library and install NGINX from the
Amazon Linux Extras library.

$ sudo amazon-linux-extras enable nginx1

$ sudo amazon-linux-extras install nginx1 -y

• Apache

Install and configure the Apache HTTP server with SSL/TLS support.

$ sudo yum -y install httpd mod_ssl

4. Install ACM for Nitro Enclaves from the Amazon Linux Extras library.

$ sudo yum install aws-nitro-enclaves-acm -y

Step 3: Prepare the IAM role

To grant the instance permission to use the ACM certificate, you must create an IAM role with the
required permissions. The IAM role is later attached to the instance and the ACM certificate.

Create a JSON file named acm-role and add the following policy statement.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"ec2.amazonaws.com"
 },
 "Action":"sts:AssumeRole"
 }
]
}

Use the create-role command to create a role named acm-role, and specify the path to the JSON
policy file.

Step 3: Prepare the IAM role 71

https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html

AWS AWS Nitro Enclaves User Guide

$ aws iam create-role --role-name acm-role --assume-role-policy-document file://acm-
role.json

After you have created the role, make a note of the role ARN, as you'll need it in the next step.

Step 4: Associate the role with the ACM certificate

Attach the IAM role that you created in the previous step to the ACM certificate. To do this, use the
associate-enclave-certificate-iam-role command, and specify the ARN of the role to attach, and
the ARN of the certificate to attach it to.

$ aws ec2 --region region associate-enclave-certificate-iam-role --certificate-
arn certificate_ARN --role-arn role_ARN

For example

$ aws ec2 --region us-east-1 associate-enclave-certificate-iam-role --certificate-arn
 arn:aws:acm:us-east-1:123456789012:certificate/d4c3b2a1-e5d0-4d51-95d9-1927fEXAMPLE --
role-arn arn:aws:iam::123456789012:role/acm-role

Example output

{

"CertificateS3BucketName": "aws-ec2-enclave-certificate-us-east-1",
"CertificateS3ObjectKey": "arn:aws:iam::123456789012:role/acm-role/arn:aws:acm:us-
east-1:123456789012:certificate/d4c3b2a1-e5d0-4d51-95d9-1927fEXAMPLE",
"EncryptionKmsKeyId": "a1b2c3d4-354d-4e51-9190-b12ebEXAMPLE"
}

After running the command, make a note of CertificateS3BucketName and
EncryptionKmsKeyId, as you'll need them for the next step.

Step 5: Grant the role permission to access the certificate and
encryption key

You must now grant the IAM role (acm-role) permission to do the following:

• Retrieve the ACM certificate from the Amazon S3 bucket returned in the previous step

• Perform kms:Decrypt using the AWS KMS key returned in the previous step

Step 4: Associate the role with the ACM certificate 72

https://docs.aws.amazon.com/cli/latest/reference/ec2/associate-enclave-certificate-iam-role.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/associate-enclave-certificate-iam-role.html

AWS AWS Nitro Enclaves User Guide

• Retrieve information about itself, including its path, GUID, and ARN.

Create a JSON file named acm-role-policies.json, add the following policy statement, and
specify the values of CertificateS3BucketName and EncryptionKmsKeyId from the previous
step.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": ["arn:aws:s3:::CertificateS3BucketName/*"]
 },
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": "arn:aws:kms:region:*:key/EncryptionKmsKeyId"
 },
 {
 "Effect": "Allow",
 "Action": "iam:GetRole",
 "Resource": "arn:aws:iam::123456789012:role/acm-role"
 }
]
}

Use the put-role-policy command to add the additional policies to the acm-role role, and specify
the path to the JSON policy file.

$ aws iam put-role-policy --role-name acm-role --policy-name acm-role-policy --policy-
document file://acm-role-policies.json

Step 6: Attach the role to the instance

You must attach the IAM role to the instance to give it permission to use the certificate.

Step 6: Attach the role to the instance 73

https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-policy.html

AWS AWS Nitro Enclaves User Guide

Create a new instance profile named acm-instance-profile using the create-instance-profile
command.

$ aws iam create-instance-profile --instance-profile-name acm-instance-profile

Example output

{
 "InstanceProfile": {
 "Path": "/",
 "InstanceProfileName": "acm-instance-profile",
 "InstanceProfileId": "ABCDUS6G56GWDIEXAMPLE",
 "Arn": "arn:aws:iam::123456789012:instance-profile/acm-instance-profile",
 "CreateDate": "2020-10-14T03:38:08+00:00",
"Roles": []
}
}

Add the acm-role that you created earlier to the acm-instance-profile that you just created.
Use the add-role-to-instance-profile command.

$ aws iam add-role-to-instance-profile --instance-profile-name acm-instance-profile --
role-name acm-role

Associate the instance profile with the instance that you launched previously. Use the associate-
iam-instance-profile command and specify the instance profile to attach and the instance to attach
it to.

$ aws ec2 --region region associate-iam-instance-profile --instance-id instance_id --
iam-instance-profile Name=acm-instance-profile

Example output

{
 "IamInstanceProfileAssociation":
 {
 "AssociationId": "iip-assoc-0a411083b4EXAMPLE",
 "InstanceId": "i-1234567890abcdef0",
 "IamInstanceProfile":
 {
 "Arn": "arn:aws:iam::123456789012:instance-profile/acm-instance-profile",

Step 6: Attach the role to the instance 74

https://docs.aws.amazon.com/cli/latest/reference/iam/create-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/add-role-to-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/associate-iam-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/associate-iam-instance-profile.html

AWS AWS Nitro Enclaves User Guide

 "Id": "ABCDUS6G56GWDIEXAMPLE"
 },
 "State": "associating"
 }
}

Step 7: Configure the web server to use ACM for Nitro Enclaves

Configure the NGINX or Apache HTTP web server to use the ACM certificate. Choose the correct
procedure depending on the web server you're using.

NGINX

To configure NGINX

1. SSH into the instance that you launched previously.

2. Nitro Enclaves ships with a sample ACM for Nitro Enclaves configuration file that you can
use as a starting point for your own configuration. To use the sample configuration file,
rename the configuration file from /etc/nitro_enclaves/acm.example.yaml to /
etc/nitro_enclaves/acm.yaml.

$ sudo mv /etc/nitro_enclaves/acm.example.yaml /etc/nitro_enclaves/acm.yaml

3. Specify the ARN of the certificate that you associated with the IAM role that is attached
to the parent instance. Using your preferred text editor, open /etc/nitro_enclaves/
acm.yaml. In the Acm section, for certificate_arn, specify the ARN of the certificate.
Save and close the file.

4. Configure NGINX to use the pkcs11 SSL engine by setting the top-level ssl_engine
directive.

Using your preferred text editor, open /etc/nginx/nginx.conf. Add the following line
below pid /run/nginx.pid;.

ssl_engine pkcs11;

Example

For more information on configuration, see:
* Official English Documentation: http://nginx.org/en/docs/

Step 7: Configure the web server to use ACM for Nitro Enclaves 75

AWS AWS Nitro Enclaves User Guide

user nginx;
worker_processes auto;
error_log /var/log/nginx/error.log;
pid /run/nginx.pid;

ssl_engine pkcs11;

5. Enable the TLS server and configure the server to use your certificate.

In /etc/nginx/nginx.conf, scroll to the bottom of the file and do the following:

• Uncomment all of the lines below Settings for a TLS enabled server.

• In the first block, for server_name, specify the host name, or the common name (CN),
that you specified when you created the certificate.

• In the second block, remove the following lines.

ssl_certificate "/etc/pki/nginx/server.crt";
ssl_certificate_key "/etc/pki/nginx/private/server.key";
ssl_ciphers PROFILE=SYSTEM;

And add the following line.

ssl_protocols TLSv1.2;

• Add the following as a new block below the second block.

Set this to the stanza path configured in /etc/nitro_enclaves/acm.yaml
include "/etc/pki/nginx/nginx-acm.conf";

The completed section should appear as follows.

Settings for a TLS enabled server.

 server {
 listen 443 ssl http2;
 listen [::]:443 ssl http2;
 server_name example.com;
 root /usr/share/nginx/html;

Step 7: Configure the web server to use ACM for Nitro Enclaves 76

AWS AWS Nitro Enclaves User Guide

 ssl_protocols TLSv1.2;
 ssl_session_cache shared:SSL:1m;
 ssl_session_timeout 10m;
 ssl_prefer_server_ciphers on;

 # Set this to the stanza path configured in /etc/nitro_enclaves/acm.yaml
 include "/etc/pki/nginx/nginx-acm.conf";

 # Load configuration files for the default server block.
 include /etc/nginx/default.d/*.conf;

 error_page 404 /404.html;
 location = /40x.html {
 }
 error_page 500 502 503 504 /50x.html;
 location = /50x.html {
 }
 }

6. Start the ACM for Nitro Enclaves service and ensure that it starts automatically at instance
boot.

$ sudo systemctl start nitro-enclaves-acm.service

$ sudo systemctl enable nitro-enclaves-acm

7. Test that the ACM for Nitro Enclaves is working as expected.

If you used a public certificate, use the following command.

