
Developer Guide, Version 1

AWS IoT Greengrass

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Greengrass: Developer Guide, Version 1

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS IoT Greengrass Developer Guide, Version 1

Table of Contents

.. xxi
What is AWS IoT Greengrass? ... 1

AWS IoT Greengrass Core software .. 3
AWS IoT Greengrass Core software versions ... 4

AWS IoT Greengrass groups .. 14
Devices in AWS IoT Greengrass ... 16
SDKs .. 18
Supported platforms and requirements ... 19
AWS IoT Greengrass downloads ... 32

AWS IoT Greengrass Core software .. 32
AWS IoT Greengrass snap software .. 40
AWS IoT Greengrass Docker software .. 41
AWS IoT Greengrass Core SDK .. 43
Supported machine learning runtimes and libraries ... 44
AWS IoT Greengrass ML SDK software .. 45

We want to hear from you .. 45
Install the AWS IoT Greengrass Core software .. 45

Download and extract a tar.gz file ... 46
Run the Greengrass device setup script ... 46
Install from an APT repository .. 46
Run AWS IoT Greengrass in a Docker container ... 48
Run AWS IoT Greengrass in a snap ... 49
Archive a core software installation ... 60

Configure the AWS IoT Greengrass core ... 62
AWS IoT Greengrass core configuration file ... 63
Service endpoints must match the certificate type .. 123
Connect on port 443 or through a network proxy ... 124
Configure a write directory .. 134
Configure MQTT settings .. 137
Activate automatic IP detection .. 155
Start Greengrass on system boot ... 159
See also .. 160

AWS IoT Greengrass V1 maintenance policy ... 161
AWS IoT Greengrass versioning scheme ... 161

iii

AWS IoT Greengrass Developer Guide, Version 1

Lifecycle phases for the AWS IoT Greengrass Core software ... 162
Maintenance policy for AWS IoT Greengrass Core software ... 162

Maintenance phase schedule ... 163
Deprecation schedule .. 163
Support policy for Lambda functions ... 163
Support policy for AWS IoT Device Tester for AWS IoT Greengrass V1 .. 164
End of maintenance schedule ... 164

End of maintenance for AWS IoT Greengrass Core software v1.x Docker images 41
End of maintenance for AWS IoT Greengrass Core software v1.x APT repository 165
End of maintenance for AWS IoT Greengrass Core software v1.11.x Snap 165

Getting started with AWS IoT Greengrass ... 167
Choose how to get started .. 167
Requirements .. 170
Create an AWS account .. 171

Sign up for an AWS account .. 172
Create an administrative user .. 172

Quick start: Greengrass device setup .. 173
Requirements ... 174
Run Greengrass device setup ... 175
Troubleshooting issues .. 178
Greengrass device setup configuration options ... 179

Module 1: Environment setup for Greengrass ... 189
Setting up a Raspberry Pi .. 190
Setting up an Amazon EC2 instance .. 198
Setting up other devices ... 203

Module 2: Installing the AWS IoT Greengrass Core software ... 206
Provision an AWS IoT thing to use as a Greengrass core ... 207
Create an Greengrass group .. 211
Install and run AWS IoT Greengrass on the core device .. 212

Module 3 (part 1): Lambda functions on AWS IoT Greengrass .. 218
Create and package a Lambda function .. 219
Configure the Lambda function for AWS IoT Greengrass .. 224
Deploy cloud configurations to a core device .. 227
Verify the Lambda function is running on the core device .. 229

Module 3 (part 2): Lambda functions on AWS IoT Greengrass .. 230
Create and package the Lambda function .. 230

iv

AWS IoT Greengrass Developer Guide, Version 1

Configure long-lived Lambda functions for AWS IoT Greengrass .. 234
Test long-lived Lambda functions .. 235
Test on-demand Lambda functions .. 238

Module 4: Interacting with client devices in an AWS IoT Greengrass group 242
Create client devices in an AWS IoT Greengrass group .. 244
Configure subscriptions ... 247
Install the AWS IoT Device SDK for Python .. 248
Test communications ... 254

Module 5: Interacting with device shadows ... 258
Configure devices and subscriptions .. 260
Download required files .. 262
Test communications (device syncs disabled) ... 263
Test communications (device syncs enabled) ... 266

Module 6: Accessing other AWS services .. 267
Configure the group role .. 269
Create and configure the Lambda function .. 271
Configure subscriptions ... 274
Test communications ... 275

Module 7: Simulating hardware security integration ... 277
Install SoftHSM ... 278
Configure SoftHSM .. 278
Import the private key .. 279
Configure the Greengrass core .. 281
Test the configuration ... 284
See also .. 285

OTA updates of AWS IoT Greengrass Core software ... 286
Requirements .. 286

IAM permissions for OTA updates .. 287
Considerations .. 290
Greengrass OTA update agent .. 291
Integration with init systems .. 292

Managed respawn with OTA updates .. 292
Create an OTA update .. 294
CreateSoftwareUpdateJob API .. 297

Deploy AWS IoT Greengrass groups ... 300
Deploying groups (console) ... 301

v

AWS IoT Greengrass Developer Guide, Version 1

Deploying groups (API) ... 302
Getting the group ID ... 304

Overview of the group object model .. 305
Groups ... 305
Group versions .. 306
Group components ... 307
Updating groups ... 308

See also .. 309
Get deployment notifications ... 310

Group deployment status change event ... 311
Prerequisites for creating EventBridge rules .. 312
Configure deployment notifications (console) ... 313
Configure deployment notifications (CLI) ... 314
Configure deployment notifications (AWS CloudFormation) .. 315
See also .. 315

Reset deployments .. 315
Reset deployments from the AWS IoT console .. 316
Reset deployments with the AWS IoT Greengrass API ... 316
See also .. 318

Create bulk deployments ... 318
Prerequisites .. 318
Create and upload the bulk deployment input file ... 319
Create and configure an IAM execution role for bulk deployments ... 321
Allow your execution role access to your S3 Bucket ... 324
Deploy the groups .. 325
Test the deployment .. 328
Troubleshooting bulk deployments .. 330
See also ... 332

Run local Lambda functions ... 333
SDKs .. 334

Migrating cloud-based Lambda functions ... 337
Reference functions by alias or version .. 338
Controlling Greengrass Lambda function execution .. 338

Group-specific configuration settings .. 339
Running a Lambda function as root .. 343
Considerations when choosing Lambda function containerization .. 344

vi

AWS IoT Greengrass Developer Guide, Version 1

Setting the default access identity for Lambda functions in a group 348
Setting default containerization for Lambda functions in a group .. 349

Communication flows ... 350
Communication using MQTT messages ... 351
Other communication flows ... 351

Retrieve the input topic (or subject) .. 352
Lifecycle configuration .. 354
Lambda executables .. 356

Create a Lambda executable .. 357
Run AWS IoT Greengrass in a Docker container .. 358

Prerequisites .. 360
Get the AWS IoT Greengrass container image from Amazon ECR .. 361
Create and configure the Greengrass group and core .. 365
Run AWS IoT Greengrass locally ... 365
Configure "No container" containerization for the group .. 368
Deploy Lambda functions to the Docker container .. 369
(Optional) Deploy client devices that interact with Greengrass in the Docker container 369
Stopping the AWS IoT Greengrass Docker container .. 370
Troubleshooting AWS IoT Greengrass in a Docker container .. 370

Access local resources ... 374
Supported resource types .. 374
Requirements .. 375

Volume resources under the /proc directory .. 376
Group owner file access permission .. 376
See also .. 377
Using the CLI .. 377

Create local resources .. 378
Create the Greengrass function .. 380
Add the Lambda function to the group .. 381
Troubleshooting .. 383

Using the console .. 384
Prerequisites .. 385
Create a Lambda function deployment package ... 385
Create and publish a Lambda function ... 387
Add the Lambda function to the group .. 389
Add a local resource to the group .. 390

vii

AWS IoT Greengrass Developer Guide, Version 1

Add subscriptions to the group ... 391
Deploy the group ... 392
Test local resource access ... 393

Perform machine learning inference ... 396
How AWS IoT Greengrass ML inference works .. 396
Machine learning resources ... 397

Supported model sources ... 397
Requirements .. 400
Runtimes and libraries for ML inference ... 400

SageMaker Neo deep learning runtime ... 400
MXNet versioning ... 401
MXNet on Raspberry Pi ... 401
TensorFlow model-serving limitations on Raspberry Pi ... 401

Access machine learning resources .. 402
Access permissions for machine learning resources .. 402
Defining access permissions for Lambda functions (console) ... 405
Defining access permissions for Lambda functions (API) ... 406
Accessing machine learning resources from Lambda function code .. 409
Troubleshooting .. 410
See also .. 412

How to configure machine learning inference .. 412
Prerequisites .. 413
Configure the Raspberry Pi .. 414
Install the MXNet framework ... 416
Create a model package ... 416
Create and publish a Lambda function ... 417
Add the Lambda function to the group .. 420
Add resources to the group ... 422
Add a subscription to the group ... 424
Deploy the group ... 425
Test the app ... 426
Next steps .. 430
Configuring an Intel Atom ... 430
Configuring an NVIDIA Jetson TX2 ... 434

How to configure optimized machine learning inference ... 438
Prerequisites .. 413

viii

AWS IoT Greengrass Developer Guide, Version 1

Configure the Raspberry Pi .. 440
Install the Neo deep learning runtime .. 442
Create an inference Lambda function .. 443
Add the Lambda function to the group .. 446
Add a Neo-optimized model resource to the group ... 448
Add your camera device resource to the group ... 450
Add subscriptions to the group ... 452
Deploy the group ... 452
Test the example .. 453
Configuring an Intel Atom ... 454
Configuring an NVIDIA Jetson TX2 ... 457
Troubleshooting AWS IoT Greengrass ML inference ... 427
Next steps .. 464

Manage data streams .. 465
Stream management workflow .. 466
Requirements .. 468
Data security ... 469

Local data security ... 469
Client authentication ... 470

See also .. 470
Configure stream manager .. 471

Stream manager parameters ... 471
Configure settings (console) ... 474
Configure settings (CLI) ... 477
See also .. 487

Use StreamManagerClient to work with streams ... 487
Create message stream ... 488
Append message ... 493
Read messages .. 499
List streams .. 502
Describe message stream ... 503
Update message stream ... 506
Delete message stream ... 510
See also .. 511
Export configurations for supported AWS Cloud destinations ... 512

Export data streams (console) .. 528

ix

AWS IoT Greengrass Developer Guide, Version 1

Prerequisites .. 529
Create a Lambda function deployment package ... 531
Create a Lambda function .. 535
Add a function to the group .. 537
Enable stream manager .. 538
Configure local logging ... 538
Deploy the group ... 539
Test the application ... 540
See also .. 541

Export data streams (CLI) .. 542
Prerequisites .. 543
Create a Lambda function deployment package ... 545
Create a Lambda function .. 549
Create a function definition and version ... 551
Create a logger definition and version .. 553
Get the ARN of your core definition version .. 554
Create a group version .. 555
Create a deployment ... 556
Test the application ... 557
See also .. 559

Deploy secrets to the core .. 560
Secrets encryption ... 561
Requirements .. 562
Specify the private key for secret encryption .. 563
Allow AWS IoT Greengrass to get secret values .. 564
See also .. 566
Work with secret resources .. 566

Creating and managing secrets ... 566
Using local secrets .. 571

How to create a secret resource (console) .. 574
Prerequisites .. 576
Create a Secrets Manager secret ... 576
Add a secret resource to a group ... 577
Create a Lambda function deployment package ... 578
Create a Lambda function .. 580
Add the function to the group .. 582

x

AWS IoT Greengrass Developer Guide, Version 1

Attach the secret resource to the function ... 583
Add subscriptions to the group ... 584
Deploy the group ... 584
Test the Lambda function .. 586
See also .. 586

Integrate with services and protocols using connectors ... 587
Requirements .. 588
Using Greengrass connectors .. 589
Configuration parameters .. 591

Parameters used to access group resources ... 591
Updating connector parameters ... 592

Inputs and outputs .. 592
Input topics .. 593

Containerization support .. 594
Upgrading connector versions .. 594
Logging .. 595
AWS-provided Greengrass connectors .. 596

CloudWatch Metrics ... 599
Device Defender .. 615
Docker application deployment .. 621
IoT Analytics .. 664
IoT Ethernet IP Protocol Adapter .. 680
IoT SiteWise ... 685
Kinesis Firehose ... 700
ML Feedback .. 717
ML Image Classification .. 735
ML Object Detection .. 760
Modbus-RTU Protocol Adapter .. 777
Modbus-TCP Protocol Adapter .. 796
Raspberry Pi GPIO .. 801
Serial Stream ... 811
ServiceNow MetricBase Integration .. 825
SNS .. 840
Splunk Integration .. 851
Twilio Notifications ... 865

Get started with connectors (console) .. 882

xi

AWS IoT Greengrass Developer Guide, Version 1

Prerequisites .. 883
Create a Secrets Manager secret ... 884
Add a secret resource to a group ... 885
Add a connector to the group ... 886
Create a Lambda function deployment package ... 886
Create a Lambda function .. 888
Add a function to the group .. 890
Add subscriptions to the group ... 890
Deploy the group ... 891
Test the solution ... 893
See also .. 894

Get started with connectors (CLI) .. 894
Prerequisites .. 896
Create a Secrets Manager secret ... 897
Create a resource definition and version ... 898
Create a connector definition and version .. 899
Create a Lambda function deployment package ... 900
Create a Lambda function .. 902
Create a function definition and version ... 904
Create a subscription definition and version .. 905
Create a group version .. 906
Create a deployment ... 908
Test the solution ... 909
See also .. 910

Greengrass Discovery RESTful API ... 911
Request ... 911
Response .. 912
Discovery authorization .. 912
Example discover response documents ... 913

Security .. 916
Overview of AWS IoT Greengrass security ... 917

Device connection workflow .. 918
Configuring AWS IoT Greengrass security ... 919
Security principals .. 920
Managed subscriptions in the MQTT messaging workflow ... 923
TLS cipher suites support ... 923

xii

AWS IoT Greengrass Developer Guide, Version 1

Data protection .. 926
Data encryption .. 927
Hardware security integration ... 930

Device authentication and authorization .. 947
X.509 certificates .. 948
AWS IoT policies ... 950
Minimal AWS IoT policy for the core device ... 953

Identity and access management ... 957
Audience ... 957
Authenticating with identities ... 958
Managing access using policies ... 961
See also .. 963
How AWS IoT Greengrass works with IAM .. 963
Greengrass service role ... 972
Greengrass group role ... 980
Cross-service confused deputy prevention ... 990
Identity-based policy examples ... 991
Troubleshooting identity and access issues .. 994

Compliance validation .. 997
Resilience ... 998
Infrastructure security ... 999
Configuration and vulnerability analysis .. 999
VPC endpoints (AWS PrivateLink) .. 1000

Considerations for AWS IoT Greengrass VPC endpoints .. 1001
Create an interface VPC endpoint for AWS IoT Greengrass control plane operations 1001
Creating a VPC endpoint policy for AWS IoT Greengrass .. 1002

Security best practices ... 1003
Grant minimum possible permissions .. 1003
Don't hardcode credentials in Lambda functions .. 1003
Don't log sensitive information ... 1003
Create targeted subscriptions .. 1004
Keep your device clock in sync ... 1004
Manage device authentication with the Greengrass core .. 1004
See also .. 1006

Logging and monitoring ... 1007
Monitoring tools .. 1007

xiii

AWS IoT Greengrass Developer Guide, Version 1

See also ... 1008
Monitoring with AWS IoT Greengrass logs .. 1008

Accessing CloudWatch Logs ... 1008
Accessing file system logs .. 1010
Default logging configuration ... 1011
Configure logging for AWS IoT Greengrass .. 1012
Logging limitations .. 1015
CloudTrail logs .. 1016

Logging AWS IoT Greengrass API calls with AWS CloudTrail ... 1016
AWS IoT Greengrass information in CloudTrail ... 1017
Understanding AWS IoT Greengrass log file entries ... 1018
See also .. 1021

Gathering system health telemetry data ... 1021
Configuring telemetry settings ... 1024
Subscribing to receive telemetry data ... 1028
Troubleshooting AWS IoT Greengrass telemetry ... 1035

Calling the local health check API ... 1035
Get health information for all workers ... 1036
Get health information about specified workers ... 1037
Worker health information .. 1039

Tagging your Greengrass resources ... 1043
Tag basics .. 1043

Tagging support (console) .. 1043
Tagging support (API) ... 1044

Using tags with IAM policies ... 1045
Example IAM policies ... 1046

See also ... 1048
AWS CloudFormation support for AWS IoT Greengrass .. 1049

Create resources ... 1049
Deploy resources .. 1050
Example template ... 1051
Supported AWS Regions .. 1064

Using AWS IoT Device Tester for AWS IoT Greengrass V1 .. 1065
AWS IoT Greengrass qualification suite .. 1065
Custom test suites ... 1066
Supported versions of AWS IoT Device Tester for AWS IoT Greengrass V1 1066

xiv

AWS IoT Greengrass Developer Guide, Version 1

Unsupported IDT versions for for AWS IoT Greengrass ... 1067
Use IDT to run the AWS IoT Greengrass qualification suite ... 1072

Test suite versions .. 1073
Test group descriptions ... 1074
Prerequisites .. 1078
Configure your device to run IDT tests ... 1087
Configure IDT settings .. 1109
Run the AWS IoT Greengrass qualification suite ... 1124
Understanding results and logs .. 1129

Use IDT to develop and run your own test suites .. 1133
Download the latest version of IDT for AWS IoT Greengrass .. 1078
Test suite creation workflow ... 1134
Tutorial: Build and run the sample IDT test suite ... 1134
Tutorial: Develop a simple IDT test suite .. 1139
Create IDT test suite configuration files .. 1149
Configure the IDT state machine .. 1156
Create IDT test case executables .. 1180
Use the IDT context ... 1187
Configure settings for test runners .. 1191
Debug and run custom test suites ... 1202
Review IDT test results and logs ... 1205
IDT usage metrics ... 1211

IDT for AWS IoT Greengrass troubleshooting ... 1218
Error codes ... 1218
Resolving IDT for AWS IoT Greengrass errors .. 1237

Support policy for AWS IoT Device Tester for AWS IoT Greengrass V1 1242
Troubleshooting ... 1243

AWS IoT Greengrass Core issues .. 1243
Error: The configuration file is missing the CaPath, CertPath or KeyPath. The Greengrass
daemon process with [pid = <pid>] died. ... 1245
Error: Failed to parse /<greengrass-root>/config/config.json. ... 1246
Error: Error occurred while generating TLS config: ErrUnknownURIScheme 1246
Error: Runtime failed to start: unable to start workers: container test timed out. 1246
Error: Failed to invoke PutLogEvents on local Cloudwatch, logGroup: /GreengrassSystem/
connection_manager, error: RequestError: send request failed caused by: Post http://

xv

AWS IoT Greengrass Developer Guide, Version 1

<path>/cloudwatch/logs/: dial tcp <address>: getsockopt: connection refused, response:
{ }. .. 1247
Error: Unable to create server due to: failed to load group: chmod /<greengrass-root>/
ggc/deployment/lambda/arn:aws:lambda:<region>:<account-id>:function:<function-
name>:<version>/<file-name>: no such file or directory. .. 1247
The AWS IoT Greengrass Core software doesn't start after you changed from running with
no containerization to running in a Greengrass container. ... 1248
Error: Spool size should be at least 262144 bytes. .. 1248
Error: [ERROR]-Cloud messaging error: Error occurred while trying to publish a message.
{"errorString": "operation timed out"} ... 1248
Error: container_linux.go:344: starting container process caused "process_linux.go:424:
container init caused \"rootfs_linux.go:64: mounting \\\"/greengrass/ggc/socket/
greengrass_ipc.sock\\\" to rootfs \\\"/greengrass/ggc/packages/<version>/rootfs/
merged\\\" at \\\"/greengrass_ipc.sock\\\" caused \\\"stat /greengrass/ggc/socket/
greengrass_ipc.sock: permission denied\\\"\"". ... 1249
Error: Greengrass daemon running with PID: <process-id>. Some system components
failed to start. Check 'runtime.log' for errors. .. 1249
Device shadow does not sync with the cloud. ... 995
ERROR: unable to accept TCP connection. accept tcp [::]:8000: accept4: too many open
files. ... 1250
Error: Runtime execution error: unable to start lambda container. container_linux.go:259:
starting container process caused "process_linux.go:345: container init caused
\"rootfs_linux.go:50: preparing rootfs caused \\\"permission denied\\\"\"". 1250
Warning: [WARN]-[5]GK Remote: Error retrieving public key data:
ErrPrincipalNotConfigured: private key for MqttCertificate is not set. 1251
Error: Permission denied when attempting to use role arn:aws:iam::<account-
id>:role/<role-name> to access s3 url https://<region>-greengrass-
updates.s3.<region>.amazonaws.com/core/<architecture>/greengrass-core-<distribution-
version>.tar.gz. .. 995
The AWS IoT Greengrass core is configured to use a network proxy and your Lambda
function can't make outgoing connections. ... 1251
The core is in an infinite connect-disconnect loop. The runtime.log file contains a
continuous series of connect and disconnect entries. .. 1252
Error: unable to start lambda container. container_linux.go:259: starting container process
caused "process_linux.go:345: container init caused \"rootfs_linux.go:62: mounting \\
\"proc\\\" to rootfs \\\" ... 1253

xvi

AWS IoT Greengrass Developer Guide, Version 1

[ERROR]-runtime execution error: unable to start lambda container. {"errorString": "failed
to initialize container mounts: failed to mask greengrass root in overlay upper dir: failed to
create mask device at directory <ggc-path>: file exists"} .. 1253
[ERROR]-Deployment failed. {"deploymentId": "<deployment-id>", "errorString": "container
test process with pid <pid> failed: container process state: exit status 1"} 1254
Error: [ERROR]-runtime execution error: unable to start lambda container.
{"errorString": "failed to initialize container mounts: failed to create
overlay fs for container: mounting overlay at /greengrass/ggc/packages/<ggc-
version>/rootfs/merged failed: failed to mount with args source=\"no_source
\" dest=\"/greengrass/ggc/packages/<ggc-version>/rootfs/merged\" fstype=\"overlay\"
flags=\"0\" data=\"lowerdir=/greengrass/ggc/packages/<ggc-version>/dns:/,upperdir=/
greengrass/ggc/packages/<ggc-version>/rootfs/upper,workdir=/greengrass/ggc/
packages/<ggc-version>/rootfs/work\": too many levels of symbolic links"} 1255
Error: [DEBUG]-Failed to get routes. Discarding message. .. 1256
Error: [Errno 24] Too many open <lambda-function>,[Errno 24] Too many open files 1256
Error: ds server failed to start listening to socket: listen unix <ggc-path>/ggc/socket/
greengrass_ipc.sock: bind: invalid argument .. 1256
[INFO] (Copier) aws.greengrass.StreamManager: stdout. Caused by:
com.fasterxml.jackson.databind.JsonMappingException: Instant exceeds minimum or
maximum instant ... 1256
GPG error: https://dnw9lb6lzp2d8.cloudfront.net stable InRelease: The following
signatures were invalid: EXPKEYSIG 68D644ABD2327D47 AWS Greengrass Master Key .. 1257

Deployment issues .. 1257
Your current deployment does not work and you want to revert to a previous working
deployment. ... 1259
You see a 403 Forbidden error on deployment in the logs. .. 1261
A ConcurrentDeployment error occurs when you run the create-deployment command for
the first time. .. 1261
Error: Greengrass is not authorized to assume the Service Role associated with this
account, or the error: Failed: TES service role is not associated with this account. 995
Error: unable to execute download step in deployment. error while downloading: error
while downloading the Group definition file: ... x509: certificate has expired or is not yet
valid ... 1262
The deployment doesn't finish. ... 1262

xvii

AWS IoT Greengrass Developer Guide, Version 1

Error: Unable to find java or java8 executables, or the error: Deployment <deployment-id>
of type NewDeployment for group <group-id> failed error: worker with <worker-id> failed
to initialize with reason Installed Java version must be greater than or equal to 8 1263
The deployment doesn't finish, and runtime.log contains multiple "wait 1s for container to
stop" entries. ... 1263
The deployment doesn't finish, and runtime.log contains "[ERROR]-Greengrass
deployment error: failed to report deployment status back to cloud {"deploymentId":
"<deployment-id>", "errorString": "Failed to initiate PUT, endpoint: https://<deployment-
status>, error: Put https://<deployment-status>: proxyconnect tcp: x509: certificate
signed by unknown authority"}" ... 1264
Error: Deployment <deployment-id> of type NewDeployment for group <group-id> failed
error: Error while processing. group config is invalid: 112 or [119 0] don't have rw
permission on the file: <path>. ... 1265
Error: <list-of-function-arns> are configured to run as root but Greengrass is not
configured to run Lambda functions with root permissions. .. 1265
Error: Deployment <deployment-id> of type NewDeployment for group <group-id> failed
error: Greengrass deployment error: unable to execute download step in deployment.
error while processing: unable to load the group file downloaded: could not find UID
based on user name, userName: ggc_user: user: unknown user ggc_user. 1265
Error: [ERROR]-runtime execution error: unable to start lambda container. {"errorString":
"failed to initialize container mounts: failed to mask greengrass root in overlay upper dir:
failed to create mask device at directory <ggc-path>: file exists"} .. 1266
Error: Deployment <deployment-id> of type NewDeployment for group <group-id> failed
error: process start failed: container_linux.go:259: starting container process caused
"process_linux.go:250: running exec setns process for init caused \"wait: no child processes
\"". .. 1266
Error: [WARN]-MQTT[client] dial tcp: lookup <host-prefix>-
ats.iot.<region>.amazonaws.com: no such host ... [ERROR]-Greengrass deployment error:
failed to report deployment status back to cloud ... net/http: request canceled while
waiting for connection (Client.Timeout exceeded while awaiting headers) 1267

Create group and create function issues .. 1267
Error: Your 'IsolationMode' configuration for the group is invalid. .. 1268
Error: Your 'IsolationMode' configuration for function with arn <function-arn> is invalid. 1268
Error: MemorySize configuration for function with arn <function-arn> is not allowed in
IsolationMode=NoContainer. .. 1268

xviii

AWS IoT Greengrass Developer Guide, Version 1

Error: Access Sysfs configuration for function with arn <function-arn> is not allowed in
IsolationMode=NoContainer. .. 1269
Error: MemorySize configuration for function with arn <function-arn> is required in
IsolationMode=GreengrassContainer. ... 1269
Error: Function <function-arn> refers to resource of type <resource-type> that is not
allowed in IsolationMode=NoContainer. ... 1269
Error: Execution configuration for function with arn <function-arn> is not allowed. 1270

Discovery issues ... 1270
Error: Device is a member of too many groups, devices may not be in more than 10
groups ... 1270

Machine learning resource issues ... 1270
InvalidMLModelOwner - GroupOwnerSetting is provided in ML model resource, but
GroupOwner or GroupPermission is not present ... 410
NoContainer function cannot configure permission when attaching Machine Learning
resources. <function-arn> refers to Machine Learnin resource <resource-id> with
permission <ro/rw> in resource access policy. ... 411
Function <function-arn> refers to Machine Learning resource <resource-id> with missing
permission in both ResourceAccessPolicy and resource OwnerSetting. 411
Function <function-arn> refers to Machine Learning resource <resource-id> with
permission \"rw\", while resource owner setting GroupPermission only allows \"ro\". 411
NoContainer Function <function-arn> refers to resources of nested destination path. 411
Lambda <function-arn> gains access to resource <resource-id> by sharing the same group
owner id .. 412

AWS IoT Greengrass core in Docker issues .. 1273
Error: Unknown options: -no-include-email. .. 370
Warning: IPv4 is disabled. Networking will not work. .. 370
Error: A firewall is blocking file Sharing between windows and the containers. 371
Error: An error occurred (AccessDeniedException) when calling the GetAuthorizationToken
operation: User: arn:aws:iam::<account-id>:user/<user-name> is not authorized to
perform: ecr:GetAuthorizationToken on resource: * .. 371
Error: Cannot create container for the service greengrass: Conflict. The container name "/
aws-iot-greengrass" is already in use. .. 1274
Error: [FATAL]-Failed to reset thread's mount namespace due to an unexpected error:
"operation not permitted". To maintain consistency, GGC will crash and need to be
manually restarted. .. 1275

Troubleshooting with logs ... 1275

xix

AWS IoT Greengrass Developer Guide, Version 1

Troubleshooting storage issues .. 1276
Troubleshooting messages .. 1277
Troubleshooting shadow synchronization timeout issues ... 1277
Check AWS re:Post .. 1278

Document history .. 1279
Earlier updates ... 1300

xx

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Greengrass Version 1 entered the extended life phase on June 30, 2023. For more
information, see the AWS IoT Greengrass V1 maintenance policy. After this date, AWS IoT
Greengrass V1 won't release updates that provide features, enhancements, bug fixes, or
security patches. Devices that run on AWS IoT Greengrass V1 won't be disrupted and will continue
to operate and to connect to the cloud. We strongly recommend that you migrate to AWS IoT
Greengrass Version 2, which adds significant new features and support for additional platforms.

xxi

https://docs.aws.amazon.com/greengrass/v1/developerguide/maintenance-policy.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/move-from-v1.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/move-from-v1.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-v2-whats-new.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/operating-system-feature-support-matrix.html

AWS IoT Greengrass Developer Guide, Version 1

What is AWS IoT Greengrass?

AWS IoT Greengrass is software that extends cloud capabilities to local devices. This enables
devices to collect and analyze data closer to the source of information, react autonomously to
local events, and communicate securely with each other on local networks. Local devices can
also communicate securely with AWS IoT Core and export IoT data to the AWS Cloud. AWS IoT
Greengrass developers can use AWS Lambda functions and prebuilt connectors to create serverless
applications that are deployed to devices for local execution.

The following diagram shows the basic architecture of AWS IoT Greengrass.

AWS IoT Greengrass makes it possible for customers to build IoT devices and application logic.
Specifically, AWS IoT Greengrass provides cloud-based management of application logic that
runs on devices. Locally deployed Lambda functions and connectors are triggered by local events,
messages from the cloud, or other sources.

In AWS IoT Greengrass, devices securely communicate on a local network and exchange messages
with each other without having to connect to the cloud. AWS IoT Greengrass provides a local pub/
sub message manager that can intelligently buffer messages if connectivity is lost so that inbound
and outbound messages to the cloud are preserved.

AWS IoT Greengrass protects user data:

• Through the secure authentication and authorization of devices.

• Through secure connectivity in the local network.

1

AWS IoT Greengrass Developer Guide, Version 1

• Between local devices and the cloud.

Device security credentials function in a group until they are revoked, even if connectivity to the
cloud is disrupted, so that the devices can continue to securely communicate locally.

AWS IoT Greengrass provides secure, over-the-air updates of Lambda functions.

AWS IoT Greengrass consists of:

• Software distributions

• AWS IoT Greengrass Core software

• AWS IoT Greengrass Core SDK

• Cloud service

• AWS IoT Greengrass API

• Features

• Lambda runtime

• Shadows implementation

• Message manager

• Group management

• Discovery service

• Over-the-air update agent

• Stream manager

• Local resource access

• Local machine learning inference

• Local secrets manager

• Connectors with built-in integration with services, protocols, and software

Topics

• AWS IoT Greengrass Core software

• AWS IoT Greengrass groups

• Devices in AWS IoT Greengrass

• SDKs

• Supported platforms and requirements

2

AWS IoT Greengrass Developer Guide, Version 1

• AWS IoT Greengrass downloads

• We want to hear from you

• Install the AWS IoT Greengrass Core software

• Configure the AWS IoT Greengrass core

AWS IoT Greengrass Core software

The AWS IoT Greengrass Core software provides the following functionality:

• Deployment and the local running of connectors and Lambda functions.

• Process data streams locally with automatic exports to the AWS Cloud.

• MQTT messaging over the local network between devices, connectors, and Lambda functions
using managed subscriptions.

• MQTT messaging between AWS IoT and devices, connectors, and Lambda functions using
managed subscriptions.

• Secure connections between devices and the AWS Cloud using device authentication and
authorization.

• Local shadow synchronization of devices. Shadows can be configured to sync with the AWS
Cloud.

• Controlled access to local device and volume resources.

• Deployment of cloud-trained machine learning models for running local inference.

• Automatic IP address detection that enables devices to discover the Greengrass core device.

• Central deployment of new or updated group configuration. After the configuration data is
downloaded, the core device is restarted automatically.

• Secure, over-the-air (OTA) software updates of user-defined Lambda functions.

• Secure, encrypted storage of local secrets and controlled access by connectors and Lambda
functions.

AWS IoT Greengrass core instances are configured through AWS IoT Greengrass APIs that create
and update AWS IoT Greengrass group definitions stored in the cloud.

AWS IoT Greengrass Core software 3

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Greengrass Core software versions

AWS IoT Greengrass provides several options for installing the AWS IoT Greengrass Core software,
including tar.gz download files, a quick start script, and apt installations on supported Debian
platforms. For more information, see the section called “Install the AWS IoT Greengrass Core
software”.

The following tabs describe what's new and changed in AWS IoT Greengrass Core software
versions.

GGC v1.11

1.11.6

Bug fixes and improvements:

• Improved resilience if sudden power loss occurs during a deployment.

• Fixed an issue where stream manager data corruption could prevent the AWS IoT
Greengrass Core software from starting.

• Fixed an issue where new client devices couldn't connect to the core in certain scenarios.

• Fixed an issue where stream manager stream names couldn't contain .log.

1.11.5

Bug fixes and improvements:

• General performance improvements and bug fixes.

1.11.4

Bug fixes and improvements:

• Fixed an issue with stream manager that prevented upgrades to AWS IoT Greengrass Core
software v1.11.3. If you are using stream manager to export data to the cloud, you can
now use an OTA update to upgrade an earlier v1.x version of the AWS IoT Greengrass Core
software to v1.11.4.

• General performance improvements and bug fixes.

1.11.3

Bug fixes and improvements:

• Fixed an issue that caused AWS IoT Greengrass Core software running in a snap on an
Ubuntu device to stop responding after a sudden power loss to the device.

AWS IoT Greengrass Core software versions 4

AWS IoT Greengrass Developer Guide, Version 1

• Fixed an issue that caused delayed delivery of MQTT messages to long-lived Lambda
functions.

• Fixed an issue that caused MQTT messages to not be sent correctly when the
maxWorkItemCount value was set to a value greater than 1024.

• Fixed an issue that caused the OTA update agent to ignore the MQTT KeepAlive period
specified in the keepAlive property in config.json.

• General performance improvements and bug fixes.

Important

If you are using stream manager to export data to the cloud, do not upgrade to AWS
IoT Greengrass Core software v1.11.3 from an earlier v1.x version. If you are enabling
stream manager for the first time, we strongly recommend that you first install the
latest version of the AWS IoT Greengrass Core software.

1.11.1

Bug fixes and improvements:

• Fixed an issue that caused increased memory use for stream manager.

• Fixed an issue that caused stream manager to reset the sequence number of the stream
to 0 if the Greengrass core device was turned off for longer than the specified time-to-live
(TTL) period of the stream data.

• Fixed an issue that prevented stream manager from correctly stopping retry attempts to
export data to the AWS Cloud.

1.11.0

New features:

• A telemetry agent on the Greengrass core collects local telemetry data and publishes it to
AWS Cloud. To retrieve the telemetry data for further processing, customers can create an
Amazon EventBridge rule and subscribe to a target. For more information, see Gathering
system health telemetry data from AWS IoT Greengrass core devices.

• A local HTTP API returns a snapshot of the current state of local worker processes started
by AWS IoT Greengrass. For more information, see Calling the local health check API.

• A stream manager automatically exports data to Amazon S3 and AWS IoT SiteWise.

AWS IoT Greengrass Core software versions 5

https://docs.aws.amazon.com/greengrass/v1/developerguide/telemetry.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/telemetry.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/health-check.html

AWS IoT Greengrass Developer Guide, Version 1

New stream manager parameters let you update existing streams and pause or resume
data export.

• Support for running Python 3.8.x Lambda functions on the core.

• A new ggDaemonPort property in config.json that use to configure the Greengrass
core IPC port number. The default port number is 8000.

A new systemComponentAuthTimeout property in config.json that you use to
configure the timeout for Greengrass core IPC authentication. The default timeout is 5000
milliseconds.

• Increased the maximum number of AWS IoT devices per AWS IoT Greengrass group from
200 to 2500.

Increased the maximum number of subscriptions per group from 1000 to 10000.

For more information, see AWS IoT Greengrass endpoints and quotas.

Bug fixes and improvements:

• General optimization that can reduce the memory utilization of the Greengrass service
processes.

• A new runtime configuration parameter (mountAllBlockDevices) lets Greengrass use
bind mounts to mount all block devices into a container after setting up the OverlayFS.
This feature resolved an issue that caused Greengrass deployment failure if /usr isn't
under the / hierarchy.

• Fixed an issue that caused AWS IoT Greengrass core failure if /tmp is a symlink.

• Fixed an issue to let the Greengrass deployment agent remove unused machine learning
model artifacts from the mlmodel_public folder.

• General performance improvements and bug fixes.

Extended life versions

1.10.5

Bug fixes and improvements:

• General performance improvements and bug fixes.

AWS IoT Greengrass Core software versions 6

https://docs.aws.amazon.com/general/latest/gr/greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

1.10.4

Bug fixes and improvements:

• Fixed an issue that caused AWS IoT Greengrass Core software running in a snap on an
Ubuntu device to stop responding after a sudden power loss to the device.

• Fixed an issue that caused delayed delivery of MQTT messages to long-lived Lambda
functions.

• Fixed an issue that caused MQTT messages to not be sent correctly when the
maxWorkItemCount value was set to a value greater than 1024.

• Fixed an issue that caused the OTA update agent to ignore the MQTT KeepAlive period
specified in the keepAlive property in config.json.

• General performance improvements and bug fixes.

1.10.3

Bug fixes and improvements:

• A new systemComponentAuthTimeout property in config.json that you use to
configure the timeout for Greengrass core IPC authentication. The default timeout is 5000
milliseconds.

• Fixed an issue that caused increased memory use for stream manager.

1.10.2

Bug fixes and improvements:

• A new mqttOperationTimeout property in config.json that you use to set the timeout
for publish, subscribe, and unsubscribe operations in MQTT connections with AWS IoT
Core.

• General performance improvements and bug fixes.

1.10.1

Bug fixes and improvements:

• Stream manager is more resilient to file data corruption.

• Fixed an issue that causes a sysfs mount failure on devices using Linux kernel 5.1 and later.

• General performance improvements and bug fixes.

1.10.0

New features:

AWS IoT Greengrass Core software versions 7

AWS IoT Greengrass Developer Guide, Version 1

• A stream manager that processes data streams locally and exports them to the AWS
Cloud automatically. This feature requires Java 8 on the Greengrass core device. For more
information, see Manage data streams.

• A new Greengrass Docker application deployment connector that runs a Docker
application on a core device. For more information, see the section called “Docker
application deployment”.

• A new IoT SiteWise connector that sends industrial device data from OPC-UA servers to
asset properties in AWS IoT SiteWise. For more information, see the section called “IoT
SiteWise”.

• Lambda functions that run without containerization can access machine learning
resources in the Greengrass group. For more information, see the section called “Access
machine learning resources”.

• Support for MQTT persistent sessions with AWS IoT. For more information, see the section
called “MQTT persistent sessions with AWS IoT Core”.

• Local MQTT traffic can travel over a port other than the default port 8883. For more
information, see the section called “MQTT port for local messaging”.

• New queueFullPolicy options in the AWS IoT Greengrass Core SDK for reliable
message publishing from Lambda functions.

• Support for running Node.js 12.x Lambda functions on the core.

• Over-the-air (OTA) updates with hardware security integration can be configured with
OpenSSL 1.1.

• General performance improvements and bug fixes.

1.9.4

Bug fixes and improvements:

• General performance improvements and bug fixes.

1.9.3

New features:

• Support for Armv6l. AWS IoT Greengrass Core software v1.9.3 or later can be installed
on Raspbian distributions on Armv6l architectures (for example, on Raspberry Pi Zero
devices).

AWS IoT Greengrass Core software versions 8

AWS IoT Greengrass Developer Guide, Version 1

• OTA updates on port 443 with ALPN. Greengrass cores that use port 443 for MQTT
traffic now support over-the-air (OTA) software updates. AWS IoT Greengrass uses the
Application Layer Protocol Network (ALPN) TLS extension to enable these connections. For
more information, see OTA updates of AWS IoT Greengrass Core software and the section
called “Connect on port 443 or through a network proxy”.

Bug fixes and improvements:

• Fixes a bug introduced in v1.9.0 that prevented Python 2.7 Lambda functions from
sending binary payloads to other Lambda functions.

• General performance improvements and bug fixes.

1.9.2

New features:

• Support for OpenWrt. AWS IoT Greengrass Core software v1.9.2 or later can be installed
on OpenWrt distributions with Armv8 (AArch64) and Armv7l architectures. Currently,
OpenWrt does not support ML inference.

1.9.1

Bug fixes and improvements:

• Fixes a bug introduced in v1.9.0 that drops messages from the cloud that contain
wildcard characters in the topic.

1.9.0

New features:

• Support for Python 3.7 and Node.js 8.10 Lambda runtimes. Lambda functions that use
Python 3.7 and Node.js 8.10 runtimes can now run on an AWS IoT Greengrass core. (AWS
IoT Greengrass continues to support the Python 2.7 and Node.js 6.10 runtimes.)

• Optimized MQTT connections. The Greengrass core establishes fewer connections with the
AWS IoT Core. This change can reduce operational costs for charges that are based on the
number of connections.

• Elliptic Curve (EC) key for the local MQTT server. The local MQTT server supports EC keys
in addition to RSA keys. (The MQTT server certificate has an SHA-256 RSA signature,
regardless of the key type.) For more information, see the section called “Security
principals”.

Bug fixes and improvements:

AWS IoT Greengrass Core software versions 9

https://openwrt.org/

AWS IoT Greengrass Developer Guide, Version 1

• General performance improvements and bug fixes.

1.8.4

Fixed an issue with shadow synchronization and device certificate manager reconnection.

General performance improvements and bug fixes.

1.8.3

General performance improvements and bug fixes.

1.8.2

General performance improvements and bug fixes.

1.8.1

General performance improvements and bug fixes.

1.8.0

New features:

• Configurable default access identity for Lambda functions in the group. This group-
level setting determines the default permissions that are used to run Lambda functions.
You can set the user ID, group ID, or both. Individual Lambda functions can override
the default access identity of their group. For more information, see the section called
“Setting the default access identity for Lambda functions in a group”.

• HTTPS traffic over port 443. HTTPS communication can be configured to travel over port
443 instead of the default port 8443. This complements AWS IoT Greengrass support for
the Application Layer Protocol Network (ALPN) TLS extension and allows all Greengrass
messaging traffic—both MQTT and HTTPS—to use port 443. For more information, see
the section called “Connect on port 443 or through a network proxy”.

• Predictably named client IDs for AWS IoT connections. This change enables support for
AWS IoT Device Defender and AWS IoT lifecycle events, so you can receive notifications for
connect, disconnect, subscribe, and unsubscribe events. Predictable naming also makes
it easier to create logic around connection IDs (for example, to create subscribe policy
templates based on certificate attributes). For more information, see the section called
“Client IDs for MQTT connections with AWS IoT”.

Bug fixes and improvements:

• Fixed an issue with shadow synchronization and device certificate manager reconnection.

AWS IoT Greengrass Core software versions 10

https://docs.aws.amazon.com/iot/latest/developerguide/life-cycle-events.html
https://docs.aws.amazon.com/iot/latest/developerguide/pub-sub-policy.html#pub-sub-policy-cert

AWS IoT Greengrass Developer Guide, Version 1

• General performance improvements and bug fixes.

1.7.1

New features:

• Greengrass connectors provide built-in integration with local infrastructure, device
protocols, AWS, and other cloud services. For more information, see Integrate with services
and protocols using connectors.

• AWS IoT Greengrass extends AWS Secrets Manager to core devices, which makes your
passwords, tokens, and other secrets available to connectors and Lambda functions.
Secrets are encrypted in transit and at rest. For more information, see Deploy secrets to the
core.

• Support for a hardware root of trust security option. For more information, see the section
called “Hardware security integration”.

• Isolation and permission settings that allow Lambda functions to run without Greengrass
containers and to use the permissions of a specified user and group. For more information,
see the section called “Controlling Greengrass Lambda function execution”.

• You can run AWS IoT Greengrass in a Docker container (on Windows, macOS, or Linux) by
configuring your Greengrass group to run with no containerization. For more information,
see the section called “Run AWS IoT Greengrass in a Docker container”.

• MQTT messaging on port 443 with Application Layer Protocol Negotiation (ALPN)
or connection through a network proxy. For more information, see the section called
“Connect on port 443 or through a network proxy”.

• The SageMaker Neo deep learning runtime, which supports machine learning models
that have been optimized by the SageMaker Neo deep learning compiler. For information
about the Neo deep learning runtime, see the section called “Runtimes and libraries for
ML inference”.

• Support for Raspbian Stretch (2018-06-27) on Raspberry Pi core devices.

Bug fixes and improvements:

• General performance improvements and bug fixes.

In addition, the following features are available with this release:

• The AWS IoT Device Tester for AWS IoT Greengrass, which you can use to verify that your
CPU architecture, kernel configuration, and drivers work with AWS IoT Greengrass. For
more information, see Using AWS IoT Device Tester for AWS IoT Greengrass V1.

AWS IoT Greengrass Core software versions 11

AWS IoT Greengrass Developer Guide, Version 1

• The AWS IoT Greengrass Core software, AWS IoT Greengrass Core SDK, and AWS
IoT Greengrass Machine Learning SDK packages are available for download through
Amazon CloudFront. For more information, see the section called “AWS IoT Greengrass
downloads”.

1.6.1

New features:

• Lambda executables that run binary code on the Greengrass core. Use the new AWS
IoT Greengrass Core SDK for C to write Lambda executables in C and C++. For more
information, see the section called “Lambda executables”.

• Optional local storage message cache that can persist across restarts. You can configure
the storage settings for MQTT messages that are queued for processing. For more
information, see the section called “MQTT message queue”.

• Configurable maximum reconnect retry interval for when the core device is disconnected.
For more information, see the mqttMaxConnectionRetryInterval property in the
section called “AWS IoT Greengrass core configuration file”.

• Local resource access to the host /proc directory. For more information, see Access local
resources.

• Configurable write directory. The AWS IoT Greengrass Core software can be deployed
to read-only and read-write locations. For more information, see the section called
“Configure a write directory”.

Bug fixes and improvements:

• Performance improvement for publishing messages in the Greengrass core and between
devices and the core.

• Reduced the compute resources required to process logs generated by user-defined
Lambda functions.

1.5.0

New features:

• AWS IoT Greengrass Machine Learning (ML) Inference is generally available. You can
perform ML inference locally on AWS IoT Greengrass devices using models that are built
and trained in the cloud. For more information, see Perform machine learning inference.

• Greengrass Lambda functions now support binary data as input payload, in addition to
JSON. To use this feature, you must upgrade to AWS IoT Greengrass Core SDK version
1.1.0, which you can download from the AWS IoT Greengrass Core SDK downloads page.

AWS IoT Greengrass Core software versions 12

AWS IoT Greengrass Developer Guide, Version 1

Bug fixes and improvements:

• Reduced the overall memory footprint.

• Performance improvements for sending messages to the cloud.

• Performance and stability improvements for the download agent, Device Certificate
Manager, and OTA update agent.

• Minor bug fixes.

1.3.0

New features:

• Over-the-air (OTA) update agent capable of handling cloud-deployed, Greengrass
update jobs. The agent is found under the new /greengrass/ota directory. For more
information, see OTA updates of AWS IoT Greengrass Core software.

• Local resource access feature allows Greengrass Lambda functions to access local
resources, such as peripheral devices and volumes. For more information, see Access local
resources with Lambda functions and connectors.

1.1.0

New features:

• Deployed AWS IoT Greengrass groups can be reset by deleting Lambda functions,
subscriptions, and configurations. For more information, see the section called “Reset
deployments”.

• Support for Node.js 6.10 and Java 8 Lambda runtimes, in addition to Python 2.7.

To migrate from the previous version of the AWS IoT Greengrass core:

• Copy certificates from the /greengrass/configuration/certs folder to /
greengrass/certs.

• Copy /greengrass/configuration/config.json to /greengrass/config/
config.json.

• Run /greengrass/ggc/core/greengrassd instead of /greengrass/greengrassd.

• Deploy the group to the new core.

1.0.0

Initial version

AWS IoT Greengrass Core software versions 13

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Greengrass groups

A Greengrass group is a collection of settings and components, such as a Greengrass core, devices,
and subscriptions. Groups are used to define a scope of interaction. For example, a group might
represent one floor of a building, one truck, or an entire mining site. The following diagram shows
the components that can make up a Greengrass group.

In the preceding diagram:

A: Greengrass group definition

Information about group settings and components.

B: Greengrass group settings

These include:

• Greengrass group role.

• Certificate authority and local connection configuration.

• Greengrass core connectivity information.

• Default Lambda runtime environment. For more information, see the section called “Setting
default containerization for Lambda functions in a group”.

AWS IoT Greengrass groups 14

AWS IoT Greengrass Developer Guide, Version 1

• CloudWatch and local logs configuration. For more information, see the section called
“Monitoring with AWS IoT Greengrass logs”.

C: Greengrass core

The AWS IoT thing (device) that represents the Greengrass core. For more information, see the
section called “Configure the AWS IoT Greengrass core”.

D: Lambda function definition

A list of Lambda functions that run locally on the core, with associated configuration data. For
more information, see Run local Lambda functions.

E: Subscription definition

A list of subscriptions that enable communication using MQTT messages. A subscription defines:

• A message source and message target. These can be client devices, Lambda functions,
connectors, AWS IoT Core, and the local shadow service.

• A topic or subject that's used to filter messages.

For more information, see the section called “Managed subscriptions in the MQTT messaging
workflow”.

F: Connector definition

A list of connectors that run locally on the core, with associated configuration data. For more
information, see Integrate with services and protocols using connectors.

G: Device definition

A list of AWS IoT things (known as client devices or devices) that are members of the Greengrass
group, with associated configuration data. For more information, see the section called “Devices
in AWS IoT Greengrass”.

H: Resource definition

A list of local resources, machine learning resources, and secret resources on the Greengrass
core, with associated configuration data. For more information, see Access local resources,
Perform machine learning inference, and Deploy secrets to the core.

When deployed, the Greengrass group definition, Lambda functions, connectors, resources,
and subscription table are copied to the core device. For more information, see Deploy AWS IoT
Greengrass groups.

AWS IoT Greengrass groups 15

AWS IoT Greengrass Developer Guide, Version 1

Devices in AWS IoT Greengrass

A Greengrass group can contain two types of AWS IoT device:

Greengrass core

A Greengrass core is a device that runs the AWS IoT Greengrass Core software, which allows it
to communicate directly with AWS IoT Core and the AWS IoT Greengrass service. A core has its
own device certificate used for authenticating with AWS IoT Core. It has a device shadow and an
entry in the AWS IoT Core registry. Greengrass cores run a local Lambda runtime, deployment
agent, and IP address tracker that sends IP address information to the AWS IoT Greengrass
service to allow client devices to automatically discover their group and core connection
information. For more information, see the section called “Configure the AWS IoT Greengrass
core”.

Note

A Greengrass group must contain exactly one core.

Client device

Client devices (also called connected devices, Greengrass devices, or devices) are devices that
connect to a Greengrass core over MQTT. They have their own device certificate for AWS IoT
Core authentication, a device shadow, and an entry in the AWS IoT Core registry. Client devices
can run FreeRTOS or use the AWS IoT Device SDK or AWS IoT Greengrass Discovery API to get
discovery information used to connect and authenticate with the core in the same Greengrass
group. To learn how to use the AWS IoT console to create and configure a client device for AWS
IoT Greengrass, see the section called “Module 4: Interacting with client devices in an AWS
IoT Greengrass group”. Or, for examples that show you how to use the AWS CLI to create and
configure a client device for AWS IoT Greengrass, see create-device-definition in the AWS CLI
Command Reference.

In a Greengrass group, you can create subscriptions that allow client devices to communicate
over MQTT with Lambda functions, connectors, and other client devices in the group, and with
AWS IoT Core or the local shadow service. MQTT messages are routed through the core. If the
core device loses connectivity to the cloud, client devices can continue to communicate over
the local network. Client devices can vary in size, from smaller microcontroller-based devices to

Devices in AWS IoT Greengrass 16

https://docs.aws.amazon.com/freertos/latest/userguide/freertos-lib-gg-connectivity.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/create-device-definition.html

AWS IoT Greengrass Developer Guide, Version 1

large appliances. Currently, a Greengrass group can contain up to 2,500 client devices. A client
device can be a member of up to 10 groups.

Note

OPC-UA is an information exchange standard for industrial communication. To
implement support for OPC-UA on the Greengrass core, you can use the IoT SiteWise
connector. The connector sends industrial device data from OPC-UA servers to asset
properties in AWS IoT SiteWise.

The following table shows how these device types are related.

The AWS IoT Greengrass core device stores certificates in two locations:

Devices in AWS IoT Greengrass 17

AWS IoT Greengrass Developer Guide, Version 1

• Core device certificate in /greengrass-root/certs. Typically, the core device certificate is
named hash.cert.pem (for example, 86c84488a5.cert.pem). This certificate is used by the
AWS IoT client for mutual authentication when the core connects to the AWS IoT Core and AWS
IoT Greengrass services.

• MQTT server certificate in /greengrass-root/ggc/var/state/server. The MQTT server
certificate is named server.crt. This certificate is used for mutual authentication between the
local MQTT server (on the Greengrass core) and Greengrass devices.

Note

greengrass-root represents the path where the AWS IoT Greengrass Core software is
installed on your device. Typically, this is the /greengrass directory.

SDKs

The following AWS-provided SDKs are used to work with AWS IoT Greengrass:

AWS SDK

Use the AWS SDK to build applications that interact with any AWS service, including Amazon
S3, Amazon DynamoDB, AWS IoT, AWS IoT Greengrass, and more. In the context of AWS IoT
Greengrass, you can use the AWS SDK in deployed Lambda functions to make direct calls to any
AWS service. For more information, see AWS SDKs.

Note

The operations specific to Greengrass that are available in the AWS SDKs are also
available in the AWS IoT Greengrass API and AWS CLI.

AWS IoT Device SDK

The AWS IoT Device SDK helps devices connect to AWS IoT Core and AWS IoT Greengrass. For
more information, see AWS IoT Device SDKs in the AWS IoT Developer Guide.

Client devices can use any of the AWS IoT Device SDK v2 platforms to discover connectivity
information for a Greengrass core. Connectivity information includes:

• The IDs of the Greengrass groups that the client device belongs to.

SDKs 18

https://docs.aws.amazon.com/greengrass/v1/apireference/
https://docs.aws.amazon.com/cli/latest/reference/greengrass
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html

AWS IoT Greengrass Developer Guide, Version 1

• The IP addresses of the Greengrass core in each group. These are also called core endpoints.

• The group CA certificate, which devices use for mutual authentication with the core. For more
information, see the section called “Device connection workflow”.

Note

In v1 of the AWS IoT Device SDKs, only the C++ and Python platforms provide built-in
discovery support.

AWS IoT Greengrass Core SDK

The AWS IoT Greengrass Core SDK enables Lambda functions to interact with the Greengrass
core, publish messages to AWS IoT, interact with the local shadow service, invoke other
deployed Lambda functions, and access secret resources. This SDK is used by Lambda functions
that run on an AWS IoT Greengrass core. For more information, see AWS IoT Greengrass Core
SDK.

AWS IoT Greengrass Machine Learning SDK

The AWS IoT Greengrass Machine Learning SDK enables Lambda functions to consume machine
learning models that are deployed to the Greengrass core as machine learning resources. This
SDK is used by Lambda functions that run on an AWS IoT Greengrass core and interact with a
local inference service. For more information, see AWS IoT Greengrass Machine Learning SDK.

Supported platforms and requirements

The following tabs list supported platforms and requirements for the AWS IoT Greengrass Core
software.

Note

You can download the AWS IoT Greengrass Core software from the AWS IoT Greengrass
Core Software downloads.

GGC v1.11

Supported platforms:

Supported platforms and requirements 19

AWS IoT Greengrass Developer Guide, Version 1

• Architecture: Armv7l

• OS: Linux

• OS: Linux (OpenWrt)

• Architecture: Armv8 (AArch64)

• OS: Linux

• OS: Linux (OpenWrt)

• Architecture: Armv6l

• OS: Linux

• Architecture: x86_64

• OS: Linux

• Windows, macOS, and Linux platforms can run AWS IoT Greengrass in a Docker container. For
more information, see the section called “Run AWS IoT Greengrass in a Docker container”.

Requirements:

• Minimum 128 MB disk space available for the AWS IoT Greengrass Core software. If you use
the OTA update agent, the minimum is 400 MB.

• Minimum 128 MB RAM allocated to the AWS IoT Greengrass Core software. With stream
manager enabled, the minimum is 198 MB RAM.

Note

Stream manager is enabled by default if you use the Default Group creation option
on the AWS IoT console to create your Greengrass group.

• Linux kernel version:

• Linux kernel version 4.4 or later is required to support running AWS IoT Greengrass with
containers.

• Linux kernel version 3.17 or later is required to support running AWS IoT Greengrass
without containers. In this configuration, the default Lambda function containerization for
the Greengrass group must be set to No container. For instructions, see the section called
“Setting default containerization for Lambda functions in a group”.

• GNU C Library (glibc) version 2.14 or later. OpenWrt distributions require musl C Library
version 1.1.16 or later.

Supported platforms and requirements 20

https://openwrt.org/
https://openwrt.org/
https://www.gnu.org/software/libc/
https://www.musl-libc.org/download.html

AWS IoT Greengrass Developer Guide, Version 1

• The /var/run directory must be present on the device.

• The /dev/stdin, /dev/stdout, and /dev/stderr files must be available.

• Hardlink and softlink protection must be enabled on the device. Otherwise, AWS IoT
Greengrass can only be run in insecure mode, using the -i flag.

• The following Linux kernel configurations must be enabled on the device:

• Namespace:

• CONFIG_IPC_NS

• CONFIG_UTS_NS

• CONFIG_USER_NS

• CONFIG_PID_NS

• Cgroups:

• CONFIG_CGROUP_DEVICE

• CONFIG_CGROUPS

• CONFIG_MEMCG

The kernel must support cgroups. The following requirements apply when running AWS IoT
Greengrass with containers:

• The memory cgroup must be enabled and mounted to allow AWS IoT Greengrass to set
the memory limit for Lambda functions.

• The devices cgroup must be enabled and mounted if Lambda functions with local
resource access are used to open files on the AWS IoT Greengrass core device.

• Others:

• CONFIG_POSIX_MQUEUE

• CONFIG_OVERLAY_FS

• CONFIG_HAVE_ARCH_SECCOMP_FILTER

• CONFIG_SECCOMP_FILTER

• CONFIG_KEYS

• CONFIG_SECCOMP

• CONFIG_SHMEM

• The root certificate for Amazon S3 and AWS IoT must be present in the system trust store.

• Stream manager requires the Java 8 runtime and a minimum of 70 MB RAM in addition to the
base AWS IoT Greengrass Core software memory requirement. Stream manager is enabled Supported platforms and requirements 21

https://en.wikipedia.org/wiki/Cgroups

AWS IoT Greengrass Developer Guide, Version 1

by default when you use the Default Group creation option on the AWS IoT console. Stream
manager is not supported on OpenWrt distributions.

• Libraries that support the AWS Lambda runtime required by the Lambda functions you
want to run locally. Required libraries must be installed on the core and added to the PATH
environment variable. Multiple libraries can be installed on the same core.

• Python version 3.8 for functions that use the Python 3.8 runtime.

• Python version 3.7 for functions that use the Python 3.7 runtime.

• Python version 2.7 for functions that use the Python 2.7 runtime.

• Node.js version 12.x for functions that use the Node.js 12.x runtime.

• Java version 8 or later for functions that use the Java 8 runtime.

Note

Running Java on an OpenWrt distribution isn't officially supported. However, if
your OpenWrt build has Java support, you might be able to run Lambda functions
authored in Java on your OpenWrt devices.

For more information about AWS IoT Greengrass support for Lambda runtimes, see Run
local Lambda functions.

• The following shell commands (not the BusyBox variants) are required by the over-the-air
(OTA) update agent:

• wget

• realpath

• tar

• readlink

• basename

• dirname

• pidof

• df

• grep

• umount

• mvSupported platforms and requirements 22

https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.nodejs.org/
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html

AWS IoT Greengrass Developer Guide, Version 1

• gzip

• mkdir

• rm

• ln

• cut

• cat

• /bin/bash

GGC v1.10

Supported platforms:

• Architecture: Armv7l

• OS: Linux

• OS: Linux (OpenWrt)

• Architecture: Armv8 (AArch64)

• OS: Linux

• OS: Linux (OpenWrt)

• Architecture: Armv6l

• OS: Linux

• Architecture: x86_64

• OS: Linux

• Windows, macOS, and Linux platforms can run AWS IoT Greengrass in a Docker container. For
more information, see the section called “Run AWS IoT Greengrass in a Docker container”.

Requirements:

• Minimum 128 MB disk space available for the AWS IoT Greengrass Core software. If you use
the OTA update agent, the minimum is 400 MB.

• Minimum 128 MB RAM allocated to the AWS IoT Greengrass Core software. With stream
manager enabled, the minimum is 198 MB RAM.

Supported platforms and requirements 23

https://openwrt.org/
https://openwrt.org/

AWS IoT Greengrass Developer Guide, Version 1

Note

Stream manager is enabled by default if you use the Default Group creation option
on the AWS IoT console to create your Greengrass group.

• Linux kernel version:

• Linux kernel version 4.4 or later is required to support running AWS IoT Greengrass with
containers.

• Linux kernel version 3.17 or later is required to support running AWS IoT Greengrass
without containers. In this configuration, the default Lambda function containerization for
the Greengrass group must be set to No container. For instructions, see the section called
“Setting default containerization for Lambda functions in a group”.

• GNU C Library (glibc) version 2.14 or later. OpenWrt distributions require musl C Library
version 1.1.16 or later.

• The /var/run directory must be present on the device.

• The /dev/stdin, /dev/stdout, and /dev/stderr files must be available.

• Hardlink and softlink protection must be enabled on the device. Otherwise, AWS IoT
Greengrass can only be run in insecure mode, using the -i flag.

• The following Linux kernel configurations must be enabled on the device:

• Namespace:

• CONFIG_IPC_NS

• CONFIG_UTS_NS

• CONFIG_USER_NS

• CONFIG_PID_NS

• Cgroups:

• CONFIG_CGROUP_DEVICE

• CONFIG_CGROUPS

• CONFIG_MEMCG

The kernel must support cgroups. The following requirements apply when running AWS IoT
Greengrass with containers:

• The memory cgroup must be enabled and mounted to allow AWS IoT Greengrass to set
the memory limit for Lambda functions.

Supported platforms and requirements 24

https://www.gnu.org/software/libc/
https://www.musl-libc.org/download.html
https://en.wikipedia.org/wiki/Cgroups

AWS IoT Greengrass Developer Guide, Version 1

• The devices cgroup must be enabled and mounted if Lambda functions with local
resource access are used to open files on the AWS IoT Greengrass core device.

• Others:

• CONFIG_POSIX_MQUEUE

• CONFIG_OVERLAY_FS

• CONFIG_HAVE_ARCH_SECCOMP_FILTER

• CONFIG_SECCOMP_FILTER

• CONFIG_KEYS

• CONFIG_SECCOMP

• CONFIG_SHMEM

• The root certificate for Amazon S3 and AWS IoT must be present in the system trust store.

• Stream manager requires the Java 8 runtime and a minimum of 70 MB RAM in addition to the
base AWS IoT Greengrass Core software memory requirement. Stream manager is enabled
by default when you use the Default Group creation option on the AWS IoT console. Stream
manager is not supported on OpenWrt distributions.

• Libraries that support the AWS Lambda runtime required by the Lambda functions you
want to run locally. Required libraries must be installed on the core and added to the PATH
environment variable. Multiple libraries can be installed on the same core.

• Python version 3.7 for functions that use the Python 3.7 runtime.

• Python version 2.7 for functions that use the Python 2.7 runtime.

• Node.js version 12.x for functions that use the Node.js 12.x runtime.

• Java version 8 or later for functions that use the Java 8 runtime.

Note

Running Java on an OpenWrt distribution isn't officially supported. However, if
your OpenWrt build has Java support, you might be able to run Lambda functions
authored in Java on your OpenWrt devices.

For more information about AWS IoT Greengrass support for Lambda runtimes, see Run
local Lambda functions.

Supported platforms and requirements 25

https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://www.python.org/
https://www.python.org/
https://www.nodejs.org/
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html

AWS IoT Greengrass Developer Guide, Version 1

• The following shell commands (not the BusyBox variants) are required by the over-the-air
(OTA) update agent:

• wget

• realpath

• tar

• readlink

• basename

• dirname

• pidof

• df

• grep

• umount

• mv

• gzip

• mkdir

• rm

• ln

• cut

• cat

• /bin/bash

GGC v1.9

Supported platforms:

• Architecture: Armv7l

• OS: Linux

• OS: Linux (OpenWrt)

• Architecture: Armv8 (AArch64)

• OS: Linux

• OS: Linux (OpenWrt)

• Architecture: Armv6lSupported platforms and requirements 26

https://openwrt.org/
https://openwrt.org/

AWS IoT Greengrass Developer Guide, Version 1

• OS: Linux

• Architecture: x86_64

• OS: Linux

• Windows, macOS, and Linux platforms can run AWS IoT Greengrass in a Docker container. For
more information, see the section called “Run AWS IoT Greengrass in a Docker container”.

Requirements:

• Minimum 128 MB disk space available for the AWS IoT Greengrass Core software. If you use
the OTA update agent, the minimum is 400 MB.

• Minimum 128 MB RAM allocated to the AWS IoT Greengrass Core software.

• Linux kernel version:

• Linux kernel version 4.4 or later is required to support running AWS IoT Greengrass with
containers.

• Linux kernel version 3.17 or later is required to support running AWS IoT Greengrass
without containers. In this configuration, the default Lambda function containerization for
the Greengrass group must be set to No container. For instructions, see the section called
“Setting default containerization for Lambda functions in a group”.

• GNU C Library (glibc) version 2.14 or later. OpenWrt distributions require musl C Library
version 1.1.16 or later.

• The /var/run directory must be present on the device.

• The /dev/stdin, /dev/stdout, and /dev/stderr files must be available.

• Hardlink and softlink protection must be enabled on the device. Otherwise, AWS IoT
Greengrass can only be run in insecure mode, using the -i flag.

• The following Linux kernel configurations must be enabled on the device:

• Namespace:

• CONFIG_IPC_NS

• CONFIG_UTS_NS

• CONFIG_USER_NS

• CONFIG_PID_NS

• Cgroups:

• CONFIG_CGROUP_DEVICE
Supported platforms and requirements 27

https://www.gnu.org/software/libc/
https://www.musl-libc.org/download.html

AWS IoT Greengrass Developer Guide, Version 1

• CONFIG_CGROUPS

• CONFIG_MEMCG

The kernel must support cgroups. The following requirements apply when running AWS IoT
Greengrass with containers:

• The memory cgroup must be enabled and mounted to allow AWS IoT Greengrass to set
the memory limit for Lambda functions.

• The devices cgroup must be enabled and mounted if Lambda functions with local
resource access are used to open files on the AWS IoT Greengrass core device.

• Others:

• CONFIG_POSIX_MQUEUE

• CONFIG_OVERLAY_FS

• CONFIG_HAVE_ARCH_SECCOMP_FILTER

• CONFIG_SECCOMP_FILTER

• CONFIG_KEYS

• CONFIG_SECCOMP

• CONFIG_SHMEM

• The root certificate for Amazon S3 and AWS IoT must be present in the system trust store.

• Libraries that support the AWS Lambda runtime required by the Lambda functions you
want to run locally. Required libraries must be installed on the core and added to the PATH
environment variable. Multiple libraries can be installed on the same core.

• Python version 2.7 for functions that use the Python 2.7 runtime.

• Python version 3.7 for functions that use the Python 3.7 runtime.

• Node.js version 6.10 or later for functions that use the Node.js 6.10 runtime.

• Node.js version 8.10 or later for functions that use the Node.js 8.10 runtime.

• Java version 8 or later for functions that use the Java 8 runtime.

Note

Running Java on an OpenWrt distribution isn't officially supported. However, if
your OpenWrt build has Java support, you might be able to run Lambda functions
authored in Java on your OpenWrt devices.

Supported platforms and requirements 28

https://en.wikipedia.org/wiki/Cgroups
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://www.python.org/
https://www.python.org/
https://www.nodejs.org/
https://www.nodejs.org/
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html

AWS IoT Greengrass Developer Guide, Version 1

For more information about AWS IoT Greengrass support for Lambda runtimes, see Run
local Lambda functions.

• The following shell commands (not the BusyBox variants) are required by the over-the-air
(OTA) update agent:

• wget

• realpath

• tar

• readlink

• basename

• dirname

• pidof

• df

• grep

• umount

• mv

• gzip

• mkdir

• rm

• ln

• cut

• cat

GGC v1.8

• Supported platforms:

• Architecture: Armv7l; OS: Linux

• Architecture: x86_64; OS: Linux

• Architecture: Armv8 (AArch64); OS: Linux

• Windows, macOS, and Linux platforms can run AWS IoT Greengrass in a Docker container.
For more information, see the section called “Run AWS IoT Greengrass in a Docker
container”.

Supported platforms and requirements 29

AWS IoT Greengrass Developer Guide, Version 1

• Linux platforms can run a version of AWS IoT Greengrass with limited functionality using
the Greengrass snap, which is available through Snapcraft. For more information, see the
section called “AWS IoT Greengrass snap software”.

• The following items are required:

• Minimum 128 MB disk space available for the AWS IoT Greengrass Core software. If you use
the OTA update agent, the minimum is 400 MB.

• Minimum 128 MB RAM allocated to the AWS IoT Greengrass Core software.

• Linux kernel version:

• Linux kernel version 4.4 or later is required to support running AWS IoT Greengrass with
containers.

• Linux kernel version 3.17 or later is required to support running AWS IoT Greengrass
without containers. In this configuration, the default Lambda function containerization
for the Greengrass group must be set to No container. For instructions, see the section
called “Setting default containerization for Lambda functions in a group”.

• GNU C Library (glibc) version 2.14 or later.

• The /var/run directory must be present on the device.

• The /dev/stdin, /dev/stdout, and /dev/stderr files must be available.

• Hardlink and softlink protection must be enabled on the device. Otherwise, AWS IoT
Greengrass can only be run in insecure mode, using the -i flag.

• The following Linux kernel configurations must be enabled on the device:

• Namespace:

• CONFIG_IPC_NS

• CONFIG_UTS_NS

• CONFIG_USER_NS

• CONFIG_PID_NS

• Cgroups:

• CONFIG_CGROUP_DEVICE

• CONFIG_CGROUPS

• CONFIG_MEMCG

The kernel must support cgroups. The following requirements apply when running AWS
IoT Greengrass with containers:

Supported platforms and requirements 30

https://snapcraft.io/aws-iot-greengrass
https://www.gnu.org/software/libc/
https://en.wikipedia.org/wiki/Cgroups

AWS IoT Greengrass Developer Guide, Version 1

• The memory cgroup must be enabled and mounted to allow AWS IoT Greengrass to set
the memory limit for Lambda functions.

• The devices cgroup must be enabled and mounted if Lambda functions with local
resource access are used to open files on the AWS IoT Greengrass core device.

• Others:

• CONFIG_POSIX_MQUEUE

• CONFIG_OVERLAY_FS

• CONFIG_HAVE_ARCH_SECCOMP_FILTER

• CONFIG_SECCOMP_FILTER

• CONFIG_KEYS

• CONFIG_SECCOMP

• CONFIG_SHMEM

• The root certificate for Amazon S3 and AWS IoT must be present in the system trust store.

• The following items are conditionally required:

• Libraries that support the AWS Lambda runtime required by the Lambda functions you
want to run locally. Required libraries must be installed on the core and added to the PATH
environment variable. Multiple libraries can be installed on the same core.

• Python version 2.7 for functions that use the Python 2.7 runtime.

• Node.js version 6.10 or later for functions that use the Node.js 6.10 runtime.

• Java version 8 or later for functions that use the Java 8 runtime.

• The following shell commands (not the BusyBox variants) are required by the over-the-air
(OTA) update agent:

• wget

• realpath

• tar

• readlink

• basename

• dirname

• pidof

• df

• grep
Supported platforms and requirements 31

https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://www.python.org/
https://www.nodejs.org/
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html

AWS IoT Greengrass Developer Guide, Version 1

• umount

• mv

• gzip

• mkdir

• rm

• ln

• cut

• cat

For information about AWS IoT Greengrass quotas (limits), see Service Quotas in the Amazon Web
Services General Reference.

For pricing information, see AWS IoT Greengrass pricing and AWS IoT Core pricing.

AWS IoT Greengrass downloads

You can use the following information to find and download software for use with AWS IoT
Greengrass.

Topics

• AWS IoT Greengrass Core software

• AWS IoT Greengrass snap software

• AWS IoT Greengrass Docker software

• AWS IoT Greengrass Core SDK

• Supported machine learning runtimes and libraries

• AWS IoT Greengrass ML SDK software

AWS IoT Greengrass Core software

The AWS IoT Greengrass Core software extends AWS functionality onto an AWS IoT Greengrass
core device, making it possible for local devices to act locally on the data they generate.

AWS IoT Greengrass downloads 32

https://docs.aws.amazon.com/general/latest/gr/greengrass.html#limits_greengrass
https://aws.amazon.com/greengrass/pricing
https://aws.amazon.com/iot-core/pricing

AWS IoT Greengrass Developer Guide, Version 1

v1.11

1.11.6

Bug fixes and improvements:

• Improved resilience if sudden power loss occurs during a deployment.

• Fixed an issue where stream manager data corruption could prevent the AWS IoT
Greengrass Core software from starting.

• Fixed an issue where new client devices couldn't connect to the core in certain scenarios.

• Fixed an issue where stream manager stream names couldn't contain .log.

1.11.5

Bug fixes and improvements:

• General performance improvements and bug fixes.

1.11.4

Bug fixes and improvements:

• Fixed an issue with stream manager that prevented upgrades to AWS IoT Greengrass Core
software v1.11.3. If you are using stream manager to export data to the cloud, you can
now use an OTA update to upgrade an earlier v1.x version of the AWS IoT Greengrass Core
software to v1.11.4.

• General performance improvements and bug fixes.

1.11.3

Bug fixes and improvements:

• Fixed an issue that caused AWS IoT Greengrass Core software running in a snap on an
Ubuntu device to stop responding after a sudden power loss to the device.

• Fixed an issue that caused delayed delivery of MQTT messages to long-lived Lambda
functions.

• Fixed an issue that caused MQTT messages to not be sent correctly when the
maxWorkItemCount value was set to a value greater than 1024.

• Fixed an issue that caused the OTA update agent to ignore the MQTT KeepAlive period
specified in the keepAlive property in config.json.

• General performance improvements and bug fixes.

AWS IoT Greengrass Core software 33

AWS IoT Greengrass Developer Guide, Version 1

Important

If you are using stream manager to export data to the cloud, do not upgrade to AWS
IoT Greengrass Core software v1.11.3 from an earlier v1.x version. If you are enabling
stream manager for the first time, we strongly recommend that you first install the
latest version of the AWS IoT Greengrass Core software.

1.11.1

Bug fixes and improvements:

• Fixed an issue that caused increased memory use for stream manager.

• Fixed an issue that caused stream manager to reset the sequence number of the stream
to 0 if the Greengrass core device was turned off for longer than the specified time-to-live
(TTL) period of the stream data.

• Fixed an issue that prevented stream manager from correctly stopping retry attempts to
export data to the AWS Cloud.

1.11.0

New features:

• A telemetry agent on the Greengrass core collects local telemetry data and publishes it to
AWS Cloud. To retrieve the telemetry data for further processing, customers can create an
Amazon EventBridge rule and subscribe to a target. For more information, see Gathering
system health telemetry data from AWS IoT Greengrass core devices.

• A local HTTP API returns a snapshot of the current state of local worker processes started
by AWS IoT Greengrass. For more information, see Calling the local health check API.

• A stream manager automatically exports data to Amazon S3 and AWS IoT SiteWise.

New stream manager parameters let you update existing streams and pause or resume
data export.

• Support for running Python 3.8.x Lambda functions on the core.

• A new ggDaemonPort property in config.json that use to configure the Greengrass
core IPC port number. The default port number is 8000.

AWS IoT Greengrass Core software 34

https://docs.aws.amazon.com/greengrass/v1/developerguide/telemetry.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/telemetry.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/health-check.html

AWS IoT Greengrass Developer Guide, Version 1

A new systemComponentAuthTimeout property in config.json that you use to
configure the timeout for Greengrass core IPC authentication. The default timeout is 5000
milliseconds.

• Increased the maximum number of AWS IoT devices per AWS IoT Greengrass group from
200 to 2500.

Increased the maximum number of subscriptions per group from 1000 to 10000.

For more information, see AWS IoT Greengrass endpoints and quotas.

Bug fixes and improvements:

• General optimization that can reduce the memory utilization of the Greengrass service
processes.

• A new runtime configuration parameter (mountAllBlockDevices) lets Greengrass use
bind mounts to mount all block devices into a container after setting up the OverlayFS.
This feature resolved an issue that caused Greengrass deployment failure if /usr isn't
under the / hierarchy.

• Fixed an issue that caused AWS IoT Greengrass core failure if /tmp is a symlink.

• Fixed an issue to let the Greengrass deployment agent remove unused machine learning
model artifacts from the mlmodel_public folder.

• General performance improvements and bug fixes.

To install the AWS IoT Greengrass Core software on your core device, download the package for
your architecture and operating system (OS), and then follow the steps in the Getting Started
Guide.

Tip

AWS IoT Greengrass also provides other options for installing the AWS IoT Greengrass
Core software. For example, you can use Greengrass device setup to configure your
environment and install the latest version of the AWS IoT Greengrass Core software.
Or, on supported Debian platforms, you can use the APT package manager to install or
upgrade the AWS IoT Greengrass Core software. For more information, see the section
called “Install the AWS IoT Greengrass Core software”.

AWS IoT Greengrass Core software 35

https://docs.aws.amazon.com/general/latest/gr/greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

Architecture Operating system Link

Armv8 (AArch64) Linux Download

Armv8 (AArch64) Linux (OpenWrt) Download

Armv7l Linux Download

Armv7l Linux (OpenWrt) Download

Armv6l Linux Download

x86_64 Linux Download

Extended life versions

1.10.5

New features in v1.10:

• A stream manager that processes data streams locally and exports them to the AWS
Cloud automatically. This feature requires Java 8 on the Greengrass core device. For more
information, see Manage data streams.

• A new Greengrass Docker application deployment connector that runs a Docker
application on a core device. For more information, see the section called “Docker
application deployment”.

• A new IoT SiteWise connector that sends industrial device data from OPC-UA servers to
asset properties in AWS IoT SiteWise. For more information, see the section called “IoT
SiteWise”.

• Lambda functions that run without containerization can access machine learning
resources in the Greengrass group. For more information, see the section called “Access
machine learning resources”.

• Support for MQTT persistent sessions with AWS IoT. For more information, see the section
called “MQTT persistent sessions with AWS IoT Core”.

• Local MQTT traffic can travel over a port other than the default port 8883. For more
information, see the section called “MQTT port for local messaging”.

AWS IoT Greengrass Core software 36

https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.11.6/greengrass-linux-aarch64-1.11.6.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.11.6/greengrass-openwrt-aarch64-1.11.6.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.11.6/greengrass-linux-armv7l-1.11.6.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.11.6/greengrass-openwrt-armv7l-1.11.6.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.11.6/greengrass-linux-armv6l-1.11.6.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.11.6/greengrass-linux-x86-64-1.11.6.tar.gz

AWS IoT Greengrass Developer Guide, Version 1

• New queueFullPolicy options in the AWS IoT Greengrass Core SDK for reliable
message publishing from Lambda functions.

• Support for running Node.js 12.x Lambda functions on the core.

Bug fixes and improvements:

• Over-the-air (OTA) updates with hardware security integration can be configured with
OpenSSL 1.1.

• Stream manager is more resilient to file data corruption.

• Fixed an issue that causes a sysfs mount failure on devices using Linux kernel 5.1 and later.

• A new mqttOperationTimeout property in config.json that you use to set the timeout
for publish, subscribe, and unsubscribe operations in MQTT connections with AWS IoT
Core.

• Fixed an issue that caused increased memory use for stream manager.

• A new systemComponentAuthTimeout property in config.json that you use to
configure the timeout for Greengrass core IPC authentication. The default timeout is 5000
milliseconds.

• Fixed an issue that caused the OTA update agent to ignore the MQTT KeepAlive period
specified in the keepAlive property in config.json.

• Fixed an issue that caused MQTT messages to not be sent correctly when the
maxWorkItemCount value was set to a value greater than 1024.

• Fixed an issue that caused delayed delivery of MQTT messages to long-lived Lambda
functions.

• Fixed an issue that caused AWS IoT Greengrass Core software running in a snap on an
Ubuntu device to stop responding after a sudden power loss to the device.

• General performance improvements and bug fixes.

To install the AWS IoT Greengrass Core software on your core device, download the package
for your architecture and operating system (OS), and then follow the steps in the Getting
Started Guide.

Architecture Operating system Link

Armv8 (AArch64) Linux Download

AWS IoT Greengrass Core software 37

https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.10.5/greengrass-linux-aarch64-1.10.5.tar.gz

AWS IoT Greengrass Developer Guide, Version 1

Architecture Operating system Link

Armv8 (AArch64) Linux (OpenWrt) Download

Armv7l Linux Download

Armv7l Linux (OpenWrt) Download

Armv6l Linux Download

x86_64 Linux Download

1.9.4

New features in v1.9:

• Support for Python 3.7 and Node.js 8.10 Lambda runtimes. Lambda functions that use
Python 3.7 and Node.js 8.10 runtimes can now run on an AWS IoT Greengrass core. (AWS
IoT Greengrass continues to support the Python 2.7 and Node.js 6.10 runtimes.)

• Optimized MQTT connections. The Greengrass core establishes fewer connections with the
AWS IoT Core. This change can reduce operational costs for charges that are based on the
number of connections.

• Elliptic Curve (EC) key for the local MQTT server. The local MQTT server supports EC keys
in addition to RSA keys. (The MQTT server certificate has an SHA-256 RSA signature,
regardless of the key type.) For more information, see the section called “Security
principals”.

• Support for OpenWrt. AWS IoT Greengrass Core software v1.9.2 or later can be installed
on OpenWrt distributions with Armv8 (AArch64) and Armv7l architectures. Currently,
OpenWrt does not support ML inference.

• Support for Armv6l. AWS IoT Greengrass Core software v1.9.3 or later can be installed
on Raspbian distributions on Armv6l architectures (for example, on Raspberry Pi Zero
devices).

• OTA updates on port 443 with ALPN. Greengrass cores that use port 443 for MQTT
traffic now support over-the-air (OTA) software updates. AWS IoT Greengrass uses the
Application Layer Protocol Network (ALPN) TLS extension to enable these connections. For
more information, see OTA updates of AWS IoT Greengrass Core software and the section
called “Connect on port 443 or through a network proxy”.

AWS IoT Greengrass Core software 38

https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.10.5/greengrass-openwrt-aarch64-1.10.5.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.10.5/greengrass-linux-armv7l-1.10.5.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.10.5/greengrass-openwrt-armv7l-1.10.5.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.10.5/greengrass-linux-armv6l-1.10.5.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.10.5/greengrass-linux-x86-64-1.10.5.tar.gz
https://openwrt.org/

AWS IoT Greengrass Developer Guide, Version 1

To install the AWS IoT Greengrass Core software on your core device, download the package
for your architecture and operating system (OS), and then follow the steps in the Getting
Started Guide.

Architecture Operating system Link

Armv8 (AArch64) Linux Download

Armv8 (AArch64) Linux (OpenWrt) Download

Armv7l Linux Download

Armv7l Linux (OpenWrt) Download

Armv6l Linux Download

x86_64 Linux Download

1.8.4

• New features:

• Configurable default access identity for Lambda functions in the group. This group-
level setting determines the default permissions that are used to run Lambda functions.
You can set the user ID, group ID, or both. Individual Lambda functions can override
the default access identity of their group. For more information, see the section called
“Setting the default access identity for Lambda functions in a group”.

• HTTPS traffic over port 443. HTTPS communication can be configured to travel over
port 443 instead of the default port 8443. This complements AWS IoT Greengrass
support for the Application Layer Protocol Network (ALPN) TLS extension and allows
all Greengrass messaging traffic—both MQTT and HTTPS—to use port 443. For more
information, see the section called “Connect on port 443 or through a network proxy”.

• Predictably named client IDs for AWS IoT connections. This change enables support for
AWS IoT Device Defender and AWS IoT lifecycle events, so you can receive notifications
for connect, disconnect, subscribe, and unsubscribe events. Predictable naming also
makes it easier to create logic around connection IDs (for example, to create subscribe
policy templates based on certificate attributes). For more information, see the section
called “Client IDs for MQTT connections with AWS IoT”.

AWS IoT Greengrass Core software 39

https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.9.4/greengrass-linux-aarch64-1.9.4.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.9.4/greengrass-openwrt-aarch64-1.9.4.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.9.4/greengrass-linux-armv7l-1.9.4.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.9.4/greengrass-openwrt-armv7l-1.9.4.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.9.4/greengrass-linux-armv6l-1.9.4.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.9.4/greengrass-linux-x86-64-1.9.4.tar.gz
https://docs.aws.amazon.com/iot/latest/developerguide/life-cycle-events.html
https://docs.aws.amazon.com/iot/latest/developerguide/pub-sub-policy.html#pub-sub-policy-cert
https://docs.aws.amazon.com/iot/latest/developerguide/pub-sub-policy.html#pub-sub-policy-cert

AWS IoT Greengrass Developer Guide, Version 1

Bug fixes and improvements:

• Fixed an issue with shadow synchronization and device certificate manager
reconnection.

• General performance improvements and bug fixes.

To install the AWS IoT Greengrass Core software on your core device, download the package
for your architecture and operating system (OS), and then follow the steps in the Getting
Started Guide.

Architecture Operating system Link

Armv8 (AArch64) Linux Download

Armv7l Linux Download

x86_64 Linux Download

By downloading this software, you agree to the Greengrass Core Software License Agreement.

For information about other options for installing the AWS IoT Greengrass Core software on your
device, see the section called “Install the AWS IoT Greengrass Core software”.

AWS IoT Greengrass snap software

AWS IoT Greengrass snap 1.11.x enables you to run a limited version of AWS IoT Greengrass
through convenient software packages, along with all necessary dependencies, in a containerized
environment.

Note

The AWS IoT Greengrass snap is available for AWS IoT Greengrass Core software v1.11.x.
AWS IoT Greengrass doesn’t provide a snap for v1.10.x. Unsupported versions don't receive
bug fixes or updates.
The AWS IoT Greengrass snap doesn't support connectors and machine learning (ML)
inference.

AWS IoT Greengrass snap software 40

https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.8.4/greengrass-linux-aarch64-1.8.4.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.8.4/greengrass-linux-armv7l-1.8.4.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.8.4/greengrass-linux-x86-64-1.8.4.tar.gz
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 1

For more information, see the section called “Run AWS IoT Greengrass in a snap”.

AWS IoT Greengrass Docker software

AWS provides a Dockerfile and Docker images that make it easier for you to run AWS IoT
Greengrass in a Docker container.

Dockerfile

Dockerfiles contain source code for building custom AWS IoT Greengrass container images.
Images can be modified to run on different platform architectures or to reduce the image size.
For instructions, see the README file.

Download your target AWS IoT Greengrass Core software version.

v1.11

• Dockerfile for AWS IoT Greengrass v1.11.6.

Extended life versions

v1.10

Dockerfile for AWS IoT Greengrass v1.10.5.

v1.9

Dockerfile for AWS IoT Greengrass v1.9.4.

v1.8

Dockerfile for AWS IoT Greengrass v1.8.1.

Docker image

Docker images have the AWS IoT Greengrass Core software and dependencies installed on
Amazon Linux 2 (x86_64) and Alpine Linux (x86_64, Armv7l, or AArch64) base images. You can
use prebuilt images to start experimenting with AWS IoT Greengrass.

Important

On June 30, 2022, AWS IoT Greengrass ended maintenance for AWS IoT Greengrass
Core software v1.x Docker images that are published to Amazon Elastic Container

AWS IoT Greengrass Docker software 41

https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.11.6/aws-greengrass-docker-1.11.6.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.10.5/aws-greengrass-docker-1.10.5.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.9.4/aws-greengrass-docker-1.9.4.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-core/downloads/1.8.1/aws-greengrass-docker-1.8.1.tar.gz

AWS IoT Greengrass Developer Guide, Version 1

Registry (Amazon ECR) and Docker Hub. You can continue to download these Docker
images from Amazon ECR and Docker Hub until June 30, 2023, which is 1 year after
maintenance ended. However, the AWS IoT Greengrass Core software v1.x Docker
images no longer receive security patches or bug fixes after maintenance ended on June
30, 2022. If you run a production workload that depends on these Docker images, we
recommend that you build your own Docker images using the Dockerfiles that AWS
IoT Greengrass provides. For more information, see AWS IoT Greengrass Version 1
maintenance policy.

Download a prebuilt image from Docker Hub or Amazon Elastic Container Registry (Amazon
ECR).

• For Docker Hub, use the version tag to download a specific version of the Greengrass
Docker image. To find tags for all available images, check the Tags page on Docker Hub.

• For Amazon ECR, use the latest tag to download the latest available version of the
Greengrass Docker image. For more information about listing available image versions
and downloading images from Amazon ECR, see Running AWS IoT Greengrass in a Docker
container.

Warning

Starting with v1.11.6 of the AWS IoT Greengrass Core software, the Greengrass Docker
images no longer include Python 2.7, because Python 2.7 reached end-of-life in 2020
and no longer receives security updates. If you choose to update to these Docker
images, we recommend that you validate that your applications work with the new
Docker images before you deploy the updates to production devices. If you require
Python 2.7 for your application that uses a Greengrass Docker image, you can modify
the Greengrass Dockerfile to include Python 2.7 for your application.

AWS IoT Greengrass doesn’t provide Docker images for AWS IoT Greengrass Core software
v1.11.1.

AWS IoT Greengrass Docker software 42

https://hub.docker.com/r/amazon/aws-iot-greengrass

AWS IoT Greengrass Developer Guide, Version 1

Note

By default, alpine-aarch64 and alpine-armv7l images can run only on Arm-based
hosts. To run these images on an x86 host, you can install QEMU and mount the QEMU
libraries on the host. For example:

docker run --rm --privileged multiarch/qemu-user-static --reset -p yes

AWS IoT Greengrass Core SDK

Lambda functions use the AWS IoT Greengrass Core SDK to interact with the AWS IoT Greengrass
core locally. This allows deployed Lambda functions to:

• Exchange MQTT messages with AWS IoT Core.

• Exchange MQTT messages with connectors, client devices, and other Lambda functions in the
Greengrass group.

• Interact with the local shadow service.

• Invoke other local Lambda functions.

• Access secret resources.

• Interact with stream manager.

Download the AWS IoT Greengrass Core SDK for your language or platform from GitHub.

• AWS IoT Greengrass Core SDK for Java

• AWS IoT Greengrass Core SDK for Node.js

• AWS IoT Greengrass Core SDK for Python

• AWS IoT Greengrass Core SDK for C

For more information, see AWS IoT Greengrass Core SDK.

AWS IoT Greengrass Core SDK 43

https://www.qemu.org/
https://github.com/aws/aws-greengrass-core-sdk-java/
https://github.com/aws/aws-greengrass-core-sdk-js/
https://github.com/aws/aws-greengrass-core-sdk-python/
https://github.com/aws/aws-greengrass-core-sdk-c/

AWS IoT Greengrass Developer Guide, Version 1

Supported machine learning runtimes and libraries

To perform inference on a Greengrass core, you must install the machine learning runtime or
library for your ML model type.

AWS IoT Greengrass supports the following ML model types. Use these links to find information
about how to install the runtime or library for your model type and device platform.

• Deep Learning Runtime (DLR)

• MXNet

• TensorFlow

Machine learning samples

AWS IoT Greengrass provides samples that you can use with supported ML runtimes and libraries.
These samples are released under the Greengrass Core Software License Agreement.

Deep learning runtime (DLR)

Download the sample for your device platform:

• DLR sample for Raspberry Pi

• DLR sample for NVIDIA Jetson TX2

• DLR sample for Intel Atom

For a tutorial that uses the DLR sample, see the section called “How to configure optimized
machine learning inference”.

MXNet

Download the sample for your device platform:

• MXNet sample for Raspberry Pi

• MXNet sample for NVIDIA Jetson TX2

• MXNet sample for Intel Atom

For a tutorial that uses the MXNet sample, see the section called “How to configure machine
learning inference”.

Supported machine learning runtimes and libraries 44

https://neo-ai-dlr.readthedocs.io/en/latest/install.html
https://mxnet.apache.org/get_started/?
https://www.tensorflow.org/install
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf
https://d1onfpft10uf5o.cloudfront.net/greengrass-ml-samples/dlr/dlr-py3-armv7l.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-ml-samples/dlr/dlr-py3-aarch64.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-ml-samples/dlr/dlr-py3-x86_64.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-ml-samples/mxnet/mxnet-py3-armv7l.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-ml-samples/mxnet/mxnet-py3-aarch64.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-ml-samples/mxnet/mxnet-py3-x86_64.tar.gz

AWS IoT Greengrass Developer Guide, Version 1

TensorFlow

Download the Tensorflow sample for your device platform. This sample works with Raspberry
Pi, NVIDIA Jetson TX2, and Intel Atom.

AWS IoT Greengrass ML SDK software

The AWS IoT Greengrass Machine Learning SDK enables the Lambda functions you author
to consume a local machine learning model and send data to the ML Feedback connector for
uploading and publishing.

v1.1.0

• Python 3.7.

v1.0.0

• Python 2.7.

We want to hear from you

We welcome your feedback. To contact us, visit AWS re:Post and use the AWS IoT Greengrass tag.

Install the AWS IoT Greengrass Core software

The AWS IoT Greengrass Core software extends AWS functionality onto an AWS IoT Greengrass
core device, making it possible for local devices to act locally on the data they generate.

AWS IoT Greengrass provides several options for installing the AWS IoT Greengrass Core software:

• Download and extract a tar.gz file.

• Run the Greengrass Device Setup script.

• Install from an APT repository.

AWS IoT Greengrass also provides containerized environments that run the AWS IoT Greengrass
Core software.

AWS IoT Greengrass ML SDK software 45

https://d1onfpft10uf5o.cloudfront.net/greengrass-ml-samples/tf/tf-py3.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-ml-sdk/downloads/python/3.7/greengrass-machine-learning-python-sdk-1.1.0.tar.gz
https://d1onfpft10uf5o.cloudfront.net/greengrass-ml-sdk/downloads/python/2.7/greengrass-machine-learning-python-sdk-1.0.0.tar.gz
https://repost.aws/
https://repost.aws/tags/TA4ckIed1sR4enZBey29rKTg/aws-io-t-greengrass

AWS IoT Greengrass Developer Guide, Version 1

• Run AWS IoT Greengrass in a Docker container.

• Run AWS IoT Greengrass in a snap.

Download and extract the AWS IoT Greengrass Core software package

Choose the AWS IoT Greengrass Core software for your platform to download as a tar.gz file and
extract on your device. You can download recent versions of the software. For more information,
see the section called “AWS IoT Greengrass Core software”.

Run the Greengrass device setup script

Run Greengrass device setup to configure your device, install the latest AWS IoT Greengrass Core
software version, and deploy a Hello World Lambda function in minutes. For more information, see
the section called “Quick start: Greengrass device setup”.

Install the AWS IoT Greengrass Core software from an APT repository

Important

As of February 11, 2022, you can no longer install or update the AWS IoT Greengrass Core
software from an APT repository. On devices where you added the AWS IoT Greengrass
repository, you must remove the repository from the sources list. Devices that run the
software from the APT repository will continue to operate normally. We recommend that
you update the AWS IoT Greengrass Core software using tar files.

The APT repository provided by AWS IoT Greengrass includes the following packages:

• aws-iot-greengrass-core. Installs the AWS IoT Greengrass Core software.

• aws-iot-greengrass-keyring. Installs the GnuPG (GPG) keys used to sign the AWS IoT
Greengrass package repository.

By downloading this software, you agree to the Greengrass Core Software License Agreement.

Download and extract a tar.gz file 46

https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 1

Topics

• Use systemd scripts to manage the Greengrass daemon lifecycle

• Uninstall the AWS IoT Greengrass core software using the APT repository

• Remove the AWS IoT Greengrass core software repository sources

Use systemd scripts to manage the Greengrass daemon lifecycle

The aws-iot-greengrass-core package also installs systemd scripts that you can use to
manage the AWS IoT Greengrass Core software (daemon) lifecycle.

• To start the Greengrass daemon during boot:

systemctl enable greengrass.service

• To start the Greengrass daemon:

systemctl start greengrass.service

• To stop the Greengrass daemon:

systemctl stop greengrass.service

• To check the status of the Greengrass daemon:

systemctl status greengrass.service

Uninstall the AWS IoT Greengrass core software using the APT repository

When you uninstall the AWS IoT Greengrass core software, you can choose whether to preserve
or remove the AWS IoT Greengrass core software's configuration information, such as device
certificates, group information, and log files.

To uninstall the AWS IoT Greengrass core software and preserve configuration information

• Run the following command to remove the AWS IoT Greengrass core software packages and
preserve configuration information in the /greengrass folder.

sudo apt remove aws-iot-greengrass-core aws-iot-greengrass-keyring

Install from an APT repository 47

AWS IoT Greengrass Developer Guide, Version 1

To uninstall the AWS IoT Greengrass core software and remove configuration information

1. Run the following command to remove the AWS IoT Greengrass core software packages and
remove configuration information from the /greengrass folder.

sudo apt purge aws-iot-greengrass-core aws-iot-greengrass-keyring

2. Remove the AWS IoT Greengrass core software repository from your sources list. For more
information, see Remove the AWS IoT Greengrass core software repository sources.

Remove the AWS IoT Greengrass core software repository sources

You can remove the AWS IoT Greengrass core software repository sources when you no longer
need to install or update the AWS IoT Greengrass core software from the APT repository. After
February 11, 2022, you must remove the repository from your sources list to avoid an error when
you run apt update.

To remove the APT repository from the sources list

• Run the following commands to remove the AWS IoT Greengrass core software repository
from the sources list.

sudo rm /etc/apt/sources.list.d/greengrass.list
sudo apt update

Run AWS IoT Greengrass in a Docker container

AWS IoT Greengrass provides a Dockerfile and Docker images that make it easier for you to run the
AWS IoT Greengrass Core software in a Docker container. For more information, see the section
called “AWS IoT Greengrass Docker software”.

Note

You can also run a Docker application on a Greengrass core device. To do so, use the
Greengrass Docker application deployment connector.

Run AWS IoT Greengrass in a Docker container 48

AWS IoT Greengrass Developer Guide, Version 1

Run AWS IoT Greengrass in a snap

AWS IoT Greengrass snap 1.11.x enables you to run a limited version of AWS IoT Greengrass
through convenient software packages, along with all necessary dependencies, in a containerized
environment.

On December 31, 2023, AWS IoT Greengrass will end maintenance for the AWS IoT Greengrass
core software version 1.11.x Snap that is published on snapcraft.io . Devices currently running the
Snap will continue to work until further notice. However, the AWS IoT Greengrass core Snap will no
longer receive security patches or bug fixes after maintenance ends.

Snap concepts

The following are essential snap concepts to help you understand how to use the AWS IoT
Greengrass snap:

Channel

A snap component that defines which version of a snap is installed and tracked for updates.
Snaps are automatically updated to the latest version of the current channel.

Interface

A snap component that grants access to resources, such as networks and user files.

To run the AWS IoT Greengrass snap, the following interfaces must be connected. Note that
greengrass-support-no-container must be connected first and never disconnected.

 - greengrass-support-no-container
 - hardware-observe
 - home-for-hooks
 - hugepages-control
 - log-observe
 - mount-observe
 - network
 - network-bind
 - network-control
 - process-control
 - system-observe

The other interfaces are optional. If your Lambda functions require access to specific resources,
you might need to connect to the appropriate interfaces.

Run AWS IoT Greengrass in a snap 49

https://snapcraft.io/aws-iot-greengrass
https://snapcraft.io/docs/channels
https://snapcraft.io/docs/interface-management

AWS IoT Greengrass Developer Guide, Version 1

Refresh

Snaps are automatically updated. The snapd daemon is the snap package manager that checks
for updates four times a day by default. Each update check is called a refresh. When a refresh
occurs, the daemon stops, the snap gets updated, and then the daemon restarts.

For more information, see the Snapcraft website.

What's new with AWS IoT Greengrass snap v1.11.x

The following describes what's new and changed with the version 1.11.x of the AWS IoT Greengrass
snap.

• This version supports only the snap_daemon user, exposed as user ID (UID) and group (GID)
584788.

• This version supports only noncontainerized Lambda functions.

Important

Because noncontainerized Lambda functions must share the same user (snap_daemon),
the Lambda functions have no isolation from each other. For more information,
see Controlling execution of Greengrass Lambda functions by using group-specific
configuration.

• This version supports C, C++, Java 8, Node.js 12.x, Python 2.7, Python 3.7, and Python 3.8
runtimes.

Note

To avoid redundant Python runtimes, Python 3.7 Lambda functions actually run the
Python 3.8 runtime.

Getting started with AWS IoT Greengrass snap

The following procedure helps you install and configure the AWS IoT Greengrass snap on your
device.

Run AWS IoT Greengrass in a snap 50

https://snapcraft.io/docs/managing-updates
https://snapcraft.io/
https://docs.aws.amazon.com/greengrass/v1/developerguide/lambda-group-config.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/lambda-group-config.html

AWS IoT Greengrass Developer Guide, Version 1

Requirements

To run the AWS IoT Greengrass snap, you must do the following:

• Run the AWS IoT Greengrass snap on a supported Linux distribution, such as Ubuntu, Linux Mint,
Debian, and Fedora.

• Install the snapd daemon on your device. The snapd daemon including the snap tool manages
the snap environment on your device.

For the list of supported Linux distributions and installation instructions, see Installing snapd in the
Snap documentation.

Install and configure the AWS IoT Greengrass snap

The following tutorial shows you how to install and configure the AWS IoT Greengrass snap on
your device.

Note

• Although this tutorial uses an Amazon EC2 instance (x86 t2.micro Ubuntu 20.04), you can
run the AWS IoT Greengrass snap with physical hardware, such as a Raspberry Pi.

• The snapd daemon is preinstalled on Ubuntu.

1. Install the core18 snap by running the following command in your device's terminal:

sudo snap install core18

The core18 snap is a base snap that provides a runtime environment with commonly used
libraries. This snap is built from Ubuntu 18.04 LTS.

2. Upgrade snapd by running the following command:

sudo snap install --channel=edge snapd; sudo snap refresh --channel=edge snapd

3. Run the snap list command to check if you have the AWS IoT Greengrass snap installed.

The following example response shows that snapd is installed, but aws-iot-greengrass
isn't.

Run AWS IoT Greengrass in a snap 51

https://snapcraft.io/docs/installing-snapd
https://snapcraft.io/docs/base-snaps
http://releases.ubuntu.com/18.04/

AWS IoT Greengrass Developer Guide, Version 1

Name Version Rev Tracking Publisher Notes
amazon-ssm-agent 3.0.161.0 2996 latest/stable/… aws# classic
core 16-2.48 10444 latest/stable canonical# core
core18 20200929 1932 latest/stable canonical# base
lxd 4.0.4 18150 4.0/stable/… canonical# -
snapd 2.48+git548.g929ccfb 10526 latest/edge canonical# snapd

4. Choose one of the following options to install AWS IoT Greengrass snap 1.11.x.

• To install the AWS IoT Greengrass snap, run the following command:

sudo snap install aws-iot-greengrass

Example response:

aws-iot-greengrass 1.11.5 from Amazon Web Services (aws) installed

• To migrate from an earlier version to v1.11.x or update to the latest available patch version,
run the following command:

sudo snap refresh --channel=1.11.x aws-iot-greengrass

Like other snaps, the AWS IoT Greengrass snap uses channels to manage minor versions. Snaps
are automatically updated to the latest available version of the current channel. For examples,
if you specify --channel=1.11.x, your AWS IoT Greengrass snap is updated to v1.11.5.

You can run the snap info aws-iot-greengrass command to get the list of available
channels for AWS IoT Greengrass.

Example response:

name: aws-iot-greengrass
summary: AWS supported software that extends cloud capabilities to local devices.
publisher: Amazon Web Services (aws#)
store-url: https://snapcraft.io/aws-iot-greengrass
contact: https://repost.aws/tags/TA4ckIed1sR4enZBey29rKTg/aws-io-t-greengrass
license: Proprietary
description: |

Run AWS IoT Greengrass in a snap 52

AWS IoT Greengrass Developer Guide, Version 1

 AWS IoT Greengrass seamlessly extends AWS onto edge devices so they can act
 locally on the data
 they generate, while still using the cloud for management, analytics, and durable
 storage.
 AWS IoT Greenrgrass snap v1.11.0 enables you to run a limited version of AWS IoT
 Greengrass with
 all necessary dependencies in a containerized environment.
 The AWS IoT Greengrass snap doesn't support connectors and machine learning (ML)
 inference.
 By downloading this software you agree to the Greengrass Core Software License
 Agreement
 (https://s3-us-west-2.amazonaws.com/greengrass-release-license/greengrass-
license-v1.pdf).
 For more information, see Run AWS IoT Greengrass in a snap
 (https://docs.aws.amazon.com/greengrass/latest/developerguide/install-
ggc.html#gg-snap-support) in
 the AWS IoT Greengrass Developer.
 If you need help, try the AWS IoT Greengrass tag on AWS re:Post
 (https://repost.aws/tags/TA4ckIed1sR4enZBey29rKTg/aws-io-t-greengrass) or connect
 with an AWS IQ expert
 (https://iq.aws.amazon.com/services/aws/greengrass).
snap-id: SRDuhPJGj4XPxFNNZQKOTvURAp0wxKnd
channels:
 latest/stable: 1.11.3 2021-06-15 (59) 111MB -
 latest/candidate: 1.11.3 2021-06-14 (59) 111MB -
 latest/beta: 1.11.3 2021-06-14 (59) 111MB -
 latest/edge: 1.11.3 2021-06-14 (59) 111MB -
 1.11.x/stable: 1.11.3 2021-06-15 (59) 111MB -
 1.11.x/candidate: 1.11.3 2021-06-15 (59) 111MB -
 1.11.x/beta: 1.11.3 2021-06-15 (59) 111MB -
 1.11.x/edge: 1.11.3 2021-06-15 (59) 111MB -

5. To access specific resources that your Lambda functions need, you can connect to additional
interfaces.

Run the following command to get the list of AWS IoT Greengrass snap supported interfaces:

snap connections aws-iot-greengrass

Example response:

Interface Plug Slot
 Notes

Run AWS IoT Greengrass in a snap 53

AWS IoT Greengrass Developer Guide, Version 1

camera aws-iot-greengrass:camera -
 -
dvb aws-iot-greengrass:dvb -
 -
gpio aws-iot-greengrass:gpio -
 -
gpio-memory-control aws-iot-greengrass:gpio-memory-control -
 -
greengrass-support aws-iot-greengrass:greengrass-support-no-container
 :greengrass-support -
hardware-observe aws-iot-greengrass:hardware-observe
 :hardware-observe manual
hardware-random-control aws-iot-greengrass:hardware-random-control -
 -
home aws-iot-greengrass:home-for-greengrassd -
 -
home aws-iot-greengrass:home-for-hooks :home
 manual
hugepages-control aws-iot-greengrass:hugepages-control
 :hugepages-control manual
i2c aws-iot-greengrass:i2c -
 -
iio aws-iot-greengrass:iio -
 -
joystick aws-iot-greengrass:joystick -
 -
log-observe aws-iot-greengrass:log-observe :log-
observe manual
mount-observe aws-iot-greengrass:mount-observe
 :mount-observe manual
network aws-iot-greengrass:network
 :network -
network-bind aws-iot-greengrass:network-bind
 :network-bind -
network-control aws-iot-greengrass:network-control
 :network-control -
opengl aws-iot-greengrass:opengl
 :opengl -
optical-drive aws-iot-greengrass:optical-drive
 :optical-drive -
process-control aws-iot-greengrass:process-control
 :process-control -
raw-usb aws-iot-greengrass:raw-usb -
 -

Run AWS IoT Greengrass in a snap 54

AWS IoT Greengrass Developer Guide, Version 1

removable-media aws-iot-greengrass:removable-media -
 -
serial-port aws-iot-greengrass:serial-port -
 -
spi aws-iot-greengrass:spi -
 -
system-observe aws-iot-greengrass:system-observe
 :system-observe -

If you see a hyphen (-) in the Slot column, the corresponding interface isn't connected.

6. Follow Installing the AWS IoT Greengrass Core software to create an AWS IoT thing, a
Greengrass group, security resources that enable secure communications with AWS IoT,
and the AWS IoT Greengrass Core software configuration file. The configuration file,
config.json, contains configuration specific to your Greengrass core, such as the location of
certificate files and the AWS IoT device data endpoint.

Note

If you downloaded the file to a different device, follow this step to transfer the files to
the AWS IoT Greengrass core device.

7. For the AWS IoT Greengrass snap, make sure that you update the config.json file, as shown in
the following:

• Replace each instance of certificateId with the certificate ID in the name of the
certificate and key files.

• If you downloaded a different Amazon root CA certificate than Amazon Root CA 1, replace
each instance of AmazonRootCA1.pem with the name of the Amazon root CA file.

{
 ...
 "crypto" : {
 "principals" : {
 "SecretsManager" : {
 "privateKeyPath" : "file:///snap/aws-iot-greengrass/current/greengrass/
certs/certificateId-private.pem.keyy"
 },
 "IoTCertificate" : {

Run AWS IoT Greengrass in a snap 55

AWS IoT Greengrass Developer Guide, Version 1

 "privateKeyPath" : "file:///snap/aws-iot-greengrass/current/greengrass/
certs/certificateId-private.pem.key",
 "certificatePath" : "file:///snap/aws-iot-greengrass/current/greengrass/
certs/certificateId-certificate.pem.crt"
 }
 },
 "caPath" : "file:///snap/aws-iot-greengrass/current/greengrass/
certs/AmazonRootCA1.pem"
 },
 "writeDirectory": "/var/snap/aws-iot-greengrass/current/ggc-write-directory",
 "pidFileDirectory": "/var/snap/aws-iot-greengrass/current/pidFileDirectory"
}

8. Run the following command to add your AWS IoT Greengrass certificate and configuration
files:

sudo snap set aws-iot-greengrass gg-certs=/home/ubuntu/my-certs

Deploying a Lambda function

This section shows you how to deploy a customer managed Lambda function on the AWS IoT
Greengrass snap.

Important

AWS IoT Greengrass snap v1.11 only supports noncontainerized Lambda functions.

1. Run the following command to start the AWS IoT Greengrass daemon:

sudo snap start aws-iot-greengrass

Example response:

Started.

Run AWS IoT Greengrass in a snap 56

AWS IoT Greengrass Developer Guide, Version 1

Note

If you get an error, you can use the snap run command for a detailed error message.
For more troubleshooting information, see error: cannot perform the following
tasks: - Run service command "start" for services ["greengrassd"] of snap "aws-
iot-greengrass" ([start snap.aws-iot-greengrass.greengrassd.service] failed with
exit status 1: Job for snap.aws-iot-greengrass.greengrassd.service failed because
the control process exited with error code. See "systemctl status snap.aws-iot-
greengrass.greengrassd.service" and "journalctl -xe" for details.).

2. Run the following command to confirm that the daemon is running:

snap services aws-iot-greengrass.greengrassd

Example response:

Service Startup Current Notes
aws-iot-greengrass.greengrassd disabled active -

3. Follow Module 3 (part 1): Lambda functions on AWS IoT Greengrass to create and deploy a
Hello World Lambda function. However, before you deploy the Lambda function, complete the
next step.

4. Make sure that your Lambda function run as the snap_daemon user and in the no container
mode. To update the settings of your Greengrass group, do the following in the AWS IoT
Greengrass console:

a. Sign in to the AWS IoT Greengrass console.

b. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and
then choose Groups (V1).

c. Under Greengrass groups, choose the target group.

d. On the group configuration page, in the navigation pane, choose the Lambda functions
tab.

e. Under Default Lambda function runtime environment, choose Edit, and do the
following:

Run AWS IoT Greengrass in a snap 57

https://docs.aws.amazon.com/greengrass/v1/developerguide/module3-I.html

AWS IoT Greengrass Developer Guide, Version 1

i. For Default system user and group, choose Another user ID/group ID, and then
enter 584788 for both System user ID (number) and System group ID (number).

ii. For Default Lambda function containerization, choose No container.

iii. Choose Save.

Stopping the AWS IoT Greengrass daemon

You can use the snap stop command to stop a service.

To stop the AWS IoT Greengrass daemon, run the following command:

sudo snap stop aws-iot-greengrass

The command should return Stopped..

To check if you successfully stopped the snap, run the following command:

snap services aws-iot-greengrass.greengrassd

Example response:

Service Startup Current Notes
aws-iot-greengrass.greengrassd disabled inactive -

Uninstalling the AWS IoT Greengrass snap

To uninstall the AWS IoT Greengrass snap, run the following command:

sudo snap remove aws-iot-greengrass

Example response:

aws-iot-greengrass removed

Troubleshooting the AWS IoT Greengrass snap

Use the following information to help troubleshoot issues with the AWS IoT Greengrass snap.

Run AWS IoT Greengrass in a snap 58

AWS IoT Greengrass Developer Guide, Version 1

Got permission denied errors.

Solution: Permission denied errors are often because of missing interfaces. For the list of missing
interfaces and detailed troubleshooting information, you can use the snappy-debug tool.

Run the following command to install the tool.

sudo snap install snappy-debug

Example response:

snappy-debug 0.36-snapd2.45.1 from Canonical# installed

Run the sudo snappy-debug command in a separate terminal session. The operation continues
until a permission denied error occurs.

For example, if your Lambda function tries to read a file in the $HOME directory, you may get the
following response:

INFO: Following '/var/log/syslog'. If have dropped messages, use:
INFO: $ sudo journalctl --output=short --follow --all | sudo snappy-debug
kernel.printk_ratelimit = 0
= AppArmor =
Time: Dec 6 04:48:26
Log: apparmor="DENIED" operation="mknod" profile="snap.aws-iot-greengrass.greengrassd"
 name="/home/ubuntu/my-file.txt" pid=12345 comm="touch" requested_mask="c"
 denied_mask="c" fsuid=0 ouid=0
File: /home/ubuntu/my-file.txt (write)
Suggestion:
* add 'home' to 'plugs'

This example shows that creating the /home/ubuntu/my-file.txt file caused the permission
error. It also suggests that you add home to plugs. However, this sugguestion is not applicable.
The home-for-greengrassd and home-for-hooks plugs are only given the read-only access.

For more information, see The snappy-debug snap in the Snap documentation.

Run AWS IoT Greengrass in a snap 59

https://snapcraft.io/docs/debug-snaps#heading--snappy-debug

AWS IoT Greengrass Developer Guide, Version 1

error: cannot perform the following tasks: - Run service command "start" for
services ["greengrassd"] of snap "aws-iot-greengrass" ([start snap.aws-iot-
greengrass.greengrassd.service] failed with exit status 1: Job for snap.aws-iot-
greengrass.greengrassd.service failed because the control process exited with error code. See
"systemctl status snap.aws-iot-greengrass.greengrassd.service" and "journalctl -xe" for details.)

Solution: You might see this error when the snap start aws-iot-greengrass command fails
to start the AWS IoT Greengrass Core software.

For more troubleshooting information, run the following command:

sudo snap run aws-iot-greengrass.greengrassd

Example response:

Couldn't find /snap/aws-iot-greengrass/44/greengrass/config/config.json.

This examples shows that AWS IoT Greengrass couldn't find the config.json file. You might
check the configuration and certificate files.

/var/snap/aws-iot-greengrass/current/ggc-write-directory/packages/1.11.5/rootfs/merged is
not an absolute path or is a symlink.

Solution: The AWS IoT Greengrass snap supports only noncontainerized Lambda functions. Make
sure that you run your Lambda functions in the no container mode. For more information, see
Considerations when choosing Lambda function containerization in the AWS IoT Greengrass Version
1 Developer Guide.

The snapd daemon failed to restart after you ran the sudo snap refresh snapd command.

Solution: Follow steps 6 through 8 in Install and configure the AWS IoT Greengrass snap to add the
AWS IoT Greengrass certificate and configuration files to the AWS IoT Greengrass snap.

Archive an AWS IoT Greengrass Core software installation

When you upgrade to a new version of the AWS IoT Greengrass Core software, you can archive the
currently installed version. This preserves your current installation environment so you can test a
new software version on the same hardware. This also makes it easy to roll back to your archived
version for any reason.

Archive a core software installation 60

https://docs.aws.amazon.com/greengrass/v1/developerguide/lambda-group-config.html#no-container-mode

AWS IoT Greengrass Developer Guide, Version 1

To archive the current installation and install a new version

1. Download the AWS IoT Greengrass Core software installation package that you want to
upgrade to.

2. Copy the package to the destination core device. For instructions that show how to transfer
files, see this step.

Note

You copy your current certificates, keys, and configuration file to the new installation
later.

Run the commands in the following steps in your core device terminal.

3. Make sure that the Greengrass daemon is stopped on the core device.

a. To check whether the daemon is running:

ps aux | grep -E 'greengrass.*daemon'

If the output contains a root entry for /greengrass/ggc/packages/ggc-version/
bin/daemon, then the daemon is running.

Note

This procedure is written with the assumption that the AWS IoT Greengrass Core
software is installed in the /greengrass directory.

b. To stop the daemon:

cd /greengrass/ggc/core/
sudo ./greengrassd stop

4. Move the current Greengrass root directory to a different directory.

sudo mv /greengrass /greengrass_backup

5. Untar the new software on the core device. Replace the os-architecture and version
placeholders in the command.

Archive a core software installation 61

AWS IoT Greengrass Developer Guide, Version 1

sudo tar –zxvf greengrass-os-architecture-version.tar.gz –C /

6. Copy the archived certificates, keys, and configuration file to the new installation.

sudo cp /greengrass_backup/certs/* /greengrass/certs
sudo cp /greengrass_backup/config/* /greengrass/config

7. Start the daemon:

cd /greengrass/ggc/core/
sudo ./greengrassd start

Now, you can make a group deployment to test the new installation. If something fails, you can
restore the archived installation.

To restore the archived installation

1. Stop the daemon.

2. Delete the new /greengrass directory.

3. Move the /greengrass_backup directory back to /greengrass.

4. Start the daemon.

Configure the AWS IoT Greengrass core

An AWS IoT Greengrass core is an AWS IoT thing (device) that acts as a hub or gateway in edge
environments. Like other AWS IoT devices, a core exists in the registry, has a device shadow, and
uses a device certificate to authenticate with AWS IoT Core and AWS IoT Greengrass. The core
device runs the AWS IoT Greengrass Core software, which enables it to manage local processes for
Greengrass groups, such as communication, shadow sync, and token exchange.

The AWS IoT Greengrass Core software provides the following functionality:

• Deployment and the local running of connectors and Lambda functions.

• Process data streams locally with automatic exports to the AWS Cloud.

• MQTT messaging over the local network between devices, connectors, and Lambda functions
using managed subscriptions.

Configure the AWS IoT Greengrass core 62

AWS IoT Greengrass Developer Guide, Version 1

• MQTT messaging between AWS IoT and devices, connectors, and Lambda functions using
managed subscriptions.

• Secure connections between devices and the AWS Cloud using device authentication and
authorization.

• Local shadow synchronization of devices. Shadows can be configured to sync with the AWS
Cloud.

• Controlled access to local device and volume resources.

• Deployment of cloud-trained machine learning models for running local inference.

• Automatic IP address detection that enables devices to discover the Greengrass core device.

• Central deployment of new or updated group configuration. After the configuration data is
downloaded, the core device is restarted automatically.

• Secure, over-the-air (OTA) software updates of user-defined Lambda functions.

• Secure, encrypted storage of local secrets and controlled access by connectors and Lambda
functions.

AWS IoT Greengrass core configuration file

The configuration file for the AWS IoT Greengrass Core software is config.json. It is located in
the /greengrass-root/config directory.

Note

greengrass-root represents the path where the AWS IoT Greengrass Core software is
installed on your device. Typically, this is the /greengrass directory.
If you use the Default Group creation option from the AWS IoT Greengrass console, then
the config.json file is deployed to the core device in a working state.

You can review the contents of this file by running the following command:

cat /greengrass-root/config/config.json

The following is an example config.json file. This is the version that's generated when you
create the core from the AWS IoT Greengrass console.

AWS IoT Greengrass core configuration file 63

AWS IoT Greengrass Developer Guide, Version 1

GGC v1.11

{
 "coreThing": {
 "caPath": "root.ca.pem",
 "certPath": "hash.cert.pem",
 "keyPath": "hash.private.key",
 "thingArn": "arn:partition:iot:region:account-id:thing/core-thing-name",
 "iotHost": "host-prefix-ats.iot.region.amazonaws.com",
 "ggHost": "greengrass-ats.iot.region.amazonaws.com",
 "keepAlive": 600,
 "ggDaemonPort": 8000,
 "systemComponentAuthTimeout": 5000
 },
 "runtime": {
 "maxWorkItemCount": 1024,
 "maxConcurrentLimit": 25,
 "lruSize": 25,
 "mountAllBlockDevices": "no",
 "cgroup": {
 "useSystemd": "yes"
 }
 },
 "managedRespawn": false,
 "crypto": {
 "principals": {
 "SecretsManager": {
 "privateKeyPath": "file:///greengrass/certs/hash.private.key"
 },
 "IoTCertificate": {
 "privateKeyPath": "file:///greengrass/certs/hash.private.key",
 "certificatePath": "file:///greengrass/certs/hash.cert.pem"
 }
 },
 "caPath": "file:///greengrass/certs/root.ca.pem"
 },
 "writeDirectory": "/var/snap/aws-iot-greengrass/current/ggc-write-directory",
 "pidFileDirectory": "/var/snap/aws-iot-greengrass/current/pidFileDirectory"
}

The config.json file supports the following properties:

coreThing

AWS IoT Greengrass core configuration file 64

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

caPath The path to the AWS IoT
root CA relative to the
/greengrass-root /
certs directory.

For backward compatibi
lity with versions earlier
than 1.7.0. This property is
ignored when the crypto
object is present.

Note

Make sure that your
endpoints correspon
d to your certificate
type.

certPath The path to the core device
certificate relative to the
/greengrass-root /
certs directory.

For backward compatibi
lity with versions earlier
than 1.7.0. This property is
ignored when the crypto
object is present.

keyPath The path to the core private
key relative to /greengras
s-root /certs directory.

For backward compatibi
lity with versions earlier
than 1.7.0. This property is
ignored when the crypto
object is present.

thingArn The Amazon Resource Name
(ARN) of the AWS IoT thing
that represents the AWS IoT
Greengrass core device.

Find the ARN for your core
in the AWS IoT Greengras
s console under Cores,
or by running the aws
greengrass get-core-
definition-version
CLI command.

iotHost Your AWS IoT endpoint. Find the endpoint in the
AWS IoT console under

AWS IoT Greengrass core configuration file 65

https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

Settings, or by running
the aws iot describe-
endpoint --endpoint-
type iot:Data-ATS CLI
command.

This command returns the
Amazon Trust Services (ATS)
endpoint. For more informati
on, see the Server authentic
ation documentation.

Note

Make sure that your
endpoints correspon
d to your certificate
type.
Make sure that
your endpoints
correspond to your
AWS Region.

AWS IoT Greengrass core configuration file 66

https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

ggHost Your AWS IoT Greengrass
endpoint.

This is your iotHost
endpoint with the
host prefix replaced by
greengrass (for example,
greengrass-ats.iot
. region.amazonaw
s.com). Use the same AWS
Region as iotHost.

Note

Make sure that your
endpoints correspon
d to your certificate
type.
Make sure that
your endpoints
correspond to your
AWS Region.

iotMqttPort Optional. The port number
to use for MQTT communica
tion with AWS IoT.

Valid values are 8883 or
443. The default value is
8883. For more information,
see Connect on port 443 or
through a network proxy.

iotHttpPort Optional. The port number
used to create HTTPS
connections to AWS IoT.

Valid values are 8443 or
443. The default value is
8443. For more information,
see Connect on port 443 or
through a network proxy.

AWS IoT Greengrass core configuration file 67

https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

ggMqttPort Optional. The port number
to use for MQTT communica
tion over the local network.

Valid values are 1024
through 65535. The default
value is 8883. For more
information, see the section
called “MQTT port for local
messaging”.

ggHttpPort Optional. The port number
used to create HTTPS
connections to the AWS IoT
Greengrass service.

Valid values are 8443 or
443. The default value is
8443. For more information,
see Connect on port 443 or
through a network proxy.

keepAlive Optional. The MQTT
KeepAlive period, in
seconds.

Valid range is between 30
and 1200 seconds. The
default value is 600.

networkProxy Optional. An object that
defines a proxy server to
connect to.

The proxy server can be
HTTP or HTTPS. For more
information, see Connect
on port 443 or through a
network proxy.

mqttOperationTimeout Optional. The amount
of time (in seconds) to
allow the Greengrass core
to complete a publish,
subscribe, or unsubscri
be operation in MQTT
connections to AWS IoT
Core.

The default value is 5. The
minimum value is 5.

AWS IoT Greengrass core configuration file 68

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

ggDaemonPort Optional. The Greengrass
core IPC port number.

This property is available in
AWS IoT Greengrass v1.11.0
or later.

Valid values are between
1024 and 65535. The
default value is 8000.

systemComponentAut
hTimeout

Optional. The time (in
milliseconds) to allow the
Greengrass core IPC to
complete authentication.

This property is available in
AWS IoT Greengrass v1.11.0
or later.

Valid values are between
500 and 5000. The default
value is 5000.

runtime

Field Description Notes

maxWorkItemCount Optional. The maximum
number of work items that
the Greengrass daemon
can process at a time. Work
items that exceed this limit
are ignored.

The work item queue
is shared by system
components, user-defined
Lambda functions, and
connectors.

The default value is 1024.
The maximum value is
limited by your device
hardware.

Increasing this value
increases the memory that
AWS IoT Greengrass uses.
You can increase this value
if you expect your core
to receive heavy MQTT
message traffic.

maxConcurrentLimit Optional. The maximum
number of concurrent
unpinned Lambda workers

The default value is 25. The
minimum value is defined by
lruSize.

AWS IoT Greengrass core configuration file 69

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

that the Greengrass daemon
can have. You can specify a
different integer to override
this parameter.

lruSize Optional. Defines the
minimum value for
maxConcurrentLimit .

The default value is 25.

mountAllBlockDevices Optional. Enables AWS
IoT Greengrass to use bind
mounts to mount all block
devices into a container after
setting up the OverlayFS.

This property is available in
AWS IoT Greengrass v1.11.0
or later.

Valid values are yes and no.
The default value is no.

Set this value to yes if your
/usr directory isn't under
the / hierarchy.

postStartHealthChe
ckTimeout

Optional. The time (in
milliseconds) after starting
that the Greengrass daemon
waits for the health check to
finish.

The default timeout is 30
seconds (30000 ms).

cgroup

useSystemd Indicates whether your
device uses systemd.

Valid values are yes or
no. Run the check_ggc
_dependencies script
in Module 1 to see if your
device uses systemd.

crypto

AWS IoT Greengrass core configuration file 70

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 1

The crypto contains properties that support private key storage on a hardware security
module (HSM) through PKCS#11 and local secret storage. For more information, see the section
called “Security principals”, the section called “Hardware security integration”, and Deploy
secrets to the core. Configurations for private key storage on HSMs or in the file system are
supported.

Field Description Notes

caPath The absolute path to the
AWS IoT root CA.

Must be a file URI of the
form: file:///absolute/
path/to/file .

Note

Make sure that your
endpoints correspon
d to your certificate
type.

PKCS11

OpenSSLEngine Optional. The absolute path
to the OpenSSL engine
.so file to enable PKCS#11
support on OpenSSL.

Must be a path to a file on
the file system.

This property is required if
you're using the Greengras
s OTA update agent with
hardware security. For more
information, see the section
called “Configure OTA
updates”.

P11Provider The absolute path to the
PKCS#11 implementation's
libdl-loadable library.

Must be a path to a file on
the file system.

AWS IoT Greengrass core configuration file 71

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

slotLabel The slot label that's used
to identify the hardware
module.

Must conform to PKCS#11
label specifications.

slotUserPin The user PIN that's used to
authenticate the Greengrass
core to the module.

Must have sufficient
permissions to perform
C_Sign with the configured
private keys.

principals

IoTCertificate The certificate and private key that the core uses to make
requests to AWS IoT.

IoTCertificate
 .privateKeyPath

The path to the core private
key.

For file system storage,
must be a file URI of the
form: file:///absolute/
path/to/file .

For HSM storage, must be an
RFC 7512 PKCS#11 path that
specifies the object label.

IoTCertificate
 .certificatePath

The absolute path to the
core device certificate.

Must be a file URI of the
form: file:///absolute/
path/to/file .

MQTTServerCertific
ate

Optional. The private key that the core uses in combination
with the certificate to act as an MQTT server or gateway.

AWS IoT Greengrass core configuration file 72

https://tools.ietf.org/html/rfc7512

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

MQTTServerCertific
ate .privateKeyPath

The path to the local MQTT
server private key.

Use this value to specify
your own private key for the
local MQTT server.

For file system storage,
must be a file URI of the
form: file:///absolute/
path/to/file .

For HSM storage, must be an
RFC 7512 PKCS#11 path that
specifies the object label.

If this property is omitted,
AWS IoT Greengrass rotates
the key based your rotation
settings. If specified, the
customer is responsible for
rotating the key.

SecretsManager The private key that secures the data key used for encryptio
n. For more information, see Deploy secrets to the core.

AWS IoT Greengrass core configuration file 73

https://tools.ietf.org/html/rfc7512

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

SecretsManager
 .privateKeyPath

The path to the local secrets
manager private key.

Only an RSA key is
supported.

For file system storage,
must be a file URI of the
form: file:///absolute/
path/to/file .

For HSM storage, must be an
RFC 7512 PKCS#11 path that
specifies the object label.
The private key must be
generated using the PKCS#1
v1.5 padding mechanism.

The following configuration properties are also supported:

Field Description Notes

mqttMaxConnectionR
etryInterval

Optional. The maximum
interval (in seconds)
between MQTT connection
retries if the connection is
dropped.

Specify this value as an
unsigned integer. The
default is 60.

managedRespawn Optional. Indicates that
the OTA agent needs to
run custom code before an
update.

Valid values are true or
false. For more informati
on, see OTA updates of
AWS IoT Greengrass Core
software.

writeDirectory Optional. The write directory
where AWS IoT Greengras
s creates all read/write
resources.

For more information, see
Configure a write directory
for AWS IoT Greengrass.

AWS IoT Greengrass core configuration file 74

https://tools.ietf.org/html/rfc7512
https://tools.ietf.org/html/rfc2313
https://tools.ietf.org/html/rfc2313

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

pidFileDirectory Optional. AWS IoT Greengras
s stores its process ID (PID)
under this directory.

The default value is /var/
run.

Extended life versions

The following versions of the AWS IoT Greengrass Core software are in the extended life phase.
This information is included for reference purposes only.

GGC v1.10

{
 "coreThing" : {
 "caPath" : "root.ca.pem",
 "certPath" : "hash.cert.pem",
 "keyPath" : "hash.private.key",
 "thingArn" : "arn:partition:iot:region:account-id:thing/core-thing-name",
 "iotHost" : "host-prefix-ats.iot.region.amazonaws.com",
 "ggHost" : "greengrass-ats.iot.region.amazonaws.com",
 "keepAlive" : 600,
 "systemComponentAuthTimeout": 5000
 },
 "runtime" : {
 "maxWorkItemCount" : 1024,
 "maxConcurrentLimit" : 25,
 "lruSize": 25,
 "cgroup" : {
 "useSystemd" : "yes"
 }
 },
 "managedRespawn" : false,
 "crypto" : {
 "principals" : {
 "SecretsManager" : {
 "privateKeyPath" : "file:///greengrass/certs/hash.private.key"
 },
 "IoTCertificate" : {
 "privateKeyPath" : "file:///greengrass/certs/hash.private.key",
 "certificatePath" : "file:///greengrass/certs/hash.cert.pem"

AWS IoT Greengrass core configuration file 75

AWS IoT Greengrass Developer Guide, Version 1

 }
 },
 "caPath" : "file:///greengrass/certs/root.ca.pem"
 }
}

The config.json file supports the following properties:

coreThing

Field Description Notes

caPath The path to the AWS IoT
root CA relative to the
/greengrass-root /
certs directory.

For backward compatibi
lity with versions earlier
than 1.7.0. This property is
ignored when the crypto
object is present.

Note

Make sure that
your endpoints
correspond to your
certificate type.

certPath The path to the core device
certificate relative to the
/greengrass-root /
certs directory.

For backward compatibi
lity with versions earlier
than 1.7.0. This property is
ignored when the crypto
object is present.

keyPath The path to the core private
key relative to /greengras
s-root /certs directory.

For backward compatibi
lity with versions earlier
than 1.7.0. This property is
ignored when the crypto
object is present.

AWS IoT Greengrass core configuration file 76

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

thingArn The Amazon Resource
Name (ARN) of the AWS IoT
thing that represents the
AWS IoT Greengrass core
device.

Find the ARN for your core
in the AWS IoT Greengras
s console under Cores,
or by running the aws
greengrass get-core-
definition-version
CLI command.

iotHost Your AWS IoT endpoint. Find the endpoint in the
AWS IoT console under
Settings, or by running
the aws iot describe-
endpoint --endpoin
t-type iot:Data-ATS
CLI command.

This command returns the
Amazon Trust Services
(ATS) endpoint. For more
information, see the Server
authentication documenta
tion.

Note

Make sure that
your endpoints
correspond to your
certificate type.
Make sure that
your endpoints
correspond to your
AWS Region.

AWS IoT Greengrass core configuration file 77

https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

ggHost Your AWS IoT Greengrass
endpoint.

This is your iotHost
endpoint with the
host prefix replaced by
greengrass (for example,
greengrass-ats.iot
. region.amazonaw
s.com). Use the same
AWS Region as iotHost.

Note

Make sure that
your endpoints
correspond to your
certificate type.
Make sure that
your endpoints
correspond to your
AWS Region.

iotMqttPort Optional. The port
number to use for MQTT
communication with AWS
IoT.

Valid values are 8883 or
443. The default value is
8883. For more informati
on, see Connect on port
443 or through a network
proxy.

iotHttpPort Optional. The port number
used to create HTTPS
connections to AWS IoT.

Valid values are 8443 or
443. The default value is
8443. For more informati
on, see Connect on port
443 or through a network
proxy.

AWS IoT Greengrass core configuration file 78

https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

ggMqttPort Optional. The port
number to use for MQTT
communication over the
local network.

Valid values are 1024
through 65535. The default
value is 8883. For more
information, see the section
called “MQTT port for local
messaging”.

ggHttpPort Optional. The port number
used to create HTTPS
connections to the AWS IoT
Greengrass service.

Valid values are 8443 or
443. The default value is
8443. For more informati
on, see Connect on port
443 or through a network
proxy.

keepAlive Optional. The MQTT
KeepAlive period, in
seconds.

Valid range is between 30
and 1200 seconds. The
default value is 600.

networkProxy Optional. An object that
defines a proxy server to
connect to.

The proxy server can be
HTTP or HTTPS. For more
information, see Connect
on port 443 or through a
network proxy.

mqttOperationTimeo
ut

Optional. The amount
of time (in seconds) to
allow the Greengrass core
to complete a publish,
subscribe, or unsubscri
be operation in MQTT
connections to AWS IoT
Core.

This property is available
starting in AWS IoT
Greengrass v1.10.2.

The default value is 5. The
minimum value is 5.

runtime

AWS IoT Greengrass core configuration file 79

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

maxWorkItemCount Optional. The maximum
number of work items that
the Greengrass daemon
can process at a time. Work
items that exceed this limit
are ignored.

The work item queue
is shared by system
components, user-defined
Lambda functions, and
connectors.

The default value is 1024.
The maximum value is
limited by your device
hardware.

Increasing this value
increases the memory that
AWS IoT Greengrass uses.
You can increase this value
if you expect your core
to receive heavy MQTT
message traffic.

maxConcurrentLimit Optional. The maximum
number of concurrent
unpinned Lambda workers
that the Greengrass
daemon can have. You can
specify a different integer
to override this parameter.

The default value is 25. The
minimum value is defined
by lruSize.

lruSize Optional. Defines the
minimum value for
maxConcurrentLimit .

The default value is 25.

postStartHealthChe
ckTimeout

Optional. The time (in
milliseconds) after starting
that the Greengrass
daemon waits for the
health check to finish.

The default timeout is 30
seconds (30000 ms).

cgroup

useSystemd Indicates whether your
device uses systemd.

Valid values are yes or
no. Run the check_ggc
_dependencies script

AWS IoT Greengrass core configuration file 80

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

in Module 1 to see if your
device uses systemd.

crypto

The crypto contains properties that support private key storage on a hardware security
module (HSM) through PKCS#11 and local secret storage. For more information, see the
section called “Security principals”, the section called “Hardware security integration”, and
Deploy secrets to the core. Configurations for private key storage on HSMs or in the file
system are supported.

Field Description Notes

caPath The absolute path to the
AWS IoT root CA.

Must be a file
URI of the form:
file:///absolute/
path/to/file .

Note

Make sure that
your endpoints
correspond to your
certificate type.

PKCS11

OpenSSLEngine Optional. The absolute path
to the OpenSSL engine
.so file to enable PKCS#11
support on OpenSSL.

Must be a path to a file on
the file system.

This property is required if
you're using the Greengras
s OTA update agent with
hardware security. For more
information, see the section

AWS IoT Greengrass core configuration file 81

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

called “Configure OTA
updates”.

P11Provider The absolute path to the
PKCS#11 implementation's
libdl-loadable library.

Must be a path to a file on
the file system.

slotLabel The slot label that's used
to identify the hardware
module.

Must conform to PKCS#11
label specifications.

slotUserPin The user PIN that's used to
authenticate the Greengras
s core to the module.

Must have sufficient
permissions to perform
C_Sign with the configured
private keys.

principals

IoTCertificate The certificate and private key that the core uses to make
requests to AWS IoT.

IoTCertificate
 .privateKeyPath

The path to the core private
key.

For file system
storage, must be a
file URI of the form:
file:///absolute/
path/to/file .

For HSM storage, must be
an RFC 7512 PKCS#11 path
that specifies the object
label.

IoTCertificate
 .certificatePath

The absolute path to the
core device certificate.

Must be a file
URI of the form:
file:///absolute/
path/to/file .

AWS IoT Greengrass core configuration file 82

https://tools.ietf.org/html/rfc7512

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

MQTTServerCertific
ate

Optional. The private key that the core uses in combinati
on with the certificate to act as an MQTT server or
gateway.

MQTTServerCertific
ate .privateK
eyPath

The path to the local MQTT
server private key.

Use this value to specify
your own private key for
the local MQTT server.

For file system
storage, must be a
file URI of the form:
file:///absolute/
path/to/file .

For HSM storage, must be
an RFC 7512 PKCS#11 path
that specifies the object
label.

If this property is omitted,
AWS IoT Greengrass rotates
the key based your rotation
settings. If specified, the
customer is responsible for
rotating the key.

SecretsManager The private key that secures the data key used for
encryption. For more information, see Deploy secrets to the
core.

AWS IoT Greengrass core configuration file 83

https://tools.ietf.org/html/rfc7512

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

SecretsManager
 .privateKeyPath

The path to the local
secrets manager private
key.

Only an RSA key is
supported.

For file system
storage, must be a
file URI of the form:
file:///absolute/
path/to/file .

For HSM storage, must
be an RFC 7512 PKCS#11
path that specifies the
object label. The private key
must be generated using
the PKCS#1 v1.5 padding
mechanism.

The following configuration properties are also supported:

Field Description Notes

mqttMaxConnectionR
etryInterval

Optional. The maximum
interval (in seconds)
between MQTT connection
retries if the connection is
dropped.

Specify this value as an
unsigned integer. The
default is 60.

managedRespawn Optional. Indicates that
the OTA agent needs to
run custom code before an
update.

Valid values are true or
false. For more informati
on, see OTA updates of
AWS IoT Greengrass Core
software.

AWS IoT Greengrass core configuration file 84

https://tools.ietf.org/html/rfc7512
https://tools.ietf.org/html/rfc2313

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

writeDirectory Optional. The write
directory where AWS IoT
Greengrass creates all read/
write resources.

For more information, see
Configure a write directory
for AWS IoT Greengrass.

GGC v1.9

{
 "coreThing" : {
 "caPath" : "root.ca.pem",
 "certPath" : "hash.cert.pem",
 "keyPath" : "hash.private.key",
 "thingArn" : "arn:partition:iot:region:account-id:thing/core-thing-name",
 "iotHost" : "host-prefix-ats.iot.region.amazonaws.com",
 "ggHost" : "greengrass-ats.iot.region.amazonaws.com",
 "keepAlive" : 600
 },
 "runtime" : {
 "cgroup" : {
 "useSystemd" : "yes"
 }
 },
 "managedRespawn" : false,
 "crypto" : {
 "principals" : {
 "SecretsManager" : {
 "privateKeyPath" : "file:///greengrass/certs/hash.private.key"
 },
 "IoTCertificate" : {
 "privateKeyPath" : "file:///greengrass/certs/hash.private.key",
 "certificatePath" : "file:///greengrass/certs/hash.cert.pem"
 }
 },
 "caPath" : "file:///greengrass/certs/root.ca.pem"
 }
}

The config.json file supports the following properties:

AWS IoT Greengrass core configuration file 85

AWS IoT Greengrass Developer Guide, Version 1

coreThing

Field Description Notes

caPath The path to the AWS IoT
root CA relative to the
/greengrass-root /
certs directory.

For backward compatibi
lity with versions earlier
than 1.7.0. This property is
ignored when the crypto
object is present.

Note

Make sure that
your endpoints
correspond to your
certificate type.

certPath The path to the core device
certificate relative to the
/greengrass-root /
certs directory.

For backward compatibi
lity with versions earlier
than 1.7.0. This property is
ignored when the crypto
object is present.

keyPath The path to the core private
key relative to /greengras
s-root /certs directory.

For backward compatibi
lity with versions earlier
than 1.7.0. This property is
ignored when the crypto
object is present.

thingArn The Amazon Resource
Name (ARN) of the AWS IoT
thing that represents the
AWS IoT Greengrass core
device.

Find the ARN for your core
in the AWS IoT Greengras
s console under Cores,
or by running the aws
greengrass get-core-
definition-version
CLI command.

AWS IoT Greengrass core configuration file 86

https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

iotHost Your AWS IoT endpoint. Find the endpoint in the
AWS IoT console under
Settings, or by running
the aws iot describe-
endpoint --endpoin
t-type iot:Data-ATS
CLI command.

This command returns the
Amazon Trust Services
(ATS) endpoint. For more
information, see the Server
authentication documenta
tion.

Note

Make sure that
your endpoints
correspond to your
certificate type.
Make sure that
your endpoints
correspond to your
AWS Region.

AWS IoT Greengrass core configuration file 87

https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

ggHost Your AWS IoT Greengrass
endpoint.

This is your iotHost
endpoint with the
host prefix replaced by
greengrass (for example,
greengrass-ats.iot
. region.amazonaw
s.com). Use the same
AWS Region as iotHost.

Note

Make sure that
your endpoints
correspond to your
certificate type.
Make sure that
your endpoints
correspond to your
AWS Region.

iotMqttPort Optional. The port
number to use for MQTT
communication with AWS
IoT.

Valid values are 8883 or
443. The default value is
8883. For more informati
on, see Connect on port
443 or through a network
proxy.

iotHttpPort Optional. The port number
used to create HTTPS
connections to AWS IoT.

Valid values are 8443 or
443. The default value is
8443. For more informati
on, see Connect on port
443 or through a network
proxy.

AWS IoT Greengrass core configuration file 88

https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

ggHttpPort Optional. The port number
used to create HTTPS
connections to the AWS IoT
Greengrass service.

Valid values are 8443 or
443. The default value is
8443. For more informati
on, see Connect on port
443 or through a network
proxy.

keepAlive Optional. The MQTT
KeepAlive period, in
seconds.

Valid range is between 30
and 1200 seconds. The
default value is 600.

networkProxy Optional. An object that
defines a proxy server to
connect to.

The proxy server can be
HTTP or HTTPS. For more
information, see Connect
on port 443 or through a
network proxy.

runtime

Field Description Notes

maxConcurrentLimit Optional. The maximum
number of concurrent
unpinned Lambda workers
that the Greengrass
daemon can have. You can
specify a different integer
to override this parameter.

The default value is 25. The
minimum value is defined
by lruSize.

lruSize Optional. Defines the
minimum value for
maxConcurrentLimit .

The default value is 25.

postStartHealthChe
ckTimeout

Optional. The time (in
milliseconds) after starting

The default timeout is 30
seconds (30000 ms).

AWS IoT Greengrass core configuration file 89

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

that the Greengrass
daemon waits for the
health check to finish.

cgroup

useSystemd Indicates whether your
device uses systemd.

Valid values are yes or
no. Run the check_ggc
_dependencies script
in Module 1 to see if your
device uses systemd.

crypto

The crypto object is added in v1.7.0. It introduces properties that support private key
storage on a hardware security module (HSM) through PKCS#11 and local secret storage. For
more information, see the section called “Security principals”, the section called “Hardware
security integration”, and Deploy secrets to the core. Configurations for private key storage
on HSMs or in the file system are supported.

Field Description Notes

caPath The absolute path to the
AWS IoT root CA.

Must be a file
URI of the form:
file:///absolute/
path/to/file .

Note

Make sure that
your endpoints
correspond to your
certificate type.

PKCS11

AWS IoT Greengrass core configuration file 90

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

OpenSSLEngine Optional. The absolute path
to the OpenSSL engine
.so file to enable PKCS#11
support on OpenSSL.

Must be a path to a file on
the file system.

This property is required if
you're using the Greengras
s OTA update agent with
hardware security. For more
information, see the section
called “Configure OTA
updates”.

P11Provider The absolute path to the
PKCS#11 implementation's
libdl-loadable library.

Must be a path to a file on
the file system.

slotLabel The slot label that's used
to identify the hardware
module.

Must conform to PKCS#11
label specifications.

slotUserPin The user PIN that's used to
authenticate the Greengras
s core to the module.

Must have sufficient
permissions to perform
C_Sign with the configured
private keys.

principals

IoTCertificate The certificate and private key that the core uses to make
requests to AWS IoT.

AWS IoT Greengrass core configuration file 91

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

IoTCertificate
 .privateKeyPath

The path to the core private
key.

For file system
storage, must be a
file URI of the form:
file:///absolute/
path/to/file .

For HSM storage, must be
an RFC 7512 PKCS#11 path
that specifies the object
label.

IoTCertificate
 .certificatePath

The absolute path to the
core device certificate.

Must be a file
URI of the form:
file:///absolute/
path/to/file .

MQTTServerCertific
ate

Optional. The private key that the core uses in combinati
on with the certificate to act as an MQTT server or
gateway.

AWS IoT Greengrass core configuration file 92

https://tools.ietf.org/html/rfc7512

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

MQTTServerCertific
ate .privateK
eyPath

The path to the local MQTT
server private key.

Use this value to specify
your own private key for
the local MQTT server.

For file system
storage, must be a
file URI of the form:
file:///absolute/
path/to/file .

For HSM storage, must be
an RFC 7512 PKCS#11 path
that specifies the object
label.

If this property is omitted,
AWS IoT Greengrass rotates
the key based your rotation
settings. If specified, the
customer is responsible for
rotating the key.

SecretsManager The private key that secures the data key used for
encryption. For more information, see Deploy secrets to the
core.

AWS IoT Greengrass core configuration file 93

https://tools.ietf.org/html/rfc7512

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

SecretsManager
 .privateKeyPath

The path to the local
secrets manager private
key.

Only an RSA key is
supported.

For file system
storage, must be a
file URI of the form:
file:///absolute/
path/to/file .

For HSM storage, must
be an RFC 7512 PKCS#11
path that specifies the
object label. The private key
must be generated using
the PKCS#1 v1.5 padding
mechanism.

The following configuration properties are also supported.

Field Description Notes

mqttMaxConnectionR
etryInterval

Optional. The maximum
interval (in seconds)
between MQTT connection
retries if the connection is
dropped.

Specify this value as an
unsigned integer. The
default is 60.

managedRespawn Optional. Indicates that
the OTA agent needs to
run custom code before an
update.

Valid values are true or
false. For more informati
on, see OTA updates of
AWS IoT Greengrass Core
software.

AWS IoT Greengrass core configuration file 94

https://tools.ietf.org/html/rfc7512
https://tools.ietf.org/html/rfc2313

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

writeDirectory Optional. The write
directory where AWS IoT
Greengrass creates all read/
write resources.

For more information, see
Configure a write directory
for AWS IoT Greengrass.

GGC v1.8

{
 "coreThing" : {
 "caPath" : "root.ca.pem",
 "certPath" : "hash.cert.pem",
 "keyPath" : "hash.private.key",
 "thingArn" : "arn:aws:iot:region:account-id:thing/core-thing-name",
 "iotHost" : "host-prefix-ats.iot.region.amazonaws.com",
 "ggHost" : "greengrass-ats.iot.region.amazonaws.com",
 "keepAlive" : 600
 },
 "runtime" : {
 "cgroup" : {
 "useSystemd" : "yes"
 }
 },
 "managedRespawn" : false,
 "crypto" : {
 "principals" : {
 "SecretsManager" : {
 "privateKeyPath" : "file:///greengrass/certs/hash.private.key"
 },
 "IoTCertificate" : {
 "privateKeyPath" : "file:///greengrass/certs/hash.private.key",
 "certificatePath" : "file:///greengrass/certs/hash.cert.pem"
 }
 },
 "caPath" : "file:///greengrass/certs/root.ca.pem"
 }
}

The config.json file supports the following properties.

AWS IoT Greengrass core configuration file 95

AWS IoT Greengrass Developer Guide, Version 1

coreThing

Field Description Notes

caPath The path to the AWS IoT
root CA relative to the
/greengrass-root /
certs directory.

For backward compatibi
lity with versions earlier
than 1.7.0. This property is
ignored when the crypto
object is present.

Note

Make sure that
your endpoints
correspond to your
certificate type.

certPath The path to the core device
certificate relative to the
/greengrass-root /
certs directory.

For backward compatibi
lity with versions earlier
than 1.7.0. This property is
ignored when the crypto
object is present.

keyPath The path to the core private
key relative to /greengras
s-root /certs directory.

For backward compatibi
lity with versions earlier
than 1.7.0. This property is
ignored when the crypto
object is present.

thingArn The Amazon Resource
Name (ARN) of the AWS IoT
thing that represents the
AWS IoT Greengrass core
device.

Find the ARN for your core
in the AWS IoT Greengras
s console under Cores,
or by running the aws
greengrass get-core-
definition-version
CLI command.

AWS IoT Greengrass core configuration file 96

https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

iotHost Your AWS IoT endpoint. Find the endpoint in the
AWS IoT console under
Settings, or by running
the aws iot describe-
endpoint --endpoin
t-type iot:Data-ATS
CLI command.

This command returns the
Amazon Trust Services
(ATS) endpoint. For more
information, see the Server
authentication documenta
tion.

Note

Make sure that
your endpoints
correspond to
your certificate
type. Make sure
your endpoints
correspond to your
AWS Region.

AWS IoT Greengrass core configuration file 97

https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

ggHost Your AWS IoT Greengrass
endpoint.

This is your iotHost
endpoint with the
host prefix replaced by
greengrass (for example,
greengrass-ats.iot
. region.amazonaw
s.com). Use the same
AWS Region as iotHost.

Note

Make sure that
your endpoints
correspond to
your certificate
type. Make sure
your endpoints
correspond to your
AWS Region.

iotMqttPort Optional. The port
number to use for MQTT
communication with AWS
IoT.

Valid values are 8883 or
443. The default value is
8883. For more informati
on, see Connect on port
443 or through a network
proxy.

iotHttpPort Optional. The port number
used to create HTTPS
connections to AWS IoT.

Valid values are 8443 or
443. The default value is
8443. For more informati
on, see Connect on port
443 or through a network
proxy.

AWS IoT Greengrass core configuration file 98

https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

ggHttpPort Optional. The port number
used to create HTTPS
connections to the AWS IoT
Greengrass service.

Valid values are 8443 or
443. The default value is
8443. For more informati
on, see Connect on port
443 or through a network
proxy.

keepAlive Optional. The MQTT
KeepAlive period, in
seconds.

Valid range is between 30
and 1200 seconds. The
default value is 600.

networkProxy Optional. An object that
defines a proxy server to
connect to.

The proxy server can be
HTTP or HTTPS. For more
information, see Connect
on port 443 or through a
network proxy.

runtime

Field Description Notes

cgroup

useSystemd Indicates whether your
device uses systemd.

Valid values are yes or
no. Run the check_ggc
_dependencies script
in Module 1 to see if your
device uses systemd.

crypto

The crypto object is added in v1.7.0. It introduces properties that support private key
storage on a hardware security module (HSM) through PKCS#11 and local secret storage. For
more information, see the section called “Security principals”, the section called “Hardware

AWS IoT Greengrass core configuration file 99

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 1

security integration”, and Deploy secrets to the core. Configurations for private key storage
on HSMs or in the file system are supported.

Field Description Notes

caPath The absolute path to the
AWS IoT root CA.

Must be a file
URI of the form:
file:///absolute/
path/to/file .

Note

Make sure that
your endpoints
correspond to your
certificate type.

PKCS11

OpenSSLEngine Optional. The absolute path
to the OpenSSL engine
.so file to enable PKCS#11
support on OpenSSL.

Must be a path to a file on
the file system.

This property is required if
you're using the Greengras
s OTA update agent with
hardware security. For more
information, see the section
called “Configure OTA
updates”.

P11Provider The absolute path to the
PKCS#11 implementation's
libdl-loadable library.

Must be a path to a file on
the file system.

slotLabel The slot label that's used
to identify the hardware
module.

Must conform to PKCS#11
label specifications.

AWS IoT Greengrass core configuration file 100

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

slotUserPin The user PIN that's used to
authenticate the Greengras
s core to the module.

Must have sufficient
permissions to perform
C_Sign with the configured
private keys.

principals

IoTCertificate The certificate and private key that the core uses to make
requests to AWS IoT.

IoTCertificate
 .privateKeyPath

The path to the core private
key.

For file system
storage, must be a
file URI of the form:
file:///absolute/
path/to/file .

For HSM storage, must be
an RFC 7512 PKCS#11 path
that specifies the object
label.

IoTCertificate
 .certificatePath

The absolute path to the
core device certificate.

Must be a file
URI of the form:
file:///absolute/
path/to/file .

MQTTServerCertific
ate

Optional. The private key that the core uses in combinati
on with the certificate to act as an MQTT server or
gateway.

AWS IoT Greengrass core configuration file 101

https://tools.ietf.org/html/rfc7512

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

MQTTServerCertific
ate .privateK
eyPath

The path to the local MQTT
server private key.

Use this value to specify
your own private key for
the local MQTT server.

For file system
storage, must be a
file URI of the form:
file:///absolute/
path/to/file .

For HSM storage, must be
an RFC 7512 PKCS#11 path
that specifies the object
label.

If this property is omitted,
AWS IoT Greengrass rotates
the key based your rotation
settings. If specified, the
customer is responsible for
rotating the key.

SecretsManager The private key that secures the data key used for
encryption. For more information, see Deploy secrets to the
core.

AWS IoT Greengrass core configuration file 102

https://tools.ietf.org/html/rfc7512

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

SecretsManager
 .privateKeyPath

The path to the local
secrets manager private
key.

Only an RSA key is
supported.

For file system
storage, must be a
file URI of the form:
file:///absolute/
path/to/file .

For HSM storage, must
be an RFC 7512 PKCS#11
path that specifies the
object label. The private key
must be generated using
the PKCS#1 v1.5 padding
mechanism.

The following configuration properties are also supported:

Field Description Notes

mqttMaxConnectionR
etryInterval

Optional. The maximum
interval (in seconds)
between MQTT connection
retries if the connection is
dropped.

Specify this value as an
unsigned integer. The
default is 60.

managedRespawn Optional. Indicates that
the OTA agent needs to
run custom code before an
update.

Valid values are true or
false. For more informati
on, see OTA updates of
AWS IoT Greengrass Core
software.

AWS IoT Greengrass core configuration file 103

https://tools.ietf.org/html/rfc7512
https://tools.ietf.org/html/rfc2313

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

writeDirectory Optional. The write
directory where AWS IoT
Greengrass creates all read/
write resources.

For more information, see
Configure a write directory
for AWS IoT Greengrass.

GGC v1.7

{
 "coreThing" : {
 "caPath" : "root.ca.pem",
 "certPath" : "hash.cert.pem",
 "keyPath" : "hash.private.key",
 "thingArn" : "arn:aws:iot:region:account-id:thing/core-thing-name",
 "iotHost" : "host-prefix-ats.iot.region.amazonaws.com",
 "ggHost" : "greengrass-ats.iot.region.amazonaws.com",
 "keepAlive" : 600
 },
 "runtime" : {
 "cgroup" : {
 "useSystemd" : "yes"
 }
 },
 "managedRespawn" : false,
 "crypto" : {
 "principals" : {
 "SecretsManager" : {
 "privateKeyPath" : "file:///greengrass/certs/hash.private.key"
 },
 "IoTCertificate" : {
 "privateKeyPath" : "file:///greengrass/certs/hash.private.key",
 "certificatePath" : "file:///greengrass/certs/hash.cert.pem"
 }
 },
 "caPath" : "file:///greengrass/certs/root.ca.pem"
 }
}

The config.json file supports the following properties:

AWS IoT Greengrass core configuration file 104

AWS IoT Greengrass Developer Guide, Version 1

coreThing

Field Description Notes

caPath The path to the AWS IoT
root CA relative to the
/greengrass-root /
certs directory.

