aws

User Guide

FreeRTOS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

FreeRTOS User Guide

FreeRTOS: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

FreeRTOS User Guide

Table of Contents

WHhat iS Fre@@RTOS? ...uuiiiiiiiiiiiiiinnennnniiiiiiieeeensse 1
Downloading FreeRTOS SOUICE COUE ..ottt te e steste e e e e e e e e e saestestessessessessaensesaestansensanes 1
Fre@RTOS VEISIONING ..uviiciiieiiicieeieicteeteestes st estesssesstessseessaesssessssesssessssesssessssessssesssesssessssessssesaesssesssaenns 1
FreeRTOS LONG TEIM SUPPOIT ..ottt st ee e st e sstessseessaessstesssesssaesssessssasssesssaessssssssasssessnes 2
FreeRTOS Extended Mainte€nancCe PLaN ...ttt ste e e e e sa et e saessenaens 2
FrEERTOS QrChITECEUIE ..ottt ettt st e et s e e e st e b e st e st e s e se e e e e enneaeaansenes 2
FreeRTOS-qualified hardware platforms ...ttt a s 3
DeVelopmMENt WOIKTLOWc..oieieieeeececectctetes ettt ste s e e et et e s s e s b e e be e e e e e e esaasaesaansanes 4
AdAITIONAL FESOUICTES ...ttt cte e te st e st e s e e e e e e e et et e st e sta st e sessaesaesaessassantensansassassasseesaenenn 5

FreeRTOS kernel fundamentalscccceeeeeeeeiiiiiiiieiniinneeeennniiiiiccciiiinsss 6
Fre€@RTOS KEINEL SCREAULET ...ttt ettt ae st e sae s e s re e e e e e raenae s 6
MemMOry MAaNAGEMENToiiiiieteeeeretereee et st e e et e s s tesssseesssseessssnesssssassssaesssssesssssessssessssseessssasssssassns 7

Kernel memory allOCation ...ttt e e et et s ae e s s s e e e sa et nes 7
Application Memory ManagemMENT ...ttt e et saesaesaessessessessnesnannens 7
INtErtask COONAINATIONcvieeeeeeeee ettt et este s e e e e e e e e e st e st e stessassessaesessaensansantans 8
QUEBUES .eeeeeeteeeeccetteeecetteeeeeetereeesssaaeesesssareeesssaseeessssseeessssseesesssssesesssssseesssssseeessssssesessssssessssssseesssssssessnnnns 8
SEMAPNOrES AN MULEXES ...cuvevieeeeieeeeeetetecte et ete et e st et et e s testesse e e s se s s e s e sestessassassassessssnsessansansn 9
Direct-to-task NOLITICAtIONSc.eoeeeeeeee ettt a e e 9
SErEAM DUFTEIS ..ttt e et e st e b e st e b e s e s se e e e e et e aesaansaneas 9
MESSAGE DUFTEIS ..ttt ettt e e et e e e et e st e st e saesseeseeseesaesaensantans 11
Symmetric multiprocessing (SMP) SUPPOITouioieieeeeceeteteecteste e se e et stesaesresae e e e aene s 13
Modifying applications to use the FreeRTOS-SMP Kernelcceeeeeveecrecieceneneneeeeeeeeveceennen 13
SOTEWAIE LIMELS ...ttt ettt re s te s e e e e et et et e s b e s b e s s e e se e e e st et et assansassassaesaessensansanes 13
LOW POWEE SUPPOIT c.oeiiiiieteieiteieiteeertesssitesesstesssseessseesesseesssseessssesssssesssssesssssesssssesssssssssssessssassssssassssassss 14
FLEERTOSCONTIG R oottt ettt et e st e e st s e e e et e s e b e st e st asbasaessaennannans 14

AWS 10T Device SDK for Embedded Ciiiiiiiiiiiiiiennnniiiiiiicciniineesessssssssssssccsssssssssssssssssssssssssass 15

COMMON [0 cauiiiriiiiiiincitneeicinmecsieseessessessesssessssssssssssssssssssnssssssnes 16
LIDIAIIES .ottt ettt e st e st e st e st e s e e e e e e et e st e st et e b e e seere e e et et et e tenteeseereestenaentantantan 16

COMIMON 1O = DASIC ueiuieieiecieeieseeee et etete e steste s e e e e e e e et e sae b e stesse s s e e sessa e s essassassansassassassesssensassansansan 16
COMMON 1O = BLE ...ttt ettt s st e sae s sre e st e s ae s s sn e s saa e st e s saesssnesssaessnasssessnsasssens 18
Common IO for Amazon COMMON SOFtWAIEc.ccivieieieeececeeee ettt ae s 18
WAL IS ACS? ettt e et st e st e st e st e st e e e e s e et et e b et e tassessesseesaeseensantantantansansansassessaanean 18
QUALIFICAtION PrOgram c...cuceiceceeeeectetestesee ettt et e stestestestesre s e e e et e st et e stesaessessassnesaesaessansansans 19

Getting Started with FreeRTOScuuciiiiiiiiiiiiinnmesnmmniiiiiicccissses 20

FreeRTOS User Guide

Getting Started with AWS loT and FreeRTOS using Quick CONNECtcccccveveceeciececeeeeeeeeeeeeeene 20
EXPLOre FreERTOS LIDIAri@suoueoeeeieieeeeeeteeesec ettt ste e e e e et sae b e sae b e s e sa e e e e e sneaanes 20
Understand how to build a secure and robust AWS 10T productccoeveeeeeeeneneceneeceeeeeeee 21
Develop your AWS 10T application Product ...ttt aesa e ae s enas 21
AWS 10T Device Tester for Fre@RTOScccciiiiiiiiiisssns 22
FreeRTOS qUALIFICAtION SUITE ..cueeeeeeeeeeeeee ettt ettt e e et et st e b saesaa e nneanan 22
CUSTOM TEST SUITES ettt sttt et sttt s et b e st ae s b e st et esnesnesneans 23
Supported versions of IDT fOr FrEERTOS ...ttt ste e e e e saestestesse s e s e s e e aeaennans 24
Latest version Of IDT fOr FrE@RTOS ...ttt sttt esae st s e sae e s e s e s e e ssanes 24
EQrlier IDT VEISIONS ...ooivieiiirierieteesesteeseste st teste st ssesse st e e sseste st s e ssessesassessestssassessessssensensenessassensssans 26
UNSUPPOIEEA IDT VEISIONS ...ccuveieieieeiieeceeteteteste e s e stee e s eesestestestessessessaesaeaessessassassassassasssenssssensensenes 32
Download IDT fOr FrEERTOSc.ooieiiirerietiieretetreste e esae st este st e e s et et s e sse st esassesaessesessassesassassensesens 60
Download IDT MANUALLYeeeeieeeeetee ettt e e e e et e saesaestesse e e s e e s e aesaesaessassessnennsnnans 61
Download IDT programmatiCallycecceeeeeiecieeieceeeeeceeeeetee e a et te s e aesa e 61
Use IDT with FreeRTOS qualification suite 2.0 (FRQ 2.0) ...ceoreieoreeeeeeeeeeeereeeve e 67
PrErEQUISITES .eeeeeiieeieeteece ettt ettt s sttt s e e st e s sae s sae e s b e s sse e s saesssaesssesssaesssasssaesssessssenssessseesssesnses 68
Preparing to test your microcontroller board for the first timecccocveveeeceeenenieeeeee. 77
Use the IDT Ul to run the FreeRTOS qualification SUItecccoeeeeeeeecieceeceececeeee e 93
Running the FreeRTOS qualification 2.0 SUItEc.ccueeueeieeeeieeceeeeeeeeeeee e 107
Understanding reSultsS @and LOGS ...ttt e e ee st saestesae s e e s e e aeneeans 110
Use IDT with FreeRTOS qualification suite 1.0 (FRQ 1.0) ..ccueueoeeeeeeeeeeeeeeteeete e eneeenns 114
PrErEQUISITES .eeeeiieeecttceteccterte ettt ettt re s st e s ae s s e e s e e e st e s saesssaeeaa e s st essseessaesssaesssassseesssessssennaes 116
Preparing to test your microcontroller board for the first timecccoveeeeeninnnes 119
Use the IDT Ul to run the FreeRTOS qualification SUIteccceeveieieciececeeececeeeeeee e, 139
Running Bluetooth LOW ENErgy teStS ...ttt 149
Running the FreeRTOS qualification SUItEcoveieieieceeee e 154
Understanding reSults @and LOGS ...ttt ste e se et saestesae s e s e s e e s e aeeens 160
Use IDT to develop and run your OWN teSt SUILEScceeeeieceeciecieciececesee ettt re e aeennens 164
Download the latest version of IDT for Fre@RTOSccoivirinenirineneeeenenteesesaeseeessessesessens 165
Test suite creation WOTKFLOW ..ottt sa e e 165
Tutorial: Build and run the sample IDT test SUItecceeueeeeeeeeeeeeeeeeee e 166
Tutorial: Develop a simple IDT teSt SUITE ...ttt 171
TEST SUITE VEISIONS ...ttt ettt sttt e b st s e s b e st e s st s be st e sesnesatesnessesseas 255
TrOUDLESNOOTING ..ottt et a et e st s e e et e s s e s e e e e e et et esbessassaeseensennansansans 256
Troubleshooting device coNfIgUIration ...t eanens 257
Troubleshooting tIMEOUL EITOKScceiieeeeeececee ettt et re e a e e e e e et nes 269

FreeRTOS User Guide

Cellular feature and AWS ChArges ...ttt sstestesaesse s e e e e e e e s e saesaneas 270
Qualification report generation POLICY ...t e aas 270

AWS Managed policy for AWS 0T DEVICE TESLENceiieceeciereeceeceeeeeeeete e cte e e e e e e e s e saesaesaeneens 270
MANAGEA POLICY ettt ettt teste s e e st e e e e e s e e e et e b et e sessaeseeseensenaentensansansans 271
POLICY UPAALES ..ttt ettt ettt et s e se et et st e b e b e e s e e e e sa e e et et e santassassasseensensanes 277
SUPPOIT POLICY ettt ettt ste e te s e s e e e e e et e e e s et et e s bessessaesaeseesaassassasansansessasssensensansansans 280
SECUNIEY IN AWS ..oiiiiiiiiiiiiiieiiiieieiiiittasesss 281
Identity and Access ManNAgEMENTcceceeiieiieietetececte e e sa et e stestesaeste s e e s e e e s e aesaessensessanes 281
AUAIENCE ..ttt sttt et et s b et s s b et et e st e st e e s s et et s sa s e st esassassestesassassesessansensenanns 282
Authenticating With ide@ntities ...ttt nnens 283
Managing access USING POLICIES ...cceeeeiecieiecieeececeeee ettt se e e s e e e e saestestesse s e sse e e e saennennan 286

How FreeRTOS WOrks WIth TAM ...ttt sae sttt sa e saen 288
Identity-based POliCYy EXAMPLES ..ottt e e e e et aesaanaens 295
TrOUBLESNOOTING ...ttt st e e et sae st et e st e b e s e e sa e e e e e a e s antanean 298
ComPLiANCe VAliIdAtioN ..ottt s te e e e e st e s tesae st e s be e s e s e e e e e e aenanaans 300
RESILIEICE .ottt ettt ettt s s b et et s s et et e e b et esa s s et e st esassastesasansensenn 301
INFrasStrUCTUIE SECUNILY .uviieeeeeceeee ettt ettt e st e e e e e e e e et e sae b e saassesse e e e saesenaenaansans 301
Amazon-FreeRTOS Github Repository Migration GUIdecccccceiiiiiinenennnecciicccccennnnneesssssssnsones 303
APPENAIX .ttt ste e st e e e e e e et e st et e st e st e st e e s e e aesre et et et et e tesbeeaeeseere e e e Rt enteteteteeseereereenaanes 303
ATCRIVE cucuueeennnnnnnnnnnnnnnnnnnnnnmneemeeeieeiiietiitiiititieeeeseeesses 309
FreeRTOS USer GUIAE AICRIVE ...ttt ae st st s e ss s e e ssassesae s 309
Previous FreeRTOS User GUIdE CONTENTSc.cccviriiviriireniienenieteesiestee e stenteessesseesessestesessessesessenes 309
Getting Started With FreERTOS ...ttt sa et s e s re s e n e s a e ae s 309
OVEr-the-AIr UPAALESoceeieieeeceeeetete ettt ettt s saeste s e sse e e s s e e e st et e aessassasseesasssensansansans 502
FrEERTOS LIDIANIES c.ueviieieiieteteiertestetsest ettt ste st et esse st e sbe st s e ssa st e st s e ssa st e e e sassesaesassansensssanes 585
FrEERTOS EMIOS ..ottt ettt sttt et et e e s et et s e sbe st et ssessesaesassensesassn 650

FreeRTOS User Guide

What is FreeRTOS?

Developed in partnership with the world's leading chip companies over a 15-year period, and now
downloaded every 170 seconds, FreeRTOS is a market-leading real-time operating system (RTOS)
for microcontrollers and small microprocessors. Distributed freely under the MIT open source
license, FreeRTOS includes a kernel and a growing set of libraries suitable for use across all industry
sectors. FreeRTOS is built with an emphasis on reliability and ease of use.

FreeRTOS includes libraries for connectivity, security, and over-the-air (OTA) updates. FreeRTOS
also includes demo applications that show FreeRTOS features on qualified boards.

FreeRTOS is an open-source project. You can download the source code, contribute changes or
enhancements, or report issues on the GitHub site at https://github.com/FreeRTOS/FreeRTOS.

We release FreeRTOS code under the MIT open source license, so you can use it in commercial and
personal projects.

We also welcome contributions to the FreeRTOS documentation (FreeRTOS User Guide, FreeRTOS
Porting Guide, and FreeRTOS Qualification Guide). To view the markdown source for the
documentation, see https://github.com/awsdocs/aws-freertos-docs. It's released under the

Creative Commons (CC BY-ND) license.

Downloading FreeRTOS source code

Download the latest FreeRTOS and Long Term Support (LTS) packages from the Downloads page
on freertos.org.

FreeRTOS versioning

Individual libraries use x.y.z style version numbers, similar to semantic versioning. x is the major
version number, y the minor version number, and starting from 2022, z is a patch number. Before
2022, z was a point release number, which required the first LTS libraries to have a patch number
of the form "x.y.z LTS Patch 2".

Library packages use yyyymm.x style date stamp version numbers. yyyy is the year, mm the month,
and x an optional sequence number showing the release order within the month. In the case of the
LTS package, x is a sequential patch number for that LTS release. The individual libraries contained

Downloading FreeRTOS source code 1

https://devices.amazonaws.com/search?page=1&sv=freertos
https://github.com/FreeRTOS/FreeRTOS
https://github.com/awsdocs/aws-freertos-docs
https://www.freertos.org/

FreeRTOS User Guide

in a package are whatever the latest version of that library was on that date. For the LTS package,
it's the latest patch version of the LTS libraries originally released as an LTS version on that date.

FreeRTOS Long Term Support

FreeRTOS Long Term Support (LTS) releases receive security and critical bug fixes (should any be
necessary) for at least two years following their release. With this ongoing maintenance, you can
incorporate bug fixes throughout a development and deployment cycle without the expensive
disruption of updating to new major versions of FreeRTOS libraries.

With FreeRTOS LTS, you get the complete set of libraries needed to build secure connected loT and
embedded products. LTS helps reduce maintenance and testing costs associated with updating
libraries on your devices already in production.

FreeRTOS LTS includes the FreeRTOS kernel and IoT libraries: FreeRTOS+TCP, coreMQTT, coreHTTP,
corePKCS11, coreJSON, AWS loT OTA, AWS loT Jobs, AWS loT Device Defender, and AWS loT Device
Shadow. For more information, see the FreeRTOS LTS libraries.

FreeRTOS Extended Maintenance Plan

AWS also offers FreeRTOS Extended Maintenance Plan (EMP), which provides security patches

and critical bug fixes on your chosen FreeRTOS Long Term Support (LTS) version for up to ten
additional years. With FreeRTOS EMP, your FreeRTOS based long-lived devices can rely on a version
that has feature stability and receives security updates for years. You receive timely notifications of
upcoming patches on FreeRTOS libraries, so you can plan the deployment of security patches on
your Internet of Things (loT) devices.

To learn more about FreeRTOS EMP, see the Features page.

FreeRTOS architecture

FreeRTOS contains two types of repositories, single library repositories and package repositories.
Each single library repository contains the source code for one library without any build projects or
examples. Package repositories contain multiple libraries, and can contain preconfigured projects
that demonstrate the library’s use.

While package repositories contain multiple libraries, they don't contain copies of those libraries.
Instead, package repositories reference the libraries they contain as git submodules. Using
submodules ensures that there is a single source of truth for each individual library.

FreeRTOS Long Term Support 2

https://freertos.org/lts-libraries.html
https://aws.amazon.com/freertos/features/#FreeRTOS_Extended_Maintenance_Plan

FreeRTOS User Guide

The individual library git repositories are split between two GitHub organizations. Repositories
containing FreeRTOS specific libraries (such as FreeRTOS+TCP) or generic libraries (such as
coreMQTT, which is cloud agnostic because it works with any MQTT broker) are in the FreeRTOS
GitHub organization. Repositories containing AWS loT specific libraries (such as the AWS loT over-
the-air update client) are in the AWS GitHub organization. The following diagram explains the
structure.

Repository in the FreeRTOS GitHub account Repository in the AWS GitHub account

Shadow Fleet
client provisioning
v v \4 v

i
RTOS agnostic package ;

Composable Composable
libraries and libraries and
demos demos

LG

Single library Git repository in FreeRTOS GitHub account :
Package repository 1 Git sub-moduling
Il single library Git repository in AWS GitHub account v

FreeRTOS-qualified hardware platforms

The following hardware platforms are qualified for FreeRTOS:

o ATECC608A Zero Touch Provisioning Kit for AWS loT

o Cypress CYW943907AEVAL1F Development Kit

o Cypress CYW954907AEVAL1F Development Kit

o Cypress CY8CKIT-06450S2-4343W Kit

o Espressif ESP32-DevKitC

 Espressif ESP-WROVER-KIT

o Espressif ESP-WROOM-32SE
o Espressif ESP32-S2-Saola-1

« Infineon XMC4800 loT Connectivity Kit

+ Marvell MW320 AWS loT Starter Kit

« Marvell MW322 AWS loT Starter Kit

FreeRTOS-qualified hardware platforms 3

https://devices.amazonaws.com/detail/a3G0L00000AANvOUAX/ATECC608a-Zero-Touch-Provisioning-Kit-for-AWS-IoT
https://devices.amazonaws.com/detail/a3G0L00000AAPg0UAH/CYW943907AEVAL1F
https://devices.amazonaws.com/detail/a3G0L00000AAPg5UAH/CYW954907AEVAL1F
https://www.cypress.com/documentation/development-kitsboards/psoc-64-standard-secure-aws-wi-fi-bt-pioneer-kit-cy8ckit
https://devices.amazonaws.com/detail/a3G0L00000AANtjUAH/ESP32-DevKitC
https://devices.amazonaws.com/detail/a3G0L00000AANtlUAH/ESP-WROVER-KIT
https://devices.amazonaws.com/detail/a3G0h0000077nRtEAI/ESP32-WROOM-32SE
https://devices.amazonaws.com/detail/a3G0h00000AkFngEAF/ESP32-S2-Saola-1
https://devices.amazonaws.com/detail/a3G0L00000AANsbUAH/XMC4800-IoT-Amazon-FreeRTOS-Connectivity-Kit-WiFi
https://devices.amazonaws.com/detail/a3G0h000000OaRnEAK/Marvell-MW320
https://devices.amazonaws.com/detail/a3G0h000000OblKEAS/Marvell-MW322

FreeRTOS

User Guide

Qualified devices are also listed on the AWS Partner Device Catalog.

MediaTek MT7697Hx Development Kit

Microchip Curiosity PIC32MZEF Bundle

Nordic nRF52840-DK

NuMaker-10T-M487

NXP LPC54018 lIoT Module

OPTIGA Trust X Security Solution

Renesas RX65N RSK IoT Module

STMicroelectronicsSTM32L4 Discovery Kit loT Node

Texas Instruments CC3220SF-LAUNCHXL

Microsoft Windows 7 or later, with at least a dual core and a hard-wired Ethernet connection

Xilinx Avnet MicroZed Industrial loT Kit

For information about qualifying a new device, see the FreeRTOS Qualification Guide.

Development workflow

You start development by downloading FreeRTOS. You unzip the package and import it into your

IDE. You can then develop an application on your selected hardware platform and manufacture

and deploy these devices using the development process appropriate for your device. Deployed

devices can connect to the AWS IloT service or AWS loT Greengrass as part of a complete loT

solution.

PGy

Choose a supported Download OS and
microcontroller libraries
Download the FreeRTOS

kernel & libraries for
security, cloud & local
connectivity, & updateability
through the FreeRTOS
console

Select a supported
microcontroller from Device
Qualification Program
for FreeRTOS

oo |
0o

———

Develop app

Develop loT applications for
microcontroller-based
devices with convenient APIs

iy

1+

Q
Deploy connected device
Deploy and maintain connected
microcontroller-based devices at
scale. Easily connect to local
gateways like AWS loT Greengrass

Core devices or to AWS cloud
services like AWS loT Core

Development workflow

https://devices.amazonaws.com/detail/a3G0L00000AAOmPUAX/MT7697Hx-Development-Kit
https://devices.amazonaws.com/detail/a3G0L00000AANscUAH/Curiosity-PIC32MZ-EF-Amazon-FreeRTOS-Bundle
https://devices.amazonaws.com/detail/a3G0L00000AANtrUAH/nRF52840-Development-Kit
https://devices.amazonaws.com/detail/a3G0h000000Tg9cEAC/NuMaker-IoT-M487
https://devices.amazonaws.com/detail/a3G0L00000AANtAUAX/LPC54018-IoT-Solution
https://devices.amazonaws.com/detail/a3G0h000007712QEAQ/OPTIGA%E2%84%A2-Trust-X-Security-Solution
https://devices.amazonaws.com/detail/a3G0L00000AAOkeUAH/Renesas-Starter-Kit+-for-RX65N-2MB
https://devices.amazonaws.com/detail/a3G0L00000AANsWUAX/STM32L4-Discovery-Kit-IoT-Node
https://devices.amazonaws.com/detail/a3G0L00000AANtaUAH/SimpleLink-Wi-Fi%C2%AE-CC3220SF-Wireless-Microcontroller-LaunchPad-Development-Kit
https://devices.amazonaws.com/detail/a3G0L00000AANtqUAH/MicroZed-IIoT-Bundle-with-Amazon-FreeRTOS
https://devices.amazonaws.com/search?page=1&sv=freertos
https://docs.aws.amazon.com/freertos/latest/qualificationguide/

FreeRTOS User Guide

Additional resources

These resources might be helpful to you.

« For additional FreeRTOS Documentation, see freertos.org.

« For questions about FreeRTOS for the FreeRTOS engineering team, you can open an issue on the
FreeRTOS GitHub page.

» For technical questions about FreeRTOS, see the FreeRTOS Community Forums.

» For more information about connecting devices to AWS loT, see Device Provisioning in the AWS

loT Core Developer Guide.

 For technical support for AWS, see AWS Support Center.

» For questions about AWS billing, account services, events, abuse, or other issues with AWS, see
the Contact Us page.

Additional resources 5

https://www.freertos.org/Documentation/RTOS_book.html
https://www.freertos.org
https://github.com/freertos/freertos/issues
https://github.com/freertos/freertos/issues
https://forums.freertos.org/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-provision.html
https://docs.aws.amazon.com/iot/latest/developerguide
https://docs.aws.amazon.com/iot/latest/developerguide
https://aws.amazon.com/support
https://aws.amazon.com/contact-us/

FreeRTOS User Guide

FreeRTOS kernel fundamentals

The FreeRTOS kernel is a real-time operating system that supports numerous architectures. It is
ideal for building embedded microcontroller applications. It provides:

A multitasking scheduler.

» Multiple memory allocation options (including the ability to create completely statically-
allocated systems).

« Intertask coordination primitives, including task notifications, message queues, multiple types of
semaphore, and stream and message buffers.

» Support for symmetric multiprocessing (SMP) on multi-core microcontrollers.

The FreeRTOS kernel never performs non-deterministic operations, such as walking a linked list,
inside a critical section or interrupt. The FreeRTOS kernel includes an efficient software timer
implementation that does not use any CPU time unless a timer needs servicing. Blocked tasks

do not require time-consuming periodic servicing. Direct-to-task notifications allow fast task
signaling, with practically no RAM overhead. They can be used in most intertask and interrupt-to-
task signaling scenarios.

The FreeRTOS kernel is designed to be small, simple, and easy to use. A typical RTOS kernel binary
image is in the range of 4000 to 9000 bytes.

For the most up-to-date documentation about the FreeRTOS kernel, see FreeRTOS.org.
FreeRTOS.org offers a number of detailed tutorials and guides about using the FreeRTOS kernel,
including a Quick Start Guide and the more in-depth Mastering the FreeRTOS Real Time Kernel.

FreeRTOS kernel scheduler

An embedded application that uses an RTOS can be structured as a set of independent tasks. Each
task executes within its own context, with no dependency on other tasks. Only one task in the
application is running at any point in time. The real-time RTOS scheduler determines when each
task should run. Each task is provided with its own stack. When a task is swapped out so another
task can run, the task’s execution context is saved to the task stack so it can be restored when the
same task is later swapped back in to resume its execution.

To provide deterministic real-time behavior, the FreeRTOS tasks scheduler allows tasks to be
assigned strict priorities. RTOS ensures the highest priority task that is able to execute is given

FreeRTOS kernel scheduler 6

https://freertos.org/RTOS.html
https://freertos.org/FreeRTOS-quick-start-guide.html#page_top
https://freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf

FreeRTOS User Guide

processing time. This requires sharing processing time between tasks of equal priority if they are
ready to run simultaneously. FreeRTOS also creates an idle task that executes only when no other
tasks are ready to run.

Memory management

This section provides information about kernel memory allocation and application memory
management.

Kernel memory allocation

The RTOS kernel needs RAM each time a task, queue, or other RTOS obiject is created. The RAM can
be allocated:

« Statically at compile time.

« Dynamically from the RTOS heap by the RTOS API object creation functions.

When RTOS objects are created dynamically, using the standard C library malloc() and free()
functions is not always appropriate for a number of reasons:

They might not be available on embedded systems.

They take up valuable code space.

They are not typically thread-safe.

They are not deterministic.

For these reasons, FreeRTOS keeps the memory allocation APl in its portable layer. The portable
layer is outside of the source files that implement the core RTOS functionality, so you can provide
an application-specific implementation appropriate for the real-time system you're developing.
When the RTOS kernel requires RAM,, it calls pvPortMalloc() instead of malloc()(). When RAM
is being freed, the RTOS kernel calls vPortFree() instead of free().

Application memory management

When applications need memory, they can allocate it from the FreeRTOS heap. FreeRTOS offers
several heap management schemes that range in complexity and features. You can also provide
your own heap implementation.

Memory management 7

FreeRTOS User Guide

The FreeRTOS kernel includes five heap implementations:
heap_1

Is the simplest implementation. Does not permit memory to be freed.

heap_2

Permits memory to be freed, but not does coalesce adjacent free blocks.

heap_3

Wraps the standard malloc() and free() for thread safety.
heap_4

Coalesces adjacent free blocks to avoid fragmentation. Includes an absolute address placement
option.

heap_5

Is similar to heap_4. Can span the heap across multiple, non-adjacent memory areas.

Intertask coordination

This section contains information about FreeRTOS primitives.

Queues

Queues are the primary form of intertask communication. They can be used to send messages
between tasks and between interrupts and tasks. In most cases, they are used as thread-safe, First
In First Out (FIFO) buffers with new data being sent to the back of the queue. (Data can also be
sent to the front of the queue.) Messages are sent through queues by copy, meaning the data
(which can be a pointer to larger buffers) is itself copied into the queue rather than simply storing a
reference to the data.

Queue APIs permit a block time to be specified. When a task attempts to read from an empty
queue, the task is placed into the Blocked state until data becomes available on the queue or the
block time elapses. Tasks in the Blocked state do not consume any CPU time, allowing other tasks
to run. Similarly, when a task attempts to write to a full queue, the task is placed into the Blocked
state until space becomes available in the queue or the block time elapses. If more than one task
blocks on the same queue, the task with the highest priority is unblocked first.

Intertask coordination 8

FreeRTOS User Guide

Other FreeRTOS primitives, such as direct-to-task notifications and stream and message buffers,
offer lightweight alternatives to queues in many common design scenarios.

Semaphores and mutexes

The FreeRTOS kernel provides binary semaphores, counting semaphores, and mutexes for both
mutual exclusion and synchronization purposes.

Binary semaphores can only have two values. They are a good choice for implementing
synchronization (either between tasks or between tasks and an interrupt). Counting semaphores
take more than two values. They allow many tasks to share resources or perform more complex
synchronization operations.

Mutexes are binary semaphores that include a priority inheritance mechanism. This means that

if a high priority task blocks while attempting to obtain a mutex that is currently held by a lower
priority task, the priority of the task holding the token is temporarily raised to that of the blocking
task. This mechanism is designed to ensure the higher priority task is kept in the Blocked state for
the shortest time possible, to minimize the priority inversion that has occurred.

Direct-to-task notifications

Task notifications allow tasks to interact with other tasks, and to synchronize with interrupt service
routines (ISRs), without the need for a separate communication object like a semaphore. Each RTOS
task has a 32-bit notification value that is used to store the content of the notification, if any. An
RTOS task notification is an event sent directly to a task that can unblock the receiving task and
optionally update the receiving task's notification value.

RTOS task notifications can be used as a faster and lightweight alternative to binary and counting
semaphores and, in some cases, queues. Task notifications have both speed and RAM footprint
advantages over other FreeRTOS features that can be used to perform equivalent functionality.
However, task notifications can only be used when there is only one task that can be the recipient
of the event.

Stream buffers

Stream buffers allow a stream of bytes to be passed from an interrupt service routine to a task, or
from one task to another. A byte stream can be of arbitrary length and does not necessarily have a
beginning or an end. Any number of bytes can be written at one time, and any number of bytes can
be read at one time. You enable stream buffer functionality by including the stream_buffer.c
source file in your project.

Semaphores and mutexes 9

FreeRTOS User Guide

Stream buffers assume there is only one task or interrupt that writes to the buffer (the writer),
and only one task or interrupt that reads from the buffer (the reader). It is safe for the writer and
reader to be different tasks or interrupt service routines, but it is not safe to have multiple writers
or readers.

The stream buffer implementation uses direct-to-task notifications. Therefore, calling a stream
buffer API that places the calling task into the Blocked state can change the calling task's
notification state and value.

Sending data

xStreamBufferSend() is used to send data to a stream buffer in a task.
xStreamBufferSendFromISR() is used to send data to a stream buffer in an interrupt service
routine (ISR).

xStreamBufferSend() allows a block time to be specified. If xStreamBufferSend() is called
with a non-zero block time to write to a stream buffer and the buffer is full, the task is placed into
the Blocked state until space becomes available or the block time expires.

sbSEND_COMPLETED() and sbSEND_COMPLETED_FROM_ISR() are macros that are called
(internally, by the FreeRTOS API) when data is written to a stream buffer. It takes the handle of the
stream buffer that was updated. Both of these macros check to see if there is a task blocked on the
stream buffer waiting for data, and if so, removes the task from the Blocked state.

You can change this default behavior by providing your own implementation of
sbSEND_COMPLETED() in FreeRTOSConfig.h. This is useful when a stream buffer is used to
pass data between cores on a multicore processor. In that scenario, sSbSEND_COMPLETED() can be
implemented to generate an interrupt in the other CPU core, and the interrupt's service routine can

then use the xStreamBufferSendCompletedFromISR() API to check, and if necessary unblock,
a task that is waiting for the data.

Receiving data

xStreamBufferReceive() is used to read data from a stream buffer in a task.
xStreamBufferReceiveFromISR() is used to read data from a stream buffer in an interrupt
service routine (ISR).

xStreamBufferReceive() allows a block time to be specified. If xStreamBufferReceive()
is called with a non-zero block time to read from a stream buffer and the buffer is empty, the task

Stream buffers 10

FreeRTOS User Guide

is placed into the Blocked state until either a specified amount of data becomes available in the
stream buffer, or the block time expires.

The amount of data that must be in the stream buffer before a task is unblocked is called the
stream buffer's trigger level. A task blocked with a trigger level of 10 is unblocked when at least 10
bytes are written to the buffer or the task's block time expires. If a reading task's block time expires
before the trigger level is reached, the task receives any data written to the buffer. The trigger
level of a task must be set to a value between 1 and the size of the stream buffer. The trigger level
of a stream buffer is set when xStreamBufferCreate() is called. It can be changed by calling
xStreamBufferSetTriggerLevel().

sbRECEIVE_COMPLETED() and sbRECEIVE_COMPLETED_FROM_ISR() are macros that are
called (internally, by the FreeRTOS API) when data is read from a stream buffer. The macros
check to see if there is a task blocked on the stream buffer waiting for space to become available
within the buffer, and if so, they remove the task from the Blocked state. You can change the
default behavior of sbRECEIVE_COMPLETED() by providing an alternative implementation in
FreeRTOSConfig.h.

Message buffers

Message buffers allow variable-length discrete messages to be passed from an interrupt service
routine to a task, or from one task to another. For example, messages of length 10, 20, and 123
bytes can all be written to, and read from, the same message buffer. A 10-byte message can
only be read as a 10-byte message, not as individual bytes. Message buffers are built on top of
stream buffer implementation. you can enable message buffer functionality by including the
stream_buffer. c source file in your project.

Message buffers assume there is only one task or interrupt that writes to the buffer (the writer),
and only one task or interrupt that reads from the buffer (the reader). It is safe for the writer and
reader to be different tasks or interrupt service routines, but it is not safe to have multiple writers
or readers.

The message buffer implementation uses direct-to-task notifications. Therefore, calling a
stream buffer API that places the calling task into the Blocked state can change the calling task's
notification state and value.

To enable message buffers to handle variable-sized messages, the length of each message is
written into the message buffer before the message itself. The length is stored in a variable of type
size_t, which is typically 4 bytes on a 32-byte architecture. Therefore, writing a 10-byte message

Message buffers 11

FreeRTOS User Guide

into a message buffer actually consumes 14 bytes of buffer space. Likewise, writing a 100-byte
message into a message buffer actually uses 104 bytes of buffer space.

Sending data

xMessageBufferSend() is used to send data to a message buffer from a task.
xMessageBufferSendFromISR() is used to send data to a message buffer from an interrupt
service routine (ISR).

xMessageBufferSend() allows a block time to be specified. If xMessageBufferSend() is
called with a non-zero block time to write to a message buffer and the buffer is full, the task is
placed into the Blocked state until either space becomes available in the message buffer, or the
block time expires.

sbSEND_COMPLETED() and sbSEND_COMPLETED_FROM_ISR() are macros that are called
(internally, by the FreeRTOS API) when data is written to a stream buffer. It takes a single
parameter, which is the handle of the stream buffer that was updated. Both of these macros check
to see if there is a task blocked on the stream buffer waiting for data, and if so, they remove the
task from the Blocked state.

You can change this default behavior by providing your own implementation of
SbSEND_COMPLETED() in FreeRTOSConfig.h. This is useful when a stream buffer is used to
pass data between cores on a multicore processor. In that scenario, sbSEND_COMPLETED() can be

implemented to generate an interrupt in the other CPU core, and the interrupt's service routine can
then use the xStreamBufferSendCompletedFromISR() API to check, and if necessary unblock,
a task that was waiting for the data.

Receiving data

xMessageBufferReceive() is used to read data from a message buffer in a task.
xMessageBufferReceiveFromISR() is used to read data from a message buffer in an interrupt
service routine (ISR). xMessageBufferReceive() allows a block time to be specified. If
xMessageBufferReceive() is called with a non-zero block time to read from a message

buffer and the buffer is empty, the task is placed into the Blocked state until either data becomes
available, or the block time expires.

sbRECEIVE_COMPLETED() and sbRECEIVE_COMPLETED_FROM_ISR() are macros that are
called (internally, by the FreeRTOS API) when data is read from a stream buffer. The macros
check to see if there is a task blocked on the stream buffer waiting for space to become available

Message buffers 12

FreeRTOS User Guide

within the buffer, and if so, they remove the task from the Blocked state. You can change the
default behavior of sbRECEIVE_COMPLETED() by providing an alternative implementation in
FreeRTOSConfig.h.

Symmetric multiprocessing (SMP) support

SMP support in the FreeRTOS Kernel enables one instance of the FreeRTOS kernel to schedule
tasks across multiple identical processor cores. The core architectures must be identical and share

the same memory.

Modifying applications to use the FreeRTOS-SMP kernel

The FreeRTOS API remains substantially the same between single-core and SMP versions, except
for these additional APIs. Therefore, an application written for the FreeRTOS single-core version
should compile with the SMP version with minimal to no effort. However, there might be some
functional issues, because some assumptions that were true for single-core applications might no
longer be true for multi-core applications.

One common assumption is that a lower priority task can't run while a higher priority task is
running. While this was true on a single-core system, it's no longer true for multi-core systems
because multiple tasks can run simultaneously. If the application relies on relative task priorities to
provide mutual exclusion, it might observe unexpected results in a multi-core environment.

One other common assumption is that ISRs can't run simultaneously with each other or with other
tasks. This is no longer true in a multi-core environment. The application writer needs to ensure
proper mutual exclusion while accessing data shared between tasks and ISRs.

Software timers

A software timer allows a function to be executed at a set time in the future. The function executed
by the timer is called the timer's callback function. The time between a timer being started and

its callback function being executed is called the timer's period. The FreeRTOS kernel provides an
efficient software timer implementation because:

« It does not execute timer callback functions from an interrupt context.
« It does not consume any processing time unless a timer has actually expired.

« It does not add any processing overhead to the tick interrupt.

Symmetric multiprocessing (SMP) support 13

https://freertos.org/symmetric-multiprocessing-introduction.html
https://freertos.org/symmetric-multiprocessing-introduction.html#smp-specific-apis

FreeRTOS User Guide

« It does not walk any link list structures while interrupts are disabled.

Low power support

Like most embedded operating systems, the FreeRTOS kernel uses a hardware timer to generate
periodic tick interrupts, which are used to measure time. The power saving of regular hardware
timer implementations is limited by the necessity to periodically exit and then re-enter the low
power state to process tick interrupts. If the frequency of the tick interrupt is too high, the energy
and time consumed entering and exiting a low power state for every tick outweighs any potential
power-saving gains for all but the lightest power-saving modes.

To address this limitation, FreeRTOS includes a tickless timer mode for low-power applications.
The FreeRTOS tickless idle mode stops the periodic tick interrupt during idle periods (periods when
there are no application tasks that are able to execute), and then makes a correcting adjustment to
the RTOS tick count value when the tick interrupt is restarted. Stopping the tick interrupt allows
the microcontroller to remain in a deep power-saving state until either an interrupt occurs, or it is
time for the RTOS kernel to transition a task into the ready state.

Kernel configuration

You can configure the FreeRTOS kernel for a specific board and application with the
FreeRTOSConfig.h header file. Every application built on the kernel must have a
FreeRTOSConfig.h header file in its preprocessor include path. FreeRTOSConfig.his
application-specific and should be placed under an application directory, and not in one of the
FreeRTOS kernel source code directories.

The FreeRTOSConfig. h files for the FreeRTOS demo and test applications are located
at freertos/vendors/vendor/boards/board/aws_demos/config_files/
FreeRTOSConfig.h and freertos/vendors/vendor/boards/board/aws_tests/
config_files/FreeRTOSConfig.h.

For a list of the available configuration parameters to specify in FreeRTOSConfig.h, see
FreeRTOS.org.

Low power support 14

https://www.freertos.org/a00110.html

FreeRTOS User Guide

AWS loT Device SDK for Embedded C

(® Note

This SDK is intended for use by experienced embedded-software developers.

The AWS IoT Device SDK for Embedded C (C-SDK) is a collection of C source files under the MIT
open source license that can be used in embedded applications to securely connect loT devices to
AWS loT Core. It includes an MQTT client, HTTP client, JSON Parser, and AWS loT Device Shadow,
AWS loT Jobs, AWS IoT Fleet Provisioning, and AWS loT Device Defender libraries. This SDK is
distributed in source form and can be built into customer firmware along with application code,
other libraries, and an operating system (OS) of your choice.

The AWS IloT Device SDK for Embedded C is generally targeted at resource constrained devices that
require an optimized C language runtime. You can use the SDK on any operating system and host
it on any processor type (for example, MCUs and MPUs). However, if your devices have sufficient
memory and processing resources, we recommend that you use one of the higher order AWS loT
Device SDKs.

For more information, see the following:

AWS loT Device SDK for Embedded C

AWS loT Device SDK for Embedded C on GitHub
AWS loT Device SDK for Embedded C Readme
AWS loT Device SDK for Embedded C Samples

15

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html#iot-device-sdks
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html#iot-device-sdks
https://docs.aws.amazon.com/embedded-csdk/latest/lib-ref/
https://github.com/aws/aws-iot-device-sdk-embedded-C
https://github.com/aws/aws-iot-device-sdk-embedded-C#aws-iot-device-sdk-for-embedded-c
https://docs.aws.amazon.com/embedded-csdk/202012.00/lib-ref/docs/doxygen/output/html/demos_main.html

FreeRTOS User Guide

Common IO

Common 10 APIs act as hardware abstraction layers (HAL) that provide a common interface
between drivers and higher-level application code. FreeRTOS Common IO provides a set

of standard APIs for accessing common serial devices on supported reference boards;
implementations of these APIs are not included. These common APIs communicate and interact
with these peripherals and enable your code to function across platforms. Without Common 10,
writing code to work with low level devices is silicon-vendor specific.

(@ Note

FreeRTOS does not require implementations of the Common 10 APIs to function, but it will
attempt to use the Common 10 APIs as a way to interface with the specific peripherals on a
microcontroller-based board instead of vendor-specific APIs.

In general, device drivers are independent of the underlying operating system and are specific to
a given hardware configuration. The HAL abstracts away the details of how a specific driver works
and provides a uniform API to control such devices. You can use the same APIs to access various
device drivers across multiple microcontroller- (MCU-) based reference boards.

Libraries
Currently, FreeRTOS provides two Common IO libraries: Common IO - basic and Common IO - BLE.
Common IO - basic

Overview

Common |0 - basic provides APIs that deal with basic I/0O peripherals and functions that you
may find on MCU-based boards. The Common IO - basic repository is available on GitHub.

Supported peripherals
« ADC
« GPIO
e 12C

Libraries 16

https://aws.github.io/common-io-basic/
https://github.com/aws/common-io-basic

FreeRTOS

User Guide

PWM

SPI

UART

Watchdog

Flash

RTC

EFUSE

Resets

12S

Performance counter

Hardware platform information

Supported features

Synchronous read/write

The function doesn't return until the requested amount of data is transferred.

Asynchronous read/write

The function returns immediately and the data transfer happens asynchronously. When the
action completes, a registered user callback is invoked.

Peripheral specific

12C

Combine multiple operations into one transaction. Used to do write then read actions in one
transaction.

SPI

Transfer data between primary and secondary, which means the write and read happen
simultaneously.

API reference

For a full API reference, see the Common 10 - basic API reference.

Common IO - basic

17

https://aws.github.io/common-io-basic/

FreeRTOS User Guide

Common IO - BLE

Overview

Common 10 - BLE provides abstraction from the manufacturer's Bluetooth Low Energy stack. It
provides the following interfaces which can be used to control the device, and perform GAP and
GATT operations. The Common IO - BLE repository is available on GitHub.

Bluetooth Device Manager:

This provides an interface to control the Bluetooth device, perform device discovery operations
and other connectivity related tasks.

BLE Adapter Manager:

This provides an interface for the GAP API functions that are specific to BLE.
Bluetooth Classic Adapter Manager:

This provides an interface to control BT classic functionalities of a device.
GATT Server:

This provides an interface to use the Bluetooth GATT server feature.
GATT Client:

This provides an interface to use the Bluetooth GATT client feature.

A2DP Connection Interface:

This provides an interface for the A2DP Source profile for the local device.

API reference

For a full API reference, see the Common 10 - BLE API reference.

Common 10 for Amazon Common Software

The Common 10 APIs are a part of the required implementations needed by Amazon Common

Software for Devices, specifically to be implemented in a vendor device porting kit (DPK).

What is ACS?

Amazon Common Software (ACS) for Devices is software that makes it faster for you to integrate
Amazon Device SDKs on your devices. ACS provides a unified APl integration layer, pre-validated

Common 10 - BLE 18

https://github.com/aws/common-io-ble
https://aws.github.io/common-io-ble/
https://developer.amazon.com/acs-devices
https://developer.amazon.com/acs-devices

FreeRTOS User Guide

and memory efficient components for common functions such as connectivity, a device porting kit
(DPK), and multi-tier test suites.

Qualification Program

The Amazon Common Software for Devices qualification program verifies that a build of the ACS
DPK (Device Porting Kit) which runs on a specific microcontroller-based development board is
compatible with the program's published best practices and robust enough to pass ACS-mandated
tests specified by the qualification program.

Vendors qualified under this program are listed on the ACS Chipset Vendors page.

For information about qualifying, contact ACS for Devices.

Qualification Program 19

https://developer.amazon.com/acs-devices
https://developer.amazon.com/avs-silicon-vendors
https://developer.amazon.com/acs-devices

FreeRTOS User Guide

Getting Started with FreeRTOS

Topics:

o Getting Started with AWS loT and FreeRTOS using Quick Connect

» Explore FreeRTOS libraries

« Understand how to build a secure and robust AWS loT product

« Develop your AWS loT application product

Getting Started with AWS loT and FreeRTOS using Quick
Connect

To quickly explore AWS loT, start with AWS Quick Connect Demos. Quick Connect demos are simple
to setup and connect a partner provided, FreeRTOS qualified board to AWS IoT.

Follow the AWS loT Getting Started tutorial for a better understanding of AWS IoT and the AWS
loT console. You can modify the demo source code provided with the Quick Connect demos using
the chosen board'’s build system and tools to connect to your AWS account. The data flow from the
AWS loT console on your account is visible now.

Explore FreeRTOS libraries

Once you have an understanding of how an loT device and AWS loT work together, you can start
exploring FreeRTOS libraries, and the Long-Term Support (LTS) libraries.

Some commonly used libraries for FreeRTOS based AWS loT devices are:

¢ FreeRTOS Kernel

e coreMQTT
o AWS loT Over-the-Air (OTA)

Visit freertos.org for library-specific technical documentation and demos.

Getting Started with AWS loT and FreeRTOS using Quick Connect 20

https://freertos.org/quickconnect/index.html
https://aws.amazon.com/iot/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
https://www.freertos.org/all-library.html
https://www.freertos.org/lts-libraries.html
https://www.freertos.org/RTOS.html
https://www.freertos.org/mqtt/index.html
https://www.freertos.org/ota/index.html
https://freertos.org/

FreeRTOS User Guide

Understand how to build a secure and robust AWS loT product

Refer to Featured FreeRTOS AWS IoT Integrations to learn about best practices in making loT
device software more secure and robust. These FreeRTOS loT integrations are designed for
improved security using a combination of FreeRTOS software, and a partner-provided board with
hardware security features. Use them in production as is, or use them as a model for your own

designs.

Develop your AWS loT application product

Follow these steps to create an application project for your AWS loT product:

1. Download the latest FreeRTOS or Long Term Support (LTS) version from freertos.org, or clone
from the FreeRTOS-LTS GitHub repository. You can also integrate the required FreeRTOS
libraries into your project from the MCU vendor’s toolchain if available.

2. Follow the FreeRTOS Porting guide to create a project, set up the development environment,
and integrate FreeRTOS libraries into your project. Use the FreeRTOS-Libraries-Integration-
Tests GitHub repository to validate the porting.

Understand how to build a secure and robust AWS loT product 21

https://www.freertos.org/featured-freertos-iot-integrations.html
https://www.freertos.org/a00104.html
https://github.com/FreeRTOS/FreeRTOS-LTS
https://freertos.org/2021/10/freertos-lts-libraries-are-now-part-of-our-partner-toolchains.html
https://docs.aws.amazon.com/freertos/latest/portingguide/porting-guide.html
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests

FreeRTOS User Guide

AWS loT Device Tester for FreeRTOS

The IDT for FreeRTOS is a tool to qualify data throughput rate with the FreeRTOS operating
system. The device tester (IDT) first opens a USB or UART connection to a device. It then flashes an
image of FreeRTOS configured to test the device functionality under various conditions. AWS loT
Device Tester suites are extensible and IDT is used for customer AWS loT test orchestration.

IDT for FreeRTOS runs on a host computer (Windows, macQS, or Linux) that is connected to the
device being tested. IDT configures and orchestrates test cases, and aggregates results. It also
provides a command line interface to manage test execution.

FreeRTOS qualification suite

IDT for FreeRTOS verifies the port of FreeRTOS on your micro-controller, and if it can communicate
effectively with AWS loT in a reliable and secure manner. Specifically, it verifies if the porting layer
interfaces for FreeRTOS libraries are implemented correctly. It also performs end-to-end tests

with AWS loT Core. For example, it verifies if your board can send and receive MQTT messages and
process them correctly.

FreeRTOS qualification (FRQ) 2.0 suite uses tests cases from FreeRTOS-Libraries-Integration-Tests
and Device Advisor defined in the FreeRTOS Qualification Guide.

IDT for FreeRTOS generates test reports that you can submit to AWS Partner Network (APN) for
inclusion of your FreeRTOS devices in the AWS Partner Device Catalog. For more information, see
AWS Device Qualification Program.

The following diagram shows the test infrastructure setup for FreeRTOS qualification.

FreeRTOS qualification suite 22

https://docs.aws.amazon.com/freertos/latest/qualificationguide/freertos-qualification.html#qualifying-your-device-idt
https://aws.amazon.com/partners/dqp/

FreeRTOS User Guide

(

AWS loT Core

Computer connects using USB

Your computer Microcontroller board
(Win/Linux/Mac) running being tested
AWS loT Device Tester for

FreeRTOS

IDT for FreeRTOS organizes test resources into test suites and test groups:

« A test suite is the set of test groups used to verify that a device works with particular versions of
FreeRTOS.

« A test group is the set of individual test cases related to a particular feature, such as BLE and
MQTT messaging.

For more information, see Test suite versions

Custom test suites

IDT for FreeRTOS combines a standardized configuration setup and result format with a test suite
environment. This environment lets you develop custom test suites for your devices and device
software. You can add custom tests for your own internal validation, or provide them to your
customers for device verification.

How you configure custom test suites determines the setting configurations that you must provide
to your users to run your custom test suites. For more information, see Use IDT to develop and run

your own test suites.

Custom test suites 23

FreeRTOS User Guide

Supported versions of AWS loT Device Tester for FreeRTOS

This topic lists supported versions of AWS loT Device Tester for FreeRTOS. As a best practice,

we recommend that you use the latest version of IDT for FreeRTOS that supports your target
version of FreeRTOS. Each version of IDT for FreeRTOS has one or more corresponding versions of
FreeRTOS that it supports. We recommend that you download a new version of IDT for FreeRTOS
when a new version of FreeRTOS is released.

By downloading the software, you agree to the AWS loT Device Tester License Agreement
contained in the download archive.

(® Note

When you use AWS loT Device Tester for FreeRTOS, we recommend that you update to the
latest patch release of the most recent FreeRTOS-LTS version.