$ curl https://host_name_or_IP

If you used a private certificate, you must add the host name to /etc/hosts in the
following format: 127.0.0.1 host_name, for example 127.0.0.1 example.com.
And you must specify the certificate chain to use to validate the certificate. For more
information about generating the certificate chain for your certificate, see Exporting a
Private Certificate in the AWS Certificate Manager User Guide.

$ curl --cacert path_to_pem_file https://host_name_or_IP

Step 7: Configure the web server to use ACM for Nitro Enclaves 77

https://docs.aws.amazon.com/acm/latest/userguide/export-private.html#export-console
https://docs.aws.amazon.com/acm/latest/userguide/export-private.html#export-console

AWS AWS Nitro Enclaves User Guide

A successful test displays the NGINX index.htm. The ACM for Nitro Enclaves service
continuously polls and fetches the ACMcertificate data and updates NGINX accordingly. It
does this by generating an NGINX config snippet and including it in the main nginx.conf.

If you renew the ACM certificate by running acm renew-certificate, the ACM for Nitro
Enclaves automatically reconfigures the enclave and the NGINX web server. You can use the
following command to check the log for update announcements and to diagnose possible
issues.

$ journalctl -u nitro-enclaves-acm.service

If you encounter any unexpected errors, you can also check the NGINX service log for more
details.

$ journalctl -u nginx.service

Apache

To configure Apache HTTP server

1. SSH into the instance that you launched previously.

2. Nitro Enclaves ships with a sample ACM for Nitro Enclaves configuration file that you can
use as a starting point for your own configuration. Rename the sample ACM for Nitro
Enclaves configuration file from /etc/nitro_enclaves/acm-httpd.example.yaml to
/etc/nitro_enclaves/acm.yaml.

$ sudo mv /etc/nitro_enclaves/acm-httpd.example.yaml /etc/nitro_enclaves/
acm.yaml

3. Specify the ARN of the certificate that you associated with the IAM role that is attached
to the parent instance. Using your preferred text editor, open /etc/nitro_enclaves/
acm.yaml. In the Acm section, for certificate_arn, specify the ARN of the certificate.
Save and close the file.

4. Using your preferred text editor, open /etc/httpd/conf.d/httpd-acm.conf. For
ServerName, specify the host name, or the common name (CN), that you specified when

Step 7: Configure the web server to use ACM for Nitro Enclaves 78

https://docs.aws.amazon.com/cli/latest/reference/acm/renew-certificate.html

AWS AWS Nitro Enclaves User Guide

you created the certificate, and configure the remaining settings as needed. The following
is an example of a minimal SSL/TLS configuration:

<VirtualHost *:443>
ServerName www.example.com
SSLEngine on
SSLProtocol -all +TLSv1.2
SSLCertificateKeyFile "/etc/pki/tls/private/localhost.key"
SSLCertificateFile "/etc/pki/tls/certs/localhost.crt"
</VirtualHost>

Note

The SSLCertificateFile and SSLCertificateKeyFile entries must be
present in the configuration file. These entries will be automatically updated with
the URIs after starting the ACM for Nitro Enclaves service.

5. Apache HTTP server ships with a configuration file that you can use. To use the
configuration file, rename it from /etc/httpd/conf.d/ssl.conf to /etc/httpd/
conf.d/httpd-acm.conf.

$ sudo mv /etc/httpd/conf.d/ssl.conf /etc/httpd/conf.d/httpd-acm.conf

6. Start the ACM for Nitro Enclaves service and ensure that it starts automatically at instance
boot.

$ sudo systemctl start nitro-enclaves-acm.service

$ sudo systemctl enable nitro-enclaves-acm

7. Test that the ACM for Nitro Enclaves is working as expected.

• If you used a public certificate, use the following command.

$ curl https://host_name_or_IPM

• If you used a private certificate, you must add the host name to /etc/hosts in the
following format: 127.0.0.1 host_name, for example 127.0.0.1 example.com.
And you must specify the certificate chain to use to validate the certificate. For more

Step 7: Configure the web server to use ACM for Nitro Enclaves 79

AWS AWS Nitro Enclaves User Guide

information about generating the certificate chain for your certificate, see Exporting a
Private Certificate in the AWS Certificate Manager User Guide.

$ curl --cacert path_to_pem_file https://host_name_or_IP

A successful test displays the Apache HTTP index.htm. The ACM for Nitro Enclaves service
continuously polls and fetches the ACM certificate data and updates Apache accordingly.

If you renew the ACM certificate by running acm renew-certificate, the ACM for Nitro
Enclaves automatically reconfigures the enclave and the Apache web server. You can use
the following command to check the log for update announcements and to diagnose
possible issues.

$ $ journalctl -u nitro-enclaves-acm.service

If you encounter any unexpected errors, you can also check the Apache HTTP service log for
more details.

$ journalctl -u httpd.service

Using multiple certificates

You can also add multiple ACM certificates; one for each PKCS#11 token. For each additional
certificate that you need to add, repeat Step 4: Associate the role with the ACM certificate in order
to associate your IAM role with the additional ACM certificates.

Then to add more PKCS#11 tokens, open /etc/nitro_enclaves/acm.yaml with your preferred
text editor, and under the token section, add another label block and specify a label name, the
ARN of the additional certificate, and a path for the NGINX stanza or Apache HTTP configuration
file respectively. For example, the following snippet shows the format to be used for two ACM
certificates (the initial certificate and two additional certificates):

NGINX

tokens:
 # A label for this PKCS#11 token
 - label: nginx-acm-token

Using multiple certificates 80

https://docs.aws.amazon.com/acm/latest/userguide/export-private.html#export-console
https://docs.aws.amazon.com/acm/latest/userguide/export-private.html#export-console
https://docs.aws.amazon.com/cli/latest/reference/acm/renew-certificate.html

AWS AWS Nitro Enclaves User Guide

 # Configure a managed token, sourced from an ACM certificate.
 source:
 Acm:
 # The certificate ARN
 # Note: this certificate must have been associated with the IAM role
 assigned to the instance on
 # which ACM for Nitro Enclaves is run.
 certificate_arn: "arn:aws:acm:us-east-1:123456789012:certificate/d4c3b2a1-
e5d0-4d51-95d9-1927fEXAMPLE"
 target:
 NginxStanza:
 # Path to the nginx stanza to be written by the ACM service whenever # the
 certificate configuration
 # changes (e.g. after a certificate renewal). # This file must be included
 from the main nginx config
 # `server` section, as it will contain the TLS nginx configuration
 directives.
 path: /etc/pki/nginx/nginx-acm.conf
 # Stanza file owner (i.e. the user nginx is configured to run as).
 user: nginx
 # PKCS#11 token 2
 - label: token_2_name
 source:
 Acm:
 certificate_arn: "certificate_2_ARN"
 target:
 NginxStanza:
 path: /etc/pki/nginx/nginx-acm-2.conf
 user: nginx

Apache

tokens:
 # A label for this PKCS#11 token
 - label: token_1_name
 # Configure a managed token, sourced from an ACM certificate.
 source:
 Acm:
 # The certificate ARN
 # Note: this certificate must have been associated with the IAM role
 assigned to the instance
 # on which ACM for Nitro Enclaves is run.
 certificate_arn: "certificate_1_ARN"

Using multiple certificates 81

AWS AWS Nitro Enclaves User Guide

 target:
 Conf:
 # Path to the server configuration file to be written by # the ACM service
 whenever the
 # certificate configuration changes (e.g. after a certificate renewal). The
 SSLCertificateKeyFile
 # and optionally the SSLCertificateFile directives shall be populated.
 path: /etc/httpd/conf.d/httpd-acm.conf
 # Configuration file owner (i.e. the user httpd is configured to run as).
 user: apache
 # Attestation period (seconds)
 refresh_interval_secs: 43200

 - label: token_2_name
 # Configure a managed token, sourced from an ACM certificate.
 source:
 Acm:
 # The certificate ARN
 # Note: this certificate must have been associated with the IAM role
 assigned to the instance
 # on which ACM for Nitro Enclaves is run.
 certificate_arn: "certificate_2_ARN"
 target:
 Conf:
 # Path to the server configuration file to be written by the ACM service
 whenever the certificate
 # configuration changes (e.g. after a certificate renewal). The
 SSLCertificateKeyFile and optionally
 # the SSLCertificateFile directives shall be populated.
 path: /etc/httpd/conf.d/httpd-acm-2.conf
 # Configuration file owner (i.e. the user httpd is configured to run as).
 user: apache
 # Attestation repeat period (seconds)
 refresh_interval_secs: 43200

Note

You also need to update the /etc/nginx/nginx.conf configuration (NGINX) or the
/etc/httpd/conf.d/httpd-acm.conf configuration file (Apache) to include the
additional ACM certificates. For more information about configuring NGINX for multiple

Using multiple certificates 82

AWS AWS Nitro Enclaves User Guide

domains and about different use cases, refer to the NGINX documentation or Apache HTTP
server documentation.

After you have completed the necessary configuration, run the following command to restart the
Start the ACM for Nitro Enclaves service.

$ sudo systemctl restart nitro-enclaves-acm.service

Updating ACM for Nitro Enclaves

If you have already installed ACM for Nitro Enclaves, use the following command to update it to the
latest version.