For backward compatibi
lity with versions earlier
than 1.7.0. This property is
ignored when the crypto
object is present.

Note

Make sure that
your endpoints
correspond to your
certificate type.

certPath The path to the core device
certificate relative to the
/greengrass-root /
certs directory.

For backward compatibi
lity with versions earlier
than 1.7.0. This property is
ignored when the crypto
object is present.

keyPath The path to the core private
key relative to /greengras
s-root /certs directory.

For backward compatibi
lity with versions earlier
than 1.7.0. This property is
ignored when the crypto
object is present.

thingArn The Amazon Resource
Name (ARN) of the AWS IoT
thing that represents the
AWS IoT Greengrass core
device.

Find the ARN for your core
in the AWS IoT Greengras
s console under Cores,
or by running the aws
greengrass get-core-
definition-version
CLI command.

AWS IoT Greengrass core configuration file 105

https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

iotHost Your AWS IoT endpoint. Find the endpoint in the
AWS IoT console under
Settings, or by running
the aws iot describe-
endpoint --endpoin
t-type iot:Data-ATS
CLI command.

This command returns the
Amazon Trust Services
(ATS) endpoint. For more
information, see the Server
authentication documenta
tion.

Note

Make sure that
your endpoints
correspond to
your certificate
type. Make sure
your endpoints
correspond to your
AWS Region.

AWS IoT Greengrass core configuration file 106

https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

ggHost Your AWS IoT Greengrass
endpoint.

This is your iotHost
endpoint with the
host prefix replaced by
greengrass (for example,
greengrass-ats.iot
. region.amazonaw
s.com). Use the same
AWS Region as iotHost.

Note

Make sure that
your endpoints
correspond to
your certificate
type. Make sure
your endpoints
correspond to your
AWS Region.

iotMqttPort Optional. The port
number to use for MQTT
communication with AWS
IoT.

Valid values are 8883 or
443. The default value is
8883. For more informati
on, see Connect on port
443 or through a network
proxy.

keepAlive Optional. The MQTT
KeepAlive period, in
seconds.

Valid range is between 30
and 1200 seconds. The
default value is 600.

AWS IoT Greengrass core configuration file 107

https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

networkProxy Optional. An object that
defines a proxy server to
connect to.

The proxy server can be
HTTP or HTTPS. For more
information, see Connect
on port 443 or through a
network proxy.

runtime

Field Description Notes

cgroup

useSystemd Indicates whether your
device uses systemd.

Valid values are yes or
no. Run the check_ggc
_dependencies script
in Module 1 to see if your
device uses systemd.

crypto

The crypto object, added in v1.7.0, introduces properties that support private key storage
on a hardware security module (HSM) through PKCS#11 and local secret storage. For more
information, see the section called “Hardware security integration” and Deploy secrets to the
core. Configurations for private key storage on HSMs or in the file system are supported.

Field Description Notes

caPath The absolute path to the
AWS IoT root CA.

Must be a file
URI of the form:
file:///absolute/
path/to/file .

AWS IoT Greengrass core configuration file 108

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

Note

Make sure that
your endpoints
correspond to your
certificate type.

PKCS11

OpenSSLEngine Optional. The absolute path
to the OpenSSL engine
.so file to enable PKCS#11
support on OpenSSL.

Must be a path to a file on
the file system.

This property is required if
you're using the Greengras
s OTA update agent with
hardware security. For more
information, see the section
called “Configure OTA
updates”.

P11Provider The absolute path to the
PKCS#11 implementation's
libdl-loadable library.

Must be a path to a file on
the file system.

slotLabel The slot label that's used
to identify the hardware
module.

Must conform to PKCS#11
label specifications.

slotUserPin The user PIN that's used to
authenticate the Greengras
s core to the module.

Must have sufficient
permissions to perform
C_Sign with the configured
private keys.

principals

AWS IoT Greengrass core configuration file 109

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

IoTCertificate The certificate and private key that the core uses to make
requests to AWS IoT.

IoTCertificate
 .privateKeyPath

The path to the core private
key.

For file system
storage, must be a
file URI of the form:
file:///absolute/
path/to/file .

For HSM storage, must be
an RFC 7512 PKCS#11 path
that specifies the object
label.

IoTCertificate
 .certificatePath

The absolute path to the
core device certificate.

Must be a file
URI of the form:
file:///absolute/
path/to/file .

MQTTServerCertific
ate

Optional. The private key that the core uses in combinati
on with the certificate to act as an MQTT server or
gateway.

AWS IoT Greengrass core configuration file 110

https://tools.ietf.org/html/rfc7512

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

MQTTServerCertific
ate .privateK
eyPath

The path to the local MQTT
server private key.

Use this value to specify
your own private key for
the local MQTT server.

For file system
storage, must be a
file URI of the form:
file:///absolute/
path/to/file .

For HSM storage, must be
an RFC 7512 PKCS#11 path
that specifies the object
label.

If this property is omitted,
AWS IoT Greengrass rotates
the key based your rotation
settings. If specified, the
customer is responsible for
rotating the key.

SecretsManager The private key that secures the data key used for
encryption. For more information, see Deploy secrets to the
core.

AWS IoT Greengrass core configuration file 111

https://tools.ietf.org/html/rfc7512

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

SecretsManager
 .privateKeyPath

The path to the local
secrets manager private
key.

Only an RSA key is
supported.

For file system
storage, must be a
file URI of the form:
file:///absolute/
path/to/file .

For HSM storage, must
be an RFC 7512 PKCS#11
path that specifies the
object label. The private key
must be generated using
the PKCS#1 v1.5 padding
mechanism.

The following configuration properties are also supported:

Field Description Notes

mqttMaxConnectionR
etryInterval

Optional. The maximum
interval (in seconds)
between MQTT connection
retries if the connection is
dropped.

Specify this value as an
unsigned integer. The
default is 60.

managedRespawn Optional. Indicates that
the OTA agent needs to
run custom code before an
update.

Valid values are true or
false. For more informati
on, see OTA updates of
AWS IoT Greengrass Core
software.

AWS IoT Greengrass core configuration file 112

https://tools.ietf.org/html/rfc7512
https://tools.ietf.org/html/rfc2313

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

writeDirectory Optional. The write
directory where AWS IoT
Greengrass creates all read/
write resources.

For more information, see
Configure a write directory
for AWS IoT Greengrass.

GGC v1.6

{
 "coreThing": {
 "caPath": "root-ca-pem",
 "certPath": "cloud-pem-crt",
 "keyPath": "cloud-pem-key",
 "thingArn": "arn:aws:iot:region:account-id:thing/core-thing-name",
 "iotHost": "host-prefix.iot.region.amazonaws.com",
 "ggHost": "greengrass.iot.region.amazonaws.com",
 "keepAlive": 600,
 "mqttMaxConnectionRetryInterval": 60
 },
 "runtime": {
 "cgroup": {
 "useSystemd": "yes|no"
 }
 },
 "managedRespawn": true,
 "writeDirectory": "/write-directory"
}

Note

If you use the Default Group creation option from the AWS IoT Greengrass console,
then the config.json file is deployed to the core device in a working state that
specifies the default configuration.

The config.json file supports the following properties:

AWS IoT Greengrass core configuration file 113

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

caPath The path to the AWS IoT
root CA relative to the
/greengrass-root /
certs directory.

Save the file under
/greengrass-root /
certs.

certPath The path to the AWS IoT
Greengrass core certificate
relative to the /greengras
s-root /certs directory.

Save the file under
/greengrass-root /
certs.

keyPath The path to the AWS IoT
Greengrass core private key
relative to /greengrass-
root/certs directory.

Save the file under
/greengrass-root /
certs.

thingArn The Amazon Resource
Name (ARN) of the AWS IoT
thing that represents the
AWS IoT Greengrass core
device.

Find the ARN for your core
in the AWS IoT Greengras
s console under Cores,
or by running the aws
greengrass get-core-
definition-version
CLI command.

iotHost Your AWS IoT endpoint. Find this in the AWS IoT
console under Settings, or
by running the aws iot
describe-endpoint CLI
command.

ggHost Your AWS IoT Greengrass
endpoint.

This value uses the
format greengras
s.iot. region.amazonaw
s.com . Use the same
region as iotHost.

AWS IoT Greengrass core configuration file 114

https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

keepAlive The MQTT KeepAlive
period, in seconds.

This is an optional value.
The default is 600.

mqttMaxConnectionR
etryInterval

The maximum interval (in
seconds) between MQTT
connection retries if the
connection is dropped.

Specify this value as an
unsigned integer. This is an
optional value. The default
is 60.

useSystemd Indicates whether your
device uses systemd.

Valid values are yes or
no. Run the check_ggc
_dependencies script
in Module 1 to see if your
device uses systemd.

managedRespawn An optional over-the-air
(OTA) updates feature,
this indicates that the OTA
agent needs to run custom
code before an update.

Valid values are true or
false. For more informati
on, see OTA updates of
AWS IoT Greengrass Core
software.

writeDirectory The write directory where
AWS IoT Greengrass creates
all read/write resources.

This is an optional value.
For more information, see
Configure a write directory
for AWS IoT Greengrass.

GGC v1.5

{
 "coreThing": {
 "caPath": "root-ca-pem",
 "certPath": "cloud-pem-crt",
 "keyPath": "cloud-pem-key",
 "thingArn": "arn:aws:iot:region:account-id:thing/core-thing-name",
 "iotHost": "host-prefix.iot.region.amazonaws.com",
 "ggHost": "greengrass.iot.region.amazonaws.com",
 "keepAlive": 600
 },

AWS IoT Greengrass core configuration file 115

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 1

 "runtime": {
 "cgroup": {
 "useSystemd": "yes|no"
 }
 },
 "managedRespawn": true
}

The config.json file exists in /greengrass-root/config and contains the following
parameters:

Field Description Notes

caPath The path to the AWS IoT
root CA relative to the
/greengrass-root /
certs folder.

Save the file under the
/greengrass-root /
certs folder.

certPath The path to the AWS IoT
Greengrass core certificate
relative to the /greengras
s-root /certs folder.

Save the file under the
/greengrass-root /
certs folder.

keyPath The path to the AWS IoT
Greengrass core private key
relative to /greengrass-
root/certs folder.

Save the file under the
/greengrass-root /
certs folder.

thingArn The Amazon Resource
Name (ARN) of the AWS IoT
thing that represents the
AWS IoT Greengrass core
device.

Find the ARN for your core
in the AWS IoT Greengras
s console under Cores,
or by running the aws
greengrass get-core-
definition-version
CLI command.

iotHost Your AWS IoT endpoint. Find this in the AWS IoT
console under Settings, or
by running the aws iot

AWS IoT Greengrass core configuration file 116

https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

describe-endpoint
command.

ggHost Your AWS IoT Greengrass
endpoint.

This value uses the
format greengras
s.iot. region.amazonaw
s.com . Use the same
region as iotHost.

keepAlive The MQTT KeepAlive
period, in seconds.

This is an optional value.
The default value is 600
seconds.

useSystemd Indicates whether your
device uses systemd.

Valid values are yes or
no. Run the check_ggc
_dependencies script
in Module 1 to see if your
device uses systemd.

managedRespawn An optional over-the-air
(OTA) updates feature,
this indicates that the OTA
agent needs to run custom
code before an update.

For more information, see
OTA updates of AWS IoT
Greengrass Core software.

GGC v1.3

{
 "coreThing": {
 "caPath": "root-ca-pem",
 "certPath": "cloud-pem-crt",
 "keyPath": "cloud-pem-key",
 "thingArn": "arn:aws:iot:region:account-id:thing/core-thing-name",
 "iotHost": "host-prefix.iot.region.amazonaws.com",
 "ggHost": "greengrass.iot.region.amazonaws.com",
 "keepAlive": 600
 },

AWS IoT Greengrass core configuration file 117

https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html
https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 1

 "runtime": {
 "cgroup": {
 "useSystemd": "yes|no"
 }
 },
 "managedRespawn": true
}

The config.json file exists in /greengrass-root/config and contains the following
parameters:

Field Description Notes

caPath The path to the AWS IoT
root CA relative to the
/greengrass-root /
certs folder.

Save the file under the
/greengrass-root /
certs folder.

certPath The path to the AWS IoT
Greengrass core certificate
relative to the /greengras
s-root /certs folder.

Save the file under the
/greengrass-root /
certs folder.

keyPath The path to the AWS IoT
Greengrass core private key
relative to /greengrass-
root/certs folder.

Save the file under the
/greengrass-root /
certs folder.

thingArn The Amazon Resource
Name (ARN) of the AWS IoT
thing that represents the
AWS IoT Greengrass core.

You can find this value in
the AWS IoT Greengrass
console under the definitio
n for your AWS IoT thing.

iotHost Your AWS IoT endpoint. You can find this value in
the AWS IoT console under
Settings.

ggHost Your AWS IoT Greengrass
endpoint.

You can find this value in
the AWS IoT console under

AWS IoT Greengrass core configuration file 118

https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

Settings with greengras
s. prepended.

keepAlive The MQTT KeepAlive
period, in seconds.

This is an optional value.
The default value is 600
seconds.

useSystemd A binary flag, if your device
uses systemd.

Values are yes or no. Use
the dependency script in
Module 1 to see if your
device uses systemd.

managedRespawn An optional over-the-air
(OTA) updates feature,
this indicates that the OTA
agent needs to run custom
code before an update.

For more information, see
OTA updates of AWS IoT
Greengrass Core software.

GGC v1.1

{
 "coreThing": {
 "caPath": "root-ca-pem",
 "certPath": "cloud-pem-crt",
 "keyPath": "cloud-pem-key",
 "thingArn": "arn:aws:iot:region:account-id:thing/core-thing-name",
 "iotHost": "host-prefix.iot.region.amazonaws.com",
 "ggHost": "greengrass.iot.region.amazonaws.com",
 "keepAlive": 600
 },
 "runtime": {
 "cgroup": {
 "useSystemd": "yes|no"
 }
 }
}

AWS IoT Greengrass core configuration file 119

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 1

The config.json file exists in /greengrass-root/config and contains the following
parameters:

Field Description Notes

caPath The path to the AWS IoT
root CA relative to the
/greengrass-root /
certs folder.

Save the file under the
/greengrass-root /
certs folder.

certPath The path to the AWS IoT
Greengrass core certificate
relative to the /greengras
s-root /certs folder.

Save the file under the
/greengrass-root /
certs folder.

keyPath The path to the AWS IoT
Greengrass core private key
relative to the /greengras
s-root /certs folder.

Save the file under the
/greengrass-root /
certs folder.

thingArn The Amazon Resource
Name (ARN) of the AWS IoT
thing that represents the
AWS IoT Greengrass core.

You can find this value in
the AWS IoT Greengrass
console under the definitio
n for your AWS IoT thing.

iotHost Your AWS IoT endpoint. You can find this value in
the AWS IoT console under
Settings.

ggHost Your AWS IoT Greengrass
endpoint.

You can find this value in
the AWS IoT console under
Settings with greengras
s. prepended.

keepAlive The MQTT KeepAlive
period, in seconds.

This is an optional value.
The default value is 600
seconds.

AWS IoT Greengrass core configuration file 120

https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

useSystemd A binary flag, if your device
uses systemd.

Values are yes or no. Use
the dependency script in
Module 1 to see if your
device uses systemd.

GGC v1.0

In AWS IoT Greengrass Core v1.0, config.json is deployed to greengrass-root/
configuration.

{
 "coreThing": {
 "caPath": "root-ca-pem",
 "certPath": "cloud-pem-crt",
 "keyPath": "cloud-pem-key",
 "thingArn": "arn:aws:iot:region:account-id:thing/core-thing-name",
 "iotHost": "host-prefix.iot.region.amazonaws.com",
 "ggHost": "greengrass.iot.region.amazonaws.com",
 "keepAlive": 600
 },
 "runtime": {
 "cgroup": {
 "useSystemd": "yes|no"
 }
 }
}

The config.json file exists in /greengrass-root/configuration and contains the
following parameters:

Field Description Notes

caPath The path to the AWS IoT
root CA relative to the
/greengrass-root /
configuration/certs
folder.

Save the file under the
/greengrass-root /
configuration/certs
folder.

AWS IoT Greengrass core configuration file 121

https://en.wikipedia.org/wiki/Systemd
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

certPath The path to the AWS IoT
Greengrass core certificate
relative to the /greengras
s-root /configur
ation/certs folder.

Save the file under the
/greengrass-root /
configuration/certs
folder.

keyPath The path to the AWS IoT
Greengrass core private key
relative to the /greengras
s-root /configur
ation/certs folder.

Save the file under the
/greengrass-root /
configuration/certs
folder.

thingArn The Amazon Resource
Name (ARN) of the AWS IoT
thing that represents the
AWS IoT Greengrass core.

You can find this value in
the AWS IoT Greengrass
console under the definitio
n for your AWS IoT hing.

iotHost Your AWS IoT endpoint. You can find this value in
the AWS IoT console under
Settings.

ggHost Your AWS IoT Greengrass
endpoint.

You can find this value in
the AWS IoT console under
Settings with greengras
s. prepended.

keepAlive The MQTT KeepAlive
period, in seconds.

This is an optional value.
The default value is 600
seconds.

useSystemd A binary flag if your device
uses systemd.

Values are yes or no. Use
the dependency script in
Module 1 to see if your
device uses systemd.

AWS IoT Greengrass core configuration file 122

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 1

Service endpoints must match the root CA certificate type

Your AWS IoT Core and AWS IoT Greengrass endpoints must correspond to the certificate type
of the root CA certificate on your device. If the endpoints and certificate type do not match,
authentication attempts fail between the device and AWS IoT Core or AWS IoT Greengrass. For
more information, see Server authentication in the AWS IoT Developer Guide.

If your device uses an Amazon Trust Services (ATS) root CA certificate, which is the preferred
method, it must also use ATS endpoints for device management and discovery data plane
operations. ATS endpoints include the ats segment, as shown in the following syntax for the AWS
IoT Core endpoint.

prefix-ats.iot.region.amazonaws.com

Note

For backward compatibility, AWS IoT Greengrass currently supports legacy VeriSign root
CA certificates and endpoints in some AWS Regions. If you're using a legacy VeriSign root
CA certificate, we recommend that you create an ATS endpoint and use an ATS root CA
certificate instead. Otherwise, make sure to use the corresponding legacy endpoints. For
more information, see Supported legacy endpoints in the Amazon Web Services General
Reference.

Endpoints in config.json

On a Greengrass core device, endpoints are specified in the coreThing object in the
config.json file. The iotHost property represents the AWS IoT Core endpoint. The ggHost
property represents the AWS IoT Greengrass endpoint. In the following example snippet, these
properties specify ATS endpoints.

{
 "coreThing" : {
 ...
 "iotHost" : "abcde1234uwxyz-ats.iot.us-west-2.amazonaws.com",
 "ggHost" : "greengrass-ats.iot.us-west-2.amazonaws.com",
 ...
 },

Service endpoints must match the certificate type 123

https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html#greengrass-legacy-endpoints

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Core endpoint

You can get your AWS IoT Core endpoint by running the aws iot describe-endpoint CLI
command with the appropriate --endpoint-type parameter.

• To return an ATS signed endpoint, run:

aws iot describe-endpoint --endpoint-type iot:Data-ATS

• To return a legacy VeriSign signed endpoint, run:

aws iot describe-endpoint --endpoint-type iot:Data

AWS IoT Greengrass endpoint

Your AWS IoT Greengrass endpoint is your iotHost endpoint with the host prefix
replaced by greengrass. For example, the ATS signed endpoint is greengrass-
ats.iot.region.amazonaws.com. This uses the same Region as your AWS IoT Core
endpoint.

Connect on port 443 or through a network proxy

This feature is available for AWS IoT Greengrass Core v1.7 and later.

Greengrass cores communicate with AWS IoT Core using the MQTT messaging protocol with
TLS client authentication. By convention, MQTT over TLS uses port 8883. However, as a security
measure, restrictive environments might limit inbound and outbound traffic to a small range of
TCP ports. For example, a corporate firewall might open port 443 for HTTPS traffic, but close
other ports that are used for less common protocols, such as port 8883 for MQTT traffic. Other
restrictive environments might require all traffic to go through an HTTP proxy before connecting to
the internet.

To enable communication in these scenarios, AWS IoT Greengrass allows the following
configurations:

• MQTT with TLS client authentication over port 443. If your network allows connections to
port 443, you can configure the core to use port 443 for MQTT traffic instead of the default
port 8883. This can be a direct connection to port 443 or a connection through a network proxy
server.

Connect on port 443 or through a network proxy 124

https://docs.aws.amazon.com/cli/latest/reference/iot/describe-endpoint.html

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Greengrass uses the Application Layer Protocol Network (ALPN) TLS extension to
enable this connection. As with the default configuration, MQTT over TLS on port 443 uses
certificate-based client authentication.

When configured to use a direct connection to port 443, the core supports over-the-air (OTA)
updates for AWS IoT Greengrass software. This support requires AWS IoT Greengrass Core v1.9.3
or later.

• HTTPS communication over port 443. AWS IoT Greengrass sends HTTPS traffic over port 8443
by default, but you can configure it to use port 443.

• Connection through a network proxy. You can configure a network proxy server to act as an
intermediary for connecting to the Greengrass core. Only basic authentication and HTTP and
HTTPS proxies are supported.

The proxy configuration is passed to user-defined Lambda functions through the http_proxy,
https_proxy, and no_proxy environment variables. User-defined Lambda functions must
use these passed-in settings to connect through the proxy. Common libraries used by Lambda
functions to make connections (such as boto3 or cURL and python requests packages) typically
use these environment variables by default. If a Lambda function also specifies these same
environment variables, AWS IoT Greengrass doesn't override them.

Important

Greengrass cores that are configured to use a network proxy don't support OTA updates.

To configure MQTT over port 443

This feature requires AWS IoT Greengrass Core v1.7 or later.

This procedure allows the Greengrass core to use port 443 for MQTT messaging with AWS IoT Core.

1. Run the following command to stop the Greengrass daemon:

cd /greengrass-root/ggc/core/
sudo ./greengrassd stop

2. Open greengrass-root/config/config.json for editing as the su user.

Connect on port 443 or through a network proxy 125

https://tools.ietf.org/html/rfc7301

AWS IoT Greengrass Developer Guide, Version 1

3. In the coreThing object, add the iotMqttPort property and set the value to 443, as shown
in the following example.

{
 "coreThing" : {
 "caPath" : "root.ca.pem",
 "certPath" : "12345abcde.cert.pem",
 "keyPath" : "12345abcde.private.key",
 "thingArn" : "arn:aws:iot:us-west-2:123456789012:thing/core-thing-name",
 "iotHost" : "abcd123456wxyz-ats.iot.us-west-2.amazonaws.com",
 "iotMqttPort" : 443,
 "ggHost" : "greengrass-ats.iot.us-west-2.amazonaws.com",
 "keepAlive" : 600
 },
 ...
}

4. Start the daemon.

cd /greengrass-root/ggc/core/
sudo ./greengrassd start

To configure HTTPS over port 443

This feature requires AWS IoT Greengrass Core v1.8 or later.

This procedure configures the core to use port 443 for HTTPS communication.

1. Run the following command to stop the Greengrass daemon:

cd /greengrass-root/ggc/core/
sudo ./greengrassd stop

2. Open greengrass-root/config/config.json for editing as the su user.

3. In the coreThing object, add the iotHttpPort and ggHttpPort properties, as shown in the
following example.

{
 "coreThing" : {

Connect on port 443 or through a network proxy 126

AWS IoT Greengrass Developer Guide, Version 1

 "caPath" : "root.ca.pem",
 "certPath" : "12345abcde.cert.pem",
 "keyPath" : "12345abcde.private.key",
 "thingArn" : "arn:aws:iot:us-west-2:123456789012:thing/core-thing-name",
 "iotHost" : "abcd123456wxyz-ats.iot.us-west-2.amazonaws.com",
 "iotHttpPort" : 443,
 "ggHost" : "greengrass-ats.iot.us-west-2.amazonaws.com",
 "ggHttpPort" : 443,
 "keepAlive" : 600
 },
 ...
}

4. Start the daemon.

cd /greengrass-root/ggc/core/
sudo ./greengrassd start

To configure a network proxy

This feature requires AWS IoT Greengrass Core v1.7 or later.

This procedure allows AWS IoT Greengrass to connect to the internet through an HTTP or HTTPS
network proxy.

1. Run the following command to stop the Greengrass daemon:

cd /greengrass-root/ggc/core/
sudo ./greengrassd stop

2. Open greengrass-root/config/config.json for editing as the su user.

3. In the coreThing object, add the networkProxy object, as shown in the following example.

{
 "coreThing" : {
 "caPath" : "root.ca.pem",
 "certPath" : "12345abcde.cert.pem",
 "keyPath" : "12345abcde.private.key",
 "thingArn" : "arn:aws:iot:us-west-2:123456789012:thing/core-thing-name",

Connect on port 443 or through a network proxy 127

AWS IoT Greengrass Developer Guide, Version 1

 "iotHost" : "abcd123456wxyz-ats.iot.us-west-2.amazonaws.com",
 "ggHost" : "greengrass-ats.iot.us-west-2.amazonaws.com",
 "keepAlive" : 600,
 "networkProxy": {
 "noProxyAddresses" : "http://128.12.34.56,www.mywebsite.com",
 "proxy" : {
 "url" : "https://my-proxy-server:1100",
 "username" : "Mary_Major",
 "password" : "pass@word1357"
 }
 }
 },
 ...
}

4. Start the daemon.

cd /greengrass-root/ggc/core/
sudo ./greengrassd start

networkProxy object

Use the networkProxy object to specify information about the network proxy. This object has the
following properties.

Field Description

noProxyAddresses Optional. A comma-separated list of IP
addresses or host names that are exempt from
the proxy.

proxy The proxy to connect to. A proxy has the
following properties.

• url. The URL of the proxy server, in
the format scheme://userinfo@
host:port .

• scheme. The scheme. Must be http or
https.

Connect on port 443 or through a network proxy 128

AWS IoT Greengrass Developer Guide, Version 1

Field Description

• userinfo. Optional. The user name
and password information. If specified,
the username and password fields are
ignored.

• host. The host name or IP address of the
proxy server.

• port. Optional. The port number. If not
specified, the following default values are
used:

• http: 80

• https: 443

• username. Optional. The user name to use
to authenticate to the proxy server.

• password. Optional. The password to use
to authenticate to the proxy server.

Allowing endpoints

Communication between Greengrass devices and AWS IoT Core or AWS IoT Greengrass must
be authenticated. This authentication is based on registered X.509 device certificates and
cryptographic keys. To allow authenticated requests to pass through proxies without additional
encryption, allow the following endpoints.

Endpoint Port Description

greengrass. region.amazonaws.com 443 Used for
control plane
operation
s for group
managemen
t.

Connect on port 443 or through a network proxy 129

AWS IoT Greengrass Developer Guide, Version 1

Endpoint Port Description

prefix-ats.iot. region.amazonaw
s.com

or

prefix.iot.region.amazonaws.com

MQTT: 8883 or 443

HTTPS: 8443 or 443

Used for
data plane
operation
s for device
managemen
t, such as
shadow sync.

Allow the
use of one
or both
endpoints,
depending
on whether
your core and
client devices
use Amazon
Trust
Services
(preferre
d) root CA
certificates,
legacy root
CA certifica
tes, or both.
For more
informati
on, see the
section called
“Service
endpoints
must match
the certifica
te type”.

Connect on port 443 or through a network proxy 130

AWS IoT Greengrass Developer Guide, Version 1

Endpoint Port Description

greengrass-ats.iot
. region.amazonaws.com

or

greengrass.iot. region.amazonaw
s.com

8443 or 443 Used for
device
discovery
operations.

Allow the
use of one
or both
endpoints,
depending
on whether
your core and
client devices
use Amazon
Trust
Services
(preferre
d) root CA
certificates,
legacy root
CA certifica
tes, or both.
For more
informati
on, see the
section called
“Service
endpoints
must match
the certifica
te type”.

Connect on port 443 or through a network proxy 131

AWS IoT Greengrass Developer Guide, Version 1

Endpoint Port Description

Note

Clients
that
connect
on
port
443
must
implement
the
Applicati
on
Layer
Protocol
Negotiati
on
(ALPN)
TLS
extension
and
pass
x-
amzn-
ht
tp-
ca as
the
ProtocolN
ame
in the
ProtocolN
ameList .
For
more

Connect on port 443 or through a network proxy 132

https://tools.ietf.org/html/rfc7301
https://tools.ietf.org/html/rfc7301
https://tools.ietf.org/html/rfc7301
https://tools.ietf.org/html/rfc7301
https://tools.ietf.org/html/rfc7301
https://tools.ietf.org/html/rfc7301
https://tools.ietf.org/html/rfc7301
https://tools.ietf.org/html/rfc7301

AWS IoT Greengrass Developer Guide, Version 1

Endpoint Port Description

informati
on,
see
Protocols
 in
the
AWS
IoT
Developer
Guide.

*.s3.amazonaws.com 443 Used for
deploymen
t operation
s and over-
the-air
updates.
This format
includes the
* character
because
endpoint
prefixes are
controlled
internally
and might
change at
any time.

Connect on port 443 or through a network proxy 133

https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html

AWS IoT Greengrass Developer Guide, Version 1

Endpoint Port Description

logs.region.amazonaws.com 443 Required
if the
Greengras
s group is
configured to
write logs to
CloudWatch.

Configure a write directory for AWS IoT Greengrass

This feature is available for AWS IoT Greengrass Core v1.6 and later.

By default, the AWS IoT Greengrass Core software is deployed under a single root directory where
AWS IoT Greengrass performs all read and write operations. However, you can configure AWS IoT
Greengrass to use a separate directory for all write operations, including creating directories and
files. In this case, AWS IoT Greengrass uses two top-level directories:

• The greengrass-root directory, which you can leave as read-write or optionally make read-
only. This contains the AWS IoT Greengrass Core software and other critical components that
should remain immutable during runtime, such as certificates and config.json.

• The specified write directory. This contains writable content, such as logs, state information, and
deployed user-defined Lambda functions.

This configuration results in the following directory structure.

Greengrass root directory

greengrass-root/
|-- certs/
| |-- root.ca.pem
| |-- hash.cert.pem
| |-- hash.private.key
| |-- hash.public.key
|-- config/
| |-- config.json
|-- ggc/

Configure a write directory 134

AWS IoT Greengrass Developer Guide, Version 1

| |-- packages/
| |-- package-version/
| |-- bin/
| |-- daemon
| |-- greengrassd
| |-- lambda/
| |-- LICENSE/
| |-- release_notes_package-version.html
| |-- runtime/
| |-- java8/
| |-- nodejs8.10/
| |-- python3.8/
| |-- core/

Write Directory

write-directory/
|-- packages/
| |-- package-version/
| |-- ggc_root/
| |-- rootfs_nosys/
| |-- rootfs_sys/
| |-- var/
|-- deployment/
| |-- group/
| |-- group.json
| |-- lambda/
| |-- mlmodel/
|-- var/
| |-- log/
| |-- state/

To configure a write directory

1. Run the following command to stop the AWS IoT Greengrass daemon:

cd /greengrass-root/ggc/core/
sudo ./greengrassd stop

2. Open greengrass-root/config/config.json for editing as the su user.

Configure a write directory 135

AWS IoT Greengrass Developer Guide, Version 1

3. Add writeDirectory as a parameter and specify the path to the target directory, as shown
in the following example.

{
 "coreThing": {
 "caPath": "root-CA.pem",
 "certPath": "hash.pem.crt",
 ...
 },
 ...
 "writeDirectory" : "/write-directory"
}

Note

You can update the writeDirectory setting as often as you want. After the setting is
updated, AWS IoT Greengrass uses the newly specified write directory at the next start,
but doesn't migrate content from the previous write directory.

4. Now that your write directory is configured, you can optionally make the greengrass-root
directory read-only. For instructions, see To Make the Greengrass Root Directory Read-Only.

Otherwise, start the AWS IoT Greengrass daemon:

cd /greengrass-root/ggc/core/
sudo ./greengrassd start

To make the Greengrass root directory read-only

Follow these steps only if you want to make the Greengrass root directory read-only. The write
directory must be configured before you begin.

1. Grant access permissions to required directories:

a. Give read and write permissions to the config.json owner.

sudo chmod 0600 /greengrass-root/config/config.json

Configure a write directory 136

AWS IoT Greengrass Developer Guide, Version 1

b. Make ggc_user the owner of the certs and system Lambda directories.

sudo chown -R ggc_user:ggc_group /greengrass-root/certs/
sudo chown -R ggc_user:ggc_group /greengrass-root/ggc/packages/1.11.6/lambda/

Note

The ggc_user and ggc_group accounts are used by default to run system Lambda
functions. If you configured the group-level default access identity to use different
accounts, you should give permissions to that user (UID) and group (GID) instead.

2. Make the greengrass-root directory read-only by using your preferred mechanism.

Note

One way to make the greengrass-root directory read-only is to mount the directory
as read-only. However, to apply over-the-air (OTA) updates to the AWS IoT Greengrass
Core software in a mounted directory, the directory must first be unmounted, and then
remounted after the update. You can add these umount and mount operations to the
ota_pre_update and ota_post_update scripts. For more information about OTA
updates, see the section called “Greengrass OTA update agent” and the section called
“Managed respawn with OTA updates”.

3. Start the daemon.

cd /greengrass-root/ggc/core/
sudo ./greengrassd start

If the permissions from step 1 aren't set correctly, tthe daemon won't start.

Configure MQTT settings

In the AWS IoT Greengrass environment, local client devices, Lambda functions, connectors, and
system components can communicate with each other and with AWS IoT Core. All communication
goes through the core, which manages the subscriptions that authorize MQTT communication
between entities.

Configure MQTT settings 137

AWS IoT Greengrass Developer Guide, Version 1

For information about MQTT settings you can configure for AWS IoT Greengrass, see the following
sections:

• the section called “Message quality of service”

• the section called “MQTT message queue”

• the section called “MQTT persistent sessions with AWS IoT Core”

• the section called “Client IDs for MQTT connections with AWS IoT”

• MQTT port for local messaging

• the section called “Timeout for publish, subscribe, unsubscribe operations in MQTT connections
with the AWS Cloud”

Note

OPC-UA is an information exchange standard for industrial communication. To implement
support for OPC-UA on the Greengrass core, you can use the IoT SiteWise connector. The
connector sends industrial device data from OPC-UA servers to asset properties in AWS IoT
SiteWise.

Message quality of service

AWS IoT Greengrass supports quality of service (QoS) levels 0 or 1, depending on your
configuration and the target and direction of the communication. The Greengrass core acts as a
client for communication with AWS IoT Core and a message broker for communication on the local
network.

Configure MQTT settings 138

AWS IoT Greengrass Developer Guide, Version 1

For more information about MQTT and QoS, see Getting Started on the MQTT website.

Communication with the AWS Cloud

• Outbound messages use QoS 1

The core sends messages destined for AWS Cloud targets using QoS 1. AWS IoT Greengrass
uses an MQTT message queue to process these messages. If message delivery isn't confirmed
by AWS IoT, the message is spooled to be retried later. The message cannot be retried if
the queue is full. The message delivery confirmation can help minimize data loss from
intermittent connectivity.

Because outbound messages to AWS IoT use QoS 1, the maximum rate at which the
Greengrass core can send messages depends on the latency between the core and AWS IoT.
Each time the core sends a message, it waits until AWS IoT acknowledges the message before
it sends the next message. For example, if the round-trip time between the core and its AWS
Region is 50 milliseconds, the core can send up to 20 messages per second. Consider this
behavior when you choose the AWS Region where your core connects. To ingest high-volume
IoT data to the AWS Cloud, you can use stream manager.

For more information about the MQTT message queue, including how to configure a local
storage cache that can persist messages destined for AWS Cloud targets, see the section
called “MQTT message queue”.

• Inbound messages use QoS 0 (default) or QoS 1

By default, the core subscribes with QoS 0 to messages from AWS Cloud sources. If you
enable persistent sessions, the core subscribes with QoS 1. This can help minimize data loss
from intermittent connectivity. To manage the QoS for these subscriptions, you configure
persistence settings on the local spooler system component.

For more information, including how to enable the core to establish a persistent session with
AWS Cloud targets, see the section called “MQTT persistent sessions with AWS IoT Core”.

Communication with local targets

All local communication uses QoS 0. The core makes one attempt to send a message to a
local target, which can be a Greengrass Lambda function, connector, or client device. The core
doesn't store messages or confirm delivery. Messages can be dropped anywhere between
components.

Configure MQTT settings 139

https://mqtt.org/getting-started/

AWS IoT Greengrass Developer Guide, Version 1

Note

Although direct communication between Lambda functions doesn't use MQTT
messaging, the behavior is the same.

MQTT message queue for cloud targets

MQTT messages that are destined for AWS Cloud targets are queued to await processing. Queued
messages are processed in first in, first out (FIFO) order. After a message is processed and published
to AWS IoT Core, the message is removed from the queue.

By default, the Greengrass core stores in memory unprocessed messages destined for AWS Cloud
targets. You can configure the core to store unprocessed messages in a local storage cache instead.
Unlike in-memory storage, the local storage cache has the ability to persist across core restarts (for
example, after a group deployment or a device reboot), so AWS IoT Greengrass can continue to
process the messages. You can also configure the storage size.

Warning

The Greengrass core might queue duplicate MQTT messages when it loses connection,
because it retries a publish operation before the MQTT client detects that it's offline. To
avoid duplicate MQTT messages for cloud targets, configure the core's keepAlive value
to less than half of its mqttOperationTimeout value. For more information, see AWS IoT
Greengrass core configuration file.

AWS IoT Greengrass uses the spooler system component (the GGCloudSpooler Lambda function)
to manage the message queue. You can use the following GGCloudSpooler environment
variables to configure storage settings.

• GG_CONFIG_STORAGE_TYPE. The location of the message queue. The following are valid
values:

• FileSystem. Store unprocessed messages in the local storage cache on the disk of the
physical core device. When the core restarts, queued messages are retained for processing.
Messages are removed after they are processed.

• Memory (default). Store unprocessed messages in memory. When the core restarts, queued
messages are lost.

Configure MQTT settings 140

AWS IoT Greengrass Developer Guide, Version 1

This option is optimized for devices with restricted hardware capabilities. When using this
configuration, we recommend that you deploy groups or restart the device when the service
disruption is the lowest.

• GG_CONFIG_MAX_SIZE_BYTES. The storage size, in bytes. This value can be any non-negative
integer greater than or equal to 262144 (256 KB); a smaller size prevents the AWS IoT
Greengrass Core software from starting. The default size is 2.5 MB. When the size limit is
reached, the oldest queued messages are replaced by new messages.

Note

This feature is available for AWS IoT Greengrass Core v1.6 and later. Earlier versions use
in-memory storage with a queue size of 2.5 MB. You cannot configure storage settings for
earlier versions.

To cache messages in local storage

You can configure AWS IoT Greengrass to cache messages to the file system so they persist across
core restarts. To do this, you deploy a function definition version where the GGCloudSpooler
function sets the storage type to FileSystem. You must use the AWS IoT Greengrass API to
configure the local storage cache. You can't do this in the console.

The following procedure uses the create-function-definition-version CLI command
to configure the spooler to save queued messages to the file system. It also configures a 2.6 MB
queue size.

1. Get the IDs of the target Greengrass group and group version. This procedure assumes that
this is the latest group and group version. The following query returns the most recently
created group.

aws greengrass list-groups --query "reverse(sort_by(Groups, &CreationTimestamp))
[0]"

Or, you can query by name. Group names are not required to be unique, so multiple groups
might be returned.

Configure MQTT settings 141

https://docs.aws.amazon.com/cli/latest/reference/greengrass/create-function-definition-version.html

AWS IoT Greengrass Developer Guide, Version 1

aws greengrass list-groups --query "Groups[?Name=='MyGroup']"

Note

You can also find these values in the AWS IoT console. The group ID is displayed on the
group's Settings page. Group version IDs are displayed on the group's Deployments
tab.

2. Copy the Id and LatestVersion values from the target group in the output.

3. Get the latest group version.

• Replace group-id with the Id that you copied.

• Replace latest-group-version-id with the LatestVersion that you copied.

aws greengrass get-group-version \
--group-id group-id \
--group-version-id latest-group-version-id

4. From the Definition object in the output, copy the CoreDefinitionVersionArn and the
ARNs of all other group components except FunctionDefinitionVersionArn. You use
these values when you create a new group version.

5. From the FunctionDefinitionVersionArn in the output, copy the ID of the function
definition. The ID is the GUID that follows the functions segment in the ARN, as shown in
the following example.

arn:aws:greengrass:us-west-2:123456789012:/greengrass/
definition/functions/bcfc6b49-beb0-4396-b703-6dEXAMPLEcu5/
versions/0f7337b4-922b-45c5-856f-1aEXAMPLEsf6

Note

Or, you can create a function definition by running the create-function-
definition command, and then copying the ID from the output.

6. Add a function definition version to the function definition.

Configure MQTT settings 142

https://docs.aws.amazon.com/cli/latest/reference/greengrass/create-function-definition.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/create-function-definition.html

AWS IoT Greengrass Developer Guide, Version 1

• Replace function-definition-id with the Id that you copied for the function
definition.

• Replace arbitrary-function-id with a name for the function, such as spooler-
function.

• Add any Lambda functions that you want to include in this version to the functions array.
You can use the get-function-definition-version command to get the Greengrass
Lambda functions from an existing function definition version.

Warning

Make sure that you specify a value for GG_CONFIG_MAX_SIZE_BYTES that's greater
than or equal to 262144. A smaller size prevents the AWS IoT Greengrass Core
software from starting.

aws greengrass create-function-definition-version \
--function-definition-id function-definition-id \
--functions '[{"FunctionArn":
 "arn:aws:lambda:::function:GGCloudSpooler:1","FunctionConfiguration":
 {"Environment": {"Variables":
{"GG_CONFIG_MAX_SIZE_BYTES":"2621440","GG_CONFIG_STORAGE_TYPE":"FileSystem"}},"Executable":
 "spooler","MemorySize": 32768,"Pinned": true,"Timeout": 3},"Id": "arbitrary-
function-id"}]'

Note

If you previously set the GG_CONFIG_SUBSCRIPTION_QUALITY environment variable
to support persistent sessions with AWS IoT Core, include it in this function instance.

7. Copy the Arn of the function definition version from the output.

8. Create a group version that contains the system Lambda function.

• Replace group-id with the Id for the group.

• Replace core-definition-version-arn with the CoreDefinitionVersionArn that
you copied from the latest group version.

Configure MQTT settings 143

https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-function-definition-version.html

AWS IoT Greengrass Developer Guide, Version 1

• Replace function-definition-version-arn with the Arn that you copied for the new
function definition version.

• Replace the ARNs for other group components (for example,
SubscriptionDefinitionVersionArn or DeviceDefinitionVersionArn) that you
copied from the latest group version.

• Remove any unused parameters. For example, remove the --resource-definition-
version-arn if your group version doesn't contain any resources.

aws greengrass create-group-version \
--group-id group-id \
--core-definition-version-arn core-definition-version-arn \
--function-definition-version-arn function-definition-version-arn \
--device-definition-version-arn device-definition-version-arn \
--logger-definition-version-arn logger-definition-version-arn \
--resource-definition-version-arn resource-definition-version-arn \
--subscription-definition-version-arn subscription-definition-version-arn

9. Copy the Version from the output. This is the ID of the new group version.

10. Deploy the group with the new group version.

• Replace group-id with the Id that you copied for the group.

• Replace group-version-id with the Version that you copied for the new group version.

aws greengrass create-deployment \
--group-id group-id \
--group-version-id group-version-id \
--deployment-type NewDeployment

To update the storage settings, you use the AWS IoT Greengrass API to create a new function
definition version that contains the GGCloudSpooler function with the updated configuration.
Then add the function definition version to a new group version (along with your other group
components) and deploy the group version. If you want to restore the default configuration, you
can deploy a function definition version that doesn't include the GGCloudSpooler function.

Configure MQTT settings 144

AWS IoT Greengrass Developer Guide, Version 1

This system Lambda function isn't visible in the console. However, after the function is added to
the latest group version, it's included in deployments that you make from the console, unless you
use the API to replace or remove it.

MQTT persistent sessions with AWS IoT Core

This feature is available for AWS IoT Greengrass Core v1.10 and later.

A Greengrass core can establish a persistent session with the AWS IoT message broker. A persistent
session is an ongoing connection that allows the core to receive messages sent while the core is
offline. The core is the client in the connection.

In a persistent session, the AWS IoT message broker saves all subscriptions the core makes during
the connection. If the core disconnects, the AWS IoT message broker stores unacknowledged
and new messages published as QoS 1 and destined for local targets, such as Lambda functions
and client devices. When the core reconnects, the persistent session is resumed and the AWS IoT
message broker sends stored messages to the core at a maximum rate of 10 messages per second.
Persistent sessions have a default expiry period of 1 hour, which begins when the message broker
detects that the core disconnects. For more information, see MQTT persistent sessions in the AWS
IoT Developer Guide.

AWS IoT Greengrass uses the spooler system component (the GGCloudSpooler Lambda
function) to create subscriptions that have AWS IoT as the source. You can use the following
GGCloudSpooler environment variable to configure persistent sessions.

• GG_CONFIG_SUBSCRIPTION_QUALITY. The quality of subscriptions that have AWS IoT as the
source. The following are valid values:

• AtMostOnce (default). Disables persistent sessions. Subscriptions use QoS 0.

• AtLeastOncePersistent. Enables persistent sessions. Sets the cleanSession flag to 0 in
CONNECT messages and subscribes with QoS 1.

Messages published with QoS 1 that the core receives are guaranteed to reach the Greengrass
daemon's in-memory work queue. The core acknowledges the message after it's added to
the queue. Subsequent communication from the queue to the local target (for example,
Greengrass Lambda function, connector, or device) is sent as QoS 0. AWS IoT Greengrass
doesn't guarantee delivery to local targets.

Configure MQTT settings 145

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt-persistent-sessions.html

AWS IoT Greengrass Developer Guide, Version 1

Note

You can use the maxWorkItemCount configuration property to control the size of
the work item queue. For example, you can increase the queue size if your workload
requires heavy MQTT traffic.

When persistent sessions are enabled, the core opens at least one additional connection for
MQTT message exchange with AWS IoT. For more information, see the section called “Client
IDs for MQTT connections with AWS IoT”.

To configure MQTT persistent sessions

You can configure AWS IoT Greengrass to use persistent sessions with AWS IoT Core. To do this, you
deploy a function definition version where the GGCloudSpooler function sets the subscription
quality to AtLeastOncePersistent. This setting applies to all your subscriptions that have AWS
IoT Core (cloud) as the source. You must use the AWS IoT Greengrass API to configure persistent
sessions. You can't do this in the console.

The following procedure uses the create-function-definition-version CLI command to
configure the spooler to use persistent sessions. In this procedure, we assume that you're updating
the configuration of the latest group version of an existing group.

1. Get the IDs of the target Greengrass group and group version. This procedure assumes that
this is the latest group and group version. The following query returns the most recently
created group.

aws greengrass list-groups --query "reverse(sort_by(Groups, &CreationTimestamp))
[0]"

Or, you can query by name. Group names are not required to be unique, so multiple groups
might be returned.

aws greengrass list-groups --query "Groups[?Name=='MyGroup']"

Configure MQTT settings 146

https://docs.aws.amazon.com/cli/latest/reference/greengrass/create-function-definition-version.html

AWS IoT Greengrass Developer Guide, Version 1

Note

You can also find these values in the AWS IoT console. The group ID is displayed on the
group's Settings page. Group version IDs are displayed on the group's Deployments
tab.

2. Copy the Id and LatestVersion values from the target group in the output.

3. Get the latest group version.

• Replace group-id with the Id that you copied.

• Replace latest-group-version-id with the LatestVersion that you copied.

aws greengrass get-group-version \
--group-id group-id \
--group-version-id latest-group-version-id

4. From the Definition object in the output, copy the CoreDefinitionVersionArn and the
ARNs of all other group components except FunctionDefinitionVersionArn. You use
these values when you create a new group version.

5. From the FunctionDefinitionVersionArn in the output, copy the ID of the function
definition. The ID is the GUID that follows the functions segment in the ARN, as shown in
the following example.

arn:aws:greengrass:us-west-2:123456789012:/greengrass/
definition/functions/bcfc6b49-beb0-4396-b703-6dEXAMPLEcu5/
versions/0f7337b4-922b-45c5-856f-1aEXAMPLEsf6

Note

Or, you can create a function definition by running the create-function-
definition command, and then copying the ID from the output.

6. Add a function definition version to the function definition.

• Replace function-definition-id with the Id that you copied for the function
definition.

Configure MQTT settings 147

https://docs.aws.amazon.com/cli/latest/reference/greengrass/create-function-definition.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/create-function-definition.html

AWS IoT Greengrass Developer Guide, Version 1

• Replace arbitrary-function-id with a name for the function, such as spooler-
function.

• Add any Lambda functions that you want to include in this version to the functions array.
You can use the get-function-definition-version command to get the Greengrass
Lambda functions from an existing function definition version.

aws greengrass create-function-definition-version \
--function-definition-id function-definition-id \
--functions '[{"FunctionArn":
 "arn:aws:lambda:::function:GGCloudSpooler:1","FunctionConfiguration":
 {"Environment": {"Variables":
{"GG_CONFIG_SUBSCRIPTION_QUALITY":"AtLeastOncePersistent"}},"Executable":
 "spooler","MemorySize": 32768,"Pinned": true,"Timeout": 3},"Id": "arbitrary-
function-id"}]'

Note

If you previously set the GG_CONFIG_STORAGE_TYPE or
GG_CONFIG_MAX_SIZE_BYTES environment variables to define storage settings,
include them in this function instance.

7. Copy the Arn of the function definition version from the output.

8. Create a group version that contains the system Lambda function.

• Replace group-id with the Id for the group.

• Replace core-definition-version-arn with the CoreDefinitionVersionArn that
you copied from the latest group version.

• Replace function-definition-version-arn with the Arn that you copied for the new
function definition version.

• Replace the ARNs for other group components (for example,
SubscriptionDefinitionVersionArn or DeviceDefinitionVersionArn) that you
copied from the latest group version.

• Remove any unused parameters. For example, remove the --resource-definition-
version-arn if your group version doesn't contain any resources.

Configure MQTT settings 148

https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-function-definition-version.html

AWS IoT Greengrass Developer Guide, Version 1

aws greengrass create-group-version \
--group-id group-id \
--core-definition-version-arn core-definition-version-arn \
--function-definition-version-arn function-definition-version-arn \
--device-definition-version-arn device-definition-version-arn \
--logger-definition-version-arn logger-definition-version-arn \
--resource-definition-version-arn resource-definition-version-arn \
--subscription-definition-version-arn subscription-definition-version-arn

9. Copy the Version from the output. This is the ID of the new group version.

10. Deploy the group with the new group version.

• Replace group-id with the Id that you copied for the group.

• Replace group-version-id with the Version that you copied for the new group version.

aws greengrass create-deployment \
--group-id group-id \
--group-version-id group-version-id \
--deployment-type NewDeployment

11. (Optional) Increase the maxWorkItemCount property in the core configuration file. This can
help the core handle increased MQTT traffic and communication with local targets.

To update the core with these configuration changes, you use the AWS IoT Greengrass API to
create a new function definition version that contains the GGCloudSpooler function with
the updated configuration. Then add the function definition version to a new group version
(along with your other group components) and deploy the group version. If you want to restore
the default configuration, you can create a function definition version that doesn't include the
GGCloudSpooler function.

This system Lambda function isn't visible in the console. However, after the function is added to
the latest group version, it's included in deployments that you make from the console, unless you
use the API to replace or remove it.

Client IDs for MQTT connections with AWS IoT

This feature is available for AWS IoT Greengrass Core v1.8 and later.

Configure MQTT settings 149

AWS IoT Greengrass Developer Guide, Version 1

The Greengrass core opens MQTT connections with AWS IoT Core for operations such as shadow
sync and certificate management. For these connections, the core generates predictable client
IDs based on the core thing name. Predictable client IDs can be used with monitoring, auditing,
and pricing features, including AWS IoT Device Defender and AWS IoT lifecycle events. You can
also create logic around predictable client IDs (for example, subscribe policy templates based on
certificate attributes).

GGC v1.9 and later

Two Greengrass system components open MQTT connections with AWS IoT Core. These
components use the following patterns to generate the client IDs for the connections.

Operation Client ID pattern

Deployments core-thing-name

Example: MyCoreThing

Use this client ID for connect, disconnect,
subscribe, and unsubscribe lifecycle event
notifications.

Subscriptions core-thing-name -cn

Example: MyCoreThing-c01

n is an integer that starts at 00 and
increments with each new connection to a
maximum number of 250. The number of
connections is determined by the number
of devices that sync their shadow state with
AWS IoT Core (maximum 2,500 per group)
and the number of subscriptions with cloud
as their source in the group (maximum
10,000 per group).

The spooler system component connects
with AWS IoT Core to exchange messages for
subscriptions with a cloud source or target.

Configure MQTT settings 150

https://docs.aws.amazon.com/iot/latest/developerguide/life-cycle-events.html
https://docs.aws.amazon.com/iot/latest/developerguide/pub-sub-policy.html#pub-sub-policy-cert

AWS IoT Greengrass Developer Guide, Version 1

Operation Client ID pattern

The spooler also acts as proxy for message
exchange between AWS IoT Core and the
local shadow service and device certificate
manager.

To calculate the number of MQTT connections per group, use the following formula:

number of MQTT connections per group = number of connections for
Deployment Agent + number of connections for Subscriptions

Where,

• number of connections for Deployment Agent = 1.

• number of connections for Subscriptions = (2 subscriptions for supporting
certificate generation + number of MQTT topics in AWS IoT Core +
number of device shadows synced) / 50.

• Where, 50 = the maximum number of subscriptions per connection that AWS IoT Core can
support.

Note

If you enable persistent sessions for subscription with AWS IoT Core, the core opens at
least one additional connection to use in a persistent session. The system components
don't support persistent sessions, so they can't share that connection.

To reduce the number of MQTT connections and help reduce costs, you can use local Lambda
functions to aggregate data at the edge. Then you send the aggregated data to the AWS Cloud.
As a result, you use fewer MQTT topics in AWS IoT Core. For more information, see AWS IoT
Greengrass Pricing.

GGC v1.8

Several Greengrass system components open MQTT connections with AWS IoT Core. These
components use the following patterns to generate the client IDs for the connections.

Configure MQTT settings 151

https://aws.amazon.com/greengrass/pricing/
https://aws.amazon.com/greengrass/pricing/

AWS IoT Greengrass Developer Guide, Version 1

Operation Client ID pattern

Deployments core-thing-name

Example: MyCoreThing

Use this client ID for connect, disconnect,
subscribe, and unsubscribe lifecycle event
notifications.

MQTT message exchange with AWS IoT Core core-thing-name -spr

Example: MyCoreThing-spr

Shadow sync core-thing-name -snn

Example: MyCoreThing-s01

nn is an integer that starts at 00 and
increments with each new connection to a
maximum of 03. The number of connectio
ns is determined by the number of devices
(maximum 200 devices per group) that
sync their shadow state with AWS IoT Core
(maximum 50 subscriptions per connection).

Device certificate management core-thing-name -dcm

Example: MyCoreThing-dcm

Note

Duplicate client IDs used in simultaneous connections can cause an infinite connect-
disconnect loop. This can happen if another device is hardcoded to use the core device
name as the client ID in connections. For more information, see this troubleshooting step.

Configure MQTT settings 152

AWS IoT Greengrass Developer Guide, Version 1

Greengrass devices are also fully integrated with the Fleet Indexing service of AWS IoT Device
Management. This allows you to index and search for devices based on device attributes, shadow
state, and connection state in the cloud. For example, Greengrass devices establish at least one
connection that uses the thing name as the client ID, so you can use device connectivity indexing
to discover which Greengrass devices are currently connected or disconnected to AWS IoT Core. For
more information, see Fleet indexing service in the AWS IoT Developer Guide.

Configure the MQTT port for local messaging

This feature requires AWS IoT Greengrass Core v1.10 or later.

The Greengrass core acts as the local message broker for MQTT messaging between local Lambda
functions, connectors, and client devices. By default, the core uses port 8883 for MQTT traffic on
the local network. You might want to change the port to avoid a conflict with other software that
runs on port 8883.

To configure the port number that the core uses for local MQTT traffic

1. Run the following command to stop the Greengrass daemon:

cd /greengrass-root/ggc/core/
sudo ./greengrassd stop

2. Open greengrass-root/config/config.json for editing as the su user.

3. In the coreThing object, add the ggMqttPort property and set the value to the port number
you want to use. Valid values are 1024 to 65535. The following example sets the port number
to 9000.

{
 "coreThing" : {
 "caPath" : "root.ca.pem",
 "certPath" : "12345abcde.cert.pem",
 "keyPath" : "12345abcde.private.key",
 "thingArn" : "arn:aws:iot:us-west-2:123456789012:thing/core-thing-name",
 "iotHost" : "abcd123456wxyz-ats.iot.us-west-2.amazonaws.com",
 "ggHost" : "greengrass-ats.iot.us-west-2.amazonaws.com",
 "ggMqttPort" : 9000,
 "keepAlive" : 600
 },
 ...

Configure MQTT settings 153

https://docs.aws.amazon.com/iot/latest/developerguide/iot-indexing.html

AWS IoT Greengrass Developer Guide, Version 1

}

4. Start the daemon.

cd /greengrass-root/ggc/core/
sudo ./greengrassd start

5. If automatic IP detection is enabled for the core, the configuration is complete.

If automatic IP detection is not enabled, you must update the connectivity information
for the core. This allows client devices to receive the correct port number during discovery
operations to acquire core connectivity information. You can use the AWS IoT console or AWS
IoT Greengrass API to update the core connectivity information. For this procedure, you update
the port number only. The local IP address for the core remains the same.

To update the connectivity information for the core (console)

1. On the group configuration page, choose the Greengrass core.

2. On the core details page, choose the MQTT broker endpoints tab.

3. Choose Manage endpoints and then choose Add endpoint

4. Enter your current local IP address and the new port number. The following example
sets the port number 9000 for the IP address 192.168.1.8.

5. Remove the obsolete endpoint, and then choose Update

To update the connectivity information for the core (API)

• Use the UpdateConnectivityInfo action. The following example uses update-
connectivity-info in the AWS CLI to set the port number 9000 for the IP address
192.168.1.8.

aws greengrass update-connectivity-info \
 --thing-name "MyGroup_Core" \
 --connectivity-info "[{\"Metadata\":\"\",\"PortNumber\":9000,
\"HostAddress\":\"192.168.1.8\",\"Id\":\"localIP_192.168.1.8\"},{\"Metadata
\":\"\",\"PortNumber\":8883,\"HostAddress\":\"127.0.0.1\",\"Id\":
\"localhost_127.0.0.1_0\"}]"

Configure MQTT settings 154

https://docs.aws.amazon.com/greengrass/v1/apireference/updateconnectivityinfo-put.html

AWS IoT Greengrass Developer Guide, Version 1

Note

You can also configure the port that the core uses for MQTT messaging with AWS IoT
Core. For more information, see the section called “Connect on port 443 or through a
network proxy”.

Timeout for publish, subscribe, unsubscribe operations in MQTT connections with
the AWS Cloud

This feature is available in AWS IoT Greengrass v1.10.2 or later.

You can configure the amount of time (in seconds) to allow the Greengrass core to complete
a publish, subscribe, or unsubscribe operation in MQTT connections to AWS IoT Core.
You might want to adjust this setting if the operations time out because of bandwidth
constraints or high latency. To configure this setting in the config.json file, add or change the
mqttOperationTimeout property in the coreThing object. For example:

{
 "coreThing": {
 "mqttOperationTimeout": 10,
 "caPath": "root-ca.pem",
 "certPath": "hash.cert.pem",
 "keyPath": "hash.private.key",
 ...
 },
 ...
}

The default timeout is 5 seconds. The minimum timeout is 5 seconds.

Activate automatic IP detection

You can configure AWS IoT Greengrass to enable client devices in a Greengrass group to
automatically discover the Greengrass core. When enabled, the core watches for changes to its IP
addresses. If an address changes, the core publishes an updated list of addresses. These addresses
are made available to client devices that are in the same Greengrass group as the core.

Activate automatic IP detection 155

AWS IoT Greengrass Developer Guide, Version 1

Note

The AWS IoT policy for client devices must grant the greengrass:Discover permission
to allow devices to retrieve connectivity information for the core. For more information
about the policy statement, see the section called “Discovery authorization”.

To enable this feature from the AWS IoT Greengrass console, choose Automatic detection when
you deploy your Greengrass group for the first time. You can also enable or disable this feature on
the group configuration page by choosing the Lambda functions tab and selecting the IP detector.
Automatic IP detection is enabled if Automatically detect and override MQTT broker endpoints is
selected.

To manage automatic discovery with the AWS IoT Greengrass API, you must configure the
IPDetector system Lambda function. The following procedure shows how to use the create-
function-definition-version CLI command to configure automatic discovery of the Greengrass core.

1. Get the IDs of the target Greengrass group and group version. This procedure assumes that
this is the latest group and group version. The following query returns the most recently
created group.

aws greengrass list-groups --query "reverse(sort_by(Groups, &CreationTimestamp))
[0]"

Or, you can query by name. Group names are not required to be unique, so multiple groups
might be returned.

aws greengrass list-groups --query "Groups[?Name=='MyGroup']"

Note

You can also find these values in the AWS IoT console. The group ID is displayed on the
group's Settings page. Group version IDs are displayed on the group's Deployments
tab.

2. Copy the Id and LatestVersion values from the target group in the output.

3. Get the latest group version.

Activate automatic IP detection 156

https://docs.aws.amazon.com/cli/latest/reference/greengrass/create-function-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/create-function-definition-version.html

AWS IoT Greengrass Developer Guide, Version 1

• Replace group-id with the Id that you copied.

• Replace latest-group-version-id with the LatestVersion that you copied.

aws greengrass get-group-version \
--group-id group-id \
--group-version-id latest-group-version-id

4. From the Definition object in the output, copy the CoreDefinitionVersionArn and the
ARNs of all other group components except FunctionDefinitionVersionArn. You use
these values when you create a new group version.

5. From the FunctionDefinitionVersionArn in the output, copy the ID of the function
definition and the function definition version:

arn:aws:greengrass:region:account-id:/greengrass/groups/function-definition-id/
versions/function-definition-version-id

Note

You can optionally create a function definition by running the create-function-
definition command, and then copy the ID from the output.

6. Use the get-function-definition-version command to get the current definition state.
Use the function-definition-id you copied for the function definiton. For example,
4d941bc7-92a1-4f45-8d64-EXAMPLEf76c3.

aws greengrass get-function-definition-version
--function-definition-id function-definition-id
--function-definition-version-id function-definition-version-id

Make a note of the listed function configurations. You will need to include these when creating
a new function definition version in order to prevent loss of your current definition settings.

7. Add a function definition version to the function definition.

• Replace function-definition-id with the Id that you copied for the function
definition. For example, 4d941bc7-92a1-4f45-8d64-EXAMPLEf76c3.

Activate automatic IP detection 157

https://docs.aws.amazon.com/cli/latest/reference/greengrass/create-function-definition.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/create-function-definition.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-function-definition-version.html

AWS IoT Greengrass Developer Guide, Version 1

• Replace arbitrary-function-id with a name for the function, such as auto-
detection-function.

• Add all Lambda functions that you want to include in this version to the functions array,
such as any listed in the previous step.

aws greengrass create-function-definition-version \
--function-definition-id function-definition-id \
--functions
 '[{"FunctionArn":"arn:aws:lambda:::function:GGIPDetector:1","Id":"arbitrary-
function-id","FunctionConfiguration":
{"Pinned":true,"MemorySize":32768,"Timeout":3}}]'\
--region us-west-2

8. Copy the Arn of the function definition version from the output.

9. Create a group version that contains the system Lambda function.

• Replace group-id with the Id for the group.

• Replace core-definition-version-arn with the CoreDefinitionVersionArn that
you copied from the latest group version.

• Replace function-definition-version-arn with the Arn that you copied for the new
function definition version.

• Replace the ARNs for other group components (for example,
SubscriptionDefinitionVersionArn or DeviceDefinitionVersionArn) that you
copied from the latest group version.

• Remove any unused parameters. For example, remove the --resource-definition-
version-arn if your group version doesn't contain any resources.

aws greengrass create-group-version \
--group-id group-id \
--core-definition-version-arn core-definition-version-arn \
--function-definition-version-arn function-definition-version-arn \
--device-definition-version-arn device-definition-version-arn \
--logger-definition-version-arn logger-definition-version-arn \
--resource-definition-version-arn resource-definition-version-arn \
--subscription-definition-version-arn subscription-definition-version-arn

10. Copy the Version from the output. This is the ID of the new group version.

Activate automatic IP detection 158

AWS IoT Greengrass Developer Guide, Version 1

11. Deploy the group with the new group version.

• Replace group-id with the Id that you copied for the group.

• Replace group-version-id with the Version that you copied for the new group version.

aws greengrass create-deployment \
--group-id group-id \
--group-version-id group-version-id \
--deployment-type NewDeployment

If you want to manually input the IP address of your Greengrass core, you can complete this
tutorial with a different function definition that does not include the IPDetector function. This
will prevent the detection function from locating and automatically inputting your Greengrass core
IP address.

This system Lambda function isn't visible in the Lambda console. After the function is added to the
latest group version, it's included in deployments that you make from the console, unless you use
the API to replace or remove it.

Configure the init system to start the Greengrass daemon

It's a good practice to set up your init system to start the Greengrass daemon during boot,
especially when managing large fleets of devices.

Note

If you used apt to install the AWS IoT Greengrass Core software, you can use the systemd
scripts to enable start on boot. For more information, see the section called “Use systemd
scripts to manage the Greengrass daemon lifecycle”.

There are different types of init system, such as initd, systemd, and SystemV, and they use similar
configuration parameters. The following example is a service file for systemd. The Type parameter
is set to forking because greengrassd (which is used to start Greengrass) forks the Greengrass
daemon process, and the Restart parameter is set to on-failure to direct systemd to restart
Greengrass if Greengrass enters a failed state.

Start Greengrass on system boot 159

AWS IoT Greengrass Developer Guide, Version 1

Note

To see if your device uses systemd, run the check_ggc_dependencies script as
described in Module 1. Then to use systemd, make sure that the useSystemd parameter in
config.json is set to yes.

[Unit]
Description=Greengrass Daemon

[Service]
Type=forking
PIDFile=/var/run/greengrassd.pid
Restart=on-failure
ExecStart=/greengrass/ggc/core/greengrassd start
ExecReload=/greengrass/ggc/core/greengrassd restart
ExecStop=/greengrass/ggc/core/greengrassd stop

[Install]
WantedBy=multi-user.target

See also

• What is AWS IoT Greengrass?

• the section called “Supported platforms and requirements”

• Getting started with AWS IoT Greengrass

• the section called “Overview of the group object model”

• the section called “Hardware security integration”

See also 160

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Greengrass Version 1 maintenance policy

Use this AWS IoT Greengrass V1 maintenance policy to understand the different levels of
maintenance and updates for the AWS IoT Greengrass V1 service and the AWS IoT Greengrass Core
software v1.x.

Topics

• AWS IoT Greengrass versioning scheme

• Lifecycle phases for major versions of the AWS IoT Greengrass Core software

• Maintenance policy for AWS IoT Greengrass Core software

• Deprecation schedule

• Support policy for AWS Lambda functions on Greengrass core devices

• Support policy for AWS IoT Device Tester for AWS IoT Greengrass V1

• End of maintenance schedule

AWS IoT Greengrass versioning scheme

AWS IoT Greengrass uses semantic versioning for the AWS IoT Greengrass Core software. Semantic
versions follow a major.minor.patch number system. The major version increments for functional
and API changes that aren't backward-compatible with previous major versions. The minor
version increments for releases that add new backward-compatible functionality. The patch
version increments for security patches or bug fixes. Since its first major release, v1.0.0, AWS
IoT Greengrass has released 11 minor versions of the AWS IoT Greengrass Core software v1.x,
where v1.11.6 is the latest release. We recommend that you update your AWS IoT Greengrass Core
software to the latest available version to take advantage of new features, enhancements, and bug
fixes.

In December 2020, AWS IoT Greengrass released its first major version update. This update
included the AWS IoT Greengrass V2 service and version 2.0.3 of the AWS IoT Greengrass Core
software. For new applications, we strongly recommend that you use AWS IoT Greengrass Version
2 and the AWS IoT Greengrass Core software v2.x. Version 2 receives new features, includes all
key V1 features, and supports additional platforms and continuous deployments to large fleets of
devices. For more information, see What is AWS IoT Greengrass V2?.

AWS IoT Greengrass versioning scheme 161

https://semver.org/
https://docs.aws.amazon.com/greengrass/v2/developerguide/what-is-iot-greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

Lifecycle phases for major versions of the AWS IoT Greengrass
Core software

Each major version of the AWS IoT Greengrass Core software has the following three sequential
lifecycle phases. Each lifecycle phase provides different levels of maintenance over a period of time
after the initial release date.

• Release phase – AWS IoT Greengrass may release the following updates:

• Minor version updates that provide new features or enhancements to existing features

• Patch version updates that provide security patches and bug fixes

• Maintenance phase – AWS IoT Greengrass may release patch version updates that provide
security patches and bug fixes. AWS IoT Greengrass won't release new features or enhancements
to existing features during the maintenance phase.

• Extended life phase – AWS IoT Greengrass won't release updates that provide features,
enhancements to existing features, security patches, or bug fixes. However, the AWS Cloud
endpoints and API operations will remain available and operate according to the AWS IoT
Greengrass Service Level Agreement. Devices that run the AWS IoT Greengrass Core software
v1.x can continue to connect to the AWS Cloud and operate.

After the extended life phase ends for a major version of AWS IoT Greengrass, the AWS Cloud
endpoints and API operations will be deprecated and no longer available. Devices that run the AWS
IoT Greengrass Core software v1.x won't be able to connect to AWS Cloud services to operate.

Maintenance policy for AWS IoT Greengrass Core software

The AWS IoT Greengrass Core software v1.x entered the extended life phase on June 30, 2023.
After this date, the AWS IoT Greengrass Core software v1.x will remain in the extended life phase
until further notice.

The AWS IoT Greengrass Core software v2.x is currently in the release phase, and it will remain
in the release phase until further notice. AWS IoT Greengrass continues to add new features and
enhancements to the AWS IoT Greengrass Core software v2.x. For example, AWS IoT Greengrass
released Windows support in v2.5.0 of the AWS IoT Greengrass Core software. AWS IoT Greengrass
releases security patches and bug fixes for all minor versions of AWS IoT Greengrass Core v2.x for
at least 1 year after the release date. For more information, see What's new in AWS IoT Greengrass
V2.

Lifecycle phases for the AWS IoT Greengrass Core software 162

https://aws.amazon.com/greengrass/sla
https://aws.amazon.com/greengrass/sla
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-v2-whats-new.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-v2-whats-new.html

AWS IoT Greengrass Developer Guide, Version 1

Maintenance phase schedule

On June 30, 2023, the maintenance phase ended for the AWS IoT Greengrass Core software
v1.11.x. On March 31, 2022, the maintenance phase ended for the AWS IoT Greengrass Core
software v1.10.x. The maintenance phase ends for certain AWS IoT Greengrass Core software v1.x
artifacts and features earlier than these dates. For more information, see End of maintenance
schedule.

If you have an AWS Support plan, the maintenance phase for AWS IoT Greengrass Core software
v1.x doesn't affect your AWS Support plan. You can continue to open AWS Support tickets even
after the maintenance phase ends. If you have questions or concerns, contact your AWS Support
contact, or ask a question on AWS re:Post using the AWS IoT Greengrass tag.

Deprecation schedule

Currently, there is no plan to stop supporting the AWS IoT Greengrass Core software v1.x. The AWS
IoT Greengrass V1 endpoints and API operations will remain available until further notice. The AWS
IoT Greengrass Core software v1.11.6 entered the extended life phase on June 30, 2023. During
this phase, devices that run the AWS IoT Greengrass Core software v1.x can continue to connect to
the AWS IoT Greengrass V1 service to operate until further notice.

If AWS IoT Greengrass V1 stops being supported in the future, AWS IoT Greengrass will provide
12 months advance notice before this happens. This will help you plan the update of your
applications to use AWS IoT Greengrass V2 and the AWS IoT Greengrass Core software v2.x.
For more information about how to update your applications to V2, see Move from AWS IoT
Greengrass V1 to V2.

Support policy for AWS Lambda functions on Greengrass core
devices

AWS IoT Greengrass enables you to run AWS Lambda functions on IoT devices. AWS Lambda
provides a support policy and timelines that determine support for Lambda runtimes in AWS
IoT Greengrass. After a Lambda runtime reaches the end of support phase, AWS IoT Greengrass
also ends support for that runtime. For more information, see Runtime support policy in the AWS
Lambda Developer Guide.

Maintenance phase schedule 163

https://repost.aws/tags/TA4ckIed1sR4enZBey29rKTg/aws-io-t-greengrass
https://docs.aws.amazon.com/greengrass/v2/developerguide/move-from-v1.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/move-from-v1.html
https://docs.aws.amazon.com/lambda/latest/dg/runtime-support-policy.html

AWS IoT Greengrass Developer Guide, Version 1

When a Lambda runtime reaches end of support, you can't create or update Lambda functions that
use that runtime. However, you can continue to deploy these Lambda functions to Greengrass core
devices and invoke deployed Lambda functions. This policy also applies to AWS IoT Greengrass V2.

Support policy for AWS IoT Device Tester for AWS IoT
Greengrass V1

AWS IoT Device Tester (IDT) for AWS IoT Greengrass V1 enables you to validate and qualify your
AWS IoT Greengrass devices for inclusion in the AWS Partner Device Catalog. As of April 4, 2022,
AWS IoT Device Tester (IDT) for AWS IoT Greengrass V1 no longer generates signed qualification
reports. You can no longer qualify new AWS IoT Greengrass V1 devices to list in the AWS Partner
Device Catalog through the AWS Device Qualification Program. While you can't qualify Greengrass
V1 devices, you can continue to use IDT for AWS IoT Greengrass V1 to test your Greengrass V1
devices. We recommend that you use IDT for AWS IoT Greengrass V2 to qualify and list Greengrass
devices in the AWS Partner Device Catalog. For more information, see Support policy for AWS IoT
Device Tester for AWS IoT Greengrass V1.

End of maintenance schedule

The following table lists end of maintenance dates for AWS IoT Greengrass Core v1.x artifacts and
features. If you have questions about the maintenance schedule or policy, contact AWS Support.

Artifact or feature End of maintenance date

Greengrass APT repository installation February 11, 2022

ML Image Classification connector March 31, 2022

ML Object Detection connector March 31, 2022

ML Feedback connector March 31, 2022

AWS IoT Analytics connector March 31, 2022

Twilio Notifications connector March 31, 2022

Splunk Integration connector March 31, 2022

Support policy for AWS IoT Device Tester for AWS IoT Greengrass V1 164

https://aws.amazon.com/partners/dqp/
https://devices.amazonaws.com/
https://devices.amazonaws.com/
https://devices.amazonaws.com/
https://aws.amazon.com/partners/programs/dqp/
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-tester-for-greengrass-ug.html
https://devices.amazonaws.com/
https://aws.amazon.com/contact-us

AWS IoT Greengrass Developer Guide, Version 1

Artifact or feature End of maintenance date

Serial Stream connector March 31, 2022

ServiceNow MetricBase Integration connector March 31, 2022

Raspberry Pi GPIO connector March 31, 2022

AWS IoT Greengrass Core software v1.10.x March 31, 2022

AWS IoT Greengrass Core software v1.x Docker
images

June 30, 2022

AWS IoT Greengrass Core software v1.11.x June 30, 2023

AWS IoT Greengrass Core software v1.11.x
Snap

December 31, 2023

End of maintenance for AWS IoT Greengrass Core software v1.x Docker
images

On June 30, 2022, AWS IoT Greengrass ended maintenance for AWS IoT Greengrass Core software
v1.x Docker images that are published to Amazon Elastic Container Registry (Amazon ECR)
and Docker Hub. You can continue to download these Docker images from Amazon ECR and
Docker Hub until June 30, 2023, which is 1 year after maintenance ended. However, the AWS IoT
Greengrass Core software v1.x Docker images no longer receive security patches or bug fixes after
maintenance ended on June 30, 2022. If you run a production workload that depends on these
Docker images, we recommend that you build your own Docker images using the Dockerfiles that
AWS IoT Greengrass provides. For more information, see AWS IoT Greengrass Docker software.

End of maintenance for AWS IoT Greengrass Core software v1.x APT
repository

On February 11, 2022, AWS IoT Greengrass ended maintenance for the option to install the AWS
IoT Greengrass Core software v1.x from an APT repository. The APT repository was removed on
this date, so you can no longer to use the APT repository to update the AWS IoT Greengrass Core
software or install the AWS IoT Greengrass Core software on new devices. On devices where you

End of maintenance for AWS IoT Greengrass Core software v1.x Docker images 165

AWS IoT Greengrass Developer Guide, Version 1

added the AWS IoT Greengrass repository, you must remove the repository from the sources list.
We recommend that you update the AWS IoT Greengrass Core software v1.x using tar files.

End of maintenance for AWS IoT Greengrass Core software v1.11.x
Snap

On December 31, 2023, AWS IoT Greengrass will end maintenance for the AWS IoT Greengrass
core software version 1.11.x Snap that is published on snapcraft.io . Devices currently running the
Snap will continue to work until further notice. However, the AWS IoT Greengrass core Snap will no
longer receive security patches or bug fixes after maintenance ends.

End of maintenance for AWS IoT Greengrass Core software v1.11.x Snap 166

https://snapcraft.io/aws-iot-greengrass

AWS IoT Greengrass Developer Guide, Version 1

Getting started with AWS IoT Greengrass

This Getting Started tutorial includes several modules designed to show you AWS IoT Greengrass
basics and help you get started using AWS IoT Greengrass. This tutorial covers fundamental
concepts, such as:

• Configuring AWS IoT Greengrass cores and groups.

• The deployment process for running AWS Lambda functions at the edge.

• Connecting AWS IoT devices, called client devices, to the AWS IoT Greengrass core.

• Creating subscriptions to allow MQTT communication between local Lambda functions, client
devices, and AWS IoT.

Choose how to get started with AWS IoT Greengrass

You can choose how to use this tutorial to set up your core device:

• Run Greengrass device setup on your core device, which takes you from installing AWS IoT
Greengrass dependencies to testing a Hello World Lambda function in minutes. This script
reproduces the steps in Module 1 through Module 3-1.

 - or -

• Walk through the steps in Module 1 through Module 3-1 to examine Greengrass requirements
and processes more closely. These steps set up your core device, create and configure a
Greengrass group that contains a Hello World Lambda function, and deploy your Greengrass
group. Typically, this takes an hour or two to complete.

Choose how to get started 167

AWS IoT Greengrass Developer Guide, Version 1

Quick Start

Greengrass device setup configures your core device and Greengrass resources. The script:

• Installs AWS IoT Greengrass dependencies.

• Downloads the root CA certificate and core device certificate and keys.

• Downloads, installs, and configures the AWS IoT Greengrass Core software on your device.

• Starts the Greengrass daemon process on the core device.

• Creates or updates the Greengrass service role, if needed.

• Creates a Greengrass group and Greengrass core.

• (Optional) Creates a Hello World Lambda function, subscription, and local logging
configuration.

• (Optional) Deploys the Greengrass group.

Modules 1 and 2

Module 1 and Module 2 describe how to set up your environment. (Or, use Greengrass device
setup to run these modules for you.)

• Configure your core device for Greengrass.

• Run the dependency checker script.

• Create a Greengrass group and Greengrass core.

• Download and install the latest AWS IoT Greengrass Core software from a tar.gz file.

• Start the Greengrass daemon process on the core.

Choose how to get started 168

AWS IoT Greengrass Developer Guide, Version 1

Note

AWS IoT Greengrass also provides other options for installing the AWS IoT Greengrass
Core software, including apt installations on supported Debian platforms. For more
information, see the section called “Install the AWS IoT Greengrass Core software”.

Modules 3-1 and 3-2

Module 3-1 and Module 3-2 describe how to use local Lambda functions. (Or, use Greengrass
device setup to run Module 3-1 for you.)

• Create Hello World Lambda functions in AWS Lambda.

• Add Lambda functions to your Greengrass group.

• Create subscriptions that allow MQTT communication between the Lambda functions and
AWS IoT.

• Configure local logging for Greengrass system components and Lambda functions.

• Deploy a Greengrass group that contains your Lambda functions and subscriptions.

• Send messages from local Lambda functions to AWS IoT.

• Invoke local Lambda functions from AWS IoT.

• Test on-demand and long-lived functions.

Modules 4 and 5

Module 4 shows how client devices connect to the core and communicate with each other.

Module 5 shows how client devices can use shadows to control state.

• Register and provision AWS IoT devices (represented by command-line terminals).

• Install the AWS IoT Device SDK for Python. This is used by client devices to discover the
Greengrass core.

• Add the client devices to your Greengrass group.

• Create subscriptions that allow MQTT communication.

• Deploy a Greengrass group that contains your client devices.

• Test device-to-device communication.

• Test shadow state updates.

Choose how to get started 169

AWS IoT Greengrass Developer Guide, Version 1

Module 6

Module 6 shows you how Lambda functions can access the AWS Cloud.

• Create a Greengrass group role that allows access to Amazon DynamoDB resources.

• Add a Lambda function to your Greengrass group. This function uses the AWS SDK for Python
to interact with DynamoDB.

• Create subscriptions that allow MQTT communication.

• Test the interaction with DynamoDB.

Module 7

Module 7 shows you how to configure a simulated hardware security module (HSM) for use with
a Greengrass core.

Important

This advanced module is provided only for experimentation and initial testing. It is not
for production use of any kind.

• Install and configure a software-based HSM and private key.

• Configure the Greengrass core to use hardware security.

• Test the hardware security configuration.

Requirements

To complete this tutorial, you need the following:

• A Mac, Windows PC, or UNIX-like system.

• An AWS account. If you don't have one, see the section called “Create an AWS account”.

• The use of an AWS Region that supports AWS IoT Greengrass. For the list of supported regions
for AWS IoT Greengrass, see AWS endpoints and quotas in the AWS General Reference.

Requirements 170

https://en.wikipedia.org/wiki/Amazon_Web_Services#Availability_and_topology
https://docs.aws.amazon.com/general/latest/gr/greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

Note

Make a note of your AWS Region and make sure that it is consistently used throughout
this tutorial. If you switch your AWS Region during the tutorial, you might experience
problems completing the steps.

• A Raspberry Pi 4 Model B, or Raspberry Pi 3 Model B/B+, with a 8 GB microSD card, or an
Amazon EC2 instance. Because AWS IoT Greengrass should ideally be used with physical
hardware, we recommend that you use a Raspberry Pi.

Note

Run the following command to get the model of your Raspberry Pi:

cat /proc/cpuinfo

Near the bottom of the listing, make a note of the value of the Revision attribute and
then consult the Which Pi have I got? table. For example, if the value of Revision is
a02082, the table shows the Pi is a 3 Model B.
Run the following command to determine the architecture of your Raspberry Pi:

uname -m

For this tutorial, the result should be greater than or equal to armv71.

• Basic familiarity with Python.

Although this tutorial is intended to run AWS IoT Greengrass on a Raspberry Pi, AWS IoT
Greengrass also supports other platforms. For more information, see the section called “Supported
platforms and requirements”.

Create an AWS account

If you don't have an AWS account, follow these steps to create and activate an AWS account:

Create an AWS account 171

https://elinux.org/RPi_HardwareHistory#Which_Pi_have_I_got.3F

AWS IoT Greengrass Developer Guide, Version 1

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Sign up for an AWS account 172

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html

AWS IoT Greengrass Developer Guide, Version 1

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Important

For this tutorial, we assume that your IAM user account has administrator access
permissions.

Quick start: Greengrass device setup

Greengrass device setup is a script that sets up your core device in minutes, so that you can start
using AWS IoT Greengrass. Use this script to:

1. Configure your device and installs the AWS IoT Greengrass Core software.

2. Configure your cloud-based resources.

3. Optionally deploy a Greengrass group with a Hello World Lambda function that sends
MQTT messages to AWS IoT from the AWS IoT Greengrass core. This sets up the Greengrass
environment shown in the following diagram.

Quick start: Greengrass device setup 173

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html

AWS IoT Greengrass Developer Guide, Version 1

Requirements

Greengrass device setup has the following requirements:

• Your core device must use a supported platform. The device must have an appropriate package
manager installed: apt, yum, or opkg.

• The Linux user who runs the script must have permissions to run as sudo.

• You must provide your AWS account credentials. For more information, see the section called
“Provide AWS account credentials”.

Note

Greengrass device setup installs the latest version of the AWS IoT Greengrass Core
software on the device. By installing the AWS IoT Greengrass Core software, you agree to
the Greengrass Core Software License Agreement.

Requirements 174

https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 1

Run Greengrass device setup

You can run Greengrass device setup in just a few steps. After you provide your AWS account
credentials, the script provisions your Greengrass core device and deploys a Greengrass group in
minutes. Run the following commands in a terminal window on the target device.

Note

These steps show you how to run the script in interactive mode, which prompts you to
enter or accept each input value. For information about how to run the script silently, see
the section called “Run Greengrass device setup in silent mode”.

1. Provide your credentials. In this procedure, we assume you provide temporary security
credentials as environment variables.

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
export AWS_SESSION_TOKEN=AQoDYXdzEJr1K...o5OytwEXAMPLE=

Note

If you're running Greengrass device setup on a Raspbian or OpenWrt platform, make a
copy of these commands. You must provide them again after you reboot the device.

2. Download and start the script. You can use wget or curl to download the script.

wget:

wget -q -O ./gg-device-setup-latest.sh https://d1onfpft10uf5o.cloudfront.net/
greengrass-device-setup/downloads/gg-device-setup-latest.sh && chmod +x ./
gg-device-setup-latest.sh && sudo -E ./gg-device-setup-latest.sh bootstrap-
greengrass-interactive

curl:

Run Greengrass device setup 175

AWS IoT Greengrass Developer Guide, Version 1

curl https://d1onfpft10uf5o.cloudfront.net/greengrass-device-setup/downloads/
gg-device-setup-latest.sh > gg-device-setup-latest.sh && chmod +x ./gg-device-
setup-latest.sh && sudo -E ./gg-device-setup-latest.sh bootstrap-greengrass-
interactive

3. Proceed through the command prompts for input values. You can press the Enter key to use
the default value or type a custom value and then press Enter.

The script writes status messages to the terminal that are similar to the following.

4. If your core device is running Raspbian or OpenWrt, reboot the device when prompted, provide
your credentials, and then restart the script.

a. When prompted to reboot the device, run one of the following commands.

For Raspbian platforms:

sudo reboot

For OpenWrt platforms:

reboot

b. After the device reboots, open the terminal and provide your credentials as environment
variables.

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE

Run Greengrass device setup 176

AWS IoT Greengrass Developer Guide, Version 1

export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
export AWS_SESSION_TOKEN=AQoDYXdzEJr1K...o5OytwEXAMPLE=

c. Restart the script.

sudo -E ./gg-device-setup-latest.sh bootstrap-greengrass-interactive

d. When prompted whether to use your input values from the previous session or start a new
installation, enter yes to reuse your input values.

Note

On platforms that require a reboot, your input values from the
previous session, excluding credentials, are temporarily stored in the
GreengrassDeviceSetup.config.info file.

When the setup is complete, the terminal displays a success status message that's similar to
the following.

5. Review the new Greengrass group that the script configures using the input values you
provide.

a. Sign in to the AWS Management Console on your computer and open the AWS IoT
console.

Run Greengrass device setup 177

https://console.aws.amazon.com/

AWS IoT Greengrass Developer Guide, Version 1

Note

Make sure that the AWS Region selected in the console is the same one that you
used to configure your Greengrass environment. By default, the Region is US West
(Oregon).

b. In the navigation pane, expand Greengrass devices, then choose Groups (V1) to locate
the newly created group.

6. If you included the Hello World Lambda function, Greengrass device setup deploys the
Greengrass group to your core device. To test the Lambda function, or for information about
how to remove the Lambda function from the group, continue to the section called “Verify the
Lambda function is running on the core device” in Module 3-1 of the Getting Started tutorial.

Note

Make sure that the AWS Region selected in the console is the same one that you used
to configure your Greengrass environment. By default, the Region is US West (Oregon).

If you didn't include the Hello World Lambda function, you can create your own Lambda
function or try other Greengrass features. For example, you can add the Docker application
deployment connector to your group and use it to deploy Docker containers to your core
device.

Troubleshooting issues

You can use the following information to troubleshoot issues with the AWS IoT Greengrass device
setup.

Error: Python (python3.7) not found. Attempting to install it...

Solution: You might see this error when working with an Amazon EC2 instance. This error occurs
when Python is not installed in the /usr/bin/python3.7 folder. To resolve this error, move
Python in the correct directory after installing it:

Troubleshooting issues 178

AWS IoT Greengrass Developer Guide, Version 1

sudo ln -s /usr/local/bin/python3.7 /usr/bin/python3.7

Additional troubleshooting

To troubleshoot additional issues with the AWS IoT Greengrass device setup, you can look for
debug information in the log files:

• For issues with the Greengrass device setup configuration, check the /tmp/greengrass-
device-setup-bootstrap-epoch-timestamp.log file.

• For issues with the Greengrass group or core environment setup, check the
GreengrassDeviceSetup-date-time.log file in the same directory as gg-device-setup-
latest.sh or in the location you specified.

For more troubleshooting help, see Troubleshooting or check the AWS IoT Greengrass tag on AWS
re:Post.

Greengrass device setup configuration options

You configure Greengrass device setup to access your AWS resources and set up your Greengrass
environment.

Provide AWS account credentials

Greengrass device setup uses your AWS account credentials to access your AWS resources. It
supports long-term credentials for an IAM user or temporary security credentials from an IAM role.

First, get your credentials.

• To use long-term credentials, provide the access key ID and secret access key for your IAM user.
For information about creating access keys for long-term credentials, see Managing access keys
for IAM users in the IAM User Guide.

• To use temporary security credentials (recommended), provide the access key ID, secret access
key, and session token from an assumed IAM role. For information about extracting temporary
security credentials from the AWS STS assume-role command, see Using temporary security
credentials with the AWS CLI in the IAM User Guide.

Greengrass device setup configuration options 179

https://repost.aws/tags/TA4ckIed1sR4enZBey29rKTg/aws-io-t-greengrass
https://repost.aws/tags/TA4ckIed1sR4enZBey29rKTg/aws-io-t-greengrass
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html#using-temp-creds-sdk-cli
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html#using-temp-creds-sdk-cli

AWS IoT Greengrass Developer Guide, Version 1

Note

For the purposes of this tutorial, we assume that the IAM user or IAM role has administrator
access permissions.

Then, provide your credentials to Greengrass device setup in one of two ways:

• As environment variables. Set the AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and
AWS_SESSION_TOKEN (if required) environment variables before you start the script, as shown in
step 1 of the section called “Run Greengrass device setup”.

• As input values. Enter your access key ID, secret access key, and session token (if required) values
directly in the terminal after you start the script.

Greengrass device setup doesn't save or store your credentials.

Provide input values

In interactive mode, Greengrass device setup prompts you for input values. You can press the
Enter key to use the default value or type a custom value and then press Enter. In silent mode, you
provide input values after you start the script.

Input values

AWS access key ID

The access key ID from the long-term or temporary security credentials. Specify this option as
an input value only if you don't provide your credentials as environment variables. For more
information, see the section called “Provide AWS account credentials”.

Option name for silent mode: --aws-access-key-id

AWS secret access key

The secret access key from the long-term or temporary security credentials. Specify this option
as an input value only if you don't provide your credentials as environment variables. For more
information, see the section called “Provide AWS account credentials”.

Greengrass device setup configuration options 180

AWS IoT Greengrass Developer Guide, Version 1

Option name for silent mode: --aws-secret-access-key

AWS session token

The session token from the temporary security credentials. Specify this option as an input value
only if you don't provide your credentials as environment variables. For more information, see
the section called “Provide AWS account credentials”.

Option name for silent mode: --aws-session-token

AWS Region

The AWS Region where you want to create the Greengrass group. For the list of supported AWS
Regions, see AWS IoT Greengrass in the Amazon Web Services General Reference.

Default value: us-west-2

Option name for silent mode: --region

Group name

The name for the Greengrass group.

Default value: GreengrassDeviceSetup_Group_guid

Option name for silent mode: --group-name

Core name

The name for the Greengrass core. The core is an AWS IoT device (thing) that runs the AWS IoT
Greengrass Core software. The core is added to the AWS IoT registry and the Greengrass group.
If you provide a name, it must be unique in the AWS account and AWS Region.

Default value: GreengrassDeviceSetup_Core_guid

Option name for silent mode: --core-name

AWS IoT Greengrass Core software installation path

The location in the device file system where you want to install the AWS IoT Greengrass Core
software.

Default value: /

Option name for silent mode: --ggc-root-path

Greengrass device setup configuration options 181

https://docs.aws.amazon.com/general/latest/gr/greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

Hello World Lambda function

Indicates whether to include a Hello World Lambda function in the Greengrass group. The
function publishes an MQTT message to the hello/world topic every five seconds.

The script creates and publishes this user-defined Lambda function in AWS Lambda and adds
it to your Greengrass group. The script also creates a subscription in the group that allows the
function to send MQTT messages to AWS IoT.

Note

This is a Python 3.7 Lambda function. If Python 3.7 isn't installed on the device and the
script is unable to install it, the script prints an error message in the terminal. To include
the Lambda function in the group, you must install Python 3.7 manually and restart the
script. To create the Greengrass group without the Lambda function, restart the script
and enter no when prompted to include the function.

Default value: no

Option name for silent mode: --hello-world-lambda - This option doesn't take a value.
Include it in your command if you want to create the function.

Deployment timeout

The number of seconds before Greengrass device setup stops checking the status of the
Greengrass group deployment. This is used only when the group includes the Hello World
Lambda function. Otherwise, the group is not deployed.

The deployment time depends on your network speed. For slow network speeds, you can
increase this value.

Default value: 180

Option name for silent mode: --deployment-timeout

Log path

The location of the log file that contains information about Greengrass group and core setup
operations. Use this log to troubleshoot deployment and other issues with the Greengrass
group and core setup.

Default value: ./

Greengrass device setup configuration options 182

AWS IoT Greengrass Developer Guide, Version 1

Option name for silent mode: --log-path

Verbosity

Indicates whether to print detailed log information in the terminal while the script runs. You
can use this information to troubleshoot device setup.

Default value: no

Option name for silent mode: --verbose - This option doesn't take a value. Include it in your
command if you want to print detailed log information.

Run Greengrass device setup in silent mode

You can run Greengrass device setup in silent mode so that the script doesn't prompt you for any
values. To run in silent mode, specify bootstrap-greengrass mode and your input values after
you start the script. You can omit input values if you want to use their defaults.

The procedure depends on whether you provide your AWS account credentials as environment
variables before you start the script, or as input values after you start the script.

Provide credentials as environment variables

1. Provide your credentials as environment variables. The following example exports temporary
credentials, which include the session token.

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
export AWS_SESSION_TOKEN=AQoDYXdzEJr1K...o5OytwEXAMPLE=

Note

If you're running Greengrass device setup on a Raspbian or OpenWrt platform, make a
copy of these commands. You must provide them again after you reboot the device.

2. Download and start the script. Provide input values as needed. For example:

• To use all default values:

Greengrass device setup configuration options 183

AWS IoT Greengrass Developer Guide, Version 1

wget -q -O ./gg-device-setup-latest.sh https://d1onfpft10uf5o.cloudfront.net/
greengrass-device-setup/downloads/gg-device-setup-latest.sh && chmod +x ./
gg-device-setup-latest.sh && sudo -E ./gg-device-setup-latest.sh bootstrap-
greengrass

• To specify custom values:

wget -q -O ./gg-device-setup-latest.sh https://d1onfpft10uf5o.cloudfront.net/
greengrass-device-setup/downloads/gg-device-setup-latest.sh && chmod +x ./
gg-device-setup-latest.sh && sudo -E ./gg-device-setup-latest.sh bootstrap-
greengrass
--region us-east-1
--group-name Custom_Group_Name
--core-name Custom_Core_Name
--ggc-root-path /custom/ggc/root/path
--deployment-timeout 300
--log-path /customized/log/path
--hello-world-lambda
--verbose

Note

To use curl to download the script, replace wget -q -O with curl in the command.

3. If your core device is running Raspbian or OpenWrt, reboot the device when prompted, provide
your credentials, and then restart the script.

a. When prompted to reboot the device, run one of the following commands.

For Raspbian platforms:

sudo reboot

For OpenWrt platforms:

reboot

Greengrass device setup configuration options 184

AWS IoT Greengrass Developer Guide, Version 1

b. After the device reboots, open the terminal and provide your credentials as environment
variables.

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
export AWS_SESSION_TOKEN=AQoDYXdzEJr1K...o5OytwEXAMPLE=

c. Restart the script.

sudo -E ./gg-device-setup-latest.sh bootstrap-greengrass

d. When prompted whether to use your input values from the previous session or start a new
installation, enter yes to reuse your input values.

Note

On platforms that require a reboot, your input values from the
previous session, excluding credentials, are temporarily stored in the
GreengrassDeviceSetup.config.info file.

When the setup is complete, the terminal displays a success status message that's similar to
the following.

4. If you included the Hello World Lambda function, Greengrass device setup deploys the
Greengrass group to your core device. To test the Lambda function, or for information about

Greengrass device setup configuration options 185

AWS IoT Greengrass Developer Guide, Version 1

how to remove the Lambda function from the group, continue to the section called “Verify the
Lambda function is running on the core device” in Module 3-1 of the Getting Started tutorial.

Note

Make sure that the AWS Region selected in the console is the same one that you used
to configure your Greengrass environment. By default, the Region is US West (Oregon).

If you didn't include the Hello World Lambda function, you can create your own Lambda
function or try other Greengrass features. For example, you can add the Docker application
deployment connector to your group and use it to deploy Docker containers to your core
device.

Provide credentials as input values

1. Download and start the script. Provide your credentials and any other input values that you
want to specify. The following examples show how to provide temporary credentials, which
include the session token.

• To use all default values:

wget -q -O ./gg-device-setup-latest.sh https://d1onfpft10uf5o.cloudfront.net/
greengrass-device-setup/downloads/gg-device-setup-latest.sh && chmod +x ./
gg-device-setup-latest.sh && sudo -E ./gg-device-setup-latest.sh bootstrap-
greengrass
--aws-access-key-id AKIAIOSFODNN7EXAMPLE
--aws-secret-access-key wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
--aws-session-token AQoDYXdzEJr1K...o5OytwEXAMPLE=

• To specify custom values:

wget -q -O ./gg-device-setup-latest.sh https://d1onfpft10uf5o.cloudfront.net/
greengrass-device-setup/downloads/gg-device-setup-latest.sh && chmod +x ./
gg-device-setup-latest.sh && sudo -E ./gg-device-setup-latest.sh bootstrap-
greengrass
--aws-access-key-id AKIAIOSFODNN7EXAMPLE
--aws-secret-access-key wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Greengrass device setup configuration options 186

AWS IoT Greengrass Developer Guide, Version 1

--aws-session-token AQoDYXdzEJr1K...o5OytwEXAMPLE=
--region us-east-1
--group-name Custom_Group_Name
--core-name Custom_Core_Name
--ggc-root-path /custom/ggc/root/path
--deployment-timeout 300
--log-path /customized/log/path
--hello-world-lambda
--verbose

Note

If you're running Greengrass device setup on a Raspbian or OpenWrt platform, make a
copy of your credentials. You must provide them again after you reboot the device.
To use curl to download the script, replace wget -q -O with curl in the command.

2. If your core device is running Raspbian or OpenWrt, reboot the device when prompted, provide
your credentials, and then restart the script.

a. When prompted to reboot the device, run one of the following commands.

For Raspbian platforms:

sudo reboot

For OpenWrt platforms:

reboot

b. Restart the script. You must include your credentials in the command, but not the other
input values. For example:

sudo -E ./gg-device-setup-latest.sh bootstrap-greengrass
--aws-access-key-id AKIAIOSFODNN7EXAMPLE
--aws-secret-access-key wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
--aws-session-token AQoDYXdzEJr1K...o5OytwEXAMPLE=

Greengrass device setup configuration options 187

AWS IoT Greengrass Developer Guide, Version 1

c. When prompted whether to use your input values from the previous session or start a new
installation, enter yes to reuse your input values.

Note

On platforms that require a reboot, your input values from the
previous session, excluding credentials, are temporarily stored in the
GreengrassDeviceSetup.config.info file.

When the setup is complete, the terminal displays a success status message that's similar to
the following.

3. If you included the Hello World Lambda function, Greengrass device setup deploys the
Greengrass group to your core device. To test the Lambda function, or for information about
how to remove the Lambda function from the group, continue to the section called “Verify the
Lambda function is running on the core device” in Module 3-1 of the Getting Started tutorial.

Note

Make sure that the AWS Region selected in the console is the same one that you used
to configure your Greengrass environment. By default, the Region is US West (Oregon).

Greengrass device setup configuration options 188

AWS IoT Greengrass Developer Guide, Version 1

If you didn't include the Hello World Lambda function, you can create your own Lambda
function or try other Greengrass features. For example, you can add the Docker application
deployment connector to your group and use it to deploy Docker containers to your core
device.

Module 1: Environment setup for Greengrass

This module shows you how to get an out-of-the-box Raspberry Pi, Amazon EC2 instance, or other
device ready to be used by AWS IoT Greengrass as your AWS IoT Greengrass core device.

Tip

Or, to use a script that sets up your core device for you, see the section called “Quick start:
Greengrass device setup”.

This module should take less than 30 minutes to complete.

Before you begin, read the requirements for this tutorial. Then, follow the setup instructions in one
of the following topics. Choose only the topic that applies to your core device type.

Topics

• Setting up a Raspberry Pi

• Setting up an Amazon EC2 instance

• Setting up other devices

Note

To learn how to use AWS IoT Greengrass running in a prebuilt Docker container, see the
section called “Run AWS IoT Greengrass in a Docker container”.

Module 1: Environment setup for Greengrass 189

AWS IoT Greengrass Developer Guide, Version 1

Setting up a Raspberry Pi

Follow the steps in this topic to set up a Raspberry Pi to use as an AWS IoT Greengrass core.

Tip

AWS IoT Greengrass also provides other options for installing the AWS IoT Greengrass Core
software. For example, you can use Greengrass device setup to configure your environment
and install the latest version of the AWS IoT Greengrass Core software. Or, on supported
Debian platforms, you can use the APT package manager to install or upgrade the AWS IoT
Greengrass Core software. For more information, see the section called “Install the AWS IoT
Greengrass Core software”.

If you are setting up a Raspberry Pi for the first time, you must follow all of these steps. Otherwise,
you can skip to step 9. However, we recommend that you re-image your Raspberry Pi with the
operating system as recommended in step 2.

1. Download and install an SD card formatter such as SD Memory Card Formatter. Insert the SD
card into your computer. Start the program and choose the drive where you have inserted your
SD card. You can perform a quick format of the SD card.

2. Download the Raspbian Buster operating system as a zip file.

3. Using an SD card-writing tool (such as Etcher), follow the tool's instructions to flash the
downloaded zip file onto the SD card. Because the operating system image is large, this step
might take some time. Eject your SD card from your computer, and insert the microSD card
into your Raspberry Pi.

4. For the first boot, we recommend that you connect the Raspberry Pi to a monitor (through
HDMI), a keyboard, and a mouse. Next, connect your Pi to a micro USB power source and the
Raspbian operating system should start up.

5. You might want to configure the Pi's keyboard layout before you continue. To do so, choose
the Raspberry icon in the upper-right, choose Preferences and then choose Mouse and
Keyboard Settings. Next, on the Keyboard tab, choose Keyboard Layout, and then choose an
appropriate keyboard variant.

6. Next, connect your Raspberry Pi to the internet through a Wi-Fi network or an Ethernet cable.

Setting up a Raspberry Pi 190

https://www.sdcard.org/downloads/formatter/
https://downloads.raspberrypi.org/raspbian/images/raspbian-2020-02-14/
https://etcher.io/
https://www.raspberrypi.org/documentation/configuration/wireless/desktop.md

AWS IoT Greengrass Developer Guide, Version 1

Note

Connect your Raspberry Pi to the same network that your computer is connected to,
and be sure that both your computer and Raspberry Pi have internet access before
you continue. If you're in a work environment or behind a firewall, you might need to
connect your Pi and your computer to the guest network to get both devices on the
same network. However, this approach might disconnect your computer from local
network resources, such as your intranet. One solution is to connect the Pi to the guest
Wi-Fi network and to connect your computer to the guest Wi-Fi network and your local
network through an Ethernet cable. In this configuration, your computer should be
able to connect to the Raspberry Pi through the guest Wi-Fi network and your local
network resources through the Ethernet cable.

7. You must set up SSH on your Pi to remotely connect to it. On your Raspberry Pi, open a
terminal window and run the following command:

sudo raspi-config

You should see the following:

Scroll down and choose Interfacing Options and then choose P2 SSH. When prompted,
choose Yes. (Use the Tab key followed by Enter). SSH should now be enabled. Choose OK.
Use the Tab key to choose Finish and then press Enter. If the Raspberry Pi doesn't reboot
automatically, run the following command:

Setting up a Raspberry Pi 191

https://en.wikipedia.org/wiki/Secure_Shell
https://www.raspberrypi.org/documentation/usage/terminal/

AWS IoT Greengrass Developer Guide, Version 1

sudo reboot

8. On your Raspberry Pi, run the following command in the terminal:

hostname -I

This returns the IP address of your Raspberry Pi.

Note

For the following, if you receive an ECDSA key fingerprint message (Are you sure
you want to continue connecting (yes/no)?), enter yes. The default
password for the Raspberry Pi is raspberry.

If you are using macOS, open a terminal window and enter the following:

ssh pi@IP-address

IP-address is the IP address of your Raspberry Pi that you obtained by using the hostname
-I command.

If you are using Windows, you need to install and configure PuTTY. Expand Connection,
choose Data, and make sure that Prompt is selected:

Setting up a Raspberry Pi 192

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

AWS IoT Greengrass Developer Guide, Version 1

Next, choose Session, enter the IP address of the Raspberry Pi, and then choose Open using
default settings.

Setting up a Raspberry Pi 193

AWS IoT Greengrass Developer Guide, Version 1

If a PuTTY security alert is displayed, choose Yes.

The default Raspberry Pi login and password are pi and raspberry, respectively.

Setting up a Raspberry Pi 194

AWS IoT Greengrass Developer Guide, Version 1

Note

If your computer is connected to a remote network using VPN, you might have
difficulty connecting from the computer to the Raspberry Pi using SSH.

9. You are now ready to set up the Raspberry Pi for AWS IoT Greengrass. First, run the following
commands from a local Raspberry Pi terminal window or an SSH terminal window:

Tip

AWS IoT Greengrass also provides other options for installing the AWS IoT Greengrass
Core software. For example, you can use Greengrass device setup to configure your
environment and install the latest version of the AWS IoT Greengrass Core software.
Or, on supported Debian platforms, you can use the APT package manager to install or
upgrade the AWS IoT Greengrass Core software. For more information, see the section
called “Install the AWS IoT Greengrass Core software”.

sudo adduser --system ggc_user

Setting up a Raspberry Pi 195

AWS IoT Greengrass Developer Guide, Version 1

sudo addgroup --system ggc_group

10. To improve security on the Pi device, enable hardlink and softlink (symlink) protection on the
operating system at startup.

a. Navigate to the 98-rpi.conf file.

cd /etc/sysctl.d
ls

Note

If you don't see the 98-rpi.conf file, follow the instructions in the
README.sysctl file.

b. Use a text editor (such as Leafpad, GNU nano, or vi) to add the following two lines to the
end of the file. You might need to use the sudo command to edit as root (for example,
sudo nano 98-rpi.conf).

fs.protected_hardlinks = 1
fs.protected_symlinks = 1

c. Reboot the Pi.

sudo reboot

After about a minute, connect to the Pi using SSH and then run the following command to
confirm the change:

sudo sysctl -a 2> /dev/null | grep fs.protected

You should see fs.protected_hardlinks = 1 and fs.protected_symlinks = 1.

11. Edit your command line boot file to enable and mount memory cgroups. This allows AWS IoT
Greengrass to set the memory limit for Lambda functions. Cgroups are also required to run
AWS IoT Greengrass in the default containerization mode.

a. Navigate to your boot directory.

Setting up a Raspberry Pi 196

AWS IoT Greengrass Developer Guide, Version 1

cd /boot/

b. Use a text editor to open cmdline.txt. Append the following to the end of the existing
line, not as a new line. You might need to use the sudo command to edit as root (for
example, sudo nano cmdline.txt).

cgroup_enable=memory cgroup_memory=1

c. Now reboot the Pi.

sudo reboot

Your Raspberry Pi should now be ready for AWS IoT Greengrass.

12. Optional. Install the Java 8 runtime, which is required by stream manager. This tutorial doesn't
use stream manager, but it does use the Default Group creation workflow that enables stream
manager by default. Use the following commands to install the Java 8 runtime on the core
device, or disable stream manager before you deploy your group. Instructions for disabling
stream manager are provided in Module 3.

sudo apt install openjdk-8-jdk

13. To make sure that you have all required dependencies, download and run the Greengrass
dependency checker from the AWS IoT Greengrass Samples repository on GitHub. These
commands unzip and run the dependency checker script in the Downloads directory.

Note

The dependency checker might fail if you are running version 5.4.51 of the Raspbian
kernel. This version does not mount memory cgroups correctly. This might cause
Lambda functions running in container mode to fail.
For more information on updating your kernel, see the Cgroups not loaded after
kernel upgrade in the Raspberry Pi forums.

cd /home/pi/Downloads
mkdir greengrass-dependency-checker-GGCv1.11.x

Setting up a Raspberry Pi 197

https://github.com/aws-samples/aws-greengrass-samples
https://www.raspberrypi.org/forums/viewtopic.php?t=280656
https://www.raspberrypi.org/forums/viewtopic.php?t=280656

AWS IoT Greengrass Developer Guide, Version 1

cd greengrass-dependency-checker-GGCv1.11.x
wget https://github.com/aws-samples/aws-greengrass-samples/raw/master/greengrass-
dependency-checker-GGCv1.11.x.zip
unzip greengrass-dependency-checker-GGCv1.11.x.zip
cd greengrass-dependency-checker-GGCv1.11.x
sudo modprobe configs
sudo ./check_ggc_dependencies | more

Where more appears, press the Spacebar key to display another screen of text.

Important

This tutorial requires the Python 3.7 runtime to run local Lambda functions.
When stream manager is enabled, it also requires the Java 8 runtime. If the
check_ggc_dependencies script produces warnings about these missing runtime
prerequisites, make sure to install them before you continue. You can ignore warnings
about other missing optional runtime prerequisites.

For information about the modprobe command, run man modprobe in the terminal.

Your Raspberry Pi configuration is complete. Continue to the section called “Module 2: Installing
the AWS IoT Greengrass Core software”.

Setting up an Amazon EC2 instance

Follow the steps in this topic to set up an Amazon EC2 instance to use as your AWS IoT Greengrass
core.

Tip

Or, to use a script that sets up your environment and installs the AWS IoT Greengrass Core
software for you, see the section called “Quick start: Greengrass device setup”.

Although you can complete this tutorial using an Amazon EC2 instance, AWS IoT Greengrass should
ideally be used with physical hardware. We recommend that you set up a Raspberry Pi instead of
using an Amazon EC2 instance when possible. If you're using a Raspberry Pi, you do not need to
follow the steps in this topic.

Setting up an Amazon EC2 instance 198

AWS IoT Greengrass Developer Guide, Version 1

1. Sign in to the AWS Management Console and launch an Amazon EC2 instance using an
Amazon Linux AMI. For information about Amazon EC2 instances, see the Amazon EC2 Getting
Started Guide.

2. After your Amazon EC2 instance is running, enable port 8883 to allow incoming MQTT
communications so that other devices can connect with the AWS IoT Greengrass core.

a. In the navigation pane of the Amazon EC2 console, choose Security Groups.

b. Select the security group for the instance that you just launched, and then choose the
Inbound rules tab.

c. Choose Edit inbound rules.

To enable port 8883, you add a custom TCP rule to the security group. For more
information, see Adding rules to a security group in the Amazon EC2 User Guide for Linux
Instances.

Setting up an Amazon EC2 instance 199

https://console.aws.amazon.com/
https://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/
https://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html#adding-security-group-rule

AWS IoT Greengrass Developer Guide, Version 1

d. On the Edit inbound rules page, choose Add rule, enter the following settings, and then
choose Save.

• For Type, choose Custom TCP Rule.

• For Port range, enter 8883.

• For Source, choose Anywhere.

• For Description, enter MQTT Communications.

3. Connect to your Amazon EC2 instance.

a. In the navigation pane, choose Instances, choose your instance, and then choose Connect.

b. Follow the instructions on the Connect To Your Instance page to connect to your instance
by using SSH and your private key file.

You can use PuTTY for Windows or Terminal for macOS. For more information, see Connect to
your Linux instance in the Amazon EC2 User Guide for Linux Instances.

You are now ready to set up your Amazon EC2 instance for AWS IoT Greengrass.

4. After you are connected to your Amazon EC2 instance, create the ggc_user and ggc_group
accounts:

sudo adduser --system ggc_user
sudo groupadd --system ggc_group

Note

If the adduser command isn't available on your system, use the following command.

sudo useradd --system ggc_user

5. To improve security, make sure that hardlink and softlink (symlink) protections are enabled on
the operating system of the Amazon EC2 instance at startup.

Setting up an Amazon EC2 instance 200

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstancesLinux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html

AWS IoT Greengrass Developer Guide, Version 1

Note

The steps for enabling hardlink and softlink protection vary by operating system.
Consult the documentation for your distribution.

a. Run the following command to check if hardlink and softlink protections are enabled:

sudo sysctl -a | grep fs.protected

If hardlinks and softlinks are set to 1, your protections are enabled correctly. Proceed to
step 6.

Note

Softlinks are represented by fs.protected_symlinks.

b. If hardlinks and softlinks are not set to 1, enable these protections. Navigate to your
system configuration file.

cd /etc/sysctl.d
ls

c. Using your favorite text editor (Leafpad, GNU nano, or vi), add the following two
lines to the end of the system configuration file. On Amazon Linux 1, this is the 00-
defaults.conf file. On Amazon Linux 2, this is the 99-amazon.conf file. You might
need to change permissions (using the chmod command) to write to the file, or use the
sudo command to edit as root (for example, sudo nano 00-defaults.conf).

fs.protected_hardlinks = 1
fs.protected_symlinks = 1

d. Reboot the Amazon EC2 instance.

sudo reboot

After a few minutes, connect to your instance using SSH and then run the following
command to confirm the change.

Setting up an Amazon EC2 instance 201

AWS IoT Greengrass Developer Guide, Version 1

sudo sysctl -a | grep fs.protected

You should see that hardlinks and softlinks are set to 1.

6. Extract and run the following script to mount Linux control groups (cgroups). This allows AWS
IoT Greengrass to set the memory limit for Lambda functions. Cgroups are also required to run
AWS IoT Greengrass in the default containerization mode.

curl https://raw.githubusercontent.com/tianon/cgroupfs-
mount/951c38ee8d802330454bdede20d85ec1c0f8d312/cgroupfs-mount > cgroupfs-mount.sh
chmod +x cgroupfs-mount.sh
sudo bash ./cgroupfs-mount.sh

Your Amazon EC2 instance should now be ready for AWS IoT Greengrass.

7. Optional. Install the Java 8 runtime, which is required by stream manager. This tutorial doesn't
use stream manager, but it does use the Default Group creation workflow that enables stream
manager by default. Use the following commands to install the Java 8 runtime on the core
device, or disable stream manager before you deploy your group. Instructions for disabling
stream manager are provided in Module 3.

• For Debian-based distributions:

sudo apt install openjdk-8-jdk

• For Red Hat-based distributions:

sudo yum install java-1.8.0-openjdk

8. To make sure that you have all required dependencies, download and run the Greengrass
dependency checker from the AWS IoT Greengrass Samples repository on GitHub. These
commands download, unzip, and run the dependency checker script in your Amazon EC2
instance.

mkdir greengrass-dependency-checker-GGCv1.11.x
cd greengrass-dependency-checker-GGCv1.11.x
wget https://github.com/aws-samples/aws-greengrass-samples/raw/master/greengrass-
dependency-checker-GGCv1.11.x.zip
unzip greengrass-dependency-checker-GGCv1.11.x.zip
cd greengrass-dependency-checker-GGCv1.11.x

Setting up an Amazon EC2 instance 202

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://github.com/aws-samples/aws-greengrass-samples

AWS IoT Greengrass Developer Guide, Version 1

sudo ./check_ggc_dependencies | more

Important

This tutorial requires the Python 3.7 runtime to run local Lambda functions.
When stream manager is enabled, it also requires the Java 8 runtime. If the
check_ggc_dependencies script produces warnings about these missing runtime
prerequisites, make sure to install them before you continue. You can ignore warnings
about other missing optional runtime prerequisites.

Your Amazon EC2 instance configuration is complete. Continue to the section called “Module 2:
Installing the AWS IoT Greengrass Core software”.

Setting up other devices

Follow the steps in this topic to set up a device (other than a Raspberry Pi) to use as your AWS IoT
Greengrass core.

Tip

Or, to use a script that sets up your environment and installs the AWS IoT Greengrass Core
software for you, see the section called “Quick start: Greengrass device setup”.

If you're new to AWS IoT Greengrass, we recommend that you use a Raspberry Pi or an Amazon
EC2 instance as your core device, and follow the setup steps appropriate for your device.

If you plan to build a custom Linux-based system using the Yocto Project, you can use the AWS
IoT Greengrass Bitbake Recipe from the meta-aws project. This recipe also helps you develop a
software platform that supports AWS edge software for embedded applications. The Bitbake build
installs, configures, and automatically runs the AWS IoT Greengrass Core software on your device.

Yocto Project

An open source collaboration project that helps you build custom Linux-based systems for
embedded applications regardless hardware architecture. For more information, see the Yocto
Project.

Setting up other devices 203

https://www.yoctoproject.org/
https://www.yoctoproject.org/

AWS IoT Greengrass Developer Guide, Version 1

meta-aws

An AWS managed project that provides Yocto recipes. You can use the recipes to develop AWS
edge sofware in Linux-based systems built with OpenEmbedded and Yocto Project. For more
information about this community supported capability, see the meta-awsproject on GitHub.

meta-aws-demos

An AWS managed project that contains demonstrations for the meta-aws project. For more
examples about the integration process, see the meta-aws-demos project on GitHub.

To use a different device or supported platform, follow the steps in this topic.

1. If your core device is an NVIDIA Jetson device, you must first flash the firmware with the
JetPack 4.3 installer. If you're configuring a different device, skip to step 2.

Note

The JetPack installer version that you use is based on your target CUDA Toolkit version.
The following instructions use JetPack 4.3 and CUDA Toolkit 10.0. For information
about using the versions appropriate for your device, see How to Install Jetpack in the
NVIDIA documentation.

a. On a physical desktop that is running Ubuntu 16.04 or later, flash the firmware with the
JetPack 4.3 installer, as described in Download and Install JetPack (4.3) in the NVIDIA
documentation.

Follow the instructions in the installer to install all the packages and dependencies on the
Jetson board, which must be connected to the desktop with a Micro-B cable.

b. Reboot your board in normal mode, and connect a display to the board.

Note

When you use SSH to connect to the Jetson board, use the default user name
(nvidia) and the default password (nvidia).

2. Run the following commands to create user ggc_user and group ggc_group. The commands
you run differ, depending on the distribution installed on your core device.

Setting up other devices 204

https://www.openembedded.org/wiki/Main_Page
https://github.com/aws/meta-aws
https://github.com/aws-samples/meta-aws-demos
https://docs.nvidia.com/jetson/jetpack/install-jetpack/index.html
https://docs.nvidia.com/jetson/archives/jetpack-archived/jetpack-33/index.html#jetpack/3.3/install.htm%3FTocPath%3D_____3

AWS IoT Greengrass Developer Guide, Version 1

• If your core device is running OpenWrt, run the following commands:

opkg install shadow-useradd
opkg install shadow-groupadd
useradd --system ggc_user
groupadd --system ggc_group

• Otherwise, run the following commands:

sudo adduser --system ggc_user
sudo addgroup --system ggc_group

Note

If the addgroup command isn't available on your system, use the following
command.

sudo groupadd --system ggc_group

3. Optional. Install the Java 8 runtime, which is required by stream manager. This tutorial doesn't
use stream manager, but it does use the Default Group creation workflow that enables stream
manager by default. Use the following commands to install the Java 8 runtime on the core
device, or disable stream manager before you deploy your group. Instructions for disabling
stream manager are provided in Module 3.

• For Debian-based or Ubuntu-based distributions:

sudo apt install openjdk-8-jdk

• For Red Hat-based distributions:

sudo yum install java-1.8.0-openjdk

4. To make sure that you have all required dependencies, download and run the Greengrass
dependency checker from the AWS IoT Greengrass Samples repository on GitHub. These
commands unzip and run the dependency checker script.

mkdir greengrass-dependency-checker-GGCv1.11.x

Setting up other devices 205

https://github.com/aws-samples/aws-greengrass-samples

AWS IoT Greengrass Developer Guide, Version 1

cd greengrass-dependency-checker-GGCv1.11.x
wget https://github.com/aws-samples/aws-greengrass-samples/raw/master/greengrass-
dependency-checker-GGCv1.11.x.zip
unzip greengrass-dependency-checker-GGCv1.11.x.zip
cd greengrass-dependency-checker-GGCv1.11.x
sudo ./check_ggc_dependencies | more

Note

The check_ggc_dependencies script runs on AWS IoT Greengrass supported
platforms and requires specific Linux system commands. For more information, see the
dependency checker's Readme.

5. Install all required dependencies on your device, as indicated by the dependency checker
output. For missing kernel-level dependencies, you might have to recompile your kernel. For
mounting Linux control groups (cgroups), you can run the cgroupfs-mount script. This allows
AWS IoT Greengrass to set the memory limit for Lambda functions. Cgroups are also required
to run AWS IoT Greengrass in the default containerization mode.

If no errors appear in the output, AWS IoT Greengrass should be able to run successfully on
your device.

Important

This tutorial requires the Python 3.7 runtime to run local Lambda functions.
When stream manager is enabled, it also requires the Java 8 runtime. If the
check_ggc_dependencies script produces warnings about these missing runtime
prerequisites, make sure to install them before you continue. You can ignore warnings
about other missing optional runtime prerequisites.

For the list of AWS IoT Greengrass requirements and dependencies, see the section called
“Supported platforms and requirements”.

Module 2: Installing the AWS IoT Greengrass Core software

This module shows you how to install the AWS IoT Greengrass Core software on your chosen
device. In this module, you first create a Greengrass group and core. Then, you download,

Module 2: Installing the AWS IoT Greengrass Core software 206

https://github.com/aws-samples/aws-greengrass-samples/blob/master/greengrass-dependency-checker-GGCv1.11.x/README.md
https://raw.githubusercontent.com/tianon/cgroupfs-mount/master/cgroupfs-mount

AWS IoT Greengrass Developer Guide, Version 1

configure, and start the software on your core device. For more information about AWS IoT
Greengrass Core software functionality, see the section called “Configure the AWS IoT Greengrass
core”.

Before you begin, make sure that you have completed the setup steps in Module 1 for your chosen
device.

Tip

AWS IoT Greengrass also provides other options for installing the AWS IoT Greengrass Core
software. For example, you can use Greengrass device setup to configure your environment
and install the latest version of the AWS IoT Greengrass Core software. Or, on supported
Debian platforms, you can use the APT package manager to install or upgrade the AWS IoT
Greengrass Core software. For more information, see the section called “Install the AWS IoT
Greengrass Core software”.

This module should take less than 30 minutes to complete.

Topics

• Provision an AWS IoT thing to use as a Greengrass core

• Create an AWS IoT Greengrass group for the core

• Install and run AWS IoT Greengrass on the core device

Provision an AWS IoT thing to use as a Greengrass core

Greengrass cores are devices that run the AWS IoT Greengrass Core software to manage local IoT
processes. To set up a Greengrass core, you create an AWS IoT thing, which represents a device
or logical entity that connects to AWS IoT. When you register a device as an AWS IoT thing, that
device can use a digital certificate and keys that allow it to access AWS IoT. You use an AWS IoT
policy to allow the device to communicate with the AWS IoT and AWS IoT Greengrass services.

In this section, you register your device as an AWS IoT thing to use it as a Greengrass core.

To create an AWS IoT thing

1. Navigate to the AWS IoT console.

Provision an AWS IoT thing to use as a Greengrass core 207

https://docs.aws.amazon.com/iot/latest/developerguide/iot-policies.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policies.html
https://console.aws.amazon.com/iot

AWS IoT Greengrass Developer Guide, Version 1

2. Under Manage, expand All devices, and then choose Things.

3. On the Things page, choose Create things.

4. On the Create things page, choose Create single thing, and then choose Next.

5. On the Specify thing properties page, do the following:

a. For Thing name, enter a name that represents your device, such as
MyGreengrassV1Core.

b. Choose Next.

6. On the Configure device certificate page, choose Next.

7. On the Attach policies to certificate page, do one of the following:

• Select an existing policy that grants permissions that cores require, and then choose
Create thing.

A modal opens where you can download the certificates and keys that the device uses to
connect to the AWS Cloud.

• Create an attach a new policy that grants core device permissions. Do the following:

a. Choose Create policy.

The Create policy page opens in a new tab.

b. On the Create policy page, do the following:

i. For Policy name, enter a name that describes the policy, such as
GreengrassV1CorePolicy.

ii. On the Policy statements tab, under Policy document, choose JSON.

iii. Enter the following policy document. This policy allows the core to communicate
with the AWS IoT Core service, interact with device shadows, and communicate
with the AWS IoT Greengrass service. For information about how to restrict this
policy's access based on your use case, see Minimal AWS IoT policy for the AWS
IoT Greengrass core device.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

Provision an AWS IoT thing to use as a Greengrass core 208

AWS IoT Greengrass Developer Guide, Version 1

 "iot:Publish",
 "iot:Subscribe",
 "iot:Connect",
 "iot:Receive"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:GetThingShadow",
 "iot:UpdateThingShadow",
 "iot:DeleteThingShadow"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "greengrass:*"
],
 "Resource": [
 "*"
]
 }
]
}

iv. Choose Create to create the policy.

c. Return to the browser tab with the Attach policies to certificate page open. Do the
following:

i. In the Policies list, select the policy that you created, such as
GreengrassV1CorePolicy.

If you don't see the policy, choose the refresh button.

ii. Choose Create thing.

Provision an AWS IoT thing to use as a Greengrass core 209

AWS IoT Greengrass Developer Guide, Version 1

A modal opens where you can download the certificates and keys that the core
uses to connect to AWS IoT.

8. Return to the browser tab with the Attach policies to certificate page open. Do the following:

a. In the Policies list, select the policy that you created, such as GreengrassV1CorePolicy.

If you don't see the policy, choose the refresh button.

b. Choose Create thing.

A modal opens where you can download the certificates and keys that the core uses to
connect to AWS IoT.

9. In the Download certificates and keys modal, download the device's certificates.

Important

Before you choose Done, download the security resources.

Do the following:

a. For Device certificate, choose Download to download the device certificate.

b. For Public key file, choose Download to download the public key for the certificate.

c. For Private key file, choose Download to download the private key file for the certificate.

d. Review Server Authentication in the AWS IoT Developer Guide and choose the appropriate
root CA certificate. We recommend that you use Amazon Trust Services (ATS) endpoints
and ATS root CA certificates. Under Root CA certificates, choose Download for a root CA
certificate.

e. Choose Done.

Make a note of the certificate ID that's common in the file names for the device certificate and
keys. You need it later.

Provision an AWS IoT thing to use as a Greengrass core 210

https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html

AWS IoT Greengrass Developer Guide, Version 1

Create an AWS IoT Greengrass group for the core

AWS IoT Greengrass groups contain settings and other information about its components, such
as client devices, Lambda functions, and connectors. A group defines the configuration for a core,
including how its components can interact with each other.

In this section, you create a group for your core.

Tip

For an example that uses the AWS IoT Greengrass API to create and deploy a group, see the
gg_group_setup repository on GitHub.

To create a group for the core

1. Navigate to the AWS IoT console.

2. Under Manage, expand Greengrass devices, and choose Groups (V1).

Note

If you don't see the Greengrass devices menu, change to an AWS Region that supports
AWS IoT Greengrass V1. For the list of supported Regions, see AWS IoT Greengrass
V1 endpoints and quotas in the AWS General Reference. You must create the AWS IoT
thing for your core in a Region where AWS IoT Greengrass V1 is available.

3. On the Greengrass groups page, choose Create group.

4. On the Create Greengrass group page, do the following:

a. For Greengrass group name, enter a name that describes the group, such as
MyGreengrassGroup.

b. For Greengrass core, choose the AWS IoT thing that you created earlier, such as
MyGreengrassV1Core.

The console automatically selects the thing's device certificate for you.

c. Choose Create group.

Create an Greengrass group 211

https://github.com/awslabs/aws-greengrass-group-setup
https://console.aws.amazon.com/iot
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

Install and run AWS IoT Greengrass on the core device

Note

This tutorial provides instructions for you to run the AWS IoT Greengrass Core software on
a Raspberry Pi, but you can use any supported device.

In this section, you configure, install, and run the AWS IoT Greengrass Core software on your core
device.

To install and run AWS IoT Greengrass

1. From the AWS IoT Greengrass Core software section in this guide, download the AWS IoT
Greengrass Core software installation package. Choose the package that best fits the CPU
architecture, distribution, and OS of your core device.

• For Raspberry Pi, download the package for the Armv7l architecture and Linux operating
system.

• For an Amazon EC2 instance, download the package for the x86_64 architecture and Linux
operating system.

• For NVIDIA Jetson TX2, download the package for the Armv8 (AArch64) architecture and
Linux operating system.

• For Intel Atom, download the package for the x86_64 architecture and Linux operating
system.

2. In previous steps, you downloaded five files to your computer:

• greengrass-OS-architecture-1.11.6.tar.gz – This compressed file contains the
AWS IoT Greengrass Core software that runs on the core device.

• certificateId-certificate.pem.crt – The device certificate file.

• certificateId-public.pem.key – The device certificate's public key file.

• certificateId-private.pem.key – The device certificate's private key file.

• AmazonRootCA1.pem – The Amazon root certificate authority (CA) file.

In this step, you transfer these files from your computer to your core device. Do the following:

Install and run AWS IoT Greengrass on the core device 212

AWS IoT Greengrass Developer Guide, Version 1

a. If you don't know the IP address of your Greengrass core device, open a terminal on the
core device and run the following command.

Note

This command might not return the correct IP address for some devices. Consult
the documentation for your device to retrieve your device IP address.

hostname -I

b. Transfer these files from your computer to your core device. The file transfer steps vary
depending on the operating system of your computer. Choose your operating system for
steps that show how to transfer files to your Raspberry Pi device.

Note

For a Raspberry Pi, the default user name is pi and the default password is
raspberry.
For an NVIDIA Jetson TX2, the default user name is nvidia and the default
password is nvidia.

Windows

To transfer the compressed files from your computer to a Raspberry Pi core device, use
a tool such as WinSCP or the PuTTY pscp command. To use the pscp command, open a
Command Prompt window on your computer and run the following:

cd path-to-downloaded-files
pscp -pw Pi-password greengrass-OS-architecture-1.11.6.tar.gz pi@IP-
address:/home/pi
pscp -pw Pi-password certificateId-certificate.pem.crt pi@IP-address:/home/
pi
pscp -pw Pi-password certificateId-public.pem.key pi@IP-address:/home/pi
pscp -pw Pi-password certificateId-private.pem.key pi@IP-address:/home/pi
pscp -pw Pi-password AmazonRootCA1.pem pi@IP-address:/home/pi

Install and run AWS IoT Greengrass on the core device 213

https://winscp.net/eng/download.php
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

AWS IoT Greengrass Developer Guide, Version 1

Note

The version number in this command must match the version of your AWS IoT
Greengrass Core software package.

macOS

To transfer the compressed files from your Mac to a Raspberry Pi core device, open a
Terminal window on your computer and run the following commands. The path-to-
downloaded-files is typically ~/Downloads.

Note

You might be prompted for two passwords. If so, the first password is for the
Mac's sudo command and the second is the password for the Raspberry Pi.

cd path-to-downloaded-files
scp greengrass-OS-architecture-1.11.6.tar.gz pi@IP-address:/home/pi
scp certificateId-certificate.pem.crt pi@IP-address:/home/pi
scp certificateId-public.pem.key pi@IP-address:/home/pi
scp certificateId-private.pem.key pi@IP-address:/home/pi
scp AmazonRootCA1.pem pi@IP-address:/home/pi

Note

The version number in this command must match the version of your AWS IoT
Greengrass Core software package.

UNIX-like system

To transfer the compressed files from your computer to a Raspberry Pi core device,
open a terminal window on your computer and run the following commands:

cd path-to-downloaded-files
scp greengrass-OS-architecture-1.11.6.tar.gz pi@IP-address:/home/pi

Install and run AWS IoT Greengrass on the core device 214

AWS IoT Greengrass Developer Guide, Version 1

scp certificateId-certificate.pem.crt pi@IP-address:/home/pi
scp certificateId-public.pem.key pi@IP-address:/home/pi
scp certificateId-private.pem.key pi@IP-address:/home/pi
scp AmazonRootCA1.pem pi@IP-address:/home/pi

Note

The version number in this command must match the version of your AWS IoT
Greengrass Core software package.

Raspberry Pi web browser

If you used the Raspberry Pi's web browser to download the compressed files, the files
should be in the Pi's ~/Downloads folder, such as /home/pi/Downloads. Otherwise,
the compressed files should be in the Pi's ~ folder, such as /home/pi.

3. On the Greengrass core device, open a terminal, and navigate to the folder that contains the
AWS IoT Greengrass Core software and certificates. Replace path-to-transferred-files
with the path where you transferred the files on the core device. For example, on a Raspberry
Pi, run cd /home/pi.

cd path-to-transferred-files

4. Unpack the AWS IoT Greengrass Core software on the core device. Run the following command
to unpack the software archive that you transferred to the core device. This command uses the
-C / argument to create the /greengrass folder in the root folder of the core device.

sudo tar -xzvf greengrass-OS-architecture-1.11.6.tar.gz -C /

Note

The version number in this command must match the version of your AWS IoT
Greengrass Core software package.

5. Move the certificates and keys to the AWS IoT Greengrass Core software folder. Run the
following commands to create a folder for certificates and move the certificates and keys to
it. Replace path-to-transferred-files with the path where you transferred the files

Install and run AWS IoT Greengrass on the core device 215

AWS IoT Greengrass Developer Guide, Version 1

on the core device, and replace certificateId with the certificate ID in the file names. For
example, on a Raspberry Pi, replace path-to-transferred-files with /home/pi

sudo mv path-to-transferred-files/certificateId-certificate.pem.crt /greengrass/
certs
sudo mv path-to-transferred-files/certificateId-public.pem.key /greengrass/certs
sudo mv path-to-transferred-files/certificateId-private.pem.key /greengrass/certs
sudo mv path-to-transferred-files/AmazonRootCA1.pem /greengrass/certs

6. The AWS IoT Greengrass Core software uses a configuration file that specifies parameters
for the software. This configuration file specifies the file paths for certificate files and the
AWS Cloud endpoints to use. In this step, you create the AWS IoT Greengrass Core software
configuration file for your core. Do the following:

a. Get the Amazon Resource Name (ARN) for your core's AWS IoT thing. Do the following:

i. In the AWS IoT console, under Manage, under Greengrass devices, choose Groups
(V1).

ii. On the Greengrass groups page, choose the group that you created earlier.

iii. Under Overview, choose Greengrass core.

iv. On the core details page, copy the AWS IoT thing ARN, and save it to use in the AWS
IoT Greengrass Core configuration file.

b. Get the AWS IoT device data endpoint for your AWS account in the current Region. Devices
use this endpoint to connect to AWS as AWS IoT things. Do the following:

i. In the AWS IoT console, choose Settings.

ii. Under Device data endpoint, copy the Endpoint, and save it to use in the AWS IoT
Greengrass Core configuration file.

c. Create the AWS IoT Greengrass Core software configuration file. For example, you can run
the following command to use GNU nano to create the file.

sudo nano /greengrass/config/config.json

Replace the contents of the file with the following JSON document.

{
 "coreThing" : {
 "caPath": "AmazonRootCA1.pem",

Install and run AWS IoT Greengrass on the core device 216

https://console.aws.amazon.com/iot
https://console.aws.amazon.com/iot

AWS IoT Greengrass Developer Guide, Version 1

 "certPath": "certificateId-certificate.pem.crt",
 "keyPath": "certificateId-private.pem.key",
 "thingArn": "arn:aws:iot:region:account-id:thing/MyGreengrassV1Core",
 "iotHost": "device-data-prefix-ats.iot.region.amazonaws.com",
 "ggHost": "greengrass-ats.iot.region.amazonaws.com",
 "keepAlive": 600
 },
 "runtime": {
 "cgroup": {
 "useSystemd": "yes"
 }
 },
 "managedRespawn": false,
 "crypto": {
 "caPath": "file:///greengrass/certs/AmazonRootCA1.pem",
 "principals": {
 "SecretsManager": {
 "privateKeyPath": "file:///greengrass/certs/certificateId-
private.pem.key"
 },
 "IoTCertificate": {
 "privateKeyPath": "file:///greengrass/certs/certificateId-
private.pem.key",
 "certificatePath": "file:///greengrass/certs/certificateId-
certificate.pem.crt"
 }
 }
 }
}

Then, do the following:

• If you downloaded a different Amazon root CA certificate than Amazon Root CA 1,
replace each instance of AmazonRootCA1.pem with the name of the Amazon root CA
file.

• Replace each instance of certificateId with the certificate ID in the name of the
certificate and key files.

• Replace arn:aws:iot:region:account-id:thing/MyGreengrassV1Core with
the ARN of your core's thing that you saved earlier.

• Replace MyGreengrassV1core with the name of your core's thing.

Install and run AWS IoT Greengrass on the core device 217

AWS IoT Greengrass Developer Guide, Version 1

• Replace device-data-prefix-ats.iot.region.amazonaws.com with the AWS
IoT device data endpoint that you saved earlier.

• Replace region with your AWS Region.

For more information about the configuration options that you can specify in this
configuration file, see AWS IoT Greengrass core configuration file.

7. Make sure that your core device is connected to the internet. Then, start AWS IoT Greengrass
on your core device.

cd /greengrass/ggc/core/
sudo ./greengrassd start

You should see a Greengrass successfully started message. Make a note of the PID.

Note

To set up your core device to start AWS IoT Greengrass on system boot, see the section
called “Start Greengrass on system boot”.

You can run the following command to confirm that the AWS IoT Greengrass Core software
(Greengrass daemon) is functioning. Replace PID-number with your PID:

ps aux | grep PID-number

You should see an entry for the PID with a path to the running Greengrass daemon (for
example, /greengrass/ggc/packages/1.11.6/bin/daemon). If you run into issues
starting AWS IoT Greengrass, see Troubleshooting.

Module 3 (part 1): Lambda functions on AWS IoT Greengrass

This module shows you how to create and deploy a Lambda function that sends MQTT messages
from your AWS IoT Greengrass core device. The module describes Lambda function configurations,
subscriptions used to allow MQTT messaging, and deployments to a core device.

Module 3 (part 1): Lambda functions on AWS IoT Greengrass 218

AWS IoT Greengrass Developer Guide, Version 1

Module 3 (Part 2) covers the differences between on-demand and long-lived Lambda functions
running on the AWS IoT Greengrass core.

Before you begin, make sure that you have completed Module 1 and Module 2 and have a running
AWS IoT Greengrass core device.

Tip

Or, to use a script that sets up your core device for you, see the section called “Quick start:
Greengrass device setup”. The script can also create and deploy the Lambda function used
in this module.

This module should take about 30 minutes to complete.

Topics

• Create and package a Lambda function

• Configure the Lambda function for AWS IoT Greengrass

• Deploy cloud configurations to a Greengrass core device

• Verify the Lambda function is running on the core device

Create and package a Lambda function

The example Python Lambda function in this module uses the AWS IoT Greengrass Core SDK for
Python to publish MQTT messages.

In this step, you:

• Download the AWS IoT Greengrass Core SDK for Python to your computer (not the AWS IoT
Greengrass core device).

• Create a Lambda function deployment package that contains the function code and
dependencies.

• Use the Lambda console to create a Lambda function and upload the deployment package.

• Publish a version of the Lambda function and create an alias that points to the version.

To complete this module, Python 3.7 must be installed on your core device.

Create and package a Lambda function 219

AWS IoT Greengrass Developer Guide, Version 1

1. From the AWS IoT Greengrass Core SDK downloads page, download the AWS IoT Greengrass
Core SDK for Python to your computer.

2. Unzip the downloaded package to get the Lambda function code and the SDK.

The Lambda function in this module uses:

• The greengrassHelloWorld.py file in examples\HelloWorld. This is your Lambda
function code. Every five seconds, the function publishes one of two possible messages to
the hello/world topic.

• The greengrasssdk folder. This is the SDK.

3. Copy the greengrasssdk folder into the HelloWorld folder that contains
greengrassHelloWorld.py.

4. To create the Lambda function deployment package, save greengrassHelloWorld.py
and the greengrasssdk folder to a compressed zip file named
hello_world_python_lambda.zip. The py file and greengrasssdk folder must be in the
root of the directory.

On UNIX-like systems (including the Mac terminal), you can use the following command to
package the file and folder:

zip -r hello_world_python_lambda.zip greengrasssdk greengrassHelloWorld.py

Note

Depending on your distribution, you might need to install zip first (for example,
by running sudo apt-get install zip). The installation command for your
distribution might be different.

Now you're ready to create your Lambda function and upload the deployment package.

5. Open the Lambda console and choose Create function.

Create and package a Lambda function 220

AWS IoT Greengrass Developer Guide, Version 1

6. Choose Author from scratch.

7. Name your function Greengrass_HelloWorld, and set the remaining fields as follows:

• For Runtime, choose Python 3.7.

• For Permissions, keep the default setting. This creates an execution role that grants basic
Lambda permissions. This role isn't used by AWS IoT Greengrass.

Choose Create function.

8. Upload your Lambda function deployment package:

a. On the Code tab, under Code source, choose Upload from. From the dropdown, choose
.zip file.

b. Choose Upload, and then choose your hello_world_python_lambda.zip deployment
package. Then, choose Save.

c. On the Code tab for the function, under Runtime settings, choose Edit, and then enter
the following values.

• For Runtime, choose Python 3.7.

• For Handler, enter greengrassHelloWorld.function_handler

Create and package a Lambda function 221

AWS IoT Greengrass Developer Guide, Version 1

d. Choose Save.

Note

The Test button on the AWS Lambda console doesn't work with this function. The
AWS IoT Greengrass Core SDK doesn't contain modules that are required to run
your Greengrass Lambda functions independently in the AWS Lambda console.
These modules (for example, greengrass_common) are supplied to the functions
after they are deployed to your Greengrass core.

9.
Publish the Lambda function:

a. From the Actions menu at the top of the page, choose Publish new version.

b. For Version description, enter First version, and then choose Publish.

10.
Create an alias for the Lambda function version:

Create and package a Lambda function 222

https://docs.aws.amazon.com/lambda/latest/dg/configuration-aliases.html
https://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS IoT Greengrass Developer Guide, Version 1

Note

Greengrass groups can reference a Lambda function by alias (recommended) or by
version. Using an alias makes it easier to manage code updates because you don't
have to change your subscription table or group definition when the function code is
updated. Instead, you just point the alias to the new function version.

a. From the Actions menu at the top of the page, choose Create alias.

b. Name the alias GG_HelloWorld, set the version to 1 (which corresponds to the version
that you just published), and then choose Save.

Note

AWS IoT Greengrass doesn't support Lambda aliases for $LATEST versions.

Create and package a Lambda function 223

AWS IoT Greengrass Developer Guide, Version 1

Configure the Lambda function for AWS IoT Greengrass

You are now ready to configure your Lambda function for AWS IoT Greengrass.

In this step, you:

• Use the AWS IoT console to add the Lambda function to your Greengrass group.

• Configure group-specific settings for the Lambda function.

• Add a subscription to the group that allows the Lambda function to publish MQTT messages to
AWS IoT.

• Configure local log settings for the group.

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Under Greengrass groups, choose the group that you created in Module 2.

Configure the Lambda function for AWS IoT Greengrass 224

AWS IoT Greengrass Developer Guide, Version 1

3. On the group configuration page, choose the Lambda functions tab, and then scroll down to
the My Lambda functions section and choose Add Lambda function.

4. Select the name of the Lambda function you created in the previous step
(Greengrass_HelloWorld, not the alias name).

5. For the version, choose Alias: GG_HelloWorld.

6. In the Lambda function configuration section, make the following changes:

• Set the System user and group to Use group default.

• Set the Lambda function containerization to Use group default.

• Set Timeout to 25 seconds. This Lambda function sleeps for 5 seconds before each
invocation.

• For Pinned, choose True.

Note

A long-lived (or pinned) Lambda function starts automatically after AWS IoT Greengrass
starts and keeps running in its own container. This is in contrast to an on-demand
Lambda function, which starts when invoked and stops when there are no tasks left to
run. For more information, see the section called “Lifecycle configuration”.

7. Choose Add Lambda function to save your changes. For information about Lambda function
properties, see the section called “Controlling Greengrass Lambda function execution”.

Next, create a subscription that allows the Lambda function to send MQTT messages to AWS
IoT Core.

A Greengrass Lambda function can exchange MQTT messages with:

• Devices in the Greengrass group.

• Connectors in the group.

• Other Lambda functions in the group.

• AWS IoT Core.

• The local shadow service. For more information, see the section called “Module 5:
Interacting with device shadows”.

Configure the Lambda function for AWS IoT Greengrass 225

http://mqtt.org/

AWS IoT Greengrass Developer Guide, Version 1

The group uses subscriptions to control how these entities can communicate with each other.
Subscriptions provide predictable interactions and a layer of security.

A subscription consists of a source, target, and topic. The source is the originator of the
message. The target is the destination of the message. The topic allows you to filter the data
that is sent from the source to the target. The source or target can be a Greengrass device,
Lambda function, connector, device shadow, or AWS IoT Core.

Note

A subscription is directed in the sense that messages flow in a specific direction: from
the source to the target. To allow two-way communication, you must set up two
subscriptions.

Note

Currently, the subscription topic filter does not allow more than a single + character in
a topic. The topic filter only allows a single # character at the end of a topic.

The Greengrass_HelloWorld Lambda function sends messages only to the hello/world
topic in AWS IoT Core, so you only need to create one subscription from the Lambda function
to AWS IoT Core. You create this in the next step.

8. On the group configuration page, choose the Subscriptions tab, and then choose Add
subscription.

For an example that shows you how to create a subscription using the AWS CLI, see create-
subscription-definition in the AWS CLI Command Reference.

9. In the Source type, choose Lambda function and, for the Source, choose
Greengrass_HelloWorld.

10. For the Target type, choose Service and, for the Target select IoT Cloud.

11. For Topic filter, enter hello/world, and then choose Create subscription.

Configure the Lambda function for AWS IoT Greengrass 226

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/greengrass/create-subscription-definition.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/greengrass/create-subscription-definition.html

AWS IoT Greengrass Developer Guide, Version 1

12. Configure the group's logging settings. For this tutorial, you configure AWS IoT Greengrass
system components and user-defined Lambda functions to write logs to the file system of the
core device.

a. On the group configuration page, choose the Logs tab.

b. In the Local logs configuration section, choose Edit.

c. On the Edit local logs configuration dialog box, keep the default values for both log
levels and storage sizes, and then choose Save.

You can use logs to troubleshoot any issues you might encounter when running this tutorial.
When troubleshooting issues, you can temporarily change the logging level to Debug. For
more information, see the section called “Accessing file system logs”.

13. If the Java 8 runtime isn't installed on your core device, you must install it or disable stream
manager.

Note

This tutorial doesn't use stream manager, but it does use the Default Group creation
workflow that enables stream manager by default. If stream manager is enabled but
Java 8 isn't installed, the group deployment fails. For more information, see the stream
manager requirements.

To disable stream manager:

a. On the group settings page, choose the Lambda functions tab.

b. Under the System Lambda functions section, select Stream manager and choose Edit.

c. Choose Disable, and then choose Save.

Deploy cloud configurations to a Greengrass core device

1. Make sure that your Greengrass core device is connected to the internet. For example, try
successfully navigating to a webpage.

2. Make sure that the Greengrass daemon is running on your core device. In your core device
terminal, run the following commands to check whether the daemon is running and start it, if
needed.

Deploy cloud configurations to a core device 227

AWS IoT Greengrass Developer Guide, Version 1

a. To check whether the daemon is running:

ps aux | grep -E 'greengrass.*daemon'

If the output contains a root entry for /greengrass/ggc/packages/1.11.6/bin/
daemon, then the daemon is running.

b. To start the daemon:

cd /greengrass/ggc/core/
sudo ./greengrassd start

Now you're ready to deploy the Lambda function and subscription configurations to your
Greengrass core device.

3. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

4. Under Greengrass groups, choose the group that you created in Module 2.

5. On the group configuration page, choose Deploy.

6. On the Lambda functions tab, in the System Lambda functions section, choose IP detector.

7. Choose Edit and select Automatically detect and override MQTT broker endpoints. This
enables devices to automatically acquire connectivity information for the core, such as
IP address, DNS, and port number. Automatic detection is recommended, but AWS IoT
Greengrass also supports manually specified endpoints. You're only prompted for the
discovery method the first time that the group is deployed.

The first deployment might take a few minutes. When the deployment is complete, you should see
Successfully completed in the Status column on the Deployments page:

Note

The deployment status is also displayed below the group's name on the page header.

For troubleshooting help, see Troubleshooting.

Deploy cloud configurations to a core device 228

AWS IoT Greengrass Developer Guide, Version 1

Verify the Lambda function is running on the core device

1. From the navigation pane of the AWS IoT console, under Test, choose MQTT test client.

2. Choose the Subscribe to topic tab.

3. Enter hello/world into the Topic filter and expand the Additional configuration.

4. Enter the information listed in each of the following fields:

• For Quality of Service, choose 0.

• For MQTT payload display, choose Display payloads as strings.

5. Choose Subscribe.

Assuming the Lambda function is running on your device, it publishes messages similar to the
following to the hello/world topic:

Although the Lambda function continues to send MQTT messages to the hello/world topic,
don't stop the AWS IoT Greengrass daemon. The remaining modules are written with the
assumption that it's running.

You can delete the function and subscription from the group:

• On the groups configuration page, under the Lambda functions tab, select the Lambda function
you want to remove and choose Remove.

• On the groups configuration page, under the Subscriptions tab, choose the subscription, and
then choose Delete.

Verify the Lambda function is running on the core device 229

https://console.aws.amazon.com/iot/

AWS IoT Greengrass Developer Guide, Version 1

The function and subscription are removed from the core during the next group deployment.

Module 3 (part 2): Lambda functions on AWS IoT Greengrass

This module explores the differences between on-demand and long-lived Lambda functions
running on the AWS IoT Greengrass core.

Before you begin, run the Greengrass Device Setup script or make sure you have completed Module
1, Module 2, and Module 3 (Part 1).

This module should take about 30 minutes to complete.

Topics

• Create and package the Lambda function

• Configure long-lived Lambda functions for AWS IoT Greengrass

• Test long-lived Lambda functions

• Test on-demand Lambda functions

Create and package the Lambda function

In this step, you:

• Create a Lambda function deployment package that contains the function code and
dependencies.

• Use the Lambda console to create a Lambda function and upload the deployment package.

• Publish a version of the Lambda function and create an alias that points to the version.

1. On your computer, go to the AWS IoT Greengrass Core SDK for Python that you downloaded
and extracted in the section called “Create and package a Lambda function” in Module 3-1.

The Lambda function in this module uses:

• The greengrassHelloWorldCounter.py file in examples\HelloWorldCounter. This is
your Lambda function code.

• The greengrasssdk folder. This is the SDK.

Module 3 (part 2): Lambda functions on AWS IoT Greengrass 230

AWS IoT Greengrass Developer Guide, Version 1

2. Create a Lambda function deployment package:

a. Copy the greengrasssdk folder into the HelloWorldCounter folder that contains
greengrassHelloWorldCounter.py.

b. Save greengrassHelloWorldCounter.py and the greengrasssdk folder to a zip file
named hello_world_counter_python_lambda.zip. The py file and greengrasssdk
folder must be in the root of the directory.

On UNIX-like systems (including the Mac terminal) that have zip installed, you can use
the following command to package the file and folder:

zip -r hello_world_counter_python_lambda.zip greengrasssdk
 greengrassHelloWorldCounter.py

Now you're ready to create your Lambda function and upload the deployment package.

3. Open the Lambda console and choose Create function.

4. Choose Author from scratch.

5. Name your function Greengrass_HelloWorld_Counter, and set the remaining fields as
follows:

• For Runtime, choose Python 3.7.

• For Permissions, keep the default setting. This creates an execution role that grants basic
Lambda permissions. This role isn't used by AWS IoT Greengrass. Or, you can reuse the role
that you created in Module 3-1.

Choose Create function.

Create and package the Lambda function 231

AWS IoT Greengrass Developer Guide, Version 1

6. Upload your Lambda function deployment package.

a. On the Code tab, under Code source, choose Upload from. From the dropdown, choose
.zip file.

b. Choose Upload, and then choose your hello_world_counter_python_lambda.zip
deployment package. Then, choose Save.

c. On the Code tab for the function, under Runtime settings, choose Edit, and then enter
the following values.

• For Runtime, choose Python 3.7.

Create and package the Lambda function 232

AWS IoT Greengrass Developer Guide, Version 1

• For Handler, enter greengrassHelloWorldCounter.function_handler

d. Choose Save.

Note

The Test button on the AWS Lambda console doesn't work with this function. The
AWS IoT Greengrass Core SDK doesn't contain modules that are required to run
your Greengrass Lambda functions independently in the AWS Lambda console.
These modules (for example, greengrass_common) are supplied to the functions
after they are deployed to your Greengrass core.

7. Publish the first version of the function.

a. From the Actions menu at the top of the page, choose Publish new version. For Version
description, enter First version.

b. Choose Publish.

8. Create an alias for the function version.

a. From the Actions menu at the top of the page, choose Create alias.

b. For Name, enter GG_HW_Counter.

c. For Version, choose 1.

d. Choose Save.

Create and package the Lambda function 233

AWS IoT Greengrass Developer Guide, Version 1

Aliases create a single entity for your Lambda function that Greengrass devices can subscribe
to. This way, you don't have to update subscriptions with new Lambda function version
numbers every time the function is modified.

Configure long-lived Lambda functions for AWS IoT Greengrass

You are now ready to configure your Lambda function for AWS IoT Greengrass.

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Under Greengrass groups, choose the group that you created in Module 2.

3. On the group configuration page, choose the Lambda functions tab, and then under My
Lambda functions, choose Add.

4. For Lambda function, choose Greengrass_HelloWorld_Counter.

5. For Lambda function version, choose the alias to the version that you published.

6. For Timeout (seconds), enter 25. This Lambda function sleeps for 20 seconds before each
invocation.

Configure long-lived Lambda functions for AWS IoT Greengrass 234

AWS IoT Greengrass Developer Guide, Version 1

7. For Pinned, choose True.

8. Keep the default values for all other fields, and choose Add Lambda function.

Test long-lived Lambda functions

A long-lived Lambda function starts automatically when the AWS IoT Greengrass core starts and
runs in a single container (or sandbox). Any variables and preprocessing logic defined outside of the
function handler are retained for every invocation of the function handler. Multiple invocations of
the function handler are queued until earlier invocations have been executed.

The greengrassHelloWorldCounter.py code used in this module defines a my_counter
variable outside of the function handler.

Note

You can view the code in the AWS Lambda console or in the AWS IoT Greengrass Core SDK
for Python on GitHub.

In this step, you create subscriptions that allow the Lambda function and AWS IoT to exchange
MQTT messages. Then you deploy the group and test the function.

1. On the group configuration page, choose Subscriptions, and then choose Add.

2. Under Source type, choose Lambda function, and then choose
Greengrass_HelloWorld_Counter.

3. Under Target type, choose Service, choose IoT Cloud.

4. For Topic filter, enter hello/world/counter.

5. Choose Create subscription.

This single subscription goes in one direction only: from the
Greengrass_HelloWorld_Counter Lambda function to AWS IoT. To invoke (or trigger) this
Lambda function from the cloud, you must create a subscription in the opposite direction.

6. Follow steps 1 - 5 to add another subscription that uses the following values. This subscription
allows the Lambda function to receive messages from AWS IoT. You use this subscription when
you send a message from the AWS IoT console that invokes the function.

• For the source, choose Service, and then choose IoT Cloud.

Test long-lived Lambda functions 235

https://github.com/aws/aws-greengrass-core-sdk-python/blob/master/examples/HelloWorldCounter/greengrassHelloWorldCounter.py
https://github.com/aws/aws-greengrass-core-sdk-python/blob/master/examples/HelloWorldCounter/greengrassHelloWorldCounter.py

AWS IoT Greengrass Developer Guide, Version 1

• For the target, choose Lambda function, and then choose
Greengrass_HelloWorld_Counter.

• For the topic filter, enter hello/world/counter/trigger.

The /trigger extension is used in this topic filter because you created two subscriptions and
don't want them to interfere with each other.