/A Important

As of October 2022, AWS loT Device Tester for AWS loT FreeRTOS Qualification (FRQ) 1.0
doesn't generate signed qualification reports. You can't qualify new AWS loT FreeRTOS
devices to list in the AWS Partner Device Catalog through the AWS Device Qualification
Program using IDT FRQ 1.0 versions. While you can't qualify FreeRTOS devices using IDT
FRQ 1.0, you can continue to test your FreeRTOS devices with FRQ 1.0. We recommend
that you use IDT FRQ 2.0 to qualify and list FreeRTOS devices in the AWS Partner Device

Catalog.

Latest version of AWS loT Device Tester for FreeRTOS

Use the following links to download the latest versions of IDT for FreeRTOS.

Supported versions of IDT for FreeRTOS 24

https://devices.amazonaws.com/
http://aws.amazon.com/partners/programs/dqp/
http://aws.amazon.com/partners/programs/dqp/
https://docs.aws.amazon.com/freertos/latest/userguide/lts-idt-freertos-qualification.html
https://devices.amazonaws.com/
https://devices.amazonaws.com/

FreeRTOS

User Guide

Latest version of AWS loT Device Tester for FreeRTOS

AWS loT Test suite
Device versions
Tester

version

IDT v4.9.0 FRQ_2.5.0

Supported
FreeRTOS
versions

202112.00
202212.00
202212.01

o All
patches of
FreeRTOS
202210-LT
S that use
FreeRTOS
LTS
libraries.

Download
links

e Linux

« macOS

« Windows

Release date

2023.04.04

Release
notes

e Supports

testing
against
FreeRTOS
202112,
202212,
202212.01
and all
patches of
FreeRTOS
202210-LT
S that uses
FreeRTOS
libraries

. See
README.md
for more
informati
on. You
must
include
the patch
version for
FreeRTOS-
LTS in your
manifest.
yml .

Improved
run time of

Latest version of IDT for FreeRTOS

25

https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.9.0_testsuite_2.5.0_linux.zip
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.9.0_testsuite_2.5.0_mac.zip
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.9.0_testsuite_2.5.0_win.zip
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md

FreeRTOS

User Guide

AWS loT
Device
Tester
version

(® Note

Test suite Supported Download Release date

FreeRTOS

Release
notes

OTA E2E
tests.
Limits
number

of devices
listed in
device.js
on to1.

Minor bug
fixes and
improveme
nts.

We don't recommend that multiple users run IDT from a shared location, such as an NFS

directory or a Windows network shared folder. This practice might result in crashes or data

corruption. We recommend that you extract the IDT package to a local drive and run the

IDT binary on your local workstation.

Earlier IDT versions for FreeRTOS

The following earlier versions of IDT for FreeRTOS are also supported.

Earlier IDT versions

26

FreeRTOS

User Guide

Earlier versions of AWS loT Device Tester for FreeRTOS

AWS loT
Device
Tester
version

IDT v4.8.1

IDT v4.6.0

Test suite
versions

FRQ_2.4.0

FRQ_2.3.0

Supported
FreeRTOS
versions

202112.00
« 202212.00
« 202212.01

o All
patches of
FreeRTOS
202210-LT
S that use
FreeRTOS
LTS
libraries.

202112.00
« 202212.00
« 202212.01

e 202210-LT
S that use
FreeRTOS
LTS
libraries.

Download
links

e Linux

« macOS

« Windows

e Linux

« macOS

« Windows

Release date

2023.01.23

2022.11.16

Release
notes

e See

README.MD
for further
informati
on. You
must
include

the patch
version for
FreeRTOS-
LTS in your
manifest.
yml .

Minor bug
fixes and
improveme
nts.

See
README.MD
for further
informati
on. You
must
include

the patch
version for
FreeRTOS-
LTS in your

Earlier IDT versions

27

https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.8.1_testsuite_2.4.0_linux.zip
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.8.1_testsuite_2.4.0_mac.zip
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.8.1_testsuite_2.4.0_win.zip
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.6.0_testsuite_2.3.0_linux.zip
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.6.0_testsuite_2.3.0_mac.zip
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.6.0_testsuite_2.3.0_win.zip
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md

FreeRTOS

User Guide

AWS loT
Device
Tester
version

Test suite Supported Download Release date

FreeRTOS

Release
notes

manifest.
yml .

For more
informati
on about
what's
included

in the
FreeRTOS
202210-LT
S release,
see the
CHANGELOG
.md file on
GitHub.

Adds the
ability to
configure
and run
AWS loT
Device
Tester for
FreeRTOS
through

a web
based user
interface

. See Use
the IDT for
FreeRTOS
user

Earlier IDT versions

28

https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202210-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202210-LTS/CHANGELOG.md

FreeRTOS

User Guide

AWS loT
Device
Tester
version

Test suite Supported Download Release date

FreeRTOS

Release
notes

interface
to run the
FreeRTOS
qualifica
tion suite
2.0 (FRQ
2.0) to get
started.

Adds an
option to
retain the
modified
copies of
the source
code
created
and used
at runtime
for post-
test
debugging
. See
Configure
build,
flash,

and test
settings
for more
informati
on.

Earlier IDT versions

29

FreeRTOS

User Guide

AWS loT Test suite
Device versions
Tester

version

Supported Download Release date

FreeRTOS

Release
notes

« Adds IDT

Client SDK
support
for Java.
For more
informati
on about
the IDT
Client SDK,
see Use IDT

to develop
and run

your own
test suites.

Earlier IDT versions

30

FreeRTOS

User Guide

AWS loT Test suite
Device versions
Tester

version

IDT v4.5.11 FRQ_2.2.0

Supported
FreeRTOS
versions

« 202112.00
« 202212.00
« 202212.01

e 202210-LT
S that use
FreeRTOS
LTS
libraries.

Download
links

e Linux

« macOS

+« Windows

Release date

2022.10.14

Release
notes

» See
README.MD
for further
informati
on. You
must
include
the patch
version for
FreeRTOS-
LTS in your
manifest.
yml .

« For more
informati
on about
what's
included
in the
FreeRTOS
202210-LT
S release,
see the
CHANGELOG
.md file on
GitHub.

e Minor bug
fixes and
improveme
nts.

Earlier IDT versions

31

https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.5.11_testsuite_2.2.0_linux.zip
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.5.11_testsuite_2.2.0_mac.zip
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/devicetester_freertos_4.5.11_testsuite_2.2.0_win.zip
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202210-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202210-LTS/CHANGELOG.md

FreeRTOS

User Guide

For more information, see Support policy for AWS IoT Device Tester for FreeRTOS.

Unsupported IDT versions for FreeRTOS

This section lists unsupported versions of IDT for FreeRTOS. Unsupported versions do not receive

bug fixes or updates. For more information, see Support policy for AWS loT Device Tester for

FreeRTOS.

The following versions of IDT-FreeRTOS are no longer supported.

Unsupported versions of AWS loT Device Tester for FreeRTOS

AWS loT Device
Tester version

IDT v4.5.10

Test suite
versions

FRQ_2.1.4

Supported
FreeRTOS
versions

« 202112.00

o 202012-LT
S that use
FreeRTOS LTS
libraries.

Release date

2022.09.02

Release notes

e For more

information
about what's
included in
the FreeRTOS
202012-LT

S release,

see the
CHANGELOG
.md file on
GitHub.

Resolved an
issue affecting
the OTA End
to End test
group.
Removed
FullTrans
portInter
facePlain
Text from
running in

Unsupported IDT versions

32

https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md

FreeRTOS

User Guide

AWS loT Device
Tester version

Test suite Supported
versions FreeRTOS
versions

Release date

Release notes

qualification
runs. Plain
text can still
beranasa
development
test group by
using the -\-
group-id
flag.

Improved the
logging and
the readability
of console and
file output.

Minor bug
fixes and
improveme
nts.

Unsupported IDT versions

33

FreeRTOS

User Guide

AWS loT Device
Tester version

IDT v4.5.9

Test suite
versions

FRQ_2.1.3

Supported
FreeRTOS
versions

« 202112.00

« 202012.04-
LTS that use
FreeRTOS LTS
libraries.

Release date

2022.08.17

Release notes

e For more

information
about what's
included in
the FreeRTOS
202012.04-
LTS release,
see the
CHANGELOG
.md file on
GitHub.

Resolved

an issue
affecting the
FreeRTOSI
ntegrity
test group.
Updated
FullCloud
IoT test
group by
removing
“MQTT
Connect
Exponenti
al Backoff
Retries” test
case.

Minor bug
fixes and

Unsupported IDT versions

34

https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md

FreeRTOS

User Guide

AWS loT Device
Tester version

IDT v4.5.6

Test suite
versions

FRQ_2.1.2

Supported
FreeRTOS
versions

« 202112.00

« 202012.04-
LTS that use
FreeRTOS LTS
libraries.

Release date

2022.06.29

Release notes

improveme
nts.

For more
information
about what's
included in
the FreeRTOS
202012.04-
LTS release,
see the
CHANGELOG
.md file on
GitHub.

Adds new
test group
FullCloud
IoT which
tests the
board against
AWS loT
Core Device
Advisor.

Resolved an
issue affecting
the OTA E2E
test cases.

Minor bug
fixes and
improveme
nts.

Unsupported IDT versions

35

https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md

FreeRTOS

User Guide

AWS loT Device
Tester version

IDT v4.5.5

Test suite
versions

FRQ_2.1.1

Supported
FreeRTOS
versions

« 202112.00

« 202012.04-
LTS that use
FreeRTOS LTS
libraries.

Release date

2022.06.06

Release notes

e For more

information
about what's
included in
the FreeRTOS
202012.04-
LTS release,
see the
CHANGELOG
.md file on
GitHub.

Adds new
test group
FullCloud
IoT which
tests the
board against
AWS loT
Core Device
Advisor.

Resolved

an issue
affecting the
FreeRTOSV
ersion and
FreeRTOSI
ntegrity test
cases.

Minor bug
fixes and

Unsupported IDT versions

36

https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md

FreeRTOS

User Guide

AWS loT Device
Tester version

IDT v4.5.5

Test suite
versions

FRQ_2.1.0

Supported
FreeRTOS
versions

« 202107.00
« 202112.00

o 202012.04-
LTS that use
FreeRTOS LTS
libraries.

Release date

2022.05.31

Release notes

improveme
nts.

For more
information
about what's
included in
the FreeRTOS
202012.04-
LTS release,
see the
CHANGELOG
.md file on
GitHub.

Adds new
test group
FullCloud
IoT which
tests the
board against
AWS loT
Core Device
Advisor.

Minor bug
fixes and
improveme
nts.

Unsupported IDT versions

37

https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md
https://github.com/FreeRTOS/FreeRTOS-LTS/blob/202012-LTS/CHANGELOG.md

FreeRTOS

User Guide

AWS loT Device
Tester version

IDT v4.5.4

Test suite
versions

FRQ_2.0.0

Supported
FreeRTOS
versions

« 202112.00

« 202012.04-
LTS that use
FreeRTOS LTS
libraries.

Release date

2022.05.09

Release notes

e For more

information
about what's
included in
the FreeRTOS
202012.04-
LTS release,
see the
CHANGELOG
.md file on
GitHub.

Removes the
requireme

nt to qualify
boards using
only versions
of Amazon
FreeRTOS
from the aws/
amazon-
freerto

s GitHub
repository.
Minor bug
fixes and
improveme
nts.

Unsupported IDT versions

38

FreeRTOS

User Guide

AWS loT Device
Tester version

IDT v4.5.2

Test suite
versions

FRQ_1.6.2

Supported
FreeRTOS
versions

202107.00

Release date

2022.01.25

Release notes

e For more

information
about what's
included in
the FreeRTOS
202107.00
release,

see the
CHANGELOG
.md file on
GitHub.

Implement
s the new
IDT test
orchestrator
for configuri
ng custom
test suites.
For more
information,

see Configure

the IDT test
orchestrator.

Minor bug
fixes and
improveme
nts.

Unsupported IDT versions

39

https://docs.aws.amazon.com/freertos/latest/userguide/idt-test-orchestrator.html
https://docs.aws.amazon.com/freertos/latest/userguide/idt-test-orchestrator.html
https://docs.aws.amazon.com/freertos/latest/userguide/idt-test-orchestrator.html

FreeRTOS User Guide

AWS loT Device Test suite Supported Release date Release notes
Tester version versions FreeRTOS
versions
IDT v4.0.3 FRQ_1.5.1 202012.00 2021.07.30 » Support for
qualifica
tion of

devices with
locked-down
credentials on
a Hardware
Security
Module.

e Minor bug
fixes and
improveme
nts.

Unsupported IDT versions 40

FreeRTOS User Guide

AWS loT Device Test suite Supported Release date Release notes
Tester version versions FreeRTOS
versions
IDT v4.3.0 FRQ_1.6.1 202107.00 2021.07.26 e For more
information

about what's
included in
the FreeRTOS
202107.00
release,

see the
CHANGELOG
.md file on
GitHub.

« Adds the
ability to
configure and
run AWS loT
Device Tester
for FreeRTOS
through a web
based user
interface. See
Use the IDT
for FreeRTOS
user interface

to run the
FreeRTOS
qualification
suite to get
started.

Unsupported IDT versions 41

https://github.com/aws/amazon-freertos/blob/202107.00/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202107.00/CHANGELOG.md

FreeRTOS

User Guide

AWS loT Device
Tester version

IDT v4.1.0

Test suite
versions

FRQ_1.6.0

Supported Release date Release notes

FreeRTOS

versions

202107.00 2021.07.21 e For more
information

about what's
included in
the FreeRTOS
202107.00
release,

see the
CHANGELOG
.md file on
GitHub.

« Removes the
following test
cases from
OTA qualifica
tion:

« OTA Agent

« OTA Missing
Filename

« OTA Max
Configured
Number of
Blocks

« Removes
the OTA
Dataplane
Both test
group from
OTA Qualifica
tion. In the

device.js

Unsupported IDT versions

42

https://github.com/aws/amazon-freertos/blob/202107.00/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202107.00/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202107.00/CHANGELOG.md

FreeRTOS User Guide

AWS loT Device Test suite Supported Release date Release notes
Tester version versions FreeRTOS
versions
on file, the
OTADataPl
aneProtoc

ol configura
tion now
accepts only
HTTP or MQTT
as supported
values.

« Implements
the following
changes to the
freertosF
ileConfig
uration
configura
tion in the
userdata.
json file for
changes to
the FreeRTOS
source code:

« Changes
the file
name that is
specified for
otaAgentT
estsConfi
g and
otaAgentD
emosConfi
g from

Unsupported IDT versions 43

FreeRTOS

User Guide

AWS loT Device
Tester version

Test suite Supported
versions FreeRTOS
versions

Release date

Release notes

aws_ota_a
gent_conf
ig.h to
ota_confi
g.h .

« Adds a new

otaDemosC
onfig
optional
configura
tion to
specify the
file path

to the new
ota_demo_
config.h
file.

+ Adds a

new field
testStart
Delayms to
userdata.
json to
specify a
delay between
the time

a device is
flashed to run
a FreeRTOS
test group
and when it
starts running

Unsupported IDT versions

44

FreeRTOS User Guide

AWS loT Device Test suite Supported Release date Release notes
Tester version versions FreeRTOS
versions

tests. The
value should
be given in
milliseconds.
This delay
can be used
to give IDT

a chance to
connect so
that no test
output is
missed.

Unsupported IDT versions 45

FreeRTOS

User Guide

AWS loT Device

Tester version

IDT v4.0.1

Test suite
versions

FRQ_1.4.1

Supported Release date Release notes

FreeRTOS

versions

202012.00 2021.01.19 e For more
information

about what's
included in
the FreeRTOS
202012.00
release,

see the
CHANGELOG
.md file in
GitHub.

 Introduces
additional
OTA (Over-the
-air) E2E (end-
to-end) test
cases.

e Supports
qualification
of developme
nt boards
running
FreeRTOS
202012.00
that use
FreeRTOS LTS
libraries.

o Adds support
for qualifica
tion of
FreeRTOS
developme

Unsupported IDT versions

46

https://github.com/aws/amazon-freertos/blob/202012.00/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202012.00/CHANGELOG.md

FreeRTOS

User Guide

AWS loT Device
Tester version

Test suite Supported
versions FreeRTOS
versions

Release date

Release notes

nt boards
using cellular
connectivity.

Fixes a

bug in the
echo server
configuration.

Enables you
to develop
and run your
own custom
test suites
using AWS loT
Device Tester
for FreeRTOS.
For more
information,
see Use IDT to
develop and
run your own
test suites.

Provides code
signed IDT
applications,
so you don't
need to grant
permissions
when you

run it under
Windows or
macOS.

Unsupported IDT versions

47

FreeRTOS

User Guide

AWS loT Device
Tester version

IDT v3.4.0

Test suite
versions

FRQ_1.3.0

Supported
FreeRTOS
versions

202011.01

Release date

2020.11.05

Release notes

+ Refined the
BLE test result
parsing logic.

For more

details,

see the
CHANGELOG
.md filein
GitHub.

» Fixed bug
where 'RSA'
was not a
valid PKCS11
configuration
option.

» Fixed bug
where
Amazon S3
buckets aren't
cleaned up
correctly after
OTA tests.

« Updates to
support the
new test cases
inside of the
FullMQTT test

group.

Unsupported IDT versions

48

https://github.com/aws/amazon-freertos/blob/202011.01/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202011.01/CHANGELOG.md

FreeRTOS User Guide

AWS loT Device Test suite Supported Release date Release notes
Tester version versions FreeRTOS
versions

IDT v3.3.0 FRQ_1.2.0 202007.00 2020.09.17 e For more
details,
see the
CHANGELOG
.md file in
GitHub.

« New end-

to-end tests
to validate
Over The Air
(OTA) update
suspend

and resume
feature.

» Fixed bug
causing users
in eu-centra
[-1 Region to
be unable to
pass config
validation for
OTA tests.

« Added --
update-idt
parameter
to the run-
suite
command.
You can use
this option
to set the
response

Unsupported IDT versions 49

https://github.com/aws/amazon-freertos/blob/202007.00/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202007.00/CHANGELOG.md

FreeRTOS

User Guide

AWS loT Device
Tester version

Test suite Supported
versions FreeRTOS
versions

Release date

Release notes

for the IDT
update
prompt.

Added --
update-
managed-
policy
parameter

to the run-

suite

command.

You can use

this option

to set the
response for
the managed
policy update
prompt.

Internal

improvements

and bug fixes,
including:

o For
automatic
test suite
updates,
improveme
nts to
config file
upgrade.

Unsupported IDT versions

50

FreeRTOS

User Guide

AWS loT Device
Tester version

IDT v3.0.2

Test suite
versions

FRQ_1.0.1

Supported

FreeRTOS
versions

202002.00

Release date

Release notes

e For more

informati
on, see the
CHANGELOG
.md file in
GitHub.

Adds
automatic
update of test
suites within
IDT. IDT can
now download
the latest test
suites that
are available
for your
FreeRTOS
version. With
this feature,
you can:

« Download
the latest
test suites
using the
upgrade-
test-
suite
command.

« Download
the latest
test suites
by setting

Unsupported IDT versions

51

https://github.com/aws/amazon-freertos/blob/202002.00/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202002.00/CHANGELOG.md

FreeRTOS

User Guide

AWS loT Device

Tester version

Test suite Supported Release date

FreeRTOS

Release notes

a flag when
you start
IDT.

Use the -u
flag option
where flag
can be'y'

to always
download
or 'n' to use
the existing
version.

When there
are multiple
test suite
versions
available,
the latest
version is
used unless
you specify
a test suite
ID when
starting IDT.

Use the new
list-supp
orted-
versions
option to
list the
FreeRTOS

Unsupported IDT versions

52

FreeRTOS

User Guide

AWS loT Device

Tester version

Test suite Supported
versions FreeRTOS
versions

Release date

Release notes

and test
suite
versions
that are
supported
by the
installed
version of
IDT.

o List test
cases in
a group
and run
individual
tests.

Test suites

are versioned

using a
major.minor.patch
format

starting from

1.0.0.

Adds the
list-supp
orted-
products
command

— Lists the
FreeRTOS
and test
suite versions
that are

Unsupported IDT versions

53

FreeRTOS

User Guide

AWS loT Device

Tester version

Test suite Supported
versions FreeRTOS
versions

Release date

Release notes

supported by
the installed
version of IDT.

Adds list-
test-cases
command -
Lists the test
cases that are
available in a
test group.

Adds the
test-id
option for the
run-suite
command
- Use this
option to run
individual test
cases in a test

group.

Unsupported IDT versions

54

FreeRTOS

User Guide

AWS loT Device
Tester version

IDT v1.7.1

Test suite
versions

FRQ_1.0.0

Supported
FreeRTOS
versions

202002.00

Release date

Release notes

e For more

details,

see the
CHANGELOG
.md file in
GitHub.

Supports
the custom
code signing
method for
over-the-air
(OTA) end-
to-end test
cases so that
you can use
your own
code signing
commands
and scripts
to sign OTA
payloads.

Adds a
precheck for
serial ports
before the
start of tests.
Tests will fail
quickly with
improved
error
messaging if
the serial port

Unsupported IDT versions

55

https://github.com/aws/amazon-freertos/blob/202002.00/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202002.00/CHANGELOG.md
https://github.com/aws/amazon-freertos/blob/202002.00/CHANGELOG.md

FreeRTOS User Guide

AWS loT Device Test suite Supported Release date Release notes
Tester version versions FreeRTOS
versions

is misconfig
ured in the
device.js
on file.

« Added an
AWS Managed
Policy
AWSIoTDev
iceTester
ForFreeRT
OSFullAcc
ess with

permissions
required to
run AWS loT
Device Tester.
If new releases
require
additiona

| permissio

ns, we add
them to this
managed
policy so that
you don't have
to manually
update your
IAM permissio
ns.

o Thefile
named
AFQ_Repor

Unsupported IDT versions 56

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

FreeRTOS

User Guide

AWS loT Device

Tester version

IDT v1.6.2

Test suite
versions

FRQ_1.0.0

Supported
FreeRTOS
versions

202002.00

Release date

Release notes

t.xml in
the results
directory

iS now
FRQ_Repor
t.xml .

Supports
optional tests
for OTA over
HTTPS to
qualify your
FreeRTOS
development
boards.

Supports
AWS loT ATS
endpoint in
testing.
Supports
capability to
inform users
on latest IDT
version before
start of test
suite.

Unsupported IDT versions

57

FreeRTOS

User Guide

AWS loT Device
Tester version

IDT v1.5.2

Test suite
versions

FRQ_1.0.0

Supported

FreeRTOS
versions

201910.00

Release date

Release notes

e Supports

qualification
of FreeRTOS
devices

with secure
element
(onboard key).

Supports
configura

ble echo
server ports
for Secure
Sockets and
Wi-Fi test
groups.
Supports
timeout
multiplier flag
to increase
timeouts,
which is useful
when you
troubleshoot
for timeout-r
elated errors.

Added bug
fix for log
parsing.
Supports iot
ats endpoint
in testing.

Unsupported IDT versions

58

FreeRTOS

User Guide

AWS loT Device
Tester version

IDT v1.4.1

IDT v1.3.2

Test suite
versions

FRQ_1.0.0

FRQ_1.0.0

Supported

FreeRTOS
versions

201908.00

201906.00

Release date

Release notes

Added
support for
new PKCS11
library and
test case
updates.

Introduced
actionable
error codes.
For more
information,
see IDT error
codes

Updated IAM
policy used to
run IDT.

Added
support

for testing
Bluetooth Low
Energy (BLE).

Improved user
experienc

e for IDT
command line
interface (CLI)
commands.

Updated IAM
policy used to
run IDT.

Unsupported IDT versions

59

FreeRTOS User Guide

AWS loT Device Test suite Supported Release date Release notes
Tester version versions FreeRTOS
versions
IDT-FreeRTOS FRQ_1.0.0 o FreeRTOS Added support
v1.2 v1.4.8 for testing
+ FreeRTOS FreeRTOS
v1.4.9 devices with the
CMAKE build
system.

IDT-FreeRTOS FRQ_1.0.0
v1.1

IDT-FreeRTOS FRQ_1.0.0
v1.0

Download IDT for FreeRTOS

This topic describes the options to download IDT for FreeRTOS. You can either use one of the
following software download links or you can follow instructions to programmatically download
IDT.

/A Important

As of October 2022, AWS IloT Device Tester for AWS loT FreeRTOS Qualification (FRQ) 1.0
does not generate signed qualification reports. You cannot qualify new AWS loT FreeRTOS
devices to list in the AWS Partner Device Catalog through the AWS Device Qualification
Program using IDT FRQ 1.0 versions. While you can't qualify FreeRTOS devices using IDT
FRQ 1.0, you can continue to test your FreeRTOS devices with FRQ 1.0. We recommend
that you use IDT FRQ 2.0 to qualify and list FreeRTOS devices in the AWS Partner Device

Catalog.

Topics

« Download IDT manually

» Download IDT programmatically

Download IDT for FreeRTOS 60

https://devices.amazonaws.com/
http://aws.amazon.com/partners/programs/dqp/
http://aws.amazon.com/partners/programs/dqp/
https://docs.aws.amazon.com/freertos/latest/userguide/lts-idt-freertos-qualification.html
https://devices.amazonaws.com/
https://devices.amazonaws.com/

FreeRTOS User Guide

By downloading the software, you agree to the AWS loT Device Tester License Agreement
contained in the download archive.

(@ Note

IDT does not support being run by multiple users from a shared location, such as an NFS
directory or a Windows network shared folder. We recommend that you extract the IDT
package to a local drive and run the IDT binary on your local workstation.

Download IDT manually

This topic lists supported versions of IDT for FreeRTOS. As a best practice, we recommend that you
use the latest version of AWS loT Device Tester that supports your target version of FreeRTOS. New
releases of FreeRTOS might require you to download a new version of AWS loT Device Tester. You
receive a notification when you start a test run if AWS loT Device Tester is not compatible with the
version of FreeRTOS you are using.

See Supported versions of AWS IoT Device Tester for FreeRTOS

Download IDT programmatically

IDT provides an API operation that you can use to retrieve a URL where you can download IDT
programmatically. You can also use this APl operation to check if you have the latest version of IDT.
This API operation has the following endpoint.

https://download.devicetester.iotdevicesecosystem.amazonaws.com/latestidt

To call this APl operation, you must have permission to perform the iot-device-
tester:LatestIdt action. Include your AWS signature, with iot-device-tester as the
Service Name

API request

HostOs — The operating system of the host machine. Choose from the following options:
e mac
e linux

« windows

Download IDT manually 61

FreeRTOS User Guide

TestSuiteType — The type of the test suite. Choose the following option:

FR — IDT for FreeRTOS

ProductVersion

(Optional) The version of FreeRTOS. The service returns the latest compatible version of IDT for
that version of FreeRTOS. If you don't specify this option, the service returns the latest version
of IDT.

APl response

The API response has the following format. The DownloadURL includes a zip file.

{
"Success": True or False,
"Message": Message,
"LatestBk": {
"Version": The version of the IDT binary,
"TestSuiteVersion": The version of the test suite,
"DownloadURL": The URL to download the IDT Bundle, valid for one hour
}
}
Examples

You can reference the following examples to programmatically download IDT. These examples
use credentials that you store in the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY
environment variables. To follow best security practices, don't store your credentials in your code.

Example
Example: Download using cURL version 7.75.0 or later (Mac and Linux)

If you have cURL version 7.75.0 or later, you can use the aws-sigv4 flag to sign the API request.
This example uses jq to parse the download URL from the response.

/A Warning

The aws-sigv4 flag requires the query parameters of the curl GET request be in the order
of HostOs/ProductVersion/TestSuiteType or HostOs/TestSuiteType. Orders that do not

Download IDT programmatically 62

https://stedolan.github.io/jq/

FreeRTOS User Guide

conform, will result in an error of getting mismatched signatures for the Canonical String
from the APl Gateway.

If the optional parameter ProductVersion is included, you must use a supported product
version as documented in Supported versions of AWS loT Device Tester for FreeRTOS.

» Replace us-west-2 with your AWS Region. For the list of Region codes, see Regional endpoints.

» Replace 1inux with your host machine's operating system.

» Replace 202107 . 00 with your version of FreeRTOS.

url=$(curl --request GET "https://
download.devicetester.iotdevicesecosystem.amazonaws.com/latestidt?
HostOs=1inux&ProductVersion=202107.00&TestSuiteType=FR" \

--user $AWS_ACCESS_KEY_ID:$AWS_SECRET_ACCESS_KEY \

--aws-sigv4 "aws:amz:us-west-2:iot-device-tester" \

| jg -r '.LatestBk["DownloadURL"]'")

curl $url --output devicetester.zip

Example
Example: Download using an earlier version of cURL (Mac and Linux)

You can use the following cURL command with an AWS signature that you sign and calculate.
For more information about how to sign and calculate an AWS signature, see Signing AWS API

requests.

» Replace Linux with your host machine's operating system.

» Replace Timestamp with the date and time, such as 20220210T004606Z.

» Replace Date with the date, such as 20220210.

» Replace AWSRegion with your AWS Region. For the list of Region codes, see Regional endpoints.

» Replace AWSSignature with the AWS signature that you generate.

curl --location --request GET 'https://
download.devicetester.iotdevicesecosystem.amazonaws.com/latestidt?
HostOs=1inux&TestSuiteType=FR' \

Download IDT programmatically 63

https://docs.aws.amazon.com/freertos/latest/userguide/dev-test-versions-afr.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#regional-endpoints
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html

FreeRTOS User Guide

--header 'X-Amz-Date: Timestamp \
--header 'Authorization: AWS4-HMAC-SHA256 Credential=$AWS_ACCESS_KEY_ID/Date/AWSRegion/
iot-device-tester/aws4_request, SignedHeaders=host;x-amz-date, Signature=AWSSignature'

Example
Example: Download using a Python script

This example uses the Python requests library. This example is adapted from the Python example
to Sign an AWS API request in the AWS General Reference.

» Replace us-west-2 with your region. For the list of Region codes, see Regional endpoints.

» Replace 1inux with your host machine's operating system.

Copyright 2010-2022 Amazon.com, Inc. or its affiliates. All Rights Reserved.

#

This file is licensed under the Apache License, Version 2.0 (the "License").

You may not use this file except in compliance with the License. A copy of the
#lLicense is located at

http://aws.amazon.com/apache2.0/
This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS

OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

HOH F O B O

See: http://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
This version makes a GET request and passes the signature

in the Authorization header.

import sys, os, base64, datetime, hashlib, hmac

import requests # pip install requests

khkkkikkkikikkkikikk*%x REQUEST VALUES khkkkikkkikikkkikikk*%x

method = 'GET'

service = 'iot-device-tester'

host = 'download.devicetester.iotdevicesecosystem.amazonaws.com'
region = 'us-west-2'

endpoint = 'https://download.devicetester.iotdevicesecosystem.amazonaws.com/latestidt’
request_parameters = 'HostOs=1inux&TestSuiteType=FR'

Key derivation functions. See:
http://docs.aws.amazon.com/general/latest/gr/signature-v4-examples.html#signature-v4-
examples-python

Download IDT programmatically 64

https://pypi.org/project/requests/
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

FreeRTOS User Guide

def sign(key, msg):
return hmac.new(key, msg.encode('utf-8'), hashlib.sha256).digest()

def getSignatureKey(key, dateStamp, regionName, serviceName):
kDate = sign(('AWS4' + key).encode('utf-8'), dateStamp)
kRegion = sign(kDate, regionName)
kService = sign(kRegion, serviceName)
kSigning = sign(kService, 'aws4_request')
return kSigning

Read AWS access key from env. variables or configuration file. Best practice is NOT
to embed credentials in code.
access_key = os.environ.get('AWS_ACCESS_KEY_ID')
secret_key = os.environ.get('AWS_SECRET_ACCESS_KEY')
if access_key is None or secret_key is None:
print('No access key is available.')
sys.exit()

Create a date for headers and the credential string

t = datetime.datetime.utcnow()

amzdate = t.strftime('%Y%m%dTSHSM%SZ ')

datestamp = t.strftime('%Y%m%d') # Date w/o time, used in credential scope

#oFxkEkxkkxkkxkx TASK 1: CREATE A CANONICAL REQUEST ****kkkdkkkkkx

http://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
Step 1 is to define the verb (GET, POST, etc.)--already done.

Step 2: Create canonical URI--the part of the URI from domain to query

string (use '/' if no path)

canonical_uri = '/latestidt'

Step 3: Create the canonical query string. In this example (a GET request),
request parameters are in the query string. Query string values must

be URL-encoded (space=%20). The parameters must be sorted by name.

For this example, the query string is pre-formatted in the request_parameters
variable.

canonical_querystring = request_parameters

Step 4: Create the canonical headers and signed headers. Header names

must be trimmed and lowercase, and sorted in code point order from

low to high. Note that there is a trailing \n.

canonical_headers = 'host:' + host + '\n' + 'x-amz-date:' + amzdate + '\n'

Step 5: Create the list of signed headers. This lists the headers

in the canonical_headers list, delimited with ";" and in alpha order.

Note: The request can include any headers; canonical_headers and

signed_headers lists those that you want to be included in the

hash of the request. "Host" and '"x-amz-date" are always required.

Download IDT programmatically 65

FreeRTOS User Guide

signed_headers = 'host;x-amz-date'

Step 6: Create payload hash (hash of the request body content). For GET

requests, the payload is an empty string ("").

payload_hash = hashlib.sha256(("'').encode('utf-8')).hexdigest()

Step 7: Combine elements to create canonical request

canonical_request = method + '\n' + canonical_uri + '\n' + canonical_querystring + '\n'
+ canonical_headers + '\n' + signed_headers + '\n' + payload_hash

oxEkxEkxkxkxkxkx TASK 2: CREATE THE STRING TO SIGN****%x%xkx k%%

Match the algorithm to the hashing algorithm you use, either SHA-1 or

SHA-256 (recommended)

algorithm = 'AWS4-HMAC-SHA256'

credential_scope = datestamp + '/' + region + '/' + service + '/' + 'aws4_request'
string_to_sign = algorithm + '\n' + amzdate + '\n' + credential_scope + '\n' +
hashlib.sha256(canonical_request.encode('utf-8')).hexdigest()

#oFxkEkxkkxkkkkx TASK 3: CALCULATE THE SIGNATURE **** %%k kx

Create the signing key using the function defined above.

signing_key = getSignatureKey(secret_key, datestamp, region, service)

Sign the string_to_sign using the signing_key

signature = hmac.new(signing_key, (string_to_sign).encode('utf-8'),
hashlib.sha256).hexdigest()

oxEkxEkxkxkxkxkx TASK 4: ADD SIGNING INFORMATION TO THE REQUEST ******xkxkxkx

The signing information can be either in a query string value or in

a header named Authorization. This code shows how to use a header.

Create authorization header and add to request headers

authorization_header = algorithm + ' ' + 'Credential=' + access_key + '/' +
credential_scope + ', ' + 'SignedHeaders=' + signed_headers + ', ' + 'Signature=' +
signature

The request can include any headers, but MUST include "host", '"x-amz-date",

and (for this scenario) "Authorization". "host" and "x-amz-date" must

be included in the canonical_headers and signed_headers, as noted

earlier. Order here is not significant.

Python note: The 'host' header is added automatically by the Python 'requests'
library.

headers = {'x-amz-date':amzdate, 'Authorization':authorization_header}

kkkkkkkkkhkkkk*%x SEND THE REQUEST kkkkkkkkkhkkkk*%x

request_url = endpoint + '?' + canonical_querystring
print('\nBEGIN REQUEST++++++++++++++++++++++++++++++++++++")
print('Request URL = ' + request_url)

response = requests.get(request_url, headers=headers)
print('\NRESPONSE+++++++++++++++++++++++++++t++++++++")

print('Response code: %d\n' % response.status_code)

Download IDT programmatically 66

FreeRTOS User Guide

print(response.text)

download_url = response.json()["LatestBk"]["DownloadURL"]
r = requests.get(download_url)
open('devicetester.zip', 'wb').write(r.content)

Use IDT with FreeRTOS qualification suite 2.0 (FRQ 2.0)

The FreeRTOS qualification suite 2.0 is an updated version of FreeRTOS qualification suite. We
recommend developers to use FRQ 2.0 because it consists of relevant test cases to qualify devices
that run FreeRTOS Long Term Support (LTS) libraries.

IDT for FreeRTOS verifies the port of FreeRTOS on your micro-controller, and if it communicates
effectively with AWS loT. Specifically, it verifies the porting layer interfaces with the FreeRTOS
libraries, and if FreeRTOS test repositories are implemented correctly. It also performs end-to-end
tests with AWS loT Core. The tests run by IDT for FreeRTOS are defined in the FreeRTOS GitHub

repository.

IDT for FreeRTOS run tests as embedded applications that it flashes on the microcontroller device
under test. The application binary images include FreeRTOS, the ported FreeRTOS interfaces, and
board device drivers. The purpose of the tests is to verify that the ported FreeRTOS interfaces
function correctly on top of your device drivers.

IDT for FreeRTOS generates test reports that you can submit to AWS loT to get your hardware
listed on the AWS Partner Device Catalog. For more information, see AWS Device Qualification

Program.

IDT for FreeRTOS runs on a host computer (Windows, macQS, or Linux) that is connected to the
device under testing. IDT configures and orchestrates test cases and aggregates results. It also
provides a command line interface to manage running the tests.

In order to test your device, IDT for FreeRTOS creates resources such as AWS loT things, FreeRTOS
groups, Lambda functions. To create these resources, IDT for FreeRTOS uses the AWS credentials
configured in the config. json to make API calls on your behalf. These resources are provisioned
at various times during a test.

When you run IDT for FreeRTOS on your host computer, it performs the following steps:

1. Loads and validates your device and credentials configuration.

2. Performs selected tests with the required local and cloud resources.

Use IDT with FreeRTOS qualification suite 2.0 (FRQ 2.0) 67

https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests
https://aws.amazon.com/partners/dqp/
https://aws.amazon.com/partners/dqp/

FreeRTOS User Guide

3. Cleans up local and cloud resources.

4. Generates tests reports that indicate if your board passed the tests required for qualification.

Topics
Prerequisites
Preparing to test your microcontroller board for the first time

Use the IDT for FreeRTOS user interface to run the FreeRTOS qualification suite 2.0 (FRQ 2.0)

Running the FreeRTOS qualification 2.0 suite

Understanding results and logs

Prerequisites
This section describes the prerequisites for testing microcontrollers with AWS loT Device Tester.

Prepare for FreeRTOS qualification

(® Note

AWS loT Device Tester for FreeRTOS strongly recommends using the latest patch release of
the most recently FreeRTOS-LTS version.

IDT for FRQ 2.0 is a qualification for FreeRTOS. Before running IDT FRQ 2.0 for qualification, you
must complete Qualifying your board in the FreeRTOS Qualification Guide. To port libraries, tests,
and setup the manifest.yml, see Porting the FreeRTOS libraries in the FreeRTOS Porting Guide.
FRQ 2.0 contains a different process for qualification. See Latest changes in qualification in the
FreeRTOS qualification guide for details.

The FreeRTOS-Libraries-Integration-Tests repository must be present for IDT to run. See the

README.md on how to clone and port this repository to your source project. FreeRTOS-Libraries-
Integration-Tests must include the manifest.yml located in the root of your project, for IDT to
run.

(@ Note

IDT is dependent on the tests repository's implementation of UNITY_OUTPUT_CHAR.
The test output logs and the device logs must not interleave with each other. See

Prerequisites 68

https://docs.aws.amazon.com/freertos/latest/qualificationguide/freertos-qualification.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting.html
https://docs.aws.amazon.com/freertos/latest/qualificationguide/latest-changes.html
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/README.md
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-library-logging-macros.html

FreeRTOS User Guide

Implementing the library logging macros section in the FreeRTOS Porting Guide for further
details.

Download IDT for FreeRTOS

Every version of FreeRTOS has a corresponding version of IDT for FreeRTOS to perform
qualification tests. Download the appropriate version of IDT for FreeRTOS from Supported
versions of AWS loT Device Tester for FreeRTOS.

Extract IDT for FreeRTOS to a location on the file system where you have read and write
permissions. Since Microsoft Windows has a character limit for the path length, extract IDT for
FreeRTOS into a root directory such as C:\ or D:\.

(® Note

Multiple users must not run IDT from a shared location, such as an NFS directory or
a Windows network shared folder. This will result in crashes or data corruption. We
recommend that you extract the IDT package to a local drive.

Download Git
IDT must have Git installed as a prerequisite to ensure source code integrity.

Follow the instructions in the GitHub guide to install Git. To verify the current installed version of
Git, enter the command git --version at the terminal.

/A Warning

IDT uses Git to align with a directory's status of clean or dirty. If Git is not installed, the
FreeRTOSIntegrity test groups will either fail, or won't run as expected. If IDT returns an
error such as git executable not foundorgit command not found, install or re-
install Git and try again.

Prerequisites 69

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-library-logging-macros.html
https://docs.aws.amazon.com/freertos/latest/userguide/dev-test-versions-afr.html
https://docs.aws.amazon.com/freertos/latest/userguide/dev-test-versions-afr.html
https://github.com/git-guides/install-git

FreeRTOS User Guide

Create and configure an AWS account

(® Note
The full IDT qualification suite is supported only in the following AWS Regions

« US East (N. Virginia)
» US West (Oregon)
« Asia Pacific (Tokyo)

o Europe (Ireland)

In order to test your device, IDT for FreeRTOS creates resources like AWS loT things, FreeRTOS
groups and Lambda functions. To create those resources, IDT for FreeRTOS requires you to create
and configure an AWS account, and an IAM policy that grants IDT for FreeRTOS permission to
access resources on your behalf while running tests.

The following steps are to create and configure your AWS account.

1. If you already have an AWS account, skip to the next step. Else create an AWS account.

Follow the steps in Creating IAM roles. Do not add permissions or policies at this time.

2
3. To run OTA qualification tests, go to Step 4. Else go to Step 5.
4

Attach the OTA IAM permissions inline policy to your IAM role.
a.
/A Important

The following policy template grants IDT permission to create roles, create
policies, and attach policies to roles. IDT for FreeRTOS uses these permissions for
tests that create roles. Although the policy template doesn't provide administrator
privileges to the user, the permissions can be used to gain administrator access to
your AWS account.

b. Follow the steps below to attach the necessary permissions to your IAM role:

i. Onthe Permissions page, choose Add permissions.

ii. Choose Create inline policy.

Prerequisites 70

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

FreeRTOS

User Guide

Choose the JSON tab and copy the following permissions in to the JSON text box. Use
the template under Most Regions if you are not in the China region. If you are in the
China region, use the template under Beijing and Ningxia Regions.

Most Regions

"Version": "2012-10-17",
"Statement": [

{

"Effect": "Allow",

"Action": "iotdeviceadvisor:*",

"Resource": [
"arn:aws:iotdeviceadvisor:*:*:suiterun/*/*",
"arn:aws:iotdeviceadvisor:*:*:suitedefinition/*"

]

.
{

"Effect": "Allow",

"Action": "iam:PassRole",

"Resource": "arn:aws:iam::*:role/idt*",

"Condition": {
"StringEquals": {
"iam:PassedToService":
"iotdeviceadvisor.amazonaws.com"

}

"Effect": "Allow",
"Action": [
"execute-api:Invoke*",

iam:ListRoles",

iot:Connect",
"iot:Createlob",

jot:DeleteJob",
"iot:DescribeCertificate",

iot:DescribeEndpoint",
"iot:DescribelobExecution",

jot:Describelob",
"iot:DescribeThing",

iot:GetPolicy",
"jot:ListAttachedPolicies",

Prerequisites

71

FreeRTOS User Guide

jot:ListCertificates",
"iot:ListPrincipalPolicies",

iot:ListThingPrincipals",
"iot:ListThings",
"iot:Publish",
"iot:UpdateThingShadow",
"logs:CreatelLogGroup",
"logs:CreatelLogStream",
"logs:DescribelLogGroups",
"logs:DescribelogStreams",
"logs:PutLogEvents",
"logs:PutRetentionPolicy"

1,
"Resource": "*"
},
{
"Effect": "Allow",
"Action": "iotdeviceadvisor:*",
"Resource": "*"
I
{
"Effect": "Allow",
"Action": "logs:DeletelLogGroup",
"Resource": "arn:aws:logs:*:*:log-group:/aws/iot/
deviceadvisor/*"
I
{
"Effect": "Allow",
"Action": "logs:GetLogEvents",
"Resource": "arn:aws:logs:*:*:log-group:/aws/iot/
deviceadvisor/*:log-stream:*"
I
{

"Effect": "Allow",
"Action": [
"iam:CreatePolicy",

iam:DetachRolePolicy",
"iam:DeleteRolePolicy",
"iam:DeletePolicy",
"iam:CreateRole",
"iam:DeleteRole",

"iam:AttachRolePolicy"
1,

"Resource": [

Prerequisites 72

FreeRTOS

User Guide

arn:aws:iam::*:policy/idt*",
"arn:aws:iam::*:role/idt*"

"Effect": "Allow",
"Action": [
"ssm:GetParameters"

]I

"Resource": [

"arn:aws:ssm:*::parameter/aws/service/ami-amazon-linux-
latest/amzn2-ami-hvm-x86_64-gp2"

]

"Effect": "Allow",

"Action": [
"ec2:DescribeInstances",
"ec2:RunInstances",
"ec2:CreateSecurityGroup",
"ec2:CreateTags",
"ec2:DeleteTags"

1,

"Resource": [

"

"Effect": "Allow",

"Action": [
"ec2:CreateKeyPair",
"ec2:DeleteKeyPair"

1,

"Resource": [
"arn:aws:ec2:*:*:key-pair/idt-ec2-ssh-key-*"

"Effect": "Allow",
"Condition": {
"StringEqualsIgnoreCase": {
"aws:ResourceTag/Owner": "IoTDeviceTester"

iy

Prerequisites

73

FreeRTOS User Guide

"Action": [
"ec2:TerminateInstances",
"ec2:DeleteSecurityGroup",
"ec2:AuthorizeSecurityGroupIngress",
"ec2:RevokeSecurityGroupIngress"

1,

"Resource": [

i n

Beijing and Ningxia Regions

The following policy template can be used in the Beijing and Ningxia Regions.

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [
"iam:CreatePolicy",

iam:DetachRolePolicy",

iam:DeleteRolePolicy",

iam:DeletePolicy",

iam:CreateRole",

iam:DeleteRole",

"iam:AttachRolePolicy"

1,

"Resource": [
"arn:aws-cn:iam::*:policy/idt*",
"arn:aws-cn:iam::*:role/idt*"

"Effect": "Allow",
"Action": [
"ssm:GetParameters"

]I

"Resource": [

Prerequisites 74

FreeRTOS User Guide
"arn:aws-cn:ssm:*::parameter/aws/service/ami-amazon-
linux-latest/amzn2-ami-hvm-x86_64-gp2"
]
I
{
"Effect": "Allow",
"Action": [
"ec2:DescribeInstances",
"ec2:RunInstances",
"ec2:CreateSecurityGroup",
"ec2:CreateTags",
"ec2:DeleteTags"
1,
"Resource": [
" n
]
},
{
"Effect": "Allow",
"Action": [
"ec2:CreateKeyPair",
"ec2:DeleteKeyPair"
1,
"Resource": [
"arn:aws-cn:ec2:*:*:key-pair/idt-ec2-ssh-key-*"
]
},
{
"Effect": "Allow",
"Condition": {
"StringEqualsIgnoreCase": {
"aws-cn:ResourceTag/Owner": "IoTDeviceTester"
}
I
"Action": [
"ec2:TerminateInstances",
"ec2:DeleteSecurityGroup",
"ec2:AuthorizeSecurityGroupIngress",
"ec2:RevokeSecurityGroupIngress"
1,
"Resource": [
T
]
}
Prerequisites 75

FreeRTOS User Guide

}

iv. When you're finished, choose Review policy.
v. Enter IDTFreeRTOSIAMPermissions as the policy name.
vi. Choose Create policy.

5. Attach AWSloTDeviceTesterForFreeRTOSFullAccess to your IAM role.
a. To attach the necessary permissions to your IAM role:

i. Onthe Permissions page, choose Add permissions.

ii. Choose Attach policies.

iii. Search for the AWSIoTDeviceTesterForFreeRTOSFullAccess policy. Check the box.
b. Choose Add permissions.

6. Export credentials for IDT. See Getting IAM role credentials for CLI access for details.

AWS loT Device Tester managed policy

The AWSIoTDeviceTesterForFreeRTOSFullAccess managed policy contains the following
AWS loT Device Tester permissions for version checking, auto update features, and collection of
metrics.

e iot-device-tester:SupportedVersion

Grants AWS loT Device Tester permission to fetch the list of supported products, test suites and
IDT versions.

e iot-device-tester:LatestIdt

Grants AWS loT Device Tester permission to fetch the latest IDT version available for download.

e jot-device-tester:CheckVersion

Grants AWS loT Device Tester permission to check version compatibility for IDT, test suites and
products.

e iot-device-tester:DownloadTestSuite

Grants AWS loT Device Tester permission to download test suite updates.

e iot-device-tester:SendMetrics

Prerequisites

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html

FreeRTOS User Guide

Grants AWS permission to collect metrics about AWS loT Device Tester internal usage.

(Optional) Install the AWS Command Line Interface

You might prefer to use the AWS CLI to perform some operations. If you don't have the AWS CLI
installed, follow the instructions at Install the AWS CLI.

Configure the AWS CLI for the AWS Region you want to use by running aws configure from a
command line. For information about the AWS Regions that support IDT for FreeRTOS, see AWS
Regions and Endpoints. For more information about aws configure see Quick configuration with

aws configure.

Preparing to test your microcontroller board for the first time

You can use IDT for FreeRTOS to test your implementation of the FreeRTOS libraries. After you
have ported the FreeRTOS libraries for your board's device drivers, use AWS loT Device Tester to
run the qualification tests on your microcontroller board.

Add library porting layers and implement a FreeRTOS tests repository

To port FreeRTOS for your device, see the FreeRTOS Porting Guide. When implementing the
FreeRTOS tests repository and porting the FreeRTOS layers, you must provide a manifest.yml
with paths to each library, including the tests repository. This file will be in the root directory of

your source code. See manifest file instructions for details.

Configure your AWS credentials

You need to configure your AWS credentials for AWS loT Device Tester to communicate

with the AWS Cloud. For more information, see Set up AWS Credentials and Region for
Development. Valid AWS credentials are specified in the devicetester_extract_location/
devicetester_freertos_[win[mac[linux]/configs/config. json configuration file.

"auth": {

"method": "environment"
}
"auth": {

"method": "file",
"credentials": {

Preparing to test your microcontroller board for the first time

77

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#amazon-freertos-ota-control
https://docs.aws.amazon.com/general/latest/gr/rande.html#amazon-freertos-ota-control
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/freertos/latest/portingguide/porting-guide.html
https://docs.aws.amazon.com/freertos/latest/qualificationguide/afq-checklist-manifest-instr.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html

FreeRTOS User Guide

"profile": "<your-aws-profile>"

The auth attribute of the config. json file has a method field that controls AWS authentication,
and can be declared as either file or environment. Setting the field to environment pulls your AWS
credentials from your host machine’s environment variables. Setting the field to file imports a
specified profile from the .aws/credentials config file.

Create a device pool in IDT for FreeRTOS

Devices to be tested are organized in device pools. Each device pool consists of one or more
identical devices. You can configure IDT for FreeRTOS to test a single device, or multiple devices
in a pool. To accelerate the qualification process, IDT for FreeRTOS can test devices with the same
specifications in parallel. It uses a round-robin method to execute a different test group on each
device in a device pool.

The device. json file has an array in its top level. Each array attribute is a new device pool. Each
device pool has a devices array attribute, which has multiple devices declared. In the template,
there is a device pool and only one device in that device pool. You can add one or more devices to a
device pool by editing the devices section of the device. json template in the configs folder.