$ sudo yum update aws-nitro-enclaves-acm

Uninstalling ACM for Nitro Enclaves

If you no longer want to use ACM for Nitro Enclaves, use the following steps to uninstall it.

To uninstall ACM for Nitro Enclaves

1. Stop the web server.

• NGINX

$ sudo systemctl stop nginx

• Apache

$ sudo systemctl stop httpd

2. Stop the ACM for Nitro Enclaves service.

$ sudo systemctl stop nitro-enclaves-acm.service

3. Uninstall ACM for Nitro Enclaves.

$ sudo yum remove aws-nitro-enclaves-acm

Updating ACM for Nitro Enclaves 83

https://nginx.org/en/docs/
https://httpd.apache.org/docs/
https://httpd.apache.org/docs/

AWS AWS Nitro Enclaves User Guide

Security

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that are built to meet the requirements of the most security-sensitive
organizations.

Topics

• Shared responsibility

• Amazon EC2 security

• Enclave security

• Logging API calls for the Nitro Enclaves with AWS CloudTrail

Shared responsibility

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon EC2, see
AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

Amazon EC2 security

The AWS Nitro Enclaves parent instance benefits from the standard security features and
capabilities of Amazon EC2. The following documentation helps you understand how to apply the
shared responsibility model when using Amazon EC2. It shows you how to configure Amazon EC2
to meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your Amazon EC2 resources.

• Infrastructure security in Amazon EC2

Shared responsibility 84

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/infrastructure-security.html

AWS AWS Nitro Enclaves User Guide

• Amazon EC2 and interface VPC endpoints

• Resilience in Amazon EC2

• Data protection in Amazon EC2

• Identity and access management for Amazon EC2

• Amazon EC2 key pairs and Linux instances

• Amazon EC2 security groups for Linux instances

• Update management in Amazon EC2

• Compliance validation for Amazon EC2

Enclave security

Nitro Enclaves use the same Nitro Hypervisor technology that provides CPU and memory isolation
for Amazon EC2 instances in order to isolate the vCPUs and memory for an enclave from a parent
instance. Enclaves provide only secure local socket connectivity with their parent instance. They
have no persistent storage, SSH access, or external networking. Users cannot SSH into an enclave,
and the data and applications inside the enclave cannot be accessed by the processes, applications,
or users (root or admin) of the parent instance.

Nitro Enclaves also supports a cryptographic attestation feature, which allows you to verify an
enclave's identity and ensure that only authorized code is running inside it. Attestation ensures
that only authorized enclaves are able to decrypt sensitive data and perform specific cryptographic
operations.

Nitro Enclaves integrates with AWS Key Management Service (KMS). AWS KMS makes it easy for
you to create and manage cryptographic keys and control their use across a wide range of AWS
services and in your applications. AWS KMS provides built-in attestation support that allows you
to create condition keys for AWS KMS key policies that include an enclave's platform configuration
registers. This ensures that only authorized enclaves are able to perform cryptographic operations
using a specific KMS key.

Logging API calls for the Nitro Enclaves with AWS CloudTrail

AWS Nitro Enclaves is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user or role in Nitro Enclaves. CloudTrail captures AWS KMS API calls made from
enclaves as events. If you create a trail, you can enable continuous delivery of the events to an

Enclave security 85

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/interface-vpc-endpoints.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/disaster-recovery-resiliency.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/data-protection.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-iam.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/update-management.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compliance-validation.html

AWS AWS Nitro Enclaves User Guide

Amazon Simple Storage Service (Amazon S3) bucket. If you don't configure a trail, you can still
view the most recent events in the CloudTrail console in Event history. You can use the information
collected by CloudTrail to audit AWS KMS API calls made by enclaves.

For more information about CloudTrail, see the AWS CloudTrail User Guide.

Nitro Enclaves information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When supported event
activity occurs in an enclave, that activity is recorded in a CloudTrail event along with other AWS
service events in Event history. You can view, search, and download recent events in your AWS
account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your enclave, create a trail. A trail enables CloudTrail to deliver
log files to an S3 bucket. By default, when you create a trail in the console, the trail applies to all
AWS Regions. The trail logs events from all Regions in the AWS partition and delivers the log files
to the S3 bucket that you specify. Additionally, you can configure other AWS services to further
analyze and act upon the event data collected in CloudTrail logs. For more information, see the
following:

• Overview for Creating a Trail

• Configuring Amazon SNS Notifications for CloudTrail

Nitro Enclaves supports logging the following Nitro Enclaves SDKs (that call AWS KMS APIs) as
events in CloudTrail log files:

• kms-decrypt (Decrypt)

• generate-data-key (GenerateDataKey)

• generate-random (GenerateRandom)

Every event or log entry contains information about the origins of the request. Event logs
generated by API calls from an enclave include the following additional fields that provide
information about the identity of the enclave.

"additionalEventData": {
 "recipient": {
 "attestationDocumentModuleId": "enclave_id",

Nitro Enclaves information in CloudTrail 86

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateRandom.html

AWS AWS Nitro Enclaves User Guide

 "attestationDocumentEnclaveImageDigest": "PCR0"
 }
 }

Example

"additionalEventData": {
 "recipient": {
 "attestationDocumentModuleId": "i-abc12345def67890a-enc9876abcd543210ef12",
 "attestationDocumentEnclaveImageDigest":
 "7fb5c55bc2ecbb68ed99a13d7122abfc0666b926a79d5379bc58b9445c84217f59cfdd36c08b2c79552928702efe23e4"

 }
 }

Understanding Nitro Enclaves log file entries

CloudTrail log files contain one or more log entries. An event represents a single request from
any source and includes information about the requested action, the date and time of the action,
request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the public API
calls, so they don't appear in any specific order. The following examples show CloudTrail log entries
for the supported actions.

• GenerateRandom

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:52:37Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateRandom",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": null,

Understanding Nitro Enclaves log file entries 87

AWS AWS Nitro Enclaves User Guide

 "responseElements": null,
 "additionalEventData": {
 "recipient": {
 "attestationDocumentModuleId": "i-123456789abcde123-
enc123456789abcde12",
 "attestationDocumentEnclaveImageDigest":
 "ee0d451a2ff9aaaa9bccd07700b9cab123a0ac2386ef7e88ad5ea6c72ebabea840957328e2ec890b408c9b06cb8ebe6a"
 }
 },
 "requestID": "df1e3de6-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "239cb9f7-ae05-4c94-9221-6ea30eef0442",
 "readOnly": true,
 "resources": [],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 }

• GenerateDataKey

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:52:40Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "numberOfBytes": 32
 },
 "responseElements": null,
 "additionalEventData": {
 "recipient": {
 "attestationDocumentModuleId": "i-123456789abcde123-
enc123456789abcde12",

Understanding Nitro Enclaves log file entries 88

AWS AWS Nitro Enclaves User Guide

 "attestationDocumentEnclaveImageDigest":
 "ee0d451a2ff9aaaa9bccd07700b9cab123a0ac2386ef7e88ad5ea6c72ebabea840957328e2ec890b408c9b06cb8ebe6a"

 }
 },
 "requestID": "e0eb83e3-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "a9dea4f9-8395-46c0-942c-f509c02c2b71",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 }

• Decrypt

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2020-07-27T22:58:24Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT",
 "keyId": "12345ac3-fbbf-4143-abcd-28b39example"
 },
 "responseElements": null,
 "additionalEventData": {
 "recipient": {
 "attestationDocumentModuleId": "i-123456789abcde123-
enc123456789abcde12",

Understanding Nitro Enclaves log file entries 89

AWS AWS Nitro Enclaves User Guide

 "attestationDocumentEnclaveImageDigest":
 "ee0d451a2ff9aaaa9bccd07700b9cab123a0ac2386ef7e88ad5ea6c72ebabea840957328e2ec890b408c9b06cb8ebe6a",
 }
 },
 "requestID": "b4a65126-30d5-4b28-98b9-9153da559963",
 "eventID": "e5a2f202-ba1a-467c-b4ba-f729d45ae521",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-east-2:111122223333:key/12345ac3-fbbf-4143-
abcd-28b39example"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 }

Understanding Nitro Enclaves log file entries 90

AWS AWS Nitro Enclaves User Guide

Nitro Enclaves Command Line Interface

The Nitro Enclaves CLI (Nitro CLI) is a command line tool for managing the lifecycle of enclaves.
You can use the Nitro CLI to create, manage, and terminate enclaves. The Nitro CLI must be
installed on the Amazon EC2 parent instance.

Topics

• Installing the Nitro Enclaves CLI on Linux

• Installing the Nitro Enclaves CLI on Windows

• Nitro Enclaves Command Line Interface reference

• Error codes

Installing the Nitro Enclaves CLI on Linux

The following instructions are for installing or uninstalling the AWS Nitro Enclaves CLI on or from a
parent instance running Amazon Linux 2023 or Amazon Linux 2. For instructions for installing the
Nitro CLI on different Linux distributions, see the Nitro CLI github repository.

Topics

• Install AWS Nitro Enclaves CLI

• Uninstall AWS Nitro Enclaves CLI

Install AWS Nitro Enclaves CLI

Amazon Linux 2023

To install the Nitro CLI on an instance running AL2023

1. Install the Nitro CLI.

$ sudo dnf install aws-nitro-enclaves-cli -y

2. Install the Nitro Enclaves development tools needed to build enclave images. The
development tools also includes some sample applications.

