
Guide for Unreal Engine Developers

AWS GameKit

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS GameKit Guide for Unreal Engine Developers

AWS GameKit: Guide for Unreal Engine Developers

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS GameKit Guide for Unreal Engine Developers

Table of Contents

.. vii
What is AWS GameKit? ... 1

Benefits ... 1
Get started ... 2
Related services .. 3
Related AWS topics .. 3
How AWS GameKit works ... 3

How AWS GameKit works with your game ... 4
AWS GameKit components ... 5
AWS GameKit characteristics .. 6

Development workflow ... 8
AWS pricing with AWS GameKit ... 10

Estimating AWS costs .. 10
Managing AWS costs .. 12

AWS GameKit components .. 12
Setting up .. 14

Install the AWS GameKit plugin ... 14
Plugin requirements ... 14
What's in the AWS GameKit download .. 15
Install the plugin ... 15

Set up AWS account and user access .. 17
Sign up for an AWS account .. 18
Set up an administrator .. 18
Set up an AWS user ... 20
Related AWS topics .. 21
Use IAM to set up user access ... 21
Manage achievement permissions .. 23
Tips for AWS account administrators ... 24

Get your AWS security credentials ... 25
Retrieve security credentials ... 25
Generate new security credentials .. 26
Securing credentials with the plugin .. 28
Related AWS topics .. 28

Getting started .. 29

iii

AWS GameKit Guide for Unreal Engine Developers

Explore AWS GameKit in Unreal Editor ... 29
Manage your cloud project ... 29
Deploy backend services for your cloud features .. 31
Build AWS GameKit features into your frontend ... 33

Integrate AWS GameKit features .. 34
Working in the AWS GameKit UI .. 36

Set up the plugin ... 36
Remove AWS GameKit from a game project ... 39

Removing individual game features ... 40
Removing all AWS GameKit plugin components ... 42

Troubleshoot plugin issues .. 44
[Unreal] Can't open game project after enabling the AWS GameKit plugin 44
[Unreal] Deployment is not completing ... 45

Work with game feature dashboards .. 46
Activating or deactivating a dashboard ... 46
Opening a dashboard .. 47
Viewing dashboard content .. 48
Key dashboard metrics .. 49
Related AWS topics .. 51

Game feature: Identity and authentication ... 52
How identity and authentication works .. 53

Identity and authentication workflows .. 54
Solution architecture .. 55
Configuration options .. 57
Callable actions ... 57

Estimate costs ... 58
Add identity and authentication ... 59
Work with the examples ... 62

Game feature: User gameplay data .. 65
How user gameplay data works .. 65
Solution architecture ... 67

User gameplay data services .. 67
User gameplay data encryption .. 68

Callable actions ... 68
Add user gameplay data to your game ... 69

Build your User Gameplay Data feature .. 69

iv

AWS GameKit Guide for Unreal Engine Developers

Integration tips .. 70
Work with the examples ... 71

Game feature: Game state cloud saving .. 74
How game state cloud saving works ... 74

Storing game save files in the cloud .. 74
Synchronizing game save files ... 75
Game state cloud saving workflow ... 75

Solution architecture ... 76
Game state cloud saving services ... 77
Game state cloud saving data encryption ... 77

Configuration options ... 78
Callable actions ... 78
Add game state cloud saving to your game .. 79
Work with the examples ... 80

Game feature: Achievements .. 83
How achievements work ... 84

Achievement types ... 85
Achievements workflow .. 86

Solution architecture ... 86
Achievements services ... 87
Achievements data encryption .. 88

Configuration options ... 88
Callable actions ... 89
Add achievements to your project ... 89
Work with the examples ... 92

Launch your game ... 95
Package a game project ... 95

Package a game for Windows or macOS .. 95
Package a game for iOS .. 98
Package a game for Android ... 100

Optimize your game for mobile ... 106
Set shutdown behavior ... 106
Persist cache for user gameplay data .. 107

Prepare your AWS GameKit backend for production ... 108
Analyze feature usage patterns ... 108
Set up monitoring dashboards .. 109

v

AWS GameKit Guide for Unreal Engine Developers

Modify your AWS CloudFormation templates .. 110
Increase service quotas ... 116
Customize player registration email ... 117
Add optional services .. 117
Adjust usage of AWS GameKit client API .. 121

Working with AWS resources .. 122
View AWS resources .. 122

Viewing an AWS resource stack .. 122
Update AWS resources .. 123

Reference .. 125
Underlying AWS services .. 125

Core services .. 125
Identity and authentication services .. 125
Achievements services ... 126
User gameplay data services ... 126
Game state cloud saving services ... 126

Supported AWS Regions .. 127
Region availability .. 127

Deployment states ... 129
Steady states ... 130
Transient states ... 131

Concepts and terminology .. 132
AWS GameKit terms .. 132
Game development terms ... 133
Game engine terms ... 134
AWS terms ... 134

AWS GameKit releases .. 136

vi

AWS GameKit Guide for Unreal Engine Developers

You are currently viewing content for use with Unreal Engine software. See all AWS GameKit
documentation

vii

https://docs.aws.amazon.com/gamekit
https://docs.aws.amazon.com/gamekit

AWS GameKit Guide for Unreal Engine Developers

What is AWS GameKit?

Build AWS-powered cloud features from your game engine.

AWS GameKit is an open-source SDK for developers who want to build high quality, cloud-based
features into their products. Cloud features bring some significant benefits to a game, including
greater security, scalability, cost reductions, and player experience improvements such as greater
flexibility in where and how people play.

Our goal with AWS GameKit is to give you the power of cloud features while removing the major
challenges. We designed AWS GameKit for developers who don't have deep knowledge of AWS or
cloud architecture design, but still want well-architected features that they can customize for their
projects. With AWS GameKit, you get complete cloud architecture templates and the tools to build
your infrastructure. Choose the features you want for your project, set up a cloud backend in two
or three steps, and add feature functionality to your client apps. Work at your own pace to extend
and customize the cloud backend for your customers.

AWS GameKit provides solutions for the following game-related features.

• Identity and authentication – Protect players with secure registration and robust identity
management for your game. Verify player logins to manage access to player sessions, and use
authentication for AWS GameKit cloud features.

• Achievements – Create goals that players can achieve to earn recognition, win rewards, or
initiate game events. Manage players' achievements in the cloud and track their progress toward
long-term goals.

• Game state cloud saving – Synchronize game saves in the cloud so that players can resume their
play from different locations and devices, or recover game progress as needed.

• User gameplay data – Maintain gameplay data for each player, such as inventory, statistics, and
cross-play persistence, and make it available to players wherever and whenever they log in to the
game.

AWS GameKit benefits

Developers and architects tasked with building cloud-based backend infrastructure for their game
projects can take advantage of these benefits:

Benefits 1

AWS GameKit Guide for Unreal Engine Developers

• Build and maintain a cloud backend from your game engine. Use AWS GameKit for Unreal
Engine with its streamlined workflows to create and manage an AWS cloud backend for your
game project. Use tools to incorporate feature functionality. Set up backend infrastructure in
multiple environments and maintain each independently.

• Start with expertly designed cloud architectures. The AWS solution for each AWS GameKit
cloud feature is designed by cloud architecture experts and based on the AWS Well-Architected
Framework for secure, high-performing, resilient, and efficient solutions. The solutions
incorporate game development best practices and customer feedback.

• Learn as you go. AWS GameKit provides customizable solution templates and APIs for your
backend. This means you get started fast with a production-ready backend, and then . From
this point, you have wide flexibility to modify the templates, experiment with alternative AWS
features and services, and build a custom cloud infrastructure for your projects.

• Integrate feature design with rapid prototyping. With a cloud backend in place, use pre-
configured UI components, example code, and example games to integrate the features using
iterative design and development.

• Customize the AWS GameKit SDK and tools. AWS GameKit SDK components are available on
a "source- available basis, so you can modify or build tools to fit your development process.
Customize the existing AWS GameKit for Unreal Engine plugin plugin or create versions for other
game engines. Modify or extend the core C++ API functionality.

Get started with AWS GameKit

New to AWS GameKit? We recommend that you start here:

• Set up AWS GameKit for your projects

• Download AWS GameKit for Unreal Engine

• Install the AWS GameKit

• Set up an AWS account and users for AWS GameKit

• Learn about the AWS GameKit UI

• Explore AWS GameKit in the Unreal Editor

• Keep up with the latest news and releases

• AWS GameKit forum. Share questions and comments with the developer community.

• AWS Game Tech blog. Learn about new features and get developer tips for all AWS Game Tech
offerings.

Get started 2

https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/architecture/well-architected/
https://docs.aws.amazon.com/gamekit/latest/Releases/releases-versions.html
https://repost.aws/tags/TAtbJBs1j4Q76nb-HQavme0w/aws-game-kit
https://aws.amazon.com/blogs/gametech/

AWS GameKit Guide for Unreal Engine Developers

• AWS GameKit releases. Monitor version updates and known issues.

Related services

AWS GameKit is a solid choice for building fully customizable AWS Cloud-based features into your
games while retaining the ability to customize those features going forward. Also consider these
game-related AWS offerings:

• Amazon GameSparks – Amazon GameSparks is a fully managed AWS service that provides a
multi-service backend for game developers.

• Amazon GameLift – GameLift provides solutions for hosting session-based multiplayer game
servers in the cloud, including a fully managed service for deploying, operating, and scaling
game servers.

• Open 3D Engine (O3DE) – O3DE is an open-source 3D development engine for game,
simulation, and multimedia creators. It is modular and cross-platform.

• Amazon Nimble Studio – Amazon Nimble Studio is a virtual studio that empowers visual effects,
animation, and interactive content teams to create content securely within a scalable, private
cloud service.

Related AWS topics

AWS Well-Architected

AWS GameKit solutions are based on AWS Well-Architected and its six-pillared framework:
operational excellence, security, reliability, performance efficiency, cost optimization, and
sustainability. To learn more about how well-architected AWS solutions are built, use the resources
on this site, which include best practices, design principles, and industry-specific whitepapers.

AWS for Games

Learn more about other AWS services and solutions for game development, including Amazon
GameLift for multiplayer services and specialized solutions for game analytics and AI.

How AWS GameKit works

Summary

Related services 3

https://docs.aws.amazon.com/gamekit/latest/Releases
https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/gametech/

AWS GameKit Guide for Unreal Engine Developers

This topic is a high-level technical overview of AWS GameKit for game developers who want to
know how to use it in their Unreal Engine projects. This overview describes the core AWS GameKit
components and how developers interact with them to build and manage backend game features.

How AWS GameKit works with your game

AWS GameKit provides tools to simplifies the work of building cloud-based game features into
your project. AWS GameKit helps you configure and deploy a well-designed game backend on AWS
Cloud and provides APIs to connect it to your game frontend.

As shown in the following diagram, use AWS GameKit with your game engine and development
environment. AWS GameKit adds functionality to your game engine to build and maintain a cloud
backend.

With AWS GameKit, deploy ready-to use backend solutions for cloud-based features that you want
to add to your game. These solutions contain all the architecture design and configuration settings
needed to run the backend and communicate with a game client. Choose a game feature, set some
optional customizations, and initiate deployment. In 10 to 30 minutes, your feature backend is up
and running and ready to communicate with your game client.

When you deploy the game backend using AWS GameKit, the game project is automatically
configured with endpoints for the game backend. You add feature elements into your game
client and use AWS GameKit API calls to connect to the game backend. You can play test your
game in the engine, making live calls to the backend. When you build and package your game for
distribution, the game is automatically connected to the game's backend resources on AWS.

When someone plays your game with AWS GameKit features, they register and log into the game
before playing. From this point until the player logs out, all game client calls to the AWS GameKit
API are made on behalf of the logged-in player. For example, when a game client sends an API
request to update the player's cloud-stored gameplay data, the request automatically references
the player's registered ID.

How AWS GameKit works with your game 4

AWS GameKit Guide for Unreal Engine Developers

AWS GameKit components

AWS GameKit is an open-source solution for game developers. It includes the following
components:

• AWS GameKit plugin – Use the AWS GameKit version for your game engine to configure,
deploy, and manage game backend services for each game feature. With the backend in place,
you can connect it to feature functionality in your game frontend using the AWS GameKit
API. You can manage the backend services from your game engine, or you can use AWS tools
to monitor and modify them. For information on game engine support, see AWS GameKit
components.

• AWS backend service architecture solutions – Ready-to-build solutions for each game feature
use AWS CloudFormation templates to deploy AWS resources and connect them with AWS
Lambda-driven logic. When you configure and deploy a feature with AWS GameKit, it uses these
templates to build the backend for your game.

Each game feature solution handles these tasks and others:

• Provisions resources to run the backend services on AWS infrastructure.

• Manages deployment and update activity for the backend services.

• Handles API communication, including authentication and authorization, security, traffic
management, and monitoring.

• Provides Lambda functions that drive activity for the game feature, including data
management and game logic.

AWS GameKit components 5

AWS GameKit Guide for Unreal Engine Developers

• Monitors game feature activity, generates logs, and enables metrics tracking. Set up
dashboards through Amazon CloudWatch to track operational metrics for the game feature's
backend.

• AWS GameKit API – The API offers feature-specific operations that connect your game frontend
to the deployed backend services. The AWS GameKit API wraps core AWS service functionality
into API requests for game-specific workflows. For example, the UpdateAchievement()
operation includes direct calls to AWS services to authenticate a player request, run logic on the
achievement's requirements, and update a player's stored achievement status.

Games with AWS GameKit features are automatically configured with the endpoint for the game
backend. In addition, all API calls reference the unique player ID for a logged-in player.

• Example code and assets – Examples provide a starting point to help you integrate game
feature functionality into your game. Each game feature includes a set of example materials for
illustration or to support rapid prototyping.

• AWS GameKit plugin source code – You can download this source code from GitHub on a
"source available" basis. Use the source code to customize or to create a new version for game
engines that aren't yet supported.

Use AWS GameKit to set up self-managed AWS services for your game backend, which you own
and manage through your AWS account. With AWS GameKit you can put in place a basic, well-built
backend architecture for your game. You have full flexibility to use AWS tools to customize and
extend the game backend as your game evolves.

AWS GameKit characteristics

AWS GameKit supports these approaches to game development.

Work entirely in the game engine

With AWS GameKit, you can do virtually all work on cloud-based game features from your game
engine.

To set up a game backend, use AWS GameKit to configure, deploy, and manage AWS resources
for each game feature. You can also track ongoing status and access operational metrics for the
backend services in your game engine.

To connect a game client to the backend, use the AWS GameKit API to make requests to the
backend services. You can access the API and run samples in the game engine. After setting up the

AWS GameKit characteristics 6

AWS GameKit Guide for Unreal Engine Developers

backend for a game feature, you can test the game in the game engine and debug feature issues
using log messaging.

Work in multiple environments

Game development teams can use environments to manage different stages of project
development concurrently. By switching the AWS GameKit environment when working in the game
engine, teams can configure and deploy separate stacks of AWS resources for each environment.
The game project is automatically configured to connect to the backend endpoint for whichever
environment is currently active.

Teams can use pre-defined environments for development, QA, and production. They also have the
option to create custom environments.

Switching environments has the following effects:

• The Settings UI for each game feature updated to reflect the configuration options and
deployment status for the AWS resources deployed in the active environment.

• For achievement definitions, cloud sync pulls from the data store for the active environment.

• Dashboard links point to the feature dashboards for the active environment.

• UI elements to create, redeploy, or delete AWS resources impact resources in the active
environment only.

• The AWS GameKit for the game project configuration is updated with the backend endpoints for
the active environment. The game project automatically connects to the environment's game
backend when playing a game in the game engine and when building or packaging the game.

When you deploy AWS resources for a game feature, the resource names reference the AWS
GameKit environment in use. This naming convention helps you use AWS tools to track resources
and costs based on the environment.

Teams can optionally manage AWS user access for each environment. For example, a team might
restrict write access for resources in a production environment.

Position backend services geographically

When deploying AWS resources your game backend, you choose where to physically deploy them.
You can choose from available AWS Regions, each of which represents a geographical location of

AWS GameKit characteristics 7

AWS GameKit Guide for Unreal Engine Developers

computing hardware. For a complete list of AWS Regions that support AWS GameKit, see AWS
GameKit supported AWS Regions.

Each AWS GameKit environment has an AWS Region, and all resources created for that
environment are deployed to that Region. To set up backend services in more than one Region, you
can create multiple environments.

When choosing a region, consider the following:

• You can decrease the effect of latency issues by deploying services geographically near your
player base.

• Although outages and slowdowns are rare, you can further minimize the possibility by using
regions with plenty of resources and lower usage.

• Regions vary in cost and in the AWS services that they support.

• Changing an environment's region setting requires that you delete and replace all AWS resources
deployed in the environment.

Develop in teams

Development teams with multiple members can use AWS GameKit with their version control
systems. AWS GameKit stores its files in the game project folder to simplify tracking and sharing.

AWS GameKit users on the team must have AWS account access with permissions for AWS GameKit
resources. Administrators can manage AWS users for team members and set up user groups to
manage appropriate permission levels.

Development workflow with AWS GameKit

Summary

This topic outlines the steps that game developers can expect to work on when using AWS GameKit to
add a cloud-based feature to a game project.

The following steps describe the typical integration process for adding an AWS GameKit game
feature. You complete these steps by working in your game engine.

1. Developer (or AWS account administrator) creates an AWS account or designates an existing
account to manage the game backend on AWS. Team members who work with the AWS GameKit
plugin need an AWS user ID with AWS GameKit access permissions and security credentials.

Development workflow 8

AWS GameKit Guide for Unreal Engine Developers

2. Developer installs the AWS GameKit plugin for their game project.

3. With the game project open in the game engine, the developer creates an AWS GameKit
configuration for the project. In this step, the developer creates a game project alias and chooses
an environment to work in. They submit their AWS user credentials, which links the game project
to an AWS account. In response, AWS GameKit generates default configuration files and adds
them to the game project folder.

4. Developer configures and deploys a backend for the identity and authentication game feature.

a. Developer sets configuration options for the game feature.

b. Developer chooses Create to deploy AWS resources as configured for the identity and
authentication backend. AWS GameKit also deploys some core resources for use with all
features. The resource stack for identity and authentication includes an Amazon Cognito user
pool for player registrations. The developer tracks the progress of AWS resource creation in
the plugin UI and in the game engine output log.

Note

After resource deployment, the AWS account can begin incurring usage charges. For
more information, see AWS pricing with AWS GameKit.

c. As necessary, the developer can edit the feature's configuration settings and redeploy the
backend, or delete it and start over.

5. Developer adds game feature functionality to frontend game code. Feature integration work
varies but generally involves creating new UI elements, adding game logic, and making calls to
the game backend using the AWS GameKit API. For identity and authentication, the developer
creates UI workflows so that users can register a player ID, log in, and log out of the game. It
might also include a password reset option.

The developer can use these plugin features to help with integration:

• Work with example assets that come with the plugin. These include example UI elements,
code snippets showing the API calls, and complete working game samples.

• Test the identity and authentication feature in the game engine. A game running in the editor
is automatically configured to connect to the game backend. If a feature has a deployed game
backend, the game can send API calls to the backend and receive responses.

6. With the identity game feature in place, the developer integrates additional AWS GameKit
features. This work follows a similar process as with identity and authentication: create a game
feature backend, add feature functionality to the frontend, and test the connection.

Development workflow 9

AWS GameKit Guide for Unreal Engine Developers

7. Developer packages the game to include AWS GameKit components.

8. As game development progresses, the developer can use the plugin to create new environments
for QA, production, and other stages. In each environment, the developer creates a separate
stack of AWS resources for the game backend. In this way the developer can manage feature
development and backend configuration independently in the different environments.

AWS pricing with AWS GameKit

Summary

This topic helps game developers understand how their AWS account incurs charges when creating
a game backend with AWS GameKit. This topic discusses tools that AWS provides to help customers
manage their costs.

AWS offers AWS GameKit tools without charge. When you build a game backend with AWS
GameKit, you pay only for the AWS products that you create and use to run the game backend.
Standard AWS service pricing applies as published.

During game development, you may be able to take advantage of the AWS Free Tier. AWS
customers can use Free Tier benefits to get real-world experience with a wide range of AWS
products at no cost. All AWS resources that you create with AWS GameKit are available as part of
the AWS Free Tier. Free Tier benefits might be time-limited or usage-limited. For more information
about the AWS Free Tier, see the following:

• Free Tier benefits by service

• Get started with the AWS Free Tier (AWS Whitepaper)

As an AWS account owner, you have full control over spending by adding, modifying or removing,
AWS resources. You can also use various AWS tools to help manage your costs. Your AWS account
doesn't incur charges until you deploy AWS resources. The AWS GameKit plugin notifies users when
charges might start to incur. You can delete deployed AWS resources to stop incurring charges.

Estimating AWS costs

With AWS GameKit, your costs depend on the game backend you build and how your game uses
it. The total cost of running the backend equals the sum of the costs for each AWS service in the
backend.

AWS pricing with AWS GameKit 10

https://aws.amazon.com/free/
https://docs.aws.amazon.com/whitepapers/latest/how-aws-pricing-works/get-started-with-the-aws-free-tier.html

AWS GameKit Guide for Unreal Engine Developers

The cost basis for each AWS service varies. Some services charge a time-based fee, while others
charge based on usage. For example, Amazon Cognito charges by monthly active users, while AWS
Lambda charges based on the number of requests and compute time used.

There are two sets of AWS resources in a game backend:

• Core resources – These services help manage the backend infrastructure. AWS GameKit deploys
core resources when you first create a backend for the identity and authentication feature, which
is always the first game feature created.

• Feature resources – These services make up the solution architecture for each AWS GameKit
feature. For more details on feature-specific resources and cost information, see the guide
sections for each game feature.

AWS GameKit core services include:

• Amazon API Gateway – AWS GameKit uses this service to manage API calls to a game's backend
services. API Gateway manages traffic, authorization & access control, throttling, and monitoring.
The API Gateway pricing model relies on the volume of API calls. The 12-month Free Tier benefit
includes this service. For more information, see Amazon API Gateway pricing.

• AWS Lambda – AWS GameKit uses this service to run custom code that manages activities such
as resource updates, deployments, and compute services. The Lambda pricing model relies on
the number of requests and the compute time required. The 12-month Free Tier benefit includes
this service. For more information, see AWS Lambda Pricing.

• Amazon Simple Storage Service (Amazon S3) – AWS GameKit uses this service when creating
and updating AWS resources. The Amazon S3 pricing model relies on the amount of storage
space used and the number of put and get requests. The 12-month Free Tier benefit includes this
service. For more information, see Amazon S3 pricing.

• AWS CloudFormation – AWS GameKit uses this service to model and provision cloud
infrastructure resources for the game backend. This service is free up to the standard Free Tier
limits. For more information, see AWS CloudFormation Pricing.

• AWS Identity and Access Management (IAM) – AWS GameKit uses this service to control access
to AWS resources for a game. There is no charge for using IAM.

• Amazon CloudWatch – AWS GameKit uses this service to maintain a dashboard with operational
metrics monitoring tools for each game feature's backend. The CloudWatch pricing model relies
on usage and a monthly dashboard fee. The 12-month Free Tier benefit includes this service. For
more information, see Amazon CloudWatch pricing.

Estimating AWS costs 11

https://aws.amazon.com/api-gateway/pricing/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/cloudformation/pricing/
https://aws.amazon.com/cloudwatch/pricing/

AWS GameKit Guide for Unreal Engine Developers

Note

The CloudWatch Free Tier allows up to three dashboards per AWS account. If you create
a backend for every available AWS GameKit feature and activate a dashboard for each,
your AWS account will exceed the Free Tier benefits.