® Note

All devices in the same pool must be of the same technical specification and SKU. To
enable parallel builds of the source code for different test groups, IDT for FreeRTOS

copies the source code to a results folder inside the IDT for FreeRTOS extracted folder.

You must reference the source code path in your build or flash command using the
testdata.sourcePath variable. IDT for FreeRTOS replaces this variable with a temporary
path of the copied source code. For more information, see IDT for FreeRTOS variables.

The following is an example device. json file was used to create a device pool with multiple
devices.

"id": "pool-id",
Ilskull: "Sku"’
"features": [

Preparing to test your microcontroller board for the first time 78

FreeRTOS User Guide
{
"name": "Wifi",
"value": "Yes | No"
I
{
"name": "Cellular",
"value": "Yes | No"
I
{
"name": "BLE",
"value": "Yes | No"
I
{
"name": "PKCS11",
"value": "RSA | ECC | Both"
I
{
"name": "OTA",
"value": "Yes | No",
"configs": [
{
"name": "OTADataPlaneProtocol",
"value": "MQTT | HTTP | None"
}
]
I
{
"name": "KeyProvisioning",
"value": "Onboard | Import | Both | No"
}
1,
"devices": [
{
"id": "device-id",
"connectivity": {
"protocol": "uart",
"serialPort": "/dev/tty*"
I
"secureElementConfig" : {
"publicKeyAsciiHexFilePath": "absolute-path-to/public-key-txt-file:
contains-the-hex-bytes-public-key-extracted-from-onboard-private-key",
"publiDeviceCertificateArn": "arn:partition:iot:region:account-
id:resourcetype:resource:qualifier",
"secureElementSerialNumber": "secure-element-serialNo-value",
Preparing to test your microcontroller board for the first time 79

FreeRTOS

User Guide
"preProvisioned" : "Yes | No",
"pkcs11JITPCodeVerifyRootCertSupport": "Yes | No"
},
"identifiers": [
{
"name": "serialNo",
"value": "serialNo-value"
}
]
}
]

The following attributes are used in the device. json file:
id
A user-defined alphanumeric ID that uniquely identifies a pool of devices. Devices that belong

to a pool must be of the same type. When a suite of tests is running, devices in the pool are
used to parallelize the workload.

sku

An alphanumeric value that uniquely identifies the board you are testing. The SKU is used to
track qualified boards.

® Note

If you want to list your board in AWS Partner Device Catalog, the SKU you specify here
must match the SKU that you use in the listing process.

features

An array that contains the device's supported features. AWS loT Device Tester uses this
information to select the qualification tests to run.

Supported values are:
Wifi

Indicates if your board has Wi-Fi capabilities.

Preparing to test your microcontroller board for the first time 80

FreeRTOS

User Guide

Cellular

Indicates if your board has cellular capabilities.

PKCS11

Indicates the public key cryptography algorithm that the board supports. PKCS11 is required
for qualification. Supported values are ECC, RSA, and Both. Both indicates the board
supports both ECC and RSA.

KeyProvisioning

Indicates the method of writing a trusted X.509 client certificate onto your board.

Valid values are Import, Onboard, Both and No. Onboard, Both, or No key provisioning is
required for qualification. Import alone is not a valid option for qualification.

OTA

Use Import only if your board allows the import of private keys. Selecting Import is
not a valid configuration for qualification and should be used only for testing purposes,
specifically with PKCS11 test cases. Onboard, Both or No is required for qualification.

Use Onboard if your board supports on-board private keys (for example, if your device has
a secure element, or if you prefer to generate your own device key pair and certificate).
Make sure you add a secureElementConfig element in each of the device sections and
put the absolute path to the public key file in the publicKeyAsciiHexFilePath field.

Use Both if your board supports both importing private keys and on-board key generation
for key provisioning.

Use No if your board doesn't support key provisioning. Nois only a valid option when your
device is also pre-provisioned.

Indicates if your board supports over-the-air (OTA) update functionality. The
OtaDataPlaneProtocol attribute indicates which OTA dataplane protocol the

device supports. OTA with either HTTP or MQTT dataplane protocol is required for
qualification. To skip running OTA tests while testing, set the OTA feature to No and the
OtaDataPlaneProtocol attribute to None. This will not be a qualification run.

BLE

Indicates if your board supports Bluetooth Low Energy (BLE).

devices.id

A user-defined unique identifier for the device being tested.

Preparing to test your microcontroller board for the first time 81

FreeRTOS User Guide

devices.connectivity.serialPort

The serial port of the host computer used to connect to the devices being tested.

devices.secureElementConfig.PublicKeyAsciiHexFilePath

Required if your board is NOT pre-provisioned or PublicDeviceCertificateArn

is not provided. Since Onboaxrdis a required type of Key Provisioning, this field is currently
required for the FullTransportinterfaceTLS test group. If your device is pre-provisioned,
PublicKeyAsciiHexFilePath is optional and need not be included.

The following block is an absolute path to the file that contains the hex bytes public key
extracted from Onboard private key.

3059 3013 0607 2a86 48ce 3d02 0106 082a
8648 ce3d 0301 0703 4200 Q4cd 6569 ceb8
1bb9 1e72 339f e8cf 60ef Of9f b473 33ac
6f19 1813 6999 3fa® c293 5fae 08f1 1adod
41b7 345c e746 1046 228e 5a5f d787 d571
dcb2 4e8d 75b3 2586 e2cc Oc

If your public key is in .der format, you can hex encode the public key directly to generate the
hex file.

To generate the hex file from a .der public key, enter the following xxd command:

xxd -p pubkey.der > outFile

If your public key is in .pem format, you can extract the base64 encoded headers and footers
and decode it into binary format. Then, you hex encode the binary string to generate the hex
file.

To generate a hex file for a .pem public key, do the following:

1. Run the following base64 command to remove the base64 header and footer from the
public key. The decoded key, named base64key, is then output to the file pubkey.der:

base64 —decode baseb4key > pubkey.der

2. Run the following xxd command to convert pubkey.der to hex format. The resulting key
issaved as outFile

Preparing to test your microcontroller board for the first time 82

FreeRTOS User Guide

xxd -p pubkey.der > outFile

devices.secureElementConfig.PublicDeviceCertificateArn

The ARN of the certificate from your secure element that is uploaded to AWS loT Core. For
information about uploading your certificate to AWS loT Core, see X.509 client certificates in
the AWS IoT Developer Guide.

devices.secureElementConfig.SecureElementSerialNumber

(Optional) The serial number of the secure element. The serial number is optionally used to
create device certificates for JITR key provisioning.

devices.secureElementConfig.preProvisioned

(Optional) Set to "Yes" if the device has a pre-provisioned secure element with locked-down
credentials, that cannot import, create, or destroy objects. If this attribute is set to Yes, you
must provide the corresponding pkcs11 labels.

devices.secureElementConfig.pkcs11JITPCodeVerifyRootCertSupport

(Optional) Set to Yes if the device's corePKCS11 implementation supports storage for JITP. This
will enable the JITP codeverify test when testing core PKCS 11, and requires code verification
key, JITP certificate, and root certificate PKCS 11 labels to be provided.

identifiers

(Optional) An array of arbitrary name-value pairs. You can use these values in the build and
flash commands described in the next section.

Configure build, flash, and test settings

IDT for FreeRTOS builds and flashes tests on to your board automatically. To enable this, you
must configure IDT to run the build and flash commands for your hardware. The build and flash
command settings are configured in the userdata. json template file located in the config
folder.

Configure settings for testing devices

Build, flash, and test settings are made in the configs/userdata. json file. The following JSON
example shows how you can configure IDT for FreeRTOS to test multiple devices:

Preparing to test your microcontroller board for the first time 83

https://docs.aws.amazon.com/iot/latest/developerguide/x509-client-certs.html

FreeRTOS User Guide

"sourcePath": "</path/to/freertos>",
"retainModifiedSourceDirectories": true | false,
"freeRTOSVersion": "<freertos-version>",
"freeRTOSTestParamConfigPath": "{{testData.sourcePath}}/path/from/source/path/to/
test_param_config.h",
"freeRTOSTestExecutionConfigPath": "{{testData.sourcePath}}/path/from/source/path/
to/test_execution_config.h",
"buildTool": {
"name": "your-build-tool-name",
"version": "your-build-tool-version",
"command": [
"<build command> -any-additional-flags {{testData.sourcePath}}"

I
"flashTool": {
"name": "your-flash-tool-name",
"version": "your-flash-tool-version",
"command": [
"<flash command> -any-additional-flags {{testData.sourcePath}} -any-
additional-flags"
]
I
"testStartDelayms": 0,
"echoServerConfiguration": {
"keyGenerationMethod": "EC | RSA",
"serverPort": 9000
1,
"otaConfiguration": {
"otaE2EFirmwarePath": "{{testData.sourcePath}}/relative-path-to/ota-image-
generated-in-build-process",
"otaPALCertificatePath": "/path/to/ota/pal/certificate/on/device",
"deviceFirmwarePath" : "/path/to/firmware/image/name/on/device",
"codeSigningConfiguration": {
"signingMethod": "AWS | Custom",
"signerHashingAlgorithm": "SHA1l | SHA256",
"signerSigningAlgorithm": "RSA | ECDSA",
"signerCertificate": "arn:partition:service:region:account-
id:resource:qualifier | /absolute-path-to/signer-certificate-file",
"untrustedSignerCertificate": "arn:partition:service:region:account-
id:resourcetype:resource:qualifier",
"signerCertificateFileName": "signerCertificate-file-name",
"compileSignerCertificate": true | false,

Preparing to test your microcontroller board for the first time 84

FreeRTOS User Guide

J// FrREFExxxx%%|Jse signerPlatform if you choose AWS for
SigningMethod***************
"signerPlatform": "AmazonFreeRTOS-Default | AmazonFreeRTOS-TI-CC3220SF"

}I

kkhkkkkkkkkk

This section is used for PKCS #11 labels of private key, public key, device
certificate, code verification key, JITP certificate, and root certificate.
When configuring PKCS11, you set up labels and you must provide the labels of the
device certificate, public key,
and private key for the key generation type (EC or RSA) it was created with. If
your device supports PKCS1l storage of JITP certificate,
code verification key, and root certificate, set
'pkcs11]JITPCodeVerifyRootCertSupport' to 'Yes' in device.json and provide the
corresponding labels.
kkkkkkkkk*%x
"pkcslllLabelConfiguration:{
"pkcslllLabelDevicePrivateKeyForTLS": '"<device-private-key-label>",
"pkcslllLabelDevicePublicKeyForTLS": "<device-public-key-label>",

"pkcslllLabelDeviceCertificateForTLS": '"<device-certificate-label>",

"pkcslllLabelPreProvisionedECDevicePrivateKeyForTLS": "<preprovisioned-ec-
device-private-key-label>",

"pkcslllLabelPreProvisionedECDevicePublicKeyForTLS": "<preprovisioned-ec-device-
public-key-label>",

"pkcslllLabelPreProvisionedECDeviceCertificateForTLS": "<preprovisioned-ec-
device-certificate-label>",

"pkcslllLabelPreProvisionedRSADevicePrivateKeyForTLS": "<preprovisioned-rsa-
device-private-key-label>",

"pkcslllLabelPreProvisionedRSADevicePublicKeyForTLS": "<preprovisioned-rsa-
device-public-key-label>",

"pkcsllLabelPreProvisionedRSADeviceCertificateForTLS": "<preprovisioned-rsa-

device-certificate-label>",
"pkcslllLabelCodeVerifyKey": "<code-verification-key-label>",
"pkcslllLabel]ITPCertificate": "<JITP-certificate-label>",
"pkcslllLabelRootCertificate": "<root-certificate-label>"

The following lists the attributes used in userdata. json:

Preparing to test your microcontroller board for the first time 85

FreeRTOS User Guide

sourcePath

The path to the root of the ported FreeRTOS source code.

retainModifiedSourceDirectories

(Optional) Checks if to retain the modified source directories used during building and flashing
for debugging purposes. If set to true, the modified source directories are named retainedSrc
and found within the results log folders in each test group run. If not included, the field defaults
to false.

freeRTOSTestParamConfigPath

The path to test_param_config.h file for FreeRTOS-Libraries-Integration-Tests integration.
This file must use the {{testData.sourcePath}} placeholder variable to make it relative
to the source code root. AWS loT Device Tester uses the parameters in this file to configure the
tests.

freeRTOSTestExecutionConfigPath

The path to test_execution_config.h file for FreeRTOS-Libraries-Integration-Tests
integration. This file must use the {{testData.sourcePath}} placeholder variable to make
it relative to the repository root. AWS loT Device Tester uses this file to control which tests must
run.

freeRTOSVersion

The version of FreeRTOS including the patch version used in your implementation. See
Supported versions of AWS loT Device Tester for FreeRTOS for the FreeRTOS versions
compatible with AWS loT Device Tester for FreeRTOS.

buildTool

The command to build your source code. All references to the source code path

in the build command must be replaced by the AWS loT Device Tester variable
{{testData.sourcePath}}. Use the {{config.idtRootPath}} placeholder to reference a
build script relative to the AWS loT Device Tester root path.

flashTool

The command to flash an image to your device. All references to the source code

path in the flash command must be replaced by the AWS loT Device Tester variable
{{testData.sourcePath}}. Use the {{config.idtRootPath}} placeholder to reference a
flash script relative to the AWS loT Device Tester root path.

Preparing to test your microcontroller board for the first time 86

https://docs.aws.amazon.com/freertos/latest/userguide/dev-test-versions-afr.html

FreeRTOS User Guide

® Note

The new integration tests structure with FRQ 2.0 doesn't require path variables such

as {{enableTests}} and {{buildImageName}}. The OTA End to End tests are run
with the config templates provided in the FreeRTOS-Libraries-Integration-Tests GitHub
repository. If the files in the GitHub repository are present in your parent source project,
the source code isn't changed between tests. If a different build image for OTA End

to End is needed, you must build this image in the build script and specify it in the
userdata. json file specified under otaConfiguration.

testStartDelayms

Specifies how many milliseconds the FreeRTOS test runner will wait before starting to run tests.
This can be useful if the device under test begins to output important test information before
IDT has a chance to connect and start logging due to network or other latency issues. This value
is applicable to FreeRTOS test groups only, and not to other test groups that do not utilize the
FreeRTOS test runner, such as the OTA tests. If you receive an error related to expected 10 but
received 5, this field should be set to 5000.

echoServerConfiguration

The configuration to setup the echo server for the TLS test. This field is required.

keyGenerationMethod

The echo server is configured with this option. The options are EC, or RSA.

serverPort

The port number on which the echo server runs.

otaConfiguration

The configuration for OTA PAL and OTA E2E tests. This field is required.

otaE2EFirmwarePath

Path to the OTA bin image that IDT uses for the OTA End to End tests.
otaPALCexrtificatePath

The path to the certificate for OTA PAL test on device. This is used to verify the signature.
For example, ecdsa-sha256-signer.crt.pem.

Preparing to test your microcontroller board for the first time 87

https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/blob/main/config_template/

FreeRTOS User Guide

deviceFirmwarePath

The path to the hard coded name for the firmware image to boot. If your device does NOT
use the file system for firmware boot, specify this field as 'NA"'. If your device uses the file
system for firmware boot, specify the path or name to the firmware boot image.

codeSigningConfiguration

signingMethod

The code signing method. Possible values are AWS or Custom.

(@ Note

For the Beijing and Ningxia Regions, use Custom. AWS code signing is not
supported in that region.

signerHashingAlgorithm

The hashing algorithm supported on the device. Possible values are SHA1 or SHA256.

signerSigningAlgorithm

The signing algorithm supported on the device. Possible values are RSA or ECDSA.

signexrCertificate

The trusted certificate used for OTA. For the AWS code signing method, use the Amazon
Resource Name (ARN) for the trusted certificate uploaded to the AWS Certificate
Manager. For the Custom code signing method, use the absolute path to the signer
certificate file. For information about creating a trusted certificate, see Create a code-
signing certificate.

untrustedSignerCertificate

The ARN or filepath for a second certificate used in some OTA tests as an untrusted
certificate. For information about creating a certificate, see Create a code-signing
certificate.

signerCertificateFileName

The file name of the code signing certificate on the device. This value must match the file
name that you provided when you ran the aws acm import-certificate command.

Preparing to test your microcontroller board for the first time 88

https://docs.aws.amazon.com/freertos/latest/userguide/ota-code-sign-cert.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-code-sign-cert.html
https://docs.aws.amazon.com//freertos/latest/userguide/ota-code-sign-cert.html
https://docs.aws.amazon.com//freertos/latest/userguide/ota-code-sign-cert.html

FreeRTOS User Guide

compileSignerCertificate

Boolean value that determines the status of the signature verification certificate. Valid
values are true and false.

Set this value to true if the code signer signature verification certificate is not
provisioned or flashed. It must be compiled into the project. AWS IoT Device Tester
fetches the trusted certificate and compiles it into aws_codesigner_certificate.h.

signerPlatform

The signing and hashing algorithm that AWS Code Signer uses while creating the OTA
update job. Currently, the possible values for this field are AmazonFreeRTOS-TI-
CC3220SF and AmazonFreeRTOS-Default.

e Choose AmazonFreeRTOS-TI-CC3220SF if SHA1 and RSA.
e Choose AmazonFreeRTOS-Default if SHA256 and ECDSA.

« If you need SHA256 | RSA or SHA1 | ECDSA for your configuration, contact us for
further support.

« Configure signCommand if you chose Custom for signingMethod.

signCommand

Two placeholders {{inputImageFilePath}} and {{outputSignatureFilePath}}
are required in the command. {{inputImageFilePath}} is the file path of the image
built by IDT to be signed. { {outputSignatureFilePath}} is the file path of the
signature which will be generated by the script.

pkcslllLabelConfiguration

PKCS11 label configuration requires at least one set of labels of device certificate label, public

key label, and private key label to run the PKCS11 test groups. The required PKCS11 labels are

based on your device configuration in the device. json file. If pre-provisioned is set to Yes in

device. json, then the required labels must be one of the below depending on what's chosen
for the PKCS11 feature.

e PreProvisionedEC

e PreProvisionedRSA

If pre-provisioned is set to No in device. json, then the required labels are:

Preparing to test your microcontroller board for the first time 89

FreeRTOS User Guide

e pkcslllLabelDevicePrivateKeyForTLS
« pkcslllLabelDevicePublicKeyForTLS
« pkcslllLabelDeviceCertificateForTLS

The following three labels are required only if you select Yes for
pkcs11JITPCodeVerifyRootCertSupport in your device. json file.

e pkcslllabelCodeVerifyKey
e pkcslllLabelRootCertificate
e pkcslllLabellITPCertificate

The values for these fields should match the values defined in the FreeRTOS Porting Guide.

pkcsllLabelDevicePrivateKeyFoxTLS

(Optional) This label is used for the PKCS #11 label of the private key. For devices with
onboard and import support of key provisioning, this label is used for testing. This label may
be different than the one defined for the pre-provisioned case. If you have key provisioning
set to No and pre-provisioned set to Yes, in device. json, this will be undefined.

pkcsllLabelDevicePublicKeyForTLS

(Optional) This label is used for the PKCS #11 label of the public key. For devices with
onboard and import support of key provisioning, this label is used for testing. This label may
be different than the one defined for pre-provisioned case. If you have key provisioning set
to No and pre-provisioned set to Yes, in device. json, this will be undefined.

pkcsllLabelDeviceCertificateFoxTLS

(Optional) This label is used for the PKCS #11 label of the device certificate. For devices with

onboard and import support of key provisioning, this label will be used for testing. This label
may be different than the one defined for pre-provisioned case. If you have key provisioning

set to No and pre-provisioned set to Yes, in device. json, this will be undefined.

pkcsllLabelPreProvisionedECDevicePrivateKeyFoxrTLS

(Optional) This label is used for the PKCS #11 label of the private key. For devices
with secure elements or hardware limitations, this will have a different label to
preserve AWS loT credentials. If your device supports pre-provisioning with an EC
key, provide this label. When preProvisioned is set to Yes in device. json, this label,

Preparing to test your microcontroller board for the first time 90

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html

FreeRTOS User Guide

pkcslllLabelPreProvisionedRSADevicePrivateKeyForTLS, or both must be
provided. This label may be different than the one defined for onboard and import cases.

pkcsllLabelPreProvisionedECDevicePublicKeyFoxTLS

(Optional) This label is used for the PKCS #11 label of the public key. For devices

with secure elements or hardware limitations, this will have a different label to

preserve AWS loT credentials. If your device supports pre-provisioning with an EC

key, provide this label. When preProvisioned is set to Yes in device. json, this label,
pkcslllLabelPreProvisionedRSADevicePublicKeyForTLS, or both must be provided.
This label may be different than the one defined for onboard and import cases.

pkcsllLabelPreProvisionedECDeviceCertificateFoxTLS

(Optional) This label is used for the PKCS #11 label of the device certificate. For

devices with secure elements or hardware limitations, this will have a different label

to preserve AWS loT credentials. If your device supports pre-provisioning with an EC

key, provide this label. When preProvisioned is set to Yes in device. json, this label,
pkcslllLabelPreProvisionedRSADeviceCertificateForTLS, or both must be
provided. This label may be different than the one defined for onboard and import cases.

pkcsllLabelPreProvisionedRSADevicePrivateKeyFoxTLS

(Optional) This label is used for the PKCS #11 label of the private key. For devices

with secure elements or hardware limitations, this will have a different label to

preserve AWS loT credentials. If your device supports pre-provisioning with an RSA

key, provide this label. When preProvisioned is set to Yes in device. json, this label,
pkcslllLabelPreProvisionedECDevicePrivateKeyForTLS, or both must be provided.

pkcsllLabelPreProvisionedRSADevicePublicKeyFoxTLS

(Optional) This label is used for the PKCS #11 label of the public key. For devices

with secure elements or hardware limitations, this will have a different label to

preserve AWS loT credentials. If your device supports pre-provisioning with an RSA

key, provide this label. When preProvisioned is set to Yes in device. json, this label,
pkcslllLabelPreProvisionedECDevicePublicKeyFoxTLS, or both must be provided.

pkcsllLabelPreProvisionedRSADeviceCertificateForTLS

(Optional) This label is used for the PKCS #11 label of the device certificate. For
devices with secure elements or hardware limitations, this will have a different label
to preserve AWS loT credentials. If your device supports pre-provisioning with an RSA

Preparing to test your microcontroller board for the first time 91

FreeRTOS User Guide

key, provide this label. When preProvisioned is set to Yes in device. json, this label,
pkcslllLabelPreProvisionedECDeviceCertificateForTLS, or both must be
provided.

pkcsllLabelCodeVerifyKey

(Optional) This label is used for the PKCS #11 label of the code verification key. If your
device has PKCS #11 storage support of the JITP certificate, code verification key, and
root certificate, provide this label. When pkcs11JITPCodeVerifyRootCertSupport in
device. json is set to Yes, this label must be provided.

pkcsllLabelJITPCertificate

(Optional) This label is used for the PKCS #11 label of the JITP certificate. If your device has
PKCS #11 storage support of the JITP certificate, code verification key, and root certificate,

provide this label. When pkcs11JITPCodeVerifyRootCertSupport in device.jsonis
set to Yes, this label must be provided.

IDT for FreeRTOS variables

The commands to build your code and flash the device might require connectivity or other
information about your devices to run successfully. AWS loT Device Tester allows you to reference
device information in flash and build commands using JsonPath. By using simple JsonPath
expressions, you can fetch the required information specified in your device. json file.

Path variables

IDT for FreeRTOS defines the following path variables that can be used in command lines and
configuration files:

{{testData.sourcePath}}

Expands to the source code path. If you use this variable, it must be used in both the flash and
build commands.

{{device.connectivity.serialPort}}

Expands to the serial port.

{{device.identifiers[?(@.name == 'serialNo')].value[0]}}

Expands to the serial number of your device.

Preparing to test your microcontroller board for the first time 92

http://goessner.net/articles/JsonPath/

FreeRTOS User Guide

{{config.idtRootPath}}

Expands to the AWS loT Device Tester root path.

Use the IDT for FreeRTOS user interface to run the FreeRTOS
qualification suite 2.0 (FRQ 2.0)

AWS loT Device Tester for FreeRTOS (IDT for FreeRTOS) includes a web-based user interface (Ul)
where you can interact with the IDT command line application and related configuration files. You
use the IDT for FreeRTOS Ul to create a new configuration, or modify an existing one, for your
device. You can also use the Ul to call the IDT application and run the FreeRTOS tests against your
device.

For information about how to use the command line to run qualification tests, see Preparing to test

your microcontroller board for the first time.

This section describes the prerequisites for the IDT for FreeRTOS Ul and how to run qualifications
tests from the Ul.

Topics

 Prerequisites
« Configure AWS credentials

« Open the IDT for FreeRTOS Ul

» Create a new configuration

» Modify an existing configuration

» Run qualification tests

Prerequisites

To run tests through the AWS IoT Device Tester (IDT) for FreeRTOS Ul, you must complete the
prerequisites on the Prerequisites page for IDT FreeRTOS Qualification (FRQ) 2.x.

Configure AWS credentials

You must configure your IAM user credentials for the AWS user you created in Create and configure

an AWS account. You can specify your credentials in one of two ways:

« In a credentials file

Use the IDT Ul to run the FreeRTOS qualification suite 93

FreeRTOS User Guide

« As environment variables

Configure AWS credentials with a credentials file

IDT uses the same credentials file as the AWS CLI. For more information, see Configuration and

credential files.

The location of the credentials file varies based on the operating system you use:

« macOS and Linux-~/.aws/credentials

e Windows - C:\Users\UserName\.aws\credentials

Add your AWS credentials to the credentials file in the following format:

[default]
aws_access_key_id = your_access_key_id
aws_secret_access_key = your_secret_access_key

(® Note

If you don't use the default AWS profile, you must specify the profile name in the IDT for
FreeRTOS Ul. For more information about profiles, see Named profiles.

Configure AWS credentials with environment variables

Environment variables are variables maintained by the operating system and used by system
commands. They're not saved if you close the SSH session. The IDT for FreeRTOS Ul uses the
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables to store your AWS
credentials.

To set these variables on Linux, macOS, or Unix, use export:

export AWS_ACCESS_KEY_ID=your_access_key_id
export AWS_SECRET_ACCESS_KEY=your_secret_access_key

To set these variables on Windows, use set:

set AWS_ACCESS_KEY_ID=your_access_key_id

Use the IDT Ul to run the FreeRTOS qualification suite 94

https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html

FreeRTOS User Guide

set AWS_SECRET_ACCESS_KEY=your_secret_access_key

Open the IDT for FreeRTOS Ul
To open the IDT for FreeRTOS Ul

1. Download a supported IDT for FreeRTOS version. Then extract the downloaded archive to a
directory that you have read and write permissions for.

2. Navigate to the IDT for FreeRTOS installation directory:
cd devicetester-extract-location/bin
3. Run the following command to open the IDT for FreeRTOS Ul:

Linux
.devicetester_ui_linux_x86-64
Windows
./devicetester_ui_win_x64-64
macOS

./devicetester_ui_mac_x86-64

(® Note

In macOS, to allow your system to run the Ul, go to System Preferences -> Security
& Privacy. When you run the tests, you may need to do this three more times. this

The IDT for FreeRTOS Ul opens in your default browser. The latest three major versions of the
following browsers support the Ul:

» Google Chrome

» Mozilla Firefox

» Microsoft Edge

Use the IDT Ul to run the FreeRTOS qualification suite 95

FreeRTOS User Guide

« Apple Safari for macOS

® Note

For a better experience, we recommend Google Chrome or Mozilla Firefox to access the
IDT for FreeRTOS UI. Microsoft Internet Explorer isn't supported by the UL.

/A Important

You must configure your AWS credentials before you open the Ul. If you haven't
configured your credentials, close the IDT for FreeRTOS Ul browser window, follow the
steps in Configure AWS credentials, and then reopen the IDT for FreeRTOS UI.

Create a new configuration

If you're a first-time user, you must create a new configuration to set up the JSON configuration
files that IDT for FreeRTOS requires to run tests. You can then run tests or modify the created
configuration.

For examples of the config. json, device. json, and userdata. json files, see Preparing to
test your microcontroller board for the first time.

To create a new configuration

1. Inthe IDT for FreeRTOS Ul, open the navigation menu, and choose Create new configuration.

Use the IDT Ul to run the FreeRTOS qualification suite 96

FreeRTOS

User Guide

Device Tester for
FreeRTOS

Create new configuration

Edit existing configuration

Run tests

Device Tester for FreeRTOS
Automated self-testing of

microcont

How it works

Getting started with Device Tester for FreeRTOS is easy. Download Device Tester for

FreeRTOS, connect the target microcontroller board through USB, configure Device Tester
for FreeRTOS, and run the Device Tester for FreeRTOS tests. Device Tester for FreeRTOS
runs the test cases on the target device and stores the results on your computer. You can

review results and resolve any compatibility issues to pass the tests.

AW 1T Care

Create a new configuration

Set up the configuration for IDT for FreeRTOS to be able
to run tests.

Pricing

Device Tester for FreeRTOS is free to use.

However, you are responsible for any costs associated
with cloud usage as part of running qualification tests.
On average, a single run of Device Tester for FreeRTOS
costs less than a cent.

Getting started [4

Using Device Tester for FreeRTOS

Benefits and features

Gain confidence

Device Tester for FreeRTOS gives you the
flexibility to test FreeRTOS on your choice
of microcontroller at your convenience.
Use Device Tester for FreeRTQS to verify
if the device is compatible with FreeRTOS
throughout its lifecycle, and when when
new releases of FreeRTOS are available.

Get listed

Passing the Device Tester for FreeRTOS
tests is required for the Device
Qualification Program. As part of the
Device Qualification Program, your device
is listed in the Partner Device Catalog.

Make testing easy

Device Tester for FreeRTOS automatically
runs a sequence of selected tests and
aggregates and stores the test results. It
sets up the required test resources and
automates compiling and flashing of
binary images that include FreeRTOS,
ported device drivers, and the test logic.
You can run tests concurrently on
multiple microcontrollers, which
improves throughput and reduces testing
time.

More resources [2

FAQ

Contact us

Related services

loT Core (&

loT Core lets you connect loT devices to
the cloud without provisioning or
managing servers.

FreeRTOS [2

FreeRTOS is a market-leading real-time
woperating system (RTOS) for
microcontrollers and small
microprocessars.

loT Core Device Advisor (&

loT Core Device Advisor is a cloud-based,
fully managed test capability for
validating loT devices during device
software development.

Use the IDT Ul to run the FreeRTOS qualification suite

97

FreeRTOS User Guide

2. Follow the configuration wizard to enter the IDT configuration settings used to run
qualification tests. The wizard configures the following settings in JSON configuration files
located inthe devicetester-extract-location/config directory.

» Device settings — The device pool settings for the devices to be tested. These settings
are configured in the id and sku fields, and the devices block for the device pool in the

config. json file.

Use the IDT Ul to run the FreeRTOS qualification suite 98

FreeRTOS

User Guide

Device Tester for FreeRTOS » Create new configuration

Step 1 . .
e — Device settings w.

This is the device pool to be tested. AWS loT Device Tester (IDT) will setup, orchestrate, and run the appropriate tests on these

devices based on their configuration.
Step 2

AWS account settings

Configure a device pool
Step 3 The common setting information for all devices in the pool.
FreeRTOS implementation

Identifier SKU Info
Step 4 The user given name for all devices being tested. SKU (Stock Keeping Unit) of the devices being tested
PKCS #11 labels and Echo my-device-pool ‘ | my-device-sku
server
Connectivity method
Step 5 Select the connectivity method(s) the device supports.
Over-the-air (OTA) updates ["] wi-Fi
] Cellular
] BLE
Step 6 —
Review

Private key provisioning Info
Describe how private keys are inserted into the device,

) Import
© Onboard

Both import and anboard

) Key provisioning is not supported

PKCS #11 Info
The public key cryptography algorithm that the board supports.

O Ec
) RSA
Both

Devices

The devices to be tested must be ready and connected to the machine running IDT for FreeRTOS.

Device 1

Device id Serial port
A unique identifier for the device being tested. The serial port for device communication.

my-device | ‘ Jabsolute/path/to/serial/port ‘

Public key ASCII hex file path — Required if the device is NOT pre-provisioned Info
The absolute path to public key corresponding to onboard private key.

<absolute-path-to/public-key-txt-file: contains-the-hex-bytes-public-key-extracted-frorr ‘

Public device certificate uploaded to loT Core — Required if public key ASCII hex file path is NOT provided Info
The ARN (Amazon Resource Name) of the device certificate uploaded to AWS loT Core.

‘ arn:partition:iot:region:account-id:resourcetype:resource:qualifier ‘

Pre-provisioned secure element
The device has a secure element with a pre-provisioned key that cannot be modified.

O No

PKCS #11 JITP storage support
The device's core PKCS #11 implementation supports storage for JITP, This enables the JITP code verify test while testing core PKCS #11,
and requires the code verification key, JITP certificate, and root certificate PKCS #11 labels to be provided.

) Yes

© No

Secure element serial number — optional
If provided, Device Tester will include this while creating device certificates for JITR key provisioning.

AABBCCDDEE

Identifiers
Arbitrary key/value pairs associated with the device.

No identifiers are associated with the device.

Add a new identifier

Add a new device

SKU

If testing for device qualification,
the SKU provided in this section
must exactly match the SKU used
in the device listing process.

« AWS account settings — The AWS account information that IDT for FreeRTOS uses to create

AWS resources during test runs. These settings are configured in the config. json file.

Use the IDT Ul to run the FreeRTOS qualification suite

99

FreeRTOS

User Guide

Device Tester for FreeRTOS » Create new configuration

Step 1

AWS account settings .

Device settings

Settings related to the AWS account used for testing.

Step2

AWS it setti " o
B Access information info

Step 3

FreeRTOS implementation Account region

us-west-2
Step 4
PKCS #11 labels and Echo Credentials location
server © File
Retrieve credentials from the AWS credentials file
Step 5 E

otrie edentials f the
Over-the-air (OTA) updates Retries ntials from the

Profile name

step 6
- default
Review

Cancel Previous m

Access information %

There are two ways to give IDT for
FreeRTOS access to an AWS
account for testing:

File — Retrieves credentials from

the standard AWS credentials file.
You must provide the name of the
profile to use.

Environment — Retrieves
credentials from system
environment variables. To use
environment variables, you must
export your AWS credentials before
you run the IDT GUI executable.
Otherwise, you must restart the
IDT GUI executable.

Learn more [2

Configuring credentials

» FreeRTOS implementation — The absolute path to the FreeRTOS repository and ported
code, and the FreeRTOS version you want to run IDT FRQ on. The paths to the execution

and parameter config header files from the FreeRTOS-Libraries-Integration-Tests

GitHub repository. The build and flash commands for your hardware that allow IDT to

build and flash tests onto your board automatically. These settings are configured in the

userdata. json file.

Use the IDT Ul to run the FreeRTOS qualification suite

100

FreeRTOS

User Guide

Device Tester for FreeRTOS » Create new configuration

Step 1
Device settings

Step 2
AWS account settings

Step 3
FreeRTOS implementation

Step 4
PKCS #11 labels and Echo

server

Step 5
Over-the-air (OTA) updates

Step 6
Review

FreeRTOS implementation .«

Configuration for the FreeRTOS port to be tested.

Repository paths info

Paths to elements of the FreeRTOS port, so Device Tester can hook into and use it for testing.

Repository root path
Path to the repository containing the FreeRTOS port.

| /path/to/freertos

FreeRTOS test parameter configuration path info
Path to the test_param_config.h file for FreeRTOS-Libraries-Integration-Tests integration.

| {{testData.sourcePath}}/path/to/test_param_config.h

FreeRTOS test execution configuration path Info
Path to the test_execution_canfig.h file for FreeRTOS-Libraries-Integration-Tests integration.

| {{testData.sourcePath}}/path/to/test_execution_config.h

FreeRTOS version
The FreeRTOS version of the port

| 202210.00-LTS

Build tool

Program to run that builds the FreeRTOS source code Into an image.

Name

| my-build-tool

Version

|1D

Build commands Info
The shell commands that invoke the tool

Command 1

| <build command or script> -any-additional-flags {{testData.sourcePath}}

Add another command

Flash tool

This tool flashes the built FreeRTOS source code onto the device.

Name

| my-flash-tool

Version

| 1.0

Test start delay — optional

The number of milliseconds to delay tests after the flash. Set this variable if IDT misses the start of the tests.

| 5000

Must be between 0 and 30000,

Flash commands Iinfo
The shell commands that invoke the tool.

Command 1

<flash command or script> -any-additional-flags {{testData.sourcePath}} {{de

Add another command

FreeRTOS
implementation

Ported FreeRTOS code must be
available on the local machine to
begin automated testing with
Device Tester. When running tests,
Device Tester first makes a copy of
the repository and then configures,
builds, and flashes it to the device
under test. This enables Device
Tester to run tests end-to-end
without user interaction.

This page provides information
about the location of the code,
how it's integrated with the testing
library, what the FreeRTOS version
is, and how it should be used.

« PKCS #11 labels and Echo server — The PKCS #11 labels that correspond to the keys
provisioned in your hardware based on the key functionality and key provisioning method.
The echo server configuration settings for the Transport Interface tests. These settings are

configured in the userdata. json and device. json files.

Use the IDT Ul to run the FreeRTOS qualification suite 101

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html

FreeRTOS

User Guide

Device Tester for FreeRTOS > Create new configuration PKCS #11 labels

Step 1
Device settings

Step 2
AWS account settings

Step 3
FreeRTOS implementation

Step 4
PKCS #11 labels and Echo
server

Step 5
Over-the-air (OTA) updates

Step 6

Review

PKCS #11 labels and Echo server v Testerwill o e

Settings for the PKCS #11 labels and Echo server creation configuration used during testing. Full_PKCS11 FreeRTOS-Libraries-
Integration-Tests test group
multiple times with different label
configurations, provided if the
device supports pre-provisioned
credentials and other provisioning

PKCS #11 labels info
The labels used in PKCS #11 tests,

PKCS labels for onboard or import key provisioning devices — Required if the device supports onboard or import key mechanisms.

provisioning info For information on these labels

For devices with on-chip storage, this should match the non-test label. and their configurations, refer to

Public key label Private key label Device certificate label Porting the corePKCS11 library
Enter label | ‘ Enter label | ‘ Enter label below.

PKCS labels for pre-provisioned devices with EC key function — Required if the device is pre-provisioned with PKCS EC

key function Info Learn more [2
For EC key function devices with secure elements or hardware limitations.

Public key label Private key label Device certificate label Porting the corePKCS11 library

Enter label | ‘En!er(nh@! | ‘Entar!abel

PKCS labels for pre-provisioned devices with RSA key function — Required if the device is pre-provisioned with PKCS

RSA key function Info
For RSA key function devices with secure elements or hardware limitations.

Public key label Private key label Device certificate label

Enter label | ‘Enzer(abe! | ‘Emer!abel

PKCS Just-In-Time-Provisioning (JITP) labels — Required for devices with storage support JITP Info
The PKCS #11 test verifies the following labels with create/destroy objects.

Code verification key JITP Certificate Root Certificate

Enter label | ‘En!er(nh@! | ‘Entar!abel ‘

Echo server isfo

Server settings.

Key generation method
The Echo server is created and configured with this key generation function.

O EC
) RSA

Server port number
Enter a port number where the Echo server will run.

9000

Must be between 1024 and 49151

Cancel

» Over-the-air (OTA) updates — The settings that control OTA functionality tests. These
settings are configured in the features block of the device. json and userdata. json

files.

Use the IDT Ul to run the FreeRTOS qualification suite

102

FreeRTOS

User Guide

Step 1
Device settings

Step 2
AWS account settings

Step 3
FreeRTOS implementation

Step 4
PKCS #11 labels and Echo
server

Step 5
Over-the-air (OTA) updates

Step 6
Review

Device Tester for FreeRTOS > Create new configuration

Over-the-air (OTA) updates i«

The settings for over-the-air firmware update tests.
Over-the-air update tests

|| Skip over-the-air update tests
Skip this step if you have not ported libraries for over-the-air updates.

Protocols

Data plane protocol
The protocol used to download the OTA update data.
O HTTP

O MQT

File paths
The paths to various OTA related files.

Built firmware path Info

The path to the OTA image created after the build script is run, used in the OTA End to End tests.

| {{testData.sourcePath}}/path/to/ota-image.bin

Device firmware path Info

The file system path on the device under test to the firmware boot image. If the device does NOT use the file system for firmware boot, use

"NA’ for this field.

| /Jpathfonfdevice/to/firmware-boot-image.bin

OTA portable abstraction layer (PAL) certificate path Info

The path on the device to the certificate used in the OTA portable abstraction layer (PAL) tests.

| /pathfon/device/to/ota-pal-certificate.pem

OTA image code signing info

The configuration for code signing Images in OTA End to End testing.

Signing method

Specifices how OTA images must be signed. For regions where AWS Signer isn't supported, use custom cade signing

© AWS code signing
Images will be signed by AWS Signer in the cloud.

(©) Custom code signing

Images will be signed locally before upload to the cloud.

Hashing algerithm
The algorithm used to hash the image.

© SHA256 — recommended
() SHA1

Signing algorithm
The algorithm used to sign the image.

O RSA
() ECDSA

Trusted signer certificate ARN Info
The trusted signer certificate uploaded to ACM.

| arn:aws:acm:us-west-2:<account-id>:certificate/<trusted-certificate-id>

Untrusted signer certificate ARN Info
The untrusted signer certificate uploaded to ACM

| arn:aws:acm:us-west-2:<account-id>:certificate/<untrusted-certificate-id>

Signer certificate file name Info
The name of the signer certificate on the device.

| foo.bin

Compile signer certificate
Compiles the signer certificate in test_param_config.h

O Yes

) Ne

Signer platform

The signer platform to use when creating the OTA update job.
© AmazonFreeRTOS-Default

(©) AmazonFreeRTOS-TI-CC3220SF

Over-the-air (OTA) X
updates

IDT for FreeRTOS runs tests to
verify OTA update behavior,
including end-to-end (E2E) and
portable abstraction layer (PAL)
tests.

These tests are required to qualify
a device.

Learn more [2
FreeRTOS OTA Update tests

Use the IDT Ul to run the FreeRTOS qualification suite

103

FreeRTOS User Guide

3. On the Review page, verify your configuration information.

Device Tester for % @ Successfully created configuration. X

FreeRTOS

Device Tester for FreeRTOS » Create new configuration » Configuration created

Creat W figurati . .
e new ronmaEn Configuration created
Edit existing configuration

Run tests

Details

A new configuration has been created. This configuration is saved in the JSON configuration files in the configs folder in your IDT for
FreeRTOS installation directory.

You can use this configuration to run tests. You can also madify this configuration to make additional changes.

To specify IDT settings for running tests, such as to run specific test groups only, choose the IDT settings configuration option on the Edit
existing configuration page.

Edit existing configuration Run tests

After you finish reviewing your configuration, to run your qualification tests, choose Run tests.
Modify an existing configuration

If you have already set up configuration files for IDT for FreeRTQOS, you can use the IDT for
FreeRTOS Ul to modify your existing configuration. The existing configuration files must be located
inthe devicetester-extract-location/config directory.

To modify a configuration

1. Inthe IDT for FreeRTOS Ul, open the navigation menu, and choose Edit existing configuration.

The configuration dashboard displays information about your existing configuration settings.
If a configuration is incorrect or unavailable, the status for that configuration is Exrror
validating configuration.

Use the IDT Ul to run the FreeRTOS qualification suite 104

FreeRTOS

User Guide

Device Tester for
FreeRTOS

Create new configuration
Edit existing configuration

Run tests

Device Tester for FreeRTOS » Edit existing configuration

Edit existing configuration

Edit existing configuration files that will be used for testing.

Device settings

This is the device pool to be tested. AWS loT Device
Tester (IDT) will setup, orchestrate, and run the
appropriate tests on these devices based on their
configuration.

Status
Valid

AWS account settings
Settings related to the AWS account used for

testing.

Status
Valid

6]

FreeRTOS implementation

Configuration for the FreeRTOS port to be tested.

Status
valid

PKCS #11 labels and Echo server
Settings for the PKCS #11 labels and Echo server

creation configuration used during testing.

Status
Valid

Over-the-air (OTA) updates

The settings for over-the-air firmware update tests.

Status
Valid

IDT test run settings

Settings for running tests.

Status
valid

2. To modify an existing configuration setting, complete the following steps:

a. Choose the name of a configuration setting to open its settings page.

b. Modify the settings, and then choose Save to regenerate the corresponding configuration

file.

3. To modify the IDT for FreeRTOS test run settings, choose IDT test run settings in the edit view:

Device Tester for
FreeRTOS

Create new configuration
Edit existing configuration

Run tests

Device Tester for FreeRTOS » Edit existing configuration > DT test run settings

IDT test run settings .«

Settings for running tests.

Test selection info

Run a subset of tests rather than the whole suite. Qualification reports won't be generated if a subset of tests are run.

Run specific test groups

(e

Run specific test cases
Can be used only if exactly one specific group is being run

Skip specific test groups

Run all test groups except for specific groups rather than the whole test suite,

e]

IDT test run settings X

Changing settings for running tests
on the run tests page.

These settings don't persist across
IDT GUI executable sessions.

Additional debugging settings

Timeout multiplier

Increase timeout of test suite timeouts by a specified value. Use this setting If tests are timing out.

1

Stop on first failure

Stop running tests if any fail. If selected, qualification reports won't be generated.

(e

Cancel

Use the IDT Ul to run the FreeRTOS qualification suite

105

FreeRTOS User Guide

After you finish modifying your configuration, verify that all of your configuration settings pass
validation. If the status for each configuration setting is Valid, you can run your qualification tests
with this configuration.

Run qualification tests
After you create a configuration for the IDT for FreeRTOS Ul you can run your qualification tests.
To run qualification tests

1. In the navigation menu, choose Run tests.

2. Choose Start tests to start the test run. By default, all applicable tests are run for your device
configuration. IDT for FreeRTOS generates a qualification report when all tests finish.

Device Tester for X Device Tester for FreeRTOS » Run tests
FreeRTOS

(@) No tests have run yet

Create new configuration

Edit existing configuration

Run tests

Run IDT for FreeRTOS tests. You can view the configuration that will be used on the edit existing configuration page.

Test runner Start tests

You can start and stop tests on this page. Don't close this window while tests are running.

Run tests

IDT for FreeRTOS runs the qualification tests. It then displays the test run summary and any errors
in the Test runner console. After the test run is complete, you can view the test results and logs
from the following locations:

o Test results are located in the devicetester-extract-location/results/execution-id
directory.

Use the IDT Ul to run the FreeRTOS qualification suite 106

FreeRTOS User Guide

» Test logs are located in the devicetester-extract-location/results/execution-id/
logs directory.

For more information about test results and logs, see Understanding results and logs.

Device Tester for b Device Tester for FreeRTOS » Run tests
FreeRTOS

@ Tests finished running

Create new configuration Results and logs can be found in the results folder.

Edit existing configuration

Run tests Run tests

Run IDT for FreeRTOS tests. You can view the configuration that will be used on the edit existing configuration page.

Test runner

You can start and stop tests on this page. Don't close this window while tests are running

Lamrul Lewsamui—wo co.
[INFO] [2823-81-B& 28:
[INFO] [2023-81-86 208:
[INFO] [2023-01-B6 28:
[INFO] [2023-81-86 208:
[INFO] [2023-81-86 20:
[INFO] [2823-81-B6 28:
[INFO] [2023-81-86 28:
[INFO] [2823-81-86 28:
[INFO1 [2023-81-B6 28
[INFO] [2023-81-86 2@
[INFO] [2823-01-B6 28
[INFO] [2823-81-86 2@
[INFO] [2023-81-86 28:47
[INFO] [2823-81-B6& 28:47

. BuLiuiny inisneu
: Upload FreeRTOS OTA test application file to S3 bucket

; OTA update role creation completed

: Creating OTA update job ...

¢ OTA update creation completed with status CREATE_COMPLETE
: Checking OTA update job status ...

: OTA update job execution status SUCCEEDED

: Device logging stopped

: Cleaning up test resources...
BESBEHE S "

: Cleaning up AWS resources... This may take a while...

t Finished running test case
¢ All tests finished. executionld=8fbaflfa-B8e3l-1led-bl121-88155d3eBed2

Test Summary =
Execution Time: 2h32m34s

Tests Completed: 13
Tests Passed: 13
Tests Failed:]
Tests Skipped:]

Test Groups:

OTADataplaneMQTT: PASSED

Path to Tes 1 Cihcpllé89efcS11DINdevicetester_freertos_dev\results\20238106T181448\1ogs
Path to Aggregated JUnit Report: C:\cplléB89efc511DIVdevicetester_freertos_deviresults\20230186T181448\FRQ_Report.xml

Running the FreeRTOS qualification 2.0 suite

Use the AWS loT Device Tester for FreeRTOS executable to interact with IDT for FreeRTOS. The
following command line examples show you how to run the qualification tests for a device pool (a
set of identical devices).

IDT v4.5.2 and later

devicetester_[linux [mac | win] run-suite \

Running the FreeRTOS qualification 2.0 suite 107

FreeRTOS User Guide

--suite-id suite-id \
--group-id group-id \
--pool-id your-device-pool \
--test-id test-id \
--userdata userdata. json

Runs a suite of tests on a pool of devices. The userdata. json file must be located in the
devicetester extract_location/devicetester_freertos_[win[mac|[linux]/
configs/ directory.

(@ Note

If you're running IDT for FreeRTOS on Windows, use forward slashes (/) to specify the
path to the userdata. json file.

Use the following command to run a specific test group:

devicetester_[linux [mac | win] run-suite \
--suite-id FRQ_1.99.0 \
--group-id group-id \
--pool-id pool-id \
--userdata userdata. json

The suite-id and pool-id parameters are optional if you're running a single test suite on a
single device pool (that is, you have only one device pool defined in your device. json file).

Use the following command to run a specific test case in a test group:

devicetester_[linux | mac | win_x86-64] run-suite \
--group-id group-id \
--test-id test-id

You can use the 1list-test-cases command to list the test cases in a test group.
IDT for FreeRTOS command line options
group-id

(Optional) The test groups to run, as a comma-separated list. If not specified, IDT runs all
test groups in the test suite.

Running the FreeRTOS qualification 2.0 suite 108

FreeRTOS User Guide

pool-id

(Optional) The device pool to test. This is required if you define multiple device pools in
device. json. If you only have one device pool, you can omit this option.

suite-id

(Optional) The test suite version to run. If not specified, IDT uses the latest version in the
tests directory on your system.

test-id

(Optional) The tests to run, as a comma-separated list. If specified, group-id must specify a
single group.

Example

devicetester_[linux | mac | win_x86-64] run-suite --group-id FreeRTOSVersion --
test-id FreeRTOSVersion

Use the help option to learn more about run-suite options.
Example

Example

devicetester_[linux | mac | win_x86-64] run-suite -h

IDT for FreeRTOS commands
The IDT for FreeRTOS command supports the following operations:
IDT v4.5.2 and later

help

Lists information about the specified command.

list-groups

Lists the groups in a given suite.

Running the FreeRTOS qualification 2.0 suite 109

FreeRTOS User Guide

list-suites

Lists the available suites.

list-supported-products

Lists the supported products and test suite versions.

list-supported-versions

Lists the FreeRTOS and test suite versions supported by the current IDT version.

list-test-cases

Lists the test cases in a specified group.

run-suite
Runs a suite of tests on a pool of devices.

Use the --suite-id option to specify a test suite version, or omit it to use the latest
version on your system.

Use the --test-1id to run an individual test case.

Example

devicetester_[linux | mac | win_x86-64] run-suite --group-id FreeRTOSVersion --
test-id FreeRTOSVersion

(@ Note

Starting in IDT v3.0.0, IDT checks online for newer test suites. For more information,
see Test suite versions.