Installing the CLI on Linux 91

https://github.com/aws/aws-nitro-enclaves-cli

AWS AWS Nitro Enclaves User Guide

$ sudo dnf install aws-nitro-enclaves-cli-devel -y

3. Add your user to the ne user group.

$ sudo usermod -aG ne username

4. Add your user to the docker user group.

$ sudo usermod -aG docker username

5. For the changes to take effect, log out of the instance and then reconnect to it.

6. Verify that the Nitro CLI installed correctly.

$ nitro-cli --version

The command should return version information about the Nitro CLI.

7. Preallocate the memory and the vCPUs that you intend to use for the enclaves.

Important

Nitro Enclaves uses an allocator service to preallocate vCPUs and memory to the
enclaves. The amount of vCPUs and memory to preallocate are defined in the
allocator service configuration file (/etc/nitro_enclaves/allocator.yaml).
By default, the configuration file is set up to preallocate 512 MiB of memory
and 2 vCPUs for use by the enclaves. In some cases, you might need to manually
update the configuration file to preallocate a different number vCPUs or amount of
memory. For example:

• If you launched an AWS Graviton-based instance with 2 vCPUs, you must
configure the allocate service to preallocate only 1 vCPU.

• If you launched an instance with 4 or more vCPUs, you can configure the allocator
service to preallocate more vCPUs to the enclave.

• If you are going to run multiple enclaves, you must configure the allocator service
to preallocate enough vCPUs and memory for all of the enclaves. For example,
to run 3 enclaves with 4 vCPUs and 2 GiB memory each, you must configure the
allocator service to preallocate 12 vCPUs and 6 GiB of memory.

Install AWS Nitro Enclaves CLI 92

AWS AWS Nitro Enclaves User Guide

If you need to change the configuration file, use your preferred text editor to
open /etc/nitro_enclaves/allocator.yaml. Then, for memory_mib and
cpu_count, specify the overall amount of memory (in MiB) and the number
of vCPUs that you want to preallocate. Save and close the file and then run the
command below.
If you want to preallocate the default 512 MiB of memory and 2 vCPUs, you do not
need to make any changes to the configuration file.

Run the following command to allocate the resource specified in the configuration file and
to ensure that they are automatically allocated every time the instance starts.

$ sudo systemctl enable --now nitro-enclaves-allocator.service

Note

When you create an enclave, the requested memory and vCPUs must be less than
or equal to the values that you specified here. If you need to create an enclave with
more memory or vCPUs in the future, you must update the values in this file and
restart the service.

8. Start the Docker service and ensure that it starts every time the instance starts.

$ sudo systemctl enable --now docker

Amazon Linux 2

To install the Nitro CLI on an instance running AL2

1. Install the Nitro CLI.

$ sudo amazon-linux-extras install aws-nitro-enclaves-cli -y

2. Install the Nitro Enclaves development tools needed to build enclave images. The
development tools also includes some sample applications.

Install AWS Nitro Enclaves CLI 93

AWS AWS Nitro Enclaves User Guide

$ sudo yum install aws-nitro-enclaves-cli-devel -y

3. Add your user to the ne user group.

$ sudo usermod -aG ne username

4. Add your user to the docker user group.

$ sudo usermod -aG docker username

5. For the changes to take effect, log out of the instance and then reconnect to it.

6. Verify that the Nitro CLI installed correctly.

$ nitro-cli --version

The command should return version information about the Nitro CLI.

7. Preallocate the memory and the vCPUs that you intend to use for the enclaves.

Important

Nitro Enclaves uses an allocator service to preallocate vCPUs and memory to the
enclaves. The amount of vCPUs and memory to preallocate are defined in the
allocator service configuration file (/etc/nitro_enclaves/allocator.yaml).
By default, the configuration file is set up to preallocate 512 MiB of memory
and 2 vCPUs for use by the enclaves. In some cases, you might need to manually
update the configuration file to preallocate a different number vCPUs or amount of
memory. For example:

• If you launched an AWS Graviton-based instance with 2 vCPUs, you must
configure the allocate service to preallocate only 1 vCPU.

• If you launched an instance with 4 or more vCPUs, you can configure the allocator
service to preallocate more vCPUs to the enclave.

• If you are going to run multiple enclaves, you must configure the allocator service
to preallocate enough vCPUs and memory for all of the enclaves. For example,
to run 3 enclaves with 4 vCPUs and 2 GiB memory each, you must configure the
allocator service to preallocate 12 vCPUs and 6 GiB of memory.

Install AWS Nitro Enclaves CLI 94

AWS AWS Nitro Enclaves User Guide

If you need to change the configuration file, use your preferred text editor to
open /etc/nitro_enclaves/allocator.yaml. Then, for memory_mib and
cpu_count, specify the overall amount of memory (in MiB) and the number
of vCPUs that you want to preallocate. Save and close the file and then run the
command below.
If you want to preallocate the default 512 MiB of memory and 2 vCPUs, you do not
need to make any changes to the configuration file.

Run the following command to allocate the resource specified in the configuration file and
to ensure that they are automatically allocated every time the instance starts.

$ sudo systemctl enable --now nitro-enclaves-allocator.service

Note

When you create an enclave, the requested memory and vCPUs must be less than
or equal to the values that you specified here. If you need to create an enclave with
more memory or vCPUs in the future, you must update the values in this file and
restart the service.

8. Start the Docker service and ensure that it starts every time the instance starts.

$ sudo systemctl enable --now docker

Uninstall AWS Nitro Enclaves CLI

If you no longer want to use AWS Nitro Enclaves, use the following command to uninstall the AWS
Nitro Enclaves CLI.

Amazon Linux 2023

$ sudo dnf remove aws-nitro-enclaves-cli

Uninstall AWS Nitro Enclaves CLI 95

AWS AWS Nitro Enclaves User Guide

Amazon Linux 2

$ sudo yum remove aws-nitro-enclaves-cli

Installing the Nitro Enclaves CLI on Windows

The AWS Nitro Enclaves CLI is packaged together with all of the components that are required
to run Nitro Enclaves on a Windows parent instance. The package includes kernel drivers for the
Enclave and vsock devices, a service provider interface for Winsock to support vsock sockets, the
vsock-proxy, and the AWS Nitro Enclaves CLI.

The following instructions are for installing and uninstalling the AWS Nitro Enclaves CLI on or from
a parent instance running Windows.

Note

You may get the following error when you install, uninstall, or update the Nitro CLI:
Installation failed with code 3010. This message indicates that a reboot is
required to complete the installation. This error is likely caused by a component in use, such
as a running enclave or a vsock-proxy process. To complete the installation, shut down all
applications running on the instance and reboot it.

Topics

• Install AWS Nitro Enclaves CLI

• Uninstall AWS Nitro Enclaves CLI

Install AWS Nitro Enclaves CLI

To use the Nitro Enclaves on your parent instance, you must install the
AWSNitroEnclavesWindows package using AWS Systems Manager Distributor.

Before you can install a package using the AWS Systems Manager Distributor, you must first
complete the Distributor prerequisites.

After you have completed the prerequisites, install the AWSNitroEnclavesWindows package. For
more information, see one of the following in the AWS Systems Manager User Guide:

Installing the CLI on Windows 96

https://docs.aws.amazon.com/systems-manager/latest/userguide/distributor-prerequisites.html

AWS AWS Nitro Enclaves User Guide

• Installing or updating a package one time using the console

• Installing a package one time using the AWS CLI

You must reload the path environment variable from the updated environment in any PowerShell
or command prompt already open on the instance. When you open a new PowerShell or command
prompt, Windows automatically updates the path variable.

Uninstall AWS Nitro Enclaves CLI

If you no longer need to use Nitro Enclaves, you can remove the AWS Nitro Enclaves CLI from the
parent instance by uninstalling the AWSNitroEnclavesWindows package using the AWS Systems
Manager Distributor. For more information see Uninstall a package in the AWS Systems Manager
User Guide.

Alternatively, you can uninstall the AWS Nitro Enclaves CLI using Programs and Features, which
can be accessed using the Windows Control Panel.

Nitro Enclaves Command Line Interface reference

The following commands are available in the Nitro CLI. All of the Nitro CLI commands start with
nitro-cli, followed by one of the following subcommands.

Topics

• nitro-cli build-enclave

• nitro-cli run-enclave

• nitro-cli describe-enclaves

• nitro-cli console

• nitro-cli describe-eif

• nitro-cli pcr

• nitro-cli terminate-enclave

nitro-cli build-enclave

Converts a Docker image into an enclave image file (.eif). You can specify either a local directory
containing a Dockerfile, or a Docker image in a Docker repository.

Uninstall AWS Nitro Enclaves CLI 97

https://docs.aws.amazon.com/systems-manager/latest/userguide/distributor-working-with-packages-deploy.html#distributor-deploy-pkg-console
https://docs.aws.amazon.com/systems-manager/latest/userguide/distributor-working-with-packages-deploy.html#distributor-deploy-pkg-cli
https://docs.aws.amazon.com/systems-manager/latest/userguide/distributor-working-with-packages-uninstall.html

AWS AWS Nitro Enclaves User Guide

Important

This command is not supported on Windows. If you are using a Windows parent instance,
you must run this command on a Linux computer and then transfer the enclave image file
(.eif) to the Windows parent instance.