• Amazon Cognito – AWS GameKit uses this service to manage player identities and
authentication credentials. The Amazon Cognito pricing model relies on the monthly active users
(MAUs) in a user (player) pool. The 12-month Free Tier benefit includes this service. For more
information, see Amazon Cognito Pricing.

Managing AWS costs

To track your usage and costs, use the AWS Billing and Cost Management dashboard in the AWS
Management Console. All AWS resources deployed through AWS GameKit use a naming convention
to help you track resources and costs. Resource names start with the string gamekit_ and include
the following elements:

• Environment code (such as "dev")

• AWS Region code (such as "us-west-2")

• AWS GameKit game title/alias

• Game feature name, if relevant (such as "UserGameplayData")

To help avoid unexpected or excessive costs, as a best practice use AWS Budgets to set budget
limits with alerts. For more information about managing costs, see the 10-minute tutorial Control
your AWS costs.

AWS GameKit components

AWS GameKit contains the following components. You can see detailed version information in AWS
GameKit Releases.

AWS GameKit for Unity software

When added to your Unity game project, the AWS GameKit package adds UI and functionality
for building a cloud backend for the project directly from the Unity Editor. The package

Managing AWS costs 12

https://aws.amazon.com/cognito/pricing/
https://console.aws.amazon.com/billing/home
https://aws.amazon.com/getting-started/tutorials/control-your-costs-free-tier-budgets/?awswt=168b
https://aws.amazon.com/getting-started/tutorials/control-your-costs-free-tier-budgets/?awswt=168b
https://docs.aws.amazon.com/gamekit/latest/Releases/
https://docs.aws.amazon.com/gamekit/latest/Releases/

AWS GameKit Guide for Unreal Engine Developers

download includes the AWS GameKit C# API for Unity and C# sample code. Developers can
customize the package source code, offered as "source available" under an Apache 2.0 license.

Download AWS GameKit for Unity or get source code from GitHub

AWS GameKit plugin for Unreal Engine

This plugin adds AWS GameKit functionality and assets to your Unreal Editor. With the plugin,
you can build a game backend on AWS Cloud and add cloud-based features to your Unreal
game projects. The plugin download includes the AWS GameKit C++ API for Unreal, C++ sample
code, Unreal blueprints, and example game elements. Developers can access the plugin source
code, offered as "source available" under an Apache 2.0 license, to customize the plugin.

Download the latest AWS GameKit plugin for Unreal Engine

Get source code for the AWS GameKit plugin for Unreal Engine on GitHub

AWS GameKit Core C++ SDK

The SDK contains the core AWS GameKit game feature functionality and forms the basis for
engine-specific APIs. Developers can access the SDK source code, offered as "source available"
under an Apache 2.0 license, to build custom APIs and plugins for any game engine.

Get AWS GameKit C++ SDK source on GitHub

Additional resources

• AWS GameKit documentation

• AWS GameKit releases, including links to current and previous versions, release notes, known
issues

• AWS GameKit forum

• AWS Game Tech blog

AWS GameKit components 13

https://github.com/aws/aws-gamekit-unity/releases/
https://github.com/aws/aws-gamekit-unreal/releases/
https://github.com/aws/aws-gamekit-unreal
https://github.com/aws/aws-gamekit
https://docs.aws.amazon.com/gamekit
https://docs.aws.amazon.com/gamekit/latest/Releases
https://repost.aws/tags/TAtbJBs1j4Q76nb-HQavme0w/aws-game-kit
https://aws.amazon.com/blogs/gametech/

AWS GameKit Guide for Unreal Engine Developers

Setting up for AWS GameKit

If you're ready to get hands on AWS GameKit, start with these set-up tasks. When done, you have
AWS GameKit installed with your game engine and you can start building a cloud backend for your
game project.

• Get and install the AWS GameKit plugin.

• Set up an AWS account.

• Create an AWS account user, with AWS GameKit permissions and security credentials for use with
the plugin.

Note

You might have to use the AWS Management Console for some set-up tasks. Once you've
completed set-up, you can work on your game backend entirely from your game engine if
desired.

Topics

• Install the AWS GameKit plugin with Unreal Engine

• Set up AWS account for AWS GameKit

• Get your AWS security credentials

Install the AWS GameKit plugin with Unreal Engine

Summary

Download and install AWS GameKit for use with your Unreal Engine game project. This topic gives
game developers step-by-step instructions for setting up the AWS GameKit plugin in the Unreal
Editor.

Plugin requirements

To use the AWS GameKit plugin as provided:

Install the AWS GameKit plugin 14

AWS GameKit Guide for Unreal Engine Developers

• Unreal Engine version compatible with the plugin version (see AWS GameKit version
information).

• A C++ Unreal game project. Blueprint-only projects, which have no source code, aren't
compatible with the plugin.

The AWS GameKit plugin source code is available for customization. To modify the code and
generate a custom plugin, you need a code editor to work with C++ game projects. For example, for
Visual Studio you need these tools:

• Visual Studio 2019 with the following tools installed:

• On the Workloads tab:

• Desktop Development with C++

• Game Development with C++, with these options:

• C++ profiling tools

• C++ AddressSanitizer (optional)

• Windows 10 SDK (10.0.18362 or newer)

• Unreal Engine installer

• On the Individual components tab: .NET Framework 4.8 SDK

What's in the AWS GameKit download

The download includes the following:

• Plugin binaries for Unreal Engine.

• AWS GameKit C++ libraries with functionality for each game feature.

• Blueprint code and UI samples for each game feature.

• C++ example code with API calls for each game feature.

• Automated scripts for setting up AWS users with permissions for AWS GameKit and security
credentials.

• Default configuration files, which AWS GameKit uses to create your game backend.

Install the plugin

Download the AWS GameKit package and install the plugin for a C++ Unreal game project.

What's in the AWS GameKit download 15

https://docs.aws.amazon.com/gamekit/latest/Releases/
https://docs.aws.amazon.com/gamekit/latest/Releases/

AWS GameKit Guide for Unreal Engine Developers

To install the plugin:

1. Get AWS GameKit for your game engine. Download the .zip file from the AWS GameKit for
Unreal Engine GitHub repo: aws/aws-gamekit-unreal.

2. Unpack the .zip file.

a. Find the directory path for the C++ Unreal game project that you want to use AWS
GameKit with. Open the directory folder Plugins/Marketplace. For example: ... >
Unreal Projects > MagicChickenGame >Plugins > Marketplace. If this folder
doesn't exist, create it.

b. Extract the AWS GameKit plugin zip file contents and place the files into the game
project folder. The extracted files are organized in a folder called AwsGameKit, with the
AWS GameKit plugin descriptor file, AwsGameKit.uplugin, at the root. Unreal Engine
recognizes this file as a plugin.

Note

To install the plugin for use with any Unreal project, place the files in the directory
path for your Unreal Engine installation, in the folder Plugins/Marketplace.
Don't try to install the plugin in both locations, as this results in errors.

3. Rebuild the project with AWS GameKit.

a. Go to the game project's root folder and look for a solution (*.sln) file. If none exists,
find the .uproject file and generate project files.

b. Open the solution file and build or rebuild the project.

4. Enable the plugin for the game project.

a. Open the game project in the Unreal Editor. In the main menu, open Edit, Plugins and
search for the AWS GameKit plugin.

b. Select the Enabled box to turn on the plugin for the game project. This action generates a
prompt to restart the Editor. If you get an Editor prompt "Project is out of date. Would you
like to update it?" choose Update.

c. Restart the Editor with the game project. If you get an error message that prompts you to
build or rebuild your project, repeat step 3.

Install the plugin 16

https://github.com/aws/aws-gamekit-unreal/releases/

AWS GameKit Guide for Unreal Engine Developers

5. Verify that the plugin is installed. Look in the Content Browser for the AWS GameKit content.
If you don't see the content, make sure that your View Options setting has the Show Plugin
Contentoption selected.

6. Update your project's .Build.cs file.

a. Locate the [project name].Build.cs file and open it in your IDE. For example:
...Unreal Projects\MagicChickenGame\MagicChickenGame.Build.cs.

b. Add the following strings to PublicDependencyModuleNames: "AwsGameKitCore" and
"AwsGameKitRuntime".

For example:

PublicDependencyModuleNames.AddRange(new string[] { "Core", "CoreUObject",
 "Engine", "InputCore", "AwsGameKitCore", "AwsGameKitRuntime" });
PrivateDependencyModuleNames.AddRange(new string[] { "AwsGameKitCore",
 "AwsGameKitRuntime" });

Set up AWS account for AWS GameKit

Summary

This topic provides instructions for how to set up an AWS account and users for AWS GameKit
activities. This information is for administrators and others who manage AWS user accounts.

As a first step to building cloud-based features into your game projects with AWS GameKit, create
an AWS account for use with the project. You use this account to manage cloud resources for your
game backend, including tracking costs and controlling user access.

To set up an AWS account for a game project:

• Get an AWS account. You can use an existing account or create a new one.

• Set up AWS users on the account. Extend access to use AWS GameKit and generate security
credentials for each user.

Note

If your account uses the new AWS IAM Identity Center to manage users, users might
experience unusual behavior and messaging in the AWS GameKit plugin . Their security

Set up AWS account and user access 17

AWS GameKit Guide for Unreal Engine Developers

credentials provide short-term access, users can't store them for future use and have to
regenerate them often. If you create users with the automated script supplied with AWS
GameKit, users get long-term access keys.

Sign up for an AWS account

If you don't have an AWS account, or if you want to set up a separate account for a project,
complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup

2. Follow the online instructions. Part of the sign-up procedure involves receiving a phone call
and entering a verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and only use the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Get more detailed guidance and tips on the sign-up process in How do I create and activate a new
AWS account?.

Set up an administrator

After you sign up for an AWS account, create an administrative user so that you don't use the root
user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

Sign up for an AWS account 18

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://console.aws.amazon.com/

AWS GameKit Guide for Unreal Engine Developers

For help signing in using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

For your daily administrative tasks, assign access to an administrative user in the AWS Identity and
Access Management (IAM) service.

1. Sign in to the AWS Management Console with your root user credentials (AWS account email
address and password.

2. On the Console Home page, select the IAM service.

3. In the navigation pane, select Users and then select Add users.

4. In Step 1: Specify user details, set the following:

• Enter a User name for the new user. This is their sign-in name for AWS.

• Select Provide user access to the – AWS Management Console optional This produces
AWS Management Console sign-in credentials for the new user. Choose the option I want to
create an IAM user.

• Choose a Console password option.

Choose Next.

5. In Step 2: Set permissions, choose the option Attach policies directly and select the
AdministratorAccess policy from the list. Choose Next.

6. In Step 3: Review and create, check your settings and then choose Create user.

7. In Step 4: Retrieve password, the Console displays information on signing in with the new
user. At this point, the new administrative user has sign-in credentials for the console but
doesn't yet have the security credentials needed to use the AWS GameKit plugin . Choose the
View user button.

8. On the user detail page, open the Security Credentials tab and go to the Access Keys section.
Choose Create access key.

Set up an administrator 19

https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-root
https://console.aws.amazon.com/

AWS GameKit Guide for Unreal Engine Developers

9. Under Access key best practices & alternatives, choose the Local code option, acknowledge
the recommendations, and choose Next to create the access key. Follow the instructions to
download and store the new access key. You need this key to use AWS GameKit.

Set up a user with AWS GameKit access

All AWS GameKit users must have AWS access before they can deploy, update, or delete AWS
resources for their game project. An AWS account administrator creates users, manages user access,
and generates unique security credentials for each user.

AWS GameKit provides an automated script for setting up AWS users with AWS GameKit access.
Administrators can use the script to create new users or extent access to existing users. This script
creates IAM users with long-term access keys. As an alternative, administrators can work directly
in the AWS Identity and Access Management (IAM) service. For guidance on working with IAM, see
Related AWS topics.

To create or update AWS users using the AWS GameKit script

1. Find the Python script create_IAM_user.py in your AWS GameKit install files.

[AWS GameKit install location]\AwsGameKit\Resources\cloudResources\policies
\create_IAM_user.py

To use this script, you need administrative rights to the AWS account that you are adding or
updating users for. For additional requirements, see the requirements.txt file located in
the same directory.

2. Run the script with the following arguments to create or update a user:

python create_IAM_user.py [AWS USERNAME] [AWS ACCESS KEY] [AWS SECRET KEY]

• AWS USERNAME is the user name that you want to add or update.

• AWS ACCESS KEY and AWS SECRET KEY are your administrator credentials for the AWS
account.

On a successful request, the script takes the following actions:

Set up an AWS user 20

AWS GameKit Guide for Unreal Engine Developers

• Checks to see if the requested user name already exists in the AWS account. If it doesn't
exist, the script creates a new IAM user in the account.

• Checks for a user group in the AWS account with the name "GameKitDevGroup". If
none exists, the script creates a new "GameKitDevGroup" user group and attaches the
GameKitDeveloperPolicy permissions policy. This policy is also included in the AWS
GameKit download package (GameKitDeveloperPolicy_Template.json).

• Adds the requested user to the GameKitDevGroup user group.

• For a newly created user, generates long-term security credentials for the user and saves
them to [username]_credentials.txt in the ...\policies directory.

Related AWS topics

• How do I create and activate a new AWS account?, AWS Knowledge Center

• Organizing Your AWS Environment Using Multiple Accounts, AWS Whitepapers

• Best Practices for Managing AWS Access Keys, AWS General Reference

• Changing permissions for an IAM user, IAM User Guide

• Where are configuration settings/credential information stored?, AWS Command Line Interface
User Guide

Use IAM to set up AWS GameKit user access

You can use an automated script to set up AWS users with access to AWS GameKit. As an
alternative, use the following instructions to complete these tasks directly in the AWS Management
Console:

• Create a user permission policy with AWS GameKit access.

• Attach the permission policy to a new or existing user group

• Create an IAM user and add to the user group.

To create a permissions policy for AWS GameKit:

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

Related AWS topics 21

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/whitepapers/latest/organizing-your-aws-environment/introduction.html
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-where
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS GameKit Guide for Unreal Engine Developers

2. In the IAM console, open the Access Management > Policies page to create or update a AWS
GameKit permissions policy for your AWS account. Choose the Create Policy button.

3. Choose the JSON tab to open the editor. Replace existing content with permissions syntax for
AWS GameKit users. To generate the replacement policy syntax:

a. A policy template for AWS GameKit, is included in the AWS GameKit download
package at: ...AwsGameKit\Resources\cloudResources\policies
\GameKitDeveloperPolicy_Template.json. Be sure to use the policy template for
the AWS GameKit plugin version you're using.

b. Customize the template syntax with your AWS account. Replace the strings
<YOUR_ACCOUNT_ID> with your AWS account ID (9-digit account number). Look for your
account ID at the top of the AWS Console under your account user name.

You can replace these strings manually or use the provided python script,
generate_policy_instance.py, to create a new JSON file with the customized syntax.
This script is included in the AWS GameKit download package in the same directory as the
policy template. Call the script with your AWS account ID:

python generate_policy_instance.py [AWS ACCOUNT ID]

The script saves the new policy file in the same directory. Look for a file name with your
AWS account ID, such as GameKitDeveloperPolicy-123456789.

4. In the IAM console, after you've entered the new policy syntax, choose Next until you reach the
Review policy page. Choose the Create policy button.

To add the permissions policy to a user group:

1. In the navigation pane, select User groups. Open the page for an existing user group, or
choose Add group to create a new one.

2. If you're creating a new group, enter a group name.

3. In Attach permissions policies, select the customer-managed policy
"GameKitDeveloperPolicy".

4. Complete the workflow to create or update the user group.

Use IAM to set up user access 22

AWS GameKit Guide for Unreal Engine Developers

To set up a user with AWS GameKit access

1. In the navigation pane, select Users and then select Add users.

2. In Step 1: Specify user details set the following:

• Enter a User name for the new user. This is their sign-in name for AWS.

• Select Provide user access to the – AWS Management Console optional This produces
AWS Management Console sign-in credentials for the new user. Choose the option I want to
create an IAM user.

• Choose a Console password option.

Choose Next.

3. In Step 2: Set permissions, choose the option Add user to group. Select a user group with
AWS GameKit permissions from the list. Choose Next.

4. In Step 3: Review and create, check your settings and then choose Create user.

5. In Step 4: Retrieve password, the Console displays information on signing in with the new
user. At this point, the new user has sign-in credentials for the console but doesn't yet have
security credentials, which they to use the AWS GameKit plugin . Choose the View user button.

6. On the user detail page, open the Security Credentials tab and go to the Access Keys section.
Choose Create access key.

7. Under Access key best practices & alternatives, choose the Local code option, acknowledge
the recommendations, and choose Next to create the access key. Follow the instructions to
download and store the new access key. You need this key to use AWS GameKit.

Manage permissions for achievements

When working with the achievements game feature, users might need additional access
permissions to work with achievement definitions. The default GameKitDeveloperPolicy
permissions policy allows users to sync achievement definitions to the cloud when working in the
Development environment only.

Working with achievement definitions involves direct calls to the
AwsGameKitAchievementAdmin API. AWS GameKit manages AchievementAdmin permissions
with IAM roles, which offer additional controls and security to protect your game. An IAM role
specifies two things: (1) who can assume the role, and (2) which resources they can control.

Manage achievement permissions 23

AWS GameKit Guide for Unreal Engine Developers

You need AWS account admin access to change user permissions. As a best practice, assign
permissions to user groups and manage user permissions by adding users to user groups with the
appropriate permissions.

Options for editing AchievementAdmin permissions:

To remove user access in the Development environment

Remove the following section from the user group permissions policy.

 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::[YOUR_ACCOUNT_ID]:role/
gamekit_dev_*_AchievementsAdminInvokeRole"
 }

To add user access in other environments

Follow these steps:

1. In _AchievementsAdminInvokeRole, edit the role's trust relationship to add specific user
group IDs. For detailed instructions, see Modifying a role trust policy.

2. Create an IAM user group with permissions to assume this role.

 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::[YOUR_ACCOUNT_ID]:role/gamekit_[game
 title]_AchievementsAdminInvokeRole"
 }

3. To give IAM users access, add them to the new user group.

Tips for AWS account administrators

If you manage an AWS account for an AWS GameKit project with multiple team members, consider
these best practices.

Tips for AWS account administrators 24

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-managingrole_edit-trust-policy

AWS GameKit Guide for Unreal Engine Developers

• When setting up users for AWS GameKit, consider enabling both programmatic and console
access for users. People might want to use the AWS Management Console to view AWS
resources, troubleshoot issues, and other reasons.

• Use IAM user groups to manage permissions levels for team members. With user groups,
you set the permissions policies for the group instead of for individual users. You can create
separate user groups with different levels of access, and add individual users to groups with the
appropriate permissions.

• The default AWS GameKit permissions policy template includes comprehensive access to all AWS
services and resources that AWS GameKit solutions use. You can choose to adjust user access by
creating and applying custom policies. For example, you might change a user's access to view
but not deploy or delete AWS resources for a game feature. Keep in mind that AWS GameKit
solutions involve complex collections of AWS services. It's not always apparent how changes to
access permissions might affect a user's ability to work with AWS GameKit features.

• Consider managing access levels for each environment stage. AWS GameKit users must provide
account credentials for each environment they work in. For example, you might choose to allow
all actions in the Development stage but restrict access in Production.

Get your AWS security credentials

Summary

AWS GameKit users must have an AWS account and security credentials to use the plugin. This topic
helps plugin users or AWS account administrators get credentials for an AWS user.

AWS GameKit users must sign in to the plugin with their AWS user security credentials. These
credentials authorize a user's programmatic access to AWS so that they can create and manage
their game's cloud backend directly from the plugin.

Use the following procedures to get security credentials for an existing AWS user. To create new
users with AWS GameKit access, see Set up AWS account for AWS GameKit.

Retrieve security credentials

AWS users must store security credentials locally. Look for your existing security credentials in the
following locations:

• For AWS users created with the create_IAM_user.py script (included in the AWS GameKit
plugin download), the script generates security credentials for the user and saves them to

Get your AWS security credentials 25

AWS GameKit Guide for Unreal Engine Developers

[username]_credentials.txt file. If you ran the script, the file is saved to your local
machine in the directory ...\policies\.

• When generating security credentials through the AWS Management Console, you can download
the credentials to a local file named <user name>_accessKeys.csv.

• If you've used your credentials with the AWS GameKit plugin or other AWS programmatic
tools, they may be saved to your home directory (for example: C:\Users\<user ID>\.aws
\credentials).

Generate new security credentials

If you don’t have valid security credentials, or you've lost your existing credentials, follow these
instructions to create new ones for your AWS user.

Note

For AWS users created with the create_IAM_user script (included in the AWS GameKit
plugin download), use the instructions for the AWS Identity and Access Management (IAM)
user type. You can get short-term or long-term access keys for these users.

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS

Generate new security credentials 26

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html

AWS GameKit Guide for Unreal Engine Developers

Which user needs
programmatic access?

To By

Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Generate new security credentials 27

https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS GameKit Guide for Unreal Engine Developers

Securing credentials with the AWS GameKit plugin

It's safe to enter your AWS account credentials into the AWS GameKit plugin. AWS GameKit
never stores your credentials with your game project or in the AWS GameKit configuration files.
Credentials are never included in game distributables.

The AWS GameKit plugin asks for your AWS credentials during set up for your game project. By
default, your credentials are cached locally so you don't need to re-enter them. You can enter
different credentials at any time, such as when switching environments.

Tips for protecting your credentials with AWS GameKit:

• Don't download the AWS GameKit plugin from anywhere other than an official source.

• Don't enter credentials in your game code, even in test code for convenience.

• Avoid storing credentials locally in files that are shared. The AWS GameKit plugin option "Store
my credentials" saves your credentials to your home directory (~/.aws/credentials). This
standard location is used by other AWS tools.

Related AWS topics

• Understanding and Getting your AWS credentials, Programmatic access, AWS General Reference

• Best practices for managing AWS access keys, AWS General Reference

• Where are configuration settings/credential information stored?, AWS Command Line Interface
User Guide

Securing credentials with the plugin 28

https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html
https://docs.aws.amazon.com/https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-where

AWS GameKit Guide for Unreal Engine Developers

Getting started with AWS GameKit

Use the content in this section to explore AWS GameKit for Unreal and how to start integrating
cloud-based game features to your Unreal projects.

Topics

• Explore AWS GameKit in the Unreal Editor

• Integrate AWS GameKit features into your game

Explore AWS GameKit in the Unreal Editor

Summary

This overview gives game developers a brief survey of the AWS GameKit plugin tools and functionality
for the Unreal Editor.

When working on an Unreal project with the AWS GameKit plugin enabled, you can use AWS
GameKit components to:

• the section called “Manage your cloud project” – Set up an AWS GameKit configuration for your
Unreal project, link to an AWS account, and manage staging environments.

• the section called “Deploy backend services for your cloud features” – Configure and deploy a
backend for each game feature.

• the section called “Build AWS GameKit features into your frontend” – Use example materials to
experiment with cloud feature functionality in your game or for rapid prototyping.

Manage your cloud project

Each Unreal project must have a companion AWS GameKit cloud project to manage the Unreal
project's backend services on AWS. The cloud project contains your configurations and code for
each cloud fetaure. AWS GameKit uses this information when deploying and interacting with AWS
resources for these features.

Find cloud project settings

1. In the Unreal Editor toolbar, open Edit, Project Settings and go to the AwsGameKit plugin
section.

Explore AWS GameKit in Unreal Editor 29

AWS GameKit Guide for Unreal Engine Developers

2. Expand the Environment and Credentials section, as shown in the following screenshot.

Work with cloud project settings

Note

If you use AWS credentials for users created with the new AWS IAM Identity Center, you
might experience unusual behavior and messaging. These credentials provide short-term
access only, which means you must regularly generate new credentials and enter them into
the plugin, If you created users with the automated script supplied with the AWS GameKit
download package, the AWS credentials for these users are long-term access keys.