Understanding results and logs
This section describes how to view and interpret IDT result reports and logs.

Viewing results

While running, IDT writes errors to the console, log files, and test reports. After IDT completes the
qualification test suite, it writes a test run summary to the console and generates two test reports.

Understanding results and logs 110

FreeRTOS User Guide

These reports can be found in devicetester-extract-location/results/execution-id/.
Both reports capture the results from the qualification test suite execution.

The awsiotdevicetester_report.xml is the qualification test report that you submit to AWS
to list your device in the AWS Partner Device Catalog. The report contains the following elements:

« The IDT for FreeRTOS version.

« The FreeRTOS version that was tested.

» The features of FreeRTOS that are supported by the device based on the tests passed.
« The SKU and the device name specified in the device. json file.

» The features of the device specified in the device. json file.

» The aggregate summary of test case results.

A breakdown of test case results by libraries that were tested based on the device features.

The FRQ_Report.xml is a report in standard JUnit XML format. You can integrate it into CI/CD
platforms like Jenkins, Bamboo, and so on. The report contains the following elements:

» An aggregate summary of test case results.

« A breakdown of test case results by libraries that were tested based on the device features.

Interpreting IDT for FreeRTOS results

The report section in awsiotdevicetester_report.xml or FRQ_Report. xml lists the results
of the tests that are executed.

The first XML tag <testsuites> contains the overall summary of the test execution. For example:

<testsuites name="FRQ results" time="5633" tests="184" failures="0"
errors="0" disabled="0">

Attributes used in the <testsuites> tag
name

The name of the test suite.

time

The time, in seconds, it took to run the qualification suite.

Understanding results and logs 111

https://llg.cubic.org/docs/junit/
https://jenkins.io/
https://www.atlassian.com/software/bamboo

FreeRTOS User Guide

tests

The number of test cases executed.

failures

The number of test cases that were run, but did not pass.

eérrors

The number of test cases that IDT for FreeRTOS couldn't execute.

disabled
This attribute is not used and can be ignored.
If there are no test case failures or errors, your device meets the technical requirements to run

FreeRTOS and can interoperate with AWS loT services. If you choose to list your device in the AWS
Partner Device Catalog, you can use this report as qualification evidence.

In the event of test case failures or errors, you can identify the test case that failed by reviewing
the <testsuites> XML tags. The <testsuite> XML tags inside the <testsuites> tag shows
the test case result summary for a test group.

<testsuite name="FreeRTOSVersion" package="" tests="1" failures="0"
time="2" disabled="0" errors="0" skipped="0">

The format is similar to the <testsuites> tag, but with an attribute called skipped that is not
used and can be ignored. Inside each <testsuite> XML tag, there are <testcase> tags for each
of the test cases that were executed for a test group. For example:

<testcase classname="FRQ FreeRTOSVersion" name="FreeRTOSVersion"
attempts="1"></testcase>

Attributes used in the <awsproduct> tag
name

The name of the product being tested.

version

The version of the product being tested.

Understanding results and logs 112

FreeRTOS User Guide

features

The features validated. Features marked as required are required to submit
your board for qualification. The following snippet shows how this appears in the
awsiotdevicetester_report.xml file.

<feature name="core-freertos" value="not-supported" type="required"></feature>

Features marked as optional are not required for qualification. The following snippets show
optional features.

<feature name="ota-dataplane-mgtt" value="not-supported" type="optional"></feature>
<feature name="ota-dataplane-http" value="not-supported" type="optional"></feature>

If there are no test failures or errors for the required features, your device meets the technical
requirements to run FreeRTOS and can interoperate with AWS IloT services. If you want to list
your device in the AWS Partner Device Catalog, you can use this report as qualification evidence.

In the event of test failures or errors, you can identify the test that failed by reviewing the
<testsuites> XML tags. The <testsuite> XML tags inside the <testsuites> tag show the
test result summary for a test group. For example:

<testsuite name="FreeRTOSVersion" package="" tests="1" failures="1" time="2"
disabled="0" errors="0" skipped="0">

The format is similar to the <testsuites> tag, but has a skipped attribute that is not used
and can be ignored. Inside each <testsuite> XML tag, there are <testcase> tags for each
executed test for a test group. For example:

<testcase classname="FreeRTOSVersion" name="FreeRTOSVersion'"></testcase>

Attributes used in the <testcase> tag

name

The name of the test case.

attempts

The number of times IDT for FreeRTOS executed the test case.

Understanding results and logs 113

https://devices.amazonaws.com/

FreeRTOS User Guide

When a test fails or an error occurs, <failure> or <error> tags are added to the <testcase>
tag with information for troubleshooting. For example:

<testcase classname="FRQ FreeRTOSVersion" name="FreeRTOSVersion">
<failure type="Failure">Reason for the test case failure</failure>
<error>Reason for the test case execution error</error>
</testcase>

For more information, see Troubleshooting.

Viewing logs

You can find logs that IDT for FreeRTOS generates from test execution in devicetester-
extract-location/results/execution-id/logs. Two sets of logs are generated:

» test_manager.log

Contains logs generated from IDT for FreeRTOS (for example, logs related configuration and
report generation).

o test_group_id/test_case_id/test_case_id.log

The log file for a test case, including output from the device under test. The log file is named
according to the test group and test case that was run.

Use IDT with FreeRTOS qualification suite 1.0 (FRQ 1.0)

/A Important

As of October 2022, AWS loT Device Tester for AWS loT FreeRTOS Qualification (FRQ) 1.0
does not generate signed qualification reports. You cannot qualify new AWS loT FreeRTOS
devices to list in the AWS Partner Device Catalog through the AWS Device Qualification
Program using IDT FRQ 1.0 versions. While you can't qualify FreeRTOS devices using IDT
FRQ 1.0, you can continue to test your FreeRTOS devices with FRQ 1.0. We recommend
that you use IDT FRQ 2.0 to qualify and list FreeRTOS devices in the AWS Partner Device

Catalog.

You can use IDT for FreeRTOS qualification to verify that the FreeRTOS operating system works
locally on your device and can communicate with AWS loT. Specifically, it verifies that the porting

Use IDT with FreeRTOS qualification suite 1.0 (FRQ 1.0) 114

https://devices.amazonaws.com/
http://aws.amazon.com/partners/programs/dqp/
http://aws.amazon.com/partners/programs/dqp/
https://docs.aws.amazon.com/freertos/latest/userguide/lts-idt-freertos-qualification.html
https://devices.amazonaws.com/
https://devices.amazonaws.com/

FreeRTOS User Guide

layer interfaces for the FreeRTOS libraries are implemented correctly. It also performs end-to-end
tests with AWS loT Core. For example, it verifies your board can send and receive MQTT messages
and process them correctly. The tests run by IDT for FreeRTOS are defined in the FreeRTOS GitHub

repository.

The tests run as embedded applications that are flashed onto your board. The application binary
images include FreeRTOS, the semiconductor vendor’s ported FreeRTOS interfaces, and board
device drivers. The purpose of the tests is to verify the ported FreeRTOS interfaces function
correctly on top of the device drivers.

IDT for FreeRTOS generates test reports that you can submit to AWS IoT to add your hardware to
the AWS Partner Device Catalog. For more information, see AWS Device Qualification Program.

IDT for FreeRTOS runs on a host computer (Windows, macQS, or Linux) that is connected to the
board to be tested. IDT executes test cases and aggregates results. It also provides a command line
interface to manage test execution.

In addition to testing devices, IDT for FreeRTOS creates resources (for example, AWS loT things,
FreeRTOS groups, Lambda functions, and so on) to facilitate the qualification process. To create
these resources, IDT for FreeRTOS uses the AWS credentials configured in the config. json to
make API calls on your behalf. These resources are provisioned at various times during a test.

When you run IDT for FreeRTOS on your host computer, it performs the following steps:

1. Loads and validates your device and credentials configuration.
2. Performs selected tests with the required local and cloud resources.
3. Cleans up local and cloud resources.

4. Generates tests reports that indicate if your board passed the tests required for qualification.

Topics

« Prerequisites
» Preparing to test your microcontroller board for the first time

o Use the IDT for FreeRTOS user interface to run the FreeRTOS qualification suite

o Running Bluetooth Low Energy tests

» Running the FreeRTOS qualification suite

« Understanding results and logs

Use IDT with FreeRTOS qualification suite 1.0 (FRQ 1.0) 115

https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos
https://aws.amazon.com/partners/dqp/

FreeRTOS User Guide

Prerequisites
This section describes the prerequisites for testing microcontrollers with AWS loT Device Tester.

Download FreeRTOS

You can download a release of FreeRTOS from GitHub with the following command:

git clone --branch <FREERTOS_RELEASE_VERSION> --recurse-submodules https://github.com/
aws/amazon-freertos.git

cd amazon-freertos

git submodule update --checkout --init --recursive

where <FREERTOS_RELEASE_VERSION> is a version of FreeRTOS (for example, 202007.00)
corresponding to an IDT version listed in Supported versions of AWS loT Device Tester for
FreeRTOS. This ensures you have the full source code, including submodules, and are using the
correct version of IDT for your version of FreeRTOS, and vice versa.

Windows has a path length limitation of 260 characters. The path structure of FreeRTOS is many
levels deep, so if you are using Windows, keep your file paths under the 260-character limit.

For example, clone FreeRTOS to C:\FreeRTOS rather than C:\Users\username\programs
\projects\myproj\FreeRTOS\.

Considerations for LTS qualification (qualification for FreeRTOS that uses LTS libraries)

« In order for your microcontroller to be designated as supporting long-term support (LTS) based
versions of FreeRTOS in the AWS Partner Device Catalog, you must provide a manifest file. For
more information, see the FreeRTOS Qualification Checklist in the FreeRTOS Qualification Guide.

« In order to validate that your microcontroller supports LTS based versions of FreeRTOS and
qualify it for submission to the AWS Partner Device Catalog, you must use AWS loT Device Tester
(IDT) with FreeRTOS Qualification (FRQ) test suite version v1.4.x.

o Support for LTS based versions of FreeRTOS is limited to the 202012.xx version of FreeRTOS.

Download IDT for FreeRTOS

Every version of FreeRTOS has a corresponding version of IDT for FreeRTOS to perform
qualification tests. Download the appropriate version of IDT for FreeRTOS from Supported versions
of AWS loT Device Tester for FreeRTOS.

Prerequisites 116

https://github.com/aws/amazon-freertos
https://docs.aws.amazon.com/freertos/latest/qualificationguide/afq-checklist.html

FreeRTOS User Guide

Extract IDT for FreeRTOS to a location on the file system where you have read and write
permissions. Because Microsoft Windows has a character limit for the path length, extract IDT for
FreeRTOS into a root directory suchas C:\ or D:\.

(® Note

We don't recommend that multiple users run IDT from a shared location, such as an
NFS directory or a Windows network shared folder. This may result in crashes or data
corruption. We recommend that you extract the IDT package to a local drive.

Create and configure an AWS account
Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks

that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/

and choosing My Account.
Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM ldentity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Prerequisites 117

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/

FreeRTOS User Guide

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. InIAM lIdentity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

« Tosign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

AWS loT Device Tester managed policy

The AWSIoTDeviceTesterForFreeRTOSFullAccess managed policy contains the following
AWS loT Device Tester permissions for version checking, auto update features, and collection of
metrics.

Prerequisites 118

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html

FreeRTOS User Guide

o iot-device-tester:SupportedVersion

Grants AWS loT Device Tester permission to fetch the list of supported products, test suites and
IDT versions.

e iot-device-tester:LatestIdt

Grants AWS loT Device Tester permission to fetch the latest IDT version available for download.

e iot-device-tester:CheckVersion

Grants AWS loT Device Tester permission to check version compatibility for IDT, test suites and
products.

e iot-device-tester:DownloadTestSuite

Grants AWS loT Device Tester permission to download test suite updates.

e iot-device-tester:SendMetrics

Grants AWS permission to collect metrics about AWS IoT Device Tester internal usage.

(Optional) Install the AWS Command Line Interface

You might prefer to use the AWS CLI to perform some operations. If you don't have the AWS CLI
installed, follow the instructions at Install the AWS CLI.

Configure the AWS CLI for the AWS Region you want to use by running aws configure from a
command line. For information about the AWS Regions that support IDT for FreeRTOS, see AWS
Regions and Endpoints. For more information about aws configure see Quick configuration with

aws configure.

Preparing to test your microcontroller board for the first time

You can use IDT for FreeRTOS to test as you port the FreeRTOS interfaces. After you have ported
the FreeRTOS interfaces for your board’s device drivers, you use AWS loT Device Tester to run the
qualification tests on your microcontroller board.

Add library porting layers

To port FreeRTOS for your device, follow the instructions in the FreeRTOS Porting Guide.

Preparing to test your microcontroller board for the first time 119

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#amazon-freertos-ota-control
https://docs.aws.amazon.com/general/latest/gr/rande.html#amazon-freertos-ota-control
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://docs.aws.amazon.com/freertos/latest/portingguide/

FreeRTOS User Guide

Configure your AWS credentials

You need to configure your AWS credentials for AWS IoT Device Tester to communicate with the
AWS Cloud. For more information, see Set up AWS Credentials and Region for Development.

Valid AWS credentials must be specified in the devicetester_extract_location/
devicetester_afreertos_[win[mac|[linux]/configs/config. json configuration file.

Create a device pool in IDT for FreeRTOS

Devices to be tested are organized in device pools. Each device pool consists of one or more
identical devices. You can configure IDT for FreeRTOS to test a single device in a pool or multiple
devices in a pool. To accelerate the qualification process, IDT for FreeRTOS can test devices with the
same specifications in parallel. It uses a round-robin method to execute a different test group on
each device in a device pool.

You can add one or more devices to a device pool by editing the devices section of the
device. json template in the configs folder.

(® Note

All devices in the same pool must be of same technical specification and SKU.

To enable parallel builds of the source code for different test groups, IDT for FreeRTOS copies the
source code to a results folder inside the IDT for FreeRTOS extracted folder. The source code path
in your build or flash command must be referenced using either the testdata.sourcePath or
sdkPath variable. IDT for FreeRTOS replaces this variable with a temporary path of the copied
source code. For more information see, IDT for FreeRTOS variables.

The following is an example device. json file used to create a device pool with multiple devices.

[
{
"id": "pool-id",
"sku": "sku",
"features": [
{
"name": "WIFI",
"value": "Yes | No"
I
{

Preparing to test your microcontroller board for the first time 120

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html

FreeRTOS User Guide

"name": "Cellular",
"value": "Yes | No"

},
{

"name": "OTA",

"value": "Yes | No",

"configs": [

{
"name": "OTADataPlaneProtocol",
"value": "HTTP | MQTT"
}

]
},
{

"name": "BLE",

"value": "Yes | No"
},
{

"name": "TCP/IP",

"value": "On-chip | Offloaded | No"
},
{

"name": "TLS",

"value": "Yes | No"
},
{

"name": "PKCS11",

"value": "RSA | ECC | Both | No"
},
{

"name": "KeyProvisioning",

"value": "Import | Onboard | No"
}

1,

"devices": [
{

"id": "device-id",

"connectivity": {
"protocol": "uart",
"serialPort": "/dev/tty*"

},

*xxxkkkk*x*Remove the section below if the device does not support onboard

key generation***************

Preparing to test your microcontroller board for the first time 121

FreeRTOS User Guide

"secureElementConfig" : {
"publicKeyAsciiHexFilePath": "absolute-path-to/public-key-txt-file:
contains-the-hex-bytes-public-key-extracted-from-onboard-private-key",
"secureElementSerialNumber": "secure-element-serialNo-value",
"preProvisioned" : "Yes | No"

iy

R R R R SRR SRR S E SRR LSS EEE
ns g g n,
identifiers": [

"name": "serialNo",
"value": "serialNo-value"

The following attributes are used in the device. json file:
id

A user-defined alphanumeric ID that uniquely identifies a pool of devices. Devices that belong
to a pool must be of the same type. When a suite of tests is running, devices in the pool are
used to parallelize the workload.

sku
An alphanumeric value that uniquely identifies the board you are testing. The SKU is used to

track qualified boards.

® Note

If you want to list your board in AWS Partner Device Catalog, the SKU you specify here
must match the SKU that you use in the listing process.

features

An array that contains the device's supported features. AWS loT Device Tester uses this
information to select the qualification tests to run.

Preparing to test your microcontroller board for the first time 122

FreeRTOS User Guide

Supported values are:
TCP/IP

Indicates if your board supports a TCP/IP stack and whether it is supported on-chip (MCU) or
offloaded to another module. TCP/IP is required for qualification.

WIFI

Indicates if your board has Wi-Fi capabilities. Must be set to No if Cellular is set to Yes.
Cellular

Indicates if your board has cellular capabilities. Must be set to No if WIFI is set to Yes. When
this feature is set to Yes, the FullSecureSockets test will be executed using AWS t2.micro
EC2 instances and this may incur additional costs to your account. For more information, see
Amazon EC2 pricing.

TLS

Indicates if your board supports TLS. TLS is required for qualification.
PKCS11

Indicates the public key cryptography algorithm that the board supports. PKCS11 is required
for qualification. Supported values are ECC, RSA, Both and No. Both indicates the board
supports both the ECC and RSA algorithms.

KeyProvisioning

Indicates the method of writing a trusted X.509 client certificate onto your board. Valid
values are Import, Onboard and No. Key provisioning is required for qualification.

« Use Import if your board allows the import of private keys. IDT will create a private key
and build this to the FreeRTOS source code.

« Use Onboaxrd if your board supports on-board private key generation (for example,
if your device has a secure element, or if you prefer to generate your own device
key pair and certificate). Make sure you add a secureElementConfig elementin
each of the device sections and put the absolute path to the public key file in the
publicKeyAsciiHexFilePath field.

« Use No if your board does not support key provisioning.
OTA

Indicates if your board supports over-the-air (OTA) update functionality. The
OtaDataPlaneProtocol attribute indicates which OTA dataplane protocol the device

Preparing to test your microcontroller board for the first time 123

https://aws.amazon.com/ec2/pricing/

FreeRTOS User Guide

supports. The attribute is ignored if the OTA feature is not supported by the device. When
"Both" is selected, the OTA test execution time is prolonged due to running both MQTT,
HTTP, and mixed tests.

(@ Note

Starting with IDT v4.1.0, OtaDataPlaneProtocol accepts only HTTP and MQTT as
supported values.

BLE

Indicates if your board supports Bluetooth Low Energy (BLE).

devices.id

A user-defined unique identifier for the device being tested.

devices.connectivity.protocol

The communication protocol used to communicate with this device. Supported value: uart.

devices.connectivity.serialPort

The serial port of the host computer used to connect to the devices being tested.

devices.secureElementConfig.PublicKeyAsciiHexFilePath

The absolute path to the file that contains the hex bytes public key extracted from onboard
private key.

Example format:

3059 3013 0607 2a86 48ce 3d02 0106 082a
8648 ce3d 0301 0703 4200 Q4cd 6569 ceb8
1bb9 1e72 339f e8cf 60ef 0f9f b473 33ac
6f19 1813 6999 3fa@ c293 5fae 08f1l 1ad0d
41b7 345c e746 1046 228e 5a5f d787 d571
dcb2 4e8d 75b3 2586 e2cc 0Oc

If your public key is in .der format, you can hex encode the public key directly to generate the
hex file.

Preparing to test your microcontroller board for the first time 124

FreeRTOS User Guide

Example command for .der public key to generate hex file:

xxd -p pubkey.der > outFile

If your public key is in .pem format, you can extract the base64 encoded part, decode it into
binary format, and then hex encode it to generate the hex file.

For example, use these commands to generate a hex file for a .pem public key:

1. Take out the base64 encoded part of the key (strip the header and footer) and store it in a
file, for example name it base64key, run this command to convert it to .der format:

base64 —decode baseb4key > pubkey.der

2. Run the xxd command to convert it to hex format.

xxd -p pubkey.der > outFile

devices.secureElementConfig.SecureElementSexrialNumber

(Optional) The serial number of the secure element. Provide this field when the serial number is
printed out along with the device public key when you run the FreeRTOS demo/test project.

devices.secureElementConfig.preProvisioned

(Optional) Set to "Yes" if the device has a pre-provisioned secure element with locked-down
credentials, that cannot import, create, or destroy objects. This configuration takes effect only
when features has KeyProvisioning set to "Onboard", along with PKCS11 set to "ECC".

identifiers

(Optional) An array of arbitrary name-value pairs. You can use these values in the build and
flash commands described in the next section.

Configure build, flash, and test settings

For IDT for FreeRTOS to build and flash tests on to your board automatically, you must configure
IDT to run the build and flash commands for your hardware. The build and flash command settings
are configured in the userdata. json template file located in the config folder.

Preparing to test your microcontroller board for the first time 125

FreeRTOS User Guide

Configure settings for testing devices

Build, flash, and test settings are made in the configs/userdata. json file. We support

Echo Server configuration by loading both the client and server certificates and keys in the
customPath. For more information, see Setting up an echo server in the FreeRTOS Porting Guide.
The following JSON example shows how you can configure IDT for FreeRTOS to test multiple

devices:

"sourcePath": "/absolute-path-to/freertos",

"vendorPath": "{{testData.sourcePath}}/vendors/vendor-name/boards/board-name",

/) Frr*EFxxxxxxThe sdkConfiguration block below is needed if you are not using the
default, unmodified FreeRTOS repo.

// In other words, if you are using the default, unmodified FreeRTOS repo then
remove this block***************

"sdkConfiguration": {

"name": "sdk-name",
"version": "sdk-version",
"path": "/absolute-path-to/sdk"
I
"buildTool": {
"name": "your-build-tool-name",
"version": "your-build-tool-version",

"command": [
"{{config.idtRootPath}}/relative-path-to/build-parallel.sh
{{testData.sourcePath}} {{enableTests}}"

]

I

"flashTool": {
"name": "your-flash-tool-name",
"version": "your-flash-tool-version",

"command": [
"/{{config.idtRootPath}}/relative-path-to/flash-parallel.sh
{{testData.sourcePath}} {{device.connectivity.serialPort}} {{buildImageName}}"

1,
"buildImageInfo" : {
"testsImageName": "tests-image-name",
"demosImageName": "demos-image-name"
}

iy
"testStartDelayms": 0,

"clientWifiConfig": {
"wifiSSID": "ssid",

Preparing to test your microcontroller board for the first time 126

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-echo-server.html

FreeRTOS User Guide

"wifiPassword": "password",

"wifiSecurityType": "eWiFiSecurityOpen | eWiFiSecurityWEP | eWiFiSecurityWPA |
eWiFiSecurityWPA2 | eWiFiSecurityWPA3"

1,
"testWifiConfig": {

"wifiSSID": "ssid",

"wifiPassword": "password",

"wifiSecurityType": "eWiFiSecurityOpen | eWiFiSecurityWEP | eWiFiSecurityWPA |
eWiFiSecurityWPA2 | eWiFiSecurityWPA3"

1,
//**********
//This section is used to start echo server based on server certificate generation
method,
//When certificateGenerationMethod is set as Automatic specify the eccCurveFormat
to generate certifcate and key based on curve format,
//When certificateGenerationMethod is set as Custom specify the certificatePath and
PrivateKeyPath to be used to start echo server
//**********
"echoServerCertificateConfiguration": {
"certificateGenerationMethod": "Automatic | Custom",
"customPath": {
"clientCertificatePath":"/path/to/clientCertificate",
"clientPrivateKeyPath": "/path/to/clientPrivateKey",
"serverCertificatePath":"/path/to/serverCertificate",
"serverPrivateKeyPath": "/path/to/serverPrivateKey"
1,
"eccCurveFormat": "P224 | P256 | P384 | P521"
1,
"echoServerConfiguration": {

"securePortForSecureSocket": 33333, // Secure tcp port used by SecureSocket
test. Default value is 33333. Ensure that the port configured isn't blocked by the
firewall or your corporate network

"insecurePortForSecureSocket": 33334, // Insecure tcp port used by SecureSocket
test. Default value is 33334. Ensure that the port configured isn't blocked by the
firewall or your corporate network

"insecurePortForWiFi": 33335 // Insecure tcp port used by Wi-Fi test. Default
value is 33335. Ensure that the port configured isn't blocked by the firewall or your
corporate network

},
"otaConfiguration": {

"otaFirmwareFilePath": "{{testData.sourcePath}}/relative-path-to/ota-image-

generated-in-build-process",

"deviceFirmwareFileName": "ota-image-name-on-device",

Preparing to test your microcontroller board for the first time 127

FreeRTOS User Guide

"otaDemoConfigFilePath": "{{testData.sourcePath}}/relative-path-to/ota-demo-
config-header-file",
"codeSigningConfiguration": {
"signingMethod": "AWS | Custom",
"signerHashingAlgorithm": "SHA1l | SHA256",
"signerSigningAlgorithm": "RSA | ECDSA",
"signerCertificate": "arn:partition:service:region:account-
id:resource:qualifier | /absolute-path-to/signer-certificate-file",
"signerCertificateFileName": "signerCertificate-file-name",
"compileSignerCertificate": boolean,
J// FrREFFxxxx%%Jse signerPlatform if you choose aws for
SigningMethod***************
"signerPlatform": "AmazonFreeRTO0S-Default | AmazonFreeRTOS-TI-CC3220SF",
"untrustedSignerCertificate": "arn:partition:service:region:account-
id:resourcetype:resource:qualifier",
J/ FrrEFxxEExxJse signCommand if you choose custom for
SigningMethod***************
"signCommand": [
"/absolute-path-to/sign.sh {{inputImageFilePath}}
{{outputSignatureFilePath}}"

]

}I

J// FrrEFxxxExxRamove the section below if you're not configuring
CMake***************

"cmakeConfiguration": {

"boardName": "board-name",
"vendorName": "vendor-name",
"compilerName": "compiler-name",

"frToolchainPath": "/path/to/freertos/toolchain",
"cmakeToolchainPath": "/path/to/cmake/toolchain"
I
"freertosFileConfiguration": {
"required": [
{
"configName": "pkcsllConfig",
"filePath": "{{testData.sourcePath}}/vendors/vendor-name/boards/board-
name/aws_tests/config_files/core_pkcsll_config.h"
},

{
"configName": "pkcsllTestConfig",

"filePath": "{{testData.sourcePath}}/vendors/vendor-name/boards/board-
name/aws_tests/config_files/iot_test_pkcsll_config.h"

}

Preparing to test your microcontroller board for the first time 128

FreeRTOS User Guide

1,
"optional": [
{
"configName": "otaAgentTestsConfig",

"filePath": "{{testData.sourcePath}}/vendors/vendor-name/boards/board-
name/aws_tests/config_files/ota_config.h"

1,
{
"configName": "otaAgentDemosConfig",

"filePath": "{{testData.sourcePath}}/vendors/vendor-name/boards/board-
name/aws_demos/config_files/ota_config.h"

iy
{

"configName": "otaDemosConfig",

"filePath": "{{testData.sourcePath}}/vendors/vendor-name/boards/board-
name/aws_demos/config_files/ota_demo_config.h"

}

The following lists the attributes used in userdata. json:

sourcePath
The path to the root of the ported FreeRTOS source code. For parallel testing with an SDK, the

sourcePath can be set using the {{userData.sdkConfiguration.path}} place holder.
For example:

{ "sourcePath":"{{userData.sdkConfiguration.path}}/freertos" }
vendorPath

The path to the vendor specific FreeRTOS code. For serial testing, the vendorPath can be set
as an absolute path. For example:

{ "vendorPath":"C:/path-to-freertos/vendors/espressif/boards/esp32" }

For parallel testing, the vendorPath can be set using the {{testData.sourcePath}} place
holder. For example:

Preparing to test your microcontroller board for the first time 129

FreeRTOS User Guide

{ "vendorPath":"{{testData.sourcePath}}/vendors/espressif/boards/esp32" }

The vendorPath variable is only necessary when running without an SDK, it can be removed
otherwise.

(® Note

When running tests in parallel without an SDK, the {{testData.sourcePath}}
placeholder must be used in the vendorPath, buildTool, flashTool fields. When
running test with a single device, absolute paths must be used in the vendorPath,
buildTool, flashTool fields. When running with an SDK, the {{sdkPath}}
placeholder must be used in the sourcePath, buildTool, and flashTool
commands.

sdkConfiguration

If you are qualifying FreeRTOS with any modifications to files and folder structure beyond what
is required for porting, then you will need to configure your SDK information in this block. If
you're not qualifying with a ported FreeRTOS inside of an SDK, then you should omit this block
entirely.

sdkConfiguration.name

The name of the SDK you're using with FreeRTOS. If you're not using an SDK, then the entire
sdkConfiguration block should be omitted.

sdkConfiguration.version

The version of the SDK you're using with FreeRTOS. If you're not using an SDK, then the
entire sdkConfiguration block should be omitted.

sdkConfiguration.path

The absolute path to your SDK directory that contains your FreeRTOS code. If you're not
using an SDK, then the entire sdkConfiguration block should be omitted.

buildTool

The full path to your build script (.bat or .sh) that contains the commands to build your source
code. All references to the source code path in the build command must be replaced by the AWS

Preparing to test your microcontroller board for the first time 130

FreeRTOS User Guide

loT Device Tester variable {{testdata.sourcePath}} and references to the SDK path should
be replaced by {{sdkPath}}. Use the {{config.idtRootPath}} placeholder to reference
the absolute or relative IDT path.

testStartDelayms

Specifies how many milliseconds the FreeRTOS test runner will wait before starting to run tests.
This can be useful if the device under test begins outputting important test information before
IDT has a chance to connect and start logging due to network or other latency. The max allowed
value is 30000 ms (30 seconds). This value is applicable to FreeRTOS test groups only, and not
applicable to other test groups that do not utilize the FreeRTOS test runner, such as the OTA
tests.

flashTool

Full path to your flash script (.sh or .bat) that contains the flash commands for your device.

All references to the source code path in the flash command must be replaced by the IDT for
FreeRTOS variable {{testdata.sourcePath}} and all references to your SDK path must be
replaced by the IDT for FreeRTOS variable {{sdkPath}}.Use the {{config.idtRootPath}}
placeholder to reference the absolute or relative IDT path.

buildImageInfo

testsImageName

The name of the file produced by the build command when building tests from the
freertos-source/tests folder.

demosImageName

The name of the file produced by the build command when building tests from the
freertos-source/demos folder.

clientWifiConfig

The client Wi-Fi configuration. The Wi-Fi library tests require an MCU board to connect to two
access points. (The two access points can be the same.) This attribute configures the Wi-Fi
settings for the first access point. Some of the Wi-Fi test cases expect the access point to have
some security and not to be open. Please make sure both access points are on the same subnet
as the host computer running IDT.

wifi_ssid

The Wi-Fi SSID.

Preparing to test your microcontroller board for the first time 131

FreeRTOS User Guide

wifi_password

The Wi-Fi password.
wifiSecurityType

The type of Wi-Fi security used. One of the values:
« eWiFiSecurityOpen
eWiFiSecurityWEP
« eWiFiSecurityWwPA
o« eWiFiSecurityWPA2
» eWiFiSecurityWPA3

® Note

If your board does not support Wi-Fi, you must still include the clientWifiConfig
section in your device. json file, but you can omit values for these attributes.

testWifiConfig

The test Wi-Fi configuration. The Wi-Fi library tests require an MCU board to connect to two
access points. (The two access points can be the same.) This attribute configures the Wi-Fi
setting for the second access point. Some of the Wi-Fi test cases expect the access point to have
some security and not to be open. Please make sure both access points are on the same subnet
as the host computer running IDT.

wifiSSID

The Wi-Fi SSID.

wifiPassword

The Wi-Fi password.
wifiSecurityType

The type of Wi-Fi security used. One of the values:
 eWiFiSecurityOpen
o eWiFiSecurityWEP
o eWiFiSecurityWPA

Preparing to test your microcontroller board for the first time 132

FreeRTOS User Guide

o« eWiFiSecurityWPA2
o eWiFiSecurityWPA3

(® Note

If your board does not support Wi-Fi, you must still include the testWifiConfig
section in your device. json file, but you can omit values for these attributes.

echoServerCertificateConfiguration

The configurable echo server certificate generation placeholder for secure socket tests. This
field is required.

certificateGenerationMethod

Specifies whether the server certificate is generated automatically or provided manually.

customPath

If certificateGenerationMethod is "Custom", certificatePath and
privateKeyPath are required.

certificatePath

Specifies the filepath for the server certificate.

privateKeyPath

Specifies the filepath for the private key.

eccCurveFormat

Specifies the curve format supported by the board. Required when PKCS11 is set to "ecc" in
device. json. Valid values are "P224", "P256", "P384", or "P521".

echoServerConfiguration

The configurable echo server ports for WiFi and secure sockets tests. This field is optional.

securePortForSecureSocket

The port which is used to setup an echo server with TLS for the secure sockets test. The
default value is 33333. Ensure the port configured is not blocked by a firewall or your
corporate network.

Preparing to test your microcontroller board for the first time 133

FreeRTOS User Guide

insecurePortForSecureSocket

The port which is used to setup echo server without TLS for the secure sockets test. The
default value used in the test is 33334. Ensure the port configured is not blocked by a
firewall or your corporate network.

insecurePortFoxrWiFi

The port which is used to setup echo server without TLS for WiFi test. The default value used
in the test is 33335. Ensure the port configured is not blocked by a firewall or your corporate
network.

otaConfiguration

The OTA configuration. [Optional]

otaFirmwareFilePath

The full path to the OTA image created after the build. For example,
{{testData.sourcePath}}/relative-path/to/ota/image/from/source/root.

deviceFirmwareFileName
The full file path on the MCU device where the OTA firmware is located. Some devices do not

use this field, but you still must provide a value.

otaDemoConfigFilePath

The full path to aws_demo_config.h, found in afr-source/vendors/vendor/boards/
board/aws_demos/config_files/. These files are included in the porting code template
that FreeRTOS provides.

codeSigningConfiguration

The code signing configuration.

signingMethod

The code signing method. Possible values are AWS or Custom.

(® Note

For the Beijing and Ningxia Regions, use Custom. AWS code signing isn't supported in
these Regions.

Preparing to test your microcontroller board for the first time 134

FreeRTOS User Guide

signerHashingAlgorithm

The hashing algorithm supported on the device. Possible values are SHA1 or SHA256.

signerSigningAlgorithm

The signing algorithm supported on the device. Possible values are RSA or ECDSA.

signerCertificate
The trusted certificate used for OTA.

For AWS code signing method, use the Amazon Resource Name (ARN) for the trusted
certificate uploaded to the AWS Certificate Manager.

For Custom code signing method, use the absolute path to the signer certificate file.

For more information about creating a trusted certificate, see Create a code-signing
certificate.

signexrCertificateFileName

The file name of the code signing certificate on the device. This value must match the file
name that you provided when you ran the aws acm import-certificate command.

For more information, see Create a code-signing certificate.

compileSignerCertificate

Set to true if the code signer signature verification certificate isn't provisioned or flashed,
so it must be compiled into the project. AWS loT Device Tester fetches the trusted certificate
and compiles it into aws_codesigner_certifiate.h.

untrustedSignerCertificate

The ARN or filepath for a second certificate used in some OTA tests as an untrusted
certificate. For more information about creating a certificate, see Create a code-signing
certificate.

signerPlatform

The signing and hashing algorithm that AWS Code Signer uses while creating the OTA
update job. Currently, the possible values for this field are AmazonFreeRTOS-TI-CC3220SF
and AmazonFreeRT0OS-Default.

Preparing to test your microcontroller board for the first time 135

https://docs.aws.amazon.com/freertos/latest/userguide/ota-code-sign-cert.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-code-sign-cert.html

FreeRTOS User Guide

e Choose AmazonFreeRTOS-TI-CC3220SF if SHA1 and RSA.
e Choose AmazonFreeRT0S-Default if SHA256 and ECDSA.

If you need SHA256 | RSA or SHA1 | ECDSA for your configuration, contact us for further
support.

Configure signCommand if you chose Custom for signingMethod.

signCommand

The command used to perform custom code signing. You can find the template in the /
configs/script_templates directory.

Two placeholders {{inputImageFilePath}} and {{outputSignatureFilePath}} are
required in the command. {{inputImageFilePath}} is the file path of the image built by
IDT to be signed. {{outputSignatureFilePath}} is the file path of the signature which
will be generated by the script.

cmakeConfiguration

CMake configuration [Optional]

(® Note

To execute CMake test cases, you must provide the board name, vendor name,
and either the frToolchainPath or compilerName. You may also provide the
cmakeToolchainPath if you have a custom path to the CMake toolchain.

boardName

The name of the board under test. The board name should be the same as the folder name
under path/to/afr/source/code/vendors/vendor/boards/board.

vendorName

The vendor name for the board under test. The vendor should be the same as the folder
name under path/to/afr/source/code/vendors/vendor.

compilerName

The compiler name.

Preparing to test your microcontroller board for the first time 136

FreeRTOS User Guide

frToolchainPath

The fully-qualified path to the compiler toolchain

cmakeToolchainPath

The fully-qualified path to the CMake toolchain. This field is optional

freertosFileConfiguration

The configuration of the FreeRTOS files that IDT modifies before running tests.

required

This section specifies required tests whose config files you have moved, for example,
PKCS11, TLS, and so on.

configName

The name of the test that is being configured.

filePath

The absolute path to the configuration files within the freertos repo. Use the
{{testData.sourcePath}} variable to define the path.

optional

This section specifies optional tests whose config files you have moved, for example OTA,
WiFi, and so on.

configName

The name of the test that is being configured.
filePath

The absolute path to the configuration files within the freertos repo. Use the
{{testData.sourcePath}} variable to define the path.

(@ Note

To execute CMake test cases, you must provide the board name, vendor name, and either
the afrToolchainPath or compilerName. You may also provide cmakeToolchainPath
if you have a custom path to the CMake toolchain.

Preparing to test your microcontroller board for the first time 137

FreeRTOS User Guide

IDT for FreeRTOS variables

The commands to build your code and flash the device might require connectivity or other
information about your devices to run successfully. AWS loT Device Tester allows you to reference
device information in flash and build commands using JsonPath. By using simple JsonPath
expressions, you can fetch the required information specified in your device. json file.

Path variables

IDT for FreeRTOS defines the following path variables that can be used in command lines and
configuration files:

{{testData.sourcePath}}

Expands to the source code path. If you use this variable, it must be used in both the flash and
build commands.

{{sdkPath}}

Expands to the value in your userData.sdkConfiguration.path when used in the build
and flash commands.

{{device.connectivity.serialPort}}

Expands to the serial port.

{{device.identifiers[?(@.name == 'serialNo')].value[0]}}

Expands to the serial number of your device.

{{enableTests}}

Integer value indicating whether the build is for tests (value 1) or demos (value 0).

{{buildImageName}}

The file name of the image built by the build command.
{{otaCodeSignerPemFile}}

PEM file for the OTA code signer.
{{config.idtRootPath}}

Expands to the AWS loT Device Tester root path. This variable replaces the absolute path for IDT
when used by the build and flash commands.

Preparing to test your microcontroller board for the first time 138

http://goessner.net/articles/JsonPath/

FreeRTOS User Guide

Use the IDT for FreeRTOS user interface to run the FreeRTOS
qualification suite

Starting with IDT v4.3.0, AWS loT Device Tester for FreeRTOS (IDT-FreeRTOS) includes a web-based
user interface that enables you to interact with the IDT command line executable and related
configuration files. You can use the IDT-FreeRTOS Ul to create a new configuration to run IDT tests,
or to modify an existing configuration. You can also use the Ul to invoke the IDT executable and run
tests.

The IDT-FreeRTOS Ul provides the following functions:

« Simplify setting up configuration files for IDT-FreeRTOS tests.
o Simplify using IDT-FreeRTOS to run qualification tests.

For information about the using the command line to run qualification tests, see Preparing to test

your microcontroller board for the first time.

This section describes the prerequisites for using the IDT-FreeRTOS Ul, and shows you how to get
started running qualification tests in the Ul.

Topics

« Prerequisites
o Getting started with the IDT-FreeRTOS Ul

Prerequisites

This section describes the prerequisites for testing microcontrollers with AWS loT Device Tester.

Topics

Use a supported web browser

Download FreeRTOS

Download IDT for FreeRTOS

Create and configure an AWS account

AWS loT Device Tester managed policy

Use the IDT Ul to run the FreeRTOS qualification suite 139

FreeRTOS User Guide

Use a supported web browser

The IDT-FreeRTOS Ul supports the following web browsers.

Browser Version

Google Chrome Latest three major versions
Mozilla Firefox Latest three major versions
Microsoft Edge Latest three major versions
Apple Safari for macOS Latest three major versions

We recommend that you use Google Chrome or Mozilla Firefox for a better experience.

® Note
The IDT-FreeRTOS Ul doesn't support Microsoft Internet Explorer.

Download FreeRTOS

You can download a release of FreeRTOS from GitHub with the following command:

git clone --branch <FREERTOS_RELEASE_VERSION> --recurse-submodules https://github.com/
aws/amazon-freertos.git

cd amazon-freertos

git submodule update --checkout --init --recursive

where <FREERTOS_RELEASE_VERSION> is a version of FreeRTOS (for example, 202007.00)
corresponding to an IDT version listed in Supported versions of AWS IoT Device Tester for
FreeRTOS. This ensures you have the full source code, including submodules, and are using the
correct version of IDT for your version of FreeRTOS, and vice versa.

Windows has a path length limitation of 260 characters. The path structure of FreeRTOS is many
levels deep, so if you're using Windows, keep your file paths under the 260-character limit.

For example, clone FreeRTOS to C:\FreeRTOS rather than C:\Users\username\programs
\projects\myproj\FreeRTOS\.

Use the IDT Ul to run the FreeRTOS qualification suite 140

https://github.com/aws/amazon-freertos

FreeRTOS User Guide

Considerations for LTS qualification (qualification for FreeRTOS that uses LTS libraries)

« In order for your microcontroller to be designated as supporting long-term support (LTS) based
versions of FreeRTOS in the AWS Partner Device Catalog, you must provide a manifest file. For
more information, see the FreeRTOS Qualification Checklist in the FreeRTOS Qualification Guide.

« In order to validate that your microcontroller supports LTS based versions of FreeRTOS and
qualify it for submission to the AWS Partner Device Catalog, you must use AWS loT Device Tester
(IDT) with FreeRTOS Qualification (FRQ) test suite version v1.4.x.

» Support for LTS based versions of FreeRTOS is limited to the 202012.xx version of FreeRTOS.

Download IDT for FreeRTOS

Every version of FreeRTOS has a corresponding version of IDT for FreeRTOS for performing
qualification tests. Download the appropriate version of IDT for FreeRTOS from Supported versions
of AWS loT Device Tester for FreeRTOS.

Extract IDT for FreeRTOS to a location on the file system where you have read and write
permissions. Because Microsoft Windows has a character limit for the path length, extract IDT for
FreeRTOS into a root directory suchas C:\ or D:\.

(@ Note

We recommend that you extract the IDT package to a local drive.Allowing multiple users
to run IDT from a shared location, such as an NFS directory or a Windows network shared
folder, might result in the system not responding or data corruption.

Create and configure an AWS account
Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Use the IDT Ul to run the FreeRTOS qualification suite 141

https://docs.aws.amazon.com/freertos/latest/qualificationguide/afq-checklist.html
https://portal.aws.amazon.com/billing/signup

FreeRTOS User Guide

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks

that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can

view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1.

Sign in to the AWS Management Console as the account owner by choosing Root user and

entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

In IAM Identity Center, grant administrative access to an administrative user.

Use the IDT Ul to run the FreeRTOS qualification suite 142

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html

FreeRTOS User Guide

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

o Tosign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

AWS loT Device Tester managed policy

To enable device tester to run and to collect metrics, the
AWSIoTDeviceTesterForFreeRTOSFullAccess managed policy contains the following
permissions:

o iot-device-tester:SupportedVersion

Grants permission to get the list of FreeRTOS versions and test suite versions supported by IDT,
so that they're available from the AWS CLI.

e iot-device-tester:LatestIdt

Grants permission to get the latest AWS loT Device Tester version that is available for download.

e iot-device-tester:CheckVersion

Grants permission to check that a combination of product, test suite, and AWS loT Device Tester
versions are compatible.

e iot-device-tester:DownloadTestSuite

Grants permission to AWS loT Device Tester to download test suites.

e jot-device-tester:SendMetrics

Grants permission to publish AWS loT Device Tester usage metrics data.

Use the IDT Ul to run the FreeRTOS qualification suite 143

https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html

FreeRTOS User Guide

Getting started with the IDT-FreeRTOS Ul

This section shows you how to use the IDT-FreeRTOS Ul to create or modify your configuration, and
then shows you how to run tests.

Topics

Configure AWS credentials

Open the IDT-FreeRTOS Ul

Create a new configuration

Modify an existing configuration

Run qualification tests

Configure AWS credentials

You must configure credentials for the AWS user that you created in Create and configure an AWS

account. You can specify your credentials in one of two ways:

« In a credentials file

« As environment variables

Configure AWS credentials with a credentials file

IDT uses the same credentials file as the AWS CLI. For more information, see Configuration and

credential files.

The location of the credentials file varies, depending on the operating system you're using:

 macOS§, Linux: ~/.aws/credentials

e Windows: C:\Users\UserName\.aws\credentials

Add your AWS credentials to the credentials file in the following format:

[default]
aws_access_key_id = <your_access_key_id>
aws_secret_access_key = <your_secret_access_key>

Use the IDT Ul to run the FreeRTOS qualification suite 144

https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html

FreeRTOS User Guide

® Note

If you don't use the default AWS profile, be sure to specify the profile name in the IDT-
FreeRTOS Ul. For more information about profiles, see Named profiles.

Configure AWS credentials with environment variables

Environment variables are variables maintained by the operating system and used by system
commands. They're not saved if you close the SSH session. The IDT-FreeRTOS Ul uses the
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables to store your AWS
credentials.

To set these variables on Linux, macOS, or Unix, use export:

export AWS_ACCESS_KEY_ID=<your_access_key_id>
export AWS_SECRET_ACCESS_KEY=<your_secret_access_key>

To set these variables on Windows, use set:

set AWS_ACCESS_KEY_ID=<your_access_key_id>
set AWS_SECRET_ACCESS_KEY=<your_secret_access_key>

Open the IDT-FreeRTOS Ul

To open the IDT-FreeRTOS Ul

1. Download a supported IDT-FreeRTOS version and extract the downloaded archive into a
location on your file system where you have read and write permissions.

2. Run the following command to navigate to the IDT-FreeRTOS installation directory:

cd devicetester-extract-location/bin
3. Run the following command to open the IDT-FreeRTOS Ul:

Linux

.devicetestergui_linux_x86-64.exe

Use the IDT Ul to run the FreeRTOS qualification suite 145

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html

FreeRTOS User Guide

Windows

./devicetestergui_win_x64-64

macOS

./devicetestergui_mac_x86-64

(® Note

On Mac, to allow your system to run the Ul, go to System Preferences -> Security
& Privacy. When you run the tests, you may need to do this three more times.

The IDT-FreeRTOS Ul opens in your default browser. For information about supported
browsers, see Use a supported web browser.

Create a new configuration

If you're a first-time user, then you must create a new configuration to set up the JSON
configuration files that IDT-FreeRTOS requires to run tests. You can then run tests or modify the
configuration that was created.

For examples of the config. json, device. json, and userdata. json files, see Preparing to
test your microcontroller board for the first time. For an example of the resource. json file that
is used only for running Bluetooth Low Energy (BLE) tests, see Running Bluetooth Low Energy

tests.

To create a new configuration

1. Inthe IDT-FreeRTOS Ul, open the navigation menu, and then choose Create new
configuration.

Use the IDT Ul to run the FreeRTOS qualification suite 146

FreeRTOS

User Guide

/A Important

You must configure your AWS credentials before you open the Ul. If you haven't
configured your credentials, close the IDT-FreeRTOS Ul browser window, follow the
steps in Configure AWS credentials, and then reopen the IDT-FreeRTOS UI.

2. Follow the configuration wizard to enter the IDT configuration settings that are used to run

qualification tests. The wizard configures the following settings in JSON configuration files

th

at are located in the devicetester-extract-location/config directory.

AWS settings—The AWS account information that IDT-FreeRTOS uses to create AWS
resources during test runs. These settings are configured in the config. json file.

FreeRTOS repository—The absolute path to the FreeRTOS repository and ported code,
and the type of qualification you want to perform. These settings are configured in the
userdata. json file.

You must port FreeRTOS for your device before you can run qualification tests. For more
information, see the FreeRTOS Porting Guide

Build and flash—The build and flash commands for your hardware that allow IDT to
build and flash tests on to your board automatically. These settings are configured in the
userdata. json file.

Devices—The device pool settings for the devices to be tested. These settings are configured
in id and sku fields, and the devices block for the device pool in the device. json file.

Networking—The settings to test network communication support for your devices.
These settings are configured in the features block of the device. json file, and in the
clientWifiConfig and testWifiConfig blocks in the userdata. json file.

Echo server—The echo server configuration settings for secure socket tests. These settings
are configured in the userdata. json file.

For more information about echo server configuration, see https://docs.aws.amazon.com/

freertos/latest/portingguide/afr-echo-server.html.

CMake—(Optional) The settings to run CMake build functionality tests. This configuration
is required only if you're using CMake as your build system. These settings are configured in
the userdata. json file.

Use the IDT Ul to run the FreeRTOS qualification suite 147

https://docs.aws.amazon.com/freertos/latest/portingguide/
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-echo-server.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-echo-server.html

FreeRTOS User Guide

o BLE—The settings to run Bluetooth Low Energy functionality tests. These settings are
configured in the features block of the device. json file and in the resource. json file.

o OTA—The settings to run OTA functionality tests. These settings are configured in the
features block of the device. json file and in the userdata. json file.

3. On the Review page, verify your configuration information.

After you finish reviewing your configuration, to run your qualification tests, choose Run tests.
Modify an existing configuration

If you have already set up configuration files for IDT, then you can use the IDT-FreeRTOS Ul to
modify your existing configuration. Make sure that your existing configuration files are available in
the devicetester-extract-location/config directory.

To modify a new configuration

1. In the IDT-FreeRTOS Ul, open the navigation menu, and then choose Edit existing
configuration.

The configuration dashboard displays information about your existing configuration settings.
If a configuration is incorrect or unavailable, the status for that configuration is Exrror
validating configuration.

2. To modify an existing configuration setting, complete the following steps:

a. Choose the name of a configuration setting to open its settings page.

b. Modify the settings, and then choose Save to regenerate the corresponding configuration
file.

After you finish modifying your configuration, verify that all of your configuration settings pass
validation. If the status for each configuration setting is Valid, you can run your qualification tests
using this configuration.

Run qualification tests

After you have created a configuration for IDT-FreeRTOS, you can run your qualification tests.
To run qualification tests

1. Validate your configuration.

Use the IDT Ul to run the FreeRTOS qualification suite 148

FreeRTOS User Guide

2. In the navigation menu, choose Run tests.

3. To start the test run, choose Start tests.

IDT-FreeRTOS runs the qualification tests, and displays the test run summary and any errors in the
Test runner console. After the test run is complete, you can view the test results and logs from the
following locations:

e Test results are located in the devicetester-extract-location/results/execution-id
directory.

» Test logs are located in the devicetester-extract-location/results/execution-id/
logs directory.

For more information about test results and logs, see Understanding results and logs.

Running Bluetooth Low Energy tests

This section describes how to set up and run the Bluetooth tests using AWS loT Device Tester for
FreeRTOS. Bluetooth tests are not required for core qualification. If you do not want to test your
device with FreeRTOS Bluetooth support you may skip this setup, be sure to leave the BLE feature
in device.json set to No.

Prerequisites

 Follow the instructions in Preparing to test your microcontroller board for the first time.