The command returns a set of measurements (SHA384 hashes) that are unique to the enclave
image file. These measurements are provided in the form of platform configuration registers
(PCRs). The PCRs are used during the enclave's attestation process. For more information, see Nitro
Enclaves concepts.

For example, when using Nitro Enclaves with AWS Key Management Service (AWS KMS), you can
specify these PCRs in condition keys for customer managed keys policies. When an application in
the enclave performs an AWS KMS operation, AWS KMS compares the PCRs in the enclave's signed
attestation document with the PCRs specified in the condition keys of the KMS key policy before
allowing the operation.

Topics

• Syntax

• Options

• Output

• Example

Syntax

nitro-cli build-enclave --docker-uri repository:tag --docker-dir /path_to/
dockerfile_directory --output-file enclave_image_filename --private-key key.pem --
signing-certificate certificate.pem

Options

--docker-uri

Specifies the uniform resource identifier (URI) of a Docker image in a Docker repository. The URI
is specified using the repository:tag format.

Type: String

nitro-cli build-enclave 98

AWS AWS Nitro Enclaves User Guide

Required: Yes

--docker-dir

Specifies the path to a local directory containing a Dockerfile.

Type: String

Required: No

--output-file

The file name of the enclave image file that is created.

Type: String

Required: Yes

--private-key

The private key to use to sign the enclave image file. If you specify --private-key then you
must also specify --signing-certificate. If you specify these parameter, the command
creates a signed enclave image file. The command output will include an additional PCR, PCR8,
which can be used in condition keys for KMS key policies. For more information, see Where to
get an enclave's measurements.

Type: String

Required: No

--signing-certificate

The signing key to use to sign the enclave image file. If you specify --signing-certificate
then you must also specify --private-key. If you specify these parameter, the command
creates a signed enclave image file. The command output will include and additional PCR, PCR8,
which can be used in condition keys for KMS key policies. For more information, see Where to
get an enclave's measurements.

Important

Ensure that the specified certificate is still valid. If you attempt to start an enclave with
an enclave image file that is signed with a certificate that is no longer valid, the nitro-
cli run-enclave fails with errors E36, E39, and E11.

nitro-cli build-enclave 99

AWS AWS Nitro Enclaves User Guide

Type: String

Required: No

Output

Measurements

Cryptographic measurements (SHA384 hashes) that are unique to the enclave image file.

Type: String

Example

The following example converts a Docker image with a URI of sample:latest to an enclave
image file named sample.eif.

Command

nitro-cli build-enclave --docker-uri sample:latest --output-file sample.eif

Output

Enclave Image successfully created.
{
 "Measurements": {
 "HashAlgorithm": "Sha384 { ... }",
 "PCR0":
 "EXAMPLE59044e337c00068c2c033546641e37aa466b853ca486dd149f641f15071961db2a0827beccea9cade3EXAMPLE",
 "PCR1":
 "EXAMPLE7783d0c23167299fbe5a69622490a9bdf82e94a0a1a48b0e7c56130c0c1e6555de7c0aa3d7901fbc58EXAMPLE",
 "PCR2":
 "EXAMPLE4b51589e8374b7f695b4649d1f1e9b528b05ab75a49f9a0a4a1ec36be81280caab0486f660b9207ac0EXAMPLE"
 }
}

nitro-cli run-enclave

Launches a new enclave. This command partitions the specified number of vCPUs and the amount
of memory from the Amazon EC2 parent instance to create the enclave. You also need to provide

nitro-cli run-enclave 100

AWS AWS Nitro Enclaves User Guide

an enclave image file (.eif) that contains the operating system and the applications that you want
to run inside the enclave.

Important

If you attempt to start an enclave with an enclave image file that is signed with a certificate
that is no longer valid, the nitro-cli run-enclave command fails with errors E36, E39,
and E11.

Topics

• Syntax

• Options

• Output

• Examples

Syntax

nitro-cli run-enclave [--enclave-name enclave_name] [--cpu-count number_of_vcpus
 | --cpu-ids list_of_vcpu_ids] --memory amount_of_memory_in_MiB --eif-
path path_to_enclave_image_file [--enclave-cid cid_number] [--debug-mode]

Or

nitro-cli run-enclave --config config_file.json

config_file.json

{
 "enclave_name": enclave_name,
 "cpu_count": number_of_vcpus,
 "cpu_ids": list_of_vcpu_ids,
 "memory_mib": amount_of_memory_in_MiB,
 "eif_path": "path_to_enclave_image_file",
 "enclave_cid": cid_number,
 "debug_mode": true|false
}

nitro-cli run-enclave 101

AWS AWS Nitro Enclaves User Guide

Options

--enclave-name

Specifies a unique name for the enclave. You can use this name to reference the enclave when
using the nitro-cli console and nitro-cli terminate-enclave commands.

If you do not specify a name, the name of the enclave image file (.eif) is used as the enclave
name.

Type: String

Required: No

--cpu-count

Specifies the number of vCPUs to allocate to the enclave.

Note

• Amazon EC2 instances support multithreading, which enables multiple threads to run
concurrently on a single CPU core. Each thread is represented as a virtual CPU (vCPU)
on the instance. For more information about vCPUs, see Optimize CPU options in the
Amazon EC2 User Guide.

• If the parent instance is enabled for multithreading, you must specify an even number
of vCPUs.

The number of vCPUs that you can allocate to an enclave depends on the size and configuration
of the parent instance. If the parent instance is enabled for multithreading, you must leave at
least 2 vCPUs for the parent instance. If multithreading is not enabled, you must leave at least 1
vCPU for the parent instance. For example, if your parent instance has 4 vCPUs and it is enabled
for multithreading, you can allocate up to 2 vCPUs to the enclave.

You must specify either --cpu-count or --cpu-ids. If you specify this option, omit --cpu-
ids.

Type: Integer

Required: Yes, if --cpu-ids is not specified

nitro-cli run-enclave 102

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html

AWS AWS Nitro Enclaves User Guide

--cpu-ids

Specifies the IDs of the vCPUs to allocate to the enclave.

Note

• Amazon EC2 instances support multithreading, which enables multiple threads to run
concurrently on a single CPU core. Each thread is represented as a virtual CPU (vCPU)
on the instance. For more information about vCPUs, see Optimize CPU options in the
Amazon EC2 User Guide.

• If the parent instance is enabled for multithreading, you must specify an even number
of vCPUs.

The number of vCPUs that you can allocate to an enclave depends on the size and configuration
of the parent instance. If the parent instance is enabled for multithreading, you must leave at
least 2 vCPUs for the parent instance. If multithreading is not enabled, you must leave at least 1
vCPU for the parent instance. For example, if your parent instance has 4 vCPUs and it is enabled
for multithreading, you can allocate up to 2 vCPUs to the enclave.

You must specify either --cpu-count or --cpu-ids. If you specify this option, omit --cpu-
count.

Type: String

Required: Yes, if --cpu-count is not specified

--memory

Specifies the amount of memory (in MiB) to allocate to the enclave.

The amount of memory that you can allocate to an enclave depends on the size of the parent
instance and the applications that you intend to run on it. The specified amount of memory
cannot exceed the amount of memory provided by the parent instance. You must leave enough
memory for the applications running on the parent instance. You must allocate a minimum of
64 MiB of memory to the enclave.

Type: Integer (MiB)

Required: Yes

nitro-cli run-enclave 103

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html

AWS AWS Nitro Enclaves User Guide

--eif-path

Specifies the path to the enclave image file.

Type: String

Required: Yes

--enclave-cid

Specifies the context identifier (CID) for the enclave. The CID is the socket address used by the
vsock socket. Only CIDs of 4 and higher can be specified. If you omit this option, a random CID is
allocated to the enclave.

Type: Integer

Required: No

--debug-mode

Indicates whether to run the enclave in debug mode. Specify this option to enable debug mode,
or omit it to disable debug mode.

If you enable debug mode, you can view the enclave's console in read-only mode
using the nitro-cli console command. Enclaves booted in debug mode
generate attestation documents with PCRs that are made up entirely of zeros
(00).

Required: No

--config

The path to a .json configuration file that specifies the paramaters for the enclave. If you
specify --config, the specified json file must include the required and optional paramaters as
described above, and you must not specify any other parameters in the command itself.

Type: String

Required: No

Output

EnclaveName

The unique name of the enclave.

nitro-cli run-enclave 104

AWS AWS Nitro Enclaves User Guide

Type: String

EnclaveID

The unique ID of the enclave.

Type: String

ProcessID

The process identifier (PID) of the process holding the enclave's resources.

Type: String

EnclaveCID

The context ID (CID) of the enclave.

Type: Integer

NumberOfCPUs

The number of vCPUs allocated to the enclave from the parent instance.

Type: Integer

CPUIDs

The IDs of the vCPUs allocated to the enclave from the parent instance.

Type: String

MemoryMiB

The amount of memory (in MiB) allocated to the enclave from the parent instance.