• Set up a cloud project. When setting up a cloud project, you provide the following information:

Manage your cloud project 30

AWS GameKit Guide for Unreal Engine Developers

• Game title is a unique alias for the cloud project. AWS GameKit stores cloud project
configurations and code in a folder with this name in the Unreal project folder, and references
the game title in all AWS resources deployed for the project.

• Environments let developers manage multiple replicas of project's backend in parallel, such as
for development, testing, and production. Users set the active environment they want to work
in. Project teams commonly start with the default Development environment.

• Region specifies the physical location where AWS GameKit deploys the AWS resources for an
environment. Each environment has one designated region.

• AWS account credentials identify which AWS account to use for the project and validate an
account user. If the account is valid and the user has access rights for AWS GameKit, then they
can deploy or update AWS resources for the project's backend.

• Work with an existing project. Specify the game title, choose an environment to work in, and
submit your AWS security credentials.

• Switch environments. Only one cloud project environment can be active at a time. All actions
you take on cloud features and deployed backend resources impact the active environment only.
You can switch to a different environment on this page. You might also have to resubmit security
credentials.

• Change account credentials. AWS GameKit automatically reuses security credentials from the
previous session on the current device. If your credentials have changed, use cloud project
settings to submit new ones.

• Change deployment region. You might want to change the location where AWS resources
are deployed for the active environment. You can't change the deployment region if the
environment has AWS resources deployed.

Deploy backend services for your cloud features

In feature settings, users can build a cloud-connected backend for each AWS GameKit feature.
After selecting an environment to work in and submitting credentials, users can configure a feature
and then create or update AWS resources to run the feature's backend. AWS GameKit maintains
each environment's feature configuration and deployment status in the cloud project.

Find game feature settings

1. In the Unreal Editor toolbar, open Edit, Project Settings and go to the AwsGameKit plugin
section.

Deploy backend services for your cloud features 31

AWS GameKit Guide for Unreal Engine Developers

2. Expand the section for each game feature. For example, the following screenshot displays the
settings for the identity and authentication feature.

Work with feature settings

• View status of deployed features. Each feature section displays the feature's current deployment
status. Configuration settings reflect the feature backend as deployed. If the feature isn't
deployed yet, the default values are shown.

• Configure feature settings. Each feature has settings that you can customize before deploying
the feature backend. For example, with identity and authentication, you can choose to let players
log in with a registered user name and password, a Facebook account, or either.

Deploy backend services for your cloud features 32

AWS GameKit Guide for Unreal Engine Developers

• Deploy, update, or delete AWS resources. After choosing feature settings, you can create new
AWS resources for the feature or update them if they're already deployed. You can also remove
the feature by deleting the deployed resources.

• Access feature dashboards. You can activate a metrics dashboard for each AWS GameKit feature.
Each dashboard contains operational metrics for the AWS services and resources used by the
feature. For example, you can monitor API calls to the backend. Dashboards use the Amazon
CloudWatch service.

Build AWS GameKit features into your frontend

The AWS GameKit plugin provides tools for connecting your Unreal project frontend to your
backend services on AWS. These include the AWS GameKit API for connecting with the backend
services for each feature and example assets to illustrate API calls and core workflows for the
frontend.

After you deploy a feature's backend services on AWS, your Unreal project is automatically
configured with the backend endpoints for the current active AWS GameKit environment. You
can make live API calls and run levels with example assets that communicate with your project
backend.

Find AWS GameKit assets and tools

In the Unreal Editor, open the Content Browser and locate the following folders:

• AwsGameKit Content contains example blueprints, UI elements, and widget blueprints for
each game feature. There is also a complete game example for the user gameplay data feature

• AwsGameKit C++ Classes contains example C++ code and resources for integrating game
feature functionality into a game using C++ code.

• The AwsGameKitEditor public folder contains a code example file for each game feature.
This code includes function calls for all API operations for the game feature.

• The AWSGameKitRuntime public folder contains function libraries and utilities that support
the example assets.

Test calls to your project backend

If you've deployed a backend for any of the AWS GameKit features, you can make direct calls to it
in the Unreal Editor:

Build AWS GameKit features into your frontend 33

AWS GameKit Guide for Unreal Engine Developers

1. In the Content Browser, open the AwsGameKitEditor public folder and choose a code
example file.

2. Add the asset to a level in your project, and select the object in the viewport.

3. Open the Details panel. The custom AWS GameKit Details UI displays all the API calls in the
code example file.

4. Log in with a player account. If you haven't set one up yet, use the identity and authentication
example file to register and verify an account.

5. When working with the achievements code examples, use the provided function to save a set
of sample achievement definitions to your achievements backend. You can use this data to
experiment with the achievements functionality and delete it as needed.

Integrate AWS GameKit features into your game

This topic outlines an implementation path to follow when using AWS GameKit to build cloud-
based game features with AWS GameKit. Each step provides a link to detailed documentation.

1. Get the AWS GameKit for your game engine.

• Download the plugin for your development environment.

• Install the AWS GameKit plugin. For more information, see Install the AWS GameKit plugin
with Unreal Engine.

2. Get an AWS account and set up user accounts for your game project.

• Create an AWS account or use an existing account. You manage all your AWS GameKit
resources and services through this account. For more information, see Sign up for an AWS
account.

• Set up an AWS user for every person who works with the AWS GameKit plugin. This step
includes adding access permissions for AWS GameKit. Each user must have security credentials
for use with the plugin and (optionally) sign-in credentials to use the AWS Management
Console. For more information, see Set up a user with AWS GameKit access.

3. Set up an AWS GameKit cloud project.

• Use the AWS GameKit UI in your game engine to define cloud project settings, including a
game title/alias, a working environment, and a location for the backend services. This step
creates a set of configurations and templates that AWS GameKit uses to build your backend
on AWS. For more information, see Set up the AWS GameKit plugin for your game.

• Link the project to an AWS account by providing your user security credentials.

Integrate AWS GameKit features 34

https://aws.amazon.com/gamekit/

AWS GameKit Guide for Unreal Engine Developers

4. Configure the identity and authentication game feature and deploy AWS resources.

All other AWS GameKit features require identity and authentication, so you must create the
backend for this feature before setting up other features. For more information , see Add
identity and authentication to your project.

• Use the AWS GameKit plugin project settings to configure the identity and authentication
feature for your game.

• Create AWS resources for the authentication backend. You can track the deployment process,
redeploy or delete resources from the AWS GameKit UI.

Note

You might begin incurring AWS charges when you deploy AWS resource, depending on
whether your account is eligible for AWS Free Tier benefits.

• Optionally, activate an operational metrics dashboard for your newly deployed identity and
authentication backend. For more information, see Work with game feature dashboards.

5. Add identity and authentication workflows to your game frontend.

Create workflows in your game frontend to let players register with your game, log in and out,
and other identity-related tasks. With the identity and authentication backend in place, you
can use the AWS GameKit sample materials to prototype and test the workflows. For more
information, see Work with the identity and authentication examples.

6. Configure and deploy game backends for additional AWS GameKit features and connect
game functionality.

• Achievements

• User gameplay data

• Game state cloud saving

Integrate AWS GameKit features 35

AWS GameKit Guide for Unreal Engine Developers

Working in the AWS GameKit UI

The content in this section provide detailed instructions on how to use the AWS GameKit plugin
interface to build cloud-based game features backed with AWS Cloud services.

Topics

• Set up the AWS GameKit plugin for your game

• Remove AWS GameKit from a game project

• Troubleshoot AWS GameKit plugin issues

• Work with game feature dashboards

Set up the AWS GameKit plugin for your game

Before you can use the AWS GameKit plugin to build and maintain your game's AWS Cloud-based
services, you must set up your game project with an AWS GameKit configuration and an AWS
account.

Note

If you've already created an AWS GameKit configuration for your game, you cannot create a
second, concurrent configuration.

To set up your AWS GameKit configuration

1. In the Unreal Editor toolbar, open Edit, Project Settings and go to the AwsGameKit plugin
section.

2. Expand Environment and Credentials.

Set up the plugin 36

AWS GameKit Guide for Unreal Engine Developers

3. Do either of the following:

• To create a new configuration, enter a new Game title. The game title string must be all
lowercase alphanumeric characters. It cannot contain spaces or special characters.

AWS GameKit uses the game title in the names of components for your game project. This
includes a configuration folder, which is stored locally with your game project files, and
every AWS resource that you deploy for this game project.

Warning

Avoid using the following strings in your game title, as they can cause issues when
creating the backend services for your game:

• aws

• amazon

Set up the plugin 37

AWS GameKit Guide for Unreal Engine Developers

You cannot change the game title after you've submitted it and begun to work
with game features. If you need to change a game title later, you must delete the
entire AWS GameKit configuration for your game, including all backend services,
and start a new configuration.

• To use a previously created configuration, choose Locate an existing GameKit
configuration. Then browse to your game project files and search for the AWS GameKit
configuration folder.

In future sessions, the AWS GameKit plugin automatically enters the last used game title.

4. Choose an Environment to work in. You can select a default environment (Development,
Testing, or Production) or create a custom environment.

In future sessions, the AWS GameKit plugin automatically selects the last used environment.
You can switch environments at any time.

The AWS GameKit configuration for your game project maintains separate sets of information
for each environment. When you select an environment to work in, the AWS GameKit plugin
loads the game feature settings and AWS deployments for the selected environment.

5. For the selected environment, choose an AWS Region where you want to place resources for
your game backend. Each environment can deploy resources to only one Region.

Choose a region that makes the most sense for the environment. For example, you might
place Development environment resources to be geographically near the development team,
but place Production resources close to your players. To verify region support for the game
features you want to add, see AWS GameKit supported AWS Regions.

In future sessions, the AWS GameKit plugin automatically uses the Region for whichever
environment you select.

6. Under AWS account credentials, enter your two-part AWS Identity and Access Management
(IAM) user access key. This key includes an Access key ID and a Secret access key. These
credentials uniquely identify your unique IAM user in an AWS account. For details, see Get
your AWS security credentials.

Set up the plugin 38

AWS GameKit Guide for Unreal Engine Developers

Important

Your IAM user must have access permissions in order to work with the AWS resources
for your game backend. If you don't have these permissions, you can successfully
submit your user credentials in the AWS GameKit plugin, but you won't be able to
create, redeploy, or delete AWS resources for the game features. For details, see Set up
AWS account for AWS GameKit.

If you already have the AWS Command Line Interface (AWS CLI) installed and configured with
the same credentials, the AWS GameKit plugin automatically recognizes those credentials and
uses them.

7. Optionally, select Store my credentials to save your AWS account credentials on the current
device for use in future sessions. If you choose not to save your credentials, you must re-enter
them at the start of each session in the plugin and whenever you switch environments. For
questions about security with the AWS GameKit plugin, see Securing credentials with the AWS
GameKit plugin.

The AWS GameKit plugin stores credentials locally in a text file in your home directory C:
\Users\<user ID>\.aws\credentials. Each set of saved credentials is associated with
a game title and environment. This means that you can use different credentials with each
environment, which is useful for teams that tightly control access to a game's AWS resources.

8. Choose Submit to create a new AWS GameKit configuration and set the active environment.

In the future, when you open this game project in the Unreal Editor, the AWS GameKit plugin
automatically selects the last used game title, environment, region, and credentials (if you
stored them). You can switch environments or credentials at any time in the project settings
for AWS GameKit, Environment and Credentials.

Remove AWS GameKit from a game project

Summary

Use the procedures in this topic to remove some or all AWS GameKit game features from your game
projects. To ensure that you don't continue incurring charges for features that you're no longer using,

Remove AWS GameKit from a game project 39

AWS GameKit Guide for Unreal Engine Developers

you need to remove all deployed AWS cloud resources. This topic is for game developers who want to
ensure that all unneeded AWS GameKit components are removed or deleted from a game project.

You can remove AWS GameKit components from your game project using one of the following
processes:

• Remove individual game features from your project.

• Remove all AWS GameKit components from your project.

Removing individual game features

If you want to replace an existing game feature configuration with a new configuration, you do
not need to delete your deployed AWS resources. Instead, use the AWS GameKit plugin UI to revise
your configuration settings and then update your deployed AWS resources.

If you decide to remove a game feature from your game, complete the following tasks:

• In your game frontend, remove all functionality that relies on the game backend, as it will stop
working as soon as you delete the AWS resources that run the backend services.

• Consider backing up data related to the game feature that is being removed. This might include
configuration data, such as achievement definitions, as well as game-generated player data.

• Delete the AWS resources that run the backend services for the game feature, as described in the
following steps.

Note

You cannot remove the identity and authentication feature if you are using any other AWS
GameKit game features. All other features use the player authentication processes.

Unreal Engine

To remove a AWS GameKit game feature

1. In the Unreal Editor toolbar, open Edit, Project Settings and go to the AwsGameKit plugin
section.

Removing individual game features 40

AWS GameKit Guide for Unreal Engine Developers

2. In the Environment and Credentials section, select the environment and AWS Region that
you want to remove a game feature for. Enter the appropriate AWS credentials and choose
Submit.

Note

You must complete this procedure for each environment/Region combination
where you want to remove the game feature.

3. Expand the project settings section for the game feature that you want to remove and
check the deployment status. If AWS resources are deployed for the game feature, choose
the AWS resource action Delete. This action deletes all of the AWS resources that provide
backend services and dashboards for the game feature. Some logs may be retained.

You do not need to delete or change the game feature's configuration settings or delete AWS
GameKit files that are stored locally with your game project.

Removing individual game features 41

AWS GameKit Guide for Unreal Engine Developers

Removing all AWS GameKit plugin components

If you want to start fresh with AWS GameKit, follow the steps below to remove the existing
configuration. You can then start over with a new default AWS GameKit configuration.

To remove the AWS GameKit plugin from your game project, complete the following tasks:

• In your game frontend, remove all functionality that relies on the game backend, as it will stop
working as soon as you delete the AWS resources that run the backend services.

• Consider backing up data related to the game features that are currently being used in your
game. This might include configuration data, such as achievement definitions, as well as game-
generated player data.

• Delete the AWS resources that are currently deployed for all game features, as described in the
following steps.

Unreal Engine

To remove all plugin components

1. In the Unreal Editor toolbar, open Edit, Project Settings and go to the AwsGameKit plugin
section.

2. In the Environment and Credentials section, select an environment and AWS Region where
AWS resources are currently deployed for one or more game features. Enter the appropriate
AWS credentials and choose Submit.

Note

You must follow this procedure for every environment/Region combination where
you've deployed AWS resources.

3. For each AWS GameKit game feature, expand the project settings section and check the
deployment status. If AWS resources are deployed for the game feature, choose the AWS
resource action Delete. This action deletes all of the AWS resources that provide backend
services and dashboards for the game feature. Some logs may be retained.

Removing all AWS GameKit plugin components 42

AWS GameKit Guide for Unreal Engine Developers

4. Repeat this process with every environment/Region combinations where you've deployed
AWS resources for a AWS GameKit game feature.

5. In a file browser, open the directory containing for your game project files. Files for AWS
GameKit are located in folder that is named with the your AWS GameKit game title. The
following screenshot illustrates the folder for a project names "magicchickengame", with
a game title of "magicchicken". Delete this directory. This step removes all of the locally
cached configuration settings and other support files that the AWS GameKit plugin uses to
manage the backend services for each game feature.

Removing all AWS GameKit plugin components 43

AWS GameKit Guide for Unreal Engine Developers

6. In the Unreal Editor, go to Edit > Plugins > AwsGameKit and disable the plugin for your
game project. This step ensures that no AWS GameKit components are included in your
game project's release packages.

You can decide at any time to re-enable the AWS GameKit plugin for your game project. At that
point, you'll be prompted enter a new game title and create a new default configuration for
your game.

Troubleshoot AWS GameKit plugin issues

This topic provides guidance to help you resolve common usage issues with the AWS GameKit
plugin.

[Unreal] Can't open game project after enabling the AWS GameKit
plugin

Problem: When you enable the AWS GameKit plugin in Unreal Editor and restart the program as
prompted, Unreal Editor attempts to restart but fails with the following message:

You need to rebuild your Unreal project in Visual Studio before using AWS GAMEKIT.

Troubleshoot plugin issues 44

AWS GameKit Guide for Unreal Engine Developers

Cause: This issue occurs when you enable the AWS GameKit plugin for a C++ game project where
the game code has not yet been built. For example, if you enable the AWS GameKit plugin for a
brand new game project, you are likely to encounter this issue.

Resolution: You need to manually build your game project solution:

1. Open the folder that contains the project files for your Unreal game project and locate the
project's solution file (.sln).

2. Open the file in your IDE and build your game project code. If you're using Visual Studio,
choose Build > Build Solution from the menu toolbar.

3. After the solution builds successfully, you can open the game project in the Unreal Editor, with
full access to the AWS GameKit plugin elements.

[Unreal] Deployment is not completing

Problem: When deploying AWS resources for a game feature, the action is taking a long time to
complete.

Cause: When you deploy AWS resources, it can take some time to complete the set-up activity that
happens behind the scenes. Average deployment times for each feature are:

• Identity and authentication: 5-10 minutes

• Achievements: 10-30 minutes

• User gameplay data: 5-10 minutes

• Game state cloud saving: 5-10 minutes

Resolution: You can track the ongoing progress of deployment activity in the following ways:

• Use the Unreal Editor output log to view detailed event messaging. To open the log, go to
Window > Developer Tools > Output Log.

• Go to the custom dashboard for the game feature. A feature's dashboard is generated near the
beginning of the deployment process. To open the dashboard, in the Unreal Editor, go to Edit >
Project Settings > Plugins > AwsGameKit.

• Watch ongoing events in the AWS Management Console. In the console, go to the AWS
CloudFormation service and open the stack for the game feature being deployed.

[Unreal] Deployment is not completing 45

AWS GameKit Guide for Unreal Engine Developers

Work with game feature dashboards

Summary

This topic is for game developers who want to monitor backend activity for their Unreal Engine
projects. For each AWS GameKit feature, you can activate a custom Amazon CloudWatch metrics
dashboard. Use these dashboards to monitor your backend AWS services set up through AWS
GameKit.

In AWS GameKit, you can activate CloudWatch dashboards for your game's backend. Dashboards
include metrics and alarms for the deployed AWS resources that run backend services for each
game feature. These dashboards provide insight on operational activity across each game feature,
and are typically used during game testing or in production when the game has an active player
base.

Dashboards metrics include those used in the cost calculations for each AWS service. These metrics
can provide clarity on how your game's backend activity is impacting cost.

For more information about CloudWatch dashboards, see Related AWS topics.

Activating or deactivating a dashboard

AWS GameKit dashboards track the metrics for a game feature's deployed AWS resources, and you
manage dashboard status as part of the game feature configuration. If you deploy a game feature
to more than one staging environment (such as QA and Production), you activate or deactivate the
feature's dashboard in each environment. You can set the dashboard status for a feature at any
time.

Note

The AWS Free Tier for CloudWatch includes up to three dashboards. If you activate multiple
dashboards, you can exceed this quota and your AWS account can incur charges.

To set activation status for a dashboard

Set dashboard activation status in the AWS GameKit settings.

1. In the Unreal Editor toolbar, open Edit, Project Settings and go to the AwsGameKit plugin
section. Select the environment you want to work with in Environment & Credentials.

Work with game feature dashboards 46

AWS GameKit Guide for Unreal Engine Developers

2. Open the game feature you want to activate or deactivate a dashboard for. Each game feature
section displays the current dashboard status. In the preceding screenshot, the achievements
feature dashboard has been deployed with an active dashboard.

3. For Dashboard action, choose Deactivate or Activate to change the feature's current
dashboard status. If you activate the dashboard for a feature that isn't deployed yet, a
dashboard is created during deployment. If the feature is already deployed, AWS GameKit
creates or deletes the feature's dashboard. This update is made immediately; you don't have to
redeploy the feature.

The default dashboard status depending on which environment is active. Dashboards are
automatically activated in the Testing and Production environments.

You can track the change in the Deployment status field.

Opening a dashboard

You can access an activated dashboard for a deployed feature from your game engine or in the
AWS Management Console for CloudWatch.

Opening a dashboard 47

AWS GameKit Guide for Unreal Engine Developers

To open a dashboard from the game engine

Open game feature dashboards in the AWS GameKit settings.

1. In the Unreal Editor toolbar, open Edit, Project Settings and go to the AwsGameKit plugin
section. Select the environment you want to work with in Environment & Credentials.

2. Open the feature you want to open a dashboard for. If the feature has an active dashboard,
the Dashboard status field contains a check mark. If not, activate the dashboard and wait for
AWS GameKit to create it, which takes up to a few minutes.

3. Choose Open Dashboard. The dashboard opens in a browser window in the AWS Management
Console for CloudWatch.

Viewing dashboard content

Each AWS GameKit feature has its own dashboard. Dashboard names use the same naming
convention as the AWS resources that are deployed through AWS GameKit. For example, a
dashboard named GameKit-magicchicken-dev-us-west-2-IdentityAndAuthentication
tracks AWS resources with a similar prefix. The name references the following information from
your game project's AWS GameKit configuration:

• Alias/game title (as in "magicchicken").

• Deployment environment (as in "dev").

• Deployment AWS Region (as in "us-west-2").

• Game feature (as in "IdentityAndAuthentication").

The dashboard is viewed in the AWS Management Console for CloudWatch, as shown in the
following screenshot. Dashboard design and format varies by AWS GameKit version.

You can customize an AWS GameKit dashboard using the CloudWatch dashboard tools. These
changes apply to this specific custom dashboard, and will be lost if this dashboard is deactivated. If
you want to apply permanent or global changes to AWS GameKit dashboards, update your game's
base templates for AWS GameKit.

Viewing dashboard content 48

AWS GameKit Guide for Unreal Engine Developers

Key dashboard metrics

Because each game feature uses a different collection of AWS services for its backend, the
dashboard for each feature tracks a different set of metrics. However, all AWS GameKit dashboards
include information from these core services.

AWS Lambda

All AWS GameKit game features use Lambda functions to handle processing for feature-related
API requests. The Lambda metrics for each request type include the number of invocations and the
average amount of compute time used to process the requests. Metrics to pay particular attention
to include:

• Latency (P99, P95 and P90). These charts show how long it takes for requests or operations
to complete on the backend. When evaluating latency, there are no specific “good” or “bad”
values; instead, watch for sudden increases that can result in a degradation in response time. To
mitigate, consider adjusting the number of Lambda functions (see Update AWS Lambda settings
in the launch readiness guide).

• Concurrent executions. These charts track the number of functions the game backend executes
at any single moment. In particular, look for an increase in latency with a constant number of
concurrent executions. This scenario indicates that the number of concurrent executions isn't
enough to handle the load. To mitigate, consider increasing the allowed number of concurrent
executions (see Update AWS Lambda settings in the launch readiness guide).

Key dashboard metrics 49

AWS GameKit Guide for Unreal Engine Developers

• Function errors. These charts show the number of errors per API. To understand the cause of
these errors, inspect the Amazon CloudWatch logs and mitigate as needed.

Amazon API Gateway

All requests to the AWS GameKit API from game clients pass through API Gateway to backend
Lambda functions. Metrics for API Gateway include the number of requests received over time and
the average response time. Metrics to pay particular attention to include:

• Latency (P99, P95 and P90). These charts show how long it takes it takes for requests or
operations to complete on the backend. When evaluating latency, there are no specific “good” or
“bad” values; instead, watch for sudden increases, which can result in a degradation in response
time. To mitigate this scenario, inspect the latency charts for the underlying services (usually
Lambda functions and DynamoDB) and mitigate based on the recommendations for each service.