» A Raspberry Pi 4B or 3B+. (Required to run the Raspberry Pi BLE companion application)
« A micro SD card and SD card adapter for the Raspberry Pi software.

Raspberry Pi setup

To test the BLE capabilities of the device under test (DUT), you must have a Raspberry Pi Model 4B
or 3B+.

To set up your Raspberry Pi to run BLE tests

1. Download one of the custom Yocto images that contains the software required to perform the
tests.

Running Bluetooth Low Energy tests 149

FreeRTOS User Guide

» Image for Raspberry Pi 4B

» Image for Raspberry Pi 3B+

® Note

The Yocto image should only be used for testing with AWS loT Device Tester for
FreeRTOS and not for any other purpose.

2. Flash the yocto image onto the SD card for Raspberry Pi.

e Using an SD card-writing tool such as Etcher, flash the downloaded image-name . rpi-
sd. img file onto the SD card. Because the operating system image is large, this step
might take some time. Then eject your SD card from your computer and insert the
microSD card into your Raspberry Pi.

3. Configure your Raspberry Pi.
a. For the first boot, we recommend that you connect the Raspberry Pi to a monitor,
keyboard, and mouse.
b. Connect your Raspberry Pi to a micro USB power source.
c. Sign in using the default credentials. For user ID, enter root. For password, enter idtafr.
d. Using an Ethernet or Wi-Fi connection, connect the Raspberry Pi to your network.

i. To connect your Raspberry Pi over Wi-Fi, open /etc/wpa_supplicant.conf on the
Raspberry Pi and add your Wi-Fi credentials to the Network configuration.

ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=0
update_config=1

network={
scan_ssid=1
ssid="your-wifi-ssid"
psk="your-wifi-password"

}

ii. Runifup wlan® to start the Wi-Fi connection. It might take a minute to connect to
your Wi-Fi network.

Running Bluetooth Low Energy tests 150

https://docs.aws.amazon.com/freertos/latest/userguide/freertos/IDTFR_BLE_RaspberryPi4B_1.0.0_2021-04-13.rpi-sd.img
https://docs.aws.amazon.com/freertos/latest/userguide/freertos/IDTFR_BLE_RaspberryPi3Bplus_1.0.0_2021-04-13.rpi-sd.img
https://www.balena.io/etcher

FreeRTOS

User Guide

e. For an Ethernet connection, run ifconfig eth@. For a Wi-Fi connection, run ifconfig
wlan@. Make a note of the IP address, which appears as inet addr in the command
output. You need the IP address later in this procedure.

f. (Optional) The tests execute commands on the Raspberry Pi over SSH using the default

credentials for the yocto image. For additional security, we recommend that you set up
public key authentication for SSH and disable password-based SSH.

.
l.

Create an SSH key using the OpenSSL ssh-keygen command. If you already have an
SSK key pair on your host computer, it is a best practice to create a new one to allow
AWS |oT Device Tester for FreeRTOS to sign in to your Raspberry Pi.

(® Note

Windows does not come with an installed SSH client. For information about
how to install an SSH client on Windows, see Download SSH Software.

The ssh-keygen command prompts you for a name and path to store the key pair.
By default, the key pair files are named id_rsa (private key) and id_rsa.pub
(public key). On macOS and Linux, the default location of these files is ~/.ssh/. On
Windows, the default location is C:\Users\user-name.

When you are prompted for a key phrase, just press ENTER to continue.

To add your SSH key onto your Raspberry Pi so AWS loT Device Tester for FreeRTOS
can sign into the device, use the ssh-copy-id command from your host computer.
This command adds your public key into the ~/.ssh/authorized_keys file on your
Raspberry Pi.

ssh-copy-id root@raspberry-pi-ip-address

When prompted for a password, enter idtafzr. This is the default password for the
yocto image.

(® Note

The ssh-copy-id command assumes the public key is named id_rsa.pub.
On macOS and Linux, the default locationis ~/.ssh/. On Windows, the
default location is C:\Users\user-name\. ssh. If you gave the public key
a different name or stored it in a different location, you must specify the fully
qualified path to your SSH public key using the -i option to ssh-copy-

Running Bluetooth Low Energy tests 151

https://www.ssh.com/ssh/#sec-Download-client-software

FreeRTOS User Guide

id (for example, ssh-copy-id -i ~/my/path/myKey.pub). For more
information about creating SSH keys and copying public keys, see SSH-COPY-
ID.

vi. To test that the public key authentication is working, run ssh -i /my/path/myKey
root@raspberry-pi-device-ip.
If you are not prompted for a password, your public key authentication is working.

vii. Verify that you can sign in to your Raspberry Pi using a public key, and then disable
password-based SSH.
A. On the Raspberry Pi, edit the /etc/ssh/sshd_config file.
B. Setthe PasswordAuthentication attribute to no.
C. Save and close the sshd_configfile.
D. Reload the SSH server by running /etc/init.d/sshd reload.

g. Createaresource.json file.

i. Inthe directory in which you extracted AWS loT Device Tester, create a file named

resource.json.

ii. Add the following information about your Raspberry Pi to the file, replacing rasp-
pi-ip-address with the IP address of your Raspberry Pi.

[
{
"id": "ble-test-raspberry-pi",
"features": [
{"name":"ble", "version":"4.2"}
1,
"devices": [
{
"id": "ble-test-raspberry-pi-1",
"connectivity": {
"protocol": "ssh",
"ip": "rasp-pi-ip-address"
}
}
]
}
]

Running Bluetooth Low Energy tests 152

https://www.ssh.com/ssh/copy-id
https://www.ssh.com/ssh/copy-id

FreeRTOS User Guide

iii. If you didn't choose to use public key authentication for SSH, add the following to the
connectivity section of the resource. json file.

"connectivity": {
"protocol": "ssh",
"ip": "rasp-pi-ip-address",
"auth": {
"method": "password",
"credentials": {
"user": "root",
"password": "idtafzr"

}

iv. (Optional) If you chose to use public key authentication for SSH, add the following to
the connectivity section of the resource. json file.

"connectivity": {

"protocol": "ssh",
"ip": nrasp_pi_ip-addreSS",
"auth": {

"method": "pki",
"credentials": {
"user": "root",
"privKeyPath": "location-of-private-key"

FreeRTOS device setup

In your device. json file, set the BLE feature to Yes. If you are starting with a device. json file
from before Bluetooth tests were available, you need to add the feature for BLE to the features

array:

"features": [
{

"name": "BLE",

Running Bluetooth Low Energy tests 153

FreeRTOS User Guide

"value": "Yes"

iy

Running the BLE tests

After you have enabled the BLE feature in device. json, the BLE tests run when you run
devicetester_[linux [mac | win_x86-64] run-suite without specifying a group-id.

If you want to run the BLE tests separately, you can specify the group ID for BLE:
devicetester_[linux [mac | win_x86-64] run-suite --userdata path-to-
userdata/userdata.json --group-id FullBLE.

For the most reliable performance, place your Raspberry Pi close to the device under test (DUT).
Troubleshooting BLE tests

Make sure you have followed the steps in Preparing to test your microcontroller board for the first
time. If tests other than BLE are failing, then the problem is most likely not due to the Bluetooth
configuration.

Running the FreeRTOS qualification suite

You use the AWS IloT Device Tester for FreeRTOS executable to interact with IDT for FreeRTOS. The
following command line examples show you how to run the qualification tests for a device pool (a
set of identical devices).

IDT v3.0.0 and later

devicetester_[linux [mac | win] run-suite \
--suite-id suite-id \
--group-id group-id \
--pool-id your-device-pool \
--test-id test-id \
--upgrade-test-suite y/n \
--update-idt y/n \
--update-managed-policy y[n \
--userdata userdata.json

Running the FreeRTOS qualification suite 154

FreeRTOS User Guide

Runs a suite of tests on a pool of devices. The userdata. json file must be located in the
devicetester _extract_location/devicetester_afreertos_[win[mac[linux]/
configs/ directory.

(@ Note

If you're running IDT for FreeRTOS on Windows, use forward slashes (/) to specify the
path to the userdata. json file.

Use the following command to run a specific test group:

devicetester_[linux [mac | win] run-suite \
--suite-id FRQ_1.0.1 \
--group-id group-id \
--pool-id pool-id \
--userdata userdata. json

The suite-id and pool-id parameters are optional if you're running a single test suite on a
single device pool (that is, you have only one device pool defined in your device. json file).

Use the following command to run a specific test case in a test group:

devicetester_[linux | mac | win_x86-64] run-suite \
--group-id group-id \
--test-id test-id

You can use the 1ist-test-cases command to list the test cases in a test group.
IDT for FreeRTOS command line options
group-id

(Optional) The test groups to run, as a comma-separated list. If not specified, IDT runs all
test groups in the test suite.

pool-id

(Optional) The device pool to test. This is required if you define multiple device pools in
device. json. If you only have one device pool, you can omit this option.

Running the FreeRTOS qualification suite 155

FreeRTOS User Guide

suite-id

(Optional) The test suite version to run. If not specified, IDT uses the latest version in the
tests directory on your system.

(® Note

Starting in IDT v3.0.0, IDT checks online for newer test suites. For more information,
see Test suite versions.

test-id

(Optional) The tests to run, as a comma-separated list. If specified, group-id must specify a
single group.

Example

devicetester_[linux | mac | win_x86-64] run-suite --group-id mqtt --test-id
mqtt_test

update-idt

(Optional) If this parameter is not set and a newer IDT version is available, you will be
prompted to update IDT. If this parameter is set to VY, IDT will stop test execution if it detects
that a newer version is available. If this parameter is set to N, IDT will continue the test
execution.

update-managed-policy

(Optional) If this parameter is not used and IDT detects that your managed policy isn't up-
to-date, you will be prompted to update your managed policy. If this parameterissettoV,
IDT will stop test execution if it detects that your managed policy isn't up-to-date. If this
parameter is set to N, IDT will continue the test execution.

upgrade-test-suite

(Optional) If not used, and a newer test suite version is available, you're prompted to
download it. To hide the prompt, specify y to always download the latest test suite, or n to
use the test suite specified or the latest version on your system.

Running the FreeRTOS qualification suite 156

FreeRTOS User Guide

Example
Example

To always download and use the latest test suite, use the following command.

devicetester_[linux | mac | win_x86-64] run-suite --userdata userdata file --
group-id group ID --upgrade-test-suite y

To use the latest test suite on your system, use the following command.

devicetester_[linux | mac | win_x86-64] run-suite --userdata userdata file --
group-id group ID --upgrade-test-suite n

Use the help option to learn more about run-suite options.
Example

Example

devicetester_[linux | mac | win_x86-64] run-suite -h

IDT v1.7.0 and earlier

devicetester_[linux [mac | win] run-suite \
--suite-id suite-id \
--pool-id your-device-pool \
--userdata userdata. json

The userdata. json file should be located in the devicetester_extract_location/
devicetester_afreertos_[win[mac[linux]/configs/ directory.

(@ Note

If you are running IDT for FreeRTOS on Windows, use forward slashes (/) to specify the
path to the userdata. json file.

Running the FreeRTOS qualification suite

157

FreeRTOS User Guide

Use the following command to run a specific test group.

devicetester_[linux [mac | win] run-suite \
--suite-id FRQ_1 --group-id group-id \
--pool-id pool-id \
--userdata userdata. json

suite-id and pool-id are optional if you are running a single test suite on a single device
pool (that is, you have only one device pool defined in your device. json file).

IDT for FreeRTOS command line options
group-id

(Optional) Specifies the test group.
pool-id

Specifies the device pool to test. If you only have one device pool, you can omit this option.

suite-id

(Optional) Specifies the test suite to run.

IDT for FreeRTOS commands
The IDT for FreeRTOS command supports the following operations:
IDT v3.0.0 and later

help

Lists information about the specified command.

list-groups

Lists the groups in a given suite.

list-suites

Lists the available suites.

list-supported-products

Lists the supported products and test suite versions.

Running the FreeRTOS qualification suite 158

FreeRTOS User Guide

list-supported-versions

Lists the FreeRTOS and test suite versions supported by the current IDT version.

list-test-cases

Lists the test cases in a specified group.

run-suite
Runs a suite of tests on a pool of devices.

Use the --suite-id option to specify a test suite version, or omit it to use the latest
version on your system.

Use the --test-id to run an individual test case.

Example

devicetester_[linux | mac | win_x86-64] run-suite --group-id mqtt --test-id
mqtt_test

For a complete list of options see Running the FreeRTOS qualification suite.

(® Note

Starting in IDT v3.0.0, IDT checks online for newer test suites. For more information,
see Test suite versions.

IDT v1.7.0 and earlier

help

Lists information about the specified command.

list-groups

Lists the groups in a given suite.

list-suites

Lists the available suites.

Running the FreeRTOS qualification suite 159

FreeRTOS User Guide

run-suite

Runs a suite of tests on a pool of devices.

Test for re-qualification

As new versions of IDT for FreeRTOS qualification tests are released, or as you update your board-
specific packages or device drivers, you can use IDT for FreeRTOS to test your microcontroller
boards. For subsequent qualifications, make sure that you have the latest versions of FreeRTOS and
IDT for FreeRTOS and run the qualification tests again.

Understanding results and logs
This section describes how to view and interpret IDT result reports and logs.
Viewing results

While running, IDT writes errors to the console, log files, and test reports. After IDT completes the
qualification test suite, it writes a test run summary to the console and generates two test reports.
These reports can be found in devicetester-extract-location/results/execution-1id/.
Both reports capture the results from the qualification test suite execution.

The awsiotdevicetester_report.xml is the qualification test report that you submit to AWS
to list your device in the AWS Partner Device Catalog. The report contains the following elements:

« The IDT for FreeRTOS version.

« The FreeRTOS version that was tested.

» The features of FreeRTOS that are supported by the device based on the tests passed.
» The SKU and the device name specified in the device. json file.

« The features of the device specified in the device. json file.

» The aggregate summary of test case results.

« A breakdown of test case results by libraries that were tested based on the device features (for
example, FullWiFi, FullMQTT, and so on).

« Whether this qualification of FreeRTOS is for version 202012.00 that uses LTS libraries.

The FRQ_Report.xml is a report in standard JUnit XML format. You can integrate it into CI/CD

platforms like Jenkins, Bamboo, and so on. The report contains the following elements:

Understanding results and logs 160

https://llg.cubic.org/docs/junit/
https://jenkins.io/
https://www.atlassian.com/software/bamboo

FreeRTOS User Guide

« An aggregate summary of test case results.

« A breakdown of test case results by libraries that were tested based on the device features.

Interpreting IDT for FreeRTOS results

The report section in awsiotdevicetester_report.xml or FRQ_Report. xml lists the results
of the tests that are executed.

The first XML tag <testsuites> contains the overall summary of the test execution. For example:

<testsuites name="FRQ results" time="5633" tests="184" failures="0"
errors="0Q" disabled="0">

Attributes used in the <testsuites> tag

name

The name of the test suite.
time
The time, in seconds, it took to run the qualification suite.

tests

The number of test cases executed.

failures

The number of test cases that were run, but did not pass.

€rrors

The number of test cases that IDT for FreeRTOS couldn't execute.

disabled

This attribute is not used and can be ignored.

If there are no test case failures or errors, your device meets the technical requirements to run
FreeRTOS and can interoperate with AWS loT services. If you choose to list your device in the AWS
Partner Device Catalog, you can use this report as qualification evidence.

Understanding results and logs 161

FreeRTOS User Guide

In the event of test case failures or errors, you can identify the test case that failed by reviewing
the <testsuites> XML tags. The <testsuite> XML tags inside the <testsuites> tag shows
the test case result summary for a test group.

<testsuite name="FullMQTT" package="" tests="16" failures="0" time="76"
disabled="0" errors="0" skipped="0">

The format is similar to the <testsuites> tag, but with an attribute called skipped that is not
used and can be ignored. Inside each <testsuite> XML tag, there are <testcase> tags for each
of the test cases that were executed for a test group. For example:

<testcase classname="mcu.Full_MQTT" name="AFQP_MQTT_Connect_HappyCase"
attempts="1"></testcase>

Attributes used in the <awsproduct> tag
name

The name of the product being tested.

version

The version of the product being tested.

sdk

If you ran IDT with an SDK, this block contains the name and version of your SDK. If you didn't
run IDT with an SDK, then this block contains:

<sdk>
<name>N/A</vame>
<version>N/A</version>
</sdk>

features

The features validated. Features marked as required are required to submit
your board for qualification. The following snippet shows how this appears in the
awsiotdevicetester_report.xml file.

<feature name="core-freertos" value="not-supported" type="required"></feature>

Understanding results and logs 162

FreeRTOS User Guide

Features marked as optional are not required for qualification. The following snippets show
optional features.

<feature name="ota-dataplane-mqtt" value="not-supported" type="optional'"></feature>
<feature name="ota-dataplane-http" value="not-supported" type="optional"></feature>

If there are no test failures or errors for the required features, your device meets the technical
requirements to run FreeRTOS and can interoperate with AWS loT services. If you want to list
your device in the AWS Partner Device Catalog, you can use this report as qualification evidence.

In the event of test failures or errors, you can identify the test that failed by reviewing the
<testsuites> XML tags. The <testsuite> XML tags inside the <testsuites> tag show the
test result summary for a test group. For example:

<testsuite name="FreeRTOSVersion" package="" tests="1" failures="1" time="2"
disabled="0" errors="0" skipped="0">

The format is similar to the <testsuites> tag, but has a skipped attribute that is not used
and can be ignored. Inside each <testsuite> XML tag, there are <testcase> tags for each
executed test for a test group. For example:

<testcase classname="FreeRTOSVersion" name="FreeRTOSVersion'"></testcase>

1ts

True if you are qualifying for a version of FreeRTOS that uses LTS libraries, false otherwise.

Attributes used in the <testcase> tag
name

The name of the test case.

attempts

The number of times IDT for FreeRTOS executed the test case.

When a test fails or an error occurs, <failure> or <error> tags are added to the <testcase>
tag with information for troubleshooting. For example:

Understanding results and logs 163

https://devices.amazonaws.com/

FreeRTOS User Guide

<testcase classname="mcu.Full_MQTT" name="AFQP_MQTT_Connect_HappyCase">
<failure type="Failure">Reason for the test case failure</failure>
<error>Reason for the test case execution error</error>

</testcase>

For more information, see Troubleshooting.

Viewing logs

You can find logs that IDT for FreeRTOS generates from test execution in devicetester-
extract-location/results/execution-id/logs. Two sets of logs are generated:

test_manager.log

Contains logs generated from IDT for FreeRTOS (for example, logs related configuration and
report generation).

test_group_id__test_case_id.log (for example, FullMQTT__Full_MQTT.1log)

The log file for a test case, including output from the device under test. The log file is named
according to the test group and test case that was run.

Use IDT to develop and run your own test suites

Starting in IDT v4.0.0, IDT for FreeRTOS combines a standardized configuration setup and result
format with a test suite environment that enables you to develop custom test suites for your
devices and device software. You can add custom tests for your own internal validation or provide
them to your customers for device verification.

Use IDT to develop and run custom test suites, as follows:

To develop custom test suites
» Create test suites with custom test logic for the device that you want to test.

« Provide IDT with your custom test suites to test runners. Include information about specific
settings configurations for your test suites.

To run custom test suites
« Set up the device that you want to test.

« Implement the settings configurations as required by the test suites that you want to use.

Use IDT to develop and run your own test suites 164

FreeRTOS User Guide

e Use IDT to run your custom test suites.

» View the test results and execution logs for the tests run by IDT.

Download the latest version of AWS loT Device Tester for FreeRTOS

Download the latest version of IDT and extract the software into a location on your file system
where you have read and write permissions.

@ Note

IDT does not support being run by multiple users from a shared location, such as an NFS
directory or a Windows network shared folder. We recommend that you extract the IDT
package to a local drive and run the IDT binary on your local workstation.

Windows has a path length limitation of 260 characters. If you are using Windows, extract
IDT to a root directory like C:\ or D:\ to keep your paths under the 260 character limit.

Test suite creation workflow

Test suites are composed of three types of files:

« Configuration files that provide IDT with information on how to execute the test suite.
 Test executable files that IDT uses to run test cases.

« Additional files required to run tests.

Complete the following basic steps to create custom IDT tests:

1. Create configuration files for your test suite.

2. Create test case executables that contain the test logic for your test suite.

3. Verify and document the configuration information required for test runners to run the test
suite.

4. Verify that IDT can run your test suite and produce test results as expected.

To quickly build a sample custom suite and run it, follow the instructions in Tutorial: Build and run
the sample IDT test suite.

Download the latest version of IDT for FreeRTOS 165

FreeRTOS User Guide

To get started creating a custom test suite in Python, see Tutorial: Develop a simple IDT test suite.

Tutorial: Build and run the sample IDT test suite

The AWS loT Device Tester download includes the source code for a sample test suite. You can
complete this tutorial to build and run the sample test suite to understand how you can use AWS
loT Device Tester for FreeRTOS to run custom test suites. Although this tutorial uses SSH, it is
useful to learn how to use AWS loT Device Tester with FreeRTOS devices.

In this tutorial, you will complete the following steps:

1. Build the sample test suite

2. Use IDT to run the sample test suite

Prerequisites
To complete this tutorial, you need the following:

« Host computer requirements
« Latest version of AWS loT Device Tester

» Python 3.7 or later

To check the version of Python installed on your computer, run the following command:

python3 --version

On Windows, if using this command returns an error, then use python --version instead. If
the returned version number is 3.7 or greater, then run the following command in a Powershell
terminal to set python3 as an alias for your python command.

Set-Alias -Name "python3" -Value "python"

If no version information is returned or if the version number is less than 3.7, follow the
instructions in Downloading Python to install Python 3.7+. For more information, see the
Python documentation.

o urllib3

To verify that url1lib3 is installed correctly, run the following command:

Tutorial: Build and run the sample IDT test suite 166

https://www.python.org/downloads/
https://wiki.python.org/moin/BeginnersGuide/Download
https://docs.python.org
https://urllib3.readthedocs.io/en/latest/

FreeRTOS User Guide

python3 -c 'import urllib3'

If urllib3 is not installed, run the following command to install it:

python3 -m pip install urllib3

» Device requirements

» A device with a Linux operating system and a network connection to the same network as your
host computer.

We recommend that you use a Raspberry Pi with Raspberry Pi OS. Make sure you set up SSH
on your Raspberry Pi to remotely connect to it.

Configure device information for IDT

Configure your device information for IDT to run the test. You must update the device. json
template located in the <device-tester-extract-location>/configs folder with the
following information.

[
{
"id": "pool",
"sku": "N/A",
"devices": [
{
"id": "<device-id>",
"connectivity": {
"protocol": "ssh",
"ip": "<ip-address>",
"port": "<port>",
"auth": {
"method": "pki | password",
"credentials": {
"user": "<user-name>",
"privKeyPath": "/path/to/private/key",
"password": "<password>"
}
}

Tutorial: Build and run the sample IDT test suite 167

https://www.raspberrypi.org/
https://www.raspberrypi.org/documentation/remote-access/ssh/

FreeRTOS User Guide

]
}

In the devices object, provide the following information:
id

A user-defined unique identifier for your device.
connectivity.ip

The IP address of your device.

connectivity.port

Optional. The port number to use for SSH connections to your device.

connectivity.auth
Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method
The authentication method used to access a device over the given connectivity protocol.

Supported values are:
e pki
e password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.user

The user name used to sign in to your device.

connectivity.auth.credentials.privKeyPath
The full path to the private key used to sign in to your device.

This value applies only if connectivity.auth.method is set to pki.

devices.connectivity.auth.credentials.password

The password used for signing in to your device.

Tutorial: Build and run the sample IDT test suite 168

FreeRTOS User Guide

This value applies only if connectivity.auth.method is set to passwozrd.

(@ Note

Specify privKeyPath only if method is set to pki.
Specify password only if method is set to password.

Build the sample test suite

The <device-tester-extract-location>/samples/python folder contains sample
configuration files, source code, and the IDT Client SDK that you can combine into a test suite using
the provided build scripts. The following directory tree shows the location of these sample files:

<device-tester-extract-location>
#H## ...
tests
samples
...
python
configuration
src
build-scripts
build.sh
build.psl

H OH OHF O B O

sdks
#H## ...
python
idt_client

To build the test suite, run the following commands on your host computer:

Windows

cd <device-tester-extract-location>/samples/python/build-scripts
./build.psi

Linux, macOS, or UNIX

cd <device-tester-extract-location>/samples/python/build-scripts

Tutorial: Build and run the sample IDT test suite 169

FreeRTOS User Guide

./build.sh

This creates the sample test suite in the IDTSampleSuitePython_1.0.0 folder within

the <device-tester-extract-location>/tests folder. Review the files in the
IDTSampleSuitePython_1.0.0 folder to understand how the sample test suite is structured
and to see various examples of test case executables and test configuration files.

(@ Note

The sample test suite includes python source code. Do not include sensitive information in
your test suite code.

Next step: Use IDT to run the sample test suite that you created.

Use IDT to run the sample test suite

To run the sample test suite, run the following commands on your host computer:

cd <device-tester-extract-location>/bin
./devicetester_[linux | mac [win_x86-64] run-suite --suite-id IDTSampleSuitePython

IDT runs the sample test suite and streams the results to the console. When the test has finished
running, you see the following information:

========== Test Summary ==========
Execution Time: 5s
Tests Completed: 4
Tests Passed: 4
Tests Failed: 0
Tests Skipped: 0
Test Groups:
sample_group: PASSED
Path to AWS IoT Device Tester Report: /path/to/devicetester/
results/87e673c6-1226-11eb-9269-8c8590419f30/awsiotdevicetester_report.xml
Path to Test Execution Logs: /path/to/devicetester/
results/87e673c6-1226-11eb-9269-8c8590419f30/1ogs

Tutorial: Build and run the sample IDT test suite 170

FreeRTOS User Guide

Path to Aggregated JUnit Report: /path/to/devicetester/
results/87e673c6-1226-11eb-9269-8c8590419f30/IDTSampleSuitePython_Report.xml

Troubleshooting

Use the following information to help resolve any issues with completing the tutorial.

Test case does not run successfully
o If the test does not run successfully, IDT streams the error logs to the console that can help you

troubleshoot the test run. Make sure that you meet all the prerequisites for this tutorial.

Cannot connect to the device under test

Verify the following:

» Your device. json file contains the correct IP address, port, and authentication information.

» You can connect to your device over SSH from your host computer.

Tutorial: Develop a simple IDT test suite

A test suite combines the following:

» Test executables that contain the test logic

» Configuration files that describe the test suite

This tutorial shows you how to use IDT for FreeRTOS to develop a Python test suite that contains
a single test case. Although this tutorial uses SSH, it is useful to learn how to use AWS loT Device
Tester with FreeRTOS devices.

In this tutorial, you will complete the following steps:

1. Create a test suite directory

Create configuration files

2
3. Create the test case executable
4

Run the test suite

Tutorial: Develop a simple IDT test suite 171

FreeRTOS User Guide

Prerequisites

To complete this tutorial, you need the following:

« Host computer requirements
« Latest version of AWS loT Device Tester

« Python 3.7 or later

To check the version of Python installed on your computer, run the following command:

python3 --version

On Windows, if using this command returns an error, then use python --version instead. If
the returned version number is 3.7 or greater, then run the following command in a Powershell
terminal to set python3 as an alias for your python command.

Set-Alias -Name "python3" -Value "python"

If no version information is returned or if the version number is less than 3.7, follow the
instructions in Downloading Python to install Python 3.7+. For more information, see the

Python documentation.

o urllib3

To verify that url1lib3 is installed correctly, run the following command:

python3 -c 'import urllib3'

If urllib3 is not installed, run the following command to install it:

python3 -m pip install urllib3

» Device requirements

« A device with a Linux operating system and a network connection to the same network as your
host computer.

We recommend that you use a Raspberry Pi with Raspberry Pi OS. Make sure you set up SSH
on your Raspberry Pi to remotely connect to it.

Tutorial: Develop a simple IDT test suite 172

https://www.python.org/downloads/
https://wiki.python.org/moin/BeginnersGuide/Download
https://docs.python.org
https://urllib3.readthedocs.io/en/latest/
https://www.raspberrypi.org/
https://www.raspberrypi.org/documentation/remote-access/ssh/

FreeRTOS User Guide

Create a test suite directory

IDT logically separates test cases into test groups within each test suite. Each test case must be
inside a test group. For this tutorial, create a folder called MyTestSuite_1.0.0 and create the
following directory tree within this folder:

MyTestSuite_1.0.0
suite
myTestGroup
myTestCase

Create configuration files

Your test suite must contain the following required configuration files:

Required files

suite.json

Contains information about the test suite. See Configure suite.json.

group.json

Contains information about a test group. You must create a group. json file for each test
group in your test suite. See Configure group.json.

test.json

Contains information about a test case. You must create a test. json file for each test case in
your test suite. See Configure test.json.

1. IntheMyTestSuite_1.0.0/suite folder, create a suite. json file with the following
structure:

"id": "MyTestSuite_1.0.0",
"title": "My Test Suite",
"details": "This is my test suite.",
"userDataRequired": false

}

2. IntheMyTestSuite_1.0.0/myTestGroup folder, create a group. json file with the
following structure:

Tutorial: Develop a simple IDT test suite 173

FreeRTOS User Guide

{
"id": "MyTestGroup",
"title": "My Test Group",
"details": "This is my test group.",
"optional": false
}

3. IntheMyTestSuite_1.0.0/myTestGroup/myTestCase folder, create a test. json file
with the following structure:

"id": "MyTestCase",
"title": "My Test Case",
"details": "This is my test case.",
"execution": {
"timeout": 300000,
"linux": {
"cmd": "python3",
"args": [
"myTestCase.py"

},
"mac": {
"cmd": "python3",
"args": [
"myTestCase.py"

},
"win": {
"cmd": "python3",
"args": [
"myTestCase.py"

The directory tree for your MyTestSuite_1.0.0 folder should now look like the following:

MyTestSuite_1.0.0
suite

Tutorial: Develop a simple IDT test suite 174

FreeRTOS User Guide

suite.json
myTestGroup
group.json
myTestCase
test.json

Get the IDT client SDK

You use the IDT client SDK to enable IDT to interact with the device under test and to report test
results. For this tutorial, you will use the Python version of the SDK.

From the <device-tester-extract-location>/sdks/python/ folder, copy the idt_client
folder to your MyTestSuite_1.0.0/suite/myTestGroup/myTestCase folder.

To verify that the SDK was successfully copied, run the following command.

cd MyTestSuite_1.0.0/suite/myTestGroup/myTestCase
python3 -c 'import idt_client'

Create the test case executable

Test case executables contain the test logic that you want to run. A test suite can contain multiple
test case executables. For this tutorial, you will create only one test case executable.

1. Create the test suite file.

In the MyTestSuite_1.0.0/suite/myTestGroup/myTestCase folder, create a
myTestCase.py file with the following content:

from idt_client import *

def main():
Use the client SDK to communicate with IDT
client = Client()

if __name__ == "__main__":
main()

2. Use client SDK functions to add the following test logic to your myTestCase. py file:

a. Run an SSH command on the device under test.

Tutorial: Develop a simple IDT test suite 175

FreeRTOS User Guide
from idt_client import *
def main():
Use the client SDK to communicate with IDT
client = Client()
Create an execute on device request
exec_req = ExecuteOnDeviceRequest(ExecuteOnDeviceCommand("echo 'hello
world'"))
Run the command
exec_resp = client.execute_on_device(exec_req)
Print the standard output
print(exec_resp.stdout)
if __name__ == "__main__":
main()
b. Send the test result to IDT.
from idt_client import *
def main():
Use the client SDK to communicate with IDT
client = Client()
Create an execute on device request
exec_req = ExecuteOnDeviceRequest(ExecuteOnDeviceCommand("echo 'hello
world'"))
Run the command
exec_resp = client.execute_on_device(exec_req)
Print the standard output
print(exec_resp.stdout)
Create a send result request
sr_req = SendResultRequest(TestResult(passed=True))
Send the result
client.send_result(sr_req)
Tutorial: Develop a simple IDT test suite 176

FreeRTOS User Guide

if __name__ == "__main__":
main()

Configure device information for IDT

Configure your device information for IDT to run the test. You must update the device. json
template located in the <device-tester-extract-location>/configs folder with the
following information.

[
{
"id": "pool",
"sku": "N/A",
"devices": [
{
"id": "<device-id>",
"connectivity": {
"protocol": "ssh",
"ip": "<ip-address>",
"port": "<port>",
"auth": {
"method": "pki | password",
"credentials": {
"usexr": "<user-name>",
"privKeyPath": "/path/to/private/key",
"password": "<password>"
}
}
}
}
]
}
]

In the devices object, provide the following information:
id

A user-defined unique identifier for your device.

Tutorial: Develop a simple IDT test suite 177

FreeRTOS User Guide

connectivity.ip

The IP address of your device.

connectivity.port

Optional. The port number to use for SSH connections to your device.

connectivity.auth
Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method

The authentication method used to access a device over the given connectivity protocol.

Supported values are:
o pki
e password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.user

The user name used to sign in to your device.

connectivity.auth.credentials.privKeyPath
The full path to the private key used to sign in to your device.

This value applies only if connectivity.auth.method is set to pki.

devices.connectivity.auth.credentials.password
The password used for signing in to your device.

This value applies only if connectivity.auth.method is set to password.

(® Note
Specify privKeyPath only if method is set to pki.

Tutorial: Develop a simple IDT test suite

178

FreeRTOS User Guide

Specify password only if method is set to passwozrd.

Run the test suite

After you create your test suite, you want to make sure that it functions as expected. Complete the
following steps to run the test suite with your existing device pool to do so.

1. Copyyour MyTestSuite_1.0.0 folderinto <device-tester-extract-location>/
tests.

2. Run the following commands:

cd <device-tester-extract-location>/bin
./devicetester_[linux | mac | win_x86-64] run-suite --suite-id MyTestSuite

IDT runs your test suite and streams the results to the console. When the test has finished running,
you see the following information:

time="2020-10-19T09:24:47-07:00" level=info msg=Using pool: pool
time="2020-10-19T09:24:47-07:00" level=info msg=Using test suite "MyTestSuite_1.0.0"
for execution
time="2020-10-19T09:24:47-07:00" level=info msg=b'hello world\n'

suiteId=MyTestSuite groupId=myTestGroup testCaseld=myTestCase deviceId=my-device
executionId=9a52f362-1227-11eb-86c9-8c8590419f30
time="2020-10-19T09:24:47-07:00" level=info msg=All tests finished.
executionId=9a52f362-1227-11eb-86c9-8c8590419f30
time="2020-10-19T09:24:48-07:00" level=info msg=

========== Test Summary ==========
Execution Time: 1s
Tests Completed: 1
Tests Passed: 1
Tests Failed: 0
Tests Skipped: 0
Test Groups:
myTestGroup: PASSED
Path to AWS IoT Device Tester Report: /path/to/devicetester/
results/9a52f362-1227-11eb-86c9-8c8590419f30/awsiotdevicetester_report.xml

Tutorial: Develop a simple IDT test suite 179

FreeRTOS User Guide

Path to Test Execution Logs: /path/to/devicetester/
results/9a52f362-1227-11eb-86c9-8c8590419f30/1ogs

Path to Aggregated JUnit Report: /path/to/devicetester/
results/9a52f362-1227-11eb-86c9-8c8590419f30/MyTestSuite_Report.xml

Troubleshooting
Use the following information to help resolve any issues with completing the tutorial.
Test case does not run successfully

If the test does not run successfully, IDT streams the error logs to the console that can help you
troubleshoot the test run. Before you check the error logs, verify the following:

« The IDT client SDK is in the correct folder as described in this step.
» You meet all the prerequisites for this tutorial.
Cannot connect to the device under test

Verify the following:

« Your device. json file contains the correct IP address, port, and authentication information.

» You can connect to your device over SSH from your host computer.

Create IDT test suite configuration files

This section describes the formats in which you create configuration files that you include when
you write a custom test suite.

Required configuration files

suite.json

Contains information about the test suite. See Configure suite.json.

group.json

Contains information about a test group. You must create a group. json file for each test
group in your test suite. See Configure group.json.

Tutorial: Develop a simple IDT test suite 180

FreeRTOS User Guide

test.json

Contains information about a test case. You must create a test. json file for each test case in
your test suite. See Configure test.json.

Optional configuration files

test_orchestrator.yaml or state_machine.json

Defines how tests are run when IDT runs the test suite. SSe Configure test_orchestrator.yaml.

(® Note
Starting in IDT v4.5.2, you use the test_orchestrator.yaml file to define the test
workflow. In previous versions of IDT, you use the state_machine. json file. For
information about the state machine, see Configure the IDT state machine.

userdata_schema. json

Defines the schema for the userdata. json file that test runners can include in their setting
configuration. The userdata. json file is used for any additional configuration information
that is required to run the test but is not present in the device. json file. See Configure
userdata_schema.json.

Configuration files are placed in your <custom-test-suite-folder> as shown here.

<custom-test-suite-folder>
suite
suite.json
test_orchestrator.yaml
userdata_schema.json
<test-group-folder>
group.json
<test-case-folder>
test.json

Tutorial: Develop a simple IDT test suite 181

FreeRTOS User Guide

Configure suite.json

The suite. json file sets environment variables and determines whether user data is required
to run the test suite. Use the following template to configure your <custom-test-suite-
folder>/suite/suite. json file:

{
"id": "<suite-name>_<suite-version>",
"title": "<suite-title>",
"details": "<suite-details>",
"userDataRequired": true | false,
"environmentVariables": [
{
"key": "<name>",
"value": "<value>",
b
{
"key": "<name>",
"value": "<value>",
}
]
}

All fields that contain values are required as described here:
id

A unique user-defined ID for the test suite. The value of id must match the name of the test
suite folder in which the suite. json file is located. The suite name and suite version must also
meet the following requirements:

e <suite-name> cannot contain underscores.

e« <suite-version>is denoted as x. x. x, where x is a number.

The ID is shown in IDT-generated test reports.

title

A user-defined name for the product or feature being tested by this test suite. The name is
displayed in the IDT CLI for test runners.

Tutorial: Develop a simple IDT test suite 182

FreeRTOS User Guide

details

A short description of the purpose of the test suite.

userDataRequired

Defines whether test runners need to include custom information in a userdata. json file. If
you set this value to true, you must also include the userdata_schema. json file in your test

suite folder.

environmentVariables

Optional. An array of environment variables to set for this test suite.

environmentVariables.key

The name of the environment variable.

environmentVariables.value

The value of the environment variable.

Configure group.json

The group. json file defines whether a test group is required or optional. Use the following
template to configure your <custom-test-suite-folder>/suite/<test-group>/
group. json file:

{
"id": "<group-id>",
"title": "<group-title>",
"details": "<group-details>",
"optional": true | false,

}

All fields that contain values are required as described here:
id

A unique user-defined ID for the test group. The value of id must match the name of the test
group folder in which the group. json file is located and should not have underscores (_). The
ID is used in IDT-generated test reports.

Tutorial: Develop a simple IDT test suite 183

FreeRTOS User Guide

title

A descriptive name for the test group. The name is displayed in the IDT CLI for test runners.

details

A short description of the purpose of the test group.

optional

Optional. Set to true to display this test group as an optional group after IDT finishes running
required tests. Default value is false.

Configure test.json

The test. json file determines the test case executables and the environment variables that are
used by a test case. For more information about creating test case executables, see Create IDT test

case executable.

Use the following template to configure your <custom-test-suite-folder>/suite/<test-
group>/<test-case>/test.json file:

{
"id": "<test-id>",
"title": "<test-title>",
"details": '"<test-details>",

"requireDUT": true | false,
"requiredResources": [

{
"name": "<resource-name>",
"features": [
{
"name": "<feature-name>",
"version": "<feature-version>",
"jobSlots": <job-slots>
}
]
}

15
"execution": {
"timeout": <timeout>,

"maC": {
"emd": "/path/to/executable",
"args": [

Tutorial: Develop a simple IDT test suite 184

FreeRTOS User Guide

"<argument>"
1,
},
"linux": {
"ecmd": "/path/to/executable",
"args": [
"<argument>"
1,
},
"win": {
"emd": "/path/to/executable",
"args": [
"<argument>"
]
}
.
"environmentVariables": [
{
"key": "<name>",
"value": "<value>",
}
]

All fields that contain values are required as described here:
id

A unique user-defined ID for the test case. The value of id must match the name of the test
case folder in which the test. json file is located and should not have underscores (_). The ID
is used in IDT-generated test reports.

title

A descriptive name for the test case. The name is displayed in the IDT CLI for test runners.

details

A short description of the purpose of the test case.

requireDUT

Optional. Set to true if a device is required to run this test, otherwise set to false. Default
value is true. Test runners will configure the devices they will use to run the test in their
device. jsonfile.

Tutorial: Develop a simple IDT test suite 185

FreeRTOS User Guide

requiredResources

Optional. An array that provides information about resource devices needed to run this test.

requiredResources.name

The unique name to give the resource device when this test is running.

requiredResources.features

An array of user-defined resource device features.

requiredResources.features.name

The name of the feature. The device feature for which you want to use this device.
This name is matched against the feature name provided by the test runner in the

resource. json file.

requiredResources.features.version

Optional. The version of the feature. This value is matched against the feature version
provided by the test runner in the resource. json file. If a version is not provided, then
the feature is not checked. If a version number is not required for the feature, leave this

field blank.

requiredResources.features.jobSlots

Optional. The number of simultaneous tests that this feature can support. The default
value is 1. If you want IDT to use distinct devices for individual features, then we
recommend that you set this value to 1.

execution.timeout

The amount of time (in milliseconds) that IDT waits for the test to finish running. For more
information about setting this value, see Create IDT test case executable.

execution.os

The test case executables to run based on the operating system of the host computer that runs
IDT. Supported values are 1inux, mac, and win.
execution.os.cmd

The path to the test case executable that you want to run for the specified operating system.
This location must be in the system path.

Tutorial: Develop a simple IDT test suite 186

FreeRTOS User Guide

execution.os.args

Optional. The arguments to provide to run the test case executable.

environmentVariables

Optional. An array of environment variables set for this test case.

environmentVariables.key

The name of the environment variable.

environmentVariables.value

The value of the environment variable.

(® Note

If you specify the same environment variable in the test. json file and in the
suite. json file, the value in the test. json file takes precedence.

Configure test_orchestrator.yaml

A test orchestrator is a construct that controls the test suite execution flow. It determines the
starting state of a test suite, manages state transitions based on user-defined rules, and continues
to transition through those states until it reaches the end state.

If your test suite doesn't include a user-defined test orchestrator, IDT will generate a test
orchestrator for you.

The default test orchestrator performs the following functions:

» Provides test runners with the ability to select and run specific test groups, instead of the entire
test suite.

« If specific test groups are not selected, runs every test group in the test suite in a random order.

» Generates reports and prints a console summary that shows the test results for each test group
and test case.

For more information about how the IDT test orchestrator functions, see Configure the IDT test

orchestrator.

Tutorial: Develop a simple IDT test suite 187

FreeRTOS User Guide

Configure userdata_schema.json

The userdata_schema. json file determines the schema in which test runners provide user

data. User data is required if your test suite requires information that is not present in the

device. json file. For example, your tests might need Wi-Fi network credentials, specific open
ports, or certificates that a user must provide. This information can be provided to IDT as an input
parameter called userdata, the value for which is a userdata. json file, that users create in their
<device-tester-extract-location>/config folder. The format of the userdata. json file
is based on the userdata_schema. json file that you include in the test suite.

To indicate that test runners must provide a userdata. json file:

1. Inthe suite.json file, set userDataRequired to true.
2. Inyour <custom-test-suite-folder>, create a userdata_schema. json file.

3. Editthe userdata_schema. json file to create a valid IETF Draft v4 JSON Schema.

When IDT runs your test suite, it automatically reads the schema and uses it to validate the
userdata. json file provided by the test runner. If valid, the contents of the userdata. json file
are available in both the IDT context and in the test orchestrator context.

Configure the IDT test orchestrator

Starting in IDT v4.5.2, IDT includes a new test orchestrator component. The test orchestrator is an
IDT component that controls the test suite execution flow, and generates the test report after IDT
finishes running all tests. The test orchestrator determines test selection and the order in which
tests are run based on user-defined rules.

If your test suite doesn't include a user-defined test orchestrator, IDT will generate a test
orchestrator for you.

The default test orchestrator performs the following functions:

« Provides test runners with the ability to select and run specific test groups, instead of the entire
test suite.

« If specific test groups are not selected, runs every test group in the test suite in a random order.

» Generates reports and prints a console summary that shows the test results for each test group
and test case.

Tutorial: Develop a simple IDT test suite 188

https://json-schema.org/specification-links.html#draft-4

FreeRTOS

User Guide

The test orchestrator replaces the IDT state machine. We strongly recommend that you use the

test orchestrator to develop your test suites instead of the IDT state machine. The test orchestrator

provides the following improved features:
» Uses a declarative format compared to the imperative format that the IDT state machine uses.
This allows you to specify which tests you want to run and when you want to run them.

» Manages specific group handling, report generation, error handling, and result tracking so that
you aren't required to manually manage these actions.

» Uses the YAML format, which supports comments by default.

» Requires 80 percent less disk space than the test orchestrator to define the same workflow.

« Adds pre-test validation to verify that your workflow definition doesn't contain incorrect test IDs

or circular dependencies.

Test orchestrator format

You can use the following template to configure your own custom-test-suite-folder/
suite/test_orchestrator.yaml file:

Aliases:
string: context-expression

ConditionalTests:
- Condition: context-expression
Tests:
- test-descriptor

Order:
- - group-descriptor
- group-descriptor

Features:
- Name: feature-name

Value: support-description
Condition: context-expression
Tests:

- test-descriptor
OneOfTests:

- test-descriptor
IsRequired: boolean

Tutorial: Develop a simple IDT test suite

189

FreeRTOS User Guide

All fields that contain values are required as described here:
Aliases

Optional. User-defined strings that map to context expressions. Aliases allow you to generate
friendly names to identify context expressions in your test orchestrator configuration. This is
especially useful if you're creating complex context expressions or expressions that you use in
multiple places.

You can use context expressions to store context queries that allow you to access data from
other IDT configurations. For more information, see Access data in the context.

Example

Example

Aliases:
FizzChosen: "'{{$pool.features[?(@.name == 'Fizz')].value[0]}}' == 'yes'"
BuzzChosen: "'{{$pool.features[?(@.name == 'Buzz')].value[0]}}' == 'yes'"

FizzBuzzChosen: "'{{$aliases.FizzChosen}}' && '{{$aliases.BuzzChosen}}'"

ConditionalTests

Optional. A list of conditions, and the corresponding test cases that are run when each
condition is satisfied. Each condition can have multiple test cases; however, you can assign a
given test case to only one condition.

By default, IDT runs any test case that isn't assigned to a condition in this list. If you don't
specify this section, IDT runs all test groups in the test suite.

Each item in the ConditionalTests list includes the following parameters:

Condition

A context expression that evaluates to a Boolean value. If the evaluated value is true, IDT
runs the test cases that are specified in the Tests parameter.

Tests
The list of test descriptors.

Each test descriptor uses the test group ID and one or more test case IDs to identify the
individual tests to run from a specific test group. The test descriptor uses the following
format:

Tutorial: Develop a simple IDT test suite 190

FreeRTOS User Guide

GroupId: group-id
Caselds: [test-id, test-id] # optional

Example
Example

The following example uses generic context expressions that you can define as Aliases.

ConditionalTests:
- Condition: "{{$aliases.Conditionl}}"
Tests:
- GroupId: A
- GroupId: B
- Condition: "{{$aliases.Condition2}}"
Tests:
- GroupId: D
- Condition: "{{$aliases.Condition1}} || {{$aliases.Condition2}}"
Tests:
- GroupId: C

Based on the defined conditions, IDT selects test groups as follows:
« If Conditionl is true, IDT runs the tests in test groups A, B, and C.

o If Condition2 is true, IDT runs the tests in test groups C and D.

Order

Optional. The order in which to run tests. You specify the test order at the test group level. If
you don't specify this section, IDT runs all applicable test groups in a random order. The value of
Order is a list of group descriptor lists. Any test group that you don't list in Order, can be run
in parallel with any other listed test group.

Each group descriptor list contains one of more group descriptors, and identifies the order in
which to run the groups that are specified in each descriptor. You can use the following formats
to define individual group descriptors:

e group-id—The group ID of an existing test group.

e [group-id, group-id]—List of test groups that can be run in any order relative to each
other.

Tutorial: Develop a simple IDT test suite 191

FreeRTOS User Guide

o "*"_Wildcard. This is equivalent to the list of all test groups that are not already specified in
the current group descriptor list.

The value for Order must also meet the following requirements:
» Test group IDs that you specify in a group descriptor must exist in your test suite.
» Each group descriptor list must include at least one test group.

« Each group descriptor list must contain unique group IDs. You cannot repeat a test group ID
within individual group descriptors.

« A group descriptor list can have at most one wildcard group descriptor. The wildcard group
descriptor must be the first or the last item in the list.

Example
Example

For a test suite that contains test groups A, B, C, D, and E, the following list of examples shows
different ways to specify that IDT should first run test group A, then run test group B, and then
run test groups C, D, and E in any order.

Order:
- - A

Order:

i n

Order:

Tutorial: Develop a simple IDT test suite 192

FreeRTOS User Guide

Features

Optional. The list of product features that you want IDT to add to the
awsiotdevicetester_report.xml file. If you don't specify this section, IDT won't add any
product features to the report.

A product feature is user-defined information about specific criteria that a device might
meet. For example, the MQTT product feature can designate that the device publishes MQTT
messages properly. In awsiotdevicetester_report.xml, product features are set as
supported, not-supported, or a custom user-defined value, based on whether specified
tests passed.

Each item in the Features list consists of the following parameters:

Name

The name of the feature.

Value

Optional. The custom value that you want to use in the report instead of supported. If
this value is not specified, then based IDT sets the feature value to supported or not-
supported based on test results. If you test the same feature with different conditions,
you can use a custom value for each instance of that feature in the Features list, and IDT
concatenates the feature values for supported conditions. For more information, see

Condition

A context expression that evaluates to a Boolean value. If the evaluated value is true, IDT
adds the feature to the test report after it finishes running the test suite. If the evaluated
value is false, the test is not included in the report.

Tests

Optional. The list of test descriptors. All of the tests that are specified in this list must pass
for the feature to be supported.

Each test descriptor in this list uses the test group ID and one or more test case IDs to
identify the individual tests to run from a specific test group. The test descriptor uses the
following format:

Tutorial: Develop a simple IDT test suite 193

FreeRTOS User Guide

GroupId: group-id
Caselds: [test-id, test-id] # optional

You must specify either Tests or OneOfTests for each feature in the Features list.
OneOfTests

Optional. The list of test descriptors. At least one of the tests that are specified in this list
must pass for the feature to be supported.

Each test descriptor in this list uses the test group ID and one or more test case IDs to
identify the individual tests to run from a specific test group. The test descriptor uses the
following format:

GroupId: group-id
Caselds: [test-id, test-id] # optional

You must specify either Tests or OneOfTests for each feature in the Features list.

IsRequired

The boolean value that defines whether the feature is required in the test report. The
default value is false.

Test orchestrator context

The test orchestrator context is a read-only JSON document that contains data that is available

to the test orchestrator during execution. The test orchestrator context is accessible only from the
test orchestrator, and contains information that determines the test flow. For example, you can use
information configured by test runners in the userdata. json file to determine whether a specific
test is required to run.

The test orchestrator context uses the following format:

"pool": {
<device-json-pool-element>

}

"userData": {
<userdata-json-content>

}I

Tutorial: Develop a simple IDT test suite 194

FreeRTOS User Guide

"config": {
<config-json-content>

pool

Information about the device pool selected for the test run. For a selected device pool, this
information is retrieved from the corresponding top-level device pool array element defined in
the device. json file.

userData

Information in the userdata. json file.

config

Information in the config. json file.