7. Make sure that the Greengrass daemon is running, as described in Deploy cloud configurations
to a core device.

8. On the group configuration page, choose Deploy.

9. After your deployment is complete, return to the AWS IoT console home page and choose
Test.

10. Configure the following fields:

• For Subscription topic, enter hello/world/counter.

• For Quality of Service, choose 0.

• For MQTT payload display, choose Display payloads as strings.

11. Choose Subscribe.

Unlike Part 1 of this module, you shouldn't see any messages after you subscribe to hello/
world/counter. This is because the greengrassHelloWorldCounter.py code that
publishes to the hello/world/counter topic is inside the function handler, which runs only
when the function is invoked.

In this module, you configured the Greengrass_HelloWorld_Counter Lambda function
to be invoked when it receives an MQTT message on the hello/world/counter/trigger
topic.

The Greengrass_HelloWorld_Counter to IoT Cloud subscription allows the function
to send messages to AWS IoT on the hello/world/counter topic. The IoT Cloud to
Greengrass_HelloWorld_Counter subscription allows AWS IoT to send messages to the
function on the hello/world/counter/trigger topic.

12. To test the long-lived lifecycle, invoke the Lambda function by publishing a message to the
hello/world/counter/trigger topic. You can use the default message.

Test long-lived Lambda functions 236

AWS IoT Greengrass Developer Guide, Version 1

Note

The Greengrass_HelloWorld_Counter function ignores the content of received
messages. It just runs the code in function_handler, which sends a message to the
hello/world/counter topic. You can review this code from the AWS IoT Greengrass
Core SDK for Python on GitHub.

Every time a message is published to the hello/world/counter/trigger topic, the
my_counter variable is incremented. This invocation count is shown in the messages sent
from the Lambda function. Because the function handler includes a 20-second sleep cycle
(time.sleep(20)), repeatedly triggering the handler queues up responses from the AWS IoT
Greengrass core.

Test long-lived Lambda functions 237

https://github.com/aws/aws-greengrass-core-sdk-python/blob/master/examples/HelloWorldCounter/greengrassHelloWorldCounter.py
https://github.com/aws/aws-greengrass-core-sdk-python/blob/master/examples/HelloWorldCounter/greengrassHelloWorldCounter.py

AWS IoT Greengrass Developer Guide, Version 1

Test on-demand Lambda functions

An on-demand Lambda function is similar in functionality to a cloud-based AWS Lambda function.
Multiple invocations of an on-demand Lambda function can run in parallel. An invocation of
the Lambda function creates a separate container to process invocations or reuses an existing
container, if resources permit. Any variables or preprocessing that are defined outside of the
function handler are not retained when containers are created.

1. On the group configuration page, choose the Lambda functions tab.

2. Under My Lambda functions, choose the Greengrass_HelloWorld_Counter Lambda function.

3. On the Greengrass_HelloWorld_Counter details page, choose Edit.

4. For Pinned, choose False, and then choose Save.

Test on-demand Lambda functions 238

AWS IoT Greengrass Developer Guide, Version 1

5. On the group configuration page, choose Deploy.

6. After your deployment is complete, return to the AWS IoT console home page and choose
Test.

7. Configure the following fields:

• For Subscription topic, enter hello/world/counter.

• For Quality of Service, choose 0.

• For MQTT payload display, choose Display payloads as strings.

8. Choose Subscribe.

Note

You should not see any messages after you subscribe.

9. To test the on-demand lifecycle, invoke the function by publishing a message to the hello/
world/counter/trigger topic. You can use the default message.

Test on-demand Lambda functions 239

AWS IoT Greengrass Developer Guide, Version 1

a. Choose Publish three times quickly, within five seconds of each press of the button.

Each publish invokes the function handler and creates a container for each invocation.
The invocation count is not incremented for the three times you triggered the function
because each on-demand Lambda function has its own container/sandbox.

Test on-demand Lambda functions 240

AWS IoT Greengrass Developer Guide, Version 1

b. After approximately 30 seconds, choose Publish to topic. The invocation count should be
incremented to 2. This shows that a container created from an earlier invocation is being
reused, and that preprocessing variables outside of the function handler were stored.

Test on-demand Lambda functions 241

AWS IoT Greengrass Developer Guide, Version 1

You should now understand the two types of Lambda functions that can run on the AWS IoT
Greengrass core. The next module, Module 4, shows you how local IoT devices can interact in an
AWS IoT Greengrass group.

Module 4: Interacting with client devices in an AWS IoT
Greengrass group

This module shows you how local IoT devices, called client devices or devices, can connect to and
communicate with an AWS IoT Greengrass core device. Client devices that connect to an AWS
IoT Greengrass core are part of an AWS IoT Greengrass group and can participate in the AWS IoT
Greengrass programming paradigm. In this module, one client device sends a Hello World message
to another client device in the Greengrass group.

Module 4: Interacting with client devices in an AWS IoT Greengrass group 242

AWS IoT Greengrass Developer Guide, Version 1

Before you begin, run the Greengrass device setup script or complete Module 1 and Module 2. This
module creates two simulated client devices. You do not need other components or devices.

This module should take less than 30 minutes to complete.

Topics

• Create client devices in an AWS IoT Greengrass group

• Configure subscriptions

• Install the AWS IoT Device SDK for Python

• Test communications

Module 4: Interacting with client devices in an AWS IoT Greengrass group 243

AWS IoT Greengrass Developer Guide, Version 1

Create client devices in an AWS IoT Greengrass group

In this step, you add two client devices to your Greengrass group. This process includes registering
the devices as AWS IoT things and configuring certificates and keys to allow them to connect to
AWS IoT Greengrass.

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose the target group.

3. On the group configuration page, choose Client devices, and then choose Associate.

4. In the Associate a client device with this group modal, choose Create new AWS IoT thing.

The Create things page opens in a new tab.

5. On the Create things page, choose Create single thing, and then choose Next.

6. On the Specify thing properties page, register this client device as HelloWorld_Publisher,
and then choose Next.

7. On the Configure device certificate page, choose Next.

8. On the Attach policies to certificate page, do one of the following:

• Select an existing policy that grants permissions that client devices require, and then
choose Create thing.

A modal opens where you can download the certificates and keys that the device uses to
connect to the AWS Cloud and the core.

• Create and attach a new policy that grants client device permissions. Do the following:

a. Choose Create policy.

The Create policy page opens in a new tab.

b. On the Create policy page, do the following:

i. For Policy name, enter a name that describes the policy, such as
GreengrassV1ClientDevicePolicy.

ii. On the Policy statements tab, under Policy document, choose JSON.

iii. Enter the following policy document. This policy allows the client device to
discover Greengrass cores and communicate on all MQTT topics. For information

Create client devices in an AWS IoT Greengrass group 244

AWS IoT Greengrass Developer Guide, Version 1

about how to restrict this policy's access, see Device authentication and
authorization for AWS IoT Greengrass.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Subscribe",
 "iot:Connect",
 "iot:Receive"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "greengrass:*"
],
 "Resource": [
 "*"
]
 }
]
}

iv. Choose Create to create the policy.

c. Return to the browser tab with the Attach policies to certificate page open. Do the
following:

i. In the Policies list, select the policy that you created, such as
GreengrassV1ClientDevicePolicy.

If you don't see the policy, choose the refresh button.

ii. Choose Create thing.

A modal opens where you can download the certificates and keys that the device
uses to connect to the AWS Cloud and the core.

Create client devices in an AWS IoT Greengrass group 245

AWS IoT Greengrass Developer Guide, Version 1

9. In the Download certificates and keys modal, download the device's certificates.

Important

Before you choose Done, download the security resources.

Do the following:

a. For Device certificate, choose Download to download the device certificate.

b. For Public key file, choose Download to download the public key for the certificate.

c. For Private key file, choose Download to download the private key file for the certificate.

d. Review Server Authentication in the AWS IoT Developer Guide and choose the appropriate
root CA certificate. We recommend that you use Amazon Trust Services (ATS) endpoints
and ATS root CA certificates. Under Root CA certificates, choose Download for a root CA
certificate.

e. Choose Done.

Make a note of the certificate ID that's common in the file names for the device certificate and
keys. You need it later.

10. Return to the browser tab with the Associate a client device with this group modal open. Do
the following:

a. For AWS IoT thing name, choose the HelloWorld_Publisher thing that you created.

If you don't see the thing, choose the refresh button.

b. Choose Associate.

11. Repeat steps 3 - 10 to add a second client device to the group.

Name this client device HelloWorld_Subscriber. Download the certificates and keys for
this client device to your computer. Again, make a note of the certificate's ID that's common in
the file names for the HelloWorld_Subscriber device.

You should now have two client devices in your Greengrass group:

• HelloWorld_Publisher

• HelloWorld_Subscriber
Create client devices in an AWS IoT Greengrass group 246

https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html

AWS IoT Greengrass Developer Guide, Version 1

12. Create a folder on your computer for these client devices' security credentials. Copy the
certificates and keys into this folder.

Configure subscriptions

In this step, you enable the HelloWorld_Publisher client device to send MQTT messages to the
HelloWorld_Subscriber client device.

1. On the group configuration page, choose the Subscriptions tab, and then choose Add.

2. On the Create a subscription page, do the following to configure the subscription:

a. For Source type, choose Client device, and then choose HelloWorld_Publisher.

b. Under Target type, choose Client device, and then choose HelloWorld_Subscriber.

c. For Topic filter, enter hello/world/pubsub.

Note

You can delete subscriptions from the previous modules. On the group's
Subscriptions page, select the subscriptions to delete, and then choose Delete.

d. Choose Create subscription.

3. Make sure that automatic detection is enabled so the Greengrass core can publish a list of its
IP addresses. Client devices use this information to discover the core. Do the following:

a. On the group configuration page, choose the Lambda functions tab.

b. Under System Lambda functions, choose IP detector, and then choose Edit.

c. In the Edit IP detector settings, choose Automatically detect and override MQTT broker
endpoints, and then choose Save.

4. Make sure that the Greengrass daemon is running, as described in Deploy cloud configurations
to a core device.

5. On the group configuration page, choose Deploy.

The deployment status is displayed below the group name on the page header. To see deployment
details, choose the Deployments tab.

Configure subscriptions 247

AWS IoT Greengrass Developer Guide, Version 1

Install the AWS IoT Device SDK for Python

Client devices can use the AWS IoT Device SDK for Python to communicate with AWS IoT and AWS
IoT Greengrass core devices (using the Python programming language). For more information,
including requirements, see the AWS IoT Device SDK for Python Readme on GitHub.

In this step, you install the SDK and get the basicDiscovery.py sample function used by the
simulated client devices on your computer.

1. To install the SDK on your computer, with all required components, choose your operating
system:

Windows

1. Open an elevated command prompt and run the following command:

python --version

If no version information is returned or if the version number is less than 2.7 for
Python 2 or less than 3.3 for Python 3, follow the instructions in Downloading Python
to install Python 2.7+ or Python 3.3+. For more information, see Using Python on
Windows.

2. Download the AWS IoT Device SDK for Python as a zip file and extract it to an
appropriate location on your computer.

Make a note of the file path to the extracted aws-iot-device-sdk-python-
master folder that contains the setup.py file. In the next step, this file path is
indicated by path-to-SDK-folder.

3. From the elevated command prompt, run the following:

cd path-to-SDK-folder
python setup.py install

macOS

1. Open a Terminal window and run the following command:

python --version

Install the AWS IoT Device SDK for Python 248

https://github.com/aws/aws-iot-device-sdk-python
https://technet.microsoft.com/en-us/library/cc947813(v=ws.10).aspx
https://wiki.python.org/moin/BeginnersGuide/Download
https://docs.python.org/3.6/using/windows.html
https://docs.python.org/3.6/using/windows.html
https://github.com/aws/aws-iot-device-sdk-python

AWS IoT Greengrass Developer Guide, Version 1

If no version information is returned or if the version number is less than 2.7 for
Python 2 or less than 3.3 for Python 3, follow the instructions in Downloading Python
to install Python 2.7+ or Python 3.3+. For more information, see Using Python on a
Macintosh.

2. In the Terminal window, run the following commands to determine the OpenSSL
version:

python
>>>import ssl
>>>print ssl.OPENSSL_VERSION

Make a note of the OpenSSL version value.

Note

If you're running Python 3, use print(ssl.OPENSSL_VERSION).

To close the Python shell, run the following command:

>>>exit()

If the OpenSSL version is 1.0.1 or later, skip to step c. Otherwise, follow these steps:

• From the Terminal window, run the following command to determine if the
computer is using Simple Python Version Management:

which pyenv

If a file path is returned, then choose the Using pyenv tab. If nothing is returned,
choose the Not using pyenv tab.

Using pyenv

1. See Python Releases for Mac OS X (or similar) to determine the latest stable
Python version. In the following example, this value is indicated by latest-
Python-version.

Install the AWS IoT Device SDK for Python 249

https://wiki.python.org/moin/BeginnersGuide/Download
https://docs.python.org/3/using/mac.html
https://docs.python.org/3/using/mac.html
https://www.python.org/downloads/mac-osx/

AWS IoT Greengrass Developer Guide, Version 1

2. From the Terminal window, run the following commands:

pyenv install latest-Python-version
pyenv global latest-Python-version

For example, if the latest version for Python 2 is 2.7.14, then these commands
are:

pyenv install 2.7.14
pyenv global 2.7.14

3. Close and then reopen the Terminal window and then run the following
commands:

python
>>>import ssl
>>>print ssl.OPENSSL_VERSION

The OpenSSL version should be at least 1.0.1. If the version is less than 1.0.1,
then the update failed. Check the Python version value used in the pyenv install
and pyenv global commands and try again.

4. Run the following command to exit the Python shell:

 exit()

Not using pyenv

1. From a Terminal window, run the following command to determine if brew is
installed:

which brew

If a file path is not returned, install brew as follows:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/master/install)"

Install the AWS IoT Device SDK for Python 250

https://brew.sh/

AWS IoT Greengrass Developer Guide, Version 1

Note

Follow the installation prompts. The download for the Xcode command
line tools can take some time.

2. Run the following commands:

brew update
brew install openssl
brew install python@2

The AWS IoT Device SDK for Python requires OpenSSL version 1.0.1 (or later)
compiled with the Python executable. The brew install python command installs
a python2 executable that meets this requirement. The python2 executable is
installed in the /usr/local/bin directory, which should be part of the PATH
environment variable. To confirm, run the following command:

python2 --version

If python2 version information is provided, skip to the next step. Otherwise,
permanently add the /usr/local/bin path to your PATH environment variable
by appending the following line to your shell profile:

export PATH="/usr/local/bin:$PATH"

For example, if you're using .bash_profile or do not yet have a shell profile,
run the following command from a Terminal window:

echo 'export PATH="/usr/local/bin:$PATH"' >> ~/.bash_profile

Next, source your shell profile and confirm that python2 --version provides
version information. For example, if you're using .bash_profile, run the
following commands:

source ~/.bash_profile
python2 --version

Install the AWS IoT Device SDK for Python 251

https://en.wikipedia.org/wiki/Source_(command)

AWS IoT Greengrass Developer Guide, Version 1

python2 version information should be returned.

3. Append the following line to your shell profile:

alias python="python2"

For example, if you're using .bash_profile or do not yet have a shell profile,
run the following command:

echo 'alias python="python2"' >> ~/.bash_profile

4. Next, source your shell profile. For example, if you're using .bash_profile, run
the following command:

source ~/.bash_profile

Invoking the python command runs the Python executable that contains the
required OpenSSL version (python2) .

5. Run the following commands:

python
 import ssl
 print ssl.OPENSSL_VERSION

The OpenSSL version should be 1.0.1 or later.

6. To exit the Python shell, run the following command:

 exit()

3. Run the following commands to install the AWS IoT Device SDK for Python:

cd ~
git clone https://github.com/aws/aws-iot-device-sdk-python.git
cd aws-iot-device-sdk-python
sudo python setup.py install

Install the AWS IoT Device SDK for Python 252

https://en.wikipedia.org/wiki/Source_(command)

AWS IoT Greengrass Developer Guide, Version 1

UNIX-like system

1. From a terminal window, run the following command:

python --version

If no version information is returned or if the version number is less than 2.7 for
Python 2 or less than 3.3 for Python 3, follow the instructions in Downloading Python
to install Python 2.7+ or Python 3.3+. For more information, see Using Python on Unix
platforms.

2. In the terminal, run the following commands to determine the OpenSSL version:

python
>>>import ssl
>>>print ssl.OPENSSL_VERSION

Make a note of the OpenSSL version value.

Note

If you're running Python 3, use print(ssl.OPENSSL_VERSION).

To close the Python shell, run the following command:

 exit()

If the OpenSSL version is 1.0.1 or later, skip to the next step. Otherwise, run the
command(s) to update OpenSSL for your distribution (for example, sudo yum
update openssl, sudo apt-get update, and so on).

Confirm that the OpenSSL version is 1.0.1 or later by running the following commands:

python
>>>import ssl
>>>print ssl.OPENSSL_VERSION
>>>exit()

Install the AWS IoT Device SDK for Python 253

https://wiki.python.org/moin/BeginnersGuide/Download
https://docs.python.org/3.6/using/unix.html
https://docs.python.org/3.6/using/unix.html

AWS IoT Greengrass Developer Guide, Version 1

3. Run the following commands to install the AWS IoT Device SDK for Python:

cd ~
git clone https://github.com/aws/aws-iot-device-sdk-python.git
cd aws-iot-device-sdk-python
sudo python setup.py install

2. After the AWS IoT Device SDK for Python is installed, navigate to the samples folder and
open the greengrass folder.

For this tutorial, you copy the basicDiscovery.py sample function, which uses the
certificates and keys that you downloaded in the section called “Create client devices in an
AWS IoT Greengrass group”.

3. Copy basicDiscovery.py to the folder that contains the HelloWorld_Publisher and
HelloWorld_Subscriber device certificates and keys.

Test communications

1. Make sure that your computer and the AWS IoT Greengrass core device are connected to the
internet using the same network.

a. On the AWS IoT Greengrass core device, run the following command to find its IP address.

hostname -I

b. On your computer, run the following command using the IP address of the core. You can
use Ctrl + C to stop the ping command.

ping IP-address

Output similar to the following indicates successful communication between the
computer and the AWS IoT Greengrass core device (0% packet loss):

Test communications 254

AWS IoT Greengrass Developer Guide, Version 1

Note

If you're unable to ping an EC2 instance that's running AWS IoT Greengrass, make
sure that the inbound security group rules for the instance allow ICMP traffic for
Echo request messages. For more information, see Adding rules to a security
group in the Amazon EC2 User Guide for Linux Instances.
On Windows host computers, in the Windows Firewall with Advanced Security app,
you might also need to enable an inbound rule that allows inbound echo requests
(for example, File and Printer Sharing (Echo Request - ICMPv4-In)), or create one.

2. Get your AWS IoT endpoint.

a. From the AWS IoT console navigation pane, choose Settings.

b. Under Device data endpoint, make a note of the value of Endpoint. You use this value to
replace the AWS_IOT_ENDPOINT placeholder in the commands in the following steps.

Note

Make sure that your endpoints correspond to your certificate type.

3. On your computer (not the AWS IoT Greengrass core device), open two command-line
(terminal or command prompt) windows. One window represents the HelloWorld_Publisher
client device and the other represents the HelloWorld_Subscriber client device.

Upon execution, basicDiscovery.py attempts to collect information on the location of the
AWS IoT Greengrass core at its endpoints. This information is stored after the client device

Test communications 255

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-rules-reference.html#sg-rules-ping
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html#adding-security-group-rule
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html#adding-security-group-rule
https://console.aws.amazon.com/iot/
https://en.wikipedia.org/wiki/Command-line_interface

AWS IoT Greengrass Developer Guide, Version 1

has discovered and successfully connected to the core. This allows future messaging and
operations to be executed locally (without the need for an internet connection).

Note

Client IDs used for MQTT connections must match the thing name of the client device.
The basicDiscovery.py script sets the client ID for MQTT connections to the thing
name that you specify when you run the script.
Run the following command from the folder that contains the basicDiscovery.py
file for detailed script usage information:

python basicDiscovery.py --help

4. From the HelloWorld_Publisher client device window, run the following commands.

• Replace path-to-certs-folder with the path to the folder that contains the certificates,
keys, and basicDiscovery.py.

• Replace AWS_IOT_ENDPOINT with your endpoint.

• Replace the two publisherCertId instances with the certificate ID in the file name for
your HelloWorld_Publisher client device.

cd path-to-certs-folder
python basicDiscovery.py --endpoint AWS_IOT_ENDPOINT --rootCA AmazonRootCA1.pem
 --cert publisherCertId-certificate.pem.crt --key publisherCertId-private.pem.key
 --thingName HelloWorld_Publisher --topic 'hello/world/pubsub' --mode publish --
message 'Hello, World! Sent from HelloWorld_Publisher'

You should see output similar to the following, which includes entries such as Published
topic 'hello/world/pubsub': {"message": "Hello, World! Sent from
HelloWorld_Publisher", "sequence": 1}.

Note

If the script returns an error: unrecognized arguments message, change the
single quotation marks to double quotation marks for the --topic and --message
parameters and run the command again.

Test communications 256

AWS IoT Greengrass Developer Guide, Version 1

To troubleshoot a connection issue, you can try using manual IP detection.

5. From the HelloWorld_Subscriber client device window, run the following commands.

• Replace path-to-certs-folder with the path to the folder that contains the certificates,
keys, and basicDiscovery.py.

• Replace AWS_IOT_ENDPOINT with your endpoint.

• Replace the two subscriberCertId instances with the certificate ID in the file name for
your HelloWorld_Subscriber client device.

cd path-to-certs-folder
python basicDiscovery.py --endpoint AWS_IOT_ENDPOINT --rootCA AmazonRootCA1.pem --
cert subscriberCertId-certificate.pem.crt --key subscriberCertId-private.pem.key --
thingName HelloWorld_Subscriber --topic 'hello/world/pubsub' --mode subscribe

You should see the following output, which includes entries such as Received message
on topic hello/world/pubsub: {"message": "Hello, World! Sent from
HelloWorld_Publisher", "sequence": 1}.

Test communications 257

AWS IoT Greengrass Developer Guide, Version 1

Close the HelloWorld_Publisher window to stop messages from accruing in the
HelloWorld_Subscriber window.

Testing on a corporate network might interfere with connecting to the core. As a workaround, you
can manually enter the endpoint. This ensures that the basicDiscovery.py script connects to
the correct IP address of the AWS IoT Greengrass core device.

To manually enter the endpoint

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Under Greengrass groups, choose your group.

3. Configure the core to manually manage MQTT broker endpoints. Do the following:

a. On the group configuration page, choose the Lambda functions tab.

b. Under System Lambda functions, choose IP detector, and then choose Edit.

c. In the Edit IP detector settings, choose Manually manage MQTT broker endpoints, and
then choose Save.

4. Enter the MQTT broker endpoint for the core. Do the following:

a. Under Overview, choose the Greengrass core.

b. Under MQTT broker endpoints, choose Manage endpoints.

c. Choose Add endpoint and make sure that you have only one endpoint value. This value
must be the IP address endpoint for port 8883 of your AWS IoT Greengrass core device
(for example, 192.168.1.4).

d. Choose Update.

Module 5: Interacting with device shadows

This advanced module shows you how client devices can interact with AWS IoT device shadows
in an AWS IoT Greengrass group. A shadow is a JSON document that is used to store current
or desired state information for a thing. In this module, you discover how one client device
(GG_Switch) can modify the state of another client device (GG_TrafficLight) and how these
states can be synced to the AWS IoT Greengrass cloud:

Module 5: Interacting with device shadows 258

https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html

AWS IoT Greengrass Developer Guide, Version 1

Before you begin, run the Greengrass device setup script, or make sure that you have completed
Module 1 and Module 2. You should also understand how to connect client devices to an AWS IoT
Greengrass core (Module 4). You do not need other components or devices.

This module should take about 30 minutes to complete.

Topics

• Configure devices and subscriptions

• Download required files

• Test communications (device syncs disabled)

• Test communications (device syncs enabled)

Module 5: Interacting with device shadows 259

AWS IoT Greengrass Developer Guide, Version 1

Configure devices and subscriptions

Shadows can be synced to AWS IoT when the AWS IoT Greengrass core is connected to the internet.
In this module, you first use local shadows without syncing to the cloud. Then, you enable cloud
syncing.

Each client device has its own shadow. For more information, see Device shadow service for AWS
IoT in the AWS IoT Developer Guide.

1. On the group configuration page, choose the Client devices tab.

2. From the Client devices tab, add two new client devices in your AWS IoT Greengrass group.
For detailed steps of this process, see the section called “Create client devices in an AWS IoT
Greengrass group”.

• Name the client devices GG_Switch and GG_TrafficLight.

• Generate and download the security resources for both client devices.

• Make a note of the certificate ID in the file names of the security resources for the client
devices. You use these values later.

3. Create a folder on your computer for these client devices' security credentials. Copy the
certificates and keys into this folder.

4. Make sure that the client devices are set to use local shadows and not sync with the AWS
Cloud. If not, select the client device, choose Sync shadow, and then choose Disable shadow
sync with cloud.

5. Add the subscriptions in the following table to your group. For example, to create the first
subscription:

a. On the group configuration page, choose the Subscriptions tab, and then choose Add.

b. For Source type, choose Client device, and then choose GG_Switch.

c. For Target type, choose Service, and then choose Local Shadow Service.

d. For Topic filter, enter $aws/things/GG_TrafficLight/shadow/update

e. Choose Create subscription.

The topics must be entered exactly as shown in the table. Although it's possible to use
wildcards to consolidate some of the subscriptions, we don't recommend this practice. For
more information, see Shadow MQTT topics in the AWS IoT Developer Guide.

Configure devices and subscriptions 260

https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html

AWS IoT Greengrass Developer Guide, Version 1

Source Target Topic Notes

GG_Switch Local Shadow
Service

$aws/things/GG_Tra
fficLight/shadow/u
pdate

The GG_Switch
sends an update
request to update
topic.

Local Shadow
Service

GG_Switch $aws/things/GG_Tra
fficLight/shadow/u
pdate/accepted

The GG_Switch
needs to know
whether the
update request was
accepted.

Local Shadow
Service

GG_Switch $aws/things/GG_Tra
fficLight/shadow/u
pdate/rejected

The GG_Switch
needs to know
whether the
update request was
rejected.

GG_TrafficLight Local Shadow
Service

$aws/things/GG_Tra
fficLight/shadow/u
pdate

The GG_TrafficLight
sends an update
of its state to the
update topic.

Local Shadow
Service

GG_TrafficLight $aws/things/GG_Tra
fficLight/shadow/u
pdate/delta

The Local Shadow
Service sends a
received update
to GG_TrafficLight
through the delta
topic.

Local Shadow
Service

GG_TrafficLight $aws/things/GG_Tra
fficLight/shadow/u
pdate/accepted

The GG_Traffi
cLight needs to
know whether its
state update was
accepted.

Configure devices and subscriptions 261

AWS IoT Greengrass Developer Guide, Version 1

Source Target Topic Notes

Local Shadow
Service

GG_TrafficLight $aws/things/GG_Tra
fficLight/shadow/u
pdate/rejected

The GG_TrafficLight
needs to know
whether its state
update was rejected.

The new subscriptions are displayed on the Subscriptions tab.

Note

For information about the $ character, see Reserved topics.

6. Make sure that automatic detection is enabled so the Greengrass core can publish a list of its
IP addresses. Client devices use this information to discover the core. Do the following:

a. On the group configuration page, choose the Lambda functions tab.

b. Under System Lambda functions, choose IP detector, and then choose Edit.

c. In the Edit IP detector settings, choose Automatically detect and override MQTT broker
endpoints, and then choose Save.

7. Make sure that the Greengrass daemon is running, as described in Deploy cloud configurations
to a core device.

8. On the group configuration page, choose Deploy.

Download required files

1. If you haven't already done so, install the AWS IoT Device SDK for Python. For instructions, see
step 1 in the section called “Install the AWS IoT Device SDK for Python”.

This SDK is used by client devices to communicate with AWS IoT and with AWS IoT Greengrass
core devices.

2. From the TrafficLight examples folder on GitHub, download the lightController.py
and trafficLight.py files to your computer. Save them in the folder that contains the
GG_Switch and GG_TrafficLight client device certificates and keys.

Download required files 262

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html#reserved-topics
https://github.com/aws/aws-greengrass-core-sdk-python/tree/master/examples/TrafficLight

AWS IoT Greengrass Developer Guide, Version 1

The lightController.py script corresponds to the GG_Switch client device, and the
trafficLight.py script corresponds to the GG_TrafficLight client device.

Note

The example Python files are stored in the AWS IoT Greengrass Core SDK for Python
repository for convenience, but they don't use the AWS IoT Greengrass Core SDK.

Test communications (device syncs disabled)

1. Make sure that your computer and the AWS IoT Greengrass core device are connected to the
internet using the same network.

a. On the AWS IoT Greengrass core device, run the following command to find its IP address.

hostname -I

b. On your computer, run the following command using the IP address of the core. You can
use Ctrl + C to stop the ping command.

ping IP-address

Output similar to the following indicates successful communication between the
computer and the AWS IoT Greengrass core device (0% packet loss):

Test communications (device syncs disabled) 263

AWS IoT Greengrass Developer Guide, Version 1

Note

If you're unable to ping an EC2 instance that's running AWS IoT Greengrass, make
sure that the inbound security group rules for the instance allow ICMP traffic for
Echo request messages. For more information, see Adding rules to a security
group in the Amazon EC2 User Guide for Linux Instances.
On Windows host computers, in the Windows Firewall with Advanced Security app,
you might also need to enable an inbound rule that allows inbound echo requests
(for example, File and Printer Sharing (Echo Request - ICMPv4-In)), or create one.

2. Get your AWS IoT endpoint.

a. From the AWS IoT console navigation pane, choose Settings.

b. Under Device data endpoint, make a note of the value of Endpoint. You use this value to
replace the AWS_IOT_ENDPOINT placeholder in the commands in the following steps.

Note

Make sure that your endpoints correspond to your certificate type.

3. On your computer (not the AWS IoT Greengrass core device), open two command-line
(terminal or command prompt) windows. One window represents the GG_Switch client device
and the other represents the GG_TrafficLight client device.

a. From the GG_Switch client device window, run the following commands.

Test communications (device syncs disabled) 264

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-rules-reference.html#sg-rules-ping
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html#adding-security-group-rule
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html#adding-security-group-rule
https://console.aws.amazon.com/iot/
https://en.wikipedia.org/wiki/Command-line_interface

AWS IoT Greengrass Developer Guide, Version 1

• Replace path-to-certs-folder with the path to the folder that contains the
certificates, keys, and Python files.

• Replace AWS_IOT_ENDPOINT with your endpoint.

• Replace the two switchCertId instances with the certificate ID in the file name for
your GG_Switch client device.

cd path-to-certs-folder
python lightController.py --endpoint AWS_IOT_ENDPOINT --rootCA
 AmazonRootCA1.pem --cert switchCertId-certificate.pem.crt --key switchCertId-
private.pem.key --thingName GG_TrafficLight --clientId GG_Switch

b. From the GG_TrafficLight client device window, run the following commands.

• Replace path-to-certs-folder with the path to the folder that contains the
certificates, keys, and Python files.

• Replace AWS_IOT_ENDPOINT with your endpoint.

• Replace the two lightCertId instances with the certificate ID in the file name for your
GG_TrafficLight client device.

cd path-to-certs-folder
python trafficLight.py --endpoint AWS_IOT_ENDPOINT --rootCA AmazonRootCA1.pem
 --cert lightCertId-certificate.pem.crt --key lightCertId-private.pem.key --
thingName GG_TrafficLight --clientId GG_TrafficLight

Every 20 seconds, the switch updates the shadow state to G, Y, and R, and the light
displays its new state, as shown next.

GG_Switch output:

GG_TrafficLight output:

Test communications (device syncs disabled) 265

AWS IoT Greengrass Developer Guide, Version 1

When executed for the first time, each client device script runs the AWS IoT Greengrass
discovery service to connect to the AWS IoT Greengrass core (through the internet). After a
client device has discovered and successfully connected to the AWS IoT Greengrass core, future
operations can be executed locally.

Note

The lightController.py and trafficLight.py scripts store connection
information in the groupCA folder, which is created in the same folder as the scripts.
If you receive connection errors, make sure that the IP address in the ggc-host file
matches the IP address endpoint for your core.

4. In the AWS IoT console, choose your AWS IoT Greengrass group, choose the Client devices tab,
and then choose GG_TrafficLight to open the client device's AWS IoT thing details page.

5. Choose the Device Shadows tab. After the GG_Switch changes states, there should not be any
updates to this shadow. That's because the GG_TrafficLight is set to Disable shadow sync with
cloud.

6. Press Ctrl + C in the GG_Switch (lightController.py) client device window. You should see
that the GG_TrafficLight (trafficLight.py) window stops receiving state change messages.

Keep these windows open so you can run the commands in the next section.

Test communications (device syncs enabled)

For this test, you configure the GG_TrafficLight device shadow to sync to AWS IoT. You run the
same commands as in the previous test, but this time the shadow state in the cloud is updated
when GG_Switch sends an update request.

Test communications (device syncs enabled) 266

AWS IoT Greengrass Developer Guide, Version 1

1. In the AWS IoT console, choose your AWS IoT Greengrass group, and then choose the Client
devices tab.

2. Select the GG_TrafficLight device, choose Sync shadow, and then choose Enable shadow sync
with cloud.

You should receive a notification that the device shadow sync status was updated.

3. On the group configuration page, choose Deploy.

4. In your two command-line windows, run the commands from the previous test for the
GG_Switch and GG_TrafficLight client devices.

5. Now, check the shadow state in the AWS IoT console. Choose your AWS IoT Greengrass group,
choose the Client devices tab, choose GG_TrafficLight, choose the Device Shadows tab, and
then choose Classic Shadow.

Because you enabled sync of the GG_TrafficLight shadow to AWS IoT, the shadow state in the
cloud should be updated whenever GG_Switch sends an update. This functionality can be used
to expose the state of a client device to AWS IoT.

Note

If necessary, you can troubleshoot issues by viewing the AWS IoT Greengrass core logs,
particularly runtime.log:

cd /greengrass/ggc/var/log
sudo cat system/runtime.log | more

You can also view GGShadowSyncManager.log and GGShadowService.log. For
more information, see Troubleshooting.

Keep the client devices and subscriptions set up. You use them in the next module. You also run the
same commands.

Module 6: Accessing other AWS services

This advanced module shows you how AWS IoT Greengrass cores can interact with other AWS
services in the cloud. It builds on the traffic light example from Module 5 and adds a Lambda
function that processes shadow states and uploads a summary to an Amazon DynamoDB table.

Module 6: Accessing other AWS services 267

AWS IoT Greengrass Developer Guide, Version 1

Before you begin, run the Greengrass device setup script, or make sure that you have completed
Module 1 and Module 2. You should also complete Module 5. You do not need other components
or devices.

This module should take about 30 minutes to complete.

Note

This module creates and updates a table in DynamoDB. Although most of the operations
are small and fall within the Amazon Web Services Free Tier, performing some of the steps

Module 6: Accessing other AWS services 268

AWS IoT Greengrass Developer Guide, Version 1

in this module might result in charges to your account. For information about pricing, see
DynamoDB pricing documentation.

Topics

• Configure the group role

• Create and configure the Lambda function

• Configure subscriptions

• Test communications

Configure the group role

The group role is an IAM role that you create and attach to your Greengrass group. This role
contains the permissions that deployed Lambda functions (and other AWS IoT Greengrass features)
use to access AWS services. For more information, see the section called “Greengrass group role”.

You use the following high-level steps to create a group role in the IAM console.

1. Create a policy that allows or denies actions on one or more resources.

2. Create a role that uses the Greengrass service as a trusted entity.

3. Attach your policy to the role.

Then, in the AWS IoT console, you add the role to the Greengrass group.

Note

A Greengrass group has one group role. If you want to add permissions, you can edit
attached policies or attach more policies.

For this tutorial, you create a permissions policy that allows describe, create, and update actions on
an Amazon DynamoDB table. Then, you attach the policy to a new role and associate the role with
your Greengrass group.

Configure the group role 269

https://aws.amazon.com/dynamodb/pricing/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS IoT Greengrass Developer Guide, Version 1

First, create a customer-managed policy that grants permissions required by the Lambda function
in this module.

1. In the IAM console, in the navigation pane, choose Policies, and then choose Create policy.

2. On the JSON tab, replace the placeholder content with the following policy. The Lambda
function in this module uses these permissions to create and update a DynamoDB table named
CarStats.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PermissionsForModule6",
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:CreateTable",
 "dynamodb:PutItem"
],
 "Resource": "arn:aws:dynamodb:*:*:table/CarStats"
 }
]
}

3. Choose Next: Tags, and then choose Next: Review. Tags aren't used in this tutorial.

4. For Name, enter greengrass_CarStats_Table, and then choose Create policy.

Next, create a role that uses the new policy.

5. In the navigation pane, choose Roles, and then choose Create role.

6. Under Trusted entity type, choose AWS service.

7. Under Use case, Use cases for other AWS services choose Greengrass, select Greengrass, and
then choose Next.

8. Under Permissions policies, select the new greengrass_CarStats_Table policy, and then
choose Next.

9. For Role name, enter Greengrass_Group_Role.

10. For Description, enter Greengrass group role for connectors and user-defined
Lambda functions.

Configure the group role 270

AWS IoT Greengrass Developer Guide, Version 1

11. Choose Create role.

Now, add the role to your Greengrass group.

12. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

13. Under Greengrass groups, choose your group.

14. Choose Settings, and then choose Associate role.

15. Choose Greengrass_Group_Role from your list of roles, and then choose Associate role.

Create and configure the Lambda function

In this step, you create a Lambda function that tracks the number of cars that pass the traffic light.
Every time that the GG_TrafficLight shadow state changes to G, the Lambda function simulates
the passing of a random number of cars (from 1 to 20). On every third G light change, the Lambda
function sends basic statistics, such as min and max, to a DynamoDB table.

1. On your computer, create a folder named car_aggregator.

2. From the TrafficLight examples folder on GitHub, download the carAggregator.py file to
the car_aggregator folder. This is your Lambda function code.

Note

This example Python file is stored in the AWS IoT Greengrass Core SDK repository for
convenience, but it doesn't use the AWS IoT Greengrass Core SDK.

3. If you aren't working in the US East (N. Virgina) Region, open carAggregator.py and change
region_name in the following line to the AWS Region that's currently selected in the AWS IoT
console. For the list of supported AWS Regions, see AWS IoT Greengrass in the Amazon Web
Services General Reference.

dynamodb = boto3.resource('dynamodb', region_name='us-east-1')

4. Run the following command in a command-line window to install the AWS SDK for Python
(Boto3) package and its dependencies in the car_aggregator folder. Greengrass Lambda
functions use the AWS SDK to access other AWS services. (For Windows, use an elevated
command prompt.)

Create and configure the Lambda function 271

https://github.com/aws/aws-greengrass-core-sdk-python/tree/master/examples/TrafficLight
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://en.wikipedia.org/wiki/Command-line_interface
https://github.com/boto/boto3/blob/develop/README.rst
https://github.com/boto/boto3/blob/develop/README.rst
https://technet.microsoft.com/en-us/library/cc947813(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc947813(v=ws.10).aspx

AWS IoT Greengrass Developer Guide, Version 1

pip install boto3 -t path-to-car_aggregator-folder

This results in a directory listing similar to the following:

5. Compress the contents of the car_aggregator folder into a .zip file named
car_aggregator.zip. (Compress the folder's contents, not the folder.) This is your Lambda
function deployment package.

6. In the Lambda console, create a function named GG_Car_Aggregator, and set the remaining
fields as follows:

• For Runtime, choose Python 3.7.

• For Permissions, keep the default setting. This creates an execution role that grants basic
Lambda permissions. This role isn't used by AWS IoT Greengrass.

Choose Create function.

Create and configure the Lambda function 272

AWS IoT Greengrass Developer Guide, Version 1

7. Upload your Lambda function deployment package:

a. On the Code tab, under Code source, choose Upload from. From the dropdown, choose
.zip file.

b. Choose upload, and then choose your car_aggregator.zip deployment package. Then,
choose Save.

c. On the Code tab for the function, under Runtime settings, choose Edit, and then enter
the following values.

• For Runtime, choose Python 3.7.

• For Handler, enter carAggregator.function_handler

d. Choose Save.

8. Publish the Lambda function, and then create an alias named GG_CarAggregator. For step-
by-step instructions, see the steps to publish the Lambda function and create an alias in
Module 3 (Part 1).

9. In the AWS IoT console, add the Lambda function that you just created to your AWS IoT
Greengrass group:

Create and configure the Lambda function 273

AWS IoT Greengrass Developer Guide, Version 1

a. On the group configuration page, choose Lambda functions, and then under My Lambda
functions, choose Add.

b. For Lambda function, choose GG_Car_Aggregator.

c. For Lambda function version, choose the alias to the version that you published.

d. For Memory limit, enter 64 MB.

e. For Pinned, choose True.

f. Choose Add Lambda function.

Note

You can remove other Lambda functions from earlier modules.

Configure subscriptions

In this step, you create a subscription that enables the GG_TrafficLight shadow to send updated
state information to the GG_Car_Aggregator Lambda function. This subscription is added to the
subscriptions that you created in Module 5, which are all required for this module.

1. On the group configuration page, choose the Subscriptions tab, and then choose Add.

2. On the Create a subscription page, do the following:

a. For Source type, choose Service, and then choose Local Shadow Service.

b. For Target type, choose Lambda function, and then choose GG_Car_Aggregator.

c. For Topic filter, enter $aws/things/GG_TrafficLight/shadow/update/documents

d. Choose Create subscription.

This module requires the new subscription and the subscriptions that you created in Module 5.

3. Make sure that the Greengrass daemon is running, as described in Deploy cloud configurations
to a core device.

4. On the group configuration page, choose Deploy.

Configure subscriptions 274

AWS IoT Greengrass Developer Guide, Version 1

Test communications

1. On your computer, open two command-line windows. Just as in Module 5, one window is for
the GG_Switch client device and the other is for the GG_TrafficLight client device. You use
them to run the same commands that you ran in Module 5.

Run the following commands for the GG_Switch client device:

cd path-to-certs-folder
python lightController.py --endpoint AWS_IOT_ENDPOINT --rootCA AmazonRootCA1.pem
 --cert switchCertId-certificate.pem.crt --key switchCertId-private.pem.key --
thingName GG_TrafficLight --clientId GG_Switch

Run the following commands for the GG_TrafficLight client device:

cd path-to-certs-folder
python trafficLight.py --endpoint AWS_IOT_ENDPOINT --rootCA AmazonRootCA1.pem --
cert lightCertId-certificate.pem.crt --key lightCertId-private.pem.key --thingName
 GG_TrafficLight --clientId GG_TrafficLight

Every 20 seconds, the switch updates the shadow state to G, Y, and R, and the light displays its
new state.

2. The function handler of the Lambda function is triggered on every third green light (every
three minutes), and a new DynamoDB record is created. After lightController.py and
trafficLight.py have run for three minutes, go to the AWS Management Console, and
open the DynamoDB console.

3. Choose US East (N. Virginia) in the AWS Region menu. This is the Region where the
GG_Car_Aggregator function creates the table.

4. In the navigation pane, choose Tables, and then choose the CarStats table.

5. Choose View items to view the entries in the table.

You should see entries with basic statistics on cars passed (one entry for every three minutes).
You might need to choose the refresh button to view updates to the table.

6. If the test is not successful, you can look for troubleshooting information in the Greengrass
logs.

Test communications 275

https://en.wikipedia.org/wiki/Command-line_interface

AWS IoT Greengrass Developer Guide, Version 1

a. Switch to the root user and navigate to the log directory. Access to AWS IoT Greengrass
logs requires root permissions.

sudo su
cd /greengrass/ggc/var/log

b. Check runtime.log for errors.

cat system/runtime.log | grep 'ERROR'

c. Check the log generated by the Lambda function.

cat user/region/account-id/GG_Car_Aggregator.log

The lightController.py and trafficLight.py scripts store connection information
in the groupCA folder, which is created in the same folder as the scripts. If you receive
connection errors, make sure that the IP address in the ggc-host file matches the IP
address endpoint for your core.

For more information, see Troubleshooting.

This is the end of the basic tutorial. You should now understand the AWS IoT Greengrass
programming model and its fundamental concepts, including AWS IoT Greengrass cores, groups,
subscriptions, client devices, and the deployment process for Lambda functions running at the
edge.

You can delete the DynamoDB table and the Greengrass Lambda functions and subscriptions. To
stop communications between the AWS IoT Greengrass core device and the AWS IoT cloud, open a
terminal on the core device and run one of the following commands:

• To shut down the AWS IoT Greengrass core device:

sudo halt

• To stop the AWS IoT Greengrass daemon:

cd /greengrass/ggc/core/

Test communications 276

AWS IoT Greengrass Developer Guide, Version 1

sudo ./greengrassd stop

Module 7: Simulating hardware security integration

This feature is available for AWS IoT Greengrass Core v1.7 and later.

This advanced module shows you how to configure a simulated hardware security module
(HSM) for use with a Greengrass core. The configuration uses SoftHSM, which is a pure software
implementation that uses the PKCS#11 application programming interface (API). The purpose of
this module is to allow you to set up an environment where you can learn and do initial testing
against a software-only implementation of the PKCS#11 API. It is provided only for learning and
initial testing, not for production use of any kind.

You can use this configuration to experiment with using a PKCS#11-compatible service to store
your private keys. For more information about the software-only implementation, see SoftHSM.
For more information about integrating hardware security on an AWS IoT Greengrass core,
including general requirements, see the section called “Hardware security integration”.

Important

This module is intended for experimentation purposes only. We strongly discourage the
use of SoftHSM in a production environment because it might provide a false sense of
additional security. The resulting configuration doesn't provide any actual security benefits.
The keys stored in SoftHSM are not stored more securely than any other means of secrets
storage in the Greengrass environment.
The purpose of this module is to allow you to learn about the PKCS#11 specification and do
initial testing of your software if you plan to use a real hardware-based HSM in the future.
You must test your future hardware implementation separately and completely before
any production usage because there might be differences between the PKCS#11
implementation provided in SoftHSM and a hardware-based implementation.

If you need assistance with the onboarding of a supported hardware security module, contact your
AWS Enterprise Support representative.

Before you begin, run the Greengrass Device Setup script, or make sure that you completed Module
1 and Module 2 of the Getting Started tutorial. In this module, we assume that your core is already
provisioned and communicating with AWS. This module should take about 30 minutes to complete.

Module 7: Simulating hardware security integration 277

https://www.opendnssec.org/softhsm/

AWS IoT Greengrass Developer Guide, Version 1

Install the SoftHSM software

In this step, you install SoftHSM and the pkcs11 tools, which are used to manage your SoftHSM
instance.

• In a terminal on your AWS IoT Greengrass core device, run the following command:

sudo apt-get install softhsm2 libsofthsm2-dev pkcs11-dump

For more information about these packages, see Install softhsm2, Install libsofthsm2-dev, and
Install pkcs11-dump.

Note

If you encounter issues when using this command on your system, see SoftHSM version
2 on GitHub. This site provides more installation information, including how to build
from source.

Configure SoftHSM

In this step, you configure SoftHSM.

1. Switch to the root user.

sudo su

2. Use the manual page to find the system-wide softhsm2.conf location. A common location is
/etc/softhsm/softhsm2.conf, but the location might be different on some systems.

man softhsm2.conf

3. Create the directory for the softhsm2 configuration file in the system-wide location. In this
example, we assume the location is /etc/softhsm/softhsm2.conf.

mkdir -p /etc/softhsm

4. Create the token directory in the /greengrass directory.

Install SoftHSM 278

https://www.howtoinstall.co/en/ubuntu/xenial/softhsm2
https://www.howtoinstall.co/en/ubuntu/xenial/libsofthsm2-dev
https://www.howtoinstall.co/en/ubuntu/xenial/pkcs11-dump
https://github.com/opendnssec/SoftHSMv2
https://github.com/opendnssec/SoftHSMv2
https://github.com/opendnssec/SoftHSMv2#configure-1

AWS IoT Greengrass Developer Guide, Version 1

Note

If this step is skipped, softhsm2-util reports ERROR: Could not initialize the
library.

mkdir -p /greengrass/softhsm2/tokens

5. Configure the token directory.

echo "directories.tokendir = /greengrass/softhsm2/tokens" > /etc/softhsm/
softhsm2.conf

6. Configure a file-based backend.

echo "objectstore.backend = file" >> /etc/softhsm/softhsm2.conf

Note

These configuration settings are intended for experimentation purposes only. To see all
configuration options, read the manual page for the configuration file.

man softhsm2.conf

Import the private key into SoftHSM

In this step, you initialize the SoftHSM token, convert the private key format, and then import the
private key.

1. Initialize the SoftHSM token.

softhsm2-util --init-token --slot 0 --label greengrass --so-pin 12345 --pin 1234

Import the private key 279

AWS IoT Greengrass Developer Guide, Version 1

Note

If prompted, enter an SO pin of 12345 and a user pin of 1234. AWS IoT Greengrass
doesn't use the SO (supervisor) pin, so you can use any value.
If you receive the error CKR_SLOT_ID_INVALID: Slot 0 does not exist, try the
following command instead:

softhsm2-util --init-token --free --label greengrass --so-pin 12345 --pin
 1234

2. Convert the private key to a format that can be used by the SoftHSM import tool. For this
tutorial, you convert the private key that you obtained from the Default Group creation
option in Module 2 of the Getting Started tutorial.

openssl pkcs8 -topk8 -inform PEM -outform PEM -nocrypt -in hash.private.key -
out hash.private.pem

3. Import the private key into SoftHSM. Run only one of the following commands, depending on
your version of softhsm2-util.

Raspbian softhsm2-util v2.2.0 syntax

softhsm2-util --import hash.private.pem --token greengrass --label iotkey --id
 0000 --pin 12340

Ubuntu softhsm2-util v2.0.0 syntax

softhsm2-util --import hash.private.pem --slot 0 --label iotkey --id 0000 --pin
 1234

This command identifies the slot as 0 and defines the key label as iotkey. You use these
values in the next section.

After the private key is imported, you can optionally remove it from the /greengrass/certs
directory. Make sure to keep the root CA and device certificates in the directory.

Import the private key 280

AWS IoT Greengrass Developer Guide, Version 1

Configure the Greengrass core to use SoftHSM

In this step, you modify the Greengrass core configuration file to use SoftHSM.

1. Find the path to the SoftHSM provider library (libsofthsm2.so) on your system:

a. Get the list of installed packages for the library.

sudo dpkg -L libsofthsm2

The libsofthsm2.so file is located in the softhsm directory.

b. Copy the full path to the file (for example, /usr/lib/x86_64-linux-gnu/softhsm/
libsofthsm2.so). You use this value later.

2. Stop the Greengrass daemon.

cd /greengrass/ggc/core/
sudo ./greengrassd stop

3. Open the Greengrass configuration file. This is the config.json file in the /greengrass/
config directory.

Note

The examples in this procedure are written with the assumption that the
config.json file uses the format that's generated from the Default Group creation
option in Module 2 of the Getting Started tutorial.

4. In the crypto.principals object, insert the following MQTT server certificate object. Add a
comma where needed to create a valid JSON file.

 "MQTTServerCertificate": {
 "privateKeyPath": "path-to-private-key"
 }

5. In the crypto object, insert the following PKCS11 object. Add a comma where needed to
create a valid JSON file.

 "PKCS11": {
 "P11Provider": "/path-to-pkcs11-provider-so",

Configure the Greengrass core 281

AWS IoT Greengrass Developer Guide, Version 1

 "slotLabel": "crypto-token-name",
 "slotUserPin": "crypto-token-user-pin"
 }

Your file should look similar to the following:

{
 "coreThing" : {
 "caPath" : "root.ca.pem",
 "certPath" : "hash.cert.pem",
 "keyPath" : "hash.private.key",
 "thingArn" : "arn:partition:iot:region:account-id:thing/core-thing-name",
 "iotHost" : "host-prefix.iot.region.amazonaws.com",
 "ggHost" : "greengrass.iot.region.amazonaws.com",
 "keepAlive" : 600
 },
 "runtime" : {
 "cgroup" : {
 "useSystemd" : "yes"
 }
 },
 "managedRespawn" : false,
 "crypto": {
 "PKCS11": {
 "P11Provider": "/path-to-pkcs11-provider-so",
 "slotLabel": "crypto-token-name",
 "slotUserPin": "crypto-token-user-pin"
 },
 "principals" : {
 "MQTTServerCertificate": {
 "privateKeyPath": "path-to-private-key"
 },
 "IoTCertificate" : {
 "privateKeyPath" : "file:///greengrass/certs/hash.private.key",
 "certificatePath" : "file:///greengrass/certs/hash.cert.pem"
 },
 "SecretsManager" : {
 "privateKeyPath" : "file:///greengrass/certs/hash.private.key"
 }
 },
 "caPath" : "file:///greengrass/certs/root.ca.pem"
 }
}

Configure the Greengrass core 282

AWS IoT Greengrass Developer Guide, Version 1

Note

To use over-the-air (OTA) updates with hardware security, the PKCS11 object must also
contain the OpenSSLEngine property. For more information, see the section called
“Configure OTA updates”.

6. Edit the crypto object:

a. Configure the PKCS11 object.

• For P11Provider, enter the full path to libsofthsm2.so.

• For slotLabel, enter greengrass.

• For slotUserPin, enter 1234.

b. Configure the private key paths in the principals object. Do not edit the
certificatePath property.

• For the privateKeyPath properties, enter the following RFC 7512 PKCS#11 path
(which specifies the key's label). Do this for the IoTCertificate, SecretsManager,
and MQTTServerCertificate principals.

pkcs11:object=iotkey;type=private

c. Check the crypto object. It should look similar to the following:

 "crypto": {
 "PKCS11": {
 "P11Provider": "/usr/lib/x86_64-linux-gnu/softhsm/libsofthsm2.so",
 "slotLabel": "greengrass",
 "slotUserPin": "1234"
 },
 "principals": {
 "MQTTServerCertificate": {
 "privateKeyPath": "pkcs11:object=iotkey;type=private"
 },
 "SecretsManager": {
 "privateKeyPath": "pkcs11:object=iotkey;type=private"
 },
 "IoTCertificate": {
 "certificatePath": "file://certs/core.crt",

Configure the Greengrass core 283

AWS IoT Greengrass Developer Guide, Version 1

 "privateKeyPath": "pkcs11:object=iotkey;type=private"
 }
 },
 "caPath": "file://certs/root.ca.pem"
 }

7. Remove the caPath, certPath, and keyPath values from the coreThing object. It should
look similar to the following:

"coreThing" : {
 "thingArn" : "arn:partition:iot:region:account-id:thing/core-thing-name",
 "iotHost" : "host-prefix-ats.iot.region.amazonaws.com",
 "ggHost" : "greengrass-ats.iot.region.amazonaws.com",
 "keepAlive" : 600
}

Note

For this tutorial, you specify the same private key for all principals. For more information
about choosing the private key for the local MQTT server, see Performance. For more
information about the local secrets manager, see Deploy secrets to the core.

Test the configuration

• Start the Greengrass daemon.

cd /greengrass/ggc/core/
sudo ./greengrassd start

If the daemon starts successfully, then your core is configured correctly.

You are now ready to learn about the PKCS#11 specification and do initial testing with the
PKCS#11 API that's provided by the SoftHSM implementation.

Test the configuration 284

AWS IoT Greengrass Developer Guide, Version 1

Important

Again, it's extremely important to be aware that this module is intended for learning
and testing only. It doesn't actually increase the security posture of your Greengrass
environment.
Instead, the purpose of the module is to enable you to start learning and testing in
preparation for using a true hardware-based HSM in the future. At that time, you must
separately and completely test your software against the hardware-based HSM prior
to any production usage, because there might be differences between the PKCS#11
implementation provided in SoftHSM and a hardware-based implementation.

See also

• PKCS #11 Cryptographic Token Interface Usage Guide Version 2.40. Edited by John Leiseboer and
Robert Griffin. 16 November 2014. OASIS Committee Note 02. http://docs.oasis-open.org/
pkcs11/pkcs11-ug/v2.40/cn02/pkcs11-ug-v2.40-cn02.html. Latest version: http://docs.oasis-
open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html.

• RFC 7512

See also 285

http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/cn02/pkcs11-ug-v2.40-cn02.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/cn02/pkcs11-ug-v2.40-cn02.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
https://tools.ietf.org/html/rfc7512

AWS IoT Greengrass Developer Guide, Version 1

OTA updates of AWS IoT Greengrass Core software

The AWS IoT Greengrass Core software package includes an update agent that can perform over-
the-air (OTA) updates of AWS IoT Greengrass software. You can use OTA updates to install the
latest version of the AWS IoT Greengrass Core software or OTA update agent software on one or
more cores. With OTA updates, your core devices don't have to be physically present.

We recommend that you use OTA updates when possible. They provide a mechanism you can use
to track update status and update history. If a failed update occurs, the OTA update agent rolls
back to the previous software version.

Note

OTA updates are not supported when you use apt to install the AWS IoT Greengrass Core
software. For these installations, we recommend that you use apt to upgrade the software.
For more information, see the section called “Install from an APT repository”.

OTA updates make it more efficient to:

• Fix security vulnerabilities.

• Address software stability issues.

• Deploy new or improved features.

This feature integrates with AWS IoT jobs.

Requirements

The following requirements apply for OTA updates of AWS IoT Greengrass software.

• The Greengrass core must have at least 400 MB of disk space available in local storage. The
OTA update agent requires about three times the runtime usage requirement of the AWS IoT
Greengrass Core software. For more information, see Service quotas for the Greengrass core in
the Amazon Web Services General Reference.

• The Greengrass core must have a connection to the AWS Cloud.

Requirements 286

https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html#limits_greengrass

AWS IoT Greengrass Developer Guide, Version 1

• The Greengrass core must be correctly configured and provisioned with certificates and keys
for authentication with AWS IoT Core and AWS IoT Greengrass. For more information, see the
section called “X.509 certificates”.

• The Greengrass core can't be configured to use a network proxy.

Note

Starting in AWS IoT Greengrass v1.9.3, OTA updates are supported on cores that
configure MQTT traffic to use port 443 instead of the default port 8883. However,
the OTA update agent does not support updates through a network proxy. For more
information, see the section called “Connect on port 443 or through a network proxy”.

• Trusted boot can't be enabled in the partition that contains the AWS IoT Greengrass Core
software.

Note

You can install and run the AWS IoT Greengrass Core software on a partition that has
trusted boot enabled, but OTA updates aren't supported.

• AWS IoT Greengrass must have read/write permissions on the partition that contains the AWS
IoT Greengrass Core software.

• If you use an init system to manage your Greengrass core, you must configure OTA updates to
integrate with the init system. For more information, see the section called “Integration with init
systems”.

• You must create a role that's used to presign the Amazon S3 URLs to AWS IoT Greengrass
software update artifacts. This signer role allows AWS IoT Core to access software update
artifacts stored in Amazon S3 on your behalf. For more information, see the section called “IAM
permissions for OTA updates”.

IAM permissions for OTA updates

When AWS IoT Greengrass releases a new version of the AWS IoT Greengrass Core software, AWS
IoT Greengrass updates the software artifacts stored in Amazon S3 that are used for the OTA
update.

IAM permissions for OTA updates 287

AWS IoT Greengrass Developer Guide, Version 1

Your AWS account must include an Amazon S3 URL signer role that can be used to access
these artifacts. The role must have a permissions policy that allows the s3:GetObject action
on the buckets in target AWS Regions. The role must also have a trust policy that allows
iot.amazonaws.com to assume the role as a trusted entity.

Permissions policy

For role permissions, you can use the AWS managed policy or create a custom policy.

• Use the AWS managed policy

The GreengrassOTAUpdateArtifactAccess managed policy is provided by AWS IoT Greengrass.
Use this policy if you want to allow access in all Amazon Web Services Regions supported by
AWS IoT Greengrass, both current and future.

• Create a custom policy

You should create a custom policy if you want to explicitly specify the Amazon Web Services
Regions where your cores are deployed. The following example policy allows access to AWS
IoT Greengrass software updates in six Regions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccessToGreengrassOTAUpdateArtifacts",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::us-east-1-greengrass-updates/*",
 "arn:aws:s3:::us-west-2-greengrass-updates/*",
 "arn:aws:s3:::ap-northeast-1-greengrass-updates/*",
 "arn:aws:s3:::ap-southeast-2-greengrass-updates/*",
 "arn:aws:s3:::eu-central-1-greengrass-updates/*",
 "arn:aws:s3:::eu-west-1-greengrass-updates/*"
]
 }
]
}

IAM permissions for OTA updates 288

https://console.aws.amazon.com/iam/home?region=us-west-2#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2Fservice-role%2FGreengrassOTAUpdateArtifactAccess

AWS IoT Greengrass Developer Guide, Version 1

Trust policy

The trust policy attached to the role must allow the sts:AssumeRole action and define
iot.amazonaws.com as a principal. This allows AWS IoT Core to assume the role as a trusted
entity. Here's an example policy document:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowIotToAssumeRole",
 "Action": "sts:AssumeRole",
 "Principal": {
 "Service": "iot.amazonaws.com"
 },
 "Effect": "Allow"
 }
]
}

In addition, the user who initiates an OTA update must have permissions to use
greengrass:CreateSoftwareUpdateJob and iot:CreateJob, and to use iam:PassRole to
pass the permissions of the signer role. Here's an example IAM policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "greengrass:CreateSoftwareUpdateJob"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:CreateJob"
],
 "Resource": "*"
 },

IAM permissions for OTA updates 289

AWS IoT Greengrass Developer Guide, Version 1

 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "arn-of-s3-url-signer-role"
 }
]
}

Considerations

Before you launch an OTA update of Greengrass Core software, be aware of the impact on the
devices in your Greengrass group, both on the core device and on client devices connected locally
to that core:

• The core shuts down during the update.

• Any Lambda functions running on the core are shut down. If those functions write to local
resources, they might leave those resources in an incorrect state unless shut down properly.

• During the core's downtime, all its connections with the AWS Cloud are lost. Messages routed
through the core by client devices are lost.

• Credential caches are lost.

• Queues that hold pending work for Lambda functions are lost.

• Long-lived Lambda functions lose their dynamic state information and all pending work is
dropped.

The following state information is preserved during an OTA update:

• Core configuration

• Greengrass group configuration

• Local shadows

• Greengrass logs

• OTA update agent logs

Considerations 290

AWS IoT Greengrass Developer Guide, Version 1

Greengrass OTA update agent

The Greengrass OTA update agent is the software component on the device that handles update
jobs created and deployed in the cloud. The OTA update agent is distributed in the same software
package as the AWS IoT Greengrass Core software. The agent is located in /greengrass-root/
ota/ota_agent/ggc-ota. It writes logs to /var/log/greengrass/ota/ggc_ota.txt.

Note

greengrass-root represents the path where the AWS IoT Greengrass Core software is
installed on your device. Typically, this is the /greengrass directory.

You can start the OTA update agent by executing the binary manually or by integrating it as part
of an init script, such as a systemd service file. If you execute the binary manually, it should be run
as root. When it starts, the OTA update agent listens for AWS IoT Greengrass software update jobs
from AWS IoT Core and executes them sequentially. The OTA update agent ignores all other AWS
IoT job types.

The following excerpt shows an example of a systemd service file to start, stop, and restart the OTA
update agent:

[Unit]
Description=Greengrass OTA Daemon

[Service]
Type=forking
Restart=on-failure
ExecStart=/greengrass/ota/ota_agent/ggc-ota

[Install]
WantedBy=multi-user.target

A core that is the target of an update must not run two instances of the OTA update agent. Doing
so causes the two agents to process the same jobs, which creates conflicts.

Greengrass OTA update agent 291

AWS IoT Greengrass Developer Guide, Version 1

Integration with init systems

During an OTA update, the OTA update agent restarts binaries on the core device. If the binaries
are running, this might cause conflicts when an init system is monitoring the state of the AWS
IoT Greengrass Core software or the agent during the update. To help integrate the OTA update
mechanism with your init monitoring strategies, you can write shell scripts that run before and
after an update. For example, you can use the ggc_pre_update.sh script to back up data or stop
processes before the device shuts down.

To tell the OTA update agent to run these scripts, you must include the "managedRespawn" :
true flag in the config.json file. This setting is shown in the following excerpt:

{
 "coreThing": {
 …
 },
 "runtime": {
 …
 },
 "managedRespawn": true
 …
}

Managed respawn with OTA updates

The following requirements apply to OTA updates with managedRespawn set to true:

• The following shell scripts must be present in the /greengrass-root/usr/scripts directory:

• ggc_pre_update.sh

• ggc_post_update.sh

• ota_pre_update.sh

• ota_post_update.sh

• The scripts must return a successful return code.

• The scripts must be owned by root and executable by root only.

• The ggc_pre_update.sh script must stop the Greengrass daemon.

• The ggc_post_update.sh script must start the Greengrass daemon.

Integration with init systems 292

AWS IoT Greengrass Developer Guide, Version 1

Note

Because the OTA update agent manages its own process, the ota_pre_update.sh and
ota_post_update.sh scripts do not need to stop or start the OTA service.

The OTA update agent runs the scripts from the /greengrass-root/usr/scripts. The
directory tree should look like the following:

<greengrass_root>
|-- certs
|-- config
| |-- config.json
|-- ggc
|-- usr/scripts
| |-- ggc_pre_update.sh
| |-- ggc_post_update.sh
| |-- ota_pre_update.sh
| |-- ota_post_update.sh
|-- ota

When managedRespawn is set to true, the OTA update agent checks the /greengrass-root/
usr/scripts directory for these scripts before and after the software update. If the scripts don't
exist, the update fails. AWS IoT Greengrass does not validate the contents of these scripts. As a
best practice, verify that your scripts function correctly and issue appropriate exit codes for errors.

For OTA updates of the AWS IoT Greengrass Core software:

• Before starting the update, the agent runs the ggc_pre_update.sh script. Use this script for
commands that need to run before the OTA update agent starts the AWS IoT Greengrass Core
software update, such as to back up data or stop any running processes. The following example
shows a simple script to stop the Greengrass daemon.

#!/bin/bash
set -euo pipefail
systemctl stop greengrass

• After completing the update, the agent runs the ggc_post_update.sh script. Use this script
for commands that need to run after the OTA update agent starts the AWS IoT Greengrass Core

Managed respawn with OTA updates 293

AWS IoT Greengrass Developer Guide, Version 1

software update, such as to restart processes. The following example shows a simple script to
start the Greengrass daemon.

#!/bin/bash
set -euo pipefail
systemctl start greengrass

For OTA updates of the OTA update agent:

• Before starting the update, the agent runs the ota_pre_update.sh script. Use this script for
commands that need to run before the OTA update agent updates itself, such as to back up data
or stop any running processes.

• After completing the update, the agent runs the ota_post_update.sh script. Use this script
for commands that need to run after the OTA update agent updates itself, such as to restart
processes.

Note

If managedRespawn is set to false, the OTA update agent does not run the scripts.

Create an OTA update

Follow these steps to perform an OTA update of AWS IoT Greengrass software on one or more
cores:

1. Make sure that your cores meet the requirements for OTA updates.

Note

If you configured an init system to manage the AWS IoT Greengrass Core software or
the OTA update agent, verify the following on your cores:

• The config.json file specifies "managedRespawn" : true.

• The /greengrass-root/usr/scripts directory contains the following scripts:

• ggc_pre_update.sh

Create an OTA update 294

AWS IoT Greengrass Developer Guide, Version 1

• ggc_post_update.sh

• ota_pre_update.sh

• ota_post_update.sh

For more information, see the section called “Integration with init systems”.

2. In a core device terminal, start the OTA update agent.

cd /greengrass-root/ota/ota_agent
sudo ./ggc-ota

Note

greengrass-root represents the path where the AWS IoT Greengrass Core software
is installed on your device. Typically, this is the /greengrass directory.

Don't start multiple instances of the OTA update agent on a core because it might cause
conflicts.

3. Use the AWS IoT Greengrass API to create a software update job.

a. Call the CreateSoftwareUpdateJob API. In this example procedure, we use AWS CLI
commands.

The following command creates a job that updates the AWS IoT Greengrass Core software
on one core. Replace the example values and then run the command.

Linux or macOS terminal

aws greengrass create-software-update-job \
--update-targets-architecture x86_64 \
--update-targets [\"arn:aws:iot:region:123456789012:thing/myCoreDevice\"] \
--update-targets-operating-system ubuntu \
--software-to-update core \
--s3-url-signer-role arn:aws:iam::123456789012:role/myS3UrlSignerRole \
--update-agent-log-level WARN \
--amzn-client-token myClientToken1

Create an OTA update 295

AWS IoT Greengrass Developer Guide, Version 1

Windows command prompt

aws greengrass create-software-update-job ^
--update-targets-architecture x86_64 ^
--update-targets [\"arn:aws:iot:region:123456789012:thing/myCoreDevice\"] ^
--update-targets-operating-system ubuntu ^
--software-to-update core ^
--s3-url-signer-role arn:aws:iam::123456789012:role/myS3UrlSignerRole ^
--update-agent-log-level WARN ^
--amzn-client-token myClientToken1

The command returns the following response.

{
 "IotJobId": "GreengrassUpdateJob_c3bd7f36-ee80-4d42-8321-a1da0EXAMPLE",
 "IotJobArn": "arn:aws:iot:region:123456789012:job/
GreengrassUpdateJob_c3bd7f36-ee80-4d42-8321-a1da0EXAMPLE",
 "PlatformSoftwareVersion": "1.10.1"
}

b. Copy the IoTJobId from the response.

c. Call DescribeJob in the AWS IoT Core API to see the job status. Replace the example value
with your job ID and then run the command.

aws iot describe-job --job-id GreengrassUpdateJob_c3bd7f36-ee80-4d42-8321-
a1da0EXAMPLE

The command returns a response object that contains information about the job,
including status and jobProcessDetails.

{
 "job": {
 "jobArn": "arn:aws:iot:region:123456789012:job/
GreengrassUpdateJob_c3bd7f36-ee80-4d42-8321-a1da0EXAMPLE",
 "jobId": "GreengrassUpdateJob_c3bd7f36-ee80-4d42-8321-a1da0EXAMPLE",
 "targetSelection": "SNAPSHOT",
 "status": "IN_PROGRESS",
 "targets": [
 "arn:aws:iot:region:123456789012:thing/myCoreDevice"

Create an OTA update 296

https://docs.aws.amazon.com/iot/latest/developerguide/manage-job-cli.html#describe-job

AWS IoT Greengrass Developer Guide, Version 1

],
 "description": "This job was created by Greengrass to update the
 Greengrass Cores in the targets with version 1.10.1 of the core software
 running on x86_64 architecture.",
 "presignedUrlConfig": {
 "roleArn": "arn:aws::iam::123456789012:role/myS3UrlSignerRole",
 "expiresInSec": 3600
 },
 "jobExecutionsRolloutConfig": {},
 "createdAt": 1588718249.079,
 "lastUpdatedAt": 1588718253.419,
 "jobProcessDetails": {
 "numberOfCanceledThings": 0,
 "numberOfSucceededThings": 0,
 "numberOfFailedThings": 0,
 "numberOfRejectedThings": 0,
 "numberOfQueuedThings": 1,
 "numberOfInProgressThings": 0,
 "numberOfRemovedThings": 0,
 "numberOfTimedOutThings": 0
 },
 "timeoutConfig": {}
 }
}

For troubleshooting help, see Troubleshooting.

CreateSoftwareUpdateJob API

You can use the CreateSoftwareUpdateJob API to update the AWS IoT Greengrass Core
software or OTA update agent software on your core devices. This API creates an AWS IoT snapshot
job that notifies devices when an update is available. After you call CreateSoftwareUpdateJob,
you can use other AWS IoT job commands to track the software update. For more information, see
Jobs in the AWS IoT Developer Guide.

The following example shows how to use the AWS CLI to create a job that updates the AWS IoT
Greengrass Core software on a core device:

aws greengrass create-software-update-job \
--update-targets-architecture x86_64 \

CreateSoftwareUpdateJob API 297

https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html

AWS IoT Greengrass Developer Guide, Version 1

--update-targets [\"arn:aws:iot:region:123456789012:thing/myCoreDevice\"] \
--update-targets-operating-system ubuntu \
--software-to-update core \
--s3-url-signer-role arn:aws:iam::123456789012:role/myS3UrlSignerRole \
--update-agent-log-level WARN \
--amzn-client-token myClientToken1

The create-software-update-job command returns a JSON response that contains the job ID,
job ARN, and software version that was installed by the update:

{
 "IotJobId": "GreengrassUpdateJob_c3bd7f36-ee80-4d42-8321-a1da0EXAMPLE",
 "IotJobArn": "arn:aws:iot:region:123456789012:job/GreengrassUpdateJob_c3bd7f36-
ee80-4d42-8321-a1da0EXAMPLE",
 "PlatformSoftwareVersion": "1.9.2"
}

For steps that show you how to use create-software-update-job to update a core device, see
the section called “Create an OTA update”.

The create-software-update-job command has the following parameters:

--update-targets-architecture

The architecture of the core device.

Valid values: armv7l, armv6l, x86_64, or aarch64

--update-targets

The cores to update. The list can contain ARNs of individual cores and ARNs of thing groups
whose members are cores. For more information about thing groups, see Static thing groups in
the AWS IoT Developer Guide.

--update-targets-operating-system

The operating system of the core device.

Valid values: ubuntu, amazon_linux, raspbian, or openwrt

--software-to-update

Specifies whether the core's software or the OTA update agent software should be updated.

CreateSoftwareUpdateJob API 298

https://docs.aws.amazon.com/iot/latest/developerguide/thing-groups.html

AWS IoT Greengrass Developer Guide, Version 1

Valid values: core or ota_agent

--s3-url-signer-role

The ARN of the IAM role used to presign the Amazon S3 URL that links to the AWS IoT
Greengrass software update artifacts. The role's attached permissions policy must allow the
s3:GetObject action on the buckets in the target AWS Regions. The role must also allow
iot.amazonaws.com to assume the role as a trusted entity. For more information, see the
section called “IAM permissions for OTA updates”.

--amzn-client-token

(Optional) A client token used to make idempotent requests. Provide a unique token to prevent
duplicate updates from being created because of internal retries.

--update-agent-log-level

(Optional) The logging level for log statements generated by the OTA update agent. The
default is ERROR.

Valid values: NONE, TRACE, DEBUG, VERBOSE, INFO, WARN, ERROR, or FATAL

Note

CreateSoftwareUpdateJob accepts requests only for the following supported
architecture and operating system combinations:

• ubuntu/x86_64

• ubuntu/aarch64

• amazon_linux/x86_64

• raspbian/armv7l

• raspbian/armv6l

• openwrt/aarch64

• openwrt/armv7l

CreateSoftwareUpdateJob API 299

AWS IoT Greengrass Developer Guide, Version 1

Deploy AWS IoT Greengrass groups to an AWS IoT
Greengrass core

Use AWS IoT Greengrass groups to organize entities in your edge environment. You also use groups
to control how the entities in the group interact with each other and with the AWS Cloud. For
example, only the Lambda functions in the group are deployed for running locally, and only the
devices in the group can communicate using the local MQTT server.

A group must include a core, which is an AWS IoT device that runs the AWS IoT Greengrass Core
software. The core acts as an edge gateway and provides AWS IoT Core capabilities in the edge
environment. Depending on your business need, you can also add the following entities to a group:

• Client devices. Represented as things in the AWS IoT registry. These devices must run FreeRTOS
or use the AWS IoT Device SDK or AWS IoT Greengrass Discovery API to get connection
information for the core. Only client devices that are members of the group can connect to the
core.

• Lambda functions. User-defined serverless applications that run code on the core. Lambda
functions are authored in AWS Lambda and referenced from a Greengrass group. For more
information, see Run local Lambda functions.

• Connectors. Predefined serverless applications that run code on the core. Connectors can
provide built-in integration with local infrastructure, device protocols, AWS, and other cloud
services. For more information, see Integrate with services and protocols using connectors.

• Subscriptions. Defines the publishers, subscribers, and MQTT topics (or subjects) that are
authorized for MQTT communication.

• Resources. References to local devices and volumes, machine learning models, and secrets, used
for access control by Greengrass Lambda functions and connectors.

• Logs. Logging configurations for AWS IoT Greengrass system components and Lambda
functions. For more information, see the section called “Monitoring with AWS IoT Greengrass
logs”.

You manage your Greengrass group in the AWS Cloud and then deploy it to a core. The deployment
copies the group configuration to the group.json file on the core device. This file is located in
greengrass-root/ggc/deployments/group.

300

https://docs.aws.amazon.com/freertos/latest/userguide/freertos-lib-gg-connectivity.html

AWS IoT Greengrass Developer Guide, Version 1

Note

During a deployment, the Greengrass daemon process on the core device stops and then
restarts.

Deploying groups from the AWS IoT console

You can deploy a group and manage its deployments from the group's configuration page in the
AWS IoT console.

Note

To open this page in the console, choose Greengrass devices , then Groups (V1), and then
under Greengrass groups, choose your group.

Deploying groups (console) 301

AWS IoT Greengrass Developer Guide, Version 1

To deploy the current version of the group

• From the group configuration page, choose Deploy.

To view the deployment history of the group

A group's deployment history includes the date and time, group version, and status of each
deployment attempt.

1. From the group configuration page, choose the Deployments tab.

2. To see more information about a deployment, including error messages, choose
Deployments from the AWS IoT console, under Greengrass devices.

To redeploy a group deployment

You might want to redeploy a deployment if the current deployment fails or revert to a
different group version.

1. From the AWS IoT console, choose Greengrass devices, and then choose Groups (V1).

2. Choose the Deployments tab.

3. Choose the deployment you want to redeploy and choose Redeploy.

To reset group deployments

You might want to reset group deployments to move or delete a group or to remove
deployment information. For more information, see the section called “Reset deployments”.

1. From the AWS IoT console, choose Greengrass devices, and then choose Groups (V1).

2. Choose the Deployments tab.

3. Choose the deployment you want to reset and choose Reset deployments.

Deploying groups with the AWS IoT Greengrass API

The AWS IoT Greengrass API provides the following actions to deploy AWS IoT Greengrass groups
and manage group deployments. You can call these actions from the AWS CLI, AWS IoT Greengrass
API, or AWS SDK.

Deploying groups (API) 302

AWS IoT Greengrass Developer Guide, Version 1

Action Description

CreateDeployment Creates a NewDeployment or Redeploym
ent deployment.

You might want to redeploy a deployment if
the current deployment fails. Or you might
want to redeploy to revert to a different group
version.

GetDeploymentStatus Returns the status of a deployment:
Building, InProgress , Success, or
Failure.

You can configure Amazon EventBridge events
to receive deployment notifications. For
more information, see the section called “Get
deployment notifications”.

ListDeployments Returns the deployment history for the group.

ResetDeployments Resets the deployments for the group.

You might want to reset group deploymen
ts to move or delete a group or to remove
deployment information. For more informati
on, see the section called “Reset deploymen
ts”.

Note

For information about bulk deployment operations, see the section called “Create bulk
deployments”.

Deploying groups (API) 303

https://docs.aws.amazon.com/greengrass/v1/apireference/createdeployment-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getdeploymentstatus-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listdeployments-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/resetdeployments-post.html

AWS IoT Greengrass Developer Guide, Version 1

Getting the group ID

The group ID is commonly used in API actions. You can use the ListGroups action to find the ID
of the target group from your list of groups. For example, in the AWS CLI, use the list-groups
command.

aws greengrass list-groups

You can also include the query option to filter results. For example:

• To get the most recently created group:

aws greengrass list-groups --query "reverse(sort_by(Groups, &CreationTimestamp))[0]"

• To get a group by name:

aws greengrass list-groups --query "Groups[?Name=='MyGroup']"

Group names are not required to be unique, so multiple groups might be returned.

The following is an example list-groups response. The information for each group includes
the ID of the group (in the Id property) and the ID of the most recent group version (in
the LatestVersion property). To get other version IDs for a group, use the group ID with
ListGroupVersions.

Note

You can also find these values in the AWS IoT console. The group ID is displayed on the
group's Settings page. Group version IDs are displayed on the group's Deployments tab.

{
 "Groups": [
 {
 "LatestVersionArn": "arn:aws:us-west-2:123456789012:/greengrass/
groups/00dedaaa-ac16-484d-ad77-c3eedEXAMPLE/versions/4cbc3f07-fc5e-48c4-
a50e-7d356EXAMPLE",
 "Name": "MyFirstGroup",

Getting the group ID 304

https://docs.aws.amazon.com/greengrass/v1/apireference/listgroups-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listgroupversions-get.html

AWS IoT Greengrass Developer Guide, Version 1

 "LastUpdatedTimestamp": "2019-11-11T05:47:31.435Z",
 "LatestVersion": "4cbc3f07-fc5e-48c4-a50e-7d356EXAMPLE",
 "CreationTimestamp": "2019-11-11T05:47:31.435Z",
 "Id": "00dedaaa-ac16-484d-ad77-c3eedEXAMPLE",
 "Arn": "arn:aws:us-west-2:123456789012:/greengrass/groups/00dedaaa-
ac16-484d-ad77-c3eedEXAMPLE"
 },
 {
 "LatestVersionArn": "arn:aws:us-west-2:123456789012:/greengrass/
groups/036ceaf9-9319-4716-ba2a-237f9EXAMPLE/versions/8fe9e8ec-64d1-4647-
b0b0-01dc8EXAMPLE",
 "Name": "GreenhouseSensors",
 "LastUpdatedTimestamp": "2020-01-07T19:58:36.774Z",
 "LatestVersion": "8fe9e8ec-64d1-4647-b0b0-01dc8EXAMPLE",
 "CreationTimestamp": "2020-01-07T19:58:36.774Z",
 "Id": "036ceaf9-9319-4716-ba2a-237f9EXAMPLE",
 "Arn": "arn:aws:us-west-2:123456789012:/greengrass/
groups/036ceaf9-9319-4716-ba2a-237f9EXAMPLE"
 },
 ...
]
}

If you don't specify an AWS Region, AWS CLI commands use the default Region from your profile.
To return groups in a different Region, include the region option. For example:

aws greengrass list-groups --region us-east-1

Overview of the AWS IoT Greengrass group object model

When programming with the AWS IoT Greengrass API, it's helpful to understand the Greengrass
group object model.

Groups

In the AWS IoT Greengrass API, the top-level Group object consists of metadata and a list of
GroupVersion objects. GroupVersion objects are associated with a Group by ID.

Overview of the group object model 305

AWS IoT Greengrass Developer Guide, Version 1

Group versions

GroupVersion objects define group membership. Each GroupVersion references a
CoreDefinitionVersion and other component versions by ARN. These references determine
which entities to include in the group.

For example, to include three Lambda functions, one device, and two subscriptions in the group,
the GroupVersion references:

• The CoreDefinitionVersion that contains the required core.

• The FunctionDefinitionVersion that contains the three functions.

• The DeviceDefinitionVersion that contains the client device.

Group versions 306

AWS IoT Greengrass Developer Guide, Version 1

• The SubscriptionDefinitionVersion that contains the two subscriptions.

The GroupVersion deployed to a core device determines the entities that are available in the
local environment and how they can interact.

Group components

Components that you add to groups have a three-level hierarchy:

• A Definition that references a list of DefinitionVersion objects of a given type. For example, a
DeviceDefinition references a list of DeviceDefinitionVersion objects.

• A DefinitionVersion that contains a set of entities of a given type. For example, a
DeviceDefinitionVersion contains a list of Device objects.

• Individual entities that define their properties and behavior. For example, a Device defines the
ARN of the corresponding client device in the AWS IoT registry, the ARN of its device certificate,
and whether its local shadow syncs automatically with the cloud.

You can add the following types of entities to a group:

• Connector

• Core

• Device

• Function

• Logger

• Resource

• Subscription

The following example DeviceDefinition references three DeviceDefinitionVersion
objects that each contain multiple Device objects. Only one DeviceDefinitionVersion at a
time is used in a group.

Group components 307

https://docs.aws.amazon.com/greengrass/v1/apireference/definitions-connector.html
https://docs.aws.amazon.com/greengrass/v1/apireference/definitions-core.html
https://docs.aws.amazon.com/greengrass/v1/apireference/definitions-device.html
https://docs.aws.amazon.com/greengrass/v1/apireference/definitions-function.html
https://docs.aws.amazon.com/greengrass/v1/apireference/definitions-logger.html
https://docs.aws.amazon.com/greengrass/v1/apireference/definitions-resource.html
https://docs.aws.amazon.com/greengrass/v1/apireference/definitions-subscription.html

AWS IoT Greengrass Developer Guide, Version 1

Updating groups

In the AWS IoT Greengrass API, you use versions to update a group's configuration. Versions are
immutable, so to add, remove, or change group components, you must create DefinitionVersion
objects that contain new or updated entities.

You can associate new DefinitionVersions objects with new or existing Definition objects.
For example, you can use the CreateFunctionDefinition action to create a
FunctionDefinition that includes the FunctionDefinitionVersion as an initial version,
or you can use the CreateFunctionDefinitionVersion action and reference an existing
FunctionDefinition.

After you create your group components, you create a GroupVersion that contains all
DefinitionVersion objects that you want to include in the group. Then, you deploy the
GroupVersion.

To deploy a GroupVersion, it must reference a CoreDefinitionVersion that contains exactly
one Core. All referenced entities must be members of the group. Also, a Greengrass service
role must be associated with your AWS account in the AWS Region where you are deploying the
GroupVersion.

Updating groups 308

AWS IoT Greengrass Developer Guide, Version 1

Note

The Update actions in the API are used to change the name of a Group or component
Definition object.

Updating entities that reference AWS resources

Greengrass Lambda functions and secret resources define Greengrass-specific properties and also
reference corresponding AWS resources. To update these entities, you might make changes to the
corresponding AWS resource instead of your Greengrass objects. For example, Lambda functions
reference a function in AWS Lambda and also define lifecycle and other properties that are specific
to the Greengrass group.

• To update Lambda function code or packaged dependencies, make your changes in AWS
Lambda. During the next group deployment, these changes are retrieved from AWS Lambda and
copied to your local environment.

• To update Greengrass-specific properties, you create a FunctionDefinitionVersion that
contains the updated Function properties.

Note

Greengrass Lambda functions can reference a Lambda function by alias ARN or version
ARN. If you reference the alias ARN (recommended), you don't need to update your
FunctionDefinitionVersion (or SubscriptionDefinitionVersion) when you
publish a new function version in AWS Lambda. For more information, see the section
called “Reference functions by alias or version”.

See also

• the section called “Get deployment notifications”

• the section called “Reset deployments”

• the section called “Create bulk deployments”

• Troubleshooting Deployment Issues

See also 309

AWS IoT Greengrass Developer Guide, Version 1

• AWS IoT Greengrass Version 1 API Reference

• AWS IoT Greengrass commands in the AWS CLI Command Reference

Get deployment notifications

Amazon EventBridge event rules provide you with notifications about state changes for your
Greengrass group deployments. EventBridge delivers a near real-time stream of system events that
describes changes in AWS resources. AWS IoT Greengrass sends these events to EventBridge on
an at least once basis. This means that AWS IoT Greengrass might send multiple copies of a given
event to ensure delivery. Additionally, your event listeners might not receive the events in the order
that the events occurred.

Note

Amazon EventBridge is an event bus service that you can use to connect your applications
with data from a variety of sources, such as Greengrass core devices and deployment
notifications. For more information, see What is Amazon EventBridge? in the Amazon
EventBridge User Guide.

AWS IoT Greengrass emits an event when group deployments change state. You can create an
EventBridge rule that runs for all state transitions or transitions to states you specify. When a
deployment enters a state that initiates a rule, EventBridge invokes the target actions defined in
the rule. This allows you to send notifications, capture event information, take corrective action,
or initiate other events in response to a state change. For example, you can create rules for the
following use cases:

• Initiate post-deployment operations, such as downloading assets and notifying personnel.

• Send notifications upon a successful or failed deployment.

• Publish custom metrics about deployment events.

AWS IoT Greengrass emits an event when a deployment enters the following states: Building,
InProgress, Success, and Failure.

Get deployment notifications 310

https://docs.aws.amazon.com/greengrass/v1/apireference/
https://docs.aws.amazon.com/cli/latest/reference/greengrass/index.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html

AWS IoT Greengrass Developer Guide, Version 1

Note

Monitoring the status of a bulk deployment operation is not currently supported. However,
AWS IoT Greengrass emits state-change events for individual group deployments that are
part of a bulk deployment.

Group deployment status change event

The event for a deployment state change uses the following format:

{
 "version":"0",
 "id":" cd4d811e-ab12-322b-8255-EXAMPLEb1bc8",
 "detail-type":"Greengrass Deployment Status Change",
 "source":"aws.greengrass",
 "account":"123456789012",
 "time":"2018-03-22T00:38:11Z",
 "region":"us-west-2",
 "resources":[],
 "detail":{
 "group-id": "284dcd4e-24bc-4c8c-a770-EXAMPLEf03b8",
 "deployment-id": "4f38f1a7-3dd0-42a1-af48-EXAMPLE09681",
 "deployment-type": "NewDeployment|Redeployment|ResetDeployment|
ForceResetDeployment",
 "status": "Building|InProgress|Success|Failure"
 }
}

You can create rules that apply to one or more groups. You can filter rules by one or more of the
following deployment types and deployment states:

Deployment types

• NewDeployment. The first deployment of a group version.

• ReDeployment. A redeployment of a group version.

• ResetDeployment. Deletes deployment information stored in the AWS Cloud and on the
AWS IoT Greengrass core. For more information, see the section called “Reset deployments”.

Group deployment status change event 311

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html

AWS IoT Greengrass Developer Guide, Version 1

• ForceResetDeployment. Deletes deployment information stored in the AWS Cloud and
reports success without waiting for the core to respond. Also deletes deployment information
stored on the core if the core is connected or when it next connects.

Deployment states

• Building. AWS IoT Greengrass is validating the group configuration and building
deployment artifacts.

• InProgress. The deployment is in progress on the AWS IoT Greengrass core.

• Success. The deployment was successful.

• Failure. The deployment failed.

It's possible that events might be duplicated or out of order. To determine the order of events, use
the time property.

Note

AWS IoT Greengrass doesn't use the resources property, so it's always empty.

Prerequisites for creating EventBridge rules

Before you create an EventBridge rule for AWS IoT Greengrass, do the following:

• Familiarize yourself with events, rules, and targets in EventBridge.

• Create and configure the targets invoked by your EventBridge rules. Rules can invoke many types
of targets, including:

• Amazon Simple Notification Service (Amazon SNS)

• AWS Lambda functions

• Amazon Kinesis Video Streams

• Amazon Simple Queue Service (Amazon SQS) queues

For more information, see What is Amazon EventBridge? and Getting started with Amazon
EventBridge in the Amazon EventBridge User Guide.

Prerequisites for creating EventBridge rules 312

https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-getting-set-up.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-getting-set-up.html

AWS IoT Greengrass Developer Guide, Version 1

Configure deployment notifications (console)

Use the following steps to create an EventBridge rule that publishes an Amazon SNS topic when
the deployment state changes for a group. This allows web servers, email addresses, and other
topic subscribers to respond to the event. For more information, see Creating a EventBridge rule
that triggers on an event from an AWS resource in the Amazon EventBridge User Guide.

1. Open the Amazon EventBridge console.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

4. Enter a name and description for the rule.

A rule can't have the same name as another rule in the same Region and on the same event
bus.

5. For Event bus, choose the event bus that you want to associate with this rule. If you want this
rule to match events that come from your account, select AWS default event bus. When an
AWS service in your account emits an event, it always goes to your account's default event bus.

6. For Rule type, choose Rule with an event pattern.

7. Choose Next.

8. For Event source, choose AWS services.

9. For Event pattern, choose AWS services.

10. For AWS service, choose Greengrass.

11. For Event type, choose Greengrass Deployment Status Change.

Note

The AWS API Call via CloudTrail event type is based on AWS IoT Greengrass
integration with AWS CloudTrail. You can use this option to create rules initiated
by read or write calls to the AWS IoT Greengrass API. For more information, see the
section called “Logging AWS IoT Greengrass API calls with AWS CloudTrail”.

12. Choose the deployment states that initiate a notification.

• To receive notifications for all state change events, choose Any state.

• To receive notifications for some state change events only, choose Specific state(s), and
then choose the target states.

Configure deployment notifications (console) 313

https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html
https://console.aws.amazon.com/events/

AWS IoT Greengrass Developer Guide, Version 1

13. Choose the deployment types that initiate a notification.

• To receive notifications for all deployment types, choose Any state.

• To receive notifications for some deployment types only, choose Specific state(s), and then
choose the target deployment types.

14. Choose Next.

15. For Target types, choose AWS service.

16. For Select a target, configure your target. This example uses an Amazon SNS topic, but you
can configure other target types to send notifications.

a. For Target, choose SNS topic.

b. For Topic, choose your target topic.

c. Choose Next.

17. Under Tags, define tags for the rule or leave the fields empty.

18. Choose Next.

19. Review the details of the rule and choose Create rule.

Configure deployment notifications (CLI)

Use the following steps to create an EventBridge rule that publishes an Amazon SNS topic when
the deployment state changes for a group. This allows web servers, email addresses, and other
topic subscribers to respond to the event.

1. Create the rule.

• Replace group-id with the ID of your AWS IoT Greengrass group.

aws events put-rule \
 --name TestRule \
 --event-pattern "{\"source\": [\"aws.greengrass\"], \"detail\": {\"group-id\":
 [\"group-id\"]}}"

Properties that are omitted from the pattern are ignored.

2. Add the topic as a rule target.

• Replace topic-arn with the ARN of your Amazon SNS topic.

Configure deployment notifications (CLI) 314

AWS IoT Greengrass Developer Guide, Version 1

aws events put-targets \
 --rule TestRule \
 --targets "Id"="1","Arn"="topic-arn"

Note

To allow Amazon EventBridge to call your target topic, you must add a resource-based
policy to your topic. For more information, see Amazon SNS permissions in the Amazon
EventBridge User Guide.

For more information, see Events and event patterns in EventBridge in the Amazon EventBridge
User Guide.

Configure deployment notifications (AWS CloudFormation)

Use AWS CloudFormation templates to create EventBridge rules that send notifications about state
changes for your Greengrass group deployments. For more information, see Amazon EventBridge
resource type reference in the AWS CloudFormation User Guide.

See also

• Deploy AWS IoT Greengrass groups

• What is Amazon EventBridge? in the Amazon EventBridge User Guide

Reset deployments

This feature is available for AWS IoT Greengrass Core v1.1 and later.

You might want to reset a group's deployments to:

• Delete the group, such as when you want to move the group's core to another group, or
the group's core has been reimaged. Before you delete a group, you must reset the group's
deployments to use the core with another Greengrass group.

• Move the group's core to a different group.

• Revert the group to its state before any deployments.

Configure deployment notifications (AWS CloudFormation) 315

https://docs.aws.amazon.com/eventbridge/latest/userguide/resource-based-policies-eventbridge.html#sns-permissions
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_Events.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_Events.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html

AWS IoT Greengrass Developer Guide, Version 1

• Remove the deployment configuration from the core device.

• Delete sensitive data from the core device or from the cloud.

• Deploy a new group configuration to a core without having to replace the core with another in
the current group.

Note

Reset deployments functionality is not available in AWS IoT Greengrass Core Software
v1.0.0. You cannot delete a group that has been deployed using v1.0.0.

The reset deployments operation first cleans up all deployment information stored in the cloud
for a given group. It then instructs the group's core device to clean up all of its deployment related
information as well (Lambda functions, user logs, shadow database and server certificate, but not
the user-defined config.json or the Greengrass core certificates). You cannot initiate a reset of
deployments for a group if the group currently has a deployment with status of In Progress or
Building.

Reset deployments from the AWS IoT console

You can reset group deployments from group configuration page in the AWS IoT console.

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose the target group.

3. From the Deployments tab, choose Reset deployments.

4. In the Reset deployments for this Greengrass Group dialog box, type confirm to agree, and
choose Reset deployment.

Reset deployments with the AWS IoT Greengrass API

You can use the ResetDeployments action in the AWS CLI, AWS IoT Greengrass API, or AWS SDK
to reset deployments. The examples in this topic use the CLI.

aws greengrass reset-deployments --group-id GroupId [--force]

Reset deployments from the AWS IoT console 316

AWS IoT Greengrass Developer Guide, Version 1

Arguments for the reset-deployments CLI command:

--group-id

The group ID. Use the list-groups command to get this value.

--force

Optional. Use this parameter if the group's core device has been lost, stolen, or destroyed. This
option causes the reset deployment process to report success after all deployment information
in the cloud has been cleaned up, without waiting for a core device to respond. However, if the
core device is or becomes active, it also performs cleanup operations.

The output of the reset-deployments CLI command looks like this:

{
 "DeploymentId": "4db95ef8-9309-4774-95a4-eea580b6ceef",
 "DeploymentArn": "arn:aws:greengrass:us-west-2:106511594199:/greengrass/groups/
b744ed45-a7df-4227-860a-8d4492caa412/deployments/4db95ef8-9309-4774-95a4-eea580b6ceef"
}

You can check the status of the reset deployment with the get-deployment-status CLI
command:

aws greengrass get-deployment-status --deployment-id DeploymentId --group-id GroupId

Arguments for the get-deployment-status CLI command:

--deployment-id

The deployment ID.

--group-id

The group ID.

The output of the get-deployment-status CLI command looks like this:

{
 "DeploymentStatus": "Success",
 "UpdatedAt": "2017-04-04T00:00:00.000Z"

Reset deployments with the AWS IoT Greengrass API 317

AWS IoT Greengrass Developer Guide, Version 1

}

The DeploymentStatus is set to Building when the reset deployment is being prepared.
When the reset deployment is ready but the AWS IoT Greengrass core has not picked up the reset
deployment, the DeploymentStatus is InProgress.

If the reset operation fails, error information is returned in the response.

See also

• Deploy AWS IoT Greengrass groups

• ResetDeployments in the AWS IoT Greengrass Version 1 API Reference

• GetDeploymentStatus in the AWS IoT Greengrass Version 1 API Reference

Create bulk deployments for groups

You can use simple API calls to deploy large numbers of Greengrass groups at once. These
deployments are triggered with an adaptive rate that has a fixed upper limit.

This tutorial describes how to use the AWS CLI to create and monitor a bulk group deployment in
AWS IoT Greengrass. The bulk deployment example in this tutorial contains multiple groups. You
can use the example in your implementation to add as many groups as you need.

The tutorial contains the following high-level steps:

1. Create and upload the bulk deployment input file

2. Create and configure an IAM execution role for bulk deployments

3. Allow your execution role access to your S3 Bucket

4. Deploy the groups

5. Test the deployment

Prerequisites

To complete this tutorial, you need:

• One or more deployable Greengrass groups. For more information about creating AWS IoT
Greengrass groups and cores, see Getting started with AWS IoT Greengrass.

See also 318

https://docs.aws.amazon.com/greengrass/v1/apireference/resetdeployments-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getdeploymentstatus-get.html

AWS IoT Greengrass Developer Guide, Version 1

• The AWS CLI installed and configured on your machine. For information, see the AWS CLI User
Guide.

• An S3 bucket created in the same AWS Region as AWS IoT Greengrass. For information, see
Creating and configuring an S3 bucket in the Amazon Simple Storage Service User Guide.

Note

Currently, SSE KMS enabled buckets are not supported.

Step 1: Create and upload the bulk deployment input file

In this step, you create a deployment input file and upload it to your Amazon S3 bucket. This file
is a serialized, line-delimited JSON file that contains information about each group in your bulk
deployment. AWS IoT Greengrass uses this information to deploy each group on your behalf when
you initialize your bulk group deployment.

1. Run the following command to get the groupId for each group you want to deploy. You enter
the groupId into your bulk deployment input file so that AWS IoT Greengrass can identify
each group to be deployed.

Note

You can also find these values in the AWS IoT console. The group ID is displayed on the
group's Settings page. Group version IDs are displayed on the group's Deployments
tab.

aws greengrass list-groups

The response contains information about each group in your AWS IoT Greengrass account:

{
 "Groups": [
 {

Create and upload the bulk deployment input file 319

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-configure-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-configure-bucket.html

AWS IoT Greengrass Developer Guide, Version 1

 "Name": "string",
 "Id": "string",
 "Arn": "string",
 "LastUpdatedTimestamp": "string",
 "CreationTimestamp": "string",
 "LatestVersion": "string",
 "LatestVersionArn": "string"
 }
],
 "NextToken": "string"
}

Run the following command to get the groupVersionId of each group you want to deploy.

list-group-versions --group-id groupId

The response contains information about all of the versions in the group. Make a note of the
Version value for the group version you want to use.

{
 "Versions": [
 {
 "Arn": "string",
 "Id": "string",
 "Version": "string",
 "CreationTimestamp": "string"
 }
],
 "NextToken": "string"
}

2. In your computer terminal or editor of choice, create a file, MyBulkDeploymentInputFile,
from the following example. This file contains information about each AWS IoT Greengrass
group to be included in a bulk deployment. Although this example defines multiple groups, for
this tutorial, your file can contain just one.

Create and upload the bulk deployment input file 320

AWS IoT Greengrass Developer Guide, Version 1

Note

The size of this file must be less than 100 MB.

{"GroupId":"groupId1", "GroupVersionId":"groupVersionId1",
 "DeploymentType":"NewDeployment"}
{"GroupId":"groupId2", "GroupVersionId":"groupVersionId2",
 "DeploymentType":"NewDeployment"}
{"GroupId":"groupId3", "GroupVersionId":"groupVersionId3",
 "DeploymentType":"NewDeployment"}
...

Each record (or line) contains a group object. Each group object contains its corresponding
GroupId and GroupVersionId and a DeploymentType. Currently, AWS IoT Greengrass
supports NewDeployment bulk deployment types only.

Save and close your file. Make a note of the location of the file.

3. Use the following command in your terminal to upload your input file to your Amazon S3
bucket. Replace the file path with the location and name of your file. For information, see Add
an object to a bucket.

aws s3 cp path/MyBulkDeploymentInputFile s3://my-bucket/

Step 2: Create and configure an IAM execution role

In this step, you use the IAM console to create a standalone execution role. You then establish a
trust relationship between the role and AWS IoT Greengrass and ensure that your IAM user has
PassRole privileges for your execution role. This allows AWS IoT Greengrass to assume your
execution role and create the deployments on your behalf.

1. Use the following policy to create an execution role. This policy document allows AWS IoT
Greengrass to access your bulk deployment input file when it creates each deployment on your
behalf.

Create and configure an IAM execution role for bulk deployments 321

https://docs.aws.amazon.com/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html

AWS IoT Greengrass Developer Guide, Version 1

For more information about creating an IAM role and delegating permissions, see Creating IAM
roles.

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "greengrass:CreateDeployment",
 "Resource": [
 "arn:aws:greengrass:region:accountId:/greengrass/groups/groupId1",
 "arn:aws:greengrass:region:accountId:/greengrass/groups/groupId2",
 "arn:aws:greengrass:region:accountId:/greengrass/groups/groupId3",
 ...
]
 }
]
}

Note

This policy must have a resource for each group or group version in your bulk
deployment input file to be deployed by AWS IoT Greengrass. To allow access to all
groups, for Resource, specify an asterisk:

"Resource": ["*"]

2. Modify the trust relationship for your execution role to include AWS IoT Greengrass. This
allows AWS IoT Greengrass to use your execution role and the permissions attached to it. For
information, see Editing the trust relationship for an existing role.

We recommend that you also include the aws:SourceArn and aws:SourceAccount global
condition context keys in your trust policy to help prevent the confused deputy security
problem. The condition context keys restrict access to allow only those requests that come
from the specified account and Greengrass workspace. For more information about the
confused deputy problem, see Cross-service confused deputy prevention.

Create and configure an IAM execution role for bulk deployments 322

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/edit_trust.html

AWS IoT Greengrass Developer Guide, Version 1

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "greengrass.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account-id"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:greengrass:region:account-id:*"
 }
 }
 }
]
}

3. Give IAM PassRole permissions for your execution role to your IAM user. This IAM user is the
one used to initiate the bulk deployment. PassRole permissions allow your IAM user to pass
your execution role to AWS IoT Greengrass for use. For more information, see Granting a user
permissions to pass a role to an AWS service.

Use the following example to update the IAM policy attached to your execution role. Modify
this example, as necessary.

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1508193814000",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [

Create and configure an IAM execution role for bulk deployments 323

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html

AWS IoT Greengrass Developer Guide, Version 1

 "arn:aws:iam::account-id:user/executionRoleArn"
]
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "greengrass.amazonaws.com"
 }
 }
 }
]
}

Step 3: Allow your execution role access to your S3 Bucket

To start your bulk deployment, your execution role must be able to read your bulk deployment
input file from your Amazon S3 bucket. Attach the following example policy to your Amazon S3
bucket so its GetObject permissions are accessible to your execution role.

For more information, see How do I add an S3 bucket policy?

{
 "Version": "2008-10-17",
 "Id": "examplePolicy",
 "Statement": [
 {
 "Sid": "Stmt1535408982966",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "executionRoleArn"
]
 },
 "Action": "s3:GetObject",
 "Resource":
 "arn:aws:s3:::my-bucket/objectKey"
 }
]
}

You can use the following command in your terminal to check your bucket's policy:

Allow your execution role access to your S3 Bucket 324

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-bucket-policy.html

AWS IoT Greengrass Developer Guide, Version 1

aws s3api get-bucket-policy --bucket my-bucket

Note

You can directly modify your execution role to grant it permission to your Amazon S3
bucket's GetObject permissions instead. To do this, attach the following example policy to
your execution role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::my-bucket/objectKey"
 }
]
}

Step 4: Deploy the groups

In this step, you start a bulk deployment operation for all group versions configured in your
bulk deployment input file. The deployment action for each of your group versions is of type
NewDeploymentType.

Note

You cannot call StartBulkDeployment while another bulk deployment from the same
account is still running. The request is rejected.

1. Use the following command to start the bulk deployment.

We recommend that you include an X-Amzn-Client-Token token in every
StartBulkDeployment request. These requests are idempotent with respect to the token and

Deploy the groups 325

AWS IoT Greengrass Developer Guide, Version 1

the request parameters. This token can be any unique, case-sensitive string of up to 64 ASCII
characters.

aws greengrass start-bulk-deployment --cli-input-json "{
 "InputFileUri":"URI of file in S3 bucket",
 "ExecutionRoleArn":"ARN of execution role",
 "AmznClientToken":"your Amazon client token"
 }"

The command should result in a successful status code of 200, along with the following
response:

{
 "bulkDeploymentId": UUID
}

Make a note of the bulk deployment ID. It can be used to check the status of your bulk
deployment.

Note

Although bulk deployment operations are not currently supported, you can create
Amazon EventBridge event rules to get notifications about deployment status changes
for individual groups. For more information, see the section called “Get deployment
notifications”.

2. Use the following command to check the status of your bulk deployment.

aws greengrass get-bulk-deployment-status --bulk-deployment-id 1234567

The command should return a successful status code of 200 in addition to a JSON payload of
information:

 {
 "BulkDeploymentStatus": Running,

Deploy the groups 326

AWS IoT Greengrass Developer Guide, Version 1

 "Statistics": {
 "RecordsProcessed": integer,
 "InvalidInputRecords": integer,
 "RetryAttempts": integer
 },
 "CreatedAt": "string",
 "ErrorMessage": "string",
 "ErrorDetails": [
 {
 "DetailedErrorCode": "string",
 "DetailedErrorMessage": "string"
 }
]
}

BulkDeploymentStatus contains the current status of the bulk execution. The execution can
have one of six different statuses:

• Initializing. The bulk deployment request has been received, and the execution is
preparing to start.

• Running. The bulk deployment execution has started.

• Completed. The bulk deployment execution has finished processing all records.

• Stopping. The bulk deployment execution has received a command to stop and will
terminate shortly. You can't start a new bulk deployment while a previous deployment is in
the Stopping state.

• Stopped. The bulk deployment execution has been manually stopped.

• Failed. The bulk deployment execution has encountered an error and terminated. You can
find error details in the ErrorDetails field.

The JSON payload also includes statistical information about the progress of the bulk
deployment. You can use this information to determine how many groups have been
processed and how many have failed. The statistical information includes:

• RecordsProcessed: The number of group records that were attempted.

• InvalidInputRecords: The total number of records that returned a non-retryable error.
For example, this can occur if a group record from the input file uses an invalid format or

Deploy the groups 327

AWS IoT Greengrass Developer Guide, Version 1

specifies a nonexistent group version, or if the execution doesn't grant permission to deploy
a group or group version.

• RetryAttempts: The number of deployment attempts that returned a retryable error. For
example, a retry is triggered if the attempt to deploy a group returns a throttling error. A
group deployment can be retried up to five times.

In the case of a bulk deployment execution failure, this payload also includes an
ErrorDetails section that can be used for troubleshooting. It contains information about
the cause of the execution failure.

You can periodically check the status of the bulk deployment to confirm that it is progressing
as expected. After the deployment is complete, RecordsProcessed should be equal to the
number of deployment groups in your bulk deployment input file. This indicates that each
record has been processed.

Step 5: Test the deployment

Use the ListBulkDeployments command to find the ID of your bulk deployment.

aws greengrass list-bulk-deployments

This command returns a list of all of your bulk deployments from most to least recent, including
your BulkDeploymentId.

{
 "BulkDeployments": [
 {
 "BulkDeploymentId": 1234567,
 "BulkDeploymentArn": "string",
 "CreatedAt": "string"
 }
],
 "NextToken": "string"
}

Test the deployment 328

AWS IoT Greengrass Developer Guide, Version 1

Now call the ListBulkDeploymentDetailedReports command to gather detailed information about
each deployment.

aws greengrass list-bulk-deployment-detailed-reports --bulk-deployment-id 1234567

The command should return a successful status code of 200 along with a JSON payload of
information:

{
 "BulkDeploymentResults": [
 {
 "DeploymentId": "string",
 "GroupVersionedArn": "string",
 "CreatedAt": "string",
 "DeploymentStatus": "string",
 "ErrorMessage": "string",
 "ErrorDetails": [
 {
 "DetailedErrorCode": "string",
 "DetailedErrorMessage": "string"
 }
]
 }
],
 "NextToken": "string"
}

This payload usually contains a paginated list of each deployment and its deployment status from
most to least recent. It also contains more information in the event of a bulk deployment execution
failure. Again, the total number of deployments listed should be equal to the number of groups
you identified in your bulk deployment input file.

The information returned can change until the deployments are in a terminal state (success or
failure). You can call this command periodically until then.

Test the deployment 329

AWS IoT Greengrass Developer Guide, Version 1

Troubleshooting bulk deployments

If the bulk deployment is not successful, you can try the following troubleshooting steps. Run the
commands in your terminal.

Troubleshoot input file errors

The bulk deployment can fail in the event of syntax errors in the bulk deployment input file. This
returns a bulk deployment status of Failed with an error message indicating the line number of
the first validation error. There are four possible errors:

• InvalidInputFile: Missing GroupId at line number: line number

This error indicates that the given input file line is unable to register the specified parameter. The
possible missing parameters are the GroupId and the GroupVersionId.

• InvalidInputFile: Invalid deployment type at line number : line number. Only valid
 type is 'NewDeployment'.

This error indicates that the given input file line lists an invalid deployment type. At this time, the
only supported deployment type is a NewDeployment.

• Line %s is too long in S3 File. Valid line is less than 256 chars.

This error indicates that the given input file line is too long and must be shortened.

• Failed to parse input file at line number: line number

This error indicates that the given input file line is not considered valid json.

Check for concurrent bulk deployments

You cannot start a new bulk deployment while another one is still running or in a non-
terminal state. This can result in a Concurrent Deployment Error. You can use the

Troubleshooting bulk deployments 330

AWS IoT Greengrass Developer Guide, Version 1

ListBulkDeployments command to verify that a bulk deployment is not currently running. This
command lists your bulk deployments from most to least recent.

{
 "BulkDeployments": [
 {
 "BulkDeploymentId": BulkDeploymentId,
 "BulkDeploymentArn": "string",
 "CreatedAt": "string"
 }
],
 "NextToken": "string"
}

Use the BulkDeploymentId of the first listed bulk deployment to run the
GetBulkDeploymentStatus command. If your most recent bulk deployment is in a running state
(Initializing or Running), use the following command to stop the bulk deployment.

aws greengrass stop-bulk-deployment --bulk-deployment-id BulkDeploymentId

This action results in a status of Stopping until the deployment is Stopped. After the deployment
has reached a Stopped status, you can start a new bulk deployment.

Check ErrorDetails

Run the GetBulkDeploymentStatus command to return a JSON payload that contains
information about any bulk deployment execution failure.

 "Message": "string",
 "ErrorDetails": [
 {
 "DetailedErrorCode": "string",
 "DetailedErrorMessage": "string"
 }
]

Troubleshooting bulk deployments 331

AWS IoT Greengrass Developer Guide, Version 1

When exiting with an error, the ErrorDetails JSON payload that is returned by this call contains
more information about the bulk deployment execution failure. An error status code in the
400 series, for example, indicates an input error, either in the input parameters or the caller
dependencies.

Check the AWS IoT Greengrass core log

You can troubleshoot issues by viewing the AWS IoT Greengrass core logs. Use the following
commands to view runtime.log:

cd /greengrass/ggc/var/log
sudo cat system/runtime.log | more

For more information about AWS IoT Greengrass logging, see Monitoring with AWS IoT Greengrass
logs.

See also

For more information, see the following resources:

• Deploy AWS IoT Greengrass groups

• Amazon S3 API commands in the AWS CLI Command Reference

• AWS IoT Greengrass commands in the AWS CLI Command Reference

See also 332

https://docs.aws.amazon.com/cli/latest/reference/s3api
https://docs.aws.amazon.com/cli/latest/reference/greengrass/index.html

AWS IoT Greengrass Developer Guide, Version 1

Run Lambda functions on the AWS IoT Greengrass core

AWS IoT Greengrass provides a containerized Lambda runtime environment for user-defined code
that you author in AWS Lambda. Lambda functions that are deployed to an AWS IoT Greengrass
core run in the core's local Lambda runtime. Local Lambda functions can be triggered by local
events, messages from the cloud, and other sources, which brings local compute functionality to
client devices. For example, you can use Greengrass Lambda functions to filter device data before
transmitting the data to the cloud.

To deploy a Lambda function to a core, you add the function to a Greengrass group (by referencing
the existing Lambda function), configure group-specific settings for the function, and then deploy
the group. If the function accesses AWS services, you also must add any required permissions to the
Greengrass group role.

You can configure parameters that determine how the Lambda functions run, including
permissions, isolation, memory limits, and more. For more information, see the section called
“Controlling Greengrass Lambda function execution”.

Note

These settings also make it possible to run AWS IoT Greengrass in a Docker container. For
more information, see the section called “Run AWS IoT Greengrass in a Docker container”.

The following table lists supported AWS Lambda runtimes and the versions of AWS IoT Greengrass
Core software that they can run on.

Language or platform GGC version

Python 3.8 1.11

Python 3.7 1.9 or later

Python 2.7 * 1.0 or later

Java 8 1.1 or later

Node.js 12.x * 1.10 or later

333

https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html

AWS IoT Greengrass Developer Guide, Version 1

Language or platform GGC version

Node.js 8.10 * 1.9 or later

Node.js 6.10 * 1.1 or later

C, C++ 1.6 or later

* You can run Lambda functions that use these runtimes on supported versions of AWS IoT
Greengrass, but you can't create them in AWS Lambda. If the runtime on your device is different
from the AWS Lambda runtime specified for that function, you are able to choose your own
runtime by using FunctionRuntimeOverride in FunctionDefintionVersion. For more
information, see CreateFunctionDefinition. For more information about supported runtimes, see
Runtime support policy in the AWS Lambda Developer Guide.

SDKs for Greengrass Lambda functions

AWS provides three SDKs that can be used by Greengrass Lambda functions running on an AWS
IoT Greengrass core. These SDKs are contained in different packages, so functions can use them
simultaneously. To use an SDK in a Greengrass Lambda function, include it in the Lambda function
deployment package that you upload to AWS Lambda.

AWS IoT Greengrass Core SDK

Enables local Lambda functions to interact with the core to:

• Exchange MQTT messages with AWS IoT Core.

• Exchange MQTT messages with connectors, client devices, and other Lambda functions in the
Greengrass group.

• Interact with the local shadow service.

• Invoke other local Lambda functions.

• Access secret resources.

• Interact with stream manager.

AWS IoT Greengrass provides the AWS IoT Greengrass Core SDK in the following languages and
platforms on GitHub.

• AWS IoT Greengrass Core SDK for Java

SDKs 334

https://docs.aws.amazon.com/greengrass/v1/apireference/createfunctiondefinition-post.html
https://docs.aws.amazon.com/lambda/latest/dg/runtime-support-policy.html
https://github.com/aws/aws-greengrass-core-sdk-java/

AWS IoT Greengrass Developer Guide, Version 1

• AWS IoT Greengrass Core SDK for Node.js

• AWS IoT Greengrass Core SDK for Python

• AWS IoT Greengrass Core SDK for C

To include the AWS IoT Greengrass Core SDK dependency in the Lambda function deployment
package:

1. Download the language or platform of the AWS IoT Greengrass Core SDK package that
matches the runtime of your Lambda function.

2. Unzip the downloaded package to get the SDK. The SDK is the greengrasssdk folder.

3. Include greengrasssdk in the Lambda function deployment package that contains
your function code. This is the package you upload to AWS Lambda when you create the
Lambda function.

 StreamManagerClient

Only the following AWS IoT Greengrass Core SDKs can be used for stream manager operations:

• Java SDK (v1.4.0 or later)

• Python SDK (v1.5.0 or later)

• Node.js SDK (v1.6.0 or later)

To use the AWS IoT Greengrass Core SDK for Python to interact with stream manager, you must
install Python 3.7 or later. You must also install dependencies to include in your Python Lambda
function deployment packages:

1. Navigate to the SDK directory that contains the requirements.txt file. This file lists the
dependencies.

2. Install the SDK dependencies. For example, run the following pip command to install them
in the current directory:

pip install --target . -r requirements.txt

 Install the AWS IoT Greengrass Core SDK for Python on the core device

SDKs 335

https://github.com/aws/aws-greengrass-core-sdk-js/
https://github.com/aws/aws-greengrass-core-sdk-python/
https://github.com/aws/aws-greengrass-core-sdk-c/

AWS IoT Greengrass Developer Guide, Version 1

If you're running Python Lambda functions, you can also use pip to install the AWS IoT
Greengrass Core SDK for Python on the core device. Then you can deploy your functions
without including the SDK in the Lambda function deployment package. For more information,
see greengrasssdk.

This support is intended for cores with size constraints. We recommend that you include the
SDK in your Lambda function deployment packages when possible.

AWS IoT Greengrass Machine Learning SDK

Enables local Lambda functions to consume machine learning (ML) models that are deployed to
the Greengrass core as ML resources. Lambda functions can use the SDK to invoke and interact
with a local inference service that's deployed to the core as a connector. Lambda functions and
ML connectors can also use the SDK to send data to the ML Feedback connector for uploading
and publishing. For more information, including code examples that use the SDK, see the
section called “ML Image Classification”, the section called “ML Object Detection”, and the
section called “ML Feedback”.

The following table lists supported languages or platforms for SDK versions and the versions of
AWS IoT Greengrass Core software they can run on.

SDK version Language or platform Required
GGC
version

Changelog

1.1.0 Python 3.7 or 2.7 1.9.3 or
later

Added
Python
3.7
support
and new
feedback
client.

1.0.0 Python 2.7 1.7 or
later

Initial
release.

For download information, see the section called “AWS IoT Greengrass ML SDK software”.

SDKs 336

https://pypi.org/project/pip/
https://pypi.org/project/greengrasssdk/

AWS IoT Greengrass Developer Guide, Version 1

AWS SDKs

Enables local Lambda functions to make direct calls to AWS services, such as Amazon S3,
DynamoDB, AWS IoT, and AWS IoT Greengrass. To use an AWS SDK in a Greengrass Lambda
function, you must include it in your deployment package. When you use the AWS SDK in the
same package as the AWS IoT Greengrass Core SDK, make sure that your Lambda functions use
the correct namespaces. Greengrass Lambda functions can't communicate with cloud services
when the core is offline.

Download the AWS SDKs from the Getting Started Resource Center.

For more information about creating a deployment package, see the section called “Create and
package a Lambda function” in the Getting Started tutorial or Creating a deployment package in
the AWS Lambda Developer Guide.

Migrating cloud-based Lambda functions

The AWS IoT Greengrass Core SDK follows the AWS SDK programming model, which makes it easy
to port Lambda functions that are developed for the cloud to Lambda functions that run on an
AWS IoT Greengrass core.

For example, the following Python Lambda function uses the AWS SDK for Python (Boto3) to
publish a message to the topic some/topic in the cloud:

import boto3

iot_client = boto3.client("iot-data")
response = iot_client.publish(
 topic="some/topic", qos=0, payload="Some payload".encode()
)

To port the function for an AWS IoT Greengrass core, in the import statement and client
initialization, change the boto3 module name to greengrasssdk, as shown in the following
example:

import greengrasssdk

iot_client = greengrasssdk.client("iot-data")
iot_client.publish(topic="some/topic", qos=0, payload="Some payload".encode())

Migrating cloud-based Lambda functions 337

https://aws.amazon.com/getting-started/tools-sdks/
https://docs.aws.amazon.com/lambda/latest/dg/deployment-package-v2.html

AWS IoT Greengrass Developer Guide, Version 1

Note

The AWS IoT Greengrass Core SDK supports sending MQTT messages with QoS = 0 only.
For more information, see the section called “Message quality of service”.

The similarity between programming models also makes it possible for you to develop your
Lambda functions in the cloud and then migrate them to AWS IoT Greengrass with minimal effort.
Lambda executables don't run in the cloud, so you can't use the AWS SDK to develop them in the
cloud before deployment.

Reference Lambda functions by alias or version

Greengrass groups can reference a Lambda function by alias (recommended) or by version.
Using an alias makes it easier to manage code updates because you don't have to change your
subscription table or group definition when the function code is updated. Instead, you just point
the alias to the new function version. Aliases resolve to version numbers during group deployment.
When you use aliases, the resolved version is updated to the version that the alias is pointing to at
the time of deployment.

AWS IoT Greengrass doesn't support Lambda aliases for $LATEST versions. $LATEST versions
aren't bound to immutable, published function versions and can be changed at any time, which is
counter to the AWS IoT Greengrass principle of version immutability.

A common practice for keeping your Greengrass Lambda functions updated with code changes is
to use an alias named PRODUCTION in your Greengrass group and subscriptions. As you promote
new versions of your Lambda function into production, point the alias to the latest stable version
and then redeploy the group. You can also use this method to roll back to a previous version.

Controlling execution of Greengrass Lambda functions by using
group-specific configuration

AWS IoT Greengrass provides cloud-based management of Greengrass Lambda functions. Although
a Lambda function's code and dependencies are managed using AWS Lambda, you can configure
how the Lambda function behaves when it runs in a Greengrass group.

Reference functions by alias or version 338

AWS IoT Greengrass Developer Guide, Version 1

Group-specific configuration settings

AWS IoT Greengrass provides the following group-specific configuration settings for Greengrass
Lambda functions.

System user and group

The access identity used to run a Lambda function. By default, Lambda functions run as the
group's default access identity. Typically, this is the standard AWS IoT Greengrass system
accounts (ggc_user and ggc_group). You can change the setting and choose the user ID and
group ID that have the permissions required to run the Lambda function. You can override both
UID and GID or just one if you leave the other field blank. This setting gives you more granular
control over access to device resources. We recommend that you configure your Greengrass
hardware with appropriate resource limits, file permissions, and disk quotas for the users and
groups whose permissions are used to run Lambda functions.

This feature is available for AWS IoT Greengrass Core v1.7 and later.

Important

We recommend that you avoid running Lambda functions as root unless absolutely
necessary. Running as root increases the following risks:

• The risk of unintended changes, such as accidentally deleting a critical file.

• The risk to your data and device from malicious individuals.

• The risk of container escapes when Docker containers run with --net=host and
UID=EUID=0.

If you do need to run as root, you must update the AWS IoT Greengrass configuration to
enable it. For more information, see the section called “Running a Lambda function as
root”.

System user ID (number)

The user ID for the user that has the permissions required to run the Lambda function. This
setting is only available if you choose to run as Another user ID/group ID. You can use the
getent passwd command on your AWS IoT Greengrass core device to look up the user ID you
want to use to run the Lambda function.

Group-specific configuration settings 339

AWS IoT Greengrass Developer Guide, Version 1

If you use the same UID to run processes and the Lambda function on a Greengrass core
device, your Greengrass group role can grant the processes temporary credentials. The
processes can use the temporary credentials across Greengrass core deployments.

System group ID (number)

The group ID for the group that has the permissions required to run the Lambda function.
This setting is only available if you choose to run as Another user ID/group ID. You can use
the getent group command on your AWS IoT Greengrass core device to look up the group ID
you want to use to run the Lambda function.

Lambda function containerization

Choose whether the Lambda function runs with the default containerization for the group, or
specify the containerization that should always be used for this Lambda function.

A Lambda function's containerization mode determines its level of isolation.

• Containerized Lambda functions run in Greengrass container mode. The Lambda function
runs in an isolated runtime environment (or namespace) inside the AWS IoT Greengrass
container.

• Non-containerized Lambda functions run in No container mode. The Lambda functions runs
as a regular Linux process without any isolation.

This feature is available for AWS IoT Greengrass Core v1.7 and later.

We recommend that you run Lambda functions in a Greengrass container unless your use
case requires them to run without containerization. When your Lambda functions run in a
Greengrass container, you can use attached local and device resources and gain the benefits of
isolation and increased security. Before you change the containerization, see the section called
“Considerations when choosing Lambda function containerization”.

Note

To run without enabling your device kernel namespace and cgroup, all your Lambda
functions must run without containerization. You can accomplish this easily by setting
the default containerization for the group. For information, see the section called
“Setting default containerization for Lambda functions in a group”.

Group-specific configuration settings 340

AWS IoT Greengrass Developer Guide, Version 1

Memory limit

The memory allocation for the function. The default is 16 MB.

Note

The memory limit setting becomes unavailable when you change the Lambda function
to run without containerization. Lambda functions that run without containerization
have no memory limit. The memory limit setting is discarded when you change
the Lambda function or group default containerization setting to run without
containerization.

Timeout

The amount of time before the function or request is terminated. The default is 3 seconds.

Pinned

A Lambda function lifecycle can be on-demand or long-lived. The default is on-demand.

An on-demand Lambda function starts in a new or reused container when invoked. Requests to
the function might be processed by any available container. A long-lived—or pinned—Lambda
function starts automatically after AWS IoT Greengrass starts and keeps running in its own
container (or sandbox). All requests to the function are processed by the same container. For
more information, see the section called “Lifecycle configuration”.

Read access to /sys directory

Whether the function can access the host's /sys folder. Use this when the function must read
device information from /sys. The default is false.

Note

This setting is not available when you run a Lambda function without containerization.
The value of this setting is discarded when you change the Lambda function to run
without containerization.

Group-specific configuration settings 341

AWS IoT Greengrass Developer Guide, Version 1

Encoding type

The expected encoding type of the input payload for the function, either JSON or binary. The
default is JSON.

Support for the binary encoding type is available starting in AWS IoT Greengrass Core Software
v1.5.0 and AWS IoT Greengrass Core SDK v1.1.0. Accepting binary input data can be useful for
functions that interact with device data, because the restricted hardware capabilities of devices
often make it difficult or impossible for them to construct a JSON data type.

Note

Lambda executables support the binary encoding type only, not JSON.

Process arguments

The command-line arguments are passed to the Lambda function when it runs.

Environment variables

Key-value pairs that can dynamically pass settings to function code and libraries. Local
environment variables work the same way as AWS Lambda function environment variables, but
are available in the core environment.

Resource access policies

A list of up to 10 local resources, secret resources, and machine learning resources that the
Lambda function is allowed to access, and the corresponding read-only or read-write
permission. In the console, these affiliated resources are listed on the group configuration page
in the Resources tab.

The containerization mode affects how Lambda functions can access local device and volume
resources and machine learning resources.

• Non-containerized Lambda functions must access local device and volume resources directly
through the file system on the core device.

• To allow non-containerized Lambda functions to access machine learning resources in the
Greengrass group, you must set the resource owner and access permissions properties on
the machine learning resource. For more information, see the section called “Access machine
learning resources”.

Group-specific configuration settings 342

https://docs.aws.amazon.com/lambda/latest/dg/env_variables.html

AWS IoT Greengrass Developer Guide, Version 1

For information about using the AWS IoT Greengrass API to set group-specific configuration
settings for user-defined Lambda functions, see CreateFunctionDefinition in the AWS IoT
Greengrass Version 1 API Reference or create-function-definition in the AWS CLI Command
Reference. To deploy Lambda functions to a Greengrass core, create a function definition version
that contains your functions, create a group version that references the function definition version
and other group components, and then deploy the group.

Running a Lambda function as root

This feature is available for AWS IoT Greengrass Core v1.7 and later.

Before you can run one or more Lambda functions as root, you must first update the AWS IoT
Greengrass configuration to enable support. Support for running Lambda functions as root is off
by default. The deployment fails if you try to deploy a Lambda function and run it as root (UID
and GID of 0) and you haven't updated the AWS IoT Greengrass configuration. An error like the
following appears in the runtime log (greengrass_root/ggc/var/log/system/runtime.log):

lambda(s)
[list of function arns] are configured to run as root while Greengrass is not
 configured to run lambdas with root permissions

Important

We recommend that you avoid running Lambda functions as root unless absolutely
necessary. Running as root increases the following risks:

• The risk of unintended changes, such as accidentally deleting a critical file.

• The risk to your data and device from malicious individuals.

• The risk of container escapes when Docker containers run with --net=host and
UID=EUID=0.

To allow Lambda functions to run as root

1. On your AWS IoT Greengrass device, navigate to the greengrass-root/config folder.

Running a Lambda function as root 343

https://docs.aws.amazon.com/greengrass/v1/apireference/createfunctiondefinition-post.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/create-function-definition.html

AWS IoT Greengrass Developer Guide, Version 1

Note

By default, greengrass-root is the /greengrass directory.

2. Edit the config.json file to add "allowFunctionsToRunAsRoot" : "yes" to the runtime
field. For example:

{
 "coreThing" : {
 ...
 },
 "runtime" : {
 ...
 "allowFunctionsToRunAsRoot" : "yes"
 },
 ...
}

3. Use the following commands to restart AWS IoT Greengrass:

cd /greengrass/ggc/core
sudo ./greengrassd restart

Now you can set the user ID and group ID (UID/GID) of Lambda functions to 0 to run that
Lambda function as root.

You can change the value of "allowFunctionsToRunAsRoot" to "no" and restart AWS IoT
Greengrass if you want to disallow Lambda functions to run as root.

Considerations when choosing Lambda function containerization

This feature is available for AWS IoT Greengrass Core v1.7 and later.

By default, Lambda functions run inside an AWS IoT Greengrass container. That container provides
isolation between your functions and the host, which offers more security for both the host and
the functions in the container.

Considerations when choosing Lambda function containerization 344

AWS IoT Greengrass Developer Guide, Version 1

We recommend that you run Lambda functions in a Greengrass container unless your use case
requires them to run without containerization. By running your Lambda functions in a Greengrass
container, you have more control over restricting access to resources.

Here are some example use cases for running without containerization:

• You want to run AWS IoT Greengrass on a device that does not support container mode (for
example, because you are using a special Linux distribution or have a kernel version that is too
old).

• You want to run your Lambda function in another container environment with its own OverlayFS,
but encounter OverlayFS conflicts when you run in a Greengrass container.

• You need access to local resources with paths that can't be determined at deployment time or
whose paths can change after deployment, such as pluggable devices.

• You have a legacy application that was written as a process and you have encountered issues
when running it as a containerized Lambda function.

Containerization differences

Containerization Notes

Greengrass container • All AWS IoT Greengrass features are
available when you run a Lambda function
in a Greengrass container.

• Lambda functions that run in a Greengras
s container do not have access to the
deployed code of other Lambda functions
, even if they run with the same group ID.
In other words, your Lambda functions run
with greater isolation from one another.

• Because Lambda functions that run in an
AWS IoT Greengrass container have all child
processes execute in the same container as
the Lambda function, the child processes
are terminated when the Lambda function is
terminated.

Considerations when choosing Lambda function containerization 345

AWS IoT Greengrass Developer Guide, Version 1

Containerization Notes

No container • The following features are not available to
non-containerized Lambda functions:

• Lambda function memory limits.

• Local device and volume resources. You
must access these resources on the core
device directly instead of accessing them
as members of the Greengrass group.

• If your non-containerized Lambda function
accesses a machine learning resource, you
must identify a resource owner and set
access permissions on the resource, not on
the Lambda function. This requires AWS IoT
Greengrass Core software v1.10 or later.
For more information, see the section called
“Access machine learning resources”.

• The Lambda function has read-only access
to the deployed code of other Lambda
functions that are running with the same
group ID.

• Lambda functions that spawn child
processes in a different process session or
with an overridden SIGHUP (signal hangup)
handler, such as with the nohup utility,
are not automatically terminated by AWS
IoT Greengrass when the parent Lambda
function is terminated.

Note

The default containerization setting for the Greengrass group doesn't apply to connectors.

Considerations when choosing Lambda function containerization 346

AWS IoT Greengrass Developer Guide, Version 1

Changing the containerization for a Lambda function can cause problems when you deploy it. If
you had assigned local resources to your Lambda function that are no longer available with your
new containerization settings, deployment fails.

• When you change a Lambda function from running in a Greengrass container to running without
containerization, memory limits for the function are discarded. You must access the file system
directly instead of using attached local resources. You must remove any attached resources
before you deploy.

• When you change a Lambda function from running without containerization to running in
a container, your Lambda function loses direct access to the file system. You must define a
memory limit for each function or accept the default 16 MB. You can configure those settings for
each Lambda function before you deploy.

To change containerization settings for a Lambda function

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose the group that contains the Lambda function whose settings you want to change.

3. Choose the Lambda functions tab.

4. On the Lambda function that you want to change, choose the ellipsis (…) and then choose Edit
configuration.

5. Change the containerization settings. If you configure the Lambda function to run in a
Greengrass container, you must also set Memory limit and Read access to /sys directory.

6. Choose Save and then Confirm to save the changes to your Lambda function.

The changes take effect when the group is deployed.

You can also use the CreateFunctionDefinition and CreateFunctionDefinitionVersion in the AWS
IoT Greengrass API Reference. If you are changing the containerization setting, be sure to update
the other parameters too. For example, if you are changing from running a Lambda function in
a Greengrass container to running without containerization, be sure to clear the MemorySize
parameter.

Considerations when choosing Lambda function containerization 347

https://docs.aws.amazon.com/greengrass/v1/apireference/createfunctiondefinition-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/createfunctiondefinitionversion-post.html

AWS IoT Greengrass Developer Guide, Version 1

Determine the isolation modes supported by your Greengrass device

You can use the AWS IoT Greengrass dependency checker to determine which isolation modes
(Greengrass container/no container) are supported by your Greengrass device.

To run the AWS IoT Greengrass dependency checker

1. Download and run the AWS IoT Greengrass dependency checker from the GitHub repository.

wget https://github.com/aws-samples/aws-greengrass-samples/raw/master/greengrass-
dependency-checker-GGCv1.11.x.zip
unzip greengrass-dependency-checker-GGCv1.11.x.zip
cd greengrass-dependency-checker-GGCv1.11.x
sudo modprobe configs
sudo ./check_ggc_dependencies | more

2. Where more appears, press the Spacebar key to display another page of text.

For information about the modprobe command, run man modprobe in the terminal.

Setting the default access identity for Lambda functions in a group

This feature is available for AWS IoT Greengrass Core v1.8 and later.

For more control over access to device resources, you can configure the default access identity used
to run Lambda functions in the group. This setting determines the default permissions given to
your Lambda functions when they run on the core device. To override the setting for individual
functions in the group, you can use the function's Run as property. For more information, see Run
as.

This group-level setting is also used for running the underlying AWS IoT Greengrass Core software.
This consists of system Lambda functions that manage operations, such as message routing, local
shadow sync, and automatic IP address detection.

The default access identity can be configured to run as the standard AWS IoT Greengrass
system accounts (ggc_user and ggc_group) or use the permissions of another user or group. We
recommend that you configure your Greengrass hardware with appropriate resource limits, file
permissions, and disk quotas for any users and groups whose permissions are used to run user-
defined or system Lambda functions.

Setting the default access identity for Lambda functions in a group 348

https://github.com/aws-samples/aws-greengrass-samples

AWS IoT Greengrass Developer Guide, Version 1

To modify the default access identity for your AWS IoT Greengrass group

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose the group whose settings you want to change.

3. Choose the Lambda functions tab and, under the Default Lambda function runtime
environment section, choose Edit.

4. In the Edit default Lambda function runtime environment page, under Default system user
and group, choose Another user ID/group ID.

When you choose this option, the System user ID (number) and System group ID (number)
fields are displayed.

5. Enter a user ID, group ID, or both. If you leave a field blank, the respective Greengrass system
account (ggc_user or ggc_group) is used.

• For System user ID (number), enter the user ID for the user who has the permissions you
want to use by default to run Lambda functions in the group. You can use the getent
passwd command on your AWS IoT Greengrass device to look up the user ID.

• For System group ID (number), enter the group ID for the group that has the permissions
you want to use by default to run Lambda functions in the group. You can use the getent
group command on your AWS IoT Greengrass device to look up the group ID.

Important

Running as the root user increases risks to your data and device. Do not run as root
(UID/GID=0) unless your business case requires it. For more information, see the
section called “Running a Lambda function as root”.

The changes take effect when the group is deployed.

Setting default containerization for Lambda functions in a group

This feature is available for AWS IoT Greengrass Core v1.7 and later.

The containerization setting for a Greengrass group determines the default containerization for the
Lambda functions in the group.

Setting default containerization for Lambda functions in a group 349

AWS IoT Greengrass Developer Guide, Version 1

• In Greengrass container mode, Lambda functions run in an isolated runtime environment inside
the AWS IoT Greengrass container by default.

• In No container mode, Lambda functions run as regular Linux processes by default.

You can modify group settings to specify the default containerization for Lambda functions in the
group. You can override this setting for one or more Lambda functions in the group if you want the
Lambda functions to run with containerization different from the group default. Before you change
containerization settings, see the section called “Considerations when choosing Lambda function
containerization”.

Important

If you want to change the default containerization for the group, but have one or more
functions that use a different containerization, change the settings for the Lambda
functions before you change the group setting. If you change the group containerization
setting first, the values for the Memory limit and Read access to /sys directory settings
are discarded.

To modify containerization settings for your AWS IoT Greengrass group

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose the group whose settings you want to change.

3. Choose the Lambda functions tab.

4. Under Default Lambda function runtime environment, choose Edit.

5. In the Edit default Lambda function runtime environment, page, under Default Lambda
function containerization, change the containerization setting.

6. Choose Save.

The changes take effect when the group is deployed.

Communication flows for Greengrass Lambda functions

Greengrass Lambda functions support several methods of communicating with other members of
the AWS IoT Greengrass group, local services, and cloud services (including AWS services).

Communication flows 350

AWS IoT Greengrass Developer Guide, Version 1

Communication using MQTT messages

Lambda functions can send and receive MQTT messages using a publish-subscribe pattern that's
controlled by subscriptions.

This communication flow allows Lambda functions to exchange messages with the following
entities:

• Client devices in the group.

• Connectors in the group.

• Other Lambda functions in the group.

• AWS IoT.

• Local Device Shadow service.

A subscription defines a message source, a message target, and a topic (or subject) that's used to
route messages from the source to the target. Messages that are published to a Lambda function
are passed to the function's registered handler. Subscriptions enable more security and provide
predictable interactions. For more information, see the section called “Managed subscriptions in
the MQTT messaging workflow”.

Note

When the core is offline, Greengrass Lambda functions can exchange messages with client
devices, connectors, other functions, and local shadows, but messages to AWS IoT are
queued. For more information, see the section called “MQTT message queue”.

Other communication flows

• To interact with local device and volume resources and machine learning models on a core
device, Greengrass Lambda functions use platform-specific operating system interfaces. For
example, you can use the open method in the os module in Python functions. To allow a
function to access a resource, the function must be affiliated with the resource and granted
read-only or read-write permission. For more information, including AWS IoT Greengrass
core version availability, see Access local resources and the section called “Accessing machine
learning resources from Lambda function code”.

Communication using MQTT messages 351

https://docs.python.org/2/library/os.html

AWS IoT Greengrass Developer Guide, Version 1

Note

If you run your Lambda function without containerization, you cannot use attached local
device and volume resources and must access those resources directly.

• Lambda functions can use the Lambda client in the AWS IoT Greengrass Core SDK to invoke
other Lambda functions in the Greengrass group.

• Lambda functions can use the AWS SDK to communicate with AWS services. For more
information, see AWS SDK.

• Lambda functions can use third-party interfaces to communicate with external cloud services,
similar to cloud-based Lambda functions.

Note

Greengrass Lambda functions can't communicate with AWS or other cloud services when
the core is offline.

Retrieve the input MQTT topic (or subject)

AWS IoT Greengrass uses subscriptions to control the exchange of MQTT messages between client
devices, Lambda functions, and connectors in a group, and with AWS IoT or the local shadow
service. Subscriptions define a message source, message target, and an MQTT topic used to route
messages. When the target is a Lambda function, the function's handler is invoked when the source
publishes a message. For more information, see the section called “Communication using MQTT
messages”.

The following example shows how a Lambda function can get the input topic from the context
that's passed to the handler. It does this by accessing the subject key from the context hierarchy
(context.client_context.custom['subject']). The example also parses the input JSON
message and then publishes the parsed topic and message.

Note

In the AWS IoT Greengrass API, the topic of a subscription is represented by the subject
property.

Retrieve the input topic (or subject) 352

https://docs.aws.amazon.com/greengrass/v1/apireference/definitions-subscription.html

AWS IoT Greengrass Developer Guide, Version 1

import greengrasssdk
import logging

client = greengrasssdk.client('iot-data')

OUTPUT_TOPIC = 'test/topic_results'

def get_input_topic(context):
 try:
 topic = context.client_context.custom['subject']
 except Exception as e:
 logging.error('Topic could not be parsed. ' + repr(e))
 return topic

def get_input_message(event):
 try:
 message = event['test-key']
 except Exception as e:
 logging.error('Message could not be parsed. ' + repr(e))
 return message

def function_handler(event, context):
 try:
 input_topic = get_input_topic(context)
 input_message = get_input_message(event)
 response = 'Invoked on topic "%s" with message "%s"' % (input_topic,
 input_message)
 logging.info(response)
 except Exception as e:
 logging.error(e)

 client.publish(topic=OUTPUT_TOPIC, payload=response)

 return

To test the function, add it to your group using the default configuration settings. Then, add the
following subscriptions and deploy the group. For instructions, see the section called “Module 3
(part 1): Lambda functions on AWS IoT Greengrass”.

Retrieve the input topic (or subject) 353

AWS IoT Greengrass Developer Guide, Version 1

SourceTargetTopic
filter

IoT
Cloud
This
function
test/
inpu
t_message

This
function
IoT
Cloud
test/
topi
c_results

After the deployment is completed, invoke the function.

1. In the AWS IoT console, open the MQTT test client page.

2. Subscribe to the test/topic_results topic by selecting the Subscribe to a topic tab.

3. Publish a message to the test/input_message topic by selecting the Publish to a topic tab.
For this example, you must include the test-key property in the JSON messsage.

{
 "test-key": "Some string value"
}

If successful, the function publishes the input topic and message string to the test/
topic_results topic.

Lifecycle configuration for Greengrass Lambda functions

The Greengrass Lambda function lifecycle determines when a function starts and how it creates
and uses containers. The lifecycle also determines how variables and preprocessing logic that are
outside of the function handler are retained.

AWS IoT Greengrass supports the on-demand (default) or long-lived lifecycles:

Lifecycle configuration 354

AWS IoT Greengrass Developer Guide, Version 1

• On-demand functions start when they are invoked and stop when there are no tasks left to
execute. An invocation of the function creates a separate container (or sandbox) to process
invocations, unless an existing container is available for reuse. Data that's sent to the function
might be pulled by any of the containers.

Multiple invocations of an on-demand function can run in parallel.

Variables and preprocessing logic that are defined outside of the function handler are not
retained when new containers are created.

• Long-lived (or pinned) functions start automatically when the AWS IoT Greengrass core starts
and run in a single container. All data that's sent to the function is pulled by the same container.

Multiple invocations are queued until earlier invocations are executed.

Variables and preprocessing logic that are defined outside of the function handler are retained
for every invocation of the handler.

Long-lived Lambda functions are useful when you need to start doing work without any initial
input. For example, a long-lived function can load and start processing an ML model to be ready
when the function starts receiving device data.

Note

Remember that long-lived functions have timeouts that are associated with invocations
of their handler. If you want to execute indefinitely running code, you must start it
outside the handler. Make sure that there's no blocking code outside the handler that
might prevent the function from completing its initialization.
These functions run unless the core stops (for example, during a group deployment or a
device reboot) or the function enters an error state (such as a handler timeout, uncaught
exception, or when it exceeds its memory limits).

For more information about container reuse, see Understanding Container Reuse in AWS Lambda in
the AWS Compute Blog.

Lifecycle configuration 355

https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/

AWS IoT Greengrass Developer Guide, Version 1

Lambda executables

This feature is available for AWS IoT Greengrass Core v1.6 and later.

A Lambda executable is a type of Greengrass Lambda function that you can use to run binary code
in the core environment. It lets you execute device-specific functionality natively and benefit from
the smaller footprint of compiled code. Lambda executables can be invoked by events, invoke
other functions, and access local resources.

Lambda executables support the binary encoding type only (not JSON), but otherwise you can
manage them in your Greengrass group and deploy them like other Greengrass Lambda functions.
However, the process of creating Lambda executables is different from creating Python, Java, and
Node.js Lambda functions:

• You can't use the AWS Lambda console to create (or manage) a Lambda executable. You can
create a Lambda executable only by using the AWS Lambda API.

• You upload the function code to AWS Lambda as a compiled executable that includes the AWS
IoT Greengrass Core SDK for C.

• You specify the executable name as the function handler.

Lambda executables must implement certain calls and programming patterns in their function
code. For example, the main method must:

• Call gg_global_init to initialize Greengrass internal global variables. This function must be
called before creating any threads, and before calling any other AWS IoT Greengrass Core SDK
functions.

• Call gg_runtime_start to register the function handler with the Greengrass Lambda runtime.
This function must be called during initialization. Calling this function causes the current thread
to be used by the runtime. The optional GG_RT_OPT_ASYNC parameter tells this function to not
block, but instead to create a new thread for the runtime. This function uses a SIGTERM handler.

The following snippet is the main method from the simple_handler.c code example on GitHub.

int main() {
 gg_error err = GGE_SUCCESS;

 err = gg_global_init(0);
 if(err) {

Lambda executables 356

https://github.com/aws/aws-greengrass-core-sdk-c
https://github.com/aws/aws-greengrass-core-sdk-c
https://github.com/aws/aws-greengrass-core-sdk-c/blob/master/aws-greengrass-core-sdk-c-example/simple_handler.c

AWS IoT Greengrass Developer Guide, Version 1

 gg_log(GG_LOG_ERROR, "gg_global_init failed %d", err);
 goto cleanup;
 }

 gg_runtime_start(handler, 0);

cleanup:
 return -1;
}

For more information about requirements, constraints, and other implementation details, see AWS
IoT Greengrass Core SDK for C.

Create a Lambda executable

After you compile your code along with the SDK, use the AWS Lambda API to create a Lambda
function and upload your compiled executable.

Note

Your function must be compiled with a C89 compatible compiler.

The following example uses the create-function CLI command to create a Lambda executable. The
command specifies:

• The name of the executable for the handler. This must be the exact name of your compiled
executable.

• The path to the .zip file that contains the compiled executable.

• arn:aws:greengrass:::runtime/function/executable for the runtime. This is the
runtime for all Lambda executables.

Note

For role, you can specify the ARN of any Lambda execution role. AWS IoT Greengrass
doesn't use this role, but the parameter is required to create the function. For more
information about Lambda execution roles, see AWS Lambda permissions model in the
AWS Lambda Developer Guide.

Create a Lambda executable 357

https://github.com/aws/aws-greengrass-core-sdk-c
https://github.com/aws/aws-greengrass-core-sdk-c
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-function.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html

AWS IoT Greengrass Developer Guide, Version 1

aws lambda create-function \
--region aws-region \
--function-name function-name \
--handler executable-name \
--role role-arn \
--zip-file fileb://file-name.zip \
--runtime arn:aws:greengrass:::runtime/function/executable

Next, use the AWS Lambda API to publish a version and create an alias.

• Use publish-version to publish a function version.

aws lambda publish-version \
--function-name function-name \
--region aws-region

• Use create-alias to create an alias the points to the version you just published. We recommend
that you reference Lambda functions by alias when you add them to a Greengrass group.

aws lambda create-alias \
--function-name function-name \
--name alias-name \
--function-version version-number \
--region aws-region

Note

The AWS Lambda console doesn't display Lambda executables. To update the function
code, you must use the AWS Lambda API.

Then, add the Lambda executable to a Greengrass group, configure it to accept binary input data
in its group-specific settings, and deploy the group. You can do this in the AWS IoT Greengrass
console or by using the AWS IoT Greengrass API.

Running AWS IoT Greengrass in a Docker container

AWS IoT Greengrass can be configured to run in a Docker container.

Run AWS IoT Greengrass in a Docker container 358

https://docs.aws.amazon.com/cli/latest/reference/lambda/publish-version.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-alias.html
https://www.docker.com/

AWS IoT Greengrass Developer Guide, Version 1

You can download a Dockerfile through Amazon CloudFront that has the AWS IoT Greengrass Core
software and dependencies installed. To modify the Docker image to run on different platform
architectures or reduce the size of the Docker image, see the README file in the Docker package
download.

To help you get started experimenting with AWS IoT Greengrass, AWS also provides prebuilt
Docker images that have the AWS IoT Greengrass Core software and dependencies installed. You
can download an image from Docker Hub or Amazon Elastic Container Registry (Amazon ECR).
These prebuilt images use Amazon Linux 2 (x86_64) and Alpine Linux (x86_64, Armv7l, or AArch64)
base images.

Important

On June 30, 2022, AWS IoT Greengrass ended maintenance for AWS IoT Greengrass Core
software v1.x Docker images that are published to Amazon Elastic Container Registry
(Amazon ECR) and Docker Hub. You can continue to download these Docker images from
Amazon ECR and Docker Hub until June 30, 2023, which is 1 year after maintenance ended.
However, the AWS IoT Greengrass Core software v1.x Docker images no longer receive
security patches or bug fixes after maintenance ended on June 30, 2022. If you run a
production workload that depends on these Docker images, we recommend that you build
your own Docker images using the Dockerfiles that AWS IoT Greengrass provides. For more
information, see AWS IoT Greengrass Docker software.

This topic describes how to download the AWS IoT Greengrass Docker image from Amazon ECR and
run it on a Windows, macOS, or Linux (x86_64) platform. The topic contains the following steps:

1. Get the AWS IoT Greengrass container image from Amazon ECR

2. Create and configure the Greengrass group and core

3. Run AWS IoT Greengrass locally

4. Configure "No container" containerization for the group

5. Deploy Lambda functions to the Docker container

6. (Optional) Deploy client devices that interact with Greengrass in the Docker container

The following features aren't supported when you run AWS IoT Greengrass in a Docker container:

Run AWS IoT Greengrass in a Docker container 359

https://hub.docker.com/r/amazon/aws-iot-greengrass
https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html

AWS IoT Greengrass Developer Guide, Version 1

• Connectors that run in Greengrass container mode. To run a connector in a Docker container,
the connector must run in No container mode. To find connectors that support No container
mode, see the section called “AWS-provided Greengrass connectors”. Some of these connectors
have an isolation mode parameter that you must set to No container.

• Local device and volume resources. Your user-defined Lambda functions that run in the Docker
container must access devices and volumes on the core directly.

These features aren't supported when the Lambda runtime environment for the Greengrass group
is set to No container, which is required to run AWS IoT Greengrass in a Docker container.

Prerequisites

Before you start this tutorial, you must do the following.

• You must install the following software and versions on your host computer based on the AWS
Command Line Interface (AWS CLI) version that you choose.

AWS CLI version 2

• Docker version 18.09 or later. Earlier versions might also work, but we recommend 18.09 or
later.

• AWS CLI version 2.0.0 or later.

• To install the AWS CLI version 2, see Installing the AWS CLI version 2.

• To configure the AWS CLI, see Configuring the AWS CLI.

Note

To upgrade to a later AWS CLI version 2 on a Windows computer, you must repeat
the MSI installation process.

AWS CLI version 1

• Docker version 18.09 or later. Earlier versions might also work, but we recommend 18.09 or
later.

• Python version 3.6 or later.

• pip version 18.1 or later.

• AWS CLI version 1.17.10 or later

• To install the AWS CLI version 1, see Installing the AWS CLI version 1.
Prerequisites 360

https://docs.docker.com/install/
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-windows.html
https://docs.docker.com/install/
https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installing
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html

AWS IoT Greengrass Developer Guide, Version 1

• To configure the AWS CLI, see Configuring the AWS CLI.

• To upgrade to the latest version of the AWS CLI version 1, run the following command.

pip install awscli --upgrade --user

Note

If you use the MSI installation of the AWS CLI version 1 on Windows, be aware of
the following:

• If the AWS CLI version 1 installation fails to install botocore, try using the Python
and pip installation.

• To upgrade to a later AWS CLI version 1, you must repeat the MSI installation
process.

• To access Amazon Elastic Container Registry (Amazon ECR) resources, you must grant the
following permission.

• Amazon ECR requires users to grant the ecr:GetAuthorizationToken permission through
an AWS Identity and Access Management (IAM) policy before they can authenticate to a
registry and push or pull images from an Amazon ECR repository. For more information, see
Amazon ECR Repository Policy Examples and Accessing One Amazon ECR Repository in the
Amazon Elastic Container Registry User Guide.

Step 1: Get the AWS IoT Greengrass container image from Amazon ECR

AWS provides Docker images that have the AWS IoT Greengrass Core software installed.

Warning

Starting with v1.11.6 of the AWS IoT Greengrass Core software, the Greengrass Docker
images no longer include Python 2.7, because Python 2.7 reached end-of-life in 2020 and
no longer receives security updates. If you choose to update to these Docker images, we
recommend that you validate that your applications work with the new Docker images
before you deploy the updates to production devices. If you require Python 2.7 for your
application that uses a Greengrass Docker image, you can modify the Greengrass Dockerfile
to include Python 2.7 for your application.

Get the AWS IoT Greengrass container image from Amazon ECR 361

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/install-windows.html#msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#awscli-install-windows-pip
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#awscli-install-windows-pip
https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-policy-examples.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-access-one-bucket

AWS IoT Greengrass Developer Guide, Version 1

For steps that show how to pull the latest image from Amazon ECR, choose your operating
system:

Pull the container image (Linux)

Run the following commands in your computer terminal.

1. Log in to the AWS IoT Greengrass registry in Amazon ECR.

aws ecr get-login-password --region us-west-2 | docker login --username AWS --
password-stdin https://216483018798.dkr.ecr.us-west-2.amazonaws.com

If successful, the output prints Login Succeeded.

2. Retrieve the AWS IoT Greengrass container image.

docker pull 216483018798.dkr.ecr.us-west-2.amazonaws.com/aws-iot-greengrass:latest

Note

The latest image contains the latest stable version of the AWS IoT Greengrass Core
software installed on an Amazon Linux 2 base image. You can also pull other images
from the repository. To find all available images, check the Tags page on Docker Hub
or use the aws ecr list-images command. For example:

aws ecr list-images --region us-west-2 --registry-id 216483018798 --
repository-name aws-iot-greengrass

3. Enable symlink and hardlink protection. If you're experimenting with running AWS IoT
Greengrass in a container, you can enable the settings for the current boot only.

Note

You might need to use sudo to run these commands.

• To enable the settings for the current boot only:

echo 1 > /proc/sys/fs/protected_hardlinks

Get the AWS IoT Greengrass container image from Amazon ECR 362

https://hub.docker.com/r/amazon/aws-iot-greengrass

AWS IoT Greengrass Developer Guide, Version 1

echo 1 > /proc/sys/fs/protected_symlinks

• To enable the settings to persist across restarts:

echo '# AWS IoT Greengrass' >> /etc/sysctl.conf
echo 'fs.protected_hardlinks = 1' >> /etc/sysctl.conf
echo 'fs.protected_symlinks = 1' >> /etc/sysctl.conf

sysctl -p

4. Enable IPv4 network forwarding, which is required for AWS IoT Greengrass cloud deployment
and MQTT communications to work on Linux. In the /etc/sysctl.conf file, set
net.ipv4.ip_forward to 1, and then reload sysctls.

sudo nano /etc/sysctl.conf
set this net.ipv4.ip_forward = 1
sudo sysctl -p

Note

You can use the editor of your choice instead of nano.

Pull the container image (macOS)

Run the following commands in your computer terminal.

1. Log in to the AWS IoT Greengrass registry in Amazon ECR.

aws ecr get-login-password --region us-west-2 | docker login --username AWS --
password-stdin https://216483018798.dkr.ecr.us-west-2.amazonaws.com

If successful, the output prints Login Succeeded.

2. Retrieve the AWS IoT Greengrass container image.

docker pull 216483018798.dkr.ecr.us-west-2.amazonaws.com/aws-iot-greengrass:latest

Get the AWS IoT Greengrass container image from Amazon ECR 363

AWS IoT Greengrass Developer Guide, Version 1

Note

The latest image contains the latest stable version of the AWS IoT Greengrass Core
software installed on an Amazon Linux 2 base image. You can also pull other images
from the repository. To find all available images, check the Tags page on Docker Hub
or use the aws ecr list-images command. For example:

aws ecr list-images --region us-west-2 --registry-id 216483018798 --
repository-name aws-iot-greengrass

Pull the container image (Windows)

Run the following commands in a command prompt. Before you can use Docker commands on
Windows, Docker Desktop must be running.