• 4XX and 5XX errors. These charts show the number of errors per API Gateway resource. To
understand the cause of these errors, inspect the Amazon CloudWatch logs and mitigate as
needed.

Amazon Cognito

For games that use the AWS GameKit identity and authentication feature, Amazon Cognito
manages all player registrations and logins, whether through username/password or through third-
party identity providers such as Facebook. Metrics for Amazon Cognito track all authentication and
security events involving AWS GameKit API requests. Metrics to pay particular attention to include:

• Security. This chart shows the number of security-related events that occur. If you experience
a high number of events, consider enabling advanced security features (see Update Amazon
Cognito settings in the launch readiness guide).

Amazon DynamoDB

DynamoDB tables store a variety of information for AWS GameKit game features, including player
IDs, achievement definitions, user gameplay data, game saves, and player achievement status.
Metrics for DynamoDB include percentage capacity consumed, read/write activity, request latency,
and other metrics relevant to individual game features. Metrics to pay particular attention to
include:

Key dashboard metrics 50

AWS GameKit Guide for Unreal Engine Developers

• Throttle. These charts track the number of throttled requests and events.

• Table request latency. These show how long it takes for requests or operations to complete
on DynamoDB . When evaluating latency, there are no specific “good” or “bad” values; instead,
watch for sudden increases, which can result in a degradation in response time.

To mitigate throttling or latency issues, consider enabling the DynamoDB auto scaling feature (see
Update Amazon DynamoDB settings in the launch readiness guide).

Related AWS topics

• Amazon CloudWatch User Guide: Using Amazon CloudWatch dashboards

Related AWS topics 51

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html

AWS GameKit Guide for Unreal Engine Developers

AWS GameKit feature: Identity and authentication

Summary

With the identity and authentication game feature, you can set up player sign-in workflows and
assign each player a unique ID. Player IDs support a range of scenarios that require verification and
authentication, including communication between game clients and backend services. You must
deploy the identity and authentication feature for your game to use any other AWS GameKit feature,
which all rely on the ability to authenticate players. Primary audience: game owners and developers
who want to better understand the use cases for identity and authentication game feature.

The AWS GameKit feature identity and authentication provides tools for creating and storing
unique player identifiers. With AWS GameKit, Player IDs are used to manage player access,
authenticate communications between game clients and backend services, and other scenarios that
require identity verification and authentication.

The AWS GameKit solution for player identity and authentication supports workflows for new
player registration, player sign-in, and account recovery. New players can be registered based on
email and/or social media, with secure features such as email verification.

Potential uses for player identity:

• Enable players to sign in to a game on multiple devices and pick up the game where they left
off. AWS GameKit cloud-based features such as user gameplay data, achievements and game
state cloud saving track player-specific information and deliver it to whatever device the player
is using. This feature is particularly useful with long playing games like world builders and story-
driven games, where players want to resume gameplay at any time and from any device.

• Interact with remote game services, such as matchmaking, multiplayer game servers, and social
networks, that require authenticated player IDs. Incorporate other cloud-based game features,
such as for data validation and storage.

• Work with game management tools to collect and use data on player behavior, such as for game
analytics, gameplay customization, live operations and experimentation.

52

AWS GameKit Guide for Unreal Engine Developers

Note

The identity and authentication feature must be added to your game project in order to use
any other AWS GameKit feature, all of which rely on authentication of client requests to get
or put player data.

Topics

• How identity and authentication works

• Identity and authentication estimate costs

• Add identity and authentication to your project

• Work with the identity and authentication examples

How identity and authentication works

Summary

Use the identity and authentication game feature to build player sign-in workflows into your game,
generate unique player IDs and use them to verify a player's identity during gameplay, manage access
to player-specific data, and add other functionality that requires player authentication. Allow players
to register with an email or a valid Facebook account. Primary audience: game owners and developers
who want a high-level understanding of what the identity and authentication game feature delivers
and the work required to build it into their games.

The primary mechanism of the identity and authentication game feature is the unique player
identity. By registering with your game, players establish a verified identity and get a unique
player ID for use with your game. When players sign in to your game, AWS GameKit uses this ID
to authenticate the interactions between the game client that the player is using and your game
backend.

Every AWS GameKit feature relies on identity and authentication to verify that player-specific
requests coming from a game client are authenticated. These game features store player-specific
data in the cloud by player ID, including gameplay data, achievements, and game state saves.

Identity and authentication with AWS GameKit uses simple, secure workflows. You can implement
either or both of the following methods for registering players and establishing unique player IDs:

How identity and authentication works 53

AWS GameKit Guide for Unreal Engine Developers

• Players can provide an email address and password. The sign-in workflow includes email
verification, which the player must answer to complete registration. It also includes a password
recovery workflow.

• Players can sign in using Facebook as a third-party identity provider. With this option, you must
set up Facebook Login for your game. The sign-in workflow redirects players to Facebook where
they enter their credentials. Facebook handles the authentication and then communicates the
results back to your game.

If you choose to include both sign-in methods in your game, and players provide both types of
credentials, the identity and authentication can connect both logins with the same player ID.

This game feature incorporates security features such as checks for compromised credentials and
account takeover protection.

Identity and authentication with AWS GameKit does not offer special support for features such as
authentication challenges, custom verification emails, or user directory management. However, you
can add these features and more by manually customizing your AWS resources using AWS tools.
Learn more about the AWS backend solution in Identity and authentication solution architecture.

Identity and authentication workflows

For player registration, AWS GameKit supports the following scenarios:

• Player signs in with an email/password. In this scenario, AWS GameKit automatically triggers a
verification workflow, causing an email to be sent to the email address with a verification code.
The player must get the verification code and enter it into a game UI to complete registration.
On successful registration, a new unique player ID is created and their sign-in information is
encrypted and stored.

• Player signs in with their Facebook account. In this scenario, AWS GameKit triggers a workflow
that prompts the user to go to a Facebook web page to log in. If it is successful and the game's
identity and authentication backend detects that this is the first time the player has signed in to
the game, a new unique player ID is created.

The player registration and sign-in workflow is as follows:

1. In the game client, the player is presented with the option to create a new game account
by either providing an email address or choosing a “Sign in with...” button and selecting an
external identity provider to use.

Identity and authentication workflows 54

AWS GameKit Guide for Unreal Engine Developers

2. If the player enters an email address and password:

a. AWS GameKit sends a verification email to the provided email address with a session-
based confirmation code.

b. In the game client, the player enters the confirmation code and prompts the game to
confirm the registration.

c. If confirmation succeeds, AWS GameKit creates a new player record and returns an identity
token, which can be used to authorize communication between the player's game client
and the game's identity and authentication backend.

3. If the player opts to sign in with Facebook:

a. The “Sign in with Facebook” button triggers the game to request a federated login URL
for Facebook from the game's identity and authentication backend. The URL includes the
game's account ID with Facebook.

b. The game client opens the Facebook login URL in a browser, and the player logs in to their
Facebook account.

c. Facebook returns a login status. If successful, AWS GameKit creates a new player record
and returns an identity token, which can be used to authorize communication between the
player's game client and the game's identity and authentication backend.

4. In the game client, the player signs in to the game using their existing game account.

5. The game attempts to sign in the player. If the sign-in attempt is valid, AWS GameKit responds
with a session-based token.

Topics

• Identity and authentication solution architecture

• Identity and authentication configuration options

• Identity and authentication callable actions

Identity and authentication solution architecture

This topic offers a detailed description of the AWS solution that provides cloud-based backend
services to support the AWS GameKit identity and authentication feature. You don't have to master
this information before using AWS GameKit to build the feature into your game and maintaining
it. However, it is useful in gaining a deeper understanding of the AWS services and resources that
are deployed for your game backend. You always have the option to view the backend components

Solution architecture 55

AWS GameKit Guide for Unreal Engine Developers

directly in AWS and use them with other AWS services, such as for monitoring or analytics. If
you want to further customize or extend your game's backend services beyond what is available
through AWS GameKit, you need to understand the role of each component in the solution.

The identity and authentication backend architecture implements the following call flow to
authenticate an API request from a game client:

1. A game client calls an identity and authentication API operation, which prompts AWS GameKit
to send a request to the Amazon API Gateway endpoint.

2. Amazon Cognito verifies the game client’s access token, if present. If the token is absent or
invalid, the client is redirected to the sign-in page.

3. Game client authenticates with the player's sign-in credentials (username/password or Facebook
sign-in) and receives a Amazon Cognito ID token.

4. Game client repeats the API request with the Amazon Cognito ID token.

5. Game client request is passed through to the relevant Lambda function, along with the now-
validated Amazon Cognito ID token.

Identity and authentication services

All AWS GameKit solutions rely on a core set of AWS services, as described in Core services.

The following services are used to manage identity and authentication activity:

Amazon Cognito

AWS GameKit creates a Amazon Cognito user pool to manage player identities and authentication
credentials. The user pool can be configured to accept an email/password or a variety of external
identity providers, including Facebook. Amazon Cognito manages the sign-in verification and
password recovery workflows.

AWS Lambda

AWS GameKit uses a Lambda function to manage the process of storing identity information in an
Amazon DynamoDB table when a player successfully registers.

Amazon DynamoDB

AWS GameKit creates a DynamoDB table to track player identity information. For example, a
player's username can be linked to both an email address and their account with an external
identity provider.

Solution architecture 56

AWS GameKit Guide for Unreal Engine Developers

Identity and authentication data encryption

Player data is encrypted both in transit and at rest.

In transit, AWS GameKit uses transport layer security (TLS) 1.2 or later for communication between
a game frontend and backend components on AWS. All AWS GameKit game features use the
Amazon API Gateway service to accept and process API calls. Learn more in the API Gateway
Developer Guide, Data protection in transit.

At rest, player identity data is encrypted by the AWS services that the identity and authentication
game feature uses. These services comply with industry standards. Learn more about how these
services handle data encryption at rest:

• Amazon Cognito Developer Guide, Data protection in Amazon Cognito

• Amazon DynamoDB Developer Guide, DynamoDB encryption at rest

Identity and authentication configuration options

When configuring the identity and authentication feature for your game, you can customize
the following characteristics. These customizations affect how the backend components for this
feature are constructed.

• Enable/disable players to sign on with email and password.

• Enable/disable players to sign on with their Facebook account. To enable this option, you must
set up a developer account with Facebook and get a Facebook App ID.

Identity and authentication callable actions

The AWS GameKit API provides the following actions for the identity and authentication game
feature. After deploying AWS resources for the identity and authentication backend, your game
frontend can use these calls to communicate with the backend.

• Register() Takes in a player’s username, email address, and password to create a new player
ID. After registering, players can use this information to log in to the game.

• ConfirmRegistration Verifies the registration confirmation code. When registering a new
player ID with an email address, the player receives a verification email with a confirmation code,
which they must enter into a game UI. This action verifies the entered code.

Configuration options 57

https://docs.aws.amazon.com/apigateway/latest/developerguide/data-protection-encryption.html#data-protection-in-transit
https://docs.aws.amazon.com/cognito/latest/developerguide/data-protection.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html

AWS GameKit Guide for Unreal Engine Developers

• ResendConfirmationCode() Allows player to request a fresh confirmation code to verify their
email address. Confirmation codes are short-lived.

• Login() Signs the player into the game with their registered username and password.

• GetFederatedLoginUrl() Retrieves the URL of an external identity provider, such as
Facebook, where the player can log in to their account. When this action is called for a player the
first time, AWS GameKit registers the player and generates a new player ID.

• GetUser() Retrieves user information for a currently logged in player. This includes the players
unique ID.

• Logout() Signs the player out of the game.

• ForgotPassword() For players who registered with an email/password, this action triggers a
password recovery workflow.

• ConfirmForgotPassword() Verifies a confirmation code that allows a player to change their
password. This is part of the password recovery workflow.

Identity and authentication estimate costs

The following table outlines the set of AWS services for the identity and authentication that may
generate costs for this game feature. The conditions indicate the upper limits allowed within the
Free Tier benefits for each service. Please note that some free-tier benefits are available for a
limited time, while others are always free up to the usage limit.

Service Condition Free Tier Cost / Month

Amazon S3 Less than 320 deployments
per day

0

Amazon CloudFormation Less than 1,000 deployments
per month

0

Amazon Cognito Less than 50,000 monthly
active users (MAU) per month

0

Amazon API Gateway Less than 1M calls per month
(combined registration, login,

0

Estimate costs 58

AWS GameKit Guide for Unreal Engine Developers

Service Condition Free Tier Cost / Month

confirmation, password reset,
etc.)

AWS Lambda (x86 architect
ure)

Less than 1M requests per
month and 400,000 GB-
seconds of compute time per
month (combined registrat
ion, login, confirmation,
password reset, etc.)

0

Amazon DynamoDB Under 25 requests per second
(registrations, confirmation,
logins, etc.) $0.00065 WCU
per hour and $0.00013 RCU
per hour after estimated:
5.81/month

0

AWS Key Management
Service (KMS)

222 Facebook logins per day

(less than 20,000 requests per
month)

0

Add identity and authentication to your project

Summary

Learn how to build a complete cloud-based identity and authentication system and integrate it into a
Unreal Engine project. This topic guides developers through building backend services and then using
the AWS GameKit API to connect frontend code to the backend on AWS.

When you're ready to build out the identity and authentication feature for your game, follow these
basic steps. If you don't yet have AWS GameKit installed for your project, see Install the AWS
GameKit plugin with Unreal Engine and Set up the AWS GameKit plugin for your game.

Step 1. Configure the identity and authentication game feature.

Add identity and authentication 59

AWS GameKit Guide for Unreal Engine Developers

1. In the Unreal Editor toolbar, open Edit, Project Settings and go to the AwsGameKit plugin
section. Select the environment you want to work in and enter valid AWS credentials as
needed. For more details, see Set up the AWS GameKit plugin for your game.

2. Expand the Identity and authentication section. Specify the following configuration options:

• Login mechanisms. Choose which login mechanisms that you want to offer to your players.
The default selection is Email/Password, and you must have at least one option selected. If
you choose to support player login with Facebook, enter the Facebook app ID and secret key
for your game. Learn more about getting a Facebook app ID on the Facebook Developers
portal.

All changes you make to feature settings are cached locally during the current session.

Add identity and authentication 60

https://developers.facebook.com/docs/development/create-an-app
https://developers.facebook.com/docs/development/create-an-app

AWS GameKit Guide for Unreal Engine Developers

Step 2. Deploy AWS resources for your identity and authentication backend.

1. While still in the AWS GameKit settings for Identity and Authentication, scroll down to the
deployment controls. Choose the AWS resource action Create. This action prompts AWS
GameKit to deploy the complete AWS solution to run the backend services for this game
feature. When deploying, AWS GameKit connects to AWS to create all the AWS resources for
the solution, using the configuration template maintained for the active environment.

2. Deploying resources for identity and authentication typically takes 5 minutes to complete.
During this time, the feature's deployment status reads Deploying resources. You can track
the progress of your deployment status:

• In the Unreal Editor, open the output log window to monitor status messages, events, and
errors throughout the deployment.

• In the AWS Management Console, open the AWS CloudFormation service. In the Stacks view
you can watch as the Identity stack for your game project is deployed.

When deployment is complete, the feature's deployment status reads Deployed. Your game
backend for identity and authentication is in place. You can make calls to it using the AWS
GameKit API.

Note

NOTE: From this point on, you might begin incurring costs for this game feature. If
you're still in the AWS Free Tier window, you will only incur costs if you exceed free tier
limits.

Step 3. Add player identity workflows to your game.

Create UI elements and add code for the following workflows. See the plugin's Identity examples
for illustration and experiment with API calls using the C++ code examples.

Identity and authentication workflows include:

• Register a new player with email

• Register()

• ConfirmRegistration()

Add identity and authentication 61

AWS GameKit Guide for Unreal Engine Developers

• ResendConfirmationCode()

• Sign in a player with an existing email account

• Login()

• GetUser() and GetResponseBody()

• Logout()

• Sign in a new or existing player with Facebook

• GetFederatedLoginUrl()

• PollAndRetrieveFederatedTokensAsync() or
PollAndRetrieveFederatedTokensBlueprintAsync()

• GetFederatedAccessToken()

• Logout()

• Reset the password for an existing account

• ForgotPassword()

• ConfirmForgotPassword()

Work with the identity and authentication examples

The AWS GameKit plugin includes example assets for the identity and authentication game feature.

Unreal Engine

The AWS GameKit plugin for Unreal Engine provides examples with C++ code, blueprints, and UI
components. You can access the example files in the Unreal Editor content browser.

• Work with the C++ examples

• Work with the Blueprint and UI examples

Work with the C++ examples

In the Unreal Editor content browser, find the example asset at the following location:

AwsGameKit C++ Classes > AwsGameKitEditor > Public > Identity >
 AwsGameKitIdentityExamples

Work with the examples 62

AWS GameKit Guide for Unreal Engine Developers

This asset is a .cpp file. You can also find this file in the AWS GameKit plugin files,
located at ...\AwsGameKit\Source\AwsGameKitEditor\Private\Identity
\AwsGameKitIdentityExamples.cpp.

This example file contains sample code that illustrates how to call each of the identity and
authentication API actions. This file contains the basic set of runnable code and includes
detailed comments.

You can work with this example in two ways: view the code in your IDE, or experiment with the
API calls in Unreal Editor.

To view or edit the example code:

• Double-click the AwsGameKitIdentityExamples asset to open the file in your IDE. You
do not need to enter AWS credentials or deploy AWS resources before accessing this file,
however none of the API calls can work without deployed resources.

The example code includes a standard check to verify that AWS resources are deployed.

Note that, as a first step, the example code creates an instance of the
UAwsGameKitIdentityCallableWrapper and initializes it. This must be done before
making any API calls.

To experiment with the example in Unreal Editor:

You must have AWS resources deployed for identity and authentication and you must submit
your valid AWS credentials in the AWS GameKit plugin project settings (see Set up the AWS
GameKit plugin for your game).

1. Drag the AwsGameKitIdentityExamples asset into level in the view port. It doesn't matter
what level you add the asset to, this is just a mechanism that enables you to work with the
asset settings.

2. In the Editor's Details pane, all of the identity and authentication API calls are available
with API request and response values.

3. To make an API call, enter some input values and click the "Call" button. The response is
displayed in the Return Value field.

4. Try running the following call sequences to simulate standard identity scenarios:

• Register a new player with email: Register Player, Confirm Email

Work with the examples 63

AWS GameKit Guide for Unreal Engine Developers

• Sign in a player with an existing account: Login, Get User, Logout

• Sign in a new or existing player with Facebook: Open Facebook Login, Get User, Logout

• Recover a password for an existing account: Forgot Password, Confirm Forgot Password

Work with the Blueprint and UI examples

In the Unreal Editor Content Browser, find the example assets at the following location:

AwsGameKit Content > Identity >

There are two example assets:

• BP_AwsGameKitIdentityExamples

This asset is a basic blueprint that illustrates how you might add sign-in functionality to your
game code.

Actions:

• To open the blueprint, double-click the asset.

• BP_AwsGameKitIdentityExamplesUI

This asset includes a detailed blueprint for common sign-in workflow scenarios and sample UI
objects.

Actions:

• To open the blueprint, double-click the asset.

To run the example, click Play.

Work with the examples 64

AWS GameKit Guide for Unreal Engine Developers

AWS GameKit feature: User gameplay data

The AWS GameKit game feature user gameplay data provides tools for storing a player's game-
related data in the cloud. With this feature, gameplay data can persisted across game sessions and
can be synchronized across multiple game clients and devices.

This game feature is designed to handle data synchronization on the fly during gameplay. It is not
designed for other player data, such as for player profiles or account information. User gameplay
data might include information such as player scores, inventory, or other player-associated data
that is needed in the game. It does not include non-game player data, such as profile or account
information.

Potential uses for this game feature include:

• Game inventories

• Game economy/currency

• Player statistics

• Player game choices, such as a character or in-game decisions that impact game progress

• Level activity, such as visited locations

Topics

• How user gameplay data works

• User gameplay data solution architecture

• User gameplay data callable actions

• Add user gameplay data to your game

• Work with the user gameplay data examples

How user gameplay data works

Summary

This topic provides a high-level description of the game feature and describes common scenarios for
how the feature might be integrated into a game.

How user gameplay data works 65

AWS GameKit Guide for Unreal Engine Developers

This game feature offers a very flexible data schema. You decide how you want to organize data.
Briefly, gameplay data is saved as a set of key:value pairs, called bundle items. A bundle is a
construct that you can use to group related bundle items.

The basic schema structure looks like this:

• Bundle name. Bundle is construct that lets you create collections of related bundle items. For
example, you might want to group data for the player’s weapons inventory in a bundle.

• Bundle item. A single piece of data, consisting of a data identifier (key) and saved value. It’s
up to you to decide what data items you need to save. For example, for a weapons inventory,
you probably need to track at minimum (1) whether the weapon is available, (2) amount of
ammunition, (3) modifications, and (4) if a shortcut key is assigned to it. Each of these pieces
of information would be stored as a bundle item.

• Bundle item key. A unique item name or ID.

• Bundle item value. A value

For example:

"playerid_bundle":
 "d99a7965f7b86d299c272b183c3de54c4180c63d3caf8de2edd37a6eec0ea200_BEST_TIME",
"bundle_item_key": "TRACK_1",
"bundle_item_value": "3:36.113"

There are no limits on the number of bundles each player can store, and no limit on the number of
items in a bundle. Since you pay for the amount of data storage you use, this is purely up to you.

This game feature is designed to support frequent reads or writes of game data. Developers can
easily set and get data items in real time.

This game feature has additional protection to maintain data integrity in case of connectivity
loss. It maintains a message queue for all requests that can't be delivered. When no connection is
available, all add/update/delete requests are automatically placed in the message queue. When a
connection is restored, the requests are processed in the order they were queued (oldest first). If
multiple update requests occur for the same bundle item while requests are being queued, newer
requests automatically replace the older requests, so only one write request is processed for the
bundle item. Note that get requests aren’t queued.

How user gameplay data works 66

AWS GameKit Guide for Unreal Engine Developers

User gameplay data solution architecture

This topic offers a detailed description of the AWS solution that provides cloud-based backend
services to support the AWS GameKit user gameplay data feature. You don't have to master this
information before using AWS GameKit to build the feature into your game and maintaining it.
However, it is useful in gaining a deeper understanding of the AWS services and resources that are
deployed for your game backend. You always have the option to view the backend components
directly in AWS and use them with other AWS services, such as for monitoring or analytics. If
you want to further customize or extend your game's backend services beyond what is available
through AWS GameKit, you will need to understand the role of each component in the solution.

The workflow sequence is as follows:

1. A game client calls a user gameplay data API operation, which prompts AWS GameKit to send a
request to the API Gateway endpoint. Amazon Cognito verifies the game client’s access token,
as described in Identity and authentication solution architecture. If the request involves player
achievement data, an Amazon Cognito authorizer verifies that the access token is valid for the
player as defined in the user pool.

2. If authentication is successful, the game client request is passed through to the relevant Lambda
function.

3. The Lambda function interacts with DynamoDB to store or retrieve data on bundles or bundle
items as requested. There are two DynamoDB tables, one to track bundles, and one to track
bundle items.

User gameplay data services

All AWS GameKit solutions rely on a core set of AWS services, as described in Core services.

These services are used to manage user gameplay data activity:

AWS Lambda

AWS GameKit uses Lambda functions to manage gameplay data storage and retrieval.

Amazon DynamoDB

AWS GameKit creates two types of DynamoDB tables, one to store bundle names, and a second
one to store bundle items and values by player and bundle name.

Solution architecture 67

AWS GameKit Guide for Unreal Engine Developers

User gameplay data encryption

Player data is encrypted both in transit and at rest.