You can query the context using JSONPath notation. The syntax for JSONPath queries in state
definitions is {{query}}. When you access data from the test orchestrator context, make sure that
each value evaluates to a string, a number, or a Boolean.

For more information about using JSONPath notation to access data from the context, see Use the
IDT context.

Configure the IDT state machine

/A Important

Starting in IDT v4.5.2, this state machine is deprecated. We strongly recommend that
you use the new test orchestrator. For more information, see Configure the IDT test
orchestrator.

A state machine is a construct that controls the test suite execution flow. It determines the starting
state of a test suite, manages state transitions based on user-defined rules, and continues to
transition through those states until it reaches the end state.

If your test suite doesn't include a user-defined state machine, IDT will generate a state machine
for you. The default state machine performs the following functions:

Tutorial: Develop a simple IDT test suite 195

FreeRTOS User Guide

» Provides test runners with the ability to select and run specific test groups, instead of the entire
test suite.

« If specific test groups are not selected, runs every test group in the test suite in a random order.

» Generates reports and prints a console summary that shows the test results for each test group
and test case.

The state machine for an IDT test suite must meet the following criteria:

Each state corresponds to an action for IDT to take, such as to run a test group or product a
report file.

Transitioning to a state executes the action associated with the state.

Each state defines the transition rule for the next state.

The end state must be either Succeed or Fail.

State machine format

You can use the following template to configure your own <custom-test-suite-folder>/
suite/state_machine. json file:

"Comment": "<description>",
"StartAt": '"<state-name>",
"States": {
"<state-name>": {
"Type": "<state-type>",
// Additional state configuration
}

// Required states
"Succeed": {
"Type": "Succeed"
.
"Fail": {
"Type": "Fail"
}
}

All fields that contain values are required as described here:

Tutorial: Develop a simple IDT test suite 196

FreeRTOS User Guide

Comment

A description of the state machine.

StartAt

The name of the state at which IDT starts running the test suite. The value of StartAt must be
set to one of the states listed in the States object.

States

An object that maps user-defined state names to valid IDT states. Each States.state-name
object contains the definition of a valid state mapped to the state-name.

The States object must include the Succeed and Fail states. For information about valid
states, see Valid states and state definitions.

Valid states and state definitions

This section describes the state definitions of all of the valid states that can be used in the IDT
state machine. Some of the following states support configurations at the test case level. However,
we recommend that you configure state transition rules at the test group level instead of the test
case level unless absolutely necessary.

State definitions
» RunTask

» Choice

- Parallel

« AddProductFeatures

» Report
» LogMessage

» SelectGroup
« Fail

e Succeed

RunTask

The RunTask state runs test cases from a test group defined in the test suite.

Tutorial: Develop a simple IDT test suite 197

FreeRTOS User Guide

"Type": "RunTask",
"Next": '"<state-name>",
"TestGroup": "<group-id>",
"TestCases": [

"<test-id>"
1,

"ResultVar": "<result-name>"

All fields that contain values are required as described here:

Next

The name of the state to transition to after executing the actions in the current state.

TestGroup

Optional. The ID of the test group to run. If this value is not specified, then IDT runs the test
group that the test runner selects.

TestCases

Optional. An array of test case IDs from the group specified in TestGroup. Based on the values

of TestGroup and TestCases, IDT determines the test execution behavior as follows:

When both TestGroup and TestCases are specified, IDT runs the specified test cases from
the test group.

When TestCases are specified but TestGroup is not specified, IDT runs the specified test
cases.

When TestGroup is specified, but TestCases is not specified, IDT runs all of the test cases
within the specified test group.

When neither TestGroup or TestCases is specified, IDT runs all test cases from the test
group that the test runner selects from the IDT CLI. To enable group selection for test
runners, you must include both RunTask and Choice states in your statemachine. json
file. For an example of how this works, see Example state machine: Run user-selected test

groups.

For more information about enabling IDT CLI commands for test runners, see the section
called “"Enable IDT CLI commands".

Tutorial: Develop a simple IDT test suite 198

FreeRTOS User Guide

ResultVar

The name of the context variable to set with the results of the test run. Do not specify this
value if you did not specify a value for TestGroup. IDT sets the value of the variable that you
define in ResultVar to true or false based on the following:

o If the variable name is of the form text_text_passed, then the value is set to whether all
tests in the first test group passed or were skipped.

« In all other cases, the value is set to whether all tests in all test groups passed or were
skipped.

Typically, you will use RunTask state to specify a test group ID without specifying individual test
case IDs, so that IDT will run all of the test cases in the specified test group. All test cases that are
run by this state run in parallel, in a random order. However, if all of the test cases require a device
to run, and only a single device is available, then the test cases will run sequentially instead.

Error handling

If any of the specified test groups or test case IDs are not valid, then this state issues the
RunTaskError execution error. If the state encounters an execution error, then it also sets the
hasExecutionError variable in the state machine context to true.

Choice

The Choice state lets you dynamically set the next state to transition to based on user-defined
conditions.

{
"Type": "Choice",
"Default": "<state-name>",
"FallthroughOnError": true | false,
"Choices": [
{
"Expression": "<expression>",
"Next": '"<state-name>"
}
]
}

All fields that contain values are required as described here:

Tutorial: Develop a simple IDT test suite 199

FreeRTOS User Guide

Default

The default state to transition to if none of the expressions defined in Choices can be
evaluated to true.

FallthroughOnExrorxr

Optional. Specifies the behavior when the state encounters an error in evaluating expressions.
Set to true if you want to skip an expression if the evaluation results in an error. If

no expressions match, then the state machine transitions to the Default state. If the
FallthroughOnError value is not specified, it defaults to false.

Choices

An array of expressions and states to determine which state to transition to after executing the
actions in the current state.

Choices.Expression

An expression string that evaluates to a boolean value. If the expression evaluates to true,
then the state machine transitions to the state defined in Choices.Next. Expression strings
retrieve values from the state machine context and then perform operations on them to
arrive at a boolean value. For information about accessing the state machine context, see
State machine context.

Choices.Next

The name of the state to transition to if the expression defined in Choices.Expression
evaluates to true.

Error handling

The Choice state can require error handling in the following cases:

« Some variables in the choice expressions don't exist in the state machine context.
» The result of an expression is not a boolean value.

o The result of a JSON lookup is not a string, number, or boolean.

You cannot use a Catch block to handle errors in this state. If you want to stop executing the state
machine when it encounters an error, you must set FallthroughOnError to false. However, we

Tutorial: Develop a simple IDT test suite 200

FreeRTOS User Guide

recommend that you set FallthroughOnError to true, and depending on your use case, do one
of the following:

« If a variable you are accessing is expected to not exist in some cases, then use the value of
Default and additional Choices blocks to specify the next state.

« If a variable that you are accessing should always exist, then set the Default state to Fail.

Parallel

The Parallel state lets you define and run new state machines in parallel with each other.

{
"Type": "Parallel",
"Next": "<state-name>",
"Branches": [
<state-machine-definition>
]
}

All fields that contain values are required as described here:
Next

The name of the state to transition to after executing the actions in the current state.

Branches

An array of state machine definitions to run. Each state machine definition must contain its
own StartAt, Succeed, and Fail states. The state machine definitions in this array cannot
reference states outside of their own definition.

(@ Note

Because each branch state machine shares the same state machine context, setting
variables in one branch and then reading those variables from another branch might
result in unexpected behavior.

The Parallel state moves to the next state only after it runs all of the branch state machines.
Each state that requires a device will wait to run until the device is available. If multiple devices

Tutorial: Develop a simple IDT test suite 201

FreeRTOS User Guide

are available, this state runs test cases from multiple groups in parallel. If enough devices are not
available, then test cases will run sequentially. Because test cases are run in a random order when
they run in parallel, different devices might be used to run tests from the same test group.

Error handling

Make sure that both the branch state machine and the parent state machine transition to the Fail
state to handle execution errors.

Because branch state machines do not transmit execution errors to the parent state machine, you
cannot use a Catch block to handle execution errors in branch state machines. Instead, use the
hasExecutionErrors value in the shared state machine context. For an example of how this
works, see Example state machine: Run two test groups in parallel.

AddProductFeatures

The AddProductFeatures state lets you add product features to the
awsiotdevicetester_report.xml file generated by IDT.

A product feature is user-defined information about specific criteria that a device might meet.
For example, the MQTT product feature can designate that the device publishes MQTT messages
properly. In the report, product features are set as supported, not-supported, or a custom
value, based on whether specified tests passed.

® Note

The AddProductFeatures state does not generate reports by itself. This state must
transition to the Report state to generate reports.

{
"Type": "Parallel",
"Next": "<state-name>",
"Features": [
{
"Feature": "<feature-name>",
"Groups": [

"<group-id>"

]I

Tutorial: Develop a simple IDT test suite 202

FreeRTOS User Guide

"OneOfGroups": [
"<group-id>"

1,

"TestCases": [
"<test-id>"

1,

"IsRequired": true | false,
"ExecutionMethods": [
"<execution-method>"

All fields that contain values are required as described here:
Next

The name of the state to transition to after executing the actions in the current state.

Features

An array of product features to show in the awsiotdevicetester_report.xml file.

Feature

The name of the feature

FeatureValue

Optional. The custom value to use in the report instead of supported. If this value is
not specified, then based on test results, the feature value is set to supported or not-
supported.

If you use a custom value for FeatureValue, you can test the same feature with different
conditions, and IDT concatenates the feature values for the supported conditions. For
example, the following excerpt shows the MyFeature feature with two separate feature
values:

"Feature": "MyFeature",
"FeatureValue": "first-feature-supported",
"Groups": ["first-feature-group"]

Tutorial: Develop a simple IDT test suite 203

FreeRTOS User Guide

},

{
"Feature": "MyFeature",
"FeatureValue": "second-feature-supported",
"Groups": ["second-feature-group"]

.

If both test groups pass, then the feature value is set to first-feature-supported,
second-feature-supported.

Groups

Optional. An array of test group IDs. All tests within each specified test group must pass for
the feature to be supported.

OneOfGroups

Optional. An array of test group IDs. All tests within at least one of the specified test groups
must pass for the feature to be supported.

TestCases

Optional. An array of test case IDs. If you specify this value, then the following apply:
« All of the specified test cases must pass for the feature to be supported.

e Groups must contain only one test group ID.

e OneOfGroups must not be specified.

IsRequired

Optional. Set to false to mark this feature as an optional feature in the report. The default
value is true.

ExecutionMethods

Optional. An array of execution methods that match the protocol value specified in the
device. json file. If this value is specified, then test runners must specify a protocol
value that matches one of the values in this array to include the feature in the report. If this
value is not specified, then the feature will always be included in the report.

To use the AddProductFeatures state, you must set the value of ResultVar in the RunTask
state to one of the following values:

Tutorial: Develop a simple IDT test suite 204

FreeRTOS User Guide

« If you specified individual test case IDs, then set ResultVar to group-id_test-id_passed.

« If you did not specify individual test case IDs, then set ResultVar to group-id_passed.

The AddProductFeatures state checks for test results in the following manner:

« If you did not specify any test case IDs, then the result for each test group is determined from
the value of the group-id_passed variable in the state machine context.

« If you did specify test case IDs, then the result for each of the tests is determined from the value
of the group-id_test-id_passed variable in the state machine context.

Error handling

If a group ID provided in this state is not a valid group ID, then this state results in the
AddProductFeaturesError execution error. If the state encounters an execution error, then it
also sets the hasExecutionErrors variable in the state machine context to true.

Report

The Report state generates the suite-name_Report.xml and
awsiotdevicetester_report. xml files. This state also streams the report to the console.

"Type": "Report",
"Next": "<state-name>"

All fields that contain values are required as described here:
Next

The name of the state to transition to after executing the actions in the current state.

You should always transition to the Report state towards the end of the test execution flow so
that test runners can view test results. Typically, the next state after this state is Succeed.

Error handling

If this state encounters issues with generating the reports, then it issues the ReportError
execution error.

Tutorial: Develop a simple IDT test suite 205

FreeRTOS User Guide

LogMessage

The LogMessage state generates the test_manager. log file and streams the log message to the
console.

{
"Type": "LogMessage",
"Next": "<state-name>"
"Level": "info | warn | error"
"Message": "<message>"

}

All fields that contain values are required as described here:

Next

The name of the state to transition to after executing the actions in the current state.

Level

The error level at which to create the log message. If you specify a level that is not valid, this
state generates an error message and discards it.

Message

The message to log.

SelectGroup

The SelectGroup state updates the state machine context to indicate which groups are selected.
The values set by this state are used by any subsequent Choice states.

{
"Type": "SelectGroup",
"Next": "<state-name>"
"TestGroups": [
<group-id>"
]
}

All fields that contain values are required as described here:

Tutorial: Develop a simple IDT test suite 206

FreeRTOS User Guide

Next

The name of the state to transition to after executing the actions in the current state.

TestGroups

An array of test groups that will be marked as selected. For each test group ID in this array, the
group-id_selected variable is set to true in the context. Make sure that you provide valid
test group IDs because IDT does not validate whether the specified groups exist.

Fail

The Fail state indicates that the state machine did not execute correctly. This is an end state for
the state machine, and each state machine definition must include this state.

{
IlTypell: IlFailll
}
Succeed

The Succeed state indicates that the state machine executed correctly. This is an end state for the
state machine, and each state machine definition must include this state.

"Type": "Succeed"

State machine context

The state machine context is a read-only JSON document that contains data that is available

to the state machine during execution. The state machine context is accessible only from the

state machine, and contains information that determines the test flow. For example, you can use
information configured by test runners in the userdata. json file to determine whether a specific
test is required to run.

The state machine context uses the following format:

npooln: {
<device-json-pool-element>

Tutorial: Develop a simple IDT test suite 207

FreeRTOS User Guide

+
"userData": {
<userdata-json-content>

1,

"config": {
<config-json-content>

1,

"suiteFailed": true | false,
"specificTestGroups": [
"<group-id>"

1,
"specificTestCases": [
"<test-id>"
1,
"hasExecutionErrors": true
}
pool

Information about the device pool selected for the test run. For a selected device pool, this
information is retrieved from the corresponding top-level device pool array element defined in
the device. json file.

usexData

Information in the userdata. json file.

config

Information pin the config. json file.

suiteFailed

The value is set to false when the state machine starts. If a test group fails in a RunTask
state, then this value is set to true for the remaining duration of the state machine execution.

specificTestGroups

If the test runner selects specific test groups to run instead of the entire test suite, this key is
created and contains the list of specific test group IDs.

specificTestCases

If the test runner selects specific test cases to run instead of the entire test suite, this key is
created and contains the list of specific test case IDs.

Tutorial: Develop a simple IDT test suite 208

FreeRTOS User Guide

hasExecutionErrors

Does not exit when the state machine starts. If any state encounters an execution errors, this
variable is created and set to true for the remaining duration of the state machine execution.

You can query the context using JSONPath notation. The syntax for JSONPath queries in state
definitions is {{$.query}}. You can use JSONPath queries as placeholder strings within some
states. IDT replaces the placeholder strings with the value of the evaluated JSONPath query from
the context. You can use placeholders for the following values:

e The TestCases value in RunTask states.

» The Expression value Choice state.

When you access data from the state machine context, make sure the following conditions are met:

 Your JSON paths must begin with $.

« Each value must evaluate to a string, a number, or a boolean.

For more information about using JSSONPath notation to access data from the context, see Use the
IDT context.

Execution errors

Execution errors are errors in the state machine definition that the state machine encounters
when executing a state. IDT logs information about each error in the test_manager. log file and
streams the log message to the console.

You can use the following methods to handle execution errors:

e Add a Catch block in the state definition.

e Check the value of the hasExecutionErrors value in the state machine context.

Catch

To use Catch, add the following to your state definition:

"Catch": [
{

Tutorial: Develop a simple IDT test suite 209

FreeRTOS User Guide

"ErrorEquals": [
"<error-type>"

]

"Next": '"<state-name>"

All fields that contain values are required as described here:

Catch.ErrorEquals

An array of the error types to catch. If an execution error matches one of the specified values,
then the state machine transitions to the state specified in Catch.Next. See each state
definition for information about the type of error it produces.

Catch.Next

The next state to transition to if the current state encounters an execution error that matches
one of the values specified in Catch.ErrorEquals.

Catch blocks are handled sequentially until one matches. If the no errors match the ones listed
in the Catch blocks, then the state machines continues to execute. Because execution errors are
a result of incorrect state definitions, we recommend that you transition to the Fail state when a
state encounters an execution error.

hasExecutionError

When some states encounter execution errors, in addition to issuing the error, they also set the
hasExecutionError value to true in the state machine context. You can use this value to detect
when an error occurs, and then use a Choice state to transition the state machine to the Fail
state.

This method has the following characteristics.

» The state machine does not start with any value assigned to hasExecutionError, and this
value is not available until a particular state sets it. This means that you must explicitly set the
FallthroughOnError to false for the Choice states that access this value to prevent the
state machine from stopping if no execution errors occur.

e Onceitissetto true, hasExecutionError is never set to false or removed from the
context. This means that this value is useful only the first time that it is set to true, and for all
subsequent states, it does not provide a meaningful value.

Tutorial: Develop a simple IDT test suite 210

FreeRTOS User Guide

« The hasExecutionError value is shared with all branch state machines in the Parallel state,
which can result in unexpected results depending on the order in which it is accessed.

Because of these characteristics, we do not recommend that you use this method if you can use a
Catch block instead.
Example state machines

This section provides some example state machine configurations.

Examples

Example state machine: Run a single test group

Example state machine: Run user-selected test groups

Example state machine: Run a single test group with product features

Example state machine: Run two test groups in parallel

Example state machine: Run a single test group
This state machine:

» Runs the test group with id GroupA, which must be present in the suite in a group. json file.
« Checks for execution errors and transitions to Fail if any are found.

» Generates a report and transitions to Succeed if there are no errors, and Fail otherwise.

{
"Comment": "Runs a single group and then generates a report.",
"StartAt": "RunGroupA",
"States": {

"RunGroupA": {
"Type": "RunTask",
"Next": "Report",
"TestGroup": "GroupA",
"Catch": [
{
"ErrorEquals": [
"RunTaskError

1,
"Next": "Fail"

Tutorial: Develop a simple IDT test suite 211

FreeRTOS

User Guide

}
]

},

"Report": {
"Type":
"Next":
"Catch":

{
}
]

},

"Succeed": {
"Type":

.

"Fail": {
"Type":

}

Example state machine: Run user-selected test groups

This state machine:

"Report",
"Succeed",

L

"ErrorEquals": [
"ReportError"

1,
"Next": "Fail"

"Succeed"

"Fail"

o Checks if the test runner selected specific test groups. The state machine does not check for
specific test cases because test runners cannot select test cases without also selecting a test

group.

o If test groups are selected:

» Runs the test cases within the selected test groups. To do so, the state machine does not

explicitly specify any test groups or test cases in the RunTask state.

» Generates a report after running all tests and exits.

« If test groups are not selected:

» Runs tests in test group GroupA.

« Generates reports and exits.

Tutorial: Develop a simple IDT test suite

212

FreeRTOS

User Guide

"Comment": "Runs specific groups if the test runner chose to do that, otherwise

runs GroupA.",

"StartAt": "SpecificGroupsCheck",

"States": {

"SpecificGroupsCheck": {

"Type":

"Choice",

"Default": "RunGroupA",
"FallthroughOnError": true,
"Choices": [

{
"Expression": "{{$.specificTestGroups[0]}} !=
"Next": "RunSpecificGroups"
}
]
1,
"RunSpecificGroups": {
"Type": "RunTask",
"Next": "Report",
"Catch": [
{
"ErrorEquals": [
"RunTaskError"
1,
"Next": "Fail"
}
]
1,
"RunGroupA": {
"Type": "RunTask",
"Next": "Report",
"TestGroup": "GroupA",
"Catch": [
{
"ErrorEquals": [
"RunTaskError"
1,
"Next": "Fail"
}
]
.
"Report": {
"Type": "Report",

’

Tutorial: Develop a simple IDT test suite

213

FreeRTOS User Guide

"Next": "Succeed",
"Catch": [
{

"ErrorEquals": [
"ReportError"

1,
"Next": "Fail"

iy

"Succeed": {
"Type": "Succeed"

I
"Fail": {
IlTypell: IlFailll

Example state machine: Run a single test group with product features
This state machine:

* Runs the test group GroupA.
» Checks for execution errors and transitions to Fail if any are found.

» Adds the FeatureThatDependsOnGroupA feature to the
awsiotdevicetester_report.xml file:

» If GroupA passes, the feature is set to supported.
» The feature is not marked optional in the report.

» Generates a report and transitions to Succeed if there are no errors, and Fail otherwise

{
"Comment": "Runs GroupA and adds product features based on GroupA",
"StartAt": "RunGroupA",
"States": {

"RunGroupA": {
"Type": "RunTask",
"Next": "AddProductFeatures",
"TestGroup": "GroupA",
"ResultVar": "GroupA_passed",

Tutorial: Develop a simple IDT test suite 214

FreeRTOS User Guide
"Catch": [
{
"ErrorEquals": [
"RunTaskError"
1,
"Next": "Fail"
}
]

},

"AddProductFeatures": {
"Type": "AddProductFeatures",
"Next": "Report",
"Features": [

{
"Feature": "FeatureThatDependsOnGroupA",
"Groups": [
"GroupA"
1,
"IsRequired": true
}
]
I
"Report": {
"Type": "Report",
"Next": "Succeed",
"Catch": [
{
"ErrorEquals": [
"ReportError"
1,
"Next": "Fail"
}
]
I
"Succeed": {
"Type": "Succeed"
},
"Fail": {
"Type": "Fail"
}
}
}
Tutorial: Develop a simple IDT test suite 215

FreeRTOS User Guide

Example state machine: Run two test groups in parallel

This state machine;:

* Runs the GroupA and GroupB test groups in parallel. The ResultVar variables stored in
the context by the RunTask states in the branch state machines by are available to the
AddProductFeatures state.

« Checks for execution errors and transitions to Fail if any are found. This state machine does
not use a Catch block because that method does not detect execution errors in branch state
machines.

» Adds features to the awsiotdevicetester_report.xml file based on the groups that pass
 If GroupA passes, the feature is set to supported.
» The feature is not marked optional in the report.

» Generates a report and transitions to Succeed if there are no errors, and Fail otherwise

If two devices are configured in the device pool, both GroupA and GroupB can run at the same
time. However, if either GroupA or GroupB has multiple tests in it, then both devices may be
allocated to those tests. If only one device is configured, the test groups will run sequentially.

{
"Comment": "Runs GroupA and GroupB in parallel",
"StartAt": "RunGroupAAndB",
"States": {

"RunGroupAAndB": {
"Type": "Parallel",

"Next": "CheckForErrors",
"Branches": [
{
"Comment": "Run GroupA state machine",
"StartAt": "RunGroupA",
"States": {

"RunGroupA": {
"Type": "RunTask",
"Next": "Succeed",
"TestGroup": "GroupA",
"ResultVar": "GroupA_passed",
"Catch": [
{

"ErrorEquals": [

Tutorial: Develop a simple IDT test suite

216

FreeRTOS User Guide

"RunTaskError"

1,
"Next": "Fail"

iy

"Succeed": {
"Type": "Succeed"

},
"Fail": {
"Type": "Fail"
}
}
I
{
"Comment": "Run GroupB state machine",
"StartAt": "RunGroupB",
"States": {
"RunGroupA": {
"Type": "RunTask",
"Next": "Succeed",
"TestGroup": "GroupB",
"ResultVar": "GroupB_passed",
"Catch": [
{
"ErrorEquals": [
"RunTaskError"
1,
"Next": "Fail"
}
]
I
"Succeed": {
"Type": "Succeed"
},
"Fail": {
"Type": "Fail"
}
}
}

iy
"CheckForErrors": {

"Type": "Choice",

Tutorial: Develop a simple IDT test suite 217

FreeRTOS

User Guide

"Default": "AddProductFeatures",
"FallthroughOnError": true,
"Choices": [

{

"Expression": "{{$.hasExecutionErrors}} ==

"Next": "Fail"

I
"AddProductFeatures": {

"Type": "AddProductFeatures",
"Next": "Report",
"Features": [

{
"Feature": "FeatureThatDependsOnGroupA",
"Groups": [
"GroupA"
1,
"IsRequired": true
I
{
"Feature": "FeatureThatDependsOnGroupB",
"Groups": [
"GroupB"
1,
"IsRequired": true
}
]
},
"Report": {
"Type": "Report",
"Next": "Succeed",
"Catch": [
{
"ErrorEquals": [
"ReportError"
1,
"Next": "Fail"
}
]
},

"Succeed": {
"Type": "Succeed"

iy

true",

Tutorial: Develop a simple IDT test suite

218

FreeRTOS User Guide

"Fail": {
IlTypell: IlFailll

Create IDT test case executable
You can create and place test case executable in a test suite folder in the following ways:

« For test suites that use arguments or environment variables from the test. json files to
determine which tests to run, you can create a single test case executable for the entire test
suite, or a test executable for each test group in the test suite.

 For a test suite where you want to run specific tests based on specified commands, you create
one test case executable for each test case in the test suite.

As a test writer, you can determine which approach is appropriate for your use case and structure
your test case executable accordingly. Make sure that your provide the correct test case executable
path in each test. json file, and that the specified executable runs correctly.

When all devices are ready for a test case to run, IDT reads the following files:

« The test. json for the selected test case determines the processes to start and the
environment variables to set.

« The suite. json for the test suite determines the environment variables to set.

IDT starts the required test executable process based on the commands and arguments specified in
the test. json file, and passes the required environment variables to the process.

Use the IDT Client SDK

The IDT Client SDKs let you simplify how you write test logic in your test executable with API
commands that you can use interact with IDT and your devices under test. IDT currently provides
the following SDKs:

« IDT Client SDK for Python
« IDT Client SDK for Go
« IDT Client SDK for Java

Tutorial: Develop a simple IDT test suite 219

FreeRTOS User Guide

These SDKs are located in the <device-tester-extract-location>/sdks folder. When you
create a new test case executable, you must copy the SDK that you want to use to the folder that
contains your test case executable and reference the SDK in your code. This section provides a brief
description of the available APl commands that you can use in your test case executables.

In this section

e Device interaction

« |IDT interaction

e Host interaction

Device interaction

The following commands enable you to communicate with the device under test without having to
implement any additional device interaction and connectivity management functions.

ExecuteOnDevice

Allows test suites to run shell commands on a device that support SSH or Docker shell
connections.

CopyToDevice

Allows test suites to copy a local file from the host machine that runs IDT to a specified location
on a device that supports SSH or Docker shell connections.

ReadFromDevice

Allows test suites to read from the serial port of devices that support UART connections.

(@ Note

Because IDT does not manage direct connections to devices that are made using device
access information from the context, we recommend using these device interaction API
commands in your test case executables. However, if these commands do not meet your
test case requirements, then you can retrieve device access information from the IDT
context and use it to make a direct connection to the device from the test suite.

To make a direct connection, retrieve the information in the device.connectivity and
the resource.devices.connectivity fields for your device under test and for resource

Tutorial: Develop a simple IDT test suite 220

FreeRTOS User Guide

devices, respectively. For more information about using the IDT context, see Use the IDT
context.

IDT interaction

The following commands enable your test suites to communicate with IDT.

PollForNotifications

Allows test suites to check for notifications from IDT.

GetContextValue and GetContextString

Allows test suites to retrieve values from the IDT context. For more information, see Use the IDT
context.

SendResult

Allows test suites to report test case results to IDT. This command must be called at the end of
each test case in a test suite.

Host interaction

The following command enable your test suites to communicate with the host machine.

PollFoxrNotifications

Allows test suites to check for notifications from IDT.

GetContextValue and GetContextString

Allows test suites to retrieve values from the IDT context. For more information, see Use the IDT
context.

ExecuteOnHost

Allows test suites to run commands on the local machine and lets IDT manage the test case
executable lifecycle.

Enable IDT CLI commands

The run-suite command IDT CLI provides several options that let test runner customize test
execution. To allow test runners to use these options to run your custom test suite, you implement

Tutorial: Develop a simple IDT test suite 221

FreeRTOS User Guide

support for the IDT CLI. If you do not implement support, test runners will still be able to run
tests, but some CLI options will not function correctly. To provide an ideal customer experience,
we recommend that you implement support for the following arguments for the run-suite
command in the IDT CLI:

timeout-multiplier
Specifies a value greater than 1.0 that will be applied to all timeouts while running tests.

Test runners can use this argument to increase the timeout for the test cases that they

want to run. When a test runner specifies this argument in their run-suite command, IDT
uses it to calculate the value of the IDT_TEST_TIMEOUT environment variable and sets the
config.timeoutMultiplier field in the IDT context. To support this argument, you must do
the following:

« Instead of directly using the timeout value from the test. json file, read the
IDT_TEST_TIMEOUT environment variable to obtain the correctly calculated timeout value.

» Retrieve the config.timeoutMultiplier value from the IDT context and apply it to long
running timeouts.

For more information about exiting early because of timeout events, see Specify exit behavior.

stop-on-first-failure
Specifies that IDT should stop running all tests if it encounters a failure.

When a test runner specifies this argument in their run-suite command, IDT will stop running
tests as soon as it encounters a failure. However, if test cases are running in parallel, then this
can lead to unexpected results. To implement support, make sure that if IDT encounters this
event, your test logic instructs all running test cases to stop, clean up temporary resources, and
report a test result to IDT. For more information about exiting early on failures, see Specify exit
behavior.

group-id and test-id
Specifies that IDT should run only the selected test groups or test cases.

Test runners can use these arguments with their run-suite command to specify the following
test execution behavior:

» Run all tests inside the specified test groups.

« Run a selection of tests from within a specified test group.

Tutorial: Develop a simple IDT test suite 222

FreeRTOS User Guide

To support these arguments, the state machine for your test suite must include a specific set of
RunTask and Choice states in your state machine. If you are not using a custom state machine,
then the default IDT state machine includes the required states for you and you do not need

to take additional action. However, if you are using a custom state machine, then use Example
state machine: Run user-selected test groups as a sample to add the required states in your

state machine.

For more information about IDT CLI commands, see Debug and run custom test suites.

Write event logs

While the test is running, you send data to stdout and stderr to write event logs and error
messages to the console. For information about the format of console messages, see Console
message format.

When the IDT finishes running the test suite, this information is also available in the
test_manager. log file located in the <devicetester-extract-location>/
results/<execution-id>/1logs folder.

You can configure each test case to write the logs from its test run, including logs from the device
under test, to the <group-id>_<test-id> file located in the <device-tester-extract-
location>/results/execution-id/logs folder. To do this, retrieve the path to the log file
from the IDT context with the testData.logFilePath query, create a file at that path, and write
the content that you want to it. IDT automatically updates the path based on the test case that is
running. If you choose not to create the log file for a test case, then no file is generated for that
test case.

You can also set up your text executable to create additional log files as needed in the <device-
tester-extract-location>/logs folder. We recommend that you specify unique prefixes for
log file names so your files don't get overwritten.

Report results to IDT

IDT writes test results to the awsiotdevicetester_report.xml and the suite-
name_xreport.xml files. These report files are located in <device-tester-extract-
location>/results/<execution-id>/. Both reports capture the results from the test suite
execution. For more information about the schemas that IDT uses for these reports, see Review IDT
test results and logs

Tutorial: Develop a simple IDT test suite 223

FreeRTOS User Guide

To populate the contents of the suite-name_report.xml file, you must use the SendResult
command to report test results to IDT before the test execution finishes. If IDT cannot locate
the results of a test, it issues an error for the test case. The following Python excerpt shows the
commands to send a test result to IDT:

request-variable = SendResultRequest(TestResult(result))
client.send_result(request-variable)

If you do not report results through the API, IDT looks for test results in the test artifacts folder.
The path to this folder is stored in the testData.testArtifactsPath filed in the IDT context. In
this folder, IDT uses the first alphabetically sorted XML file it locates as the test result.

If your test logic produces JUnit XML results, you can write the test results to an XML file in the
artifacts folder to directly provide the results to IDT instead of parsing the results and then using
the API to submit them to IDT.

If you use this method, make sure that your test logic accurately summarizes the test results and
format your result file in the same format as the suite-name_report.xml file. IDT does not
perform any validation of the data that you provide, with the following exceptions:

« IDT ignores all properties of the testsuites tag. Instead, it calculates the tag properties from
other reported test group results.

« At least one testsuite tag must exist within testsuites.

Because IDT uses the same artifacts folder for all test cases and does not delete result files
between test runs, this method might also lead to erroneous reporting if IDT reads the incorrect
file. We recommend that you use the same name for the generated XML results file across all test
cases to overwrite the results for each test case and make sure that the correct results are available
for IDT to use. Although you can use a mixed approach to reporting in your test suite, that is, use
an XML result file for some test cases and submit results through the API for others, we do not
recommend this approach.

Specify exit behavior

Configure your text executable to always exit with an exit code of O, even if a test case reports a
failure or an error result. Use non-zero exit codes only to indicate that a test case did not run or if
the test case executable could not communicate any results to IDT. When IDT receives a non-zero
exit code, it marks the test case has having encountered an error that prevented it from running.

Tutorial: Develop a simple IDT test suite 224

FreeRTOS User Guide

IDT might request or expect a test case to stop running before it has finished in the following
events. Use this information to configure your test case executable to detect each of these events
from the test case:

Timeout

Occurs when a test case runs for longer than the timeout value specified in the test. json file.
If the test runner used the timeout-multiplier argument to specify a timeout multiplier,
then IDT calculates the timeout value with the multiplier.

To detect this event, use the IDT_TEST_TIMEOUT environment variable. When a test runner
launches a test, IDT sets the value of the IDT_TEST_TIMEOUT environment variable to the
calculated timeout value (in seconds) and passes the variable to the test case executable. You
can read the variable value to set an appropriate timer.

Interrupt
Occurs when the test runner interrupts IDT. For example, by pressing Ctrl+C.

Because terminals propagate signals to all child processes, you can simply configure a signal
handler in your test cases to detect interrupt signals.

Alternatively, you can periodically poll the API to check the value of the
CancellationRequested boolean in the Pol1lForNotifications API response. When
IDT receives an interrupt signal, it sets the value of the CancellationRequested boolean to
true.

Stop on first failure

Occurs when a test case that is running in parallel with the current test case fails and the test
runner used the stop-on-first-failure argument to specify that IDT should stop when it
encounters any failure.

To detect this event, you can periodically poll the API to check the value of the
CancellationRequested boolean in the Pol1ForNotifications APl response. When
IDT encounters a failure and is configured to stop on first failure, it sets the value of the
CancellationRequested boolean to true.

When any of these events occur, IDT waits for 5 minutes for any currently running test cases
to finish running. If all running test cases do not exit within 5 minutes, IDT forces each of their
processes to stop. If IDT has not received test results before the processes end, it will mark the test

Tutorial: Develop a simple IDT test suite 225

FreeRTOS User Guide

cases as having timed out. As a best practice, you should ensure that your test cases perform the
following actions when they encounter one of the events:

1. Stop running normal test logic.

2. Clean up any temporary resources, such as test artifacts on the device under test.
3. Report a test result to IDT, such as a test failure or an error.
4

Exit.

Use the IDT context

When IDT runs a test suite, the test suite can access a set of data that can be used to determine
how each test runs. This data is called the IDT context. For example, user data configuration
provided by test runners in a userdata. json file is made available to test suites in the IDT
context.

The IDT context can be considered a read-only JSON document. Test suites can retrieve data from
and write data to the context using standard JSON data types like objects, arrays, numbers and so
on.

Context schema

The IDT context uses the following format:

"config": {
<config-json-content>
"timeoutMultiplier": timeout-multiplier,
"idtRootPath": <path/to/IDT/root>
I
"device": {
<device-json-device-element>
},
"devicePool": {
<device-json-pool-element>
I
"resource": {
"devices": [
{
<resource-json-device-element>
"name": "<resource-name>"

Tutorial: Develop a simple IDT test suite 226

FreeRTOS User Guide

iy
"testData": {
"awsCredentials": {

"awsAccessKeyId": '"<access-key-id>",
"awsSecretAccessKey": '"<secret-access-key>",
"awsSessionToken": "<session-token>"

},
"logFilePath": "/path/to/log/file"

3,
"userData": {
<userdata-json-content>

config

Information from the config. json file. The config field also contains the following
additional fields:

config.timeoutMultiplier

The multiplier for the any timeout value used by the test suite. This value is specified by the
test runner from the IDT CLI. The default value is 1.

config.idRootPath

This value is a placeholder for the absolute path value of IDT while configuring the
userdata. json file. This is used by the build and flash commands.

device

Information about the device selected for the test run. This information is equivalent to the
devices array element in the device. json file for the selected device.

devicePool

Information about the device pool selected for the test run. This information is equivalent to
the top-level device pool array element defined in the device. json file for the selected device
pool.

resource

Information about resource devices from the resource. json file.

Tutorial: Develop a simple IDT test suite 227

FreeRTOS User Guide

resource.devices

This information is equivalent to the devices array defined in the resource. json file.
Each devices element includes the following additional field:

resource.device.name

The name of the resource device. This value is set to the requiredResource.name
value in the test. json file.

testData.awsCredentials

The AWS credentials used by the test to connect to the AWS cloud. This information is obtained
from the config. json file.

testData.logFilePath

The path to the log file to which the test case writes log messages. The test suite creates this
file if it doesn't exist.

usexData

Information provided by the test runner in the userdata. json file.

Access data in the context

You can query the context using JSONPath notation from your configuration files and from your
text executable with the GetContextValue and GetContextString APIs. The syntax for
JSONPath strings to access the IDT context varies as follows:

e Insuite.jsonand test.json, youuse {{query}}. Thatis, do not use the root element $. to
start your expression.
« Instatemachine. json, youuse {{$.query}}.

« In APl commands, you use query or {{$.query}}, depending on the command. For more
information, see the inline documentation in the SDKs.

The following table describes the operators in a typical foobar JSONPath expression:

Tutorial: Develop a simple IDT test suite 228

FreeRTOS User Guide

Operator Description

$ The root element. Because the top-level
context value for IDT is an object, you will
typically use $. to start your queries.

.childName Accesses the child element with name
childName from an object. If applied to an
array, yields a new array with this operator
applied to each element. The element name
is case sensitive. For example, the query to
access the awsRegion valuein the config
objectis $.config.awsRegion

[start:end] Filters elements from an array, retrieving items
beginning from the start index and going up
to the end index, both inclusive.

[index1l, index2, ... , indexN] Filters elements from an array, retrieving items
from only the specified indices.

[?(expr)] Filters elements from an array using the expr
expression. This expression must evaluate to a
boolean value.

To create filter expressions, use the following syntax:

<jsonpath> | <value> operator <jsonpath> | <value>

In this syntax:

« jsonpath is a JSONPath that uses standard JSON syntax.
« value is any custom value that uses standard JSON syntax.
« operator is one of the following operators:

e < (Less than)

« <= (Less than or equal to)

Tutorial: Develop a simple IDT test suite 229

FreeRTOS User Guide

« == (Equal to)

If the JSONPath or value in your expression is an array, boolean, or object value, then this is
the only supported binary operator that you can use.

« >= (Greater than or equal to)
« > (Greater than)

« =~ (Regular expression match). To use this operator in a filter expression, the JSONPath or
value on the left side of your expression must evaluate to a string and the right side must be a
pattern value that follows the RE2 syntax.

You can use JSONPath queries in the form {{query}} as placeholder strings within the args and
environmentVariables fieldsin test. json files and within the environmentVariables
fields in suite. json files. IDT performs a context lookup and populates the fields with the
evaluated value of the query. For example, in the suite. json file, you can use placeholder strings
to specify environment variable values that change with each test case and IDT will populate

the environment variables with the correct value for each test case. However, when you use
placeholder strings in test.json and suite. json files, the following considerations apply for
your queries:

» You must each occurrence of the devicePool key in your query in all lower case. That is, use
devicepool instead.

« For arrays, you can use only arrays of strings. In addition, arrays use a non-standard iteml,
item2, ..., itemN format. If the array contains only one element, then it is serialized as item,
making it indistinguishable from a string field.

» You cannot use placeholders to retrieve objects from the context.

Because of these considerations, we recommend that whenever possible, you use the API to access
the context in your test logic instead of placeholder strings in test. json and suite. json files.
However, in some cases it might be more convenient to use JSONPath placeholders to retrieve
single strings to set as environment variables.

Configure settings for test runners

To run custom test suites, test runners must configure their settings based on the test suite that
they want to run. Settings are specified based on configuration file templates located in the

Tutorial: Develop a simple IDT test suite 230

https://github.com/google/re2/wiki/Syntax

FreeRTOS User Guide

<device-tester-extract-location>/configs/ folder. If required, test runners must also set
up AWS credentials that IDT will use to connect to the AWS cloud.

As a test writer, you will need to configure these files to debug your test suite. You must provide

instructions to test runners so that they can configure the following settings as needed to run your
test suites.

Configure device.json

The device. json file contains information about the devices that tests are run on (for example,
IP address, login information, operating system, and CPU architecture).

Test runners can provide this information using the following template device. json file located
in the <device-tester-extract-location>/configs/ folder.

[
{
"id": "<pool-id>",
"sku": "<pool-sku>",
"features": [
{
"name": "<feature-name>",
"value": "<feature-value>",
"configs": [
{
"name": "<config-name>",
"value": "<config-value>"
}
1,
}
1,
"devices": [
{
"id": "<device-id>",
"pairedResource": '"<device-id>", //used for no-op protocol
"connectivity": {
"protocol": "ssh | uart | docker | no-op",
// ssh
"ip": "<ip-address>",

"port": <port-number>,
"publicKeyPath": "<public-key-path>",
"auth": {

"method": "pki | password",

Tutorial: Develop a simple IDT test suite 231

FreeRTOS User Guide

"credentials": {
"usexr": "<user-name>",

// pki
"privKeyPath": "/path/to/private/key",

// password

"password": "<password>",
}
iy
// uart
"serialPort": '"<serial-port>",
// docker
"containerId": "<container-id>",
"containerUser": '"<container-user-name>",

All fields that contain values are required as described here:
id

A user-defined alphanumeric ID that uniquely identifies a collection of devices called a device
pool. Devices that belong to a pool must have identical hardware. When you run a suite of
tests, devices in the pool are used to parallelize the workload. Multiple devices are used to run
different tests.

sku

An alphanumeric value that uniquely identifies the device under test. The SKU is used to track
qualified devices.

(® Note

If you want to list your board in the AWS Partner Device Catalog, the SKU you specify
here must match the SKU that you use in the listing process.

Tutorial: Develop a simple IDT test suite 232

FreeRTOS User Guide

features

Optional. An array that contains the device's supported features. Device features are user-
defined values that you configure in your test suite. You must provide your test runners with
information about the feature names and values to include in the device. json file. For
example, if you want to test a device that functions as an MQTT server for other devices,
then you can configure your test logic to validate specific supported levels for a feature
named MQTT_QoS. Test runners provide this feature name and set the feature value to the
QoS levels supported by their device. You can retrieve the provided information from the IDT
context with the devicePool. features query, or from the state machine context with the

pool.features query.

features.name

The name of the feature.

features.value

The supported feature values.

features.configs

Configuration settings, if needed, for the feature.

features.config.name

The name of the configuration setting.

features.config.value

The supported setting values.

devices

An array of devices in the pool to be tested. At least one device is required.

devices.id

A user-defined unique identifier for the device being tested.

devices.pairedResource

A user-defined unique identifier for a resource device. This value is required when you test
devices using the no-op connectivity protocol.

Tutorial: Develop a simple IDT test suite 233

FreeRTOS

User Guide

connectivity.protocol

The communication protocol used to communicate with this device. Each device in a pool
must use the same protocol.

Currently, the only supported values are ssh and uart for physical devices, docker for
Docker containers, and no-op for devices who don't have a direct connection with the IDT
host machine but require a resource device as physical middleware to communicate with the
host machine.

For no-op devices, you configure the resource device ID in devices.pairedResource. You
must also specify this ID in the resource. json file. The paired device must be a device
that is physically paired with the device under test. After IDT identifies and connects to

the paired resource device, IDT will not connect to other resource devices according to the
features described in the test. json file.

connectivity.ip

The IP address of the device being tested.

This property applies only if connectivity.protocol is set to ssh.

connectivity.port

Optional. The port number to use for SSH connections.
The default value is 22.

This property applies only if connectivity.protocol is set to ssh.

connectivity.publicKeyPath

Optional. The full path to the public key used to authenticate connections to the device
under test. When you specify the publicKeyPath, IDT validates the device's public key
when it establishes an SSH connection to the device under test. If this value is not specified,
IDT creates an SSH connection, but doesn’t validate the device's public key.

We strongly recommend that you specify the path to the public key, and that you use a
secure method to fetch this public key. For standard command line-based SSH clients, the
public key is provided in the known_hosts file. If you specify a separate public key file, this
file must use the same format as the known_hosts file, thatis, ip-address key-type
public-key.

Tutorial: Develop a simple IDT test suite 234

FreeRTOS User Guide

connectivity.auth
Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method
The authentication method used to access a device over the given connectivity protocol.

Supported values are:
e pki
» password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.password
The password used for signing in to the device being tested.

This value applies only if connectivity.auth.method is set to password.

connectivity.auth.credentials.privKeyPath
The full path to the private key used to sign in to the device under test.

This value applies only if connectivity.auth.method is set to pki.

connectivity.auth.credentials.user

The user name for signing in to the device being tested.

connectivity.serialPort
Optional. The serial port to which the device is connected.

This property applies only if connectivity.protocol is setto uart.

connectivity.containerld
The container ID or name of the Docker container being tested.

This property applies only if connectivity.protocol is set to docker.

Tutorial: Develop a simple IDT test suite 235

FreeRTOS User Guide

connectivity.containerUser

Optional. The name of the user to user inside the container. The default value is the user
provided in the Dockerfile.

The default value is 22.

This property applies only if connectivity.protocol is set to docker.

(® Note

To check if test runners configure the incorrect device connection for a test, you can
retrieve pool .Devices[@].Connectivity.Protocol from the state machine
context and compare it to the expected value in a Choice state. If an incorrect protocol
is used, then print a message using the LogMessage state and transition to the Fail
state.

Alternatively, you can use error handling code to report a test failure for incorrect device

types.

(Optional) Configure userdata.json

The userdata. json file contains any additional information that is required by a test

suite but is not specified in the device. json file. The format of this file depends on the
userdata_scheme. json file that is defined in the test suite. If you are a test writer, make sure
you provide this information to users who will run the test suites that you write.

(Optional) Configure resource.json

The resource. json file contains information about any devices that will be used as resource
devices. Resource devices are devices that are required to test certain capabilities of a device under
test. For example, to test a device's Bluetooth capability, you might use a resource device to test
that your device can connect to it successfully. Resource devices are optional, and you can require
as many resources devices as you need. As a test writer, you use the test.json file to define the
resource device features that are required for a test. Test runners then use the resource. json file
to provide a pool of resource devices that have the required features. Make sure you provide this
information to users who will run the test suites that you write.

Test runners can provide this information using the following template resource. json file
located in the <device-tester-extract-location>/configs/ folder.

Tutorial: Develop a simple IDT test suite 236

FreeRTOS User Guide

[
{
"id": "<pool-id>",
"features": [
{
"name": "<feature-name>",
"version": "<feature-value>",
"jobSlots": <job-slots>
}
1,
"devices": [
{
"id": "<device-id>",
"connectivity": {
"protocol": "ssh | uart | docker",
// ssh
"ip": "<ip-address>",
"port": <port-number>,
"publicKeyPath": "<public-key-path>",
"auth": {
"method": "pki | password",
"credentials": {
"usexr": "<user-name>",
// pki
"privKeyPath": "/path/to/private/key",
// passwozrd
"password": "<password>",
}
1,
// uart
"serialPort": '"<serial-port>",
// docker
"containerId": "<container-id>",
"containerUser": "<container-user-name>",
}
}
]
}
]

Tutorial: Develop a simple IDT test suite 237

FreeRTOS User Guide

All fields that contain values are required as described here:
id

A user-defined alphanumeric ID that uniquely identifies a collection of devices called a device
pool. Devices that belong to a pool must have identical hardware. When you run a suite of
tests, devices in the pool are used to parallelize the workload. Multiple devices are used to run
different tests.

features

Optional. An array that contains the device's supported features. The information required

in this field is defined in the test.json files in the test suite and determines which tests to run
and how to run those tests. If the test suite does not require any features, then this field is not
required.

features.name

The name of the feature.

features.version

The feature version.

features.jobSlots

Setting to indicate how many tests can concurrently use the device. The default value is 1.

devices

An array of devices in the pool to be tested. At least one device is required.

devices.id

A user-defined unique identifier for the device being tested.

connectivity.protocol

The communication protocol used to communicate with this device. Each device in a pool
must use the same protocol.

Currently, the only supported values are ssh and uart for physical devices, and docker for
Docker containers.

connectivity.ip

The IP address of the device being tested.

Tutorial: Develop a simple IDT test suite 238

FreeRTOS User Guide

This property applies only if connectivity.protocol is set to ssh.

connectivity.port
Optional. The port number to use for SSH connections.
The default value is 22.

This property applies only if connectivity.protocol is set to ssh.

connectivity.publicKeyPath

Optional. The full path to the public key used to authenticate connections to the device
under test. When you specify the publicKeyPath, IDT validates the device's public key
when it establishes an SSH connection to the device under test. If this value is not specified,
IDT creates an SSH connection, but doesn’t validate the device's public key.

We strongly recommend that you specify the path to the public key, and that you use a
secure method to fetch this public key. For standard command line-based SSH clients, the
public key is provided in the known_hosts file. If you specify a separate public key file, this
file must use the same format as the known_hosts file, that is, ip-address key-type
public-key.

connectivity.auth
Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method
The authentication method used to access a device over the given connectivity protocol.

Supported values are:
e pki
» password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.password

The password used for signing in to the device being tested.

Tutorial: Develop a simple IDT test suite 239

FreeRTOS User Guide

This value applies only if connectivity.auth.method is set to passwozrd.

connectivity.auth.credentials.privKeyPath
The full path to the private key used to sign in to the device under test.

This value applies only if connectivity.auth.method is set to pki.

connectivity.auth.credentials.user

The user name for signing in to the device being tested.

connectivity.serialPort
Optional. The serial port to which the device is connected.

This property applies only if connectivity.protocol is setto uart.

connectivity.containerId
The container ID or name of the Docker container being tested.

This property applies only if connectivity.protocol is set to docker.

connectivity.containexUser

Optional. The name of the user to user inside the container. The default value is the user
provided in the Dockerfile.

The default value is 22.

This property applies only if connectivity.protocol is set to docker.

(Optional) Configure config.json

The config. json file contains configuration information for IDT. Typically, test runners will not
need to modify this file except to provide their AWS user credentials for IDT, and optionally, an
AWS region. If AWS credentials with required permissions are provided AWS loT Device Tester
collects and submits usage metrics to AWS. This is an opt-in feature and is used to improve IDT
functionality. For more information, see IDT usage metrics.

Test runners can configure their AWS credentials in one of the following ways:

« Credentials file

Tutorial: Develop a simple IDT test suite 240

FreeRTOS User Guide

IDT uses the same credentials file as the AWS CLI. For more information, see Configuration and

credential files.