1. Log in to the AWS IoT Greengrass registry in Amazon ECR.

aws ecr get-login-password --region us-west-2 | docker login --username AWS --
password-stdin https://216483018798.dkr.ecr.us-west-2.amazonaws.com

If successful, the output prints Login Succeeded.

2. Retrieve the AWS IoT Greengrass container image.

docker pull 216483018798.dkr.ecr.us-west-2.amazonaws.com/aws-iot-greengrass:latest

Note

The latest image contains the latest stable version of the AWS IoT Greengrass Core
software installed on an Amazon Linux 2 base image. You can also pull other images
from the repository. To find all available images, check the Tags page on Docker Hub
or use the aws ecr list-images command. For example:

aws ecr list-images --region us-west-2 --registry-id 216483018798 --
repository-name aws-iot-greengrass

Get the AWS IoT Greengrass container image from Amazon ECR 364

https://hub.docker.com/r/amazon/aws-iot-greengrass
https://hub.docker.com/r/amazon/aws-iot-greengrass

AWS IoT Greengrass Developer Guide, Version 1

Step 2: Create and configure the Greengrass group and core

The Docker image has the AWS IoT Greengrass Core software installed, but you must create a
Greengrass group and core. This includes downloading certificates and the core configuration file.

• Follow the steps in the section called “Module 2: Installing the AWS IoT Greengrass Core
software”. Skip the steps where you download and run the AWS IoT Greengrass Core software.
The software and its runtime dependencies are already set up in the Docker image.

Step 3: Run AWS IoT Greengrass locally

After your group is configured, you're ready to configure and start the core. For steps that show
how to do this, choose your operating system:

Run Greengrass locally (Linux)

Run the following commands in your computer terminal.

1. Create a folder for the device's security resources, and move the certificate and keys into that
folder. Run the following commands. Replace path-to-security-files with the path to
the security resources, and replace certificateId with the certificate ID in the file names.

mkdir /tmp/certs
mv path-to-security-files/certificateId-certificate.pem.crt /tmp/certs
mv path-to-security-files/certificateId-public.pem.key /tmp/certs
mv path-to-security-files/certificateId-private.pem.key /tmp/certs
mv path-to-security-files/AmazonRootCA1.pem /tmp/certs

2. Create a folder for the device's configuration, and move the AWS IoT Greengrass Core
configuration file to that folder. Run the following commands. Replace path-to-config-
file with the path to the configuration file.

mkdir /tmp/config
mv path-to-config-file/config.json /tmp/config

3. Start AWS IoT Greengrass and bind-mount the certificates and configuration file in the Docker
container.

Replace /tmp with the path where you decompressed your certificates and configuration file.

Create and configure the Greengrass group and core 365

AWS IoT Greengrass Developer Guide, Version 1

docker run --rm --init -it --name aws-iot-greengrass \
--entrypoint /greengrass-entrypoint.sh \
-v /tmp/certs:/greengrass/certs \
-v /tmp/config:/greengrass/config \
-p 8883:8883 \
216483018798.dkr.ecr.us-west-2.amazonaws.com/aws-iot-greengrass:latest

The output should look like this example:

Setting up greengrass daemon
Validating hardlink/softlink protection
Waiting for up to 30s for Daemon to start

Greengrass successfully started with PID: 10

Run Greengrass locally (macOS)

Run the following commands in your computer terminal.

1. Create a folder for the device's security resources, and move the certificate and keys into that
folder. Run the following commands. Replace path-to-security-files with the path to
the security resources, and replace certificateId with the certificate ID in the file names.

mkdir /tmp/certs
mv path-to-security-files/certificateId-certificate.pem.crt /tmp/certs
mv path-to-security-files/certificateId-public.pem.key /tmp/certs
mv path-to-security-files/certificateId-private.pem.key /tmp/certs
mv path-to-security-files/AmazonRootCA1.pem /tmp/certs

2. Create a folder for the device's configuration, and move the AWS IoT Greengrass Core
configuration file to that folder. Run the following commands. Replace path-to-config-
file with the path to the configuration file.

mkdir /tmp/config
mv path-to-config-file/config.json /tmp/config

3. Start AWS IoT Greengrass and bind-mount the certificates and configuration file in the Docker
container.

Run AWS IoT Greengrass locally 366

AWS IoT Greengrass Developer Guide, Version 1

Replace /tmp with the path where you decompressed your certificates and configuration file.

docker run --rm --init -it --name aws-iot-greengrass \
--entrypoint /greengrass-entrypoint.sh \
-v /tmp/certs:/greengrass/certs \
-v /tmp/config:/greengrass/config \
-p 8883:8883 \
216483018798.dkr.ecr.us-west-2.amazonaws.com/aws-iot-greengrass:latest

The output should look like this example:

Setting up greengrass daemon
Validating hardlink/softlink protection
Waiting for up to 30s for Daemon to start

Greengrass successfully started with PID: 10

Run Greengrass locally (Windows)

1. Create a folder for the device's security resources, and move the certificate and keys into that
folder. Run the following commands in a command prompt. Replace path-to-security-
files with the path to the security resources, and replace certificateId with the
certificate ID in the file names.

mkdir C:\Users\%USERNAME%\Downloads\certs
move path-to-security-files\certificateId-certificate.pem.crt C:\Users\%USERNAME%
\Downloads\certs
move path-to-security-files\certificateId-public.pem.key C:\Users\%USERNAME%
\Downloads\certs
move path-to-security-files\certificateId-private.pem.key C:\Users\%USERNAME%
\Downloads\certs
move path-to-security-files\AmazonRootCA1.pem C:\Users\%USERNAME%\Downloads\certs

2. Create a folder for the device's configuration, and move the AWS IoT Greengrass Core
configuration file to that folder. Run the following commands in a command prompt. Replace
path-to-config-file with the path to the configuration file.

mkdir C:\Users\%USERNAME%\Downloads\config

Run AWS IoT Greengrass locally 367

AWS IoT Greengrass Developer Guide, Version 1

move path-to-config-file\config.json C:\Users\%USERNAME%\Downloads\config

3. Start AWS IoT Greengrass and bind-mount the certificates and configuration file in the Docker
container. Run the following commands in your command prompt.

docker run --rm --init -it --name aws-iot-greengrass --entrypoint /greengrass-
entrypoint.sh -v c:/Users/%USERNAME%/Downloads/certs:/greengrass/certs
 -v c:/Users/%USERNAME%/Downloads/config:/greengrass/config -p 8883:8883
 216483018798.dkr.ecr.us-west-2.amazonaws.com/aws-iot-greengrass:latest

When Docker prompts you to share your C:\ drive with the Docker daemon, allow it to bind-
mount the C:\ directory inside the Docker container. For more information, see Shared drives
in the Docker documentation.

The output should look like this example:

Setting up greengrass daemon
Validating hardlink/softlink protection
Waiting for up to 30s for Daemon to start

Greengrass successfully started with PID: 10

Note

If the container doesn't open the shell and exits immediately, you can debug the issue
by bind-mounting the Greengrass runtime logs when you start the image. For more
information, see the section called “To persist Greengrass runtime logs outside of the
Docker container”.

Step 4: Configure "No container" containerization for the Greengrass
group

When you run AWS IoT Greengrass in a Docker container, all Lambda functions must run without
containerization. In this step, you set the default containerization for the group to No container.
You must do this before you deploy the group for the first time.

Configure "No container" containerization for the group 368

https://docs.docker.com/docker-for-windows/#shared-drives

AWS IoT Greengrass Developer Guide, Version 1

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose the group whose settings you want to change.

3. Choose the Lambda functions tab.

4. Under Default Lambda function runtime environment, choose Edit.

5. In the Edit default Lambda function runtime environment, under Default Lambda function
containerization, change the containerization settings.

6. Choose Save.

The changes take effect when the group is deployed.

For more information, see the section called “Setting default containerization for Lambda
functions in a group”.

Note

By default, Lambda functions use the group containerization setting. If you override the
No container setting for any Lambda functions when AWS IoT Greengrass is running in a
Docker container, the deployment fails.

Step 5: Deploy Lambda functions to the AWS IoT Greengrass Docker
container

You can deploy long-lived Lambda functions to the Greengrass Docker container.

• Follow the steps in the section called “Module 3 (part 1): Lambda functions on AWS IoT
Greengrass” to deploy a long-lived Hello World Lambda function to the container.

Step 6: (Optional) Deploy client devices that interact with Greengrass
running in the Docker container

You can also deploy client devices that interact with AWS IoT Greengrass when it's running in a
Docker container.

Deploy Lambda functions to the Docker container 369

AWS IoT Greengrass Developer Guide, Version 1

• Follow the steps in the section called “Module 4: Interacting with client devices in an AWS IoT
Greengrass group” to deploy client devices that connect to the core and send MQTT messages.

Stopping the AWS IoT Greengrass Docker container

To stop the AWS IoT Greengrass Docker container, press Ctrl+C in your terminal or command
prompt. This action sends SIGTERM to the Greengrass daemon process to tear down the
Greengrass daemon process and all Lambda processes that were started by the daemon process.
The Docker container is initialized with /dev/init process as PID 1, which helps in removing any
leftover zombie processes. For more information, see the Docker run reference.

Troubleshooting AWS IoT Greengrass in a Docker container

Use the following information to help troubleshoot issues with running AWS IoT Greengrass in a
Docker container.

Error: Cannot perform an interactive login from a non TTY device.

Solution: This error can occur when you run the aws ecr get-login-password command.
Make sure that you installed the latest AWS CLI version 2 or version 1. We recommend that you use
the AWS CLI version 2. For more information, see Installing the AWS CLI in the AWS Command Line
Interface User Guide.

Error: Unknown options: -no-include-email.

Solution: This error can occur when you run the aws ecr get-login command. Make sure
that you have the latest AWS CLI version installed (for example, run: pip install awscli --
upgrade --user). If you're using Windows and you installed the CLI using the MSI installer, you
must repeat the installation process. For more information, see Installing the AWS Command Line
Interface on Microsoft Windows in the AWS Command Line Interface User Guide.

Warning: IPv4 is disabled. Networking will not work.

Solution: You might receive this warning or a similar message when running AWS IoT Greengrass
on a Linux computer. Enable IPv4 network forwarding as described in this step. AWS IoT
Greengrass cloud deployment and MQTT communications don't work when IPv4 forwarding isn't
enabled. For more information, see Configure namespaced kernel parameters (sysctls) at runtime in
the Docker documentation.

Stopping the AWS IoT Greengrass Docker container 370

https://docs.docker.com/engine/reference/commandline/run/#options
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html
https://docs.docker.com/engine/reference/commandline/run/#configure-namespaced-kernel-parameters-sysctls-at-runtime

AWS IoT Greengrass Developer Guide, Version 1

Error: A firewall is blocking file Sharing between windows and the containers.

Solution: You might receive this error or a Firewall Detected message when running Docker
on a Windows computer. This can also occur if you are signed in on a virtual private network (VPN)
and your network settings are preventing the shared drive from being mounted. In that situation,
turn off VPN and re-run the Docker container.

Error: An error occurred (AccessDeniedException) when calling the
GetAuthorizationToken operation: User: arn:aws:iam::<account-id>:user/<user-
name> is not authorized to perform: ecr:GetAuthorizationToken on resource: *

You might receive this error when running the aws ecr get-login-password command if you
don't have sufficient permissions to access an Amazon ECR repository. For more information, see
Amazon ECR Repository Policy Examples and Accessing One Amazon ECR Repository in the Amazon
ECR User Guide.

For general AWS IoT Greengrass troubleshooting help, see Troubleshooting.

Debugging AWS IoT Greengrass in a Docker container

To debug issues with a Docker container, you can persist the Greengrass runtime logs or attach an
interactive shell to the Docker container.

To persist Greengrass runtime logs outside of the Docker container

You can run the AWS IoT Greengrass Docker container after bind-mounting the /greengrass/
ggc/var/log directory. The logs persist even after the container exits or is removed.

On Linux or macOS

Stop any Greengrass Docker containers running on the host, and then run the following
command in a terminal. This bind-mounts the Greengrass log directory and starts the Docker
image.

Replace /tmp with the path where you decompressed your certificates and configuration file.

docker run --rm --init -it --name aws-iot-greengrass \
 --entrypoint /greengrass-entrypoint.sh \
 -v /tmp/certs:/greengrass/certs \
 -v /tmp/config:/greengrass/config \

Troubleshooting AWS IoT Greengrass in a Docker container 371

https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-policy-examples.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/security_iam_id-based-policy-examples.html

AWS IoT Greengrass Developer Guide, Version 1

 -v /tmp/log:/greengrass/ggc/var/log \
 -p 8883:8883 \
 216483018798.dkr.ecr.us-west-2.amazonaws.com/aws-iot-greengrass:latest

You can then check your logs at /tmp/log on your host to see what happened while
Greengrass was running inside the Docker container.

On Windows

Stop any Greengrass Docker containers running on the host, and then run the following
command in a command prompt. This bind-mounts the Greengrass log directory and starts the
Docker image.

cd C:\Users\%USERNAME%\Downloads
mkdir log
docker run --rm --init -it --name aws-iot-greengrass --entrypoint /greengrass-
entrypoint.sh -v c:/Users/%USERNAME%/Downloads/certs:/greengrass/certs -v c:/
Users/%USERNAME%/Downloads/config:/greengrass/config -v c:/Users/%USERNAME%/
Downloads/log:/greengrass/ggc/var/log -p 8883:8883 216483018798.dkr.ecr.us-
west-2.amazonaws.com/aws-iot-greengrass:latest

You can then check your logs at C:/Users/%USERNAME%/Downloads/log on your host to see
what happened while Greengrass was running inside the Docker container.

To attach an interactive shell to the Docker container

You can attach an interactive shell to a running AWS IoT Greengrass Docker container. This can
help you investigate the state of the Greengrass Docker container.

On Linux or macOS

While the Greengrass Docker container is running, run the following command in a separate
terminal.

docker exec -it $(docker ps -a -q -f "name=aws-iot-greengrass") /bin/bash

On Windows

While the Greengrass Docker container is running, run the following commands in a separate
command prompt.

Troubleshooting AWS IoT Greengrass in a Docker container 372

AWS IoT Greengrass Developer Guide, Version 1

docker ps -a -q -f "name=aws-iot-greengrass"

Replace gg-container-id with the container_id result from the previous command.

docker exec -it gg-container-id /bin/bash

Troubleshooting AWS IoT Greengrass in a Docker container 373

AWS IoT Greengrass Developer Guide, Version 1

Access local resources with Lambda functions and
connectors

This feature is available for AWS IoT Greengrass Core v1.3 and later.

With AWS IoT Greengrass, you can author AWS Lambda functions and configure connectors in
the cloud and deploy them to core devices for local execution. On Greengrass cores running
Linux, these locally deployed Lambda functions and connectors can access local resources that are
physically present on the Greengrass core device. For example, to communicate with devices that
are connected through Modbus or CANbus, you can enable your Lambda function to access the
serial port on the core device. To configure secure access to local resources, you must guarantee the
security of your physical hardware and your Greengrass core device OS.

To get started accessing local resources, see the following tutorials:

• How to configure local resource access using the AWS command line interface

• How to configure local resource access using the AWS Management Console

Supported resource types

You can access two types of local resources: volume resources and device resources.

Volume resources

Files or directories on the root file system (except under /sys, /dev, or /var). These include:

• Folders or files used to read or write information across Greengrass Lambda functions (for
example, /usr/lib/python2.x/site-packages/local).

• Folders or files under the host's /proc file system (for example, /proc/net or /proc/stat).
Supported in v1.6 or later. For additional requirements, see the section called “Volume
resources under the /proc directory”.

Tip

To configure the /var, /var/run, and /var/lib directories as volume resources, first
mount the directory in a different folder and then configure the folder as a volume
resource.

Supported resource types 374

AWS IoT Greengrass Developer Guide, Version 1

When you configure volume resources, you specify a source path and a destination path.
The source path is the absolute path of the resource on the host. The destination path is the
absolute path of the resource inside the Lambda namespace environment. This is the container
that a Greengrass Lambda function or connector runs in. Any changes to the destination path
are reflected in the source path on the host file system.

Note

Files in the destination path are visible in the Lambda namespace only. You can't see
them in a regular Linux namespace.

Device resources

Files under /dev. Only character devices or block devices under /dev are allowed for device
resources. These include:

• Serial ports used to communicate with devices connected through serial ports (for example, /
dev/ttyS0, /dev/ttyS1).

• USB used to connect USB peripherals (for example, /dev/ttyUSB0 or /dev/bus/usb).

• GPIOs used for sensors and actuators through GPIO (for example, /dev/gpiomem).

• GPUs used to accelerate machine learning using on-board GPUs (for example, /dev/
nvidia0).

• Cameras used to capture images and videos (for example, /dev/video0).

Note

/dev/shm is an exception. It can be configured as a volume resource only. Resources
under /dev/shm must be granted rw permission.

AWS IoT Greengrass also supports resource types that are used to perform machine learning
inference. For more information, see Perform machine learning inference.

Requirements

The following requirements apply to configuring secure access to local resources:

Requirements 375

AWS IoT Greengrass Developer Guide, Version 1

• You must be using AWS IoT Greengrass Core Software v1.3 or later. To create resources for the
host's /proc directory, you must be using v1.6 or later.

• The local resource (including any required drivers and libraries) must be correctly installed on the
Greengrass core device and consistently available during use.

• The desired operation of the resource, and access to the resource, must not require root
privileges.

• Only read or read and write permissions are available. Lambda functions cannot perform
privileged operations on the resources.

• You must provide the full path of the local resource on the operating system of the Greengrass
core device.

• A resource name or ID has a maximum length of 128 characters and must use the pattern [a-
zA-Z0-9:_-]+.

Volume resources under the /proc directory

The following considerations apply to volume resources that are under the host's /proc directory.

• You must be using AWS IoT Greengrass Core Software v1.6 or later.

• You can allow read-only access for Lambda functions, but not read-write access. This level of
access is managed by AWS IoT Greengrass.

• You might also need to grant OS group permissions to enable read access in the file system. For
example, suppose your source directory or file has a 660 file permission, which means that only
the owner or user in the group has read (and write) access. In this case, you must add the OS
group owner's permissions to the resource. For more information, see the section called “Group
owner file access permission”.

• The host environment and the Lambda namespace both contain a /proc directory, so be sure to
avoid naming conflicts when you specify the destination path. For example, if /proc is the source
path, you can specify /host-proc as the destination path (or any path name other than "/proc").

Group owner file access permission

An AWS IoT Greengrass Lambda function process normally runs as ggc_user and ggc_group.
However, you can give additional file access permissions to the Lambda function process in the
local resource definition, as follows:

Volume resources under the /proc directory 376

AWS IoT Greengrass Developer Guide, Version 1

• To add the permissions of the Linux group that owns the resource, use the
GroupOwnerSetting#AutoAddGroupOwner parameter or Automatically add file system
permissions of the system group that owns the resource console option.

• To add the permissions of a different Linux group, use the GroupOwnerSetting#GroupOwner
parameter or Specify another system group to add file system permissions console option. The
GroupOwner value is ignored if GroupOwnerSetting#AutoAddGroupOwner is true.

An AWS IoT Greengrass Lambda function process inherits all of the file system permissions of
ggc_user, ggc_group, and the Linux group (if added). For the Lambda function to access a
resource, the Lambda function process must have the required permissions to the resource. You can
use the chmod(1) command to change the permission of the resource, if necessary.

See also

• Service Quotas for resources in the Amazon Web Services General Reference

How to configure local resource access using the AWS
command line interface

This feature is available for AWS IoT Greengrass Core v1.3 and later.

To use a local resource, you must add a resource definition to the group definition that is deployed
to your Greengrass core device. The group definition must also contain a Lambda function
definition in which you grant access permissions for local resources to your Lambda functions. For
more information, including requirements and constraints, see Access local resources with Lambda
functions and connectors.

This tutorial describes the process for creating a local resource and configuring access to it using
the AWS Command Line Interface (CLI). To follow the steps in the tutorial, you must have already
created a Greengrass group as described in Getting started with AWS IoT Greengrass.

For a tutorial that uses the AWS Management Console, see How to configure local resource access
using the AWS Management Console.

See also 377

https://docs.aws.amazon.com/general/latest/gr/greengrass.html#limits_greengrass

AWS IoT Greengrass Developer Guide, Version 1

Create local resources

First, you use the CreateResourceDefinition command to create a resource definition that
specifies the resources to be accessed. In this example, we create two resources, TestDirectory
and TestCamera:

aws greengrass create-resource-definition --cli-input-json '{
 "Name": "MyLocalVolumeResource",
 "InitialVersion": {
 "Resources": [
 {
 "Id": "data-volume",
 "Name": "TestDirectory",
 "ResourceDataContainer": {
 "LocalVolumeResourceData": {
 "SourcePath": "/src/LRAtest",
 "DestinationPath": "/dest/LRAtest",
 "GroupOwnerSetting": {
 "AutoAddGroupOwner": true,
 "GroupOwner": ""
 }
 }
 }
 },
 {
 "Id": "data-device",
 "Name": "TestCamera",
 "ResourceDataContainer": {
 "LocalDeviceResourceData": {
 "SourcePath": "/dev/video0",
 "GroupOwnerSetting": {
 "AutoAddGroupOwner": true,
 "GroupOwner": ""
 }
 }
 }
 }
]
 }
}'

Create local resources 378

https://docs.aws.amazon.com/greengrass/v1/apireference/createresourcedefinition-post.html

AWS IoT Greengrass Developer Guide, Version 1

Resources: A list of Resource objects in the Greengrass group. One Greengrass group can have up
to 50 resources.

Resource#Id: The unique identifier of the resource. The ID is used to refer to a resource in the
Lambda function configuration. Max length 128 characters. Pattern: [a-zA-Z0-9:_-]+.

Resource#Name: The name of the resource. The resource name is displayed in the Greengrass
console. Max length 128 characters. Pattern: [a-zA-Z0-9:_-]+.

LocalDeviceResourceData#SourcePath: The local absolute path of the device resource. The source
path for a device resource can refer only to a character device or block device under /dev.

LocalVolumeResourceData#SourcePath: The local absolute path of the volume resource on the
Greengrass core device. This location is outside of the container that the function runs in. The
source path for a volume resource type cannot start with /sys.

LocalVolumeResourceData#DestinationPath: The absolute path of the volume resource inside the
Lambda environment. This location is inside the container that the function runs in.

GroupOwnerSetting: Allows you to configure additional group privileges for the Lambda process.
This field is optional. For more information, see Group owner file access permission.

GroupOwnerSetting#AutoAddGroupOwner: If true, Greengrass automatically adds the specified
Linux OS group owner of the resource to the Lambda process privileges. Thus the Lambda process
has the file access permissions of the added Linux group.

GroupOwnerSetting#GroupOwner: Specifies the name of the Linux OS group whose privileges are
added to the Lambda process. This field is optional.

A resource definition version ARN is returned by CreateResourceDefinition. The ARN should
be used when updating a group definition.

{
 "LatestVersionArn": "arn:aws:greengrass:us-west-2:012345678901:/greengrass/
definition/resources/ab14d0b5-116e-4951-a322-9cde24a30373/versions/a4d9b882-
d025-4760-9cfe-9d4fada5390d",
 "Name": "MyLocalVolumeResource",
 "LastUpdatedTimestamp": "2017-11-15T01:18:42.153Z",
 "LatestVersion": "a4d9b882-d025-4760-9cfe-9d4fada5390d",
 "CreationTimestamp": "2017-11-15T01:18:42.153Z",
 "Id": "ab14d0b5-116e-4951-a322-9cde24a30373",

Create local resources 379

https://docs.aws.amazon.com/greengrass/v1/apireference/createresourcedefinition-post.html

AWS IoT Greengrass Developer Guide, Version 1

 "Arn": "arn:aws:greengrass:us-west-2:123456789012:/greengrass/definition/resources/
ab14d0b5-116e-4951-a322-9cde24a30373"
}

Create the Greengrass function

After the resources are created, use the CreateFunctionDefinition command to create the
Greengrass function and grant the function access to the resource:

aws greengrass create-function-definition --cli-input-json '{
 "Name": "MyFunctionDefinition",
 "InitialVersion": {
 "Functions": [
 {
 "Id": "greengrassLraTest",
 "FunctionArn": "arn:aws:lambda:us-
west-2:012345678901:function:lraTest:1",
 "FunctionConfiguration": {
 "Pinned": false,
 "MemorySize": 16384,
 "Timeout": 30,
 "Environment": {
 "ResourceAccessPolicies": [
 {
 "ResourceId": "data-volume",
 "Permission": "rw"
 },
 {
 "ResourceId": "data-device",
 "Permission": "ro"
 }
],
 "AccessSysfs": true
 }
 }
 }
]
 }
}'

ResourceAccessPolicies: Contains the resourceId and permission which grant the Lambda
function access to the resource. A Lambda function can access a maximum of 20 resources.

Create the Greengrass function 380

https://docs.aws.amazon.com/greengrass/v1/apireference/createfunctiondefinition-post.html

AWS IoT Greengrass Developer Guide, Version 1

ResourceAccessPolicy#Permission: Specifies which permissions the Lambda function has on the
resource. The available options are rw (read/write) or ro (read-only).

AccessSysfs: If true, the Lambda process can have read access to the /sys folder on the Greengrass
core device. This is used in cases where the Greengrass Lambda function needs to read device
information from /sys.

Again, CreateFunctionDefinition returns a function definition version ARN. The ARN should
be used in your group definition version.

{
 "LatestVersionArn": "arn:aws:greengrass:us-west-2:012345678901:/greengrass/
definition/functions/3c9b1685-634f-4592-8dfd-7ae1183c28ad/versions/37f0d50e-ef50-4faf-
b125-ade8ed12336e",
 "Name": "MyFunctionDefinition",
 "LastUpdatedTimestamp": "2017-11-22T02:28:02.325Z",
 "LatestVersion": "37f0d50e-ef50-4faf-b125-ade8ed12336e",
 "CreationTimestamp": "2017-11-22T02:28:02.325Z",
 "Id": "3c9b1685-634f-4592-8dfd-7ae1183c28ad",
 "Arn": "arn:aws:greengrass:us-west-2:123456789012:/greengrass/definition/
functions/3c9b1685-634f-4592-8dfd-7ae1183c28ad"
}

Add the Lambda function to the group

Finally, use CreateGroupVersion to add the function to the group. For example:

aws greengrass create-group-version --group-id "b36a3aeb-3243-47ff-9fa4-7e8d98cd3cf5" \
--resource-definition-version-arn "arn:aws:greengrass:us-west-2:123456789012:/
greengrass/definition/resources/db6bf40b-29d3-4c4e-9574-21ab7d74316c/versions/31d0010f-
e19a-4c4c-8098-68b79906fb87" \
--core-definition-version-arn "arn:aws:greengrass:us-west-2:123456789012:/
greengrass/definition/cores/adbf3475-f6f3-48e1-84d6-502f02729067/
versions/297c419a-9deb-46dd-8ccc-341fc670138b" \
--function-definition-version-arn "arn:aws:greengrass:us-west-2:123456789012:/
greengrass/definition/functions/d1123830-da38-4c4c-a4b7-e92eec7b6d3e/versions/a2e90400-
caae-4ffd-b23a-db1892a33c78" \
--subscription-definition-version-arn "arn:aws:greengrass:us-west-2:123456789012:/
greengrass/definition/subscriptions/7a8ef3d8-1de3-426c-9554-5b55a32fbcb6/
versions/470c858c-7eb3-4abd-9d48-230236bfbf6a"

Add the Lambda function to the group 381

https://docs.aws.amazon.com/greengrass/v1/apireference/createfunctiondefinition-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/creategroupversion-post.html

AWS IoT Greengrass Developer Guide, Version 1

Note

To learn how to get the group ID to use with this command, see the section called “Getting
the group ID”.

A new group version is returned:

{
 "Arn": "arn:aws:greengrass:us-west-2:012345678901:/greengrass/groups/
b36a3aeb-3243-47ff-9fa4-7e8d98cd3cf5/versions/291917fb-ec54-4895-823e-27b52da25481",
 "Version": "291917fb-ec54-4895-823e-27b52da25481",
 "CreationTimestamp": "2017-11-22T01:47:22.487Z",
 "Id": "b36a3aeb-3243-47ff-9fa4-7e8d98cd3cf5"
}

Your Greengrass group now contains the lraTest Lambda function that has access to two resources:
TestDirectory and TestCamera.

This example Lambda function, lraTest.py, written in Python, writes to the local volume
resource:

Demonstrates a simple use case of local resource access.
This Lambda function writes a file test to a volume mounted inside
the Lambda environment under destLRAtest. Then it reads the file and
publishes the content to the AWS IoT LRAtest topic.

import sys
import greengrasssdk
import platform
import os
import logging

Setup logging to stdout
logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)

Create a Greengrass Core SDK client.
client = greengrasssdk.client('iot-data')
volumePath = '/dest/LRAtest'

def function_handler(event, context):

Add the Lambda function to the group 382

AWS IoT Greengrass Developer Guide, Version 1

 try:
 client.publish(topic='LRA/test', payload='Sent from AWS IoT Greengrass Core.')
 volumeInfo = os.stat(volumePath)
 client.publish(topic='LRA/test', payload=str(volumeInfo))
 with open(volumePath + '/test', 'a') as output:
 output.write('Successfully write to a file.')
 with open(volumePath + '/test', 'r') as myfile:
 data = myfile.read()
 client.publish(topic='LRA/test', payload=data)
 except Exception as e:
 logger.error('Failed to publish message: ' + repr(e))
 return

These commands are provided by the Greengrass API to create and manage resource definitions
and resource definition versions:

• CreateResourceDefinition

• CreateResourceDefinitionVersion

• DeleteResourceDefinition

• GetResourceDefinition

• GetResourceDefinitionVersion

• ListResourceDefinitions

• ListResourceDefinitionVersions

• UpdateResourceDefinition

Troubleshooting

• Q: Why does my Greengrass group deployment fail with an error similar to:

group config is invalid:
 ggc_user or [ggc_group root tty] don't have ro permission on the file: /dev/tty0

A: This error indicates that the Lambda process doesn't have permission to access the specified
resource. The solution is to change the file permission of the resource so that Lambda can access
it. (See Group owner file access permission for details).

• Q: When I configure /var/run as a volume resource, why does the Lambda function fail to start
with an error message in the runtime.log:

Troubleshooting 383

https://docs.aws.amazon.com/greengrass/v1/apireference/createresourcedefinition-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/createresourcedefinitionversion-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/deleteresourcedefinition-delete.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getresourcedefinition-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getresourcedefinitionversion-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listresourcedefinitions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listresourcedefinitionversions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/updateresourcedefinition-put.html

AWS IoT Greengrass Developer Guide, Version 1

[ERROR]-container_process.go:39,Runtime execution error: unable to start lambda
 container.
container_linux.go:259: starting container process caused "process_linux.go:345:
container init caused \"rootfs_linux.go:62: mounting \\\"/var/run\\\" to rootfs \\\"/
greengrass/ggc/packages/1.3.0/rootfs_sys\\\" at \\\"/greengrass/ggc/packages/1.3.0/
rootfs_sys/run\\\"
caused \\\"invalid argument\\\"\""

A: AWS IoT Greengrass core currently doesn't support the configuration of /var, /var/run, and
/var/lib as volume resources. One workaround is to first mount /var, /var/run or /var/
lib in a different folder and then configure the folder as a volume resource.

• Q: When I configure /dev/shm as a volume resource with read-only permission, why does the
Lambda function fail to start with an error in the runtime.log:

[ERROR]-container_process.go:39,Runtime execution error: unable to start lambda
 container.
container_linux.go:259: starting container process caused "process_linux.go:345:
container init caused \"rootfs_linux.go:62: mounting \\\"/dev/shm\\\" to rootfs \\\"/
greengrass/ggc/packages/1.3.0/rootfs_sys\\\" at \\\"/greengrass/ggc/packages/1.3.0/
rootfs_sys/dev/shm\\\"
caused \\\"operation not permitted\\\"\""”

A: /dev/shm can only be configured as read/write. Change the resource permission to rw to
resolve the issue.

How to configure local resource access using the AWS
Management Console

This feature is available for AWS IoT Greengrass Core v1.3 and later.

You can configure Lambda functions to securely access local resources on the host Greengrass core
device. Local resources refer to buses and peripherals that are physically present on the host, or file
system volumes on the host OS. For more information, including requirements and constraints, see
Access local resources with Lambda functions and connectors.

Using the console 384

AWS IoT Greengrass Developer Guide, Version 1

This tutorial describes how to use the AWS Management Console to configure access to local
resources that are present on an AWS IoT Greengrass core device. It contains the following high-
level steps:

1. Create a Lambda function deployment package

2. Create and publish a Lambda function

3. Add the Lambda function to the group

4. Add a local resource to the group

5. Add subscriptions to the group

6. Deploy the group

For a tutorial that uses the AWS Command Line Interface, see How to configure local resource
access using the AWS command line interface.

Prerequisites

To complete this tutorial, you need:

• A Greengrass group and a Greengrass core (v1.3 or later). To create a Greengrass group or core,
see Getting started with AWS IoT Greengrass.

• The following directories on the Greengrass core device:

• /src/LRAtest

• /dest/LRAtest

The owner group of these directories must have read and write access to the directories. You
might use the following command to grant access:

sudo chmod 0775 /src/LRAtest

Step 1: Create a Lambda function deployment package

In this step, you create a Lambda function deployment package, which is a ZIP file that contains
the function's code and dependencies. You also download the AWS IoT Greengrass Core SDK to
include in the package as a dependency.

Prerequisites 385

AWS IoT Greengrass Developer Guide, Version 1

1. On your computer, copy the following Python script to a local file named lraTest.py. This is
the app logic for the Lambda function.

Demonstrates a simple use case of local resource access.
This Lambda function writes a file test to a volume mounted inside
the Lambda environment under destLRAtest. Then it reads the file and
publishes the content to the AWS IoT LRAtest topic.

import sys
import greengrasssdk
import platform
import os
import logging

Setup logging to stdout
logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)

Create a Greengrass Core SDK client.
client = greengrasssdk.client('iot-data')
volumePath = '/dest/LRAtest'

def function_handler(event, context):
 try:
 client.publish(topic='LRA/test', payload='Sent from AWS IoT Greengrass
 Core.')
 volumeInfo = os.stat(volumePath)
 client.publish(topic='LRA/test', payload=str(volumeInfo))
 with open(volumePath + '/test', 'a') as output:
 output.write('Successfully write to a file.')
 with open(volumePath + '/test', 'r') as myfile:
 data = myfile.read()
 client.publish(topic='LRA/test', payload=data)
 except Exception as e:
 logger.error('Failed to publish message: ' + repr(e))
 return

2. From the AWS IoT Greengrass Core SDK downloads page, download the AWS IoT Greengrass
Core SDK for Python to your computer.

3. Unzip the downloaded package to get the SDK. The SDK is the greengrasssdk folder.

4. Zip the following items into a file named lraTestLambda.zip:

Create a Lambda function deployment package 386

AWS IoT Greengrass Developer Guide, Version 1

• lraTest.py. App logic.

• greengrasssdk. Required library for all Python Lambda functions.

The lraTestLambda.zip file is your Lambda function deployment package. Now you're
ready to create a Lambda function and upload the deployment package.

Step 2: Create and publish a Lambda function

In this step, you use the AWS Lambda console to create a Lambda function and configure it to use
your deployment package. Then, you publish a function version and create an alias.

First, create the Lambda function.

1. In the AWS Management Console, choose Services, and open the AWS Lambda console.

2. Choose Functions.

3. Choose Create function and then choose Author from scratch.

4. In the Basic information section, use the following values.

a. For Function name, enter TestLRA.

b. For Runtime, choose Python 3.7.

c. For Permissions, keep the default setting. This creates an execution role that grants basic
Lambda permissions. This role isn't used by AWS IoT Greengrass.

5. Choose Create function.

Create and publish a Lambda function 387

AWS IoT Greengrass Developer Guide, Version 1

6. Upload your Lambda function deployment package and register the handler.

a. On the Code tab, under Code source, choose Upload from. From the dropdown, choose
.zip file.

b. Choose Upload, and then choose your lraTestLambda.zip deployment package. Then,
choose Save.

c. On the Code tab for the function, under Runtime settings, choose Edit, and then enter
the following values.

• For Runtime, choose Python 3.7.

• For Handler, enter lraTest.function_handler.

d. Choose Save.

Note

The Test button on the AWS Lambda console doesn't work with this function. The
AWS IoT Greengrass Core SDK doesn't contain modules that are required to run
your Greengrass Lambda functions independently in the AWS Lambda console.
These modules (for example, greengrass_common) are supplied to the functions
after they are deployed to your Greengrass core.

Next, publish the first version of your Lambda function. Then, create an alias for the version.

Greengrass groups can reference a Lambda function by alias (recommended) or by version.
Using an alias makes it easier to manage code updates because you don't have to change your
subscription table or group definition when the function code is updated. Instead, you just
point the alias to the new function version.

Create and publish a Lambda function 388

https://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS IoT Greengrass Developer Guide, Version 1

7. From Actions, choose Publish new version.

8. For Version description, enter First version, and then choose Publish.

9. On the TestLRA: 1 configuration page, from Actions, choose Create alias.

10. On the Create alias page, for Name, enter test. For Version, enter 1.

Note

AWS IoT Greengrass doesn't support Lambda aliases for $LATEST versions.

11. Choose Create.

You can now add the Lambda function to your Greengrass group.

Step 3: Add the Lambda function to the Greengrass group

In this step, you add the function to your group and configure the function's lifecycle.

First, add the Lambda function to your Greengrass group.

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose the Greengrass group where you want to add the Lambda function.

Add the Lambda function to the group 389

AWS IoT Greengrass Developer Guide, Version 1

3. On the group configuration page, choose the Lambda functions tab.

4. Under My Lambda functions section, choose Add.

5. On the Add Lambda function page, choose the Lambda function. Select TestLRA.

6. Choose the Lambda function version.

7. In the Lambda function configuration section, select System user and group and Lambda
function containerization.

Next, configure the lifecycle of the Lambda function.

8. For Timeout, choose 30 seconds.

Important

Lambda functions that use local resources (as described in this procedure) must run in
a Greengrass container. Otherwise, deployment fails if you try to deploy the function.
For more information, see Containerization.

9. At the bottom of the page, choose Add Lambda function.

Step 4: Add a local resource to the Greengrass group

In this step, you add a local volume resource to the Greengrass group and grant the function
read and write access to the resource. A local resource has a group-level scope. You can grant
permissions for any Lambda function in the group to access the resource.

1. On the group configuration page, choose the Resources tab.

2. Under the Local resources section, choose Add.

3. On the Add a local resource page, use the following values.

a. For Resource name, enter testDirectory.

b. For Resource type, choose Volume.

c. For Local device path, enter /src/LRAtest. This path must exist on the host OS.

The local device path is the local absolute path of the resource on the file system of the
core device. This location is outside of the container that the function runs in. The path
can't start with /sys.

Add a local resource to the group 390

AWS IoT Greengrass Developer Guide, Version 1

d. For Destination path, enter /dest/LRAtest. This path must exist on the host OS.

The destination path is the absolute path of the resource in the Lambda namespace. This
location is inside the container that the function runs in.

e. Under System group owner and file access permission, select Automatically add file
system permissions of the system group that owns the resource.

The System group owner and file access permission option lets you grant additional file
access permissions to the Lambda process. For more information, see Group owner file
access permission.

4. Choose Add resource. The Resources page displays the new testDirectory resource.

Step 5: Add subscriptions to the Greengrass group

In this step, you add two subscriptions to the Greengrass group. These subscriptions enable
bidirectional communication between the Lambda function and AWS IoT.

First, create a subscription for the Lambda function to send messages to AWS IoT.

1. On the group configuration page, choose the Subscriptions tab.

2. Choose Add.

3. On the Create a subscription page, configure the source and target, as follows:

a. For Source type, choose Lambda function, and then choose TestLRA.

b. For Target type, choose Service, and then choose IoT Cloud.

c. For Topic filter, enter LRA/test, and then choose Create subscription.

4. The Subscriptions page displays the new subscription.

Next, configure a subscription that invokes the function from AWS IoT.

5. On the Subscriptions page, choose Add Subscription.

6. On the Select your source and target page, configure the source and target, as follows:

a. For Source type, choose Lambda function, and then choose IoT Cloud.

b. For Target type, choose Service, and then choose TestLRA.

c. Choose Next.

Add subscriptions to the group 391

AWS IoT Greengrass Developer Guide, Version 1

7. On the Filter your data with a topic page, for Topic filter, enter invoke/LRAFunction, and
then choose Next.

8. Choose Finish. The Subscriptions page displays both subscriptions.

Step 6: Deploy the AWS IoT Greengrass group

In this step, you deploy the current version of the group definition.

1. Make sure that the AWS IoT Greengrass core is running. Run the following commands in your
Raspberry Pi terminal, as needed.

a. To check whether the daemon is running:

ps aux | grep -E 'greengrass.*daemon'

If the output contains a root entry for /greengrass/ggc/packages/1.11.6/bin/
daemon, then the daemon is running.

Note

The version in the path depends on the AWS IoT Greengrass Core software version
that's installed on your core device.

b. To start the daemon:

cd /greengrass/ggc/core/
sudo ./greengrassd start

2. On the group configuration page, choose Deploy.

Note

Deployment fails if you run your Lambda function without containerization and try to
access attached local resources.

3. If prompted, on the Lambda function tab, under System Lambda functions, select IP
detector, and then Edit, and then Automatically detect.

Deploy the group 392

AWS IoT Greengrass Developer Guide, Version 1

This enables devices to automatically acquire connectivity information for the core, such
as IP address, DNS, and port number. Automatic detection is recommended, but AWS IoT
Greengrass also supports manually specified endpoints. You're only prompted for the
discovery method the first time that the group is deployed.

Note

If prompted, grant permission to create the Greengrass service role and associate it
with your AWS account in the current AWS Region. This role allows AWS IoT Greengrass
to access your resources in AWS services.

The Deployments page shows the deployment timestamp, version ID, and status. When
completed, the deployment status is Completed.

For troubleshooting help, see Troubleshooting.

Test local resource access

Now you can verify whether the local resource access is configured correctly. To test, you subscribe
to the LRA/test topic and publish to the invoke/LRAFunction topic. The test is successful if
the Lambda function sends the expected payload to AWS IoT.

1. From the AWS IoT console navigation menu, under Test, choose MQTT test client.

2. Under Subscribe to a topic, for Topic filter, enter LRA/test.

3. Under Additional information, for MQTT payload display, select Display payloads as strings.

4. Choose Subscribe. Your Lambda function publishes to the LRA/test topic.

Test local resource access 393

AWS IoT Greengrass Developer Guide, Version 1

5. Under Publish to a topic, in the Topic nameenter invoke/LRAFunction, and then choose
Publish to invoke your Lambda function. The test is successful if the page displays the
function's three message payloads.

Test local resource access 394

AWS IoT Greengrass Developer Guide, Version 1

The test file created by the Lambda function is in the /src/LRAtest directory on the Greengrass
core device. Although the Lambda function writes to a file in the /dest/LRAtest directory, that
file is visible in the Lambda namespace only. You can't see it in a regular Linux namespace. Any
changes to the destination path are reflected in the source path on the file system.

For troubleshooting help, see Troubleshooting.

Test local resource access 395

AWS IoT Greengrass Developer Guide, Version 1

Perform machine learning inference

This feature is available for AWS IoT Greengrass Core v1.6 or later.

With AWS IoT Greengrass, you can perform machine learning (ML) inference at the edge on locally
generated data using cloud-trained models. You benefit from the low latency and cost savings of
running local inference, yet still take advantage of cloud computing power for training models and
complex processing.

To get started performing local inference, see the section called “How to configure machine
learning inference”.

How AWS IoT Greengrass ML inference works

You can train your inference models anywhere, deploy them locally as machine learning resources
in a Greengrass group, and then access them from Greengrass Lambda functions. For example, you
can build and train deep-learning models in SageMaker and deploy them to your Greengrass core.
Then, your Lambda functions can use the local models to perform inference on connected devices
and send new training data back to the cloud.

The following diagram shows the AWS IoT Greengrass ML inference workflow.

AWS IoT Greengrass ML inference simplifies each step of the ML workflow, including:

How AWS IoT Greengrass ML inference works 396

https://console.aws.amazon.com/sagemaker

AWS IoT Greengrass Developer Guide, Version 1

• Building and deploying ML framework prototypes.

• Accessing cloud-trained models and deploying them to Greengrass core devices.

• Creating inference apps that can access hardware accelerators (such as GPUs and FPGAs) as local
resources.

Machine learning resources

Machine learning resources represent cloud-trained inference models that are deployed to an
AWS IoT Greengrass core. To deploy machine learning resources, first you add the resources to
a Greengrass group, and then you define how Lambda functions in the group can access them.
During group deployment, AWS IoT Greengrass retrieves the source model packages from the
cloud and extracts them to directories inside the Lambda runtime namespace. Then, Greengrass
Lambda functions use the locally deployed models to perform inference.

To update a locally deployed model, first update the source model (in the cloud) that corresponds
to the machine learning resource, and then deploy the group. During deployment, AWS IoT
Greengrass checks the source for changes. If changes are detected, then AWS IoT Greengrass
updates the local model.

Supported model sources

AWS IoT Greengrass supports SageMaker and Amazon S3 model sources for machine learning
resources.

The following requirements apply to model sources:

• S3 buckets that store your SageMaker and Amazon S3 model sources must not be encrypted
using SSE-C. For buckets that use server-side encryption, AWS IoT Greengrass ML inference
currently supports the SSE-S3 or SSE-KMS encryption options only. For more information about
server-side encryption options, see Protecting data using server-side encryption in the Amazon
Simple Storage Service User Guide.

• The names of S3 buckets that store your SageMaker and Amazon S3 model sources must not
include periods (.). For more information, see the rule about using virtual hosted-style buckets
with SSL in Rules for bucket naming in the Amazon Simple Storage Service User Guide.

• Service-level AWS Region support must be available for both AWS IoT Greengrass and
SageMaker. Currently, AWS IoT Greengrass supports SageMaker models in the following Regions:

• US East (Ohio)

Machine learning resources 397

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html#bucketnamingrules
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/sagemaker.html

AWS IoT Greengrass Developer Guide, Version 1

• US East (N. Virginia)

• US West (Oregon)

• Asia Pacific (Mumbai)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• AWS IoT Greengrass must have read permission to the model source, as described in the
following sections.

SageMaker

AWS IoT Greengrass supports models that are saved as SageMaker training jobs. SageMaker is
a fully managed ML service that you can use to build and train models using built-in or custom
algorithms. For more information, see What is SageMaker? in the SageMaker Developer Guide.

If you configured your SageMaker environment by creating a bucket whose name contains
sagemaker, then AWS IoT Greengrass has sufficient permission to access your SageMaker
training jobs. The AWSGreengrassResourceAccessRolePolicy managed policy allows
access to buckets whose name contains the string sagemaker. This policy is attached to the
Greengrass service role.

Otherwise, you must grant AWS IoT Greengrass read permission to the bucket where your
training job is stored. To do this, embed the following inline policy in the service role. You can
list multiple bucket ARNs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"

Supported model sources 398

https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://docs.aws.amazon.com/sagemaker/latest/dg/gs-config-permissions.html

AWS IoT Greengrass Developer Guide, Version 1

],
 "Resource": [
 "arn:aws:s3:::my-bucket-name"
]
 }
]
}

Amazon S3

AWS IoT Greengrass supports models that are stored in Amazon S3 as tar.gz or .zip files.

To enable AWS IoT Greengrass to access models that are stored in Amazon S3 buckets, you
must grant AWS IoT Greengrass read permission to access the buckets by doing one of the
following:

• Store your model in a bucket whose name contains greengrass.

The AWSGreengrassResourceAccessRolePolicy managed policy allows access to
buckets whose name contains the string greengrass. This policy is attached to the
Greengrass service role.

• Embed an inline policy in the Greengrass service role.

If your bucket name doesn't contain greengrass, add the following inline policy to the
service role. You can list multiple bucket ARNs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::my-bucket-name"
]
 }
]
}

Supported model sources 399

AWS IoT Greengrass Developer Guide, Version 1

For more information, see Embedding inline policies in the IAM User Guide.

Requirements

The following requirements apply for creating and using machine learning resources:

• You must be using AWS IoT Greengrass Core v1.6 or later.

• User-defined Lambda functions can perform read or read and write operations on the
resource. Permissions for other operations are not available. The containerization mode of
affiliated Lambda functions determines how you set access permissions. For more information,
see the section called “Access machine learning resources”.

• You must provide the full path of the resource on the operating system of the core device.

• A resource name or ID has a maximum length of 128 characters and must use the pattern [a-
zA-Z0-9:_-]+.

Runtimes and libraries for ML inference

You can use the following ML runtimes and libraries with AWS IoT Greengrass.

• Amazon SageMaker Neo deep learning runtime

• Apache MXNet

• TensorFlow

These runtimes and libraries can be installed on NVIDIA Jetson TX2, Intel Atom, and Raspberry Pi
platforms. For download information, see the section called “Supported machine learning runtimes
and libraries”. You can install them directly on your core device.

Be sure to read the following information about compatibility and limitations.

SageMaker Neo deep learning runtime

You can use the SageMaker Neo deep learning runtime to perform inference with optimized
machine learning models on your AWS IoT Greengrass devices. These models are optimized using
the SageMaker Neo deep learning compiler to improve machine learning inference prediction

Requirements 400

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#embed-inline-policy-console

AWS IoT Greengrass Developer Guide, Version 1

speeds. For more information about model optimization in SageMaker, see the SageMaker Neo
documentation.

Note

Currently, you can optimize machine learning models using the Neo deep learning compiler
in specific Amazon Web Services Regions only. However, you can use the Neo deep learning
runtime with optimized models in each AWS Region where AWS IoT Greengrass core is
supported. For information, see How to Configure Optimized Machine Learning Inference.

MXNet versioning

Apache MXNet doesn't currently ensure forward compatibility, so models that you train using later
versions of the framework might not work properly in earlier versions of the framework. To avoid
conflicts between the model-training and model-serving stages, and to provide a consistent end-
to-end experience, use the same MXNet framework version in both stages.

MXNet on Raspberry Pi

Greengrass Lambda functions that access local MXNet models must set the following environment
variable:

MXNET_ENGINE_TYPE=NativeEngine

You can set the environment variable in the function code or add it to the function's group-specific
configuration. For an example that adds it as a configuration setting, see this step.

Note

For general use of the MXNet framework, such as running a third-party code example, the
environment variable must be configured on the Raspberry Pi.

TensorFlow model-serving limitations on Raspberry Pi

The following recommendations for improving inference results are based on our tests with
the TensorFlow 32-bit Arm libraries on the Raspberry Pi platform. These recommendations are
intended for advanced users for reference only, without guarantees of any kind.

MXNet versioning 401

https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html

AWS IoT Greengrass Developer Guide, Version 1

• Models that are trained using the Checkpoint format should be "frozen" to the protocol buffer
format before serving. For an example, see the TensorFlow-Slim image classification model
library.

• Don't use the TF-Estimator and TF-Slim libraries in either training or inference code. Instead, use
the .pb file model-loading pattern that's shown in the following example.

graph = tf.Graph()
graph_def = tf.GraphDef()
graph_def.ParseFromString(pb_file.read())
with graph.as_default():
 tf.import_graph_def(graph_def)

Note

For more information about supported platforms for TensorFlow, see Installing TensorFlow
in the TensorFlow documentation.

Access machine learning resources from Lambda functions

User-defined Lambda functions can access machine learning resources to run local inference on
the AWS IoT Greengrass core. A machine learning resource consists of the trained model and other
artifacts that are downloaded to the core device.

To allow a Lambda function to access a machine learning resource on the core, you must attach the
resource to the Lambda function and define access permissions. The containerization mode of the
affiliated (or attached) Lambda function determines how you do this.

Access permissions for machine learning resources

Starting in AWS IoT Greengrass Core v1.10.0, you can define a resource owner for a machine
learning resource. The resource owner represents the OS group and permissions that AWS IoT
Greengrass uses to download the resource artifacts. If a resource owner is not defined, the
downloaded resource artifacts are accessible only to root.

• If non-containerized Lambda functions access a machine learning resource, you must define a
resource owner because there's no permission control from the container. Non-containerized
Lambda functions can inherit resource owner permissions and use them to access the resource.

Access machine learning resources 402

https://www.tensorflow.org/guide/checkpoint
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
https://www.tensorflow.org/install/#installing_from_sources

AWS IoT Greengrass Developer Guide, Version 1

• If only containerized Lambda functions access the resource, we recommend that you use
function-level permissions instead of defining a resource owner.

Resource owner properties

A resource owner specifies a group owner and group owner permissions.

Group owner. The ID of the group (GID) of an existing Linux OS group on the core device. The
group's permissions are added to the Lambda process. Specifically, the GID is added to the
supplemental group IDs of the Lambda function.

If a Lambda function in the Greengrass group is configured to run as the same OS group as the
resource owner for a machine learning resource, the resource must be attached to the Lambda
function. Otherwise, deployment fails because this configuration gives implicit permissions the
Lambda function can use to access the resource without AWS IoT Greengrass authorization. The
deployment validation check is skipped if the Lambda function runs as root (UID=0).

We recommend that you use an OS group that's not used by other resources, Lambda functions,
or files on the Greengrass core. Using a shared OS group gives attached Lambda functions
more access permissions than they need. If you use a shared OS group, an attached Lambda
function must also be attached to all machine learning resources that use the shared OS group.
Otherwise, deployment fails.

Group owner permissions. The read-only or read and write permission to add to the Lambda
process.

Non-containerized Lambda functions must inherit these access permissions to the resource.
Containerized Lambda functions can inherit these resource-level permissions or define
function-level permissions. If they define function-level permissions, the permissions must be
the same or more restrictive than the resource-level permissions.

The following table shows supported access permission configurations.

Access permissions for machine learning resources 403

AWS IoT Greengrass Developer Guide, Version 1

GGC v1.10 or later

Property If only containerized
Lambda functions access
the resource

If any non-containerized
Lambda functions access
the resource

Function-level properties

Permissions (read/write) Required unless the resource
defines a resource owner. If
a resource owner is defined,
function-level permissions
must be the same or more
restrictive than the resource
owner permissions.

If only containerized
Lambda functions access the
resource, we recommend
that you don't define a
resource owner.

Non-containerized Lambda
functions:

Not supported. Non-conta
inerized Lambda functions
must inherit resource-level
permissions.

Containerized Lambda
functions:

Optional, but must be
the same or more restricti
ve than resource-level
permissions.

Resource-level properties

Resource owner Optional (not recommend
ed).

Required.

Permissions (read/write) Optional (not recommend
ed).

Required.

Access permissions for machine learning resources 404

AWS IoT Greengrass Developer Guide, Version 1

GGC v1.9 or earlier

Property If only containerized
Lambda functions access
the resource

If any non-containerized
Lambda functions access
the resource

Function-level properties

Permissions (read/write) Required. Not supported.

Resource-level properties

Resource owner Not supported. Not supported.

Permissions (read/write) Not supported. Not supported.

Note

When you use the AWS IoT Greengrass API to configure Lambda functions and resources,
the function-level ResourceId property is also required. The ResourceId property
attaches the machine learning resource to the Lambda function.

Defining access permissions for Lambda functions (console)

In the AWS IoT console, you define access permissions when you configure a machine learning
resource or attach one to a Lambda function.

Containerized Lambda functions

If only containerized Lambda functions are attached to the machine learning resource:

• Choose No system group as the resource owner for the machine learning resource. This is
the recommended setting when only containerized Lambda functions access the machine
learning resource. Otherwise, you might give attached Lambda functions more access
permissions than they need.

Defining access permissions for Lambda functions (console) 405

AWS IoT Greengrass Developer Guide, Version 1

Non-containerized Lambda functions (requires GGC v1.10 or later)

If any non-containerized Lambda functions are attached to the machine learning resource:

• Specify the System group ID (GID) to use as the resource owner for the machine learning
resource. Choose Specify system group and permissions and enter the GID. You can use the
getent group command on your core device to look up the ID of a system group.

• Choose Read-only access or Read and write access for the System group permissions.

Defining access permissions for Lambda functions (API)

In the AWS IoT Greengrass API, you define permissions to machine learning resources in the
ResourceAccessPolicy property for the Lambda function or the OwnerSetting property for
the resource.

Containerized Lambda functions

If only containerized Lambda functions are attached to the machine learning resource:

• For containerized Lambda functions, define access permissions in the Permission property
of the ResourceAccessPolicies property. For example:

"Functions": [
 {
 "Id": "my-containerized-function",
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:function-
name:alias-or-version",
 "FunctionConfiguration": {
 "Environment": {
 "ResourceAccessPolicies": [
 {
 "ResourceId": "my-resource-id",
 "Permission": "ro-or-rw"
 }
]
 },
 "MemorySize": 512,
 "Pinned": true,
 "Timeout": 5
 }

Defining access permissions for Lambda functions (API) 406

AWS IoT Greengrass Developer Guide, Version 1

 }
]

• For machine learning resources, omit the OwnerSetting property. For example:

"Resources": [
 {
 "Id": "my-resource-id",
 "Name": "my-resource-name",
 "ResourceDataContainer": {
 "S3MachineLearningModelResourceData": {
 "DestinationPath": "/local-destination-path",
 "S3Uri": "s3://uri-to-resource-package"
 }
 }
 }
]

This is the recommended configuration when only containerized Lambda functions access
the machine learning resource. Otherwise, you might give attached Lambda functions more
access permissions than they need.

Non-containerized Lambda functions (requires GGC v1.10 or later)

If any non-containerized Lambda functions are attached to the machine learning resource:

• For non-containerized Lambda functions, omit the Permission property in
ResourceAccessPolicies. This configuration is required and allows the function to inherit
the resource-level permission. For example:

"Functions": [
 {
 "Id": "my-non-containerized-function",
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:function-
name:alias-or-version",
 "FunctionConfiguration": {
 "Environment": {
 "Execution": {
 "IsolationMode": "NoContainer",
 },
 "ResourceAccessPolicies": [

Defining access permissions for Lambda functions (API) 407

AWS IoT Greengrass Developer Guide, Version 1

 {
 "ResourceId": "my-resource-id"
 }
]
 },
 "Pinned": true,
 "Timeout": 5
 }
 }
]

• For containerized Lambda functions that also access the machine learning resource, omit
the Permission property in ResourceAccessPolicies or define a permission that is the
same or more restrictive as the resource-level permission. For example:

"Functions": [
 {
 "Id": "my-containerized-function",
 "FunctionArn": "arn:aws:lambda:us-west-2:123456789012:function:function-
name:alias-or-version",
 "FunctionConfiguration": {
 "Environment": {
 "ResourceAccessPolicies": [
 {
 "ResourceId": "my-resource-id",
 "Permission": "ro-or-rw" // Optional, but cannot exceed
 the GroupPermission defined for the resource.
 }
]
 },
 "MemorySize": 512,
 "Pinned": true,
 "Timeout": 5
 }
 }
]

• For machine learning resources, define the OwnerSetting property, including the child
GroupOwner and GroupPermission properties. For example:

"Resources": [
 {
 "Id": "my-resource-id",

Defining access permissions for Lambda functions (API) 408

AWS IoT Greengrass Developer Guide, Version 1

 "Name": "my-resource-name",
 "ResourceDataContainer": {
 "S3MachineLearningModelResourceData": {
 "DestinationPath": "/local-destination-path",
 "S3Uri": "s3://uri-to-resource-package",
 "OwnerSetting": {
 "GroupOwner": "os-group-id",
 "GroupPermission": "ro-or-rw"
 }
 }
 }
 }
]

Accessing machine learning resources from Lambda function code

User-defined Lambda functions use platform-specific OS interfaces to access machine learning
resources on a core device.

GGC v1.10 or later

For containerized Lambda functions, the resource is mounted inside the Greengrass container
and available at the local destination path defined for the resource. For non-containerized
Lambda functions, the resource is symlinked to a Lambda-specific working directory and passed
to the AWS_GG_RESOURCE_PREFIX environment variable in the Lambda process.

To get the path to the downloaded artifacts of a machine learning resource, Lambda functions
append the AWS_GG_RESOURCE_PREFIX environment variable to the local destination path
defined for the resource. For containerized Lambda functions, the returned value is a single
forward slash (/).

resourcePath = os.getenv("AWS_GG_RESOURCE_PREFIX") + "/destination-path"
with open(resourcePath, 'r') as f:
 # load_model(f)

GGC v1.9 or earlier

The downloaded artifacts of a machine learning resource are located in the local destination
path defined for the resource. Only containerized Lambda functions can access machine
learning resources in AWS IoT Greengrass Core v1.9 and earlier.

Accessing machine learning resources from Lambda function code 409

AWS IoT Greengrass Developer Guide, Version 1

resourcePath = "/local-destination-path"
with open(resourcePath, 'r') as f:
 # load_model(f)

Your model loading implementation depends on your ML library.

Troubleshooting

Use the following information to help troubleshoot issues with accessing machine learning
resources.

Topics

• InvalidMLModelOwner - GroupOwnerSetting is provided in ML model resource, but GroupOwner
or GroupPermission is not present

• NoContainer function cannot configure permission when attaching Machine Learning resources.
<function-arn> refers to Machine Learnin resource <resource-id> with permission <ro/rw> in
resource access policy.

• Function <function-arn> refers to Machine Learning resource <resource-id> with missing
permission in both ResourceAccessPolicy and resource OwnerSetting.

• Function <function-arn> refers to Machine Learning resource <resource-id> with permission \"rw
\", while resource owner setting GroupPermission only allows \"ro\".

• NoContainer Function <function-arn> refers to resources of nested destination path.

• Lambda <function-arn> gains access to resource <resource-id> by sharing the same group owner
id

InvalidMLModelOwner - GroupOwnerSetting is provided in ML model resource,
but GroupOwner or GroupPermission is not present

Solution: You receive this error if a machine learning resource contains the
ResourceDownloadOwnerSetting object but the required GroupOwner or GroupPermission
property isn't defined. To resolve this issue, define the missing property.

Troubleshooting 410

https://docs.aws.amazon.com/greengrass/v1/apireference/definitions-resourcedownloadownersetting.html

AWS IoT Greengrass Developer Guide, Version 1

NoContainer function cannot configure permission when attaching Machine
Learning resources. <function-arn> refers to Machine Learnin resource <resource-
id> with permission <ro/rw> in resource access policy.

Solution: You receive this error if a non-containerized Lambda function specifies function-level
permissions to a machine learning resource. Non-containerized functions must inherit permissions
from the resource owner permissions defined on the machine learning resource. To resolve this
issue, choose to inherit resource owner permissions (console) or remove the permissions from the
Lambda function's resource access policy (API).

Function <function-arn> refers to Machine Learning resource <resource-id> with
missing permission in both ResourceAccessPolicy and resource OwnerSetting.

Solution: You receive this error if permissions to the machine learning resource aren't configured
for the attached Lambda function or the resource. To resolve this issue, configure permissions in
the ResourceAccessPolicy property for the Lambda function or the OwnerSetting property for the
resource.

Function <function-arn> refers to Machine Learning resource <resource-id> with
permission \"rw\", while resource owner setting GroupPermission only allows
\"ro\".

Solution: You receive this error if the access permissions defined for the attached Lambda function
exceed the resource owner permissions defined for the machine learning resource. To resolve this
issue, set more restrictive permissions for the Lambda function or less restrictive permissions for
the resource owner.

NoContainer Function <function-arn> refers to resources of nested destination
path.

Solution: You receive this error if multiple machine learning resources attached to a non-
containerized Lambda function use the same destination path or a nested destination path. To
resolve this issue, specify separate destination paths for the resources.

Troubleshooting 411

https://docs.aws.amazon.com/greengrass/v1/apireference/definitions-resourceaccesspolicy.html
https://docs.aws.amazon.com/greengrass/v1/apireference/definitions-ownersetting.html

AWS IoT Greengrass Developer Guide, Version 1

Lambda <function-arn> gains access to resource <resource-id> by sharing the
same group owner id

Solution: You receive this error in runtime.log if the same OS group is specified as the Lambda
function's Run as identity and the resource owner for a machine learning resource, but the resource
is not attached to the Lambda function. This configuration gives the Lambda function implicit
permissions that it can use to access the resource without AWS IoT Greengrass authorization.

To resolve this issue, use a different OS group for one of the properties or attach the machine
learning resource to the Lambda function.

See also

• Perform machine learning inference

• the section called “How to configure machine learning inference”

• the section called “How to configure optimized machine learning inference”

• AWS IoT Greengrass Version 1 API Reference

How to configure machine learning inference using the AWS
Management Console

To follow the steps in this tutorial, you need AWS IoT Greengrass Core v1.10 or later.

You can perform machine learning (ML) inference locally on a Greengrass core device using locally
generated data. For information, including requirements and constraints, see Perform machine
learning inference.

This tutorial describes how to use the AWS Management Console to configure a Greengrass group
to run a Lambda inference app that recognizes images from a camera locally, without sending data
to the cloud. The inference app accesses the camera module on a Raspberry Pi and runs inference
using the open source SqueezeNet model.

The tutorial contains the following high-level steps:

1. Configure the Raspberry Pi

See also 412

https://docs.aws.amazon.com/greengrass/v1/apireference/api-doc.html
https://github.com/DeepScale/SqueezeNet

AWS IoT Greengrass Developer Guide, Version 1

2. Install the MXNet framework

3. Create a model package

4. Create and publish a Lambda function

5. Add the Lambda function to the group

6. Add resources to the group

7. Add a subscription to the group

8. Deploy the group

9. Test the app

Prerequisites

To complete this tutorial, you need:

• Raspberry Pi 4 Model B, or Raspberry Pi 3 Model B/B+, set up and configured for use with AWS
IoT Greengrass. To set up your Raspberry Pi with AWS IoT Greengrass, run the Greengrass Device
Setup script, or make sure that you have completed Module 1 and Module 2 of Getting started
with AWS IoT Greengrass.

Note

The Raspberry Pi might require a 2.5A power supply to run the deep learning frameworks
that are typically used for image classification. A power supply with a lower rating might
cause the device to reboot.

• Raspberry Pi Camera Module V2 - 8 megapixel, 1080p. For information about how to set up the
camera, see Connecting the camera in the Raspberry Pi documentation.

• A Greengrass group and a Greengrass core. For information about how to create a Greengrass
group or core, see Getting started with AWS IoT Greengrass.

Note

This tutorial uses a Raspberry Pi, but AWS IoT Greengrass supports other platforms, such
as Intel Atom and NVIDIA Jetson TX2. In the example for Jetson TX2, you can use static
images instead of images streamed from a camera. If using the Jetson TX2 example, you
might need to install Python 3.6 instead of Python 3.7. For information about configuring

Prerequisites 413

https://docs.aws.amazon.com/greengrass/latest/developerguide/module1.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/module2.html
https://www.raspberrypi.org/documentation/hardware/raspberrypi/power/
https://www.amazon.com/Raspberry-Pi-Camera-Module-Megapixel/dp/B01ER2SKFS
https://www.raspberrypi.org/documentation/usage/camera/

AWS IoT Greengrass Developer Guide, Version 1

your device so that you can install the AWS IoT Greengrass Core software, see the section
called “Setting up other devices”.
For third party platforms that AWS IoT Greengrass does not support, you must run your
Lambda function in non-containerized mode. To run in non-containerized mode, you
must run your Lambda function as root. For more information, see the section called
“Considerations when choosing Lambda function containerization” and the section called
“Setting the default access identity for Lambda functions in a group”.

Step 1: Configure the Raspberry Pi

In this step, install updates to the Raspbian operating system, install the camera module software
and Python dependencies, and enable the camera interface.

Run the following commands in your Raspberry Pi terminal.

1. Install updates to Raspbian.

sudo apt-get update
sudo apt-get dist-upgrade

2. Install the picamera interface for the camera module and other Python libraries that are
required for this tutorial.

sudo apt-get install -y python3-dev python3-setuptools python3-pip python3-picamera

Validate the installation:

• Make sure that your Python 3.7 installation includes pip.

python3 -m pip

If pip isn't installed, download it from the pip website and then run the following command.

python3 get-pip.py

• Make sure that your Python version is 3.7 or higher.

python3 --version

Configure the Raspberry Pi 414

https://pip.pypa.io/en/stable/installing/

AWS IoT Greengrass Developer Guide, Version 1

If the output lists an earlier version, run the following command.

sudo apt-get install -y python3.7-dev

• Make sure that Setuptools and Picamera installed successfully.

sudo -u ggc_user bash -c 'python3 -c "import setuptools"'
sudo -u ggc_user bash -c 'python3 -c "import picamera"'

If the output doesn't contain errors, the validation is successful.

Note

If the Python executable installed on your device is python3.7, use python3.7
instead of python3 for the commands in this tutorial. Make sure that your pip
installation maps to the correct python3.7 or python3 version to avoid dependency
errors.

3. Reboot the Raspberry Pi.

sudo reboot

4. Open the Raspberry Pi configuration tool.

sudo raspi-config

5. Use the arrow keys to open Interfacing Options and enable the camera interface. If prompted,
allow the device to reboot.

6. Use the following command to test the camera setup.

raspistill -v -o test.jpg

This opens a preview window on the Raspberry Pi, saves a picture named test.jpg to your
current directory, and displays information about the camera in the Raspberry Pi terminal.

Configure the Raspberry Pi 415

AWS IoT Greengrass Developer Guide, Version 1

Step 2: Install the MXNet framework

In this step, install MXNet libraries on your Raspberry Pi.

1. Sign in to your Raspberry Pi remotely.

ssh pi@your-device-ip-address

2. Open the MXNet documentation, open Installing MXNet, and follow the instructions to install
MXNet on the device.

Note

We recommend installing version 1.5.0 and building MXNet from source for this
tutorial to avoid device conflicts.

3. After you install MXNet, validate the following configuration:

• Make sure the ggc_user system account can use the MXNet framework.

sudo -u ggc_user bash -c 'python3 -c "import mxnet"'

• Make sure NumPy is installed.

sudo -u ggc_user bash -c 'python3 -c "import numpy"'

Step 3: Create an MXNet model package

In this step, create a model package that contains a sample pretrained MXNet model to upload to
Amazon Simple Storage Service (Amazon S3). AWS IoT Greengrass can use a model package from
Amazon S3, provided that you use the tar.gz or zip format.

1. On your computer, download the MXNet sample for Raspberry Pi from the section called
“Machine learning samples”.

2. Unzip the downloaded mxnet-py3-armv7l.tar.gz file.

3. Navigate to the squeezenet directory.

cd path-to-downloaded-sample/mxnet-py3-armv7l/models/squeezenet

Install the MXNet framework 416

https://mxnet.apache.org/get_started/?

AWS IoT Greengrass Developer Guide, Version 1

The squeezenet.zip file in this directory is your model package. It contains SqueezeNet
open source model artifacts for an image classification model. Later, you upload this model
package to Amazon S3.

Step 4: Create and publish a Lambda function

In this step, create a Lambda function deployment package and Lambda function. Then, publish a
function version and create an alias.

First, create the Lambda function deployment package.

1. On your computer, navigate to the examples directory in the sample package that you
unzipped in the section called “Create a model package”.

cd path-to-downloaded-sample/mxnet-py3-armv7l/examples

The examples directory contains function code and dependencies.

• greengrassObjectClassification.py is the inference code used in this tutorial. You
can use this code as a template to create your own inference function.

• greengrasssdk is version 1.5.0 of the AWS IoT Greengrass Core SDK for Python.

Note

If a new version is available, you can download it and upgrade the SDK version in
your deployment package. For more information, see AWS IoT Greengrass Core SDK
for Python on GitHub.

2. Compress the contents of the examples directory into a file named
greengrassObjectClassification.zip. This is your deployment package.

zip -r greengrassObjectClassification.zip .

Note

Make sure the .py files and dependencies are in the root of the directory.

Create and publish a Lambda function 417

https://github.com/aws/aws-greengrass-core-sdk-python/
https://github.com/aws/aws-greengrass-core-sdk-python/

AWS IoT Greengrass Developer Guide, Version 1

Next, create the Lambda function.

3. From the AWS IoT console, choose Functions and Create function.

4. Choose Author from scratch and use the following values to create your function:

• For Function name, enter greengrassObjectClassification.

• For Runtime, choose Python 3.7.

For Permissions, keep the default setting. This creates an execution role that grants basic
Lambda permissions. This role isn't used by AWS IoT Greengrass.

5. Choose Create function.

Now, upload your Lambda function deployment package and register the handler.

6. Choose your Lambda function and upload your Lambda function deployment package.

a. On the Code tab, under Code source, choose Upload from. From the dropdown, choose
.zip file.

b. Choose Upload, and then choose your greengrassObjectClassification.zip
deployment package. Then, choose Save.

c. On the Code tab for the function, under Runtime settings, choose Edit, and then enter
the following values.

• For Runtime, choose Python 3.7.

• For Handler, enter greengrassObjectClassification.function_handler.

Create and publish a Lambda function 418

AWS IoT Greengrass Developer Guide, Version 1

Choose Save.

Next, publish the first version of your Lambda function. Then, create an alias for the version.

Note

Greengrass groups can reference a Lambda function by alias (recommended) or by
version. Using an alias makes it easier to manage code updates because you don't
have to change your subscription table or group definition when the function code is
updated. Instead, you just point the alias to the new function version.

7. From the Actions menu, choose Publish new version.

8. For Version description, enter First version, and then choose Publish.

9. On the greengrassObjectClassification: 1 configuration page, from the Actions menu, choose
Create alias.

10. On the Create a new alias page, use the following values:

• For Name, enter mlTest.

• For Version, enter 1.

Note

AWS IoT Greengrass doesn't support Lambda aliases for $LATEST versions.

11. Choose Save.

Create and publish a Lambda function 419

https://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS IoT Greengrass Developer Guide, Version 1

Now, add the Lambda function to your Greengrass group.

Step 5: Add the Lambda function to the Greengrass group

In this step, add the Lambda function to the group and then configure its lifecycle and
environment variables.

First, add the Lambda function to your Greengrass group.

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. From the group configuration page, choose the Lambda functions tab.

3. Under the My Lambda functions section, choose Add.

4. For the Lambda function, choose greengrassObjectClassification.

5. For the Lambda function version, choose Alias:mlTest.

Next, configure the lifecycle and environment variables of the Lambda function.

6. On the Lambda function configuration section, make the following updates.

Note

We recommend that you run your Lambda function without containerization unless
your business case requires it. This helps enable access to your device GPU and camera
without configuring device resources. If you run without containerization, you must
also grant root access to your AWS IoT Greengrass Lambda functions.

a. To run without containerization:

• For System user and group, choose Another user ID/group ID. For System user
ID, enter 0. For System group ID, enter 0.

This allows your Lambda function to run as root. For more information about running as
root, see the section called “Setting the default access identity for Lambda functions in
a group”.

Add the Lambda function to the group 420

AWS IoT Greengrass Developer Guide, Version 1

Tip

You also must update your config.json file to grant root access to your
Lambda function. For the procedure, see the section called “Running a Lambda
function as root”.

• For Lambda function containerization, choose No container.

For more information about running without containerization, see the section called
“Considerations when choosing Lambda function containerization”.

• For Timeout, enter 10 seconds.

• For Pinned, choose True.

For more information, see the section called “Lifecycle configuration”.

b. To run in containerized mode instead:

Note

We do not recommend running in containerized mode unless your business case
requires it.

• For System user and group, choose Use group default.

• For Lambda function containerization, choose Use group default.

• For Memory limit, enter 96 MB.

• For Timeout, enter 10 seconds.

• For Pinned, choose True.

For more information, see the section called “Lifecycle configuration”.

7. Under Environment variables, create a key-value pair. A key-value pair is required by functions
that interact with MXNet models on a Raspberry Pi.

For the key, use MXNET_ENGINE_TYPE. For the value, use NaiveEngine.

Add the Lambda function to the group 421

AWS IoT Greengrass Developer Guide, Version 1

Note

In your own user-defined Lambda functions, you can optionally set the environment
variable in your function code.

8. Keep the default values for all other properties and choose Add Lambda function.

Step 6: Add resources to the Greengrass group

In this step, create resources for the camera module and the ML inference model and affiliate the
resources with the Lambda function. This makes it possible for the Lambda function to access the
resources on the core device.

Note

If you run in non-containerized mode, AWS IoT Greengrass can access your device GPU and
camera without configuring these device resources.

First, create two local device resources for the camera: one for shared memory and one for the
device interface. For more information about local resource access, see Access local resources with
Lambda functions and connectors.

1. On the group configuration page, choose the Resources tab.

2. In the Local resources section, choose Add local resource.

3. On the Add a local resource page, use the following values:

• For Resource name, enter videoCoreSharedMemory.

• For Resource type, choose Device.

• For Local device path, enter /dev/vcsm.

The device path is the local absolute path of the device resource. This path can only refer to
a character device or block device under /dev.

• For System group owner and file access permissions, choose Automatically add file
system permissions of the system group that owns the resource.

Add resources to the group 422

AWS IoT Greengrass Developer Guide, Version 1

The System group owner and file access permissions option lets you grant additional
file access permissions to the Lambda process. For more information, see Group owner file
access permission.

4. Next, you add a local device resource for the camera interface.

5. Choose Add local resource.

6. On the Add a local resource page, use the following values:

• For Resource name, enter videoCoreInterface.

• For Resource type, choose Device.

• For Local device path, enter /dev/vchiq.

• For System group owner and file access permissions, choose Automatically add file
system permissions of the system group that owns the resource.

7. At the bottom of the page, choose Add resource.

Now, add the inference model as a machine learning resource. This step includes uploading the
squeezenet.zip model package to Amazon S3.

1. On the Resources tab for your group, under the Machine Learning section, choose Add
machine learning resource.

2. On the Add a machine learning resource page, for Resource name, enter
squeezenet_model.

3. For Model source, choose Use a model stored in S3, such as a model optimized through
Deep Learning Compiler.

4. For S3 URI, enter a path where the S3 bucket is saved.

5. Choose Browse S3. This opens up a new tab to the Amazon S3 console.

6. On the Amazon S3 console tab, upload the squeezenet.zip file to an S3 bucket. For
information, see How do I upload files and folders to an S3 Bucket? in the Amazon Simple
Storage Service User Guide.

Note

For the S3 bucket to be accessible, your bucket name must contain the string
greengrass and the bucket must be in the same region that you use for AWS IoT

Add resources to the group 423

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html

AWS IoT Greengrass Developer Guide, Version 1

Greengrass. Choose a unique name (such as greengrass-bucket-user-id-epoch-
time). Don't use a period (.) in the bucket name.

7. On the AWS IoT Greengrass console tab, locate and choose your S3 bucket. Locate your
uploaded squeezenet.zip file, and choose Select. You might need to choose Refresh to
update the list of available buckets and files.

8. For Destination path, enter /greengrass-machine-learning/mxnet/squeezenet.

This is the destination for the local model in the Lambda runtime namespace. When you
deploy the group, AWS IoT Greengrass retrieves the source model package and then extracts
the contents to the specified directory. The sample Lambda function for this tutorial is already
configured to use this path (in the model_path variable).

9. Under System group owner and file access permissions, choose No system group.

10. Choose Add resource.

Using SageMaker trained models

This tutorial uses a model that's stored in Amazon S3, but you can easily use SageMaker models
too. The AWS IoT Greengrass console has built-in SageMaker integration, so you don't need
to manually upload these models to Amazon S3. For requirements and limitations for using
SageMaker models, see the section called “Supported model sources”.

To use an SageMaker model:

• For Model source, choose Use a model trained in AWS SageMaker, and then choose the name
of the model's training job.

• For Destination path, enter the path to the directory where your Lambda function looks for the
model.

Step 7: Add a subscription to the Greengrass group

In this step, add a subscription to the group. This subscription enables the Lambda function to send
prediction results to AWS IoT by publishing to an MQTT topic.

1. On the group configuration page, choose the Subscriptions tab, and then choose Add
Subscription.

Add a subscription to the group 424

AWS IoT Greengrass Developer Guide, Version 1

2. On the Subscription details page, configure the source and target, as follows:

a. In Source type, choose Lambda function, and then choose
greengrassObjectClassification.

b. In Target type, choose Service, and then choose IoT Cloud.

3. In Topic filter, enter hello/world, and then choose Create subscription.

Step 8: Deploy the Greengrass group

In this step, deploy the current version of the group definition to the Greengrass core device.
The definition contains the Lambda function, resources, and subscription configurations that you
added.

1. Make sure that the AWS IoT Greengrass core is running. Run the following commands in your
Raspberry Pi terminal, as needed.

a. To check whether the daemon is running:

ps aux | grep -E 'greengrass.*daemon'

If the output contains a root entry for /greengrass/ggc/packages/1.11.6/bin/
daemon, then the daemon is running.

Note

The version in the path depends on the AWS IoT Greengrass Core software version
that's installed on your core device.

b. To start the daemon:

cd /greengrass/ggc/core/
sudo ./greengrassd start

2. On the group configuration page, choose Deploy.

Deploy the group 425

AWS IoT Greengrass Developer Guide, Version 1

3. In the Lambda functions tab, under the System Lambda functions section, select IP detector
and choose Edit.

4. In the Edit IP detector settings dialog box, select Automatically detect and override MQTT
broker endpoints.

5. Choose Save.

This enables devices to automatically acquire connectivity information for the core, such
as IP address, DNS, and port number. Automatic detection is recommended, but AWS IoT
Greengrass also supports manually specified endpoints. You're only prompted for the
discovery method the first time that the group is deployed.

Note

If prompted, grant permission to create the Greengrass service role and associate it
with your AWS account in the current AWS Region. This role allows AWS IoT Greengrass
to access your resources in AWS services.

The Deployments page shows the deployment timestamp, version ID, and status. When
completed, the status displayed for the deployment should be Completed.

For more information about deployments, see Deploy AWS IoT Greengrass groups. For
troubleshooting help, see Troubleshooting.

Step 9: Test the inference app

Now you can verify whether the deployment is configured correctly. To test, you subscribe to the
hello/world topic and view the prediction results that are published by the Lambda function.

Test the app 426

AWS IoT Greengrass Developer Guide, Version 1

Note

If a monitor is attached to the Raspberry Pi, the live camera feed is displayed in a preview
window.

1. In the AWS IoT console, under Test, choose MQTT test client.

2. For Subscriptions, use the following values:

• For the subscription topic, use hello/world.

• Under Additional configuration, for MQTT payload display, choose Display payloads as
strings.

3. Choose Subscribe.

If the test is successful, the messages from the Lambda function appear at the bottom of the
page. Each message contains the top five prediction results of the image, using the format:
probability, predicted class ID, and corresponding class name.

Troubleshooting AWS IoT Greengrass ML inference

If the test is not successful, you can try the following troubleshooting steps. Run the commands in
your Raspberry Pi terminal.

Test the app 427

AWS IoT Greengrass Developer Guide, Version 1

Check error logs

1. Switch to the root user and navigate to the log directory. Access to AWS IoT Greengrass logs
requires root permissions.

sudo su
cd /greengrass/ggc/var/log

2. In the system directory, check runtime.log or python_runtime.log.

In the user/region/account-id directory, check
greengrassObjectClassification.log.

For more information, see the section called “Troubleshooting with logs”.

Unpacking error in runtime.log

If runtime.log contains an error similar to the following, make sure that your tar.gz source
model package has a parent directory.

Greengrass deployment error: unable to download the artifact model-arn: Error while
 processing.
Error while unpacking the file from /tmp/greengrass/artifacts/model-arn/path to /
greengrass/ggc/deployment/path/model-arn,
error: open /greengrass/ggc/deployment/path/model-arn/squeezenet/
squeezenet_v1.1-0000.params: no such file or directory

If your package doesn't have a parent directory that contains the model files, use the following
command to repackage the model:

tar -zcvf model.tar.gz ./model

For example:

#$ tar -zcvf test.tar.gz ./test
./test
./test/some.file
./test/some.file2
./test/some.file3

Test the app 428

AWS IoT Greengrass Developer Guide, Version 1

Note

Don't include trailing /* characters in this command.

Verify that the Lambda function is successfully deployed

1. List the contents of the deployed Lambda in the /lambda directory. Replace the placeholder
values before you run the command.

cd /greengrass/ggc/deployment/lambda/
arn:aws:lambda:region:account:function:function-name:function-version
ls -la

2. Verify that the directory contains the same content as the
greengrassObjectClassification.zip deployment package that you uploaded in Step
4: Create and publish a Lambda function.

Make sure that the .py files and dependencies are in the root of the directory.

Verify that the inference model is successfully deployed

1. Find the process identification number (PID) of the Lambda runtime process:

ps aux | grep 'lambda-function-name*'

In the output, the PID appears in the second column of the line for the Lambda runtime
process.

2. Enter the Lambda runtime namespace. Be sure to replace the placeholder pid value before
you run the command.

Test the app 429

AWS IoT Greengrass Developer Guide, Version 1

Note

This directory and its contents are in the Lambda runtime namespace, so they aren't
visible in a regular Linux namespace.

sudo nsenter -t pid -m /bin/bash

3. List the contents of the local directory that you specified for the ML resource.

cd /greengrass-machine-learning/mxnet/squeezenet/
ls -ls

You should see the following files:

32 -rw-r--r-- 1 ggc_user ggc_group 31675 Nov 18 15:19 synset.txt
32 -rw-r--r-- 1 ggc_user ggc_group 28707 Nov 18 15:19 squeezenet_v1.1-symbol.json
4832 -rw-r--r-- 1 ggc_user ggc_group 4945062 Nov 18 15:19
 squeezenet_v1.1-0000.params

Next steps

Next, explore other inference apps. AWS IoT Greengrass provides other Lambda functions that you
can use to try out local inference. You can find the examples package in the precompiled libraries
folder that you downloaded in the section called “Install the MXNet framework”.

Configuring an Intel Atom

To run this tutorial on an Intel Atom device, you must provide source images, configure the Lambda
function, and add another local device resource. To use the GPU for inference, make sure the
following software is installed on your device:

• OpenCL version 1.0 or later

• Python 3.7 and pip

Next steps 430

AWS IoT Greengrass Developer Guide, Version 1

Note

If your device is prebuilt with Python 3.6, you can create a symlink to Python 3.7 instead.
For more information, see Step 2.

• NumPy

• OpenCV on Wheels

1. Download static PNG or JPG images for the Lambda function to use for image classification.
The example works best with small image files.

Save your image files in the directory that contains the
greengrassObjectClassification.py file (or in a subdirectory of this directory). This is
in the Lambda function deployment package that you upload in the section called “Create and
publish a Lambda function”.

Note

If you're using AWS DeepLens, you can use the onboard camera or mount your own
camera to perform inference on captured images instead of static images. However, we
strongly recommend you start with static images first.
If you use a camera, make sure that the awscam APT package is installed and up
to date. For more information, see Update your AWS DeepLens device in the AWS
DeepLens Developer Guide.

2. If you aren't using Python 3.7, make sure to create a symlink from Python 3.x to Python 3.7.
This configures your device to use Python 3 with AWS IoT Greengrass. Run the following
command to locate your Python installation:

which python3

Run the following command to create the symlink:

sudo ln -s path-to-python-3.x/python3.x path-to-python-3.7/python3.7

Reboot the device.

Configuring an Intel Atom 431

https://pypi.org/project/numpy/
https://pypi.org/project/opencv-python/
https://docs.aws.amazon.com/deeplens/latest/dg/deeplens-manual-updates.html

AWS IoT Greengrass Developer Guide, Version 1

3. Edit the configuration of the Lambda function. Follow the procedure in the section called “Add
the Lambda function to the group”.

Note

We recommend that you run your Lambda function without containerization unless
your business case requires it. This helps enable access to your device GPU and camera
without configuring device resources. If you run without containerization, you must
also grant root access to your AWS IoT Greengrass Lambda functions.

a. To run without containerization:

• For System user and group, choose Another user ID/group ID. For System user
ID, enter 0. For System group ID, enter 0.

This allows your Lambda function to run as root. For more information about running as
root, see the section called “Setting the default access identity for Lambda functions in
a group”.

Tip

You also must update your config.json file to grant root access to your
Lambda function. For the procedure , see the section called “Running a Lambda
function as root”.

• For Lambda function containerization, choose No container.

For more information about running without containerization, see the section called
“Considerations when choosing Lambda function containerization”.

• Update the Timeout value to 5 seconds. This ensures that the request does not time out
too early. It takes a few minutes after setup to run inference.

• Under Pinned, choose True.

• Under Additional Parameters, for Read access to /sys directory, choose Enabled.

• For Lambda lifecycle, choose Make this function long-lived and keep it running
indefinitely.

b. To run in containerized mode instead:

Configuring an Intel Atom 432

AWS IoT Greengrass Developer Guide, Version 1

Note

We do not recommend running in containerized mode unless your business case
requires it.

• Update the Timeout value to 5 seconds. This ensures that the request does not time out
too early. It takes a few minutes after setup to run inference.

• For Pinned, choose True.

• Under Additional Parameters, for Read access to /sys directory, choose Enabled.

4. If running in containerized mode, add the required local device resource to grant access to
your device GPU.

Note

If you run in non-containerized mode, AWS IoT Greengrass can access your device GPU
without configuring device resources.

a. On the group configuration page, choose the Resources tab.

b. Choose Add local resource.

c. Define the resource:

• For Resource name, enter renderD128.

• For Resource type, choose Local device.

• For Device path, enter /dev/dri/renderD128.

• For System group owner and file access permissions, choose Automatically add file
system permissions of the system group that owns the resource.

• For Lambda function affiliations, grant Read and write access to your Lambda
function.

Configuring an Intel Atom 433

AWS IoT Greengrass Developer Guide, Version 1

Configuring an NVIDIA Jetson TX2

To run this tutorial on an NVIDIA Jetson TX2, provide source images and configure the Lambda
function. If you're using the GPU, you must also add local device resources.

1. Make sure your Jetson device is configured so you can install the AWS IoT Greengrass Core
software. For more information about configuring your device, see the section called “Setting
up other devices”.

2. Open the MXNet documentation, go to Installing MXNet on a Jetson, and follow the
instructions to install MXNet on the Jetson device.

Note

If you want to build MXNet from source, follow the instructions to build the shared
library. Edit the following settings in your config.mk file to work with a Jetson TX2
device:

• Add -gencode arch=compute-62, code=sm_62 to the CUDA_ARCH setting.

• Turn on CUDA.

USE_CUDA = 1

3. Download static PNG or JPG images for the Lambda function to use for image classification.
The app works best with small image files. Alternatively, you can instrument a camera on the
Jetson board to capture the source images.

Save your image files in the directory that contains the
greengrassObjectClassification.py file. You can also save them in a subdirectory of
this directory. This directory is in the Lambda function deployment package that you upload in
the section called “Create and publish a Lambda function”.

4. Create a symlink from Python 3.7 to Python 3.6 to use Python 3 with AWS IoT Greengrass. Run
the following command to locate your Python installation:

which python3

Run the following command to create the symlink:

Configuring an NVIDIA Jetson TX2 434

https://mxnet.apache.org/get_started/jetson_setup

AWS IoT Greengrass Developer Guide, Version 1

sudo ln -s path-to-python-3.6/python3.6 path-to-python-3.7/python3.7

Reboot the device.

5. Make sure the ggc_user system account can use the MXNet framework:

“sudo -u ggc_user bash -c 'python3 -c "import mxnet"'

6. Edit the configuration of the Lambda function. Follow the procedure in the section called “Add
the Lambda function to the group”.

Note

We recommend that you run your Lambda function without containerization unless
your business case requires it. This helps enable access to your device GPU and camera
without configuring device resources. If you run without containerization, you must
also grant root access to your AWS IoT Greengrass Lambda functions.

a. To run without containerization:

• For System user and group, choose Another user ID/group ID. For System user
ID, enter 0. For System group ID, enter 0.

This allows your Lambda function to run as root. For more information about running as
root, see the section called “Setting the default access identity for Lambda functions in
a group”.

Tip

You also must update your config.json file to grant root access to your
Lambda function. For the procedure, see the section called “Running a Lambda
function as root”.

• For Lambda function containerization, choose No container.

For more information about running without containerization, see the section called
“Considerations when choosing Lambda function containerization”.

Configuring an NVIDIA Jetson TX2 435

AWS IoT Greengrass Developer Guide, Version 1

• Under Additional Parameters, for Read access to /sys directory, choose Enabled.

• Under Environment variables, add the following key-value pairs to your Lambda
function. This configures AWS IoT Greengrass to use the MXNet framework.

Key Value

PATH /usr/local/cuda/bin:$PATH

MXNET_HOME $HOME/mxnet/

PYTHONPATH $MXNET_HOME/python:$PYTHONPATH

CUDA_HOME /usr/local/cuda

LD_LIBRARY_PATH $LD_LIBRARY_PATH:${CUDA_HOME}/
lib64

b. To run in containerized mode instead:

Note

We do not recommend running in containerized mode unless your business case
requires it.

• Increase the Memory limit value. Use 500 MB for CPU, or at least 2000 MB for GPU.

• Under Additional Parameters, for Read access to /sys directory, choose Enabled.

• Under Environment variables, add the following key-value pairs to your Lambda
function. This configures AWS IoT Greengrass to use the MXNet framework.

Key Value

PATH /usr/local/cuda/bin:$PATH

MXNET_HOME $HOME/mxnet/

PYTHONPATH $MXNET_HOME/python:$PYTHONPATH

Configuring an NVIDIA Jetson TX2 436

AWS IoT Greengrass Developer Guide, Version 1

Key Value

CUDA_HOME /usr/local/cuda

LD_LIBRARY_PATH $LD_LIBRARY_PATH:${CUDA_HOME}/
lib64

7. If running in containerized mode, add the following local device resources to grant access to
your device GPU. Follow the procedure in the section called “Add resources to the group”.

Note

If you run in non-containerized mode, AWS IoT Greengrass can access your device GPU
without configuring device resources.

For each resource:

• For Resource type, choose Device.

• For System group owner and file access permissions, choose Automatically add file
system permissions of the system group that owns the resource.

Name Device path

nvhost-ctrl /dev/nvhost-ctrl

nvhost-gpu /dev/nvhost-gpu

nvhost-ctrl-gpu /dev/nvhost-ctrl-gpu

nvhost-dbg-gpu /dev/nvhost-dbg-gpu

nvhost-prof-gpu /dev/nvhost-prof-gpu

nvmap /dev/nvmap

nvhost-vic /dev/nvhost-vic

Configuring an NVIDIA Jetson TX2 437

AWS IoT Greengrass Developer Guide, Version 1

Name Device path

tegra_dc_ctrl /dev/tegra_dc_ctrl

8. If running in containerized mode, add the following local volume resource to grant access to
your device camera. Follow the procedure in the section called “Add resources to the group”.

Note

If you run in non-containerized mode, AWS IoT Greengrass can access your device
camera without configuring volume resources.

• For Resource type, choose Volume.

• For System group owner and file access permissions, choose Automatically add file
system permissions of the system group that owns the resource.

Name Source path Destination path

shm /dev/shm /dev/shm

tmp /tmp /tmp

How to configure optimized machine learning inference using
the AWS Management Console

To follow the steps in this tutorial, you must be using AWS IoT Greengrass Core v1.10 or later.

You can use the SageMaker Neo deep learning compiler to optimize the prediction efficiency of
native machine learning inference models in Tensorflow, Apache MXNet, PyTorch, ONNX, and
XGBoost frameworks for a smaller footprint and faster performance. You can then download the
optimized model and install the SageMaker Neo deep learning runtime and deploy them to your
AWS IoT Greengrass devices for faster inference.

How to configure optimized machine learning inference 438

AWS IoT Greengrass Developer Guide, Version 1

This tutorial describes how to use the AWS Management Console to configure a Greengrass group
to run a Lambda inference example that recognizes images from a camera locally, without sending
data to the cloud. The inference example accesses the camera module on a Raspberry Pi. In this
tutorial, you download a prepackaged model that is trained by Resnet-50 and optimized in the Neo
deep learning compiler. You then use the model to perform local image classification on your AWS
IoT Greengrass device.

The tutorial contains the following high-level steps:

1. Configure the Raspberry Pi

2. Install the Neo deep learning runtime

3. Create an inference Lambda function

4. Add the Lambda function to the group

5. Add a Neo-optimized model resource to the group

6. Add your camera device resource to the group

7. Add subscriptions to the group

8. Deploy the group

9. Test the example

Prerequisites

To complete this tutorial, you need:

• Raspberry Pi 4 Model B, or Raspberry Pi 3 Model B/B+, set up and configured for use with AWS
IoT Greengrass. To set up your Raspberry Pi with AWS IoT Greengrass, run the Greengrass Device
Setup script, or make sure that you have completed Module 1 and Module 2 of Getting started
with AWS IoT Greengrass.

Note

The Raspberry Pi might require a 2.5A power supply to run the deep learning frameworks
that are typically used for image classification. A power supply with a lower rating might
cause the device to reboot.

• Raspberry Pi Camera Module V2 - 8 megapixel, 1080p. To learn how to set up the camera, see
Connecting the camera in the Raspberry Pi documentation.

Prerequisites 439

https://docs.aws.amazon.com/greengrass/latest/developerguide/module1.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/module2.html
https://www.raspberrypi.org/documentation/hardware/raspberrypi/power/
https://www.amazon.com/Raspberry-Pi-Camera-Module-Megapixel/dp/B01ER2SKFS
https://www.raspberrypi.org/documentation/usage/camera/

AWS IoT Greengrass Developer Guide, Version 1

• A Greengrass group and a Greengrass core. To learn how to create a Greengrass group or core,
see Getting started with AWS IoT Greengrass.

Note

This tutorial uses a Raspberry Pi, but AWS IoT Greengrass supports other platforms, such
as Intel Atom and NVIDIA Jetson TX2. If using the Intel Atom example, you might need to
install Python 3.6 instead of Python 3.7. For information about configuring your device so
you can install the AWS IoT Greengrass Core software, see the section called “Setting up
other devices”.
For third party platforms that AWS IoT Greengrass does not support, you must run your
Lambda function in non-containerized mode. To run in non-containerized mode, you
must run your Lambda function as root. For more information, see the section called
“Considerations when choosing Lambda function containerization” and the section called
“Setting the default access identity for Lambda functions in a group”.

Step 1: Configure the Raspberry Pi

In this step, install updates to the Raspbian operating system, install the camera module software
and Python dependencies, and enable the camera interface.

Run the following commands in your Raspberry Pi terminal.

1. Install updates to Raspbian.

sudo apt-get update
sudo apt-get dist-upgrade

2. Install the picamera interface for the camera module and other Python libraries that are
required for this tutorial.

sudo apt-get install -y python3-dev python3-setuptools python3-pip python3-picamera

Validate the installation:

• Make sure that your Python 3.7 installation includes pip.

Configure the Raspberry Pi 440

AWS IoT Greengrass Developer Guide, Version 1

python3 -m pip

If pip isn't installed, download it from the pip website and then run the following command.

python3 get-pip.py

• Make sure that your Python version is 3.7 or higher.

python3 --version

If the output lists an earlier version, run the following command.

sudo apt-get install -y python3.7-dev

• Make sure that Setuptools and Picamera installed successfully.

sudo -u ggc_user bash -c 'python3 -c "import setuptools"'
sudo -u ggc_user bash -c 'python3 -c "import picamera"'

If the output doesn't contain errors, the validation is successful.

Note

If the Python executable installed on your device is python3.7, use python3.7
instead of python3 for the commands in this tutorial. Make sure that your pip
installation maps to the correct python3.7 or python3 version to avoid dependency
errors.

3. Reboot the Raspberry Pi.

sudo reboot

4. Open the Raspberry Pi configuration tool.

sudo raspi-config

Configure the Raspberry Pi 441

https://pip.pypa.io/en/stable/installing/

AWS IoT Greengrass Developer Guide, Version 1

5. Use the arrow keys to open Interfacing Options and enable the camera interface. If prompted,
allow the device to reboot.

6. Use the following command to test the camera setup.

raspistill -v -o test.jpg

This opens a preview window on the Raspberry Pi, saves a picture named test.jpg to your
current directory, and displays information about the camera in the Raspberry Pi terminal.

Step 2: Install the Amazon SageMaker Neo deep learning runtime

In this step, install the Neo deep learning runtime (DLR) on your Raspberry Pi.

Note

We recommend installing version 1.1.0 for this tutorial.

1. Sign in to your Raspberry Pi remotely.

ssh pi@your-device-ip-address

2. Open the DLR documentation, open Installing DLR, and locate the wheel URL for Raspberry Pi
devices. Then, follow the instructions to install the DLR on your device. For example, you can
use pip:

pip3 install rasp3b-wheel-url

3. After you install the DLR, validate the following configuration:

• Make sure the ggc_user system account can use the DLR library.

sudo -u ggc_user bash -c 'python3 -c "import dlr"'

• Make sure NumPy is installed.

sudo -u ggc_user bash -c 'python3 -c "import numpy"'

Install the Neo deep learning runtime 442

https://neo-ai-dlr.readthedocs.io/en/latest/install.html

AWS IoT Greengrass Developer Guide, Version 1

Step 3: Create an inference Lambda function

In this step, create a Lambda function deployment package and Lambda function. Then, publish a
function version and create an alias.

1. On your computer, download the DLR sample for Raspberry Pi from the section called
“Machine learning samples”.

2. Unzip the downloaded dlr-py3-armv7l.tar.gz file.

cd path-to-downloaded-sample
tar -xvzf dlr-py3-armv7l.tar.gz

The examples directory in the extracted sample package contains function code and
dependencies.

• inference.py is the inference code used in this tutorial. You can use this code as a
template to create your own inference function.

• greengrasssdk is version 1.5.0 of the AWS IoT Greengrass Core SDK for Python.

Note

If a new version is available, you can download it and upgrade the SDK version in
your deployment package. For more information, see AWS IoT Greengrass Core SDK
for Python on GitHub.

3. Compress the contents of the examples directory into a file named
optimizedImageClassification.zip. This is your deployment package.

cd path-to-downloaded-sample/dlr-py3-armv7l/examples
zip -r optimizedImageClassification.zip .

The deployment package contains your function code and dependencies. This includes the
code that invokes the Neo deep learning runtime Python APIs to perform inference with the
Neo deep learning compiler models.

Create an inference Lambda function 443

https://github.com/aws/aws-greengrass-core-sdk-python/
https://github.com/aws/aws-greengrass-core-sdk-python/

AWS IoT Greengrass Developer Guide, Version 1

Note

Make sure the .py files and dependencies are in the root of the directory.

4. Now, add the Lambda function to your Greengrass group.

From the Lambda console page, choose Functions and choose Create function.

5. Choose Author from scratch and use the following values to create your function:

• For Function name, enter optimizedImageClassification.

• For Runtime, choose Python 3.7.

For Permissions, keep the default setting. This creates an execution role that grants basic
Lambda permissions. This role isn't used by AWS IoT Greengrass.

6. Choose Create function.

Now, upload your Lambda function deployment package and register the handler.

1. On the Code tab, under Code source, choose Upload from. From the dropdown, choose .zip
file.

Create an inference Lambda function 444

AWS IoT Greengrass Developer Guide, Version 1

2. Choose your optimizedImageClassification.zip deployment package, and then choose
Save.

3. On the Code tab for the function, under Runtime settings, choose Edit, and then enter the
following values.

• For Runtime, choose Python 3.7.

• For Handler, enter inference.handler.

Choose Save.

Next, publish the first version of your Lambda function. Then, create an alias for the version.

Note

Greengrass groups can reference a Lambda function by alias (recommended) or by version.
Using an alias makes it easier to manage code updates because you don't have to change
your subscription table or group definition when the function code is updated. Instead, you
just point the alias to the new function version.

Create an inference Lambda function 445

https://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS IoT Greengrass Developer Guide, Version 1

1. From the Actions menu, choose Publish new version.

2. For Version description, enter First version, and then choose Publish.

3. On the optimizedImageClassification: 1 configuration page, from the Actions menu, choose
Create alias.

4. On the Create a new alias page, use the following values:

• For Name, enter mlTestOpt.

• For Version, enter 1.

Note

AWS IoT Greengrass doesn't support Lambda aliases for $LATEST versions.

5. Choose Create.

Now, add the Lambda function to your Greengrass group.

Step 4: Add the Lambda function to the Greengrass group

In this step, add the Lambda function to the group, and then configure its lifecycle.

First, add the Lambda function to your Greengrass group.

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. On the groups configuration page, choose the Lambda functions tab, and choose Add.

3. Choose the Lambda function and select optimizedImageClassification.

4. On the Lambda function version, choose the alias to the version that you published.

Add the Lambda function to the group 446

AWS IoT Greengrass Developer Guide, Version 1

Next, configure the lifecycle of the Lambda function.

1. In the Lambda function configuration section, make the following updates.

Note

We recommend that you run your Lambda function without containerization unless
your business case requires it. This helps enable access to your device GPU and camera
without configuring device resources. If you run without containerization, you must
also grant root access to your AWS IoT Greengrass Lambda functions.

a. To run without containerization:

• For System user and group, choose Another user ID/group ID. For System user
ID, enter 0. For System group ID, enter 0.

This allows your Lambda function to run as root. For more information about running as
root, see the section called “Setting the default access identity for Lambda functions in
a group”.

Tip

You also must update your config.json file to grant root access to your
Lambda function. For the procedure, see the section called “Running a Lambda
function as root”.

• For Lambda function containerization, choose No container.

For more information about running without containerization, see the section called
“Considerations when choosing Lambda function containerization”.

• For Timeout, enter 10 seconds.

• For Pinned, choose True.

For more information, see the section called “Lifecycle configuration”.

• Under Additional Parameter, for Read access to /sys directory, choose Enabled.

b. To run in containerized mode instead:

Add the Lambda function to the group 447

AWS IoT Greengrass Developer Guide, Version 1

Note

We do not recommend running in containerized mode unless your business case
requires it.

• For System user and group, choose Use group default.

• For Lambda function containerization, choose Use group default.

• For Memory limit, enter 1024 MB.

• For Timeout, enter 10 seconds.

• For Pinned, choose True.

For more information, see the section called “Lifecycle configuration”.

• Under Additional Parameters, for Read access to /sys directory, choose Enabled.

2. Choose Add Lambda function.

Step 5: Add a SageMaker Neo-optimized model resource to the
Greengrass group

In this step, create a resource for the optimized ML inference model and upload it to an Amazon
S3 bucket. Then, locate the Amazon S3 uploaded model in the AWS IoT Greengrass console and
affiliate the newly created resource with the Lambda function. This makes it possible for the
function to access its resources on the core device.

1. On your computer, navigate to the resnet50 directory in the sample package that you
unzipped in the section called “Create an inference Lambda function”.

Note

If using the NVIDIA Jetson example, you need to use the resnet18 directory in the
sample package instead. For more information, see the section called “Configuring an
NVIDIA Jetson TX2”.

Add a Neo-optimized model resource to the group 448

AWS IoT Greengrass Developer Guide, Version 1

cd path-to-downloaded-sample/dlr-py3-armv7l/models/resnet50

This directory contains precompiled model artifacts for an image classification model trained
with Resnet-50.

2. Compress the files inside the resnet50 directory into a file named resnet50.zip.

zip -r resnet50.zip .

3. On the group configuration page for your AWS IoT Greengrass group, choose the Resources
tab. Navigate to the Machine Learning section and choose Add machine learning
resource. On the Create a machine learning resource page, for Resource name, enter
resnet50_model.

4. For Model source, choose Use a model stored in S3, such as a model optimized through
Deep Learning Compiler.

5. Under S3 URI, choose Browse S3.

Note

Currently, optimized SageMaker models are stored automatically in Amazon S3.
You can find your optimized model in your Amazon S3 bucket using this option. For
more information about model optimization in SageMaker, see the SageMaker Neo
documentation.

6. Choose Upload a model.

7. On the Amazon S3 console tab, upload your zip file to an Amazon S3 bucket. For information,
see How do I upload files and folders to an S3 bucket? in the Amazon Simple Storage Service
User Guide.

Note

Your bucket name must contain the string greengrass. Choose a unique name (such
as greengrass-dlr-bucket-user-id-epoch-time). Don't use a period (.) in the
bucket name.

Add a Neo-optimized model resource to the group 449

https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html

AWS IoT Greengrass Developer Guide, Version 1

8. In the AWS IoT Greengrass console tab, locate and choose your Amazon S3 bucket. Locate
your uploaded resnet50.zip file, and choose Select. You might need to refresh the page to
update the list of available buckets and files.

9. In Destination path, enter /ml_model.

This is the destination for the local model in the Lambda runtime namespace. When you
deploy the group, AWS IoT Greengrass retrieves the source model package and then extracts
the contents to the specified directory.

Note

We strongly recommend that you use the exact path provided for your local
path. Using a different local model destination path in this step causes some
troubleshooting commands provided in this tutorial to be inaccurate. If you use a
different path, you must set up a MODEL_PATH environment variable that uses the
exact path you provide here. For information about environment variables, see AWS
Lambda environment variables.

10. If running in containerized mode:

a. Under System group owner and file access permissions, choose Specify system group
and permissions.

b. Choose Read-only access and then choose Add resource.

Step 6: Add your camera device resource to the Greengrass group

In this step, create a resource for the camera module and affiliate it with the Lambda function. This
makes it possible for the Lambda function to access the resource on the core device.

Add your camera device resource to the group 450

https://docs.aws.amazon.com/lambda/latest/dg/env_variables.html
https://docs.aws.amazon.com/lambda/latest/dg/env_variables.html

AWS IoT Greengrass Developer Guide, Version 1

Note

If you run in non-containerized mode, AWS IoT Greengrass can access your device GPU and
camera without configuring this device resource.

1. On the group configuration page, choose the the Resources tab.

2. On the the Local resources tab, choose Add local resource.

3. On the Add a local resource page, use the following values:

• For Resource name, enter videoCoreSharedMemory.

• For Resource type, choose Device.

• For Local device path, enter /dev/vcsm.

The device path is the local absolute path of the device resource. This path can refer only to
a character device or block device under /dev.

• For System group owner and file access permissions, choose Automatically add file
system permissions of the system group that owns the resource.

The Group owner file access permission option lets you grant additional file access
permissions to the Lambda process. For more information, see Group owner file access
permission.

4. At the bottom of the page, choose Add resource.

5. From the Resources tab, create another local resource by choosing Add and use the following
values:

• For Resource name, enter videoCoreInterface.

• For Resource type, choose Device.

• For Local device path, enter /dev/vchiq.

• For System group owner and file access permissions, choose Automatically add file
system permissions of the system group that owns the resource.

6. Choose Add resource.

Add your camera device resource to the group 451

AWS IoT Greengrass Developer Guide, Version 1

Step 7: Add subscriptions to the Greengrass group

In this step, add subscriptions to the group. These subscriptions enable the Lambda function to
send prediction results to AWS IoT by publishing to an MQTT topic.

1. On the group configuration page, choose the Subscriptions tab, and then choose Add
subscription.

2. On the Create a subscription page, configure the source and target, as follows:

a. In Source type, choose Lambda function, and then choose
optimizedImageClassification.

b. In Target type, choose Service, and then choose IoT Cloud.

c. In the Topic filter, enter /resnet-50/predictions, and then choose Create
subscription.

3. Add a second subscription. Choose the Subscriptions tab, choose Add subscription, and
configure the source and target, as follows:

a. In Source type, choose Services, and then choose IoT Cloud.

b. In Target type, choose Lambda function, and then choose optimizedImageClassification.

c. In the Topic filter, enter /resnet-50/test, and then choose Create subscription.

Step 8: Deploy the Greengrass group

In this step, deploy the current version of the group definition to the Greengrass core device.
The definition contains the Lambda function, resources, and subscription configurations that you
added.

1. Make sure that the AWS IoT Greengrass core is running. Run the following commands in your
Raspberry Pi terminal, as needed.

a. To check whether the daemon is running:

ps aux | grep -E 'greengrass.*daemon'

If the output contains a root entry for /greengrass/ggc/packages/latest-core-
version/bin/daemon, then the daemon is running.

b. To start the daemon:

Add subscriptions to the group 452

AWS IoT Greengrass Developer Guide, Version 1

cd /greengrass/ggc/core/
sudo ./greengrassd start

2. On the group configuration page, choose Deploy.

3. On the Lambda functions tab, select IP detector and choose Edit.

4. From the Edit IP detector settings dialog box, select Automatically detect and override
MQTT broker endpoints and choose Save.

This enables devices to automatically acquire connectivity information for the core, such
as IP address, DNS, and port number. Automatic detection is recommended, but AWS IoT
Greengrass also supports manually specified endpoints. You're only prompted for the
discovery method the first time that the group is deployed.

Note

If prompted, grant permission to create the Greengrass service role and associate it
with your AWS account in the current AWS Region. This role allows AWS IoT Greengrass
to access your resources in AWS services.

The Deployments page shows the deployment timestamp, version ID, and status. When
completed, the status displayed for the deployment should be Completed.

For more information about deployments, see Deploy AWS IoT Greengrass groups. For
troubleshooting help, see Troubleshooting.

Test the inference example

Now you can verify whether the deployment is configured correctly. To test, you subscribe to the /
resnet-50/predictions topic and publish any message to the /resnet-50/test topic. This
triggers the Lambda function to take a photo with your Raspberry Pi and perform inference on the
image it captures.

Test the example 453

AWS IoT Greengrass Developer Guide, Version 1

Note

If using the NVIDIA Jetson example, make sure to use the resnet-18/predictions and
resnet-18/test topics instead.

Note

If a monitor is attached to the Raspberry Pi, the live camera feed is displayed in a preview
window.

1. On the AWS IoT console home page, under Test, choose MQTT test client.

2. For Subscriptions, choose Subscribe to a Topic. Use the following values. Leave the remaining
options at their defaults.

• For Subscription topic, enter /resnet-50/predictions.

• Under Additional configuration, for MQTT payload display, choose Display payloads as
strings.

3. Choose Subscribe.

4. Choose Publish to a topic, enter /resnet-50/test as the Topic name, and choose Publish.

5. If the test is successful, the published message causes the Raspberry Pi camera to capture
an image. A message from the Lambda function appears at the bottom of the page. This
message contains the prediction result of the image, using the format: predicted class name,
probability, and peak memory usage.

Configuring an Intel Atom

To run this tutorial on an Intel Atom device, you must provide source images, configure the Lambda
function, and add another local device resource. To use the GPU for inference, make sure the
following software is installed on your device:

• OpenCL version 1.0 or later

• Python 3.7 and pip

• NumPy

Configuring an Intel Atom 454

https://pypi.org/project/numpy/

AWS IoT Greengrass Developer Guide, Version 1

• OpenCV on Wheels

1. Download static PNG or JPG images for the Lambda function to use for image classification.
The example works best with small image files.

Save your image files in the directory that contains the inference.py file (or in a
subdirectory of this directory). This is in the Lambda function deployment package that you
upload in the section called “Create an inference Lambda function”.

Note

If you're using AWS DeepLens, you can use the onboard camera or mount your own
camera to perform inference on captured images instead of static images. However, we
strongly recommend you start with static images first.
If you use a camera, make sure that the awscam APT package is installed and up
to date. For more information, see Update your AWS DeepLens device in the AWS
DeepLens Developer Guide.

2. Edit the configuration of the Lambda function. Follow the procedure in the section called “Add
the Lambda function to the group”.

Note

We recommend that you run your Lambda function without containerization unless
your business case requires it. This helps enable access to your device GPU and camera
without configuring device resources. If you run without containerization, you must
also grant root access to your AWS IoT Greengrass Lambda functions.

a. To run without containerization:

• For System user and group, choose Another user ID/group ID. For System user
ID, enter 0. For System group ID, enter 0.

This allows your Lambda function to run as root. For more information about running as
root, see the section called “Setting the default access identity for Lambda functions in
a group”.

Configuring an Intel Atom 455

https://pypi.org/project/opencv-python/
https://docs.aws.amazon.com/deeplens/latest/dg/deeplens-manual-updates.html

AWS IoT Greengrass Developer Guide, Version 1

Tip

You also must update your config.json file to grant root access to your
Lambda function. For the procedure, see the section called “Running a Lambda
function as root”.

• For Lambda function containerization, choose No container.

For more information about running without containerization, see the section called
“Considerations when choosing Lambda function containerization”.

• Increase the Timeout value to 2 minutes. This ensures that the request does not time
out too early. It takes a few minutes after setup to run inference.

• For Pinned, choose True.

• Under Additional Parameters, for Read access to /sys directory, choose Enabled.

b. To run in containerized mode instead:

Note

We do not recommend running in containerized mode unless your business case
requires it.

• Increase the Memory limit value to 3000 MB.

• Increase the Timeout value to 2 minutes. This ensures that the request does not time
out too early. It takes a few minutes after setup to run inference.

• For Pinned, choose True.

• Under Additional Parameters, for Read access to /sys directory, choose Enabled.

3. Add your Neo-optimized model resource to the group. Upload the model resources in the
resnet50 directory of the sample package you unzipped in the section called “Create an
inference Lambda function”. This directory contains precompiled model artifacts for an image
classification model trained with Resnet-50. Follow the procedure in the section called “Add a
Neo-optimized model resource to the group” with the following updates.

• Compress the files inside the resnet50 directory into a file named resnet50.zip.

Configuring an Intel Atom 456

AWS IoT Greengrass Developer Guide, Version 1

• On the Create a machine learning resource page, for Resource name, enter
resnet50_model.

• Upload the resnet50.zip file.

4. If running in containerized mode, add the required local device resource to grant access to
your device GPU.

Note

If you run in non-containerized mode, AWS IoT Greengrass can access your device GPU
without configuring device resources.

a. On the group configuration page, choose the Resources tab.

b. In the Local resources section, choose Add local resource.

c. Define the resource:

• For Resource name, enter renderD128.

• For Resource type, choose Device.

• For Local device path, enter /dev/dri/renderD128.

• For System group owner and file access permissions, choose Automatically add file
system permissions of the system group that owns the resource.

Configuring an NVIDIA Jetson TX2

To run this tutorial on an NVIDIA Jetson TX2, provide source images, configure the Lambda
function, and add more local device resources.

1. Make sure your Jetson device is configured so you can install the AWS IoT Greengrass Core
software and use the GPU for inference. For more information about configuring your device,
see the section called “Setting up other devices”. To use the GPU for inference on an NVIDIA
Jetson TX2, you must install CUDA 10.0 and cuDNN 7.0 on your device when you image your
board with Jetpack 4.3.

2. Download static PNG or JPG images for the Lambda function to use for image classification.
The example works best with small image files.

Configuring an NVIDIA Jetson TX2 457

AWS IoT Greengrass Developer Guide, Version 1

Save your image files in the directory that contains the inference.py file. You can also save
them in a subdirectory of this directory. This directory is in the Lambda function deployment
package that you upload in the section called “Create an inference Lambda function”.

Note

You can instead choose to instrument a camera on the Jetson board to capture the
source images. However, we strongly recommend you start with static images first.

3. Edit the configuration of the Lambda function. Follow the procedure in the section called “Add
the Lambda function to the group”.

Note

We recommend that you run your Lambda function without containerization unless
your business case requires it. This helps enable access to your device GPU and camera
without configuring device resources. If you run without containerization, you must
also grant root access to your AWS IoT Greengrass Lambda functions.

a. To run without containerization:

• For Run as, choose Another user ID/group ID. For UID, enter 0. For GUID, enter 0.

This allows your Lambda function to run as root. For more information about running as
root, see the section called “Setting the default access identity for Lambda functions in
a group”.

Tip

You also must update your config.json file to grant root access to your
Lambda function. For the procedure, see the section called “Running a Lambda
function as root”.

• For Lambda function containerization, choose No container.

For more information about running without containerization, see the section called
“Considerations when choosing Lambda function containerization”.

Configuring an NVIDIA Jetson TX2 458

AWS IoT Greengrass Developer Guide, Version 1

• Increase the Timeout value to 5 minutes. This ensures that the request does not time
out too early. It takes a few minutes after setup to run inference.

• For Pinned, choose True.

• Under Additional Parameters, for Read access to /sys directory, choose Enabled.

b. To run in containerized mode instead:

Note

We do not recommend running in containerized mode unless your business case
requires it.

• Increase the Memory limit value. To use the provided model in GPU mode, use at least
2000 MB.

• Increase the Timeout value to 5 minutes. This ensures that the request does not time
out too early. It takes a few minutes after setup to run inference.

• For Pinned, choose True.

• Under Additional Parameters, for Read access to /sys directory, choose Enabled.

4. Add your Neo-optimized model resource to the group. Upload the model resources in the
resnet18 directory of the sample package you unzipped in the section called “Create an
inference Lambda function”. This directory contains precompiled model artifacts for an image
classification model trained with Resnet-18. Follow the procedure in the section called “Add a
Neo-optimized model resource to the group” with the following updates.

• Compress the files inside the resnet18 directory into a file named resnet18.zip.

• On the Create a machine learning resource page, for Resource name, enter
resnet18_model.

• Upload the resnet18.zip file.

5. If running in containerized mode, add the required local device resources to grant access to
your device GPU.

Note

If you run in non-containerized mode, AWS IoT Greengrass can access your device GPU
without configuring device resources.

Configuring an NVIDIA Jetson TX2 459

AWS IoT Greengrass Developer Guide, Version 1

a. On the group configuration page, choose the Resources tab.

b. In the Local resources section, choose Add local resource.

c. Define each resource:

• For Resource name and Device path, use the values in the following table. Create one
device resource for each row in the table.

• For Resource type, choose Device.

• For System group owner and file access permissions, choose Automatically add file
system permissions of the system group that owns the resource.

Name Device path

nvhost-ctrl /dev/nvhost-ctrl

nvhost-gpu /dev/nvhost-gpu

nvhost-ctrl-gpu /dev/nvhost-ctrl-gpu

nvhost-dbg-gpu /dev/nvhost-dbg-gpu

nvhost-prof-gpu /dev/nvhost-prof-gpu

nvmap /dev/nvmap

nvhost-vic /dev/nvhost-vic

tegra_dc_ctrl /dev/tegra_dc_ctrl

6. If running in containerized mode, add the following local volume resource to grant access to
your device camera. Follow the procedure in the section called “Add a Neo-optimized model
resource to the group”.

Configuring an NVIDIA Jetson TX2 460

AWS IoT Greengrass Developer Guide, Version 1

Note

If you run in non-containerized mode, AWS IoT Greengrass can access your device
camera without configuring device resources.

• For Resource type, choose Volume.

• For System group owner and file access permissions, choose Automatically add file
system permissions of the system group that owns the resource.

Name Source path Destination path

shm /dev/shm /dev/shm

tmp /tmp /tmp

7. Update your group subscriptions to use the correct directory. Follow the procedure in the
section called “Add subscriptions to the group” with the following updates.

• For your first topic filter, enter /resnet-18/predictions.

• For your second topic filter, enter /resnet-18/test.

8. Update your test subscriptions to use the correct directory. Follow the procedure in the section
called “Test the example” with the following updates.

• For Subscriptions, choose Subscribe to a topic. For Subscription topic, enter /resnet-18/
predictions.

• On the /resnet-18/predictions page, specify the /resnet-18/test topic to publish
to.

Troubleshooting AWS IoT Greengrass ML inference

If the test is not successful, you can try the following troubleshooting steps. Run the commands in
your Raspberry Pi terminal.

Troubleshooting AWS IoT Greengrass ML inference 461

AWS IoT Greengrass Developer Guide, Version 1

Check error logs

1. Switch to the root user and navigate to the log directory. Access to AWS IoT Greengrass logs
requires root permissions.

sudo su
cd /greengrass/ggc/var/log

2. Check runtime.log for any errors.

cat system/runtime.log | grep 'ERROR'

You can also look in your user-defined Lambda function log for any errors:

cat user/your-region/your-account-id/lambda-function-name.log | grep 'ERROR'

For more information, see the section called “Troubleshooting with logs”.

Verify the Lambda function is successfully deployed

1. List the contents of the deployed Lambda in the /lambda directory. Replace the placeholder
values before you run the command.

cd /greengrass/ggc/deployment/lambda/
arn:aws:lambda:region:account:function:function-name:function-version
ls -la

2. Verify that the directory contains the same content as the
optimizedImageClassification.zip deployment package that you uploaded in Step 3:
Create an inference Lambda function.

Make sure that the .py files and dependencies are in the root of the directory.

Troubleshooting AWS IoT Greengrass ML inference 462

AWS IoT Greengrass Developer Guide, Version 1

Verify the inference model is successfully deployed

1. Find the process identification number (PID) of the Lambda runtime process:

ps aux | grep lambda-function-name

In the output, the PID appears in the second column of the line for the Lambda runtime
process.

2. Enter the Lambda runtime namespace. Be sure to replace the placeholder pid value before
you run the command.

Note

This directory and its contents are in the Lambda runtime namespace, so they aren't
visible in a regular Linux namespace.

sudo nsenter -t pid -m /bin/bash

3. List the contents of the local directory that you specified for the ML resource.

Note

If your ML resource path is something other than ml_model, you must substitute that
here.

cd /ml_model
ls -ls

You should see the following files:

 56 -rw-r--r-- 1 ggc_user ggc_group 56703 Oct 29 20:07 model.json
196152 -rw-r--r-- 1 ggc_user ggc_group 200855043 Oct 29 20:08 model.params
 256 -rw-r--r-- 1 ggc_user ggc_group 261848 Oct 29 20:07 model.so
 32 -rw-r--r-- 1 ggc_user ggc_group 30564 Oct 29 20:08 synset.txt

Troubleshooting AWS IoT Greengrass ML inference 463

AWS IoT Greengrass Developer Guide, Version 1

Lambda function cannot find /dev/dri/renderD128

This can occur if OpenCL cannot connect to the GPU devices it needs. You must create device
resources for the necessary devices for your Lambda function.

Next steps

Next, explore other optimized models. For information, see the SageMaker Neo documentation.

Next steps 464

https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html

AWS IoT Greengrass Developer Guide, Version 1

Manage data streams on the AWS IoT Greengrass core

AWS IoT Greengrass stream manager makes it easier and more reliable to transfer high-volume IoT
data to the AWS Cloud. Stream manager processes data streams locally and exports them to the
AWS Cloud automatically. This feature integrates with common edge scenarios, such as machine
learning (ML) inference, where data is processed and analyzed locally before being exported to the
AWS Cloud or local storage destinations.

Stream manager simplifies application development. Your IoT applications can use a standardized
mechanism to process high-volume streams and manage local data retention policies instead of
building custom stream management functionality. IoT applications can read and write to streams.
They can define policies for storage type, size, and data retention on a per-stream basis to control
how stream manager processes and exports streams.

Stream manager is designed to work in environments with intermittent or limited connectivity.
You can define bandwidth use, timeout behavior, and how stream data is handled when the core
is connected or disconnected. For critical data, you can set priorities to control the order in which
streams are exported to the AWS Cloud.

You can configure automatic exports to the AWS Cloud for storage or further processing and
analysis. Stream manager supports exporting to the following AWS Cloud destinations.

• Channels in AWS IoT Analytics. AWS IoT Analytics lets you perform advanced analysis on
your data to help make business decisions and improve machine learning models. For more
information, see What is AWS IoT Analytics? in the AWS IoT Analytics User Guide.

• Streams in Kinesis Data Streams. Kinesis Data Streams is commonly used to aggregate high-
volume data and load it into a data warehouse or map-reduce cluster. For more information, see
What is Amazon Kinesis Data Streams? in the Amazon Kinesis Developer Guide.

• Asset properties in AWS IoT SiteWise. AWS IoT SiteWise lets you collect, organize, and analyze
data from industrial equipment at scale. For more information, see What is AWS IoT SiteWise? in
the AWS IoT SiteWise User Guide.

• Objects in Amazon S3. You can use Amazon S3 to store and retrieve large amounts of data.
For more information, see What is Amazon S3? in the Amazon Simple Storage Service Developer
Guide.

465

https://docs.aws.amazon.com/iotanalytics/latest/userguide/welcome.html
https://docs.aws.amazon.com/streams/latest/dev/what-is-this-service.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/what-is-sitewise.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html

AWS IoT Greengrass Developer Guide, Version 1

Stream management workflow

Your IoT applications interact with stream manager through the AWS IoT Greengrass Core SDK. In
a simple workflow, a user-defined Lambda function running on the Greengrass core consumes IoT
data, such as time-series temperature and pressure metrics. The Lambda function might filter or
compress the data and then call the AWS IoT Greengrass Core SDK to write the data to a stream in
stream manager. Stream manager can export the stream to the AWS Cloud automatically, based on
the policies defined for the stream. User-defined Lambda functions can also send data directly to
local databases or storage repositories.

Your IoT applications can include multiple user-defined Lambda functions that read or write to
streams. These local Lambda functions can read and write to streams to filter, aggregate, and
analyze data locally. This makes it possible to respond quickly to local events and extract valuable
information before the data is transferred from the core to cloud or local destinations.

An example workflow is shown in the following diagram.

Stream management workflow 466

AWS IoT Greengrass Developer Guide, Version 1

To use stream manager, start by configuring stream manager parameters to define group-level
runtime settings that apply to all streams on the Greengrass core. These customizable settings
allow you to control how stream manager stores, processes, and exports streams based on
your business need and environment constraints. For more information, see the section called
“Configure stream manager”.

After you configure stream manager, you can create and deploy your IoT applications. These
are typically user-defined Lambda functions that use StreamManagerClient in the AWS IoT
Greengrass Core SDK to create and interact with streams. During stream creation, the Lambda
function defines per-stream policies, such as export destinations, priority, and persistence. For
more information, including code snippets for StreamManagerClient operations, see the section
called “Use StreamManagerClient to work with streams”.

Stream management workflow 467

AWS IoT Greengrass Developer Guide, Version 1

For tutorials that configure a simple workflow, see the section called “Export data streams
(console)” or the section called “Export data streams (CLI)”.

Requirements

The following requirements apply for using stream manager:

• You must use AWS IoT Greengrass Core software v1.10 or later, with stream manager enabled.
For more information, see the section called “Configure stream manager”.

Stream manager is not supported on OpenWrt distributions.

• The Java 8 runtime (JDK 8) must be installed on the core.

• For Debian-based distributions (including Raspbian) or Ubuntu-based distributions, run the
following command:

sudo apt install openjdk-8-jdk

• For Red Hat-based distributions (including Amazon Linux), run the following command:

sudo yum install java-1.8.0-openjdk

For more information, see How to download and install prebuilt OpenJDK packages in the
OpenJDK documentation.

• Stream manager requires a minimum of 70 MB RAM in addition to your base AWS IoT Greengrass
Core software. Your total memory requirement depends on your workload.

• User-defined Lambda functions must use the AWS IoT Greengrass Core SDK to interact with
stream manager. The AWS IoT Greengrass Core SDK is available in several languages, but only
the following versions support stream manager operations:

• Java SDK (v1.4.0 or later)

• Python SDK (v1.5.0 or later)

• Node.js SDK (v1.6.0 or later)

Requirements 468

https://openjdk.java.net/install/

AWS IoT Greengrass Developer Guide, Version 1

Download the version of the SDK that corresponds to your Lambda function runtime and include
it in your Lambda function deployment package.

Note

The AWS IoT Greengrass Core SDK for Python requires Python 3.7 or later and has other
package dependencies. For more information, see Create a Lambda function deployment
package (console) or Create a Lambda function deployment package (CLI).

• If you define AWS Cloud export destinations for a stream, you must create your export targets
and grant access permissions in the Greengrass group role. Depending on the destination, other
requirements might also apply. For more information, see:

• the section called “AWS IoT Analytics channels”

• the section called “Amazon Kinesis data streams”

• the section called “AWS IoT SiteWise asset properties”

• the section called “Amazon S3 objects”

You are responsible for maintaining these AWS Cloud resources.

Data security

When you use stream manager, be aware of the following security considerations.

Local data security

AWS IoT Greengrass does not encrypt stream data at rest or in transit locally between components
on the core device.

• Data at rest. Stream data is stored locally in a storage directory on the Greengrass core. For
data security, AWS IoT Greengrass relies on Unix file permissions and full-disk encryption, if
enabled. You can use the optional STREAM_MANAGER_STORE_ROOT_DIR parameter to specify
the storage directory. If you change this parameter later to use a different storage directory, AWS
IoT Greengrass does not delete the previous storage directory or its contents.

Data security 469

AWS IoT Greengrass Developer Guide, Version 1

• Data in transit locally. AWS IoT Greengrass does not encrypt stream data in local transit on the
core between data sources, Lambda functions, the AWS IoT Greengrass Core SDK, and stream
manager.

• Data in transit to the AWS Cloud. Data streams exported by stream manager to the AWS Cloud
use standard AWS service client encryption with Transport Layer Security (TLS).

For more information, see the section called “Data encryption”.

Client authentication

Stream manager clients use the AWS IoT Greengrass Core SDK to communicate with stream
manager. When client authentication is enabled, only Lambda functions in the Greengrass group
can interact with streams in stream manager. When client authentication is disabled, any process
running on the Greengrass core (such as Docker containers) can interact with streams in stream
manager. You should disable authentication only if your business case requires it.

You use the STREAM_MANAGER_AUTHENTICATE_CLIENT parameter to set the client
authentication mode. You can configure this parameter from the console or AWS IoT Greengrass
API. Changes take effect after the group is deployed.

 Enabled Disabled

Parameter value true (default and
recommended)

false

Allowed clients User-defined Lambda
functions in the Greengrass
group

User-defined Lambda
functions in the Greengrass
group

Other processes running on
the Greengrass core device

See also

• the section called “Configure stream manager”

Client authentication 470

AWS IoT Greengrass Developer Guide, Version 1

• the section called “Use StreamManagerClient to work with streams”

• the section called “Export configurations for supported AWS Cloud destinations”

• the section called “Export data streams (console)”

• the section called “Export data streams (CLI)”

Configure AWS IoT Greengrass stream manager

On the AWS IoT Greengrass core, stream manager can store, process, and export IoT device data.
Stream manager provides parameters that you use to configure group-level runtime settings.
These settings apply to all streams on the Greengrass core. You can use the AWS IoT console or
AWS IoT Greengrass API to configure stream manager settings. Changes take effect after the group
is deployed.

Note

After you configure stream manager, you can create and deploy IoT applications that
run on the Greengrass core and interact with stream manager. These IoT applications are
typically user-defined Lambda functions. For more information, see the section called “Use
StreamManagerClient to work with streams”.

Stream manager parameters

Stream manager provides the following parameters that allow you to define group-level settings.
All parameters are optional.

Storage directory

Parameter name: STREAM_MANAGER_STORE_ROOT_DIR

The absolute path of the local directory used to store streams. This value must start with a
forward slash (for example, /data).

For information about securing stream data, see the section called “Local data security”.

Minimum AWS IoT Greengrass Core version: 1.10.0

Server port

Parameter name: STREAM_MANAGER_SERVER_PORT

Configure stream manager 471

AWS IoT Greengrass Developer Guide, Version 1

The local port number used to communicate with stream manager. The default is 8088.

Minimum AWS IoT Greengrass Core version: 1.10.0

Authenticate client

Parameter name: STREAM_MANAGER_AUTHENTICATE_CLIENT

Indicates whether clients must be authenticated to interact with stream manager. All
interaction between clients and stream manager is controlled by the AWS IoT Greengrass Core
SDK. This parameter determines which clients can call the AWS IoT Greengrass Core SDK to
work with streams. For more information, see the section called “Client authentication”.

Valid values are true or false. The default is true (recommended).

• true. Allows only Greengrass Lambda functions as clients. Lambda function clients use
internal AWS IoT Greengrass core protocols to authenticate with the AWS IoT Greengrass
Core SDK.

• false. Allows any process that runs on the AWS IoT Greengrass core to be a client. Do not set
to false unless your business case requires it. For example, set this value to false only if
non-Lambda processes on the core device must communicate directly with stream manager,
such as Docker containers running on the core.

Minimum AWS IoT Greengrass Core version: 1.10.0

Maximum bandwidth

Parameter name: STREAM_MANAGER_EXPORTER_MAX_BANDWIDTH

The average maximum bandwidth (in kilobits per second) that can be used to export data. The
default allows unlimited use of available bandwidth.

Minimum AWS IoT Greengrass Core version: 1.10.0

Thread pool size

Parameter name: STREAM_MANAGER_EXPORTER_THREAD_POOL_SIZE

The maximum number of active threads that can be used to export data. The default is 5.

The optimal size depends on your hardware, stream volume, and planned number of export
streams. If your export speed is slow, you can adjust this setting to find the optimal size for your
hardware and business case. The CPU and memory of your core device hardware are limiting

Stream manager parameters 472

AWS IoT Greengrass Developer Guide, Version 1

factors. To start, you might try setting this value equal to the number of processor cores on the
device.

Be careful not to set a size that's higher than your hardware can support. Each stream consumes
hardware resources, so you should try to limit the number of export streams on constrained
devices.

Minimum AWS IoT Greengrass Core version: 1.10.0

JVM arguments

Parameter name: JVM_ARGS

Custom Java Virtual Machine arguments to pass to stream manager at startup. Multiple
arguments should be separated by spaces.

Use this parameter only when you must override the default settings used by the JVM. For
example, you might need to increase the default heap size if you plan to export a large number
of streams.

Minimum AWS IoT Greengrass Core version: 1.10.0

Read-only input file directories

Parameter name: STREAM_MANAGER_READ_ONLY_DIRS

A comma-separated list of absolute paths to the directories outside of the root file system that
store input files. Stream manager reads and uploads the files to Amazon S3 and mounts the
directories as read-only. For more information about exporting to Amazon S3, see the section
called “Amazon S3 objects”.

Use this parameter only if the following conditions are true:

• The input file directory for a stream that exports to Amazon S3 is in one of the following
locations:

• A partition other than the root file system.

• Under /tmp on the root file system.

• The default containerization of the Greengrass group is Greengrass container.

Example value: /mnt/directory-1,/mnt/directory-2,/tmp

Minimum AWS IoT Greengrass Core version: 1.11.0

Stream manager parameters 473

AWS IoT Greengrass Developer Guide, Version 1

Minimum size for multipart upload

Parameter name:
STREAM_MANAGER_EXPORTER_S3_DESTINATION_MULTIPART_UPLOAD_MIN_PART_SIZE_BYTES

The minimum size (in bytes) of a part in a multipart upload to Amazon S3. Stream manager
uses this setting and the size of the input file to determine how to batch data in a multipart
PUT request. The default and minimum value is 5242880 bytes (5 MB).

Note

Stream manager uses the stream's sizeThresholdForMultipartUploadBytes
property to determine whether to export to Amazon S3 as a single or multipart upload.
User-defined Lambda functions set this threshold when they create a stream that
exports to Amazon S3. The default threshold is 5 MB.

Minimum AWS IoT Greengrass Core version: 1.11.0

Configure stream manager settings (console)

You can use the AWS IoT console for the following management tasks:

• Check if stream manager is enabled

• Enable or disable stream manager during group creation

• Enable or disable stream manager for an existing group

• Change stream manager settings

Changes take effect after the Greengrass group is deployed. For a tutorial that shows how to
deploy a Greengrass group that contains a Lambda function that interacts with stream manager,
see the section called “Export data streams (console)”.

Note

When you use the console to enable stream manager and deploy the group, the memory
size for stream manager is set to 4194304 KB (4 GB) by default. We recommend that you
set the memory size to at least 128000 KB.

Configure settings (console) 474

AWS IoT Greengrass Developer Guide, Version 1

To check if stream manager is enabled (console)

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose the target group.

3. Choose the Lambda functions tab.

4. Under System Lambda functions, select Stream manager, and choose Edit.

5. Check the enabled or disabled status. Any custom stream manager settings that are configured
are also displayed.

To enable or disable stream manager during group creation (console)

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose Create Group. Your choice on the next page determines how you configure stream
manager for the group.

3. Proceed through the Name your Group and choose a Greengrass core pages.

4. Choose Create group.

5. On the group configuration page, choose the Lambda functions tab, select Stream manager,
and choose Edit.

• To enable stream manager with default settings, choose Enable with default settings.

• To enable stream manager with custom settings, choose Customize settings.

1. On the Configure Stream manager page, choose Enable with custom settings.

2. Under Custom settings, enter values for stream manager parameters. For more
information, see the section called “Stream manager parameters”. Leave fields empty to
allow AWS IoT Greengrass to use their default values.

• To disable stream manager, choose Disable.

Configure settings (console) 475

AWS IoT Greengrass Developer Guide, Version 1

1. On the Configure stream manager page, choose Disable.

6. Choose Save.

7. Continue through the remaining pages to create your group.

8. On the Client devices page, download your security resources, review the information, and
then choose Finish.

Note

When stream manager is enabled, you must install the Java 8 runtime on the core
device before you deploy the group.

To enable or disable stream manager for an existing group (console)

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose the target group.

3. Choose the Lambda functions tab.

4. Under System Lambda functions, select Stream manager, and choose Edit.

5. Check the enabled or disabled status. Any custom stream manager settings that are configured
are also displayed.

To change stream manager settings (console)

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose the target group.

3. Choose the Lambda functions tab.

4. Under System Lambda functions, select Stream manager, and choose Edit.

Configure settings (console) 476

AWS IoT Greengrass Developer Guide, Version 1

5. Check the enabled or disabled status. Any custom stream manager settings that are configured
are also displayed.

6. Choose Save.

Configure stream manager settings (CLI)

In the AWS CLI, use the system GGStreamManager Lambda function to configure stream manager.
System Lambda functions are components of the AWS IoT Greengrass Core software. For stream
manager and some other system Lambda functions, you can configure Greengrass functionality
by managing the corresponding Function and FunctionDefinitionVersion objects in the
Greengrass group. For more information, see the section called “Overview of the group object
model”.

You can use the API for the following management tasks. The examples in this section show how to
use the AWS CLI, but you can also call the AWS IoT Greengrass API directly or use an AWS SDK.

• Check if stream manager is enabled

• Enable, disable, or configure stream manager

Changes take effect after the group is deployed. For a tutorial that shows how to deploy a
Greengrass group with a Lambda function that interacts with stream manager, see the section
called “Export data streams (CLI)”.

Tip

To see if stream manager is enabled and running from your core device, you can run the
following command in a terminal on the device.

ps aux | grep -i 'streammanager'

To check if stream manager is enabled (CLI)

Stream manager is enabled if your deployed function definition version includes the system
GGStreamManager Lambda function. To check, do the following;

Configure settings (CLI) 477

AWS IoT Greengrass Developer Guide, Version 1

1. Get the IDs of the target Greengrass group and group version. This procedure assumes that
this is the latest group and group version. The following query returns the most recently
created group.

aws greengrass list-groups --query "reverse(sort_by(Groups, &CreationTimestamp))
[0]"

Or, you can query by name. Group names are not required to be unique, so multiple groups
might be returned.

aws greengrass list-groups --query "Groups[?Name=='MyGroup']"

Note

You can also find these values in the AWS IoT console. The group ID is displayed on the
group's Settings page. Group version IDs are displayed on the group's Deployments
tab.

2. Copy the Id and LatestVersion values from the target group in the output.

3. Get the latest group version.

• Replace group-id with the Id that you copied.

• Replace latest-group-version-id with the LatestVersion that you copied.

aws greengrass get-group-version \
--group-id group-id \
--group-version-id latest-group-version-id

4. From the FunctionDefinitionVersionArn in the output, get the IDs of the function
definition and function definition version.

• The function definition ID is the GUID that follows the functions segment in the Amazon
Resource Name (ARN).

• The function definition version ID is the GUID that follows the versions segment in the
ARN.

Configure settings (CLI) 478

AWS IoT Greengrass Developer Guide, Version 1

arn:aws:greengrass:us-west-2:123456789012:/greengrass/definition/
functions/function-definition-id/versions/function-definition-version-id

5. Get the function definition version.

• Replace function-definition-id with the function definition ID.

• Replace function-definition-version-id with the function definition version ID.

aws greengrass get-function-definition-version \
--function-definition-id function-definition-id \
--function-definition-version-id function-definition-version-id

If the functions array in the output includes the GGStreamManager function, then stream
manager is enabled. Any environment variables defined for the function represent custom settings
for stream manager.

To enable, disable, or configure stream manager (CLI)

In the AWS CLI, use the system GGStreamManager Lambda function to configure stream manager.
Changes take effect after you deploy the group.

• To enable stream manager, include GGStreamManager in the functions array of your
function definition version. To configure custom settings, define environment variables for the
corresponding stream manager parameters.

• To disable stream manager, remove GGStreamManager from the functions array of your
function definition version.

Stream manager with default settings

The following example configuration enables stream manager with default settings. It sets the
arbitrary function ID to streamManager.

{
 "FunctionArn": "arn:aws:lambda:::function:GGStreamManager:1",
 "FunctionConfiguration": {
 "MemorySize": 4194304,

Configure settings (CLI) 479

AWS IoT Greengrass Developer Guide, Version 1

 "Pinned": true,
 "Timeout": 3
 },
 "Id": "streamManager"
}

Note

For the FunctionConfiguration properties, you might know the following:

• MemorySize is set to 4194304 KB (4 GB) with default settings. You can always
change this value. We recommend that you set MemorySize to at least 128000 KB.

• Pinned must be set to true.

• Timeout is required by the function definition version, but GGStreamManager
doesn't use it.

Stream manager with custom settings

The following example configuration enables stream manager with custom values for the
storage directory, server port, and thread pool size parameters.

{
 "FunctionArn": "arn:aws:lambda:::function:GGStreamManager:1",
 "FunctionConfiguration": {
 "Environment": {
 "Variables": {
 "STREAM_MANAGER_STORE_ROOT_DIR": "/data",
 "STREAM_MANAGER_SERVER_PORT": "1234",
 "STREAM_MANAGER_EXPORTER_THREAD_POOL_SIZE": "4"
 }
 },
 "MemorySize": 4194304,
 "Pinned": true,
 "Timeout": 3
 },
 "Id": "streamManager"
}

AWS IoT Greengrass uses default values for stream manager parameters that aren't specified as
environment variables.

Configure settings (CLI) 480

AWS IoT Greengrass Developer Guide, Version 1

Stream manager with custom settings for Amazon S3 exports

The following example configuration enables stream manager with custom values for the
upload directory and minimum multipart upload size parameters.

{
 "FunctionArn": "arn:aws:lambda:::function:GGStreamManager:1",
 "FunctionConfiguration": {
 "Environment": {
 "Variables": {
 "STREAM_MANAGER_READ_ONLY_DIRS": "/mnt/directory-1,/mnt/
directory-2,/tmp",

 "STREAM_MANAGER_EXPORTER_S3_DESTINATION_MULTIPART_UPLOAD_MIN_PART_SIZE_BYTES":
 "10485760"
 }
 },
 "MemorySize": 4194304,
 "Pinned": true,
 "Timeout": 3
 },
 "Id": "streamManager"
}

To enable, disable, or configure stream manager (CLI)

1. Get the IDs of the target Greengrass group and group version. This procedure assumes that
this is the latest group and group version. The following query returns the most recently
created group.

aws greengrass list-groups --query "reverse(sort_by(Groups, &CreationTimestamp))
[0]"

Or, you can query by name. Group names are not required to be unique, so multiple groups
might be returned.

aws greengrass list-groups --query "Groups[?Name=='MyGroup']"

Configure settings (CLI) 481

AWS IoT Greengrass Developer Guide, Version 1

Note

You can also find these values in the AWS IoT console. The group ID is displayed on the
group's Settings page. Group version IDs are displayed on the group's Deployments
tab.

2. Copy the Id and LatestVersion values from the target group in the output.

3. Get the latest group version.

• Replace group-id with the Id that you copied.

• Replace latest-group-version-id with the LatestVersion that you copied.

aws greengrass get-group-version \
--group-id group-id \
--group-version-id latest-group-version-id

4. Copy the CoreDefinitionVersionArn and all other version ARNs from the output, except
FunctionDefinitionVersionArn. You use these values later when you create a group
version.

5. From the FunctionDefinitionVersionArn in the output, copy the ID of the function
definition. The ID is the GUID that follows the functions segment in the ARN, as shown in
the following example.

arn:aws:greengrass:us-west-2:123456789012:/greengrass/
definition/functions/bcfc6b49-beb0-4396-b703-6dEXAMPLEcu5/
versions/0f7337b4-922b-45c5-856f-1aEXAMPLEsf6

Note

Or, you can create a function definition by running the create-function-
definition command, and then copying the ID from the output.

6. Add a function definition version to the function definition.

• Replace function-definition-id with the Id that you copied for the function
definition.

Configure settings (CLI) 482

https://docs.aws.amazon.com/cli/latest/reference/greengrass/create-function-definition.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/create-function-definition.html

AWS IoT Greengrass Developer Guide, Version 1

• In the functions array, include all other functions that you want to make available on the
Greengrass core. You can use the get-function-definition-version command to get
the list of existing functions.

Enable stream manager with default settings

The following example enables stream manager, by including the GGStreamManager
function in the functions array. This example uses default values for stream manager
parameters.

aws greengrass create-function-definition-version \
--function-definition-id function-definition-id \
--functions '[
 {
 "FunctionArn": "arn:aws:lambda:::function:GGStreamManager:1",
 "FunctionConfiguration": {
 "MemorySize": 4194304,
 "Pinned": true,
 "Timeout": 3
 },
 "Id": "streamManager"
 },
 {
 "FunctionArn": "arn:aws:lambda:us-
west-2:123456789012:function:MyLambdaFunction:MyAlias",
 "FunctionConfiguration": {
 "Executable": "myLambdaFunction.function_handler",
 "MemorySize": 16000,
 "Pinned": true,
 "Timeout": 5
 },
 "Id": "myLambdaFunction"
 },
 ... more user-defined functions
]
}'

Configure settings (CLI) 483

AWS IoT Greengrass Developer Guide, Version 1

Note

The myLambdaFunction function in the examples represents one of your user-
defined Lambda functions.

Enable stream manager with custom settings

The following example enables stream manager by including the GGStreamManager
function in the functions array. All stream manager settings are optional, unless you
want to change the default values. This example shows how to use environment variables
to set custom values.

aws greengrass create-function-definition-version \
--function-definition-id function-definition-id \
--functions '[
 {
 "FunctionArn": "arn:aws:lambda:::function:GGStreamManager:1",
 "FunctionConfiguration": {
 "Environment": {
 "Variables": {
 "STREAM_MANAGER_STORE_ROOT_DIR": "/data",
 "STREAM_MANAGER_SERVER_PORT": "1234",
 "STREAM_MANAGER_EXPORTER_THREAD_POOL_SIZE": "4"
 }
 },
 "MemorySize": 4194304,
 "Pinned": true,
 "Timeout": 3
 },
 "Id": "streamManager"
 },
 {
 "FunctionArn": "arn:aws:lambda:us-
west-2:123456789012:function:MyLambdaFunction:MyAlias",
 "FunctionConfiguration": {
 "Executable": "myLambdaFunction.function_handler",
 "MemorySize": 16000,
 "Pinned": true,
 "Timeout": 5
 },

Configure settings (CLI) 484

AWS IoT Greengrass Developer Guide, Version 1

 "Id": "myLambdaFunction"
 },
 ... more user-defined functions
]
}'

Note

For the FunctionConfiguration properties, you might know the following:

• MemorySize is set to 4194304 KB (4 GB) with default settings. You can always
change this value. We recommend that you set MemorySize to at least 128000
KB.

• Pinned must be set to true.

• Timeout is required by the function definition version, but GGStreamManager
doesn't use it.

Disable stream manager

The following example omits the GGStreamManager function, which disables stream
manager.

aws greengrass create-function-definition-version \
--function-definition-id function-definition-id \
--functions '[
 {
 "FunctionArn": "arn:aws:lambda:us-
west-2:123456789012:function:MyLambdaFunction:MyAlias",
 "FunctionConfiguration": {
 "Executable": "myLambdaFunction.function_handler",
 "MemorySize": 16000,
 "Pinned": true,
 "Timeout": 5
 },
 "Id": "myLambdaFunction"
 },
 ... more user-defined functions
]
}'

Configure settings (CLI) 485

AWS IoT Greengrass Developer Guide, Version 1

Note

If you don't want to deploy any Lambda functions, you can omit the function
definition version entirely.

7. Copy the Arn of the function definition version from the output.

8. Create a group version that contains the system Lambda function.

• Replace group-id with the Id for the group.

• Replace core-definition-version-arn with the CoreDefinitionVersionArn that
you copied from the latest group version.

• Replace function-definition-version-arn with the Arn that you copied for the new
function definition version.

• Replace the ARNs for other group components (for example,
SubscriptionDefinitionVersionArn or DeviceDefinitionVersionArn) that you
copied from the latest group version.

• Remove any unused parameters. For example, remove the --resource-definition-
version-arn if your group version doesn't contain any resources.

aws greengrass create-group-version \
--group-id group-id \
--core-definition-version-arn core-definition-version-arn \
--function-definition-version-arn function-definition-version-arn \
--device-definition-version-arn device-definition-version-arn \
--logger-definition-version-arn logger-definition-version-arn \
--resource-definition-version-arn resource-definition-version-arn \
--subscription-definition-version-arn subscription-definition-version-arn

9. Copy the Version from the output. This is the ID of the new group version.

10. Deploy the group with the new group version.

• Replace group-id with the Id that you copied for the group.

• Replace group-version-id with the Version that you copied for the new group version.

aws greengrass create-deployment \
--group-id group-id \

Configure settings (CLI) 486

AWS IoT Greengrass Developer Guide, Version 1

--group-version-id group-version-id \
--deployment-type NewDeployment

Follow this procedure if you want to edit stream manager settings again later. Make sure to create
a function definition version that includes the GGStreamManager function with the updated
configuration. The group version must reference all component version ARNs that you want to
deploy to the core. Changes take effect after the group is deployed.

See also

• Manage data streams

• the section called “Use StreamManagerClient to work with streams”

• the section called “Export configurations for supported AWS Cloud destinations”

• the section called “Export data streams (console)”

• the section called “Export data streams (CLI)”

Use StreamManagerClient to work with streams

User-defined Lambda functions running on the AWS IoT Greengrass core can use the
StreamManagerClient object in the AWS IoT Greengrass Core SDK to create streams in stream
manager and then interact with the streams. When a Lambda function creates a stream, it defines
the AWS Cloud destinations, prioritization, and other export and data retention policies for the
stream. To send data to stream manager, Lambda functions append the data to the stream. If an
export destination is defined for the stream, stream manager exports the stream automatically.

Note

Typically, clients of stream manager are user-defined Lambda functions. If your business
case requires it, you can also allow non-Lambda processes running on the Greengrass core
(for example, a Docker container) to interact with stream manager. For more information,
see the section called “Client authentication”.

See also 487

AWS IoT Greengrass Developer Guide, Version 1

The snippets in this topic show you how clients call StreamManagerClient methods to work
with streams. For implementation details about the methods and their arguments, use the links to
the SDK reference listed after each snippet. For tutorials that include a complete Python Lambda
function, see the section called “Export data streams (console)” or the section called “Export data
streams (CLI)”.

Your Lambda function should instantiate StreamManagerClient outside of the function handler.
If instantiated in the handler, the function creates a client and connection to stream manager
every time that it's invoked.

Note

If you do instantiate StreamManagerClient in the handler, you must explicitly call the
close() method when the client completes its work. Otherwise, the client keeps the
connection open and another thread running until the script exits.

StreamManagerClient supports the following operations:

• the section called “Create message stream”

• the section called “Append message”

• the section called “Read messages”

• the section called “List streams”

• the section called “Describe message stream”

• the section called “Update message stream”

• the section called “Delete message stream”

Create message stream

To create a stream, a user-defined Lambda function calls the create method and passes in a
MessageStreamDefinition object. This object specifies the unique name for the stream and
defines how stream manager should handle new data when the maximum stream size is reached.
You can use MessageStreamDefinition and its data types (such as ExportDefinition,
StrategyOnFull, and Persistence) to define other stream properties. These include:

Create message stream 488

AWS IoT Greengrass Developer Guide, Version 1

• The target AWS IoT Analytics, Kinesis Data Streams, AWS IoT SiteWise, and Amazon S3
destinations for automatic exports. For more information, see the section called “Export
configurations for supported AWS Cloud destinations”.

• Export priority. Stream manager exports higher priority streams before lower priority streams.

• Maximum batch size and batch interval for AWS IoT Analytics, Kinesis Data Streams, and AWS IoT
SiteWise destinations. Stream manager exports messages when either condition is met.

• Time-to-live (TTL). The amount of time to guarantee that the stream data is available for
processing. You should make sure that the data can be consumed within this time period. This is
not a deletion policy. The data might not be deleted immediately after TTL period.

• Stream persistence. Choose to save streams to the file system to persist data across core restarts
or save streams in memory.

• Starting sequence number. Specify the sequence number of the message to use as the starting
message in the export.

For more information about MessageStreamDefinition, see the SDK reference for your target
language:

• MessageStreamDefinition in the Java SDK

• MessageStreamDefinition in the Node.js SDK

• MessageStreamDefinition in the Python SDK

Note

StreamManagerClient also provides a target destination you can use to export streams
to an HTTP server. This target is intended for testing purposes only. It is not stable or
supported for use in production environments.

After a stream is created, your Lambda functions can append messages to the stream to send data
for export and read messages from the stream for local processing. The number of streams that
you create depends on your hardware capabilities and business case. One strategy is to create a
stream for each target channel in AWS IoT Analytics or Kinesis data stream, though you can define
multiple targets for a stream. A stream has a durable lifespan.

Create message stream 489

https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/model/MessageStreamDefinition.html
https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.MessageStreamDefinition.html
https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.data.html#greengrasssdk.stream_manager.data.MessageStreamDefinition

AWS IoT Greengrass Developer Guide, Version 1

Requirements

This operation has the following requirements:

• Minimum AWS IoT Greengrass Core version: 1.10.0

• Minimum AWS IoT Greengrass Core SDK version: Python: 1.5.0 | Java: 1.4.0 | Node.js: 1.6.0

Note

Creating streams with an AWS IoT SiteWise or Amazon S3 export destination has the
following requirements:

• Minimum AWS IoT Greengrass Core version: 1.11.0

• Minimum AWS IoT Greengrass Core SDK version: Python: 1.6.0 | Java: 1.5.0 | Node.js:
1.7.0

Examples

The following snippet creates a stream named StreamName. It defines stream properties in the
MessageStreamDefinition and subordinate data types.