In transit, AWS GameKit uses transport layer security (TLS) 1.2 or later for communication between
a game frontend and backend components on AWS. All AWS GameKit game features use the
Amazon API Gateway service to accept and process API calls. Learn more in the API Gateway
Developer Guide, Data protection in transit.

At rest, data is encrypted by the AWS services that the user gameplay data game feature uses.
These services comply with industry standards. Learn more about how these services handle data
encryption at rest:

• Amazon DynamoDB Developer Guide, DynamoDB encryption at rest

User gameplay data callable actions

The AWS GameKit API provides the following actions for the user gameplay data game feature.
After deploying AWS resources for the user gameplay data backend, your game frontend can use
these calls to communicate with the backend.

• AddUserGameplayData(): Use this call to create or update a bundle. You can call this with a
bundle name only, or include one or more bundle items. If a bundle item key already exists in the
cloud, the value is updated.

• GetAllUserGameplayData(): Retrieves all data bundles that are saved for the player ID.
Bundle item data is returned with data organized by bundle name.

• GetUserGameplayDataBundle(): Retrieves a player’s bundle items in a specified bundle. Data
is returned as a map of key:value pairs.

• GetUserGameplayDataBundleItem(): Retrieves a single bundle item for a player, when a
bundle name and bundle item key is specified. Data is returned as a single key:value pair.

• UpdateUserGameplayDataBundleItem(): Adds or updates a single bundle item in a bundle.

• DeleteUserGameplayDataBundleItem(): Deletes a single bundle item in a specified bundle.

• DeleteUserGameplayDataBundle(): Deletes a specified bundle, including all of the bundle
items that it contains.

• DeleteAllUserGameplayData(): Deletes all bundles and bundle items for a player.

User gameplay data encryption 68

https://docs.aws.amazon.com/apigateway/latest/developerguide/data-protection-encryption.html#data-protection-in-transit
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html

AWS GameKit Guide for Unreal Engine Developers

Add user gameplay data to your game

The following describes the basic steps to add a user gameplay data game feature to your Unreal
Engine project. If you don't yet have AWS GameKit for your game engine, see Install the AWS
GameKit plugin with Unreal Engine.

Build your User Gameplay Data feature

Step 1. Deploy an AWS solution for your user gameplay data backend.

1. In the Unreal Editor toolbar, open Edit, Project Settings and go to the AwsGameKit plugin
section. Select the environment you want to work in and enter valid AWS credentials as
needed. For more details, see Set up the AWS GameKit plugin for your game.

2. Open the User Gameplay Data section. For this game feature, there are no special
configuration settings.

3. Choose the AWS resource action Create. This action prompts AWS GameKit to deploy a
complete AWS solution to run the backend services for this game feature. When deploying,
AWS GameKit first generates a template for the AWS solution, including your custom
configuration settings, and then connects to AWS to create the solution's AWS resources as
defined in the template. The AWS resources are deployed to the AWS region as selected for the
active environment.

4. Deploying resources for the user gameplay data backend typically takes 5 minutes to
complete. You can track the progress of your deployment status as follows:

• In the Features tab, scroll down to view the Log window. The log displays status messages,
events, and errors throughout the deployment.

• In the AWS Management console, open the AWS CloudFormation service. In the Stacks view
you can watch as the UserGameplayData stack for your game project is deployed.

•

When deployment is complete, your game backend for the user gameplay data game feature is
in place. You can make calls to it using the AWS GameKit API.

Add user gameplay data to your game 69

AWS GameKit Guide for Unreal Engine Developers

Note

NOTE: From this point on you may begin incurring cost, depending on whether you’re
in the AWS Free Tier window.

Step 3. Add gameplay data functionality to your game.

1. Before calling any of the user gameplay data APIs, invoke GdkUserGameplayDataCreate
and call Initialize().

2. Add code to save gameplay data to your cloud backend and keep it synchronized with the
game client. As part of this work, develop a gameplay data schema for your game, using
bundles to group data items into collections as needed. Determine where and when to create
bundles, add bundle items, and update item values.

3. Add workflows such as:

• Create a bundle with a collection of data items

• AddUserGameplayData()

• Update a bundle item with a new value

• UpdateUserGameplayDataBundleItem()

• Retrieve a bundled collection of data items

• GetUserGameplayDataBundle()

• Retrieve a single bundle item value

• GetUserGameplayDataBundleItem()

• Delete a bundle

• DeleteUserGameplayDataBundle()

Integration tips

Consider these issues when adding gameplay data functionality to your game.

• Consider making add, update, and delete API calls asynchronously. Get calls can be made
synchronously.

Integration tips 70

AWS GameKit Guide for Unreal Engine Developers

• On the game client, you may want to add some data validation and sanity checks to protect
against tampering.

Work with the user gameplay data examples

The AWS GameKit plugin includes example assets for the user gameplay data game feature.

Unreal Engine

The AWS GameKit plugin for Unreal Engine provides examples with C++ code, blueprints, and UI
components. You can access the example files in the Unreal Editor content browser.

• Work with the C++ examples

• Work with the Blueprint and UI examples

Work with the C++ examples

In the Unreal Editor content browser, find the example asset at the following location:

AwsGameKit C++ Classes > AwsGameKitEditor > Public > UserGamePlayData >
 AwsGameKitUserGamePlayDataExamples

This asset is a .cpp file. You can also find this file in the AWS GameKit plugin files, located
at ...\AwsGameKit\Source\AwsGameKitEditor\Private\UserGamePlayData
\AwsGameKitUserGamePlayDataExamples.cpp.

This example file contains sample code that illustrates how to call each of the user gameplay
data API actions. This file contains the basic set of runnable code and includes detailed
comments.

You can work with this example in two ways: view the code in your IDE, or experiment with the
API calls in Unreal Editor.

To view or edit the example code:

• Double-click the AwsGameKitUserGamePlayDataExamples asset to open the file in your
IDE. You do not need to enter AWS credentials or deploy AWS resources before accessing
this file, however none of the API calls can work without deployed resources.

Work with the examples 71

AWS GameKit Guide for Unreal Engine Developers

The example code includes a standard check to verify that AWS resources are deployed.

Note that, as a first step, the example code creates an instance of the
UAwsGameKitUserGamePlayDataCallableWrapper and initializes it. This must be done
before making any API calls.

To experiment with the example in Unreal Editor:

You must have AWS resources deployed for identity and authentication and you must submit
your valid AWS credentials in the AWS GameKit plugin project settings (see Set up the AWS
GameKit plugin for your game).

1. Drag the AwsGameKitUserGamePlayDataExamples asset into level in the view port. It
doesn't matter what level you add the asset to, this is just a mechanism that enables you to
work with the asset settings.

2. In the Editor's Details pane, all of the user gameplay data API calls are available, with API
request and response values. Calls made using this UI connect to your deployed game
backend on AWS.

3. To make an API call, enter some input values and click the "Call" button. The response is
displayed in the Return Value field.

4. Try running the following call sequences to simulate standard gameplay data scenarios:

• Create a bundle with one or more bundle items: Add User Gameplay Data

• Update the value for an existing bundle item: Update User Gameplay Data Bundle Item

• Retrieve all item values in the bundle: Get User Gameplay Data Bundle

• Retrieve a single bundle item value: Get User Gameplay Data Bundle Item

• Delete the bundle: Delete User Gameplay Data Bundle

Work with the Blueprint and UI examples

In the Unreal Editor Content Browser, find the example assets at the following location:

AwsGameKit Content > UserGameplayData >

Work with the examples 72

AWS GameKit Guide for Unreal Engine Developers

There are two example assets:

• BP_AwsGameKitUserGameplayDataExamples

This asset is a basic blueprint that illustrates how you might add gameplay data save and
retrieval functionality to your game code.

Actions:

• To open the blueprint, double-click the asset.

• BP_AwsGameKitUserGameplayDataExamplesUI

This asset includes a detailed blueprint for common workflow scenarios and sample UI
objects.

Actions:

• To open the blueprint, double-click the asset.

To run the example, click Play.

Work with the examples 73

AWS GameKit Guide for Unreal Engine Developers

AWS GameKit feature: Game state cloud saving

The AWS GameKit game state cloud saving feature enables players to save their game state, store
it in the cloud, and keep it synchronized with their local game clients. Game saving is a highly
valued game feature for players, particularly with games with very long storylines. Cloud saving
and synchronization offers additional benefits to players, including:

• For games that support more than one game platform, players can get true crossplay portability
on multiple devices.

• Players can recover game progress with minimal loss in the event of local device failures.

• Players still have access to past played game saves, even for games that have been uninstalled.

Use this game feature to implement an autosave system as well for explicit saves that allow players
to choose their save points.

Topics

• How game state cloud saving works

• Game state cloud saving solution architecture

• Game state cloud saving configuration options

• Game state cloud saving callable actions

• Add game state cloud saving to your game

• Work with the game state cloud saving examples

How game state cloud saving works

This game feature handles two primary tasks: first, it stores a player's game save files in the cloud,
and second, it synchronizes local and cloud versions of each game save file. Synchronization
ensures that the player is always playing with the latest version of a game save, even when they're
playing the same game across multiple devices.

Storing game save files in the cloud

Players game states are saved as files, which can then be uploaded into file storage in the cloud.
In this feature, game save files are managed as slots. Each slot has metadata attached, including

How game state cloud saving works 74

AWS GameKit Guide for Unreal Engine Developers

a save name, a last-modified date stamp, and, optionally, a string of developer-defined metadata
formatted as JSON.

Synchronizing game save files

Synchronization ensures that updates to a game save file happen in the right sequence, regardless
of how many devices a player uses to play your game, making the player's experience seamless.

This feature tracks five potential states and any actions that should be taken to synchronize them:

• Local only: The game save file only exists on the local device. Action: upload the local game save
file to the cloud.

• Cloud only: The game save file only exists on the cloud. This state might occur when the player
is resuming their game on a new device. Action: download the cloud game save file to the local
device.

• Local/Cloud in sync: The game save file exists both locally and on the cloud, and the last
modified timestamps match. No action required.

• Local most recent: The game save file exists both locally and on the cloud, but the local version
has a more recent modified date. This state occurs when a player has played the game on the
local device and wants to save the game with their progress. Action: upload the latest local
version of the game save file to the slot.

• Cloud most recent: The game save file exists both locally and on the cloud, but the cloud version
has a more recent modified date. This state can occur when a player has recently played the
game on another device, saved their game progress there, and now wants to resume their game
on the current device. Action: download the latest cloud version of the game save file to the slot.

Game state cloud saving workflow

Here's a high level description of how the game state cloud saving system works from the player
perspective.

Saving game state as a player:

1. In the game, a player takes an action to save their game.

2. In response to the event, the game client makes an API call to save the current game state file
to the cloud.

Synchronizing game save files 75

AWS GameKit Guide for Unreal Engine Developers

3. When the game backend receives the request, it stores the game save file and corresponding
metadata, including a timestamp.

4. When the player restarts the game, sync status is automatically requested. AWS GameKit
compares the game save timestamps and tries to determine whether the local or cloud
versions are most recent.

Game state cloud saving solution architecture

This topic offers a detailed description of the AWS solution that provides cloud-based backend
services to support the AWS GameKit game state cloud saving feature. You don't have to master
this information before using AWS GameKit to build the feature into your game and maintaining
it. However, it is useful in gaining a deeper understanding of the AWS services and resources that
are deployed for your game backend. You always have the option to view the backend components
directly in AWS and use them with other AWS services, such as for monitoring or analytics. If
you want to further customize or extend your game's backend services beyond what is available
through AWS GameKit, you will need to understand the role of each component in the solution.

This solution uses a Lambda function to compare the metadata for the local and cloud versions of
a save file. To synchronize the files, the comparison prompts one of the two call flows:

Download the cloud save state:

1. AWS GameKit identifies that the local save state is older than the cloud save state, and requests
a pre-signed URL (GET) be generated for its current slot.

2. The Lambda function composes the URL from a combination of the BucketName, PlayerID
and SlotName, then generates a pre-signed URL that AWS GameKit can use to fetch the save
data.

3. AWS GameKit fetches the save file from S3 using the provided URL via a HTTP GET request

Upload the local save state to the cloud:

1. AWS GameKit identifies that the cloud save state is older than the local save state, and requests
a pre-signed URL (PUT) be generated for its current save slot.

2. AWS GameKit pushes the save data to S3 via a HTTP PUT request.

3. After the file has been uploaded, a Lambda function is instantiated and is passed the metadata
for that object.

Solution architecture 76

AWS GameKit Guide for Unreal Engine Developers

4. The Lambda function looks up the object that has been stored in S3, using a combination of
PlayerID and SlotName, and updates all attributes.

Game state cloud saving services

All AWS GameKit solutions rely on a core set of AWS services, as described in Core services.

The following services are used specifically to manage game state cloud saving activity:

Amazon Simple Storage Service (Amazon S3)

AWS GameKit uses an Amazon S3 bucket to store game save files. Amazon S3 provides durable
object storage capabilities.

Amazon DynamoDB

AWS GameKit uses a DynamoDB table to store metadata about the game save files. Using
DynamoDB to store this type of data supports frequent read and write requests from game clients.

Lambda

AWS GameKit uses Lambda functions to manage the tasks of storing game save files and metadata
and analyzing synchronization states.

Game state cloud saving data encryption

Player data is encrypted both in transit and at rest.

In transit, AWS GameKit uses transport layer security (TLS) 1.2 or later for communication between
a game frontend and backend components on AWS. All AWS GameKit game features use the
Amazon API Gateway service to accept and process API calls. Learn more in the API Gateway
Developer Guide, Data protection in transit.

At rest, player identity data is encrypted by the AWS services that the Achievement game feature
uses. These services comply with industry standards. Learn more about how these services handle
data encryption at rest: [Question: S3 has some additional server-side encryption available with
managed keys (SSE-S3) and KMS. Does our solution cover any of this? If so we should probably
mention it here.]

• Amazon DynamoDB Developer Guide, DynamoDB encryption at rest

Game state cloud saving services 77

https://docs.aws.amazon.com/apigateway/latest/developerguide/data-protection-encryption.html#data-protection-in-transit
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html

AWS GameKit Guide for Unreal Engine Developers

• Amazon S3 User Guide, Protecting data using encryption

Game state cloud saving configuration options

When configuring the game state cloud saving feature for your game, you can customize the
following characteristics. These customizations affect how the backend components for this
feature are constructed.

• Slot limit: This value sets specifies the number of cloud game save files that players can use in
your game. There is no hard limit on this option. The number of allowed cloud game saves in a
game does impact the cost of this game feature, which is dependent on the amount of storage
space used. (Required)

Game state cloud saving callable actions

The AWS GameKit API provides the following primary actions for the game state cloud saving
game feature. After you deploy AWS resources for game state cloud saving, your game frontend
can use these calls to communicate with the backend resources.

Each of these actions can be called either synchronously or asynchronously. Learn more about each
action in the AWS GameKit Core C++ API Reference.

• GetAllSlotSyncStatuses() determines the current synchronization status of all game save
slots that exist locally and/or in the cloud. This is done by comparing the last modified date of
both local and cloud versions. Sync status indicates (1) that the game save slot is in sync, or (2) a
recommended action to synchronize the versions.

• GetSlotSyncStatus determines the current synchronization status of a specified game
save slot. This is done by comparing the last modified date of both local and cloud versions.
Sync status indicates (1) that the game save slot is in sync, or (2) a recommended action to
synchronize the versions.

• SaveSlot uploads a local game save file to the cloud. This action is used to create a new game
save slot or to update an existing slot. This action saves the slot metadata locally as well as in the
cloud.

• LoadSlot downloads a cloud-stored game save file to the local device and updates local slot
metadata. This action is used to sync an existing local slot with the cloud version or, if none
exists, to create a new local slot.

Configuration options 78

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingEncryption.html
https://github.com/aws/aws-gamekit

AWS GameKit Guide for Unreal Engine Developers

• DeleteSlot deletes the cloud-stored game save file and all slot metadata both locally and in
the cloud. It does not delete the local version of the game save file.

Add game state cloud saving to your game

The following describes the basic steps to add a game state cloud saving game feature to your
Unreal Engine project. If you don't yet have AWS GameKit for your game engine, see Install the
AWS GameKit plugin with Unreal Engine.

Step 1. Configure the game state cloud saving game feature for your project.

1. In the Unreal Editor toolbar, open Edit, Project Settings and go to the AwsGameKit plugin
section. Select the environment you want to work in and enter valid AWS credentials as
needed. For more details, see Set up the AWS GameKit plugin for your game.

2. Open the Game State Cloud Saving section. Specify the following configuration options:

• Maximum save slots. Specify the maximum number of game save slots that you want to
allow for each player.

Step 2. Deploy AWS resources for your game state cloud saving backend.

1. In the AWS GameKit project settings under Game State Cloud Saving, choose the AWS
resource action Create. This action prompts AWS GameKit to deploy a complete AWS solution
to run the backend services for this game feature. When deploying, AWS GameKit first
generates a template for the AWS solution, including your custom configuration settings, and
then connects to AWS to create the solution's AWS resources as defined in the template. The
AWS resources are deployed to the AWS region as selected for the active environment.

2. Deploying resources for the game state cloud saving backend typically takes 5 minutes to
complete. You can track the progress of your deployment status as follows:

• In the Unreal Editor, AWS GameKit project settings, refresh the deployment status or
open the custom dashboard for this game feature. These dashboards are generated at the
beginning of the deployment process.

• In the Unreal Editor, open the output logs at Window>Developer Tools, Output Log to view
status messages, events and errors throughout the deployment.

• In the AWS Management console, open the AWS CloudFormation service. In the Stacks view
you can watch as the game state cloud saving stacks for your game project are deployed.

Add game state cloud saving to your game 79

AWS GameKit Guide for Unreal Engine Developers

When deployment is complete, your game backend for the game state cloud saving game
feature is in place. You can make calls to it using the AWS GameKit API.

Note

NOTE: From this point on you may begin incurring costs for this game feature,
depending on whether you’re in the AWS Free Tier window.

Step 3. Add game state cloud saving functionality to your game.

Create UI elements and add code for the workflows to save and retrieve game states as needed for
your game. See the plugin's game state cloud saving examples for illustration.

Workflows might include:

• Upload a game save file to the cloud: Save file.

• Check sync status for all slots: Get All Sync Statuses.

• Download a game save file from the cloud: Load file.

• Delete a game save file in the cloud: Delete slot.

Work with the game state cloud saving examples

The AWS GameKit plugin includes example assets for the game state cloud saving game feature.

Unreal Engine

The AWS GameKit plugin for Unreal Engine provides examples with C++ code, blueprints, and UI
components. You can access the example files in the Unreal Editor content browser.

• Work with the C++ examples

• Work with the Blueprint and UI examples

Work with the C++ examples

Work with the examples 80

AWS GameKit Guide for Unreal Engine Developers

In the Unreal Editor content browser, find the example asset at the following location:

AwsGameKit C++ Classes > AwsGameKitEditor > Public > GameStateCloudSaving >
 AwsGameKitGameStateCloudSavingExamples

This asset is a .cpp file. You can also find this file in the AWS GameKit plugin files, located
at ...\AwsGameKit\Source\AwsGameKitEditor\Private\GameStateCloudSaving
\AwsGameKitGameStateCloudSavingExamples.cpp.

This example file contains sample code that illustrates how to call each of the game state
cloud saving API actions. This file contains the basic set of runnable code and includes detailed
comments.

You can work with this example in two ways: view the code in your IDE, or experiment with the
API calls in Unreal Editor.

To view or edit the example code:

• Double-click the AwsGameKitGameStateCloudSavingExamples asset to open the file
in your IDE. You do not need to enter AWS credentials or deploy AWS resources before
accessing this file, however none of the API calls can work without deployed resources.

The example code includes a standard check to verify that AWS resources are deployed.

Note that, as a first step, the example code creates an instance of the
UAwsGameKitGameStateCloudSavingCallableWrapper and initializes it. This must be
done before making any API calls.

To experiment with the example in Unreal Editor:

You must have AWS resources deployed for identity and authentication and you must submit
your valid AWS credentials in the AWS GameKit plugin project settings (see Set up the AWS
GameKit plugin for your game).

1. Drag the AwsGameKitGameStateCloudSavingExamples asset into a level in the view port.
It doesn't matter what level you add the asset to, this is just a mechanism that enables you
to work with the game feature configuration.

2. In the Editor's Details pane, all of the game state cloud saving API calls are available with
API request and response values.

Work with the examples 81

AWS GameKit Guide for Unreal Engine Developers

3. To make an API call, enter some input values and choose the call button. The response is
displayed in the Return Value field.

4. Try running the following call sequences to simulate standard game state cloud saving
scenarios:

• Upload a game save file to the cloud: Save file.

• Check sync status for all slots: Get All Sync Statuses.

• Download a game save file from the cloud: Load file.

• Delete a game save file in the cloud: Delete slot.

Work with the Blueprint and UI examples

In the Unreal Editor Content Browser, find the example assets at the following location:

AwsGameKit Content > GameStateCloudSaving >

There are two example assets:

• BP_AwsGameKitGameStateCloudSavingExamples

This asset is a basic blueprint that illustrates how you might add game-state-related
functionality to your game code.

Actions:

• To open the blueprint, double-click the asset.

• BP_AwsGameKitGameStateCloudSavingExampleUI

This asset includes a blueprint and sample UI objects for displaying achievement information
and player status.

Actions:

• To open the blueprint, double-click the asset.

To run the example, click Play.

Work with the examples 82

AWS GameKit Guide for Unreal Engine Developers

AWS GameKit feature: Achievements

The AWS GameKit achievements feature offers tools to manage an achievements system for your
game. Achievements are a proven way to boost player engagement; they invite players to explore
certain aspecs of the game and en . Achievements might mark a specific player action or might
track a player's progress toward a multi-step goal. Achievements might offer bragging rights only
or they can deliver more tangible rewards.

Some common ways that achievements are used in games:

• Mark game milestones and track player progress. A milestone like "Capture 100 mutant
monkeys" might represent a key game objective. Alternatively, progressive achievements
("Congrats, you've achieved Cerulean Mage status!") boost a player's sense of ongoing
accomplishment as they move through the game.

• Set clear and achieveable goals to keep players engaged and avoid getting lost, bored, or
frustrated. This type of achievement is very useful with non-linear stories and open worlds.
Achievements like "Explore the forest" or "Talk to the ginger cat" offer cues to help guide players
to meaningful gameplay and breach obstacles.

• Help players understand the meaning and value of objects, actions, and other concepts in the
game world. Achievements like "Complete your first 10 trades to earn negotiator badge" or
"Acquire a bicycle with 5 handcrafted tools or 10 found tools" offer valuable clues to players
about what matters in the game.

• Prompt players to learn new skills and upgrade techniques. An achievement like "Win a battle
in less than six minutes" might prod a player to explore new skills and powers or refine their
technique in ways that they'll need later in the game.

• Challenge players with optional hard-to-earn achievements. Challenges like "Complete the
scavenger hunt side mission" or "Don't kill anyone" give players valuable optional experiences
and can even fundamentally change how the game is played. These types of achievements can
boost a game's replay value.

83

AWS GameKit Guide for Unreal Engine Developers

Note

To add this feature, you must also have the AWS GameKit identity and authentication
feature. This feature relies on identity management to manage each player's achievement
status.

Topics

• How achievements work

• Achievements solution architecture

• Achievements configuration options

• Achievements callable actions

• Add achievements to your project

• Work with the achievements examples

How achievements work

When deployed, your AWS GameKit achievements backend has three primary functions:

• It stores the definitions for all the achievements in your game. Definitions include information
such as the achievement name, how it's earned, an optional reward, and player-facing details
such as icons or messaging. You use the AWS GameKit tool to create achievement definitions and
sync them to your achievements backend. With achievements saved to the backend, players can
start to earn them. You can add or update achievement definitions at any time. Game clients can
use the AWS GameKit API to request a list of achievement definitions.