The location of the credentials file varies, depending on the operating system you are using:
« macOS, Linux: ~/.aws/credentials
e Windows: C:\Users\UserName\.aws\credentials

« Environment variables

Environment variables are variables maintained by the operating system and used by system
commands. Variables defined during an SSH session are not available after that session is closed.
IDT can use the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables to
store AWS credentials

To set these variables on Linux, macOS, or Unix, use export:

export AWS_ACCESS_KEY_ID=<your_access_key_id>
export AWS_SECRET_ACCESS_KEY=<your_secret_access_key>

To set these variables on Windows, use set:

set AWS_ACCESS_KEY_ID=<your_access_key_id>
set AWS_SECRET_ACCESS_KEY=<your_secret_access_key>

To configure AWS credentials for IDT, test runners edit the auth section in the config. json file
located in the <device-tester-extract-location>/configs/ folder.

{
"log": {
"location": "logs"
},
"configFiles": {
"root": "configs",
"device": "configs/device.json"
},
"testPath": "tests",
"reportPath": "results",
"awsRegion": "<region>",
"auth": {

Tutorial: Develop a simple IDT test suite 241

https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html

FreeRTOS User Guide

"method": "file | environment",
"credentials": {

"profile": "<profile-name>"
}

All fields that contain values are required as described here:

@ Note

All paths in this file are defined relative to the <device-tester-extract-location>.

log.location

The path to the logs folder in the <device-tester-extract-location>.

configFiles.root

The path to the folder that contains the configuration files.

configFiles.device

The path to the device. json file.
testPath

The path to the folder that contains test suites.
reportPath

The path to the folder that will contain test results after IDT runs a test suite.

awsRegion

Optional. The AWS region that test suites will use. If not set, then test suites will use the default
region specified in each test suite.

auth.method

The method IDT uses to retrieve AWS credentials. Supported values are file to retrieve
credentials from a credentials file, and environment to retrieve credentials using environment
variables.

Tutorial: Develop a simple IDT test suite 242

FreeRTOS User Guide

auth.credentials.profile

The credentials profile to use from the credentials file. This property applies only if
auth.method is set to file.

Debug and run custom test suites

After the required configuration is set, IDT can run your test suite. The runtime of the full test

suite depends on the hardware and the composition of the test suite. For reference, it takes
approximately 30 minutes to complete the full FreeRTOS qualification test suite on a Raspberry Pi
3B.

As you write your test suite, you can use IDT to run the test suite in debug mode to check your code
before you run it or provide it to test runners.

Run IDT in debug mode

Because test suites depend on IDT to interact with devices, provide the context, and receive results,
you cannot simply debug your test suites in an IDE without any IDT interaction. To do so, the IDT
CLI provides the debug-test-suite command that lets you run IDT in debug mode. Run the
following command to view the available options for debug-test-suite:

devicetester_[linux [mac | win_x86-64] debug-test-suite -h

When you run IDT in debug mode, IDT does not actually launch the test suite or run the test
orchestrator; instead, it interacts with your IDE to responds to requests made from the test suite
running in the IDE and prints the logs to the console. IDT does not time out and waits to exit
until manually interrupted. In debug mode, IDT also does not run the test orchestrator and will
not generate any report files. To debug your test suite, you must use your IDE to provide some
information that IDT usually obtains from the configuration files. Make sure you provide the
following information:

« Environment variables and arguments for each test. IDT will not read this information from
test.jsonor suite.json.

« Arguments to select resource devices. IDT will not read this information from test. json.

To debug your test suites, complete the following steps:

Tutorial: Develop a simple IDT test suite 243

FreeRTOS User Guide

1. Create the setting configuration files that are required to run the test suite. For example, if
your test suite requires the device. json, resource. json, and user data.json, make
sure you configure all of them as needed.

2. Run the following command to place IDT in debug mode and select any devices that are
required to run the test.

devicetester_[linux | mac | win_x86-64] debug-test-suite [options]

After you run this command, IDT waits for requests from the test suite and then responds to
them. IDT also generates the environment variables that are required for the case process for
the IDT Client SDK.

3. Inyour IDE, use the run or debug configuration to do the following:

a. Set the values of the IDT-generated environment variables.

b. Set the value of any environment variables or arguments that you specified in your
test.jsonand suite. json file.

c. Set breakpoints as needed.

4. Run the test suite in your IDE.

You can debug and re-run the test suite as many times as needed. IDT does not time out in
debug mode.

5. After you complete debugging, interrupt IDT to exit debug mode.

IDT CLI commands to run tests

The following section describes the IDT CLI commands:
IDT v4.0.0

help

Lists information about the specified command.

list-groups

Lists the groups in a given test suite.

list-suites

Lists the available test suites.

Tutorial: Develop a simple IDT test suite 244

FreeRTOS User Guide

list-supported-products

Lists the supported products for your version of IDT, in this case FreeRTOS versions, and
FreeRTOS qualification test suite versions available for the current IDT version.

list-test-cases

Lists the test cases in a given test group. The following option is supported:

» group-id. The test group to search for. This option is required and must specify a single
group.

run-suite

Runs a suite of tests on a pool of devices. The following are some commonly used options:

» suite-id. The test suite version to run. If not specified, IDT uses the latest version in the
tests folder.

e group-id. The test groups to run, as a comma-separated list. If not specified, IDT runs all
test groups in the test suite.

« test-id. The test cases to run, as a comma-separated list. When specified, group-id
must specify a single group.

e pool-id. The device pool to test. Test runners must specify a pool if they have multiple
device pools defined in your device. json file.

e timeout-multiplier. Configures IDT to modify the test execution timeout specified in
the test. json file for a test with a user-defined multiplier.

e stop-on-first-failure. Configures IDT to stop execution on the first failure. This
option should be used with group-id to debug the specified test groups.

« userdata. Sets the file that contains user data information required to run the test suite.
This is required only if userdataRequired is set to true in the suite. json file for the
test suite.

For more information about run-suite options, use the help option:
devicetester_[linux | mac | win_x86-64] run-suite -h

debug-test-suite

Run the test suite in debug mode. For more information, see Run IDT in debug mode.

Tutorial: Develop a simple IDT test suite 245

FreeRTOS User Guide

Review IDT test results and logs
This section describes the format in which IDT generates console logs and test reports.
Console message format

AWS loT Device Tester uses a standard format for printing messages to the console when it starts a
test suite. The following excerpt shows an example of a console message generated by IDT.

[INFO] [2000-01-02 ©3:04:05]: Using suite: MyTestSuite_1.0.0
executionId=9a52f362-1227-11eb-86c9-8c8590419f30

Most console messages consist of the following fields:
time

A full ISO 8601 timestamp for the logged event.

level

The message level for the logged event. Typically, the logged message level is one of info,
warn, or error. IDT issues a fatal or panic message if it encounters an expected event that
causes it to exit early.

msg

The logged message.

executionId

A unique ID string for the current IDT process. This ID is used to differentiate between individual
IDT runs.

Console messages generated from a test suite provide additional information about the device
under test and the test suite, test group, and test cases that IDT runs. The following excerpt shows
an example of a console message generated from a test suite.

[INFO] [2000-01-02 @3:04:05]: Hello world! suiteId=MyTestSuitegroupId=myTestGroup
testCaseld=myTestCase deviceld=my-
deviceexecutionId=9a52f362-1227-11eb-86c9-8c8590419f30

The test-suite specific part of the console message contains the following fields:

Tutorial: Develop a simple IDT test suite 246

FreeRTOS User Guide

suiteld

The name of the test suite currently running.

groupld

The ID of the test group currently running.
testCaseld

The ID of the test case current running.

deviceld

A ID of the device under test that the current test case is using.

The test summary contains information about the test suite, the test results for each group that
was run, and the locations of the generated logs and report files. The following example shows a
test summary message.

—========= Test Summary S=========

Execution Time: 5m0@0os
Tests Completed: 4
Tests Passed: 3
Tests Failed: 1
Tests Skipped: 0

Test Groups:

GroupA: PASSED

GroupB: FAILED
Failed Tests:

Group Name: GroupB

Test Name: TestBl
Reason: Something bad happened

Path to AWS IoT Device Tester Report: /path/to/awsiotdevicetester_report.xml
Path to Test Execution Logs: /path/to/logs
Path to Aggregated JUnit Report: /path/to/MyTestSuite_Report.xml

AWS loT Device Tester report schema

awsiotdevicetester_report.xml is a signed report that contains the following information:

Tutorial: Develop a simple IDT test suite 247

FreeRTOS User Guide

« The IDT version.

« The test suite version.

» The report signature and key used to sign the report.

» The device SKU and the device pool name specified in the device. json file.
» The product version and the device features that were tested.

« The aggregate summary of test results. This information is the same as that contained in the
suite-name_xreport.xml file.

<apnreport>
<awsiotdevicetesterversion>idt-version</awsiotdevicetesterversion>
<testsuiteversion>test-suite-version</testsuiteversion>
<signature>signature</signature>
<keyname>keyname</keyname>
<session>
<testsession>execution-id</testsession>
<starttime>start-time</starttime>
<endtime>end-time</endtime>
</session>
<awsproduct>
<name>product-name</name>
<version>product-version</version>
<features>
<feature name="<feature-name>" value="supported | not-supported | <feature-
value>" type="optional | required"/>
</features>
</awsproduct>
<device>
<sku>device-sku</sku>
<name>device-name</name>
<features>
<feature name="<feature-name>" value="<feature-value>"/>
</features>
<executionMethod>ssh [uart | docker</executionMethod>
</device>
<devenvironment>
<o0os name="<os-name>"/>
</devenvironment>
<report>
<suite-name-report-contents>
</report>

Tutorial: Develop a simple IDT test suite 248

FreeRTOS User Guide

</apnreport>

The awsiotdevicetester_report.xml file contains an <awsproduct> tag that contains
information about the product being tested and the product features that were validated after
running a suite of tests.

Attributes used in the <awsproduct> tag
name

The name of the product being tested.

version

The version of the product being tested.

features

The features validated. Features marked as required are required for the test suite to
validate the device. The following snippet shows how this information appears in the
awsiotdevicetester_report.xml file.

<feature name="ssh" value="supported" type="required"></feature>

Features marked as optional are not required for validation. The following snippets show
optional features.

<feature name="hsi" value="supported" type="optional"></feature>
<feature name="mqtt" value="not-supported" type="optional"></feature>

Test suite report schema

The suite-name_Result.xml reportisin JUnit XML format. You can integrate it into continuous
integration and deployment platforms like Jenkins, Bamboo, and so on. The report contains an
aggregate summary of test results.

<testsuites name='"<suite-name> results" time="<run-duration>" tests="<number-of-test>"
failures="<number-of-tests>" skipped="<number-of-tests>" errors="<number-of-tests>"
disabled="0">

<testsuite name="<test-group-id>" package="" tests="<number-of-tests>"
failures="<number-of-tests>" skipped="<number-of-tests>" errors="<number-of-tests>"
disabled="0">

Tutorial: Develop a simple IDT test suite 249

https://llg.cubic.org/docs/junit/
https://jenkins.io/
https://www.atlassian.com/software/bamboo

FreeRTOS

User Guide

<!--success-->

<testcase classname="<classname>" name='"<name>"

<!--failure-->

<testcase classname="<classname>" name='"<name>"

<failure type="<failure-type>">
reason
</failure>
</testcase>
<l--skipped-->

<testcase classname="<classname>" name='"<name>"

<skipped>
reason
</skipped>
</testcase>
<l--error-->

<testcase classname="<classname>" name='"<name>"

<error>
reason
</error>
</testcase>
</testsuite>
</testsuites>

time="<run-duration>"/>

time="<run-duration>">

time="<run-duration>">

time="<run-duration>">

The report section in both the awsiotdevicetester_report.xml or suite-
name_report.xml lists the tests that were run and the results.

The first XML tag <testsuites> contains the summary of the test execution. For example:

<testsuites name="MyTestSuite results" time="2299" tests="28" failures="0" errors="0"

disabled="0">

Attributes used in the <testsuites> tag
name

The name of the test suite.

time

The time, in seconds, it took to run the test suite.

tests

The number of tests executed.

Tutorial: Develop a simple IDT test suite

250

FreeRTOS User Guide

failures

The number of tests that were run, but did not pass.

€rrors

The number of tests that IDT couldn't execute.
disabled

This attribute is not used and can be ignored.

In the event of test failures or errors, you can identify the test that failed by reviewing the
<testsuites> XML tags. The <testsuite> XML tags inside the <testsuites> tag show the
test result summary for a test group. For example:

<testsuite name="combination" package="" tests="1" failures="0" time="161" disabled="0"
errors="0" skipped="0">

The format is similar to the <testsuites> tag, but with a skipped attribute that is not used and
can be ignored. Inside each <testsuite> XML tag, there are <testcase> tags for each executed
test for a test group. For example:

<testcase classname="Security Test" name="IP Change Tests" attempts="1"></testcase>

Attributes used in the <testcase> tag

name

The name of the test.

attempts

The number of times IDT executed the test case.

When a test fails or an error occurs, <failure> or <error> tags are added to the <testcase>
tag with information for troubleshooting. For example:

<testcase classname="mcu.Full_MQTT" name="MQTT_TestCase" attempts="1">
<failure type="Failure">Reason for the test failure</failure>
<error>Reason for the test execution error</error>

</testcase>

Tutorial: Develop a simple IDT test suite 251

FreeRTOS User Guide

IDT usage metrics

If you provide AWS credentials with required permissions, AWS loT Device Tester collects and
submits usage metrics to AWS. This is an opt-in feature and is used to improve IDT functionality.
IDT collects information such as the following:

« The AWS account ID used to run IDT

e The IDT CLI commands used to run tests

« The test suite that are run

« The test suites in the <device-tester-extract-location> folder

« The number of devices configured in the device pool

 Test case names and run times

« Test result information, such as whether tests passed, failed, encountered errors, or were skipped
« Product features tested

« IDT exit behavior, such as unexpected or early exits

All of the information that IDT sends is also logged to ametrics.log file in the <device-
tester-extract-location>/results/<execution-id>/ folder. You can view the log file to
see the information that was collected during a test run. This file is generated only if you choose to
collect usage metrics.

To disable metrics collection, you do not need to take additional action. Simply do not store your
AWS credentials, and if you do have stored AWS credentials, do not configure the config. json
file to access them.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

Tutorial: Develop a simple IDT test suite 252

https://portal.aws.amazon.com/billing/signup

FreeRTOS User Guide

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks

that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. InIAM lIdentity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Tutorial: Develop a simple IDT test suite 253

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

FreeRTOS User Guide

Sign in as the administrative user

« Tosign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

To provide access, add permissions to your users, groups, or roles:
» Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

« Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

e |AM users:

« Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

« (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Provide AWS credentials to IDT
To allow IDT to access your AWS credentials and submit metrics to AWS, do the following:
1. Store the AWS credentials for your IAM user as environment variables or in a credentials file:

a. To use environment variables, run the following command:

AWS_ACCESS_KEY_ID=access-key
AWS_SECRET_ACCESS_KEY=secret-access-key

b. To use the credentials file, add the following information to the .aws/credentials
file:

[profile-name]

Tutorial: Develop a simple IDT test suite 254

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

FreeRTOS User Guide

aws_access_key_id=access-key
aws_secret_access_key=secret-access-key

2. Configure the auth section of the config. json file. For more information, see (Optional)
Configure config.json.

AWS loT Device Tester for FreeRTOS test suite versions

IDT for FreeRTOS organizes test resources into test suites and test groups:

« A test suite is the set of test groups used to verify that a device works with particular versions of
FreeRTOS.

» Atest group is the set of individual tests related to a particular feature, such as BLE and MQTT
messaging.

Starting in IDT v3.0.0, test suites are versioned using a major.minoxr.patch format starting from
1.0.0. When you download IDT, the package includes the latest test suite version.

When you start IDT in the command line interface, IDT checks whether a newer test suite version is
available. If so, it prompts you to update to the new version. You can choose to update or continue
with your current tests.

® Note

IDT supports the three latest test suite versions for qualification. For more information, see
Support policy for AWS loT Device Tester for FreeRTOS.

You can download test suites by using the upgrade-test-suite command. Or, you can use the
optional parameter -upgrade-test-suite flag when you start IDT where f1lag can be'y' to
always download the latest version, or 'n' to use the existing version.

You can also run the 1list-supported-versions command to list the FreeRTOS and test suite
versions that are supported by the current version of IDT.

New tests might introduce new IDT configuration settings. If the settings are optional, IDT notifies
you and continues running the tests. If the settings are required, IDT notifies you and stops
running. After you configure the settings, you can continue to run the tests.

Test suite versions 255

FreeRTOS User Guide

Troubleshooting

Each test suite execution has a unique execution ID that is used to create a folder named
results/execution-idin the results directory. Individual test group logs are
under the results/execution-id/logs directory. Use the IDT for FreeRTOS console
output to find the execution id, test case id, and test group id of the test case that

failed and then open the log file for that test case named results/execution-id/
logs/test_group_id__test_case_id.log. The information in this file includes:

 Full build and flash command output.

« Test execution output.

» More verbose IDT for FreeRTOS console output.

We recommend the following workflow for troubleshooting:

1.

If you see the error "user/role is not authorized to access this resource", make sure that you
configure permissions as specified in Create and configure an AWS account.

Read the console output to find information, such as execution UUID and currently executing
tasks.

Look in the FRQ_Report.xml file for error statements from each test. This directory contains
execution logs of each test group.

Look in the log files under /results/execution-id/logs.

Investigate one of the following problem areas:

Device configuration, such as JSON configuration files in the /configs/ folder.
» Device interface. Check the logs to determine which interface is failing.

» Device tooling. Make sure that the toolchains for building and flashing the device are
installed and configured correctly.

« For FRQ 1.x.x make sure that a clean, cloned version of the FreeRTOS source code is
available. FreeRTOS releases are tagged according to the FreeRTOS version. To clone a
specific version of the code, use the following commands:

git clone --branch version-number https://github.com/aws/amazon-freertos.git
cd amazon-freertos

Troubleshooting 256

FreeRTOS User Guide

git submodule update --checkout --init --recursive

Troubleshooting device configuration

When you use IDT for FreeRTOS, you must get the correct configuration files in place before you
execute the binary. If you're getting parsing and configuration errors, your first step should be to
locate and use a configuration template appropriate for your environment. These templates are

located in the IDT_R0OOT/configs directory.

If you are still having issues, see the following debugging process.

Where do | look?

Start by reading the console output to find information, such as the execution UUID, which is
referenced as execution-id in this documentation.

Next, look in the FRQ_Report.xml file in the /results/execution-id directory.

This file contains all of the test cases that were run and error snippets for each

failure. To get all of the execution logs, look for the file /results/execution-id/

logs/test_group_id__test_case_id.log for each test case.

IDT error codes

The following table explains the error codes generated by IDT for FreeRTOS:

Error Code

201

202

Error Code Name

InvalidinputError

ValidationError

Possible Root Cause

Fields in device. js
on ,config.json ,
oruserdata.json
are either missing

or in an incorrect
format.

Fields in device. js
on ,config.js

Troubleshooting

Make sure required
fields are not missing
and are in required
format in listed files.
For more informati
on, see Preparing to
test your microcont
roller board for the
first time.

Check the error
message on the right

Troubleshooting device configuration

257

FreeRTOS

User Guide

Error Code

Error Code Name

Possible Root Cause

on ,oruserdata.
json contain invalid
values.

Troubleshooting

hand side of the error
code in the report:

« Invalid AWS Region
- Specify a valid
AWS region in
your config.js
on file. For more
information about
AWS regions,

see Regions and
Endpoints.
 Invalid AWS
credentials -
Set valid AWS
credentials
on your test
machine (through
environment
variables or the
credentials file).
Verify that the
authentication
field is configure
d correctly. For
more informati
on, see Create and
configure an AWS

account.

Troubleshooting device configuration

258

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

FreeRTOS

User Guide

Error Code

203

Error Code Name

CopySourceCodeError

Possible Root Cause

Unable to copy
FreeRTOS source
code to specified
directory.

Troubleshooting

Verify the following
items:

o Check a valid
sourcePath is
specified in your
userdata.json
file.

« Delete the build
folder under
FreeRTOS source
code directory, if
it exists. For more
information, see
Configure build,
flash, and test

settings.
« Windows has a

character limit for
file path names. A
long file path name
will cause an error.

Troubleshooting device configuration

259

FreeRTOS User Guide

Error Code Error Code Name Possible Root Cause = Troubleshooting
204 BuildSourceError Unable to compile Verify the following
the FreeRTOS source items:
code.

o Check that the
information under
buildTool in
your userdata.
json fileis
correct.

« If you are using
cmake as a build
tool, make sure
the {{enableT
ests}} is
specified in the
buildTool
command. For
more informati
on, see Configure
build, flash, and
test settings.

« If you have
extracted IDT
for FreeRTOS
to a file path on

your system that
contains spaces,
for example C:
\Users\My
Name\Desktop

\, you may need
additional quotes
inside of your build
commands to make

Troubleshooting device configuration 260

FreeRTOS

User Guide

Error Code

205

206

Error Code Name

FlashOrRunTestError

StartEchoServerError

Debugging config file parsing errors

Possible Root Cause

IDT FreeRTOS is
unable to flash or run
FreeRTOS on your
DUT.

IDT FreeRTOS is
unable to start echo
server for the WiFi or
secure sockets tests.

Troubleshooting

sure the paths are
parsed properly.
The same thing
may be needed
for your flash
commands.

Verify the informati
on under flashTool
in your userdata.
json fileis correct.
For more informati

on, see Configure
build, flash, and test

settings.

Verify the ports
configured under
echoServe
rConfiguration
in your userdata.
json file are not
in use or blocked by
firewall or network
settings.

Occasionally, a typo in a JSON configuration can lead to parsing errors. Most of the time, the

issue is a result of omitting a bracket, comma, or quote from your JSON file. IDT for FreeRTOS

performs JSON validation and prints debugging information. It prints the line where the error

occurred, the line number, and the column number of the syntax error. This information should

be enough to help you fix the error, but if you are still having issues locating the error, you can

perform validation manually in your IDE, a text editor such as Atom or Sublime, or through an

online tool like JSONLint.

Troubleshooting device configuration 261

FreeRTOS User Guide

Debugging test results parsing errors

While running a test group from FreeRTOS-Libraries-Integration-Tests, such

as FullTransportinterfaceTLS, FullPKCS11_Core, FullPKCS11_Onboard_ECC,
FullPKCS11_Onboard_RSA, FullPKCS11_PreProvisioned_ECC, FullPKCS11_PreProvisioned_RSA,
or OTACore, IDT for FreeRTOS parses the test results from the test device with the serial
connection. Sometimes, extra serial outputs on the device may interfere with the parsing of the

test results.

In the above mentioned case, strange test case failure reasons like strings originating from
unrelated device outputs are output. The IDT for FreeRTOS test case log file (which includes all the
serial output IDT for FreeRTOS has received during the test) may show the following:

<unrelated device output>
TEST(Full_PKCS11_Capabilities, PKCS11_Capabilities)<unrelated device output>
<unrelated device output>

PASS

In the above example, the unrelated device output prevents IDT for FreeRTOS from detecting the
test result which is PASS.

Check the following to ensure optimal testing.

« Make sure the logging macros used on the device are thread safe. See Implementing the library
logging macros for more information.

« Make sure there are minimal outputs to the serial connection during the tests. Other device
outputs can be a problem even if your logging macros are properly thread safe, because the test
results will output in separate calls during testing.

An IDT for FreeRTOS test case log would ideally show an uninterrupted test results output like
below:

TEST(Full_OTA_PAL, otaPal_CloseFile_ValidSignature) PASS
TEST(Full_OTA_PAL, otaPal_CloseFile_InvalidSignatureBlockWritten) PASS

Troubleshooting device configuration 262

https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-library-logging-macros.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-library-logging-macros.html

FreeRTOS User Guide

2 Tests @ Failures @ Ignored

Debugging integrity check failures
If using FRQ 1.x.x version of FreeRTOS the following integrity checks apply.

When you run the FreeRTOSIntegrity test group and you encounter failures, first make sure that
you haven't modified any of the freertos directory files. If you haven't, and are still seeing
issues, make sure you are using the correct branch. If you run IDT's 1ist-supported-products
command, you can find which tagged branch of the freertos repo you should be using.

If you cloned the correct tagged branch of the freertos repo and still have issues, make sure you
have also run the submodule update command. The clone workflow for the freertos repo is as
follows.

git clone --branch version-number https://github.com/aws/amazon-freertos.git
cd amazon-freertos
git submodule update --checkout —init —recursive

The list of files the integrity checker looks for are in the checksums. json file in your freertos
directory. To qualify a FreeRTOS port without any modifications to files and the folder structure,
make sure that none of the files listed in the 'exhaustive' and 'minimal’ sections of the
checksums. json file have been modified. To run with an SDK configured, verify that none of the
files under the 'minimal' section have been modified.

If you run IDT with an SDK and have modified some files in your freertos directory, then make
sure you correctly configure your SDK in your userdata file. Otherwise, the Integrity checker will
verify all files in the freertos directory.

Debugging FullWiFi test group failures

If you are using FRQ 1.x.x and encounter failures in the FullWiFi test group, and the
"AFQP_WiFiConnectMultipleAP" test fails, this could be because both access points aren't in the
same subnet as the host computer running IDT. Make sure that both access points are in the same
subnet as the host computer running IDT.

Troubleshooting device configuration 263

FreeRTOS User Guide

Debugging a "required parameter missing" error

Because new features are being added to IDT for FreeRTOS, changes to the configuration files
might be introduced. Using an old configuration file might break your configuration. If this
happens, the test_group_id__test_case_id.log file under the results/execution-
id/logs directory explicitly lists all missing parameters. IDT for FreeRTOS validates your JSON
configuration file schemas to ensure that the latest supported version has been used.

Debugging a "test could not start" error

You might see errors that point to failures during test start. Because there are several possible
causes, check the following areas for correctness:

» Make sure that the pool name you've included in your execution command actually exists. This is
referenced directly from your device. json file.

« Make sure that the device or devices in your pool have correct configuration parameters.

Debugging an "unable to find start of test results" error

You might see errors when IDT attempts to parse the results output by the device under test. There
are several possible causes, so check the following areas for correctness:

« Make sure that the device under test has a stable connection to your host machine. You can
check the log file for a test that shows these errors to see what IDT is receiving.

« If using FRQ 1.x.x, and the device under test is connected via a slow network or other
interface, or you do not see the "--------- STARTING TESTS--------- " flag in a FreeRTOS test
group log along with other FreeRTOS test group outputs, you can try increasing the value of
testStartDelayms in your userdata configuration. For more information, see Configure build,

flash, and test settings.

Debugging a "Test failure:expected __ results but saw ___" error

You might see errors that point to a test failure during testing. The test expects a certain number
of results, and does not see it during testing. Some FreeRTOS tests run before IDT sees the output
from the device. If you see this error, you can try increasing the value of testStartDelayms in
your userdata configuration. For more information, see Configure build, flash, and test settings.

Troubleshooting device configuration 264

FreeRTOS User Guide

Debugginga " was unselected due to ConditionalTests constraints"” error

This means that you are running a test on a device pool that is incompatible with the test. This may
happen with the OTA E2E tests. For example, while running the 0TADataplaneMQTT test group
and in your device. json config file, you have chosen OTA as No or OTADataPlaneProtocol as
HTTP. The test group chosen to run must match your device. json capability selections.

Debugging an IDT timeout during device output monitoring

IDT can timeout due to a number of reasons. If a timeout happens during the device output
monitoring phase of a test, and you can see the results inside of the IDT test case log, it means that
the results were incorrectly parsed by IDT. One reason could be the interleaved log messages in the
middle of the test results. If this is the case, please refer to the FreeRTOS Porting Guide for further
details on how the UNITY logs should be setup.

Another reason for a timeout during device output monitoring could be a device rebooting after
a single TLS test case failure. The device then runs the flashed image and causes an infinite loop
which is seen in the logs. If this happens, make sure your device does not reboot after a test failure.

Debugging a "not authorized to access resource" error

You might see the error "user/role is not authorized to access this resource" in the terminal
output or in the test_manager.log file under /results/execution-id/logs. To resolve this
issue, attach the AWSIoTDeviceTesterForFreeRTOSFullAccess managed policy to your test
user. For more information, see Create and configure an AWS account.

Debugging network test errors

For network-based tests, IDT starts an echo server that binds to a non-reserved port on the host
machine. If you are running into errors due to timeouts or unavailable connections in the WiFi or
secure sockets tests, make sure that your network is configured to allow traffic to configured ports
in the 1024 - 49151 range.

The secure sockets test uses ports 33333 and 33334 by default. The WiFi tests uses port 33335
by default. If these three ports are in use or blocked by firewall or network, you can choose to use
different ports in userdata.json for testing. For more information, see Configure build, flash, and

test settings. You can use the following commands to check whether a specific port is in use:

e Windows: netsh advfirewall firewall show rule name=all | grep port

Troubleshooting device configuration 265

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-ota.html

FreeRTOS User Guide

e Linux: sudo netstat -pan | grep port

« macOS: netstat -nat | grep port

OTA Update failures due to same version payload

If OTA test cases are failing due to the same version being on the device after an OTA was
performed, it may be due to your build system (e.g. cmake) not noticing IDT's changes to the
FreeRTOS source code and not building an updated binary. This causes OTA to be performed with
the same binary that is currently on the device, and the test to fail. To troubleshoot OTA update
failures, start by making sure that you are using the latest supported version of your build system.

OTA test failure on PresignedUxr1lExpired test case

One prerequisite of this test is that the OTA update time should be more than 60 seconds,
otherwise the test would fail. If this occurs, the following error message is found in the log: "Test
takes less than 60 seconds (url expired time) to finish. Please reach out to us."

Debugging device interface and port errors
This section contains information about the device interfaces IDT uses to connect to your devices.
Supported platforms

IDT supports Linux, macOS, and Windows. All three platforms have different naming schemes for
serial devices that are attached to them:

e Linux: /dev/tty*
« macOS: /dev/tty.* or /dev/cu.*
« Windows: COM*

To check your device port:

» For Linux/macQS, open a terminal and run 1s /dev/tty*.
e For macOS, open a terminal and run 1s /dev/tty.* orls /dev/cu.*.

« For Windows, open Device Manager and expand the serial devices group.

To verify which device is connected to a port:

Troubleshooting device configuration 266

FreeRTOS User Guide

« For Linux, make sure that the udev package is installed, and then run udevadm info -
name=PORT. This utility prints the device driver information that helps you verify you are using
the correct port.

« For macQOS, open Launchpad and search for System Information.

« For Windows, open Device Manager and expand the serial devices group.

Device interfaces

Each embedded device is different, which means that they can have one or more serial ports. It is
common for devices to have two ports when connected to a machine:

« A data port for flashing the device.
« Aread port to read output.

You must set the correct read port in your device. json file. Otherwise, reading output from
the device might fail.

In the case of multiple ports, make sure to use the read port of the device in your device. json
file. For example, if you plug in an Espressif WRover device and the two ports assigned to it are /
dev/ttyUSBO and /dev/ttyUSB1, use /dev/ttyUSB1 in your device. json file.

For Windows, follow the same logic.

Reading device data

IDT for FreeRTOS uses individual device build and flash tooling to specify port configuration. If you
are testing your device and don't get output, try the following default settings:

Baud rate: 115200
Data bits: 8

Parity: None
Stop bits: 1

Flow control: None

These settings are handled by IDT for FreeRTOS. You do not have to set them. However, you can
use the same method to manually read device output. On Linux or macOS, you can do this with the
screen command. On Windows, you can use a program such as TeraTerm.

Troubleshooting device configuration 267

FreeRTOS User Guide

Screen: screen /dev/cu.usbserial 115200

TeraTerm: Use the above-provided settings to set the fields explicitly in
the GUI.

Development toolchain problems
This section discusses problems that can occur with your toolchain.
Code Composer Studio on Ubuntu

Newer versions of Ubuntu (17.10 and 18.04) have a version of the glibc package that is not
compatible with Code Composer Studio 7.x versions. We recommended that you install Code
Composer Studio version 8.2 or later.

Symptoms of incompatibility might include:

FreeRTOS failing to build or flash to your device.

The Code Composer Studio installer might freeze.

No log output is displayed in the console during the build or flash process.

Build command attempts to launch in GUI mode even when invoked as headless.

Logging

IDT for FreeRTOS logs are placed in a single location. From the root IDT directory, these files are
available under results/execution-id/:

e« FRQ_Report.xml

« awsiotdevicetester_report.xml

« logs/test_group_id__test_case_id.log

FRQ_Report.xml and logs/test_group_id__test_case_id.log are the most important
logs to examine. FRQ_Report.xml contains information about which test cases failed with a
specific error message. You can then use logs/test_group_id__test_case_id.log to dig
further into the problem to get better context.

Troubleshooting device configuration 268

FreeRTOS User Guide

Console errors

When AWS loT Device Tester is run, failures are reported to the console with brief messages. Look
in results/execution-id/logs/test_group_id__test_case_id.log to learn more about
the error.

Log errors

Each test suite execution has a unique execution ID that is used to create a folder named
results/execution-1id. Individual test case logs are under the results/execution-id/logs
directory. Use the output of the IDT for FreeRTOS console to find the execution id, test case id, and
test group id of the test case that failed. Then use this information to find and open the log file for
that test case named results/execution-id/logs/test_group_id__test_case_id.log
The information in this file includes the full build and flash command output, test execution
output, and more verbose AWS IoT Device Tester console output.

S3 bucket issues

If you press CTRL+C while running IDT, IDT will start a clean up process. Part of that clean up is to
remove Amazon S3 resources that have been created as a part of the IDT tests. If the clean up can't
finish, you might run into an issue where you have too many Amazon S3 buckets that have been
created. This means the next time that you run IDT the tests will start to fail.

If you press CTRL+C to stop IDT, you must let it finish the clean up process to avoid this issue. You
can also delete the Amazon S3 buckets from your account that were created manually.

Troubleshooting timeout errors

If you see timeout errors while running a test suite, increase the timeout by specifying a timeout
multiplier factor. This factor is applied to the default timeout value. Any value configured for this
flag must be greater than or equal to 1.0. To use the timeout multiplier, use the flag --timeout-
multiplier when running the test suite.

Example

IDT v3.0.0 and later

./devicetester_linux run-suite --suite-id FRQ_1.0.1 --pool-id DevicePooll --timeout-
multiplier 2.5

Troubleshooting timeout errors 269

FreeRTOS User Guide

IDT v1.7.0 and earlier

./devicetester_linux run-suite --suite-id FRQ_1 --pool-id DevicePooll --timeout-
multiplier 2.5

Cellular feature and AWS charges

When the Cellular feature is set to Yes in your device. JSON file, FullSecureSockets will use
t.micro EC2 instances for running tests and this may incur additional costs to your AWS account.
For more information, see Amazon EC2 pricing.

Qualification report generation policy

Qualification reports are only generated by AWS loT Device Tester (IDT) versions that support
FreeRTOS versions released within the last two years. If you have questions about the support
policy, please contact AWS Support.

AWS Managed policy for AWS IoT Device Tester

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use

cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

Topics
« AWS managed policy: AWSloTDeviceTesterForFreeRTOSFullAccess

Cellular feature and AWS charges 270

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/contact-us/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

FreeRTOS User Guide

o AWS loT Device Tester updates to AWS managed policies

AWS managed policy: AWSIloTDeviceTesterForFreeRTOSFullAccess

The AWSIoTDeviceTesterForFreeRTOSFullAccess managed policy contains the following
AWS loT Device Tester permissions for version checking, auto update features, and collection of
metrics.

Permission details
This policy includes the following permissions:
e iot-device-tester:SupportedVersion

Grants AWS loT Device Tester permission to fetch the list of supported products, test suites and
IDT versions.

e iot-device-tester:LatestIdt

Grants AWS loT Device Tester permission to fetch the latest IDT version available for download.

e iot-device-tester:CheckVersion

Grants AWS loT Device Tester permission to check version compatibility for IDT, test suites and
products.

e iot-device-tester:DownloadTestSuite

Grants AWS loT Device Tester permission to download test suite updates.

e iot-device-tester:SendMetrics

Grants AWS permission to collect metrics about AWS IoT Device Tester internal usage.

"Version": "2012-10-17",
"Statement": [
{
"Sid": "VisualEditorQ",
"Effect": "Allow",
"Action": "iam:PassRole",
"Resource": "arn:aws:iam::*:role/idt-*",

Managed policy 271

FreeRTOS

User Guide

iy
{

"Condition": {
"StringEquals": {
"iam:PassedToService

"Sid": "VisualEditorl",
"Effect": "Allow",
"Action": [
"iot:DeleteThing",
"iot:AttachThingPrincipal",
"iot:DeleteCertificate",
"iot:GetRegistrationCode",
"iot:CreatePolicy",
"iot:UpdateCACertificate",
"s3:ListBucket",
"iot:DescribeEndpoint",
"iot:CreateOTAUpdate",
"iot:CreateStream",
"signer:ListSigningJobs",
"acm:ListCertificates",
"iot:CreateKeysAndCertificate",
"iot:UpdateCertificate",

iot:CreateCertificateFromCsr",

iot:DetachThingPrincipal",
"iot:RegisterCACertificate",
"iot:CreateThing",

jam:ListRoles",

"iot:RegisterCertificate",
"iot:DeleteCACertificate",
"signer:PutSigningProfile",
"s3:ListAl1MyBuckets",
"signer:ListSigningPlatforms",
"iot-device-tester:SendMetrics",
"iot-device-tester:SupportedVersion",
"iot-device-tester:LatestIdt",
"iot-device-tester:CheckVersion",
"iot-device-tester:DownloadTestSuite"

1,

"Resource": "*"

"Sid": "VisualEditor2",

"iot.amazonaws.com"

Managed policy

272

FreeRTOS

User Guide

"Effect": "Allow",

"Action": [
"iam:GetRole",
"signer:StartSigningJob",
"acm:GetCertificate",
"signer:DescribeSigningJob",
"s3:CreateBucket",
"execute-api:Invoke",
"s3:DeleteBucket",
"s3:PutBucketVersioning",
"signer:CancelSigningProfile"

1,

"Resource": [
"arn:aws:execute-api:us-east-1:098862408343

metrics",
"arn:aws:signer:*:*:/signing-profiles/*",
"arn:aws:signer:*:*:/signing-jobs/*",
"arn:aws:iam::*:role/idt-*",
"arn:aws:acm:*:*:certificate/*",
"arn:aws:s3:::idt-*",

arn:aws:s3:::afr-ota*"

"Sid": "VisualEditor3",

"Effect": "Allow",

"Action": [
"iot:DeleteStream",

iot:DeleteCertificate",

iot:AttachPolicy",

"iot:DetachPolicy",
"iot:DeletePolicy",
"s3:ListBucketVersions",
"iot:UpdateCertificate",
"iot:GetOTAUpdate",
"iot:DeleteOTAUpdate",
"iot:DescribeJobExecution"

1,

"Resource": [
"arn:aws:s3:::afr-ota*",
"arn:aws:iot:*:*:thinggroup/idt*",
"arn:aws:iam::*:role/idt-*"

iy

:9xpmnvs5h4/prod/POST/

Managed policy

273

FreeRTOS

User Guide

"Sid": "VisualEditors",

"Effect": "Allow",

"Action": [
"iot:DeleteCertificate",

"iot:AttachPolicy",

"iot:DetachPolicy",
"s3:DeleteObjectVersion”,
"iot:DeleteOTAUpdate",
"s3:PutObject",

"s3:GetObject",
"iot:DeleteStream",
"iot:DeletePolicy",
"s3:DeleteObject",
"iot:UpdateCertificate",
"iot:GetOTAUpdate",
"s3:GetObjectVersion",
"iot:DescribeJobExecution"

1,

"Resource": [
"arn:aws:s3:::afr-ota*/*",
"arn:aws:s3:::idt-*/*",
"arn:aws:iot:*:*:policy/idt*",
"arn:aws:iam::*:role/idt-*",
"arn:aws:iot:*:*:otaupdate/idt*",
"arn:aws:iot:*:*:thing/idt*",
"arn:aws:iot:*:*:cert/*",
"arn:aws:iot:*:*:job/*",
"arn:aws:iot:*:*:stream/*"

"Sid": "VisualEditor5",

"Effect": "Allow",

"Action": [
"s3:PutObject",
"s3:GetObject"

1,

"Resource": [
"arn:aws:s3:::afr-ota*/*",
"arn:aws:s3:::idt-*/*"

Managed policy

274

FreeRTOS User Guide

"Sid": "VisualEditor6",

"Effect": "Allow",

"Action": [
"iot:CancelJobExecution"

1,

"Resource": [
"arn:aws:iot:*:*:job/*",
"arn:aws:iot:*:*:thing/idt*"

"Sid": "VisualEditor7",

"Effect": "Allow",

"Action": [
"ec2:TerminateInstances"

1,

"Resource": [
"arn:aws:ec2:*:*:instance/*"

1,

"Condition": {
"StringEquals": {

"ec2:ResourceTag/Owner": "IoTDeviceTester"

"Sid": "VisualEditor8",

"Effect": "Allow",

"Action": [
"ec2:AuthorizeSecurityGroupIngress",
"ec2:DeleteSecurityGroup"

1,

"Resource": [
"arn:aws:ec2:*:*:security-group/*"

1,

"Condition": {

"StringEquals": {
"ec2:ResourceTag/Owner": "IoTDeviceTester"

"Sid": "VisualEditor9",
"Effect": "Allow",

Managed policy 275

FreeRTOS

User Guide

iy

"Action": [

"ec2:RunInstances"
1,
"Resource": [

"arn:aws:ec2:*:*:instance/*"
1,
"Condition": {

"StringEquals": {

"aws:RequestTag/Owner": "IoTDeviceTester"

"Sid": "VisualEditorl@",

"Effect": "Allow",

"Action": [
"ec2:RunInstances"

1,

"Resource": [
"arn:aws:ec2:*:*:image/*",
"arn:aws:ec2:*:*:security-group/*",
"arn:aws:ec2:*:*:volume/*",
"arn:aws:ec2:*:*:key-pair/*",
"arn:aws:ec2:*:*:placement-group/*",
"arn:aws:ec2:*:*:snapshot/*",
"arn:aws:ec2:*:*:network-interface/*",
"arn:aws:ec2:*:*:subnet/*"

"Sid": "VisualEditorill",
"Effect": "Allow",
"Action": [
"ec2:CreateSecurityGroup"
1,
"Resource": [
"arn:aws:ec2:*:*:security-group/*"
1,
"Condition": {
"StringEquals": {
"aws:RequestTag/Owner": "IoTDeviceTester"

Managed policy

276

FreeRTOS

User Guide

AWS loT Device Tester updates to AWS managed policies

"Sid": "VisualEditoril2",

"Effect": "Allow",

"Action": [
"ec2:DescribeInstances",

"ec2:DescribeSecurityGroups",

"ssm:DescribeParameters",
"ssm:GetParameters"

]I

"Resource": "*"

"Sid": "VisualEditor13",

"Effect": "Allow",

"Action": [
"ec2:CreateTags"

]I

"Resource": [

"arn:aws:ec2:*:*:security-group/*",

"arn:aws:ec2:*:*:instance/*"

]I

"Condition": {

"ForAnyValue:StringEquals": {

"aws:TagKeys": [
"Owner"

iy
"StringEquals": {
"ec2:CreateAction": [
"RunInstances",

"CreateSecurityGroup"

You can view details about updates to AWS managed policies for AWS IoT Device Tester from the
time this service began tracking these changes.

Policy updates

277

FreeRTOS

User Guide

Version

7 (Latest)

Change

Restructured the
ec2:CreateTags
conditions.

Removed freertos:
ListHardw
arePlatforms
from the policy.

Added permissions to
run echo server tests
using EC2.

Added iot:Cance
1JobExecution

Added the following
permissions:

e iot-devic
e-tester:
DownloadT
estSuite ,

e iot-devic
e-tester:
CheckVersion ,

e iot-devic
e-tester:
LatestIdt ,

e iot-devic
e-tester:
Supported
Version .

Description

Removing usage of
ForAnyValues .

Removing permissio
ns as this action is
deprecated as of
March 1st, 2023.

This is for starting
and stopping an EC2
instance in customers
" AWS accounts.

This permission
cancels OTA jobs.

o iot-devic
e-tester:
DownloadT
estSuite —
Grants AWS loT
Device Tester
permission to

download test suite

updates,

« iot-devic
e-tester:
CheckVers
ion — Grants
AWS loT Device
Tester permissio
n to check version
compatibility for

Date

6/14/2023

6/2/2023

12/15/2020

7/17/2020

3/23/2020

Policy updates

278

FreeRTOS

User Guide

Version Change

2 Added iot-devic
e-tester:
SendMetrics
permissions.

1 Initial version.

Description Date

IDT, test suites and
products,
iot-devic
e-tester:
LatestIdt

— Grants AWS
loT Device Tester
permission to
fetch the latest IDT
version available
for download,
iot-devic
e-tester:
Supported
Version —
Grants AWS loT
Device Tester
permission to
fetch the list

of supported
products, test
suites and IDT
versions.

Grants AWS permissio 2/18/2020
n to collect metrics

about AWS IoT Device

Tester internal usage.

2/12/2020

Policy updates

279

FreeRTOS User Guide

Support policy for AWS loT Device Tester for FreeRTOS

/A Important

As of October 2022, AWS IloT Device Tester for AWS loT FreeRTOS Qualification (FRQ) 1.0
does not generate signed qualification reports. You cannot qualify new AWS loT FreeRTOS
devices to list in the AWS Partner Device Catalog through the AWS Device Qualification
Program using IDT FRQ 1.0 versions. While you can't qualify FreeRTOS devices using IDT
FRQ 1.0, you can continue to test your FreeRTOS devices with FRQ 1.0. We recommend
that you use IDT FRQ 2.0 to qualify and list FreeRTOS devices in the AWS Partner Device

Catalog.

AWS loT Device Tester for FreeRTOS is a test automation tool to validate FreeRTOS port to
devices. Additionally you can qualify your FreeRTOS devices and list them on the AWS Partner
Device Catalog . The AWS loT Device Tester for FreeRTOS supports validation and qualification of
FreeRTOS Long Term Supported (LTS) libraries available on GitHub at FreeRTOS/FreeRTOS-LTS ,
and FreeRTOS mainline available at FreeRTOS/FreeRTOS. We recommend that you use the most
recent versions of both the FreeRTOS and AWS loT Device Tester for FreeRTOS to validate and
qualify your devices.

For FreeRTOS-LTS, IDT supports the validation and qualification of FreeRTOS 202210 LTS version.
See here for more information on FreeRTOS LTS releases and their maintenance time line. Once
the support period of these LTS releases ends, you can still continue validation, but IDT will not
generate a report, that will allow you to submit your device for qualification.

For the mainline FreeRTOS available at FreeRTOS/FreeRTOS , we support the validation and
qualification of all the versions released in the past six months, or the previous two versions of

FreeRTOS if released more than six months apart. See here for currently supported versions. For
unsupported versions of FreeRTOS, you can still continue validation, but IDT will not generate a
report, that will allow you to submit your device for qualification.

See Supported versions of AWS |oT Device Tester for FreeRTOS for the latest supported IDT and

FreeRTOS versions. You can use any of the supported versions of AWS loT Device Tester with
the corresponding version of FreeRTOS to test or qualify your device. If you continue to use the
Unsupported IDT versions for FreeRTOS, you will not receive the latest bug fixes or updates.

For questions about the support policy, contact AWS Customer Support.

Support policy 280

https://devices.amazonaws.com/
http://aws.amazon.com/partners/programs/dqp/
http://aws.amazon.com/partners/programs/dqp/
https://docs.aws.amazon.com/freertos/latest/userguide/lts-idt-freertos-qualification.html
https://devices.amazonaws.com/
https://devices.amazonaws.com/
https://aws.amazon.com/partners/dqp/
https://devices.amazonaws.com/
https://devices.amazonaws.com/
https://github.com/FreeRTOS/FreeRTOS-LTS
https://github.com/FreeRTOS/FreeRTOS
https://www.freertos.org/lts-libraries.html
https://github.com/FreeRTOS/FreeRTOS
https://docs.aws.amazon.com//freertos/latest/userguide/dev-test-versions-afr.html
https://aws.amazon.com/contact-us/

FreeRTOS User Guide

Security in AWS

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes

this as security of the cloud and security in the cloud:

» Security of the cloud — AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. The
effectiveness of our security is regularly tested and verified by third-party auditors as part of
the AWS compliance programs. To learn about the compliance programs that apply to an AWS

service, see AWS Services in Scope by Compliance Program.

« Security in the cloud - Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your organization’s
requirements, and applicable laws and regulations.

This documentation will help you understand how to apply the shared responsibility model when
using AWS. The following topics show you how to configure AWS to meet your security and
compliance objectives. You'll also learn how to use AWS services that can help you to monitor and
secure your AWS resources.

For more in-depth information about AWS loT security see Security and Identity for AWS IloT.

Topics

Identity and Access Management for FreeRTOS

Compliance validation
Resilience in AWS

Infrastructure security in FreeRTOS

Identity and Access Management for FreeRTOS

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)

Identity and Access Management 281

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security-identity.html

FreeRTOS User Guide

and authorized (have permissions) to use FreeRTOS resources. IAM is an AWS service that you can
use with no additional charge.

Topics

e Audience

« Authenticating with identities

« Managing access using policies

¢« How FreeRTOS works with |IAM

« Identity-based policy examples for FreeRTOS

» Troubleshooting FreeRTOS identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in FreeRTOS.

Service user - If you use the FreeRTOS service to do your job, then your administrator provides you
with the credentials and permissions that you need. As you use more FreeRTOS features to do your
work, you might need additional permissions. Understanding how access is managed can help you
request the right permissions from your administrator. If you cannot access a feature in FreeRTOS,
see Troubleshooting FreeRTOS identity and access.

Service administrator — If you're in charge of FreeRTOS resources at your company, you probably
have full access to FreeRTOS. It's your job to determine which FreeRTOS features and resources
your service users should access. You must then submit requests to your IAM administrator to
change the permissions of your service users. Review the information on this page to understand
the basic concepts of IAM. To learn more about how your company can use IAM with FreeRTOS, see
How FreeRTOS works with IAM.

IAM administrator - If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to FreeRTOS. To view example FreeRTOS identity-based
policies that you can use in 1AM, see Identity-based policy examples for FreeRTOS.

Audience 282

FreeRTOS User Guide

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Authenticating with identities 283

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html

FreeRTOS User Guide

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-

term credentials in the IAM User Guide.

An |AM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but

a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in

Authenticating with identities 284

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

FreeRTOS User Guide

the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

» Federated user access — To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the

permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

o Temporary IAM user permissions — An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

» Cross-account access — You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

» Cross-service access — Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

» Forward access sessions (FAS) — When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

» Service role — A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For

Authenticating with identities 285

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

FreeRTOS User Guide

more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

» Service-linked role - A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

« Applications running on Amazon EC2 - You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Managing access using policies 286

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

FreeRTOS User Guide

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline

policies in the IAM User Guide.
Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal

in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Managing access using policies 287

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html

FreeRTOS User Guide

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

» Permissions boundaries — A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

» Service control policies (SCPs) — SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

» Session policies — Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the /AM User Guide.

How FreeRTOS works with IAM

Before you use IAM to manage access to FreeRTOS, learn what IAM features are available to use
with FreeRTOS.

How FreeRTOS works with IAM 288

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

FreeRTOS User Guide

IAM features you can use with FreeRTOS

IAM feature FreeRTOS support
Identity-based policies Yes
Resource-based policies No
Policy actions Yes
Policy resources Yes
Policy condition keys (service-specific) Yes
ACLs No
ABAC (tags in policies) Partial
Temporary credentials Yes
Principal permissions Yes
Service roles Yes
Service-linked roles No

To get a high-level view of how FreeRTOS and other AWS services work with most IAM features, see
AWS services that work with IAM in the IAM User Guide.