Python

client = StreamManagerClient()

try:
 client.create_message_stream(MessageStreamDefinition(
 name="StreamName", # Required.
 max_size=268435456, # Default is 256 MB.
 stream_segment_size=16777216, # Default is 16 MB.
 time_to_live_millis=None, # By default, no TTL is enabled.
 strategy_on_full=StrategyOnFull.OverwriteOldestData, # Required.
 persistence=Persistence.File, # Default is File.
 flush_on_write=False, # Default is false.
 export_definition=ExportDefinition(# Optional. Choose where/how the stream
 is exported to the AWS Cloud.
 kinesis=None,
 iot_analytics=None,
 iot_sitewise=None,

Create message stream 490

AWS IoT Greengrass Developer Guide, Version 1

 s3_task_executor=None
)
))
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: create_message_stream | MessageStreamDefinition

Java

try (final StreamManagerClient client =
 GreengrassClientBuilder.streamManagerClient().build()) {
 client.createMessageStream(
 new MessageStreamDefinition()
 .withName("StreamName") // Required.
 .withMaxSize(268435456L) // Default is 256 MB.
 .withStreamSegmentSize(16777216L) // Default is 16 MB.
 .withTimeToLiveMillis(null) // By default, no TTL is enabled.
 .withStrategyOnFull(StrategyOnFull.OverwriteOldestData) //
 Required.
 .withPersistence(Persistence.File) // Default is File.
 .withFlushOnWrite(false) // Default is false.
 .withExportDefinition(// Optional. Choose where/how the stream
 is exported to the AWS Cloud.
 new ExportDefinition()
 .withKinesis(null)
 .withIotAnalytics(null)
 .withIotSitewise(null)
 .withS3TaskExecutor(null)
)

);
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: createMessageStream | MessageStreamDefinition

Create message stream 491

https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.streammanagerclient.html#greengrasssdk.stream_manager.streammanagerclient.StreamManagerClient.create_message_stream
https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.data.html#greengrasssdk.stream_manager.data.MessageStreamDefinition
https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#createMessageStream-com.amazonaws.greengrass.streammanager.model.MessageStreamDefinition-
https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/model/MessageStreamDefinition.html

AWS IoT Greengrass Developer Guide, Version 1

Node.js

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 await client.createMessageStream(
 new MessageStreamDefinition()
 .withName("StreamName") // Required.
 .withMaxSize(268435456) // Default is 256 MB.
 .withStreamSegmentSize(16777216) // Default is 16 MB.
 .withTimeToLiveMillis(null) // By default, no TTL is enabled.
 .withStrategyOnFull(StrategyOnFull.OverwriteOldestData) //
 Required.
 .withPersistence(Persistence.File) // Default is File.
 .withFlushOnWrite(false) // Default is false.
 .withExportDefinition(// Optional. Choose where/how the stream is
 exported to the AWS Cloud.
 new ExportDefinition()
 .withKinesis(null)
 .withIotAnalytics(null)
 .withIotSitewise(null)
 .withS3TaskExecutor(null)
)
);
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: createMessageStream | MessageStreamDefinition

For more information about configuring export destinations, see the section called “Export
configurations for supported AWS Cloud destinations”.

Create message stream 492

https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#createMessageStream
https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.MessageStreamDefinition.html

AWS IoT Greengrass Developer Guide, Version 1

Append message

To send data to stream manager for export, your Lambda functions append the data to the target
stream. The export destination determines the data type to pass to this method.

Requirements

This operation has the following requirements:

• Minimum AWS IoT Greengrass Core version: 1.10.0

• Minimum AWS IoT Greengrass Core SDK version: Python: 1.5.0 | Java: 1.4.0 | Node.js: 1.6.0

Note

Appending messages with an AWS IoT SiteWise or Amazon S3 export destination has the
following requirements:

• Minimum AWS IoT Greengrass Core version: 1.11.0

• Minimum AWS IoT Greengrass Core SDK version: Python: 1.6.0 | Java: 1.5.0 | Node.js:
1.7.0

Examples

AWS IoT Analytics or Kinesis Data Streams export destinations

The following snippet appends a message to the stream named StreamName. For AWS IoT
Analytics or Kinesis Data Streams destinations, your Lambda functions append a blob of data.

This snippet has the following requirements:

• Minimum AWS IoT Greengrass Core version: 1.10.0

• Minimum AWS IoT Greengrass Core SDK version: Python: 1.5.0 | Java: 1.4.0 | Node.js: 1.6.0

Python

client = StreamManagerClient()

Append message 493

AWS IoT Greengrass Developer Guide, Version 1

try:
 sequence_number = client.append_message(stream_name="StreamName",
 data=b'Arbitrary bytes data')
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: append_message

Java

try (final StreamManagerClient client =
 GreengrassClientBuilder.streamManagerClient().build()) {
 long sequenceNumber = client.appendMessage("StreamName", "Arbitrary byte
 array".getBytes());
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: appendMessage

Node.js

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 const sequenceNumber = await client.appendMessage("StreamName",
 Buffer.from("Arbitrary byte array"));
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: appendMessage

Append message 494

https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.streammanagerclient.html#greengrasssdk.stream_manager.streammanagerclient.StreamManagerClient.append_message
https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#appendMessage-java.lang.String-byte:A-
https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#appendMessage

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT SiteWise export destinations

The following snippet appends a message to the stream named StreamName.
For AWS IoT SiteWise destinations, your Lambda functions append a serialized
PutAssetPropertyValueEntry object. For more information, see the section called “Exporting
to AWS IoT SiteWise”.

Note

When you send data to AWS IoT SiteWise, your data must meet the requirements
of the BatchPutAssetPropertyValue action. For more information, see
BatchPutAssetPropertyValue in the AWS IoT SiteWise API Reference.

This snippet has the following requirements:

• Minimum AWS IoT Greengrass Core version: 1.11.0

• Minimum AWS IoT Greengrass Core SDK version: Python: 1.6.0 | Java: 1.5.0 | Node.js: 1.7.0

Python

client = StreamManagerClient()

try:
 # SiteWise requires unique timestamps in all messages. Add some randomness to
 time and offset.

 # Note: To create a new asset property data, you should use the classes defined
 in the
 # greengrasssdk.stream_manager module.

 time_in_nanos = TimeInNanos(
 time_in_seconds=calendar.timegm(time.gmtime()) - random.randint(0, 60),
 offset_in_nanos=random.randint(0, 10000)
)
 variant = Variant(double_value=random.random())
 asset = [AssetPropertyValue(value=variant, quality=Quality.GOOD,
 timestamp=time_in_nanos)]
 putAssetPropertyValueEntry =
 PutAssetPropertyValueEntry(entry_id=str(uuid.uuid4()),
 property_alias="PropertyAlias", property_values=asset)

Append message 495

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html

AWS IoT Greengrass Developer Guide, Version 1

 sequence_number = client.append_message(stream_name="StreamName",
 data=Util.validate_and_serialize_to_json_bytes(putAssetPropertyValueEntry))
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: append_message | PutAssetPropertyValueEntry

Java

try (final StreamManagerClient client =
 GreengrassClientBuilder.streamManagerClient().build()) {
 Random rand = new Random();
 // Note: To create a new asset property data, you should use the classes defined
 in the
 // com.amazonaws.greengrass.streammanager.model.sitewise package.
 List<AssetPropertyValue> entries = new ArrayList<>() ;

 // IoTSiteWise requires unique timestamps in all messages. Add some randomness
 to time and offset.
 final int maxTimeRandomness = 60;
 final int maxOffsetRandomness = 10000;
 double randomValue = rand.nextDouble();
 TimeInNanos timestamp = new TimeInNanos()
 .withTimeInSeconds(Instant.now().getEpochSecond() -
 rand.nextInt(maxTimeRandomness))
 .withOffsetInNanos((long) (rand.nextInt(maxOffsetRandomness)));
 AssetPropertyValue entry = new AssetPropertyValue()
 .withValue(new Variant().withDoubleValue(randomValue))
 .withQuality(Quality.GOOD)
 .withTimestamp(timestamp);
 entries.add(entry);

 PutAssetPropertyValueEntry putAssetPropertyValueEntry = new
 PutAssetPropertyValueEntry()
 .withEntryId(UUID.randomUUID().toString())
 .withPropertyAlias("PropertyAlias")
 .withPropertyValues(entries);
 long sequenceNumber = client.appendMessage("StreamName",
 ValidateAndSerialize.validateAndSerializeToJsonBytes(putAssetPropertyValueEntry));
} catch (StreamManagerException e) {

Append message 496

https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.streammanagerclient.html#greengrasssdk.stream_manager.streammanagerclient.StreamManagerClient.append_message
https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.data.html#greengrasssdk.stream_manager.data.PutAssetPropertyValueEntry

AWS IoT Greengrass Developer Guide, Version 1

 // Properly handle exception.
}

Java SDK reference: appendMessage | PutAssetPropertyValueEntry

Node.js

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 const maxTimeRandomness = 60;
 const maxOffsetRandomness = 10000;
 const randomValue = Math.random();
 // Note: To create a new asset property data, you should use the classes
 defined in the
 // aws-greengrass-core-sdk StreamManager module.
 const timestamp = new TimeInNanos()
 .withTimeInSeconds(Math.round(Date.now() / 1000) -
 Math.floor(Math.random() - maxTimeRandomness))
 .withOffsetInNanos(Math.floor(Math.random() * maxOffsetRandomness));
 const entry = new AssetPropertyValue()
 .withValue(new Variant().withDoubleValue(randomValue))
 .withQuality(Quality.GOOD)
 .withTimestamp(timestamp);

 const putAssetPropertyValueEntry = new PutAssetPropertyValueEntry()
 .withEntryId(`${ENTRY_ID_PREFIX}${i}`)
 .withPropertyAlias("PropertyAlias")
 .withPropertyValues([entry]);
 const sequenceNumber = await client.appendMessage("StreamName",
 util.validateAndSerializeToJsonBytes(putAssetPropertyValueEntry));
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: appendMessage | PutAssetPropertyValueEntry

Append message 497

https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#appendMessage-java.lang.String-byte:A-
https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/model/sitewise/PutAssetPropertyValueEntry.html
https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#appendMessage
https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.PutAssetPropertyValueEntry.html

AWS IoT Greengrass Developer Guide, Version 1

Amazon S3 export destinations

The following snippet appends an export task to the stream named StreamName. For Amazon
S3 destinations, your Lambda functions append a serialized S3ExportTaskDefinition object
that contains information about the source input file and target Amazon S3 object. If the specified
object doesn't exist, Stream Manager creates it for you. For more information, see the section
called “Exporting to Amazon S3”.

This snippet has the following requirements:

• Minimum AWS IoT Greengrass Core version: 1.11.0

• Minimum AWS IoT Greengrass Core SDK version: Python: 1.6.0 | Java: 1.5.0 | Node.js: 1.7.0

Python

client = StreamManagerClient()

try:
 # Append an Amazon S3 Task definition and print the sequence number.
 s3_export_task_definition = S3ExportTaskDefinition(input_url="URLToFile",
 bucket="BucketName", key="KeyName")
 sequence_number = client.append_message(stream_name="StreamName",
 data=Util.validate_and_serialize_to_json_bytes(s3_export_task_definition))
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: append_message | S3ExportTaskDefinition

Java

try (final StreamManagerClient client =
 GreengrassClientBuilder.streamManagerClient().build()) {
 // Append an Amazon S3 export task definition and print the sequence number.
 S3ExportTaskDefinition s3ExportTaskDefinition = new S3ExportTaskDefinition()
 .withBucket("BucketName")
 .withKey("KeyName")
 .withInputUrl("URLToFile");

Append message 498

https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.streammanagerclient.html#greengrasssdk.stream_manager.streammanagerclient.StreamManagerClient.append_message
https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.data.html#greengrasssdk.stream_manager.data.S3ExportTaskDefinition

AWS IoT Greengrass Developer Guide, Version 1

 long sequenceNumber = client.appendMessage("StreamName",
 ValidateAndSerialize.validateAndSerializeToJsonBytes(s3ExportTaskDefinition));
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: appendMessage | S3ExportTaskDefinition

Node.js

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 // Append an Amazon S3 export task definition and print the sequence number.
 const taskDefinition = new S3ExportTaskDefinition()
 .withBucket("BucketName")
 .withKey("KeyName")
 .withInputUrl("URLToFile");
 const sequenceNumber = await client.appendMessage("StreamName",
 util.validateAndSerializeToJsonBytes(taskDefinition)));
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: appendMessage | S3ExportTaskDefinition

Read messages

Read messages from a stream.

Requirements

This operation has the following requirements:

• Minimum AWS IoT Greengrass Core version: 1.10.0

Read messages 499

https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#appendMessage-java.lang.String-byte:A-
https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/model/S3ExportTaskDefinition.html
https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#appendMessage
https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.S3ExportTaskDefinition.html

AWS IoT Greengrass Developer Guide, Version 1

• Minimum AWS IoT Greengrass Core SDK version: Python: 1.5.0 | Java: 1.4.0 | Node.js: 1.6.0

Examples

The following snippet reads messages from the stream named StreamName. The read method
takes an optional ReadMessagesOptions object that specifies the sequence number to start
reading from, the minimum and maximum numbers to read, and a timeout for reading messages.

Python

client = StreamManagerClient()

try:
 message_list = client.read_messages(
 stream_name="StreamName",
 # By default, if no options are specified, it tries to read one message from
 the beginning of the stream.
 options=ReadMessagesOptions(
 desired_start_sequence_number=100,
 # Try to read from sequence number 100 or greater. By default, this is
 0.
 min_message_count=10,
 # Try to read 10 messages. If 10 messages are not available, then
 NotEnoughMessagesException is raised. By default, this is 1.
 max_message_count=100, # Accept up to 100 messages. By default this is
 1.
 read_timeout_millis=5000
 # Try to wait at most 5 seconds for the min_messsage_count to be
 fulfilled. By default, this is 0, which immediately returns the messages or an
 exception.
)
)
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: read_messages | ReadMessagesOptions

Read messages 500

https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.streammanagerclient.html#greengrasssdk.stream_manager.streammanagerclient.StreamManagerClient.read_messages
https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.data.html#greengrasssdk.stream_manager.data.ReadMessagesOptions

AWS IoT Greengrass Developer Guide, Version 1

Java

try (final StreamManagerClient client =
 GreengrassClientBuilder.streamManagerClient().build()) {
 List<Message> messages = client.readMessages("StreamName",
 // By default, if no options are specified, it tries to read one message
 from the beginning of the stream.
 new ReadMessagesOptions()
 // Try to read from sequence number 100 or greater. By default
 this is 0.
 .withDesiredStartSequenceNumber(100L)
 // Try to read 10 messages. If 10 messages are not available,
 then NotEnoughMessagesException is raised. By default, this is 1.
 .withMinMessageCount(10L)
 // Accept up to 100 messages. By default this is 1.
 .withMaxMessageCount(100L)
 // Try to wait at most 5 seconds for the min_messsage_count to
 be fulfilled. By default, this is 0, which immediately returns the messages or an
 exception.
 .withReadTimeoutMillis(Duration.ofSeconds(5L).toMillis())
);
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: readMessages | ReadMessagesOptions

Node.js

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 const messages = await client.readMessages("StreamName",
 // By default, if no options are specified, it tries to read one message
 from the beginning of the stream.
 new ReadMessagesOptions()
 // Try to read from sequence number 100 or greater. By default this
 is 0.
 .withDesiredStartSequenceNumber(100)
 // Try to read 10 messages. If 10 messages are not available, then
 NotEnoughMessagesException is thrown. By default, this is 1.
 .withMinMessageCount(10)
 // Accept up to 100 messages. By default this is 1.
 .withMaxMessageCount(100)

Read messages 501

https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#readMessages-java.lang.String-com.amazonaws.greengrass.streammanager.model.ReadMessagesOptions-
https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/model/ReadMessagesOptions.html

AWS IoT Greengrass Developer Guide, Version 1

 // Try to wait at most 5 seconds for the minMessageCount to be
 fulfilled. By default, this is 0, which immediately returns the messages or an
 exception.
 .withReadTimeoutMillis(5 * 1000)
);
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: readMessages | ReadMessagesOptions

List streams

Get the list of streams in stream manager.

Requirements

This operation has the following requirements:

• Minimum AWS IoT Greengrass Core version: 1.10.0

• Minimum AWS IoT Greengrass Core SDK version: Python: 1.5.0 | Java: 1.4.0 | Node.js: 1.6.0

Examples

The following snippet gets a list of the streams (by name) in stream manager.

Python

client = StreamManagerClient()

try:
 stream_names = client.list_streams()
except StreamManagerException:

List streams 502

https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#readMessages
https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.ReadMessagesOptions.html

AWS IoT Greengrass Developer Guide, Version 1

 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: list_streams

Java

try (final StreamManagerClient client =
 GreengrassClientBuilder.streamManagerClient().build()) {
 List<String> streamNames = client.listStreams();
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: listStreams

Node.js

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 const streams = await client.listStreams();
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: listStreams

Describe message stream

Get metadata about a stream, including the stream definition, size, and export status.

Describe message stream 503

https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.streammanagerclient.html#greengrasssdk.stream_manager.streammanagerclient.StreamManagerClient.list_streams
https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#listStreams--
https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#listStreams

AWS IoT Greengrass Developer Guide, Version 1

Requirements

This operation has the following requirements:

• Minimum AWS IoT Greengrass Core version: 1.10.0

• Minimum AWS IoT Greengrass Core SDK version: Python: 1.5.0 | Java: 1.4.0 | Node.js: 1.6.0

Examples

The following snippet gets metadata about the stream named StreamName, including the stream's
definition, size, and exporter statuses.

Python

client = StreamManagerClient()

try:
 stream_description = client.describe_message_stream(stream_name="StreamName")
 if stream_description.export_statuses[0].error_message:
 # The last export of export destination 0 failed with some error
 # Here is the last sequence number that was successfully exported
 stream_description.export_statuses[0].last_exported_sequence_number

 if (stream_description.storage_status.newest_sequence_number >
 stream_description.export_statuses[0].last_exported_sequence_number):
 pass
 # The end of the stream is ahead of the last exported sequence number
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: describe_message_stream

Java

try (final StreamManagerClient client =
 GreengrassClientBuilder.streamManagerClient().build()) {
 MessageStreamInfo description = client.describeMessageStream("StreamName");

Describe message stream 504

https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.streammanagerclient.html#greengrasssdk.stream_manager.streammanagerclient.StreamManagerClient.describe_message_stream

AWS IoT Greengrass Developer Guide, Version 1

 String lastErrorMessage =
 description.getExportStatuses().get(0).getErrorMessage();
 if (lastErrorMessage != null && !lastErrorMessage.equals("")) {
 // The last export of export destination 0 failed with some error.
 // Here is the last sequence number that was successfully exported.
 description.getExportStatuses().get(0).getLastExportedSequenceNumber();
 }

 if (description.getStorageStatus().getNewestSequenceNumber() >
 description.getExportStatuses().get(0).getLastExportedSequenceNumber())
 {
 // The end of the stream is ahead of the last exported sequence number.
 }
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: describeMessageStream

Node.js

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 const description = await client.describeMessageStream("StreamName");
 const lastErrorMessage = description.exportStatuses[0].errorMessage;
 if (lastErrorMessage) {
 // The last export of export destination 0 failed with some error.
 // Here is the last sequence number that was successfully exported.
 description.exportStatuses[0].lastExportedSequenceNumber;
 }

 if (description.storageStatus.newestSequenceNumber >
 description.exportStatuses[0].lastExportedSequenceNumber) {
 // The end of the stream is ahead of the last exported sequence number.
 }
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.

Describe message stream 505

https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#describeMessageStream-java.lang.String-

AWS IoT Greengrass Developer Guide, Version 1

});

Node.js SDK reference: describeMessageStream

Update message stream

Update properties of an existing stream. You might want to update a stream if your requirements
change after the stream was created. For example:

• Add a new export configuration for an AWS Cloud destination.

• Increase the maximum size of a stream to change how data is exported or retained. For example,
the stream size in combination with your strategy on full settings might result in data being
deleted or rejected before stream manager can process it.

• Pause and resume exports; for example, if export tasks are long running and you want to ration
your upload data.

Your Lambda functions follow this high-level process to update a stream:

1. Get the description of the stream.

2. Update the target properties on the corresponding MessageStreamDefinition and
subordinate objects.

3. Pass in the updated MessageStreamDefinition. Make sure to include the complete object
definitions for the updated stream. Undefined properties revert to the default values.

You can specify the sequence number of the message to use as the starting message in the
export.

Requirements

This operation has the following requirements:

• Minimum AWS IoT Greengrass Core version: 1.11.0

• Minimum AWS IoT Greengrass Core SDK version: Python: 1.6.0 | Java: 1.5.0 | Node.js: 1.7.0

Update message stream 506

https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#describeMessageStream

AWS IoT Greengrass Developer Guide, Version 1

Examples

The following snippet updates the stream named StreamName. It updates multiple properties of a
stream that exports to Kinesis Data Streams.

Python

client = StreamManagerClient()

try:
 message_stream_info = client.describe_message_stream(STREAM_NAME)
 message_stream_info.definition.max_size=536870912
 message_stream_info.definition.stream_segment_size=33554432
 message_stream_info.definition.time_to_live_millis=3600000
 message_stream_info.definition.strategy_on_full=StrategyOnFull.RejectNewData
 message_stream_info.definition.persistence=Persistence.Memory
 message_stream_info.definition.flush_on_write=False
 message_stream_info.definition.export_definition.kinesis=
 [KinesisConfig(
 # Updating Export definition to add a Kinesis Stream configuration.
 identifier=str(uuid.uuid4()), kinesis_stream_name=str(uuid.uuid4()))]
 client.update_message_stream(message_stream_info.definition)
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: updateMessageStream | MessageStreamDefinition

Java

try (final StreamManagerClient client =
 GreengrassClientBuilder.streamManagerClient().build()) {
 MessageStreamInfo messageStreamInfo = client.describeMessageStream(STREAM_NAME);
 // Update the message stream with new values.
 client.updateMessageStream(
 messageStreamInfo.getDefinition()
 .withStrategyOnFull(StrategyOnFull.RejectNewData) // Required. Updating
 Strategy on full to reject new data.
 // Max Size update should be greater than initial Max Size defined in
 Create Message Stream request

Update message stream 507

https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.streammanagerclient.html#greengrasssdk.stream_manager.streammanagerclient.StreamManagerClient.update_message_stream
https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.data.html#greengrasssdk.stream_manager.data.MessageStreamDefinition

AWS IoT Greengrass Developer Guide, Version 1

 .withMaxSize(536870912L) // Update Max Size to 512 MB.
 .withStreamSegmentSize(33554432L) // Update Segment Size to 32 MB.
 .withFlushOnWrite(true) // Update flush on write to true.
 .withPersistence(Persistence.Memory) // Update the persistence to
 Memory.
 .withTimeToLiveMillis(3600000L) // Update TTL to 1 hour.
 .withExportDefinition(
 // Optional. Choose where/how the stream is exported to the AWS
 Cloud.
 messageStreamInfo.getDefinition().getExportDefinition().
 // Updating Export definition to add a Kinesis Stream
 configuration.
 .withKinesis(new ArrayList<KinesisConfig>() {{
 add(new KinesisConfig()
 .withIdentifier(EXPORT_IDENTIFIER)
 .withKinesisStreamName("test"));
 }})
);
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: update_message_stream | MessageStreamDefinition

Node.js

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 const messageStreamInfo = await c.describeMessageStream(STREAM_NAME);
 await client.updateMessageStream(
 messageStreamInfo.definition
 // Max Size update should be greater than initial Max Size defined
 in Create Message Stream request
 .withMaxSize(536870912) // Default is 256 MB. Updating Max Size to
 512 MB.
 .withStreamSegmentSize(33554432) // Default is 16 MB. Updating
 Segment Size to 32 MB.
 .withTimeToLiveMillis(3600000) // By default, no TTL is enabled.
 Update TTL to 1 hour.
 .withStrategyOnFull(StrategyOnFull.RejectNewData) // Required.
 Updating Strategy on full to reject new data.
 .withPersistence(Persistence.Memory) // Default is File. Update the
 persistence to Memory

Update message stream 508

https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#updateMessageStream-java.lang.String-
https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/model/MessageStreamDefinition.html

AWS IoT Greengrass Developer Guide, Version 1

 .withFlushOnWrite(true) // Default is false. Updating to true.
 .withExportDefinition(
 // Optional. Choose where/how the stream is exported to the AWS
 Cloud.
 messageStreamInfo.definition.exportDefinition
 // Updating Export definition to add a Kinesis Stream
 configuration.
 .withKinesis([new
 KinesisConfig().withIdentifier(uuidv4()).withKinesisStreamName(uuidv4())])
)
);
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: updateMessageStream | MessageStreamDefinition

Constraints for updating streams

The following constraints apply when updating streams. Unless noted in the following list, updates
take effect immediately.

• You can't update a stream's persistence. To change this behavior, delete the stream and create a
stream that defines the new persistence policy.

• You can update the maximum size of a stream only under the following conditions:

• The maximum size must be greater or equal to the current size of the stream. To find
this information, describe the stream and then check the storage status of the returned
MessageStreamInfo object.

• The maximum size must be greater than or equal to the stream's segment size.

• You can update the stream segment size to a value less than the maximum size of the stream.
The updated setting applies to new segments.

• Updates to the time to live (TTL) property apply to new append operations. If you decrease this
value, stream manager might also delete existing segments that exceed the TTL.

Update message stream 509

https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#updateMessageStream
https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.MessageStreamDefinition.html

AWS IoT Greengrass Developer Guide, Version 1

• Updates to the strategy on full property apply to new append operations. If you set the strategy
to overwrite the oldest data, stream manager might also overwrite existing segments based on
the new setting.

• Updates to the flush on write property apply to new messages.

• Updates to export configurations apply to new exports. The update request must include all
export configurations that you want to support. Otherwise, stream manager deletes them.

• When you update an export configuration, specify the identifier of the target export
configuration.

• To add an export configuration, specify a unique identifier for the new export configuration.

• To delete an export configuration, omit the export configuration.

• To update the starting sequence number of an export configuration in a stream, you must
specify a value that's less than the latest sequence number. To find this information, describe the
stream and then check the storage status of the returned MessageStreamInfo object.

Delete message stream

Deletes a stream. When you delete a stream, all of the stored data for the stream is deleted from
the disk.

Requirements

This operation has the following requirements:

• Minimum AWS IoT Greengrass Core version: 1.10.0

• Minimum AWS IoT Greengrass Core SDK version: Python: 1.5.0 | Java: 1.4.0 | Node.js: 1.6.0

Examples

The following snippet deletes the stream named StreamName.

Python

client = StreamManagerClient()

try:

Delete message stream 510

AWS IoT Greengrass Developer Guide, Version 1

 client.delete_message_stream(stream_name="StreamName")
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: deleteMessageStream

Java

try (final StreamManagerClient client =
 GreengrassClientBuilder.streamManagerClient().build()) {
 client.deleteMessageStream("StreamName");
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: delete_message_stream

Node.js

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 await client.deleteMessageStream("StreamName");
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: deleteMessageStream

See also

• Manage data streams

• the section called “Configure stream manager”

See also 511

https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.streammanagerclient.html#greengrasssdk.stream_manager.streammanagerclient.StreamManagerClient.delete_message_stream
https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#deleteMessageStream-java.lang.String-
https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#deleteMessageStream

AWS IoT Greengrass Developer Guide, Version 1

• the section called “Export configurations for supported AWS Cloud destinations”

• the section called “Export data streams (console)”

• the section called “Export data streams (CLI)”

• StreamManagerClient in the AWS IoT Greengrass Core SDK reference:

• Python

• Java

• Node.js

Export configurations for supported AWS Cloud destinations

User-defined Lambda functions use StreamManagerClient in the AWS IoT Greengrass Core SDK
to interact with stream manager. When a Lambda function creates a stream or updates a stream,
it passes a MessageStreamDefinition object that represents stream properties, including the
export definition. The ExportDefinition object contains the export configurations defined for
the stream. Stream manager uses these export configurations to determine where and how to
export the stream.

You can define zero or more export configurations on a stream, including multiple export
configurations for a single destination type. For example, you can export a stream to two AWS IoT
Analytics channels and one Kinesis data stream.

Export configurations for supported AWS Cloud destinations 512

https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.streammanagerclient.html
https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html
https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html

AWS IoT Greengrass Developer Guide, Version 1

For failed export attempts, stream manager continually retries exporting data to the AWS Cloud at
intervals of up to five minutes. The number of retry attempts doesn't have a maximum limit.

Note

StreamManagerClient also provides a target destination you can use to export streams
to an HTTP server. This target is intended for testing purposes only. It is not stable or
supported for use in production environments.

Supported AWS Cloud destinations

• AWS IoT Analytics channels

• Amazon Kinesis data streams

• AWS IoT SiteWise asset properties

• Amazon S3 objects

You are reponsible for maintaining these AWS Cloud resources.

AWS IoT Analytics channels

Stream manager supports automatic exports to AWS IoT Analytics. AWS IoT Analytics lets you
perform advanced analysis on your data to help make business decisions and improve machine
learning models. For more information, see What is AWS IoT Analytics? in the AWS IoT Analytics
User Guide.

In the AWS IoT Greengrass Core SDK, your Lambda functions use the IoTAnalyticsConfig
to define the export configuration for this destination type. For more information, see the SDK
reference for your target language:

• IoTAnalyticsConfig in the Python SDK

• IoTAnalyticsConfig in the Java SDK

• IoTAnalyticsConfig in the Node.js SDK

Requirements

This export destination has the following requirements:

Export configurations for supported AWS Cloud destinations 513

https://docs.aws.amazon.com/iotanalytics/latest/userguide/welcome.html
https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.data.html#greengrasssdk.stream_manager.data.IoTAnalyticsConfig
https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/model/export/IoTAnalyticsConfig.html
https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.IoTAnalyticsConfig.html

AWS IoT Greengrass Developer Guide, Version 1

• Target channels in AWS IoT Analytics must be in the same AWS account and AWS Region as the
Greengrass group.

• The the section called “Greengrass group role” must allow the
iotanalytics:BatchPutMessage permission to target channels. For example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iotanalytics:BatchPutMessage"
],
 "Resource": [
 "arn:aws:iotanalytics:region:account-id:channel/channel_1_name",
 "arn:aws:iotanalytics:region:account-id:channel/channel_2_name"
]
 }
]
}

You can grant granular or conditional access to resources, for example, by using a wildcard *
naming scheme. For more information, see Adding and removing IAM policies in the IAM User
Guide.

Exporting to AWS IoT Analytics

To create a stream that exports to AWS IoT Analytics, your Lambda functions create a stream with
an export definition that includes one or more IoTAnalyticsConfig objects. This object defines
export settings, such as the target channel, batch size, batch interval, and priority.

When your Lambda functions receive data from devices, they append messages that contain a blob
of data to the target stream.

Then, stream manager exports the data based on the batch settings and priority defined in the
stream's export configurations.

Export configurations for supported AWS Cloud destinations 514

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

AWS IoT Greengrass Developer Guide, Version 1

Amazon Kinesis data streams

Stream manager supports automatic exports to Amazon Kinesis Data Streams. Kinesis Data
Streams is commonly used to aggregate high-volume data and load it into a data warehouse
or map-reduce cluster. For more information, see What is Amazon Kinesis Data Streams? in the
Amazon Kinesis Developer Guide.

In the AWS IoT Greengrass Core SDK, your Lambda functions use the KinesisConfig to define
the export configuration for this destination type. For more information, see the SDK reference for
your target language:

• KinesisConfig in the Python SDK

• KinesisConfig in the Java SDK

• KinesisConfig in the Node.js SDK

Requirements

This export destination has the following requirements:

• Target streams in Kinesis Data Streams must be in the same AWS account and AWS Region as the
Greengrass group.

• The the section called “Greengrass group role” must allow the kinesis:PutRecords
permission to target data streams. For example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:PutRecords"
],
 "Resource": [
 "arn:aws:kinesis:region:account-id:stream/stream_1_name",
 "arn:aws:kinesis:region:account-id:stream/stream_2_name"
]
 }
]
}

Export configurations for supported AWS Cloud destinations 515

https://docs.aws.amazon.com/streams/latest/dev/what-is-this-service.html
https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.data.html#greengrasssdk.stream_manager.data.KinesisConfig
https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/model/export/KinesisConfig.html
https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.KinesisConfig.html

AWS IoT Greengrass Developer Guide, Version 1

You can grant granular or conditional access to resources, for example, by using a wildcard *
naming scheme. For more information, see Adding and removing IAM policies in the IAM User
Guide.

Exporting to Kinesis Data Streams

To create a stream that exports to Kinesis Data Streams, your Lambda functions create a stream
with an export definition that includes one or more KinesisConfig objects. This object defines
export settings, such as the target data stream, batch size, batch interval, and priority.

When your Lambda functions receive data from devices, they append messages that contain a blob
of data to the target stream. Then, stream manager exports the data based on the batch settings
and priority defined in the stream's export configurations.

Stream manager generates a unique, random UUID as a partition key for each record uploaded to
Amazon Kinesis.

AWS IoT SiteWise asset properties

Stream manager supports automatic exports to AWS IoT SiteWise. AWS IoT SiteWise lets you
collect, organize, and analyze data from industrial equipment at scale. For more information, see
What is AWS IoT SiteWise? in the AWS IoT SiteWise User Guide.

In the AWS IoT Greengrass Core SDK, your Lambda functions use the IoTSiteWiseConfig to
define the export configuration for this destination type. For more information, see the SDK
reference for your target language:

• IoTSiteWiseConfig in the Python SDK

• IoTSiteWiseConfig in the Java SDK

• IoTSiteWiseConfig in the Node.js SDK

Note

AWS also provides the the section called “IoT SiteWise”, which is a pre-built solution that
you can use with OPC-UA sources.

Export configurations for supported AWS Cloud destinations 516

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/what-is-sitewise.html
https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.data.html#greengrasssdk.stream_manager.data.IoTSiteWiseConfig
https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/model/export/IoTSiteWiseConfig.html
https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.IoTSiteWiseConfig.html

AWS IoT Greengrass Developer Guide, Version 1

Requirements

This export destination has the following requirements:

• Target asset properties in AWS IoT SiteWise must be in the same AWS account and AWS Region
as the Greengrass group.

Note

For the list of Regions that AWS IoT SiteWise supports, see AWS IoT SiteWise endpoints
and quotas in the AWS General Reference.

• The the section called “Greengrass group role” must allow the
iotsitewise:BatchPutAssetPropertyValue permission to target asset properties. The
following example policy uses the iotsitewise:assetHierarchyPath condition key to grant
access to a target root asset and its children. You can remove the Condition from the policy to
allow access to all of your AWS IoT SiteWise assets or specify ARNs of individual assets.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iotsitewise:assetHierarchyPath": [
 "/root node asset ID",
 "/root node asset ID/*"
]
 }
 }
 }
]
}

You can grant granular or conditional access to resources, for example, by using a wildcard *
naming scheme. For more information, see Adding and removing IAM policies in the IAM User
Guide.

Export configurations for supported AWS Cloud destinations 517

https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html#iot-sitewise_region
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html#iot-sitewise_region
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

AWS IoT Greengrass Developer Guide, Version 1

For important security information, see BatchPutAssetPropertyValue authorization in the AWS
IoT SiteWise User Guide.

Exporting to AWS IoT SiteWise

To create a stream that exports to AWS IoT SiteWise, your Lambda functions create a stream with
an export definition that includes one or more IoTSiteWiseConfig objects. This object defines
export settings, such as the batch size, batch interval, and priority.

When your Lambda functions receive asset property data from devices, they append
messages that contain the data to the target stream. Messages are JSON-serialized
PutAssetPropertyValueEntry objects that contain property values for one or more asset
properties. For more information, see Append message for AWS IoT SiteWise export destinations.

Note

When you send data to AWS IoT SiteWise, your data must meet the requirements
of the BatchPutAssetPropertyValue action. For more information, see
BatchPutAssetPropertyValue in the AWS IoT SiteWise API Reference.

Then, stream manager exports the data based on the batch settings and priority defined in the
stream's export configurations.

You can adjust your stream manager settings and Lambda function logic to design your export
strategy. For example:

• For near real time exports, set low batch size and interval settings and append the data to the
stream when it's received.

• To optimize batching, mitigate bandwidth constraints, or minimize cost, your Lambda functions
can pool the timestamp-quality-value (TQV) data points received for a single asset property
before appending the data to the stream. One strategy is to batch entries for up to 10 different
property-asset combinations, or property aliases, in one message instead of sending more than
one entry for the same property. This helps stream manager to remain within AWS IoT SiteWise
quotas.

Export configurations for supported AWS Cloud destinations 518

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/security_iam_service-with-iam.html#security_iam_service-with-iam-id-based-policies-batchputassetpropertyvalue-action
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/quotas.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/quotas.html

AWS IoT Greengrass Developer Guide, Version 1

Amazon S3 objects

Stream manager supports automatic exports to Amazon S3. You can use Amazon S3 to store and
retrieve large amounts of data. For more information, see What is Amazon S3? in the Amazon
Simple Storage Service Developer Guide.

In the AWS IoT Greengrass Core SDK, your Lambda functions use the
S3ExportTaskExecutorConfig to define the export configuration for this destination type. For
more information, see the SDK reference for your target language:

• S3ExportTaskExecutorConfig in the Python SDK

• S3ExportTaskExecutorConfig in the Java SDK

• S3ExportTaskExecutorConfig in the Node.js SDK

Requirements

This export destination has the following requirements:

• Target Amazon S3 buckets must be in the same AWS account as the Greengrass group.

• If the default containerization for the Greengrass group is Greengrass container, you must set
the STREAM_MANAGER_READ_ONLY_DIRS parameter to use an input file directory that's under
/tmp or isn't on the root file system.

• If a Lambda function running in Greengrass container mode writes input files to the input file
directory, you must create a local volume resource for the directory and mount the directory
to the container with write permissions. This ensures that the files are written to the root file
system and visible outside the container. For more information, see Access local resources.

• The the section called “Greengrass group role” must allow the following permissions to the
target buckets. For example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",

Export configurations for supported AWS Cloud destinations 519

https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.data.html#greengrasssdk.stream_manager.data.S3ExportTaskExecutorConfig
https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/model/export/S3ExportTaskExecutorConfig.html
https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.S3ExportTaskExecutorConfig.html

AWS IoT Greengrass Developer Guide, Version 1

 "s3:AbortMultipartUpload",
 "s3:ListMultipartUploadParts"
],
 "Resource": [
 "arn:aws:s3:::bucket-1-name/*",
 "arn:aws:s3:::bucket-2-name/*"
]
 }
]
}

You can grant granular or conditional access to resources, for example, by using a wildcard *
naming scheme. For more information, see Adding and removing IAM policies in the IAM User
Guide.

Exporting to Amazon S3

To create a stream that exports to Amazon S3, your Lambda functions use the
S3ExportTaskExecutorConfig object to configure the export policy. The policy defines export
settings, such as the multipart upload threshold and priority. For Amazon S3 exports, stream
manager uploads data that it reads from local files on the core device. To initiate an upload,
your Lambda functions append an export task to the target stream. The export task contains
information about the input file and target Amazon S3 object. Stream manager executes tasks in
the sequence that they are appended to the stream.

Note

The target bucket must already exist in your AWS account. If an object for the specified key
doesn't exist, stream manager creates the object for you.

This high-level workflow is shown in the following diagram.

Export configurations for supported AWS Cloud destinations 520

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

AWS IoT Greengrass Developer Guide, Version 1

Stream manager uses the multipart upload threshold property, minimum part size setting, and size
of the input file to determine how to upload data. The multipart upload threshold must be greater
or equal to the minimum part size. If you want to upload data in parallel, you can create multiple
streams.

The keys that specify your target Amazon S3 objects can include valid Java DateTimeFormatter
strings in !{timestamp:value} placeholders. You can use these timestamp placeholders to
partition data in Amazon S3 based on the time that the input file data was uploaded. For example,
the following key name resolves to a value such as my-key/2020/12/31/data.txt.

my-key/!{timestamp:YYYY}/!{timestamp:MM}/!{timestamp:dd}/data.txt

Note

If you want to monitor the export status for a stream, first create a status stream and then
configure the export stream to use it. For more information, see the section called “Monitor
export tasks”.

Export configurations for supported AWS Cloud destinations 521

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

AWS IoT Greengrass Developer Guide, Version 1

Manage input data

You can author code that IoT applications use to manage the lifecycle of the input data. The
following example workflow shows how you might use Lambda functions to manage this data.

1. A local process receives data from devices or peripherals, and then writes the data to files in a
directory on the core device. These are the input files for stream manager.

Note

To determine if you must configure access to the input file directory, see the
STREAM_MANAGER_READ_ONLY_DIRS parameter.
The process that stream manager runs in inherits all of the file system permissions of the
default access identity for the group. Stream manager must have permission to access
the input files. You can use the chmod(1) command to change the permission of the
files, if necessary.

2. A Lambda function scans the directory and appends an export task to the target stream when
a new file is created. The task is a JSON-serialized S3ExportTaskDefinition object that
specifies the URL of the input file, the target Amazon S3 bucket and key, and optional user
metadata.

3. Stream manager reads the input file and exports the data to Amazon S3 in the order of
appended tasks. The target bucket must already exist in your AWS account. If an object for the
specified key doesn't exist, stream manager creates the object for you.

4. The Lambda function reads messages from a status stream to monitor the export status. After
export tasks are completed, the Lambda function can delete the corresponding input files. For
more information, see the section called “Monitor export tasks”.

Monitor export tasks

You can author code that IoT applications use to monitor the status of your Amazon S3 exports.
Your Lambda functions must create a status stream and then configure the export stream to
write status updates to the status stream. A single status stream can receive status updates from
multiple streams that export to Amazon S3.

First, create a stream to use as the status stream. You can configure the size and retention policies
for the stream to control the lifespan of the status messages. For example:

Export configurations for supported AWS Cloud destinations 522

AWS IoT Greengrass Developer Guide, Version 1

• Set Persistence to Memory if you don't want to store the status messages.

• Set StrategyOnFull to OverwriteOldestData so that new status messages are not lost.

Then, create or update the export stream to use the status stream. Specifically, set the status
configuration property of the stream’s S3ExportTaskExecutorConfig export configuration.
This tells stream manager to write status messages about the export tasks to the status stream. In
the StatusConfig object, specify the name of the status stream and the level of verbosity. The
following supported values range from least verbose (ERROR) to most verbose (TRACE). The default
is INFO.

• ERROR

• WARN

• INFO

• DEBUG

• TRACE

The following example workflow shows how Lambda functions might use a status stream to
monitor export status.

1. As described in the previous workflow, a Lambda function appends an export task to a stream
that's configured to write status messages about export tasks to a status stream. The append
operation return a sequence number that represents the task ID.

2. A Lambda function reads messages sequentially from the status stream, and then filters the
messages based on the stream name and task ID or based on an export task property from the
message context. For example, the Lambda function can filter by the input file URL of the export
task, which is represented by the S3ExportTaskDefinition object in the message context.

The following status codes indicate that an export task has reached a completed state:

• Success. The upload was completed successfully.

• Failure. Stream manager encountered an error, for example, the specified bucket does not
exist. After resolving the issue, you can append the export task to the stream again.

• Canceled. The task was aborted because the stream or export definition was deleted, or the
time-to-live (TTL) period of the task expired.

Export configurations for supported AWS Cloud destinations 523

AWS IoT Greengrass Developer Guide, Version 1

Note

The task might also have a status of InProgress or Warning. Stream manager issues
warnings when an event returns an error that doesn't affect the execution of the task.
For example, a failure to clean up an aborted partial upload returns a warning.

3. After export tasks are completed, the Lambda function can delete the corresponding input files.

The following example shows how a Lambda function might read and process status messages.

Python

import time
from greengrasssdk.stream_manager import (
 ReadMessagesOptions,
 Status,
 StatusConfig,
 StatusLevel,
 StatusMessage,
 StreamManagerClient,
)
from greengrasssdk.stream_manager.util import Util

client = StreamManagerClient()

try:
 # Read the statuses from the export status stream
 is_file_uploaded_to_s3 = False
 while not is_file_uploaded_to_s3:
 try:
 messages_list = client.read_messages(
 "StatusStreamName", ReadMessagesOptions(min_message_count=1,
 read_timeout_millis=1000)
)
 for message in messages_list:
 # Deserialize the status message first.
 status_message = Util.deserialize_json_bytes_to_obj(message.payload,
 StatusMessage)

 # Check the status of the status message. If the status is
 "Success",

Export configurations for supported AWS Cloud destinations 524

AWS IoT Greengrass Developer Guide, Version 1

 # the file was successfully uploaded to S3.
 # If the status was either "Failure" or "Cancelled", the server was
 unable to upload the file to S3.
 # We will print the message for why the upload to S3 failed from the
 status message.
 # If the status was "InProgress", the status indicates that the
 server has started uploading
 # the S3 task.
 if status_message.status == Status.Success:
 logger.info("Successfully uploaded file at path " + file_url + "
 to S3.")
 is_file_uploaded_to_s3 = True
 elif status_message.status == Status.Failure or
 status_message.status == Status.Canceled:
 logger.info(
 "Unable to upload file at path " + file_url + " to S3.
 Message: " + status_message.message
)
 is_file_uploaded_to_s3 = True
 time.sleep(5)
 except StreamManagerException:
 logger.exception("Exception while running")
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: read_messages | StatusMessage

Java

import com.amazonaws.greengrass.streammanager.client.StreamManagerClient;
import com.amazonaws.greengrass.streammanager.client.utils.ValidateAndSerialize;
import com.amazonaws.greengrass.streammanager.model.ReadMessagesOptions;
import com.amazonaws.greengrass.streammanager.model.Status;
import com.amazonaws.greengrass.streammanager.model.StatusConfig;
import com.amazonaws.greengrass.streammanager.model.StatusLevel;
import com.amazonaws.greengrass.streammanager.model.StatusMessage;

try (final StreamManagerClient client =
 GreengrassClientBuilder.streamManagerClient().build()) {
 try {

Export configurations for supported AWS Cloud destinations 525

https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.streammanagerclient.html#greengrasssdk.stream_manager.streammanagerclient.StreamManagerClient.read_messages
https://aws.github.io/aws-greengrass-core-sdk-python/_apidoc/greengrasssdk.stream_manager.data.html#greengrasssdk.stream_manager.data.StatusMessage

AWS IoT Greengrass Developer Guide, Version 1

 boolean isS3UploadComplete = false;
 while (!isS3UploadComplete) {
 try {
 // Read the statuses from the export status stream
 List<Message> messages = client.readMessages("StatusStreamName",
 new
 ReadMessagesOptions().withMinMessageCount(1L).withReadTimeoutMillis(1000L));
 for (Message message : messages) {
 // Deserialize the status message first.
 StatusMessage statusMessage =
 ValidateAndSerialize.deserializeJsonBytesToObj(message.getPayload(),
 StatusMessage.class);
 // Check the status of the status message. If the status is
 "Success", the file was successfully uploaded to S3.
 // If the status was either "Failure" or "Canceled", the server
 was unable to upload the file to S3.
 // We will print the message for why the upload to S3 failed
 from the status message.
 // If the status was "InProgress", the status indicates that the
 server has started uploading the S3 task.
 if (Status.Success.equals(statusMessage.getStatus())) {
 System.out.println("Successfully uploaded file at path " +
 FILE_URL + " to S3.");
 isS3UploadComplete = true;
 } else if (Status.Failure.equals(statusMessage.getStatus()) ||
 Status.Canceled.equals(statusMessage.getStatus())) {
 System.out.println(String.format("Unable to upload file at
 path %s to S3. Message %s",

 statusMessage.getStatusContext().getS3ExportTaskDefinition().getInputUrl(),
 statusMessage.getMessage()));
 sS3UploadComplete = true;
 }
 }
 } catch (StreamManagerException ignored) {
 } finally {
 // Sleep for sometime for the S3 upload task to complete before
 trying to read the status message.
 Thread.sleep(5000);
 }
 } catch (e) {
 // Properly handle errors.
 }
} catch (StreamManagerException e) {

Export configurations for supported AWS Cloud destinations 526

AWS IoT Greengrass Developer Guide, Version 1

 // Properly handle exception.
}

Java SDK reference: readMessages | StatusMessage

Node.js

const {
 StreamManagerClient, ReadMessagesOptions,
 Status, StatusConfig, StatusLevel, StatusMessage,
 util,
} = require('aws-greengrass-core-sdk').StreamManager;

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 let isS3UploadComplete = false;
 while (!isS3UploadComplete) {
 try {
 // Read the statuses from the export status stream
 const messages = await c.readMessages("StatusStreamName",
 new ReadMessagesOptions()
 .withMinMessageCount(1)
 .withReadTimeoutMillis(1000));

 messages.forEach((message) => {
 // Deserialize the status message first.
 const statusMessage =
 util.deserializeJsonBytesToObj(message.payload, StatusMessage);
 // Check the status of the status message. If the status is
 'Success', the file was successfully uploaded to S3.
 // If the status was either 'Failure' or 'Cancelled', the server
 was unable to upload the file to S3.
 // We will print the message for why the upload to S3 failed
 from the status message.
 // If the status was "InProgress", the status indicates that the
 server has started uploading the S3 task.
 if (statusMessage.status === Status.Success) {
 console.log(`Successfully uploaded file at path ${FILE_URL}
 to S3.`);
 isS3UploadComplete = true;
 } else if (statusMessage.status === Status.Failure ||
 statusMessage.status === Status.Canceled) {

Export configurations for supported AWS Cloud destinations 527

https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#readMessages-java.lang.String-com.amazonaws.greengrass.streammanager.model.ReadMessagesOptions-
https://aws.github.io/aws-greengrass-core-sdk-java/com/amazonaws/greengrass/streammanager/model/StatusMessage.html

AWS IoT Greengrass Developer Guide, Version 1

 console.log(`Unable to upload file at path ${FILE_URL} to
 S3. Message: ${statusMessage.message}`);
 isS3UploadComplete = true;
 }
 });
 // Sleep for sometime for the S3 upload task to complete before
 trying to read the status message.
 await new Promise((r) => setTimeout(r, 5000));
 } catch (e) {
 // Ignored
 }
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: readMessages | StatusMessage

Export data streams to the AWS Cloud (console)

This tutorial shows you how to use the AWS IoT console to configure and deploy an AWS IoT
Greengrass group with stream manager enabled. The group contains a user-defined Lambda
function that writes to a stream in stream manager, which is then exported automatically to the
AWS Cloud.

Stream manager makes ingesting, processing, and exporting high-volume data streams more
efficient and reliable. In this tutorial, you create a TransferStream Lambda function that
consumes IoT data. The Lambda function uses the AWS IoT Greengrass Core SDK to create a stream
in stream manager and then read and write to it. Stream manager then exports the stream to
Kinesis Data Streams. The following diagram shows this workflow.

Export data streams (console) 528

https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#readMessages
https://aws.github.io/aws-greengrass-core-sdk-js/aws-greengrass-core-sdk.StreamManager.StatusMessage.html

AWS IoT Greengrass Developer Guide, Version 1

The focus of this tutorial is to show how user-defined Lambda functions use the
StreamManagerClient object in the AWS IoT Greengrass Core SDK to interact with stream
manager. For simplicity, the Python Lambda function that you create for this tutorial generates
simulated device data.

Prerequisites

To complete this tutorial, you need:

• A Greengrass group and a Greengrass core (v1.10 or later). For information about how to create
a Greengrass group and core, see Getting started with AWS IoT Greengrass. The Getting Started
tutorial also includes steps for installing the AWS IoT Greengrass Core software.

Note

Stream manager is not supported on OpenWrt distributions.

• The Java 8 runtime (JDK 8) installed on the core device.

• For Debian-based distributions (including Raspbian) or Ubuntu-based distributions, run the
following command:

sudo apt install openjdk-8-jdk

Prerequisites 529

AWS IoT Greengrass Developer Guide, Version 1

• For Red Hat-based distributions (including Amazon Linux), run the following command:

sudo yum install java-1.8.0-openjdk

For more information, see How to download and install prebuilt OpenJDK packages in the
OpenJDK documentation.

• AWS IoT Greengrass Core SDK for Python v1.5.0 or later. To use StreamManagerClient in the
AWS IoT Greengrass Core SDK for Python, you must:

• Install Python 3.7 or later on the core device.

• Include the SDK and its dependencies in your Lambda function deployment package.
Instructions are provided in this tutorial.

Tip

You can use StreamManagerClient with Java or NodeJS. For example code, see the
AWS IoT Greengrass Core SDK for Java and AWS IoT Greengrass Core SDK for Node.js on
GitHub.

• A destination stream named MyKinesisStream created in Amazon Kinesis Data Streams in the
same AWS Region as your Greengrass group. For more information, see Create a stream in the
Amazon Kinesis Developer Guide.

Note

In this tutorial, stream manager exports data to Kinesis Data Streams, which results in
charges to your AWS account. For information about pricing, see Kinesis Data Streams
pricing.
To avoid incurring charges, you can run this tutorial without creating a Kinesis data
stream. In this case, you check the logs to see that stream manager attempted to export
the stream to Kinesis Data Streams.

• An IAM policy added to the the section called “Greengrass group role” that allows the
kinesis:PutRecords action on the target data stream, as shown in the following example:

{
 "Version": "2012-10-17",
 "Statement": [

Prerequisites 530

https://openjdk.java.net/install/
https://github.com/aws/aws-greengrass-core-sdk-java/blob/master/samples/StreamManagerKinesis/src/main/java/com/amazonaws/greengrass/examples/StreamManagerKinesis.java
https://github.com/aws/aws-greengrass-core-sdk-js/blob/master/greengrassExamples/StreamManagerKinesis/index.js
https://docs.aws.amazon.com/streams/latest/dev/fundamental-stream.html#create-stream
https://aws.amazon.com/kinesis/data-streams/pricing/
https://aws.amazon.com/kinesis/data-streams/pricing/

AWS IoT Greengrass Developer Guide, Version 1

 {
 "Effect": "Allow",
 "Action": [
 "kinesis:PutRecords"
],
 "Resource": [
 "arn:aws:kinesis:region:account-id:stream/MyKinesisStream"
]
 }
]
}

The tutorial contains the following high-level steps:

1. Create a Lambda function deployment package

2. Create a Lambda function

3. Add a function to the group

4. Enable stream manager

5. Configure local logging

6. Deploy the group

7. Test the application

The tutorial should take about 20 minutes to complete.

Step 1: Create a Lambda function deployment package

In this step, you create a Lambda function deployment package that contains Python function code
and dependencies. You upload this package later when you create the Lambda function in AWS
Lambda. The Lambda function uses the AWS IoT Greengrass Core SDK to create and interact with
local streams.

Note

Your user-defined Lambda functions must use the AWS IoT Greengrass Core SDK to interact
with stream manager. For more information about requirements for the Greengrass stream
manager, see Greengrass stream manager requirements.

Create a Lambda function deployment package 531

AWS IoT Greengrass Developer Guide, Version 1

1. Download the AWS IoT Greengrass Core SDK for Python v1.5.0 or later.

2. Unzip the downloaded package to get the SDK. The SDK is the greengrasssdk folder.

3. Install package dependencies to include with the SDK in your Lambda function deployment
package.

1. Navigate to the SDK directory that contains the requirements.txt file. This file lists the
dependencies.

2. Install the SDK dependencies. For example, run the following pip command to install them
in the current directory:

pip install --target . -r requirements.txt

4. Save the following Python code function in a local file named transfer_stream.py.

Tip

For example code that uses Java and NodeJS, see the AWS IoT Greengrass Core SDK for
Java and AWS IoT Greengrass Core SDK for Node.js on GitHub.

import asyncio
import logging
import random
import time

from greengrasssdk.stream_manager import (
 ExportDefinition,
 KinesisConfig,
 MessageStreamDefinition,
 ReadMessagesOptions,
 ResourceNotFoundException,
 StrategyOnFull,
 StreamManagerClient,
)

This example creates a local stream named "SomeStream".
It starts writing data into that stream and then stream manager automatically
 exports
the data to a customer-created Kinesis data stream named "MyKinesisStream".

Create a Lambda function deployment package 532

https://github.com/aws/aws-greengrass-core-sdk-java/blob/master/samples/StreamManagerKinesis/src/main/java/com/amazonaws/greengrass/examples/StreamManagerKinesis.java
https://github.com/aws/aws-greengrass-core-sdk-java/blob/master/samples/StreamManagerKinesis/src/main/java/com/amazonaws/greengrass/examples/StreamManagerKinesis.java
https://github.com/aws/aws-greengrass-core-sdk-js/blob/master/greengrassExamples/StreamManagerKinesis/index.js

AWS IoT Greengrass Developer Guide, Version 1

This example runs forever until the program is stopped.

The size of the local stream on disk will not exceed the default (which is 256
 MB).
Any data appended after the stream reaches the size limit continues to be
 appended, and
stream manager deletes the oldest data until the total stream size is back under
 256 MB.
The Kinesis data stream in the cloud has no such bound, so all the data from this
 script is
uploaded to Kinesis and you will be charged for that usage.

def main(logger):
 try:
 stream_name = "SomeStream"
 kinesis_stream_name = "MyKinesisStream"

 # Create a client for the StreamManager
 client = StreamManagerClient()

 # Try deleting the stream (if it exists) so that we have a fresh start
 try:
 client.delete_message_stream(stream_name=stream_name)
 except ResourceNotFoundException:
 pass

 exports = ExportDefinition(
 kinesis=[KinesisConfig(identifier="KinesisExport" + stream_name,
 kinesis_stream_name=kinesis_stream_name)]
)
 client.create_message_stream(
 MessageStreamDefinition(
 name=stream_name,
 strategy_on_full=StrategyOnFull.OverwriteOldestData, export_definition=exports
)
)

 # Append two messages and print their sequence numbers
 logger.info(
 "Successfully appended message to stream with sequence number %d",
 client.append_message(stream_name, "ABCDEFGHIJKLMNO".encode("utf-8")),
)
 logger.info(

Create a Lambda function deployment package 533

AWS IoT Greengrass Developer Guide, Version 1

 "Successfully appended message to stream with sequence number %d",
 client.append_message(stream_name, "PQRSTUVWXYZ".encode("utf-8")),
)

 # Try reading the two messages we just appended and print them out
 logger.info(
 "Successfully read 2 messages: %s",
 client.read_messages(stream_name,
 ReadMessagesOptions(min_message_count=2, read_timeout_millis=1000)),
)

 logger.info("Now going to start writing random integers between 0 and 1000
 to the stream")
 # Now start putting in random data between 0 and 1000 to emulate device
 sensor input
 while True:
 logger.debug("Appending new random integer to stream")
 client.append_message(stream_name, random.randint(0,
 1000).to_bytes(length=4, signed=True, byteorder="big"))
 time.sleep(1)

 except asyncio.TimeoutError:
 logger.exception("Timed out while executing")
 except Exception:
 logger.exception("Exception while running")

def function_handler(event, context):
 return

logging.basicConfig(level=logging.INFO)
Start up this sample code
main(logger=logging.getLogger())

5. Zip the following items into a file named transfer_stream_python.zip. This is your
Lambda function deployment package.

• transfer_stream.py. App logic.

• greengrasssdk. Required library for Python Greengrass Lambda functions that publish
MQTT messages.

Create a Lambda function deployment package 534

AWS IoT Greengrass Developer Guide, Version 1

Stream manager operations are available in version 1.5.0 or later of the AWS IoT Greengrass
Core SDK for Python.

• The dependencies you installed for the AWS IoT Greengrass Core SDK for Python (for
example, the cbor2 directories).

When you create the zip file, include only these items, not the containing folder.

Step 2: Create a Lambda function

In this step, you use the AWS Lambda console to create a Lambda function and configure it to use
your deployment package. Then, you publish a function version and create an alias.

1. First, create the Lambda function.

a. In the AWS Management Console, choose Services, and open the AWS Lambda console.

b. Choose Create function and then choose Author from scratch.

c. In the Basic information section, use the following values:

• For Function name, enter TransferStream.

• For Runtime, choose Python 3.7.

• For Permissions, keep the default setting. This creates an execution role that grants
basic Lambda permissions. This role isn't used by AWS IoT Greengrass.

d. At the bottom of the page, choose Create function.

2. Next, register the handler and upload your Lambda function deployment package.

a. On the Code tab, under Code source, choose Upload from. From the dropdown, choose
.zip file.

Create a Lambda function 535

AWS IoT Greengrass Developer Guide, Version 1

b. Choose Upload, and then choose your transfer_stream_python.zip deployment
package. Then, choose Save.

c. On the Code tab for the function, under Runtime settings, choose Edit, and then enter
the following values.

• For Runtime, choose Python 3.7.

• For Handler, enter transfer_stream.function_handler

d. Choose Save.

Note

The Test button on the AWS Lambda console doesn't work with this function. The
AWS IoT Greengrass Core SDK doesn't contain modules that are required to run
your Greengrass Lambda functions independently in the AWS Lambda console.
These modules (for example, greengrass_common) are supplied to the functions
after they are deployed to your Greengrass core.

3. Now, publish the first version of your Lambda function and create an alias for the version.

Note

Greengrass groups can reference a Lambda function by alias (recommended) or by
version. Using an alias makes it easier to manage code updates because you don't
have to change your subscription table or group definition when the function code is
updated. Instead, you just point the alias to the new function version.

a. From the Actions menu, choose Publish new version.

b. For Version description, enter First version, and then choose Publish.

c. On the TransferStream: 1 configuration page, from the Actions menu, choose Create
alias.

d. On the Create a new alias page, use the following values:

• For Name, enter GG_TransferStream.

• For Version, choose 1.

Create a Lambda function 536

https://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS IoT Greengrass Developer Guide, Version 1

Note

AWS IoT Greengrass doesn't support Lambda aliases for $LATEST versions.

e. Choose Create.

Now you're ready to add the Lambda function to your Greengrass group.

Step 3: Add a Lambda function to the Greengrass group

In this step, you add the Lambda function to the group and then configure its lifecycle and
environment variables. For more information, see the section called “Controlling Greengrass
Lambda function execution”.

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose the target group.

3. On the group configuration page, choose the Lambda functions tab.

4. Under My Lambda functions, choose Add.

5. On the Add Lambda function page, choose the Lambda function for your Lambda function.

6. For the Lambda version, choose Alias:GG_TransferStream.

Now, configure properties that determine the behavior of the Lambda function in the
Greengrass group.

7. In the Lambda function configuration section, make the following changes:

• Set Memory limit to 32 MB.

• For Pinned, choose True.

Note

A long-lived (or pinned) Lambda function starts automatically after AWS IoT Greengrass
starts and keeps running in its own container. This is in contrast to an on-demand

Add a function to the group 537

AWS IoT Greengrass Developer Guide, Version 1

Lambda function, which starts when invoked and stops when there are no tasks left to
run. For more information, see the section called “Lifecycle configuration”.

8. Choose Add Lambda function.

Step 4: Enable stream manager

In this step, you make sure that stream manager is enabled.

1. On the group configuration page, choose the Lambda functions tab.

2. Under System Lambda functions, select Stream manager, and check the status. If disabled,
choose Edit. Then, choose Enable and Save. You can use the default parameter settings for
this tutorial. For more information, see the section called “Configure stream manager”.

Note

When you use the console to enable stream manager and deploy the group, the memory
size for stream manager is set to 4194304 KB (4 GB) by default. We recommend that you
set the memory size to at least 128000 KB.

Step 5: Configure local logging

In this step, you configure AWS IoT Greengrass system components, user-defined Lambda
functions, and connectors in the group to write logs to the file system of the core device. You can
use logs to troubleshoot any issues you might encounter. For more information, see the section
called “Monitoring with AWS IoT Greengrass logs”.

1. Under Local logs configuration, check if local logging is configured.

2. If logs aren't configured for Greengrass system components or user-defined Lambda functions,
choose Edit.

3. Choose User Lambda functions log level and Greengrass system log level.

4. Keep the default values for logging level and disk space limit, and then choose Save.

Enable stream manager 538

AWS IoT Greengrass Developer Guide, Version 1

Step 6: Deploy the Greengrass group

Deploy the group to the core device.

1. Make sure that the AWS IoT Greengrass core is running. Run the following commands in your
Raspberry Pi terminal, as needed.

a. To check whether the daemon is running:

ps aux | grep -E 'greengrass.*daemon'

If the output contains a root entry for /greengrass/ggc/packages/ggc-version/
bin/daemon, then the daemon is running.

Note

The version in the path depends on the AWS IoT Greengrass Core software version
that's installed on your core device.

b. To start the daemon:

cd /greengrass/ggc/core/
sudo ./greengrassd start

2. On the group configuration page, choose Deploy.

3. a. In the Lambda functions tab, under the System Lambda functions section, select IP
detector and choose Edit.

b. In the Edit IP detector settings dialog box, select Automatically detect and override
MQTT broker endpoints.

c. Choose Save.

This enables devices to automatically acquire connectivity information for the core, such
as IP address, DNS, and port number. Automatic detection is recommended, but AWS IoT
Greengrass also supports manually specified endpoints. You're only prompted for the
discovery method the first time that the group is deployed.

Deploy the group 539

AWS IoT Greengrass Developer Guide, Version 1

Note

If prompted, grant permission to create the Greengrass service role and associate
it with your AWS account in the current AWS Region. This role allows AWS IoT
Greengrass to access your resources in AWS services.

The Deployments page shows the deployment timestamp, version ID, and status. When
completed, the status displayed for the deployment should be Completed.

For troubleshooting help, see Troubleshooting.

Step 7: Test the application

The TransferStream Lambda function generates simulated device data. It writes data to a
stream that stream manager exports to the target Kinesis data stream.

1. In the Amazon Kinesis console, under Kinesis data streams, choose MyKinesisStream.

Note

If you ran the tutorial without a target Kinesis data stream, check the log file
for the stream manager (GGStreamManager). If it contains export stream
MyKinesisStream doesn't exist in an error message, then the test is successful.
This error means that the service tried to export to the stream but the stream doesn't
exist.

2. On the MyKinesisStream page, choose Monitoring. If the test is successful, you should see
data in the Put Records charts. Depending on your connection, it might take a minute before
the data is displayed.

Important

When you're finished testing, delete the Kinesis data stream to avoid incurring more
charges.
Or, run the following commands to stop the Greengrass daemon. This prevents the
core from sending messages until you're ready to continue testing.

Test the application 540

AWS IoT Greengrass Developer Guide, Version 1

cd /greengrass/ggc/core/
sudo ./greengrassd stop

3. Remove the TransferStream Lambda function from the core.

a. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and
then choose Groups (V1).

b. Under Greengrass groups, choose your group.

c. On the Lambdas page, choose the ellipses (…) for the TransferStream function, and then
choose Remove function.

d. From Actions, choose Deploy.

To view logging information or troubleshoot issues with streams, check the logs for the
TransferStream and GGStreamManager functions. You must have root permissions to read
AWS IoT Greengrass logs on the file system.

• TransferStream writes log entries to greengrass-root/ggc/var/log/
user/region/account-id/TransferStream.log.

• GGStreamManager writes log entries to greengrass-root/ggc/var/log/system/
GGStreamManager.log.

If you need more troubleshooting information, you can set the logging level for User Lambda logs
to Debug logs and then deploy the group again.

See also

• Manage data streams

• the section called “Configure stream manager”

• the section called “Use StreamManagerClient to work with streams”

• the section called “Export configurations for supported AWS Cloud destinations”

• the section called “Export data streams (CLI)”

See also 541

AWS IoT Greengrass Developer Guide, Version 1

Export data streams to the AWS Cloud (CLI)

This tutorial shows you how to use the AWS CLI to configure and deploy an AWS IoT Greengrass
group with stream manager enabled. The group contains a user-defined Lambda function that
writes to a stream in stream manager, which is then exported automatically to the AWS Cloud.

Stream manager makes ingesting, processing, and exporting high-volume data streams more
efficient and reliable. In this tutorial, you create a TransferStream Lambda function that
consumes IoT data. The Lambda function uses the AWS IoT Greengrass Core SDK to create a stream
in stream manager and then read and write to it. Stream manager then exports the stream to
Kinesis Data Streams. The following diagram shows this workflow.

The focus of this tutorial is to show how user-defined Lambda functions use the
StreamManagerClient object in the AWS IoT Greengrass Core SDK to interact with stream
manager. For simplicity, the Python Lambda function that you create for this tutorial generates
simulated device data.

When you use the AWS IoT Greengrass API, which includes the Greengrass commands in the AWS
CLI, to create a group, stream manager is disabled by default. To enable stream manager on your
core, you create a function definition version that includes the system GGStreamManager Lambda
function and a group version that references the new function definition version. Then you deploy
the group.

Export data streams (CLI) 542

AWS IoT Greengrass Developer Guide, Version 1

Prerequisites

To complete this tutorial, you need:

• A Greengrass group and a Greengrass core (v1.10 or later). For information about how to create
a Greengrass group and core, see Getting started with AWS IoT Greengrass. The Getting Started
tutorial also includes steps for installing the AWS IoT Greengrass Core software.

Note

Stream manager is not supported on OpenWrt distributions.

• The Java 8 runtime (JDK 8) installed on the core device.

• For Debian-based distributions (including Raspbian) or Ubuntu-based distributions, run the
following command:

sudo apt install openjdk-8-jdk

• For Red Hat-based distributions (including Amazon Linux), run the following command:

sudo yum install java-1.8.0-openjdk

For more information, see How to download and install prebuilt OpenJDK packages in the
OpenJDK documentation.

• AWS IoT Greengrass Core SDK for Python v1.5.0 or later. To use StreamManagerClient in the
AWS IoT Greengrass Core SDK for Python, you must:

• Install Python 3.7 or later on the core device.

• Include the SDK and its dependencies in your Lambda function deployment package.
Instructions are provided in this tutorial.

Tip

You can use StreamManagerClient with Java or NodeJS. For example code, see the
AWS IoT Greengrass Core SDK for Java and AWS IoT Greengrass Core SDK for Node.js on
GitHub.

Prerequisites 543

https://openjdk.java.net/install/
https://github.com/aws/aws-greengrass-core-sdk-java/blob/master/samples/StreamManagerKinesis/src/main/java/com/amazonaws/greengrass/examples/StreamManagerKinesis.java
https://github.com/aws/aws-greengrass-core-sdk-js/blob/master/greengrassExamples/StreamManagerKinesis/index.js

AWS IoT Greengrass Developer Guide, Version 1

• A destination stream named MyKinesisStream created in Amazon Kinesis Data Streams in the
same AWS Region as your Greengrass group. For more information, see Create a stream in the
Amazon Kinesis Developer Guide.

Note

In this tutorial, stream manager exports data to Kinesis Data Streams, which results in
charges to your AWS account. For information about pricing, see Kinesis Data Streams
pricing.
To avoid incurring charges, you can run this tutorial without creating a Kinesis data
stream. In this case, you check the logs to see that stream manager attempted to export
the stream to Kinesis Data Streams.

• An IAM policy added to the the section called “Greengrass group role” that allows the
kinesis:PutRecords action on the target data stream, as shown in the following example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:PutRecords"
],
 "Resource": [
 "arn:aws:kinesis:region:account-id:stream/MyKinesisStream"
]
 }
]
}

• The AWS CLI installed and configured on your computer. For more information, see Installing the
AWS Command Line Interface and Configuring the AWS CLI in the AWS Command Line Interface
User Guide.

Prerequisites 544

https://docs.aws.amazon.com/streams/latest/dev/fundamental-stream.html#create-stream
https://aws.amazon.com/kinesis/data-streams/pricing/
https://aws.amazon.com/kinesis/data-streams/pricing/
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS IoT Greengrass Developer Guide, Version 1

The example commands in this tutorial are written for Linux and other Unix-based systems. If
you're using Windows, see Specifying parameter values for the AWS command line interface for
more information about differences in syntax.

If the command contains a JSON string, the tutorial provides an example that has the JSON on
a single line. On some systems, it might be more efficient to edit and run commands using this
format.

The tutorial contains the following high-level steps:

1. Create a Lambda function deployment package

2. Create a Lambda function

3. Create a function definition and version

4. Create a logger definition and version

5. Get the ARN of your core definition version

6. Create a group version

7. Create a deployment

8. Test the application

The tutorial should take about 30 minutes to complete.

Step 1: Create a Lambda function deployment package

In this step, you create a Lambda function deployment package that contains Python function code
and dependencies. You upload this package later when you create the Lambda function in AWS
Lambda. The Lambda function uses the AWS IoT Greengrass Core SDK to create and interact with
local streams.

Note

Your user-defined Lambda functions must use the AWS IoT Greengrass Core SDK to interact
with stream manager. For more information about requirements for the Greengrass stream
manager, see Greengrass stream manager requirements.

Create a Lambda function deployment package 545

https://docs.aws.amazon.com/cli/latest/userguide/cli-using-param.html

AWS IoT Greengrass Developer Guide, Version 1

1. Download the AWS IoT Greengrass Core SDK for Python v1.5.0 or later.

2. Unzip the downloaded package to get the SDK. The SDK is the greengrasssdk folder.

3. Install package dependencies to include with the SDK in your Lambda function deployment
package.

1. Navigate to the SDK directory that contains the requirements.txt file. This file lists the
dependencies.

2. Install the SDK dependencies. For example, run the following pip command to install them
in the current directory:

pip install --target . -r requirements.txt

4. Save the following Python code function in a local file named transfer_stream.py.

Tip

For example code that uses Java and NodeJS, see the AWS IoT Greengrass Core SDK for
Java and AWS IoT Greengrass Core SDK for Node.js on GitHub.

import asyncio
import logging
import random
import time

from greengrasssdk.stream_manager import (
 ExportDefinition,
 KinesisConfig,
 MessageStreamDefinition,
 ReadMessagesOptions,
 ResourceNotFoundException,
 StrategyOnFull,
 StreamManagerClient,
)

This example creates a local stream named "SomeStream".
It starts writing data into that stream and then stream manager automatically
 exports
the data to a customer-created Kinesis data stream named "MyKinesisStream".

Create a Lambda function deployment package 546

https://github.com/aws/aws-greengrass-core-sdk-java/blob/master/samples/StreamManagerKinesis/src/main/java/com/amazonaws/greengrass/examples/StreamManagerKinesis.java
https://github.com/aws/aws-greengrass-core-sdk-java/blob/master/samples/StreamManagerKinesis/src/main/java/com/amazonaws/greengrass/examples/StreamManagerKinesis.java
https://github.com/aws/aws-greengrass-core-sdk-js/blob/master/greengrassExamples/StreamManagerKinesis/index.js

AWS IoT Greengrass Developer Guide, Version 1

This example runs forever until the program is stopped.

The size of the local stream on disk will not exceed the default (which is 256
 MB).
Any data appended after the stream reaches the size limit continues to be
 appended, and
stream manager deletes the oldest data until the total stream size is back under
 256 MB.
The Kinesis data stream in the cloud has no such bound, so all the data from this
 script is
uploaded to Kinesis and you will be charged for that usage.

def main(logger):
 try:
 stream_name = "SomeStream"
 kinesis_stream_name = "MyKinesisStream"

 # Create a client for the StreamManager
 client = StreamManagerClient()

 # Try deleting the stream (if it exists) so that we have a fresh start
 try:
 client.delete_message_stream(stream_name=stream_name)
 except ResourceNotFoundException:
 pass

 exports = ExportDefinition(
 kinesis=[KinesisConfig(identifier="KinesisExport" + stream_name,
 kinesis_stream_name=kinesis_stream_name)]
)
 client.create_message_stream(
 MessageStreamDefinition(
 name=stream_name,
 strategy_on_full=StrategyOnFull.OverwriteOldestData, export_definition=exports
)
)

 # Append two messages and print their sequence numbers
 logger.info(
 "Successfully appended message to stream with sequence number %d",
 client.append_message(stream_name, "ABCDEFGHIJKLMNO".encode("utf-8")),
)
 logger.info(

Create a Lambda function deployment package 547

AWS IoT Greengrass Developer Guide, Version 1

 "Successfully appended message to stream with sequence number %d",
 client.append_message(stream_name, "PQRSTUVWXYZ".encode("utf-8")),
)

 # Try reading the two messages we just appended and print them out
 logger.info(
 "Successfully read 2 messages: %s",
 client.read_messages(stream_name,
 ReadMessagesOptions(min_message_count=2, read_timeout_millis=1000)),
)

 logger.info("Now going to start writing random integers between 0 and 1000
 to the stream")
 # Now start putting in random data between 0 and 1000 to emulate device
 sensor input
 while True:
 logger.debug("Appending new random integer to stream")
 client.append_message(stream_name, random.randint(0,
 1000).to_bytes(length=4, signed=True, byteorder="big"))
 time.sleep(1)

 except asyncio.TimeoutError:
 logger.exception("Timed out while executing")
 except Exception:
 logger.exception("Exception while running")

def function_handler(event, context):
 return

logging.basicConfig(level=logging.INFO)
Start up this sample code
main(logger=logging.getLogger())

5. Zip the following items into a file named transfer_stream_python.zip. This is your
Lambda function deployment package.

• transfer_stream.py. App logic.

• greengrasssdk. Required library for Python Greengrass Lambda functions that publish
MQTT messages.

Create a Lambda function deployment package 548

AWS IoT Greengrass Developer Guide, Version 1

Stream manager operations are available in version 1.5.0 or later of the AWS IoT Greengrass
Core SDK for Python.

• The dependencies you installed for the AWS IoT Greengrass Core SDK for Python (for
example, the cbor2 directories).

When you create the zip file, include only these items, not the containing folder.

Step 2: Create a Lambda function

1. Create an IAM role so you can pass in the role ARN when you create the function.

JSON Expanded

aws iam create-role --role-name Lambda_empty --assume-role-policy '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}'

JSON Single-line

aws iam create-role --role-name Lambda_empty --assume-role-policy '{"Version":
 "2012-10-17", "Statement": [{"Effect": "Allow", "Principal": {"Service":
 "lambda.amazonaws.com"},"Action": "sts:AssumeRole"}]}'

Create a Lambda function 549

AWS IoT Greengrass Developer Guide, Version 1

Note

AWS IoT Greengrass doesn't use this role because permissions for your Greengrass
Lambda functions are specified in the Greengrass group role. For this tutorial, you
create an empty role.

2. Copy the Arn from the output.

3. Use the AWS Lambda API to create the TransferStream function. The following command
assumes that the zip file is in the current directory.

• Replace role-arn with the Arn that you copied.

aws lambda create-function \
--function-name TransferStream \
--zip-file fileb://transfer_stream_python.zip \
--role role-arn \
--handler transfer_stream.function_handler \
--runtime python3.7

4. Publish a version of the function.

aws lambda publish-version --function-name TransferStream --description 'First
 version'

5. Create an alias for the published version.

Greengrass groups can reference a Lambda function by alias (recommended) or by version.
Using an alias makes it easier to manage code updates because you don't have to change your
subscription table or group definition when the function code is updated. Instead, you just
point the alias to the new function version.

aws lambda create-alias --function-name TransferStream --name GG_TransferStream --
function-version 1

Create a Lambda function 550

AWS IoT Greengrass Developer Guide, Version 1

Note

AWS IoT Greengrass doesn't support Lambda aliases for $LATEST versions.

6. Copy the AliasArn from the output. You use this value when you configure the function for
AWS IoT Greengrass.

Now you're ready to configure the function for AWS IoT Greengrass.

Step 3: Create a function definition and version

This step creates a function definition version that references the system GGStreamManager
Lambda function and your user-defined TransferStream Lambda function. To enable stream
manager when you use the AWS IoT Greengrass API, your function definition version must include
the GGStreamManager function.

1. Create a function definition with an initial version that contains the system and user-defined
Lambda functions.

The following definition version enables stream manager with default parameter settings. To
configure custom settings, you must define environment variables for corresponding stream
manager parameters. For an example, see the section called “Enable, disable, or configure
stream manager”. AWS IoT Greengrass uses default settings for parameters that are omitted.
MemorySize should be at least 128000. Pinned must be set to true.

Note

A long-lived (or pinned) Lambda function starts automatically after AWS IoT Greengrass
starts and keeps running in its own container. This is in contrast to an on-demand
Lambda function, which starts when invoked and stops when there are no tasks left to
run. For more information, see the section called “Lifecycle configuration”.

• Replace arbitrary-function-id with a name for the function, such as stream-
manager.

• Replace alias-arn with the AliasArn that you copied when you created the alias for the
TransferStream Lambda function.

Create a function definition and version 551

AWS IoT Greengrass Developer Guide, Version 1

JSON expanded

aws greengrass create-function-definition --name MyGreengrassFunctions --
initial-version '{
 "Functions": [
 {
 "Id": "arbitrary-function-id",
 "FunctionArn": "arn:aws:lambda:::function:GGStreamManager:1",
 "FunctionConfiguration": {
 "MemorySize": 128000,
 "Pinned": true,
 "Timeout": 3
 }
 },
 {
 "Id": "TransferStreamFunction",
 "FunctionArn": "alias-arn",
 "FunctionConfiguration": {
 "Executable": "transfer_stream.function_handler",
 "MemorySize": 16000,
 "Pinned": true,
 "Timeout": 5
 }
 }
]
}'

JSON single

aws greengrass create-function-definition \
--name MyGreengrassFunctions \
--initial-version '{"Functions": [{"Id": "arbitrary-function-
id","FunctionArn": "arn:aws:lambda:::function:GGStreamManager:1",
 "FunctionConfiguration": {"Environment": {"Variables":
{"STREAM_MANAGER_STORE_ROOT_DIR": "/data","STREAM_MANAGER_SERVER_PORT":
 "1234","STREAM_MANAGER_EXPORTER_MAX_BANDWIDTH": "20000"}},"MemorySize":
 128000,"Pinned": true,"Timeout": 3}},{"Id": "TransferStreamFunction",
 "FunctionArn": "alias-arn", "FunctionConfiguration": {"Executable":

Create a function definition and version 552

AWS IoT Greengrass Developer Guide, Version 1

 "transfer_stream.function_handler", "MemorySize": 16000,"Pinned":
 true,"Timeout": 5}}]}'

Note

Timeout is required by the function definition version, but GGStreamManager doesn't
use it. For more information about Timeout and other group-level settings, see the
section called “Controlling Greengrass Lambda function execution”.

2. Copy the LatestVersionArn from the output. You use this value to add the function
definition version to the group version that you deploy to the core.

Step 4: Create a logger definition and version

Configure the group's logging settings. For this tutorial, you configure AWS IoT Greengrass system
components, user-defined Lambda functions, and connectors to write logs to the file system
of the core device. You can use logs to troubleshoot any issues you might encounter. For more
information, see the section called “Monitoring with AWS IoT Greengrass logs”.

1. Create a logger definition that includes an initial version.

JSON Expanded

aws greengrass create-logger-definition --name "LoggingConfigs" --initial-
version '{
 "Loggers": [
 {
 "Id": "1",
 "Component": "GreengrassSystem",
 "Level": "INFO",
 "Space": 10240,
 "Type": "FileSystem"
 },
 {
 "Id": "2",
 "Component": "Lambda",
 "Level": "INFO",
 "Space": 10240,
 "Type": "FileSystem"

Create a logger definition and version 553

AWS IoT Greengrass Developer Guide, Version 1

 }
]
}'

JSON Single-line

aws greengrass create-logger-definition \
 --name "LoggingConfigs" \
 --initial-version '{"Loggers":
[{"Id":"1","Component":"GreengrassSystem","Level":"INFO","Space":10240,"Type":"FileSystem"},
{"Id":"2","Component":"Lambda","Level":"INFO","Space":10240,"Type":"FileSystem"}]}'

2. Copy the LatestVersionArn of the logger definition from the output. You use this value to
add the logger definition version to the group version that you deploy to the core.

Step 5: Get the ARN of your core definition version

Get the ARN of the core definition version to add to your new group version. To deploy a group
version, it must reference a core definition version that contains exactly one core.

1. Get the IDs of the target Greengrass group and group version. This procedure assumes that
this is the latest group and group version. The following query returns the most recently
created group.

aws greengrass list-groups --query "reverse(sort_by(Groups, &CreationTimestamp))
[0]"

Or, you can query by name. Group names are not required to be unique, so multiple groups
might be returned.

aws greengrass list-groups --query "Groups[?Name=='MyGroup']"

Note

You can also find these values in the AWS IoT console. The group ID is displayed on the
group's Settings page. Group version IDs are displayed on the group's Deployments
tab.

Get the ARN of your core definition version 554

AWS IoT Greengrass Developer Guide, Version 1

2. Copy the Id of the target group from the output. You use this to get the core definition
version and when you deploy the group.

3. Copy the LatestVersion from the output, which is the ID of the last version added to the
group. You use this to get the core definition version.

4. Get the ARN of the core definition version:

a. Get the group version.

• Replace group-id with the Id that you copied for the group.

• Replace group-version-id with the LatestVersion that you copied for the group.

aws greengrass get-group-version \
--group-id group-id \
--group-version-id group-version-id

b. Copy the CoreDefinitionVersionArn from the output. You use this value to add the
core definition version to the group version that you deploy to the core.

Step 6: Create a group version

Now, you're ready to create a group version that contains the entities that you want to deploy. You
do this by creating a group version that references the target version of each component type.
For this tutorial, you include a core definition version, a function definition version, and a logger
definition version.

1. Create a group version.

• Replace group-id with the Id that you copied for the group.

• Replace core-definition-version-arn with the CoreDefinitionVersionArn that
you copied for the core definition version.

• Replace function-definition-version-arn with the LatestVersionArn that you
copied for your new function definition version.

• Replace logger-definition-version-arn with the LatestVersionArn that you
copied for your new logger definition version.

aws greengrass create-group-version \

Create a group version 555

AWS IoT Greengrass Developer Guide, Version 1

--group-id group-id \
--core-definition-version-arn core-definition-version-arn \
--function-definition-version-arn function-definition-version-arn \
--logger-definition-version-arn logger-definition-version-arn

2. Copy the Version from the output. This is the ID of the new group version.

Step 7: Create a deployment

Deploy the group to the core device.

1. Make sure that the AWS IoT Greengrass core is running. Run the following commands in your
Raspberry Pi terminal, as needed.

a. To check whether the daemon is running:

ps aux | grep -E 'greengrass.*daemon'

If the output contains a root entry for /greengrass/ggc/packages/ggc-version/
bin/daemon, then the daemon is running.

Note

The version in the path depends on the AWS IoT Greengrass Core software version
that's installed on your core device.

b. To start the daemon:

cd /greengrass/ggc/core/
sudo ./greengrassd start

2. Create a deployment.

• Replace group-id with the Id that you copied for the group.

• Replace group-version-id with the Version that you copied for the new group version.

aws greengrass create-deployment \
--deployment-type NewDeployment \
--group-id group-id \

Create a deployment 556

AWS IoT Greengrass Developer Guide, Version 1

--group-version-id group-version-id

3. Copy the DeploymentId from the output.

4. Get the deployment status.

• Replace group-id with the Id that you copied for the group.

• Replace deployment-id with the DeploymentId that you copied for the deployment.

aws greengrass get-deployment-status \
--group-id group-id \
--deployment-id deployment-id

If the status is Success, the deployment was successful. For troubleshooting help, see
Troubleshooting.

Step 8: Test the application

The TransferStream Lambda function generates simulated device data. It writes data to a
stream that stream manager exports to the target Kinesis data stream.

1. In the Amazon Kinesis console, under Kinesis data streams, choose MyKinesisStream.

Note

If you ran the tutorial without a target Kinesis data stream, check the log file
for the stream manager (GGStreamManager). If it contains export stream
MyKinesisStream doesn't exist in an error message, then the test is successful.
This error means that the service tried to export to the stream but the stream doesn't
exist.

2. On the MyKinesisStream page, choose Monitoring. If the test is successful, you should see
data in the Put Records charts. Depending on your connection, it might take a minute before
the data is displayed.

Test the application 557

AWS IoT Greengrass Developer Guide, Version 1

Important

When you're finished testing, delete the Kinesis data stream to avoid incurring more
charges.
Or, run the following commands to stop the Greengrass daemon. This prevents the
core from sending messages until you're ready to continue testing.

cd /greengrass/ggc/core/
sudo ./greengrassd stop

3. Remove the TransferStream Lambda function from the core.

a. Follow the section called “Create a group version” to create a new group version. but
remove the --function-definition-version-arn option in the create-group-
version command. Or, create a function definition version that doesn't include the
TransferStream Lambda function.

Note

By omitting the system GGStreamManager Lambda function from the deployed
group version, you disable stream management on the core.

b. Follow the section called “Create a deployment” to deploy the new group version.

To view logging information or troubleshoot issues with streams, check the logs for the
TransferStream and GGStreamManager functions. You must have root permissions to read
AWS IoT Greengrass logs on the file system.

• TransferStream writes log entries to greengrass-root/ggc/var/log/
user/region/account-id/TransferStream.log.

• GGStreamManager writes log entries to greengrass-root/ggc/var/log/system/
GGStreamManager.log.

If you need more troubleshooting information, you can set the Lambda logging level to DEBUG and
then create and deploy a new group version.

Test the application 558

AWS IoT Greengrass Developer Guide, Version 1

See also

• Manage data streams

• the section called “Use StreamManagerClient to work with streams”

• the section called “Export configurations for supported AWS Cloud destinations”

• the section called “Configure stream manager”

• the section called “Export data streams (console)”

• AWS Identity and Access Management (IAM) commands in the AWS CLI Command Reference

• AWS Lambda commands in the AWS CLI Command Reference

• AWS IoT Greengrass commands in the AWS CLI Command Reference

See also 559

https://docs.aws.amazon.com/cli/latest/reference/iam
https://docs.aws.amazon.com/cli/latest/reference/lambda
https://docs.aws.amazon.com/cli/latest/reference/greengrass/index.html

AWS IoT Greengrass Developer Guide, Version 1

Deploy secrets to the AWS IoT Greengrass core

This feature is available for AWS IoT Greengrass Core v1.7 and later.

AWS IoT Greengrass lets you authenticate with services and applications from Greengrass devices
without hard-coding passwords, tokens, or other secrets.

AWS Secrets Manager is a service that you can use to securely store and manage your secrets in the
cloud. AWS IoT Greengrass extends Secrets Manager to Greengrass core devices, so your connectors
and Lambda functions can use local secrets to interact with services and applications. For example,
the Twilio Notifications connector uses a locally stored authentication token.

To integrate a secret into a Greengrass group, you create a group resource that references the
Secrets Manager secret. This secret resource references the cloud secret by ARN. To learn how to
create, manage, and use secret resources, see the section called “Work with secret resources”.

AWS IoT Greengrass encrypts your secrets while in transit and at rest. During group deployment,
AWS IoT Greengrass fetches the secret from Secrets Manager and creates a local, encrypted copy
on the Greengrass core. After you rotate your cloud secrets in Secrets Manager, redeploy the group
to propagate the updated values to the core.

The following diagram shows the high-level process of deploying a secret to the core. Secrets are
encrypted in transit and at rest.

Using AWS IoT Greengrass to store your secrets locally offers these advantages:

560

AWS IoT Greengrass Developer Guide, Version 1

• Decoupled from code (not hard-coded). This supports centrally managed credentials and helps
protect sensitive data from the risk of compromise.

• Available for offline scenarios. Connectors and functions can securely access local services and
software when disconnected from the internet.

• Controlled access to secrets. Only authorized connectors and functions in the group can access
your secrets. AWS IoT Greengrass uses private key encryption to secure your secrets. Secrets
are encrypted in transit and at rest. For more information, see the section called “Secrets
encryption”.

• Controlled rotation. After you rotate your secrets in Secrets Manager, redeploy the Greengrass
group to update the local copies of your secrets. For more information, see the section called
“Creating and managing secrets”.

Important

AWS IoT Greengrass doesn't automatically update the values of local secrets after cloud
versions are rotated. To update local values, you must redeploy the group.

Secrets encryption

AWS IoT Greengrass encrypts secrets in transit and at rest.

Important

Make sure that your user-defined Lambda functions handle secrets securely and don't
log any any sensitive data that's stored in the secret. For more information, see Mitigate
the Risks of Logging and Debugging Your Lambda Function in the AWS Secrets Manager
User Guide. Although this documentation specifically refers to rotation functions, the
recommendation also applies to Greengrass Lambda functions.

Encryption in transit

AWS IoT Greengrass uses Transport Layer Security (TLS) to encrypt all communication over the
internet and local network. This protects secrets while in transit, which occurs when secrets are
retrieved from Secrets Manager and deployed to the core. For supported TLS cipher suites, see
the section called “TLS cipher suites support”.

Secrets encryption 561

https://docs.aws.amazon.com/secretsmanager/latest/userguide/best-practices.html#best-practice_lamda-debug-statements
https://docs.aws.amazon.com/secretsmanager/latest/userguide/best-practices.html#best-practice_lamda-debug-statements

AWS IoT Greengrass Developer Guide, Version 1

Encryption at rest

AWS IoT Greengrass uses the private key specified in config.json for encryption of the
secrets that are stored on the core. For this reason, secure storage of the private key is critical
for protecting local secrets. In the AWS shared responsibility model, it's the responsibility of the
customer to guarantee secure storage of the private key on the core device.

AWS IoT Greengrass supports two modes of private key storage:

• Using hardware security modules. For more information, see the section called “Hardware
security integration”.

Note

Currently, AWS IoT Greengrass supports only the PKCS#1 v1.5 padding mechanism for
encryption and decryption of local secrets when using hardware-based private keys. If
you're following vendor-provided instructions to manually generate hardware-based
private keys, make sure to choose PKCS#1 v1.5. AWS IoT Greengrass doesn't support
Optimal Asymmetric Encryption Padding (OAEP).

• Using file system permissions (default).

The private key is used to secure the data key, which is used to encrypt local secrets. The data
key is rotated with each group deployment.

The AWS IoT Greengrass core is the only entity that has access to the private key. Greengrass
connectors or Lambda functions that are affiliated with a secret resource get the value of the
secret from the core.

Requirements

These are the requirements for local secret support:

• You must be using AWS IoT Greengrass Core v1.7 or later.

• To get the values of local secrets, your user-defined Lambda functions must use AWS IoT
Greengrass Core SDK v1.3.0 or later.

• The private key used for local secrets encryption must be specified in the Greengrass
configuration file. By default, AWS IoT Greengrass uses the core private key stored in the file

Requirements 562

https://aws.amazon.com/compliance/shared-responsibility-model/
https://tools.ietf.org/html/rfc2313

AWS IoT Greengrass Developer Guide, Version 1

system. To provide your own private key, see the section called “Specify the private key for secret
encryption”. Only the RSA key type is supported.

Note

Currently, AWS IoT Greengrass supports only the PKCS#1 v1.5 padding mechanism for
encryption and decryption of local secrets when using hardware-based private keys. If
you're following vendor-provided instructions to manually generate hardware-based
private keys, make sure to choose PKCS#1 v1.5. AWS IoT Greengrass doesn't support
Optimal Asymmetric Encryption Padding (OAEP).

• AWS IoT Greengrass must be granted permission to get your secret values. This allows AWS IoT
Greengrass to fetch the values during group deployment. If you're using the default Greengrass
service role, then AWS IoT Greengrass already has access to secrets with names that start with
greengrass-. To customize access, see the section called “Allow AWS IoT Greengrass to get secret
values”.

Note

We recommend that you use this naming convention to identify the secrets that AWS
IoT Greengrass is allowed to access, even if you customize permissions. The console uses
different permissions to read your secrets, so it's possible that you can select secrets in
the console that AWS IoT Greengrass doesn't have permission to fetch. Using a naming
convention can help avoid a permission conflict, which results in a deployment error.

Specify the private key for secret encryption

In this procedure, you provide the path to a private key that's used for local secret encryption. This
must be an RSA key with a minimum length of 2048 bits. For more information about private keys
used on the AWS IoT Greengrass core, see the section called “Security principals”.

AWS IoT Greengrass supports two modes of private key storage: hardware-based or file system-
based (default). For more information, see the section called “Secrets encryption”.

Follow this procedure only if you want to change the default configuration, which uses the core
private key in the file system. These steps are written with the assumption that you created your
group and core as described in Module 2 of the Getting Started tutorial.

Specify the private key for secret encryption 563

https://tools.ietf.org/html/rfc2313

AWS IoT Greengrass Developer Guide, Version 1

1. Open the config.json file that's located in the /greengrass-root/config directory.

Note

greengrass-root represents the path where the AWS IoT Greengrass Core software
is installed on your device. Typically, this is the /greengrass directory.

2. In the crypto.principals.SecretsManager object, for the privateKeyPath property,
enter the path of the private key:

• If your private key is stored in the file system, specify the absolute path to the key. For
example:

"SecretsManager" : {
 "privateKeyPath" : "file:///somepath/hash.private.key"
}

• If your private key is stored in a hardware security module (HSM), specify the path using the
RFC 7512 PKCS#11 URI scheme. For example:

"SecretsManager" : {
 "privateKeyPath" : "pkcs11:object=private-key-label;type=private"
}

For more information, see the section called “Hardware security configuration”.

Note

Currently, AWS IoT Greengrass supports only the PKCS#1 v1.5 padding mechanism
for encryption and decryption of local secrets when using hardware-based private
keys. If you're following vendor-provided instructions to manually generate
hardware-based private keys, make sure to choose PKCS#1 v1.5. AWS IoT Greengrass
doesn't support Optimal Asymmetric Encryption Padding (OAEP).

Allow AWS IoT Greengrass to get secret values

In this procedure, you add an inline policy to the Greengrass service role that allows AWS IoT
Greengrass to get the values of your secrets.

Allow AWS IoT Greengrass to get secret values 564

https://tools.ietf.org/html/rfc7512
https://tools.ietf.org/html/rfc2313

AWS IoT Greengrass Developer Guide, Version 1

Follow this procedure only if you want to grant AWS IoT Greengrass custom
permissions to your secrets or if your Greengrass service role doesn't include
the AWSGreengrassResourceAccessRolePolicy managed policy.
AWSGreengrassResourceAccessRolePolicy grants access to secrets with names that start
with greengrass-.

1. Run the following CLI command to get the ARN of the Greengrass service role:

aws greengrass get-service-role-for-account --region region

The returned ARN contains the role name.

{
 "AssociatedAt": "time-stamp",
 "RoleArn": "arn:aws:iam::account-id:role/service-role/role-name"
}

You use the ARN or name in the following step.

2. Add an inline policy that allows the secretsmanager:GetSecretValue action. For
instructions, see Adding and removing IAM policies in the IAM User Guide.

You can grant granular access by explicitly listing secrets or using a wildcard * naming scheme,
or you can grant conditional access to versioned or tagged secrets. For example, the following
policy allows AWS IoT Greengrass to read only the specified secrets.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:region:account-id:secret:greengrass-
SecretA-abc",
 "arn:aws:secretsmanager:region:account-id:secret:greengrass-
SecretB-xyz"
]
 }

Allow AWS IoT Greengrass to get secret values 565

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

AWS IoT Greengrass Developer Guide, Version 1

]
}

Note

If you use a customer-managed AWS KMS key to encrypt secrets, your Greengrass
service role must also allow the kms:Decrypt action.

For more information about IAM policies for Secrets Manager, see Authentication and access
control for AWS Secrets Manager and Actions, resources, and context keys you can use in an IAM
policy or secret policy for AWS Secrets Manager in the AWS Secrets Manager User Guide.

See also

• What is AWS Secrets Manager? in the AWS Secrets Manager User Guide

• PKCS #1: RSA Encryption Version 1.5

Working with secret resources

AWS IoT Greengrass uses secret resources to integrate secrets from AWS Secrets Manager into
a Greengrass group. A secret resource is a reference to a Secrets Manager secret. For more
information, see Deploy secrets to the core.

On the AWS IoT Greengrass core device, connectors and Lambda functions can use the secret
resource to authenticate with services and applications, without hard-coding passwords, tokens, or
other credentials.

Creating and managing secrets

In a Greengrass group, a secret resource references the ARN of a Secrets Manager secret. When the
secret resource is deployed to the core, the value of the secret is encrypted and made available to
affiliated connectors and Lambda functions. For more information, see the section called “Secrets
encryption”.

You use Secrets Manager to create and manage the cloud versions of your secrets. You use AWS IoT
Greengrass to create, manage, and deploy your secret resources.

See also 566

https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://tools.ietf.org/html/rfc2313

AWS IoT Greengrass Developer Guide, Version 1

Important

We recommend that you follow the best practice of rotating your secrets in Secrets
Manager. Then, deploy the Greengrass group to update the local copies of your secrets.
For more information, see Rotating your AWS Secrets Manager secrets in the AWS Secrets
Manager User Guide.

To make a secret available on the Greengrass core

1. Create a secret in Secrets Manager. This is the cloud version of your secret, which is centrally
stored and managed in Secrets Manager. Management tasks include rotating secret values and
applying resource policies.

2. Create a secret resource in AWS IoT Greengrass. This is a type of group resource that references
the cloud secret by ARN. You can reference a secret only once per group.

3. Configure your connector or Lambda function. You must affiliate the resource with a connector
or function by specifying corresponding parameters or properties. This allows them to get the
value of the locally deployed secret resource. For more information, see the section called “Using
local secrets”.

4. Deploy the Greengrass group. During deployment, AWS IoT Greengrass fetches the value of the
cloud secret and creates (or updates) the local secret on the core.

Secrets Manager logs an event in AWS CloudTrail each time that AWS IoT Greengrass retrieves a
secret value. AWS IoT Greengrass doesn't log any events related to the deployment or usage of
local secrets. For more information about Secrets Manager logging, see Monitor the use of your
AWS Secrets Manager secrets in the AWS Secrets Manager User Guide.

Including staging labels in secret resources

Secrets Manager uses staging labels to identify specific versions of a secret value. Staging labels
can be system-defined or user-defined. Secrets Manager assigns the AWSCURRENT label to the
most recent version of the secret value. Staging labels are commonly used to manage secrets
rotation. For more information about Secrets Manager versioning, see Key terms and concepts for
AWS Secrets Manager in the AWS Secrets Manager User Guide.

Secret resources always include the AWSCURRENT staging label, and they can optionally include
other staging labels if they're required by a Lambda function or connector. During group

Creating and managing secrets 567

https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/monitoring.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/monitoring.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/terms-concepts.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/terms-concepts.html

AWS IoT Greengrass Developer Guide, Version 1

deployment, AWS IoT Greengrass retrieves the values of the staging labels that are referenced in
the group, and then creates or updates the corresponding values on the core.

Create and manage secret resources (console)

Creating secret resources (console)

In the AWS IoT Greengrass console, you create and manage secret resources from the Secrets tab
on the group's Resources page. For tutorials that create a secret resource and add it to a group, see
the section called “How to create a secret resource (console)” and the section called “Get started
with connectors (console)”.

Note

Alternatively, the console allows you to create a secret and secret resource when you
configure a connector or Lambda function. You can do this from the connector's Configure
parameters page or the Lambda function's Resources page.

Managing secret resources (console)

Management tasks for the secret resources in your Greengrass group include adding secret
resources to the group, removing secret resources from the group, and changing the set of staging
labels that are included in a secret resource.

If you point to a different secret from Secrets Manager, you must also edit any connectors that use
the secret:

Creating and managing secrets 568

AWS IoT Greengrass Developer Guide, Version 1

1. On the group configuration page, choose Connectors.

2. From the connector's contextual menu, choose Edit.

3. The Edit parameters page displays a message to inform you that the secret ARN changed. To
confirm the change, choose Save.

If you delete a secret in Secrets Manager, remove the corresponding secret resource from the group
and from connectors and Lambda functions that reference it. Otherwise, during group deployment,
AWS IoT Greengrass returns an error that the secret can't be found. Also update your Lambda
function code as needed.

Create and manage secret resources (CLI)

Creating secret resources (CLI)

In the AWS IoT Greengrass API, a secret is a type of group resource. The following example
creates a resource definition with an initial version that includes a secret resource named
MySecretResource. For a tutorial that creates a secret resource and adds it to a group version,
see the section called “Get started with connectors (CLI)”.

The secret resource references the ARN of the corresponding Secrets Manager secret and includes
two staging labels in addition to AWSCURRENT, which is always included.

aws greengrass create-resource-definition --name MyGreengrassResources --initial-
version '{
 "Resources": [
 {
 "Id": "my-resource-id",
 "Name": "MySecretResource",
 "ResourceDataContainer": {
 "SecretsManagerSecretResourceData": {
 "ARN": "arn:aws:secretsmanager:us-
west-2:123456789012:secret:greengrass-SomeSecret-KUj89s",
 "AdditionalStagingLabelsToDownload": [
 "Label1",
 "Label2"
]
 }
 }
 }
]

Creating and managing secrets 569

AWS IoT Greengrass Developer Guide, Version 1

}'

Managing secret resources (CLI)

Management tasks for the secret resources in your Greengrass group include adding secret
resources to the group, removing secret resources from the group, and changing the set of staging
labels that are included in a secret resource.

In the AWS IoT Greengrass API, these changes are implemented by using versions.

The AWS IoT Greengrass API uses versions to manage groups. Versions are immutable, so to add or
change group components—for example, the group's client devices, functions, and resources—you
must create versions of new or updated components. Then, you create and deploy a group version
that contains the target version of each component. To learn more about groups, see the section
called “AWS IoT Greengrass groups”.

For example, to change the set of staging labels for a secret resource:

1. Create a resource definition version that contains the updated secret resource. The following
example adds a third staging label to the secret resource from the previous section.

Note

To add more resources to the version, include them in the Resources array.

aws greengrass create-resource-definition --name MyGreengrassResources --initial-
version '{
 "Resources": [
 {
 "Id": "my-resource-id",
 "Name": "MySecretResource",
 "ResourceDataContainer": {
 "SecretsManagerSecretResourceData": {
 "ARN": "arn:aws:secretsmanager:us-
west-2:123456789012:secret:greengrass-SomeSecret-KUj89s",
 "AdditionalStagingLabelsToDownload": [
 "Label1",
 "Label2",
 "Label3"
]

Creating and managing secrets 570

AWS IoT Greengrass Developer Guide, Version 1

 }
 }
 }
]
}'

2. If the ID of the secret resource is changed, update connectors and functions that use the
secret resource. In the new versions, update the parameter or property that corresponds to
the resource ID. If the ARN of the secret is changed, you must also update the corresponding
parameter for any connectors that use the secret.

Note

The resource ID is an arbitrary identifier that's provided by the customer.

3. Create a group version that contains the target version of each component that you want to
send to the core.

4. Deploy the group version.

For a tutorial that shows how to create and deploy secret resources, connectors, and functions, see
the section called “Get started with connectors (CLI)”.

If you delete a secret in Secrets Manager, remove the corresponding secret resource from the group
and from connectors and Lambda functions that reference it. Otherwise, during group deployment,
AWS IoT Greengrass returns an error that the secret can't be found. Also update your Lambda
function code as needed. You can remove a local secret by deploying a resource definition version
that doesn't contain the corresponding secret resource.

Using local secrets in connectors and Lambda functions

Greengrass connectors and Lambda functions use local secrets to interact with services and
applications. The AWSCURRENT value is used by default, but values for other staging labels
included in the secret resource are also available.

Connectors and functions must be configured before they can access local secrets. This affiliates
the secret resource with connector or function.

Using local secrets 571

AWS IoT Greengrass Developer Guide, Version 1

Connectors

If a connector requires access to a local secret, it provides parameters that you configure with
the information it needs to access the secret.

• To learn how to do this in the AWS IoT Greengrass console, see the section called “Get started
with connectors (console)”.

• To learn how to do this with the AWS IoT Greengrass CLI, see the section called “Get started
with connectors (CLI)”.

For information about requirements for individual connectors, see the section called “AWS-
provided Greengrass connectors”.

The logic for accessing and using the secret is built into the connector.

Lambda functions

To allow a Greengrass Lambda function to access a local secret, you configure the function's
properties.

• To learn how to do this in the AWS IoT Greengrass console, see the section called “How to
create a secret resource (console)”.

• To do this in the AWS IoT Greengrass API, you provide the following information in the
ResourceAccessPolicies property.

• ResourceId: The ID of the secret resource in the Greengrass group. This is the resource
that references the ARN of the corresponding Secrets Manager secret.

• Permission: The type of access that the function has to the resource. Only ro (read-only)
permission is supported for secret resources.

The following example creates a Lambda function that can access the MyApiKey secret
resource.

aws greengrass create-function-definition --name MyGreengrassFunctions --initial-
version '{
 "Functions": [
 {
 "Id": "MyLambdaFunction",
 "FunctionArn": "arn:aws:lambda:us-
west-2:123456789012:function:myFunction:1",
 "FunctionConfiguration": {
 "Pinned": false,
 "MemorySize": 16384,

Using local secrets 572

AWS IoT Greengrass Developer Guide, Version 1

 "Timeout": 10,
 "Environment": {
 "ResourceAccessPolicies": [
 {
 "ResourceId": "MyApiKey",
 "Permission": "ro"
 }
],
 "AccessSysfs": true
 }
 }
 }
]
}'

To access local secrets at runtime, Greengrass Lambda functions call the get_secret_value
function from the secretsmanager client in the AWS IoT Greengrass Core SDK (v1.3.0 or
later).

The following example shows how to use the AWS IoT Greengrass Core SDK for Python to get
a secret. It passes the name of the secret to the get_secret_value function. SecretId can
be the name or ARN of the Secrets Manager secret (not the secret resource).

import greengrasssdk

secrets_client = greengrasssdk.client("secretsmanager")
secret_name = "greengrass-MySecret-abc"

def function_handler(event, context):
 response = secrets_client.get_secret_value(SecretId=secret_name)
 secret = response.get("SecretString")

For text type secrets, the get_secret_value function returns a string. For binary type
secrets, it returns a base64-encoded string.

Using local secrets 573

AWS IoT Greengrass Developer Guide, Version 1

Important

Make sure that your user-defined Lambda functions handle secrets securely and
don't log any any sensitive data that's stored in the secret. For more information,
see Mitigate the Risks of Logging and Debugging Your Lambda Function in the
AWS Secrets Manager User Guide. Although this documentation specifically refers to
rotation functions, the recommendation also applies to Greengrass Lambda functions.

The current value of the secret is returned by default. This is the version that the
AWSCURRENT staging label is attached to. To access a different version, pass the name of the
corresponding staging label for the optional VersionStage argument. For example:

import greengrasssdk

secrets_client = greengrasssdk.client("secretsmanager")
secret_name = "greengrass-TestSecret"
secret_version = "MyTargetLabel"

Get the value of a specific secret version
def function_handler(event, context):
 response = secrets_client.get_secret_value(
 SecretId=secret_name, VersionStage=secret_version
)
 secret = response.get("SecretString")

For another example function that calls get_secret_value, see Create a Lambda function
deployment package.

How to create a secret resource (console)

This feature is available for AWS IoT Greengrass Core v1.7 and later.

How to create a secret resource (console) 574

https://docs.aws.amazon.com/secretsmanager/latest/userguide/best-practices.html#best-practice_lamda-debug-statements

AWS IoT Greengrass Developer Guide, Version 1

This tutorial shows how to use the AWS Management Console to add a secret resource to a
Greengrass group. A secret resource is a reference to a secret from AWS Secrets Manager. For more
information, see Deploy secrets to the core.

On the AWS IoT Greengrass core device, connectors and Lambda functions can use the secret
resource to authenticate with services and applications, without hard-coding passwords, tokens, or
other credentials.

In this tutorial, you start by creating a secret in the AWS Secrets Manager console. Then, in the
AWS IoT Greengrass console, you add a secret resource to a Greengrass group from the group's
Resources page. This secret resource references the Secrets Manager secret. Later, you attach the
secret resource to a Lambda function, which allows the function to get the value of the local secret.

Note

Alternatively, the console allows you to create a secret and secret resource when you
configure a connector or Lambda function. You can do this from the connector's Configure
parameters page or the Lambda function's Resources page.
Only connectors that contain parameters for secrets can access secrets. For a tutorial that
shows how the Twilio Notifications connector uses a locally stored authentication token,
see the section called “Get started with connectors (console)”.

The tutorial contains the following high-level steps:

1. Create a Secrets Manager secret

2. Add a secret resource to a group

3. Create a Lambda function deployment package

4. Create a Lambda function

5. Add the function to the group

6. Attach the secret resource to the function

7. Add subscriptions to the group

8. Deploy the group

9. the section called “Test the Lambda function”

The tutorial should take about 20 minutes to complete.

How to create a secret resource (console) 575

AWS IoT Greengrass Developer Guide, Version 1

Prerequisites

To complete this tutorial, you need:

• A Greengrass group and a Greengrass core (v1.7 or later). To learn how to create a Greengrass
group and core, see Getting started with AWS IoT Greengrass. The Getting Started tutorial also
includes steps for installing the AWS IoT Greengrass Core software.

• AWS IoT Greengrass must be configured to support local secrets. For more information, see
Secrets Requirements.

Note

This requirement includes allowing access to your Secrets Manager secrets. If you're
using the default Greengrass service role, Greengrass has permission to get the values of
secrets with names that start with greengrass-.

• To get the values of local secrets, your user-defined Lambda functions must use AWS IoT
Greengrass Core SDK v1.3.0 or later.

Step 1: Create a Secrets Manager secret

In this step, you use the AWS Secrets Manager console to create a secret.

1. Sign in to the AWS Secrets Manager console.

Note

For more information about this process, see Step 1: Create and store your secret in
AWS Secrets Manager in the AWS Secrets Manager User Guide.

2. Choose Store a new secret.

3. Under Choose secret type, choose Other type of secret.

4. Under Specify the key-value pairs to be stored for this secret:

• For Key, enter test.

• For Value, enter abcdefghi.

5. Keep aws/secretsmanager selected for the encryption key, and then choose Next.

Prerequisites 576

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/tutorials_basic.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/tutorials_basic.html

AWS IoT Greengrass Developer Guide, Version 1

Note

You aren't charged by AWS KMS if you use the default AWS managed key that Secrets
Manager creates in your account.

6. For Secret name, enter greengrass-TestSecret, and then choose Next.

Note

By default, the Greengrass service role allows AWS IoT Greengrass to get the value
of secrets with names that start with greengrass-. For more information, see secrets
requirements.

7. This tutorial doesn't require rotation, so choose disable automatic rotation, and then choose
Next.

8. On the Review page, review your settings, and then choose Store.

Next, you create a secret resource in your Greengrass group that references the secret.

Step 2: Add a secret resource to a Greengrass group

In this step, you configure a group resource that references the Secrets Manager secret.

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose the group that you want to add the secret resource to.

3. On the group configuration page, choose the Resources tab, and then scroll down to the
Secrets section. The Secrets section displays the secret resources that belong to the group.
You can add, edit, and remove secret resources from this section.

Note

Alternatively, the console allows you to create a secret and secret resource when
you configure a connector or Lambda function. You can do this from the connector's
Configure parameters page or the Lambda function's Resources page.

4. Choose Add under the Secrets section.

Add a secret resource to a group 577

AWS IoT Greengrass Developer Guide, Version 1

5. On the Add a secret resource page, enter MyTestSecret in the Resource name.

6. Under Secret, choose greengrass-TestSecret.

7. In the Select labels (Optional) section, the AWSCURRENT staging label represents the latest
version of the secret. This label is always included in a secret resource.

Note

This tutorial requires the AWSCURRENT label only. You can optionally include labels
that are required by your Lambda function or connector.

8. Choose Add resource.

Step 3: Create a Lambda function deployment package

To create a Lambda function, you must first create a Lambda function deployment package that
contains the function code and dependencies. Greengrass Lambda functions require the AWS
IoT Greengrass Core SDK for tasks such as communicating with MQTT messages in the core
environment and accessing local secrets. This tutorial creates a Python function, so you use the
Python version of the SDK in the deployment package.

Note

To get the values of local secrets, your user-defined Lambda functions must use AWS IoT
Greengrass Core SDK v1.3.0 or later.

1. From the AWS IoT Greengrass Core SDK downloads page, download the AWS IoT Greengrass
Core SDK for Python to your computer.

2. Unzip the downloaded package to get the SDK. The SDK is the greengrasssdk folder.

3. Save the following Python code function in a local file named secret_test.py.

import greengrasssdk

secrets_client = greengrasssdk.client("secretsmanager")
iot_client = greengrasssdk.client("iot-data")
secret_name = "greengrass-TestSecret"
send_topic = "secrets/output"

Create a Lambda function deployment package 578

AWS IoT Greengrass Developer Guide, Version 1

def function_handler(event, context):
 """
 Gets a secret and publishes a message to indicate whether the secret was
 successfully retrieved.
 """
 response = secrets_client.get_secret_value(SecretId=secret_name)
 secret_value = response.get("SecretString")
 message = (
 f"Failed to retrieve secret {secret_name}."
 if secret_value is None
 else f"Successfully retrieved secret {secret_name}."
)
 iot_client.publish(topic=send_topic, payload=message)
 print("Published: " + message)

The get_secret_value function supports the name or ARN of the Secrets Manager secret
for the SecretId value. This example uses the secret name. For this example secret, AWS IoT
Greengrass returns the key-value pair: {"test":"abcdefghi"}.

Important

Make sure that your user-defined Lambda functions handle secrets securely and
don't log any any sensitive data that's stored in the secret. For more information,
see Mitigate the Risks of Logging and Debugging Your Lambda Function in the AWS
Secrets Manager User Guide. Although this documentation specifically refers to rotation
functions, the recommendation also applies to Greengrass Lambda functions.

4. Zip the following items into a file named secret_test_python.zip. When you create the
ZIP file, include only the code and dependencies, not the containing folder.

• secret_test.py. App logic.

• greengrasssdk. Required library for all Python Greengrass Lambda functions.

This is your Lambda function deployment package.

Create a Lambda function deployment package 579

https://docs.aws.amazon.com/secretsmanager/latest/userguide/best-practices.html#best-practice_lamda-debug-statements

AWS IoT Greengrass Developer Guide, Version 1

Step 4: Create a Lambda function

In this step, you use the AWS Lambda console to create a Lambda function and configure it to use
your deployment package. Then, you publish a function version and create an alias.

1. First, create the Lambda function.

a. In the AWS Management Console, choose Services, and open the AWS Lambda console.

b. Choose Create function and then choose Author from scratch.

c. In the Basic information section, use the following values:

• For Function name, enter SecretTest.

• For Runtime, choose Python 3.7.

• For Permissions, keep the default setting. This creates an execution role that grants
basic Lambda permissions. This role isn't used by AWS IoT Greengrass.

d. At the bottom of the page, choose Create function.

2. Next, register the handler and upload your Lambda function deployment package.

a. On the Code tab, under Code source, choose Upload from. From the dropdown, choose
.zip file.

b. Choose Upload, then choose your secret_test_python.zip deployment package.
Then, choose Save.

c. On the Code tab for the function, under Runtime settings, choose Edit, and then enter
the following values.

• For Runtime, choose Python 3.7.

• For Handler, enter secret_test.function_handler

d. Choose Save.

Create a Lambda function 580

AWS IoT Greengrass Developer Guide, Version 1

Note

The Test button on the AWS Lambda console doesn't work with this function. The
AWS IoT Greengrass Core SDK doesn't contain modules that are required to run
your Greengrass Lambda functions independently in the AWS Lambda console.
These modules (for example, greengrass_common) are supplied to the functions
after they are deployed to your Greengrass core.

3. Now, publish the first version of your Lambda function and create an alias for the version.

Note

Greengrass groups can reference a Lambda function by alias (recommended) or by
version. Using an alias makes it easier to manage code updates because you don't
have to change your subscription table or group definition when the function code is
updated. Instead, you just point the alias to the new function version.

a. From the Actions menu, choose Publish new version.

b. For Version description, enter First version, and then choose Publish.

c. On the SecretTest: 1 configuration page, from the Actions menu, choose Create alias.

d. On the Create a new alias page, use the following values:

• For Name, enter GG_SecretTest.

• For Version, choose 1.

Note

AWS IoT Greengrass doesn't support Lambda aliases for $LATEST versions.

e. Choose Create.

Now you're ready to add the Lambda function to your Greengrass group and attach the secret
resource.

Create a Lambda function 581

https://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS IoT Greengrass Developer Guide, Version 1

Step 5: Add the Lambda function to the Greengrass group

In this step, you add the Lambda function to the Greengrass group in the AWS IoT console.

1. On the group configuration page, choose the Lambda functions tab.

2. Under the My Lambda functions section, choose Add.

3. For the Lambda function, choose SecretTest.

4. For the Lambda function version, choose the alias to the version that you published.

Next, configure the lifecycle of the Lambda function.

1. In the Lambda function configuration section, make the following updates.

Note

We recommend that you run your Lambda function without containerization unless
your business case requires it. This helps enable access to your device GPU and camera
without configuring device resources. If you run without containerization, you must
also grant root access to your AWS IoT Greengrass Lambda functions.

a. To run without containerization:

• For System user and group, choose Another user ID/group ID. For System user
ID, enter 0. For System group ID, enter 0.

This allows your Lambda function to run as root. For more information about running as
root, see the section called “Setting the default access identity for Lambda functions in
a group”.

Tip

You also must update your config.json file to grant root access to your
Lambda function. For the procedure, see the section called “Running a Lambda
function as root”.

• For Lambda function containerization, choose No container.

Add the function to the group 582

AWS IoT Greengrass Developer Guide, Version 1

For more information about running without containerization, see the section called
“Considerations when choosing Lambda function containerization”.

• For Timeout, enter 10 seconds.

• For Pinned, choose True.

For more information, see the section called “Lifecycle configuration”.

• Under Additional Parameter, for Read access to /sys directory, choose Enabled.

b. To run in containerized mode instead:

Note

We do not recommend running in containerized mode unless your business case
requires it.

• For System user and group, choose Use group default.

• For Lambda function containerization, choose Use group default.

• For Memory limit, enter 1024 MB.

• For Timeout, enter 10 seconds.

• For Pinned, choose True.

For more information, see the section called “Lifecycle configuration”.

• Under Additional Parameters, for Read access to /sys directory, choose Enabled.

2. Choose Add Lambda function.

Next, associate the secret resource with the function.

Step 6: Attach the secret resource to the Lambda function

In this step, you associate the secret resource to the Lambda function in your Greengrass group.
This associates the resource with the function, which allows the function to get the value of the
local secret.

1. On the group configuration page, choose the Lambda functions tab.

2. Choose the SecretTest function.

Attach the secret resource to the function 583

AWS IoT Greengrass Developer Guide, Version 1

3. On the function's details page, choose Resources.

4. Scroll to the Secrets section and choose Associate.

5. Choose MyTestSecret, and then choose Associate.

Step 7: Add subscriptions to the Greengrass group

In this step, you add subscriptions that allow AWS IoT and the Lambda function to exchange
messages. One subscription allows AWS IoT to invoke the function, and one allows the function to
send output data to AWS IoT.

1. On the group configuration page, choose the Subscriptions tab, and then choose Add
Subscription.

2. Create a subscription that allows AWS IoT to publish messages to the function.

On the group configuration page, choose the Subscriptions tab, and then choose Add
subscription.

3. On the Create a subscription page, configure the source and target, as follows:

a. In Source type, choose Lambda function, and then choose IoT Cloud.

b. In Target type, choose Service, and then choose SecretTest.

c. In the Topic filter, enter secrets/input, and then choose Create subscription.

4. Add a second subscription. Choose the Subscriptions tab, choose Add subscription, and
configure the source and target, as follows:

a. In Source type, choose Services, and then choose SecretTest.

b. In Target type, choose Lambda function, and then choose IoT Cloud.

c. In the Topic filter, enter secrets/output, and then choose Create subscription.

Step 8: Deploy the Greengrass group

Deploy the group to the core device. During deployment, AWS IoT Greengrass fetches the value of
the secret from Secrets Manager and creates a local, encrypted copy on the core.

1. Make sure that the AWS IoT Greengrass core is running. Run the following commands in your
Raspberry Pi terminal, as needed.

Add subscriptions to the group 584

AWS IoT Greengrass Developer Guide, Version 1

a. To check whether the daemon is running:

ps aux | grep -E 'greengrass.*daemon'

If the output contains a root entry for /greengrass/ggc/packages/ggc-version/
bin/daemon, then the daemon is running.

Note

The version in the path depends on the AWS IoT Greengrass Core software version
that's installed on your core device.

b. To start the daemon:

cd /greengrass/ggc/core/
sudo ./greengrassd start

2. On the group configuration page, choose Deploy.

3. a. In the Lambda functions tab, under the System Lambda functions section, select IP
detector and choose Edit.

b. In the Edit IP detector settings dialog box, select Automatically detect and override
MQTT broker endpoints.

c. Choose Save.

This enables devices to automatically acquire connectivity information for the core, such
as IP address, DNS, and port number. Automatic detection is recommended, but AWS IoT
Greengrass also supports manually specified endpoints. You're only prompted for the
discovery method the first time that the group is deployed.

Note

If prompted, grant permission to create the Greengrass service role and associate
it with your AWS account in the current AWS Region. This role allows AWS IoT
Greengrass to access your resources in AWS services.

Deploy the group 585

AWS IoT Greengrass Developer Guide, Version 1

The Deployments page shows the deployment timestamp, version ID, and status. When
completed, the status displayed for the deployment should be Completed.

For troubleshooting help, see Troubleshooting.

Test the Lambda function

1. On the AWS IoT console home page, choose Test.

2. For Subscribe to topic, use the following values, and then choose Subscribe.

Property Value

Subscription topic secrets/output

MQTT payload display Display payloads as strings

3. For Publish to topic, use the following values, and then choose Publish to invoke the function.

Property Value

Topic secrets/input

Message Keep the default message. Publishing a
message invokes the Lambda function, but
the function in this tutorial doesn't process
the message body.

If successful, the function publishes a "Success" message.

See also

• Deploy secrets to the core

Test the Lambda function 586

AWS IoT Greengrass Developer Guide, Version 1

Integrate with services and protocols using Greengrass
connectors

This feature is available for AWS IoT Greengrass Core v1.7 and later.

Connectors in AWS IoT Greengrass are prebuilt modules that make it more efficient to interact with
local infrastructure, device protocols, AWS, and other cloud services. By using connectors, you can
spend less time learning new protocols and APIs and more time focusing on the logic that matters
to your business.

The following diagram shows where connectors can fit into the AWS IoT Greengrass landscape.

Many connectors use MQTT messages to communicate with client devices and Greengrass Lambda
functions in the group, or with AWS IoT and the local shadow service. In the following example, the
Twilio Notifications connector receives MQTT messages from a user-defined Lambda function, uses
a local reference of a secret from AWS Secrets Manager, and calls the Twilio API.

587

AWS IoT Greengrass Developer Guide, Version 1

For tutorials that create this solution, see the section called “Get started with connectors (console)”
and the section called “Get started with connectors (CLI)”.

Greengrass connectors can help you extend device capabilities or create single-purpose devices. By
using connectors, you can:

• Implement reusable business logic.

• Interact with cloud and local services, including AWS and third-party services.

• Ingest and process device data.

• Enable device-to-device calls using MQTT topic subscriptions and user-defined Lambda
functions.

AWS provides a set of Greengrass connectors that simplify interactions with common services and
data sources. These prebuilt modules enable scenarios for logging and diagnostics, replenishment,
industrial data processing, and alarm and messaging. For more information, see the section called
“AWS-provided Greengrass connectors”.

Requirements

To use connectors, keep these points in mind:

• Each connector that you use has requirements that you must meet. These requirements might
include the minimum AWS IoT Greengrass Core software version, device prerequisites, required

Requirements 588

AWS IoT Greengrass Developer Guide, Version 1

permissions, and limits. For more information, see the section called “AWS-provided Greengrass
connectors”.

• A Greengrass group can contain only one configured instance of a given connector. However,
you can use the instance in multiple subscriptions. For more information, see the section called
“Configuration parameters”.

• When the default containerization for the Greengrass group is set to No container, the
connectors in the group must run without containerization. To find connectors that support No
container mode, see the section called “AWS-provided Greengrass connectors”.

Using Greengrass connectors

A connector is a type of group component. Like other group components, such as client devices
and user-defined Lambda functions, you add connectors to groups, configure their settings, and
deploy them to the AWS IoT Greengrass core. Connectors run in the core environment.

You can deploy some connectors as simple standalone applications. For example, the Device
Defender connector reads system metrics from the core device and sends them to AWS IoT Device
Defender for analysis.

You can add other connectors as building blocks in larger solutions. The following example solution
uses the Modbus-RTU Protocol Adapter connector to process messages from sensors and the Twilio
Notifications connector to initiate Twilio messages.

Using Greengrass connectors 589

AWS IoT Greengrass Developer Guide, Version 1

Solutions often include user-defined Lambda functions that sit next to connectors and process
the data that the connector sends or receives. In this example, the TempMonitor function receives
data from Modbus-RTU Protocol Adapter, runs some business logic, and then sends data to Twilio
Notifications.

To create and deploy a solution, you follow this general process:

1. Map out the high-level data flow. Identify the data sources, data channels, services, protocols,
and resources that you need to work with. In the example solution, this includes data over the
Modbus RTU protocol, the physical Modbus serial port, and Twilio.

2. Identify the connectors to include in the solution, and add them to your group. The example
solution uses Modbus-RTU Protocol Adapter and Twilio Notifications. To help you find
connectors that apply to your scenario, and to learn about their individual requirements, see the
section called “AWS-provided Greengrass connectors”.

3. Identify whether user-defined Lambda functions, client devices, or resources are needed, and
then create and add them to the group. This might include functions that contain business logic
or process data into a format required by another entity in the solution. The example solution
uses functions to send Modbus RTU requests and initiate Twilio notifications. It also includes
a local device resource for the Modbus RTU serial port and a secret resource for the Twilio
authentication token.

Note

Secret resources reference passwords, tokens, and other secrets from AWS Secrets
Manager. Secrets can be used by connectors and Lambda functions to authenticate with
services and applications. By default, AWS IoT Greengrass can access secrets with names
that start with "greengrass-". For more information, see Deploy secrets to the core.

4. Create subscriptions that allow the entities in the solution to exchange MQTT messages. If a
connector is used in a subscription, the connector and the message source or target must use
the predefined topic syntax supported by the connector. For more information, see the section
called “Inputs and outputs”.

5. Deploy the group to the Greengrass core.

For information about creating and deploying a connector, see the following tutorials:

• the section called “Get started with connectors (console)”

Using Greengrass connectors 590

AWS IoT Greengrass Developer Guide, Version 1

• the section called “Get started with connectors (CLI)”

Configuration parameters

Many connectors provide parameters that let you customize the behavior or output. These
parameters are used during initialization, at runtime, or at other times in the connector lifecycle.

Parameter types and usage vary by connector. For example, the SNS connector has a parameter
that configures the default SNS topic, and Device Defender has a parameter that configures the
data sampling rate.

A group version can contain multiple connectors, but only one instance of a given connector
at a time. This means that each connector in the group can have only one active configuration.
However, the connector instance can be used in multiple subscriptions in the group. For example,
you can create subscriptions that allow many devices to send data to the Kinesis Firehose
connector.

Parameters used to access group resources

Greengrass connectors use group resources to access the file system, ports, peripherals, and
other local resources on the core device. If a connector requires access to a group resource, then it
provides related configuration parameters.

Group resources include:

• Local resources. Directories, files, ports, pins, and peripherals that are present on the Greengrass
core device.

• Machine learning resources. Machine learning models that are trained in the cloud and deployed
to the core for local inference.

• Secret resources. Local, encrypted copies of passwords, keys, tokens, or arbitrary text from
AWS Secrets Manager. Connectors can securely access these local secrets and use them to
authenticate to services or local infrastructure.

For example, parameters for Device Defender enable access to system metrics in the host /
proc directory, and parameters for Twilio Notifications enable access to a locally stored Twilio
authentication token.

Configuration parameters 591

AWS IoT Greengrass Developer Guide, Version 1

Updating connector parameters

Parameters are configured when the connector is added to a Greengrass group. You can change
parameter values after the connector is added.

• In the console: From the group configuration page, open Connectors, and from the connector's
contextual menu, choose Edit.

Note

If the connector uses a secret resource that's later changed to reference a different secret,
you must edit the connector's parameters and confirm the change.

• In the API: Create another version of the connector that defines the new configuration.

The AWS IoT Greengrass API uses versions to manage groups. Versions are immutable, so to add
or change group components—for example, the group's client devices, functions, and resources
—you must create versions of new or updated components. Then, you create and deploy a group
version that contains the target version of each component.

After you make changes to the connector configuration, you must deploy the group to propagate
the changes to the core.

Inputs and outputs

Many Greengrass connectors can communicate with other entities by sending and receiving MQTT
messages. MQTT communication is controlled by subscriptions that allow a connector to exchange
data with Lambda functions, client devices, and other connectors in the Greengrass group, or with
AWS IoT and the local shadow service. To allow this communication, you must create subscriptions
in the group that the connector belongs to. For more information, see the section called “Managed
subscriptions in the MQTT messaging workflow”.

Connectors can be message publishers, message subscribers, or both. Each connector defines
the MQTT topics that it publishes or subscribes to. These predefined topics must be used in the
subscriptions where the connector is a message source or message target. For tutorials that
include steps for configuring subscriptions for a connector, see the section called “Get started with
connectors (console)” and the section called “Get started with connectors (CLI)”.

Updating connector parameters 592

AWS IoT Greengrass Developer Guide, Version 1

Note

Many connectors also have built-in modes of communication to interact with cloud or
local services. These vary by connector and might require that you configure parameters or
add permissions to the group role. For information about connector requirements, see the
section called “AWS-provided Greengrass connectors”.

Input topics

Most connectors receive input data on MQTT topics. Some connectors subscribe to multiple topics
for input data. For example, the Serial Stream connector supports two topics:

• serial/+/read/#

• serial/+/write/#

For this connector, read and write requests are sent to the corresponding topic. When you create
subscriptions, make sure to use the topic that aligns with your implementation.

The + and # characters in the previous examples are wildcards. These wildcards allow subscribers to
receive messages on multiple topics and publishers to customize the topics that they publish to.

• The + wildcard can appear anywhere in the topic hierarchy. It can be replaced by one hierarchy
item.

As an example, for topic sensor/+/input, messages can be published to topics sensor/
id-123/input but not to sensor/group-a/id-123/input.

• The # wildcard can appear only at the end of the topic hierarchy. It can be replaced by zero or
more hierarchy items.

As an example, for topic sensor/#, messages can be published to sensor/, sensor/id-123,
and sensor/group-a/id-123, but not to sensor.

Wildcard characters are valid only when subscribing to topics. Messages can't be published to
topics that contain wildcards. Check the documentation for the connector for more information

Input topics 593

AWS IoT Greengrass Developer Guide, Version 1

about its input or output topic requirements. For more information, see the section called “AWS-
provided Greengrass connectors”.

Containerization support

By default, most connectors run on the Greengrass core in an isolated runtime environment
that's managed by AWS IoT Greengrass. These runtime environments, called containers, provide
isolation between connectors and the host system, which offers more security for the host and the
connector.

However, this Greengrass containerization isn't supported in some environments, such as when you
run AWS IoT Greengrass in a Docker container or on older Linux kernels without cgroups. In these
environments, the connectors must run in No container mode. To find connectors that support No
container mode, see the section called “AWS-provided Greengrass connectors”. Some connectors
run in this mode natively, and some connectors allow you to set the isolation mode.

You can also set the isolation mode to No container in environments that support Greengrass
containerization, but we recommend using Greengrass container mode when possible.

Note

The default containerization setting for the Greengrass group doesn't apply to connectors.

Upgrading connector versions

Connector providers might release new versions of a connector that add features, fix issues, or
improve performance. For information about available versions and related changes, see the
documentation for each connector.

In the AWS IoT console, you can check for new versions for the connectors in your Greengrass
group.

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Under Greengrass groups, choose your group.

3. Choose Connectors to display the connectors in the group.

If the connector has a new version, an Available button appears in the Upgrade column.

Containerization support 594

AWS IoT Greengrass Developer Guide, Version 1

4. To upgrade the connector version:

a. On the Connectors page, in the Upgrade column, choose Available. The Upgrade
connector page opens and displays the current parameter settings, where applicable.

Choose the new connector version, define parameters as needed, and then choose
Upgrade.

b. On the Subscriptions page, add new subscriptions in the group to replace any that use the
connector as a source or target. Then, remove the old subscriptions.

Subscriptions reference connectors by version, so they become invalid if you change the
connector version in the group.

c. From the Actions menu, choose Deploy to deploy your changes to the core.

To upgrade a connector from the AWS IoT Greengrass API, create and deploy a group version
that includes the updated connector and subscriptions. Use the same process as when you add
a connector to a group. For detailed steps that show you how to use the AWS CLI to configure
and deploy an example Twilio Notifications connector, see the section called “Get started with
connectors (CLI)”.

Logging for connectors

Greengrass connectors contain Lambda functions that write events and errors to Greengrass logs.
Depending on your group settings, logs are written to CloudWatch Logs, the local file system, or
both. Logs from connectors include the ARN of the corresponding function. The following example
ARN is from the Kinesis Firehose connector:

arn:aws:lambda:aws-region:account-id:function:KinesisFirehoseClient:1

The default logging configuration writes info-level logs to the file system using the following
directory structure:

greengrass-root/ggc/var/log/user/region/aws/function-name.log

For more information about Greengrass logging, see the section called “Monitoring with AWS IoT
Greengrass logs”.

Logging 595

AWS IoT Greengrass Developer Guide, Version 1

AWS-provided Greengrass connectors

AWS provides the following connectors that support common AWS IoT Greengrass scenarios. For
more information about how connectors work, see the following documentation:

• Integrate with services and protocols using connectors

• Get started with connectors (console) or Get started with connectors (CLI)

Connector Description Supported
Lambda
runtimes

Supports No
container
 mode

CloudWatch
Metrics

Publishes custom metrics to Amazon
CloudWatch.

• Python 3.8
*

• Python 3.7

• Python 2.7

Yes

Device
Defender

Sends system metrics to AWS IoT Device
Defender.

• Python 3.8
*

• Python 3.7

• Python 2.7

No

Docker
Application
Deployment

Runs a Docker Compose file to start a Docker
application on the core device.

• Python 3.8

• Python 3.7

Yes

IoT Analytics Sends data from devices and sensors to AWS
IoT Analytics.

• Python 3.8
*

• Python 3.7

• Python 2.7

Yes

IoT Ethernet
IP Protocol
Adapter

Collects data from Ethernet/IP devices. • Java 8 Yes

AWS-provided Greengrass connectors 596

AWS IoT Greengrass Developer Guide, Version 1

Connector Description Supported
Lambda
runtimes

Supports No
container
 mode

IoT SiteWise Sends data from devices and sensors to asset
properties in AWS IoT SiteWise.

• Java 8 Yes

Kinesis
Firehose

Sends data to Amazon Data Firehose delivery
streams.

• Python 3.8
*

• Python 3.7

• Python 2.7

Yes

ML Feedback Publishes machine learning model input to the
cloud and output to an MQTT topic.

• Python 3.8

• Python 3.7

No

ML Image
Classification

Runs a local image classification inference
service. This connector provides versions for
several platforms.

• Python 3.8
*

• Python 3.7

• Python 2.7

No

ML Object
Detection

Runs a local object detection inference service.
This connector provides versions for several
platforms.

• Python 3.8

• Python 3.7

No

Modbus-RT
U Protocol
Adapter

Sends requests to Modbus RTU devices. • Python 3.8
*

• Python 3.7

• Python 2.7

No

Modbus-TC
P Protocol
Adapter

Collects data from ModbusTCP devices. • Java 8 Yes

AWS-provided Greengrass connectors 597

AWS IoT Greengrass Developer Guide, Version 1

Connector Description Supported
Lambda
runtimes

Supports No
container
 mode

Raspberry Pi
GPIO

Controls GPIO pins on a Raspberry Pi core
device.

• Python 3.8
*

• Python 3.7

• Python 2.7

No

Serial Stream Reads and writes to a serial port on the core
device.

• Python 3.8
*

• Python 3.7

• Python 2.7

No

ServiceNow
MetricBase
Integration

Publishes time series metrics to ServiceNow
MetricBase.

• Python 3.8
*

• Python 3.7

• Python 2.7

Yes

SNS Sends messages to an Amazon SNS topic. • Python 3.8
*

• Python 3.7

• Python 2.7

Yes

Splunk
Integration

Publishes data to Splunk HEC. • Python 3.8
*

• Python 3.7

• Python 2.7

Yes

Twilio
Notifications

Initiates a Twilio text or voice message. • Python 3.8
*

• Python 3.7

• Python 2.7

Yes

AWS-provided Greengrass connectors 598

AWS IoT Greengrass Developer Guide, Version 1

* To use the Python 3.8 runtimes, you must create a symbolic link from the default Python 3.7
installation folder to the installed Python 3.8 binaries. For more information, see the connector-
specific requirements.

Note

We recommend that you upgrade connector versions from Python 2.7 to Python 3.7.
Continued support for Python 2.7 connectors depends on AWS Lambda runtime support.
For more information, see Runtime support policy in the AWS Lambda Developer Guide.

CloudWatch Metrics connector

The CloudWatch Metrics connector publishes custom metrics from Greengrass devices to Amazon
CloudWatch. The connector provides a centralized infrastructure for publishing CloudWatch
metrics, which you can use to monitor and analyze the Greengrass core environment, and act
on local events. For more information, see Using Amazon CloudWatch metrics in the Amazon
CloudWatch User Guide.

This connector receives metric data as MQTT messages. The connector batches metrics that are in
the same namespace and publishes them to CloudWatch at regular intervals.

This connector has the following versions.

Version ARN

5 arn:aws:greengrass: region::/
connectors/CloudWatchMetrics/
versions/5

4 arn:aws:greengrass: region::/
connectors/CloudWatchMetrics/
versions/4

3 arn:aws:greengrass: region::/
connectors/CloudWatchMetrics/
versions/3

CloudWatch Metrics 599

https://docs.aws.amazon.com/lambda/latest/dg/runtime-support-policy.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

AWS IoT Greengrass Developer Guide, Version 1

Version ARN

2 arn:aws:greengrass: region::/
connectors/CloudWatchMetrics/
versions/2

1 arn:aws:greengrass: region::/
connectors/CloudWatchMetrics/
versions/1

For information about version changes, see the Changelog.

Requirements

This connector has the following requirements:

Version 3 - 5

• AWS IoT Greengrass Core software v1.9.3 or later.

• Python version 3.7 or 3.8 installed on the core device and added to the PATH environment
variable.

Note

To use Python 3.8, run the following command to create a symbolic link from the the
default Python 3.7 installation folder to the installed Python 3.8 binaries.

sudo ln -s path-to-python-3.8/python3.8 /usr/bin/python3.7

This configures your device to meet the Python requirement for AWS IoT Greengrass.

• The Greengrass group role configured to allow the cloudwatch:PutMetricData action, as
shown in the following example AWS Identity and Access Management (IAM) policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1528133056761",

CloudWatch Metrics 600

https://www.python.org/

AWS IoT Greengrass Developer Guide, Version 1

 "Action": [
 "cloudwatch:PutMetricData"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

For more information about CloudWatch permissions, see Amazon CloudWatch permissions
reference in the IAM User Guide.

Versions 1 - 2

• AWS IoT Greengrass Core software v1.7 or later.

• Python version 2.7 installed on the core device and added to the PATH environment variable.

• The Greengrass group role configured to allow the cloudwatch:PutMetricData action, as
shown in the following example AWS Identity and Access Management (IAM) policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1528133056761",
 "Action": [
 "cloudwatch:PutMetricData"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

CloudWatch Metrics 601

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/permissions-reference-cw.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/permissions-reference-cw.html
https://www.python.org/

AWS IoT Greengrass Developer Guide, Version 1

For more information about CloudWatch permissions, see Amazon CloudWatch permissions
reference in the IAM User Guide.

Connector Parameters

This connector provides the following parameters:

Versions 4 - 5

PublishInterval

The maximum number of seconds to wait before publishing batched metrics for a given
namespace. The maximum value is 900. To configure the connector to publish metrics as
they are received (without batching), specify 0.

The connector publishes to CloudWatch after it receives 20 metrics in the same namespace
or after the specified interval.

Note

The connector doesn't guarantee the order of publish events.

Display name in the AWS IoT console: Publish interval

Required: true

Type: string

Valid values: 0 - 900

Valid pattern: [0-9]|[1-9]\d|[1-9]\d\d|900

PublishRegion

The AWS Region to post CloudWatch metrics to. This value overrides the default Greengrass
metrics Region. It is required only when posting cross-Region metrics.

Display name in the AWS IoT console: Publish region

CloudWatch Metrics 602

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/permissions-reference-cw.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/permissions-reference-cw.html

AWS IoT Greengrass Developer Guide, Version 1

Required: false

Type: string

Valid pattern: ^$|([a-z]{2}-[a-z]+-\d{1})

MemorySize

The memory (in KB) to allocate to the connector.

Display name in the AWS IoT console: Memory size

Required: true

Type: string

Valid pattern: ^[0-9]+$

MaxMetricsToRetain

The maximum number of metrics across all namespaces to save in memory before they are
replaced with new metrics. The minimum value is 2000.

This limit applies when there's no connection to the internet and the connector starts to
buffer the metrics to publish later. When the buffer is full, the oldest metrics are replaced
by new metrics. Metrics in a given namespace are replaced only by metrics in the same
namespace.

Note

Metrics are not saved if the host process for the connector is interrupted. For
example, this interruption can happen during group deployment or when the device
restarts.

Display name in the AWS IoT console: Maximum metrics to retain

Required: true

Type: string

Valid pattern: ^([2-9]\d{3}|[1-9]\d{4,})$

CloudWatch Metrics 603

AWS IoT Greengrass Developer Guide, Version 1

IsolationMode

The containerization mode for this connector. The default is GreengrassContainer,
which means that the connector runs in an isolated runtime environment inside the AWS IoT
Greengrass container.

Note

The default containerization setting for the group does not apply to connectors.

Display name in the AWS IoT console: Container isolation mode

Required: false

Type: string

Valid values: GreengrassContainer or NoContainer

Valid pattern: ^NoContainer$|^GreengrassContainer$

Versions 1 - 3

PublishInterval

The maximum number of seconds to wait before publishing batched metrics for a given
namespace. The maximum value is 900. To configure the connector to publish metrics as
they are received (without batching), specify 0.

The connector publishes to CloudWatch after it receives 20 metrics in the same namespace
or after the specified interval.

Note

The connector doesn't guarantee the order of publish events.

Display name in the AWS IoT console: Publish interval

Required: true

Type: string

CloudWatch Metrics 604

AWS IoT Greengrass Developer Guide, Version 1

Valid values: 0 - 900

Valid pattern: [0-9]|[1-9]\d|[1-9]\d\d|900

PublishRegion

The AWS Region to post CloudWatch metrics to. This value overrides the default Greengrass
metrics Region. It is required only when posting cross-Region metrics.

Display name in the AWS IoT console: Publish region

Required: false

Type: string

Valid pattern: ^$|([a-z]{2}-[a-z]+-\d{1})

MemorySize

The memory (in KB) to allocate to the connector.

Display name in the AWS IoT console: Memory size

Required: true

Type: string

Valid pattern: ^[0-9]+$

MaxMetricsToRetain

The maximum number of metrics across all namespaces to save in memory before they are
replaced with new metrics. The minimum value is 2000.

This limit applies when there's no connection to the internet and the connector starts to
buffer the metrics to publish later. When the buffer is full, the oldest metrics are replaced
by new metrics. Metrics in a given namespace are replaced only by metrics in the same
namespace.

Note

Metrics are not saved if the host process for the connector is interrupted. For
example, this interruption can happen during group deployment or when the device
restarts.

CloudWatch Metrics 605

AWS IoT Greengrass Developer Guide, Version 1

Display name in the AWS IoT console: Maximum metrics to retain

Required: true

Type: string

Valid pattern: ^([2-9]\d{3}|[1-9]\d{4,})$

Create Connector Example (AWS CLI)

The following CLI command creates a ConnectorDefinition with an initial version that contains
the CloudWatch Metrics connector.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '{
 "Connectors": [
 {
 "Id": "MyCloudWatchMetricsConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/CloudWatchMetrics/
versions/4",
 "Parameters": {
 "PublishInterval" : "600",
 "PublishRegion" : "us-west-2",
 "MemorySize" : "16",
 "MaxMetricsToRetain" : "2500",
 "IsolationMode" : "GreengrassContainer"
 }
 }
]
}'

In the AWS IoT Greengrass console, you can add a connector from the group's Connectors page.
For more information, see the section called “Get started with connectors (console)”.

Input data

This connector accepts metrics on an MQTT topic and publishes the metrics to CloudWatch. Input
messages must be in JSON format.

Topic filter in subscription

cloudwatch/metric/put

CloudWatch Metrics 606

AWS IoT Greengrass Developer Guide, Version 1

Message properties

request

Information about the metric in this message.

The request object contains the metric data to publish to CloudWatch. The metric
values must meet the specifications of the PutMetricData API. Only the namespace,
metricData.metricName, and metricData.value properties are required.

Required: true

Type: object that includes the following properties:

namespace

The user-defined namespace for the metric data in this request. CloudWatch uses
namespaces as containers for metric data points.

Note

You can't specify a namespace that begins with the reserved string AWS/.

Required: true

Type: string

Valid pattern: [^:].*

metricData

The data for the metric.

Required: true

Type: object that includes the following properties:

metricName

The name of the metric.

Required: true

Type: string

CloudWatch Metrics 607

https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricData.html

AWS IoT Greengrass Developer Guide, Version 1

dimensions

The dimensions that are associated with the metric. Dimensions provide more
information about the metric and its data. A metric can define up to 10 dimensions.

This connector automatically includes a dimension named coreName, where the
value is the name of the core.

Required: false

Type: array of dimension objects that include the following properties:

name

The dimension name.

Required: false

Type: string

value

The dimension value.

Required: false

Type: string

timestamp

The time that the metric data was received, expressed as the number of seconds since
Jan 1, 1970 00:00:00 UTC. If this value is omitted, the connector uses the time
that it received the message.

Required: false

Type: timestamp

Note

If you use between versions 1 and 4 of this connector, we recommend that
you retrieve the timestamp separately for each metric when you send multiple
metrics from a single source. Don't use a variable to store the timestamp.

CloudWatch Metrics 608

AWS IoT Greengrass Developer Guide, Version 1

value

The value for the metric.

Note

CloudWatch rejects values that are too small or too large. Values must be in
the range of 8.515920e-109 to 1.174271e+108 (Base 10) or 2e-360 to
2e360 (Base 2). Special values (for example, NaN, +Infinity, -Infinity)
are not supported.

Required: true

Type: double

unit

The unit of the metric.

Required: false

Type: string

Valid values: Seconds, Microseconds, Milliseconds, Bytes, Kilobytes,
Megabytes, Gigabytes, Terabytes, Bits, Kilobits, Megabits,
Gigabits, Terabits, Percent, Count, Bytes/Second, Kilobytes/
Second, Megabytes/Second, Gigabytes/Second, Terabytes/Second,
Bits/Second, Kilobits/Second, Megabits/Second, Gigabits/Second,
Terabits/Second, Count/Second, None

Limits

All limits that are imposed by the CloudWatch PutMetricData API apply to metrics when
using this connector. The following limits are especially important:

• 40 KB limit on API payload

• 20 metrics per API request

• 150 transactions per second (TPS) for the PutMetricData API

For more information, see CloudWatch limits in the Amazon CloudWatch User Guide.

CloudWatch Metrics 609

https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_limits.html

AWS IoT Greengrass Developer Guide, Version 1

Example input

{
 "request": {
 "namespace": "Greengrass",
 "metricData":
 {
 "metricName": "latency",
 "dimensions": [
 {
 "name": "hostname",
 "value": "test_hostname"
 }
],
 "timestamp": 1539027324,
 "value": 123.0,
 "unit": "Seconds"
 }
 }
}

Output data

This connector publishes status information as output data on an MQTT topic.

Topic filter in subscription

cloudwatch/metric/put/status

Example output: Success

The response includes the namespace of the metric data and the RequestId field from the
CloudWatch response.

{
 "response": {
 "cloudwatch_rid":"70573243-d723-11e8-b095-75ff2EXAMPLE",
 "namespace": "Greengrass",
 "status":"success"
 }
}

CloudWatch Metrics 610

AWS IoT Greengrass Developer Guide, Version 1

Example output: Failure

{
 "response" : {
 "namespace": "Greengrass",
 "error": "InvalidInputException",
 "error_message":"cw metric is invalid",
 "status":"fail"
 }
}

Note

If the connector detects a retryable error (for example, connection errors), it retries the
publish in the next batch.

Usage Example

Use the following high-level steps to set up an example Python 3.7 Lambda function that you can
use to try out the connector.

Note

• If you use other Python runtimes, you can create a symlink from Python3.x to Python
3.7.

• The Get started with connectors (console) and Get started with connectors (CLI) topics
contain detailed steps that show you how to configure and deploy an example Twilio
Notifications connector.

1. Make sure you meet the requirements for the connector.

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

2. Create and publish a Lambda function that sends input data to the connector.

CloudWatch Metrics 611

AWS IoT Greengrass Developer Guide, Version 1

Save the example code as a PY file. Download and unzip the AWS IoT Greengrass Core SDK for
Python. Then, create a zip package that contains the PY file and the greengrasssdk folder at
the root level. This zip package is the deployment package that you upload to AWS Lambda.

After you create the Python 3.7 Lambda function, publish a function version and create an
alias.

3. Configure your Greengrass group.

a. Add the Lambda function by its alias (recommended). Configure the Lambda lifecycle as
long-lived (or "Pinned": true in the CLI).

b. Add the connector and configure its parameters.

c. Add subscriptions that allow the connector to receive input data and send output data on
supported topic filters.

• Set the Lambda function as the source, the connector as the target, and use a supported
input topic filter.

• Set the connector as the source, AWS IoT Core as the target, and use a supported output
topic filter. You use this subscription to view status messages in the AWS IoT console.

4. Deploy the group.

5. In the AWS IoT console, on the Test page, subscribe to the output data topic to view status
messages from the connector. The example Lambda function is long-lived and starts sending
messages immediately after the group is deployed.

When you're finished testing, you can set the Lambda lifecycle to on-demand (or "Pinned":
false in the CLI) and deploy the group. This stops the function from sending messages.

Example

The following example Lambda function sends an input message to the connector.

import greengrasssdk
import time
import json

iot_client = greengrasssdk.client('iot-data')
send_topic = 'cloudwatch/metric/put'

CloudWatch Metrics 612

AWS IoT Greengrass Developer Guide, Version 1

def create_request_with_all_fields():
 return {
 "request": {
 "namespace": "Greengrass_CW_Connector",
 "metricData": {
 "metricName": "Count1",
 "dimensions": [
 {
 "name": "test",
 "value": "test"
 }
],
 "value": 1,
 "unit": "Seconds",
 "timestamp": time.time()
 }
 }
 }

def publish_basic_message():
 messageToPublish = create_request_with_all_fields()
 print("Message To Publish: ", messageToPublish)
 iot_client.publish(topic=send_topic,
 payload=json.dumps(messageToPublish))

publish_basic_message()

def lambda_handler(event, context):
 return

Licenses

The CloudWatch Metrics connector includes the following third-party software/licensing:

• AWS SDK for Python (Boto3)/Apache License 2.0

• botocore/Apache License 2.0

• dateutil/PSF License

• docutils/BSD License, GNU General Public License (GPL), Python Software Foundation License,
Public Domain

• jmespath/MIT License

• s3transfer/Apache License 2.0

CloudWatch Metrics 613

https://pypi.org/project/boto3/
https://pypi.org/project/botocore/
https://pypi.org/project/python-dateutil/1.4/
https://pypi.org/project/docutils/
https://pypi.org/project/jmespath/
https://pypi.org/project/s3transfer/

AWS IoT Greengrass Developer Guide, Version 1

• urllib3/MIT License

This connector is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the connector.

Version Changes

5 Fix to add support for duplicate timestamps in
input data.

4 Added the IsolationMode parameter to
configure the containerization mode for the
connector.

3 Upgraded the Lambda runtime to Python 3.7,
which changes the runtime requirement.

2 Fix to reduce excessive logging.

1 Initial release.

A Greengrass group can contain only one version of the connector at a time. For information about
upgrading a connector version, see the section called “Upgrading connector versions”.

See also

• Integrate with services and protocols using connectors

• the section called “Get started with connectors (console)”

• the section called “Get started with connectors (CLI)”

• Using Amazon CloudWatch metrics in the Amazon CloudWatch User Guide

• PutMetricData in the Amazon CloudWatch API Reference

CloudWatch Metrics 614

https://pypi.org/project/urllib3/
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricData.html

AWS IoT Greengrass Developer Guide, Version 1

Device Defender connector

The Device Defender connector notifies administrators of changes in the state of a Greengrass core
device. This can help identify unusual behavior that might indicate a compromised device.

This connector reads system metrics from the /proc directory on the core device, and then
publishes the metrics to AWS IoT Device Defender. For metrics reporting details, see Device metrics
document specification in the AWS IoT Developer Guide.

This connector has the following versions.

Version ARN

3 arn:aws:greengrass: region::/
connectors/DeviceDefender/
versions/3

2 arn:aws:greengrass: region::/
connectors/DeviceDefender/
versions/2

1 arn:aws:greengrass: region::/
connectors/DeviceDefender/
versions/1

For information about version changes, see the Changelog.

Requirements

This connector has the following requirements:

Version 3

• AWS IoT Greengrass Core software v1.9.3 or later.

• Python version 3.7 or 3.8 installed on the core device and added to the PATH environment
variable.

Device Defender 615

https://docs.aws.amazon.com/iot/latest/developerguide/device-defender-detect.html#DetectMetricsMessagesSpec
https://docs.aws.amazon.com/iot/latest/developerguide/device-defender-detect.html#DetectMetricsMessagesSpec
https://www.python.org/

AWS IoT Greengrass Developer Guide, Version 1

Note

To use Python 3.8, run the following command to create a symbolic link from the the
default Python 3.7 installation folder to the installed Python 3.8 binaries.

sudo ln -s path-to-python-3.8/python3.8 /usr/bin/python3.7

This configures your device to meet the Python requirement for AWS IoT Greengrass.

• AWS IoT Device Defender configured to use the Detect feature to keep track of violations. For
more information, see Detect in the AWS IoT Developer Guide.

• A local volume resource in the Greengrass group that points to the /proc directory. The
resource must use the following properties:

• Source path: /proc

• Destination path: /host_proc (or a value that matches the valid pattern)

• AutoAddGroupOwner: true

• The psutil library installed on the Greengrass core. Version 5.7.0 is the latest version that is
verified to work with the connector.

• The cbor library installed on the Greengrass core. Version 1.0.0 is the latest version that is
verified to work with the connector.

Versions 1 - 2

• AWS IoT Greengrass Core software v1.7 or later.

• Python version 2.7 installed on the core device and added to the PATH environment variable.

• AWS IoT Device Defender configured to use the Detect feature to keep track of violations. For
more information, see Detect in the AWS IoT Developer Guide.