Type: Integer

Examples

Example 1: Inline parameters

The following example creates an enclave with 2 vCPUs, 1600 MiB of memory, and a context ID of
10. It also uses an enclave image file named sample.eif, which is located in the same directory
from which the command is being run.

Command

nitro-cli run-enclave 105

AWS AWS Nitro Enclaves User Guide

nitro-cli run-enclave --enclave-name my_enclave --cpu-count 2 --memory 1600 --eif-path
 sample.eif --enclave-cid 10

Output

Start allocating memory...
Started enclave with enclave-cid: 10, memory: 1600 MiB, cpu-ids: [1, 3]
{
 "EnclaveName": "my_enclave",
 "EnclaveID": "i-abc12345def67890a-enc9876abcd543210ef12",
 "ProcessID": 12345,
 "EnclaveCID": 10,
 "NumberOfCPUs": 2,
 "CPUIDs": [
 1,
 3
],
 "MemoryMiB": 1600
}

Example 2: Config file

The following example creates an enclave with 2 vCPUs, 1600 MiB of memory, and a context ID of
10. It also uses an enclave image file named sample.eif, which is located in the same directory
from which the command is being run.

Command

nitro-cli run-enclave --config enclave_config.json

Content of enclave_config.json:

{
 "enclave_name": "my_enclave",
 "cpu_count": 2,
 "memory_mib": 1600,
 "eif_path": "sample.eif",
 "enclave_cid": 10,
 "debug_mode": true
}

nitro-cli run-enclave 106

AWS AWS Nitro Enclaves User Guide

Output

Start allocating memory...
Started enclave with enclave-cid: 10, memory: 1600 MiB, cpu-ids: [1, 3]
{
 "EnclaveName": "my_enclave",
 "EnclaveID": "i-abc12345def67890a-enc9876abcd543210ef12",
 "ProcessID": 12345,
 "EnclaveCID": 10,
 "NumberOfCPUs": 2,
 "CPUIDs": [
 1,
 3
],
 "MemoryMiB": 1600
}

nitro-cli describe-enclaves

Describes an enclave.

Topics

• Syntax

• Output

• Example

Syntax

nitro-cli describe-enclaves

Output

EnclaveName

The unique name of the enclave.

Type: String

EnclaveID

The unique ID of the enclave.

nitro-cli describe-enclaves 107

AWS AWS Nitro Enclaves User Guide

Type: String

ProcessID

[Linux parent instances only] The process identifier (PID) of the process holding the enclave's
resources.

Type: String

EnclaveCID

The unique context ID (CID) of the enclave. The CID is the socket address used by the vsock
socket.

Type: Integer

NumberOfCPUs

The number of vCPUs allocated to the enclave from the parent instance.

Type: Integer

CPUIDs

[Linux parent instances only] The IDs of the vCPUs allocated to the enclave from the parent
instance.

Type: Integer

MemoryMiB

The amount of memory (in MiB) allocated to the enclave from the parent instance.

Type: Integer

State

The current status of the enclave.

Possible values: running | terminating

Type: String

Flags

Indicates if the enclave is in debug mode. None indicates that debug mode is disabled. Debug
indicates that debug mode is enabled.

nitro-cli describe-enclaves 108

AWS AWS Nitro Enclaves User Guide

Possible values: None | Debug

Type: String

Example

The following example describes an enclave.

Command

nitro-cli describe-enclaves

Output

[
 {
 "EnclaveName": "my_enclave",
 "EnclaveID": "i-abc12345def67890a-enc9876abcd543210ef12",
 "ProcessID": 12345,
 "EnclaveCID": 10,
 "NumberOfCPUs": 2,
 "CPUIDs": [
 1,
 3
],
 "MemoryMiB": 1600,
 "State": "RUNNING",
 "Flags": "NONE"
 }
]

nitro-cli console

Enters a read-only console for the specified enclave. This enables you to view the enclave's console
output to assist with troubleshooting. You can use this command only on an enclave that was
launched with the --debug-mode flag.

Topics

• Syntax

• Options

nitro-cli console 109

AWS AWS Nitro Enclaves User Guide

• Example

Syntax

nitro-cli console [--enclave-name enclave_name | --enclave-id enclave_id] [--
disconnect-timeout number_of_seconds]

Options

--enclave-name

The unique name of the enclave. You must specify either --enclave-name or --enclave-id.

Type: String

Required: Yes, if --enclave-id is not specified

--enclave-id

The unique ID of the enclave. You must specify either --enclave-id or --enclave-name.

Type: String

Required: Yes, if --enclave-name is not specified

--disconnect-timeout

The number of seconds after which to automatically disconnect idle console sessions.

Type: Integer

Required: No

Example

The following command enters a read-only console for an enclave with an ID of
i-05f6ed443ae428c95-enc173dfe3e2b1c87b. The session automatically disconnects if the
connection is idle for 60 seconds.

nitro-cli console 110

AWS AWS Nitro Enclaves User Guide

Command

nitro-cli console --enclave-id i-05f6ed443ae428c95-enc173dfe3e2b1c87b --disconnect-
timeout 60

nitro-cli describe-eif

Describes the specified enclave image file (.eif). The output is a static description of the enclave
image file that includes the enclave image file version, build measurements, signing certificate
information, the result of the CRC and signature check, and the metadata added at build time.

Topics

• Syntax

• Options

• Output

• Example

Syntax

nitro-cli describe-eif --eif-path path_to_enclave_image_file

Options

--eif-path

Specifies the path to the enclave image file.

Type: String

Required: Yes

Output

Measurements

Cryptographic measurements (SHA384 hashes) that are unique to the enclave image file.

Type: String

nitro-cli describe-eif 111

AWS AWS Nitro Enclaves User Guide

Example

The following example describes an enclave image file named sample.eif.

Command

nitro-cli describe-eif --eif-path image.eif

Output

{
 "Measurements": {
 "HashAlgorithm": "Sha384 { ... }",
 "PCR0":
 "EXAMPLE59044e337c00068c2c033546641e37aa466b853ca486dd149f641f15071961db2a0827beccea9cade3EXAMPLE",
 "PCR1":
 "EXAMPLE7783d0c23167299fbe5a69622490a9bdf82e94a0a1a48b0e7c56130c0c1e6555de7c0aa3d7901fbc58EXAMPLE",
 "PCR2":
 "EXAMPLE4b51589e8374b7f695b4649d1f1e9b528b05ab75a49f9a0a4a1ec36be81280caab0486f660b9207ac0EXAMPLE"
 }
}

nitro-cli pcr

Returns the platform configuration register (PCR) value for a specified input file or PEM certificate.
You can use this command to identify the files and signing certificate that were used to sign an
enclave by comparing the command output with PCR values in the enclave's build measurements.

Topics

• Syntax

• Options

• Output

• Example

Syntax

nitro-cli pcr [--input path_to_file | --signing-certificate path_to_certificate]

nitro-cli pcr 112

AWS AWS Nitro Enclaves User Guide

Options

--input

Specifies the path to the file for which to generate the platform configuration register (PCR)
value.

Type: String

Required: Yes, if --signing-certificate is not specified

--signing-certificate

Specifies the path to the PEM certificate for which to generate PCR8. This option is used to
specifically request the PCR8 value by performing deserialisation of the certificate and PEM
format validation.

Type: String

Required: Yes, if --input is not specified

Output

PCR

The platform configuration register (PCR) value for the specified input file or PEM certificate.

Type: String

Example

The following example generates the PCR8 value for a PEM certificate named cert.pem.

Command

nitro-cli pcr --signing-certificate cert.pem

Output

{

nitro-cli pcr 113

AWS AWS Nitro Enclaves User Guide

 "PCR8":
 "example39de75e8ed2939e95examplea96f2c79eaf5d5ac3bacf2cb76c75a31f9examplef55b29f0acd256b8example"
}

nitro-cli terminate-enclave

Terminates a specific enclave or all enclaves owned by the current user.

To terminate a specific enclave, specify --enclave-name or --enclave-id. To terminate all
enclaves, specify --all.

Topics

• Syntax

• Options

• Example

Syntax

nitro-cli terminate-enclave [--enclave-id enclave_id | --enclave-name enclave_name | --
all]

Options

--enclave-name

The unique name of the enclave to terminate. You must specify either --enclave-name or --
enclave-id.

Type: String

Required: Yes, if --enclave-id is not specified

--enclave-id

The unique ID of the enclave to terminate. You must specify either --enclave-id or --
enclave-name.

Type: String

Required: Yes, if --enclave-name is not specified

nitro-cli terminate-enclave 114

AWS AWS Nitro Enclaves User Guide

--all

Indicates whether to terminate all of the enclaves owned by the current user. If you specify this
option, omit --enclave-id and --enclave-name.

Required: No

Example

Example: Terminate specific enclave

The following example terminates an enclave with an ID of i-abc12345def67890a-
enc9876abcd543210ef12.

Command

nitro-cli terminate-enclave --enclave-id i-abc12345def67890a-enc9876abcd543210ef12

Output

Successfully terminated enclave i-abc12345def67890a-enc9876abcd543210ef12.
{
 "EnclaveID": "i-abc12345def67890a-enc9876abcd543210ef12",
 "Terminated": true
}

Example: Terminate all running enclaves

The following example terminates all of the enclaves owned by the current user.