• It stores each player's achievements status. When a player does something in your game that
earns them progress toward an achievement, your game client sends an AWS GameKit API
request to the backend to update the player's status. The game client can also request player
achievement status, including earned awards and progress toward multi-step awards.

• It runs logic to evaluate if a player has earned achievements. Using the achievement definitions
and player status, the backend uses a Lambda function to determine if a player has completed
the achievement requirements. In addition to tracking player status, earned status can affect
how the backend responds to game client requests for achievement information.

How achievements work 84

AWS GameKit Guide for Unreal Engine Developers

Achievement types

The AWS GameKit achievements game feature supports the following achievement types:

Single-step achievement

Also called a stateless achievement, a player earns this type in response to a single specific
event in gameplay, such as when they find a certain treasure item or unlocks a puzzle. Your
game client responds to the event by sending an update request to your achievements backend
Player status for stateless achievements is either locked (not earned) or unlocked (earned).

Multi-step achievement

Also called a stateful achievement, a player earns this type in response to a series of events in
gameplay. A stateful achievement definition specifies the number of steps that are required to
earn the achievement. When an event occurs, the game client sends an update request, with
a number, to the achievements backend, and the backend service responds by adding that
number to the player's current progress until the step requirement is reached and the player
earns the achievement. For example, the achievement "eat 1000 bananas" has a step value
of 1000. Each time a player eats a banana, the game client notifies the backend with a value
of "1", and the backend increments the player's status by 1 until it reaches 1000. With this
achievement type, you have the flexibility to design how you want to increment player progress.
You might add banana bunches that increment by 10 or mega-bunches that increment by 100.
Player status for a stateful achievement is locked and not started, locked and in progress, or
unlocked.

Secret achievement

This type is useful when you want to define achievements but not reveal them to players until
after they've earned them. For example, with a secret achievement such as "Expose the Nazi
mole before they defect", you can reward players without giving the end game away. The
achievements backend does not include secret achievements when responding to a game
client's request for achievement information until the player has earned them. You can add
or remove an achievement’s "secret" flag at any time. Secret achievements can be stateless or
stateful.

Hidden achievement

This type allows you to hide a defined achievement from your game. This is useful when you
want to stage an achievement for future release, such as for a special event. When responding

Achievement types 85

AWS GameKit Guide for Unreal Engine Developers

to requests from a game client, the achievements backend does not return information on
hidden achievements and does not track player status for them. You can add or remove an
achievement’s "hidden" flag at any time. Hidden achievements can be stateless or stateful.

Achievements workflow

Here's a high level description of how the achievement system works from the player/game client
perspective.

1. In your game, a player does something that fires an event. In response to the event, your game
client calls an AWS GameKit API operation to report player progress toward the achievement.
This call contains the following information: player ID, name of the achievement, and a
number value that represents what the player has done, such as eat ten bananas or slay a
dragon.

2. When the achievements backend receives the request, it updates the player's status for
the specified achievement. It then runs some built-in logic to determine if the player has
earned the achievement. This involves comparing the goal (as specified in the achievement
definition) to the player's current progress. If the player has reached the goal, the achievement
is unlocked.

3. The game client can call AWS GameKit API operations to get a player's status for a single
achievement or all achievements, and displays updated information to the player.

Achievements solution architecture

This topic offers a detailed description of the AWS solution that provides cloud-based backend
services to support the AWS GameKit achievements feature. You don't have to master this
information before using AWS GameKit to build the feature into your game and maintaining it.
However, it is useful in gaining a deeper understanding of the AWS services and resources that are
deployed for your game backend. You always have the option to view the backend components
directly in AWS and use them with other AWS services, such as for monitoring or analytics. If
you want to further customize or extend your game's backend services beyond what is available
through AWS GameKit, you need to understand the role of each component in the solution.

The achievements backend architecture manages two call flows:

• Call flow to manage achievement definitions. This flow is used in the AWS GameKit plugin to
configure the set of achievements that players can earn in the game.

Achievements workflow 86

AWS GameKit Guide for Unreal Engine Developers

• Call flow to manage player-related achievement actions and statuses.

The workflow sequence is similar for both flows:

1. A game client calls an achievements API operation, which prompts AWS GameKit to send a
request to the API Gateway endpoint. Amazon Cognito verifies the game client’s access token,
as described in Identity and authentication solution architecture. If the request involves player
achievement data, an Amazon Cognito authorizer verifies that the access token is valid for the
player as defined in the user pool.

2. If authentication is successful, the game client request is passed through to the relevant Lambda
function.

3. The Lambda function interacts with DynamoDB to store or retrieve data as requested.
Achievements definitions and player-related data are stored in two separate DynamoDB tables,
one for achievement definitions, and one for player-related actions.

Achievements services

All AWS GameKit solutions rely on a core set of AWS services, as described in Core services.

The following services are used specifically to manage achievements activity:

Amazon DynamoDB

AWS GameKit uses DynamoDB tables to store achievement definitions for the game and to track
each player's achievement status. By using DynamoDB to store this type of data supports frequent
read and write requests from game clients.

AWS Lambda

AWS GameKit uses Lambda functions to manage the process of storing and retrieving achievement
data in the DynamoDB tables. Another Lambda function runs the logic to determines when a
player successfully earns an achievement.

Amazon Simple Storage Service

AWS GameKit uses an Amazon S3 bucket to store achievement image files. Amazon S3 provides
durable object storage capabilities.

Amazon CloudFront

Achievements services 87

AWS GameKit Guide for Unreal Engine Developers

AWS GameKit uses CloudFront to publish achievement image files for display in your game.
CloudFront is a content delivery system that lets you cache content geographically near your
players to minimize latency when downloading the content.

Achievements data encryption

Player data is encrypted both in transit and at rest.

In transit, AWS GameKit uses transport layer security (TLS) 1.2 or later for communication between
a game frontend and backend components on AWS. All AWS GameKit game features use the
Amazon API Gateway service to accept and process API calls. Learn more in the API Gateway
Developer Guide, Data protection in transit.

At rest, player identity data is encrypted by the AWS services that the Achievement game feature
uses. These services comply with industry standards. Learn more about how these services handle
data encryption at rest:

• Amazon DynamoDB Developer Guide, DynamoDB encryption at rest

• Amazon S3 User Guide, Protecting data using encryption

• Amazon CloudFront Developer Guide, Data protection in Amazon CloudFront

Achievements configuration options

The configuration for your achievement game feature includes compiling your game's achievement
definitions. When defining an achievement, you can specify the following characteristics:

• Unique name for the achievement. (Required)

• Player-facing achievement name.

• Player-facing achievement description. You can provide separate description strings for locked
and unlocked states. When a game client requests achievement information for a player, AWS
GameKit returns the string based on whether or not the player has earned the achievement.

• URL for a player-facing image or icon. You can provide separate URLs for locked and unlocked
states. When a game client requests achievement information for a player, AWS GameKit returns
the URL based on whether or not the player has earned the achievement.

• Maximum value. This is the numeric value that must be reached for a player to earn the
achievement. For stateless achievements that require a single event to earn the achievement,
this value might be set at 1. For stateful achievements that track progression toward the

Achievements data encryption 88

https://docs.aws.amazon.com/apigateway/latest/developerguide/data-protection-encryption.html#data-protection-in-transit
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingEncryption.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/data-protection-summary.html

AWS GameKit Guide for Unreal Engine Developers

achievement, this value sets the required number, such as 1000 (for an achievement like "Ate
1000 bananas"). (Required)

• Points awarded. If the achievement awards game points when the achievement is earned, this
value indicates the number of points given to a player.

• The Is_stateful flag indicates if the achievement is stateful (true) or stateless (false). This flag
determines how the backend service evaluates the player's current status to determine whether
the player has earned the achievement.

• The Is_secret flag indicates when a game client can get the achievement information. When
this flag is set to true, information and player status is returned only if the player has earned the
achievement.

• The Is_hidden flag indicates when the achievement can be used in the game. When this flag is
set to true, no information is returned for this achievement and player status can't be updated.

• Sort order number. This optional value indicates the order in which achievement information is
returned when requested. It can be used to determine how achievements are listed in a game
client display.

Achievements callable actions

The AWS GameKit API provides the following actions for the achievements game feature.
After deploying AWS resources for achievements, your game frontend can use these calls to
communicate with the backend resources.

• UpdateAchievement() Updates a player's current status for an achievement, checks to see if
the player has met the requirements to earn the achievement, and, if so, sets the achievement to
"earned".

• GetAchievement Retrieves information, including a player's current status, for all viewable
achievements. Achievements are not viewable if they are flagged as hidden or if they are flagged
as secret and the player hasn't yet earned them.

• GetAchievement Retrieves information, including a player's current status, for a single
achievement, as specified by an achievement ID. This call returns all viewable achievements. It
does not return hidden or unearned secret achievements.

Add achievements to your project

Summary

Callable actions 89

AWS GameKit Guide for Unreal Engine Developers

Learn how to build a complete cloud-based achievements system and integrate it into a Unreal
Engine project. This topic guides developers through building backend services and then using the
AWS GameKit API to connect frontend code to the backend on AWS.

When you're ready to build the achievements feature for your game, follow these basic steps. If you
don't yet have AWS GameKit installed for your project, see Install the AWS GameKit plugin with
Unreal Engine and Set up the AWS GameKit plugin for your game.

Step 1. Configure the achievements game feature for your game project.

1. In the Unreal Editor toolbar, open Edit, Project Settings and go to the AwsGameKit plugin
section. Select the environment you want to work in and enter valid AWS credentials as
needed. For more details, see Set up the AWS GameKit plugin for your game.

2. Expand the Achievements section. For this game feature you must define the achievements
you want to include in your game. Choose the Configure button add or update achievement
definitions. All achievement data is cached locally until you choose to sync it with AWS, and
you can choose to save updates locally to use in later sessions.

You have several options for maintaining achievement definitions in the AWS GameKit plugin:

• Use the plugin UI to add achievement definitions. Entries are automatically cached locally.

• Download an achievements JSON template by choosing Get Template. You can edit it
directly and then upload to the plugin by choosing Import from Local File.

• Retrieve the cloud-saved achievement definitions by choosing Get Data from Cloud.

In each method, you are updating achievement definitions and saving them locally. When
you're ready to make an achievement accessible to your game, either deploy new AWS
resources for this feature or, if an Achievements backend has already been deployed, choose
Save Data to Cloud to sync your local updates with the cloud-based versions.

Step 2. Deploy AWS resources for your achievements backend.

1. While still in the AWS GameKit settings for Achievements, scroll down to the deployment
controls. Choose the AWS resource action Create. This action prompts AWS GameKit to deploy
the complete AWS solution for this feature's backend services. When deploying, AWS GameKit
connects to AWS to create all the AWS resources for the solution, using the configuration
template for the active environment.

Add achievements to your project 90

AWS GameKit Guide for Unreal Engine Developers

2. Deploying resources for identity and authentication typically takes 30 minutes to complete.
During this time, the feature's deployment status reads Deploying resources. You can track
the progress of your deployment status:

• In the Unreal Editor, open the output log window to monitor status messages, events, and
errors throughout the deployment.

• In the AWS Management Console, open the AWS CloudFormation service. In the Stacks view
you can watch as the Identity stack for your game project is deployed.

When deployment is complete, the feature's deployment status reads Deployed. Your game
backend for achievements is in place. You can make calls to it using the AWS GameKit API.

Note

NOTE: From this point on, you might begin incurring costs for this game feature. If
you're still in the AWS Free Tier window, you will only incur costs if you exceed free tier
limits.

3. When you've deployed the cloud backend for this feature, sync your achievements definitions
with the backend services on AWS. To upload new achievement data to the cloud, choose Save
Data. To download saved achievement data from the cloud to your local machine, choose Get
Latest.

Permisisons and version control for achievements definitions

By default, AWS GameKit users are given access permissions to save achievement
definitions to the cloud in the Development environment only. For instructions on how
to modify these user permissions, see Manage permissions for achievements.
AWS GameKit does not provide version control for achievement definition updates. For
teams development, we recommend that you manage definition updates through your
own version control system and restrict user permissions for uploading achievement
definitions to your cloud backend.

Step 3. Add achievements functionality to your game.

Create UI elements and add code for the achievement-related workflows as needed for your game.
See the plugin's achievements examples for illustration. Workflows might include:

Add achievements to your project 91

AWS GameKit Guide for Unreal Engine Developers

• Get all achievement information and player status

• GetAchievements()

• Get information and player status for a single achievement

• GetAchievement()

• Add a trigger to a game event that prompts an update for a player's achievement status

• UpdateAchievement()

Work with the achievements examples

The AWS GameKit plugin includes example assets for the achievements game feature.

Unreal Engine

The AWS GameKit plugin for Unreal Engine provides examples with C++ code, blueprints, and UI
components. You can access the example files in the Unreal Editor content browser.

• Work with the C++ examples

• Work with the Blueprint and UI examples

Work with the C++ examples

In the Unreal Editor content browser, find the example asset at the following location:

AwsGameKit C++ Classes > AwsGameKitEditor > Public > Achievements >
 AwsGameKitAchievementsExamples

This asset is a .cpp file. You can also find this file in the AWS GameKit plugin files,
located at ...\AwsGameKit\Source\AwsGameKitEditor\Private\Achievements
\AwsGameKitAchievementsExamples.cpp.

This example file contains sample code that illustrates how to call each of the identity and
authentication API actions. This file contains the basic set of runnable code and includes
detailed comments.

You can work with this example in two ways: view the code in your IDE, or experiment with the
API calls in Unreal Editor.

Work with the examples 92

AWS GameKit Guide for Unreal Engine Developers

To view or edit the example code:

• Double-click the AwsGameKitAchievementsExamples asset to open the file in your IDE.
You do not need to enter AWS credentials or deploy AWS resources before accessing this
file, however none of the API calls can work without deployed resources.

The example code includes a standard check to verify that AWS resources are deployed.

Note that, as a first step, the example code creates an instance of the
UAwsGameKitAchievementsCallableWrapper and initializes it. This must be done
before making any API calls.

To experiment with the example in Unreal Editor:

You must have AWS resources deployed for identity and authentication and you must submit
your valid AWS credentials in the AWS GameKit plugin project settings (see Set up the AWS
GameKit plugin for your game).

1. Drag the AwsGameKitAchievementsExamples asset into level in the view port. It doesn't
matter what level you add the asset to, this is just a mechanism that enables you to work
with the asset settings.

2. In the Editor's Details pane, all of the achievements API calls are available with API request
and response values.

3. To make an API call, enter some input values and click Call. The response is displayed in the
Return Value field.

4. Try running the following call sequences to simulate standard achievements scenarios:

• Retrieve all viewable achievement information and player status: Get Achievements.

• Retrieve information and player status for a single achievement: : Get Achievement.

• Update player status for a stateless achievement and verify earned status: Update
Achievement, Get Achievement. For a stateless achievement, update the current value to
"1", and then verify that the earned status has flipped to "true".

Work with the Blueprint and UI examples

In the Unreal Editor Content Browser, find the example assets at the following location:

Work with the examples 93

AWS GameKit Guide for Unreal Engine Developers

AwsGameKit Content > Achievements >

There are two example assets:

• BP_AwsGameKitAchievementsExamples

This asset is a basic blueprint that illustrates how you might add achievement-related
functionality to your game code.

Actions:

• To open the blueprint, double-click the asset.

• BP_AwsGameKitAchievementsExamplesUI

This asset includes a blueprint and sample UI objects for displaying achievement information
and player status.

Actions:

• To open the blueprint, double-click the asset.

To run the example, click Play.

Work with the examples 94

AWS GameKit Guide for Unreal Engine Developers

Launch your game with AWS GameKit features

When packaging a game project for distribution, there are some additional steps you must take to
ensure that the game is correctly set up to work with your game backend services on AWS. These
steps are required for any project that makes calls to the AWS GameKit API.

Topics

• Package a game project with AWS GameKit features

• Optimize your game for mobile

• Prepare your AWS GameKit backend for production

Package a game project with AWS GameKit features

When packaging a game project for distribution, there are some additional steps you must take to
ensure that the game is correctly set up to work with your game backend services on AWS. These
steps are required for any project that makes calls to the AWS GameKit API.

Topics

• Package a game for Windows or macOS

• Package a game for iOS

• Package a game for Android

Package a game for Windows or macOS

When packaging your game for distribution on Windows or macOS, complete the following tasks.

Unreal Engine

For Unreal Engine game projects, use the Unreal Engine project packaging instructions with the
following modifications.

1. Before you start the packaging setup process, verify your current AWS GameKit plugin
configuration. The Unreal packaging process uses whichever AWS GameKit configuration
settings are currently active. In the Unreal Editor toolbar, open Edit, Project Settings and
go to the AwsGameKit plugin section. In the Environment and Credentials section, verify
the selections for game title, environment, and region.

Package a game project 95

https://docs.unrealengine.com/4.27/en-US/Basics/Projects/Packaging/

AWS GameKit Guide for Unreal Engine Developers

2. Complete the Unreal packaging step "Setting a Game Default Map".

3. Add the AWS GameKit configuration in the packaging settings.

a. In the Unreal Editor toolbar, choose Edit, Project Settings, Packaging, and expand the
Packaging advanced settings, as shown.

b. In Additional Non-Asset Directories to Copy, add an array element and enter the
value GameKitConfig.

Package a game for Windows or macOS 96

https://docs.unrealengine.com/4.27/en-US/Basics/Projects/Packaging/#settingagamedefaultmap

AWS GameKit Guide for Unreal Engine Developers

4. When you're ready to package your game for shipping, use the Unreal automation tool's
BuildCookRun command. Exit the Unreal Editor, open a command prompt, and run the
following command (modified for your game project). If you create your game packages in
the Unreal Editor, the AWS GameKit plugin uses the .dll files in the game's Binaries\
directory instead of the Shipping build configuration.

To package a game for Windows (from a Windows device):

"C:\Program Files\Epic Games\UE_4.27\Engine\Binaries\DotNET\AutomationTool.exe"
 -ScriptsForProject="[PATH_TO_GAME].uproject" BuildCookRun -nocompileeditor
 -installed -nop4 -project="[PATH_TO_GAME].uproject" -cook -stage -archive
 -archivedirectory=[DESTINATION_DIRECTORY_ROOT] -package -ue4exe="C:
\Program Files\Epic Games\UE_4.27\Engine\Binaries\Win64\UE4Editor-Cmd.exe"
 -ddc=InstalledDerivedDataBackendGraph -pak -prereqs -nodebuginfo -
targetplatform=Win64 -build -target=[UNREAL_PROJECT_NAME] -clientconfig=Shipping
 -utf8output

• [PATH_TO_GAME] – The directory path to your game project files (for example: C:/
Unreal Projects/MagicChickenGame/MagicChickenGame).

• [DESTINATION_DIRECTORY_ROOT] – A target location for the completed packaged
product (for example: C:\Archive).

Package a game for Windows or macOS 97

AWS GameKit Guide for Unreal Engine Developers

• [UNREAL_PROJECT_NAME] – The name associated with your Unreal game project (for
example: MagicChickenGame).

To package a game for macOS (from a macOS device):

/Users/Shared/Epic\ Games/UE_4.27/Engine/Build/BatchFiles/RunUAT.sh -
ScriptsForProject="[PATH_TO_GAME].uproject" BuildCookRun -nocompileeditor -
installed -nop4 -project="[PATH_TO_GAME].uproject" -cook -stage -archive -
archivedirectory=[DESTINATION_DIRECTORY_ROOT] -package -ue4exe="/Users/Shared/
Epic Games/UE_4.27/Engine/Binaries/Mac/UE4Editor.app/Contents/MacOS/UE4Editor"
 -compressed -ddc=InstalledDerivedDataBackendGraph -pak -prereqs -nodebuginfo -
targetplatform=Mac -build -target=[UNREAL_PROJECT_NAME] -clientconfig=Shipping -
utf8output

• [PATH_TO_GAME] – The directory path to your game project files (for example:
/Users/amansa/Documents/Unreal\ Projects/MagicChickenGame/
MagicChickenGame).

• [DESTINATION_DIRECTORY_ROOT] – A target location for the completed packaged
product (for example: /Users/amansa/Documents/Unreal\ Projects/Archive).

• [UNREAL_PROJECT_NAME] – The name associated with your Unreal game project (for
example: MagicChickenGame).

Package a game for iOS

When packaging your game for iOS, complete the following tasks.

Unreal Engine

For Unreal Engine game projects, follow the Unreal Engine project packaging instructions, with
the following modifications.

1. Before you start the packaging setup process, verify your current AWS GameKit plugin
configuration. The Unreal packaging process will use whichever AWS GameKit configuration
settings are currently active. In the Unreal Editor toolbar, open Edit, Project Settings and
go to the AwsGameKit plugin section. In the Environment and Credentials section, verify
the selections for game title, environment, and region.

2. Complete the Unreal packaging step "Setting a Game Default Map".

Package a game for iOS 98

https://docs.unrealengine.com/4.27/en-US/Basics/Projects/Packaging/
https://docs.unrealengine.com/4.27/en-US/Basics/Projects/Packaging/#settingagamedefaultmap

AWS GameKit Guide for Unreal Engine Developers

3. Add the AWS GameKit configuration in the packaging settings.

a. In the Unreal Editor toolbar, choose Edit, Project Settings, Packaging, and expand the
Packaging advanced settings, as shown.

b. In Additional Non-Asset Directories to Package, add an array element and enter the
directory certs. This directory is located in your game project files under Content.

c. In Additional Non-Asset Directories to Copy, add an array element and enter the
directory GameKitConfig. This directory is located in your game project files under
Content.

Package a game for iOS 99

AWS GameKit Guide for Unreal Engine Developers

4. Open the Target.cs file, located in the Source directory of your game project files. Add
the following lines to the target constructor.

if (Target.Platform == UnrealTargetPlatform.IOS){
 bOverrideBuildEnvironment = true;
 GlobalDefinitions.Add("FORCE_ANSI_ALLOCATOR=1");}

This update forces the use of FMallocAnsi when building for iOS. See the Unreal Engine
documentation topic Targets for more information on UnrealBuildTool target files.

5. When you're ready to package your game for shipping, continue to the Unreal packaging
step "Creating Packages" to package the game for iOS.

6. Connect your iOS device, and select Launch.

Package a game for Android

When packaging your game for Android, complete the following tasks.

Package a game for Android 100

https://docs.unrealengine.com/4.27/en-US/ProductionPipelines/BuildTools/UnrealBuildTool/TargetFiles/
https://docs.unrealengine.com/4.27/en-US/Basics/Projects/Packaging/#creatingpackages

AWS GameKit Guide for Unreal Engine Developers

Unreal Engine

For Unreal Engine game projects, follow the Unreal Engine project packaging instructions, with
the following modifications.

1. Before you start the packaging setup process, verify your current AWS GameKit plugin
configuration. The Unreal packaging process will use whichever AWS GameKit configuration
settings are currently active. In the Unreal Editor toolbar, open Edit, Project Settings and
go to the AwsGameKit plugin section. In the Environment and Credentials section, verify
the selections for game title, environment, and region.

2. Complete the Unreal packaging step "Setting a Game Default Map".

3. Add the AWS GameKit configuration in the packaging settings.

a. In the Unreal Editor toolbar, choose Edit, Project Settings, Packaging, and expand the
Packaging advanced settings, as shown.

b. In Additional Non-Asset Directories to Package, add an array element and enter the
value certs.

c. In Additional Non-Asset Directories to Copy, add an array element and enter the
value GameKitConfig.