• A local volume resource in the Greengrass group that points to the /proc directory. The
resource must use the following properties:

• Source path: /proc

• Destination path: /host_proc (or a value that matches the valid pattern)

• AutoAddGroupOwner: true

• The psutil library installed on the Greengrass core.

Device Defender 616

https://docs.aws.amazon.com/iot/latest/developerguide/device-defender-detect.html
https://pypi.org/project/psutil/
https://pypi.org/project/cbor/
https://www.python.org/
https://docs.aws.amazon.com/iot/latest/developerguide/device-defender-detect.html
https://pypi.org/project/psutil/

AWS IoT Greengrass Developer Guide, Version 1

• The cbor library installed on the Greengrass core.

Connector Parameters

This connector provides the following parameters:

SampleIntervalSeconds

The number of seconds between each cycle of gathering and reporting metrics. The minimum
value is 300 seconds (5 minutes).

Display name in the AWS IoT console: Metrics reporting interval

Required: true

Type: string

Valid pattern: ^[0-9]*(?:3[0-9][0-9]|[4-9][0-9]{2}|[1-9][0-9]{3,})$

ProcDestinationPath-ResourceId

The ID of the /proc volume resource.

Note

This connector is granted read-only access to the resource.

Display name in the AWS IoT console: Resource for /proc directory

Required: true

Type: string

Valid pattern: [a-zA-Z0-9_-]+

ProcDestinationPath

The destination path of the /proc volume resource.

Display name in the AWS IoT console: Destination path of /proc resource

Required: true

Device Defender 617

https://pypi.org/project/cbor/

AWS IoT Greengrass Developer Guide, Version 1

Type: string

Valid pattern: \/[a-zA-Z0-9_-]+

Create Connector Example (AWS CLI)

The following CLI command creates a ConnectorDefinition with an initial version that contains
the Device Defender connector.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '{
 "Connectors": [
 {
 "Id": "MyDeviceDefenderConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/DeviceDefender/
versions/3",
 "Parameters": {
 "SampleIntervalSeconds": "600",
 "ProcDestinationPath": "/host_proc",
 "ProcDestinationPath-ResourceId": "my-proc-resource"
 }
 }
]
}'

Note

The Lambda function in this connector has a long-lived lifecycle.

In the AWS IoT Greengrass console, you can add a connector from the group's Connectors page.
For more information, see the section called “Get started with connectors (console)”.

Input data

This connector doesn't accept MQTT messages as input data.

Output data

This connector publishes security metrics to AWS IoT Device Defender as output data.

Device Defender 618

AWS IoT Greengrass Developer Guide, Version 1

Topic filter in subscription

$aws/things/+/defender/metrics/json

Note

This is the topic syntax that AWS IoT Device Defender expects. The connector replaces
the + wildcard with the device name (for example, $aws/things/thing-name/
defender/metrics/json).

Example output

For metrics reporting details, see Device metrics document specification in the AWS IoT
Developer Guide.

{
 "header": {
 "report_id": 1529963534,
 "version": "1.0"
 },
 "metrics": {
 "listening_tcp_ports": {
 "ports": [
 {
 "interface": "eth0",
 "port": 24800
 },
 {
 "interface": "eth0",
 "port": 22
 },
 {
 "interface": "eth0",
 "port": 53
 }
],
 "total": 3
 },
 "listening_udp_ports": {
 "ports": [
 {
 "interface": "eth0",

Device Defender 619

https://docs.aws.amazon.com/iot/latest/developerguide/device-defender-detect.html#DetectMetricsMessagesSpec

AWS IoT Greengrass Developer Guide, Version 1

 "port": 5353
 },
 {
 "interface": "eth0",
 "port": 67
 }
],
 "total": 2
 },
 "network_stats": {
 "bytes_in": 1157864729406,
 "bytes_out": 1170821865,
 "packets_in": 693092175031,
 "packets_out": 738917180
 },
 "tcp_connections": {
 "established_connections":{
 "connections": [
 {
 "local_interface": "eth0",
 "local_port": 80,
 "remote_addr": "192.168.0.1:8000"
 },
 {
 "local_interface": "eth0",
 "local_port": 80,
 "remote_addr": "192.168.0.1:8000"
 }
],
 "total": 2
 }
 }
 }
}

Licenses

This connector is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the connector.

Device Defender 620

https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 1

Version Changes

3 Upgraded the Lambda runtime to Python 3.7,
which changes the runtime requirement.

2 Fix to reduce excessive logging.

1 Initial release.

A Greengrass group can contain only one version of the connector at a time. For information about
upgrading a connector version, see the section called “Upgrading connector versions”.

See also

• Integrate with services and protocols using connectors

• the section called “Get started with connectors (console)”

• the section called “Get started with connectors (CLI)”

• Device Defender in the AWS IoT Developer Guide

Docker application deployment connector

The Greengrass Docker application deployment connector makes it easier to run your Docker
images on an AWS IoT Greengrass core. The connector uses Docker Compose to start a multi-
container Docker application from a docker-compose.yml file. Specifically, the connector runs
docker-compose commands to manage Docker containers on a single core device. For more
information, see Overview of Docker Compose in the Docker documentation. The connector can
access Docker images stored in Docker container registries, such as Amazon Elastic Container
Registry (Amazon ECR), Docker Hub, and private Docker trusted registries.

After you deploy the Greengrass group, the connector pulls the latest images and starts the
Docker containers. It runs the docker-compose pull and docker-compose up command.
Then, the connector publishes the status of the command to an output MQTT topic. It also logs
status information about running Docker containers. This makes it possible for you to monitor
your application logs in Amazon CloudWatch. For more information, see the section called
“Monitoring with AWS IoT Greengrass logs”. The connector also starts Docker containers each

Docker application deployment 621

https://docs.aws.amazon.com/iot/latest/developerguide/device-defender.html
https://docs.docker.com/compose/

AWS IoT Greengrass Developer Guide, Version 1

time the Greengrass daemon restarts. The number of Docker containers that can run on the core
depends on your hardware.

The Docker containers run outside of the Greengrass domain on the core device, so they
can't access the core's inter-process communication (IPC). However, you can configure some
communication channels with Greengrass components, such as local Lambda functions. For more
information, see the section called “Communicating with Docker containers”.

You can use the connector for scenarios such as hosting a web server or MySQL server on your
core device. Local services in your Docker applications can communicate with each other, other
processes in the local environment, and cloud services. For example, you can run a web server on
the core that sends requests from Lambda functions to a web service in the cloud.

This connector runs in No container isolation mode, so you can deploy it to a Greengrass group
that runs without Greengrass containerization.

This connector has the following versions.

Version ARN

7 arn:aws:greengrass: region::/
connectors/DockerApplica
tionDeployment/versions/7

6 arn:aws:greengrass: region::/
connectors/DockerApplica
tionDeployment/versions/6

5 arn:aws:greengrass: region::/
connectors/DockerApplica
tionDeployment/versions/5

4 arn:aws:greengrass: region::/
connectors/DockerApplica
tionDeployment/versions/4

3 arn:aws:greengrass: region::/
connectors/DockerApplica
tionDeployment/versions/3

Docker application deployment 622

AWS IoT Greengrass Developer Guide, Version 1

Version ARN

2 arn:aws:greengrass: region::/
connectors/DockerApplica
tionDeployment/versions/2

1 arn:aws:greengrass: region::/
connectors/DockerApplica
tionDeployment/versions/1

For information about version changes, see the Changelog.

Requirements

This connector has the following requirements:

• AWS IoT Greengrass Core software v1.10 or later.

Note

This connector is not supported on OpenWrt distributions.

• Python version 3.7 or 3.8 installed on the core device and added to the PATH environment
variable.

Note

To use Python 3.8, run the following command to create a symbolic link from the the
default Python 3.7 installation folder to the installed Python 3.8 binaries.

sudo ln -s path-to-python-3.8/python3.8 /usr/bin/python3.7

This configures your device to meet the Python requirement for AWS IoT Greengrass.

• A minimum of 36 MB RAM on the Greengrass core for the connector to monitor running Docker
containers. The total memory requirement depends on the number of Docker containers that run
on the core.

Docker application deployment 623

https://www.python.org/

AWS IoT Greengrass Developer Guide, Version 1

• Docker Engine 1.9.1 or later installed on the Greengrass core. Version 19.0.3 is the latest version
that is verified to work with the connector.

The docker executable must be in the /usr/bin or /usr/local/bin directory.

Important

We recommend that you install a credentials store to secure the local copies of your
Docker credentials. For more information, see the section called “Security notes”.

For information about installing Docker on Amazon Linux distributions, see Docker basics for
Amazon ECS in the Amazon Elastic Container Service Developer Guide.

• Docker Compose installed on the Greengrass core. The docker-compose executable must be in
the /usr/bin or /usr/local/bin directory.

The following Docker Compose versions are verified to work with the connector.

Connector version Verified Docker Compose version

7 1.25.4

6 1.25.4

5 1.25.4

4 1.25.4

3 1.25.4

2 1.25.1

1 1.24.1

• A single Docker Compose file (for example, docker-compose.yml), stored in Amazon Simple
Storage Service (Amazon S3). The format must be compatible with the version of Docker
Compose installed on the core. You should test the file before you use it on your core. If you edit
the file after you deploy the Greengrass group, you must redeploy the group to update your local
copy on the core.

Docker application deployment 624

https://docs.docker.com/install/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html
https://docs.docker.com/compose/install/

AWS IoT Greengrass Developer Guide, Version 1

• A Linux user with permission to call the local Docker daemon and write to the directory that
stores the local copy of your Compose file. For more information, see Setting up the Docker user
on the core.

• The Greengrass group role configured to allow the s3:GetObject action on the S3 bucket that
contains your Compose file. This permission is shown in the following example IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccessToComposeFileS3Bucket",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::bucket-name/*"
 }
]
}

Note

If your S3 bucket is versioning-enabled, then the role the must be configured to allow the
s3:GetObjectVersion action as well. For more information, see Using versioning in
the Amazon Simple Storage Service User Guide.

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

• If your Docker Compose file references a Docker image stored in Amazon ECR, the Greengrass
group role configured to allow the following:

• ecr:GetDownloadUrlForLayer and ecr:BatchGetImage actions on your Amazon ECR
repositories that contain the Docker images.

• ecr:GetAuthorizationToken action on your resources.

Repositories must be in the same AWS account and AWS Region as the connector.

Docker application deployment 625

https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

AWS IoT Greengrass Developer Guide, Version 1

Important

Permissions in the group role can be assumed by all Lambda functions and connectors in
the Greengrass group. For more information, see the section called “Security notes”.

These permissions are shown in the following example policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowGetEcrRepositories",
 "Effect": "Allow",
 "Action": [
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": [
 "arn:aws:ecr:region:account-id:repository/repository-name"
]
 },
 {
 "Sid": "AllowGetEcrAuthToken",
 "Effect": "Allow",
 "Action": "ecr:GetAuthorizationToken",
 "Resource": "*"
 }
]
}

For more information, see Amazon ECR repository policy examples in the Amazon ECR User
Guide.

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

• If your Docker Compose file references a Docker image from AWS Marketplace, the connector
also has the following requirements:

Docker application deployment 626

https://docs.aws.amazon.com/AmazonECR/latest/userguide/RepositoryPolicyExamples.html
https://aws.amazon.com/marketplace

AWS IoT Greengrass Developer Guide, Version 1

• You must be subscribed to AWS Marketplace container products. For more information, see
Finding and subscribing to container products in the AWS Marketplace Subscribers Guide.

• AWS IoT Greengrass must be configured to support local secrets, as described in Secrets
Requirements. The connector uses this feature only to retrieve your secrets from AWS Secrets
Manager, not to store them.

• You must create a secret in Secrets Manager for each AWS Marketplace registry that stores a
Docker image referenced in your Compose file. For more information, see the section called
“Accessing Docker images from private repositories”.

• If your Docker Compose file references a Docker image from private repositories in registries
other than Amazon ECR, such as Docker Hub, the connector also has the following requirements:

• AWS IoT Greengrass must be configured to support local secrets, as described in Secrets
Requirements. The connector uses this feature only to retrieve your secrets from AWS Secrets
Manager, not to store them.

• You must create a secret in Secrets Manager for each private repository that stores a Docker
image referenced in your Compose file. For more information, see the section called “Accessing
Docker images from private repositories”.

• The Docker daemon must be running when you deploy a Greengrass group that contains this
connector.

Accessing Docker images from private repositories

If you use credentials to access your Docker images, then you must allow the connector to access
them. The way you do this depends on where the Docker image is located.

For Docker images stored Amazon ECR, you grant permission to get your authorization token in the
Greengrass group role. For more information, see the section called “Requirements”.

For Docker images stored in other private repositories or registries, you must create a secret in AWS
Secrets Manager to store your login information. This includes Docker images that you subscribed
to in AWS Marketplace. Create one secret for each repository. If you update your secrets in Secrets
Manager, the changes propagate to the core the next time that you deploy the group.

Docker application deployment 627

https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-finding-and-subscribing-to-container-products.html

AWS IoT Greengrass Developer Guide, Version 1

Note

Secrets Manager is a service that you can use to securely store and manage your
credentials, keys, and other secrets in the AWS Cloud. For more information, see What is
AWS Secrets Manager? in the AWS Secrets Manager User Guide.

Each secret must contain the following keys:

Key Value

username The user name used to access the repository or
registry.

password The password used to access the repository or
registry.

registryUrl The endpoint of the registry. This must
match the corresponding registry URL in the
Compose file.

Note

To allow AWS IoT Greengrass to access a secret by default, the name of the secret must
start with greengrass-. Otherwise, your Greengrass service role must grant access. For more
information, see the section called “Allow AWS IoT Greengrass to get secret values”.

To get login information for Docker images from AWS Marketplace

1. Get your password for Docker images from AWS Marketplace by using the aws ecr get-
login-password command. For more information, see get-login-password in the AWS CLI
Command Reference.

aws ecr get-login-password

Docker application deployment 628

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/cli/latest/reference/ecr/get-login.html

AWS IoT Greengrass Developer Guide, Version 1

2. Retrieve the registry URL for the Docker image. Open the AWS Marketplace website, and
open the container product launch page. Under Container Images, choose View container
image details to locate the user name and registry URL.

Use the retrieved user name, password, and registry URL to create a secret for each AWS
Marketplace registry that stores Docker images referenced in your Compose file.

To create secrets (console)

In the AWS Secrets Manager console, choose Other type of secrets. Under Specify the
key-value pairs to be stored for this secret, add rows for username, password, and
registryUrl. For more information, see Creating a basic secret in the AWS Secrets Manager
User Guide.

To create secrets (CLI)

In the AWS CLI, use the Secrets Manager create-secret command, as shown in the following
example. For more information, see create-secret in the AWS CLI Command Reference.

aws secretsmanager create-secret --name greengrass-MySecret --secret-string
 [{"username":"Mary_Major"},{"password":"abc123xyz456"},{"registryUrl":"https://
docker.io"}]

Docker application deployment 629

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/create-secret.html

AWS IoT Greengrass Developer Guide, Version 1

Important

It is your responsibility to secure the DockerComposeFileDestinationPath directory
that stores your Docker Compose file and the credentials for your Docker images from
private repositories. For more information, see the section called “Security notes”.

Parameters

This connector provides the following parameters:

Version 7

DockerComposeFileS3Bucket

The name of the S3 bucket that contains your Docker Compose file. When you create the
bucket, make sure to follow the rules for bucket names described in the Amazon Simple
Storage Service User Guide.

Display name in the AWS IoT console: Docker Compose file in S3

Note

In the console, the Docker Compose file in S3 property combines the
DockerComposeFileS3Bucket, DockerComposeFileS3Key, and
DockerComposeFileS3Version parameters.

Required: true

Type: string

Valid pattern [a-zA-Z0-9\\-\\.]{3,63}

DockerComposeFileS3Key

The object key for your Docker Compose file in Amazon S3. For more information, including
object key naming guidelines, see Object key and metadata in the Amazon Simple Storage
Service User Guide.

Docker application deployment 630

https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html

AWS IoT Greengrass Developer Guide, Version 1

Note

In the console, the Docker Compose file in S3 property combines the
DockerComposeFileS3Bucket, DockerComposeFileS3Key, and
DockerComposeFileS3Version parameters.

Required: true

Type: string

Valid pattern .+

DockerComposeFileS3Version

The object version for your Docker Compose file in Amazon S3. For more information,
including object key naming guidelines, see Using versioning in the Amazon Simple Storage
Service User Guide.

Note

In the console, the Docker Compose file in S3 property combines the
DockerComposeFileS3Bucket, DockerComposeFileS3Key, and
DockerComposeFileS3Version parameters.

Required: false

Type: string

Valid pattern .+

DockerComposeFileDestinationPath

The absolute path of the local directory used to store a copy of the Docker Compose
file. This must be an existing directory. The user specified for DockerUserId must have
permission to create a file in this directory. For more information, see the section called
“Setting up the Docker user on the core”.

Docker application deployment 631

https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

AWS IoT Greengrass Developer Guide, Version 1

Important

This directory stores your Docker Compose file and the credentials for your Docker
images from private repositories. It is your responsibility to secure this directory. For
more information, see the section called “Security notes”.

Display name in the AWS IoT console: Directory path for local Compose file

Required: true

Type: string

Valid pattern \/.*\/?

Example: /home/username/myCompose

DockerUserId

The UID of the Linux user that the connector runs as. This user must belong to
the docker Linux group on the core device and have write permissions to the
DockerComposeFileDestinationPath directory. For more information, see Setting up
the Docker user on the core.

Note

We recommend that you avoid running as root unless absolutely necessary. If you
do specify the root user, you must allow Lambda functions to run as root on the
AWS IoT Greengrass core. For more information, see the section called “Running a
Lambda function as root”.

Display name in the AWS IoT console: Docker user ID

Required: false

Type: string

Valid pattern: ^[0-9]{1,5}$

Docker application deployment 632

AWS IoT Greengrass Developer Guide, Version 1

AWSSecretsArnList

The Amazon Resource Names (ARNs) of the secrets in AWS Secrets Manager that contain
the login information used to access your Docker images in private repositories. For more
information, see the section called “Accessing Docker images from private repositories”.

Display name in the AWS IoT console: Credentials for private repositories

Required: false. This parameter is required to access Docker images stored in private
repositories.

Type: array of string

Valid pattern: [(?,? ?"(arn:(aws(-[a-z]+)):secretsmanager:[a-z0-9-]+:
[0-9]{12}:secret:([a-zA-Z0-9\]+/)[a-zA-Z0-9/_+=,.@-]+-[a-zA-Z0-9]+)")]

DockerContainerStatusLogFrequency

The frequency (in seconds) at which the connector logs status information about the Docker
containers running on the core. The default is 300 seconds (5 minutes).

Display name in the AWS IoT console: Logging frequency

Required: false

Type: string

Valid pattern: ^[1-9]{1}[0-9]{0,3}$

ForceDeploy

Indicates whether to force the Docker deployment if it fails because of the improper cleanup
of the last deployment. The default value is False.

Display name in the AWS IoT console: Force deployment

Required: false

Type: string

Valid pattern: ^(true|false)$

Docker application deployment 633

AWS IoT Greengrass Developer Guide, Version 1

DockerPullBeforeUp

Indicates whether the deployer should run docker-compose pull before running
docker-compose up for a pull-down-up behavior. The default value is True.

Display name in the AWS IoT console: Docker Pull Before Up

Required: false

Type: string

Valid pattern: ^(true|false)$

StopContainersOnNewDeployment

Indicates whether the connector should stop Docker Deployer managed docker containers
when GGC is stopped (GGC stops when a new group is deployed, or the kernel is shut down).
The default value is True.

Display name in the AWS IoT console: Docker stop on new deployment

Note

We recommend keeping this parameter set to its default True value. The parameter
to False causes your Docker container to continue running even after terminating
the AWS IoT Greengrass core or starting a new deployment. If you set this parameter
to False, you must ensure that your Docker containers are maintained as necessary
in the event of a docker-compose service name change or addition.
For more information, see the docker-compose compose file documentation.

Required: false

Type: string

Valid pattern: ^(true|false)$

DockerOfflineMode

Indicates whether to use the existing Docker Compose file when AWS IoT Greengrass starts
offline. The default value is False.

Docker application deployment 634

AWS IoT Greengrass Developer Guide, Version 1

Required: false

Type: string

Valid pattern: ^(true|false)$

Version 6

DockerComposeFileS3Bucket

The name of the S3 bucket that contains your Docker Compose file. When you create the
bucket, make sure to follow the rules for bucket names described in the Amazon Simple
Storage Service User Guide.

Display name in the AWS IoT console: Docker Compose file in S3

Note

In the console, the Docker Compose file in S3 property combines the
DockerComposeFileS3Bucket, DockerComposeFileS3Key, and
DockerComposeFileS3Version parameters.

Required: true

Type: string

Valid pattern [a-zA-Z0-9\\-\\.]{3,63}

DockerComposeFileS3Key

The object key for your Docker Compose file in Amazon S3. For more information, including
object key naming guidelines, see Object key and metadata in the Amazon Simple Storage
Service User Guide.

Note

In the console, the Docker Compose file in S3 property combines the
DockerComposeFileS3Bucket, DockerComposeFileS3Key, and
DockerComposeFileS3Version parameters.

Docker application deployment 635

https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html

AWS IoT Greengrass Developer Guide, Version 1

Required: true

Type: string

Valid pattern .+

DockerComposeFileS3Version

The object version for your Docker Compose file in Amazon S3. For more information,
including object key naming guidelines, see Using versioning in the Amazon Simple Storage
Service User Guide.

Note

In the console, the Docker Compose file in S3 property combines the
DockerComposeFileS3Bucket, DockerComposeFileS3Key, and
DockerComposeFileS3Version parameters.

Required: false

Type: string

Valid pattern .+

DockerComposeFileDestinationPath

The absolute path of the local directory used to store a copy of the Docker Compose
file. This must be an existing directory. The user specified for DockerUserId must have
permission to create a file in this directory. For more information, see the section called
“Setting up the Docker user on the core”.

Important

This directory stores your Docker Compose file and the credentials for your Docker
images from private repositories. It is your responsibility to secure this directory. For
more information, see the section called “Security notes”.

Display name in the AWS IoT console: Directory path for local Compose file

Docker application deployment 636

https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

AWS IoT Greengrass Developer Guide, Version 1

Required: true

Type: string

Valid pattern \/.*\/?

Example: /home/username/myCompose

DockerUserId

The UID of the Linux user that the connector runs as. This user must belong to
the docker Linux group on the core device and have write permissions to the
DockerComposeFileDestinationPath directory. For more information, see Setting up
the Docker user on the core.

Note

We recommend that you avoid running as root unless absolutely necessary. If you
do specify the root user, you must allow Lambda functions to run as root on the
AWS IoT Greengrass core. For more information, see the section called “Running a
Lambda function as root”.

Display name in the AWS IoT console: Docker user ID

Required: false

Type: string

Valid pattern: ^[0-9]{1,5}$

AWSSecretsArnList

The Amazon Resource Names (ARNs) of the secrets in AWS Secrets Manager that contain
the login information used to access your Docker images in private repositories. For more
information, see the section called “Accessing Docker images from private repositories”.

Display name in the AWS IoT console: Credentials for private repositories

Required: false. This parameter is required to access Docker images stored in private
repositories.

Docker application deployment 637

AWS IoT Greengrass Developer Guide, Version 1

Type: array of string

Valid pattern: [(?,? ?"(arn:(aws(-[a-z]+)):secretsmanager:[a-z0-9-]+:
[0-9]{12}:secret:([a-zA-Z0-9\]+/)[a-zA-Z0-9/_+=,.@-]+-[a-zA-Z0-9]+)")]

DockerContainerStatusLogFrequency

The frequency (in seconds) at which the connector logs status information about the Docker
containers running on the core. The default is 300 seconds (5 minutes).

Display name in the AWS IoT console: Logging frequency

Required: false

Type: string

Valid pattern: ^[1-9]{1}[0-9]{0,3}$

ForceDeploy

Indicates whether to force the Docker deployment if it fails because of the improper cleanup
of the last deployment. The default value is False.

Display name in the AWS IoT console: Force deployment

Required: false

Type: string

Valid pattern: ^(true|false)$

DockerPullBeforeUp

Indicates whether the deployer should run docker-compose pull before running
docker-compose up for a pull-down-up behavior. The default value is True.

Display name in the AWS IoT console: Docker Pull Before Up

Required: false

Type: string

Valid pattern: ^(true|false)$

Docker application deployment 638

AWS IoT Greengrass Developer Guide, Version 1

StopContainersOnNewDeployment

Indicates whether the connector should stop Docker Deployer managed docker containers
when GGC is stopped (when a new group deployment is made, or the kernel is shutdown).
The default value is True.

Display name in the AWS IoT console: Docker stop on new deployment

Note

We recommend keeping this parameter set to its default True value. The parameter
to False causes your Docker container to continue running even after terminating
the AWS IoT Greengrass core or starting a new deployment. If you set this parameter
to False, you must ensure that your Docker containers are maintained as necessary
in the event of a docker-compose service name change or addition.
For more information, see the docker-compose compose file documentation.

Required: false

Type: string

Valid pattern: ^(true|false)$

Version 5

DockerComposeFileS3Bucket

The name of the S3 bucket that contains your Docker Compose file. When you create the
bucket, make sure to follow the rules for bucket names described in the Amazon Simple
Storage Service User Guide.

Display name in the AWS IoT console: Docker Compose file in S3

Note

In the console, the Docker Compose file in S3 property combines the
DockerComposeFileS3Bucket, DockerComposeFileS3Key, and
DockerComposeFileS3Version parameters.

Docker application deployment 639

https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html

AWS IoT Greengrass Developer Guide, Version 1

Required: true

Type: string

Valid pattern [a-zA-Z0-9\\-\\.]{3,63}

DockerComposeFileS3Key

The object key for your Docker Compose file in Amazon S3. For more information, including
object key naming guidelines, see Object key and metadata in the Amazon Simple Storage
Service User Guide.

Note

In the console, the Docker Compose file in S3 property combines the
DockerComposeFileS3Bucket, DockerComposeFileS3Key, and
DockerComposeFileS3Version parameters.

Required: true

Type: string

Valid pattern .+

DockerComposeFileS3Version

The object version for your Docker Compose file in Amazon S3. For more information,
including object key naming guidelines, see Using versioning in the Amazon Simple Storage
Service User Guide.

Note

In the console, the Docker Compose file in S3 property combines the
DockerComposeFileS3Bucket, DockerComposeFileS3Key, and
DockerComposeFileS3Version parameters.

Required: false

Type: string

Docker application deployment 640

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

AWS IoT Greengrass Developer Guide, Version 1

Valid pattern .+

DockerComposeFileDestinationPath

The absolute path of the local directory used to store a copy of the Docker Compose
file. This must be an existing directory. The user specified for DockerUserId must have
permission to create a file in this directory. For more information, see the section called
“Setting up the Docker user on the core”.

Important

This directory stores your Docker Compose file and the credentials for your Docker
images from private repositories. It is your responsibility to secure this directory. For
more information, see the section called “Security notes”.

Display name in the AWS IoT console: Directory path for local Compose file

Required: true

Type: string

Valid pattern \/.*\/?

Example: /home/username/myCompose

DockerUserId

The UID of the Linux user that the connector runs as. This user must belong to
the docker Linux group on the core device and have write permissions to the
DockerComposeFileDestinationPath directory. For more information, see Setting up
the Docker user on the core.

Note

We recommend that you avoid running as root unless absolutely necessary. If you
do specify the root user, you must allow Lambda functions to run as root on the
AWS IoT Greengrass core. For more information, see the section called “Running a
Lambda function as root”.

Display name in the AWS IoT console: Docker user ID

Docker application deployment 641

AWS IoT Greengrass Developer Guide, Version 1

Required: false

Type: string

Valid pattern: ^[0-9]{1,5}$

AWSSecretsArnList

The Amazon Resource Names (ARNs) of the secrets in AWS Secrets Manager that contain
the login information used to access your Docker images in private repositories. For more
information, see the section called “Accessing Docker images from private repositories”.

Display name in the AWS IoT console: Credentials for private repositories

Required: false. This parameter is required to access Docker images stored in private
repositories.

Type: array of string

Valid pattern: [(?,? ?"(arn:(aws(-[a-z]+)):secretsmanager:[a-z0-9-]+:
[0-9]{12}:secret:([a-zA-Z0-9\]+/)[a-zA-Z0-9/_+=,.@-]+-[a-zA-Z0-9]+)")]

DockerContainerStatusLogFrequency

The frequency (in seconds) at which the connector logs status information about the Docker
containers running on the core. The default is 300 seconds (5 minutes).

Display name in the AWS IoT console: Logging frequency

Required: false

Type: string

Valid pattern: ^[1-9]{1}[0-9]{0,3}$

ForceDeploy

Indicates whether to force the Docker deployment if it fails because of the improper cleanup
of the last deployment. The default value is False.

Display name in the AWS IoT console: Force deployment

Docker application deployment 642

AWS IoT Greengrass Developer Guide, Version 1

Required: false

Type: string

Valid pattern: ^(true|false)$

DockerPullBeforeUp

Indicates whether the deployer should run docker-compose pull before running
docker-compose up for a pull-down-up behavior. The default value is True.

Display name in the AWS IoT console: Docker Pull Before Up

Required: false

Type: string

Valid pattern: ^(true|false)$

Versions 2 - 4

DockerComposeFileS3Bucket

The name of the S3 bucket that contains your Docker Compose file. When you create the
bucket, make sure to follow the rules for bucket names described in the Amazon Simple
Storage Service User Guide.

Display name in the AWS IoT console: Docker Compose file in S3

Note

In the console, the Docker Compose file in S3 property combines the
DockerComposeFileS3Bucket, DockerComposeFileS3Key, and
DockerComposeFileS3Version parameters.

Required: true

Type: string

Valid pattern [a-zA-Z0-9\\-\\.]{3,63}

Docker application deployment 643

https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html

AWS IoT Greengrass Developer Guide, Version 1

DockerComposeFileS3Key

The object key for your Docker Compose file in Amazon S3. For more information, including
object key naming guidelines, see Object key and metadata in the Amazon Simple Storage
Service User Guide.

Note

In the console, the Docker Compose file in S3 property combines the
DockerComposeFileS3Bucket, DockerComposeFileS3Key, and
DockerComposeFileS3Version parameters.

Required: true

Type: string

Valid pattern .+

DockerComposeFileS3Version

The object version for your Docker Compose file in Amazon S3. For more information,
including object key naming guidelines, see Using versioning in the Amazon Simple Storage
Service User Guide.

Note

In the console, the Docker Compose file in S3 property combines the
DockerComposeFileS3Bucket, DockerComposeFileS3Key, and
DockerComposeFileS3Version parameters.

Required: false

Type: string

Valid pattern .+

DockerComposeFileDestinationPath

The absolute path of the local directory used to store a copy of the Docker Compose
file. This must be an existing directory. The user specified for DockerUserId must have

Docker application deployment 644

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

AWS IoT Greengrass Developer Guide, Version 1

permission to create a file in this directory. For more information, see the section called
“Setting up the Docker user on the core”.

Important

This directory stores your Docker Compose file and the credentials for your Docker
images from private repositories. It is your responsibility to secure this directory. For
more information, see the section called “Security notes”.

Display name in the AWS IoT console: Directory path for local Compose file

Required: true

Type: string

Valid pattern \/.*\/?

Example: /home/username/myCompose

DockerUserId

The UID of the Linux user that the connector runs as. This user must belong to
the docker Linux group on the core device and have write permissions to the
DockerComposeFileDestinationPath directory. For more information, see Setting up
the Docker user on the core.

Note

We recommend that you avoid running as root unless absolutely necessary. If you
do specify the root user, you must allow Lambda functions to run as root on the
AWS IoT Greengrass core. For more information, see the section called “Running a
Lambda function as root”.

Display name in the AWS IoT console: Docker user ID

Required: false

Type: string

Docker application deployment 645

AWS IoT Greengrass Developer Guide, Version 1

Valid pattern: ^[0-9]{1,5}$

AWSSecretsArnList

The Amazon Resource Names (ARNs) of the secrets in AWS Secrets Manager that contain
the login information used to access your Docker images in private repositories. For more
information, see the section called “Accessing Docker images from private repositories”.

Display name in the AWS IoT console: Credentials for private repositories

Required: false. This parameter is required to access Docker images stored in private
repositories.

Type: array of string

Valid pattern: [(?,? ?"(arn:(aws(-[a-z]+)):secretsmanager:[a-z0-9-]+:
[0-9]{12}:secret:([a-zA-Z0-9\]+/)[a-zA-Z0-9/_+=,.@-]+-[a-zA-Z0-9]+)")]

DockerContainerStatusLogFrequency

The frequency (in seconds) at which the connector logs status information about the Docker
containers running on the core. The default is 300 seconds (5 minutes).

Display name in the AWS IoT console: Logging frequency

Required: false

Type: string

Valid pattern: ^[1-9]{1}[0-9]{0,3}$

ForceDeploy

Indicates whether to force the Docker deployment if it fails because of the improper cleanup
of the last deployment. The default value is False.

Display name in the AWS IoT console: Force deployment

Required: false

Type: string

Docker application deployment 646

AWS IoT Greengrass Developer Guide, Version 1

Valid pattern: ^(true|false)$

Version 1

DockerComposeFileS3Bucket

The name of the S3 bucket that contains your Docker Compose file. When you create the
bucket, make sure to follow the rules for bucket names described in the Amazon Simple
Storage Service User Guide.

Display name in the AWS IoT console: Docker Compose file in S3

Note

In the console, the Docker Compose file in S3 property combines the
DockerComposeFileS3Bucket, DockerComposeFileS3Key, and
DockerComposeFileS3Version parameters.

Required: true

Type: string

Valid pattern [a-zA-Z0-9\\-\\.]{3,63}

DockerComposeFileS3Key

The object key for your Docker Compose file in Amazon S3. For more information, including
object key naming guidelines, see Object key and metadata in the Amazon Simple Storage
Service User Guide.

Note

In the console, the Docker Compose file in S3 property combines the
DockerComposeFileS3Bucket, DockerComposeFileS3Key, and
DockerComposeFileS3Version parameters.

Required: true

Docker application deployment 647

https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html

AWS IoT Greengrass Developer Guide, Version 1

Type: string

Valid pattern .+

DockerComposeFileS3Version

The object version for your Docker Compose file in Amazon S3. For more information,
including object key naming guidelines, see Using versioning in the Amazon Simple Storage
Service User Guide.

Note

In the console, the Docker Compose file in S3 property combines the
DockerComposeFileS3Bucket, DockerComposeFileS3Key, and
DockerComposeFileS3Version parameters.

Required: false

Type: string

Valid pattern .+

DockerComposeFileDestinationPath

The absolute path of the local directory used to store a copy of the Docker Compose
file. This must be an existing directory. The user specified for DockerUserId must have
permission to create a file in this directory. For more information, see the section called
“Setting up the Docker user on the core”.

Important

This directory stores your Docker Compose file and the credentials for your Docker
images from private repositories. It is your responsibility to secure this directory. For
more information, see the section called “Security notes”.

Display name in the AWS IoT console: Directory path for local Compose file

Required: true

Docker application deployment 648

https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html

AWS IoT Greengrass Developer Guide, Version 1

Type: string

Valid pattern \/.*\/?

Example: /home/username/myCompose

DockerUserId

The UID of the Linux user that the connector runs as. This user must belong to
the docker Linux group on the core device and have write permissions to the
DockerComposeFileDestinationPath directory. For more information, see Setting up
the Docker user on the core.

Note

We recommend that you avoid running as root unless absolutely necessary. If you
do specify the root user, you must allow Lambda functions to run as root on the
AWS IoT Greengrass core. For more information, see the section called “Running a
Lambda function as root”.

Display name in the AWS IoT console: Docker user ID

Required: false

Type: string

Valid pattern: ^[0-9]{1,5}$

AWSSecretsArnList

The Amazon Resource Names (ARNs) of the secrets in AWS Secrets Manager that contain
the login information used to access your Docker images in private repositories. For more
information, see the section called “Accessing Docker images from private repositories”.

Display name in the AWS IoT console: Credentials for private repositories

Required: false. This parameter is required to access Docker images stored in private
repositories.

Type: array of string

Docker application deployment 649

AWS IoT Greengrass Developer Guide, Version 1

Valid pattern: [(?,? ?"(arn:(aws(-[a-z]+)):secretsmanager:[a-z0-9-]+:
[0-9]{12}:secret:([a-zA-Z0-9\]+/)[a-zA-Z0-9/_+=,.@-]+-[a-zA-Z0-9]+)")]

DockerContainerStatusLogFrequency

The frequency (in seconds) at which the connector logs status information about the Docker
containers running on the core. The default is 300 seconds (5 minutes).

Display name in the AWS IoT console: Logging frequency

Required: false

Type: string

Valid pattern: ^[1-9]{1}[0-9]{0,3}$

Create Connector Example (AWS CLI)

The following CLI command creates a ConnectorDefinition with an initial version that contains
the Greengrass Docker application deployment connector.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '{
 "Connectors": [
 {
 "Id": "MyDockerAppplicationDeploymentConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/
DockerApplicationDeployment/versions/5",
 "Parameters": {
 "DockerComposeFileS3Bucket": "myS3Bucket",
 "DockerComposeFileS3Key": "production-docker-compose.yml",
 "DockerComposeFileS3Version": "123",
 "DockerComposeFileDestinationPath": "/home/username/myCompose",
 "DockerUserId": "1000",
 "AWSSecretsArnList": "[\"arn:aws:secretsmanager:region:account-
id:secret:greengrass-secret1-hash\",\"arn:aws:secretsmanager:region:account-
id:secret:greengrass-secret2-hash\"]",
 "DockerContainerStatusLogFrequency": "30",
 "ForceDeploy": "True",
 "DockerPullBeforeUp": "True"
 }
 }

Docker application deployment 650

AWS IoT Greengrass Developer Guide, Version 1

]
}'

Note

The Lambda function in this connector has a long-lived lifecycle.

Input data

This connector doesn't require or accept input data.

Output data

This connector publishes the status of the docker-compose up command as output data.

Topic filter in subscription

dockerapplicationdeploymentconnector/message/status

Example output: Success

{
 "status":"success",
 "GreengrassDockerApplicationDeploymentStatus":"Successfully triggered docker-
compose up",
 "S3Bucket":"myS3Bucket",
 "ComposeFileName":"production-docker-compose.yml",
 "ComposeFileVersion":"123"
}

Example output: Failure

{
 "status":"fail",
 "error_message":"description of error",
 "error":"InvalidParameter"
}

The error type can be InvalidParameter or InternalError.

Docker application deployment 651

AWS IoT Greengrass Developer Guide, Version 1

Setting up the Docker user on the AWS IoT Greengrass core

The Greengrass Docker application deployment connector runs as the user you specify for the
DockerUserId parameter. If you don't specify a value, the connector runs as ggc_user, which is
the default Greengrass access identity.

To allow the connector to interact with the Docker daemon, the Docker user must belong to
the docker Linux group on the core. The Docker user must also have write permissions to the
DockerComposeFileDestinationPath directory. This is where the connector stores your local
docker-compose.yml file and Docker credentials.

Note

• We recommend that you create a Linux user instead of using the default ggc_user.
Otherwise, any Lambda function in the Greengrass group can access the Compose file
and Docker credentials.

• We recommend that you avoid running as root unless absolutely necessary. If you do
specify the root user, you must allow Lambda functions to run as root on the AWS
IoT Greengrass core. For more information, see the section called “Running a Lambda
function as root”.

1. Create the user. You can run the useradd command and include the optional -u option to
assign a UID. For example:

sudo useradd -u 1234 user-name

2. Add the user to the docker group on the core. For example:

sudo usermod -aG docker user-name

For more information, including how to create the docker group, see Manage Docker as a
non-root user in the Docker documentation.

3. Give the user permissions to write to the directory specifed for the
DockerComposeFileDestinationPath parameter. For example:

a. To set the user as the owner of the directory. This example uses the UID from step 1.

Docker application deployment 652

https://docs.docker.com/install/linux/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.docker.com/install/linux/linux-postinstall/#manage-docker-as-a-non-root-user

AWS IoT Greengrass Developer Guide, Version 1

chown 1234 docker-compose-file-destination-path

b. To give read and write permissions to the owner.

chmod 700 docker-compose-file-destination-path

For more information, see How To Manage File And Folder Permissions In Linux in the
Linux Foundation documentation.

c. If you didn't assign a UID when you created the user, or if you used an existing user, run
the id command to look up the UID.

id -u user-name

You use the UID to configure the DockerUserId parameter for the connector.

Usage information

When you use the Greengrass Docker application deployment connector, you should be aware of
the following implementation-specific usage information.

• Fixed prefix for project names. The connector prepends the
greengrassdockerapplicationdeployment prefix to the names of the Docker containers
that it starts. The connector uses this prefix as the project name in the docker-compose
commands that it runs.

• Logging behavior. The connector writes status information and troubleshooting information to
a log file. You can configure AWS IoT Greengrass to send logs to CloudWatch Logs and to write
logs locally. For more information, see the section called “Logging”. This is the path to the local
log for the connector:

/greengrass-root/ggc/var/log/user/region/aws/DockerApplicationDeployment.log

You must have root permissions to access local logs.

• Updating Docker images. Docker caches images on the core device. If you update a Docker
image and want to propagate the change to the core device, make sure to change the tag for the
image in the Compose file. Changes take effect after the Greengrass group is deployed.

Docker application deployment 653

https://www.linux.com/tutorials/how-manage-file-and-folder-permissions-linux/

AWS IoT Greengrass Developer Guide, Version 1

• 10-minute timeout for cleanup operations. When the Greengrass daemon stops during
a restart, the docker-compose down command is initiated. All Docker containers have a
maximum of 10 minutes after docker-compose down is initiated to perform any cleanup
operations. If the cleanup isn't completed in 10 minutes, you must clean up the remaining
containers manually. For more information, see docker rm in the Docker CLI documentation.

• Running Docker commands. To troubleshoot issues, you can run Docker commands in a
terminal window on the core device. For example, run the following command to see the Docker
containers that were started by the connector:

docker ps --filter name="greengrassdockerapplicationdeployment"

• Reserved resource ID. The connector uses the
DOCKER_DEPLOYER_SECRET_RESOURCE_RESERVED_ID_index ID for the Greengrass resources
it creates in the Greengrass group. Resource IDs must be unique in the group, so don't assign a
resource ID that might conflict with this reserved resource ID.

• Offline mode. When you set the DockerOfflineMode configuration parameter to True, then
the Docker connector is able to operate in offline mode. This can happen when a Greengrass
group deployment restarts while the core device is offline, and the connector cannot establish a
connection to Amazon S3 or Amazon ECR to retrieve the Docker Compose file.

With offline mode enabled, the connector attempts to download your Compose file, and run
docker login commands as it would for a normal restart. If these attempts fail, then the
connector looks for a locally stored Compose file in the folder that was specified using the
DockerComposeFileDestinationPath parameter. If a local Compose file exists, then the
connector follows the normal sequence of docker-compose commands and pulls from local
images. If the Compose file or the local images are not present, then the connector fails. The
behavior of the ForceDeploy and StopContainersOnNewDeployment parameters remains
the same in offline mode.

Communicating with Docker containers

AWS IoT Greengrass supports the following communication channels between Greengrass
components and Docker containers:

• Greengrass Lambda functions can use REST APIs to communicate with processes in Docker
containers. You can set up a server in a Docker container that opens a port. Lambda functions
can communicate with the container on this port.

Docker application deployment 654

https://docs.docker.com/engine/reference/commandline/rm/

AWS IoT Greengrass Developer Guide, Version 1

• Processes in Docker containers can exchange MQTT messages through the local Greengrass
message broker. You can set up the Docker container as a client device in the Greengrass group
and then create subscriptions to allow the container to communicate with Greengrass Lambda
functions, client devices, and other connectors in the group, or with AWS IoT and the local
shadow service. For more information, see the section called “Configure MQTT communication
with Docker containers”.

• Greengrass Lambda functions can update a shared file to pass information to Docker containers.
You can use the Compose file to bind mount the shared file path for a Docker container.

Configure MQTT communication with Docker containers

You can configure a Docker container as a client device and add it to a Greengrass group. Then,
you can create subscriptions that allow MQTT communication between the Docker container and
Greengrass components or AWS IoT. In the following procedure, you create a subscription that
allows the Docker container device to receive shadow update messages from the local shadow
service. You can follow this pattern to create other subscriptions.

Note

This procedure assumes that you have already created a Greengrass group and a
Greengrass core (v1.10 or later). For information about creating a Greengrass group and
core, see Getting started with AWS IoT Greengrass.

To configure a Docker container as a client device and add it to a Greengrass group

1. Create a folder on the core device to store the certificates and keys used to authenticate the
Greengrass device.

The file path must be mounted on the Docker container you want to start. The following
snippet shows how to mount a file path in your Compose file. In this example, path-to-
device-certs represents the folder you created in this step.

version: '3.3'
services:
 myService:
 image: user-name/repo:image-tag
 volumes:

Docker application deployment 655

AWS IoT Greengrass Developer Guide, Version 1

 - /path-to-device-certs/:/path-accessible-in-container

2. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

3. Choose the target group.

4. On the group configuration page, choose Client devices, and then choose Associate.

5. In the Associate a client device with this group modal, choose Create new AWS IoT thing.

The Create things page opens in a new tab.

6. On the Create things page, choose Create single thing, and then choose Next.

7. On the Specify thing properties page, enter a name for the device, and then choose Next.

8. On the Configure device certificate page, choose Next.

9. On the Attach policies to certificate page, do one of the following:

• Select an existing policy that grants permissions that client devices require, and then
choose Create thing.

A modal opens where you can download the certificates and keys that the device uses to
connect to the AWS Cloud and the core.

• Create and attach a new policy that grants client device permissions. Do the following:

a. Choose Create policy.

The Create policy page opens in a new tab.

b. On the Create policy page, do the following:

i. For Policy name, enter a name that describes the policy, such as
GreengrassV1ClientDevicePolicy.

ii. On the Policy statements tab, under Policy document, choose JSON.

iii. Enter the following policy document. This policy allows the client device to
discover Greengrass cores and communicate on all MQTT topics. For information
about how to restrict this policy's access, see Device authentication and
authorization for AWS IoT Greengrass.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Docker application deployment 656

AWS IoT Greengrass Developer Guide, Version 1

 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Subscribe",
 "iot:Connect",
 "iot:Receive"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "greengrass:*"
],
 "Resource": [
 "*"
]
 }
]
}

iv. Choose Create to create the policy.

c. Return to the browser tab with the Attach policies to certificate page open. Do the
following:

i. In the Policies list, select the policy that you created, such as
GreengrassV1ClientDevicePolicy.

If you don't see the policy, choose the refresh button.

ii. Choose Create thing.

A modal opens where you can download the certificates and keys that the device
uses to connect to the AWS Cloud and the core.

10. In the Download certificates and keys modal, download the device's certificates.

Important

Before you choose Done, download the security resources.

Docker application deployment 657

AWS IoT Greengrass Developer Guide, Version 1

Do the following:

a. For Device certificate, choose Download to download the device certificate.

b. For Public key file, choose Download to download the public key for the certificate.

c. For Private key file, choose Download to download the private key file for the certificate.

d. Review Server Authentication in the AWS IoT Developer Guide and choose the appropriate
root CA certificate. We recommend that you use Amazon Trust Services (ATS) endpoints
and ATS root CA certificates. Under Root CA certificates, choose Download for a root CA
certificate.

e. Choose Done.

Make a note of the certificate ID that's common in the file names for the device certificate and
keys. You need it later.

11. Copy the certificates and keys into the folder that you created in step 1.

Next, create a subscription in the group. For this example, you create a subscription allows the
Docker container device to receive MQTT messages from the local shadow service.

Note

The maximum size of a shadow document is 8 KB. For more information, see AWS IoT
quotas in the AWS IoT Developer Guide.

To create a subscription that allows the Docker container device to receive MQTT messages
from the local shadow service

1. On the group configuration page, choose the Subscriptions tab, and then choose Add
Subscription.

2. On the Select your source and target page, configure the source and target, as follows:

a. For Select a source, choose Services, and then choose Local Shadow Service.

b. For Select a target, choose Devices, and then choose your device.

c. Choose Next.

Docker application deployment 658

https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/iot/latest/developerguide/limits-iot.html
https://docs.aws.amazon.com/iot/latest/developerguide/limits-iot.html

AWS IoT Greengrass Developer Guide, Version 1

d. On the Filter your data with a topic page, for Topic filter, choose $aws/
things/MyDockerDevice/shadow/update/accepted, and then choose Next. Replace
MyDockerDevice with the name of the device that you created earlier.

e. Choose Finish.

Include the following code snippet in the Docker image that you reference in your Compose
file. This is the Greengrass device code. Also, add code in your Docker container that starts the
Greengrass device inside the container. It can run as a separate process in the image or in a
separate thread.

import os
import sys
import time
import uuid

from AWSIoTPythonSDK.core.greengrass.discovery.providers import DiscoveryInfoProvider
from AWSIoTPythonSDK.exception.AWSIoTExceptions import DiscoveryInvalidRequestException
from AWSIoTPythonSDK.MQTTLib import AWSIoTMQTTClient

Replace thingName with the name you registered for the Docker device.
thingName = "MyDockerDevice"
clientId = thingName

Replace host with the IoT endpoint for your &AWS-account;.
host = "myPrefix.iot.region.amazonaws.com"

Replace topic with the topic where the Docker container subscribes.
topic = "$aws/things/MyDockerDevice/shadow/update/accepted"

Replace these paths based on the download location of the certificates for the Docker
 container.
rootCAPath = "/path-accessible-in-container/AmazonRootCA1.pem"
certificatePath = "/path-accessible-in-container/certId-certificate.pem.crt"
privateKeyPath = "/path-accessible-in-container/certId-private.pem.key"

Discover Greengrass cores.
discoveryInfoProvider = DiscoveryInfoProvider()
discoveryInfoProvider.configureEndpoint(host)
discoveryInfoProvider.configureCredentials(rootCAPath, certificatePath, privateKeyPath)
discoveryInfoProvider.configureTimeout(10) # 10 seconds.

Docker application deployment 659

AWS IoT Greengrass Developer Guide, Version 1

GROUP_CA_PATH = "./groupCA/"
MQTT_QOS = 1

discovered = False
groupCA = None
coreInfo = None

try:
 # Get discovery info from AWS IoT.
 discoveryInfo = discoveryInfoProvider.discover(thingName)
 caList = discoveryInfo.getAllCas()
 coreList = discoveryInfo.getAllCores()

 # Use first discovery result.
 groupId, ca = caList[0]
 coreInfo = coreList[0]

 # Save the group CA to a local file.
 groupCA = GROUP_CA_PATH + groupId + "_CA_" + str(uuid.uuid4()) + ".crt"
 if not os.path.exists(GROUP_CA_PATH):
 os.makedirs(GROUP_CA_PATH)
 groupCAFile = open(groupCA, "w")
 groupCAFile.write(ca)
 groupCAFile.close()
 discovered = True
except DiscoveryInvalidRequestException as e:
 print("Invalid discovery request detected!")
 print("Type: %s" % str(type(e)))
 print("Error message: %s" % str(e))
 print("Stopping...")
except BaseException as e:
 print("Error in discovery!")
 print("Type: %s" % str(type(e)))
 print("Error message: %s" % str(e))
 print("Stopping...")

myAWSIoTMQTTClient = AWSIoTMQTTClient(clientId)
myAWSIoTMQTTClient.configureCredentials(groupCA, privateKeyPath, certificatePath)

Try to connect to the Greengrass core.
connected = False
for connectivityInfo in coreInfo.connectivityInfoList:

Docker application deployment 660

AWS IoT Greengrass Developer Guide, Version 1

 currentHost = connectivityInfo.host
 currentPort = connectivityInfo.port
 myAWSIoTMQTTClient.configureEndpoint(currentHost, currentPort)
 try:
 myAWSIoTMQTTClient.connect()
 connected = True
 except BaseException as e:
 print("Error in connect!")
 print("Type: %s" % str(type(e)))
 print("Error message: %s" % str(e))
 if connected:
 break

if not connected:
 print("Cannot connect to core %s. Exiting..." % coreInfo.coreThingArn)
 sys.exit(-2)

Handle the MQTT message received from GGShadowService.
def customCallback(client, userdata, message):
 print("Received an MQTT message")
 print(message)

Subscribe to the MQTT topic.
myAWSIoTMQTTClient.subscribe(topic, MQTT_QOS, customCallback)

Keep the process alive to listen for messages.
while True:
 time.sleep(1)

Security notes

When you use the Greengrass Docker application deployment connector, be aware of the following
security considerations.

Local storage of the Docker Compose file

The connector stores a copy of your Compose file in the directory specified for the
DockerComposeFileDestinationPath parameter.

It's your responsibility to secure this directory. You should use file system permissions to restrict
access to the directory.

Docker application deployment 661

AWS IoT Greengrass Developer Guide, Version 1

Local storage of the Docker credentials

If your Docker images are stored in private repositories, the connector stores your Docker
credentials in the directory specified for the DockerComposeFileDestinationPath
parameter.

It's your responsibility to secure these credentials. For example, you should use credential-
helper on the core device when you install Docker Engine.

Install Docker Engine from a trusted source

It's your responsibility to install Docker Engine from a trusted source. This connector uses the
Docker daemon on the core device to access your Docker assets and manage Docker containers.

Scope of Greengrass group role permissions

Permissions that you add in the Greengrass group role can be assumed by all Lambda functions
and connectors in the Greengrass group. This connector requires access to your Docker
Compose file stored in an S3 bucket. It also requires access to your Amazon ECR authorization
token if your Docker images are stored in a private repository in Amazon ECR.

Licenses

The Greengrass Docker application deployment connector includes the following third-party
software/licensing:

• AWS SDK for Python (Boto3)/Apache License 2.0

• botocore/Apache License 2.0

• dateutil/PSF License

• docutils/BSD License, GNU General Public License (GPL), Python Software Foundation License,
Public Domain

• jmespath/MIT License

• s3transfer/Apache License 2.0

• urllib3/MIT License

This connector is released under the Greengrass Core Software License Agreement.

Docker application deployment 662

https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://pypi.org/project/boto3/
https://pypi.org/project/botocore/
https://pypi.org/project/python-dateutil/1.4/
https://pypi.org/project/docutils/
https://pypi.org/project/jmespath/
https://pypi.org/project/s3transfer/
https://pypi.org/project/urllib3/
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 1

Changelog

The following table describes the changes in each version of the connector.

Version Changes

7 Added DockerOfflineMode to use an existing Docker Compose file when
AWS IoT Greengrass starts offline. Implemented retries for the docker login
command. Support for 32-bit UIDs.

6 Added StopContainersOnNewDeployment to override container clean
up when a new deployment is made or GGC stops. Safer shutdown and start up
mechanisms. YAML validation bug fix.

5 Images are pulled before running docker-compose down .

4 Added pull-before-up behavior to update Docker images.

3 Fixed an issue with finding environment variables.

2 Added the ForceDeploy parameter.

1 Initial release.

A Greengrass group can contain only one version of the connector at a time. For information about
upgrading a connector version, see the section called “Upgrading connector versions”.

See also

• Integrate with services and protocols using connectors

• the section called “Get started with connectors (console)”

• the section called “Get started with connectors (CLI)”

Docker application deployment 663

AWS IoT Greengrass Developer Guide, Version 1

IoT Analytics connector

Warning

This connector has moved into the extended life phase, and AWS IoT Greengrass won't
release updates that provide features, enhancements to existing features, security patches,
or bug fixes. For more information, see AWS IoT Greengrass Version 1 maintenance policy.

The IoT Analytics connector sends local device data to AWS IoT Analytics. You can use this
connector as a central hub to collect data from sensors on the Greengrass core device and
from connected client devices. The connector sends the data to AWS IoT Analytics channels in
the current AWS account and Region. It can send data to a default destination channel and to
dynamically specified channels.

Note

AWS IoT Analytics is a fully managed service that allows you to collect, store, process, and
query IoT data. In AWS IoT Analytics, the data can be further analyzed and processed. For
example, it can be used to train ML models for monitoring machine health or to test new
modeling strategies. For more information, see What is AWS IoT Analytics? in the AWS IoT
Analytics User Guide.

The connector accepts formatted and unformatted data on input MQTT topics. It supports two
predefined topics where the destination channel is specified inline. It can also receive messages on
customer-defined topics that are configured in subscriptions. This can be used to route messages
from client devices that publish to fixed topics or handle unstructured or stack-dependent data
from resource-constrained devices.

This connector uses the BatchPutMessage API to send data (as a JSON or base64-encoded string)
to the destination channel. The connector can process raw data into a format that conforms to API
requirements. The connector buffers input messages in per-channel queues and asynchronously
processes the batches. It provides parameters that allow you to control queueing and batching
behavior and to restrict memory consumption. For example, you can configure the maximum
queue size, batch interval, memory size, and number of active channels.

This connector has the following versions.

IoT Analytics 664

https://docs.aws.amazon.com/iotanalytics/latest/userguide/welcome.html
https://docs.aws.amazon.com/iotanalytics/latest/userguide/api.html#cli-iotanalytics-batchputmessage

AWS IoT Greengrass Developer Guide, Version 1

Version ARN

4 arn:aws:greengrass: region::/
connectors/IoTAnalytics/
versions/4

3 arn:aws:greengrass: region::/
connectors/IoTAnalytics/
versions/3

2 arn:aws:greengrass: region::/
connectors/IoTAnalytics/
versions/2

1 arn:aws:greengrass: region::/
connectors/IoTAnalytics/
versions/1

For information about version changes, see the Changelog.

Requirements

This connector has the following requirements:

Version 3 - 4

• AWS IoT Greengrass Core software v1.9.3 or later.

• Python version 3.7 or 3.8 installed on the core device and added to the PATH environment
variable.

Note

To use Python 3.8, run the following command to create a symbolic link from the the
default Python 3.7 installation folder to the installed Python 3.8 binaries.

sudo ln -s path-to-python-3.8/python3.8 /usr/bin/python3.7

IoT Analytics 665

https://www.python.org/

AWS IoT Greengrass Developer Guide, Version 1

This configures your device to meet the Python requirement for AWS IoT Greengrass.

• This connector can be used only in Amazon Web Services Regions where both AWS IoT
Greengrass and AWS IoT Analytics are supported.

• All related AWS IoT Analytics entities and workflows are created and configured. The entities
include channels, pipeline, datastores, and datasets. For more information, see the AWS CLI or
console procedures in the AWS IoT Analytics User Guide.

Note

Destination AWS IoT Analytics channels must use the same account and be in the
same AWS Region as this connector.

• The Greengrass group role configured to allow the iotanalytics:BatchPutMessage
action on destination channels, as shown in the following example IAM policy. The channels
must be in the current AWS account and Region.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1528133056761",
 "Action": [
 "iotanalytics:BatchPutMessage"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:iotanalytics:region:account-id:channel/channel_1_name",
 "arn:aws:iotanalytics:region:account-id:channel/channel_2_name"
]
 }
]
}

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

IoT Analytics 666

https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/iot-analytics.html
https://docs.aws.amazon.com/iotanalytics/latest/userguide/getting-started.html
https://docs.aws.amazon.com/iotanalytics/latest/userguide/quickstart.html

AWS IoT Greengrass Developer Guide, Version 1

Versions 1 - 2

• AWS IoT Greengrass Core software v1.7 or later.

• Python version 2.7 installed on the core device and added to the PATH environment variable.

• This connector can be used only in Amazon Web Services Regions where both AWS IoT
Greengrass and AWS IoT Analytics are supported.

• All related AWS IoT Analytics entities and workflows are created and configured. The entities
include channels, pipeline, datastores, and datasets. For more information, see the AWS CLI or
console procedures in the AWS IoT Analytics User Guide.

Note

Destination AWS IoT Analytics channels must use the same account and be in the
same AWS Region as this connector.

• The Greengrass group role configured to allow the iotanalytics:BatchPutMessage
action on destination channels, as shown in the following example IAM policy. The channels
must be in the current AWS account and Region.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1528133056761",
 "Action": [
 "iotanalytics:BatchPutMessage"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:iotanalytics:region:account-id:channel/channel_1_name",
 "arn:aws:iotanalytics:region:account-id:channel/channel_2_name"
]
 }
]
}

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

IoT Analytics 667

https://www.python.org/
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/iot-analytics.html
https://docs.aws.amazon.com/iotanalytics/latest/userguide/getting-started.html
https://docs.aws.amazon.com/iotanalytics/latest/userguide/quickstart.html

AWS IoT Greengrass Developer Guide, Version 1

Parameters

MemorySize

The amount of memory (in KB) to allocate to this connector.

Display name in the AWS IoT console: Memory size

Required: true

Type: string

Valid pattern: ^[0-9]+$

PublishRegion

The AWS Region that your AWS IoT Analytics channels are created in. Use the same Region as
the connector.

Note

This must also match the Region for the channels that are specified in the group role.

Display name in the AWS IoT console: Publish region

Required: false

Type: string

Valid pattern: ^$|([a-z]{2}-[a-z]+-\\d{1})

PublishInterval

The interval (in seconds) for publishing a batch of received data to AWS IoT Analytics.

Display name in the AWS IoT console: Publish interval

Required: false

Type: string

Default value: 1

Valid pattern: $|^[0-9]+$

IoT Analytics 668

AWS IoT Greengrass Developer Guide, Version 1

IotAnalyticsMaxActiveChannels

The maximum number of AWS IoT Analytics channels that the connector actively watches for.
This must be greater than 0, and at least equal to the number of channels that you expect the
connector to publish to at a given time.

You can use this parameter to restrict memory consumption by limiting the total number of
queues that the connector can manage at a given time. A queue is deleted when all queued
messages are sent.

Display name in the AWS IoT console: Maximum number of active channels

Required: false

Type: string

Default value: 50

Valid pattern: ^$|^[1-9][0-9]*$

IotAnalyticsQueueDropBehavior

The behavior for dropping messages from a channel queue when the queue is full.

Display name in the AWS IoT console: Queue drop behavior

Required: false

Type: string

Valid values: DROP_NEWEST or DROP_OLDEST

Default value: DROP_NEWEST

Valid pattern: ^DROP_NEWEST$|^DROP_OLDEST$

IotAnalyticsQueueSizePerChannel

The maximum number of messages to retain in memory (per channel) before the messages are
submitted or dropped. This must be greater than 0.

Display name in the AWS IoT console: Maximum queue size per channel

Required: false

Type: string

IoT Analytics 669

AWS IoT Greengrass Developer Guide, Version 1

Default value: 2048

Valid pattern: ^$|^[1-9][0-9]*$

IotAnalyticsBatchSizePerChannel

The maximum number of messages to send to an AWS IoT Analytics channel in one batch
request. This must be greater than 0.

Display name in the AWS IoT console: Maximum number of messages to batch per channel

Required: false

Type: string

Default value: 5

Valid pattern: ^$|^[1-9][0-9]*$

IotAnalyticsDefaultChannelName

The name of the AWS IoT Analytics channel that this connector uses for messages that are sent
to a customer-defined input topic.

Display name in the AWS IoT console: Default channel name

Required: false

Type: string

Valid pattern: ^[a-zA-Z0-9_]$

IsolationMode

The containerization mode for this connector. The default is GreengrassContainer,
which means that the connector runs in an isolated runtime environment inside the AWS IoT
Greengrass container.

Note

The default containerization setting for the group does not apply to connectors.

Display name in the AWS IoT console: Container isolation mode

IoT Analytics 670

AWS IoT Greengrass Developer Guide, Version 1

Required: false

Type: string

Valid values: GreengrassContainer or NoContainer

Valid pattern: ^NoContainer$|^GreengrassContainer$

Create Connector Example (AWS CLI)

The following CLI command creates a ConnectorDefinition with an initial version that contains
the IoT Analytics connector.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '{
 "Connectors": [
 {
 "Id": "MyIoTAnalyticsApplication",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/IoTAnalytics/
versions/3",
 "Parameters": {
 "MemorySize": "65535",
 "PublishRegion": "us-west-1",
 "PublishInterval": "2",
 "IotAnalyticsMaxActiveChannels": "25",
 "IotAnalyticsQueueDropBehavior": "DROP_OLDEST",
 "IotAnalyticsQueueSizePerChannel": "1028",
 "IotAnalyticsBatchSizePerChannel": "5",
 "IotAnalyticsDefaultChannelName": "my_channel"
 }
 }
]
}'

Note

The Lambda function in this connector has a long-lived lifecycle.

In the AWS IoT Greengrass console, you can add a connector from the group's Connectors page.
For more information, see the section called “Get started with connectors (console)”.

IoT Analytics 671

AWS IoT Greengrass Developer Guide, Version 1

Input data

This connector accepts data on predefined and customer-defined MQTT topics. Publishers can be
client devices, Lambda functions, or other connectors.

Predefined topics

The connector supports the following two structured MQTT topics that allow publishers to
specify the channel name inline.

• A formatted message on the iotanalytics/channels/+/messages/put topic. The IoT
data in these input messages must be formatted as a JSON or base64-encoded string.

• An unformatted message on the iotanalytics/channels/+/messages/binary/put
topic. Input messages received on this topic are treated as binary data and can contain any
data type.

To publish to predefined topics, replace the + wildcard with the channel name. For example:

iotanalytics/channels/my_channel/messages/put

Customer-defined topics

The connector supports the # topic syntax, which allows it to accept input messages on any
MQTT topic that you configure in a subscription. We recommend that you specify a topic path
instead of using only the # wildcard in your subscriptions. These messages are sent to the
default channel that you specify for the connector.

Input messages on customer-defined topics are treated as binary data. They can use any
message format and can contain any data type. You can use customer-defined topics to route
messages from devices that publish to fixed topics. You can also use them to accept input
data from client devices that can't process the data into a formatted message to send to the
connector.

For more information about subscriptions and MQTT topics, see the section called “Inputs and
outputs”.

The group role must allow the iotanalytics:BatchPutMessage action on all destination
channels. For more information, see the section called “Requirements”.

IoT Analytics 672

AWS IoT Greengrass Developer Guide, Version 1

Topic filter: iotanalytics/channels/+/messages/put

Use this topic to send formatted messages to the connector and dynamically specify a
destination channel. This topic also allows you to specify an ID that's returned in the response
output. The connector verifies that IDs are unique for each message in the outbound
BatchPutMessage request that it sends to AWS IoT Analytics. A message that has a duplicate
ID is dropped.

Input data sent to this topic must use the following message format.

Message properties

request

The data to send to the specified channel.

Required: true

Type: object that includes the following properties:

message

The device or sensor data as a JSON or base64-encoded string.

Required: true

Type: string

id

An arbitrary ID for the request. This property is used to map an input request to an
output response. When specified, the id property in the response object is set to this
value. If you omit this property, the connector generates an ID.

Required: false

Type: string

Valid pattern: .*

Example input

{

IoT Analytics 673

AWS IoT Greengrass Developer Guide, Version 1

 "request": {
 "message" : "{\"temp\":23.33}"
 },
 "id" : "req123"
}

Topic filter: iotanalytics/channels/+/messages/binary/put

Use this topic to send unformatted messages to the connector and dynamically specify a
destination channel.

The connector data doesn't parse the input messages received on this topic. It treats them as
binary data. Before sending the messages to AWS IoT Analytics, the connector encodes and
formats them to conform with BatchPutMessage API requirements:

• The connector base64-encodes the raw data and includes the encoded payload in an
outbound BatchPutMessage request.

• The connector generates and assigns an ID to each input message.

Note

The connector's response output doesn't include an ID correlation for these input
messages.

Message properties

None.

Topic filter: #

Use this topic to send any message format to the default channel. This is especially useful when
your client devices publish to fixed topics or when you want to send data to the default channel
from client devices that can't process the data into the connector's supported message format.

You define the topic syntax in the subscription that you create to connect this connector to the
data source. We recommend that you specify a topic path instead of using only the # wildcard
in your subscriptions.

The connector data doesn't parse the messages that are published to this input topic. All input
messages are treated as binary data. Before sending the messages to AWS IoT Analytics, the
connector encodes and formats them to conform with BatchPutMessage API requirements:

IoT Analytics 674

AWS IoT Greengrass Developer Guide, Version 1

• The connector base64-encodes the raw data and includes the encoded payload in an
outbound BatchPutMessage request.

• The connector generates and assigns an ID to each input message.

Note

The connector's response output doesn't include an ID correlation for these input
messages.

Message properties

None.

Output data

This connector publishes status information as output data on an MQTT topic. This information
contains the response returned by AWS IoT Analytics for each input message that it receives and
sends to AWS IoT Analytics.

Topic filter in subscription

iotanalytics/messages/put/status

Example output: Success

{
 "response" : {
 "status" : "success"
 },
 "id" : "req123"
}

Example output: Failure

{
 "response" : {
 "status" : "fail",
 "error" : "ResourceNotFoundException",
 "error_message" : "A resource with the specified name could not be found."
 },

IoT Analytics 675

AWS IoT Greengrass Developer Guide, Version 1

 "id" : "req123"
}

Note

If the connector detects a retryable error (for example, connection errors), it retries the
publish in the next batch. Exponential backoff is handled by the AWS SDK. Requests
with retryable errors are added back to the channel queue for further publishing
according to the IotAnalyticsQueueDropBehavior parameter.

Usage Example

Use the following high-level steps to set up an example Python 3.7 Lambda function that you can
use to try out the connector.

Note

• If you use other Python runtimes, you can create a symlink from Python3.x to Python
3.7.

• The Get started with connectors (console) and Get started with connectors (CLI) topics
contain detailed steps that show you how to configure and deploy an example Twilio
Notifications connector.

1. Make sure you meet the requirements for the connector.

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

2. Create and publish a Lambda function that sends input data to the connector.

Save the example code as a PY file. Download and unzip the AWS IoT Greengrass Core SDK for
Python. Then, create a zip package that contains the PY file and the greengrasssdk folder at
the root level. This zip package is the deployment package that you upload to AWS Lambda.

After you create the Python 3.7 Lambda function, publish a function version and create an
alias.

IoT Analytics 676

AWS IoT Greengrass Developer Guide, Version 1

3. Configure your Greengrass group.

a. Add the Lambda function by its alias (recommended). Configure the Lambda lifecycle as
long-lived (or "Pinned": true in the CLI).

b. Add the connector and configure its parameters.

c. Add subscriptions that allow the connector to receive input data and send output data on
supported topic filters.

• Set the Lambda function as the source, the connector as the target, and use a supported
input topic filter.

• Set the connector as the source, AWS IoT Core as the target, and use a supported output
topic filter. You use this subscription to view status messages in the AWS IoT console.

4. Deploy the group.

5. In the AWS IoT console, on the Test page, subscribe to the output data topic to view status
messages from the connector. The example Lambda function is long-lived and starts sending
messages immediately after the group is deployed.

When you're finished testing, you can set the Lambda lifecycle to on-demand (or "Pinned":
false in the CLI) and deploy the group. This stops the function from sending messages.

Example

The following example Lambda function sends an input message to the connector.

import greengrasssdk
import time
import json

iot_client = greengrasssdk.client('iot-data')
send_topic = 'iotanalytics/channels/my_channel/messages/put'

def create_request_with_all_fields():
 return {
 "request": {
 "message" : "{\"temp\":23.33}"
 },
 "id" : "req_123"
 }

IoT Analytics 677

AWS IoT Greengrass Developer Guide, Version 1

def publish_basic_message():
 messageToPublish = create_request_with_all_fields()
 print("Message To Publish: ", messageToPublish)
 iot_client.publish(topic=send_topic,
 payload=json.dumps(messageToPublish))

publish_basic_message()

def lambda_handler(event, context):
 return

Limits

This connector is subject to the following limits.

• All limits imposed by the AWS SDK for Python (Boto3) for the AWS IoT Analytics
batch_put_message action.

• All quotas imposed by the AWS IoT Analytics BatchPutMessage API. For more information, see
Service Quotas for AWS IoT Analytics in the AWS General Reference.

• 100,000 messages per second per channel.

• 100 messages per batch.

• 128 KB per message.

This API uses channel names (not channel ARNs), so sending data to cross-region or cross-
account channels is not supported.

• All quotas imposed by the AWS IoT Greengrass Core. For more information, see Service Quotas
for the AWS IoT Greengrass core in the AWS General Reference.

The following quotas might be especially applicable:

• Maximum size of messages sent by a device is 128 KB.

• Maximum message queue size in the Greengrass core router is 2.5 MB.

• Maximum length of a topic string is 256 bytes of UTF-8 encoded characters.

Licenses

The IoT Analytics connector includes the following third-party software/licensing:

• AWS SDK for Python (Boto3)/Apache License 2.0

IoT Analytics 678

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iotanalytics.html#IoTAnalytics.Client.batch_put_message
https://docs.aws.amazon.com/iotanalytics/latest/userguide/api.html#cli-iotanalytics-batchputmessage
https://docs.aws.amazon.com/general/latest/gr/iot-analytics.html#limits_iot_analytics
https://docs.aws.amazon.com/general/latest/gr/iot-analytics.html#limits_iot_analytics
https://docs.aws.amazon.com/general/latest/gr/greengrass.html#limits_greengrass
https://pypi.org/project/boto3/

AWS IoT Greengrass Developer Guide, Version 1

• botocore/Apache License 2.0

• dateutil/PSF License

• docutils/BSD License, GNU General Public License (GPL), Python Software Foundation License,
Public Domain

• jmespath/MIT License

• s3transfer/Apache License 2.0

• urllib3/MIT License

This connector is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the connector.

Version Changes

4 Adds the IsolationMode parameter to
configure the containerization mode for the
connector.

3 Upgraded the Lambda runtime to Python 3.7,
which changes the runtime requirement.

2 Fix to reduce excessive logging.

1 Initial release.

A Greengrass group can contain only one version of the connector at a time. For information about
upgrading a connector version, see the section called “Upgrading connector versions”.

See also

• Integrate with services and protocols using connectors

• the section called “Get started with connectors (console)”

• the section called “Get started with connectors (CLI)”

• What is AWS IoT Analytics? in the AWS IoT Analytics User Guide

IoT Analytics 679

https://pypi.org/project/botocore/
https://pypi.org/project/python-dateutil/1.4/
https://pypi.org/project/docutils/
https://pypi.org/project/jmespath/
https://pypi.org/project/s3transfer/
https://pypi.org/project/urllib3/
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf
https://docs.aws.amazon.com/iotanalytics/latest/userguide/welcome.html

AWS IoT Greengrass Developer Guide, Version 1

IoT Ethernet IP Protocol Adapter connector

The IoT Ethernet IP Protocol Adapter connector collects data from local devices using the Ethernet/
IP protocol. You can use this connector to collect data from multiple devices and publish it to a
StreamManager message stream.

You can also use this connector with the IoT SiteWise connector and your IoT SiteWise gateway.
Your gateway must supply the configuration for the connector. For more information, see
Configure an Ethernet/IP (EIP) source in the IoT SiteWise user guide.

Note

This connector runs in No container isolation mode, so you can deploy it to a AWS IoT
Greengrass group running in a Docker container.

This connector has the following versions.

Version ARN

2 (recommended) arn:aws:greengrass: region::/
connectors/IoTEIPProtoco
lAdaptor/versions/2

1 arn:aws:greengrass: region::/
connectors/IoTEIPProtoco
lAdaptor/versions/1

For information about version changes, see the Changelog.

Requirements

This connector has the following requirements:

Version 1 and 2

• AWS IoT Greengrass Core software v1.10.2 or later.

• Stream manager enabled on the AWS IoT Greengrass group.

IoT Ethernet IP Protocol Adapter 680

http://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-eip-source.html

AWS IoT Greengrass Developer Guide, Version 1

• Java 8 installed on the core device and added to the PATH environment variable.

• A minimum of 256 MB additional RAM. This requirement is in addition to AWS IoT Greengrass
Core memory requirements.

Note

This connector is available only in the following Regions:

• cn-north-1

• ap-southeast-1

• ap-southeast-2

• eu-central-1

• eu-west-1

• us-east-1

• us-west-2

Connector Parameters

This connector supports the following parameters:

LocalStoragePath

The directory on the AWS IoT Greengrass host that the IoT SiteWise connector can write
persistent data to. The default directory is /var/sitewise.

Display name in the AWS IoT console: Local storage path

Required: false

Type: string

Valid pattern: ^\s*$|\/.

ProtocolAdapterConfiguration

The set of Ethernet/IP collector configurations that the connector collect data from or connect
to. This can be an empty list.

IoT Ethernet IP Protocol Adapter 681

AWS IoT Greengrass Developer Guide, Version 1

Display name in the AWS IoT console: Protocol Adapter Configuration

Required: true

Type: A well-formed JSON string that defines the set of supported feedback configurations.

The following is an example of a ProtocolAdapterConfiguration:

{
 "sources": [
 {
 "type": "EIPSource",
 "name": "TestSource",
 "endpoint": {
 "ipAddress": "52.89.2.42",
 "port": 44818
 },
 "destination": {
 "type": "StreamManager",
 "streamName": "MyOutput_Stream",
 "streamBufferSize": 10
 },
 "destinationPathPrefix": "EIPSource_Prefix",
 "propertyGroups": [
 {
 "name": "DriveTemperatures",
 "scanMode": {
 "type": "POLL",
 "rate": 10000
 },
 "tagPathDefinitions": [
 {
 "type": "EIPTagPath",
 "path": "arrayREAL[0]",
 "dstDataType": "double"
 }
]
 }
]
 }
]
}

IoT Ethernet IP Protocol Adapter 682

AWS IoT Greengrass Developer Guide, Version 1

Create Connector Example (AWS CLI)

The following CLI command creates a ConnectorDefinition with an initial version that contains
the IoT Ethernet IP Protocol Adapter connector.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version
'{
 "Connectors": [
 {
 "Id": "MyIoTEIPProtocolConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/
IoTEIPProtocolAdaptor/versions/2",
 "Parameters": {
 "ProtocolAdaptorConfiguration": "{ \"sources\": [{ \"type
\": \"EIPSource\", \"name\": \"Source1\", \"endpoint\": { \"ipAddress\":
 \"54.245.77.218\", \"port\": 44818 }, \"destinationPathPrefix\": \"EIPConnector_Prefix
\", \"propertyGroups\": [{ \"name\": \"Values\", \"scanMode\": { \"type\": \"POLL\",
 \"rate\": 2000 }, \"tagPathDefinitions\": [{ \"type\": \"EIPTagPath\", \"path\":
 \"arrayREAL[0]\", \"dstDataType\": \"double\" }]}]}]}",
 "LocalStoragePath": "/var/MyIoTEIPProtocolConnectorState"
 }
 }
]
}'

Note

The Lambda function in this connector has a long-lived lifecycle.

Input data

This connector doesn't accept MQTT messages as input data.

Output data

This connector publishes data to StreamManager. You must configure the destination message
stream. The output messages are of the following structure:

{

IoT Ethernet IP Protocol Adapter 683

AWS IoT Greengrass Developer Guide, Version 1

 "alias": "string",
 "messages": [
 {
 "name": "string",
 "value": boolean|double|integer|string,
 "timestamp": number,
 "quality": "string"
 }
]
}

Licenses

The IoT Ethernet IP Protocol Adapter connector includes the following third-party software/
licensing:

• Ethernet/IP client

• MapDB

• Elsa

This connector is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the connector.

Version Changes Date

2 This version contains bug
fixes.

December 23, 2021

1 Initial release. December 15, 2020

A Greengrass group can contain only one version of the connector at a time. For information about
upgrading a connector version, see the section called “Upgrading connector versions”.

See also

• Integrate with services and protocols using connectors

IoT Ethernet IP Protocol Adapter 684

https://github.com/digitalpetri/ethernet-ip/blob/master/LICENSE
https://github.com/jankotek/mapdb/blob/master/LICENSE.txt
https://github.com/jankotek/elsa/blob/master/LICENSE.txt
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 1

• the section called “Get started with connectors (console)”

• the section called “Get started with connectors (CLI)”

IoT SiteWise connector

The IoT SiteWise connector sends local device and equipment data to asset properties in AWS IoT
SiteWise. You can use this connector to collect data from multiple OPC-UA servers and publish it
to IoT SiteWise. The connector sends the data to asset properties in the current AWS account and
Region.

Note

IoT SiteWise is a fully managed service that collects, processes, and visualizes data from
industrial devices and equipment. You can configure asset properties that process raw
data sent from this connector to your assets' measurement properties. For example, you
can define a transform property that converts a device's Celsius temperature data points
to Fahrenheit, or you can define a metric property that calculates the average hourly
temperature. For more information, see What is AWS IoT SiteWise? in the AWS IoT SiteWise
User Guide.

The connector sends data to IoT SiteWise with the OPC-UA data stream paths sent from the
OPC-UA servers. For example, the data stream path /company/windfarm/3/turbine/7/
temperature might represent the temperature sensor of turbine #7 at wind farm #3. If the
AWS IoT Greengrass core loses connection to the internet, the connector caches data until it can
successfully connect to the AWS Cloud. You can configure the maximum disk buffer size used for
caching data. If the cache size exceeds the maximum disk buffer size, the connector discards the
oldest data from the queue.

After you configure and deploy the IoT SiteWise connector, you can add a gateway and OPC-UA
sources in the IoT SiteWise console. When you configure a source in the console, you can filter or
prefix the OPC-UA data stream paths sent by the IoT SiteWise connector. For instructions to finish
setting up your gateway and sources, see Adding the gateway in the AWS IoT SiteWise User Guide.

IoT SiteWise receives data only from data streams that you have mapped to the measurement
properties of IoT SiteWise assets. To map data streams to asset properties, you can set a property's
alias to be equivalent to an OPC-UA data stream path. To learn about defining asset models and
creating assets, see Modeling industrial assets in the AWS IoT SiteWise User Guide.

IoT SiteWise 685

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/
https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-gateway.html#add-gateway
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/industrial-asset-models

AWS IoT Greengrass Developer Guide, Version 1

Notes

You can use stream manager to upload data to IoT SiteWise from sources other than
OPC-UA servers. Stream manager also provides customizable support for persistence and
bandwidth management. For more information, see Manage data streams.
This connector runs in No container isolation mode, so you can deploy it to a Greengrass
group running in a Docker container.

This connector has the following versions.

Version ARN

12 (recommended) arn:aws:greengrass: region::/
connectors/IoTSiteWise/v
ersions/ 12

11 arn:aws:greengrass: region::/
connectors/IoTSiteWise/v
ersions/ 11

10 arn:aws:greengrass: region::/
connectors/IoTSiteWise/v
ersions/ 10

9 arn:aws:greengrass: region::/
connectors/IoTSiteWise/v
ersions/ 9

8 arn:aws:greengrass: region::/
connectors/IoTSiteWise/v
ersions/ 8

7 arn:aws:greengrass: region::/
connectors/IoTSiteWise/v
ersions/ 7

IoT SiteWise 686

AWS IoT Greengrass Developer Guide, Version 1

Version ARN

6 arn:aws:greengrass: region::/
connectors/IoTSiteWise/v
ersions/ 6

5 arn:aws:greengrass: region::/
connectors/IoTSiteWise/v
ersions/ 5

4 arn:aws:greengrass: region::/
connectors/IoTSiteWise/v
ersions/ 4

3 arn:aws:greengrass: region::/
connectors/IoTSiteWise/v
ersions/ 3

2 arn:aws:greengrass: region::/
connectors/IoTSiteWise/v
ersions/ 2

1 arn:aws:greengrass: region::/
connectors/IoTSiteWise/v
ersions/ 1

For information about version changes, see the Changelog.

Requirements

This connector has the following requirements:

Version 9, 10, 11, and 12

Important

This version introduces new requirements: AWS IoT Greengrass Core software v1.10.2
and stream manager.

IoT SiteWise 687

AWS IoT Greengrass Developer Guide, Version 1

• AWS IoT Greengrass Core software v1.10.2.

• Stream manager enabled on the Greengrass group.

• Java 8 installed on the core device and added to the PATH environment variable.

• This connector can be used only in Amazon Web Services Regions where both AWS IoT
Greengrass and IoT SiteWise are supported.

• An IAM policy added to the Greengrass group role. This role allows the AWS IoT Greengrass
group access to the iotsitewise:BatchPutAssetPropertyValue action on the
target root asset and its children, as shown in the following example. You can remove the
Condition from the policy to allow the connector to access all of your IoT SiteWise assets.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iotsitewise:assetHierarchyPath": [
 "/root node asset ID",
 "/root node asset ID/*"
]
 }
 }
 }
]
}

For more information, see Adding and removing IAM policies in the IAM User Guide.

Versions 6, 7, and 8

Important

This version introduces new requirements: AWS IoT Greengrass Core software v1.10.0
and stream manager.

IoT SiteWise 688

https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

AWS IoT Greengrass Developer Guide, Version 1

• AWS IoT Greengrass Core software v1.10.0.

• Stream manager enabled on the Greengrass group.

• Java 8 installed on the core device and added to the PATH environment variable.

• This connector can be used only in Amazon Web Services Regions where both AWS IoT
Greengrass and IoT SiteWise are supported.

• An IAM policy added to the Greengrass group role. This role allows the AWS IoT Greengrass
group access to the iotsitewise:BatchPutAssetPropertyValue action on the
target root asset and its children, as shown in the following example. You can remove the
Condition from the policy to allow the connector to access all of your IoT SiteWise assets.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iotsitewise:assetHierarchyPath": [
 "/root node asset ID",
 "/root node asset ID/*"
]
 }
 }
 }
]
}

For more information, see Adding and removing IAM policies in the IAM User Guide.

Version 5

• AWS IoT Greengrass Core software v1.9.4.

• Java 8 installed on the core device and added to the PATH environment variable.

• This connector can be used only in Amazon Web Services Regions where both AWS IoT
Greengrass and IoT SiteWise are supported.

IoT SiteWise 689

https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html

AWS IoT Greengrass Developer Guide, Version 1

• An IAM policy added to the Greengrass group role. This role allows the AWS IoT Greengrass
group access to the iotsitewise:BatchPutAssetPropertyValue action on the
target root asset and its children, as shown in the following example. You can remove the
Condition from the policy to allow the connector to access all of your IoT SiteWise assets.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iotsitewise:assetHierarchyPath": [
 "/root node asset ID",
 "/root node asset ID/*"
]
 }
 }
 }
]
}

For more information, see Adding and removing IAM policies in the IAM User Guide.

Version 4

• AWS IoT Greengrass Core software v1.10.0.

• Java 8 installed on the core device and added to the PATH environment variable.

• This connector can be used only in Amazon Web Services Regions where both AWS IoT
Greengrass and IoT SiteWise are supported.

• An IAM policy added to the Greengrass group role. This role allows the AWS IoT Greengrass
group access to the iotsitewise:BatchPutAssetPropertyValue action on the
target root asset and its children, as shown in the following example. You can remove the
Condition from the policy to allow the connector to access all of your IoT SiteWise assets.

{
 "Version": "2012-10-17",

IoT SiteWise 690

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html

AWS IoT Greengrass Developer Guide, Version 1

 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iotsitewise:assetHierarchyPath": [
 "/root node asset ID",
 "/root node asset ID/*"
]
 }
 }
 }
]
}

For more information, see Adding and removing IAM policies in the IAM User Guide.

Version 3

• AWS IoT Greengrass Core software v1.9.4.

• Java 8 installed on the core device and added to the PATH environment variable.

• This connector can be used only in Amazon Web Services Regions where both AWS IoT
Greengrass and IoT SiteWise are supported.

• An IAM policy added to the Greengrass group role. This role allows the AWS IoT Greengrass
group access to the iotsitewise:BatchPutAssetPropertyValue action on the
target root asset and its children, as shown in the following example. You can remove the
Condition from the policy to allow the connector to access all of your IoT SiteWise assets.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iotsitewise:assetHierarchyPath": [

IoT SiteWise 691

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html

AWS IoT Greengrass Developer Guide, Version 1

 "/root node asset ID",
 "/root node asset ID/*"
]
 }
 }
 }
]
}

For more information, see Adding and removing IAM policies in the IAM User Guide.

Versions 1 and 2

• AWS IoT Greengrass Core software v1.9.4.

• Java 8 installed on the core device and added to the PATH environment variable.

• This connector can be used only in Amazon Web Services Regions where both AWS IoT
Greengrass and IoT SiteWise are supported.

• An IAM policy added to the Greengrass group role that allows access to AWS IoT Core and
the iotsitewise:BatchPutAssetPropertyValue action on the target root asset and its
children, as shown in the following example. You can remove the Condition from the policy
to allow the connector to access all of your IoT SiteWise assets.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iotsitewise:assetHierarchyPath": [
 "/root node asset ID",
 "/root node asset ID/*"
]
 }
 }
 },
 {
 "Effect": "Allow",

IoT SiteWise 692

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html

AWS IoT Greengrass Developer Guide, Version 1

 "Action": [
 "iot:Connect",
 "iot:DescribeEndpoint",
 "iot:Publish",
 "iot:Receive",
 "iot:Subscribe"
],
 "Resource": "*"
 }
]
}

For more information, see Adding and removing IAM identity permissions in the IAM User
Guide.

Parameters

Versions 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12

SiteWiseLocalStoragePath

The directory on the AWS IoT Greengrass host that the IoT SiteWise connector can write
persistent data to. Defaults to /var/sitewise.

Display name in the AWS IoT console: Local storage path

Required: false

Type: string

Valid pattern: ^\s*$|\/.

AWSSecretsArnList

A list of secrets in AWS Secrets Manager that each contain a OPC-UA user name and
password key-value pair. Each secret must be a key-value pair type secret.

Display name in the AWS IoT console: List of ARNs for OPC-UA username/password secrets

Required: false

Type: JsonArrayOfStrings

IoT SiteWise 693

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

AWS IoT Greengrass Developer Guide, Version 1

Valid pattern: \[(?,? ?\"(arn:(aws(-[a-z]+)*):secretsmanager:[a-z0-9\
\-]+:[0-9]{12}:secret:([a-zA-Z0-9\\\\]+\/)*[a-zA-Z0-9\/_+=,.@\\-]+-[a-
zA-Z0-9]+)*\")*\]

MaximumBufferSize

The maximum size in GB for IoT SiteWise disk usage. Defaults to 10GB.

Display name in the AWS IoT console: Maximum disk buffer size

Required: false

Type: string

Valid pattern: ^\s*$|[0-9]+

Version 1

SiteWiseLocalStoragePath

The directory on the AWS IoT Greengrass host that the IoT SiteWise connector can write
persistent data to. Defaults to /var/sitewise.

Display name in the AWS IoT console: Local storage path

Required: false

Type: string

Valid pattern: ^\s*$|\/.

SiteWiseOpcuaUserIdentityTokenSecretArn

The secret in AWS Secrets Manager that contains the OPC-UA user name and password key-
value pair. This secret must be a key-value pair type secret.

Display name in the AWS IoT console: ARN of OPC-UA username/password secret

Required: false

Type: string

IoT SiteWise 694

AWS IoT Greengrass Developer Guide, Version 1

Valid pattern: ^$|arn:(aws(-[a-z]+)*):secretsmanager:[a-z0-9\\-]+:[0-9]
{12}:secret:([a-zA-Z0-9\\\\]+/)*[a-zA-Z0-9/_+=,.@\\-]+-[a-zA-Z0-9]+

SiteWiseOpcuaUserIdentityTokenSecretArn-ResourceId

The secret resource in the AWS IoT Greengrass group that references an OPC-UA user name
and password secret.

Display name in the AWS IoT console: OPC-UA username/password secret resource

Required: false

Type: string

Valid pattern: ^$|.+

MaximumBufferSize

The maximum size in GB for IoT SiteWise disk usage. Defaults to 10GB.

Display name in the AWS IoT console: Maximum disk buffer size

Required: false

Type: string

Valid pattern: ^\s*$|[0-9]+

Create Connector Example (AWS CLI)

The following AWS CLI command creates a ConnectorDefinition with an initial version that
contains the IoT SiteWise connector.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '{
 "Connectors": [
 {
 "Id": "MyIoTSiteWiseConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/IoTSiteWise/
versions/11"
 }
]
}'

IoT SiteWise 695

AWS IoT Greengrass Developer Guide, Version 1

Note

The Lambda functions in this connector have a long-lived lifecycle.

In the AWS IoT Greengrass console, you can add a connector from the group's Connectors page.
For more information, see the section called “Get started with connectors (console)”.

Input data

This connector doesn't accept MQTT messages as input data.

Output data

This connector doesn't publish MQTT messages as output data.

Limits

This connector is subject to the following all limits imposed by IoT SiteWise, including the
following. For more informatison, see AWS IoT SiteWise endpoints and quotas in the AWS General
Reference.

• Maximum number of gateways per AWS account.

• Maximum number of OPC-UA sources per gateway.

• Maximum rate of timestamp-quality-value (TQV) data points stored per AWS account.

• Maximum rate of TQV data points stored per asset property.

Licenses

Version 9, 10, 11, and 12

The IoT SiteWise connector includes the following third-party software/licensing:

• MapDB

• Elsa

• Eclipse Milo

This connector is released under the Greengrass Core Software License Agreement.

IoT SiteWise 696

https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html
https://github.com/jankotek/mapdb/blob/master/LICENSE.txt
https://github.com/jankotek/elsa/blob/master/LICENSE.txt
https://github.com/eclipse/milo/blob/maintenance/0.2/LICENSE
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 1

Versions 6, 7, and 8

The IoT SiteWise connector includes the following third-party software/licensing:

• Milo / EDL 1.0

This connector is released under the Greengrass Core Software License Agreement.

Versions 1, 2, 3, 4, and 5

The IoT SiteWise connector includes the following third-party software/licensing:

• Milo / EDL 1.0

• Chronicle-Queue / Apache License 2.0

This connector is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the connector.

Version Changes Date

12 • This version contains bug
fixes.

December 22, 2021

11 • Support for strings
that contain hidden or
unprintable characters.
Hidden and unprintable
characters are automatic
ally removed before the
strings are sent to the AWS
Cloud.

• Fixed an issue that caused
the IoT SiteWise gateway
to infinitely retry invalid
requests.

March 24, 2021

IoT SiteWise 697

https://github.com/eclipse/milo/
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf
https://github.com/eclipse/milo/
https://github.com/OpenHFT/Chronicle-Queue
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 1

Version Changes Date

• Fixed an issue that caused a
corrupted checkpoint when
the IoT SiteWise gateway
was connected to a high-
frequency data source.

• Improved error messages
to help troubleshoot the
gateway configuration.

10 Configured StreamMan
ager to improve handling
when the source connectio
n is lost and re-established.
This version also accepts
OPC-UA values with a
ServerTimestamp when
no SourceTimestamp is
available.

January 22, 2021

9 Support launched for custom
Greengrass StreamManager
stream destinations, OPC-
UA deadbanding, custom
scan mode and custom scan
rate. Also includes improved
performance during configura
tion updates made from the
IoT SiteWise gateway.

December 15, 2020

8 Improved stability when
the connector experienc
es intermittent network
connectivity.

November 19, 2020

IoT SiteWise 698

AWS IoT Greengrass Developer Guide, Version 1

Version Changes Date

7 Fixed an issue with gateway
metrics.

August 14, 2020

6 Added support for CloudWatc
h metrics and automatic
discovery of new OPC-UA
tags. This version requires
stream manager and AWS
IoT Greengrass Core software
v1.10.0 or higher.

April 29, 2020

5 Fixed a compatibility issue
with AWS IoT Greengrass Core
software v1.9.4.

February 12, 2020

4 Fixed an issue with OPC-UA
server reconnection.

February 7, 2020

3 Removed iot:* permissions
requirement.

December 17, 2019

2 Added support for multiple
OPC-UA secret resources.

December 10, 2019

1 Initial release. December 2, 2019

A Greengrass group can contain only one version of the connector at a time. For information about
upgrading a connector version, see the section called “Upgrading connector versions”.

See also

• Integrate with services and protocols using connectors

• the section called “Get started with connectors (console)”

• the section called “Get started with connectors (CLI)”

• See the following topics in the AWS IoT SiteWise User Guide:

IoT SiteWise 699

AWS IoT Greengrass Developer Guide, Version 1

• What is AWS IoT SiteWise?

• Using a gateway

• Gateway CloudWatch metrics

• Troubleshooting an IoT SiteWise gateway

Kinesis Firehose

The Kinesis Firehose connector publishes data through an Amazon Data Firehose delivery stream to
destinations such as Amazon S3, Amazon Redshift, or Amazon OpenSearch Service.

This connector is a data producer for a Kinesis delivery stream. It receives input data on an MQTT
topic, and sends the data to a specified delivery stream. The delivery stream then sends the data
record to the configured destination (for example, an S3 bucket).

This connector has the following versions.

Version ARN

5 arn:aws:greengrass: region::/
connectors/KinesisFirehose/
versions/5

4 arn:aws:greengrass: region::/
connectors/KinesisFirehose/
versions/4

3 arn:aws:greengrass: region::/
connectors/KinesisFirehose/
versions/3

2 arn:aws:greengrass: region::/
connectors/KinesisFirehose/
versions/2

1 arn:aws:greengrass: region::/
connectors/KinesisFirehose/
versions/1

Kinesis Firehose 700

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/gateway-connector.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/monitor-cloudwatch-metrics.html#gateway-metrics
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/troubleshooting.html#troubleshooting-gateway

AWS IoT Greengrass Developer Guide, Version 1

For information about version changes, see the Changelog.

Requirements

This connector has the following requirements:

Version 4 - 5

• AWS IoT Greengrass Core software v1.9.3 or later.

• Python version 3.7 or 3.8 installed on the core device and added to the PATH environment
variable.

Note

To use Python 3.8, run the following command to create a symbolic link from the the
default Python 3.7 installation folder to the installed Python 3.8 binaries.

sudo ln -s path-to-python-3.8/python3.8 /usr/bin/python3.7

This configures your device to meet the Python requirement for AWS IoT Greengrass.

• A configured Kinesis delivery stream. For more information, see Creating an Amazon Data
Firehose delivery stream in the Amazon Kinesis Firehose Developer Guide.

• The Greengrass group role configured to allow the firehose:PutRecord and
firehose:PutRecordBatch actions on the target delivery stream, as shown in the
following example IAM policy.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"Stmt1528133056761",
 "Action":[
 "firehose:PutRecord",
 "firehose:PutRecordBatch"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws:firehose:region:account-id:deliverystream/stream-name"
]

Kinesis Firehose 701

https://www.python.org/
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html

AWS IoT Greengrass Developer Guide, Version 1

 }
]
 }

This connector allows you to dynamically override the default delivery stream in the input
message payload. If your implementation uses this feature, the IAM policy should include all
target streams as resources. You can grant granular or conditional access to resources (for
example, by using a wildcard * naming scheme).

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

Versions 2 - 3

• AWS IoT Greengrass Core software v1.7 or later.

• Python version 2.7 installed on the core device and added to the PATH environment variable.

• A configured Kinesis delivery stream. For more information, see Creating an Amazon Data
Firehose delivery stream in the Amazon Kinesis Firehose Developer Guide.

• The Greengrass group role configured to allow the firehose:PutRecord and
firehose:PutRecordBatch actions on the target delivery stream, as shown in the
following example IAM policy.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"Stmt1528133056761",
 "Action":[
 "firehose:PutRecord",
 "firehose:PutRecordBatch"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws:firehose:region:account-id:deliverystream/stream-name"
]
 }
]
 }

Kinesis Firehose 702

https://www.python.org/
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html

AWS IoT Greengrass Developer Guide, Version 1

This connector allows you to dynamically override the default delivery stream in the input
message payload. If your implementation uses this feature, the IAM policy should include all
target streams as resources. You can grant granular or conditional access to resources (for
example, by using a wildcard * naming scheme).

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

Version 1

• AWS IoT Greengrass Core software v1.7 or later.

• Python version 2.7 installed on the core device and added to the PATH environment variable.

• A configured Kinesis delivery stream. For more information, see Creating an Amazon Data
Firehose delivery stream in the Amazon Kinesis Firehose Developer Guide.

• The Greengrass group role configured to allow the firehose:PutRecord action on the
target delivery stream, as shown in the following example IAM policy.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"Stmt1528133056761",
 "Action":[
 "firehose:PutRecord"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws:firehose:region:account-id:deliverystream/stream-name"
]
 }
]
 }

This connector allows you to dynamically override the default delivery stream in the input
message payload. If your implementation uses this feature, the IAM policy should include all
target streams as resources. You can grant granular or conditional access to resources (for
example, by using a wildcard * naming scheme).

Kinesis Firehose 703

https://www.python.org/
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-create.html

AWS IoT Greengrass Developer Guide, Version 1

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

Connector Parameters

This connector provides the following parameters:

Versions 5

DefaultDeliveryStreamArn

The ARN of the default Firehose delivery stream to send data to. The destination stream can
be overridden by the delivery_stream_arn property in the input message payload.

Note

The group role must allow the appropriate actions on all target delivery streams. For
more information, see the section called “Requirements”.

Display name in the AWS IoT console: Default delivery stream ARN

Required: true

Type: string

Valid pattern: arn:aws:firehose:([a-z]{2}-[a-z]+-\d{1}):
(\d{12}):deliverystream/([a-zA-Z0-9_\-.]+)$

DeliveryStreamQueueSize

The maximum number of records to retain in memory before new records for the same
delivery stream are rejected. The minimum value is 2000.

Display name in the AWS IoT console: Maximum number of records to buffer (per stream)

Required: true

Type: string

Kinesis Firehose 704

AWS IoT Greengrass Developer Guide, Version 1

Valid pattern: ^([2-9]\\d{3}|[1-9]\\d{4,})$

MemorySize

The amount of memory (in KB) to allocate to this connector.

Display name in the AWS IoT console: Memory size

Required: true

Type: string

Valid pattern: ^[0-9]+$

PublishInterval

The interval (in seconds) for publishing records to Firehose. To disable batching, set this
value to 0.

Display name in the AWS IoT console: Publish interval

Required: true

Type: string

Valid values: 0 - 900

Valid pattern: [0-9]|[1-9]\\d|[1-9]\\d\\d|900

IsolationMode

The containerization mode for this connector. The default is GreengrassContainer,
which means that the connector runs in an isolated runtime environment inside the AWS IoT
Greengrass container.

Note

The default containerization setting for the group does not apply to connectors.

Display name in the AWS IoT console: Container isolation mode

Required: false

Type: string

Kinesis Firehose 705

AWS IoT Greengrass Developer Guide, Version 1

Valid values: GreengrassContainer or NoContainer

Valid pattern: ^NoContainer$|^GreengrassContainer$

Versions 2 - 4

DefaultDeliveryStreamArn

The ARN of the default Firehose delivery stream to send data to. The destination stream can
be overridden by the delivery_stream_arn property in the input message payload.

Note

The group role must allow the appropriate actions on all target delivery streams. For
more information, see the section called “Requirements”.

Display name in the AWS IoT console: Default delivery stream ARN

Required: true

Type: string

Valid pattern: arn:aws:firehose:([a-z]{2}-[a-z]+-\d{1}):
(\d{12}):deliverystream/([a-zA-Z0-9_\-.]+)$

DeliveryStreamQueueSize

The maximum number of records to retain in memory before new records for the same
delivery stream are rejected. The minimum value is 2000.

Display name in the AWS IoT console: Maximum number of records to buffer (per stream)

Required: true

Type: string

Valid pattern: ^([2-9]\\d{3}|[1-9]\\d{4,})$

MemorySize

The amount of memory (in KB) to allocate to this connector.

Display name in the AWS IoT console: Memory size

Kinesis Firehose 706

AWS IoT Greengrass Developer Guide, Version 1

Required: true

Type: string

Valid pattern: ^[0-9]+$

PublishInterval

The interval (in seconds) for publishing records to Firehose. To disable batching, set this
value to 0.

Display name in the AWS IoT console: Publish interval

Required: true

Type: string

Valid values: 0 - 900

Valid pattern: [0-9]|[1-9]\\d|[1-9]\\d\\d|900

Version 1

DefaultDeliveryStreamArn

The ARN of the default Firehose delivery stream to send data to. The destination stream can
be overridden by the delivery_stream_arn property in the input message payload.

Note

The group role must allow the appropriate actions on all target delivery streams. For
more information, see the section called “Requirements”.

Display name in the AWS IoT console: Default delivery stream ARN

Required: true

Type: string

Valid pattern: arn:aws:firehose:([a-z]{2}-[a-z]+-\d{1}):
(\d{12}):deliverystream/([a-zA-Z0-9_\-.]+)$

Kinesis Firehose 707

AWS IoT Greengrass Developer Guide, Version 1

Example

Create Connector Example (AWS CLI)

The following CLI command creates a ConnectorDefinition with an initial version that contains
the connector.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '{
 "Connectors": [
 {
 "Id": "MyKinesisFirehoseConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/KinesisFirehose/
versions/5",
 "Parameters": {
 "DefaultDeliveryStreamArn": "arn:aws:firehose:region:account-
id:deliverystream/stream-name",
 "DeliveryStreamQueueSize": "5000",
 "MemorySize": "65535",
 "PublishInterval": "10",
 "IsolationMode" : "GreengrassContainer"
 }
 }
]
}'

In the AWS IoT Greengrass console, you can add a connector from the group's Connectors page.
For more information, see the section called “Get started with connectors (console)”.

Input data

This connector accepts stream content on MQTT topics, and then sends the content to the target
delivery stream. It accepts two types of input data:

• JSON data on the kinesisfirehose/message topic.

• Binary data on the kinesisfirehose/message/binary/# topic.

Versions 2 - 5

Topic filter: kinesisfirehose/message

Use this topic to send a message that contains JSON data.

Kinesis Firehose 708

AWS IoT Greengrass Developer Guide, Version 1

Message properties

request

The data to send to the delivery stream and the target delivery stream, if different
from the default stream.

Required: true

Type: object that includes the following properties:

data

The data to send to the delivery stream.

Required: true

Type: string

delivery_stream_arn

The ARN of the target Kinesis delivery stream. Include this property to override the
default delivery stream.

Required: false

Type: string

Valid pattern: arn:aws:firehose:([a-z]{2}-[a-z]+-\d{1}):
(\d{12}):deliverystream/([a-zA-Z0-9_\-.]+)$

id

An arbitrary ID for the request. This property is used to map an input request to an
output response. When specified, the id property in the response object is set to this
value. If you don't use this feature, you can omit this property or specify an empty
string.

Required: false

Type: string

Valid pattern: .*

Kinesis Firehose 709

AWS IoT Greengrass Developer Guide, Version 1

Example input

{
 "request": {
 "delivery_stream_arn": "arn:aws:firehose:region:account-
id:deliverystream/stream2-name",
 "data": "Data to send to the delivery stream."
 },
 "id": "request123"
}

Topic filter: kinesisfirehose/message/binary/#

Use this topic to send a message that contains binary data. The connector doesn't parse
binary data. The data is streamed as is.

To map the input request to an output response, replace the # wildcard in the message topic
with an arbitrary request ID. For example, if you publish a message to kinesisfirehose/
message/binary/request123, the id property in the response object is set to
request123.

If you don't want to map a request to a response, you can publish your messages to
kinesisfirehose/message/binary/. Be sure to include the trailing slash.

Version 1

Topic filter: kinesisfirehose/message

Use this topic to send a message that contains JSON data.

Message properties

request

The data to send to the delivery stream and the target delivery stream, if different
from the default stream.

Required: true

Type: object that includes the following properties:

Kinesis Firehose 710

AWS IoT Greengrass Developer Guide, Version 1

data

The data to send to the delivery stream.

Required: true

Type: string

delivery_stream_arn

The ARN of the target Kinesis delivery stream. Include this property to override the
default delivery stream.

Required: false

Type: string

Valid pattern: arn:aws:firehose:([a-z]{2}-[a-z]+-\d{1}):
(\d{12}):deliverystream/([a-zA-Z0-9_\-.]+)$

id

An arbitrary ID for the request. This property is used to map an input request to an
output response. When specified, the id property in the response object is set to this
value. If you don't use this feature, you can omit this property or specify an empty
string.

Required: false

Type: string

Valid pattern: .*

Example input

{
 "request": {
 "delivery_stream_arn": "arn:aws:firehose:region:account-
id:deliverystream/stream2-name",
 "data": "Data to send to the delivery stream."
 },
 "id": "request123"
}

Kinesis Firehose 711

AWS IoT Greengrass Developer Guide, Version 1

Topic filter: kinesisfirehose/message/binary/#

Use this topic to send a message that contains binary data. The connector doesn't parse
binary data. The data is streamed as is.

To map the input request to an output response, replace the # wildcard in the message topic
with an arbitrary request ID. For example, if you publish a message to kinesisfirehose/
message/binary/request123, the id property in the response object is set to
request123.

If you don't want to map a request to a response, you can publish your messages to
kinesisfirehose/message/binary/. Be sure to include the trailing slash.

Output data

This connector publishes status information as output data on an MQTT topic.

Versions 2 - 5

Topic filter in subscription

kinesisfirehose/message/status

Example output

The response contains the status of each data record sent in the batch.

{
 "response": [
 {
 "ErrorCode": "error",
 "ErrorMessage": "test error",
 "id": "request123",
 "status": "fail"
 },
 {
 "firehose_record_id": "xyz2",
 "id": "request456",
 "status": "success"
 },

Kinesis Firehose 712

AWS IoT Greengrass Developer Guide, Version 1

 {
 "firehose_record_id": "xyz3",
 "id": "request890",
 "status": "success"
 }
]
}

Note

If the connector detects a retryable error (for example, connection errors), it retries
the publish in the next batch. Exponential backoff is handled by the AWS SDK.
Requests that fail with retryable errors are added back to the end of the queue for
further publishing.

Version 1

Topic filter in subscription

kinesisfirehose/message/status

Example output: Success

{
 "response": {
 "firehose_record_id": "1lxfuuuFomkpJYzt/34ZU/r8JYPf8Wyf7AXqlXm",
 "status": "success"
 },
 "id": "request123"
}

Example output: Failure

{
 "response" : {
 "error": "ResourceNotFoundException",
 "error_message": "An error occurred (ResourceNotFoundException) when
 calling the PutRecord operation: Firehose test1 not found under account
 123456789012.",
 "status": "fail"
 },

Kinesis Firehose 713

AWS IoT Greengrass Developer Guide, Version 1

 "id": "request123"
}

Usage Example

Use the following high-level steps to set up an example Python 3.7 Lambda function that you can
use to try out the connector.

Note

• If you use other Python runtimes, you can create a symlink from Python3.x to Python
3.7.

• The Get started with connectors (console) and Get started with connectors (CLI) topics
contain detailed steps that show you how to configure and deploy an example Twilio
Notifications connector.

1. Make sure you meet the requirements for the connector.

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

2. Create and publish a Lambda function that sends input data to the connector.

Save the example code as a PY file. Download and unzip the AWS IoT Greengrass Core SDK for
Python. Then, create a zip package that contains the PY file and the greengrasssdk folder at
the root level. This zip package is the deployment package that you upload to AWS Lambda.

After you create the Python 3.7 Lambda function, publish a function version and create an
alias.

3. Configure your Greengrass group.

a. Add the Lambda function by its alias (recommended). Configure the Lambda lifecycle as
long-lived (or "Pinned": true in the CLI).

b. Add the connector and configure its parameters.

c. Add subscriptions that allow the connector to receive JSON input data and send output
data on supported topic filters.

Kinesis Firehose 714

AWS IoT Greengrass Developer Guide, Version 1

• Set the Lambda function as the source, the connector as the target, and use a supported
input topic filter.

• Set the connector as the source, AWS IoT Core as the target, and use a supported output
topic filter. You use this subscription to view status messages in the AWS IoT console.

4. Deploy the group.

5. In the AWS IoT console, on the Test page, subscribe to the output data topic to view status
messages from the connector. The example Lambda function is long-lived and starts sending
messages immediately after the group is deployed.

When you're finished testing, you can set the Lambda lifecycle to on-demand (or "Pinned":
false in the CLI) and deploy the group. This stops the function from sending messages.

Example

The following example Lambda function sends an input message to the connector. This message
contains JSON data.

import greengrasssdk
import time
import json

iot_client = greengrasssdk.client('iot-data')
send_topic = 'kinesisfirehose/message'

def create_request_with_all_fields():
 return {
 "request": {
 "data": "Message from Firehose Connector Test"
 },
 "id" : "req_123"
 }

def publish_basic_message():
 messageToPublish = create_request_with_all_fields()
 print("Message To Publish: ", messageToPublish)
 iot_client.publish(topic=send_topic,
 payload=json.dumps(messageToPublish))

publish_basic_message()

Kinesis Firehose 715

AWS IoT Greengrass Developer Guide, Version 1

def lambda_handler(event, context):
 return

Licenses

The Kinesis Firehose connector includes the following third-party software/licensing:

• AWS SDK for Python (Boto3)/Apache License 2.0

• botocore/Apache License 2.0

• dateutil/PSF License

• docutils/BSD License, GNU General Public License (GPL), Python Software Foundation License,
Public Domain

• jmespath/MIT License

• s3transfer/Apache License 2.0

• urllib3/MIT License

This connector is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the connector.

Version Changes

5 Added the IsolationMode parameter to
configure the containerization mode for the
connector.

4 Upgraded the Lambda runtime to Python 3.7,
which changes the runtime requirement.

3 Fix to reduce excessive logging and other
minor bug fixes.

2 Added support for sending batched data
records to Firehose at a specified interval.

Kinesis Firehose 716

https://pypi.org/project/boto3/
https://pypi.org/project/botocore/
https://pypi.org/project/python-dateutil/1.4/
https://pypi.org/project/docutils/
https://pypi.org/project/jmespath/
https://pypi.org/project/s3transfer/
https://pypi.org/project/urllib3/
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 1

Version Changes

• Also requires the firehose:PutRecord
Batch action in the group role.

• New MemorySize , DeliveryS
treamQueueSize , and PublishIn
terval parameters.

• Output message contains an array of status
responses for the published data records.

1 Initial release.

A Greengrass group can contain only one version of the connector at a time. For information about
upgrading a connector version, see the section called “Upgrading connector versions”.

See also

• Integrate with services and protocols using connectors

• the section called “Get started with connectors (console)”

• the section called “Get started with connectors (CLI)”

• What is Amazon Kinesis Data Firehose? in the Amazon Kinesis Developer Guide

ML Feedback connector

Warning

This connector has moved into the extended life phase, and AWS IoT Greengrass won't
release updates that provide features, enhancements to existing features, security patches,
or bug fixes. For more information, see AWS IoT Greengrass Version 1 maintenance policy.

The ML Feedback connector makes it easier to access your machine learning (ML) model data for
model retraining and analysis. The connector:

• Uploads input data (samples) used by your ML model to Amazon S3. Model input can be in any
format, such as images, JSON, or audio. After samples are uploaded to the cloud, you can use

ML Feedback 717

https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html

AWS IoT Greengrass Developer Guide, Version 1

them to retrain the model to improve the accuracy and precision of its predictions. For example,
you can use SageMaker Ground Truth to label your samples and SageMaker to retrain the model.

• Publishes the prediction results from the model as MQTT messages. This lets you monitor and
analyze the inference quality of your model in real time. You can also store prediction results and
use them to analyze trends over time.

• Publishes metrics about sample uploads and sample data to Amazon CloudWatch.

To configure this connector, you describe your supported feedback configurations in JSON format. A
feedback configuration defines properties such as the destination Amazon S3 bucket, content type,
and sampling strategy. (A sampling strategy is used to determine which samples to upload.)

You can use the ML Feedback connector in the following scenarios:

• With user-defined Lambda functions. Your local inference Lambda functions use the AWS IoT
Greengrass Machine Learning SDK to invoke this connector and pass in the target feedback
configuration, model input, and model output (prediction results). For an example, see the
section called “Usage Example”.

• With the ML Image Classification connector (v2). To use this connector with the ML Image
Classification connector, configure the MLFeedbackConnectorConfigId parameter for the ML
Image Classification connector.

• With the ML Object Detection connector. To use this connector with the ML Object Detection
connector, configure the MLFeedbackConnectorConfigId parameter for the ML Object
Detection connector.

ARN: arn:aws:greengrass:region::/connectors/MLFeedback/versions/1

Requirements

This connector has the following requirements:

• AWS IoT Greengrass Core Software v1.9.3 or later.

• Python version 3.7 or 3.8 installed on the core device and added to the PATH environment
variable.

ML Feedback 718

https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://www.python.org/

AWS IoT Greengrass Developer Guide, Version 1

Note

To use Python 3.8, run the following command to create a symbolic link from the the
default Python 3.7 installation folder to the installed Python 3.8 binaries.

sudo ln -s path-to-python-3.8/python3.8 /usr/bin/python3.7

This configures your device to meet the Python requirement for AWS IoT Greengrass.

• One or more Amazon S3 buckets. The number of buckets you use depends on your sampling
strategy.

• The Greengrass group role configured to allow the s3:PutObject action on objects in the
destination Amazon S3 bucket, as shown in the following example IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:PutObject",
 "Resource": [
 "arn:aws:s3:::bucket-name/*"
]
 }
]
}

The policy should include all destination buckets as resources. You can grant granular or
conditional access to resources (for example, by using a wildcard * naming scheme).

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

• The CloudWatch Metrics connector added to the Greengrass group and configured. This is
required only if you want to use the metrics reporting feature.

• AWS IoT Greengrass Machine Learning SDK v1.1.0 is required to interact with this connector.

ML Feedback 719

AWS IoT Greengrass Developer Guide, Version 1

Parameters

FeedbackConfigurationMap

A set of one or more feedback configurations that the connector can use to upload samples
to Amazon S3. A feedback configuration defines parameters such as the destination bucket,
content type, and sampling strategy. When this connector is invoked, the calling Lambda
function or connector specifies a target feedback configuration.

Display name in the AWS IoT console: Feedback configuration map

Required: true

Type: A well-formed JSON string that defines the set of supported feedback configurations. For
an example, see the section called “FeedbackConfigurationMap example”.

The ID of a feedback configuration object has the following requirements.

The ID:

• Must be unique across configuration objects.

• Must begin with a letter or number. Can contain lowercase and uppercase letters,
numbers, and hyphens.

• Must be 2 - 63 characters in length.

Required: true

Type: string

Valid pattern: ^[a-zA-Z0-9][a-zA-Z0-9-]{1,62}$

Examples: MyConfig0, config-a, 12id

The body of a feedback configuration object contains the following properties.

s3-bucket-name

The name of the destination Amazon S3 bucket.

Note

The group role must allow the s3:PutObject action on all destination buckets.
For more information, see the section called “Requirements”.

ML Feedback 720

AWS IoT Greengrass Developer Guide, Version 1

Required: true

Type: string

Valid pattern: ^[a-z0-9\.\-]{3,63}$

content-type

The content type of the samples to upload. All content for an individual feedback
configuration must be of the same type.

Required: true

Type: string

Examples: image/jpeg, application/json, audio/ogg

s3-prefix

The key prefix to use for uploaded samples. A prefix is similar to a directory name.
It allows you to store similar data under the same directory in a bucket. For more
information, see Object key and metadata in the Amazon Simple Storage Service User
Guide.

Required: false

Type: string

file-ext

The file extension to use for uploaded samples. Must be a valid file extension for the
content type.

Required: false

Type: string

Examples: jpg, json, ogg

sampling-strategy

The sampling strategy to use to filter which samples to upload. If omitted, the connector
tries to upload all the samples that it receives.

Required: false

ML Feedback 721

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html

AWS IoT Greengrass Developer Guide, Version 1

Type: A well-formed JSON string that contains the following properties.

strategy-name

The name of the sampling strategy.

Required: true

Type: string

Valid values: RANDOM_SAMPLING, LEAST_CONFIDENCE, MARGIN, or ENTROPY

rate

The rate for the Random sampling strategy.

Required: true if strategy-name is RANDOM_SAMPLING.

Type: number

Valid values: 0.0 - 1.0

threshold

The threshold for the Least Confidence, Margin, or Entropy sampling strategy.

Required: true if strategy-name is LEAST_CONFIDENCE, MARGIN, or ENTROPY.

Type: number

Valid values:

• 0.0 - 1.0 for the LEAST_CONFIDENCE or MARGIN strategy.

• 0.0 - no limit for the ENTROPY strategy.

RequestLimit

The maximum number of requests that the connector can process at a time.

You can use this parameter to restrict memory consumption by limiting the number of requests
that the connector processes at the same time. Requests that exceed this limit are ignored.

Display name in the AWS IoT console: Request limit

Required: false

Type: string

ML Feedback 722

AWS IoT Greengrass Developer Guide, Version 1

Valid values: 0 - 999

Valid pattern: ^$|^[0-9]{1,3}$

Create Connector Example (AWS CLI)

The following CLI command creates a ConnectorDefinition with an initial version that contains
the ML Feedback connector.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '{
 "Connectors": [
 {
 "Id": "MyMLFeedbackConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/MLFeedback/
versions/1",
 "Parameters": {
 "FeedbackConfigurationMap": "{ \"RandomSamplingConfiguration\":
 { \"s3-bucket-name\": \"my-aws-bucket-random-sampling\", \"content-type\":
 \"image/png\", \"file-ext\": \"png\", \"sampling-strategy\": { \"strategy-name
\": \"RANDOM_SAMPLING\", \"rate\": 0.5 } }, \"LeastConfidenceConfiguration\": {
 \"s3-bucket-name\": \"my-aws-bucket-least-confidence-sampling\", \"content-type\":
 \"image/png\", \"file-ext\": \"png\", \"sampling-strategy\": { \"strategy-name\":
 \"LEAST_CONFIDENCE\", \"threshold\": 0.4 } } }",
 "RequestLimit": "10"
 }
 }
]
}'

FeedbackConfigurationMap example

The following is an expanded example value for the FeedbackConfigurationMap parameter.
This example includes several feedback configurations that use different sampling strategies.

{
 "ConfigID1": {
 "s3-bucket-name": "my-aws-bucket-random-sampling",
 "content-type": "image/png",
 "file-ext": "png",
 "sampling-strategy": {
 "strategy-name": "RANDOM_SAMPLING",

ML Feedback 723

AWS IoT Greengrass Developer Guide, Version 1

 "rate": 0.5
 }
 },
 "ConfigID2": {
 "s3-bucket-name": "my-aws-bucket-margin-sampling",
 "content-type": "image/png",
 "file-ext": "png",
 "sampling-strategy": {
 "strategy-name": "MARGIN",
 "threshold": 0.4
 }
 },
 "ConfigID3": {
 "s3-bucket-name": "my-aws-bucket-least-confidence-sampling",
 "content-type": "image/png",
 "file-ext": "png",
 "sampling-strategy": {
 "strategy-name": "LEAST_CONFIDENCE",
 "threshold": 0.4
 }
 },
 "ConfigID4": {
 "s3-bucket-name": "my-aws-bucket-entropy-sampling",
 "content-type": "image/png",
 "file-ext": "png",
 "sampling-strategy": {
 "strategy-name": "ENTROPY",
 "threshold": 2
 }
 },
 "ConfigID5": {
 "s3-bucket-name": "my-aws-bucket-no-sampling",
 "s3-prefix": "DeviceA",
 "content-type": "application/json"
 }
}

Sampling strategies

The connector supports four sampling strategies that determine whether to upload samples
that are passed to the connector. Samples are discrete instances of data that a model uses for a
prediction. You can use sampling strategies to filter for the samples that are most likely to improve
model accuracy.

ML Feedback 724

AWS IoT Greengrass Developer Guide, Version 1

RANDOM_SAMPLING

Randomly uploads samples based on the supplied rate. It uploads a sample if a randomly
generated value is less than the rate. The higher the rate, the more samples are uploaded.

Note

This strategy disregards any model prediction that is supplied.

LEAST_CONFIDENCE

Uploads samples whose maximum confidence probability falls below the supplied threshold.

Example scenario:

Threshold: .6

Model prediction: [.2, .2, .4, .2]

Maximum confidence probability: .4

Result:

Use the sample because maximum confidence probability (.4) <= threshold (.6).

MARGIN

Uploads samples if the margin between the top two confidence probabilities falls within the
supplied threshold. The margin is the difference between the top two probabilities.

Example scenario:

Threshold: .02

Model prediction: [.3, .35, .34, .01]

Top two confidence probabilities: [.35, .34]

Margin: .01 (.35 - .34)

Result:

Use the sample because margin (.01) <= threshold (.02).

ML Feedback 725

AWS IoT Greengrass Developer Guide, Version 1

ENTROPY

Uploads samples whose entropy is greater than the supplied threshold. Uses the model
prediction's normalized entropy.

Example scenario:

Threshold: 0.75

Model prediction: [.5, .25, .25]

Entropy for prediction: 1.03972

Result:

Use sample because entropy (1.03972) > threshold (0.75).

Input data

User-defined Lambda functions use the publish function of the feedback client in the AWS IoT
Greengrass Machine Learning SDK to invoke the connector. For an example, see the section called
“Usage Example”.

Note

This connector doesn't accept MQTT messages as input data.

The publish function takes the following arguments:

ConfigId

The ID of the target feedback configuration. This must match the ID of a feedback configuration
defined in the FeedbackConfigurationMap parameter for the ML Feedback connector.

Required: true

Type: string

ModelInput

The input data that was passed to a model for inference. This input data is uploaded using the
target configuration unless it is filtered out based on the sampling strategy.

ML Feedback 726

AWS IoT Greengrass Developer Guide, Version 1

Required: true

Type: bytes

ModelPrediction

The prediction results from the model. The result type can be a dictionary or a list. For example,
the prediction results from the ML Image Classification connector is a list of probabilities (such
as [0.25, 0.60, 0.15]). This data is published to the /feedback/message/prediction
topic.

Required: true

Type: dictionary or list of float values

Metadata

Customer-defined, application-specific metadata that is attached to the uploaded sample
and published to the /feedback/message/prediction topic. The connector also inserts a
publish-ts key with a timestamp value into the metadata.

Required: false

Type: dictionary

Example: {"some-key": "some value"}

Output data

This connector publishes data to three MQTT topics:

• Status information from the connector on the feedback/message/status topic.

• Prediction results on the feedback/message/prediction topic.

• Metrics destined for CloudWatch on the cloudwatch/metric/put topic.

You must configure subscriptions to allow the connector to communicate on MQTT topics. For
more information, see the section called “Inputs and outputs”.

Topic filter: feedback/message/status

Use this topic to monitor the status of sample uploads and dropped samples. The connector
publishes to this topic every time that it receives a request.

ML Feedback 727

AWS IoT Greengrass Developer Guide, Version 1

Example output: Sample upload succeeded

{
 "response": {
 "status": "success",
 "s3_response": {
 "ResponseMetadata": {
 "HostId": "IOWQ4fDEXAMPLEQM+ey7N9WgVhSnQ6JEXAMPLEZb7hSQDASK
+Jd1vEXAMPLEa3Km",
 "RetryAttempts": 1,
 "HTTPStatusCode": 200,
 "RequestId": "79104EXAMPLEB723",
 "HTTPHeaders": {
 "content-length": "0",
 "x-amz-id-2":
 "lbbqaDVFOhMlyU3gRvAX1ZIdg8P0WkGkCSSFsYFvSwLZk3j7QZhG5EXAMPLEdd4/pEXAMPLEUqU=",
 "server": "AmazonS3",
 "x-amz-expiration": "expiry-date=\"Wed, 17 Jul 2019 00:00:00 GMT\",
 rule-id=\"OGZjYWY3OTgtYWI2Zi00ZDllLWE4YmQtNzMyYzEXAMPLEoUw\"",
 "x-amz-request-id": "79104EXAMPLEB723",
 "etag": "\"b9c4f172e64458a5fd674EXAMPLE5628\"",
 "date": "Thu, 11 Jul 2019 00:12:50 GMT",
 "x-amz-server-side-encryption": "AES256"
 }
 },
 "bucket": "greengrass-feedback-connector-data-us-west-2",
 "ETag": "\"b9c4f172e64458a5fd674EXAMPLE5628\"",
 "Expiration": "expiry-date=\"Wed, 17 Jul 2019 00:00:00 GMT\", rule-id=
\"OGZjYWY3OTgtYWI2Zi00ZDllLWE4YmQtNzMyYzEXAMPLEoUw\"",
 "key": "s3-key-prefix/UUID.file_ext",
 "ServerSideEncryption": "AES256"
 }
 },
 "id": "5aaa913f-97a3-48ac-5907-18cd96b89eeb"
}

The connector adds the bucket and key fields to the response from Amazon S3. For more
information about the Amazon S3 response, see PUT object in the Amazon Simple Storage
Service API Reference.

Example output: Sample dropped because of the sampling strategy

{

ML Feedback 728

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html#RESTObjectPUT-responses

AWS IoT Greengrass Developer Guide, Version 1

 "response": {
 "status": "sample_dropped_by_strategy"
 },
 "id": "4bf5aeb0-d1e4-4362-5bb4-87c05de78ba3"
}

Example output: Sample upload failed

A failure status includes the error message as the error_message value and the exception
class as the error value.

{
 "response": {
 "status": "fail",
 "error_message": "[RequestId: 4bf5aeb0-d1e4-4362-5bb4-87c05de78ba3] Failed
 to upload model input data due to exception. Model prediction will not be
 published. Exception type: NoSuchBucket, error: An error occurred (NoSuchBucket)
 when calling the PutObject operation: The specified bucket does not exist",
 "error": "NoSuchBucket"
 },
 "id": "4bf5aeb0-d1e4-4362-5bb4-87c05de78ba3"
}

Example output: Request throttled because of the request limit

{
 "response": {
 "status": "fail",
 "error_message": "Request limit has been reached (max request: 10). Dropping
 request.",
 "error": "Queue.Full"
 },
 "id": "4bf5aeb0-d1e4-4362-5bb4-87c05de78ba3"
}

Topic filter: feedback/message/prediction

Use this topic to listen for predictions based on uploaded sample data. This lets you analyze
your model performance in real time. Model predictions are published to this topic only if data
is successfully uploaded to Amazon S3. Messages published on this topic are in JSON format.
They contain the link to the uploaded data object, the model's prediction, and the metadata
included in the request.

ML Feedback 729

AWS IoT Greengrass Developer Guide, Version 1

You can also store prediction results and use them to report and analyze trends over time.
Trends can provide valuable insights. For example, a decreasing accuracy over time trend can
help you to decide whether the model needs to be retrained.

Example output

{
 "source-ref": "s3://greengrass-feedback-connector-data-us-west-2/s3-key-prefix/
UUID.file_ext",
 "model-prediction": [
 0.5,
 0.2,
 0.2,
 0.1
],
 "config-id": "ConfigID2",
 "metadata": {
 "publish-ts": "2019-07-11 00:12:48.816752"
 }
}

Tip

You can configure the IoT Analytics connector to subscribe to this topic and send the
information to AWS IoT Analytics for further or historical analysis.

Topic filter: cloudwatch/metric/put

This is the output topic used to publish metrics to CloudWatch. This feature requires that you
install and configure the CloudWatch Metrics connector.

Metrics include:

• The number of uploaded samples.

• The size of uploaded samples.

• The number of errors from uploads to Amazon S3.

• The number of dropped samples based on the sampling strategy.

• The number of throttled requests.

ML Feedback 730

AWS IoT Greengrass Developer Guide, Version 1

Example output: Size of the data sample (published before the actual upload)

{
 "request": {
 "namespace": "GreengrassFeedbackConnector",
 "metricData": {
 "value": 47592,
 "unit": "Bytes",
 "metricName": "SampleSize"
 }
 }
}

Example output: Sample upload succeeded

{
 "request": {
 "namespace": "GreengrassFeedbackConnector",
 "metricData": {
 "value": 1,
 "unit": "Count",
 "metricName": "SampleUploadSuccess"
 }
 }
}

Example output: Sample upload succeeded and prediction result published

{
 "request": {
 "namespace": "GreengrassFeedbackConnector",
 "metricData": {
 "value": 1,
 "unit": "Count",
 "metricName": "SampleAndPredictionPublished"
 }
 }
}

Example output: Sample upload failed

{

ML Feedback 731

AWS IoT Greengrass Developer Guide, Version 1

 "request": {
 "namespace": "GreengrassFeedbackConnector",
 "metricData": {
 "value": 1,
 "unit": "Count",
 "metricName": "SampleUploadFailure"
 }
 }
}

Example output: Sample dropped because of the sampling strategy

{
 "request": {
 "namespace": "GreengrassFeedbackConnector",
 "metricData": {
 "value": 1,
 "unit": "Count",
 "metricName": "SampleNotUsed"
 }
 }
}

Example output: Request throttled because of the request limit

{
 "request": {
 "namespace": "GreengrassFeedbackConnector",
 "metricData": {
 "value": 1,
 "unit": "Count",
 "metricName": "ErrorRequestThrottled"
 }
 }
}

Usage Example

The following example is a user-defined Lambda function that uses the AWS IoT Greengrass
Machine Learning SDK to send data to the ML Feedback connector.

ML Feedback 732

AWS IoT Greengrass Developer Guide, Version 1

Note

You can download the AWS IoT Greengrass Machine Learning SDK from the AWS IoT
Greengrass downloads page.

import json
import logging
import os
import sys
import greengrass_machine_learning_sdk as ml

client = ml.client('feedback')

try:
 feedback_config_id = os.environ["FEEDBACK_CONFIG_ID"]
 model_input_data_dir = os.environ["MODEL_INPUT_DIR"]
 model_prediction_str = os.environ["MODEL_PREDICTIONS"]
 model_prediction = json.loads(model_prediction_str)
except Exception as e:
 logging.info("Failed to open environment variables. Failed with exception:
{}".format(e))
 sys.exit(1)

try:
 with open(os.path.join(model_input_data_dir, os.listdir(model_input_data_dir)[0]),
 'rb') as f:
 content = f.read()
except Exception as e:
 logging.info("Failed to open model input directory. Failed with exception:
{}".format(e))
 sys.exit(1)

def invoke_feedback_connector():
 logging.info("Invoking feedback connector.")
 try:
 client.publish(
 ConfigId=feedback_config_id,
 ModelInput=content,
 ModelPrediction=model_prediction
)
 except Exception as e:

ML Feedback 733

AWS IoT Greengrass Developer Guide, Version 1

 logging.info("Exception raised when invoking feedback connector:{}".format(e))
 sys.exit(1)

invoke_feedback_connector()

def function_handler(event, context):
 return

Licenses

The ML Feedback connector includes the following third-party software/licensing:

• AWS SDK for Python (Boto3)/Apache License 2.0

• botocore/Apache License 2.0

• dateutil/PSF License

• docutils/BSD License, GNU General Public License (GPL), Python Software Foundation License,
Public Domain

• jmespath/MIT License

• s3transfer/Apache License 2.0

• urllib3/MIT License

• six/MIT

This connector is released under the Greengrass Core Software License Agreement.

See also

• Integrate with services and protocols using connectors

• the section called “Get started with connectors (console)”

• the section called “Get started with connectors (CLI)”

ML Feedback 734

https://pypi.org/project/boto3/
https://pypi.org/project/botocore/
https://pypi.org/project/python-dateutil/1.4/
https://pypi.org/project/docutils/
https://pypi.org/project/jmespath/
https://pypi.org/project/s3transfer/
https://pypi.org/project/urllib3/
https://github.com/benjaminp/six
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 1

ML Image Classification connector

Warning

This connector has moved into the extended life phase, and AWS IoT Greengrass won't
release updates that provide features, enhancements to existing features, security patches,
or bug fixes. For more information, see AWS IoT Greengrass Version 1 maintenance policy.

The ML Image Classification connectors provide a machine learning (ML) inference service that runs
on the AWS IoT Greengrass core. This local inference service performs image classification using a
model trained by the SageMaker image classification algorithm.

User-defined Lambda functions use the AWS IoT Greengrass Machine Learning SDK to submit
inference requests to the local inference service. The service runs inference locally and returns
probabilities that the input image belongs to specific categories.

AWS IoT Greengrass provides the following versions of this connector, which is available for
multiple platforms.

Version 2

Connector Description and ARN

ML Image Classification Aarch64 JTX2 Image classification inference service for
NVIDIA Jetson TX2. Supports GPU accelerat
ion.

ARN: arn:aws:greengrass
: region::/connectors/Imag
eClassificationAarch64JTX2/
versions/2

ML Image Classification x86_64 Image classification inference service for
x86_64 platforms.

ARN: arn:aws:greengrass
: region::/connectors/Imag

ML Image Classification 735

AWS IoT Greengrass Developer Guide, Version 1

Connector Description and ARN

eClassificationx86-64/versi
ons/2

ML Image Classification ARMv7 Image classification inference service for
ARMv7 platforms.

ARN: arn:aws:greengrass
: region::/connectors/Imag
eClassificationARMv7/versio
ns/2

Version 1

Connector Description and ARN

ML Image Classification Aarch64 JTX2 Image classification inference service for
NVIDIA Jetson TX2. Supports GPU accelerat
ion.

ARN: arn:aws:greengrass
: region::/connectors/Imag
eClassificationAarch64JTX2/
versions/1

ML Image Classification x86_64 Image classification inference service for
x86_64 platforms.

ARN: arn:aws:greengrass
: region::/connectors/Imag
eClassificationx86-64/versi
ons/1

ML Image Classification Armv7 Image classification inference service for
Armv7 platforms.

ML Image Classification 736

AWS IoT Greengrass Developer Guide, Version 1

Connector Description and ARN

ARN: arn:aws:greengrass
: region::/connectors/Imag
eClassificationARMv7/versio
ns/1

For information about version changes, see the Changelog.

Requirements

These connectors have the following requirements:

Version 2

• AWS IoT Greengrass Core Software v1.9.3 or later.

• Python version 3.7 or 3.8 installed on the core device and added to the PATH environment
variable.

Note

To use Python 3.8, run the following command to create a symbolic link from the the
default Python 3.7 installation folder to the installed Python 3.8 binaries.

sudo ln -s path-to-python-3.8/python3.8 /usr/bin/python3.7

This configures your device to meet the Python requirement for AWS IoT Greengrass.

• Dependencies for the Apache MXNet framework installed on the core device. For more
information, see the section called “Installing MXNet dependencies”.

• An ML resource in the Greengrass group that references an SageMaker model source.
This model must be trained by the SageMaker image classification algorithm. For more
information, see Image classification algorithm in the Amazon SageMaker Developer Guide.

• The ML Feedback connector added to the Greengrass group and configured. This is required
only if you want to use the connector to upload model input data and publish predictions to
an MQTT topic.

ML Image Classification 737

https://www.python.org/
https://docs.aws.amazon.com/sagemaker/latest/dg/image-classification.html

AWS IoT Greengrass Developer Guide, Version 1

• The Greengrass group role configured to allow the sagemaker:DescribeTrainingJob
action on the target training job, as shown in the following example IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:DescribeTrainingJob"
],
 "Resource": "arn:aws:sagemaker:region:account-id:training-
job:training-job-name"
 }
]
}

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

You can grant granular or conditional access to resources (for example, by using a wildcard *
naming scheme). If you change the target training job in the future, make sure to update the
group role.

• AWS IoT Greengrass Machine Learning SDK v1.1.0 is required to interact with this connector.

Version 1

• AWS IoT Greengrass Core Software v1.7 or later.

• Python version 2.7 installed on the core device and added to the PATH environment variable.

• Dependencies for the Apache MXNet framework installed on the core device. For more
information, see the section called “Installing MXNet dependencies”.

• An ML resource in the Greengrass group that references an SageMaker model source.
This model must be trained by the SageMaker image classification algorithm. For more
information, see Image classification algorithm in the Amazon SageMaker Developer Guide.

• The Greengrass group role configured to allow the sagemaker:DescribeTrainingJob
action on the target training job, as shown in the following example IAM policy.

ML Image Classification 738

https://www.python.org/
https://docs.aws.amazon.com/sagemaker/latest/dg/image-classification.html

AWS IoT Greengrass Developer Guide, Version 1

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:DescribeTrainingJob"
],
 "Resource": "arn:aws:sagemaker:region:account-id:training-
job:training-job-name"
 }
]
}

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

You can grant granular or conditional access to resources (for example, by using a wildcard *
naming scheme). If you change the target training job in the future, make sure to update the
group role.

• AWS IoT Greengrass Machine Learning SDK v1.0.0 or later is required to interact with this
connector.

Connector Parameters

These connectors provide the following parameters.

Version 2

MLModelDestinationPath

The absolute local path of the ML resource inside the Lambda environment. This is the
destination path that's specified for the ML resource.

Note

If you created the ML resource in the console, this is the local path.

ML Image Classification 739

AWS IoT Greengrass Developer Guide, Version 1

Display name in the AWS IoT console: Model destination path

Required: true

Type: string

Valid pattern: .+

MLModelResourceId

The ID of the ML resource that references the source model.

Display name in the AWS IoT console: SageMaker job ARN resource

Required: true

Type: string

Valid pattern: [a-zA-Z0-9:_-]+

MLModelSageMakerJobArn

The ARN of the SageMaker training job that represents the SageMaker model source. The
model must be trained by the SageMaker image classification algorithm.

Display name in the AWS IoT console: SageMaker job ARN

Required: true

Type: string

Valid pattern: ^arn:aws:sagemaker:[a-zA-Z0-9-]+:[0-9]+:training-job/[a-zA-
Z0-9][a-zA-Z0-9-]+$

LocalInferenceServiceName

The name for the local inference service. User-defined Lambda functions invoke the service
by passing the name to the invoke_inference_service function of the AWS IoT
Greengrass Machine Learning SDK. For an example, see the section called “Usage Example”.

Display name in the AWS IoT console: Local inference service name

Required: true

Type: string

ML Image Classification 740

AWS IoT Greengrass Developer Guide, Version 1

Valid pattern: [a-zA-Z0-9][a-zA-Z0-9-]{1,62}

LocalInferenceServiceTimeoutSeconds

The amount of time (in seconds) before the inference request is terminated. The minimum
value is 1.

Display name in the AWS IoT console: Timeout (second)

Required: true

Type: string

Valid pattern: [1-9][0-9]*

LocalInferenceServiceMemoryLimitKB

The amount of memory (in KB) that the service has access to. The minimum value is 1.

Display name in the AWS IoT console: Memory limit (KB)

Required: true

Type: string

Valid pattern: [1-9][0-9]*

GPUAcceleration

The CPU or GPU (accelerated) computing context. This property applies to the ML Image
Classification Aarch64 JTX2 connector only.

Display name in the AWS IoT console: GPU acceleration

Required: true

Type: string

Valid values: CPU or GPU

MLFeedbackConnectorConfigId

The ID of the feedback configuration to use to upload model input data. This must match
the ID of a feedback configuration defined for the ML Feedback connector.

This parameter is required only if you want to use the ML Feedback connector to upload
model input data and publish predictions to an MQTT topic.

ML Image Classification 741

AWS IoT Greengrass Developer Guide, Version 1

Display name in the AWS IoT console: ML Feedback connector configuration ID

Required: false

Type: string

Valid pattern: ^$|^[a-zA-Z0-9][a-zA-Z0-9-]{1,62}$

Version 1

MLModelDestinationPath

The absolute local path of the ML resource inside the Lambda environment. This is the
destination path that's specified for the ML resource.

Note

If you created the ML resource in the console, this is the local path.

Display name in the AWS IoT console: Model destination path

Required: true

Type: string

Valid pattern: .+

MLModelResourceId

The ID of the ML resource that references the source model.

Display name in the AWS IoT console: SageMaker job ARN resource

Required: true

Type: string

Valid pattern: [a-zA-Z0-9:_-]+

MLModelSageMakerJobArn

The ARN of the SageMaker training job that represents the SageMaker model source. The
model must be trained by the SageMaker image classification algorithm.

ML Image Classification 742

AWS IoT Greengrass Developer Guide, Version 1

Display name in the AWS IoT console: SageMaker job ARN

Required: true

Type: string

Valid pattern: ^arn:aws:sagemaker:[a-zA-Z0-9-]+:[0-9]+:training-job/[a-zA-
Z0-9][a-zA-Z0-9-]+$

LocalInferenceServiceName

The name for the local inference service. User-defined Lambda functions invoke the service
by passing the name to the invoke_inference_service function of the AWS IoT
Greengrass Machine Learning SDK. For an example, see the section called “Usage Example”.

Display name in the AWS IoT console: Local inference service name

Required: true

Type: string

Valid pattern: [a-zA-Z0-9][a-zA-Z0-9-]{1,62}

LocalInferenceServiceTimeoutSeconds

The amount of time (in seconds) before the inference request is terminated. The minimum
value is 1.

Display name in the AWS IoT console: Timeout (second)

Required: true

Type: string

Valid pattern: [1-9][0-9]*

LocalInferenceServiceMemoryLimitKB

The amount of memory (in KB) that the service has access to. The minimum value is 1.

Display name in the AWS IoT console: Memory limit (KB)

Required: true

Type: string

Valid pattern: [1-9][0-9]*

ML Image Classification 743

AWS IoT Greengrass Developer Guide, Version 1

GPUAcceleration

The CPU or GPU (accelerated) computing context. This property applies to the ML Image
Classification Aarch64 JTX2 connector only.

Display name in the AWS IoT console: GPU acceleration

Required: true

Type: string

Valid values: CPU or GPU

Create Connector Example (AWS CLI)

The following CLI commands create a ConnectorDefinition with an initial version that contains
an ML Image Classification connector.

Example: CPU Instance

This example creates an instance of the ML Image Classification Armv7l connector.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '{
 "Connectors": [
 {
 "Id": "MyImageClassificationConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/
ImageClassificationARMv7/versions/2",
 "Parameters": {
 "MLModelDestinationPath": "/path-to-model",
 "MLModelResourceId": "my-ml-resource",
 "MLModelSageMakerJobArn": "arn:aws:sagemaker:us-
west-2:123456789012:training-job:MyImageClassifier",
 "LocalInferenceServiceName": "imageClassification",
 "LocalInferenceServiceTimeoutSeconds": "10",
 "LocalInferenceServiceMemoryLimitKB": "500000",
 "MLFeedbackConnectorConfigId": "MyConfig0"
 }
 }
]
}'

ML Image Classification 744

AWS IoT Greengrass Developer Guide, Version 1

Example: GPU Instance

This example creates an instance of the ML Image Classification Aarch64 JTX2 connector, which
supports GPU acceleration on an NVIDIA Jetson TX2 board.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '{
 "Connectors": [
 {
 "Id": "MyImageClassificationConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/
ImageClassificationAarch64JTX2/versions/2",
 "Parameters": {
 "MLModelDestinationPath": "/path-to-model",
 "MLModelResourceId": "my-ml-resource",
 "MLModelSageMakerJobArn": "arn:aws:sagemaker:us-
west-2:123456789012:training-job:MyImageClassifier",
 "LocalInferenceServiceName": "imageClassification",
 "LocalInferenceServiceTimeoutSeconds": "10",
 "LocalInferenceServiceMemoryLimitKB": "500000",
 "GPUAcceleration": "GPU",
 "MLFeedbackConnectorConfigId": "MyConfig0"
 }
 }
]
}'

Note

The Lambda function in these connectors have a long-lived lifecycle.

In the AWS IoT Greengrass console, you can add a connector from the group's Connectors page.
For more information, see the section called “Get started with connectors (console)”.

Input data

These connectors accept an image file as input. Input image files must be in jpeg or png format.
For more information, see the section called “Usage Example”.

These connectors don't accept MQTT messages as input data.

ML Image Classification 745

AWS IoT Greengrass Developer Guide, Version 1

Output data

These connectors return a formatted prediction for the object identified in the input image:

[0.3,0.1,0.04,...]

The prediction contains a list of values that correspond with the categories used in the training
dataset during model training. Each value represents the probability that the image falls under the
corresponding category. The category with the highest probability is the dominant prediction.

These connectors don't publish MQTT messages as output data.

Usage Example

The following example Lambda function uses the AWS IoT Greengrass Machine Learning SDK to
interact with an ML Image Classification connector.

Note

You can download the SDK from the AWS IoT Greengrass Machine Learning SDK downloads
page.

The example initializes an SDK client and synchronously calls the SDK's
invoke_inference_service function to invoke the local inference service. It passes in the
algorithm type, service name, image type, and image content. Then, the example parses the service
response to get the probability results (predictions).

Python 3.7

import logging
from threading import Timer

import numpy as np

import greengrass_machine_learning_sdk as ml

We assume the inference input image is provided as a local file
to this inference client Lambda function.
with open('/test_img/test.jpg', 'rb') as f:
 content = bytearray(f.read())

ML Image Classification 746

AWS IoT Greengrass Developer Guide, Version 1

client = ml.client('inference')

def infer():
 logging.info('invoking Greengrass ML Inference service')

 try:
 resp = client.invoke_inference_service(
 AlgoType='image-classification',
 ServiceName='imageClassification',
 ContentType='image/jpeg',
 Body=content
)
 except ml.GreengrassInferenceException as e:
 logging.info('inference exception {}("{}")'.format(e.__class__.__name__, e))
 return
 except ml.GreengrassDependencyException as e:
 logging.info('dependency exception {}("{}")'.format(e.__class__.__name__,
 e))
 return

 logging.info('resp: {}'.format(resp))
 predictions = resp['Body'].read().decode("utf-8")
 logging.info('predictions: {}'.format(predictions))

 # The connector output is in the format: [0.3,0.1,0.04,...]
 # Remove the '[' and ']' at the beginning and end.
 predictions = predictions[1:-1]
 count = len(predictions.split(','))
 predictions_arr = np.fromstring(predictions, count=count, sep=',')

 # Perform business logic that relies on the predictions_arr, which is an array
 # of probabilities.

 # Schedule the infer() function to run again in one second.
 Timer(1, infer).start()
 return

infer()

def function_handler(event, context):
 return

ML Image Classification 747

AWS IoT Greengrass Developer Guide, Version 1

Python 2.7

import logging
from threading import Timer

import numpy

import greengrass_machine_learning_sdk as gg_ml

The inference input image.
with open("/test_img/test.jpg", "rb") as f:
 content = f.read()

client = gg_ml.client("inference")

def infer():
 logging.info("Invoking Greengrass ML Inference service")

 try:
 resp = client.invoke_inference_service(
 AlgoType="image-classification",
 ServiceName="imageClassification",
 ContentType="image/jpeg",
 Body=content,
)
 except gg_ml.GreengrassInferenceException as e:
 logging.info('Inference exception %s("%s")', e.__class__.__name__, e)
 return
 except gg_ml.GreengrassDependencyException as e:
 logging.info('Dependency exception %s("%s")', e.__class__.__name__, e)
 return

 logging.info("Response: %s", resp)
 predictions = resp["Body"].read()
 logging.info("Predictions: %s", predictions)

 # The connector output is in the format: [0.3,0.1,0.04,...]
 # Remove the '[' and ']' at the beginning and end.
 predictions = predictions[1:-1]
 predictions_arr = numpy.fromstring(predictions, sep=",")
 logging.info("Split into %s predictions.", len(predictions_arr))

 # Perform business logic that relies on predictions_arr, which is an array

ML Image Classification 748

AWS IoT Greengrass Developer Guide, Version 1

 # of probabilities.

 # Schedule the infer() function to run again in one second.
 Timer(1, infer).start()

infer()

In this example, the required AWS Lambda handler is never called.
def function_handler(event, context):
 return

The invoke_inference_service function in the AWS IoT Greengrass Machine Learning SDK
accepts the following arguments.

Argument Description

AlgoType The name of the algorithm type to use
for inference. Currently, only image-cla
ssification is supported.

Required: true

Type: string

Valid values: image-classification

ServiceName The name of the local inference service.
Use the name that you specified for the
LocalInferenceServiceName parameter
when you configured the connector.

Required: true

Type: string

ContentType The mime type of the input image.

ML Image Classification 749

AWS IoT Greengrass Developer Guide, Version 1

Argument Description

Required: true

Type: string

Valid values: image/jpeg, image/png

Body The content of the input image file.

Required: true

Type: binary

Installing MXNet dependencies on the AWS IoT Greengrass core

To use an ML Image Classification connector, you must install the dependencies for the Apache
MXNet framework on the core device. The connectors use the framework to serve the ML model.

Note

These connectors are bundled with a precompiled MXNet library, so you don't need to
install the MXNet framework on the core device.

AWS IoT Greengrass provides scripts to install the dependencies for the following common
platforms and devices (or to use as a reference for installing them). If you're using a different
platform or device, see the MXNet documentation for your configuration.

Before installing the MXNet dependencies, make sure that the required system libraries (with the
specified minimum versions) are present on the device.

NVIDIA Jetson TX2

1. Install CUDA Toolkit 9.0 and cuDNN 7.0. You can follow the instructions in the section
called “Setting up other devices” in the Getting Started tutorial.

2. Enable universe repositories so the connector can install community-maintained open
software. For more information, see Repositories/Ubuntu in the Ubuntu documentation.

a. Open the /etc/apt/sources.list file.

ML Image Classification 750

https://mxnet.apache.org/
https://help.ubuntu.com/community/Repositories/Ubuntu

AWS IoT Greengrass Developer Guide, Version 1

b. Make sure that the following lines are uncommented.

deb http://ports.ubuntu.com/ubuntu-ports/ xenial universe
deb-src http://ports.ubuntu.com/ubuntu-ports/ xenial universe
deb http://ports.ubuntu.com/ubuntu-ports/ xenial-updates universe
deb-src http://ports.ubuntu.com/ubuntu-ports/ xenial-updates universe

3. Save a copy of the following installation script to a file named nvidiajtx2.sh on the core
device.

Python 3.7

#!/bin/bash
set -e

echo "Installing dependencies on the system..."
echo 'Assuming that universe repos are enabled and checking dependencies...'
apt-get -y update
apt-get -y dist-upgrade
apt-get install -y liblapack3 libopenblas-dev liblapack-dev libatlas-base-
dev
apt-get install -y python3.7 python3.7-dev

python3.7 -m pip install --upgrade pip
python3.7 -m pip install numpy==1.15.0
python3.7 -m pip install opencv-python || echo 'Error: Unable to install
 OpenCV with pip on this platform. Try building the latest OpenCV from source
 (https://github.com/opencv/opencv).'

echo 'Dependency installation/upgrade complete.'

Note

If OpenCV does not install successfully using this script, you can try building
from source. For more information, see Installation in Linux in the OpenCV
documentation, or refer to other online resources for your platform.

Python 2.7

#!/bin/bash

ML Image Classification 751

https://github.com/opencv/opencv
https://docs.opencv.org/4.1.0/d7/d9f/tutorial_linux_install.html

AWS IoT Greengrass Developer Guide, Version 1

set -e

echo "Installing dependencies on the system..."
echo 'Assuming that universe repos are enabled and checking dependencies...'
apt-get -y update
apt-get -y dist-upgrade
apt-get install -y liblapack3 libopenblas-dev liblapack-dev libatlas-base-dev
 python-dev

echo 'Install latest pip...'
wget https://bootstrap.pypa.io/get-pip.py
python get-pip.py
rm get-pip.py

pip install numpy==1.15.0 scipy

echo 'Dependency installation/upgrade complete.'

4. From the directory where you saved the file, run the following command:

sudo nvidiajtx2.sh

x86_64 (Ubuntu or Amazon Linux)

1. Save a copy of the following installation script to a file named x86_64.sh on the core
device.

Python 3.7

#!/bin/bash
set -e

echo "Installing dependencies on the system..."

release=$(awk -F= '/^NAME/{print $2}' /etc/os-release)

if ["$release" == '"Ubuntu"']; then
 # Ubuntu. Supports EC2 and DeepLens. DeepLens has all the dependencies
 installed, so
 # this is mostly to prepare dependencies on Ubuntu EC2 instance.
 apt-get -y update
 apt-get -y dist-upgrade

ML Image Classification 752

AWS IoT Greengrass Developer Guide, Version 1

 apt-get install -y libgfortran3 libsm6 libxext6 libxrender1
 apt-get install -y python3.7 python3.7-dev
elif ["$release" == '"Amazon Linux"']; then
 # Amazon Linux. Expect python to be installed already
 yum -y update
 yum -y upgrade

 yum install -y compat-gcc-48-libgfortran libSM libXrender libXext
else
 echo "OS Release not supported: $release"
 exit 1
fi

python3.7 -m pip install --upgrade pip
python3.7 -m pip install numpy==1.15.0
python3.7 -m pip install opencv-python || echo 'Error: Unable to install
 OpenCV with pip on this platform. Try building the latest OpenCV from source
 (https://github.com/opencv/opencv).'

echo 'Dependency installation/upgrade complete.'

Note

If OpenCV does not install successfully using this script, you can try building
from source. For more information, see Installation in Linux in the OpenCV
documentation, or refer to other online resources for your platform.

Python 2.7

#!/bin/bash
set -e

echo "Installing dependencies on the system..."

release=$(awk -F= '/^NAME/{print $2}' /etc/os-release)

if ["$release" == '"Ubuntu"']; then
 # Ubuntu. Supports EC2 and DeepLens. DeepLens has all the dependencies
 installed, so
 # this is mostly to prepare dependencies on Ubuntu EC2 instance.

ML Image Classification 753

https://github.com/opencv/opencv
https://docs.opencv.org/4.1.0/d7/d9f/tutorial_linux_install.html

AWS IoT Greengrass Developer Guide, Version 1

 apt-get -y update
 apt-get -y dist-upgrade

 apt-get install -y libgfortran3 libsm6 libxext6 libxrender1 python-dev
 python-pip
elif ["$release" == '"Amazon Linux"']; then
 # Amazon Linux. Expect python to be installed already
 yum -y update
 yum -y upgrade

 yum install -y compat-gcc-48-libgfortran libSM libXrender libXext python-
pip
else
 echo "OS Release not supported: $release"
 exit 1
fi

pip install numpy==1.15.0 scipy opencv-python

echo 'Dependency installation/upgrade complete.'

2. From the directory where you saved the file, run the following command:

sudo x86_64.sh

Armv7 (Raspberry Pi)

1. Save a copy of the following installation script to a file named armv7l.sh on the core
device.

Python 3.7

#!/bin/bash
set -e

echo "Installing dependencies on the system..."

apt-get update
apt-get -y upgrade

apt-get install -y liblapack3 libopenblas-dev liblapack-dev
apt-get install -y python3.7 python3.7-dev

ML Image Classification 754

AWS IoT Greengrass Developer Guide, Version 1

python3.7 -m pip install --upgrade pip
python3.7 -m pip install numpy==1.15.0
python3.7 -m pip install opencv-python || echo 'Error: Unable to install
 OpenCV with pip on this platform. Try building the latest OpenCV from source
 (https://github.com/opencv/opencv).'

echo 'Dependency installation/upgrade complete.'

Note

If OpenCV does not install successfully using this script, you can try building
from source. For more information, see Installation in Linux in the OpenCV
documentation, or refer to other online resources for your platform.