Identity-based policies for FreeRTOS

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

How FreeRTOS works with IAM 289

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

FreeRTOS User Guide

With 1AM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for FreeRTOS

To view examples of FreeRTOS identity-based policies, see Identity-based policy examples for
FreeRTOS.

Resource-based policies within FreeRTOS

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal

in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant

the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see How IAM roles differ from resource-based policies in the IAM User Guide.

Policy actions for FreeRTOS

Supports policy actions Yes

How FreeRTOS works with IAM 290

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

FreeRTOS User Guide

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of FreeRTOS actions, see Actions defined by FreeRTOS in the Service Authorization
Reference.

Policy actions in FreeRTOS use the following prefix before the action:

awes

To specify multiple actions in a single statement, separate them with commas.

"Action": [
"awes:actionl",
"awes:action2"

]

To view examples of FreeRTOS identity-based policies, see Identity-based policy examples for
FreeRTOS.

Policy resources for FreeRTOS

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,

How FreeRTOS works with IAM 291

https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html#your_service-actions-as-permissions

FreeRTOS User Guide

specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support

a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource'": "*"

To see a list of FreeRTOS resource types and their ARNs, see Resources defined by FreeRTOS in
the Service Authorization Reference. To learn with which actions you can specify the ARN of each
resource, see Actions defined by FreeRTOS.

To view examples of FreeRTOS identity-based policies, see Identity-based policy examples for
FreeRTOS.

Policy condition keys for FreeRTOS

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in

the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

How FreeRTOS works with IAM 292

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html#your_service-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

FreeRTOS User Guide

To see a list of FreeRTOS condition keys, see Condition keys for FreeRTOS in the Service
Authorization Reference. To learn with which actions and resources you can use a condition key, see
Actions defined by FreeRTOS.

To view examples of FreeRTOS identity-based policies, see Identity-based policy examples for
FreeRTOS.

ACLs in FreeRTOS

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with FreeRTOS

Supports ABAC (tags in policies) Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy

using the aws : ResourceTag/key-name, aws :RequestTag/key-name, or aws : TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

How FreeRTOS works with IAM 293

https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html#your_service-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html#your_service-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

FreeRTOS User Guide

Using temporary credentials with FreeRTOS

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using

any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for FreeRTOS

Supports forward access sessions (FAS) Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.

When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for FreeRTOS

Supports service roles Yes

How FreeRTOS works with IAM 294

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html

FreeRTOS User Guide

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

/A Warning

Changing the permissions for a service role might break FreeRTOS functionality. Edit
service roles only when FreeRTOS provides guidance to do so.

Service-linked roles for FreeRTOS

Supports service-linked roles No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes

link to view the service-linked role documentation for that service.

Identity-based policy examples for FreeRTOS

By default, users and roles don't have permission to create or modify FreeRTOS resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface
(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they
need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by FreeRTOS, including the format of the
ARNs for each of the resource types, see Actions, resources, and condition keys for FreeRTOS in the

Service Authorization Reference.

Identity-based policy examples 295

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_your_service.html

FreeRTOS User Guide

Topics

» Policy best practices

» Using the FreeRTOS console

« Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete FreeRTOS
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

» Get started with AWS managed policies and move toward least-privilege permissions — To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS

managed policies for job functions in the IAM User Guide.

« Apply least-privilege permissions — When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

» Use conditions in IAM policies to further restrict access — You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

» Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions — IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

» Require multi-factor authentication (MFA) - If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when

Identity-based policy examples 296

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

FreeRTOS User Guide

API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the FreeRTOS console

To access the FreeRTOS console, you must have a minimum set of permissions. These permissions
must allow you to list and view details about the FreeRTOS resources in your AWS account. If you
create an identity-based policy that is more restrictive than the minimum required permissions, the
console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the FreeRTOS console, also attach the FreeRTOS
ConsoleAccess or ReadOnly AWS managed policy to the entities. For more information, see
Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

"Version": "2012-10-17",
"Statement": [
{
"Sid": "ViewOwnUserInfo",
"Effect": "Allow",
"Action": [
"iam:GetUserPolicy",
"iam:ListGroupsForUser",
"iam:ListAttachedUserPolicies",
"iam:ListUserPolicies",

iam:GetUser"

]I

Identity-based policy examples 297

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

FreeRTOS User Guide

"Resource": ["arn:aws:iam::*:user/${aws:usernamel}"]

I
{

"Sid": "NavigateInConsole",

"Effect": "Allow",

"Action": [
"iam:GetGroupPolicy",
"iam:GetPolicyVersion",
"iam:GetPolicy",
"iam:ListAttachedGroupPolicies",
"iam:ListGroupPolicies",
"iam:ListPolicyVersions",
"iam:ListPolicies",
"iam:ListUsers"

1,

"Resource": "*"

}

Troubleshooting FreeRTOS identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with FreeRTOS and IAM.

Topics

« | am not authorized to perform an action in FreeRTOS

« | am not authorized to perform iam:PassRole

« | want to allow people outside of my AWS account to access my FreeRTOS resources

I am not authorized to perform an action in FreeRTOS

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
awes:GetWidget permissions.

Troubleshooting 298

FreeRTOS User Guide

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
awes:GetlWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my -
example-widget resource by using the awes: GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam: PassRole action, your
policies must be updated to allow you to pass a role to FreeRTOS.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in FreeRTOS. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my FreeRTOS
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

Troubleshooting 299

FreeRTOS User Guide

To learn whether FreeRTOS supports these features, see How FreeRTOS works with IAM.

To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

To learn how to provide access through identity federation, see Providing access to externally

authenticated users (identity federation) in the IAM User Guide.

To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Compliance validation

To learn whether an AWS service is within the scope of specific compliance programs, see AWS

services in Scope by Compliance Program and choose the compliance program that you are

interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

Security and Compliance Quick Start Guides — These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

Architecting for HIPAA Security and Compliance on Amazon Web Services — This whitepaper

describes how companies can use AWS to create HIPAA-eligible applications.

(® Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

AWS Compliance Resources — This collection of workbooks and guides might apply to your

industry and location.

Compliance validation 300

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/

FreeRTOS User Guide

o AWS Customer Compliance Guides — Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCl), and
International Organization for Standardization (1SO)).

» Evaluating Resources with Rules in the AWS Config Developer Guide — The AWS Config service

assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

o AWS Security Hub — This AWS service provides a comprehensive view of your security state within

AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

o AWS Audit Manager — This AWS service helps you continuously audit your AWS usage to simplify

how you manage risk and compliance with regulations and industry standards.

Resilience in AWS

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure security in FreeRTOS

AWS managed services are protected by the AWS global network security procedures that are
described in the Amazon Web Services: Overview of Security Processes whitepaper.

You use AWS published API calls to access AWS services through the network. Clients must support
Transport Layer Security (TLS) 1.2 or later. We recommend TLS 1.3 or later. Clients must also
support cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE)
or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later
support these modes.

Resilience 301

https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf

FreeRTOS User Guide

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Infrastructure security 302

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

FreeRTOS

User Guide

Amazon-FreeRTOS Github Repository Migration Guide

If you have an existing FreeRTOS project based on the now deprecated amazon-freertos repository,

follow these steps:

1. Stay up to date with the latest, publicly available security fixes. Check the FreeRTOS LTS

libraries page for updates, or subscribe to the FreeRTOS-LTS GitHub repository to receive the

latest LTS patches with critical and security bug fixes. You can download or clone the latest
FreeRTOS LTS patches required directly from the individual GitHub repositories.

2. Consider refactoring the network transport interface implementation to optimize your

hardware platform. The abstract APIs like secure sockets and Wifi APIs are not required by the
latest coreMQTT library. See Transport Interface for further details.

Appendix

The following table provides recommendations for all demo projects, legacy libraries, and abstract

APIs within the Amazon-FreeRTOS repository.

Migrated libraries and demos

Name Type

coreHTTP demos and
library

coreMQTT demos and
library

Recommendations

Clone or download the coreHTTP
library directly from the coreHTTP
repository (sub-module if using git)
in the FreeRTOS Github organizat
ion. The coreHTTP demos are in the

primary FreeRTOS distribution. For

more details, refer to the coreHTTP
page.

Clone or download the coreMQTT
library directly from the coreMQTT
repository (sub-module if using git)
in the FreeRTOS Github organizat
ion. The coreMQTT demos are in the

primary FreeRTOS distribution. For

Appendix

303

https://www.freertos.org/lts-libraries.html
https://www.freertos.org/lts-libraries.html
https://github.com/FreeRTOS/FreeRTOS-LTS
https://docs.aws.amazon.com/freertos/latest/userguide/secure-sockets.html
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-wifi.html
https://www.freertos.org/mqtt/index.html
https://www.freertos.org/network-interface.html
https://github.com/FreeRTOS/coreHTTP
https://github.com/FreeRTOS
https://github.com/FreeRTOS
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/coreHTTP_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/coreHTTP_Windows_Simulator
https://www.freertos.org/http/index.html
https://www.freertos.org/http/index.html
https://github.com/FreeRTOS/coreMQTT
https://github.com/FreeRTOS
https://github.com/FreeRTOS
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/coreMQTT_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/coreMQTT_Windows_Simulator

FreeRTOS

User Guide

Name Type
coreMQTT- demos and
Agent library
device_de demos and

fender_for_aws library

device_sh demos and
adow_for_aws library

Recommendations

more details, refer to the coreMQTT
page.

Clone or download the coreMQTT-
Agent library directly from the
coreMQTT-Agent repository (sub-

module if using git) in the FreeRTOS
Github organization. The coreMQTT-
Agent demos are in the coreMQTT-

Agent-Demos repository. For more
details, refer to the coreMQTT-Agent

page.

The AWS loT Device Defender library
is in its repository in the AWS GitHub
organisation. Clone or download it
(sub-module if using git) directly
from the AWS loT Device Defender
repository. The AWS loT Device

Defender demos are in the primary
FreeRTOS distribution. For more
details, refer to the AWS loT Device
Defender page.

The AWS IloT Device Shadow library
is in its repository in the AWS GitHub
organisation. Clone or download it
(sub-module if using git) directly
from the AWS loT Device Shadow)
repository. The AWS loT Device

Shadow demos are in the primary
FreeRTOS distribution. For more
details, refer to the AWS loT Device
Shadow page.

Appendix

304

https://www.freertos.org/mqtt/index.html
https://www.freertos.org/mqtt/index.html
https://github.com/FreeRTOS/coreMQTT-Agent
https://github.com/FreeRTOS
https://github.com/FreeRTOS
https://github.com/FreeRTOS/coreMQTT-Agent-Demos
https://github.com/FreeRTOS/coreMQTT-Agent-Demos
https://www.freertos.org/mqtt-agent/index.html
https://www.freertos.org/mqtt-agent/index.html
https://github.com/AWS
https://github.com/AWS
https://github.com/aws/Device-Defender-for-AWS-IoT-embedded-sdk
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Device_Defender_Windows_Simulator/Device_Defender_Demo
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Device_Defender_Windows_Simulator/Device_Defender_Demo
https://www.freertos.org/iot-device-defender/index.html
https://www.freertos.org/iot-device-defender/index.html
https://github.com/AWS
https://github.com/AWS
https://github.com/aws/Device-Shadow-for-AWS-IoT-embedded-sdk
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Device_Shadow_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Device_Shadow_Windows_Simulator
https://www.freertos.org/iot-device-shadow/index.html
https://www.freertos.org/iot-device-shadow/index.html

FreeRTOS

User Guide

Name

jobs_for_aws

OTA

CLI and
FreeRTOS_
Plus_CLI

Type

demos and
library

demos and
library

demos and
library

Recommendations

The AWS IoT Jobs library is in

its repository in the AWS GitHub
organization. Clone or download

it (sub-module if using git) directly
from the AWS IoT Jobs repository.
The AWS IoT Jobs demos are in the
primary FreeRTOS distribution. For
more details, refer to the AWS loT

Jobs page.

The AWS loT Over-The-Air (OTA)
Update library is in its repository
in the AWS GitHub organization.
Clone or download it (sub-module if

using git) directly from the AWS loT
OTA repository. The AWS loT OTA
demos are in the primary FreeRTOS

distribution. For more details, refer
to the AWS IoT OTA page.

There is a CLI example running on
WinSim. Refer to the FreeRTOS
Plus Command Line Interface page

for more details. The Featured
FreeRTOS loT reference integrati
ons on the NXP i.MX RT1060 and
STM32U5 platforms, also provide
CLI examples on actual hardware.

Appendix

305

https://github.com/AWS
https://github.com/AWS
https://github.com/aws/Jobs-for-AWS-IoT-embedded-sdk
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Jobs_Windows_Simulator/Jobs_Demo
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Jobs_Windows_Simulator/Jobs_Demo
https://www.freertos.org/iot-jobs/index.html
https://www.freertos.org/iot-jobs/index.html
https://github.com/AWS
https://github.com/aws/ota-for-aws-iot-embedded-sdk
https://github.com/aws/ota-for-aws-iot-embedded-sdk
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Ota_Windows_Simulator
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Ota_Windows_Simulator
https://www.freertos.org/ota/index.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_CLI/FreeRTOS_Plus_Command_Line_Interface.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_CLI/FreeRTOS_Plus_Command_Line_Interface.html
https://github.com/FreeRTOS/iot-reference-nxp-rt1060/tree/main/examples/common/cli
https://github.com/FreeRTOS/iot-reference-stm32u5/tree/main/Common/cli
https://github.com/FreeRTOS/iot-reference-stm32u5/tree/main/Common/cli

FreeRTOS

User Guide

Name Type
logging macro
greengras demo

s_connectivity

Deprecated libraries and demos

Name Type
BLE demos and
libraries

Recommendations

There are implementations of the
logging macro for specific hardware
platforms used by some of the
FreeRTOS libraries. Refer to the
logging page for how to implement
the logging macro. Refer to one of
the FreeRTOS featured loT reference
s for an example running on actual

hardware.

[Migration in progress] This

demo project assumed that cloud
connectivity was available before
connecting to an AWS loT Greengras
s device. A new project that
demonstrates local authentication
and discovery capability is under
development. Expect the new demo
project to be published shortly in
the FreeRTOS Github organization.

Recommendations

The FreeRTOS BLE library
implements the proprietary MQTT
protocol and supports publishing
and subscribing to MQTT topics over
Bluetooth Low Energy (BLE) through
a proxy device such as a mobile
phone. This is no longer mandated.
Use either your own BLE stack or a

Appendix

306

https://www.freertos.org/logging.html
https://github.com/FreeRTOS/iot-reference-nxp-rt1060/tree/main/examples/common/logging
https://github.com/FreeRTOS/iot-reference-nxp-rt1060/tree/main/examples/common/logging
https://github.com/FreeRTOS/iot-reference-nxp-rt1060/tree/main/examples/common/logging
https://github.com/FreeRTOS

FreeRTOS

User Guide

Name

dev_mode_
key_provisioning

posix

wifi_prov
isioning

Legacy abstract
APIs

Type

demos

abstraction and
demo

example

code

Recommendations

third-party option such as NimBLE
to best optimize your project.

The Featured FreeRTOS loT
reference integrations on the NXP
i.MX RT1060, STM32U5, or ESP32-
C3 platforms provide examples of

crucial provisioning using a CLI.

Not recommended for use.

This example demonstrated how

to provision WiFi credentials on a
device using the Amazon-FreeRTOS
BLE library. Refer to the FreeRTOS
Featured loT reference on the
ESP32C3 platform for an example of

WiFi provisioning via BLE.

These are APIs that were created

to provide an abstract interface for
various third-party software stacks,
connectivity modules, and MCU
platforms from a variety of vendors.
For example, there are interfaces
for WiFi abstraction, secure sockets,
and so on. They are supported in
the Amazon-FreeRTOS repository
and are in the folder /1librarie

. These APIs
are not required when using the
FreeRTOS LTS libraries.

s/abstractions/

The libraries and demos in the table above will not get security patches or bug fixes.

Appendix

307

https://mynewt.apache.org/latest/network/
https://github.com/FreeRTOS/iot-reference-nxp-rt1060/blob/main/examples/common/cli/cli.c
https://github.com/FreeRTOS/iot-reference-nxp-rt1060/blob/main/examples/common/cli/cli.c
https://github.com/FreeRTOS/iot-reference-stm32u5/blob/main/Common/cli/cli_pki.c
https://github.com/FreeRTOS/iot-reference-esp32c3/blob/main/GettingStartedGuide.md
https://github.com/FreeRTOS/iot-reference-esp32c3/blob/main/GettingStartedGuide.md
https://github.com/FreeRTOS/iot-reference-esp32c3
https://www.freertos.org/lts-libraries.html
https://www.freertos.org/lts-libraries.html

FreeRTOS User Guide

Third-party libraries

When demos in Amazon-FreeRTOS use third-party libraries, we recommend that you sub-module
them directly from their third-party repositories.

CMock: clone it (submodule if you use git) directly from the Cmock repository.
« jsmn: not recommended and no longer supported.
« lwip: clone it (submodule if you use git) directly from the lwip-tcpip repository.

o lwip_osal: refer to the FreeRTOS Featured Reference Integrations on i.MX RT1060 or STM32U5
for how to implement lwip_osal on your hardware platform/board.

« mbedtls: clone it (submodule if you use git) directly from the Mbed-TLS repository. The mbedtls
config and utilities can be reused; make a local copy in this case.

» pkcs11: clone it (submodule if you use git) directly from either the corePKCS11 library or the
OASIS PKCS 11 repository.

« tinycbor: clone it (submodule if you use git) directly from thetinycbor repository.

« tinycrypt: we recommend that you use crypto accelerators from your MCU platform, if available.
If you want to continue to use tinycrypt, clone it (submodule if you use git) directly from the

tinycrypt repository.
 tracealyzer_recorder: clone it (submodule if you use git) directly from Percepio's trace recorder

repository.

« unity: clone it (submodule if you use git) directly from the ThrowTheSwitch/Unity repository.

« win_pcap: win_pcap is no longer maintained. We recommend that you use libslirp, libpcap
(posix), or npcap instead.
Porting tests and integration tests

All tests under the /tests folder that are required to validate integration of FreeRTOS libraries
were migrated to the FreeRTOS-Libraries-Integration-Tests repository. These can be used to test

PAL implementation and library integration. The same tests are used by AWS loT Device Tester
(IDT) for the AWS Device Qualification Program for FreeRTOS.

Appendix 308

https://github.com/ThrowTheSwitch/CMock
https://github.com/lwip-tcpip/lwip
https://github.com/FreeRTOS/iot-reference-nxp-rt1060
https://github.com/FreeRTOS/iot-reference-stm32u5
https://github.com/Mbed-TLS/mbedtls
https://github.com/FreeRTOS/corePKCS11
https://github.com/oasis-tcs/pkcs11
https://github.com/intel/tinycbor
https://github.com/intel/tinycrypt
https://github.com/intel/tinycrypt
https://github.com/percepio/TraceRecorderSource
https://github.com/ThrowTheSwitch/Unity
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests
https://docs.aws.amazon.com/freertos/latest/qualificationguide/afr-qualification.html

FreeRTOS User Guide

FreeRTOS Archived documentation

FreeRTOS User Guide Archive

These previous versions of the FreeRTOS User Guide are available for use with FreeRTOS LTS (long
term support) releases.

e FreeRTOS User Guide for FreeRTOS version 202210.00
e FreeRTOS User Guide for FreeRTOS version 202012.00

Previous FreeRTOS User Guide contents

This content is obsolete but provided here for reference.

See Getting Started with FreeRTOS for links to recent content.

Getting Started with FreeRTOS

/A Important

This page refers to the Amazon-FreeRTOS repository which is deprecated. We recommend
that you start here when you create a new project. If you already have an existing FreeRTOS
project based on the now deprecated Amazon-FreeRTOS repository, see the Amazon-
FreeRTOS Github Repository Migration Guide.

This Getting Started with FreeRTOS tutorial shows you how to download and configure
FreeRTOS on a host machine, and then compile and run a simple demo application on a _qualified
microcontroller board.

Throughout this tutorial, we assume that you are familiar with AWS loT and the AWS loT console. If
not, we recommend that you complete the AWS loT Getting Started tutorial before you continue.

Topics:
o FreeRTOS demo application
« First steps

FreeRTOS User Guide Archive 309

../../archive/202210.00/userguide/index.html
../../archive/202012.00/userguide/index.html
https://devices.amazonaws.com/search?page=1&sv=freertos
https://devices.amazonaws.com/search?page=1&sv=freertos
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html

FreeRTOS User Guide

« Troubleshooting getting started
Using CMake with FreeRTOS

Developer-mode key provisioning

Board-specific getting started guides
Next steps with FreeRTOS

FreeRTOS demo application

/A Important

This page refers to the Amazon-FreeRTOS repository which is deprecated. We recommend
that you start here when you create a new project. If you already have an existing FreeRTOS
project based on the now deprecated Amazon-FreeRTOS repository, see the Amazon-
FreeRTOS Github Repository Migration Guide.

The demo application in this tutorial is the coreMQTT Agent demo defined in the freertos/
demos/coreMQTT_Agent/mqtt_agent_task. c file. It uses the coreMQTT library to connect to
the AWS Cloud and then periodically publish messages to an MQTT topic hosted by the AWS loT
MQTT broker.

Only a single FreeRTOS demo application can run at a time. When you build a FreeRTOS

demo project, the first demo enabled in the freertos/vendors/vendor/boards/board/
aws_demos/config_files/aws_demo_config.h header file is the application that runs.
For this tutorial, you do not need to enable or disable any demos. The coreMQTT Agent demo is
enabled by default.

For more information about the demo applications included with FreeRTOS, see FreeRTOS demos.

First steps

/A Important

This page refers to the Amazon-FreeRTOS repository which is deprecated. We recommend
that you start here when you create a new project. If you already have an existing FreeRTOS
project based on the now deprecated Amazon-FreeRTOS repository, see the Amazon-
FreeRTOS Github Repository Migration Guide.

Getting Started with FreeRTOS 310

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html
https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html

FreeRTOS User Guide

To get started using FreeRTOS with AWS loT, you must have an AWS account, a user with
permissions to access AWS loT and FreeRTOS cloud services. You also must download FreeRTOS
and configure your board's FreeRTOS demo project to work with AWS loT. The following sections
walk you through these requirements.

(@ Note

« If you're using the Espressif ESP32-DevKitC, ESP-WROVER-KIT, or the ESP32-
WROOM-32SE, skip these steps and go to Getting started with the Espressif ESP32-
DevKitC and the ESP-WROVER-KIT.

« If you're using the Nordic nRF52840-DK, skip these steps and go to Getting started with
the Nordic nRF52840-DK.

1. Setting up your AWS account and permissions

2. Registering your MCU board with AWS loT

3. Downloading FreeRTOS

4. Configuring the FreeRTOS demos

Setting up your AWS account and permissions

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks

that require root user access.

Getting Started with FreeRTOS 311

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html

FreeRTOS User Guide

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and

entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. InIAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

« Tosign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

Getting Started with FreeRTOS 312

https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

FreeRTOS User Guide

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

To provide access, add permissions to your users, groups, or roles:

« Users and groups in AWS IAM ldentity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

« Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

o |AM users:

» Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

» (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Registering your MCU board with AWS loT

Your board must be registered with AWS IoT to communicate with the AWS Cloud. To register your
board with AWS loT, you must have:

An AWS loT policy

The AWS IoT policy grants your device permissions to access AWS loT resources. It is stored on
the AWS Cloud.

An AWS loT thing

An AWS IoT thing allows you to manage your devices in AWS IoT. It is stored on the AWS Cloud.
A private key and X.509 certificate

The private key and certificate allow your device to authenticate with AWS IoT.

To register your board, follow the procedures below.

Getting Started with FreeRTOS 313

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

FreeRTOS User Guide

To create an AWS loT policy
1. To create an IAM policy, you must know your AWS Region and AWS account number.

To find your AWS account number, open the AWS Management Console, locate and expand
the menu beneath your account name in the upper-right corner, and choose My Account. Your
account ID is displayed under Account Settings.

To find the AWS region for your AWS account, use the AWS Command Line Interface. To install
the AWS CLI, follow the instructions in the AWS Command Line Interface User Guide. After you
install the AWS CLI, open a command prompt window and enter the following command:

aws iot describe-endpoint --endpoint-type=iot:Data-ATS

The output should look like this:

"endpointAddress'": "XXXXXXXXXXXXxxX-ats.iot.us-west-2.amazonaws.com"

In this example, the region is us-west-2.

(@ Note

We recommend using ATS endpoints as seen in the example.

Browse to the AWS loT console.

In the navigation pane, choose Secure, choose Policies, and then choose Create.

Enter a name to identify your policy.

i A W

In the Add statements section, choose Advanced mode. Copy and paste the following JSON
into the policy editor window. Replace aws-region and aws-account with your AWS Region
and account ID.

"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": "iot:Connect",

Getting Started with FreeRTOS 314

https://console.aws.amazon.com/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://console.aws.amazon.com/iotv2/

FreeRTOS User Guide

"Resource":"arn:aws:iot:aws-region:aws-account-id:*"

I
{

"Effect": "Allow",

"Action": "iot:Publish",

"Resource": "arn:aws:iot:aws-region:aws-account-id:*"
1,
{

"Effect": "Allow",

"Action": "iot:Subscribe",

"Resource": "arn:aws:iot:aws-region:aws-account-id:*"
I
{

"Effect": "Allow",

"Action": "iot:Receive",

"Resource": "arn:aws:iot:aws-region:aws-account-id:*"
}
]

This policy grants the following permissions:

iot:Connect
Grants your device the permission to connect to the AWS loT message broker with any
client ID.

iot:Publish

Grants your device the permission to publish an MQTT message on any MQTT topic.

iot:Subscribe

Grants your device the permission to subscribe to any MQTT topic filter.

iot:Receive

Grants your device the permission to receive messages from the AWS loT message broker
on any MQTT topic.

6. Choose Create.

Getting Started with FreeRTOS 315

FreeRTOS User Guide

To create an loT thing, private key, and certificate for your device

Browse to the AWS loT console.

—

2. Inthe navigation pane, choose Manage, and then choose Things.

3. If you do not have any loT things registered in your account, the You don't have any things yet
page is displayed. If you see this page, choose Register a thing. Otherwise, choose Create.

4. On the Creating AWS loT things page, choose Create a single thing.

On the Add your device to the thing registry page, enter a name for your thing, and then
choose Next.

6. On the Add a certificate for your thing page, under One-click certificate creation, choose
Create certificate.

7. Download your private key and certificate by choosing the Download links for each.
8. Choose Activate to activate your certificate. Certificates must be activated prior to use.

9. Choose Attach a policy to attach a policy to your certificate that grants your device access to
AWS loT operations.

10. Choose the policy you just created and choose Register thing.

After your board is registered with AWS loT, you can continue to Downloading FreeRTOS.

Downloading FreeRTOS

You can download FreeRTOS from the FreeRTOS GitHub repository.

After you download FreeRTOS, you can continue to Configuring the FreeRTOS demos.

Configuring the FreeRTOS demos

You must edit some configuration files in your FreeRTOS directory before you can compile and run
any demos on your board.

To configure your AWS loT endpoint

You must provide FreeRTOS with your AWS loT endpoint so the application running on your board
can send requests to the correct endpoint.

1. Browse to the AWS IoT console.

2. In the left navigation pane, choose Settings.

Getting Started with FreeRTOS 316

https://console.aws.amazon.com/iotv2/
https://github.com/freertos/freertos
https://console.aws.amazon.com/iotv2/

FreeRTOS User Guide

Your AWS loT endpoint is displayed in Device data endpoint. It should look like
1234567890123-ats.iot.us-east-1.amazonaws.com. Make a note of this endpoint.

3. In the navigation pane, choose Manage, and then choose Things.

Your device should have an AWS loT thing name. Make a note of this name.
4. Opendemos/include/aws_clientcredential.h.

5. Specify values for the following constants:

o #define clientcredentialMQTT_BROKER_ENDPOINT "Your AWS IoT endpoint";

« #define clientcredentialIOT_THING_NAME "The AWS IoT thing name of your
board"

To configure your Wi-Fi

If your board is connecting to the internet across a Wi-Fi connection, you must provide FreeRTOS
with Wi-Fi credentials to connect to the network. If your board does not support Wi-Fi, you can skip
these steps.

1. demos/include/aws_clientcredential.h.

2. Specify values for the following #define constants:

« #define clientcredentialWIFI_SSID "The SSID for your Wi-Fi network"

o #define clientcredentialWIFI_PASSWORD "The password for your Wi-Fi
network"

e #define clientcredentialWIFI_SECURITY The security type of your Wi-Fi
network

Valid security types are:

« eWiFiSecurityOpen (Open, no security)
o eWiFiSecurityWEP (WEP security)

o eWiFiSecurityWPA (WPA security)

o eWiFiSecurityWPA2 (WPA2 security)

Getting Started with FreeRTOS 317

FreeRTOS User Guide

To format your AWS loT credentials

FreeRTOS must have the AWS loT certificate and private keys associated with your registered thing
and its permissions policies to successfully communicate with AWS loT on behalf of your device.

® Note

To configure your AWS loT credentials, you must have the private key and certificate that
you downloaded from the AWS IoT console when you registered your device. After you
have registered your device as an AWS loT thing, you can retrieve device certificates from
the AWS loT console, but you cannot retrieve private keys.

FreeRTOS is a C language project, and the certificate and private key must be specially formatted
to be added to the project.

1. Ina browser window, open tools/certificate_configuration/
CertificateConfigurator.html.

2. Under Certificate PEM file, choose the ID-certificate.pem.crt that you downloaded
from the AWS loT console.

3. Under Private Key PEM file, choose the ID-private.pem.key that you downloaded from
the AWS loT console.

4. Choose Generate and save aws_clientcredential_keys.h, and then save the file in demos/
include. This overwrites the existing file in the directory.

(® Note

The certificate and private key are hard-coded for demonstration purposes only.
Production-level applications should store these files in a secure location.

After you configure FreeRTOS, you can continue to the Getting Started guide for your board to set
up your platform's hardware and its software development environment, and then compile and
run the demo on your board. For board-specific instructions, see the Board-specific getting started
guides. The demo application that is used in the Getting Started tutorial is the coreMQTT Mutual
Authentication demo, which is located at demos/coreMQTT/mqtt_demo_mutual_auth.c.

Getting Started with FreeRTOS 318

FreeRTOS User Guide

Troubleshooting getting started

/A Important

This page refers to the Amazon-FreeRTOS repository which is deprecated. We recommend
that you start here when you create a new project. If you already have an existing FreeRTOS
project based on the now deprecated Amazon-FreeRTOS repository, see the Amazon-
FreeRTOS Github Repository Migration Guide.

The following topics can help you troubleshoot issues that you encounter while getting started
with FreeRTOS:

Topics

» General getting started troubleshooting tips

« Installing a terminal emulator

For board-specific troubleshooting, see the Getting Started with FreeRTOS guide for your board.

General getting started troubleshooting tips

No messages appear in the AWS loT console after | run the Hello World demo project. What do |
do?

Try the following:

1. Open a terminal window to view the logging output of the sample. This can help you
determine what is going wrong.

2. Check that your network credentials are valid.

The logs shown in my terminal when running a demo are truncated. How can I increase their
length?

Increase the value of configLOGGING_MAX_MESSAGE_LENGTH to 255 in the
FreeRTOSconfig. h file for the demo you are running:

#define configLOGGING_MAX_MESSAGE_LENGTH 255

Getting Started with FreeRTOS 319

FreeRTOS User Guide

Installing a terminal emulator

A terminal emulator can help you diagnose problems or verify that your device code is running
properly. There are a variety of terminal emulators available for Windows, macOS, and Linux.

You must connect your board to your computer before you attempt to establish a serial connection
to your board with a terminal emulator.

Use the following settings to configure your terminal emulator:

Terminal Setting Value
BAUD rate 115200
Data 8 bit
Parity none
Stop 1 bit
Flow control none

Finding your board's serial port

If you do not know your board's serial port, you can issue one of the following commands from
the command line or terminal to return the serial ports for all devices connected to your host
computer:

Windows

chgport
Linux

1s /dev/tty*
macOS

1s /dev/cu.*

Getting Started with FreeRTOS 320

FreeRTOS User Guide

Using CMake with FreeRTOS

/A Important

This page refers to the Amazon-FreeRTOS repository which is deprecated. We recommend
that you start here when you create a new project. If you already have an existing FreeRTOS
project based on the now deprecated Amazon-FreeRTOS repository, see the Amazon-
FreeRTOS Github Repository Migration Guide.

You can use CMake to generate project build files from FreeRTOS application source code, and to
build and run the source code.

You can also use an IDE to edit, debug, compile, flash, and run code on FreeRTOS-qualified

devices. Each board-specific Getting Started guide includes instructions for setting up the IDE for

a particular platform. If you prefer working without an IDE, you can use other third-party code
editing and debugging tools for developing and debugging your code, and then use CMake to build
and run the applications.

The following boards support CMake:

» Espressif ESP32-DevKitC

» Espressif ESP-WROVER-KIT

« Infineon XMC4800 loT Connectivity Kit

« Marvell MW320 AWS IoT Starter Kit

« Marvell MW322 AWS loT Starter Kit

» Microchip Curiosity PIC32MZEF Bundle

» Nordic nRF52840 DK Development kit

« STMicroelectronicsSTM32L4 Discovery Kit loT Node
» Texas Instruments CC3220SF-LAUNCHXL

« Microsoft Windows Simulator

See the topics below for more information about using CMake with FreeRTOS.

Topics

« Prerequisites

Getting Started with FreeRTOS 321

FreeRTOS User Guide

» Developing FreeRTOS applications with third-party code editors and debugging tools

 Building FreeRTOS with CMake

Prerequisites

Make sure that your host machine meets the following prerequisites before continuing:

» Your device's compilation toolchain must support the machine's operating system. CMake
supports all versions of Windows, macOS, and Linux

Windows subsystem for Linux (WSL) is not supported. Use native CMake on Windows machines.

« You must have CMake version 3.13 or higher installed.

You can download the binary distribution of CMake from CMake.org.

® Note

If you download the binary distribution of CMake, make sure that you add the CMake
executable to the PATH environment variable before you using CMake from command
line.

You can also download and install CMake using a package manager, like homebrew on macQOS,
and scoop or chocolatey on Windows.

® Note

The CMake package versions provided in the package managers for many Linux
distributions are out-of-date. If your distribution's package manager does not provide the
latest version of CMake, you can try alternative package managers, like 1inuxbrew or
nix.

« You must have a compatible native build system.

CMake can target many native build systems, including GNU Make or Ninja. Both Make and Ninja
can be installed with package managers on Linux, macOS and Windows. If you are using Make on

Windows, you can install a standalone version from Equation, or you can install MinGW, which
bundles make.

Getting Started with FreeRTOS 322

https://cmake.org/download/
https://brew.sh/
https://scoop.sh/
https://chocolatey.org/
https://www.gnu.org/software/make/
https://github.com/ninja-build/ninja/releases
http://www.equation.com/servlet/equation.cmd?fa=make
https://sourceforge.net/projects/mingw-w64/files/

FreeRTOS User Guide

® Note

The Make executable in MinGW is called mingw32-make. exe, instead of make. exe.

We recommend that you use Ninja, as it is faster than Make and also provides native support to
all desktop operating systems.

Developing FreeRTOS applications with third-party code editors and debugging tools

You can use a code editor and a debugging extension or a third-party debugging tool to develop
applications for FreeRTOS.

If, for example, you use Visual Studio Code as your code editor, you can install the Cortex-Debug
VS Code extension as a debugger. When you finish developing your application, you can invoke the
CMake command-Lline tool to build your project from within VS Code. For more information about
using CMake to build FreeRTOS applications, see Building FreeRTOS with CMake.

For debugging, you can provide a VS Code with debug configuration similar to the following:

"configurations": [

{
"name": "Cortex Debug",
"cwd": "${workspaceRoot}",
"executable": "./build/st/stm321475_discovery/aws_demos.elf",
"request": "launch",
"type": "cortex-debug",
"servertype": "stutil"

Building FreeRTOS with CMake

CMake targets your host operating system as the target system by default. To use it for cross
compiling, CMake requires a toolchain file, which specifies the compiler that you want to use. In
FreeRTOS, we provide default toolchain files in freertos/tools/cmake/toolchains. The way
to provide this file to CMake depends on whether you're using the CMake command line interface
or GUI. For more details, follow the Generating build files (CMake command-line tool) instructions

Getting Started with FreeRTOS 323

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug

FreeRTOS User Guide

below. For more information about cross-compiling in CMake, see CrossCompiling in the official
CMake wiki.

To build a CMake-based project

1. Run CMake to generate the build files for a native build system, like Make or Ninja.

You can use either the CMake command-line tool or the CMake GUI to generate the build files
for your native build system.

For information about generating FreeRTOS build files, see Generating build files (CMake

command-line tool) and Generating build files (CMake GUI).

2. Invoke the native build system to make the project into an executable.

For information about making FreeRTOS build files, see Building FreeRTOS from generated
build files.

Generating build files (CMake command-line tool)

You can use the CMake command-line tool (cmake) to generate build files for FreeRTOS. To
generate the build files, you need to specify a target board, a compiler, and the location of the
source code and build directory.

You can use the following options for cmake:

-DVENDOR - Specifies the target board.

-DCOMPILER - Specifies the compiler.

-S - Specifies the location of the source code.

-B - Specifies the location of generated build files.

(® Note

The compiler must be in the system's PATH variable, or you must specify the location of the
compiler.

Getting Started with FreeRTOS 324

https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/CrossCompiling
https://cmake.org/cmake/help/latest/manual/cmake.1.html
https://cmake.org/cmake/help/latest/manual/cmake-gui.1.html

FreeRTOS User Guide

For example, if the vendor is Texas Instruments, and the board is the CC3220 Launchpad, and the
compiler is GCC for ARM, you can issue the following command to build the source files from the
current directory to a directory named build-directory:

cmake -DVENDOR=ti -DBOARD=cc3220_launchpad -DCOMPILER=arm-ti -S . -B build-directory

(@ Note

If you are using Windows, you must specify the native build system because CMake uses
Visual Studio by default. For example:

cmake -DVENDOR=ti -DBOARD=cc3220_launchpad -DCOMPILER=arm-ti -S . -B build-
directory -G Ninja

Or:

cmake -DVENDOR=ti -DBOARD=cc3220_launchpad -DCOMPILER=arm-ti -S . -B build-
directory -G "MinGW Makefiles"

The regular expressions ${VENDOR} . * and ${BOARD} . * are used to search for a matching
board, so you don't have to use the full names of the vendor and board for the VENDOR and
BOARD options. Partial names work, provided there is a single match. For example, the following
commands generate the same build files from the same source:

cmake -DVENDOR=ti -DCOMPILER=arm-ti -S . -B build-directory

cmake -DBOARD=cc3220 -DCOMPILER=arm-ti -S . -B build-directory

cmake -DVENDOR=t -DBOARD=cc -DCOMPILER=arm-ti -S . -B build-directory

You can use the CMAKE_TOOLCHAIN_FILE option if you want to use a toolchain file that is not
located in the default directory cmake/toolchains. For example:

cmake -DBOARD=cc322@ -DCMAKE_TOOLCHAIN_FILE='/path/to/toolchain_file.cmake' -S . -
B build-directory

Getting Started with FreeRTOS 325

FreeRTOS User Guide

If the toolchain file does not use absolute paths for your compiler, and you didn't add your
compiler to the PATH environment variable, CMake might not be able to find it. To make sure
that CMake finds your toolchain file, you can use the AFR_TOOLCHAIN_PATH option. This option
searches the specified toolchain directory path and the toolchain's subfolder under bin. For
example:

cmake -DBOARD=cc3220 -DCMAKE_TOOLCHAIN_FILE='/path/to/toolchain_file.cmake' -
DAFR_TOOLCHAIN_PATH="'/path/to/toolchain/' -S . -B build-directory

To enable debugging, set the CMAKE_BUILD_TYPE to debug. With this option enabled, CMake
adds debug flags to the compile options, and builds FreeRTOS with debug symbols.

Build with debug symbols
cmake -DBOARD=cc3220 -DCOMPILER=arm-ti -DCMAKE_BUILD_TYPE=debug -S . -B build-directory

You can also set the CMAKE_BUILD_TYPE to release to add optimization flags to the compile
options.

Generating build files (CMake GUI)
You can use the CMake GUI to generate FreeRTOS build files.
To generate build files with the CMake GUI

1. From the command line, issue cmake-gui to start the GUI.

2. Choose Browse Source and specify the source input, and then choose Browse Build and
specify the build output.

CMake 3.13.0 -

File Tools Options Help

r.

Where is the source code: Browse Source...
Where to build the binaries: v Browse Build...

T, Wi
Search: [| Grouped [| Advanced | db Add Entry

3. Choose Configure, and under Specify the build generator for this project, find and choose
the build system that you want to use to build the generated build files. if you do not see the

Getting Started with FreeRTOS 326

FreeRTOS User Guide

pop up window, you might be reusing an existing build directory. In this case, delete the CMake
cache by choosing Delete Cache from the File menu.

CMakeSetup

Specify the generator for this project

Unix Makefiles

() Use default native compilers

() specify native compilers

(® specify toolchain file for cross-compiling

() specify options for cross-compiling

4. Choose Specify toolchain file for cross-compiling, and then choose Next.

5. Choose the toolchain file (for example, freertos/tools/cmake/toolchains/arm-
ti.cmake), and then choose Finish.

The default configuration for FreeRTOS is the template board, which does not provide any
portable layer targets. As a result, a window appears with the message Error in configuration
process.

(® Note

If you are seeing the following error:

CMake Error at tools/cmake/toolchains/find_compiler.cmake:23 (message):
Compiler not found, you can specify search path with AFR_TOOLCHAIN_PATH.

Getting Started with FreeRTOS 327

FreeRTOS User Guide

It means the compiler is not in your PATH environment variable. You can set the
AFR_TOOLCHAIN_PATH variable in the GUI to tell CMake where you installed your compiler.
If you do not see the AFR_TOOLCHAIN_PATH variable, choose Add Entry. In the pop up
window, under Name, type AFR_TOOLCHAIN_PATH. Under Compiler Path type the path to
your compiler. for example, C: /toolchains/arm-none-eabi-gcc.

6. The GUI should now look like this:

File Tools Options Help

Where is the source code: ftmp/amazon-freertos ‘ Browse Source... ‘

Where to build the binaries: | /timp/amazon-freertos/build W ‘ Browse Build... ‘

Search: [] Grouped [| Advanced | sk Add Entry #& Remove Entry
Mame Valu

Press Configure to update and display new values in red, then press Generate to generate selected build files.

Configure H Generate ‘ Open Project Current Generator: Unix Makefiles —

=Configuration for Amazon FreeRTOS= = =
Version: vl.4.4
Git wersion: v1l.4.4-25-gfae2elf3b

Target microcontroller:

vendor: Vendor

board: Board

description: Template Board for AmazonFreeRTOS
family: Family

data ram size: UNENOWN

program memory size: UNENOWN

Hnaet mnlatform:-

Getting Started with FreeRTOS 328

FreeRTOS User Guide

Choose AFR_BOARD, choose your board, and then choose Configure again.

7. Choose Generate. CMake generates the build system files (for example, makefiles or ninja
files), and these files appear in the build directory you specified in the first step. Follow the
instructions in the next section to generate the binary image.

Building FreeRTOS from generated build files
Building with native build system

You can build FreeRTOS with a native build system by calling the build system command from the
output binaries directory.

For example, if your build file output directory is <build_dir>, and you are using Make as your
native build system, run the following commands:

cd <build_dir>
make -j&4

Building with CMake

You can also use the CMake command-line tool to build FreeRTOS. CMake provides an abstraction
layer for calling native build systems. For example:

cmake --build build_dir

Here are some other common uses of the CMake commmand-line tool's build mode:

Take advantage of CPU cores.
cmake --build build dir --parallel 8

Build specific targets.
cmake --build build dir --target afr_kernel

Clean first, then build.
cmake --build build_dir --clean-first

For more information about the CMake build mode, see the CMake documentation.

Getting Started with FreeRTOS 329

https://cmake.org/cmake/help/latest/manual/cmake.1.html#build-tool-mode

FreeRTOS User Guide

Developer-mode key provisioning

/A Important

This page refers to the Amazon-FreeRTOS repository which is deprecated. We recommend
that you start here when you create a new project. If you already have an existing FreeRTOS
project based on the now deprecated Amazon-FreeRTOS repository, see the Amazon-
FreeRTOS Github Repository Migration Guide.

Introduction

This section discusses two options to get a trusted X.509 client certificate onto an loT device for
lab testing. Depending on the capabilities of the device, various provisioning-related operations
may or may not be supported, including onboard ECDSA key generation, private key import,
and X.509 certificate enrollment. In addition, different use cases call for different levels of key
protection, ranging from onboard flash storage to the use of dedicated crypto hardware. This
section provides logic for working within the cryptographic capabilities of your device.

Option #1: private key import from AWS loT

For lab testing purposes, if your device allows the import of private keys, follow the instructions in
Configuring the FreeRTOS demos.

Option #2: onboard private key generation

If your device has a secure element, or if you prefer to generate your own device key pair and
certificate, follow the instructions here.

Initial Configuration

First, perform the steps in Configuring the FreeRTOS demos, but skip the last step (that is, don't
do To format your AWS IoT credentials). The net result should be that the demos/include/
aws_clientcredential.h file has been updated with your settings, but the demos/
include/aws_clientcredential_keys.h file has not.

Demo Project Configuration

Open the coreMQTT Mutual Authentication demo as described in the guide
for your board in Board-specific getting started guides . In the project, open

Getting Started with FreeRTOS 330

FreeRTOS

User Guide

the file aws_dev_mode_key_provisioning.c and change the definition of
keyprovisioningFORCE_GENERATE_NEW_KEY_PAIR, which is set to zero by default, to one:

#define keyprovisioningFORCE_GENERATE_NEW_KEY_PAIR 1

Then build and run the demo project and continue to the next step.

Public Key Extraction

Because the device hasn't been provisioned with a private key and client certificate, the demo
will fail to authenticate to AWS loT. However, the coreMQTT Mutual Authentication demo starts
by running developer-mode key provisioning, resulting in the creation of a private key if one
was not already present. You should see something like the following near the beginning of the
serial console output.

7 910 [IP-task] Device public

3059
8648
1bb9
6f19
41b7
dcb2

3013
ce3d
le72
1813
345c
4e8d

0607
0301
339f
6999
e746
75b3

2a86
0703
e8cf
3fa0
1046
2586

48ce
4200
60ef
c293
228e
e2cc

3d02
Q4cd
ofof
5fae
5a5f
0c

key,
0106
6569
b473
08f1
d787

91 bytes:
082a
ceb8
33ac
1ado
d571

Copy the six lines of key bytes into a file called DevicePublicKeyAsciiHex.txt. Then use
the command-Lline tool "xxd" to parse the hex bytes into binary:

xxd -r -ps DevicePublicKeyAsciiHex.txt DevicePublicKeyDer.bin

Use "openssl" to format the binary encoded (DER) device public key as PEM:

openssl ec -inform der -in DevicePublicKeyDer.bin -pubin -pubout -outform pem -out

DevicePublicKey.pem

Don't forget to disable the temporary key generation setting you enabled above. Otherwise, the

device will create yet another key pair, and you will have to repeat the previous steps:

#define keyprovisioningFORCE_GENERATE_NEW_KEY_PAIR 0

Getting Started with FreeRTOS

331

FreeRTOS User Guide

Public Key Infrastructure Setup

Follow the instructions in Registering Your CA Certificate to create a certificate hierarchy for

your device lab certificate. Stop before executing the sequence described in the section Creating
a Device Certificate Using Your CA Certificate.

In this case, the device will not be signing the certificate request (that is, the Certificate Service
Request or CSR) because the X.509 encoding logic required for creating and signing a CSR has
been excluded from the FreeRTOS demo projects to reduce ROM size. Instead, for lab testing
purposes, create a private key on your workstation and use it to sign the CSR.

openssl genrsa -out tempCsrSigner.key 2048
openssl req -new -key tempCsrSigner.key -out deviceCert.csr

Once your Certificate Authority has been created and registered with AWS loT, use the following
command to issue a client certificate based on the device CSR that was signed in the previous
step:

openssl x509 -req -in deviceCert.csr -CA rootCA.pem -CAkey rootCA.key
-CAcreateserial -out deviceCert.pem -days 500 -sha256 -force_pubkey
DevicePublicKey.pem

Even though the CSR was signed with a temporary private key, the issued certificate can only be
used with the actual device private key. The same mechanism can be used in production if you
store the CSR signer key in separate hardware, and configure your certificate authority so that it
only issues certificates for requests that have been signed by that specific key. That key should
also remain under the control of a designated administrator.

Certificate Import

With the certificate issued, the next step is to import it into your device. You

will also need to import your Certificate Authority (CA) certificate, since it is

required in order for first-time authentication to AWS loT to succeed when

using JITP. In the aws_clientcredential_keys. h file in your project, set the
keyCLIENT_CERTIFICATE_PEM macro to be the contents of deviceCert.pem and set the
keyJITR_DEVICE_CERTIFICATE_AUTHORITY_PEM macro to be the contents of rootCA. pem.

Device Authorization

Import deviceCert.peminto the AWS loT registry as described in Use Your Own Certificate.
You must create a new AWS loT thing, attach the PENDING certificate and a policy to your

Getting Started with FreeRTOS 332

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html#register-CA-cert
https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html#manual-cert-registration

FreeRTOS User Guide

thing, then mark the certificate as ACTIVE. All of these steps can be performed manually in the
AWS loT console.

Once the new client certificate is ACTIVE and associated with a thing and a policy, run the
coreMQTT Mutual Authentication demo again. This time, the connection to the AWS loT MQTT
broker will succeed.

Board-specific getting started guides

/A Important

This page refers to the Amazon-FreeRTOS repository which is deprecated. We recommend
that you start here when you create a new project. If you already have an existing FreeRTOS
project based on the now deprecated Amazon-FreeRTOS repository, see the Amazon-
FreeRTOS Github Repository Migration Guide.

After you complete the First steps, see your board's guide for board-specific instructions on getting
started with FreeRTOS:

« Getting started with the Cypress CYW943907AEVAL1F Development Kit

» Getting started with the Cypress CYW954907AEVAL1F Development Kit

» Getting started with the Cypress CY8CKIT-06450S2-4343W kit

» Getting started with the Infineon XMC4800 loT Connectivity Kit

o Getting started with the MW32x AWS loT Starter Kit

o Getting started with the MediaTek MT7697Hx development kit

» Getting started with the Microchip Curiosity PIC32MZ EF

» Getting started with the Nuvoton NuMaker-loT-M487
o Getting started with the NXP LPC54018 IoT Module
» Getting started with the Renesas Starter Kit+ for RX65N-2MB

o Getting started with the STMicroelectronics STM32L4 Discovery Kit loT Node
o Getting started with the Texas Instruments CC3220SF-LAUNCHXL

» Getting started with the Windows Device Simulator

» Getting started with the Xilinx Avnet MicroZed Industrial loT Kit

Getting Started with FreeRTOS 333

FreeRTOS User Guide

® Note

You do not need to complete the First steps for the following self-contained Getting
Started with FreeRTOS guides:

» Getting started with the Microchip ATECC608A Secure Element with Windows simulator

o Getting started with the Espressif ESP32-DevKitC and the ESP-WROVER-KIT

o Getting started with the Espressif ESP32-WROOM-32SE

» Getting started with the Espressif ESP32-S2

» Getting started with the Infineon OPTIGA Trust X and XMC4800 IoT Connectivity Kit

o Getting started with the Nordic nRF52840-DK

Getting started with the Cypress CYW943907AEVAL1F Development Kit

/A Important

This reference integration is hosted on the Amazon-FreeRTOS repository which is
deprecated. We recommend that you start here when you create a new project. If you
already have