Package a game for Android 101

https://docs.unrealengine.com/4.27/en-US/Basics/Projects/Packaging/
https://docs.unrealengine.com/4.27/en-US/Basics/Projects/Packaging/#settingagamedefaultmap

AWS GameKit Guide for Unreal Engine Developers

4. Configure the game project for Android. In the Unreal Editor, open Edit, Project Settings,
Platforms, Android. If the project hasn't yet been configured, choose Configure Now.

5. In the APK Packaging section, set the following values:

Package a game for Android 102

AWS GameKit Guide for Unreal Engine Developers

Package a game for Android 103

AWS GameKit Guide for Unreal Engine Developers

a. Set Target SDK version to 24.

Note

AWS GameKit has been tested on this SDK version. You might need to use
another version depending on the device you're building for.

b. Select the option Use ExternalFilesDir for UE4Game files.

6. In the Build section, select the option Support armv7.

7. In the Advanced APK Packaging section, under Extra Permissions add array elements with
the following values:

• android.permission.WRITE_EXTERNAL_STORAGE

• android.permission.READ_EXTERNAL_STORAGE

8. Specify the Android SDK for your game project. In the Unreal Editor, open Edit, Project
Settings, Platforms, Android SDK.

Package a game for Android 104

AWS GameKit Guide for Unreal Engine Developers

a. Set the following directory locations to match your installation:

• Location of Android SDK

• Location of Android NDK

• Location of Java

b. Set SDK API Level to the value matchndk.

c. Set NDK API Level to the value android-24.

9. When you're ready to package your game for shipping, continue on to the Unreal packaging
step "Creating Packages" to package the game for the Android platform of your choice.

10. Connect your Android device, and select Launch.

Troubleshoot packaging issues

Missing script error

If you get an error message concerning a missing script, verify that you are using version 30.0.3
of the build tools.

API level errors

If you get the following errors, install Android API Level 29 in Android Studio and package
again.

UATHelper: Packaging (Android (ASTC)): …\GameActivity.java:3217: error: cannot find
 symbol
UATHelper: Packaging (Android (ASTC)):
 powerManager.addThermalStatusListener(getMainExecutor(), new
 PowerManager.OnThermalStatusChangedListener()

Package a game for Android 105

https://docs.unrealengine.com/4.27/en-US/Basics/Projects/Packaging/#creatingpackages

AWS GameKit Guide for Unreal Engine Developers

Optimize your game for mobile

If you're planning to distribute your game as a mobile app, we recommend that you consider these
optimizations. Make these updates before you package your game project for mobile.

Set shutdown behavior

Shut down AWS GameKit components whenever your app is running in the background.

Unreal Engine

Add steps to your code to shut down AWS GameKit activity when the game is deactivated due
to higher-priority activity, such as a phone call or text.

For games that use blueprint visual code:

1. In the Unreal Editor, open Edit, Project Settings, Maps and Modes. Set Game Instance
Class to PlatformGameInstance.

2. Add logic ending in a AWS GameKit shutdown, as shown in the following blueprint
example.

Optimize your game for mobile 106

AWS GameKit Guide for Unreal Engine Developers

For games that use C++ code:

• Add the following code and call it before exiting the game.

FAwsGameKitCoreModule* coreModule =
 FModuleManager::GetModulePtr<FAwsGameKitCoreModule>("AwsGameKitCore");
FAwsGameKitRuntimeModule* runtimeModule =
 FModuleManager::GetModulePtr<FAwsGameKitRuntimeModule>("AwsGameKitRuntime");
runtimeModule->ShutdownModule();
coreModule->ShutdownModule();

Note

If you want your game on iOS to exit when the app is moved to the background, in your
project settings iOS platform, add the following key to Additional Plist Data:

<key>UIApplicationExitsOnSuspend</key><true/>

Persist cache for user gameplay data

If your game uses the user gameplay data feature and is intended for distribution on mobile
devices, you must make the following modifications to your game. These changes ensure that
the internal request cache for the user gameplay data feature is persisted in the event of a AWS
GameKit shutdown. The cache contains updates to user gameplay data that were not synced to
the cloud before a shutdown, and ensures that these updates can be made when the app starts up
again.

Make the following modifications:

• Use the ApplicationWillDeactivate delegate to persist the cache.

• Use the ApplicationWillReactivate delegate to load the cache after a player has logged in.

Persist cache for user gameplay data 107

AWS GameKit Guide for Unreal Engine Developers

Prepare your AWS GameKit backend for production

As you prepare your project for release, use this guide to help get your AWS GameKit backend
ready for production-level loads.

The AWS GameKit solutions for each game feature use a selection of AWS services and default
configuration values that are best suited for project development and testing stages. When getting
ready for production, its a good idea to fine tune your backend services. In particular, consider
adjusting capacity to support a product in production and adding service features to support live
players (such as monitoring). Some of these changes involve additional costs.

This topic provides recommendations and instructions for optimizing the core AWS services of your
AWS GameKit backend.

Analyze feature usage patterns

We highly recommend that you analyze the usage and load patterns for each AWS GameKit feature
in the development and testing stages. The AWS GameKit GitHub repo includes a starter python
script for automating usage and load tests. Each game has different requirements for backend
testing, based on the project's included AWS GameKit features and expected usage patterns. For
example, if your project uses a lot of achievements but stores a small amount of user gameplay
data, you probably want to focus on stressing the backend APIs for achievements.

Prepare your AWS GameKit backend for production 108

https://github.com/aws/aws-gamekit/blob/main/aws_gamekit_py/test_gamekit.py
https://github.com/aws/aws-gamekit/blob/main/aws_gamekit_py/test_gamekit.py

AWS GameKit Guide for Unreal Engine Developers

When putting your testing strategy into practice, get the usage data collected in the custom AWS
GameKit dashboards for each feature.

Set up monitoring dashboards

Activate monitoring dashboards in your test and production environments. Monitoring dashboards
are critical for helping you make data-driven decisions about your game's backend on AWS Cloud.
Use them to track how usage changes over time and make adjustments to maintain system health
and cost efficiency.

AWS GameKit comes with detailed custom Amazon CloudWatch dashboards for each cloud feature.
You can activate or deactivate each feature dashboard and access them directly from the AWS
GameKit settings in your game engine. For help with using the dashboards, see Work with game
feature dashboards. When testing or analyzing usage patterns, pay particular attention to these
metrics:

AWS Lambda

• Latency (P99, P95 and P90)

• Concurrent executions

• Function errors

Amazon API Gateway

• Latency (P99, P95 and P90)

• 4xx and 5xx errors

Amazon DynamoDB

• Throttle

• Table request latency

Amazon Cognito

• Security

Set up monitoring dashboards 109

AWS GameKit Guide for Unreal Engine Developers

We also recommend that you create alarms for any metrics that are important to your game. You
can create these alarms in CloudWatch that notify you when a metric crosses a threshold. For
help setting up alarms, see the Amazon CloudWatch User Guide topic Using Amazon CloudWatch
alarms.

Modify your AWS CloudFormation templates

For each AWS GameKit feature that your game uses, make the following pre-production updates
to the feature's AWS CloudFormation template. We recommend that you make these proposed
changes before you begin deploying resources to the AWS GameKit environment that you plan to
use for production (either Production or a custom environment).

• Add an IsProduction condition

• Update AWS Lambda settings

• Update Amazon Cognito settings

• Update Amazon DynamoDB settings

• Set up a custom authorizer

To locate AWS CloudFormation templates:

If you haven't yet deployed resources in your production environment:

Make changes to the base AWS CloudFormation templates. Then, when you configure and create
new AWS resources in a production environment, AWS GameKit automatically uses the updated
base templates for your game. To locate the AWS GameKit base templates:

• In your AWS GameKit plugin for Unreal install location:

 [install location]\Plugins\AwsGameKit\Resources\cloudResources\cloudformation\

• In your Unity project files:

[Unity project]Packages\com.amazonaws.gamekit\Editor]CloudResources\.BaseFiles

If you've already created AWS resources in your production environment:

Project-specific AWS CloudFormation templates already exist. Make updates to these existing
templates and then redeploy each updated feature. To locate your project-specific templates:

Modify your AWS CloudFormation templates 110

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

AWS GameKit Guide for Unreal Engine Developers

• In your Unreal game project files:

 [Unreal project]\[GameKit game title]\[environment]\cloudformation\

• In your Unity project files:

[Unity project]\Packages\com.amazonaws.gamekit\Editor]CloudResources
\InstanceFiles[GameKit project alias]\[environment]\[region]\

To troubleshoot AWS CloudFormation issues:

If you have issues related to AWS CloudFormation templates when deploying your AWS GameKit
features, see the AWS CloudFormation User Guide topic Troubleshooting CloudFormation for help
with common issues.

Add an IsProduction condition

For each template, add an IsProduction condition.

• In the template, locate the Parameters section and add a Conditions section below it, as
shown in the following example. Then, for other production-specific template updates, include
the IsProduction condition.

```
Parameters: 
  ...
Conditions: 
   # This condition will toggle certain settings on/off for Production 
  IsProduction: !Equals [ { Ref: GameKitEnv }, 'prd' ]
```

Update AWS Lambda settings

All AWS GameKit features use AWS Lambda, each with a different usage pattern. Make the
following updates to the Lambda configuration settings in each template. For help with
AWS CloudFormation syntax for Lambda, see these AWS CloudFormation User Guide topics:
AWS::Lambda::Function and AWS::Lambda::Version.

Modify your AWS CloudFormation templates 111

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/troubleshooting.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-version.html

AWS GameKit Guide for Unreal Engine Developers

• Update MemorySize setting – Depending on your usage pattern, consider increasing memory
from the default 128 MB. For example:

 MyLambdaFunction:
 Type: 'AWS::Lambda::Function'
 Properties:
 # Conditionally set the memory size to 256 for Production and 128 elsewhere
 !If
 - IsProduction
 - MemorySize: 256
 - MemorySize: 128

• Add ProvisionedConcurrency setting – This setting initializes a requested number
of execution environments so that they're prepared to respond to your function's
invocations. Configuring provisioned concurrency incurs charges to your AWS account.
To configure provisioned concurrency, create a Lambda function version (a versioned
copy of a Lambda function), add a ProvisionedConcurrencyConfig section, and set
ProvisionedConcurrentExecutions to a value that can handle your production load. For
details, see the AWS Lambda Developer Guide topic Lambda function versions. For example:

 MyVersionedLambdaFunction:
 # This configuration creates a Lambda Version with Provisioned Concurrency for
 Production
 Type: 'AWS::Lambda::Version'
 DependsOn: MyLambdaFunction
 Properties:
 FunctionName: !Ref MyLambdaFunctionName
 Description: My Lambda Function With Provisioned Concurrency
 ProvisionedConcurrencyConfig:
 !If
 - IsProduction
 - ProvisionedConcurrentExecutions: 4
 - Ref: AWS::NoValue

Make sure to update all references to the function so that they point to the versioned
function. You can do this by changing the line ${MyLambdaFunction.Arn} to
${MyLambdaFunction.Arn}:${MyVersionedLambdaFunction.Version}.

Modify your AWS CloudFormation templates 112

https://docs.aws.amazon.com/lambda/latest/dg/configuration-versions.html

AWS GameKit Guide for Unreal Engine Developers

Update Amazon Cognito settings

The AWS GameKit feature identity and authentication relies on Amazon Cognito to handle user
registration and login workflows. Consider the following updates for production. For help with
AWS CloudFormation syntax for Lambda, see these AWS CloudFormation User Guide topics:
AWS::Cognito::UserPool.

• Turn on AdvancedSecurityMode feature – This feature provides advanced security risk detection.
To use this feature, modify your AWS CloudFormation template for identity and authentication
in the user pool settings as follows:

GameKitUserPool:
 Type: 'AWS::Cognito::UserPool'
 Properties:
 UserPoolName: !Ref CognitoUserPoolName
 Schema:
 ...
 Policies:
 ...
 AutoVerifiedAttributes:
 ...
 AliasAttributes:
 ...
 LambdaConfig:
 ...
 UserPoolAddOns:
 # Set AdvancedSecurityMode to AUDIT
 !If
 - IsProduction
 - AdvancedSecurityMode: AUDIT
 - Ref: AWS::NoValue

Update Amazon DynamoDB settings

Several AWS GameKit features use DynamoDB, each with a different usage pattern. Make the
following updates to the DynamoDB configuration settings in each template. For help with
AWS CloudFormation syntax for DynamoDB, see these AWS CloudFormation User Guide topics:
AWS::DynamoDB::Table and AWS::ApplicationAutoScaling::ScalableTarget.

Modify your AWS CloudFormation templates 113

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cognito-userpool.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-applicationautoscaling-scalabletarget.html

AWS GameKit Guide for Unreal Engine Developers

• Turn on automatic scaling – Use the DynamoDB autoscaling feature for read and write capacity
units. With this feature, your product can handle increased production loads as needed by
adjusting capacity based on usage metrics. For more details on DynamoDB autoscaling, see the
Amazon DynamoDB Developer Guide topic Managing Throughput Capacity Automatically with
DynamoDB Auto Scaling.

To use autoscaling, create the following new sections for each DynamoDB table that requires it.
Provide units and capacities that are appropriate for your expected load.

• MyTableReadCapacityScalableTarget

• MyTableReadScalingPolicy

• MyTableWriteCapacityScalableTarget

• MyTableWriteScalingPolicy

For example:

MyTable:
 Type: 'AWS::DynamoDB::Table'
 Properties:
 ...
 BillingMode: !If [IsProduction, PROVISIONED, PAY_PER_REQUEST]
 ProvisionedThroughput:
 !If
 - IsProduction
 - ReadCapacityUnits: 20
 WriteCapacityUnits: 20
 - Ref: AWS::NoValue
 TableName: !Ref MyTableName
 MyTableReadCapacityScalableTarget:
 Type: "AWS::ApplicationAutoScaling::ScalableTarget"
 DependsOn: MyTable
 Condition: IsProduction
 Properties:
 MaxCapacity: 200
 MinCapacity: 20
 ResourceId: !Sub table/${MyTableName}
 RoleARN: !Sub arn:aws:iam::${AWS::AccountId}:role/aws-
service-role/dynamodb.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_DynamoDBTable
 ScalableDimension: "dynamodb:table:ReadCapacityUnits"
 ServiceNamespace: dynamodb
 MyTableReadScalingPolicy:

Modify your AWS CloudFormation templates 114

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html

AWS GameKit Guide for Unreal Engine Developers

 Type: "AWS::ApplicationAutoScaling::ScalingPolicy"
 DependsOn: MyTable
 Condition: IsProduction
 Properties:
 PolicyName: ReadAutoScalingPolicy
 PolicyType: TargetTrackingScaling
 ScalingTargetId:
 Ref: MyTableReadCapacityScalableTarget
 TargetTrackingScalingPolicyConfiguration:
 TargetValue: 70
 ScaleInCooldown: 60
 ScaleOutCooldown: 60
 PredefinedMetricSpecification:
 PredefinedMetricType: DynamoDBReadCapacityUtilization
 MyTableWriteCapacityScalableTarget:
 Type: "AWS::ApplicationAutoScaling::ScalableTarget"
 DependsOn: MyTable
 Condition: IsProduction
 Properties:
 MaxCapacity: 200
 MinCapacity: 20
 ResourceId: !Sub table/${MyTableName}
 RoleARN: !Sub arn:aws:iam::${AWS::AccountId}:role/aws-
service-role/dynamodb.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_DynamoDBTable
 ScalableDimension: "dynamodb:table:WriteCapacityUnits"
 ServiceNamespace: dynamodb
 MyTableWriteScalingPolicy:
 Type: "AWS::ApplicationAutoScaling::ScalingPolicy"
 DependsOn: MyTable
 Condition: IsProduction
 Properties:
 PolicyName: WriteAutoScalingPolicy
 PolicyType: TargetTrackingScaling
 ScalingTargetId:
 Ref: MyTablWriteCapacityScalableTarget
 TargetTrackingScalingPolicyConfiguration:
 TargetValue: 70
 ScaleInCooldown: 60
 ScaleOutCooldown: 60
 PredefinedMetricSpecification:
 PredefinedMetricType: DynamoDBWriteCapacityUtilization

Modify your AWS CloudFormation templates 115

AWS GameKit Guide for Unreal Engine Developers

For another example, see the AWS GameKit base template for user gameplay data. This feature
has DynamoDB autoscaling enabled by default for the Production environment.

• For games with large workloads and a high number of consumed read units, consider using
DynamoDB Accelerator. For more information on this feature, see Amazon DynamoDB
Accelerator (DAX).

Set up a custom authorizer

If you're using a separate service (custom or third-party) for player login and authentication,
set up your AWS GameKit backend to use a custom authorizer. Modify the AWS
CloudFormation parameters file for the identity and authentication feature ([GameKit cloud
templates]\identity\parameters.yml).

• Set UseThirdPartyIdentityProvider to TRUE.

• Provide a value for JwksThirdPartyUri.

Make these changes in the parameters.yml file for every AWS GameKit feature that your
game uses. You must make these changes before you deploy AWS resources in your production
environment for the identity and authentication feature.

Increase service quotas

Depending on your game's expected usage load, consider requesting the following service quota
increases. Most AWS services have quotas, which might impact your game's performance at high
usage loads.

• Amazon API Gateway – Increase "requests per second" (per AWS account per region). For details
on API Gateway account-level limits and to request an increase, see this API Gateway Developer
Guide topic Amazon API Gateway quotas and important notes.

• AWS Lambda – Increase "concurrent executions". For details and to request an increase, see
Lambda quotas.

• AWS Key Management Service – Increase "requests-per second". For details and to request an
increase, see AWS KMS request quotas.

Increase service quotas 116

https://aws.amazon.com/dynamodb/dax
https://aws.amazon.com/dynamodb/dax
https://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/kms/latest/developerguide/requests-per-second.html

AWS GameKit Guide for Unreal Engine Developers

Customize player registration email

If your game uses the identity and authentication feature with Amazon Cognito pools, Amazon
Cognito automatically sends a verification email to new players when they register in your game.
You have the option to customize the default text for this email.

To customize your registration verification email for players:

1. Open the AWS Management Console for Amazon Cognito, and select the option Manage User
Pools.

2. Select the name of the user pool for the production version of your game. For GameKit, user
pool names follow the pattern gamekit_[environment]_[game title]_UserPool. For
example: gamekit_prod_magicchicken_UserPool.

3. With the user pool settings displayed, in the left side navigation, choose Message
customizations.

4. Go to the section titled Do you want to customize your email verification message?

5. In this section, choose the code option, which directs Amazon Cognito to provide a verification
code value to your players, and enter a custom email subject line and message. Be sure to
position the verification code placeholder appropriately in your custom message. For more
information, including maximum lengths, see the Amazon Cognito Developer Guide topic
Customizing email verification messages.

6. When you're finished, select Save changes.

Add optional services

Consider taking advantage of the following optional services for your project. These services aren't
included in the base templates for AWS GameKit features, but you can add them at any time.

Amazon Simple Email Service

Use Amazon Simple Email Service (Amazon SES) to send player registration verification emails
from a custom email address instead of the default address used by Amazon Cognito. For details,
see the following topics:

• Authorizing Amazon Cognito to send Amazon SES email on your behalf, Amazon Cognito
Developer Guide

Customize player registration email 117

console.aws.amazon.com
https://docs.aws.amazon.com/cognito-user-pool-settings-email-verification-message-customization.html
https://docs.aws.amazon.com/cognito-user-pool-settings-email-verification-message-customization.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pool-settings-ses-authorization-to-send-email.html

AWS GameKit Guide for Unreal Engine Developers

• Amazon Simple Email Service Developer Guide

AWS Web Application Firewall

AWS Web Application Firewall (AWS WAF) helps protect against common web-based exploits
that affect availability, compromise security, and consume excessive resources. For production
deployments, we recommend enabling AWS WAF. Follow these steps before you deploy any other
features to the production environment.

To add AWS WAF:

1. Update IAM permissions for AWS GameKit users. Users who deploy AWS resources that use
AWS WAF must have AWS WAF permissions. Create a new permission policy with the following
syntax, and attach the new policy to IAM user groups. For details on creating permissions
policies for AWS GameKit, see Set up a user with AWS GameKit access.

This syntax creates AWS WAF WebACL with the following rules:

• Core rule set (CRS) (see Baseline rule groups, AWS WAF Developer Guide

• SQL injection rule set (see Use-case specific rule groups, AWS WAF Developer Guide

• IP reputation rule set (see IP reputation rule groups, AWS WAF Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "apigateway:SetWebACL",
 "wafv2:AssociateWebACL",
 "wafv2:CreateIPSet",
 "wafv2:CreateRegexPatternSet",
 "wafv2:CreateRuleGroup",
 "wafv2:CreateWebACL",
 "wafv2:DeleteIPSet",
 "wafv2:DeleteLoggingConfiguration",
 "wafv2:DeleteRegexPatternSet",
 "wafv2:DeleteRuleGroup",
 "wafv2:DeleteWebACL",
 "wafv2:DisassociateWebACL",

Add optional services 118

https://docs.aws.amazon.com/ses/latest/dg/Welcome.html
https://docs.aws.amazon.com/waf/latest/developerguide/aws-managed-rule-groups-baseline.html
https://docs.aws.amazon.com/waf/latest/developerguide/aws-managed-rule-groups-use-case.html
https://docs.aws.amazon.com/waf/latest/developerguide/aws-managed-rule-groups-ip-rep.html

AWS GameKit Guide for Unreal Engine Developers

 "wafv2:GetWebACL",
 "wafv2:GetWebACLForResource",
 "wafv2:ListTagsForResource"
],
 "Resource": "*"
 }
]
}

2. Update your game's main AWS CloudFormation template. For help with AWS CloudFormation
syntax for AWS WAF, see these AWS CloudFormation User Guide topics: AWS::WAFv2::WebACL
and AWS::WAFv2::WebACLAssociation.

To locate your AWS CloudFormation templates, see Modify your AWS CloudFormation
templates. The main template is [GameKit cloud templates]\main
\cloudformation.yml.

Add the following syntax to the Resources section:

MainWAFWebAcl:
 Type: AWS::WAFv2::WebACL
 Properties:
 Name: !Sub 'gamekit_${GameKitEnv}_${GameKitGameName}_waf_webacl'
 Description: !Sub 'GameKit ${GameKitEnv} Main stack WebACL for
 ${GameKitGameName}'
 Scope: REGIONAL
 DefaultAction:
 Allow: {}
 VisibilityConfig:
 SampledRequestsEnabled: true
 CloudWatchMetricsEnabled: true
 MetricName: !Sub gamekit_${GameKitEnv}_${GameKitGameName}_WAF_WebACL
 Rules:
 - Name: AWS-Common-Rule
 Priority: 1
 OverrideAction:
 Count: {}
 Statement:
 ManagedRuleGroupStatement:
 VendorName: AWS
 Name: AWSManagedRulesCommonRuleSet
 VisibilityConfig:
 SampledRequestsEnabled: true

Add optional services 119

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-wafv2-webacl.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-wafv2-webaclassociation.html

AWS GameKit Guide for Unreal Engine Developers

 CloudWatchMetricsEnabled: true
 MetricName: !Sub gamekit_${GameKitEnv}_
${GameKitGameName}_AWS_Common_Rule
 - Name: AWS-SQLInjection-Rule
 Priority: 2
 OverrideAction:
 Count: {}
 Statement:
 ManagedRuleGroupStatement:
 VendorName: AWS
 Name: AWSManagedRulesSQLiRuleSet
 VisibilityConfig:
 SampledRequestsEnabled: true
 CloudWatchMetricsEnabled: true
 MetricName: !Sub gamekit_${GameKitEnv}_
${GameKitGameName}_AWS_SQLInjection_Rule
 - Name: AWS-IPReputation-Rule
 Priority: 3
 OverrideAction:
 Count: {}
 Statement:
 ManagedRuleGroupStatement:
 VendorName: AWS
 Name: AWSManagedRulesAmazonIpReputationList
 VisibilityConfig:
 SampledRequestsEnabled: true
 CloudWatchMetricsEnabled: true
 MetricName: !Sub gamekit_${GameKitEnv}_
${GameKitGameName}_AWS_IPReputation_Rule
 Capacity: 1500
 MainWebAclRestAssociation:
 Type: AWS::WAFv2::WebACLAssociation
 Properties:
 ResourceArn: !Sub
 - 'arn:aws:apigateway:${AWS::Region}::/restapis/${RestApi}/stages/${Stage}'
 - Stage: !Ref MainDeploymentStage
 WebACLArn: !GetAtt MainWAFWebAcl.Arn

3. Deploy or redeploy any AWS GameKit feature. This action automatically redeploys the main
stack with your latest AWS WAF changes.