Python 2.7

#!/bin/bash
set -e

echo "Installing dependencies on the system..."

apt-get update
apt-get -y upgrade

apt-get install -y liblapack3 libopenblas-dev liblapack-dev python-dev

python-opencv depends on python-numpy. The latest version in the APT
 repository is python-numpy-1.8.2
This script installs python-numpy first so that python-opencv can be
 installed, and then install the latest
numpy-1.15.x with pip
apt-get install -y python-numpy python-opencv
dpkg --remove --force-depends python-numpy

echo 'Install latest pip...'
wget https://bootstrap.pypa.io/get-pip.py
python get-pip.py
rm get-pip.py

pip install --upgrade numpy==1.15.0 picamera scipy

ML Image Classification 755

https://github.com/opencv/opencv
https://docs.opencv.org/4.1.0/d7/d9f/tutorial_linux_install.html

AWS IoT Greengrass Developer Guide, Version 1

echo 'Dependency installation/upgrade complete.'

2. From the directory where you saved the file, run the following command:

sudo bash armv7l.sh

Note

On a Raspberry Pi, using pip to install machine learning dependencies is a
memory-intensive operation that can cause the device to run out of memory and
become unresponsive. As a workaround, you can temporarily increase the swap size:
In /etc/dphys-swapfile, increase the value of the CONF_SWAPSIZE variable
and then run the following command to restart dphys-swapfile.

/etc/init.d/dphys-swapfile restart

Logging and troubleshooting

Depending on your group settings, event and error logs are written to CloudWatch Logs, the local
file system, or both. Logs from this connector use the prefix LocalInferenceServiceName.
If the connector behaves unexpectedly, check the connector's logs. These usually contain useful
debugging information, such as a missing ML library dependency or the cause of a connector
startup failure.

If the AWS IoT Greengrass group is configured to write local logs, the connector writes log files to
greengrass-root/ggc/var/log/user/region/aws/. For more information about Greengrass
logging, see the section called “Monitoring with AWS IoT Greengrass logs”.

Use the following information to help troubleshoot issues with the ML Image Classification
connectors.

Required system libraries

The following tabs list the system libraries required for each ML Image Classification connector.

ML Image Classification 756

AWS IoT Greengrass Developer Guide, Version 1

ML Image Classification Aarch64 JTX2

Library Minimum version

ld-linux-aarch64.so.1 GLIBC_2.17

libc.so.6 GLIBC_2.17

libcublas.so.9.0 not applicable

libcudart.so.9.0 not applicable

libcudnn.so.7 not applicable

libcufft.so.9.0 not applicable

libcurand.so.9.0 not applicable

libcusolver.so.9.0 not applicable

libgcc_s.so.1 GCC_4.2.0

libgomp.so.1 GOMP_4.0, OMP_1.0

libm.so.6 GLIBC_2.23

libpthread.so.0 GLIBC_2.17

librt.so.1 GLIBC_2.17

libstdc++.so.6 GLIBCXX_3.4.21, CXXABI_1.3.8

ML Image Classification x86_64

Library Minimum version

ld-linux-x86-64.so.2 GCC_4.0.0

libc.so.6 GLIBC_2.4

ML Image Classification 757

AWS IoT Greengrass Developer Guide, Version 1

Library Minimum version

libgfortran.so.3 GFORTRAN_1.0

libm.so.6 GLIBC_2.23

libpthread.so.0 GLIBC_2.2.5

librt.so.1 GLIBC_2.2.5

libstdc++.so.6 CXXABI_1.3.8, GLIBCXX_3.4.21

ML Image Classification Armv7

Library Minimum version

ld-linux-armhf.so.3 GLIBC_2.4

libc.so.6 GLIBC_2.7

libgcc_s.so.1 GCC_4.0.0

libgfortran.so.3 GFORTRAN_1.0

libm.so.6 GLIBC_2.4

libpthread.so.0 GLIBC_2.4

librt.so.1 GLIBC_2.4

libstdc++.so.6 CXXABI_1.3.8, CXXABI_ARM_1.3.3,
GLIBCXX_3.4.20

Issues

Symptom Solution

On a Raspberry Pi, the following error
message is logged and you are not using

Run the following command to disable the
driver:

ML Image Classification 758

AWS IoT Greengrass Developer Guide, Version 1

Symptom Solution

the camera: Failed to initialize
libdc1394

sudo ln /dev/null /dev/raw1394

This operation is ephemeral and the symbolic
link will disappear after rebooting. Consult the
manual of your OS distribution to learn how
to automatically create the link up on reboot.

Licenses

The ML Image Classification connectors includes the following third-party software/licensing:

• AWS SDK for Python (Boto3)/Apache License 2.0

• botocore/Apache License 2.0

• dateutil/PSF License

• docutils/BSD License, GNU General Public License (GPL), Python Software Foundation License,
Public Domain

• jmespath/MIT License

• s3transfer/Apache License 2.0

• urllib3/MIT License

• Deep Neural Network Library (DNNL)/Apache License 2.0

• OpenMP* Runtime Library/See Intel OpenMP Runtime Library licensing.

• mxnet/Apache License 2.0

• six/MIT

Intel OpenMP Runtime Library licensing. The Intel® OpenMP* runtime is dual-licensed, with a
commercial (COM) license as part of the Intel® Parallel Studio XE Suite products, and a BSD open
source (OSS) license.

This connector is released under the Greengrass Core Software License Agreement.

ML Image Classification 759

https://pypi.org/project/boto3/
https://pypi.org/project/botocore/
https://pypi.org/project/python-dateutil/1.4/
https://pypi.org/project/docutils/
https://pypi.org/project/jmespath/
https://pypi.org/project/s3transfer/
https://pypi.org/project/urllib3/
https://github.com/intel/mkl-dnn
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/openmp-support/openmp-library-support/openmp-run-time-library-routines.html
https://pypi.org/project/mxnet/
https://github.com/benjaminp/six
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 1

Changelog

The following table describes the changes in each version of the connector.

Version Changes

2 Added the MLFeedbackConnecto
rConfigId parameter to support the
use of the ML Feedback connector to upload
model input data, publish predictions to an
MQTT topic, and publish metrics to Amazon
CloudWatch.

1 Initial release.

A Greengrass group can contain only one version of the connector at a time. For information about
upgrading a connector version, see the section called “Upgrading connector versions”.

See also

• Integrate with services and protocols using connectors

• the section called “Get started with connectors (console)”

• the section called “Get started with connectors (CLI)”

• Perform machine learning inference

• Image classification algorithm in the Amazon SageMaker Developer Guide

ML Object Detection connector

Warning

This connector has moved into the extended life phase, and AWS IoT Greengrass won't
release updates that provide features, enhancements to existing features, security patches,
or bug fixes. For more information, see AWS IoT Greengrass Version 1 maintenance policy.

ML Object Detection 760

https://docs.aws.amazon.com/sagemaker/latest/dg/image-classification.html

AWS IoT Greengrass Developer Guide, Version 1

The ML Object Detection connectors provide a machine learning (ML) inference service that runs
on the AWS IoT Greengrass core. This local inference service performs object detection using an
object detection model compiled by the SageMaker Neo deep learning compiler. Two types of
object detection models are supported: Single Shot Multibox Detector (SSD) and You Only Look
Once (YOLO) v3. For more information, see Object Detection Model Requirements.

User-defined Lambda functions use the AWS IoT Greengrass Machine Learning SDK to submit
inference requests to the local inference service. The service performs local inference on an input
image and returns a list of predictions for each object detected in the image. Each prediction
contains an object category, a prediction confidence score, and pixel coordinates that specify a
bounding box around the predicted object.

AWS IoT Greengrass provides ML Object Detection connectors for multiple platforms:

Connector Description and ARN

ML Object Detection Aarch64 JTX2 Object detection inference service for NVIDIA
Jetson TX2. Supports GPU acceleration.

ARN: arn:aws:greengrass: region::/
connectors/ObjectDetecti
onAarch64JTX2/versions/1

ML Object Detection x86_64 Object detection inference service for x86_64
platforms.

ARN: arn:aws:greengrass: region::/
connectors/ObjectDetecti
onx86-64/versions/1

ML Object Detection ARMv7 Object detection inference service for ARMv7
platforms.

ARN: arn:aws:greengrass: region::/
connectors/ObjectDetectionARMv7/
versions/1

ML Object Detection 761

AWS IoT Greengrass Developer Guide, Version 1

Requirements

These connectors have the following requirements:

• AWS IoT Greengrass Core Software v1.9.3 or later.

• Python version 3.7 or 3.8 installed on the core device and added to the PATH environment
variable.

Note

To use Python 3.8, run the following command to create a symbolic link from the the
default Python 3.7 installation folder to the installed Python 3.8 binaries.

sudo ln -s path-to-python-3.8/python3.8 /usr/bin/python3.7

This configures your device to meet the Python requirement for AWS IoT Greengrass.

• Dependencies for the SageMaker Neo deep learning runtime installed on the core device. For
more information, see the section called “Installing Neo deep learning runtime dependencies”.

• An ML resource in the Greengrass group. The ML resource must reference an Amazon S3 bucket
that contains an object detection model. For more information, see Amazon S3 model sources.

Note

The model must be a Single Shot Multibox Detector or You Only Look Once v3 object
detection model type. It must be compiled using the SageMaker Neo deep learning
compiler. For more information, see Object Detection Model Requirements.

• The ML Feedback connector added to the Greengrass group and configured. This is required only
if you want to use the connector to upload model input data and publish predictions to an MQTT
topic.

• AWS IoT Greengrass Machine Learning SDK v1.1.0 is required to interact with this connector.

Object detection model requirements

The ML Object Detection connectors support Single Shot multibox Detector (SSD) and You Only
Look Once (YOLO) v3 object detection model types. You can use the object detection components

ML Object Detection 762

https://www.python.org/

AWS IoT Greengrass Developer Guide, Version 1

provided by GluonCV to train the model with your own dataset. Or, you can use pre-trained models
from the GluonCV Model Zoo:

• Pre-trained SSD model

• Pre-trained YOLO v3 model

Your object detection model must be trained with 512 x 512 input images. The pre-trained models
from the GluonCV Model Zoo already meet this requirement.

Trained object detection models must be compiled with the SageMaker Neo deep learning
compiler. When compiling, make sure the target hardware matches the hardware of your
Greengrass core device. For more information, see SageMaker Neo in the Amazon SageMaker
Developer Guide.

The compiled model must be added as an ML resource (Amazon S3 model source) to the same
Greengrass group as the connector.

Connector Parameters

These connectors provide the following parameters.

MLModelDestinationPath

The absolute path to the the Amazon S3 bucket that contains the Neo-compatible ML model.
This is the destination path that's specified for the ML model resource.

Display name in the AWS IoT console: Model destination path

Required: true

Type: string

Valid pattern: .+

MLModelResourceId

The ID of the ML resource that references the source model.

Display name in the AWS IoT console: Greengrass group ML resource

Required: true

Type: S3MachineLearningModelResource

ML Object Detection 763

https://gluon-cv.mxnet.io
https://gluon-cv.mxnet.io/build/examples_detection/demo_ssd.html
https://gluon-cv.mxnet.io/build/examples_detection/demo_yolo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html

AWS IoT Greengrass Developer Guide, Version 1

Valid pattern: ^[a-zA-Z0-9:_-]+$

LocalInferenceServiceName

The name for the local inference service. User-defined Lambda functions invoke the service by
passing the name to the invoke_inference_service function of the AWS IoT Greengrass
Machine Learning SDK. For an example, see the section called “Usage Example”.

Display name in the AWS IoT console: Local inference service name

Required: true

Type: string

Valid pattern: ^[a-zA-Z0-9][a-zA-Z0-9-]{1,62}$

LocalInferenceServiceTimeoutSeconds

The time (in seconds) before the inference request is terminated. The minimum value is 1. The
default value is 10.

Display name in the AWS IoT console: Timeout (second)

Required: true

Type: string

Valid pattern: ^[1-9][0-9]*$

LocalInferenceServiceMemoryLimitKB

The amount of memory (in KB) that the service has access to. The minimum value is 1.

Display name in the AWS IoT console: Memory limit

Required: true

Type: string

Valid pattern: ^[1-9][0-9]*$

GPUAcceleration

The CPU or GPU (accelerated) computing context. This property applies to the ML Image
Classification Aarch64 JTX2 connector only.

Display name in the AWS IoT console: GPU acceleration

ML Object Detection 764

AWS IoT Greengrass Developer Guide, Version 1

Required: true

Type: string

Valid values: CPU or GPU

MLFeedbackConnectorConfigId

The ID of the feedback configuration to use to upload model input data. This must match the ID
of a feedback configuration defined for the ML Feedback connector.

This parameter is required only if you want to use the ML Feedback connector to upload model
input data and publish predictions to an MQTT topic.

Display name in the AWS IoT console: ML Feedback connector configuration ID

Required: false

Type: string

Valid pattern: ^$|^[a-zA-Z0-9][a-zA-Z0-9-]{1,62}$

Create Connector Example (AWS CLI)

The following CLI command creates a ConnectorDefinition with an initial version that contains
an ML Object Detection connector. This example creates an instance of the ML Object Detection
ARMv7l connector.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '{
 "Connectors": [
 {
 "Id": "MyObjectDetectionConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/
ObjectDetectionARMv7/versions/1",
 "Parameters": {
 "MLModelDestinationPath": "/path-to-model",
 "MLModelResourceId": "my-ml-resource",
 "LocalInferenceServiceName": "objectDetection",
 "LocalInferenceServiceTimeoutSeconds": "10",
 "LocalInferenceServiceMemoryLimitKB": "500000",
 "MLFeedbackConnectorConfigId" : "object-detector-random-sampling"
 }

ML Object Detection 765

AWS IoT Greengrass Developer Guide, Version 1

 }
]
}'

Note

The Lambda function in these connectors have a long-lived lifecycle.

In the AWS IoT Greengrass console, you can add a connector from the group's Connectors page.
For more information, see the section called “Get started with connectors (console)”.

Input data

These connectors accept an image file as input. Input image files must be in jpeg or png format.
For more information, see the section called “Usage Example”.

These connectors don't accept MQTT messages as input data.

Output data

These connectors return a formatted list of prediction results for the identified objects in the input
image:

 {
 "prediction": [
 [
 14,
 0.9384938478469849,
 0.37763649225234985,
 0.5110225081443787,
 0.6697432398796082,
 0.8544386029243469
],
 [
 14,
 0.8859519958496094,
 0,
 0.43536216020584106,
 0.3314110040664673,
 0.9538808465003967
],

ML Object Detection 766

AWS IoT Greengrass Developer Guide, Version 1

 [
 12,
 0.04128098487854004,
 0.5976729989051819,
 0.5747185945510864,
 0.704264223575592,
 0.857937216758728
],
 ...
]
 }

Each prediction in the list is contained in square brackets and contains six values:

• The first value represents the predicted object category for the identified object. Object
categories and their corresponding values are determined when training your object detection
machine learning model in the Neo deep learning compiler.

• The second value is the confidence score for the object category prediction. This represents the
probability that the prediction was correct.

• The last four values correspond to pixel dimensions that represent a bounding box around the
predicted object in the image.

These connectors don't publish MQTT messages as output data.

Usage Example

The following example Lambda function uses the AWS IoT Greengrass Machine Learning SDK to
interact with an ML Object Detection connector.

Note

You can download the SDK from the AWS IoT Greengrass Machine Learning SDK downloads
page.

The example initializes an SDK client and synchronously calls the SDK's
invoke_inference_service function to invoke the local inference service. It passes in the
algorithm type, service name, image type, and image content. Then, the example parses the service
response to get the probability results (predictions).

ML Object Detection 767

AWS IoT Greengrass Developer Guide, Version 1

import logging
from threading import Timer

import numpy as np

import greengrass_machine_learning_sdk as ml

We assume the inference input image is provided as a local file
to this inference client Lambda function.
with open('/test_img/test.jpg', 'rb') as f:
 content = bytearray(f.read())

client = ml.client('inference')

def infer():
 logging.info('invoking Greengrass ML Inference service')

 try:
 resp = client.invoke_inference_service(
 AlgoType='object-detection',
 ServiceName='objectDetection',
 ContentType='image/jpeg',
 Body=content
)
 except ml.GreengrassInferenceException as e:
 logging.info('inference exception {}("{}")'.format(e.__class__.__name__, e))
 return
 except ml.GreengrassDependencyException as e:
 logging.info('dependency exception {}("{}")'.format(e.__class__.__name__, e))
 return

 logging.info('resp: {}'.format(resp))
 predictions = resp['Body'].read().decode("utf-8")
 logging.info('predictions: {}'.format(predictions))
 predictions = eval(predictions)

 # Perform business logic that relies on the predictions.

 # Schedule the infer() function to run again in ten second.
 Timer(10, infer).start()
 return

infer()

ML Object Detection 768

AWS IoT Greengrass Developer Guide, Version 1

def function_handler(event, context):
 return

The invoke_inference_service function in the AWS IoT Greengrass Machine Learning SDK
accepts the following arguments.

Argument Description

AlgoType The name of the algorithm type to use
for inference. Currently, only object-de
tection is supported.

Required: true

Type: string

Valid values: object-detection

ServiceName The name of the local inference service.
Use the name that you specified for the
LocalInferenceServiceName parameter
when you configured the connector.

Required: true

Type: string

ContentType The mime type of the input image.

Required: true

Type: string

Valid values: image/jpeg, image/png

Body The content of the input image file.

Required: true

Type: binary

ML Object Detection 769

AWS IoT Greengrass Developer Guide, Version 1

Installing Neo deep learning runtime dependencies on the AWS IoT Greengrass
core

The ML Object Detection connectors are bundled with the SageMaker Neo deep learning runtime
(DLR). The connectors use the runtime to serve the ML model. To use these connectors, you must
install the dependencies for the DLR on your core device.

Before you install the DLR dependencies, make sure that the required system libraries (with the
specified minimum versions) are present on the device.

NVIDIA Jetson TX2

1. Install CUDA Toolkit 9.0 and cuDNN 7.0. You can follow the instructions in the section
called “Setting up other devices” in the Getting Started tutorial.

2. Enable universe repositories so the connector can install community-maintained open
software. For more information, see Repositories/Ubuntu in the Ubuntu documentation.

a. Open the /etc/apt/sources.list file.

b. Make sure that the following lines are uncommented.

deb http://ports.ubuntu.com/ubuntu-ports/ xenial universe
deb-src http://ports.ubuntu.com/ubuntu-ports/ xenial universe
deb http://ports.ubuntu.com/ubuntu-ports/ xenial-updates universe
deb-src http://ports.ubuntu.com/ubuntu-ports/ xenial-updates universe

3. Save a copy of the following installation script to a file named nvidiajtx2.sh on the core
device.

#!/bin/bash
set -e

echo "Installing dependencies on the system..."
echo 'Assuming that universe repos are enabled and checking dependencies...'
apt-get -y update
apt-get -y dist-upgrade
apt-get install -y liblapack3 libopenblas-dev liblapack-dev libatlas-base-dev
apt-get install -y python3.7 python3.7-dev

python3.7 -m pip install --upgrade pip
python3.7 -m pip install numpy==1.15.0

ML Object Detection 770

https://help.ubuntu.com/community/Repositories/Ubuntu

AWS IoT Greengrass Developer Guide, Version 1

python3.7 -m pip install opencv-python || echo 'Error: Unable to install OpenCV
 with pip on this platform. Try building the latest OpenCV from source (https://
github.com/opencv/opencv).'

echo 'Dependency installation/upgrade complete.'

Note

If OpenCV does not install successfully using this script, you can try building
from source. For more information, see Installation in Linux in the OpenCV
documentation, or refer to other online resources for your platform.

4. From the directory where you saved the file, run the following command:

sudo nvidiajtx2.sh

x86_64 (Ubuntu or Amazon Linux)

1. Save a copy of the following installation script to a file named x86_64.sh on the core
device.

#!/bin/bash
set -e

echo "Installing dependencies on the system..."

release=$(awk -F= '/^NAME/{print $2}' /etc/os-release)

if ["$release" == '"Ubuntu"']; then
 # Ubuntu. Supports EC2 and DeepLens. DeepLens has all the dependencies
 installed, so
 # this is mostly to prepare dependencies on Ubuntu EC2 instance.
 apt-get -y update
 apt-get -y dist-upgrade

 apt-get install -y libgfortran3 libsm6 libxext6 libxrender1
 apt-get install -y python3.7 python3.7-dev
elif ["$release" == '"Amazon Linux"']; then
 # Amazon Linux. Expect python to be installed already
 yum -y update

ML Object Detection 771

https://github.com/opencv/opencv
https://docs.opencv.org/4.1.0/d7/d9f/tutorial_linux_install.html

AWS IoT Greengrass Developer Guide, Version 1

 yum -y upgrade

 yum install -y compat-gcc-48-libgfortran libSM libXrender libXext
else
 echo "OS Release not supported: $release"
 exit 1
fi

python3.7 -m pip install --upgrade pip
python3.7 -m pip install numpy==1.15.0
python3.7 -m pip install opencv-python || echo 'Error: Unable to install OpenCV
 with pip on this platform. Try building the latest OpenCV from source (https://
github.com/opencv/opencv).'

echo 'Dependency installation/upgrade complete.'

Note

If OpenCV does not install successfully using this script, you can try building
from source. For more information, see Installation in Linux in the OpenCV
documentation, or refer to other online resources for your platform.

2. From the directory where you saved the file, run the following command:

sudo x86_64.sh

ARMv7 (Raspberry Pi)

1. Save a copy of the following installation script to a file named armv7l.sh on the core
device.

#!/bin/bash
set -e

echo "Installing dependencies on the system..."

apt-get update
apt-get -y upgrade

apt-get install -y liblapack3 libopenblas-dev liblapack-dev

ML Object Detection 772

https://github.com/opencv/opencv
https://docs.opencv.org/4.1.0/d7/d9f/tutorial_linux_install.html

AWS IoT Greengrass Developer Guide, Version 1

apt-get install -y python3.7 python3.7-dev

python3.7 -m pip install --upgrade pip
python3.7 -m pip install numpy==1.15.0
python3.7 -m pip install opencv-python || echo 'Error: Unable to install OpenCV
 with pip on this platform. Try building the latest OpenCV from source (https://
github.com/opencv/opencv).'

echo 'Dependency installation/upgrade complete.'

Note

If OpenCV does not install successfully using this script, you can try building
from source. For more information, see Installation in Linux in the OpenCV
documentation, or refer to other online resources for your platform.

2. From the directory where you saved the file, run the following command:

sudo bash armv7l.sh

Note

On a Raspberry Pi, using pip to install machine learning dependencies is a
memory-intensive operation that can cause the device to run out of memory and
become unresponsive. As a workaround, you can temporarily increase the swap size.
In /etc/dphys-swapfile, increase the value of the CONF_SWAPSIZE variable
and then run the following command to restart dphys-swapfile.

/etc/init.d/dphys-swapfile restart

Logging and troubleshooting

Depending on your group settings, event and error logs are written to CloudWatch Logs, the local
file system, or both. Logs from this connector use the prefix LocalInferenceServiceName.
If the connector behaves unexpectedly, check the connector's logs. These usually contain useful
debugging information, such as a missing ML library dependency or the cause of a connector
startup failure.

ML Object Detection 773

https://github.com/opencv/opencv
https://docs.opencv.org/4.1.0/d7/d9f/tutorial_linux_install.html

AWS IoT Greengrass Developer Guide, Version 1

If the AWS IoT Greengrass group is configured to write local logs, the connector writes log files to
greengrass-root/ggc/var/log/user/region/aws/. For more information about Greengrass
logging, see the section called “Monitoring with AWS IoT Greengrass logs”.

Use the following information to help troubleshoot issues with the ML Object Detection
connectors.

Required system libraries

The following tabs list the system libraries required for each ML Object Detection connector.

ML Object Detection Aarch64 JTX2

Library Minimum version

ld-linux-aarch64.so.1 GLIBC_2.17

libc.so.6 GLIBC_2.17

libcublas.so.9.0 not applicable

libcudart.so.9.0 not applicable

libcudnn.so.7 not applicable

libcufft.so.9.0 not applicable

libcurand.so.9.0 not applicable

libcusolver.so.9.0 not applicable

libgcc_s.so.1 GCC_4.2.0

libgomp.so.1 GOMP_4.0, OMP_1.0

libm.so.6 GLIBC_2.23

libnvinfer.so.4 not applicable

libnvrm_gpu.so not applicable

libnvrm.so not applicable

ML Object Detection 774

AWS IoT Greengrass Developer Guide, Version 1

Library Minimum version

libnvidia-fatbinaryloader.so.28.2.1 not applicable

libnvos.so not applicable

libpthread.so.0 GLIBC_2.17

librt.so.1 GLIBC_2.17

libstdc++.so.6 GLIBCXX_3.4.21, CXXABI_1.3.8

ML Object Detection x86_64

Library Minimum version

ld-linux-x86-64.so.2 GCC_4.0.0

libc.so.6 GLIBC_2.4

libgfortran.so.3 GFORTRAN_1.0

libm.so.6 GLIBC_2.23

libpthread.so.0 GLIBC_2.2.5

librt.so.1 GLIBC_2.2.5

libstdc++.so.6 CXXABI_1.3.8, GLIBCXX_3.4.21

ML Object Detection ARMv7

Library Minimum version

ld-linux-armhf.so.3 GLIBC_2.4

libc.so.6 GLIBC_2.7

libgcc_s.so.1 GCC_4.0.0

ML Object Detection 775

AWS IoT Greengrass Developer Guide, Version 1

Library Minimum version

libgfortran.so.3 GFORTRAN_1.0

libm.so.6 GLIBC_2.4

libpthread.so.0 GLIBC_2.4

librt.so.1 GLIBC_2.4

libstdc++.so.6 CXXABI_1.3.8, CXXABI_ARM_1.3.3,
GLIBCXX_3.4.20

Issues

Symptom Solution

On a Raspberry Pi, the following error
message is logged and you are not using
the camera: Failed to initialize
libdc1394

Run the following command to disable the
driver:

sudo ln /dev/null /dev/raw1394

This operation is ephemeral. The symbolic
link disappears after you reboot. Consult the
manual of your OS distribution to learn how
to create the link automatically upon reboot.

Licenses

The ML Object Detection connectors include the following third-party software/licensing:

• AWS SDK for Python (Boto3)/Apache License 2.0

• botocore/Apache License 2.0

• dateutil/PSF License

• docutils/BSD License, GNU General Public License (GPL), Python Software Foundation License,
Public Domain

ML Object Detection 776

https://pypi.org/project/boto3/
https://pypi.org/project/botocore/
https://pypi.org/project/python-dateutil/1.4/
https://pypi.org/project/docutils/

AWS IoT Greengrass Developer Guide, Version 1

• jmespath/MIT License

• s3transfer/Apache License 2.0

• urllib3/MIT License

• Deep Learning Runtime/Apache License 2.0

• six/MIT

This connector is released under the Greengrass Core Software License Agreement.

See also

• Integrate with services and protocols using connectors

• the section called “Get started with connectors (console)”

• the section called “Get started with connectors (CLI)”

• Perform machine learning inference

• Object detection algorithm in the Amazon SageMaker Developer Guide

Modbus-RTU Protocol Adapter connector

The Modbus-RTU Protocol Adapter connector polls information from Modbus RTU devices that are
in the AWS IoT Greengrass group.

This connector receives parameters for a Modbus RTU request from a user-defined Lambda
function. It sends the corresponding request, and then publishes the response from the target
device as an MQTT message.

This connector has the following versions.

Version ARN

3 arn:aws:greengrass: region::/
connectors/ModbusRTUProt
ocolAdapter/versions/3

Modbus-RTU Protocol Adapter 777

https://pypi.org/project/jmespath/
https://pypi.org/project/s3transfer/
https://pypi.org/project/urllib3/
https://github.com/neo-ai/neo-ai-dlr
https://github.com/benjaminp/six
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf
https://docs.aws.amazon.com/sagemaker/latest/dg/object-detection.html

AWS IoT Greengrass Developer Guide, Version 1

Version ARN

2 arn:aws:greengrass: region::/
connectors/ModbusRTUProt
ocolAdapter/versions/2

1 arn:aws:greengrass: region::/
connectors/ModbusRTUProt
ocolAdapter/versions/1

For information about version changes, see the Changelog.

Requirements

This connector has the following requirements:

Version 3

• AWS IoT Greengrass Core software v1.9.3 or later.

• Python version 3.7 or 3.8 installed on the core device and added to the PATH environment
variable.

Note

To use Python 3.8, run the following command to create a symbolic link from the the
default Python 3.7 installation folder to the installed Python 3.8 binaries.

sudo ln -s path-to-python-3.8/python3.8 /usr/bin/python3.7

This configures your device to meet the Python requirement for AWS IoT Greengrass.

• A physical connection between the AWS IoT Greengrass core and the Modbus devices. The
core must be physically connected to the Modbus RTU network through a serial port; for
example, a USB port.

• A local device resource in the Greengrass group that points to the physical Modbus serial port.

• A user-defined Lambda function that sends Modbus RTU request parameters to this
connector. The request parameters must conform to expected patterns and include the IDs

Modbus-RTU Protocol Adapter 778

https://www.python.org/

AWS IoT Greengrass Developer Guide, Version 1

and addresses of the target devices on the Modbus RTU network. For more information, see
the section called “Input data”.

Versions 1 - 2

• AWS IoT Greengrass Core software v1.7 or later.

• Python version 2.7 installed on the core device and added to the PATH environment variable.

• A physical connection between the AWS IoT Greengrass core and the Modbus devices. The
core must be physically connected to the Modbus RTU network through a serial port; for
example, a USB port.

• A local device resource in the Greengrass group that points to the physical Modbus serial port.

• A user-defined Lambda function that sends Modbus RTU request parameters to this
connector. The request parameters must conform to expected patterns and include the IDs
and addresses of the target devices on the Modbus RTU network. For more information, see
the section called “Input data”.

Connector Parameters

This connector supports the following parameters:

ModbusSerialPort-ResourceId

The ID of the local device resource that represents the physical Modbus serial port.

Note

This connector is granted read-write access to the resource.

Display name in the AWS IoT console: Modbus serial port resource

Required: true

Type: string

Valid pattern: .+

Modbus-RTU Protocol Adapter 779

https://www.python.org/

AWS IoT Greengrass Developer Guide, Version 1

ModbusSerialPort

The absolute path to the physical Modbus serial port on the device. This is the source path
that's specified for the Modbus local device resource.

Display name in the AWS IoT console: Source path of Modbus serial port resource

Required: true

Type: string

Valid pattern: .+

Create Connector Example (AWS CLI)

The following CLI command creates a ConnectorDefinition with an initial version that contains
the Modbus-RTU Protocol Adapter connector.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '{
 "Connectors": [
 {
 "Id": "MyModbusRTUProtocolAdapterConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/
ModbusRTUProtocolAdapter/versions/3",
 "Parameters": {
 "ModbusSerialPort-ResourceId": "MyLocalModbusSerialPort",
 "ModbusSerialPort": "/path-to-port"
 }
 }
]
}'

Note

The Lambda function in this connector has a long-lived lifecycle.

In the AWS IoT Greengrass console, you can add a connector from the group's Connectors page.
For more information, see the section called “Get started with connectors (console)”.

Modbus-RTU Protocol Adapter 780

AWS IoT Greengrass Developer Guide, Version 1

Note

After you deploy the Modbus-RTU Protocol Adapter connector, you can use AWS IoT Things
Graph to orchestrate interactions between devices in your group. For more information, see
Modbus in the AWS IoT Things Graph User Guide.

Input data

This connector accepts Modbus RTU request parameters from a user-defined Lambda function on
an MQTT topic. Input messages must be in JSON format.

Topic filter in subscription

modbus/adapter/request

Message properties

The request message varies based on the type of Modbus RTU request that it represents. The
following properties are required for all requests:

• In the request object:

• operation. The name of the operation to execute. For example, specify "operation":
"ReadCoilsRequest" to read coils. This value must be a Unicode string. For supported
operations, see the section called “Modbus RTU requests and responses”.

• device. The target device of the request. This value must be between 0 - 247.

• The id property. An ID for the request. This value is used for data deduplication and is
returned as is in the id property of all responses, including error responses. This value must
be a Unicode string.

Note

If your request includes an address field, you must specify the value as an integer. For
example, "address": 1.

The other parameters to include in the request depend on the operation. All request parameters
are required except the CRC, which is handled separately. For examples, see the section called
“Example requests and responses”.

Modbus-RTU Protocol Adapter 781

https://docs.aws.amazon.com/thingsgraph/latest/ug/iot-tg-protocols-modbus.html

AWS IoT Greengrass Developer Guide, Version 1

Example input: Read coils request

{
 "request": {
 "operation": "ReadCoilsRequest",
 "device": 1,
 "address": 1,
 "count": 1
 },
 "id": "TestRequest"
}

Output data

This connector publishes responses to incoming Modbus RTU requests.

Topic filter in subscription

modbus/adapter/response

Message properties

The format of the response message varies based on the corresponding request and the
response status. For examples, see the section called “Example requests and responses”.

Note

A response for a write operation is simply an echo of the request. Although no
meaningful information is returned for write responses, it's a good practice to check the
status of the response.

Every response includes the following properties:

• In the response object:

• status. The status of the request. The status can be one of the following values:

• Success. The request was valid, sent to the Modbus RTU network, and a response was
returned.

Modbus-RTU Protocol Adapter 782

AWS IoT Greengrass Developer Guide, Version 1

• Exception. The request was valid, sent to the Modbus RTU network, and an exception
response was returned. For more information, see the section called “Response status:
Exception”.

• No Response. The request was invalid, and the connector caught the error before the
request was sent over the Modbus RTU network. For more information, see the section
called “Response status: No response”.

• device. The device that the request was sent to.

• operation. The request type that was sent.

• payload. The response content that was returned. If the status is No Response, this
object contains only an error property with the error description (for example, "error":
"[Input/Output] No Response received from the remote unit").

• The id property. The ID of the request, used for data deduplication.

Example output: Success

{
 "response" : {
 "status" : "success",
 "device": 1,
 "operation": "ReadCoilsRequest",
 "payload": {
 "function_code": 1,
 "bits": [1]
 }
 },
 "id" : "TestRequest"
}

Example output: Failure

{
 "response" : {
 "status" : "fail",
 "error_message": "Internal Error",
 "error": "Exception",
 "device": 1,
 "operation": "ReadCoilsRequest",
 "payload": {
 "function_code": 129,
 "exception_code": 2

Modbus-RTU Protocol Adapter 783

AWS IoT Greengrass Developer Guide, Version 1

 }
 },
 "id" : "TestRequest"
}

For more examples, see the section called “Example requests and responses”.

Modbus RTU requests and responses

This connector accepts Modbus RTU request parameters as input data and publishes responses as
output data.

The following common operations are supported.

Operation name in request Function code in response

ReadCoilsRequest 01

ReadDiscreteInputsRequest 02

ReadHoldingRegistersRequest 03

ReadInputRegistersRequest 04

WriteSingleCoilRequest 05

WriteSingleRegisterRequest 06

WriteMultipleCoilsRequest 15

WriteMultipleRegistersRequest 16

MaskWriteRegisterRequest 22

ReadWriteMultipleRegistersRequest 23

Example requests and responses

The following are example requests and responses for supported operations.

Modbus-RTU Protocol Adapter 784

AWS IoT Greengrass Developer Guide, Version 1

Read Coils

Request example:

{
 "request": {
 "operation": "ReadCoilsRequest",
 "device": 1,
 "address": 1,
 "count": 1
 },
 "id": "TestRequest"
}

Response example:

{
 "response": {
 "status": "success",
 "device": 1,
 "operation": "ReadCoilsRequest",
 "payload": {
 "function_code": 1,
 "bits": [1]
 }
 },
 "id" : "TestRequest"
}

Read Discrete Inputs

Request example:

{
 "request": {
 "operation": "ReadDiscreteInputsRequest",
 "device": 1,
 "address": 1,
 "count": 1
 },
 "id": "TestRequest"
}

Modbus-RTU Protocol Adapter 785

AWS IoT Greengrass Developer Guide, Version 1

Response example:

{
 "response": {
 "status": "success",
 "device": 1,
 "operation": "ReadDiscreteInputsRequest",
 "payload": {
 "function_code": 2,
 "bits": [1]
 }
 },
 "id" : "TestRequest"
}

Read Holding Registers

Request example:

{
 "request": {
 "operation": "ReadHoldingRegistersRequest",
 "device": 1,
 "address": 1,
 "count": 1
 },
 "id": "TestRequest"
}

Response example:

{
 "response": {
 "status": "success",
 "device": 1,
 "operation": "ReadHoldingRegistersRequest",
 "payload": {
 "function_code": 3,
 "registers": [20,30]
 }
 },
 "id" : "TestRequest"

Modbus-RTU Protocol Adapter 786

AWS IoT Greengrass Developer Guide, Version 1

}

Read Input Registers

Request example:

{
 "request": {
 "operation": "ReadInputRegistersRequest",
 "device": 1,
 "address": 1,
 "value": 1
 },
 "id": "TestRequest"
}

Write Single Coil

Request example:

{
 "request": {
 "operation": "WriteSingleCoilRequest",
 "device": 1,
 "address": 1,
 "value": 1
 },
 "id": "TestRequest"
}

Response example:

{
 "response": {
 "status": "success",
 "device": 1,
 "operation": "WriteSingleCoilRequest",
 "payload": {
 "function_code": 5,
 "address": 1,
 "value": true
 }
 },

Modbus-RTU Protocol Adapter 787

AWS IoT Greengrass Developer Guide, Version 1

 "id" : "TestRequest"

Write Single Register

Request example:

{
 "request": {
 "operation": "WriteSingleRegisterRequest",
 "device": 1,
 "address": 1,
 "value": 1
 },
 "id": "TestRequest"
}

Write Multiple Coils

Request example:

{
 "request": {
 "operation": "WriteMultipleCoilsRequest",
 "device": 1,
 "address": 1,
 "values": [1,0,0,1]
 },
 "id": "TestRequest"
}

Response example:

{
 "response": {
 "status": "success",
 "device": 1,
 "operation": "WriteMultipleCoilsRequest",
 "payload": {
 "function_code": 15,
 "address": 1,
 "count": 4
 }
 },

Modbus-RTU Protocol Adapter 788

AWS IoT Greengrass Developer Guide, Version 1

 "id" : "TestRequest"
}

Write Multiple Registers

Request example:

{
 "request": {
 "operation": "WriteMultipleRegistersRequest",
 "device": 1,
 "address": 1,
 "values": [20,30,10]
 },
 "id": "TestRequest"
}

Response example:

{
 "response": {
 "status": "success",
 "device": 1,
 "operation": "WriteMultipleRegistersRequest",
 "payload": {
 "function_code": 23,
 "address": 1,
 "count": 3
 }
 },
 "id" : "TestRequest"
}

Mask Write Register

Request example:

{
 "request": {
 "operation": "MaskWriteRegisterRequest",
 "device": 1,
 "address": 1,
 "and_mask": 175,

Modbus-RTU Protocol Adapter 789

AWS IoT Greengrass Developer Guide, Version 1

 "or_mask": 1
 },
 "id": "TestRequest"
}

Response example:

{
 "response": {
 "status": "success",
 "device": 1,
 "operation": "MaskWriteRegisterRequest",
 "payload": {
 "function_code": 22,
 "and_mask": 0,
 "or_mask": 8
 }
 },
 "id" : "TestRequest"
}

Read Write Multiple Registers

Request example:

{
 "request": {
 "operation": "ReadWriteMultipleRegistersRequest",
 "device": 1,
 "read_address": 1,
 "read_count": 2,
 "write_address": 3,
 "write_registers": [20,30,40]
 },
 "id": "TestRequest"
}

Response example:

{
 "response": {
 "status": "success",

Modbus-RTU Protocol Adapter 790

AWS IoT Greengrass Developer Guide, Version 1

 "device": 1,
 "operation": "ReadWriteMultipleRegistersRequest",
 "payload": {
 "function_code": 23,
 "registers": [10,20,10,20]
 }
 },
 "id" : "TestRequest"
}

Note

The registers returned in this response are the registers that are read from.

Response status: Exception

Exceptions can occur when the request format is valid, but the request is not completed
successfully. In this case, the response contains the following information:

• The status is set to Exception.

• The function_code equals the function code of the request + 128.

• The exception_code contains the exception code. For more information, see Modbus exception
codes.

Example:

{
 "response" : {
 "status" : "fail",
 "error_message": "Internal Error",
 "error": "Exception",
 "device": 1,
 "operation": "ReadCoilsRequest",
 "payload": {
 "function_code": 129,
 "exception_code": 2
 }
 },
 "id" : "TestRequest"

Modbus-RTU Protocol Adapter 791

AWS IoT Greengrass Developer Guide, Version 1

}

Response status: No response

This connector performs validation checks on the Modbus request. For example, it checks for
invalid formats and missing fields. If the validation fails, the connector doesn't send the request.
Instead, it returns a response that contains the following information:

• The status is set to No Response.

• The error contains the reason for the error.

• The error_message contains the error message.

Examples:

{
 "response" : {
 "status" : "fail",
 "error_message": "Invalid address field. Expected <type 'int'>, got <type
 'str'>",
 "error": "No Response",
 "device": 1,
 "operation": "ReadCoilsRequest",
 "payload": {
 "error": "Invalid address field. Expected <type 'int'>, got <type 'str'>"
 }
 },
 "id" : "TestRequest"
}

If the request targets a nonexistent device or if the Modbus RTU network is not working, you might
get a ModbusIOException, which uses the No Response format.

{
 "response" : {
 "status" : "fail",
 "error_message": "[Input/Output] No Response received from the remote unit",
 "error": "No Response",
 "device": 1,
 "operation": "ReadCoilsRequest",
 "payload": {
 "error": "[Input/Output] No Response received from the remote unit"

Modbus-RTU Protocol Adapter 792

AWS IoT Greengrass Developer Guide, Version 1

 }
 },
 "id" : "TestRequest"
}

Usage Example

Use the following high-level steps to set up an example Python 3.7 Lambda function that you can
use to try out the connector.

Note

• If you use other Python runtimes, you can create a symlink from Python3.x to Python
3.7.

• The Get started with connectors (console) and Get started with connectors (CLI) topics
contain detailed steps that show you how to configure and deploy an example Twilio
Notifications connector.

1. Make sure you meet the requirements for the connector.

2. Create and publish a Lambda function that sends input data to the connector.

Save the example code as a PY file. Download and unzip the AWS IoT Greengrass Core SDK for
Python. Then, create a zip package that contains the PY file and the greengrasssdk folder at
the root level. This zip package is the deployment package that you upload to AWS Lambda.

After you create the Python 3.7 Lambda function, publish a function version and create an
alias.

3. Configure your Greengrass group.

a. Add the Lambda function by its alias (recommended). Configure the Lambda lifecycle as
long-lived (or "Pinned": true in the CLI).

b. Add the required local device resource and grant read/write access to the Lambda
function.

c. Add the connector and configure its parameters.

d. Add subscriptions that allow the connector to receive input data and send output data on
supported topic filters.

Modbus-RTU Protocol Adapter 793

AWS IoT Greengrass Developer Guide, Version 1

• Set the Lambda function as the source, the connector as the target, and use a supported
input topic filter.

• Set the connector as the source, AWS IoT Core as the target, and use a supported output
topic filter. You use this subscription to view status messages in the AWS IoT console.

4. Deploy the group.

5. In the AWS IoT console, on the Test page, subscribe to the output data topic to view status
messages from the connector. The example Lambda function is long-lived and starts sending
messages immediately after the group is deployed.

When you're finished testing, you can set the Lambda lifecycle to on-demand (or "Pinned":
false in the CLI) and deploy the group. This stops the function from sending messages.

Example

The following example Lambda function sends an input message to the connector.

import greengrasssdk
import json

TOPIC_REQUEST = 'modbus/adapter/request'

Creating a greengrass core sdk client
iot_client = greengrasssdk.client('iot-data')

def create_read_coils_request():
 request = {
 "request": {
 "operation": "ReadCoilsRequest",
 "device": 1,
 "address": 1,
 "count": 1
 },
 "id": "TestRequest"
 }
 return request

def publish_basic_request():
 iot_client.publish(payload=json.dumps(create_read_coils_request()),
 topic=TOPIC_REQUEST)

Modbus-RTU Protocol Adapter 794

AWS IoT Greengrass Developer Guide, Version 1

publish_basic_request()

def lambda_handler(event, context):
 return

Licenses

The Modbus-RTU Protocol Adapter connector includes the following third-party software/
licensing:

• pymodbus/BSD

• pyserial/BSD

This connector is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the connector.

Version Changes

3 Upgraded the Lambda runtime to Python 3.7,
which changes the runtime requirement.

2 Updated connector ARN for AWS Region
support.

Improved error logging.

1 Initial release.

A Greengrass group can contain only one version of the connector at a time. For information about
upgrading a connector version, see the section called “Upgrading connector versions”.

See also

• Integrate with services and protocols using connectors

• the section called “Get started with connectors (console)”

Modbus-RTU Protocol Adapter 795

https://github.com/riptideio/pymodbus/blob/master/README.rst
https://github.com/pyserial/pyserial
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 1

• the section called “Get started with connectors (CLI)”

Modbus-TCP Protocol Adapter connector

The Modbus-TCP Protocol Adapter connector collects data from local devices through the
ModbusTCP protocol and publishes it to the selected StreamManager streams.

You can also use this connector with the IoT SiteWise connector and your IoT SiteWise gateway.
Your gateway must supply the configuration for the connector. For more information, see
Configure a Modbus TCP source in the IoT SiteWise user guide.

Note

This connector runs in No container isolation mode, so you can deploy it to a AWS IoT
Greengrass group running in a Docker container.

This connector has the following versions.

Version ARN

3 arn:aws:greengrass: region::/
connectors/ModbusTCPConnector/
versions/3

2 arn:aws:greengrass: region::/
connectors/ModbusTCPConnector/
versions/2

1 arn:aws:greengrass: region::/
connectors/ModbusTCPConnector/
versions/1

For information about version changes, see the Changelog.

Requirements

This connector has the following requirements:

Modbus-TCP Protocol Adapter 796

http://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-modbus-source.html

AWS IoT Greengrass Developer Guide, Version 1

Version 1 - 3

• AWS IoT Greengrass Core software v1.10.2 or later.

• Stream manager enabled on the AWS IoT Greengrass group.

• Java 8 installed on the core device and added to the PATH environment variable.

Note

This connector is only available in the following regions:

• ap-southeast-1

• ap-southeast-2

• eu-central-1

• eu-west-1

• us-east-1

• us-west-2

• cn-north-1

Connector Parameters

This connector supports the following parameters:

LocalStoragePath

The directory on the AWS IoT Greengrass host that the IoT SiteWise connector can write
persistent data to. The default directory is /var/sitewise.

Display name in the AWS IoT console: Local storage path

Required: false

Type: string

Valid pattern: ^\s*$|\/.

MaximumBufferSize

The maximum size in GB for IoT SiteWise disk usage. The default size is 10GB.

Modbus-TCP Protocol Adapter 797

AWS IoT Greengrass Developer Guide, Version 1

Display name in the AWS IoT console: Maximum disk buffer size

Required: false

Type: string

Valid pattern: ^\s*$|[0-9]+

CapabilityConfiguration

The set of Modbus TCP collector configurations that the connector collects data from and
connects to.

Display name in the AWS IoT console: CapabilityConfiguration

Required: false

Type: A well-formed JSON string that defines the set of supported feedback configurations.

The following is an example of a CapabilityConfiguration:

{
 "sources": [
 {
 "type": "ModBusTCPSource",
 "name": "SourceName1",
 "measurementDataStreamPrefix": "SourceName1_Prefix",
 "destination": {
 "type": "StreamManager",
 "streamName": "SiteWise_Stream_1",
 "streamBufferSize": 8
 },
 "endpoint": {
 "ipAddress": "127.0.0.1",
 "port": 8081,
 "unitId": 1
 },
 "propertyGroups": [
 {
 "name": "GroupName",
 "tagPathDefinitions": [
 {
 "type": "ModBusTCPAddress",
 "tag": "TT-001",

Modbus-TCP Protocol Adapter 798

AWS IoT Greengrass Developer Guide, Version 1

 "address": "30001",
 "size": 2,
 "srcDataType": "float",
 "transformation": "byteWordSwap",
 "dstDataType": "double"
 }
],
 "scanMode": {
 "type": "POLL",
 "rate": 100
 }
 }
]
 }
]
}

Create Connector Example (AWS CLI)

The following CLI command creates a ConnectorDefinition with an initial version that contains
the Modbus-TCP Protocol Adapter connector.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '
{
 "Connectors": [
 {
 "Id": "MyModbusTCPConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/ModbusTCP/
versions/3",
 "Parameters": {
 "capability_configuration": "{\"version\":1,\"namespace\":
\"iotsitewise:modbuscollector:1\",\"configuration\":\"{\"sources\":[{\"type
\":\"ModBusTCPSource\",\"name\":\"SourceName1\",\"measurementDataStreamPrefix
\":\"\",\"endpoint\":{\"ipAddress\":\"127.0.0.1\",\"port\":8081,\"unitId\":1},
\"propertyGroups\":[{\"name\":\"PropertyGroupName\",\"tagPathDefinitions\":[{\"type
\":\"ModBusTCPAddress\",\"tag\":\"TT-001\",\"address\":\"30001\",\"size\":2,
\"srcDataType\":\"hexdump\",\"transformation\":\"noSwap\",\"dstDataType\":\"string
\"}],\"scanMode\":{\"rate\":200,\"type\":\"POLL\"}}],\"destination\":{\"type\":
\"StreamManager\",\"streamName\":\"SiteWise_Stream\",\"streamBufferSize\":10},
\"minimumInterRequestDuration\":200}]}\"}"
 }

Modbus-TCP Protocol Adapter 799

AWS IoT Greengrass Developer Guide, Version 1

 }
]
}'

Note

The Lambda function in this connector has a long-lived lifecycle.

Input data

This connector doesn't accept MQTT messages as input data.

Output data

This connector publishes data to StreamManager. You must configure the destination message
stream. The output messages are of the following structure:

{
 "alias": "string",
 "messages": [
 {
 "name": "string",
 "value": boolean|double|integer|string,
 "timestamp": number,
 "quality": "string"
 }
]
}

Licenses

The Modbus-TCP Protocol Adapter connector includes the following third-party software/licensing:

• Digital Petri Modbus

This connector is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the connector.

Modbus-TCP Protocol Adapter 800

https://github.com/digitalpetri/modbus
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 1

Version Changes Date

3 (recommended) This version contains bug
fixes.

December 22, 2021

2 Added support for ASCII,
UTF8, and ISO8859 encoded
source strings.

May 24, 2021

1 Initial release. December 15, 2020

A Greengrass group can contain only one version of the connector at a time. For information about
upgrading a connector version, see the section called “Upgrading connector versions”.

See also

• Integrate with services and protocols using connectors

• the section called “Get started with connectors (console)”

• the section called “Get started with connectors (CLI)”

Raspberry Pi GPIO connector

Warning

This connector has moved into the extended life phase, and AWS IoT Greengrass won't
release updates that provide features, enhancements to existing features, security patches,
or bug fixes. For more information, see AWS IoT Greengrass Version 1 maintenance policy.

The Raspberry Pi GPIO connector controls general-purpose input/output (GPIO) pins on a
Raspberry Pi core device.

This connector polls input pins at a specified interval and publishes state changes to MQTT topics.
It also accepts read and write requests as MQTT messages from user-defined Lambda functions.
Write requests are used to set the pin to high or low voltage.

Raspberry Pi GPIO 801

AWS IoT Greengrass Developer Guide, Version 1

The connector provides parameters that you use to designate input and output pins. This behavior
is configured before group deployment. It can't be changed at runtime.

• Input pins can be used to receive data from peripheral devices.

• Output pins can be used to control peripherals or send data to peripherals.

You can use this connector for many scenarios, such as:

• Controlling green, yellow, and red LED lights for a traffic light.

• Controlling a fan (attached to an electrical relay) based on data from a humidity sensor.

• Alerting employees in a retail store when customers press a button.

• Using a smart light switch to control other IoT devices.

Note

This connector is not suitable for applications that have real-time requirements. Events
with short durations might be missed.

This connector has the following versions.

Version ARN

3 arn:aws:greengrass: region::/
connectors/RaspberryPiGPIO/
versions/3

2 arn:aws:greengrass: region::/
connectors/RaspberryPiGPIO/
versions/2

1 arn:aws:greengrass: region::/
connectors/RaspberryPiGPIO/
versions/1

For information about version changes, see the Changelog.

Raspberry Pi GPIO 802

AWS IoT Greengrass Developer Guide, Version 1

Requirements

This connector has the following requirements:

Version 3

• AWS IoT Greengrass Core software v1.9.3 or later.

• Python version 3.7 installed on the core device and added to the PATH environment variable.

• Raspberry Pi 4 Model B, or Raspberry Pi 3 Model B/B+. You must know the pin sequence of
your Raspberry Pi. For more information, see the section called “GPIO Pin sequence”.

• A local device resource in the Greengrass group that points to /dev/gpiomem on the
Raspberry Pi. If you create the resource in the console, you must select the Automatically add
OS group permissions of the Linux group that owns the resource option. In the API, set the
GroupOwnerSetting.AutoAddGroupOwner property to true.

• The RPi.GPIO module installed on the Raspberry Pi. In Raspbian, this module is installed by
default. You can use the following command to reinstall it:

sudo pip install RPi.GPIO

Versions 1 - 2

• AWS IoT Greengrass Core software v1.7 or later.

• Python version 2.7 installed on the core device and added to the PATH environment variable.

• Raspberry Pi 4 Model B, or Raspberry Pi 3 Model B/B+. You must know the pin sequence of
your Raspberry Pi. For more information, see the section called “GPIO Pin sequence”.

• A local device resource in the Greengrass group that points to /dev/gpiomem on the
Raspberry Pi. If you create the resource in the console, you must select the Automatically add
OS group permissions of the Linux group that owns the resource option. In the API, set the
GroupOwnerSetting.AutoAddGroupOwner property to true.

• The RPi.GPIO module installed on the Raspberry Pi. In Raspbian, this module is installed by
default. You can use the following command to reinstall it:

sudo pip install RPi.GPIO

Raspberry Pi GPIO 803

https://www.python.org/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://www.python.org/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/

AWS IoT Greengrass Developer Guide, Version 1

GPIO Pin sequence

The Raspberry Pi GPIO connector references GPIO pins by the numbering scheme of the underlying
System on Chip (SoC), not by the physical layout of GPIO pins. The physical ordering of pins might
vary in Raspberry Pi versions. For more information, see GPIO in the Raspberry Pi documentation.

The connector can't validate that the input and output pins you configure map correctly to the
underlying hardware of your Raspberry Pi. If the pin configuration is invalid, the connector returns
a runtime error when it attempts to start on the device. To resolve this issue, reconfigure the
connector and then redeploy.

Note

Make sure that peripherals for GPIO pins are properly wired to prevent component damage.

Connector Parameters

This connector provides the following parameters:

InputGpios

A comma-separated list of GPIO pin numbers to configure as inputs. Optionally append U to set
a pin's pull-up resistor, or D to set the pull-down resistor. Example: "5,6U,7D".

Display name in the AWS IoT console: Input GPIO pins

Required: false. You must specify input pins, output pins, or both.

Type: string

Valid pattern: ^$|^[0-9]+[UD]?(,[0-9]+[UD]?)*$

InputPollPeriod

The interval (in milliseconds) between each polling operation, which checks input GPIO pins for
state changes. The minimum value is 1.

This value depends on your scenario and the type of devices that are polled. For example, a
value of 50 should be fast enough to detect a button press.

Display name in the AWS IoT console: Input GPIO polling period

Raspberry Pi GPIO 804

https://www.raspberrypi.org/documentation/usage/gpio/

AWS IoT Greengrass Developer Guide, Version 1

Required: false

Type: string

Valid pattern: ^$|^[1-9][0-9]*$

OutputGpios

A comma-separated list of GPIO pin numbers to configure as outputs. Optionally append H to
set a high state (1), or L to set a low state (0). Example: "8H,9,27L".

Display name in the AWS IoT console: Output GPIO pins

Required: false. You must specify input pins, output pins, or both.

Type: string

Valid pattern: ^$|^[0-9]+[HL]?(,[0-9]+[HL]?)*$

GpioMem-ResourceId

The ID of the local device resource that represents /dev/gpiomem.

Note

This connector is granted read-write access to the resource.

Display name in the AWS IoT console: Resource for /dev/gpiomem device

Required: true

Type: string

Valid pattern: .+

Create Connector Example (AWS CLI)

The following CLI command creates a ConnectorDefinition with an initial version that contains
the Raspberry Pi GPIO connector.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '{

Raspberry Pi GPIO 805

AWS IoT Greengrass Developer Guide, Version 1

 "Connectors": [
 {
 "Id": "MyRaspberryPiGPIOConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/RaspberryPiGPIO/
versions/3",
 "Parameters": {
 "GpioMem-ResourceId": "my-gpio-resource",
 "InputGpios": "5,6U,7D",
 "InputPollPeriod": 50,
 "OutputGpios": "8H,9,27L"
 }
 }
]
}'

Note

The Lambda function in this connector has a long-lived lifecycle.

In the AWS IoT Greengrass console, you can add a connector from the group's Connectors page.
For more information, see the section called “Get started with connectors (console)”.

Input data

This connector accepts read or write requests for GPIO pins on two MQTT topics.

• Read requests on the gpio/+/+/read topic.

• Write requests on the gpio/+/+/write topic.

To publish to these topics, replace the + wildcards with the core thing name and the target pin
number, respectively. For example:

gpio/core-thing-name/gpio-number/read

Note

Currently, when you create a subscription that uses the Raspberry Pi GPIO connector, you
must specify a value for at least one of the + wildcards in the topic.

Raspberry Pi GPIO 806

AWS IoT Greengrass Developer Guide, Version 1

Topic filter: gpio/+/+/read

Use this topic to direct the connector to read the state of the GPIO pin that's specified in the
topic.

The connector publishes the response to the corresponding output topic (for example,
gpio/core-thing-name/gpio-number/state).

Message properties

None. Messages that are sent to this topic are ignored.

Topic filter: gpio/+/+/write

Use this topic to send write requests to a GPIO pin. This directs the connector to set the GPIO
pin that's specified in the topic to a low or high voltage.

• 0 sets the pin to low voltage.

• 1 sets the pin to high voltage.

The connector publishes the response to the corresponding output /state topic (for example,
gpio/core-thing-name/gpio-number/state).

Message properties

The value 0 or 1, as an integer or string.

Example input

0

Output data

This connector publishes data to two topics:

• High or low state changes on the gpio/+/+/state topic.

• Errors on the gpio/+/error topic.

Topic filter: gpio/+/+/state

Use this topic to listen for state changes on input pins and responses for read requests. The
connector returns the string "0" if the pin is in a low state, or "1" if it's in a high state.

Raspberry Pi GPIO 807

AWS IoT Greengrass Developer Guide, Version 1

When publishing to this topic, the connector replaces the + wildcards with the core thing name
and the target pin, respectively. For example:

gpio/core-thing-name/gpio-number/state

Note

Currently, when you create a subscription that uses the Raspberry Pi GPIO connector,
you must specify a value for at least one of the + wildcards in the topic.

Example output

0

Topic filter: gpio/+/error

Use this topic to listen for errors. The connector publishes to this topic as a result of an invalid
request (for example, when a state change is requested on an input pin).

When publishing to this topic, the connector replaces the + wildcard with the core thing name.

Example output

{
 "topic": "gpio/my-core-thing/22/write",
 "error": "Invalid GPIO operation",
 "long_description": "GPIO 22 is configured as an INPUT GPIO. Write operations
 are not permitted."
 }

Usage Example

Use the following high-level steps to set up an example Python 3.7 Lambda function that you can
use to try out the connector.

Note

• If you use other Python runtimes, you can create a symlink from Python3.x to Python
3.7.

Raspberry Pi GPIO 808

AWS IoT Greengrass Developer Guide, Version 1

• The Get started with connectors (console) and Get started with connectors (CLI) topics
contain detailed steps that show you how to configure and deploy an example Twilio
Notifications connector.

1. Make sure you meet the requirements for the connector.

2. Create and publish a Lambda function that sends input data to the connector.

Save the example code as a PY file. Download and unzip the AWS IoT Greengrass Core SDK for
Python. Then, create a zip package that contains the PY file and the greengrasssdk folder at
the root level. This zip package is the deployment package that you upload to AWS Lambda.

After you create the Python 3.7 Lambda function, publish a function version and create an
alias.

3. Configure your Greengrass group.

a. Add the Lambda function by its alias (recommended). Configure the Lambda lifecycle as
long-lived (or "Pinned": true in the CLI).

b. Add the required local device resource and grant read/write access to the Lambda
function.

c. Add the connector and configure its parameters.

d. Add subscriptions that allow the connector to receive input data and send output data on
supported topic filters.

• Set the Lambda function as the source, the connector as the target, and use a supported
input topic filter.

• Set the connector as the source, AWS IoT Core as the target, and use a supported output
topic filter. You use this subscription to view status messages in the AWS IoT console.

4. Deploy the group.

5. In the AWS IoT console, on the Test page, subscribe to the output data topic to view status
messages from the connector. The example Lambda function is long-lived and starts sending
messages immediately after the group is deployed.

When you're finished testing, you can set the Lambda lifecycle to on-demand (or "Pinned":
false in the CLI) and deploy the group. This stops the function from sending messages.

Raspberry Pi GPIO 809

AWS IoT Greengrass Developer Guide, Version 1

Example

The following example Lambda function sends an input message to the connector. This example
sends read requests for a set of input GPIO pins. It shows how to construct topics using the core
thing name and pin number.

import greengrasssdk
import json
import os

iot_client = greengrasssdk.client('iot-data')
INPUT_GPIOS = [6, 17, 22]

thingName = os.environ['AWS_IOT_THING_NAME']

def get_read_topic(gpio_num):
 return '/'.join(['gpio', thingName, str(gpio_num), 'read'])

def get_write_topic(gpio_num):
 return '/'.join(['gpio', thingName, str(gpio_num), 'write'])

def send_message_to_connector(topic, message=''):
 iot_client.publish(topic=topic, payload=str(message))

def set_gpio_state(gpio, state):
 send_message_to_connector(get_write_topic(gpio), str(state))

def read_gpio_state(gpio):
 send_message_to_connector(get_read_topic(gpio))

def publish_basic_message():
 for i in INPUT_GPIOS:
 read_gpio_state(i)

publish_basic_message()

def lambda_handler(event, context):
 return

Licenses

The Raspberry Pi GPIO; connector includes the following third-party software/licensing:

Raspberry Pi GPIO 810

AWS IoT Greengrass Developer Guide, Version 1

• RPi.GPIO/MIT

This connector is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the connector.

Version Changes

3 Upgraded the Lambda runtime to Python 3.7,
which changes the runtime requirement.

2 Updated connector ARN for AWS Region
support.

1 Initial release.

A Greengrass group can contain only one version of the connector at a time. For information about
upgrading a connector version, see the section called “Upgrading connector versions”.

See also

• Integrate with services and protocols using connectors

• the section called “Get started with connectors (console)”

• the section called “Get started with connectors (CLI)”

• GPIO in the Raspberry Pi documentation

Serial Stream connector

Warning

This connector has moved into the extended life phase, and AWS IoT Greengrass won't
release updates that provide features, enhancements to existing features, security patches,
or bug fixes. For more information, see AWS IoT Greengrass Version 1 maintenance policy.

Serial Stream 811

https://pypi.org/project/RPi.GPIO/
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf
https://www.raspberrypi.org/documentation/usage/gpio/

AWS IoT Greengrass Developer Guide, Version 1

The Serial Stream connector reads and writes to a serial port on an AWS IoT Greengrass core
device.

This connector supports two modes of operation:

• Read-On-Demand. Receives read and write requests on MQTT topics and publishes the response
of the read operation or the status of the write operation.

• Polling-Read. Reads from the serial port at regular intervals. This mode also supports Read-On-
Demand requests.

Note

Read requests are limited to a maximum read length of 63994 bytes. Write requests are
limited to a maximum data length of 128000 bytes.

This connector has the following versions.

Version ARN

3 arn:aws:greengrass: region::/
connectors/SerialStream/
versions/3

2 arn:aws:greengrass: region::/
connectors/SerialStream/
versions/2

1 arn:aws:greengrass: region::/
connectors/SerialStream/
versions/1

For information about version changes, see the Changelog.

Requirements

This connector has the following requirements:

Serial Stream 812

AWS IoT Greengrass Developer Guide, Version 1

Version 3

• AWS IoT Greengrass Core software v1.9.3 or later.

• Python version 3.7 or 3.8 installed on the core device and added to the PATH environment
variable.

Note

To use Python 3.8, run the following command to create a symbolic link from the the
default Python 3.7 installation folder to the installed Python 3.8 binaries.

sudo ln -s path-to-python-3.8/python3.8 /usr/bin/python3.7

This configures your device to meet the Python requirement for AWS IoT Greengrass.

• A local device resource in the Greengrass group that points to the target serial port.

Note

Before you deploy this connector, we recommend that you set up the serial port and
verify that you can read and write to it.

Versions 1 - 2

• AWS IoT Greengrass Core software v1.7 or later.

• Python version 2.7 installed on the core device and added to the PATH environment variable.

• A local device resource in the Greengrass group that points to the target serial port.

Note

Before you deploy this connector, we recommend that you set up the serial port and
verify that you can read and write to it.

Connector Parameters

This connector provides the following parameters:

Serial Stream 813

https://www.python.org/
https://www.python.org/

AWS IoT Greengrass Developer Guide, Version 1

BaudRate

The baud rate of the serial connection.

Display name in the AWS IoT console: Baud rate

Required: true

Type: string

Valid values: 110, 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800,
38400, 56000, 57600, 115200, 230400

Valid pattern: ^110$|^300$|^600$|^1200$|^2400$|^4800$|^9600$|^14400$|
^19200$|^28800$|^38400$|^56000$|^57600$|^115200$|^230400$

Timeout

The timeout (in seconds) for a read operation.

Display name in the AWS IoT console: Timeout

Required: true

Type: string

Valid values: 1 - 59

Valid pattern: ^([1-9]|[1-5][0-9])$

SerialPort

The absolute path to the physical serial port on the device. This is the source path that's
specified for the local device resource.

Display name in the AWS IoT console: Serial port

Required: true

Type: string

Valid pattern: [/a-zA-Z0-9_-]+

SerialPort-ResourceId

The ID of the local device resource that represents the physical serial port.

Serial Stream 814

AWS IoT Greengrass Developer Guide, Version 1

Note

This connector is granted read-write access to the resource.

Display name in the AWS IoT console: Serial port resource

Required: true

Type: string

Valid pattern: [a-zA-Z0-9_-]+

PollingRead

Sets the read mode: Polling-Read or Read-On-Demand.

• For Polling-Read mode, specify true. In this mode, the PollingInterval,
PollingReadType, and PollingReadLength properties are required.

• For Read-On-Demand mode, specify false. In this mode, the type and length values are
specified in the read request.

Display name in the AWS IoT console: Read mode

Required: true

Type: string

Valid values: true, false

Valid pattern: ^([Tt][Rr][Uu][Ee]|[Ff][Aa][Ll][Ss][Ee])$

PollingReadLength

The length of data (in bytes) to read in each polling read operation. This applies only when
using Polling-Read mode.

Display name in the AWS IoT console: Polling read length

Required: false. This property is required when PollingRead is true.

Type: string

Serial Stream 815

AWS IoT Greengrass Developer Guide, Version 1

Valid pattern: ^(|[1-9][0-9]{0,3}|[1-5][0-9]{4}|6[0-2][0-9]{3}|63[0-8][0-9]
{2}|639[0-8][0-9]|6399[0-4])$

PollingReadInterval

The interval (in seconds) at which the polling read takes place. This applies only when using
Polling-Read mode.

Display name in the AWS IoT console: Polling read interval

Required: false. This property is required when PollingRead is true.

Type: string

Valid values: 1 - 999

Valid pattern: ^(|[1-9]|[1-9][0-9]|[1-9][0-9][0-9])$

PollingReadType

The type of data that the polling thread reads. This applies only when using Polling-Read mode.

Display name in the AWS IoT console: Polling read type

Required: false. This property is required when PollingRead is true.

Type: string

Valid values: ascii, hex

Valid pattern: ^(|[Aa][Ss][Cc][Ii][Ii]|[Hh][Ee][Xx])$

RtsCts

Indicates whether to enable the RTS/CTS flow control. The default value is false. For more
information, see RTS, CTS, and RTR.

Display name in the AWS IoT console: RTS/CTS flow control

Required: false

Type: string

Valid values: true, false

Serial Stream 816

https://en.wikipedia.org/wiki/RS-232#RTS,_CTS,_and_RTR

AWS IoT Greengrass Developer Guide, Version 1

Valid pattern: ^(|[Tt][Rr][Uu][Ee]|[Ff][Aa][Ll][Ss][Ee])$

XonXoff

Indicates whether to enable the software flow control. The default value is false. For more
information, see Software flow control.

Display name in the AWS IoT console: Software flow control

Required: false

Type: string

Valid values: true, false

Valid pattern: ^(|[Tt][Rr][Uu][Ee]|[Ff][Aa][Ll][Ss][Ee])$

Parity

The parity of the serial port. The default value is N. For more information, see Parity.

Display name in the AWS IoT console: Serial port parity

Required: false

Type: string

Valid values: N, E, O, S, M

Valid pattern: ^(|[NEOSMneosm])$

Create Connector Example (AWS CLI)

The following CLI command creates a ConnectorDefinition with an initial version that contains
the Serial Stream connector. It configures the connector for Polling-Read mode.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '{
 "Connectors": [
 {
 "Id": "MySerialStreamConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/SerialStream/
versions/3",

Serial Stream 817

https://en.wikipedia.org/wiki/Software_flow_control
https://en.wikipedia.org/wiki/Serial_port#Parity

AWS IoT Greengrass Developer Guide, Version 1

 "Parameters": {
 "BaudRate" : "9600",
 "Timeout" : "25",
 "SerialPort" : "/dev/serial1",
 "SerialPort-ResourceId" : "my-serial-port-resource",
 "PollingRead" : "true",
 "PollingReadLength" : "30",
 "PollingReadInterval" : "30",
 "PollingReadType" : "hex"
 }
 }
]
}'

In the AWS IoT Greengrass console, you can add a connector from the group's Connectors page.
For more information, see the section called “Get started with connectors (console)”.

Input data

This connector accepts read or write requests for serial ports on two MQTT topics. Input messages
must be in JSON format.

• Read requests on the serial/+/read/# topic.

• Write requests on the serial/+/write/# topic.

To publish to these topics, replace the + wildcard with the core thing name and # wildcard with the
path to the serial port. For example:

serial/core-thing-name/read/dev/serial-port

Topic filter: serial/+/read/#

Use this topic to send on-demand read requests to a serial pin. Read requests are limited to a
maximum read length of 63994 bytes.

Message properties

readLength

The length of data to read from the serial port.

Required: true

Serial Stream 818

AWS IoT Greengrass Developer Guide, Version 1

Type: string

Valid pattern: ^[1-9][0-9]*$

type

The type of data to read.

Required: true

Type: string

Valid values: ascii, hex

Valid pattern: (?i)^(ascii|hex)$

id

An arbitrary ID for the request. This property is used to map an input request to an
output response.

Required: false

Type: string

Valid pattern: .+

Example input

{
 "readLength": "30",
 "type": "ascii",
 "id": "abc123"
}

Topic filter: serial/+/write/#

Use this topic to send write requests to a serial pin. Write requests are limited to a maximum
data length of 128000 bytes.

Message properties

data

The string to write to the serial port.

Serial Stream 819

AWS IoT Greengrass Developer Guide, Version 1

Required: true

Type: string

Valid pattern: ^[1-9][0-9]*$

type

The type of data to read.

Required: true

Type: string

Valid values: ascii, hex

Valid pattern: ^(ascii|hex|ASCII|HEX)$

id

An arbitrary ID for the request. This property is used to map an input request to an
output response.

Required: false

Type: string

Valid pattern: .+

Example input: ASCII request

{
 "data": "random serial data",
 "type": "ascii",
 "id": "abc123"
}

Example input: hex request

{
 "data": "base64 encoded data",
 "type": "hex",
 "id": "abc123"

Serial Stream 820

AWS IoT Greengrass Developer Guide, Version 1

}

Output data

The connector publishes output data on two topics:

• Status information from the connector on the serial/+/status/# topic.

• Responses from read requests on the serial/+/read_response/# topic.

When publishing to this topic, the connector replaces the + wildcard with the core thing name and
wildcard with the path to the serial port. For example:

serial/core-thing-name/status/dev/serial-port

Topic filter: serial/+/status/#

Use this topic to listen for the status of read and write requests. If an id property is included it
the request, it's returned in the response.

Example output: Success

{
 "response": {
 "status": "success"
 },
 "id": "abc123"
}

Example output: Failure

A failure response includes an error_message property that describes the error or timeout
encountered while performing the read or write operation.

{
 "response": {
 "status": "fail",
 "error_message": "Could not write to port"
 },
 "id": "abc123"
}

Serial Stream 821

AWS IoT Greengrass Developer Guide, Version 1

Topic filter: serial/+/read_response/#

Use this topic to receive response data from a read operation. The response data is Base64
encoded if the type is hex.

Example output

{
 "data": "output of serial read operation"
 "id": "abc123"
}

Usage Example

Use the following high-level steps to set up an example Python 3.7 Lambda function that you can
use to try out the connector.

Note

• If you use other Python runtimes, you can create a symlink from Python3.x to Python
3.7.

• The Get started with connectors (console) and Get started with connectors (CLI) topics
contain detailed steps that show you how to configure and deploy an example Twilio
Notifications connector.

1. Make sure you meet the requirements for the connector.

2. Create and publish a Lambda function that sends input data to the connector.

Save the example code as a PY file. Download and unzip the AWS IoT Greengrass Core SDK for
Python. Then, create a zip package that contains the PY file and the greengrasssdk folder at
the root level. This zip package is the deployment package that you upload to AWS Lambda.

After you create the Python 3.7 Lambda function, publish a function version and create an
alias.

3. Configure your Greengrass group.

a. Add the Lambda function by its alias (recommended). Configure the Lambda lifecycle as
long-lived (or "Pinned": true in the CLI).

Serial Stream 822

AWS IoT Greengrass Developer Guide, Version 1

b. Add the required local device resource and grant read/write access to the Lambda
function.

c. Add the connector to your group and configure its parameters.

d. Add subscriptions to the group that allow the connector to receive input data and send
output data on supported topic filters.

• Set the Lambda function as the source, the connector as the target, and use a supported
input topic filter.

• Set the connector as the source, AWS IoT Core as the target, and use a supported output
topic filter. You use this subscription to view status messages in the AWS IoT console.

4. Deploy the group.

5. In the AWS IoT console, on the Test page, subscribe to the output data topic to view status
messages from the connector. The example Lambda function is long-lived and starts sending
messages immediately after the group is deployed.

When you're finished testing, you can set the Lambda lifecycle to on-demand (or "Pinned":
false in the CLI) and deploy the group. This stops the function from sending messages.

Example

The following example Lambda function sends an input message to the connector.

import greengrasssdk
import json

TOPIC_REQUEST = 'serial/CORE_THING_NAME/write/dev/serial1'

Creating a greengrass core sdk client
iot_client = greengrasssdk.client('iot-data')

def create_serial_stream_request():
 request = {
 "data": "TEST",
 "type": "ascii",
 "id": "abc123"
 }
 return request

def publish_basic_request():

Serial Stream 823

AWS IoT Greengrass Developer Guide, Version 1

 iot_client.publish(payload=json.dumps(create_serial_stream_request()),
 topic=TOPIC_REQUEST)

publish_basic_request()

def lambda_handler(event, context):
 return

Licenses

The Serial Stream connector includes the following third-party software/licensing:

• pyserial/BSD

This connector is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the connector.

Version Changes

3 Upgraded the Lambda runtime to Python 3.7,
which changes the runtime requirement.

2 Updated connector ARN for AWS Region
support.

1 Initial release.

A Greengrass group can contain only one version of the connector at a time. For information about
upgrading a connector version, see the section called “Upgrading connector versions”.

See also

• Integrate with services and protocols using connectors

• the section called “Get started with connectors (console)”

• the section called “Get started with connectors (CLI)”

Serial Stream 824

https://github.com/pyserial/pyserial
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 1

ServiceNow MetricBase Integration connector

Warning

This connector has moved into the extended life phase, and AWS IoT Greengrass won't
release updates that provide features, enhancements to existing features, security patches,
or bug fixes. For more information, see AWS IoT Greengrass Version 1 maintenance policy.

The ServiceNow MetricBase Integration connector publishes time series metrics from Greengrass
devices to ServiceNow MetricBase. This allows you to store, analyze, and visualize time series data
from the Greengrass core environment, and act on local events.

This connector receives time series data on an MQTT topic, and publishes the data to the
ServiceNow API at regular intervals.

You can use this connector to support scenarios such as:

• Create threshold-based alerts and alarms based on time series data collected from Greengrass
devices.

• Use time services data from Greengrass devices with custom applications built on the
ServiceNow platform.

This connector has the following versions.

Version ARN

4 arn:aws:greengrass: region::/
connectors/ServiceNowMet
ricBaseIntegration/versions/4

3 arn:aws:greengrass: region::/
connectors/ServiceNowMet
ricBaseIntegration/versions/3

2 arn:aws:greengrass: region::/
connectors/ServiceNowMet
ricBaseIntegration/versions/2

ServiceNow MetricBase Integration 825

AWS IoT Greengrass Developer Guide, Version 1

Version ARN

1 arn:aws:greengrass: region::/
connectors/ServiceNowMet
ricBaseIntegration/versions/1

For information about version changes, see the Changelog.

Requirements

This connector has the following requirements:

Version 3 - 4

• AWS IoT Greengrass Core software v1.9.3 or later. AWS IoT Greengrass must be configured to
support local secrets, as described in Secrets Requirements.

Note

This requirement includes allowing access to your Secrets Manager secrets. If you're
using the default Greengrass service role, Greengrass has permission to get the values
of secrets with names that start with greengrass-.

• Python version 3.7 or 3.8 installed on the core device and added to the PATH environment
variable.

Note

To use Python 3.8, run the following command to create a symbolic link from the the
default Python 3.7 installation folder to the installed Python 3.8 binaries.

sudo ln -s path-to-python-3.8/python3.8 /usr/bin/python3.7

This configures your device to meet the Python requirement for AWS IoT Greengrass.

• A ServiceNow account with an activated subscription to MetricBase. In addition, a metric and
metric table must be created in the account. For more information, see MetricBase in the
ServiceNow documentation.

ServiceNow MetricBase Integration 826

https://www.python.org/
https://docs.servicenow.com/bundle/london-servicenow-platform/page/administer/metricbase/concept/metricbase.html

AWS IoT Greengrass Developer Guide, Version 1

• A text type secret in AWS Secrets Manager that stores the user name and password to log in
to your ServiceNow instance with basic authentication. The secret must contain "user" and
"password" keys with corresponding values. For more information, see Creating a basic secret
in the AWS Secrets Manager User Guide.

• A secret resource in the Greengrass group that references the Secrets Manager secret. For
more information, see Deploy secrets to the core.

Versions 1 - 2

• AWS IoT Greengrass Core software v1.7 or later. AWS IoT Greengrass must be configured to
support local secrets, as described in Secrets Requirements.

Note

This requirement includes allowing access to your Secrets Manager secrets. If you're
using the default Greengrass service role, Greengrass has permission to get the values
of secrets with names that start with greengrass-.

• Python version 2.7 installed on the core device and added to the PATH environment variable.

• A ServiceNow account with an activated subscription to MetricBase. In addition, a metric and
metric table must be created in the account. For more information, see MetricBase in the
ServiceNow documentation.

• A text type secret in AWS Secrets Manager that stores the user name and password to log in
to your ServiceNow instance with basic authentication. The secret must contain "user" and
"password" keys with corresponding values. For more information, see Creating a basic secret
in the AWS Secrets Manager User Guide.

• A secret resource in the Greengrass group that references the Secrets Manager secret. For
more information, see Deploy secrets to the core.

Connector Parameters

This connector provides the following parameters:

ServiceNow MetricBase Integration 827

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html
https://www.python.org/
https://docs.servicenow.com/bundle/london-servicenow-platform/page/administer/metricbase/concept/metricbase.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html

AWS IoT Greengrass Developer Guide, Version 1

Version 4

PublishInterval

The maximum number of seconds to wait between publish events to ServiceNow. The
maximum value is 900.

The connector publishes to ServiceNow when PublishBatchSize is reached or
PublishInterval expires.

Display name in the AWS IoT console: Publish interval in seconds

Required: true

Type: string

Valid values: 1 - 900

Valid pattern: [1-9]|[1-9]\d|[1-9]\d\d|900

PublishBatchSize

The maximum number of metric values that can be batched before they are published to
ServiceNow.

The connector publishes to ServiceNow when PublishBatchSize is reached or
PublishInterval expires.

Display name in the AWS IoT console: Publish batch size

Required: true

Type: string

Valid pattern: ^[0-9]+$

InstanceName

The name of the instance used to connect to ServiceNow.

Display name in the AWS IoT console: Name of ServiceNow instance

Required: true

ServiceNow MetricBase Integration 828

AWS IoT Greengrass Developer Guide, Version 1

Type: string

Valid pattern: .+

DefaultTableName

The name of the table that contains the GlideRecord associated with the time series
MetricBase database. The table property in the input message payload can be used to
override this value.

Display name in the AWS IoT console: Name of the table to contain the metric

Required: true

Type: string

Valid pattern: .+

MaxMetricsToRetain

The maximum number of metrics to save in memory before they are replaced with new
metrics.

This limit applies when there's no connection to the internet and the connector starts to
buffer the metrics to publish later. When the buffer is full, the oldest metrics are replaced by
new metrics.

Note

Metrics are not saved if the host process for the connector is interrupted. For
example, this can happen during group deployment or when the device restarts.

This value should be greater than the batch size and large enough to hold messages based
on the incoming rate of the MQTT messages.

Display name in the AWS IoT console: Maximum metrics to retain in memory

Required: true

Type: string

Valid pattern: ^[0-9]+$

ServiceNow MetricBase Integration 829

AWS IoT Greengrass Developer Guide, Version 1

AuthSecretArn

The secret in AWS Secrets Manager that stores the ServiceNow user name and password.
This must be a text type secret. The secret must contain "user" and "password" keys with
corresponding values.

Display name in the AWS IoT console: ARN of auth secret

Required: true

Type: string

Valid pattern: arn:aws:secretsmanager:[a-z0-9\-]+:[0-9]{12}:secret:([a-zA-
Z0-9\\]+/)*[a-zA-Z0-9/_+=,.@\-]+-[a-zA-Z0-9]+

AuthSecretArn-ResourceId

The secret resource in the group that references the Secrets Manager secret for the
ServiceNow credentials.

Display name in the AWS IoT console: Auth token resource

Required: true

Type: string

Valid pattern: .+

IsolationMode

The containerization mode for this connector. The default is GreengrassContainer,
which means that the connector runs in an isolated runtime environment inside the AWS IoT
Greengrass container.

Note

The default containerization setting for the group does not apply to connectors.

Display name in the AWS IoT console: Container isolation mode

Required: false

Type: string

ServiceNow MetricBase Integration 830

AWS IoT Greengrass Developer Guide, Version 1

Valid values: GreengrassContainer or NoContainer

Valid pattern: ^NoContainer$|^GreengrassContainer$

Version 1 - 3

PublishInterval

The maximum number of seconds to wait between publish events to ServiceNow. The
maximum value is 900.

The connector publishes to ServiceNow when PublishBatchSize is reached or
PublishInterval expires.

Display name in the AWS IoT console: Publish interval in seconds

Required: true

Type: string

Valid values: 1 - 900

Valid pattern: [1-9]|[1-9]\d|[1-9]\d\d|900

PublishBatchSize

The maximum number of metric values that can be batched before they are published to
ServiceNow.

The connector publishes to ServiceNow when PublishBatchSize is reached or
PublishInterval expires.

Display name in the AWS IoT console: Publish batch size

Required: true

Type: string

Valid pattern: ^[0-9]+$

InstanceName

The name of the instance used to connect to ServiceNow.

Display name in the AWS IoT console: Name of ServiceNow instance

ServiceNow MetricBase Integration 831

AWS IoT Greengrass Developer Guide, Version 1

Required: true

Type: string

Valid pattern: .+

DefaultTableName

The name of the table that contains the GlideRecord associated with the time series
MetricBase database. The table property in the input message payload can be used to
override this value.

Display name in the AWS IoT console: Name of the table to contain the metric

Required: true

Type: string

Valid pattern: .+

MaxMetricsToRetain

The maximum number of metrics to save in memory before they are replaced with new
metrics.

This limit applies when there's no connection to the internet and the connector starts to
buffer the metrics to publish later. When the buffer is full, the oldest metrics are replaced by
new metrics.

Note

Metrics are not saved if the host process for the connector is interrupted. For
example, this can happen during group deployment or when the device restarts.

This value should be greater than the batch size and large enough to hold messages based
on the incoming rate of the MQTT messages.

Display name in the AWS IoT console: Maximum metrics to retain in memory

Required: true

Type: string

Valid pattern: ^[0-9]+$

ServiceNow MetricBase Integration 832

AWS IoT Greengrass Developer Guide, Version 1

AuthSecretArn

The secret in AWS Secrets Manager that stores the ServiceNow user name and password.
This must be a text type secret. The secret must contain "user" and "password" keys with
corresponding values.

Display name in the AWS IoT console: ARN of auth secret

Required: true

Type: string

Valid pattern: arn:aws:secretsmanager:[a-z0-9\-]+:[0-9]{12}:secret:([a-zA-
Z0-9\\]+/)*[a-zA-Z0-9/_+=,.@\-]+-[a-zA-Z0-9]+

AuthSecretArn-ResourceId

The secret resource in the group that references the Secrets Manager secret for the
ServiceNow credentials.

Display name in the AWS IoT console: Auth token resource

Required: true

Type: string

Valid pattern: .+

Create Connector Example (AWS CLI)

The following CLI command creates a ConnectorDefinition with an initial version that contains
the ServiceNow MetricBase Integration connector.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '{
 "Connectors": [
 {
 "Id": "MyServiceNowMetricBaseIntegrationConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/
ServiceNowMetricBaseIntegration/versions/4",
 "Parameters": {
 "PublishInterval" : "10",
 "PublishBatchSize" : "50",
 "InstanceName" : "myinstance",

ServiceNow MetricBase Integration 833

AWS IoT Greengrass Developer Guide, Version 1

 "DefaultTableName" : "u_greengrass_app",
 "MaxMetricsToRetain" : "20000",
 "AuthSecretArn" : "arn:aws:secretsmanager:region:account-
id:secret:greengrass-secret-hash",
 "AuthSecretArn-ResourceId" : "MySecretResource",
 "IsolationMode" : "GreengrassContainer"
 }
 }
]
}'

Note

The Lambda function in this connector has a long-lived lifecycle.

In the AWS IoT Greengrass console, you can add a connector from the group's Connectors page.
For more information, see the section called “Get started with connectors (console)”.

Input data

This connector accepts time series metrics on an MQTT topic and publishes the metrics to
ServiceNow. Input messages must be in JSON format.

Topic filter in subscription

servicenow/metricbase/metric

Message properties

request

Information about the table, record, and metric. This request represents the seriesRef
object in a time series POST request. For more information, see Clotho Time Series API -
POST.

Required: true

Type: object that includes the following properties:

subject

The sys_id of the specific record in the table.

ServiceNow MetricBase Integration 834

https://docs.servicenow.com/bundle/london-application-development/page/integrate/inbound-rest/concept/Clotho-Time-Series-API.html#clotho-POST-put
https://docs.servicenow.com/bundle/london-application-development/page/integrate/inbound-rest/concept/Clotho-Time-Series-API.html#clotho-POST-put

AWS IoT Greengrass Developer Guide, Version 1

Required: true

Type: string

metric_name

The metric field name.

Required: true

Type: string

table

The name of the table to store the record in. Specify this value to override the
DefaultTableName parameter.

Required: false

Type: string

value

The value of the individual data point.

Required: true

Type: float

timestamp

The timestamp of the individual data point. The default value is the current time.

Required: false

Type: string

Example input

{
 "request": {
 "subject":"ef43c6d40a0a0b5700c77f9bf387afe3",
 "metric_name":"u_count",
 "table": "u_greengrass_app"
 "value": 1.0,
 "timestamp": "2018-10-14T10:30:00"

ServiceNow MetricBase Integration 835

AWS IoT Greengrass Developer Guide, Version 1

 }
}

Output data

This connector publishes status information as output data on an MQTT topic.

Topic filter in subscription

servicenow/metricbase/metric/status

Example output: Success

{
 "response": {
 "metric_name": "Errors",
 "table_name": "GliderProd",
 "processed_on": "2018-10-14T10:35:00",
 "response_id": "khjKSkj132qwr23fcba",
 "status": "success",
 "values": [
 {
 "timestamp": "2016-10-14T10:30:00",
 "value": 1.0
 },
 {
 "timestamp": "2016-10-14T10:31:00",
 "value": 1.1
 }
]
 }
}

Example output: Failure

{
 "response": {
 "error": "InvalidInputException",
 "error_message": "metric value is invalid",
 "status": "fail"
 }
}

ServiceNow MetricBase Integration 836

AWS IoT Greengrass Developer Guide, Version 1

Note

If the connector detects a retryable error (for example, connection errors), it retries the
publish in the next batch.

Usage Example

Use the following high-level steps to set up an example Python 3.7 Lambda function that you can
use to try out the connector.

Note

• If you use other Python runtimes, you can create a symlink from Python3.x to Python
3.7.

• The Get started with connectors (console) and Get started with connectors (CLI) topics
contain detailed steps that show you how to configure and deploy an example Twilio
Notifications connector.

1. Make sure you meet the requirements for the connector.

2. Create and publish a Lambda function that sends input data to the connector.

Save the example code as a PY file. Download and unzip the AWS IoT Greengrass Core SDK for
Python. Then, create a zip package that contains the PY file and the greengrasssdk folder at
the root level. This zip package is the deployment package that you upload to AWS Lambda.

After you create the Python 3.7 Lambda function, publish a function version and create an
alias.

3. Configure your Greengrass group.

a. Add the Lambda function by its alias (recommended). Configure the Lambda lifecycle as
long-lived (or "Pinned": true in the CLI).

b. Add the required secret resource and grant read access to the Lambda function.

c. Add the connector and configure its parameters.

d. Add subscriptions that allow the connector to receive input data and send output data on
supported topic filters.

ServiceNow MetricBase Integration 837

AWS IoT Greengrass Developer Guide, Version 1

• Set the Lambda function as the source, the connector as the target, and use a supported
input topic filter.

• Set the connector as the source, AWS IoT Core as the target, and use a supported output
topic filter. You use this subscription to view status messages in the AWS IoT console.

4. Deploy the group.

5. In the AWS IoT console, on the Test page, subscribe to the output data topic to view status
messages from the connector. The example Lambda function is long-lived and starts sending
messages immediately after the group is deployed.

When you're finished testing, you can set the Lambda lifecycle to on-demand (or "Pinned":
false in the CLI) and deploy the group. This stops the function from sending messages.

Example

The following example Lambda function sends an input message to the connector.

import greengrasssdk
import json

iot_client = greengrasssdk.client('iot-data')
SEND_TOPIC = 'servicenow/metricbase/metric'

def create_request_with_all_fields():
 return {
 "request": {
 "subject": '2efdf6badbd523803acfae441b961961',
 "metric_name": 'u_count',
 "value": 1234,
 "timestamp": '2018-10-20T20:22:20',
 "table": 'u_greengrass_metricbase_test'
 }
 }

def publish_basic_message():
 messageToPublish = create_request_with_all_fields()
 print("Message To Publish: ", messageToPublish)
 iot_client.publish(topic=SEND_TOPIC,
 payload=json.dumps(messageToPublish))

publish_basic_message()

ServiceNow MetricBase Integration 838

AWS IoT Greengrass Developer Guide, Version 1

def lambda_handler(event, context):
 return

Licenses

The ServiceNow MetricBase Integration connector includes the following third-party software/
licensing:

• pysnow/MIT

This connector is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the connector.

Version Changes

4 Added the IsolationMode parameter to
configure the containerization mode for the
connector.

3 Upgraded the Lambda runtime to Python 3.7,
which changes the runtime requirement.

2 Fix to reduce excessive logging.

1 Initial release.

A Greengrass group can contain only one version of the connector at a time. For information about
upgrading a connector version, see the section called “Upgrading connector versions”.

See also

• Integrate with services and protocols using connectors

• the section called “Get started with connectors (console)”

• the section called “Get started with connectors (CLI)”

ServiceNow MetricBase Integration 839

https://github.com/rbw/pysnow
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 1

SNS connector

The SNS connector publishes messages to an Amazon SNS topic. This enables web servers, email
addresses, and other message subscribers to respond to events in the Greengrass group.

This connector receives SNS message information on an MQTT topic, and then sends the message
to a specified SNS topic. You can optionally use custom Lambda functions to implement filtering or
formatting logic on messages before they are published to this connector.

This connector has the following versions.

Version ARN

4 arn:aws:greengrass: region::/
connectors/SNS/versions/4

3 arn:aws:greengrass: region::/
connectors/SNS/versions/3

2 arn:aws:greengrass: region::/
connectors/SNS/versions/2

1 arn:aws:greengrass: region::/
connectors/SNS/versions/1

For information about version changes, see the Changelog.

Requirements

This connector has the following requirements:

Version 3 - 4

• AWS IoT Greengrass Core software v1.9.3 or later.

• Python version 3.7 or 3.8 installed on the core device and added to the PATH environment
variable.

SNS 840

https://www.python.org/

AWS IoT Greengrass Developer Guide, Version 1

Note

To use Python 3.8, run the following command to create a symbolic link from the the
default Python 3.7 installation folder to the installed Python 3.8 binaries.

sudo ln -s path-to-python-3.8/python3.8 /usr/bin/python3.7

This configures your device to meet the Python requirement for AWS IoT Greengrass.

• A configured SNS topic. For more information, see Creating an Amazon SNS topic in the
Amazon Simple Notification Service Developer Guide.

• The Greengrass group role configured to allow the sns:Publish action on the target
Amazon SNStopic, as shown in the following example IAM policy.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"Stmt1528133056761",
 "Action":[
 "sns:Publish"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws:sns:region:account-id:topic-name"
]
 }
]
 }

This connector allows you to dynamically override the default topic in the input message
payload. If your implementation uses this feature, the IAM policy must allow sns:Publish
permission on all target topics. You can grant granular or conditional access to resources (for
example, by using a wildcard * naming scheme).

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

SNS 841

https://docs.aws.amazon.com/sns/latest/dg/sns-tutorial-create-topic.html

AWS IoT Greengrass Developer Guide, Version 1

Versions 1 - 2

• AWS IoT Greengrass Core software v1.7 or later.

• Python version 2.7 installed on the core device and added to the PATH environment variable.

• A configured SNS topic. For more information, see Creating an Amazon SNS topic in the
Amazon Simple Notification Service Developer Guide.

• The Greengrass group role configured to allow the sns:Publish action on the target
Amazon SNStopic, as shown in the following example IAM policy.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"Stmt1528133056761",
 "Action":[
 "sns:Publish"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws:sns:region:account-id:topic-name"
]
 }
]
 }

This connector allows you to dynamically override the default topic in the input message
payload. If your implementation uses this feature, the IAM policy must allow sns:Publish
permission on all target topics. You can grant granular or conditional access to resources (for
example, by using a wildcard * naming scheme).

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

Connector Parameters

This connector provides the following parameters:

SNS 842

https://www.python.org/
https://docs.aws.amazon.com/sns/latest/dg/sns-tutorial-create-topic.html

AWS IoT Greengrass Developer Guide, Version 1

Version 4

DefaultSNSArn

The ARN of the default SNS topic to publish messages to. The destination topic can be
overridden by the sns_topic_arn property in the input message payload.

Note

The group role must allow sns:Publish permission to all target topics. For more
information, see the section called “Requirements”.

Display name in the AWS IoT console: Default SNS topic ARN

Required: true

Type: string

Valid pattern: arn:aws:sns:([a-z]{2}-[a-z]+-\d{1}):(\d{12}):([a-zA-Z0-9-
_]+)$

IsolationMode

The containerization mode for this connector. The default is GreengrassContainer,
which means that the connector runs in an isolated runtime environment inside the AWS IoT
Greengrass container.

Note

The default containerization setting for the group does not apply to connectors.

Display name in the AWS IoT console: Container isolation mode

Required: false

Type: string

Valid values: GreengrassContainer or NoContainer

Valid pattern: ^NoContainer$|^GreengrassContainer$

SNS 843

AWS IoT Greengrass Developer Guide, Version 1

Versions 1 - 3

DefaultSNSArn

The ARN of the default SNS topic to publish messages to. The destination topic can be
overridden by the sns_topic_arn property in the input message payload.

Note

The group role must allow sns:Publish permission to all target topics. For more
information, see the section called “Requirements”.

Display name in the AWS IoT console: Default SNS topic ARN

Required: true

Type: string

Valid pattern: arn:aws:sns:([a-z]{2}-[a-z]+-\d{1}):(\d{12}):([a-zA-Z0-9-
_]+)$

Create Connector Example (AWS CLI)

The following CLI command creates a ConnectorDefinition with an initial version that contains
the SNS connector.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '{
 "Connectors": [
 {
 "Id": "MySNSConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/SNS/versions/4",
 "Parameters": {
 "DefaultSNSArn": "arn:aws:sns:region:account-id:topic-name",
 "IsolationMode" : "GreengrassContainer"
 }
 }
]
}'

SNS 844

AWS IoT Greengrass Developer Guide, Version 1

In the AWS IoT Greengrass console, you can add a connector from the group's Connectors page.
For more information, see the section called “Get started with connectors (console)”.

Input data

This connector accepts SNS message information on an MQTT topic, and then publishes the
message as is to the target SNS topic. Input messages must be in JSON format.

Topic filter in subscription

sns/message

Message properties

request

Information about the message to send to the SNS topic.

Required: true

Type: object that includes the following properties:

message

The content of the message as a string or in JSON format. For examples, see Example
input.

To send JSON, the message_structure property must be set to json and the message
must be a string-encoded JSON object that contains a default key.

Required: true

Type: string

Valid pattern: .*

subject

The subject of the message.

Required: false

Type: ASCII text, up to 100 characters. This must begin with a letter, number, or
punctuation mark. This must not include line breaks or control characters.

SNS 845

AWS IoT Greengrass Developer Guide, Version 1

Valid pattern: .*

sns_topic_arn

The ARN of the SNS topic to publish messages to. If specified, the connector publishes to
this topic instead of the default topic.

Note

The group role must allow sns:Publish permission to any target topics. For
more information, see the section called “Requirements”.

Required: false

Type: string

Valid pattern: arn:aws:sns:([a-z]{2}-[a-z]+-\d{1}):(\d{12}):([a-zA-
Z0-9-_]+)$

message_structure

The structure of the message.

Required: false. This must be specified to send a JSON message.

Type: string

Valid values: json

id

An arbitrary ID for the request. This property is used to map an input request to an output
response. When specified, the id property in the response object is set to this value. If you
don't use this feature, you can omit this property or specify an empty string.

Required: false

Type: string

Valid pattern: .*

Limits

The message size is bounded by a maximum SNS message size of 256 KB.

SNS 846

AWS IoT Greengrass Developer Guide, Version 1

Example input: String message

This example sends a string message. It specifies the optional sns_topic_arn property, which
overrides the default destination topic.

{
 "request": {
 "subject": "Message subject",
 "message": "Message data",
 "sns_topic_arn": "arn:aws:sns:region:account-id:topic2-name"
 },
 "id": "request123"
}

Example input: JSON message

This example sends a message as a string encoded JSON object that includes the default key.

{
 "request": {
 "subject": "Message subject",
 "message": "{ \"default\": \"Message data\" }",
 "message_structure": "json"
 },
 "id": "request123"
}

Output data

This connector publishes status information as output data on an MQTT topic.

Topic filter in subscription

sns/message/status

Example output: Success

{
 "response": {
 "sns_message_id": "f80a81bc-f44c-56f2-a0f0-d5af6a727c8a",
 "status": "success"
 },

SNS 847

AWS IoT Greengrass Developer Guide, Version 1

 "id": "request123"
}

Example output: Failure

{
 "response" : {
 "error": "InvalidInputException",
 "error_message": "SNS Topic Arn is invalid",
 "status": "fail"
 },
 "id": "request123"
}

Usage Example

Use the following high-level steps to set up an example Python 3.7 Lambda function that you can
use to try out the connector.

Note

• If you use other Python runtimes, you can create a symlink from Python3.x to Python
3.7.

• The Get started with connectors (console) and Get started with connectors (CLI) topics
contain detailed steps that show you how to configure and deploy an example Twilio
Notifications connector.

1. Make sure you meet the requirements for the connector.

For the group role requirement, you must configure the role to grant the required permissions
and make sure the role has been added to the group. For more information, see the section
called “Manage the group role (console)” or the section called “Manage the group role (CLI)”.

2. Create and publish a Lambda function that sends input data to the connector.

Save the example code as a PY file. Download and unzip the AWS IoT Greengrass Core SDK for
Python. Then, create a zip package that contains the PY file and the greengrasssdk folder at
the root level. This zip package is the deployment package that you upload to AWS Lambda.

SNS 848

AWS IoT Greengrass Developer Guide, Version 1

After you create the Python 3.7 Lambda function, publish a function version and create an
alias.

3. Configure your Greengrass group.

a. Add the Lambda function by its alias (recommended). Configure the Lambda lifecycle as
long-lived (or "Pinned": true in the CLI).

b. Add the connector and configure its parameters.

c. Add subscriptions that allow the connector to receive input data and send output data on
supported topic filters.

• Set the Lambda function as the source, the connector as the target, and use a supported
input topic filter.

• Set the connector as the source, AWS IoT Core as the target, and use a supported output
topic filter. You use this subscription to view status messages in the AWS IoT console.

4. Deploy the group.

5. In the AWS IoT console, on the Test page, subscribe to the output data topic to view status
messages from the connector. The example Lambda function is long-lived and starts sending
messages immediately after the group is deployed.

When you're finished testing, you can set the Lambda lifecycle to on-demand (or "Pinned":
false in the CLI) and deploy the group. This stops the function from sending messages.

Example

The following example Lambda function sends an input message to the connector.

import greengrasssdk
import time
import json

iot_client = greengrasssdk.client('iot-data')
send_topic = 'sns/message'

def create_request_with_all_fields():
 return {
 "request": {
 "message": "Message from SNS Connector Test"
 },

SNS 849

AWS IoT Greengrass Developer Guide, Version 1

 "id" : "req_123"
 }

def publish_basic_message():
 messageToPublish = create_request_with_all_fields()
 print("Message To Publish: ", messageToPublish)
 iot_client.publish(topic=send_topic,
 payload=json.dumps(messageToPublish))

publish_basic_message()

def lambda_handler(event, context):
 return

Licenses

The SNS connector includes the following third-party software/licensing:

• AWS SDK for Python (Boto3)/Apache License 2.0

• botocore/Apache License 2.0

• dateutil/PSF License

• docutils/BSD License, GNU General Public License (GPL), Python Software Foundation License,
Public Domain

• jmespath/MIT License

• s3transfer/Apache License 2.0

• urllib3/MIT License

This connector is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the connector.

Version Changes

4 Added the IsolationMode parameter to
configure the containerization mode for the
connector.

SNS 850

https://pypi.org/project/boto3/
https://pypi.org/project/botocore/
https://pypi.org/project/python-dateutil/1.4/
https://pypi.org/project/docutils/
https://pypi.org/project/jmespath/
https://pypi.org/project/s3transfer/
https://pypi.org/project/urllib3/
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 1

Version Changes

3 Upgraded the Lambda runtime to Python 3.7,
which changes the runtime requirement.

2 Fix to reduce excessive logging.

1 Initial release.

A Greengrass group can contain only one version of the connector at a time. For information about
upgrading a connector version, see the section called “Upgrading connector versions”.

See also

• Integrate with services and protocols using connectors

• the section called “Get started with connectors (console)”

• the section called “Get started with connectors (CLI)”

• Publish action in the Boto 3 documentation

• What is Amazon Simple Notification Service? in the Amazon Simple Notification Service Developer
Guide

Splunk Integration connector

Warning

This connector has moved into the extended life phase, and AWS IoT Greengrass won't
release updates that provide features, enhancements to existing features, security patches,
or bug fixes. For more information, see AWS IoT Greengrass Version 1 maintenance policy.

The Splunk Integration connector publishes data from Greengrass devices to Splunk. This allows
you to use Splunk to monitor and analyze the Greengrass core environment, and act on local
events. The connector integrates with HTTP Event Collector (HEC). For more information, see
Introduction to Splunk HTTP Event Collector in the Splunk documentation.

This connector receives logging and event data on an MQTT topic and publishes the data as is to
the Splunk API.

Splunk Integration 851

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/sns.html#SNS.Client.publish
https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://dev.splunk.com/view/event-collector/SP-CAAAE6M

AWS IoT Greengrass Developer Guide, Version 1

You can use this connector to support industrial scenarios, such as:

• Operators can use periodic data from actuators and sensors (for example, temperature, pressure,
and water readings) to initiate alarms when values exceed certain thresholds.

• Developers use data collected from industrial machinery to build ML models that can monitor
the equipment for potential issues.

This connector has the following versions.

Version ARN

4 arn:aws:greengrass: region::/
connectors/SplunkIntegration/
versions/4

3 arn:aws:greengrass: region::/
connectors/SplunkIntegration/
versions/3

2 arn:aws:greengrass: region::/
connectors/SplunkIntegration/
versions/2

1 arn:aws:greengrass: region::/
connectors/SplunkIntegration/
versions/1

For information about version changes, see the Changelog.

Requirements

This connector has the following requirements:

Version 3 - 4

• AWS IoT Greengrass Core software v1.9.3 or later. AWS IoT Greengrass must be configured to
support local secrets, as described in Secrets Requirements.

Splunk Integration 852

AWS IoT Greengrass Developer Guide, Version 1

Note

This requirement includes allowing access to your Secrets Manager secrets. If you're
using the default Greengrass service role, Greengrass has permission to get the values
of secrets with names that start with greengrass-.

• Python version 3.7 or 3.8 installed on the core device and added to the PATH environment
variable.

Note

To use Python 3.8, run the following command to create a symbolic link from the the
default Python 3.7 installation folder to the installed Python 3.8 binaries.

sudo ln -s path-to-python-3.8/python3.8 /usr/bin/python3.7

This configures your device to meet the Python requirement for AWS IoT Greengrass.

• The HTTP Event Collector functionality must be enabled in Splunk. For more information, see
Set up and use HTTP eEvent Collector in Splunk Web in the Splunk documentation.

• A text type secret in AWS Secrets Manager that stores your Splunk HTTP Event Collector
token. For more information, see About event collector tokens in the Splunk documentation
and Creating a basic secret in the AWS Secrets Manager User Guide.

Note

To create the secret in the Secrets Manager console, enter your token on the Plaintext
tab. Don't include quotation marks or other formatting. In the API, specify the token
as the value for the SecretString property.

• A secret resource in the Greengrass group that references the Secrets Manager secret. For
more information, see Deploy secrets to the core.

Versions 1 - 2

• AWS IoT Greengrass Core software v1.7 or later. AWS IoT Greengrass must be configured to
support local secrets, as described in Secrets Requirements.

Splunk Integration 853

https://www.python.org/
https://docs.splunk.com/Documentation/Splunk/7.2.0/Data/UsetheHTTPEventCollector
https://docs.splunk.com/Documentation/Splunk/7.2.0/Data/UsetheHTTPEventCollector#About_Event_Collector_tokens
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html

AWS IoT Greengrass Developer Guide, Version 1

Note

This requirement includes allowing access to your Secrets Manager secrets. If you're
using the default Greengrass service role, Greengrass has permission to get the values
of secrets with names that start with greengrass-.

• Python version 2.7 installed on the core device and added to the PATH environment variable.

• The HTTP Event Collector functionality must be enabled in Splunk. For more information, see
Set up and use HTTP eEvent Collector in Splunk Web in the Splunk documentation.

• A text type secret in AWS Secrets Manager that stores your Splunk HTTP Event Collector
token. For more information, see About event collector tokens in the Splunk documentation
and Creating a basic secret in the AWS Secrets Manager User Guide.

Note

To create the secret in the Secrets Manager console, enter your token on the Plaintext
tab. Don't include quotation marks or other formatting. In the API, specify the token
as the value for the SecretString property.

• A secret resource in the Greengrass group that references the Secrets Manager secret. For
more information, see Deploy secrets to the core.

Connector Parameters

This connector provides the following parameters:

Version 4

SplunkEndpoint

The endpoint of your Splunk instance. This value must contain the protocol, hostname, and
port.

Display name in the AWS IoT console: Splunk endpoint

Required: true

Type: string

Splunk Integration 854

https://www.python.org/
https://docs.splunk.com/Documentation/Splunk/7.2.0/Data/UsetheHTTPEventCollector
https://docs.splunk.com/Documentation/Splunk/7.2.0/Data/UsetheHTTPEventCollector#About_Event_Collector_tokens
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html

AWS IoT Greengrass Developer Guide, Version 1

Valid pattern: ^(http:\/\/|https:\/\/)?[a-z0-9]+([-.]{1}[a-z0-9]+)*.[a-z]
{2,5}(:[0-9]{1,5})?(\/.*)?$

MemorySize

The amount of memory (in KB) to allocate to the connector.

Display name in the AWS IoT console: Memory size

Required: true

Type: string

Valid pattern: ^[0-9]+$

SplunkQueueSize

The maximum number of items to save in memory before the items are submitted or
discarded. When this limit is met, the oldest items in the queue are replaced with newer
items. This limit typically applies when there's no connection to the internet.

Display name in the AWS IoT console: Maximum items to retain

Required: true

Type: string

Valid pattern: ^[0-9]+$

SplunkFlushIntervalSeconds

The interval (in seconds) for publishing received data to Splunk HEC. The maximum value
is 900. To configure the connector to publish items as they are received (without batching),
specify 0.

Display name in the AWS IoT console: Splunk publish interval

Required: true

Type: string

Valid pattern: [0-9]|[1-9]\d|[1-9]\d\d|900

Splunk Integration 855

AWS IoT Greengrass Developer Guide, Version 1

SplunkTokenSecretArn

The secret in AWS Secrets Manager that stores the Splunk token. This must be a text type
secret.

Display name in the AWS IoT console: ARN of Splunk auth token secret

Required: true

Type: string

Valid pattern: arn:aws:secretsmanager:[a-z]{2}-[a-z]+-\d{1}:
\d{12}?:secret:[a-zA-Z0-9-_]+-[a-zA-Z0-9-_]+

SplunkTokenSecretArn-ResourceId

The secret resource in the Greengrass group that references the Splunk secret.

Display name in the AWS IoT console: Splunk auth token resource

Required: true

Type: string

Valid pattern: .+

SplunkCustomCALocation

The file path of the custom certificate authority (CA) for Splunk (for example, /etc/ssl/
certs/splunk.crt).

Display name in the AWS IoT console: Splunk custom certificate authority location

Required: false

Type: string

Valid pattern: ^$|/.*

IsolationMode

The containerization mode for this connector. The default is GreengrassContainer,
which means that the connector runs in an isolated runtime environment inside the AWS IoT
Greengrass container.

Splunk Integration 856

AWS IoT Greengrass Developer Guide, Version 1

Note

The default containerization setting for the group does not apply to connectors.

Display name in the AWS IoT console: Container isolation mode

Required: false

Type: string

Valid values: GreengrassContainer or NoContainer

Valid pattern: ^NoContainer$|^GreengrassContainer$

Version 1 - 3

SplunkEndpoint

The endpoint of your Splunk instance. This value must contain the protocol, hostname, and
port.

Display name in the AWS IoT console: Splunk endpoint

Required: true

Type: string

Valid pattern: ^(http:\/\/|https:\/\/)?[a-z0-9]+([-.]{1}[a-z0-9]+)*.[a-z]
{2,5}(:[0-9]{1,5})?(\/.*)?$

MemorySize

The amount of memory (in KB) to allocate to the connector.

Display name in the AWS IoT console: Memory size

Required: true

Type: string

Splunk Integration 857

AWS IoT Greengrass Developer Guide, Version 1

Valid pattern: ^[0-9]+$

SplunkQueueSize

The maximum number of items to save in memory before the items are submitted or
discarded. When this limit is met, the oldest items in the queue are replaced with newer
items. This limit typically applies when there's no connection to the internet.

Display name in the AWS IoT console: Maximum items to retain

Required: true

Type: string

Valid pattern: ^[0-9]+$

SplunkFlushIntervalSeconds

The interval (in seconds) for publishing received data to Splunk HEC. The maximum value
is 900. To configure the connector to publish items as they are received (without batching),
specify 0.

Display name in the AWS IoT console: Splunk publish interval

Required: true

Type: string

Valid pattern: [0-9]|[1-9]\d|[1-9]\d\d|900

SplunkTokenSecretArn

The secret in AWS Secrets Manager that stores the Splunk token. This must be a text type
secret.

Display name in the AWS IoT console: ARN of Splunk auth token secret

Required: true

Type: string

Valid pattern: arn:aws:secretsmanager:[a-z]{2}-[a-z]+-\d{1}:
\d{12}?:secret:[a-zA-Z0-9-_]+-[a-zA-Z0-9-_]+

Splunk Integration 858

AWS IoT Greengrass Developer Guide, Version 1

SplunkTokenSecretArn-ResourceId

The secret resource in the Greengrass group that references the Splunk secret.

Display name in the AWS IoT console: Splunk auth token resource

Required: true

Type: string

Valid pattern: .+

SplunkCustomCALocation

The file path of the custom certificate authority (CA) for Splunk (for example, /etc/ssl/
certs/splunk.crt).

Display name in the AWS IoT console: Splunk custom certificate authority location

Required: false

Type: string

Valid pattern: ^$|/.*

Create Connector Example (AWS CLI)

The following CLI command creates a ConnectorDefinition with an initial version that contains
the Splunk Integration connector.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '{
 "Connectors": [
 {
 "Id": "MySplunkIntegrationConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/SplunkIntegration/
versions/4",
 "Parameters": {
 "SplunkEndpoint": "https://myinstance.cloud.splunk.com:8088",
 "MemorySize": 200000,
 "SplunkQueueSize": 10000,
 "SplunkFlushIntervalSeconds": 5,
 "SplunkTokenSecretArn":"arn:aws:secretsmanager:region:account-
id:secret:greengrass-secret-hash",

Splunk Integration 859

AWS IoT Greengrass Developer Guide, Version 1

 "SplunkTokenSecretArn-ResourceId": "MySplunkResource",
 "IsolationMode" : "GreengrassContainer"
 }
 }
]
}'

Note

The Lambda function in this connector has a long-lived lifecycle.

In the AWS IoT Greengrass console, you can add a connector from the group's Connectors page.
For more information, see the section called “Get started with connectors (console)”.

Input data

This connector accepts logging and event data on an MQTT topic and publishes the received data
as is to the Splunk API. Input messages must be in JSON format.

Topic filter in subscription

splunk/logs/put

Message properties

request

The event data to send to the Splunk API. Events must meet the specifications of the
services/collector API.

Required: true

Type: object. Only the event property is required.

id

An arbitrary ID for the request. This property is used to map an input request to an output
status.

Required: false

Type: string

Splunk Integration 860

https://docs.splunk.com/Documentation/Splunk/latest/RESTREF/RESTinput#services.2Fcollector

AWS IoT Greengrass Developer Guide, Version 1

Limits

All limits that are imposed by the Splunk API apply when using this connector. For more
information, see services/collector.

Example input

{
 "request": {
 "event": "some event",
 "fields": {
 "severity": "INFO",
 "category": [
 "value1",
 "value2"
]
 }
 },
 "id": "request123"
}

Output data

This connector publishes output data on two topics:

• Status information on the splunk/logs/put/status topic.

• Errors on the splunk/logs/put/error topic.

Topic filter: splunk/logs/put/status

Use this topic to listen for the status of the requests. Each time that the connector sends a
batch of received data to the Splunk API, it publishes a list of the IDs of the requests that
succeeded and failed.

Example output

{
 "response": {
 "succeeded": [
 "request123",
 ...
],

Splunk Integration 861

https://docs.splunk.com/Documentation/Splunk/latest/RESTREF/RESTinput#services.2Fcollector

AWS IoT Greengrass Developer Guide, Version 1

 "failed": [
 "request789",
 ...
]
 }
}

Topic filter: splunk/logs/put/error

Use this topic to listen for errors from the connector. The error_message property that
describes the error or timeout encountered while processing the request.

Example output

{
 "response": {
 "error": "UnauthorizedException",
 "error_message": "invalid splunk token",
 "status": "fail"
 }
}

Note

If the connector detects a retryable error (for example, connection errors), it retries
the publish in the next batch.

Usage Example

Use the following high-level steps to set up an example Python 3.7 Lambda function that you can
use to try out the connector.

Note

• If you use other Python runtimes, you can create a symlink from Python3.x to Python
3.7.

• The Get started with connectors (console) and Get started with connectors (CLI) topics
contain detailed steps that show you how to configure and deploy an example Twilio
Notifications connector.

Splunk Integration 862

AWS IoT Greengrass Developer Guide, Version 1

1. Make sure you meet the requirements for the connector.

2. Create and publish a Lambda function that sends input data to the connector.

Save the example code as a PY file. Download and unzip the AWS IoT Greengrass Core SDK for
Python. Then, create a zip package that contains the PY file and the greengrasssdk folder at
the root level. This zip package is the deployment package that you upload to AWS Lambda.

After you create the Python 3.7 Lambda function, publish a function version and create an
alias.

3. Configure your Greengrass group.

a. Add the Lambda function by its alias (recommended). Configure the Lambda lifecycle as
long-lived (or "Pinned": true in the CLI).

b. Add the required secret resource and grant read access to the Lambda function.

c. Add the connector and configure its parameters.

d. Add subscriptions that allow the connector to receive input data and send output data on
supported topic filters.

• Set the Lambda function as the source, the connector as the target, and use a supported
input topic filter.

• Set the connector as the source, AWS IoT Core as the target, and use a supported output
topic filter. You use this subscription to view status messages in the AWS IoT console.

4. Deploy the group.

5. In the AWS IoT console, on the Test page, subscribe to the output data topic to view status
messages from the connector. The example Lambda function is long-lived and starts sending
messages immediately after the group is deployed.

When you're finished testing, you can set the Lambda lifecycle to on-demand (or "Pinned":
false in the CLI) and deploy the group. This stops the function from sending messages.

Example

The following example Lambda function sends an input message to the connector.

import greengrasssdk
import time
import json

Splunk Integration 863

AWS IoT Greengrass Developer Guide, Version 1

iot_client = greengrasssdk.client('iot-data')
send_topic = 'splunk/logs/put'

def create_request_with_all_fields():
 return {
 "request": {
 "event": "Access log test message."
 },
 "id" : "req_123"
 }

def publish_basic_message():
 messageToPublish = create_request_with_all_fields()
 print("Message To Publish: ", messageToPublish)
 iot_client.publish(topic=send_topic,
 payload=json.dumps(messageToPublish))

publish_basic_message()

def lambda_handler(event, context):
 return

Licenses

This connector is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the connector.

Version Changes

4 Added the IsolationMode parameter to
configure the containerization mode for the
connector.

3 Upgraded the Lambda runtime to Python 3.7,
which changes the runtime requirement.

2 Fix to reduce excessive logging.

Splunk Integration 864

https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 1

Version Changes

1 Initial release.

A Greengrass group can contain only one version of the connector at a time. For information about
upgrading a connector version, see the section called “Upgrading connector versions”.

See also

• Integrate with services and protocols using connectors

• the section called “Get started with connectors (console)”

• the section called “Get started with connectors (CLI)”

Twilio Notifications connector

Warning

This connector has moved into the extended life phase, and AWS IoT Greengrass won't
release updates that provide features, enhancements to existing features, security patches,
or bug fixes. For more information, see AWS IoT Greengrass Version 1 maintenance policy.

The Twilio Notifications connector makes automated phone calls or sends text messages through
Twilio. You can use this connector to send notifications in response to events in the Greengrass
group. For phone calls, the connector can forward a voice message to the recipient.

This connector receives Twilio message information on an MQTT topic, and then triggers a Twilio
notification.

Note

For a tutorial that shows how to use the Twilio Notifications connector, see the section
called “Get started with connectors (console)” or the section called “Get started with
connectors (CLI)”.

This connector has the following versions.

Twilio Notifications 865

AWS IoT Greengrass Developer Guide, Version 1

Version ARN

5 arn:aws:greengrass: region::/
connectors/TwilioNotifications/
versions/5

4 arn:aws:greengrass: region::/
connectors/TwilioNotifications/
versions/4

3 arn:aws:greengrass: region::/
connectors/TwilioNotifications/
versions/3

2 arn:aws:greengrass: region::/
connectors/TwilioNotifications/
versions/2

1 arn:aws:greengrass: region::/
connectors/TwilioNotifications/
versions/1

For information about version changes, see the Changelog.

Requirements

This connector has the following requirements:

Version 4 - 5

• AWS IoT Greengrass Core software v1.9.3 or later. AWS IoT Greengrass must be configured to
support local secrets, as described in Secrets Requirements.

Note

This requirement includes allowing access to your Secrets Manager secrets. If you're
using the default Greengrass service role, Greengrass has permission to get the values
of secrets with names that start with greengrass-.

Twilio Notifications 866

AWS IoT Greengrass Developer Guide, Version 1

• Python version 3.7 or 3.8 installed on the core device and added to the PATH environment
variable.

Note

To use Python 3.8, run the following command to create a symbolic link from the the
default Python 3.7 installation folder to the installed Python 3.8 binaries.

sudo ln -s path-to-python-3.8/python3.8 /usr/bin/python3.7

This configures your device to meet the Python requirement for AWS IoT Greengrass.

• A Twilio account SID, auth token, and Twilio-enabled phone number. After you create a Twilio
project, these values are available on the project dashboard.

Note

You can use a Twilio trial account. If you're using a trial account, you must add
non-Twilio recipient phone numbers to a list of verified phone numbers. For more
information, see How to Work with your Free Twilio Trial Account.

• A text type secret in AWS Secrets Manager that stores the Twilio auth token. For more
information, see Creating a basic secret in the AWS Secrets Manager User Guide.

Note

To create the secret in the Secrets Manager console, enter your token on the Plaintext
tab. Don't include quotation marks or other formatting. In the API, specify the token
as the value for the SecretString property.

• A secret resource in the Greengrass group that references the Secrets Manager secret. For
more information, see Deploy secrets to the core.

Versions 1 - 3

• AWS IoT Greengrass Core software v1.7 or later. AWS IoT Greengrass must be configured to
support local secrets, as described in Secrets Requirements.

Twilio Notifications 867

https://www.python.org/
https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html

AWS IoT Greengrass Developer Guide, Version 1

Note

This requirement includes allowing access to your Secrets Manager secrets. If you're
using the default Greengrass service role, Greengrass has permission to get the values
of secrets with names that start with greengrass-.

• Python version 2.7 installed on the core device and added to the PATH environment variable.

• A Twilio account SID, auth token, and Twilio-enabled phone number. After you create a Twilio
project, these values are available on the project dashboard.

Note

You can use a Twilio trial account. If you're using a trial account, you must add
non-Twilio recipient phone numbers to a list of verified phone numbers. For more
information, see How to Work with your Free Twilio Trial Account.

• A text type secret in AWS Secrets Manager that stores the Twilio auth token. For more
information, see Creating a basic secret in the AWS Secrets Manager User Guide.

Note

To create the secret in the Secrets Manager console, enter your token on the Plaintext
tab. Don't include quotation marks or other formatting. In the API, specify the token
as the value for the SecretString property.

• A secret resource in the Greengrass group that references the Secrets Manager secret. For
more information, see Deploy secrets to the core.

Connector Parameters

This connector provides the following parameters.

Version 5

TWILIO_ACCOUNT_SID

The Twilio account SID that's used to invoke the Twilio API.

Twilio Notifications 868

https://www.python.org/
https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html

AWS IoT Greengrass Developer Guide, Version 1

Display name in the AWS IoT console: Twilio account SID

Required: true

Type: string

Valid pattern: .+

TwilioAuthTokenSecretArn

The ARN of the Secrets Manager secret that stores the Twilio auth token.

Note

This is used to access the value of the local secret on the core.

Display name in the AWS IoT console: ARN of Twilio auth token secret

Required: true

Type: string

Valid pattern: arn:aws:secretsmanager:[a-z0-9\-]+:[0-9]{12}:secret:([a-zA-
Z0-9\\]+/)*[a-zA-Z0-9/_+=,.@\-]+-[a-zA-Z0-9]+

TwilioAuthTokenSecretArn-ResourceId

The ID of the secret resource in the Greengrass group that references the secret for the
Twilio auth token.

Display name in the AWS IoT console: Twilio auth token resource

Required: true

Type: string

Valid pattern: .+

DefaultFromPhoneNumber

The default Twilio-enabled phone number that Twilio uses to send messages. Twilio uses
this number to initiate the text or call.

Twilio Notifications 869

AWS IoT Greengrass Developer Guide, Version 1

• If you don't configure a default phone number, you must specify a phone number in the
from_number property in the input message body.

• If you do configure a default phone number, you can optionally override the default by
specifying the from_number property in the input message body.

Display name in the AWS IoT console: Default from phone number

Required: false

Type: string

Valid pattern: ^$|\+[0-9]+

IsolationMode

The containerization mode for this connector. The default is GreengrassContainer,
which means that the connector runs in an isolated runtime environment inside the AWS IoT
Greengrass container.

Note

The default containerization setting for the group does not apply to connectors.

Display name in the AWS IoT console: Container isolation mode

Required: false

Type: string

Valid values: GreengrassContainer or NoContainer

Valid pattern: ^NoContainer$|^GreengrassContainer$

Version 1 - 4

TWILIO_ACCOUNT_SID

The Twilio account SID that's used to invoke the Twilio API.

Display name in the AWS IoT console: Twilio account SID

Required: true

Twilio Notifications 870

AWS IoT Greengrass Developer Guide, Version 1

Type: string

Valid pattern: .+

TwilioAuthTokenSecretArn

The ARN of the Secrets Manager secret that stores the Twilio auth token.

Note

This is used to access the value of the local secret on the core.

Display name in the AWS IoT console: ARN of Twilio auth token secret

Required: true

Type: string

Valid pattern: arn:aws:secretsmanager:[a-z0-9\-]+:[0-9]{12}:secret:([a-zA-
Z0-9\\]+/)*[a-zA-Z0-9/_+=,.@\-]+-[a-zA-Z0-9]+

TwilioAuthTokenSecretArn-ResourceId

The ID of the secret resource in the Greengrass group that references the secret for the
Twilio auth token.

Display name in the AWS IoT console: Twilio auth token resource

Required: true

Type: string

Valid pattern: .+

DefaultFromPhoneNumber

The default Twilio-enabled phone number that Twilio uses to send messages. Twilio uses
this number to initiate the text or call.

• If you don't configure a default phone number, you must specify a phone number in the
from_number property in the input message body.

• If you do configure a default phone number, you can optionally override the default by
specifying the from_number property in the input message body.

Twilio Notifications 871

AWS IoT Greengrass Developer Guide, Version 1

Display name in the AWS IoT console: Default from phone number

Required: false

Type: string

Valid pattern: ^$|\+[0-9]+

Create Connector Example (AWS CLI)

The following example CLI command creates a ConnectorDefinition with an initial version that
contains the Twilio Notifications connector.

aws greengrass create-connector-definition --name MyGreengrassConnectors --initial-
version '{
 "Connectors": [
 {
 "Id": "MyTwilioNotificationsConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/
TwilioNotifications/versions/5",
 "Parameters": {
 "TWILIO_ACCOUNT_SID": "abcd12345xyz",
 "TwilioAuthTokenSecretArn": "arn:aws:secretsmanager:region:account-
id:secret:greengrass-secret-hash",
 "TwilioAuthTokenSecretArn-ResourceId": "MyTwilioSecret",
 "DefaultFromPhoneNumber": "+19999999999",
 "IsolationMode" : "GreengrassContainer"
 }
 }
]
}'

For tutorials that show how add the Twilio Notifications connector to a group, see the section
called “Get started with connectors (CLI)” and the section called “Get started with connectors
(console)”.

Input data

This connector accepts Twilio message information on two MQTT topics. Input messages must be
in JSON format.

• Text message information on the twilio/txt topic.

Twilio Notifications 872

AWS IoT Greengrass Developer Guide, Version 1

• Phone message information on the twilio/call topic.

Note

The input message payload can include a text message (message) or voice message
(voice_message_location), but not both.

Topic filter: twilio/txt

Message properties

request

Information about the Twilio notification.

Required: true

Type: object that includes the following properties:

recipient

The message recipient. Only one recipient is supported.

Required: true

Type: object that include the following properties:

name

The name of the recipient.

Required: true

Type: string

Valid pattern: .*

phone_number

The phone number of the recipient.

Required: true

Twilio Notifications 873

AWS IoT Greengrass Developer Guide, Version 1

Type: string

Valid pattern: \+[1-9]+

message

The text content of the text message. Only text messages are supported on this
topic. For voice messages, use twilio/call.

Required: true

Type: string

Valid pattern: .+

from_number

The phone number of the sender. Twilio uses this phone number to initiate the
message. This property is required if the DefaultFromPhoneNumber parameter isn't
configured. If DefaultFromPhoneNumber is configured, you can use this property to
override the default.

Required: false

Type: string

Valid pattern: \+[1-9]+

retries

The number of retries. The default is 0.

Required: false

Type: integer

id

An arbitrary ID for the request. This property is used to map an input request to an
output response.

Required: true

Type: string

Twilio Notifications 874

AWS IoT Greengrass Developer Guide, Version 1

Valid pattern: .+

Example input

{
 "request": {
 "recipient": {
 "name": "Darla",
 "phone_number": "+12345000000",
 "message": "Hello from the edge"
 },
 "from_number": "+19999999999",
 "retries": 3
 },
 "id": "request123"
}

Topic filter: twilio/call

Message properties

request

Information about the Twilio notification.

Required: true

Type: object that includes the following properties:

recipient

The message recipient. Only one recipient is supported.

Required: true

Type: object that include the following properties:

name

The name of the recipient.

Required: true

Type: string

Twilio Notifications 875

AWS IoT Greengrass Developer Guide, Version 1

Valid pattern: .+

phone_number

The phone number of the recipient.

Required: true

Type: string

Valid pattern: \+[1-9]+

voice_message_location

The URL of the audio content for the voice message. This must be in TwiML
format. Only voice messages are supported on this topic. For text messages, use
twilio/txt.

Required: true

Type: string

Valid pattern: .+

from_number

The phone number of the sender. Twilio uses this phone number to initiate the
message. This property is required if the DefaultFromPhoneNumber parameter isn't
configured. If DefaultFromPhoneNumber is configured, you can use this property to
override the default.

Required: false

Type: string

Valid pattern: \+[1-9]+

retries

The number of retries. The default is 0.

Required: false

Type: integer

Twilio Notifications 876

AWS IoT Greengrass Developer Guide, Version 1

id

An arbitrary ID for the request. This property is used to map an input request to an
output response.

Required: true

Type: string

Valid pattern: .+

Example input

{
 "request": {
 "recipient": {
 "name": "Darla",
 "phone_number": "+12345000000",
 "voice_message_location": "https://some-public-TwiML"
 },
 "from_number": "+19999999999",
 "retries": 3
 },
 "id": "request123"
}

Output data

This connector publishes status information as output data on an MQTT topic.

Topic filter in subscription

twilio/message/status

Example output: Success

{
 "response": {
 "status": "success",
 "payload": {
 "from_number": "+19999999999",
 "messages": {

Twilio Notifications 877

AWS IoT Greengrass Developer Guide, Version 1

 "message_status": "queued",
 "to_number": "+12345000000",
 "name": "Darla"
 }
 }
 },
 "id": "request123"
}

Example output: Failure

{
 "response": {
 "status": "fail",
 "error_message": "Recipient name cannot be None",
 "error": "InvalidParameter",
 "payload": None
 }
 },
 "id": "request123"
}

The payload property in the output is the response from the Twilio API when the message
is sent. If the connector detects that the input data is invalid (for example, it doesn't specify a
required input field), the connector returns an error and sets the value to None. The following
are example payloads:

{
 'from_number':'+19999999999',
 'messages': {
 'name':'Darla',
 'to_number':'+12345000000',
 'message_status':'undelivered'
 }
}

{
 'from_number':'+19999999999',
 'messages': {
 'name':'Darla',
 'to_number':'+12345000000',
 'message_status':'queued'

Twilio Notifications 878

AWS IoT Greengrass Developer Guide, Version 1

 }
}

Usage Example

Use the following high-level steps to set up an example Python 3.7 Lambda function that you can
use to try out the connector.

Note

The the section called “Get started with connectors (console)” and the section called “Get
started with connectors (CLI)” topics contain end-to-end steps that show how to set up,
deploy, and test the Twilio Notifications connector.

1. Make sure you meet the requirements for the connector.

2. Create and publish a Lambda function that sends input data to the connector.

Save the example code as a PY file. Download and unzip the AWS IoT Greengrass Core SDK for
Python. Then, create a zip package that contains the PY file and the greengrasssdk folder at
the root level. This zip package is the deployment package that you upload to AWS Lambda.

After you create the Python 3.7 Lambda function, publish a function version and create an
alias.

3. Configure your Greengrass group.

a. Add the Lambda function by its alias (recommended). Configure the Lambda lifecycle as
long-lived (or "Pinned": true in the CLI).

b. Add the required secret resource and grant read access to the Lambda function.

c. Add the connector and configure its parameters.

d. Add subscriptions that allow the connector to receive input data and send output data on
supported topic filters.

• Set the Lambda function as the source, the connector as the target, and use a supported
input topic filter.

• Set the connector as the source, AWS IoT Core as the target, and use a supported output
topic filter. You use this subscription to view status messages in the AWS IoT console.

Twilio Notifications 879

AWS IoT Greengrass Developer Guide, Version 1

4. Deploy the group.

5. In the AWS IoT console, on the Test page, subscribe to the output data topic to view status
messages from the connector. The example Lambda function is long-lived and starts sending
messages immediately after the group is deployed.

When you're finished testing, you can set the Lambda lifecycle to on-demand (or "Pinned":
false in the CLI) and deploy the group. This stops the function from sending messages.

Example

The following example Lambda function sends an input message to the connector. This example
triggers a text message.

import greengrasssdk
import json

iot_client = greengrasssdk.client('iot-data')
TXT_INPUT_TOPIC = 'twilio/txt'
CALL_INPUT_TOPIC = 'twilio/call'

def publish_basic_message():

 txt = {
 "request": {
 "recipient" : {
 "name": "Darla",
 "phone_number": "+12345000000",
 "message": 'Hello from the edge'
 },
 "from_number" : "+19999999999"
 },
 "id" : "request123"
 }

 print("Message To Publish: ", txt)

 client.publish(topic=TXT_INPUT_TOPIC,
 payload=json.dumps(txt))

publish_basic_message()

def lambda_handler(event, context):

Twilio Notifications 880

AWS IoT Greengrass Developer Guide, Version 1

 return

Licenses

The Twilio Notifications connector includes the following third-party software/licensing:

• twilio-python/MIT

This connector is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the connector.

Version Changes

5 Added the IsolationMode parameter to
configure the containerization mode for the
connector.

4 Upgraded the Lambda runtime to Python 3.7,
which changes the runtime requirement.

3 Fix to reduce excessive logging.

2 Minor bug fixes and improvements.

1 Initial release.

A Greengrass group can contain only one version of the connector at a time. For information about
upgrading a connector version, see the section called “Upgrading connector versions”.

See also

• Integrate with services and protocols using connectors

• the section called “Get started with connectors (console)”

• the section called “Get started with connectors (CLI)”

• Twilio API Reference

Twilio Notifications 881

https://github.com/twilio/twilio-python
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf
https://www.twilio.com/docs/api

AWS IoT Greengrass Developer Guide, Version 1

Getting started with Greengrass connectors (console)

This feature is available for AWS IoT Greengrass Core v1.7 and later.

This tutorial shows how to use the AWS Management Console to work with connectors.

Use connectors to accelerate your development life cycle. Connectors are prebuilt, reusable
modules that can make it easier to interact with services, protocols, and resources. They can help
you deploy business logic to Greengrass devices more quickly. For more information, see Integrate
with services and protocols using connectors.

In this tutorial, you configure and deploy the Twilio Notifications connector. The connector
receives Twilio message information as input data, and then triggers a Twilio text message. The
data flow is shown in following diagram.

After you configure the connector, you create a Lambda function and a subscription.

• The function evaluates simulated data from a temperature sensor. It conditionally publishes the
Twilio message information to an MQTT topic. This is the topic that the connector subscribes to.

• The subscription allows the function to publish to the topic and the connector to receive data
from the topic.

The Twilio Notifications connector requires a Twilio auth token to interact with the Twilio API. The
token is a text type secret created in AWS Secrets Manager and referenced from a group resource.
This enables AWS IoT Greengrass to create a local copy of the secret on the Greengrass core, where

Get started with connectors (console) 882

AWS IoT Greengrass Developer Guide, Version 1

it is encrypted and made available to the connector. For more information, see Deploy secrets to the
core.

The tutorial contains the following high-level steps:

1. Create a Secrets Manager secret

2. Add a secret resource to a group

3. Add a connector to the group

4. Create a Lambda function deployment package

5. Create a Lambda function

6. Add a function to the group

7. Add subscriptions to the group

8. Deploy the group

9. the section called “Test the solution”

The tutorial should take about 20 minutes to complete.

Prerequisites

To complete this tutorial, you need:

• A Greengrass group and a Greengrass core (v1.9.3 or later). To learn how to create a Greengrass
group and core, see Getting started with AWS IoT Greengrass. The Getting Started tutorial also
includes steps for installing the AWS IoT Greengrass Core software.

• Python 3.7 installed on the AWS IoT Greengrass core device.

• AWS IoT Greengrass must be configured to support local secrets, as described in Secrets
Requirements.

Note

This requirement includes allowing access to your Secrets Manager secrets. If you're
using the default Greengrass service role, Greengrass has permission to get the values of
secrets with names that start with greengrass-.

• A Twilio account SID, auth token, and Twilio-enabled phone number. After you create a Twilio
project, these values are available on the project dashboard.

Prerequisites 883

AWS IoT Greengrass Developer Guide, Version 1

Note

You can use a Twilio trial account. If you're using a trial account, you must add non-Twilio
recipient phone numbers to a list of verified phone numbers. For more information, see
How to Work with your Free Twilio Trial Account.

Step 1: Create a Secrets Manager secret

In this step, you use the AWS Secrets Manager console to create a text type secret for your Twilio
auth token.

1. Sign in to the AWS Secrets Manager console.

Note

For more information about this process, see Step 1: Create and store your secret in
AWS Secrets Manager in the AWS Secrets Manager User Guide.

2. Choose Store a new secret.

3. Under Choose secret type, choose Other type of secret.

4. Under Specify the key/value pairs to be stored for this secret, on the Plaintext tab, enter
your Twilio auth token. Remove all of the JSON formatting and enter only the token value.

5. Keep aws/secretsmanager selected for the encryption key, and then choose Next.

Note

You aren't charged by AWS KMS if you use the default AWS managed key that Secrets
Manager creates in your account.

6. For Secret name, enter greengrass-TwilioAuthToken, and then choose Next.

Create a Secrets Manager secret 884

https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account
https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account
https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/tutorials_basic.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/tutorials_basic.html

AWS IoT Greengrass Developer Guide, Version 1

Note

By default, the Greengrass service role allows AWS IoT Greengrass to get the value
of secrets with names that start with greengrass-. For more information, see secrets
requirements.

7. This tutorial doesn't require rotation, so choose disable automatic rotation, and then choose
Next.

8. On the Review page, review your settings, and then choose Store.

Next, you create a secret resource in your Greengrass group that references the secret.

Step 2: Add a secret resource to a Greengrass group

In this step, you add a secret resource to the Greengrass group. This resource is a reference to the
secret that you created in the previous step.

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose the group that you want to add the secret resource to.

3. On the group configuration page, choose the Resources tab, and then scroll down to the
Secrets section. The Secrets section displays the secret resources that belong to the group.
You can add, edit, and remove secret resources from this section.

Note

Alternatively, the console allows you to create a secret and secret resource when
you configure a connector or Lambda function. You can do this from the connector's
Configure parameters page or the Lambda function's Resources page.

4. Choose Add under the Secrets section.

5. On the Add a secret resource page, enter MyTwilioAuthToken for the Resource name.

6. For the Secret, choose greengrass-TwilioAuthToken.

7. In the Select labels (Optional) section, the AWSCURRENT staging label represents the latest
version of the secret. This label is always included in a secret resource.

Add a secret resource to a group 885

AWS IoT Greengrass Developer Guide, Version 1

Note

This tutorial requires the AWSCURRENT label only. You can optionally include labels
that are required by your Lambda function or connector.

8. Choose Add resource.

Step 3: Add a connector to the Greengrass group

In this step, you configure parameters for the Twilio Notifications connector and add it to the
group.

1. On the group configuration page, choose Connectors, and then choose Add a connector.

2. On the Add connector page, choose Twilio Notifications.

3. Choose the version.

4. In the Configuration section:

• For Twilio auth token resource, enter the resource that you created in the previous step.

Note

When you enter the resource, the ARN of Twilio auth token secret property is
populated for you.

• For Default from phone number, enter your Twilio-enabled phone number.

• For Twilio account SID, enter your Twilio account SID.

5. Choose Add resource.

Step 4: Create a Lambda function deployment package

To create a Lambda function, you must first create a Lambda function deployment package that
contains the function code and dependencies. Greengrass Lambda functions require the AWS
IoT Greengrass Core SDK for tasks such as communicating with MQTT messages in the core
environment and accessing local secrets. This tutorial creates a Python function, so you use the
Python version of the SDK in the deployment package.

Add a connector to the group 886

AWS IoT Greengrass Developer Guide, Version 1

1. From the AWS IoT Greengrass Core SDK downloads page, download the AWS IoT Greengrass
Core SDK for Python to your computer.

2. Unzip the downloaded package to get the SDK. The SDK is the greengrasssdk folder.

3. Save the following Python code function in a local file named temp_monitor.py.

import greengrasssdk
import json
import random

client = greengrasssdk.client('iot-data')

publish to the Twilio Notifications connector through the twilio/txt topic
def function_handler(event, context):
 temp = event['temperature']

 # check the temperature
 # if greater than 30C, send a notification
 if temp > 30:
 data = build_request(event)
 client.publish(topic='twilio/txt', payload=json.dumps(data))
 print('published:' + str(data))

 print('temperature:' + str(temp))
 return

build the Twilio request from the input data
def build_request(event):
 to_name = event['to_name']
 to_number = event['to_number']
 temp_report = 'temperature:' + str(event['temperature'])

 return {
 "request": {
 "recipient": {
 "name": to_name,
 "phone_number": to_number,
 "message": temp_report
 }
 },
 "id": "request_" + str(random.randint(1,101))
 }

Create a Lambda function deployment package 887

AWS IoT Greengrass Developer Guide, Version 1

4. Zip the following items into a file named temp_monitor_python.zip. When creating the
ZIP file, include only the code and dependencies, not the containing folder.

• temp_monitor.py. App logic.

• greengrasssdk. Required library for Python Greengrass Lambda functions that publish
MQTT messages.

This is your Lambda function deployment package.

Now, create a Lambda function that uses the deployment package.

Step 5: Create a Lambda function in the AWS Lambda console

In this step, you use the AWS Lambda console to create a Lambda function and configure it to use
your deployment package. Then, you publish a function version and create an alias.

1. First, create the Lambda function.

a. In the AWS Management Console, choose Services, and open the AWS Lambda console.

b. Choose Create function and then choose Author from scratch.

c. In the Basic information section, use the following values:

• For Function name, enter TempMonitor.

• For Runtime, choose Python 3.7.

• For Permissions, keep the default setting. This creates an execution role that grants
basic Lambda permissions. This role isn't used by AWS IoT Greengrass.

d. At the bottom of the page, choose Create function.

2. Next, register the handler and upload your Lambda function deployment package.

a. On the Code tab, under Code source, choose Upload from. From the dropdown, choose
.zip file.

Create a Lambda function 888

AWS IoT Greengrass Developer Guide, Version 1

b. Choose Upload, and then choose your temp_monitor_python.zip deployment
package. Then, choose Save.

c. On the Code tab for the function, under Runtime settings, choose Edit, and then enter
the following values.

• For Runtime, choose Python 3.7.

• For Handler, enter temp_monitor.function_handler

d. Choose Save.

Note

The Test button on the AWS Lambda console doesn't work with this function. The
AWS IoT Greengrass Core SDK doesn't contain modules that are required to run
your Greengrass Lambda functions independently in the AWS Lambda console.
These modules (for example, greengrass_common) are supplied to the functions
after they are deployed to your Greengrass core.

3. Now, publish the first version of your Lambda function and create an alias for the version.

Note

Greengrass groups can reference a Lambda function by alias (recommended) or by
version. Using an alias makes it easier to manage code updates because you don't
have to change your subscription table or group definition when the function code is
updated. Instead, you just point the alias to the new function version.

a. From the Actions menu, choose Publish new version.

b. For Version description, enter First version, and then choose Publish.

c. On the TempMonitor: 1 configuration page, from the Actions menu, choose Create alias.
Create a Lambda function 889

https://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS IoT Greengrass Developer Guide, Version 1

d. On the Create a new alias page, use the following values:

• For Name, enter GG_TempMonitor.

• For Version, choose 1.

Note

AWS IoT Greengrass doesn't support Lambda aliases for $LATEST versions.

e. Choose Create.

Now you're ready to add the Lambda function to your Greengrass group.

Step 6: Add a Lambda function to the Greengrass group

In this step, you add the Lambda function to the group and then configure its lifecycle and
environment variables. For more information, see the section called “Controlling Greengrass
Lambda function execution”.

1. On the group configuration page, choose the Lambda functions tab.

2. Under My Lambda functions, choose Add.

3. On the Add Lambda function page, choose TempMonitor for your Lambda function.

4. For Lambda function version, choose Alias: GG_TempMonitor.

5. Choose Add Lambda function.

Step 7: Add subscriptions to the Greengrass group

In this step, you add a subscription that enables the Lambda function to send input data to the
connector. The connector defines the MQTT topics that it subscribes to, so this subscription uses
one of the topics. This is the same topic that the example function publishes to.

For this tutorial, you also create subscriptions that allow the function to receive simulated
temperature readings from AWS IoT and allow AWS IoT to receive status information from the
connector.

1. On the group configuration page, choose the Subscriptions tab, and then choose Add
Subscription.

Add a function to the group 890

AWS IoT Greengrass Developer Guide, Version 1

2. On the Create a subscription page, configure the source and target, as follows:

a. For Source type, choose Lambda function, and then choose TempMonitor.

b. For Target type, choose Connector, and then choose Twilio Notifications.

3. For the Topic filter, choose twilio/txt.

4. Choose Create subscription.

5. Repeat steps 1 - 4 to create a subscription that allows AWS IoT to publish messages to the
function.

a. For Source type, choose Service, and then choose IoT Cloud.

b. For Select a target, choose Lambda function, and then choose TempMonitor.

c. For Topic filter, enter temperature/input.

6. Repeat steps 1 - 4 to create a subscription that allows the connector to publish messages to
AWS IoT.

a. For Source type, choose Connector, and then choose Twilio Notifications.

b. For Target type, choose Service, and then choose IoT Cloud.

c. For Topic filter, twilio/message/status is entered for you. This is the predefined topic
that the connector publishes to.

Step 8: Deploy the Greengrass group

Deploy the group to the core device.

1. Make sure that the AWS IoT Greengrass core is running. Run the following commands in your
Raspberry Pi terminal, as needed.

a. To check whether the daemon is running:

ps aux | grep -E 'greengrass.*daemon'

If the output contains a root entry for /greengrass/ggc/packages/ggc-version/
bin/daemon, then the daemon is running.

Deploy the group 891

AWS IoT Greengrass Developer Guide, Version 1

Note

The version in the path depends on the AWS IoT Greengrass Core software version
that's installed on your core device.

b. To start the daemon:

cd /greengrass/ggc/core/
sudo ./greengrassd start

2. On the group configuration page, choose Deploy.

3. a. In the Lambda functions tab, under the System Lambda functions section, select IP
detector and choose Edit.

b. In the Edit IP detector settings dialog box, select Automatically detect and override
MQTT broker endpoints.

c. Choose Save.

This enables devices to automatically acquire connectivity information for the core, such
as IP address, DNS, and port number. Automatic detection is recommended, but AWS IoT
Greengrass also supports manually specified endpoints. You're only prompted for the
discovery method the first time that the group is deployed.

Note

If prompted, grant permission to create the Greengrass service role and associate
it with your AWS account in the current AWS Region. This role allows AWS IoT
Greengrass to access your resources in AWS services.

The Deployments page shows the deployment timestamp, version ID, and status. When
completed, the status displayed for the deployment should be Completed.

For troubleshooting help, see Troubleshooting.

Deploy the group 892

AWS IoT Greengrass Developer Guide, Version 1

Note

A Greengrass group can contain only one version of the connector at a time. For
information about upgrading a connector version, see the section called “Upgrading
connector versions”.

Test the solution

1. On the AWS IoT console home page, choose Test.

2. For Subscribe to topic, use the following values, and then choose Subscribe. The Twilio
Notifications connector publishes status information to this topic.

Property Value

Subscription topic twilio/message/status

MQTT payload display Display payloads as strings

3. For Publish to topic, use the following values, and then choose Publish to invoke the function.

Property Value

Topic temperature/input

Message Replace recipient-name with a name
and recipient-phone-number with
the phone number of the text message
recipient. Example: +12345000000

{
 "to_name": " recipient-name ",
 "to_number": " recipient-phone-nu
mber ",
 "temperature": 31
}

Test the solution 893

AWS IoT Greengrass Developer Guide, Version 1

Property Value

If you're using a trial account, you must add
non-Twilio recipient phone numbers to a
list of verified phone numbers. For more
information, see Verify your Personal Phone
Number.

If successful, the recipient receives the text message and the console displays the success
status from the output data.

Now, change the temperature in the input message to 29 and publish. Because this is less
than 30, the TempMonitor function doesn't trigger a Twilio message.

See also

• Integrate with services and protocols using connectors

• the section called “AWS-provided Greengrass connectors”

Getting started with Greengrass connectors (CLI)

This feature is available for AWS IoT Greengrass Core v1.7 and later.

This tutorial shows how to use the AWS CLI to work with connectors.

Use connectors to accelerate your development life cycle. Connectors are prebuilt, reusable
modules that can make it easier to interact with services, protocols, and resources. They can help
you deploy business logic to Greengrass devices more quickly. For more information, see Integrate
with services and protocols using connectors.

In this tutorial, you configure and deploy the Twilio Notifications connector. The connector
receives Twilio message information as input data, and then triggers a Twilio text message. The
data flow is shown in following diagram.

See also 894

https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account#verify-your-personal-phone-number
https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account#verify-your-personal-phone-number

AWS IoT Greengrass Developer Guide, Version 1

After you configure the connector, you create a Lambda function and a subscription.

• The function evaluates simulated data from a temperature sensor. It conditionally publishes the
Twilio message information to an MQTT topic. This is the topic that the connector subscribes to.

• The subscription allows the function to publish to the topic and the connector to receive data
from the topic.

The Twilio Notifications connector requires a Twilio auth token to interact with the Twilio API. The
token is a text type secret created in AWS Secrets Manager and referenced from a group resource.
This enables AWS IoT Greengrass to create a local copy of the secret on the Greengrass core, where
it is encrypted and made available to the connector. For more information, see Deploy secrets to the
core.

The tutorial contains the following high-level steps:

1. Create a Secrets Manager secret

2. Create a resource definition and version

3. Create a connector definition and version

4. Create a Lambda function deployment package

5. Create a Lambda function

6. Create a function definition and version

7. Create a subscription definition and version

8. Create a group version

Get started with connectors (CLI) 895

AWS IoT Greengrass Developer Guide, Version 1

9. Create a deployment

10.the section called “Test the solution”

The tutorial should take about 30 minutes to complete.

Using the AWS IoT Greengrass API

It's helpful to understand the following patterns when you work with Greengrass groups and group
components (for example, the connectors, functions, and resources in the group).

• At the top of the hierarchy, a component has a definition object that is a container for version
objects. In turn, a version is a container for the connectors, functions, or other component types.

• When you deploy to the Greengrass core, you deploy a specific group version. A group version
can contain one version of each type of component. A core is required, but the others are
included as needed.

• Versions are immutable, so you must create new versions when you want to make changes.

Tip

If you receive an error when you run an AWS CLI command, add the --debug parameter
and then rerun the command to get more information about the error.

The AWS IoT Greengrass API lets you create multiple definitions for a component type.
For example, you can create a FunctionDefinition object every time that you create a
FunctionDefinitionVersion, or you can add new versions to an existing definition. This
flexibility allows you to customize your version management system.

Prerequisites

To complete this tutorial, you need:

• A Greengrass group and a Greengrass core (v1.9.3 or later). To learn how to create a Greengrass
group and core, see Getting started with AWS IoT Greengrass. The Getting Started tutorial also
includes steps for installing the AWS IoT Greengrass Core software.

• Python 3.7 installed on the AWS IoT Greengrass core device.

Prerequisites 896

AWS IoT Greengrass Developer Guide, Version 1

• AWS IoT Greengrass must be configured to support local secrets, as described in Secrets
Requirements.

Note

This requirement includes allowing access to your Secrets Manager secrets. If you're
using the default Greengrass service role, Greengrass has permission to get the values of
secrets with names that start with greengrass-.

• A Twilio account SID, auth token, and Twilio-enabled phone number. After you create a Twilio
project, these values are available on the project dashboard.

Note

You can use a Twilio trial account. If you're using a trial account, you must add non-Twilio
recipient phone numbers to a list of verified phone numbers. For more information, see
How to Work with your Free Twilio Trial Account.

• AWS CLI installed and configured on your computer. For more information, see Installing the
AWS Command Line Interface and Configuring the AWS CLI in the AWS Command Line Interface
User Guide.

The examples in this tutorial are written for Linux and other Unix-based systems. If you're using
Windows, see Specifying parameter values for the AWS Command Line Interface to learn about
differences in syntax.

If the command contains a JSON string, the tutorial provides an example that has the JSON on a
single line. On some systems, it might be easier to edit and run commands using this format.

Step 1: Create a Secrets Manager secret

In this step, you use the AWS Secrets Manager API to create a secret for your Twilio auth token.

1. First, create the secret.

• Replace twilio-auth-token with your Twilio auth token.

Create a Secrets Manager secret 897

https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account
https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-using-param.html

AWS IoT Greengrass Developer Guide, Version 1

aws secretsmanager create-secret --name greengrass-TwilioAuthToken --secret-
string twilio-auth-token

Note

By default, the Greengrass service role allows AWS IoT Greengrass to get the value
of secrets with names that start with greengrass-. For more information, see secrets
requirements.

2. Copy the ARN of the secret from the output. You use this to create the secret resource and to
configure the Twilio Notifications connector.

Step 2: Create a resource definition and version

In this step, you use the AWS IoT Greengrass API to create a secret resource for your Secrets
Manager secret.

1. Create a resource definition that includes an initial version.

• Replace secret-arn with the ARN of the secret that you copied in the previous step.

JSON Expanded

aws greengrass create-resource-definition --name MyGreengrassResources --
initial-version '{
 "Resources": [
 {
 "Id": "TwilioAuthToken",
 "Name": "MyTwilioAuthToken",
 "ResourceDataContainer": {
 "SecretsManagerSecretResourceData": {
 "ARN": "secret-arn"
 }
 }
 }
]

Create a resource definition and version 898

AWS IoT Greengrass Developer Guide, Version 1

}'

JSON Single-line

aws greengrass create-resource-definition \
--name MyGreengrassResources \
--initial-version '{"Resources": [{"Id": "TwilioAuthToken",
 "Name": "MyTwilioAuthToken", "ResourceDataContainer":
 {"SecretsManagerSecretResourceData": {"ARN": "secret-arn"}}}]}'

2. Copy the LatestVersionArn of the resource definition from the output. You use this value
to add the resource definition version to the group version that you deploy to the core.

Step 3: Create a connector definition and version

In this step, you configure parameters for the Twilio Notifications connector.

1. Create a connector definition with an initial version.

• Replace account-sid with your Twilio account SID.

• Replace secret-arn with the ARN of your Secrets Manager secret. The connector uses this
to get the value of the local secret.

• Replace phone-number with your Twilio-enabled phone number. Twilio uses this to initiate
the text message. This can be overridden in the input message payload. Use the following
format: +19999999999.

JSON Expanded

aws greengrass create-connector-definition --name MyGreengrassConnectors --
initial-version '{
 "Connectors": [
 {
 "Id": "MyTwilioNotificationsConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/
TwilioNotifications/versions/4",
 "Parameters": {
 "TWILIO_ACCOUNT_SID": "account-sid",

Create a connector definition and version 899

AWS IoT Greengrass Developer Guide, Version 1

 "TwilioAuthTokenSecretArn": "secret-arn",
 "TwilioAuthTokenSecretArn-ResourceId": "TwilioAuthToken",
 "DefaultFromPhoneNumber": "phone-number"
 }
 }
]
}'

JSON Single-line

aws greengrass create-connector-definition \
--name MyGreengrassConnectors \
--initial-version '{"Connectors": [{"Id": "MyTwilioNotificationsConnector",
 "ConnectorArn": "arn:aws:greengrass:region::/connectors/TwilioNotifications/
versions/4", "Parameters": {"TWILIO_ACCOUNT_SID": "account-sid",
 "TwilioAuthTokenSecretArn": "secret-arn", "TwilioAuthTokenSecretArn-
ResourceId": "TwilioAuthToken", "DefaultFromPhoneNumber": "phone-number"}}]}'

Note

TwilioAuthToken is the ID that you used in the previous step to create the secret
resource.