Command

nitro-cli terminate-enclave --all

Output

Successfully terminated enclave i-abc12345def67890a-enc9876abcd543210ef12.
{
 "EnclaveID": "i-abc12345def67890a-enc9876abcd543210ef12",
 "Terminated": true

nitro-cli terminate-enclave 115

AWS AWS Nitro Enclaves User Guide

}

Error codes

This section lists the possible errors that the Nitro CLI can return.

E01

Missing mandatory argument. At least one mandatory argument has not been specified.
Ensure that all mandatory arguments have been specified.

E02

Conflicting arguments. The command includes two or more incompatible arguments. Ensure
that you specify only one of the conflicting arguments. For example, you cannot specify --
cpu-count and --cpu-ids in the same run-enclave command.

E03

Invalid argument provided. A value of the incorrect type has been specified for one or more
arguments. For example, a string was specified for an argument that expects an integer. Ensure
that all values are of the expected type.

E04

Socket pair creation failure. The Nitro CLI attempted to open a stream pair with the enclave,
but the stream initialization has failed. Either there is insufficient memory available for the
Nitro CLI process, or the system-wide maximum number of open descriptors was reached. Retry
the command. If that fails, reboot the instance and then retry the command.

E05

Process spawn failure. The Nitro CLI failed to spawn the enclave process while running the
run-enclave command. Either the system has reached its maximum number of threads, or
there is insufficient memory available to spawn the new process. Ensure that the system has
enough free memory and then retry the command. If that fails, reboot the instance and then
retry the command.

E06

Daemonize process failure. An error occurred while attempting to daemonize the newly
spawned enclave process. Possible reasons are that the system has reached its maximum

Error codes 116

AWS AWS Nitro Enclaves User Guide

number of threads, there is insufficient memory available to spawn the new process, or the
configuration of the Nitro CLI main process is not allowing the daemon creation process. Ensure
that the system has enough free memory and then retry the command. If that fails, reboot the
instance and then retry the command.

E07

Read from disk failure. The Nitro CLI failed to read content from the enclave's socket directory
(typically /var/run/nitro_enclaves/) while running the describe-enclave command.
Ensure that the directory exists and that it has the correct permissions. Alternatively, run the
Nitro Enclaves configuration script to reconfigure the environment.

E08

Unusable connection error. The Nitro CLI is unable to connect to an enclave. Ensure that it
exists and that it is in the running state.

E09

Socket close error. The Nitro CLI is unable to close the communication channel. The socket
close operation was interrupted by another signal. Retry the command.

E10

Socket connect set timeout error. The Nitro CLI failed to configure a specific timeout for the
specified socket. Ensure that the operation is being performed on a valid socket.

E11

Socket error. An unexpected error occurred with the socket.

E12

Epoll error. The Nitro CLI failed to register the enclave descriptor for event monitoring with
epoll. Either the system has insufficient memory to handle the requested operation, or the
per-user maximum number of watches was reached while trying to register a new descriptor
on an epoll instance. Ensure that the system has enough free memory and then retry the
command. If that fails, reboot the instance and then retry the command.

E13

Inotify error. The Nitro CLI failed to configure a socket for monitoring. Either the system has
insufficient memory to handle the requested operation, or the user limit of inotify watches has
been reached. Ensure that the system has enough free memory and then retry the command. If
that fails, reboot the instance and then retry the command.

Error codes 117

AWS AWS Nitro Enclaves User Guide

E14

Invalid command. An unknown command or command argument was specified. Verify the
command and argument names.

E15

Lock acquire failure. The Nitro CLI failed to obtain a lock on an object with concurrent access,
such as a structure containing information about a running enclave. A previous thread failed an
operation while holding the lock. Retry the command. If that fails, reboot the instance and then
retry the command.

E16

Thread join failure. The Nitro CLI failed to join a thread after it finished executing. Retry the
command.

E17

Serde error. An error occurred while serializing or deserializing a command or command
response. The JSON in the supplied command might not be valid. If you are supplying
command arguments in the JSON file, ensure that the supplied JSON is valid.

E18

File permissions error. You do not have permission to modify the logging file (typically /var/
log/nitro_enclaves/nitro_enclaves.log). Ensure that your user is part of the ne user
group. For more information, see Installing the Nitro Enclaves CLI on Linux.

E19

File operation failure. The system failed to perform the requested file operations. Ensure that
the file on which the operation is performed exists and that you have permission to modify it.

E20

Invalid CPU configuration. The same CPU ID has been specified more than once for the --
cpu-ids argument. Ensure that each vCPU ID is specified only once.

E21

No such CPU available in the pool. One or more of the specified CPU IDs does not exist in
the CPU pool. Either retry the command and specify different vCPU IDs, or preallocate the
environment resources so that the vCPU pool includes the vCPU IDs that you want to use. For
more information, see Installing the Nitro Enclaves CLI on Linux.

Error codes 118

AWS AWS Nitro Enclaves User Guide

E22

Insufficient CPUs available in the pool. The number of requested vCPUs is greater than
the number of available vCPUs. Either specify a number of vCPUs less than or equal to the
configured vCPU pool size, or preallocate the environment resources so that the vCPU pool
includes the number of vCPUs that you want to use. For more information, see Installing the
Nitro Enclaves CLI on Linux.

E23

Malformed CPU ID error. This error appears when a lscpu line is malformed and it reports an
online CPUs list that is not valid. Ensure that the lscpu output is not corrupt.

E24

CPU error. A CPU line interval is not valid. Ensure that the lscpu output is not corrupt.

E25

No such hugepage flag error. The enclave process attempted to use a hugepage size that is
not valid for initializing the enclave memory. Make sure that the Nitro CLI code has not been
modified to include hugepage sizes that are not valid.

E26

Insufficient memory requested. Insufficient memory was requested for the enclave. The
memory should be equal to or greater than the size of the enclave image file. Preallocate
enough memory to ensure that the enclave image file fits in the enclave's memory. For more
information, see Installing the Nitro Enclaves CLI on Linux.

E27

Insufficient memory available. The amount of requested memory is greater than the amount
of available memory. The enclave memory should not be greater than the size of the configured
hugepage memory. For example, if you request 100 MiB of memory while the allocated
hugepage memory is 80MiB, the request fails. Preallocate enough memory for the enclave. For
more information, see Installing the Nitro Enclaves CLI on Linux. Alternatively, specify a smaller
amount of memory with the run-enclave command.

E28

Invalid enclave descriptor. NE_CREATE_VM ioctl returned an error. Review the error
backtrace for more information.

Error codes 119

AWS AWS Nitro Enclaves User Guide

E29

Ioctl failure. An unexpected ioctl error occurred. Review the error backtrace for more
information.

E30

Ioctl image get load info failure. The ioctl used for getting the memory load information
failed. Review the error backtrace for more information.

E31

Ioctl set memory region failure. The ioctl used for setting a given memory region has failed.
Review the error backtrace for more information.

E32

Ioctl add vCPU failure. The ioctl used for adding a vCPU failed. Review the error backtrace
for more information.

E33

Ioctl start enclave failure. The ioctl used for starting an enclave has failed. Review the error
backtrace for more information.

E34

Memory overflow. An error occurred while loading the enclave image file in memory regions
that will be conceded to the future enclave. For example, this can occur if the regions offset plus
the enclave image file size exceeds the maximum address of the target platform.

E35

EIF file parsing error. Failed to fill a memory region with a section of the enclave image file.

E36

Enclave boot failure. The enclave failed to return a ready signal after booting. For example,
if booting from an enclave image file that is not valid, the enclave process exits immediately,
before returning a ready signal. Ensure that the enclave image file is not corrupt. Review the
error backtrace for more information.

E37

Enclave event wait error. Failed to monitor an enclave descriptor for events.

Error codes 120

AWS AWS Nitro Enclaves User Guide

E38

Enclave process command not executed error. At least one enclave process failed to provide
the description information.

E39

Enclave process connection failure. The enclave manager failed to connect to at least one
enclave process for retrieving the description information.

E40

Socket path not found. The Nitro CLI failed to build the corresponding socket path starting
from a given enclave ID.

E41

Enclave process send reply failure. The enclave process failed to report its status to the
requesting command.

E42

Enclave mmap error. Failed to allocate memory to the enclave. Make sure that the system has
enough free memory available. Retry the command. If that fails, reboot the instance and then
retry the command.

E43

Enclave munmap error. Failed to unmap an enclave's memory. Make sure that the Nitro CLI
code has not been modified to pass flags to the memory region unmapping operation that are
not valid.

E44

Enclave console connection failure. The Nitro CLI failed to establish a connection with a
running enclave's console. Make sure that the enclave has been started with the --debug flag.

E45

Enclave console read error. Failed to read from a running enclave's console. Retry the
command.

E46

Enclave console write output error. Failed to write the information retrieved from a running
enclave's console to a stream. Retry the command.

Error codes 121

AWS AWS Nitro Enclaves User Guide

E47

Integer parsing error. Unable to connect to a running enclave's console because the CID could
not be parsed. Use the nitro-cli describe-enclaves command to confirm the CID, and to
ensure that it is a valid number.

E48

EIF building error. An error occurred while building the enclave image file. Review the error
backtrace for more information.