Add optional services 120

AWS GameKit Guide for Unreal Engine Developers

AWS Shield

AWS Shield Standard provides protection against the most frequently occurring network and
transport layer DDoS attacks that target a web site or application. This protection is on by default.
AWS Shield Advanced is a paid service that provides additional protection for internet-facing
applications that run on Amazon Elastic Compute Cloud (Amazon EC2), Elastic Load Balancing
(ELB), Amazon CloudFront, Global Accelerator, and Amazon Route 53. For information on costs, see
AWS Shield Pricing.

To turn on AWS Shield Advanced, you have two options:

• Use the AWS Management Console for AWS Shield to configure you coverage.

• Update your AWS CloudFormation templates as described in the AWS CloudFormation User
Guide topic AWS::FMS::Policy (see examples).

Adjust usage of AWS GameKit client API

For the user gameplay data feature, when calling the AWS GameKit API with large numbers of
bundles or items (in the order of hundreds), there is the potential for HTTP request timeouts. Ways
to mitigate timeout risks include:

• Make API calls with data in smaller batches.

• Set up bundles for users at account creation time.

• Increase the value of ClientTimeoutSeconds in FUserGameplayDataClientSettings.

Adjust usage of AWS GameKit client API 121

https://aws.amazon.com/shield/pricing/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-fms-policy.html

AWS GameKit Guide for Unreal Engine Developers

Working with AWS resources

When you use the AWS GameKit plugin to deploy AWS resources to host backend services for a
game feature, AWS GameKit creates and manages updates for these resources by using the AWS
CloudFormation service.

AWS GameKit takes your game feature configuration settings and uses this information to build an
AWS CloudFormation template for the game feature's backend solution. The AWS CloudFormation
template describes the set of AWS resources in the solution, and AWS CloudFormation uses this
template to deploy resource stacks to support AWS GameKit game features.

You have the option to view and/or modify AWS GameKit-created templates and resource stacks
directly by using AWS tools such as the AWS Management Console or the AWS Command Line
Interface (AWS CLI).

Topics

• View AWS templates and resources

• Update AWS templates and resources

View AWS templates and resources

You can use the AWS Management Console to view the AWS CloudFormation templates and
resource stacks that AWS GameKit generates for your game features.

Viewing an AWS resource stack

1. Open the AWS CloudFormation console. When you sign in to the console, use the same AWS
user that you used in the AWS GameKit plugin to deploy the resources. The AWS user must
have sign-in credentials, which are different from the security credentials that you need in your
game engine.

2. Open the Stacks page. If the AWS CloudFormation console doesn't immediately open to this
page, go to the left navigation pane and choose Stacks. The Stacks page displays all of the
resource stacks that your AWS account owns.

3. In the AWS CloudFormation console, use the AWS Region control to select the Region where
your AWS GameKit resources are deployed.

View AWS resources 122

https://console.aws.amazon.com/cloudformation/home

AWS GameKit Guide for Unreal Engine Developers

4. From the listed stacks, locate the stack you want to view.

5. Open the stack name that ends in the name of a feature, such as "Identity". The Stack
details page contains general information about the stack. You can access the current AWS
CloudFormation template configuration, view the list of AWS resources in the stack, and open
an event log that tracks activity related to the stack resources and template.

To view AWS resources for a AWS GameKit feature

• In the AWS CloudFormation console, Stack page, the resource list includes a physical ID link for
every deployed AWS resource that is currently in the stack. Use these links to open the service
console for a resource and get more information about it.

For example, in the Identity/Authentication feature stack, you can follow the physical ID link
for the user pool resource. This link opens the Amazon Cognito service console, where you can
explore the user pool resource in greater detail.

Update AWS templates and resources

Summary

You can access your AWS GameKit-deployed AWS resources directly using AWS tools such as the
AWS Management Console. If you update these resources or their configuration templates directly,
be aware that you can introduce errors into your AWS GameKit game features. This topic is for
developers who want to use AWS tools to gain greater insight about their game backend components
and understand how any updates might affect their game features.

If you work exclusively in the AWS GameKit plugin, your AWS GameKit-created templates and
resources on AWS will always remain in alignment with your feature configurations. If you make
changes to the AWS CloudFormation templates and resources outside of the plugin, they run the
risk of falling out of alignment, causing conflicts and unanticipated behavior. For this reason, we
recommend that you avoid updating your AWS GameKit-created templates and resources if you
plan to continue using the plugin.

If you decide to update your AWS CloudFormation templates directly, be aware of how the method
affects how your updates are handled.

1. Use the plugin to update feature configuration and redeploy. On redeployment, AWS GameKit
first modifies the existing CloudFormation stack template and then updates or replaces the

Update AWS resources 123

AWS GameKit Guide for Unreal Engine Developers

stack resources. Templates and resources for the feature are reset to the latest AWS GameKit
feature configuration.

NOTE: If you update a feature configuration but don’t redeploy, the updates are saved locally
only. They do not affect your AWS templates and resources.

AWS GameKit stores a version of the AWS CloudFormation templates (as *.yml files) with your
local game project files. Instead of working in the plugin UI, you can opt to edit these files. AWS
GameKit uses this file to populate the configurations in the plugin UI. The templates are stored
in your game project’s directory: ...\Unreal Projects\<game project >\<AWS GameKit
game title>\cloudformation\).

2. Update CloudFormation templates or AWS resources directly. When you use CloudFormation to
modify a stack, you make updates to the template, which is then used to update stack resources.
None of these changes are saved back to the AWS GameKit feature configuration. These changes
will be lost if the AWS GameKit plugin is later used to redeploy resources.

3. Update live AWS resources directly using AWS (not recommended). You have the option of
viewing and changing AWS resources by working directly with the resource in its associated AWS
service. For example, you might access your Identity user pool directly in the Amazon Cognito
console. None of these changes are propagated back to the AWS AWS CloudFormation stack
template or the AWS GameKit feature configuration. These changes will be lost the next time
the stack is updated or the feature resources are redeployed in the AWS GameKit plugin.

Update AWS resources 124

AWS GameKit Guide for Unreal Engine Developers

AWS GameKit Reference

This section contains a collection of reference material for use with AWS GameKit.

Topics

• AWS services and resources

• AWS GameKit supported AWS Regions

• AWS GameKit deployment states

AWS services and resources

This reference page lists the AWS services and resources that make up the backend solutions for
each AWS GameKit feature.

Core services

The following services and resources are used for core AWS GameKit functionality:

• AWS CloudFormation

• Amazon API Gateway

• AWS Identity and Access Management

• AWS Identity and Access Management (IAM)

• Amazon CloudWatch Logs

• Amazon CloudWatch (for dashboards)

• Amazon Simple Storage Service (Amazon S3)

• Amazon Cognito (for player authentication)

Identity and authentication services

The following services and resources are used for identity and authentication functionality. For
more details on how identity and authentication solution architecture, see .

• All core services.

Underlying AWS services 125

AWS GameKit Guide for Unreal Engine Developers

• Amazon Cognito. Resources include a user pool and an identity pool for third-party identity
providers.

• Amazon DynamoDB. Resources include a table to track player login methods.

• AWS Key Management Service (AWS KMS).

• AWS Secrets Manager. Used to store app credentials for third-party identity providers.

Achievements services

The following services and resources are used for achievements functionality. For more details on
how achievements solution architecture, see .

• All core services.

• Amazon DynamoDB. Resources include two tables, one to store a game's achievement
definitions, and one to track player achievement status.

• Amazon S3. Resources include an S3 bucket to store achievement icon image files.

• Amazon CloudFront. Resources include a CloudFront distribution to deliver icon images to a
game client.

User gameplay data services

The following services and resources are used for user gameplay data functionality. For more
details on how user gameplay data solution architecture, see .

• All core services.

• Amazon DynamoDB. Resources include two tables, one to store a game's achievement
definitions, and one to track player achievement status.

Game state cloud saving services

The following services and resources are used for game state cloud saving functionality. For more
details on the game state cloud saving solution architecture, see .

• All core services.

• Amazon Simple Storage Service (Amazon S3). AWS GameKit uses an Amazon S3 bucket to store
game save files.

Achievements services 126

AWS GameKit Guide for Unreal Engine Developers

• Amazon DynamoDB. AWS GameKit uses a DynamoDB table to store metadata about the game
save files. Using DynamoDB to store this type of data supports frequent read and write requests
from game clients.

• AWS Lambda. AWS GameKit uses Lambda functions to manage the tasks of storing game save
files and metadata and analyzing synchronization states.

AWS GameKit supported AWS Regions

This reference page lists the current status of AWS GameKit availability in all AWS Regions. A
Region must support all of the AWS services and resources that are required for a AWS GameKit
game feature backend.

In the AWS GameKit plugin, you select an environment to work in. The environment includes an
AWS Region selection, which determines where all of the game backend services and resources for
that environment will be deployed.

If you deploy the backend to an AWS Region that doesn't support AWS GameKit resources,
the deployment will fail with messaging such as CreateStack Failed: Template format error:
Unrecognized resource types.

Region availability

Use the following table to select an AWS Region for use with your AWS GameKit-enabled game
project.

Region Feature:
Identity and
authentic
ation

Feature:
Achieveme
nts

Feature:
User
gameplay
data

Feature:
Game state
cloud saving

us-east-1: US East (N.
Virginia)

Available Available Available Available

us-east-2: US East (Ohio) Available Available Available Available

us-west-1: US West (N.
California)

Available Available Available Available

Supported AWS Regions 127

AWS GameKit Guide for Unreal Engine Developers

Region Feature:
Identity and
authentic
ation

Feature:
Achieveme
nts

Feature:
User
gameplay
data

Feature:
Game state
cloud saving

us-west-2: US West (Oregon) Available Available Available Available

af-south-1: Africa (Cape
Town)

Not Available

ap-east-1: Asia Pacific (Hong
Kong)

Not Available

ap-south-1: Asia Pacific
(Mumbai)

Available Available Available Available

ap-northeast-3: Asia Pacific
(Osaka)

Not Available

ap-northeast-2: Asia Pacific
(Seoul)

Available Available Available Available

ap-southeast-1: Asia Pacific
(Singapore)

Available Available Available Available

ap-southeast-2: Asia Pacific
(Sydney)

Available Available Available Available

ap-northeast-1: Asia Pacific
(Tokyo)

Available Available Available Available

ca-central-1: Canada (Central) Available Available Available Available

eu-central-1: Europe
(Frankfurt)

Available Available Available Available

eu-west-1: Europe (Ireland) Available Available Available Available

eu-west-2: Europe (London) Available Available Available Available

Region availability 128

AWS GameKit Guide for Unreal Engine Developers

Region Feature:
Identity and
authentic
ation

Feature:
Achieveme
nts

Feature:
User
gameplay
data

Feature:
Game state
cloud saving

eu-south-1: Europe (Milan) Not Available

eu-west-3: Europe (Paris) Available Available Available Available

eu-north-1: Europe (Stockhol
m)

Available Available Available Available

me-south-1: Middle East
(Bahrain)**

Available (if
enabled)

Available (if
enabled)

Available (if
enabled)

Available (if
enabled)

sa-east-1: South America (Sao
Paulo)

Available Available Available Available

China (Beijing and Ningxia)
Regions

Not Available

**

This AWS Region is not automatically enabled for your AWS account. To deploy your game
backend to this Region, you must take action to enable it. See Enabling an AWS Region for
instructions.

AWS GameKit deployment states

This page describes the possible deployment states for an AWS solution as created through the
AWS GameKit plugin.

You can check the current status of your AWS solutions for each game feature while in the Unreal
Editor. Open the Project Settings window and go to the AWS GameKit plugin page. Verify that you
have an active environment selected and valid credentials entered.

Deployment states 129

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html#rande-manage-enable

AWS GameKit Guide for Unreal Engine Developers

There are two types of deployment states:

• Steady states describe the end state of a completed deployment action. The deployment action
is no longer in progress.

• Transient states provide detail about a deployment action that is currently in progress.

Note

Deployment states do not provide information about locally cached configuration settings
for AWS GameKit. They do not indicate if local settings are in sync with or have diverged
from the configuration of deployed resources.

Steady states

Status Description

Undeployed No AWS resources are currently deployed for the game
feature. This status might indicate that no resources have been
deployed yet, or that existing resources have been successfully
deleted.

Deployed Viable AWS resources are currently deployed for the game
feature. This status indicates that the most recent deploy or
update action was successful.

Error AWS resources were deployed for the game feature, but the
resources are in an error state and are not viable. This status
indicates that the most recent deploy, update, or delete action
failed, and the system was not able to completely roll back to
an earlier viable state.

Rollback complete The most recent deployment-related action failed, and the
system has successfully rolled back to an earlier viable state.

Steady states 130

AWS GameKit Guide for Unreal Engine Developers

Transient states

These states indicate that deployment-related activity is in progress, which can take five to fifteen
minutes or more. They are listed below in the sequence they occur.

• Generating templates

• Uploading dashboards

• Uploading layers

• Uploading functions

• Deploying resources or Deleting resources

• Retrieving status

• Running (AWS resources are being created during this stage)

Transient states 131

AWS GameKit Guide for Unreal Engine Developers

AWS GameKit concepts and terminology

The following terminology and concepts are relevant to AWS GameKit. For terms that are
commonly used in the game development industry, the definitions describe how they apply to AWS
GameKit.

AWS GameKit terms

Configuration

The collection of materials that AWS GameKit uses to deploy and keep track of the backend
resources for cloud-based game features. It includes templates that define the solution
architecture for each feature backend, the configuration options that you select when
setting up a feature, and other details specific to your game project. If you work in multiple
environments to deploy resources through AWS GameKit, your configuration contains separate
settings for each environment. The configuration is stored locally with the game project files, in
a folder that's named for the game title.

Environment

Used in the AWS GameKit plugin to designate a collection of configuration settings and
deployed AWS resources for a game project. Although a game project can have only
one configuration, each configuration can track settings and deployments for multiple
environments, such as for development, testing, and production. All activity in the plugin,
including deploying AWS resources, is done with respect to the currently selected environment.

Game state cloud saving

AWS GameKit game feature that uses a backend service on the AWS Cloud to store game save
files. This feature employs two-way file synchronization to ensure that locally stored and cloud-
stored game save files are updated to the latest version. With game state cloud saving, players
can play games across multiple devices without having to manually track save files.

Game title

User-defined unique identifier for a game project's AWS GameKit configuration. Assigning a
game title is one of the first steps you take when setting up a game project to use the AWS
GameKit plugin. The names of all AWS resources that you deploy through AWS GameKit include
the game title string.

AWS GameKit terms 132

AWS GameKit Guide for Unreal Engine Developers

Player data

Player-specific information that might include personal identifiable information such as user
names, email, or social media IDs. It also might include account information such as subscription
data, in-game purchases, friends/blocked lists, and demographics. Because player data includes
personal identifying information, heightened security is used to handle this type of data.

Stateful achievement

Also called multi-step, this type of achievement requires more than one action to earn.
When defining a stateful achievement, you specify the number of steps it takes to earn the
achievement. The AWS GameKit achievements backend tracks a player's ongoing progress
toward earning the achievement, updating the player's status incrementally until they earn the
achievement.

Stateless achievement

Also called single-step, this type of achievement requires just one action to earn. When
defining a stateless achievement, you specify the number of steps as "1". The AWS GameKit
achievements backend tracks the player's status for the achievement as either locked (not
earned) or unlocked (earned).

User gameplay data

AWS GameKit game feature that uses a backend service on the AWS Cloud to store data
generated during gameplay. Examples of gameplay data include player scores, inventories,
and player progression. It can also include game analytics and telemetry, such as in-game
decisions and behavior. With gameplay data saved in the cloud, players can switch devices,
continue gameplay, and have their data follow them. User gameplay data is distinct from
players data, such as account information. User gameplay data does not include personal
identifying information.

Game development terms

Game backend

Refers to services and resources that support game features but are separate from the game
application. Typically, backend services run on remote servers, and game frontends use APIs
to communicate with them. Cloud-based backends are services that are running on virtual
resources. AWS GameKit provides tools to build cloud-based game backend services with AWS,

Game development terms 133

AWS GameKit Guide for Unreal Engine Developers

taking advantage of its superior performance, security, and reliability. Some common uses for
game backend services include persistent data storage, identity validation, notifications, and
custom logic for multi-player features like leaderboards and matchmaking.

Game frontend, Game client

Refers to the part of the game that users interact with, including the visual presentation and
user interface. Many game features have coordinated frontend and backend components. For
example, with a game save feature, the frontend might exist as a menu or messaging that
lets a player save their game progress. This player action prompts the frontend to capture the
game state, send a "save" API request to the appropriate backend service, and handle success
or failure. Other game features, such as achievements, are activated on the frontend through
gameplay activity.

Game engine terms

Use these links to access terminology and documentation on game engines that are supported by
AWS GameKit:

• Unreal Engine 4 Terminology

Blueprint

Unreal Engine's visual coding system. Learn more about Blueprint visual scripting in the Unreal
Engine documentation.

AWS terms

Resource stack

A collection of AWS resources that can be managed as a single unit. AWS GameKit manages all
of the AWS resources for a game feature backend in a single AWS CloudFormation stack. When
you deploy resources for a game feature using the plugin, AWS GameKit creates a stack. Each
AWS GameKit-created stack is specific to the game profile name, environment, AWS Region, and
game feature. You can view your resource stacks with the AWS Management Console for AWS
CloudFormation.

Game engine terms 134

https://docs.unrealengine.com/4.27/en-US/Basics/UnrealEngineTerminology/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/

AWS GameKit Guide for Unreal Engine Developers

Resource stack template

Configuration settings that model the collection of AWS resources to be created in a stack. AWS
CloudFormation templates are formatted text files in JSON or YAML. AWS GameKit, using the
AWS CloudFormation service, uses the template to deploy AWS resources for a game feature in
a specified AWS Region. You can view your templates with the AWS Management Console for
AWS CloudFormation.

User pool

A directory of players who have registered in your game and have a unique player ID that can be
used for authentication. For games created with AWS GameKit, the identity and authentication
backend uses Amazon Cognito to manage the user pool. Players in the user pool can sign in to
your game directly with an email and password, or through a third party.

AWS terms 135

AWS GameKit Guide for Unreal Engine Developers

AWS GameKit releases

To find comprehensive version information for AWS GameKit components, including releases and
known issues, see AWS GameKit Releases.

136

https://docs.aws.amazon.com/gamekit/latest/Releases/

	AWS GameKit
	Table of Contents
	
	What is AWS GameKit?
	AWS GameKit benefits
	Get started with AWS GameKit
	Related services
	Related AWS topics
	How AWS GameKit works
	How AWS GameKit works with your game
	AWS GameKit components
	AWS GameKit characteristics
	Work entirely in the game engine
	Work in multiple environments
	Position backend services geographically
	Develop in teams

	Development workflow with AWS GameKit
	AWS pricing with AWS GameKit
	Estimating AWS costs
	Managing AWS costs

	AWS GameKit components

	Setting up for AWS GameKit
	Install the AWS GameKit plugin with Unreal Engine
	Plugin requirements
	What's in the AWS GameKit download
	Install the plugin

	Set up AWS account for AWS GameKit
	Sign up for an AWS account
	Set up an administrator
	Set up a user with AWS GameKit access
	Related AWS topics
	Use IAM to set up AWS GameKit user access
	Manage permissions for achievements
	Tips for AWS account administrators

	Get your AWS security credentials
	Retrieve security credentials
	Generate new security credentials
	Securing credentials with the AWS GameKit plugin
	Related AWS topics

	Getting started with AWS GameKit
	Explore AWS GameKit in the Unreal Editor
	Manage your cloud project
	Deploy backend services for your cloud features
	Build AWS GameKit features into your frontend

	Integrate AWS GameKit features into your game

	Working in the AWS GameKit UI
	Set up the AWS GameKit plugin for your game
	Remove AWS GameKit from a game project
	Removing individual game features
	Removing all AWS GameKit plugin components

	Troubleshoot AWS GameKit plugin issues
	[Unreal] Can't open game project after enabling the AWS GameKit plugin
	[Unreal] Deployment is not completing

	Work with game feature dashboards
	Activating or deactivating a dashboard
	Opening a dashboard
	Viewing dashboard content
	Key dashboard metrics
	AWS Lambda
	Amazon API Gateway
	Amazon Cognito
	Amazon DynamoDB

	Related AWS topics

	AWS GameKit feature: Identity and authentication
	How identity and authentication works
	Identity and authentication workflows
	Identity and authentication solution architecture
	Identity and authentication services
	Identity and authentication data encryption

	Identity and authentication configuration options
	Identity and authentication callable actions

	Identity and authentication estimate costs
	Add identity and authentication to your project
	Work with the identity and authentication examples

	AWS GameKit feature: User gameplay data
	How user gameplay data works
	User gameplay data solution architecture
	User gameplay data services
	User gameplay data encryption

	User gameplay data callable actions
	Add user gameplay data to your game
	Build your User Gameplay Data feature
	Integration tips

	Work with the user gameplay data examples

	AWS GameKit feature: Game state cloud saving
	How game state cloud saving works
	Storing game save files in the cloud
	Synchronizing game save files
	Game state cloud saving workflow

	Game state cloud saving solution architecture
	Game state cloud saving services
	Game state cloud saving data encryption

	Game state cloud saving configuration options
	Game state cloud saving callable actions
	Add game state cloud saving to your game
	Work with the game state cloud saving examples

	AWS GameKit feature: Achievements
	How achievements work
	Achievement types
	Achievements workflow

	Achievements solution architecture
	Achievements services
	Achievements data encryption

	Achievements configuration options
	Achievements callable actions
	Add achievements to your project
	Work with the achievements examples

	Launch your game with AWS GameKit features
	Package a game project with AWS GameKit features
	Package a game for Windows or macOS
	Package a game for iOS
	Package a game for Android
	Troubleshoot packaging issues

	Optimize your game for mobile
	Set shutdown behavior
	Persist cache for user gameplay data

	Prepare your AWS GameKit backend for production
	Analyze feature usage patterns
	Set up monitoring dashboards
	Modify your AWS CloudFormation templates
	Add an IsProduction condition
	Update AWS Lambda settings
	Update Amazon Cognito settings
	Update Amazon DynamoDB settings
	Set up a custom authorizer

	Increase service quotas
	Customize player registration email
	Add optional services
	Amazon Simple Email Service
	AWS Web Application Firewall
	AWS Shield

	Adjust usage of AWS GameKit client API

	Working with AWS resources
	View AWS templates and resources
	Viewing an AWS resource stack

	Update AWS templates and resources

	AWS GameKit Reference
	AWS services and resources
	Core services
	Identity and authentication services
	Achievements services
	User gameplay data services
	Game state cloud saving services

	AWS GameKit supported AWS Regions
	Region availability

	AWS GameKit deployment states
	Steady states
	Transient states

	AWS GameKit concepts and terminology
	AWS GameKit terms
	Game development terms
	Game engine terms
	AWS terms

	AWS GameKit releases