E49

Docker image build error. An error occurred while building the enclave image file because the
specified Docker image could not be built. Review the error backtrace for more information.

E50

Docker image pull error. An error occurred while building the enclave image file because the
specified Docker image could not be pulled. Review the error backtrace for more information.

E51

Artifacts path environment variable not set. An error occurred while building the enclave
image file because the artifacts path environment variable has not been set.

E52

Blobs path environment variable not set. An error occurred while building the enclave image
file because the blobs path environment variable has not been set. Retry the command.

E53

Clock skew error. Failed to measure the elapsed time between consecutive reads from a
running enclave's console. Retry the command.

E54

Signal masking error. Failed to mask specific signals after creating an enclave process. Retry
the command.

E55

Signal unmasking error. Failed to unmask specific signals after creating an enclave process.
Retry the command.

Error codes 122

AWS AWS Nitro Enclaves User Guide

E56

Logger error. An error occurred while initializing the underlying logging system. Review the
error backtrace for more information.

E57

Hasher error. An I/O error occured while initializing a hasher or while writing bytes to the
hasher.

E58

Naming error. The specified enclave name does not exist.

E59

EIF signature checker error. An error occured while validating the signing certificate.

Error codes 123

AWS AWS Nitro Enclaves User Guide

Document history

The following table describes important additions to the AWS Nitro Enclaves documentation. We
also update the documentation frequently to address the feedback that you send us.

Change Description Date

Multiple enclaves per instance You can run up to four Nitro
Enclaves on a single parent
Amazon EC2 instance.

January 13, 2023

Amazon EKS support You can use Amazon Elastic
Kubernetes Service to
orchestrate, scale, and
deploy Nitro Enclaves from a
Kubernetes pod.

November 28, 2022

AWS Graviton support Nitro Enclaves now supports
AWS Graviton-based Amazon
EC2 instance types, except A1,
G5g, Im4gn, Is4gen, and T4g.

October 20, 2022

ACM for Nitro Enclaves ACM for Nitro Enclaves now
supports Apache HTTP server.

September 14, 2022

Nitro Enclaves 1.2.0 for
Windows

Nitro Enclaves 1.2.0 is now
available for Windows.

May 4, 2022

Amazon SNS topic for
Nitro Enclaves for Windows
updates

You can subscribe to an
Amazon SNS topic to
receive notifications for new
versions of Nitro Enclaves for
Windows.

August 13, 2021

Nitro Enclaves 1.1.0 for
Windows

Nitro Enclaves 1.1.0 is now
available for Windows.

July 28, 2021

124

https://docs.aws.amazon.com/enclaves/latest/user/multiple-enclaves.html
https://docs.aws.amazon.com/enclaves/latest/user/kubernetes.html
https://docs.aws.amazon.com/enclaves/latest/user/nitro-enclave.html#nitro-enclave-reqs
https://docs.aws.amazon.com/enclaves/latest/user/nitro-enclave-refapp.html
https://docs.aws.amazon.com/enclaves/latest/user/developing-applications-windows.html#release-notes
https://docs.aws.amazon.com/enclaves/latest/user/developing-applications-windows.html#release-notes
https://docs.aws.amazon.com/enclaves/latest/user/developing-applications-windows.html#sns-topic
https://docs.aws.amazon.com/enclaves/latest/user/developing-applications-windows.html#sns-topic
https://docs.aws.amazon.com/enclaves/latest/user/developing-applications-windows.html#sns-topic
https://docs.aws.amazon.com/enclaves/latest/user/developing-applications-windows.html#release-notes
https://docs.aws.amazon.com/enclaves/latest/user/developing-applications-windows.html#release-notes

AWS AWS Nitro Enclaves User Guide

Nitro Enclaves on Windows Nitro Enclaves supports
the creation of isolated
compute environments form
parent Amazon EC2 instances
running Windows operating
system.

April 27, 2021

Initial release Initial release of AWS Nitro
Enclaves. Nitro Enclaves is
an Amazon EC2 feature that
allows you to create isolated
execution environments,
called enclaves, from Amazon
EC2 instances.

October 28, 2020

125

https://docs.aws.amazon.com/enclaves/latest/user/developing-applications-windows.html
https://docs.aws.amazon.com/enclaves/latest/user/nitro-enclave.html

AWS AWS Nitro Enclaves User Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

126

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	AWS
	Table of Contents
	What is AWS Nitro Enclaves?
	Learn more
	Requirements
	Considerations
	Pricing
	Related services

	Nitro Enclaves concepts
	Enclave
	Enclave ID
	Parent instance
	Enclave image file
	AWS Nitro Enclaves CLI
	AWS Nitro Enclaves SDK
	Cryptographic attestation
	Attestation document
	Platform configuration registers
	KMS proxy
	Vsock socket

	Getting started: Hello enclave
	Step 1: Prepare the enclave-enabled parent instance
	Step 2: Build the enclave image file
	Step 3: Run the enclave
	Step 4: Validate the enclave
	Step 5: Terminate the enclave

	Using enclaves
	Enclaves workflow
	Involved parties
	Data and environment preparation
	Attestation and data decryption

	Building an enclave image file
	Creating an enclave
	Launch the parent instance
	Create the enclave

	Working with multiple enclaves
	Using Enclaves with Amazon EKS
	Prerequisites
	Step 1: Create a launch template
	Step 2: Create Kubernetes cluster and node
	Step 3: Install the Nitro Enclaves Kubernetes device plugin
	Step 4: Prepare the image
	Step 5: Deploy the application to the cluster

	Cryptographic attestation
	Integration with AWS KMS
	Where to get an enclave's measurements
	PCR0, PCR1, and PCR2
	PCR3
	PCR4
	PCR8

	How to get an enclave's attestation document
	Using cryptographic attestation with AWS KMS
	Secret data preparation
	KMS key preparation

	Getting started with cryptographic attestation: KMS Tool sample application

	Nitro Enclaves application development
	Nitro Enclaves Developer AMI
	Nitro Enclaves SDK
	Nitro Enclaves application development on Linux instances
	Getting started with the vsock: Vsock tutorial

	Nitro Enclaves Application development on Windows instances
	Considerations for using Nitro Enclaves on a Windows parent instance
	Nitro Enclaves for Windows release notes
	Subscribe to notifications of new versions
	Working with the vsock socket in Windows
	Terminology
	AWS vsock socket implementation
	Build-time dependencies
	Runtime
	Loopback support

	Using the Winsock2 functions with vsock sockets
	WSAAccept()/accept()
	WSAAddressToString()
	WSABind()/bind()
	WSAConnect()/connect()
	WSAEventSelect()
	WSAGetPeerName()
	WSAGetSockName()
	WSAGetSockOpt()/getsockopt()
	WSAIoctl()/ioctlsocket()
	WSAListen()/listen()
	WSASend()/send()
	WSASetSockOpt()/setsockopt()
	WSASocket()/socket()
	WSAStringToAddress()
	WSARecv()/recv()

	Unsupported Winsock2 functions
	Known issues
	Some IOs cannot be canceled

	Verifying the root of trust
	Attestation in the Nitro Enclaves world
	The attestation document
	Attestation document specification

	Attestation document validation
	COSE and CBOR
	Semantical validity
	Certificate validity
	Certificate chain validity

	Nitro Enclaves application: AWS Certificate Manager for Nitro Enclaves
	Pricing and billing
	Considerations
	Installing and configuring ACM for Nitro Enclaves
	Step 1: Create the ACM certificate
	Step 2: Prepare the enclaves-enabled parent instance
	Step 3: Prepare the IAM role
	Step 4: Associate the role with the ACM certificate
	Step 5: Grant the role permission to access the certificate and encryption key
	Step 6: Attach the role to the instance
	Step 7: Configure the web server to use ACM for Nitro Enclaves
	Using multiple certificates

	Updating ACM for Nitro Enclaves
	Uninstalling ACM for Nitro Enclaves

	Security
	Shared responsibility
	Amazon EC2 security
	Enclave security
	Logging API calls for the Nitro Enclaves with AWS CloudTrail
	Nitro Enclaves information in CloudTrail
	Understanding Nitro Enclaves log file entries

	Nitro Enclaves Command Line Interface
	Installing the Nitro Enclaves CLI on Linux
	Install AWS Nitro Enclaves CLI
	Uninstall AWS Nitro Enclaves CLI

	Installing the Nitro Enclaves CLI on Windows
	Install AWS Nitro Enclaves CLI
	Uninstall AWS Nitro Enclaves CLI

	Nitro Enclaves Command Line Interface reference
	nitro-cli build-enclave
	Syntax
	Options
	Output
	Example

	nitro-cli run-enclave
	Syntax
	Options
	Output
	Examples
	Example 1: Inline parameters
	Example 2: Config file

	nitro-cli describe-enclaves
	Syntax
	Output
	Example

	nitro-cli console
	Syntax
	Options
	Example

	nitro-cli describe-eif
	Syntax
	Options
	Output
	Example

	nitro-cli pcr
	Syntax
	Options
	Output
	Example

	nitro-cli terminate-enclave
	Syntax
	Options
	Example
	Example: Terminate specific enclave
	Example: Terminate all running enclaves

	Error codes

	Document history
	AWS Glossary