2. Copy the LatestVersionArn of the connector definition from the output. You use this value
to add the connector definition version to the group version that you deploy to the core.

Step 4: Create a Lambda function deployment package

To create a Lambda function, you must first create a Lambda function deployment package that
contains the function code and dependencies. Greengrass Lambda functions require the AWS
IoT Greengrass Core SDK for tasks such as communicating with MQTT messages in the core
environment and accessing local secrets. This tutorial creates a Python function, so you use the
Python version of the SDK in the deployment package.

1. From the AWS IoT Greengrass Core SDK downloads page, download the AWS IoT Greengrass
Core SDK for Python to your computer.

2. Unzip the downloaded package to get the SDK. The SDK is the greengrasssdk folder.

3. Save the following Python code function in a local file named temp_monitor.py.

Create a Lambda function deployment package 900

AWS IoT Greengrass Developer Guide, Version 1

import greengrasssdk
import json
import random

client = greengrasssdk.client('iot-data')

publish to the Twilio Notifications connector through the twilio/txt topic
def function_handler(event, context):
 temp = event['temperature']

 # check the temperature
 # if greater than 30C, send a notification
 if temp > 30:
 data = build_request(event)
 client.publish(topic='twilio/txt', payload=json.dumps(data))
 print('published:' + str(data))

 print('temperature:' + str(temp))
 return

build the Twilio request from the input data
def build_request(event):
 to_name = event['to_name']
 to_number = event['to_number']
 temp_report = 'temperature:' + str(event['temperature'])

 return {
 "request": {
 "recipient": {
 "name": to_name,
 "phone_number": to_number,
 "message": temp_report
 }
 },
 "id": "request_" + str(random.randint(1,101))
 }

4. Zip the following items into a file named temp_monitor_python.zip. When creating the
ZIP file, include only the code and dependencies, not the containing folder.

• temp_monitor.py. App logic.

Create a Lambda function deployment package 901

AWS IoT Greengrass Developer Guide, Version 1

• greengrasssdk. Required library for Python Greengrass Lambda functions that publish
MQTT messages.

This is your Lambda function deployment package.

Step 5: Create a Lambda function

Now, create a Lambda function that uses the deployment package.

1. Create an IAM role so you can pass in the role ARN when you create the function.

JSON Expanded

aws iam create-role --role-name Lambda_empty --assume-role-policy '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}'

JSON Single-line

aws iam create-role --role-name Lambda_empty --assume-role-policy '{"Version":
 "2012-10-17", "Statement": [{"Effect": "Allow", "Principal": {"Service":
 "lambda.amazonaws.com"},"Action": "sts:AssumeRole"}]}'

Note

AWS IoT Greengrass doesn't use this role because permissions for your Greengrass
Lambda functions are specified in the Greengrass group role. For this tutorial, you
create an empty role.

Create a Lambda function 902

AWS IoT Greengrass Developer Guide, Version 1

2. Copy the Arn from the output.

3. Use the AWS Lambda API to create the TempMonitor function. The following command
assumes that the zip file is in the current directory.

• Replace role-arn with the Arn that you copied.

aws lambda create-function \
--function-name TempMonitor \
--zip-file fileb://temp_monitor_python.zip \
--role role-arn \
--handler temp_monitor.function_handler \
--runtime python3.7

4. Publish a version of the function.

aws lambda publish-version --function-name TempMonitor --description 'First
 version'

5. Create an alias for the published version.

Greengrass groups can reference a Lambda function by alias (recommended) or by version.
Using an alias makes it easier to manage code updates because you don't have to change your
subscription table or group definition when the function code is updated. Instead, you just
point the alias to the new function version.

Note

AWS IoT Greengrass doesn't support Lambda aliases for $LATEST versions.

aws lambda create-alias --function-name TempMonitor --name GG_TempMonitor --
function-version 1

6. Copy the AliasArn from the output. You use this value when you configure the function for
AWS IoT Greengrass and when you create a subscription.

Now you're ready to configure the function for AWS IoT Greengrass.

Create a Lambda function 903

AWS IoT Greengrass Developer Guide, Version 1

Step 6: Create a function definition and version

To use a Lambda function on an AWS IoT Greengrass core, you create a function definition version
that references the Lambda function by alias and defines the group-level configuration. For more
information, see the section called “Controlling Greengrass Lambda function execution”.

1. Create a function definition that includes an initial version.

• Replace alias-arn with the AliasArn that you copied when you created the alias.

JSON Expanded

aws greengrass create-function-definition --name MyGreengrassFunctions --
initial-version '{
 "Functions": [
 {
 "Id": "TempMonitorFunction",
 "FunctionArn": "alias-arn",
 "FunctionConfiguration": {
 "Executable": "temp_monitor.function_handler",
 "MemorySize": 16000,
 "Timeout": 5
 }
 }
]
}'

JSON Single-line

aws greengrass create-function-definition \
--name MyGreengrassFunctions \
--initial-version '{"Functions": [{"Id": "TempMonitorFunction",
 "FunctionArn": "alias-arn", "FunctionConfiguration": {"Executable":
 "temp_monitor.function_handler", "MemorySize": 16000,"Timeout": 5}}]}'

2. Copy the LatestVersionArn from the output. You use this value to add the function
definition version to the group version that you deploy to the core.

3. Copy the Id from the output. You use this value later when you update the function.

Create a function definition and version 904

AWS IoT Greengrass Developer Guide, Version 1

Step 7: Create a subscription definition and version

In this step, you add a subscription that enables the Lambda function to send input data to the
connector. The connector defines the MQTT topics that it subscribes to, so this subscription uses
one of the topics. This is the same topic that the example function publishes to.

For this tutorial, you also create subscriptions that allow the function to receive simulated
temperature readings from AWS IoT and allow AWS IoT to receive status information from the
connector.

1. Create a subscription definition that contains an initial version that includes the subscriptions.

• Replace alias-arn with the AliasArn that you copied when you created the alias for the
function. Use this ARN for both subscriptions that use it.

JSON Expanded

aws greengrass create-subscription-definition --initial-version '{
 "Subscriptions": [
 {
 "Id": "TriggerNotification",
 "Source": "alias-arn",
 "Subject": "twilio/txt",
 "Target": "arn:aws:greengrass:region::/connectors/
TwilioNotifications/versions/4"
 },
 {
 "Id": "TemperatureInput",
 "Source": "cloud",
 "Subject": "temperature/input",
 "Target": "alias-arn"
 },
 {
 "Id": "OutputStatus",
 "Source": "arn:aws:greengrass:region::/connectors/
TwilioNotifications/versions/4",
 "Subject": "twilio/message/status",
 "Target": "cloud"
 }
]

Create a subscription definition and version 905

AWS IoT Greengrass Developer Guide, Version 1

}'

JSON Single-line

aws greengrass create-subscription-definition \
--initial-version '{"Subscriptions": [{"Id": "TriggerNotification", "Source":
 "alias-arn", "Subject": "twilio/txt", "Target": "arn:aws:greengrass:region::/
connectors/TwilioNotifications/versions/4"},{"Id": "TemperatureInput",
 "Source": "cloud", "Subject": "temperature/input", "Target": "alias-arn"},
{"Id": "OutputStatus", "Source": "arn:aws:greengrass:region::/connectors/
TwilioNotifications/versions/4", "Subject": "twilio/message/status", "Target":
 "cloud"}]}'

2. Copy the LatestVersionArn from the output. You use this value to add the subscription
definition version to the group version that you deploy to the core.

Step 8: Create a group version

Now, you're ready to create a group version that contains all of the items that you want to deploy.
You do this by creating a group version that references the target version of each component type.

First, get the group ID and the ARN of the core definition version. These values are required to
create the group version.

1. Get the ID of the group and latest group version:

a. Get the IDs of the target Greengrass group and group version. This procedure assumes
that this is the latest group and group version. The following query returns the most
recently created group.

aws greengrass list-groups --query "reverse(sort_by(Groups,
 &CreationTimestamp))[0]"

Or, you can query by name. Group names are not required to be unique, so multiple
groups might be returned.

aws greengrass list-groups --query "Groups[?Name=='MyGroup']"

Create a group version 906

AWS IoT Greengrass Developer Guide, Version 1

Note

You can also find these values in the AWS IoT console. The group ID is displayed
on the group's Settings page. Group version IDs are displayed on the group's
Deployments tab.

b. Copy the Id of the target group from the output. You use this to get the core definition
version and when you deploy the group.

c. Copy the LatestVersion from the output, which is the ID of the last version added to
the group. You use this to get the core definition version.

2. Get the ARN of the core definition version:

a. Get the group version. For this step, we assume that the latest group version includes a
core definition version.

• Replace group-id with the Id that you copied for the group.

• Replace group-version-id with the LatestVersion that you copied for the group.

aws greengrass get-group-version \
--group-id group-id \
--group-version-id group-version-id

b. Copy the CoreDefinitionVersionArn from the output.

3. Create a group version.

• Replace group-id with the Id that you copied for the group.

• Replace core-definition-version-arn with the CoreDefinitionVersionArn that
you copied for the core definition version.

• Replace resource-definition-version-arn with the LatestVersionArn that you
copied for the resource definition.

• Replace connector-definition-version-arn with the LatestVersionArn that you
copied for the connector definition.

• Replace function-definition-version-arn with the LatestVersionArn that you
copied for the function definition.

Create a group version 907

AWS IoT Greengrass Developer Guide, Version 1

• Replace subscription-definition-version-arn with the LatestVersionArn that
you copied for the subscription definition.

aws greengrass create-group-version \
--group-id group-id \
--core-definition-version-arn core-definition-version-arn \
--resource-definition-version-arn resource-definition-version-arn \
--connector-definition-version-arn connector-definition-version-arn \
--function-definition-version-arn function-definition-version-arn \
--subscription-definition-version-arn subscription-definition-version-arn

4. Copy the value of Version from the output. This is the ID of the group version. You use this
value to deploy the group version.

Step 9: Create a deployment

Deploy the group to the core device.

1. In a core device terminal, make sure that the AWS IoT Greengrass daemon is running.

a. To check whether the daemon is running:

ps aux | grep -E 'greengrass.*daemon'

If the output contains a root entry for /greengrass/ggc/packages/1.11.6/bin/
daemon, then the daemon is running.

b. To start the daemon:

cd /greengrass/ggc/core/
sudo ./greengrassd start

2. Create a deployment.

• Replace group-id with the Id that you copied for the group.

• Replace group-version-id with the Version that you copied for the new group version.

aws greengrass create-deployment \
--deployment-type NewDeployment \

Create a deployment 908

AWS IoT Greengrass Developer Guide, Version 1

--group-id group-id \
--group-version-id group-version-id

3. Copy the DeploymentId from the output.

4. Get the deployment status.

• Replace group-id with the Id that you copied for the group.

• Replace deployment-id with the DeploymentId that you copied for the deployment.

aws greengrass get-deployment-status \
--group-id group-id \
--deployment-id deployment-id

If the status is Success, the deployment was successful. For troubleshooting help, see
Troubleshooting.

Test the solution

1. On the AWS IoT console home page, choose Test.

2. For Subscribe to topic, use the following values, and then choose Subscribe. The Twilio
Notifications connector publishes status information to this topic.

Property Value

Subscription topic twilio/message/status

MQTT payload display Display payloads as strings

3. For Publish to topic, use the following values, and then choose Publish to invoke the function.

Property Value

Topic temperature/input

Message Replace recipient-name with a name
and recipient-phone-number with

Test the solution 909

AWS IoT Greengrass Developer Guide, Version 1

Property Value

the phone number of the text message
recipient. Example: +12345000000

{
 "to_name": " recipient-name ",
 "to_number": " recipient-phone-nu
mber ",
 "temperature": 31
}

If you're using a trial account, you must add
non-Twilio recipient phone numbers to a
list of verified phone numbers. For more
information, see Verify your Personal Phone
Number.

If successful, the recipient receives the text message and the console displays the success
status from the output data.

Now, change the temperature in the input message to 29 and publish. Because this is less
than 30, the TempMonitor function doesn't trigger a Twilio message.

See also

• Integrate with services and protocols using connectors

• the section called “AWS-provided Greengrass connectors”

• the section called “Get started with connectors (console)”

• AWS Secrets Manager commands in the AWS CLI Command Reference

• AWS Identity and Access Management (IAM) commands in the AWS CLI Command Reference

• AWS Lambda commands in the AWS CLI Command Reference

• AWS IoT Greengrass commands in the AWS CLI Command Reference

See also 910

https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account#verify-your-personal-phone-number
https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account#verify-your-personal-phone-number
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager
https://docs.aws.amazon.com/cli/latest/reference/iam
https://docs.aws.amazon.com/cli/latest/reference/lambda
https://docs.aws.amazon.com/cli/latest/reference/greengrass/index.html

AWS IoT Greengrass Developer Guide, Version 1

Greengrass Discovery RESTful API

All client devices that communicate with an AWS IoT Greengrass core must be a member of a
Greengrass group. Each group must have a Greengrass core. The Discovery API enables devices
to retrieve information required to connect to a Greengrass core that is in the same Greengrass
group as the client device. When a client device first comes online, it can connect to the AWS IoT
Greengrass service and use the Discovery API to find:

• The group to which it belongs. A client device can be a member of up to 10 groups.

• The IP address and port for the Greengrass core in the group.

• The group CA certificate, which can be used to authenticate the Greengrass core device.

Note

Client devices can also use the AWS IoT Device SDKs to discover connectivity information
for a Greengrass core. For more information, see AWS IoT Device SDK.

To use this API, send HTTP requests to the Discovery API endpoint. For example:

https://greengrass-ats.iot.region.amazonaws.com:port/greengrass/discover/thing/thing-
name

For a list of supported Amazon Web Services Regions and endpoints for the AWS IoT Greengrass
Discovery API, see AWS IoT Greengrass endpoints and quotas in the AWS General Reference. This
is a data plane only API. The endpoints for group management and AWS IoT Core operations are
different from the Discovery API endpoints.

Request

The request contains the standard HTTP headers and is sent to the Greengrass Discovery endpoint,
as shown in the following examples.

The port number depends on whether the core is configured to send HTTPS traffic over port
8443 or port 443. For more information, see the section called “Connect on port 443 or through a
network proxy”.

Request 911

https://docs.aws.amazon.com/general/latest/gr/greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

Port 8443

HTTP GET https://greengrass-ats.iot.region.amazonaws.com:8443/greengrass/discover/
thing/thing-name

Port 443

HTTP GET https://greengrass-ats.iot.region.amazonaws.com:443/greengrass/discover/
thing/thing-name

Clients that connect on port 443 must implement the Application Layer Protocol
Negotiation (ALPN) TLS extension and pass x-amzn-http-ca as the ProtocolName in the
ProtocolNameList. For more information, see Protocols in the AWS IoT Developer Guide.

Note

These examples use the Amazon Trust Services (ATS) endpoint, which is used with ATS
root CA certificates (recommended). Endpoints must match the root CA certificate
type. For more information, see the section called “Service endpoints must match the
certificate type”.

Response

Upon success, the response includes the standard HTTP headers plus the following code and body:

HTTP 200
BODY: response document

For more information, see Example discover response documents.

Discovery authorization

Retrieving the connectivity information requires a policy that allows the caller to perform
the greengrass:Discover action. TLS mutual authentication with a client certificate is the only
accepted form of authentication. The following is an example policy that allows a caller to perform
this action:

{

Response 912

https://tools.ietf.org/html/rfc7301
https://tools.ietf.org/html/rfc7301
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html

AWS IoT Greengrass Developer Guide, Version 1

 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "greengrass:Discover",
 "Resource": ["arn:aws:iot:us-west-2:123456789012:thing/MyThingName"]
 }]
}

Example discover response documents

The following document shows the response for a client device that is a member of a group with
one Greengrass core, one endpoint, and one group CA certificate:

{
 "GGGroups": [
 {
 "GGGroupId": "gg-group-01-id",
 "Cores": [
 {
 "thingArn": "core-01-thing-arn",
 "Connectivity": [
 {
 "id": "core-01-connection-id",
 "hostAddress": "core-01-address",
 "portNumber": core-01-port,
 "metadata": "core-01-description"
 }
]
 }
],
 "CAs": [
 "-----BEGIN CERTIFICATE-----cert-contents-----END CERTIFICATE-----"
]
 }
]
}

The following document shows the response for a client device that is a member of two groups
with one Greengrass core, multiple endpoints, and multiple group CA certificates:

{
 "GGGroups": [

Example discover response documents 913

AWS IoT Greengrass Developer Guide, Version 1

 {
 "GGGroupId": "gg-group-01-id",
 "Cores": [
 {
 "thingArn": "core-01-thing-arn",
 "Connectivity": [
 {
 "id": "core-01-connection-id",
 "hostAddress": "core-01-address",
 "portNumber": core-01-port,
 "metadata": "core-01-connection-1-description"
 },
 {
 "id": "core-01-connection-id-2",
 "hostAddress": "core-01-address-2",
 "portNumber": core-01-port-2,
 "metadata": "core-01-connection-2-description"
 }
]
 }
],
 "CAs": [
 "-----BEGIN CERTIFICATE-----cert-contents-----END CERTIFICATE-----",
 "-----BEGIN CERTIFICATE-----cert-contents-----END CERTIFICATE-----",
 "-----BEGIN CERTIFICATE-----cert-contents-----END CERTIFICATE-----"
]
 },
 {
 "GGGroupId": "gg-group-02-id",
 "Cores": [
 {
 "thingArn":"core-02-thing-arn",
 "Connectivity" : [
 {
 "id": "core-02-connection-id",
 "hostAddress": "core-02-address",
 "portNumber": core-02-port,
 "metadata": "core-02-connection-1-description"
 }
],
 "CAs": [
 "-----BEGIN CERTIFICATE-----cert-contents-----END CERTIFICATE-----",
 "-----BEGIN CERTIFICATE-----cert-contents-----END CERTIFICATE-----",
 "-----BEGIN CERTIFICATE-----cert-contents-----END CERTIFICATE-----"

Example discover response documents 914

AWS IoT Greengrass Developer Guide, Version 1

]
 }
]
 }
}

Note

A Greengrass group must define exactly one Greengrass core. Any response from the AWS
IoT Greengrass service that contains a list of Greengrass cores contains only one Greengrass
core.

If you have cURL installed, you can test the discovery request. For example:

$ curl --cert 1a23bc4d56.cert.pem --key 1a23bc4d56.private.key https://greengrass-
ats.iot.us-west-2.amazonaws.com:8443/greengrass/discover/thing/MyDevice
{"GGGroups":[{"GGGroupId":"1234a5b6-78cd-901e-2fgh-3i45j6k1789","Cores":
[{"thingArn":"arn:aws:iot:us-west-2:1234567
89012:thing/MyFirstGroup_Core","Connectivity":
[{"Id":"AUTOIP_192.168.1.4_1","HostAddress":"192.168.1.5","PortNumber
":8883,"Metadata":""}]}],"CAs":["-----BEGIN CERTIFICATE-----\ncert-contents\n-----END
 CERTIFICATE-----\n"]}]}

Example discover response documents 915

AWS IoT Greengrass Developer Guide, Version 1

Security in AWS IoT Greengrass

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely.
Third-party auditors regularly test and verify the effectiveness of our security as part of the
AWS Compliance Programs. To learn about the compliance programs that apply to AWS IoT
Greengrass, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors, including the sensitivity of your data, your company's
requirements, and applicable laws and regulations.

When you use AWS IoT Greengrass, you are also responsible for securing your devices, local
network connection, and private keys.

This documentation helps you understand how to apply the shared responsibility model when
using AWS IoT Greengrass. The following topics show you how to configure AWS IoT Greengrass to
meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your AWS IoT Greengrass resources.

Topics

• Overview of AWS IoT Greengrass security

• Data protection in AWS IoT Greengrass

• Device authentication and authorization for AWS IoT Greengrass

• Identity and access management for AWS IoT Greengrass

• Compliance validation for AWS IoT Greengrass

• Resilience in AWS IoT Greengrass

• Infrastructure security in AWS IoT Greengrass

916

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS IoT Greengrass Developer Guide, Version 1

• Configuration and vulnerability analysis in AWS IoT Greengrass

• AWS IoT Greengrass and interface VPC endpoints (AWS PrivateLink)

• Security best practices for AWS IoT Greengrass

Overview of AWS IoT Greengrass security

AWS IoT Greengrass uses X.509 certificates, AWS IoT policies, and IAM policies and roles to secure
the applications that run on devices in your local Greengrass environment.

The following diagram shows the components of the AWS IoT Greengrass security model:

A - Greengrass service role

A customer-created IAM role assumed by AWS IoT Greengrass when accessing to your AWS
resources from AWS IoT Core, AWS Lambda, and other AWS services. For more information, see
the section called “Greengrass service role”.

B - Core device certificate

An X.509 certificate used to authenticate a Greengrass core with AWS IoT Core and AWS
IoT Greengrass. For more information, see the section called “Device authentication and
authorization”.

Overview of AWS IoT Greengrass security 917

AWS IoT Greengrass Developer Guide, Version 1

C - Device certificate

An X.509 certificate used to authenticate a client device, which is also known as a connected
device, with AWS IoT Core and AWS IoT Greengrass. For more information, see the section
called “Device authentication and authorization”.

D - Group role

A customer-created IAM role assumed by AWS IoT Greengrass when calling AWS services from a
Greengrass core.

You use this role to specify access permissions that your user-defined Lambda functions and
connectors need to access AWS services, such as DynamoDB. You also use it to allow AWS IoT
Greengrass to export stream manager streams to AWS services and write to CloudWatch Logs.
For more information, see the section called “Greengrass group role”.

Note

AWS IoT Greengrass doesn't use the Lambda execution role that's specified in AWS
Lambda for the cloud version of a Lambda function.

E - MQTT server certificate

The certificate used for Transport Layer Security (TLS) mutual authentication between a
Greengrass core device and client devices in the Greengrass group. The certificate is signed by
the group CA certificate, which is stored in the AWS Cloud.

Device connection workflow

This section describes how client devices connect to the AWS IoT Greengrass service and
Greengrass core devices. Client devices are registered AWS IoT Core devices that are in the same
Greengrass group as the core device.

• A Greengrass core device uses its device certificate, private key, and the AWS IoT Core root CA
certificate to connect to the AWS IoT Greengrass service. On the core device, the crypto object
in the configuration file specifies the file path for these items.

• The Greengrass core device downloads group membership information from the AWS IoT
Greengrass service.

Device connection workflow 918

AWS IoT Greengrass Developer Guide, Version 1

• When a deployment is made to the Greengrass core device, the Device Certificate Manager (DCM)
handles local server certificate management for the Greengrass core device.

• A client device connects to the AWS IoT Greengrass service using its device certificate, private
key, and the AWS IoT Core root CA certificate. After making the connection, the client device uses
the Greengrass Discovery Service to find the IP address of its Greengrass core device. The client
device also downloads the group CA certificate, which is used for TLS mutual authentication with
the Greengrass core device.

• A client device attempts to connect to the Greengrass core device, passing its device certificate
and client ID. If the client ID matches the thing name of the client device and the certificate
is valid (part of the Greengrass group), the connection is made. Otherwise, the connection is
terminated.

The AWS IoT policy for client devices must grant the greengrass:Discover permission to allow
client devices to discover connectivity information for the core. For more information about the
policy statement, see the section called “Discovery authorization”.

Configuring AWS IoT Greengrass security

To configure your Greengrass application's security

1. Create an AWS IoT Core thing for your Greengrass core device.

2. Generate a key pair and device certificate for your Greengrass core device.

3. Create and attach an AWS IoT policy to the device certificate. The certificate and policy allow
the Greengrass core device access to AWS IoT Core and AWS IoT Greengrass services. For more
information, see Minimal AWS IoT policy for the core device.

Note

The use of thing policy variables (iot:Connection.Thing.*) in the AWS IoT policy
for a core device is not supported. The core uses the same device certificate to make
multiple connections to AWS IoT Core but the client ID in a connection might not be an
exact match of the core thing name.

4. Create a Greengrass service role. This IAM role authorizes AWS IoT Greengrass to access
resources from other AWS services on your behalf. This allows AWS IoT Greengrass to perform
essential tasks, such as retrieving AWS Lambda functions and managing device shadows.

Configuring AWS IoT Greengrass security 919

https://docs.aws.amazon.com/iot/latest/developerguide/iot-policies.html
https://docs.aws.amazon.com/iot/latest/developerguide/thing-policy-variables.html

AWS IoT Greengrass Developer Guide, Version 1

You can use the same service role across AWS Regions, but it must be associated with your
AWS account in every AWS Region where you use AWS IoT Greengrass.

5. (Optional) Create a Greengrass group role. This IAM role grants permission to Lambda
functions and connectors running on a Greengrass core to call AWS services. For example, the
Kinesis Firehose connector requires permission to write records to an Amazon Data Firehose
delivery stream.

You can attach only one role to a Greengrass group.

6. Create an AWS IoT Core thing for each device that connects to your Greengrass core.

Note

You can also use existing AWS IoT Core things and certificates.

7. Create device certificates, key pairs, and AWS IoT policies for each device that connects to your
Greengrass core.

AWS IoT Greengrass core security principals

The Greengrass core uses the following security principals: AWS IoT client, local MQTT server, and
local secrets manager. The configuration for these principals is stored in the crypto object in the
config.json configuration file. For more information, see the section called “AWS IoT Greengrass
core configuration file”.

This configuration includes the path to the private key used by the principal component for
authentication and encryption. AWS IoT Greengrass supports two modes of private key storage:
hardware-based or file system-based (default). For more information about storing keys on
hardware security modules, see the section called “Hardware security integration”.

AWS IoT Client

The AWS IoT client (IoT client) manages communication over the internet between the
Greengrass core and AWS IoT Core. AWS IoT Greengrass uses X.509 certificates with public
and private keys for mutual authentication when establishing TLS connections for this
communication. For more information, see X.509 certificates and AWS IoT Core in the AWS IoT
Core Developer Guide.

Security principals 920

https://docs.aws.amazon.com/iot/latest/developerguide/x509-client-certs.html

AWS IoT Greengrass Developer Guide, Version 1

The IoT client supports RSA and EC certificates and keys. The certificate and private key path
are specified for the IoTCertificate principal in config.json.

MQTT Server

The local MQTT server manages communication over the local network between the Greengrass
core and client devices in the group. AWS IoT Greengrass uses X.509 certificates with public
and private keys for mutual authentication when establishing TLS connections for this
communication.

By default, AWS IoT Greengrass generates an RSA private key for you. To configure the core to
use a different private key, you must provide the key path for the MQTTServerCertificate
principal in config.json. You are responsible for rotating a customer-provided key.

Private key support

RSA key EC key

Key type Supported Supported

Key parameters Minimum 2048-bit length NIST P-256 or NIST P-384
curve

Disk format PKCS#1, PKCS#8 SECG1, PKCS#8

Minimum GGC version • Use default RSA key: 1.0

• Specify an RSA key: 1.7

• Specify an EC key: 1.9

The configuration of the private key determines related processes. For the list of cipher suites
that the Greengrass core supports as a server, see the section called “TLS cipher suites support”.

If no private key is specified (default)

• AWS IoT Greengrass rotates the key based on your rotation settings.

• The core generates an RSA key, which is used to generate the certificate.

• The MQTT server certificate has an RSA public key and an SHA-256 RSA signature.

If an RSA private key is specified (requires GGC v1.7 or later)

• You are responsible for rotating the key.

• The core uses the specified key to generate the certificate.

• The RSA key must have a minimum length of 2048 bits.

Security principals 921

AWS IoT Greengrass Developer Guide, Version 1

• The MQTT server certificate has an RSA public key and an SHA-256 RSA signature.

If an EC private key is specified (requires GGC v1.9 or later)

• You are responsible for rotating the key.

• The core uses the specified key to generate the certificate.

• The EC private key must use an NIST P-256 or NIST P-384 curve.

• The MQTT server certificate has an EC public key and an SHA-256 RSA signature.

The MQTT server certificate presented by the core has an SHA-256 RSA signature,
regardless of the key type. For this reason, clients must support SHA-256 RSA certificate
validation to establish a secure connection with the core.

Secrets Manager

The local secrets manager securely manages local copies of secrets that you create in AWS
Secrets Manager. It uses a private key to secure the data key that's used to encrypt the secrets.
For more information, see Deploy secrets to the core.

By default, the IoT client private key is used, but you can specify a different private key for the
SecretsManager principal in config.json. Only the RSA key type is supported. For more
information, see the section called “Specify the private key for secret encryption”.

Note

Currently, AWS IoT Greengrass supports only the PKCS#1 v1.5 padding mechanism for
encryption and decryption of local secrets when using hardware-based private keys. If
you're following vendor-provided instructions to manually generate hardware-based
private keys, make sure to choose PKCS#1 v1.5. AWS IoT Greengrass doesn't support
Optimal Asymmetric Encryption Padding (OAEP).

Private key support

RSA key EC key

Key type Supported Not supported

Key parameters Minimum 2048-bit length Not applicable

Disk format PKCS#1, PKCS#8 Not applicable

Security principals 922

https://tools.ietf.org/html/rfc2313

AWS IoT Greengrass Developer Guide, Version 1

RSA key EC key

Minimum GGC version 1.7 Not applicable

Managed subscriptions in the MQTT messaging workflow

AWS IoT Greengrass uses a subscription table to define how MQTT messages can be exchanged
between client devices, functions, and connectors in a Greengrass group, and with AWS IoT Core or
the local shadow service. Each subscription specifies a source, target, and MQTT topic (or subject)
over which messages are sent or received. AWS IoT Greengrass allows messages to be sent from a
source to a target only if a corresponding subscription is defined.

A subscription defines the message flow in one direction only, from the source to the target. To
support two-way message exchange, you must create two subscriptions, one for each direction.

TLS cipher suites support

AWS IoT Greengrass uses the AWS IoT Core transport security model to encrypt communication
with the cloud by using TLS cipher suites. In addition, AWS IoT Greengrass data is encrypted when
at rest (in the cloud). For more information about AWS IoT Core transport security and supported
cipher suites, see Transport security in the AWS IoT Core Developer Guide.

Supported Cipher Suites for Local Network Communication

As opposed to AWS IoT Core, the AWS IoT Greengrass core supports the following local network
TLS cipher suites for certificate-signing algorithms. All of these cipher suites are supported when
private keys are stored on the file system. A subset are supported when the core is configured
to use hardware security modules (HSM). For more information, see the section called “Security
principals” and the section called “Hardware security integration”. The table also includes the
minimum version of AWS IoT Greengrass Core software required for support.

Cipher HSM support Minimum GGC
version

TLSv1.2 TLS_ECDHE
_RSA_WITH
_AES_128_CBC_SHA

Supported 1.0

Managed subscriptions in the MQTT messaging workflow 923

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Cipher_suite
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html

AWS IoT Greengrass Developer Guide, Version 1

Cipher HSM support Minimum GGC
version

TLS_ECDHE
_RSA_WITH
_AES_256_CBC_SHA

Supported 1.0

TLS_ECDHE
_RSA_WITH
_AES_256_
GCM_SHA384

Supported 1.0

TLS_RSA_W
ITH_AES_1
28_CBC_SHA

Not supported 1.0

TLS_RSA_W
ITH_AES_1
28_GCM_SHA256

Not supported 1.0

TLS_RSA_W
ITH_AES_2
56_CBC_SHA

Not supported 1.0

TLS_RSA_W
ITH_AES_2
56_GCM_SHA384

Not supported 1.0

TLS_ECDHE
_ECDSA_WI
TH_AES_12
8_GCM_SHA256

Supported 1.9

TLS_ECDHE
_ECDSA_WI
TH_AES_25
6_GCM_SHA384

Supported 1.9

TLS cipher suites support 924

AWS IoT Greengrass Developer Guide, Version 1

Cipher HSM support Minimum GGC
version

TLS_ECDHE
_RSA_WITH
_AES_128_CBC_SHA

Supported 1.0

TLS_ECDHE
_RSA_WITH
_AES_256_CBC_SHA

Supported 1.0

TLS_RSA_W
ITH_AES_1
28_CBC_SHA

Not supported 1.0

TLSv1.1

TLS_RSA_W
ITH_AES_2
56_CBC_SHA

Not supported 1.0

TLS_ECDHE
_RSA_WITH
_AES_128_CBC_SHA

Supported 1.0

TLS_ECDHE
_RSA_WITH
_AES_256_CBC_SHA

Supported 1.0

TLS_RSA_W
ITH_AES_1
28_CBC_SHA

Not supported 1.0

TLSv1.0

TLS_RSA_W
ITH_AES_2
56_CBC_SHA

Not supported 1.0

TLS cipher suites support 925

AWS IoT Greengrass Developer Guide, Version 1

Data protection in AWS IoT Greengrass

The AWS shared responsibility model applies to data protection in AWS IoT Greengrass. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with AWS IoT Greengrass or other AWS services using the console, API, AWS CLI, or
AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used
for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend
that you do not include credentials information in the URL to validate your request to that server.

For more information about protecting sensitive information in AWS IoT Greengrass, see the
section called “Don't log sensitive information”.

For more information about data protection, see the AWS Shared Responsibility Model and GDPR
blog post on the AWS Security Blog.

Data protection 926

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

AWS IoT Greengrass Developer Guide, Version 1

Topics

• Data encryption

• Hardware security integration

Data encryption

AWS IoT Greengrass uses encryption to protect data while in-transit (over the internet or local
network) and at rest (stored in the AWS Cloud).

Devices in a AWS IoT Greengrass environment often collect data that's sent to AWS services for
further processing. For more information about data encryption on other AWS services, see the
security documentation for that service.

Topics

• Encryption in transit

• Encryption at rest

• Key management for the Greengrass core device

Encryption in transit

AWS IoT Greengrass has three modes of communication where data is in transit:

• the section called “Data in transit over the internet”. Communication between a Greengrass core
and AWS IoT Greengrass over the internet is encrypted.

• the section called “Data in transit over the local network”. Communication between a Greengrass
core and client devices over a local network is encrypted.

• the section called “Data on the core device”. Communication between components on the
Greengrass core device is not encrypted.

Data in transit over the internet

AWS IoT Greengrass uses Transport Layer Security (TLS) to encrypt all communication over the
internet. All data sent to the AWS Cloud is sent over a TLS connection using MQTT or HTTPS
protocols, so it is secure by default. AWS IoT Greengrass uses the AWS IoT transport security model.
For more information, see Transport security in the AWS IoT Core Developer Guide.

Data encryption 927

https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html

AWS IoT Greengrass Developer Guide, Version 1

Data in transit over the local network

AWS IoT Greengrass uses TLS to encrypt all communication over the local network between the
Greengrass core and client devices. For more information, see Supported Cipher Suites for Local
Network Communication.

It is your responsibility to protect the local network and private keys.

For Greengrass core devices, it's your responsibility to:

• Keep the kernel updated with the latest security patches.

• Keep system libraries updated with the latest security patches.

• Protect private keys. For more information, see the section called “Key management”.

For client devices, it's your responsibility to:

• Keep the TLS stack up to date.

• Protect private keys.

Data on the core device

AWS IoT Greengrass doesn't encrypt data exchanged locally on the Greengrass core device because
the data doesn't leave the device. This includes communication between user-defined Lambda
functions, connectors, the AWS IoT Greengrass Core SDK, and system components, such as stream
manager.

Encryption at rest

AWS IoT Greengrass stores your data:

• the section called “Data at rest in the AWS Cloud”. This data is encrypted.

• the section called “Data at rest on the Greengrass core”. This data is not encrypted (except local
copies of your secrets).

Data at rest in the AWS Cloud

AWS IoT Greengrass encrypts customer data stored in the AWS Cloud. This data is protected using
AWS KMS keys that are managed by AWS IoT Greengrass.

Data encryption 928

AWS IoT Greengrass Developer Guide, Version 1

Data at rest on the Greengrass core

AWS IoT Greengrass relies on Unix file permissions and full-disk encryption (if enabled) to protect
data at rest on the core. It is your responsibility to secure the file system and device.

However, AWS IoT Greengrass does encrypt local copies of your secrets retrieved from AWS Secrets
Manager. For more information, see the section called “Secrets encryption”.

Key management for the Greengrass core device

It's the responsibility of the customer to guarantee secure storage of cryptographic (public and
private) keys on the Greengrass core device. AWS IoT Greengrass uses public and private keys for
the following scenarios:

• The IoT client key is used with the IoT certificate to authenticate the Transport Layer Security
(TLS) handshake when a Greengrass core connects to AWS IoT Core. For more information, see
the section called “Device authentication and authorization”.

Note

The key and certificate are also referred to as the core private key and the core device
certificate.

• The MQTT server key is used the MQTT server certificate to authenticate TLS connections
between core and client devices. For more information, see the section called “Device
authentication and authorization”.

• The local secrets manager also uses the IoT client key to protect the data key used to encrypt
local secrets, but you can provide your own private key. For more information, see the section
called “Secrets encryption”.

A Greengrass core supports private key storage using file system permissions, hardware security
modules, or both. If you use file system-based private keys, you are responsible for their secure
storage on the core device.

On a Greengrass core, the location of your private keys are specified in the crypto section of the
config.json file. If you configure the core to use a customer-provided key for the MQTT server
certificate, it is your responsibility to rotate the key. For more information, see the section called
“Security principals”.

Data encryption 929

AWS IoT Greengrass Developer Guide, Version 1

For client devices, it's your responsibility to keep the TLS stack up to date and protect private keys.
Private keys are used with device certificates to authenticate TLS connections with the AWS IoT
Greengrass service.

Hardware security integration

This feature is available for AWS IoT Greengrass Core v1.7 and later.

AWS IoT Greengrass supports the use of hardware security modules (HSM) through the PKCS#11
interface for secure storage and offloading of private keys. This prevents keys from being exposed
or duplicated in software. Private keys can be securely stored on hardware modules, such as HSMs,
Trusted Platform Modules (TPM), or other cryptographic elements.

Search for devices that are qualified for this feature in the AWS Partner Device Catalog.

The following diagram shows the hardware security architecture for an AWS IoT Greengrass core.

On a standard installation, AWS IoT Greengrass uses two private keys. One key is used by the AWS
IoT client (IoT client) component during the Transport Layer Security (TLS) handshake when a
Greengrass core connects to AWS IoT Core. (This key is also referred to as the core private key.)
The other key is used by the local MQTT server, which enables Greengrass devices to communicate
with the Greengrass core. If you want to use hardware security for both components, you can
use a shared private key or separate private keys. For more information, see the section called “
Provisioning practices”.

Hardware security integration 930

https://devices.amazonaws.com/search?kw=%22HSI%22&page=1

AWS IoT Greengrass Developer Guide, Version 1

Note

On a standard installation, the local secrets manager also uses the IoT client key for its
encryption process, but you can use your own private key. It must be an RSA key with a
minimum length of 2048 bits. For more information, see the section called “Specify the
private key for secret encryption”.

Requirements

Before you can configure hardware security for a Greengrass core, you must have the following:

• A hardware security module (HSM) that supports your target private key configuration for the
IoT client, local MQTT server, and local secrets manager components. The configuration can
include one, two, or three hardware-based private keys, depending on whether you configure
the components to share keys. For more information about private key support, see the section
called “Security principals”.

• For RSA keys: An RSA-2048 key size (or larger) and PKCS#1 v1.5 signature scheme.

• For EC keys: An NIST P-256 or NIST P-384 curve.

Note

Search for devices that are qualified for this feature in the AWS Partner Device Catalog.

• A PKCS#11 provider library that is loadable at runtime (using libdl) and provides PKCS#11
functions.

• The hardware module must be resolvable by slot label, as defined in the PKCS#11 specification.

• The private key must be generated and loaded on the HSM by using the vendor-provided
provisioning tools.

• The private key must be resolvable by object label.

• The core device certificate. This is an IoT client certificate that corresponds to the private key.

• If you're using the Greengrass OTA update agent, the OpenSSL libp11 PKCS#11 wrapper library
must be installed. For more information, see the section called “Configure OTA updates”.

In addition, make sure that the following conditions are met:

Hardware security integration 931

https://devices.amazonaws.com/search?kw=%22HSI%22&page=1
https://github.com/OpenSC/libp11

AWS IoT Greengrass Developer Guide, Version 1

• The IoT client certificates that are associated with the private key are registered in AWS IoT and
activated. You can verify this in the AWS IoT console under Manage, expand All devices, choose
Things and choose the Certificates tab for the core thing.

• The AWS IoT Greengrass Core software v1.7 or later is installed on the core device, as described
in Module 2 of the Getting Started tutorial. Version 1.9 or later is required to use an EC key for
the MQTT server.

• The certificates are attached to the Greengrass core. You can verify this from the Manage page
for the core thing in the AWS IoT console.

Note

Currently, AWS IoT Greengrass doesn't support loading the CA certificate or IoT client
certificate directly from the HSM. The certificates must be loaded as plain-text files on the
file system in a location that can be read by Greengrass.

Hardware security configuration for an AWS IoT Greengrass core

Hardware security is configured in the Greengrass configuration file. This is the config.json file
that's located in the /greengrass-root/config directory.

Note

To walk through the process of setting up an HSM configuration using a pure software
implementation, see the section called “Module 7: Simulating hardware security
integration”.

Important

The simulated configuration in the example doesn't provide any security benefits.
It's intended to allow you to learn about the PKCS#11 specification and do initial
testing of your software if you plan to use a hardware-based HSM in the future.

To configure hardware security in AWS IoT Greengrass, you edit the crypto object in
config.json.

Hardware security integration 932

AWS IoT Greengrass Developer Guide, Version 1

When using hardware security, the crypto object is used to specify paths to certificates, private
keys, and assets for the PKCS#11 provider library on the core, as shown in the following example.

"crypto": {
 "PKCS11" : {
 "OpenSSLEngine" : "/path-to-p11-openssl-engine",
 "P11Provider" : "/path-to-pkcs11-provider-so",
 "slotLabel" : "crypto-token-name",
 "slotUserPin" : "crypto-token-user-pin"
 },
 "principals" : {
 "IoTCertificate" : {
 "privateKeyPath" : "pkcs11:object=core-private-key-label;type=private",
 "certificatePath" : "file:///path-to-core-device-certificate"
 },
 "MQTTServerCertificate" : {
 "privateKeyPath" : "pkcs11:object=server-private-key-label;type=private"
 },
 "SecretsManager" : {
 "privateKeyPath": "pkcs11:object=core-private-key-label;type=private"
 }
 },
 "caPath" : "file:///path-to-root-ca"

The crypto object contains the following properties:

Field Description Notes

caPath The absolute path to the AWS
IoT root CA.

Must be a file URI of the
form: file:///absolute/
path/to/file .

Note

Make sure that your
endpoints correspon
d to your certificate
type.

PKCS11

Hardware security integration 933

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

OpenSSLEngine Optional. The absolute path
to the OpenSSL engine
.so file to enable PKCS#11
support on OpenSSL.

Must be a path to a file on the
file system.

This property is required if
you're using the Greengras
s OTA update agent with
hardware security. For more
information, see the section
called “Configure OTA
updates”.

P11Provider The absolute path to the
PKCS#11 implementation's
libdl-loadable library.

Must be a path to a file on the
file system.

slotLabel The slot label that's used
to identify the hardware
module.

Must conform to PKCS#11
label specifications.

slotUserPin The user PIN that's used to
authenticate the Greengrass
core to the module.

Must have sufficient permissio
ns to perform C_Sign with the
configured private keys.

principals

IoTCertificate The certificate and private key that the core uses to make
requests to AWS IoT.

IoTCertificate
 .privateKeyPath

The path to the core private
key.

For file system storage,
must be a file URI of the
form: file:///absolute/
path/to/file .

For HSM storage, must be an
RFC 7512 PKCS#11 path that
specifies the object label.

Hardware security integration 934

https://tools.ietf.org/html/rfc7512

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

IoTCertificate
 .certificatePath

The absolute path to the core
device certificate.

Must be a file URI of the
form: file:///absolute/
path/to/file .

MQTTServerCertific
ate

Optional. The private key that the core uses in combination
with the certificate to act as an MQTT server or gateway.

MQTTServerCertific
ate .privateKeyPath

The path to the local MQTT
server private key.

Use this value to specify your
own private key for the local
MQTT server.

For file system storage,
must be a file URI of the
form: file:///absolute/
path/to/file .

For HSM storage, must be an
RFC 7512 PKCS#11 path that
specifies the object label.

If this property is omitted,
AWS IoT Greengrass rotates
the key based your rotation
settings. If specified, the
customer is responsible for
rotating the key.

SecretsManager The private key that secures the data key used for encryption.
For more information, see Deploy secrets to the core.

Hardware security integration 935

https://tools.ietf.org/html/rfc7512

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

SecretsManager
 .privateKeyPath

The path to the local secrets
manager private key.

Only an RSA key is supported.

For file system storage,
must be a file URI of the
form: file:///absolute/
path/to/file .

For HSM storage, must be
an RFC 7512 PKCS#11 path
that specifies the object label.
The private key must be
generated using the PKCS#1
v1.5 padding mechanism.

Field Description Notes

caPath The absolute path to the AWS
IoT root CA.

Must be a file URI of the
form: file:///absolute/
path/to/file .

Note

Make sure that your
endpoints correspon
d to your certificate
type.

PKCS11

OpenSSLEngine Optional. The absolute path
to the OpenSSL engine
.so file to enable PKCS#11
support on OpenSSL.

Must be a path to a file on the
file system.

This property is required if
you're using the Greengras
s OTA update agent with

Hardware security integration 936

https://tools.ietf.org/html/rfc7512
https://tools.ietf.org/html/rfc2313
https://tools.ietf.org/html/rfc2313

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

hardware security. For more
information, see the section
called “Configure OTA
updates”.

P11Provider The absolute path to the
PKCS#11 implementation's
libdl-loadable library.

Must be a path to a file on the
file system.

slotLabel The slot label that's used
to identify the hardware
module.

Must conform to PKCS#11
label specifications.

slotUserPin The user PIN that's used to
authenticate the Greengrass
core to the module.

Must have sufficient permissio
ns to perform C_Sign with the
configured private keys.

principals

IoTCertificate The certificate and private key that the core uses to make
requests to AWS IoT.

IoTCertificate
 .privateKeyPath

The path to the core private
key.

For file system storage,
must be a file URI of the
form: file:///absolute/
path/to/file .

For HSM storage, must be an
RFC 7512 PKCS#11 path that
specifies the object label.

IoTCertificate
 .certificatePath

The absolute path to the core
device certificate.

Must be a file URI of the
form: file:///absolute/
path/to/file .

MQTTServerCertific
ate

Optional. The private key that the core uses in combination
with the certificate to act as an MQTT server or gateway.

Hardware security integration 937

https://tools.ietf.org/html/rfc7512

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

MQTTServerCertific
ate .privateKeyPath

The path to the local MQTT
server private key.

Use this value to specify your
own private key for the local
MQTT server.

For file system storage,
must be a file URI of the
form: file:///absolute/
path/to/file .

For HSM storage, must be an
RFC 7512 PKCS#11 path that
specifies the object label.

If this property is omitted,
AWS IoT Greengrass rotates
the key based your rotation
settings. If specified, the
customer is responsible for
rotating the key.

SecretsManager The private key that secures the data key used for encryption.
For more information, see Deploy secrets to the core.

SecretsManager
 .privateKeyPath

The path to the local secrets
manager private key.

Only an RSA key is supported.

For file system storage,
must be a file URI of the
form: file:///absolute/
path/to/file .

For HSM storage, must be
an RFC 7512 PKCS#11 path
that specifies the object label.
The private key must be
generated using the PKCS#1
v1.5 padding mechanism.

Hardware security integration 938

https://tools.ietf.org/html/rfc7512
https://tools.ietf.org/html/rfc7512
https://tools.ietf.org/html/rfc2313
https://tools.ietf.org/html/rfc2313

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

caPath The absolute path to the AWS
IoT root CA.

Must be a file URI of the
form: file:///absolute/
path/to/file .

Note

Make sure that your
endpoints correspon
d to your certificate
type.

PKCS11

OpenSSLEngine Optional. The absolute path
to the OpenSSL engine
.so file to enable PKCS#11
support on OpenSSL.

Must be a path to a file on the
file system.

This property is required if
you're using the Greengras
s OTA update agent with
hardware security. For more
information, see the section
called “Configure OTA
updates”.

P11Provider The absolute path to the
PKCS#11 implementation's
libdl-loadable library.

Must be a path to a file on the
file system.

slotLabel The slot label that's used
to identify the hardware
module.

Must conform to PKCS#11
label specifications.

slotUserPin The user PIN that's used to
authenticate the Greengrass
core to the module.

Must have sufficient permissio
ns to perform C_Sign with the
configured private keys.

Hardware security integration 939

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

principals

IoTCertificate The certificate and private key that the core uses to make
requests to AWS IoT.

IoTCertificate
 .privateKeyPath

The path to the core private
key.

For file system storage,
must be a file URI of the
form: file:///absolute/
path/to/file .

For HSM storage, must be an
RFC 7512 PKCS#11 path that
specifies the object label.

IoTCertificate
 .certificatePath

The absolute path to the core
device certificate.

Must be a file URI of the
form: file:///absolute/
path/to/file .

MQTTServerCertific
ate

Optional. The private key that the core uses in combination
with the certificate to act as an MQTT server or gateway.

Hardware security integration 940

https://tools.ietf.org/html/rfc7512

AWS IoT Greengrass Developer Guide, Version 1

Field Description Notes

MQTTServerCertific
ate .privateKeyPath

The path to the local MQTT
server private key.

Use this value to specify your
own private key for the local
MQTT server.

For file system storage,
must be a file URI of the
form: file:///absolute/
path/to/file .

For HSM storage, must be an
RFC 7512 PKCS#11 path that
specifies the object label.

If this property is omitted,
AWS IoT Greengrass rotates
the key based your rotation
settings. If specified, the
customer is responsible for
rotating the key.

SecretsManager The private key that secures the data key used for encryption.
For more information, see Deploy secrets to the core.

SecretsManager
 .privateKeyPath

The path to the local secrets
manager private key.

Only an RSA key is supported.

For file system storage,
must be a file URI of the
form: file:///absolute/
path/to/file .

For HSM storage, must be
an RFC 7512 PKCS#11 path
that specifies the object label.
The private key must be
generated using the PKCS#1
v1.5 padding mechanism.

Hardware security integration 941

https://tools.ietf.org/html/rfc7512
https://tools.ietf.org/html/rfc7512
https://tools.ietf.org/html/rfc2313
https://tools.ietf.org/html/rfc2313

AWS IoT Greengrass Developer Guide, Version 1

Provisioning practices for AWS IoT Greengrass hardware security

The following are security and performance-related provisioning practices.

Security

• Generate private keys directly on the HSM by using the internal hardware random-number
generator.

Note

If you configure private keys to use with this feature (by following the instructions
provided by the hardware vendor), be aware that AWS IoT Greengrass currently
supports only the PKCS1 v1.5 padding mechanism for encryption and decryption of
local secrets. AWS IoT Greengrass doesn't support Optimal Asymmetric Encryption
Padding (OAEP).

• Configure private keys to prohibit export.

• Use the provisioning tool that's provided by the hardware vendor to generate a certificate
signing request (CSR) using the hardware-protected private key, and then use the AWS IoT
console to generate a client certificate.

Note

The practice of rotating keys doesn't apply when private keys are generated on an HSM.

Performance

The following diagram shows the IoT client component and local MQTT server on the AWS IoT
Greengrass core. If you want to use an HSM configuration for both components, you can use the
same private key or separate private keys. If you use separate keys, they must be stored in the
same slot.

Note

AWS IoT Greengrass doesn't impose any limits on the number of keys that you store
on the HSM, so you can store private keys for the IoT client, MQTT server, and secrets

Hardware security integration 942

AWS IoT Greengrass Developer Guide, Version 1

manager components. However, some HSM vendors might impose limits on the number
of keys you can store in a slot.

In general, the IoT client key is not used very frequently because the AWS IoT Greengrass Core
software maintains long-lived connections to the cloud. However, the MQTT server key is used
every time that a Greengrass device connects to the core. These interactions directly affect
performance.

When the MQTT server key is stored on the HSM, the rate at which devices can connect depends
on the number of RSA signature operations per second that the HSM can perform. For example,
if the HSM takes 300 milliseconds to perform an RSASSA-PKCS1-v1.5 signature on an RSA-2048
private key, then only three devices can connect to the Greengrass core per second. After
the connections are made, the HSM is no longer used and the standard quotas for AWS IoT
Greengrass apply.

To mitigate performance bottlenecks, you can store the private key for the MQTT server on
the file system instead of on the HSM. With this configuration, the MQTT server behaves as if
hardware security isn't enabled.

AWS IoT Greengrass supports multiple key-storage configurations for the IoT client and MQTT
server components, so you can optimize for your security and performance requirements. The
following table includes example configurations.

Hardware security integration 943

https://docs.aws.amazon.com/general/latest/gr/greengrass.html#limits_greengrass
https://docs.aws.amazon.com/general/latest/gr/greengrass.html#limits_greengrass

AWS IoT Greengrass Developer Guide, Version 1

Configuration IoT key MQTT key Performance

HSM Shared Key HSM: Key A HSM: Key A Limited by the HSM
or CPU

HSM Separate Keys HSM: Key A HSM: Key B Limited by the HSM
or CPU

HSM for IoT only HSM: Key A File System: Key B Limited by the CPU

Legacy File System: Key A File System: Key B Limited by the CPU

To configure the Greengrass core to use file system-based keys for the MQTT server, omit the
principals.MQTTServerCertificate section from config.json (or specify a file-based
path to the key if you're not using the default key generated by AWS IoT Greengrass). The
resulting crypto object looks like this:

"crypto": {
 "PKCS11": {
 "OpenSSLEngine": "...",
 "P11Provider": "...",
 "slotLabel": "...",
 "slotUserPin": "..."
 },
 "principals": {
 "IoTCertificate": {
 "privateKeyPath": "...",
 "certificatePath": "..."
 },
 "SecretsManager": {
 "privateKeyPath": "..."
 }
 },
 "caPath" : "..."
}

Hardware security integration 944

AWS IoT Greengrass Developer Guide, Version 1

Supported cipher suites for hardware security integration

AWS IoT Greengrass supports a set of cipher suites when the core is configured for hardware
security. This is a subset of the cipher suites that are supported when the core is configured to use
file-based security. For more information, see the section called “TLS cipher suites support”.

Note

When connecting to the Greengrass core from Greengrass devices over the local network,
be sure to use one of the supported cipher suites to make the TLS connection.

Configure support for over-the-air updates

To enable over-the-air (OTA) updates of the AWS IoT Greengrass Core software when using
hardware security, you must install the OpenSC libp11 PKCS#11 wrapper library and edit the
Greengrass configuration file. For more information about OTA updates, see OTA updates of AWS
IoT Greengrass Core software.

1. Stop the Greengrass daemon.

cd /greengrass-root/ggc/core/
sudo ./greengrassd stop

Note

greengrass-root represents the path where the AWS IoT Greengrass Core software
is installed on your device. Typically, this is the /greengrass directory.

2. Install the OpenSSL engine. OpenSSL 1.0 or 1.1 are supported.

sudo apt-get install libengine-pkcs11-openssl

3. Find the path to the OpenSSL engine (libpkcs11.so) on your system:

a. Get the list of installed packages for the library.

sudo dpkg -L libengine-pkcs11-openssl

Hardware security integration 945

https://github.com/OpenSC/libp11

AWS IoT Greengrass Developer Guide, Version 1

The libpkcs11.so file is located in the engines directory.

b. Copy the full path to the file (for example, /usr/lib/ssl/engines/libpkcs11.so).

4. Open the Greengrass configuration file. This is the config.json file in the /greengrass-
root/config directory.

5. For the OpenSSLEngine property, enter the path to the libpkcs11.so file.

{
 "crypto": {
 "caPath" : "file:///path-to-root-ca",
 "PKCS11" : {
 "OpenSSLEngine" : "/path-to-p11-openssl-engine",
 "P11Provider" : "/path-to-pkcs11-provider-so",
 "slotLabel" : "crypto-token-name",
 "slotUserPin" : "crypto-token-user-pin"
 },
 ...
 }
 ...
}

Note

If the OpenSSLEngine property doesn't exist in the PKCS11 object, then add it.

6. Start the Greengrass daemon.

cd /greengrass-root/ggc/core/
sudo ./greengrassd start

Backward compatibility with earlier versions of the AWS IoT Greengrass core
software

The AWS IoT Greengrass Core software with hardware security support is fully backward
compatible with config.json files that are generated for v1.6 and earlier. If the crypto object
is not present in the config.json configuration file, then AWS IoT Greengrass uses the file-
based coreThing.certPath, coreThing.keyPath, and coreThing.caPath properties. This

Hardware security integration 946

AWS IoT Greengrass Developer Guide, Version 1

backward compatibility applies to Greengrass OTA updates, which do not overwrite a file-based
configuration that's specified in config.json.

Hardware without PKCS#11 support

The PKCS#11 library is typically provided by the hardware vendor or is open source. For example,
with standards-compliant hardware (such as TPM1.2), it might be possible to use existing open
source software. However, if your hardware doesn't have a corresponding PKCS#11 library
implementation, or if you want to write a custom PKCS#11 provider, you should contact your AWS
Enterprise Support representative with integration-related questions.

See also

• PKCS #11 Cryptographic Token Interface Usage Guide Version 2.40. Edited by John Leiseboer and
Robert Griffin. 16 November 2014. OASIS Committee Note 02. http://docs.oasis-open.org/
pkcs11/pkcs11-ug/v2.40/cn02/pkcs11-ug-v2.40-cn02.html. Latest version: http://docs.oasis-
open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html.

• RFC 7512

• PKCS #1: RSA Encryption Version 1.5

Device authentication and authorization for AWS IoT
Greengrass

Devices in AWS IoT Greengrass environments use X.509 certificates for authentication and AWS
IoT policies for authorization. Certificates and policies allow devices to securely connect with each
other, AWS IoT Core, and AWS IoT Greengrass.

X.509 certificates are digital certificates that use the X.509 public key infrastructure standard to
associate a public key with the identity contained in a certificate. X.509 certificates are issued by a
trusted entity called a certificate authority (CA). The CA maintains one or more special certificates
called CA certificates that it uses to issue X.509 certificates. Only the certificate authority has
access to CA certificates.

AWS IoT policies define the set of operations allowed for AWS IoT devices. Specifically, they
allow and deny access to AWS IoT Core and AWS IoT Greengrass data plane operations, such as
publishing MQTT messages and retrieving device shadows.

Device authentication and authorization 947

http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/cn02/pkcs11-ug-v2.40-cn02.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/cn02/pkcs11-ug-v2.40-cn02.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
https://tools.ietf.org/html/rfc7512
https://tools.ietf.org/html/rfc2313

AWS IoT Greengrass Developer Guide, Version 1

All devices require an entry in the AWS IoT Core registry and an activated X.509 certificate with an
attached AWS IoT policy. Devices fall into two categories:

• Greengrass cores. Greengrass core devices use certificates and AWS IoT policies to connect
to AWS IoT Core. The certificates and policies also allow AWS IoT Greengrass to deploy
configuration information, Lambda functions, connectors, and managed subscriptions to core
devices.

• Client devices. Client devices (also called connected devices, Greengrass devices, or devices)
are devices that connect to a Greengrass core over MQTT. They use certificates and policies to
connect to AWS IoT Core and the AWS IoT Greengrass service. This allows client devices to use
the AWS IoT Greengrass Discovery Service to find and connect to a core device. A client device
uses the same certificate to connect to the AWS IoT Core device gateway and core device. Client
devices also use discovery information for mutual authentication with the core device. For more
information, see the section called “Device connection workflow” and the section called “Manage
device authentication with the Greengrass core”.

X.509 certificates

Communication between core and client devices and between devices and AWS IoT Core or AWS
IoT Greengrass must be authenticated. This mutual authentication is based on registered X.509
device certificates and cryptographic keys.

In an AWS IoT Greengrass environment, devices use certificates with public and private keys for the
following Transport Layer Security (TLS) connections:

• The AWS IoT client component on the Greengrass core connecting to AWS IoT Core and AWS IoT
Greengrass over the internet.

• Client devices connecting to AWS IoT Greengrass to get core discovery information over the
internet.

• The MQTT server component on the Greengrass core connecting to client devices in the group
over the local network.

The AWS IoT Greengrass core device stores certificates in two locations:

• Core device certificate in /greengrass-root/certs. Typically, the core device certificate is
named hash.cert.pem (for example, 86c84488a5.cert.pem). This certificate is used by the

X.509 certificates 948

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT client for mutual authentication when the core connects to the AWS IoT Core and AWS
IoT Greengrass services.

• MQTT server certificate in /greengrass-root/ggc/var/state/server. The MQTT server
certificate is named server.crt. This certificate is used for mutual authentication between the
local MQTT server (on the Greengrass core) and Greengrass devices.

Note

greengrass-root represents the path where the AWS IoT Greengrass Core software is
installed on your device. Typically, this is the /greengrass directory.

For more information, see the section called “Security principals”.

Certificate authority (CA) certificates

Core devices and client devices download a root CA certificate used for authentication with AWS
IoT Core and AWS IoT Greengrass services. We recommend that you use an Amazon Trust Services
(ATS) root CA certificate, such as Amazon Root CA 1. For more information, see CA certificates for
server authentication in the AWS IoT Core Developer Guide.

Note

Your root CA certificate type must match your endpoint. Use an ATS root CA certificate with
an ATS endpoint (preferred) or a VeriSign root CA certificate with a legacy endpoint. Only
some Amazon Web Services Regions support legacy endpoints. For more information, see
the section called “Service endpoints must match the certificate type”.

Client devices also download the Greengrass group CA certificate. This is used to validate the MQTT
server certificate on the Greengrass core during mutual authentication. For more information,
see the section called “Device connection workflow”. The default expiration of the MQTT server
certificate is seven days.

Certificate rotation on the local MQTT server

Client devices use the local MQTT server certificate for mutual authentication with the Greengrass
core device. By default, this certificate expires in seven days. This limited period is based on security

X.509 certificates 949

https://www.amazontrust.com/repository/AmazonRootCA1.pem
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html#server-authentication-certs
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html#server-authentication-certs

AWS IoT Greengrass Developer Guide, Version 1

best practices. The MQTT server certificate is signed by the group CA certificate, which is stored in
the cloud.

For certificate rotation to occur, your Greengrass core device must be online and able to access
the AWS IoT Greengrass service directly on a regular basis. When the certificate expires, the core
device attempts to connect to the AWS IoT Greengrass service to obtain a new certificate. If the
connection is successful, the core device downloads a new MQTT server certificate and restarts the
local MQTT service. At this point, all client devices that are connected to the core are disconnected.
If the core device is offline at the time of expiry, it does not receive the replacement certificate.
Any new attempts to connect to the core device are rejected. Existing connections are not affected.
Client devices cannot connect to the core device until the connection to the AWS IoT Greengrass
service is restored and a new MQTT server certificate can be downloaded.

You can set the expiration to any value between 7 and 30 days, depending on your needs. More
frequent rotation requires more frequent cloud connection. Less frequent rotation can pose
security concerns. If you want to set the certificate expiration to a value higher than 30 days,
contact AWS Support.

In the AWS IoT console, you can manage the certificate on the group's Settings page. In the AWS
IoT Greengrass API, you can use the UpdateGroupCertificateConfiguration action.

When the MQTT server certificate expires, any attempt to validate the certificate fails. Client
devices must be able to detect the failure and terminate the connection.

AWS IoT policies for data plane operations

Use AWS IoT policies to authorize access to the AWS IoT Core and AWS IoT Greengrass data plane.
The AWS IoT Core data plane consists of operations for devices, users, and applications, such as
connecting to AWS IoT Core and subscribing to topics. The AWS IoT Greengrass data plane consists
of operations for Greengrass devices, such as retrieving deployments and updating connectivity
information.

An AWS IoT policy is a JSON document that's similar to an IAM policy. It contains one or more
policy statements that specify the following properties:

• Effect. The access mode, which can be Allow or Deny.

• Action. The list of actions that are allowed or denied by the policy.

• Resource. The list of resources on which the action is allowed or denied.

AWS IoT policies 950

https://docs.aws.amazon.com/greengrass/v1/apireference/updategroupcertificateconfiguration-put.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_grammar.html#policies-grammar-json

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT policies support * as a wildcard character, and treat MQTT wildcard characters (+ and #) as
literal strings. For more information about the * wildcard, see Using wildcard in resource ARNs in
the AWS Identity and Access Management User Guide.

For more information, see AWS IoT policies and AWS IoT policy actions in the AWS IoT Core
Developer Guide.

Note

AWS IoT Core enables you to attach AWS IoT policies to thing groups to define permissions
for groups of devices. Thing group policies don't allow access to AWS IoT Greengrass data
plane operations. To allow a thing access to an AWS IoT Greengrass data plane operation,
add the permission to an AWS IoT policy that you attach to the thing's certificate.

AWS IoT Greengrass policy actions

Greengrass Core Actions

AWS IoT Greengrass defines the following policy actions that Greengrass core devices can use in
AWS IoT policies:

greengrass:AssumeRoleForGroup

Permission for a Greengrass core device to retrieve credentials using the Token Exchange
Service (TES) system Lambda function. The permissions that are tied to the retrieved credentials
are based on the policy that's attached to the configured group role.

This permission is checked when a Greengrass core device attempts to retrieve credentials
(assuming the credentials are not cached locally).

greengrass:CreateCertificate

Permission for a Greengrass core device to create its own server certificate.

This permission is checked when a Greengrass core device creates a certificate. Greengrass
core devices attempt to create a server certificate upon first run, when the core's connectivity
information changes, and on designated rotation periods.

greengrass:GetConnectivityInfo

Permission for a Greengrass core device to retrieve its own connectivity information.

AWS IoT policies 951

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_resource.html#reference_policies_elements_resource_wildcards
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policies.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policy-actions.html

AWS IoT Greengrass Developer Guide, Version 1

This permission is checked when a Greengrass core device attempts to retrieve its connectivity
information from AWS IoT Core.

greengrass:GetDeployment

Permission for a Greengrass core device to retrieve deployments.

This permission is checked when a Greengrass core device attempts to retrieve deployments
and deployment statuses from the cloud.

greengrass:GetDeploymentArtifacts

Permission for a Greengrass core device to retrieve deployment artifacts such as group
information or Lambda functions.

This permission is checked when a Greengrass core device receives a deployment and then
attempts to retrieve deployment artifacts.

greengrass:UpdateConnectivityInfo

Permission for a Greengrass core device to update its own connectivity information with IP or
hostname information.

This permission is checked when a Greengrass core device attempts to update its connectivity
information in the cloud.

greengrass:UpdateCoreDeploymentStatus

Permission for a Greengrass core device to update the status of a deployment.

This permission is checked when a Greengrass core device receives a deployment and then
attempts to update the deployment status.

Greengrass Device Actions

AWS IoT Greengrass defines the following policy action that client devices can use in AWS IoT
policies:

greengrass:Discover

Permission for a client device to use the Discovery API to retrieve its group's core connectivity
information and group certificate authority.

AWS IoT policies 952

AWS IoT Greengrass Developer Guide, Version 1

This permission is checked when a client device calls the Discovery API with TLS mutual
authentication.

Minimal AWS IoT policy for the AWS IoT Greengrass core device

The following example policy includes the minimum set of actions required to support basic
Greengrass functionality for your core device.

• The policy lists the MQTT topics and topic filters that the core device can publish messages
to, subscribe to, and receive messages on, including topics used for shadow state. To support
message exchange between AWS IoT Core, Lambda functions, connectors, and client devices
in the Greengrass group, specify the topics and topic filters that you want to allow. For more
information, see Publish/Subscribe policy examples in the AWS IoT Core Developer Guide.

• The policy includes a section that allows AWS IoT Core to get, update, and delete the
core device's shadow. To allow shadow sync for client devices in the Greengrass group,
specify the target Amazon Resource Names (ARNs) in the Resource list (for example,
arn:aws:iot:region:account-id:thing/device-name).

• The use of thing policy variables (iot:Connection.Thing.*) in the AWS IoT policy for a core
device is not supported. The core uses the same device certificate to make multiple connections
to AWS IoT Core but the client ID in a connection might not be an exact match of the core thing
name.

• For the greengrass:UpdateCoreDeploymentStatus permission, the final segment in the
Resource ARN is the URL-encoded ARN of the core device.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": [
 "arn:aws:iot:region:account-id:client/core-name-*"
]
 },
 {

Minimal AWS IoT policy for the core device 953

https://docs.aws.amazon.com/iot/latest/developerguide/pub-sub-policy.html
https://docs.aws.amazon.com/iot/latest/developerguide/thing-policy-variables.html

AWS IoT Greengrass Developer Guide, Version 1

 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:region:account-id:topic/$aws/things/core-name-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:region:account-id:topicfilter/$aws/things/core-name-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:GetThingShadow",
 "iot:UpdateThingShadow",
 "iot:DeleteThingShadow"
],
 "Resource": [
 "arn:aws:iot:region:account-id:thing/core-name-*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "greengrass:AssumeRoleForGroup",
 "greengrass:CreateCertificate"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "greengrass:GetDeployment"
],

Minimal AWS IoT policy for the core device 954

AWS IoT Greengrass Developer Guide, Version 1

 "Resource": [
 "arn:aws:greengrass:region:account-id:/greengrass/groups/group-id/
deployments/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "greengrass:GetDeploymentArtifacts"
],
 "Resource": [
 "arn:aws:greengrass:region:account-id:/greengrass/groups/group-id/
deployments/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "greengrass:UpdateCoreDeploymentStatus"
],
 "Resource": [
 "arn:aws:greengrass:region:account-id:/greengrass/groups/group-id/
deployments/*/cores/arn%3Aaws%3Aiot%3Aregion%3Aaccount-id%3Athing%2Fcore-name"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "greengrass:GetConnectivityInfo",
 "greengrass:UpdateConnectivityInfo"
],
 "Resource": [
 "arn:aws:iot:region:account-id:thing/core-name-*"
]
 }
]
}

Note

AWS IoT policies for client devices typically require similar permissions for iot:Connect,
iot:Publish, iot:Receive, and iot:Subscribe actions.

Minimal AWS IoT policy for the core device 955

AWS IoT Greengrass Developer Guide, Version 1

To allow a client device to automatically detect connectivity information for the cores in
the Greengrass groups that the device belongs to, the AWS IoT policy for a client device
must include the greengrass:Discover action. In the Resource section, specify the
ARN of the client device, not the ARN of the Greengrass core device. For example:

{
 "Effect": "Allow",
 "Action": [
 "greengrass:Discover"
],
 "Resource": [
 "arn:aws:iot:region:account-id:thing/device-name"
]
}

The AWS IoT policy for client devices doesn't typically require permissions for
iot:GetThingShadow, iot:UpdateThingShadow, or iot:DeleteThingShadow
actions, because the Greengrass core handles shadow sync operations for client devices. In
this case, make sure that the Resource section for shadow actions in the core's AWS IoT
policy includes the ARNs of the client devices.

In the AWS IoT console, you can view and edit the policy that's attached to your core's certificate.

1. In the navigation pane, under Manage, expand All devices, and then choose Things.

2. Choose your core.

3. On your core's configuration page, choose the Certificates tab.

4. In the Certificates tab, choose your certificate.

5. On the certificate's configuration page, choose Policies, and then choose the policy.

If you want to edit the policy, choose Edit active version.

6. Review the policy and add, remove, or edit permissions as needed.

7. To set a new policy version as the active version, under Policy version status, select Set the
edited version as the active version for this policy.

8. Choose Save as new version.

Minimal AWS IoT policy for the core device 956

AWS IoT Greengrass Developer Guide, Version 1

Identity and access management for AWS IoT Greengrass

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS IoT Greengrass resources. IAM is an AWS service that
you can use with no additional charge.

Note

This topic describes IAM concepts and features. For information about IAM features
supported by AWS IoT Greengrass, see the section called “How AWS IoT Greengrass works
with IAM”.

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS IoT Greengrass.

Service user – If you use the AWS IoT Greengrass service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more AWS IoT
Greengrass features to do your work, you might need additional permissions. Understanding how
access is managed can help you request the right permissions from your administrator. If you
cannot access a feature in AWS IoT Greengrass, see Troubleshooting identity and access issues for
AWS IoT Greengrass.

Service administrator – If you're in charge of AWS IoT Greengrass resources at your company,
you probably have full access to AWS IoT Greengrass. It's your job to determine which AWS IoT
Greengrass features and resources your service users should access. You must then submit requests
to your IAM administrator to change the permissions of your service users. Review the information
on this page to understand the basic concepts of IAM. To learn more about how your company can
use IAM with AWS IoT Greengrass, see How AWS IoT Greengrass works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to AWS IoT Greengrass. To view example AWS IoT Greengrass
identity-based policies that you can use in IAM, see Identity-based policy examples for AWS IoT
Greengrass.

Identity and access management 957

AWS IoT Greengrass Developer Guide, Version 1

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Authenticating with identities 958

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html

AWS IoT Greengrass Developer Guide, Version 1

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

Authenticating with identities 959

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS IoT Greengrass Developer Guide, Version 1

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

Authenticating with identities 960

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS IoT Greengrass Developer Guide, Version 1

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Managing access using policies 961

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline

AWS IoT Greengrass Developer Guide, Version 1

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to

Managing access using policies 962

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

AWS IoT Greengrass Developer Guide, Version 1

any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

See also

• the section called “How AWS IoT Greengrass works with IAM”

• the section called “Identity-based policy examples”

• the section called “Troubleshooting identity and access issues”

How AWS IoT Greengrass works with IAM

Before you use IAM to manage access to AWS IoT Greengrass, you should understand the IAM
features that you can use with AWS IoT Greengrass.

IAM feature Supported by Greengrass?

Identity-based policies with resource-level
permissions

Yes

Resource-based policies No

Access control lists (ACLs) No

Tags-based authorization Yes

See also 963

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

AWS IoT Greengrass Developer Guide, Version 1

IAM feature Supported by Greengrass?

Temporary credentials Yes

Service-linked roles No

Service roles Yes

For a high-level view of how other AWS services work with IAM, see AWS services that work with
IAM in the IAM User Guide.

Identity-based policies for AWS IoT Greengrass

With IAM identity-based policies, you can specify allowed or denied actions and resources and
the conditions under which actions are allowed or denied. AWS IoT Greengrass supports specific
actions, resources, and condition keys. To learn about all of the elements that you use in a policy,
see IAM JSON policy elements reference in the IAM User Guide.

Actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions for AWS IoT Greengrass use the greengrass: prefix before the action. For example,
to allow someone to use the ListGroups API operation to list the groups in their AWS account,
you include the greengrass:ListGroups action in their policy. Policy statements must include
either an Action or NotAction element. AWS IoT Greengrass defines its own set of actions that
describe tasks that you can perform with this service.

To specify multiple actions in a single statement, list them between brackets ([]) and separate
them with commas, as follows:

How AWS IoT Greengrass works with IAM 964

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

AWS IoT Greengrass Developer Guide, Version 1

"Action": [
 "greengrass:action1",
 "greengrass:action2",
 "greengrass:action3"
]

You can use wildcards (*) to specify multiple actions. For example, to specify all actions that begin
with the word List, include the following action:

"Action": "greengrass:List*"

Note

We recommend that you avoid the use of wildcards to specify all available actions for a
service. As a best practice, you should grant least privilege and narrowly scope permissions
in a policy. For more information, see the section called “Grant minimum possible
permissions”.

For the complete list of AWS IoT Greengrass actions, see Actions Defined by AWS IoT Greengrass in
the IAM User Guide.

Resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

How AWS IoT Greengrass works with IAM 965

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsiotgreengrass.html#awsiotgreengrass-actions-as-permissions
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS IoT Greengrass Developer Guide, Version 1

The following table contains the AWS IoT Greengrass resource ARNs that can be used in the
Resource element of a policy statement. For a mapping of supported resource-level permissions
for AWS IoT Greengrass actions, see Actions Defined by AWS IoT Greengrass in the IAM User Guide.

Resource ARN

 Group arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/groups/${GroupId}

 GroupVersion arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/groups/${GroupId}/versions/${VersionId}

 CertificateAuthori
ty

arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/groups/${GroupId}/certificateauthoriti
es/${CertificateAuthorityId}

 Deployment arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/groups/${GroupId}/deployments/${Deploy
mentId}

 BulkDeployment arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/bulk/deployments/${BulkDeploymentId}

 Connector
Definition

arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/definition/connectors/${ConnectorDefin
itionId}

 Connector
DefinitionVersion

arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/definition/connectors/${ConnectorDefin
itionId}/versions/${VersionId}

 CoreDefinition arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/definition/cores/${CoreDefinitionId}

 CoreDefin
itionVersion

arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/definition/cores/${CoreDefinitionId}/v
ersions/${VersionId}

How AWS IoT Greengrass works with IAM 966

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsiotgreengrass.html#awsiotgreengrass-actions-as-permissions
https://docs.aws.amazon.com/greengrass/v1/apireference/listgroups-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listgroupversions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listgroupcertificateauthorities-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listgroupcertificateauthorities-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listdeployments-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listbulkdeployments-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listconnectordefinitions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listconnectordefinitions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listconnectordefinitionversions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listconnectordefinitionversions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listcoredefinitions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listcoredefinitionversions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listcoredefinitionversions-get.html

AWS IoT Greengrass Developer Guide, Version 1

Resource ARN

 DeviceDefinition arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/definition/devices/${DeviceDefinitionI
d}

 DeviceDef
initionVersion

arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/definition/devices/${DeviceDefinitionI
d}/versions/${VersionId}

 FunctionD
efinition

arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/definition/functions/${FunctionDefinit
ionId}

 FunctionD
efinitionVersion

arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/definition/functions/${FunctionDefinit
ionId}/versions/${VersionId}

 LoggerDefinition arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/definition/loggers/${LoggerDefinitionI
d}

 LoggerDef
initionVersion

arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/definition/loggers/${LoggerDefinitionI
d}/versions/${VersionId}

 ResourceD
efinition

arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/definition/resources/${ResourceDefinit
ionId}

 ResourceD
efinitionVersion

arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/definition/resources/${ResourceDefinit
ionId}/versions/${VersionId}

 SubscriptionDefini
tion

arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/definition/subscriptions/${Subscriptio
nDefinitionId}

How AWS IoT Greengrass works with IAM 967

https://docs.aws.amazon.com/greengrass/v1/apireference/listdevicedefinitions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listdevicedefinitionversions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listdevicedefinitionversions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listfunctiondefinitions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listfunctiondefinitions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listfunctiondefinitionversions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listfunctiondefinitionversions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listloggerdefinitions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listloggerdefinitionversions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listloggerdefinitionversions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listresourcedefinitions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listresourcedefinitions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listresourcedefinitionversions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listresourcedefinitionversions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listsubscriptiondefinitions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listsubscriptiondefinitions-get.html

AWS IoT Greengrass Developer Guide, Version 1

Resource ARN

 SubscriptionDefini
tionVersion

arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/definition/subscriptions/${Subscriptio
nDefinitionId}/versions/${VersionId}

 ConnectivityInfo arn:${Partition}:greengrass:${Region}:${Account}:/
greengrass/things/${ThingName}/connectivityInfo

The following example Resource element specifies the ARN of a group in the US West (Oregon)
Region in the AWS account 123456789012:

"Resource": "arn:aws:greengrass:us-west-2:123456789012:/greengrass/groups/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111

Or, to specify all groups that belong to an AWS account in a specific AWS Region, use the wildcard
in place of the group ID:

"Resource": "arn:aws:greengrass:us-west-2:123456789012:/greengrass/groups/*"

Some AWS IoT Greengrass actions (for example, some list operations), cannot be performed on a
specific resource. In those cases, you must use the wildcard alone.

"Resource": "*"

To specify multiple resource ARNs in a statement, list them between brackets ([]) and separate
them with commas, as follows:

"Resource": [
 "resource-arn1",
 "resource-arn2",
 "resource-arn3"
]

For more information about ARN formats, see Amazon Resource Names (ARNs) and AWS service
namespaces in the Amazon Web Services General Reference.

How AWS IoT Greengrass works with IAM 968

https://docs.aws.amazon.com/greengrass/v1/apireference/listsubscriptiondefinitionversions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listsubscriptiondefinitionversions-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/definitions-connectivityinfo.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS IoT Greengrass Developer Guide, Version 1

Condition keys

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

AWS IoT Greengrass supports the following global condition keys.

Key Description

aws:CurrentTime Filters access by checking date/time conditions for the current
date and time.

aws:EpochTime Filters access by checking date/time conditions for the current
date and time in epoch or Unix time.

aws:MultiFactorAut
hAge

Filters access by checking how long ago (in seconds) the
security credentials validated by multi-factor authentication
(MFA) in the request were issued using MFA.

aws:MultiFactorAut
hPresent

Filters access by checking whether multi-factor authentication
(MFA) was used to validate the temporary security credentials
that made the current request.

How AWS IoT Greengrass works with IAM 969

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

AWS IoT Greengrass Developer Guide, Version 1

Key Description

aws:RequestTag/${T
agKey}

Filters create requests based on the allowed set of values for
each of the mandatory tags.

aws:ResourceTag/${
TagKey}

Filters actions based on the tag value associated with the
resource.

aws:SecureTransport Filters access by checking whether the request was sent using
SSL.

aws:TagKeys Filters create requests based on the presence of mandatory
tags in the request.

aws:UserAgent Filters access by the requester's client application.

For more information, see AWS global condition context keys in the IAM User Guide.

Examples

To view examples of AWS IoT Greengrass identity-based policies, see the section called “Identity-
based policy examples”.

Resource-based policies for AWS IoT Greengrass

AWS IoT Greengrass does not support resource-based policies.

Access control lists (ACLs)

AWS IoT Greengrass does not support ACLs.

Authorization based on AWS IoT Greengrass tags

You can attach tags to supported AWS IoT Greengrass resources or pass tags in a request to AWS
IoT Greengrass. To control access based on tags, you provide tag information in the Condition
element of a policy using the aws:ResourceTag/${TagKey}, aws:RequestTag/${TagKey}, or
aws:TagKeys condition keys. For more information, see Tagging your Greengrass resources.

How AWS IoT Greengrass works with IAM 970

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS IoT Greengrass Developer Guide, Version 1

IAM roles for AWS IoT Greengrass

An IAM role is an entity within your AWS account that has specific permissions.

Using temporary credentials with AWS IoT Greengrass

Temporary credentials are used to sign in with federation, assume an IAM role, or to assume a
cross-account role. You obtain temporary security credentials by calling AWS STS API operations
such as AssumeRole or GetFederationToken.

On the Greengrass core, temporary credentials for the group role are made available to user-
defined Lambda functions and connectors. If your Lambda functions use the AWS SDK, you don't
need to add logic to obtain the credentials because the AWS SDK does this for you.

Service-linked roles

AWS IoT Greengrass does not support service-linked roles.

Service roles

This feature allows a service to assume a service role on your behalf. This role allows the service to
access resources in other services to complete an action on your behalf. Service roles appear in your
IAM account and are owned by the account. This means that an IAM administrator can change the
permissions for this role. However, doing so might break the functionality of the service.

AWS IoT Greengrass uses a service role to access some of your AWS resources on your behalf. For
more information, see the section called “Greengrass service role”.

Choosing an IAM role in the AWS IoT Greengrass console

In the AWS IoT Greengrass console, you might need to choose a Greengrass service role or a
Greengrass group role from a list of IAM roles in your account.

• The Greengrass service role allows AWS IoT Greengrass to access your AWS resources in other
services on your behalf. Typically, you don't need to choose the service role because the console
can create and configure it for you. For more information, see the section called “Greengrass
service role”.

• The Greengrass group role is used to allow Greengrass Lambda functions and connectors in the
group to access your AWS resources. It can also give AWS IoT Greengrass permissions to export
streams to AWS services and write CloudWatch logs. For more information, see the section called
“Greengrass group role”.

How AWS IoT Greengrass works with IAM 971

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role

AWS IoT Greengrass Developer Guide, Version 1

Greengrass service role

The Greengrass service role is an AWS Identity and Access Management (IAM) service role that
authorizes AWS IoT Greengrass to access resources from AWS services on your behalf. This makes
it possible for AWS IoT Greengrass to perform essential tasks, such as retrieving your AWS Lambda
functions and managing AWS IoT shadows.

To allow AWS IoT Greengrass to access your resources, the Greengrass service role must be
associated with your AWS account and specify AWS IoT Greengrass as a trusted entity. The role
must include the AWSGreengrassResourceAccessRolePolicy managed policy or a custom policy
that defines equivalent permissions for the AWS IoT Greengrass features that you use. This policy is
maintained by AWS and defines the set of permissions that AWS IoT Greengrass uses to access your
AWS resources.

You can reuse the same Greengrass service role across AWS Regions, but you must associate it with
your account in every AWS Region where you use AWS IoT Greengrass. Group deployment fails if
the service role doesn't exist in the current AWS account and Region.

The following sections describe how to create and manage the Greengrass service role in the AWS
Management Console or AWS CLI.

• Manage the service role (console)

• Manage the service role (CLI)

Note

In addition to the service role that authorizes service-level access, you can assign a group
role to an AWS IoT Greengrass group. The group role is a separate IAM role that controls
how Greengrass Lambda functions and connectors in the group can access AWS services.

Managing the Greengrass service role (console)

The AWS IoT console makes it easy to manage your Greengrass service role. For example, when you
create or deploy a Greengrass group, the console checks whether your AWS account is attached
to a Greengrass service role in the AWS Region that's currently selected in the console. If not, the
console can create and configure a service role for you. For more information, see the section called
“Create the Greengrass service role”.

Greengrass service role 972

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSGreengrassResourceAccessRolePolicy

AWS IoT Greengrass Developer Guide, Version 1

You can use the AWS IoT console for the following role management tasks:

• Find your Greengrass service role

• Create the Greengrass service role

• Change the Greengrass service role

• Detach the Greengrass service role

Note

The user who is signed in to the console must have permissions to view, create, or change
the service role.

Find your Greengrass service role (console)

Use the following steps to find the service role that AWS IoT Greengrass is using in the current AWS
Region.

1. From the AWS IoT console navigation pane, choose Settings.

2. Scroll to the Greengrass service role section to see your service role and its policies.

If you don't see a service role, you can let the console create or configure one for you. For more
information, see Create the Greengrass service role.

Create the Greengrass service role (console)

The console can create and configure a default Greengrass service role for you. This role has the
following properties.

Property Value

Name Greengrass_ServiceRole

Trusted entity AWS service: greengrass

Greengrass service role 973

https://console.aws.amazon.com/iot/

AWS IoT Greengrass Developer Guide, Version 1

Property Value

Policy AWSGreengrassResourceAccessRolePolicy

Note

If Greengrass device setup creates the service role, the role name is
GreengrassServiceRole_random-string.

When you create or deploy a Greengrass group from the AWS IoT console, the console checks
whether a Greengrass service role is associated with your AWS account in the AWS Region that's
currently selected in the console. If not, the console prompts you to allow AWS IoT Greengrass to
read and write to AWS services on your behalf.

If you grant permission, the console checks whether a role named Greengrass_ServiceRole
exists in your AWS account.

• If the role exists, the console attaches the service role to your AWS account in the current AWS
Region.

• If the role doesn't exist, the console creates a default Greengrass service role and attaches it to
your AWS account in the current AWS Region.

Note

If you want to create a service role with custom role policies, use the IAM console to create
or modify the role. For more information, see Creating a role to delegate permissions to
an AWS service or Modifying a role in the IAM User Guide. Make sure that the role grants
permissions that are equivalent to the AWSGreengrassResourceAccessRolePolicy
managed policy for the features and resources that you use. We recommend that you also
include the aws:SourceArn and aws:SourceAccount global condition context keys
in your trust policy to help prevent the confused deputy security problem. The condition
context keys restrict access to allow only those requests that come from the specified
account and Greengrass workspace. For more information about the confused deputy
problem, see Cross-service confused deputy prevention.

Greengrass service role 974

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSGreengrassResourceAccessRolePolicy
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html

AWS IoT Greengrass Developer Guide, Version 1

If you create a service role, return to the AWS IoT console and attach the role to the group.
You can do this under Greengrass service role on the group's Settings page.

Change the Greengrass service role (console)

Use the following procedure to choose a different Greengrass service role to attach to your AWS
account in the AWS Region currently selected in the console.

1. From the AWS IoT console navigation pane, choose Settings.

2. Under Greengrass service role, choose Change role.

The Update Greengrass service role dialog box opens and shows the IAM roles in your AWS
account that define AWS IoT Greengrass as a trusted entity.

3. Choose the Greengrass service role to attach.

4. Choose Attach role.

Note

To allow the console to create a default Greengrass service role for you, choose Create role
for me instead of choosing a role from the list. The Create role for me link does not appear
if a role named Greengrass_ServiceRole is in your AWS account.

Detach the Greengrass service role (console)

Use the following procedure to detach the Greengrass service role from your AWS account in the
AWS Region currently selected in the console. This revokes permissions for AWS IoT Greengrass to
access AWS services in the current AWS Region.

Important

Detaching the service role might interrupt active operations.

Greengrass service role 975

https://console.aws.amazon.com/iot/

AWS IoT Greengrass Developer Guide, Version 1

1. From the AWS IoT console navigation pane, choose Settings.

2. Under Greengrass service role, choose Detach role.

3. In the confirmation dialog box, choose Detach.

Note

If you no longer need the role, you can delete it in the IAM console. For more information,
see Deleting roles or instance profiles in the IAM User Guide.
Other roles might allow AWS IoT Greengrass to access your resources. To find all roles that
allow AWS IoT Greengrass to assume permissions on your behalf, in the IAM console, on
the Roles page, look for roles that include AWS service: greengrass in the Trusted entities
column.

Managing the Greengrass service role (CLI)

In the following procedures, we assume that the AWS CLI is installed and configured to use
your AWS account ID. For more information, see Installing the AWS command line interface and
Configuring the AWS CLI in the AWS Command Line Interface User Guide.

You can use the AWS CLI for the following role management tasks:

• Get your Greengrass service role

• Create the Greengrass service role

• Remove the Greengrass service role

Get the Greengrass service role (CLI)

Use the following procedure to find out if a Greengrass service role is associated with your AWS
account in an AWS Region.

• Get the service role. Replace region with your AWS Region (for example, us-west-2).

aws Greengrass get-service-role-for-account --region region

Greengrass service role 976

https://console.aws.amazon.com/iot/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS IoT Greengrass Developer Guide, Version 1

If a Greengrass service role is already associated with your account, the following role
metadata is returned.

{
 "AssociatedAt": "timestamp",
 "RoleArn": "arn:aws:iam::account-id:role/path/role-name"
}

If no role metadata is returned, then you must create the service role (if it doesn't exist) and
associate it with your account in the AWS Region.

Create the Greengrass service role (CLI)

Use the following steps to create a role and associate it with your AWS account.

To create the service role using IAM

1. Create the role with a trust policy that allows AWS IoT Greengrass to assume the role. This
example creates a role named Greengrass_ServiceRole, but you can use a different
name. We recommend that you also include the aws:SourceArn and aws:SourceAccount
global condition context keys in your trust policy to help prevent the confused deputy security
problem. The condition context keys restrict access to allow only those requests that come
from the specified account and Greengrass workspace. For more information about the
confused deputy problem, see Cross-service confused deputy prevention.

Linux, macOS, or Unix

aws iam create-role --role-name Greengrass_ServiceRole --assume-role-policy-
document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "greengrass.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {

Greengrass service role 977

AWS IoT Greengrass Developer Guide, Version 1

 "StringEquals": {
 "aws:SourceAccount": "account-id"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:greengrass:region:account-id:*"
 }
 }
 }
]
}'

Windows command prompt

aws iam create-role --role-name Greengrass_ServiceRole --assume-role-
policy-document "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect
\":\"Allow\",\"Principal\":{\"Service\":\"greengrass.amazonaws.com\"},
\"Action\":\"sts:AssumeRole\",\"Condition\":{\"ArnLike\":{\"aws:SourceArn
\":\"arn:aws:greengrass:region:account-id:*\"},\"StringEquals\":
{\"aws:SourceAccount\":\"account-id\"}}}]}"

2. Copy the role ARN from the role metadata in the output. You use the ARN to associate the role
with your account.

3. Attach the AWSGreengrassResourceAccessRolePolicy policy to the role.

aws iam attach-role-policy --role-name Greengrass_ServiceRole --policy-arn
 arn:aws:iam::aws:policy/service-role/AWSGreengrassResourceAccessRolePolicy

To associate the service role with your AWS account

• Associate the role with your account. Replace role-arn with the service role ARN and region
with your AWS Region (for example, us-west-2).

aws greengrass associate-service-role-to-account --role-arn role-arn --
region region

If successful, the following response is returned.

{
 "AssociatedAt": "timestamp"

Greengrass service role 978

AWS IoT Greengrass Developer Guide, Version 1

}

Remove the Greengrass service role (CLI)

Use the following steps to disassociate the Greengrass service role from your AWS account.

• Disassociate the service role from your account. Replace region with your AWS Region (for
example, us-west-2).

aws greengrass disassociate-service-role-from-account --region region

If successful, the following response is returned.

{
 "DisassociatedAt": "timestamp"
}

Note

You should delete the service role if you're not using it in any AWS Region. First use
delete-role-policy to detach the AWSGreengrassResourceAccessRolePolicy
managed policy from the role, and then use delete-role to delete the role. For more
information, see Deleting roles or instance profiles in the IAM User Guide.

See also

• Creating a role to delegate permissions to an AWS service in the IAM User Guide

• Modifying a role in the IAM User Guide

• Deleting roles or instance profiles in the IAM User Guide

• AWS IoT Greengrass commands in the AWS CLI Command Reference

• associate-service-role-to-account

• disassociate-service-role-from-account

• get-service-role-for-account
Greengrass service role 979

https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/associate-service-role-to-account.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/disassociate-service-role-from-account.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-service-role-for-account.html

AWS IoT Greengrass Developer Guide, Version 1

• IAM commands in the AWS CLI Command Reference

• attach-role-policy

• create-role

• delete-role

• delete-role-policy

Greengrass group role

The Greengrass group role is an IAM role that authorizes code running on a Greengrass core to
access your AWS resources. You create the role and manage permissions in AWS Identity and Access
Management (IAM) and attach the role to your Greengrass group. A Greengrass group has one
group role. To add or change permissions, you can attach a different role or change the IAM policies
that are attached to the role.

The role must define AWS IoT Greengrass as a trusted entity. Depending on your business case, the
group role might contain IAM policies that define:

• Permissions for user-defined Lambda functions to access AWS services.

• Permissions for connectors to access AWS services.

• Permissions for stream manager to export streams to AWS IoT Analytics and Kinesis Data
Streams.

• Permissions to allow CloudWatch logging.

The following sections describe how to attach or detach a Greengrass group role in the AWS
Management Console or AWS CLI.

• Manage the group role (console)

• Manage the group role (CLI)

Note

In addition to the group role that authorizes access from the Greengrass core, you can
assign a Greengrass service role that allows AWS IoT Greengrass to access AWS resources
on your behalf.

Greengrass group role 980

https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role-policy.html

AWS IoT Greengrass Developer Guide, Version 1

Managing the Greengrass group role (console)

You can use the AWS IoT console for the following role management tasks:

• Find your Greengrass group role

• Add or change the Greengrass group role

• Remove the Greengrass group role

Note

The user who is signed in to the console must have permissions to manage the role.

Find your Greengrass group role (console)

Follow these steps to find the role that is attached to a Greengrass group.

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose the target group.

3. On the group configuration page, choose View settings.

If a role is attached to the group, it appears under Group role.

Add or change the Greengrass group role (console)

Follow these steps to choose an IAM role from your AWS account to add to a Greengrass group.

A group role has the following requirements:

• AWS IoT Greengrass defined as a trusted entity.

• The permission policies attached to the role must grant the permissions to your AWS resources
that are required by the Lambda functions and connectors in the group, and by Greengrass
system components.

Greengrass group role 981

AWS IoT Greengrass Developer Guide, Version 1

Note

We recommend that you also include the aws:SourceArn and aws:SourceAccount
global condition context keys in your trust policy to help prevent the confused deputy
security problem. The condition context keys restrict access to allow only those requests
that come from the specified account and Greengrass workspace. For more information
about the confused deputy problem, see Cross-service confused deputy prevention.

Use the IAM console to create and configure the role and its permissions. For steps that create an
example role that allows access to an Amazon DynamoDB table, see the section called “Configure
the group role”. For general steps, see Creating a role for an AWS service (console) in the IAM User
Guide.

After the role is configured, use the AWS IoT console to add the role to the group.

Note

This procedure is required only to choose a role for the group. It's not required after
changing the permissions of the currently selected group role.

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose the target group.

3. On the group configuration page, choose View settings.

4. Under Group role, choose to add or change the role:

• To add the role, choose Associate role and then select your role from your list of roles.
These are the roles in your AWS account that define AWS IoT Greengrass as a trusted entity.

• To choose a different role, choose Edit role and then select your role from your list of roles.

5. Choose Save.

Greengrass group role 982

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console

AWS IoT Greengrass Developer Guide, Version 1

Remove the Greengrass group role (console)

Follow these steps to detach the role from a Greengrass group.

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose the target group.

3. On the group configuration page, choose View settings.

4. Under Group role, choose Disassociate role.

5. In the confirmation dialog box, choose Disassociate role. This step removes the role from the
group but doesn't delete the role. If you want to delete the role, use the IAM console.

Managing the Greengrass group role (CLI)

You can use the AWS CLI for the following role management tasks:

• Get your Greengrass group role

• Create the Greengrass group role

• Remove the Greengrass group role

Get the Greengrass group role (CLI)

Follow these steps to find out if a Greengrass group has an associated role.

1. Get the ID of the target group from the list of your groups.

aws greengrass list-groups

The following is an example list-groups response. Each group in the response includes an
Id property that contains the group ID.

{
 "Groups": [
 {

Greengrass group role 983

AWS IoT Greengrass Developer Guide, Version 1

 "LatestVersionArn": "arn:aws:us-west-2:123456789012:/greengrass/
groups/00dedaaa-ac16-484d-ad77-c3eedEXAMPLE/versions/4cbc3f07-fc5e-48c4-
a50e-7d356EXAMPLE",
 "Name": "MyFirstGroup",
 "LastUpdatedTimestamp": "2019-11-11T05:47:31.435Z",
 "LatestVersion": "4cbc3f07-fc5e-48c4-a50e-7d356EXAMPLE",
 "CreationTimestamp": "2019-11-11T05:47:31.435Z",
 "Id": "00dedaaa-ac16-484d-ad77-c3eedEXAMPLE",
 "Arn": "arn:aws:us-west-2:123456789012:/greengrass/groups/00dedaaa-
ac16-484d-ad77-c3eedEXAMPLE"
 },
 {
 "LatestVersionArn": "arn:aws:us-west-2:123456789012:/greengrass/
groups/036ceaf9-9319-4716-ba2a-237f9EXAMPLE/versions/8fe9e8ec-64d1-4647-
b0b0-01dc8EXAMPLE",
 "Name": "GreenhouseSensors",
 "LastUpdatedTimestamp": "2020-01-07T19:58:36.774Z",
 "LatestVersion": "8fe9e8ec-64d1-4647-b0b0-01dc8EXAMPLE",
 "CreationTimestamp": "2020-01-07T19:58:36.774Z",
 "Id": "036ceaf9-9319-4716-ba2a-237f9EXAMPLE",
 "Arn": "arn:aws:us-west-2:123456789012:/greengrass/
groups/036ceaf9-9319-4716-ba2a-237f9EXAMPLE"
 },
 ...
]
}

For more information, including examples that use the query option to filter results, see the
section called “Getting the group ID”.

2. Copy the Id of the target group from the output.

3. Get the group role. Replace group-id with the ID of the target group.

aws greengrass get-associated-role --group-id group-id

If a role is associated with your Greengrass group, the following role metadata is returned.

{
 "AssociatedAt": "timestamp",
 "RoleArn": "arn:aws:iam::account-id:role/path/role-name"
}

Greengrass group role 984

AWS IoT Greengrass Developer Guide, Version 1

If your group doesn't have an associated role, the following error is returned.

An error occurred (404) when calling the GetAssociatedRole operation: You need to
 attach an IAM role to this deployment group.

Create the Greengrass group role (CLI)

Follow these steps to create a role and associate it with a Greengrass group.

To create the group role using IAM

1. Create the role with a trust policy that allows AWS IoT Greengrass to assume the role. This
example creates a role named MyGreengrassGroupRole, but you can use a different name.
We recommend that you also include the aws:SourceArn and aws:SourceAccount global
condition context keys in your trust policy to help prevent the confused deputy security
problem. The condition context keys restrict access to allow only those requests that come
from the specified account and Greengrass workspace. For more information about the
confused deputy problem, see Cross-service confused deputy prevention.

Linux, macOS, or Unix

aws iam create-role --role-name MyGreengrassGroupRole --assume-role-policy-
document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "greengrass.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account-id"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:greengrass:region:account-id:/greengrass/
groups/group-id"

Greengrass group role 985

AWS IoT Greengrass Developer Guide, Version 1

 }
 }
 }
]
}'

Windows command prompt

aws iam create-role --role-name MyGreengrassGroupRole --assume-role-
policy-document "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect
\":\"Allow\",\"Principal\":{\"Service\":\"greengrass.amazonaws.com\"},
\"Action\":\"sts:AssumeRole\",\"Condition\":{\"ArnLike\":{\"aws:SourceArn
\":\"arn:aws:greengrass:region:account-id:/greengrass/groups/group-id\"},
\"StringEquals\":{\"aws:SourceAccount\":\"account-id\"}}}]}"

2. Copy the role ARN from the role metadata in the output. You use the ARN to associate the role
with your group.

3. Attach managed or inline policies to the role to support your business case. For example,
if a user-defined Lambda function reads from Amazon S3, you might attach the
AmazonS3ReadOnlyAccess managed policy to the role.

aws iam attach-role-policy --role-name MyGreengrassGroupRole --policy-arn
 arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess

If successful, no response is returned.

To associate the role with your Greengrass group

1. Get the ID of the target group from the list of your groups.

aws greengrass list-groups

The following is an example list-groups response. Each group in the response includes an
Id property that contains the group ID.

{
 "Groups": [

Greengrass group role 986

AWS IoT Greengrass Developer Guide, Version 1

 {
 "LatestVersionArn": "arn:aws:us-west-2:123456789012:/greengrass/
groups/00dedaaa-ac16-484d-ad77-c3eedEXAMPLE/versions/4cbc3f07-fc5e-48c4-
a50e-7d356EXAMPLE",
 "Name": "MyFirstGroup",
 "LastUpdatedTimestamp": "2019-11-11T05:47:31.435Z",
 "LatestVersion": "4cbc3f07-fc5e-48c4-a50e-7d356EXAMPLE",
 "CreationTimestamp": "2019-11-11T05:47:31.435Z",
 "Id": "00dedaaa-ac16-484d-ad77-c3eedEXAMPLE",
 "Arn": "arn:aws:us-west-2:123456789012:/greengrass/groups/00dedaaa-
ac16-484d-ad77-c3eedEXAMPLE"
 },
 {
 "LatestVersionArn": "arn:aws:us-west-2:123456789012:/greengrass/
groups/036ceaf9-9319-4716-ba2a-237f9EXAMPLE/versions/8fe9e8ec-64d1-4647-
b0b0-01dc8EXAMPLE",
 "Name": "GreenhouseSensors",
 "LastUpdatedTimestamp": "2020-01-07T19:58:36.774Z",
 "LatestVersion": "8fe9e8ec-64d1-4647-b0b0-01dc8EXAMPLE",
 "CreationTimestamp": "2020-01-07T19:58:36.774Z",
 "Id": "036ceaf9-9319-4716-ba2a-237f9EXAMPLE",
 "Arn": "arn:aws:us-west-2:123456789012:/greengrass/
groups/036ceaf9-9319-4716-ba2a-237f9EXAMPLE"
 },
 ...
]
}

For more information, including examples that use the query option to filter results, see the
section called “Getting the group ID”.

2. Copy the Id of the target group from the output.

3. Associate the role with your group. Replace group-id with the ID of the target group and
role-arn with the ARN of the group role.

aws greengrass associate-role-to-group --group-id group-id --role-arn role-arn

If successful, the following response is returned.

{
 "AssociatedAt": "timestamp"

Greengrass group role 987

AWS IoT Greengrass Developer Guide, Version 1

}

Remove the Greengrass group role (CLI)

Follow these steps to disassociate the group role from your Greengrass group.

1. Get the ID of the target group from the list of your groups.

aws greengrass list-groups

The following is an example list-groups response. Each group in the response includes an
Id property that contains the group ID.

{
 "Groups": [
 {
 "LatestVersionArn": "arn:aws:us-west-2:123456789012:/greengrass/
groups/00dedaaa-ac16-484d-ad77-c3eedEXAMPLE/versions/4cbc3f07-fc5e-48c4-
a50e-7d356EXAMPLE",
 "Name": "MyFirstGroup",
 "LastUpdatedTimestamp": "2019-11-11T05:47:31.435Z",
 "LatestVersion": "4cbc3f07-fc5e-48c4-a50e-7d356EXAMPLE",
 "CreationTimestamp": "2019-11-11T05:47:31.435Z",
 "Id": "00dedaaa-ac16-484d-ad77-c3eedEXAMPLE",
 "Arn": "arn:aws:us-west-2:123456789012:/greengrass/groups/00dedaaa-
ac16-484d-ad77-c3eedEXAMPLE"
 },
 {
 "LatestVersionArn": "arn:aws:us-west-2:123456789012:/greengrass/
groups/036ceaf9-9319-4716-ba2a-237f9EXAMPLE/versions/8fe9e8ec-64d1-4647-
b0b0-01dc8EXAMPLE",
 "Name": "GreenhouseSensors",
 "LastUpdatedTimestamp": "2020-01-07T19:58:36.774Z",
 "LatestVersion": "8fe9e8ec-64d1-4647-b0b0-01dc8EXAMPLE",
 "CreationTimestamp": "2020-01-07T19:58:36.774Z",
 "Id": "036ceaf9-9319-4716-ba2a-237f9EXAMPLE",
 "Arn": "arn:aws:us-west-2:123456789012:/greengrass/
groups/036ceaf9-9319-4716-ba2a-237f9EXAMPLE"
 },
 ...

Greengrass group role 988

AWS IoT Greengrass Developer Guide, Version 1

]
}

For more information, including examples that use the query option to filter results, see the
section called “Getting the group ID”.

2. Copy the Id of the target group from the output.

3. Disassociate the role from your group. Replace group-id with the ID of the target group.

aws greengrass disassociate-role-from-group --group-id group-id

If successful, the following response is returned.

{
 "DisassociatedAt": "timestamp"
}

Note

You can delete the group role if you're not using it. First use delete-role-policy to
detach each managed policy from the role, and then use delete-role to delete the role.
For more information, see Deleting roles or instance profiles in the IAM User Guide.

See also

• Related topics in the IAM User Guide

• Creating a role to delegate permissions to an AWS service

• Modifying a role

• Adding and removing IAM identity permissions

• Deleting roles or instance profiles

• AWS IoT Greengrass commands in the AWS CLI Command Reference

• list-groups

• associate-role-to-group

• disassociate-role-from-group

• get-associated-roleGreengrass group role 989

https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/list-groups.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/associate-role-to-group.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/disassociate-role-from-group.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-associated-role.html

AWS IoT Greengrass Developer Guide, Version 1

• IAM commands in the AWS CLI Command Reference

• attach-role-policy

• create-role

• delete-role

• delete-role-policy

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that AWS IoT Greengrass gives another service to
the resource. If you use both global condition context keys, the aws:SourceAccount value and
the account in the aws:SourceArn value must use the same account ID when used in the same
policy statement.

The value of aws:SourceArn must be the Greengrass customer resource that is associated with
the sts:AssumeRole request.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcards (*) for the unknown portions of the ARN. For example,
arn:aws:greengrass:region:account-id:*.

For examples of policies that use the aws:SourceArn and aws:SourceAccount global condition
context keys, see the following topics:

• Create the Greengrass service role

• Create the Greengrass group role

Cross-service confused deputy prevention 990

https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

AWS IoT Greengrass Developer Guide, Version 1

• Create and configure an IAM execution role for bulk deployments

Identity-based policy examples for AWS IoT Greengrass

By default, IAM users and roles don't have permission to create or modify AWS IoT Greengrass
resources. They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS
API. An IAM administrator must create IAM policies that grant users and roles permission to
perform specific API operations on the specified resources they need. The administrator must then
attach those policies to the IAM users or groups that require those permissions.

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AWS IoT
Greengrass resources in your account. These actions can incur costs for your AWS account. When
you create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and

Identity-based policy examples 991

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS IoT Greengrass Developer Guide, Version 1

functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

AWS managed policies for AWS IoT Greengrass

AWS IoT Greengrass maintains the following AWS managed policies that you can use to grant
permissions to IAM users and roles.

Policy Description

AWSGreengrassFullAccess Allows all AWS IoT Greengrass actions for
all of your AWS resources. This policy is
recommended for AWS IoT Greengrass service
administrators or testing purposes.

AWSGreengrassReadOnlyAccess Allows List and Get AWS IoT Greengrass
actions for all of your AWS resources.

AWSGreengrassResourceAccessRolePolicy Allows access to resources from AWS services
including AWS Lambda and AWS IoT Device
Shadow. This is the default policy used for the
Greengrass service role. This policy is designed
to provide general ease of access. You can
define a custom policy that is more restrictive.

GreengrassOTAUpdateArtifactAccess Allows read-only access to over-the-air (OTA)
update artifacts for the AWS IoT Greengrass
Core software in all AWS Regions.

Identity-based policy examples 992

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://console.aws.amazon.com/iam/home?region=us-west-2#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAWSGreengrassFullAccess
https://console.aws.amazon.com/iam/home?region=us-west-2#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAWSGreengrassReadOnlyAccess
https://console.aws.amazon.com/iam/home?region=us-west-2#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2Fservice-role%2FAWSGreengrassResourceAccessRolePolicy
https://console.aws.amazon.com/iam/home?region=us-west-2#/policies/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2Fservice-role%2FGreengrassOTAUpdateArtifactAccess

AWS IoT Greengrass Developer Guide, Version 1

Policy examples

The following example customer-defined policies grant permissions for common scenarios.

Examples

• Allow users to view their own permissions

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating policies on the JSON tab in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",

Identity-based policy examples 993

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

AWS IoT Greengrass Developer Guide, Version 1

 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Troubleshooting identity and access issues for AWS IoT Greengrass

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS IoT Greengrass and IAM.

Issues

• I'm not authorized to perform an action in AWS IoT Greengrass

• Error: Greengrass is not authorized to assume the Service Role associated with this account, or
the error: Failed: TES service role is not associated with this account.

• Error: Permission denied when attempting to use role arn:aws:iam::<account-id>:role/<role-
name> to access s3 url https://<region>-greengrass-updates.s3.<region>.amazonaws.com/core/
<architecture>/greengrass-core-<distribution-version>.tar.gz.

• Device shadow does not sync with the cloud.

• I'm not authorized to perform iam:PassRole

• I'm an administrator and want to allow others to access AWS IoT Greengrass

• I want to allow people outside of my AWS account to access my AWS IoT Greengrass resources

For general troubleshooting help, see Troubleshooting.

I'm not authorized to perform an action in AWS IoT Greengrass

If you receive an error that states you're not authorized to perform an action, you must contact
your administrator for assistance. Your administrator is the person who provided you with your
user name and password.

The following example error occurs when the mateojackson IAM user tries to view details
about a core definition version, but does not have greengrass:GetCoreDefinitionVersion
permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 greengrass:GetCoreDefinitionVersion on resource: resource: arn:aws:greengrass:us-

Troubleshooting identity and access issues 994

AWS IoT Greengrass Developer Guide, Version 1

west-2:123456789012:/greengrass/definition/cores/78cd17f3-bc68-ee18-47bd-5bda5EXAMPLE/
versions/368e9ffa-4939-6c75-859c-0bd4cEXAMPLE

In this case, Mateo asks his administrator to update his policies to allow him to
access the arn:aws:greengrass:us-west-2:123456789012:/greengrass/
definition/cores/78cd17f3-bc68-ee18-47bd-5bda5EXAMPLE/
versions/368e9ffa-4939-6c75-859c-0bd4cEXAMPLE resource using the
greengrass:GetCoreDefinitionVersion action.

Error: Greengrass is not authorized to assume the Service Role associated with
this account, or the error: Failed: TES service role is not associated with this
account.

Solution: You might see this error when the deployment fails. Check that a Greengrass service
role is associated with your AWS account in the current AWS Region. For more information, see
the section called “Manage the service role (CLI)” or the section called “Manage the service role
(console)”.

Error: Permission denied when attempting to use role arn:aws:iam::<account-
id>:role/<role-name> to access s3 url https://<region>-greengrass-
updates.s3.<region>.amazonaws.com/core/<architecture>/greengrass-core-
<distribution-version>.tar.gz.

Solution: You might see this error when an over-the-air (OTA) update fails. In the signer role policy,
add the target AWS Region as a Resource. This signer role is used to presign the S3 URL for the
AWS IoT Greengrass software update. For more information, see S3 URL signer role.

Device shadow does not sync with the cloud.

Solution: Make sure that AWS IoT Greengrass has permissions for iot:UpdateThingShadow
and iot:GetThingShadow actions in the Greengrass service role. If the service role uses the
AWSGreengrassResourceAccessRolePolicy managed policy, these permissions are included
by default.

See Troubleshooting shadow synchronization timeout issues.

The following are general IAM issues that you might encounter when working with AWS IoT
Greengrass.

Troubleshooting identity and access issues 995

AWS IoT Greengrass Developer Guide, Version 1

I'm not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS IoT Greengrass.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in AWS IoT Greengrass. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I'm an administrator and want to allow others to access AWS IoT Greengrass

To allow others to access AWS IoT Greengrass, you must create an IAM entity (user or role) for the
person or application that needs access. They will use the credentials for that entity to access AWS.
You must then attach a policy to the entity that grants them the correct permissions in AWS IoT
Greengrass.

To get started right away, see Creating your first IAM delegated user and group in the IAM User
Guide.

I want to allow people outside of my AWS account to access my AWS IoT
Greengrass resources

You can create an IAM role that users in other accounts or people outside of your organization
can use to access your AWS resources. You can specify the who is trusted to assume the role. For
more information, see Providing access to an IAM user in another AWS account that you own and
Providing access to Amazon Web Services accounts owned by third parties in the IAM User Guide.

Troubleshooting identity and access issues 996

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-delegated-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Greengrass doesn't support cross-account access based on resource-based policies or
access control lists (ACLs).

Compliance validation for AWS IoT Greengrass

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

Compliance validation 997

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html

AWS IoT Greengrass Developer Guide, Version 1

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in AWS IoT Greengrass

The AWS global infrastructure is built around Amazon Web Services Regions and Availability Zones.
Each AWS Region provides multiple physically separated and isolated Availability Zones, which are
connected with low-latency, high-throughput, and highly redundant networking. With Availability
Zones, you can design and operate applications and databases that automatically fail over between
zones without interruption. Availability Zones are more highly available, fault tolerant, and scalable
than traditional single or multiple data center infrastructures.

For more information about Amazon Web Services Regions and Availability Zones, see AWS Global
Infrastructure.

In addition to the AWS global infrastructure, AWS IoT Greengrass offers several features to help
support your data resiliency and backup needs.

• If the core loses internet connectivity, client devices can continue to communicate over the local
network.

• You can configure the core to store unprocessed messages destined for AWS Cloud targets in a
local storage cache instead of in-memory storage. The local storage cache can persist across core
restarts (for example, after a group deployment or a device reboot), so AWS IoT Greengrass can
continue to process messages destined for AWS IoT Core. For more information, see the section
called “MQTT message queue”.

• You can configure the core to establish a persistent session with the AWS IoT Core message
broker. This allows the core to receive messages sent while the core is offline. For more
information, see the section called “MQTT persistent sessions with AWS IoT Core”.

• You can configure a Greengrass group to write logs to the local file system and to CloudWatch
Logs. If the core loses connectivity, local logging can continue, but CloudWatch logs are sent with
a limited number of retries. After the retries are exhausted, the event is dropped. You should also
be aware of logging limitations.

Resilience 998

https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/

AWS IoT Greengrass Developer Guide, Version 1

• You can author Lambda functions that read stream manager streams and send the data to local
storage destinations.

Infrastructure security in AWS IoT Greengrass

As a managed service, AWS IoT Greengrass is protected by AWS global network security. For
information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access AWS IoT Greengrass through the network. Clients must
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

In an AWS IoT Greengrass environment, devices use X.509 certificates and cryptographic keys to
connect and authenticate to the AWS Cloud. For more information, see the section called “Device
authentication and authorization”.

Configuration and vulnerability analysis in AWS IoT Greengrass

IoT environments can consist of large numbers of devices that have diverse capabilities, are long-
lived, and are geographically distributed. These characteristics make device setup complex and
error-prone. And because devices are often constrained in computational power, memory, and
storage capabilities, this limits the use of encryption and other forms of security on the devices
themselves. Also, devices often use software with known vulnerabilities. These factors make IoT
devices an attractive target for hackers and make it difficult to secure them on an ongoing basis.

AWS IoT Device Defender addresses these challenges by providing tools to identify security issues
and deviations from best practices. You can use AWS IoT Device Defender to analyze, audit, and

Infrastructure security 999

https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

AWS IoT Greengrass Developer Guide, Version 1

monitor connected devices to detect abnormal behavior, and mitigate security risks. AWS IoT
Device Defender can audit devices to ensure they adhere to security best practices and detect
abnormal behavior on devices. This makes it possible to enforce consistent security policies across
your devices and respond quickly when devices are compromised. In connections with AWS IoT
Core, AWS IoT Greengrass generates predictable client IDs that you can use with AWS IoT Device
Defender features. For more information, see AWS IoT Device Defender in the AWS IoT Core
Developer Guide.

In AWS IoT Greengrass environments, you should be aware of the following considerations:

• It's your reponsibility to secure your physical devices, the file system on your devices, and the
local network.

• AWS IoT Greengrass doesn't enforce network isolation for user-defined Lambda functions,
whether or not they run in a Greengrass container. Therefore, it's possible for Lambda functions
to communicate with any other process running in the system or outside over network.

If you lose control of a Greengrass core device and you want to prevent client devices from
transmitting data to the core, do the following:

1. Remove the Greengrass core from the Greengrass group.

2. Rotate the group CA certificate. In the AWS IoT console, you can rotate the CA
certificate on the group's Settings page. In the AWS IoT Greengrass API, you can use the
CreateGroupCertificateAuthority action.

We also recommend using full disk encryption if the hard drive of your core device is vulnerable
to theft.

AWS IoT Greengrass and interface VPC endpoints (AWS
PrivateLink)

You can establish a private connection between your VPC and the AWS IoT Greengrass control
plane by creating an interface VPC endpoint. You can use this endpoint to manage groups,
Lambda functions, deployments, and other resources in the AWS IoT Greengrass service. Interface
endpoints are powered by AWS PrivateLink, a technology that enables you to access AWS IoT
Greengrass APIs privately without an internet gateway, NAT device, VPN connection, or AWS Direct
Connect connection. Instances in your VPC don't need public IP addresses to communicate with

VPC endpoints (AWS PrivateLink) 1000

https://docs.aws.amazon.com/iot/latest/developerguide/device-defender.html
https://docs.aws.amazon.com/greengrass/v1/apireference/creategroupcertificateauthority-post.html
https://aws.amazon.com/privatelink

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Greengrass APIs. Traffic between your VPC and AWS IoT Greengrass does not leave the
Amazon network.

Note

Currently, you can't configure Greengrass core devices to operate completely within your
VPC.

Each interface endpoint is represented by one or more Elastic Network Interfaces in your subnets.

For more information, see Interface VPC endpoints (AWS PrivateLink) in the Amazon VPC User
Guide.

Topics

• Considerations for AWS IoT Greengrass VPC endpoints

• Create an interface VPC endpoint for AWS IoT Greengrass control plane operations

• Creating a VPC endpoint policy for AWS IoT Greengrass

Considerations for AWS IoT Greengrass VPC endpoints

Before you set up an interface VPC endpoint for AWS IoT Greengrass, review Interface endpoint
properties and limitations in the Amazon VPC User Guide. Additionally, be aware of the following
considerations:

• AWS IoT Greengrass supports making calls to all of its control plane API actions from your VPC.
The control plane includes operations such as CreateDeployment and StartBulkDeployment. The
control plane does not include operations such as GetDeployment and Discover, which are data
plane operations.

• VPC endpoints for AWS IoT Greengrass are currently not supported in AWS China Regions.

Create an interface VPC endpoint for AWS IoT Greengrass control plane
operations

You can create a VPC endpoint for the AWS IoT Greengrass control plane using either the Amazon
VPC console or the AWS Command Line Interface (AWS CLI). For more information, see Creating an
interface endpoint in the Amazon VPC User Guide.

Considerations for AWS IoT Greengrass VPC endpoints 1001

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/greengrass/v1/apireference/createdeployment-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/startbulkdeployment-post.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint

AWS IoT Greengrass Developer Guide, Version 1

Create a VPC endpoint for AWS IoT Greengrass using the following service name:

• com.amazonaws.region.greengrass

If you enable private DNS for the endpoint, you can make API requests to AWS IoT
Greengrass using its default DNS name for the Region, for example, greengrass.us-
east-1.amazonaws.com. Private DNS is enabled by default.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

Creating a VPC endpoint policy for AWS IoT Greengrass

You can attach an endpoint policy to your VPC endpoint that controls access to AWS IoT
Greengrass control plane operations. The policy specifies the following information:

• The principal that can perform actions.

• The actions that the principal can perform.

• The resources that the principal can perform actions on.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example Example: VPC endpoint policy for AWS IoT Greengrass actions

The following is an example of an endpoint policy for AWS IoT Greengrass. When attached to an
endpoint, this policy grants access to the listed AWS IoT Greengrass actions for all principals on all
resources.

{
 "Statement": [
 {
 "Principal": "*",
 "Effect": "Allow",
 "Action": [
 "greengrass:CreateDeployment",
 "greengrass:StartBulkDeployment"
],
 "Resource": "*"
 }

Creating a VPC endpoint policy for AWS IoT Greengrass 1002

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

AWS IoT Greengrass Developer Guide, Version 1

]
}

Security best practices for AWS IoT Greengrass

This topic contains security best practices for AWS IoT Greengrass.

Grant minimum possible permissions

Follow the principle of least privilege by using the minimum set of permissions in IAM roles. Limit
the use of the * wildcard for the Action and Resource properties in your IAM policies. Instead,
declare a finite set of actions and resources when possible. For more information about least
privilege and other policy best practices, see the section called “Policy best practices”.

The least privilege best practice also applies to AWS IoT policies you attach to your Greengrass core
and client devices.

Don't hardcode credentials in Lambda functions

Don't hardcode credentials in your user-defined Lambda functions. To better protect your
credentials:

• To interact with AWS services, define permissions for specific actions and resources in the
Greengrass group role.

• Use local secrets to store your credentials. Or, if the function uses the AWS SDK, use credentials
from the default credential provider chain.

Don't log sensitive information

You should prevent the logging of credentials and other personally identifiable information (PII).
We recommend that you implement the following safeguards even though access to local logs on a
core device requires root privileges and access to CloudWatch Logs requires IAM permissions.

• Don't use sensitive information in MQTT topic paths.

• Don't use sensitive information in device (thing) names, types, and attributes in the AWS IoT Core
registry.

• Don't log sensitive information in your user-defined Lambda functions.

Security best practices 1003

AWS IoT Greengrass Developer Guide, Version 1

• Don't use sensitive information in the names and IDs of Greengrass resources:

• Connectors

• Cores

• Devices

• Functions

• Groups

• Loggers

• Resources (local, machine learning, or secret)

• Subscriptions

Create targeted subscriptions

Subscriptions control the information flow in a Greengrass group by defining how messages are
exchanged between services, devices, and Lambda functions. To ensure that an application can
do only what it's intended to do, your subscriptions should allow publishers to send messages to
specific topics only, and limit subscribers to receive messages only from topics that are required for
their functionality.

Keep your device clock in sync

It's important to have an accurate time on your device. X.509 certificates have an expiry date and
time. The clock on your device is used to verify that a server certificate is still valid. Device clocks
can drift over time or batteries can get discharged.

For more information, see the Keep your device's clock in sync best practice in the AWS IoT Core
Developer Guide.

Manage device authentication with the Greengrass core

Client devices can run FreeRTOS or use the AWS IoT Device SDK or AWS IoT Greengrass Discovery
API to get discovery information used to connect and authenticate with the core in the same
Greengrass group. Discovery information includes:

• Connectivity information for the Greengrass core that's in the same Greengrass group as the
client device. This information includes the host address and port number of each endpoint for
the core device.

Create targeted subscriptions 1004

https://docs.aws.amazon.com/iot/latest/developerguide/security-best-practices.html#device-clock
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-lib-gg-connectivity.html

AWS IoT Greengrass Developer Guide, Version 1

• The group CA certificate used to sign the local MQTT server certificate. Client devices use the
group CA certificate to validate the MQTT server certificate presented by the core.

The following are best practices for client devices to manage mutual authentication with a
Greengrass core. These practices can help mitigate your risk if your core device is compromised.

Validate the local MQTT server certificate for each connection.

Client devices should validate the MQTT server certificate presented by the core every time
they establish a connection with the core. This validation is the client device side of the mutual
authentication between a core device and client devices. Client devices must be able to detect a
failure and terminate the connection.

Do not hardcode discovery information.

Client devices should rely on discovery operations to get core connectivity information and the
group CA certificate, even if the core uses a static IP address. Client devices should not hardcode
this discovery information.

Periodically update discovery information.

Client devices should periodically run discovery to update core connectivity information and the
group CA certificate. We recommend that client devices update this information before they
establish a connection with the core. Because shorter durations between discovery operations
can minimize your potential exposure time, we recommend that client devices periodically
disconnect and reconnect to trigger the update.

If you lose control of a Greengrass core device and you want to prevent client devices from
transmitting data to the core, do the following:

1. Remove the Greengrass core from the Greengrass group.

2. Rotate the group CA certificate. In the AWS IoT console, you can rotate the CA
certificate on the group's Settings page. In the AWS IoT Greengrass API, you can use the
CreateGroupCertificateAuthority action.

We also recommend using full disk encryption if the hard drive of your core device is vulnerable
to theft.

For more information, see the section called “Device authentication and authorization”.

Manage device authentication with the Greengrass core 1005

https://docs.aws.amazon.com/greengrass/v1/apireference/creategroupcertificateauthority-post.html

AWS IoT Greengrass Developer Guide, Version 1

See also

• Security best practices in AWS IoT Core in the AWS IoT Developer Guide

• Ten security golden rules for Industrial IoT solutions on the Internet of Things on AWS Official
Blog

See also 1006

https://docs.aws.amazon.com/iot/latest/developerguide/security-best-practices.html
https://aws.amazon.com/blogs/iot/ten-security-golden-rules-for-industrial-iot-solutions/

AWS IoT Greengrass Developer Guide, Version 1

Logging and monitoring in AWS IoT Greengrass

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS
IoT Greengrass and your AWS solutions. You should collect monitoring data from all parts of your
AWS solution so that you can more easily debug a multi-point failure, if one occurs. Before you
start monitoring AWS IoT Greengrass, you should create a monitoring plan that includes answers to
the following questions:

• What are your monitoring goals?

• Which resources will you monitor?

• How often will you monitor these resources?

• Which monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

Monitoring tools

AWS provides tools that you can use to monitor AWS IoT Greengrass. You can configure some
of these tools to do the monitoring for you. Some of the tools require manual intervention. We
recommend that you automate monitoring tasks as much as possible.

You can use the following automated monitoring tools to monitor AWS IoT Greengrass and report
issues:

• Amazon CloudWatch Logs – Monitor, store, and access your log files from AWS CloudTrail or
other sources. For more information, see Monitoring log files in the Amazon CloudWatch User
Guide.

• AWS CloudTrail Log Monitoring – Share log files between accounts, monitor CloudTrail log files
in real time by sending them to CloudWatch Logs, write log processing applications in Java, and
validate that your log files have not changed after delivery by CloudTrail. For more information,
see Working with CloudTrail log files in the AWS CloudTrail User Guide.

• Amazon EventBridge – Use EventBridge event rules to get notifications about state changes for
your Greengrass group deployments or API calls logged with CloudTrail. For more information,
see the section called “Get deployment notifications” or What is Amazon EventBridge? in the
Amazon EventBridge User Guide.

Monitoring tools 1007

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html

AWS IoT Greengrass Developer Guide, Version 1

• Greengrass system health telemetry – Subscribe to receive telemetry data sent from the
Greengrass core. For more information, see the section called “Gathering system health
telemetry data”.

• Local health check – Use the health APIs to get a snapshot of the state of local AWS IoT
Greengrass processes on the core device. For more information, see the section called “Calling
the local health check API”.

See also

• the section called “Monitoring with AWS IoT Greengrass logs”

• the section called “Logging AWS IoT Greengrass API calls with AWS CloudTrail”

• the section called “Get deployment notifications”

Monitoring with AWS IoT Greengrass logs

AWS IoT Greengrass consists of the cloud service and the AWS IoT Greengrass Core software.
The AWS IoT Greengrass Core software can write logs to Amazon CloudWatch and to the local
file system of your core device. Lambda functions and connectors running on the core can also
write logs to CloudWatch Logs and the local file system. You can use logs to monitor events
and troubleshoot issues. All AWS IoT Greengrass log entries include a timestamp, log level, and
information about the event. Changes to logging settings take effect after you deploy the group.

Logging is configured at the group level. For steps that show how to configure logging for a
Greengrass group, see the section called “Configure logging for AWS IoT Greengrass”.

Accessing CloudWatch Logs

If you configure CloudWatch logging, you can view the logs on the Logs page of the Amazon
CloudWatch console. Log groups for AWS IoT Greengrass logs use the following naming
conventions:

/aws/greengrass/GreengrassSystem/greengrass-system-component-name
/aws/greengrass/Lambda/aws-region/account-id/lambda-function-name

Each log group contains log streams that use the following naming convention:

See also 1008

AWS IoT Greengrass Developer Guide, Version 1

date/account-id/greengrass-group-id/name-of-core-that-generated-log

The following considerations apply when you use CloudWatch Logs:

• Logs are sent to CloudWatch Logs with a limited number of retries in case there's no internet
connectivity. After the retries are exhausted, the event is dropped.

• Transaction, memory, and other limitations apply. For more information, see the section called
“Logging limitations”.

•
Your Greengrass group role must allow AWS IoT Greengrass to write to CloudWatch Logs. To
grant permissions, embed the following inline policy in your group role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:*:*:*"
]
 }
]
}

Note

You can grant more granular access to your log resources. For more information,
see Using identity-based policies (IAM policies) for CloudWatch Logs in the Amazon
CloudWatch User Guide.

The group role is an IAM role that you create and attach to your Greengrass group. You can use
the console or the AWS IoT Greengrass API to manage the group role.

Accessing CloudWatch Logs 1009

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#embed-inline-policy-console
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/iam-identity-based-access-control-cwl.html

AWS IoT Greengrass Developer Guide, Version 1

Using the console

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and
then choose Groups (V1).

2. Choose the target group.

3. Choose View settings. Under Group role, you can view, associate, or disassociate the
group role.

For steps that show you how to attach the group role, see group role.

Using the CLI

• To find the group role, use the get-associated-role command.

• To attach the group role, use the associate-role-to-group command.

• To remove the group role, use the disassociate-role-from-group command.

To learn how to get the group ID to use with these commands, see the section called “Getting
the group ID”.

Accessing file system logs

If you configure file system logging, the log files are stored under greengrass-root/ggc/var/
log on the core device. The following is the high-level directory structure:

greengrass-root/ggc/var/log
 - crash.log
 - system
 - log files for each Greengrass system component
 - user
 - region
 - account-id
 - log files generated by each user-defined Lambda function
 - aws

Accessing file system logs 1010

https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-associated-role.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/associate-role-to-group.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/disassociate-role-from-group.html

AWS IoT Greengrass Developer Guide, Version 1

 - log files generated by each connector

Note

By default, greengrass-root is the /greengrass directory. If a write directory is
configured, then the logs are under that directory.

The following considerations apply when you use file system logs:

• Reading AWS IoT Greengrass logs on the file system requires root permissions.

• AWS IoT Greengrass supports size-based rotation and automatic cleanup when the amount of
log data is close to the configured limit.

• The crash.log file is available in file system logs only. This log isn't written to CloudWatch
Logs.

• Disk usage limitations apply. For more information, see the section called “Logging limitations”.

Note

Logs for AWS IoT Greengrass Core software v1.0 are stored under the greengrass-root/
var/log directory.

Default logging configuration

If logging settings aren't explicitly configured, AWS IoT Greengrass uses the following default
logging configuration after the first group deployment.

AWS IoT Greengrass System Components

• Type - FileSystem

• Component - GreengrassSystem

• Level - INFO

• Space - 128 KB

User-defined Lambda Functions

• Type - FileSystem

Default logging configuration 1011

AWS IoT Greengrass Developer Guide, Version 1

• Component - Lambda

• Level - INFO

• Space - 128 KB

Note

Before the first deployment, only system components write logs to the file system because
no user-defined Lambda functions are deployed.

Configure logging for AWS IoT Greengrass

You can use the AWS IoT console or the AWS IoT Greengrass APIs to configure AWS IoT Greengrass
logging.

Note

To allow AWS IoT Greengrass to write logs to CloudWatch Logs, your group role must allow
the required CloudWatch Logs actions.

Configure logging (console)

You can configure logging on the group's Settings page.

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Choose the group where you want to configure logging.

3. On the group configuration page, choose the Logs tab.

4. Choose the logging location, as follows:

• To configure CloudWatch logging, for CloudWatch logs configuration, choose Edit.

• To configure file system logging, for Local logs configuration, choose Edit.

You can configure logging for one location or both locations.

Configure logging for AWS IoT Greengrass 1012

AWS IoT Greengrass Developer Guide, Version 1

5. In the edit logs configuration modal, select Greengrass system log level or User Lambda
functions log level. You can choose one component or both components.

6. Choose the lowest level of events that you want to log. Events below this threshold are filtered
out and aren't stored.

7. Choose Save. Changes take effect after you deploy the group.

Configure logging (API)

You can use AWS IoT Greengrass logger APIs to configure logging programmatically. For
example, use the CreateLoggerDefinition action to create a logger definition based on a
LoggerDefinitionVersion payload, which uses the following syntax:

{
 "Loggers": [
 {
 "Id": "string",
 "Type": "FileSystem|AWSCloudWatch",
 "Component": "GreengrassSystem|Lambda",
 "Level": "DEBUG|INFO|WARN|ERROR|FATAL",
 "Space": "integer"
 },
 {
 "Id": "string",
 ...
 }
]
}

LoggerDefinitionVersion is an array of one or more Logger objects that have the following
properties:

Id

An identifier for the logger.

Type

The storage mechanism for log events. When AWSCloudWatch is used, log events are sent to
CloudWatch Logs. When FileSystem is used, log events are stored on the local file system.

Valid values: AWSCloudWatch, FileSystem

Configure logging for AWS IoT Greengrass 1013

https://docs.aws.amazon.com/greengrass/v1/apireference/createloggerdefinition-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/definitions-loggerdefinitionversion.html
https://docs.aws.amazon.com/greengrass/v1/apireference/definitions-logger.html

AWS IoT Greengrass Developer Guide, Version 1

Component

The source of the log event. When GreengrassSystem is used, events from Greengrass system
components are logged. When Lambda is used, events from user-defined Lambda functions are
logged.

Valid values: GreengrassSystem, Lambda

Level

The log-level threshold. Log events below this threshold are filtered out and aren't stored.

Valid values: DEBUG, INFO (recommended), WARN, ERROR, FATAL

Space

The maximum amount of local storage, in KB, to use for storing logs. This field applies only
when Type is set to FileSystem.

Configuration example

The following LoggerDefinitionVersion example specifies a logging configuration that:

• Turns on file system ERROR and above logging for AWS IoT Greengrass system components.

• Turns on file system INFO (and above) logging for user-defined Lambda functions.

• Turns on CloudWatch INFO (and above) logging for user-defined Lambda functions.

{
 "Name": "LoggingExample",
 "InitialVersion": {
 "Loggers": [
 {
 "Id": "1",
 "Component": "GreengrassSystem",
 "Level": "ERROR",
 "Space": 10240,
 "Type": "FileSystem"
 },
 {
 "Id": "2",
 "Component": "Lambda",
 "Level": "INFO",

Configure logging for AWS IoT Greengrass 1014

AWS IoT Greengrass Developer Guide, Version 1

 "Space": 10240,
 "Type": "FileSystem"
 },
 {
 "Id": "3",
 "Component": "Lambda",
 "Level": "INFO",
 "Type": "AWSCloudWatch"
 }
]
 }
}

After you create a logger definition version, you can use its version ARN to create a group version
before deploying the group.

Logging limitations

AWS IoT Greengrass has the following logging limitations.

Transactions per second

When logging to CloudWatch is enabled, the logging component batches log events locally before
sending them to CloudWatch, so you can log at a rate higher than five requests per second per log
stream.

Memory

If AWS IoT Greengrass is configured to send logs to CloudWatch and a Lambda function logs more
than 5 MB/second for a prolonged period of time, the internal processing pipeline eventually fills
up. The theoretical worst case is 6 MB per Lambda function.

Clock skew

When logging to CloudWatch is enabled, the logging component signs requests to CloudWatch
using the normal Signature Version 4 signing process. If the system time on the AWS IoT
Greengrass core device is out of sync by more than 15 minutes, then the requests are rejected.

Disk usage

Use the following formula to calculate the total maximum amount of disk usage for logging.

Logging limitations 1015

https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html

AWS IoT Greengrass Developer Guide, Version 1

greengrass-system-component-space * 8 // 7 if automatic IP detection is disabled
 + 128KB // the internal log for the local logging
 component
 + lambda-space * lambda-count // different versions of a Lambda function are
 treated as one

Where:

greengrass-system-component-space

The maximum amount of local storage for the AWS IoT Greengrass system component logs.

lambda-space

The maximum amount of local storage for Lambda function logs.

lambda-count

The number of deployed Lambda functions.

Log loss

If your AWS IoT Greengrass core device is configured to log only to CloudWatch and there's no
internet connectivity, you have no way to retrieve the logs currently in the memory.

When Lambda functions are terminated (for example, during deployment), a few seconds' worth of
logs are not written to CloudWatch.

CloudTrail logs

AWS IoT Greengrass runs with AWS CloudTrail, a service that provides a record of actions taken by
a user, role, or an AWS service in AWS IoT Greengrass. For more information, see the section called
“Logging AWS IoT Greengrass API calls with AWS CloudTrail”.

Logging AWS IoT Greengrass API calls with AWS CloudTrail

AWS IoT Greengrass is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in AWS IoT Greengrass. CloudTrail captures all API calls
for AWS IoT Greengrass as events. The calls captured include calls from the AWS IoT Greengrass
console and code calls to the AWS IoT Greengrass API operations. If you create a trail, you can

CloudTrail logs 1016

AWS IoT Greengrass Developer Guide, Version 1

enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for
AWS IoT Greengrass. If you don't configure a trail, you can still view the most recent events in
the CloudTrail console in Event history. Using the information collected by CloudTrail, you can
determine the request that was made to AWS IoT Greengrass, the IP address from which the
request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

AWS IoT Greengrass information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
AWS IoT Greengrass, that activity is recorded in a CloudTrail event along with other AWS service
events in Event history. You can view, search, and download recent events in your AWS account.
For more information, see Viewing events with CloudTrail event history.

For an ongoing record of events in your AWS account, including events for AWS IoT Greengrass,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events
from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you
specify. Additionally, you can configure other AWS services to further analyze and act upon the
event data collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

All AWS IoT Greengrass actions are logged by CloudTrail and are documented in the AWS IoT
Greengrass API reference. For example, calls to the AssociateServiceRoleToAccount,
GetGroupVersion, GetConnectivityInfo, and CreateFunctionDefinition actions
generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

AWS IoT Greengrass information in CloudTrail 1017

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/greengrass/v1/apireference/api-actions.html
https://docs.aws.amazon.com/greengrass/v1/apireference/api-actions.html

AWS IoT Greengrass Developer Guide, Version 1

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

Understanding AWS IoT Greengrass log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the
AssociateServiceRoleToAccount action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/Mary_Major",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Mary_Major"
 },
 "eventTime": "2018-10-17T17:04:02Z",
 "eventSource": "greengrass.amazonaws.com",
 "eventName": "AssociateServiceRoleToAccount",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "203.0.113.12",
 "userAgent": "apimanager.amazonaws.com",
 "errorCode": "BadRequestException",
 "requestParameters": null,
 "responseElements": {
 "Message": "That role ARN is invalid."
 },
 "requestID": "a5990ec6-d22e-11e8-8ae5-c7d2eEXAMPLE",
 "eventID": "b9070ce2-0238-451a-a9db-2dbf1EXAMPLE",
 "readOnly": false,
 "eventType": "AwsApiCall",

Understanding AWS IoT Greengrass log file entries 1018

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS IoT Greengrass Developer Guide, Version 1

 "recipientAccountId": "123456789012"
}

The following example shows a CloudTrail log entry that demonstrates the GetGroupVersion
action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/Mary_Major",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Mary_Major",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-10-17T18:14:57Z"
 }
 },
 "invokedBy": "apimanager.amazonaws.com"
 },
 "eventTime": "2018-10-17T18:15:11Z",
 "eventSource": "greengrass.amazonaws.com",
 "eventName": "GetGroupVersion",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "203.0.113.12",
 "userAgent": "apimanager.amazonaws.com",
 "requestParameters": {
 "GroupVersionId": "6c477753-dbf2-4cb8-acc3-5ba4eEXAMPLE",
 "GroupId": "90fcf6df-413c-4515-93a8-00056EXAMPLE"
 },
 "responseElements": null,
 "requestID": "95dcffce-d238-11e8-9240-a3993EXAMPLE",
 "eventID": "8a608034-82ed-431b-b5e0-87fbdEXAMPLE",
 "readOnly": true,
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

The following example shows a CloudTrail log entry that demonstrates the
GetConnectivityInfo action.

Understanding AWS IoT Greengrass log file entries 1019

AWS IoT Greengrass Developer Guide, Version 1

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/Mary_Major",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Mary_Major"
 },
 "eventTime": "2018-10-17T17:02:12Z",
 "eventSource": "greengrass.amazonaws.com",
 "eventName": "GetConnectivityInfo",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "203.0.113.12",
 "userAgent": "apimanager.amazonaws.com",
 "requestParameters": {
 "ThingName": "us-east-1_CIS_1539795000000_"
 },
 "responseElements": null,
 "requestID": "63e3ebe3-d22e-11e8-9ddd-5baf3EXAMPLE",
 "eventID": "db2260d1-a8cc-4a65-b92a-13f65EXAMPLE",
 "readOnly": true,
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

The following example shows a CloudTrail log entry that demonstrates the
CreateFunctionDefinition action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/Mary_Major",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Mary_Major"
 },
 "eventTime": "2018-10-17T18:01:11Z",
 "eventSource": "greengrass.amazonaws.com",
 "eventName": "CreateFunctionDefinition",

Understanding AWS IoT Greengrass log file entries 1020

AWS IoT Greengrass Developer Guide, Version 1

 "awsRegion": "us-east-1",
 "sourceIPAddress": "203.0.113.12",
 "userAgent": "apimanager.amazonaws.com",
 "requestParameters": {
 "InitialVersion": "***"
 },
 "responseElements": {
 "CreationTimestamp": "2018-10-17T18:01:11.449Z",
 "LatestVersion": "dae06a61-c32c-41e9-b983-ee5cfEXAMPLE",
 "LatestVersionArn": "arn:aws:greengrass:us-east-1:123456789012:/greengrass/
definition/functions/7a94847d-d4d2-406c-9796-a3529EXAMPLE/versions/dae06a61-c32c-41e9-
b983-ee5cfEXAMPLE",
 "LastUpdatedTimestamp": "2018-10-17T18:01:11.449Z",
 "Id": "7a94847d-d4d2-406c-9796-a3529EXAMPLE",
 "Arn": "arn:aws:greengrass:us-east-1:123456789012:/greengrass/definition/
functions/7a94847d-d4d2-406c-9796-a3529EXAMPLE"
 },
 "requestID": "a17d4b96-d236-11e8-a74e-3db27EXAMPLE",
 "eventID": "bdbf6677-a47a-4c78-b227-c5f64EXAMPLE",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

See also

• What is AWS CloudTrail? in the AWS CloudTrail User Guide

• Creating an EventBridge rule that triggers on an AWS API call using CloudTrail in the Amazon
EventBridge User Guide

• AWS IoT Greengrass API reference

Gathering system health telemetry data from AWS IoT
Greengrass core devices

System health telemetry data is diagnostic data that can help you monitor the performance
of critical operations on your Greengrass core devices. The telemetry agent on the Greengrass
core collects local telemetry data and publishes it to Amazon EventBridge without requiring any
customer interaction. Core devices publish telemetry data to EventBridge on a best effort basis. For
example, core devices might fail to deliver telemetry data while offline.

See also 1021

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-cloudtrail-rule.html
https://docs.aws.amazon.com/greengrass/v1/apireference/api-actions.html

AWS IoT Greengrass Developer Guide, Version 1

Note

Amazon EventBridge is an event bus service that you can use to connect your applications
with data from a variety of sources, such as Greengrass core devices and deployment
notifications. For more information, see What is Amazon EventBridge? in the Amazon
EventBridge User Guide.

You can create projects and applications to retrieve, analyze, transform, and report telemetry data
from your edge devices. Domain experts, such as process engineers, can use these applications to
gain insights into fleet health.

To ensure that the Greengrass edge components function properly, AWS IoT Greengrass uses the
data for development and quality improvement purposes. This feature also helps inform new and
enhanced edge capabilities. AWS IoT Greengrass only retains telemetry data for up to seven days.

This feature is available in AWS IoT Greengrass Core software v1.11.0 and is enabled by default for
all Greengrass cores, including existing cores. You automatically start receiving data as soon as you
upgrade to AWS IoT Greengrass Core software v1.11.0 or later.

For information about how to access or manage published telemetry data, see the section called
“Subscribing to receive telemetry data”.

The telemetry agent collects and publishes the following system metrics.

Telemetry metrics

Name Description Source

SystemMemUsage The amount of memory
currently in use by all
applications on the Greengras
s core device, including the
operating system.

System

CpuUsage The amount of CPU currently
in use by all applications on
the Greengrass core device,
including the operating
system.

System

Gathering system health telemetry data 1022

https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html

AWS IoT Greengrass Developer Guide, Version 1

Name Description Source

TotalNumberOfFDs The number of file descripto
rs stored by the operating
system of the Greengrass core
device. One file descriptor
uniquely identifies one open
file.

System

LambdaOutOfMemory The number of runs that
result in the Lambda function
running out of memory.

System

DroppedMessageCount The number of dropped
messages that are destined
for AWS IoT Core.

GGCloudSpooler system
component

LambdaTimeout The number of timeouts for
running the user-defined
Lambda function.

User-defined Lambda
function, AWS Cloud, and
system

LambdaUngracefully
Killed

The number of runs that
the user-defined Lambda
function fails to complete.

User-defined Lambda
function, AWS Cloud, and
system

LambdaError The number of runs that
result in the user-defined
Lambda function writing error
logs.

User-defined Lambda
function, AWS Cloud, and
system

BytesAppended The number of bytes of data
appended to stream manager.

GGStreamManager system
component

BytesUploadedToIoT
Analytics

The number of bytes of
data that stream manager
exports to channels in AWS
IoT Analytics.

GGStreamManager system
component

Gathering system health telemetry data 1023

AWS IoT Greengrass Developer Guide, Version 1

Name Description Source

BytesUploadedToKin
esis

The number of bytes of data
that stream manager exports
to streams in Amazon Kinesis
Data Streams.

GGStreamManager system
component

BytesUploadedToIoT
SiteWise

The number of bytes of data
that stream manager exports
to asset properties in AWS IoT
SiteWise.

GGStreamManager system
component

BytesUploadedToS3E
xportTaskExecutor

The number of bytes of data
that stream manager exports
to objects in Amazon S3.

GGStreamManager system
component

BytesUploadedToHTTP The number of bytes of data
that stream manager exports
to HTTP.

GGStreamManager system
component

Configuring telemetry settings

Greengrass telemetry uses the following settings:

• The telemetry agent aggregates telemetry data every hour.

• The telemetry agent publishes a telemetry message every 24 hours.

Note

The settings are unchangeable.

You can enable or disable the telemetry feature for a Greengrass core device. AWS IoT Greengrass
uses shadows to manage the telemetry configuration. Your changes take effect immediately when
the core has a connection to AWS IoT Core.

Configuring telemetry settings 1024

https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html

AWS IoT Greengrass Developer Guide, Version 1

The telemetry agent publishes data using the MQTT protocol with a quality of service (QoS) level
of 0. This means that it doesn't confirm delivery or retry publishing attempts. Telemetry messages
share an MQTT connection with other messages for subscriptions destined for AWS IoT Core.

Aside from your data link costs, the data transfer from the core to AWS IoT Core is no charge. This
is because the agent publishes to an AWS reserved topic. However, depending on your use case,
you might incur costs when you receive or process the data.

Requirements

The following requirements apply, when you configure telemetry settings:

• You must use AWS IoT Greengrass Core software v1.11.0 or later.

Note

If you're running an earlier version and you don't want to use telemetry, you don't have
to do anything.

• You must provide IAM permissions to update the core (thing) shadow and to call the
configuration APIs before you update telemetry settings.

The following example IAM policy lets you manage the shadow and runtime configuration of a
specific core:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowManageShadow",
 "Effect": "Allow",
 "Action": [
 "iot:GetThingShadow",
 "iot:UpdateThingShadow",
 "iot:DeleteThingShadow",
 "iot:DescribeThing"
],
 "Resource": [
 "arn:aws:iot:region:account-id:thing/core-name-*"
]
 },
 {

Configuring telemetry settings 1025

AWS IoT Greengrass Developer Guide, Version 1

 "Sid": "AllowManageRuntimeConfig",
 "Effect": "Allow",
 "Action": [
 "greengrass:GetCoreRuntimeConfiguration",
 "greengrass:UpdateCoreRuntimeConfiguration"
],
 "Resource": [
 "arn:aws:iot:region:account-id:thing/core-name"
]
 }
]
}

You can grant granular or conditional access to resources, for example, by using a wildcard *
naming scheme. For more information, see Adding and removing IAM policies in the IAM User
Guide.

Configure telemetry settings (console)

The following shows how to update the telemetry settings of a Greengrass core in the AWS IoT
Greengrass console.

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and then
choose Groups (V1).

2. Under Greengrass groups, choose your target group.

3. On the group configuration page, in the Overview section, choose your Greengrass core.

4. On the core's configuration page, choose the Telemetry tab.

5. In the System health telemetry section, choose Configure.

6. In Configure telemetry, select Telemetry to enable or disable the Telemetry status.

Important

By default, the telemetry feature is enabled for AWS IoT Greengrass Core software
v1.11.0 or later.

The changes take effect at runtime. You don't need to deploy the group.

Configuring telemetry settings 1026

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

AWS IoT Greengrass Developer Guide, Version 1

Configure telemetry settings (CLI)

In the AWS IoT Greengrass API, the TelemetryConfiguration object represents the telemetry
settings of a Greengrass core. This object is part of the RuntimeConfiguration object associated
with the core. You can use the AWS IoT Greengrass API, AWS CLI, or AWS SDK to manage
Greengrass telemetry. The examples in this section use the AWS CLI.

To check telemetry settings

The following command gets the telemetry settings of a Greengrass core.

• Replace core-thing-name with the name of the target core.

To get the thing name, you use the get-core-definition-version command. The command
returns the ARN of the thing that contains the thing name.

aws greengrass get-thing-runtime-configuration --thing-name core-thing-name

The command returns a GetCoreRuntimeConfigurationResponse object in the JSON
response. For example:

{
 "RuntimeConfiguration": {
 "TelemetryConfiguration": {
 "ConfigurationSyncStatus": "OutOfSync",
 "Telemetry": "On"
 }
 }
}

To configure telemetry settings

The following command updates the telemetry settings for a Greengrass core.

• Replace core-thing-name with the name of the target core.

To get the thing name, you use the get-core-definition-version command. The command
returns the ARN of the thing that contains the thing name.

JSON expanded

aws greengrass update-thing-runtime-configuration --thing-name core-thing-name --
telemetry-configuration '{

Configuring telemetry settings 1027

https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html

AWS IoT Greengrass Developer Guide, Version 1

 "RuntimeConfiguration": {
 "TelemetryConfiguration": {
 "ConfigurationSyncStatus": "InSync",
 "Telemetry": "Off"
 }
 }
}

JSON single-line

aws greengrass update-thing-runtime-configuration --thing-name core-thing-name --
telemetry-configuration "{\"TelemetryConfiguration\":{\"ConfigurationSyncStatus
\":\"InSync\",\"Telemetry\":\"Off\"}}"

Changes to telemetry settings have been applied if the ConfigurationSyncStatus is
InSync. The changes take effect at runtime. You don't need to deploy the group.

TelemetryConfiguration object

The TelemetryConfiguration object has the following properties:

ConfigurationSyncStatus

Checks if telemetry settings are in sync. You might not make changes to this property.

Type: string

Valid values: InSync or OutOfSync

Telemetry

Turns telemetry on or off. The default is On.

Type: string

Valid values: On or Off

Subscribing to receive telemetry data

You can create rules in Amazon EventBridge that define how to process telemetry data published
from the Greengrass core device. When EventBridge receives the data, it invokes the target actions

Subscribing to receive telemetry data 1028

AWS IoT Greengrass Developer Guide, Version 1

defined in your rules. For example, you can create event rules that send notifications, store event
information, take corrective action, or invoke other events.

Telemetry event

The event for a deployment state change including the telemetry data uses the following format:

{
 "version": "0",
 "id": "f70f943b-9ae2-e7a5-fec4-4c22178a3e6a",
 "detail-type": "Greengrass Telemetry Data",
 "source": "aws.greengrass",
 "account": "123456789012",
 "time": "2020-07-28T20:45:53Z",
 "region": "us-west-1",
 "resources": [],
 "detail": {
 "ThingName": "CoolThing",
 "Schema": "2020-06-30",
 "ADP": [
 {
 "TS": 123231546,
 "NS": "StreamManager",
 "M": [
 {
 "N": "BytesAppended|BytesUploadedToKinesis",
 "Sum": 11,
 "U": "Bytes"
 }
]
 },
 {
 "TS": 123231546,
 "NS": "StreamManager",
 "M": [
 {
 "N": "BytesAppended|BytesUploadedToS3ExportTaskExecutor",
 "Sum": 11,
 "U": "Bytes"
 }
]
 },
 {

Subscribing to receive telemetry data 1029

AWS IoT Greengrass Developer Guide, Version 1

 "TS": 123231546,
 "NS": "StreamManager",
 "M": [
 {
 "N": "BytesAppended|BytesUploadedToHTTP",
 "Sum": 11,
 "U": "Bytes"
 }
]
 },
 {
 "TS": 123231546,
 "NS": "StreamManager",
 "M": [
 {
 "N": "BytesAppended|BytesUploadedToIoTAnalytics",
 "Sum": 11,
 "U": "Bytes"
 }
]
 },
 {
 "TS": 123231546,
 "NS": "StreamManager",
 "M": [
 {
 "N": "BytesAppended|BytesUploadedToIoTSiteWise",
 "Sum": 11,
 "U": "Bytes"
 }
]
 },
 {
 "TS": 123231546,
 "NS": "arn:aws:lambda:us-west-1:123456789012:function:my-function",
 "M": [
 {
 "N": "LambdaTimeout",
 "Sum": 15,
 "U": "Count"
 }
]
 },
 {

Subscribing to receive telemetry data 1030

AWS IoT Greengrass Developer Guide, Version 1

 "TS": 123231546,
 "NS": "CloudSpooler",
 "M": [
 {
 "N": "DroppedMessageCount",
 "Sum": 15,
 "U": "Count"
 }
]
 },
 {
 "TS": 1593727692,
 "NS": "SystemMetrics",
 "M": [
 {
 "N": "SystemMemUsage",
 "Sum": 11.23,
 "U": "Megabytes"
 },
 {
 "N": "CpuUsage",
 "Sum": 35.63,
 "U": "Percent"
 },
 {
 "N": "TotalNumberOfFDs",
 "Sum": 416,
 "U": "Count"
 }
]
 },
 {
 "TS": 1593727692,
 "NS": "arn:aws:lambda:us-west-1:123456789012:function:my-function",
 "M": [
 {
 "N": "LambdaOutOfMemory",
 "Sum": 12,
 "U": "Count"
 },
 {
 "N": "LambdaUngracefullyKilled",
 "Sum": 100,
 "U": "Count"

Subscribing to receive telemetry data 1031

AWS IoT Greengrass Developer Guide, Version 1

 },
 {
 "N": "LambdaError",
 "Sum": 7,
 "U": "Count"
 }
]
 }
]
 }
}

The ADP array contains a list of aggregated data points that have the following properties:

TS

Required. The timestamp of when the data was aggregated.

NS

Required. The namespace of the system.

M

Required. The list of metrics. A metric contains the following properties:

N

The name of the metric.

Sum

The aggregated metric value. The telemetry agent adds new values to the previous total,
so the sum is an ever-increasing value. You can use the timestamp to find the value of a
specific aggregation. For example, to find the latest aggregated value, subtract the previous
timestamped value from the latest timestamped value.

U

The unit of the metric value.

ThingName

Required. The name of the thing device that you target.

Subscribing to receive telemetry data 1032

AWS IoT Greengrass Developer Guide, Version 1

Prerequisites for creating EventBridge rules

Before you create an EventBridge rule for AWS IoT Greengrass, you should do the following:

• Familiarize yourself with events, rules, and targets in EventBridge.

• Create and configure the targets invoked by your EventBridge rules. Rules can invoke many types
of targets, such as Amazon Kinesis streams, AWS Lambda functions, Amazon SNS topics, and
Amazon SQS queues.

Your EventBridge rule, and the associated targets must be in the AWS Region where you created
your Greengrass resources. For more information, see Service endpoints and quotas in the AWS
General Reference.

For more information, see What is Amazon EventBridge? and Getting started with Amazon
EventBridge in the Amazon EventBridge User Guide.

Create an event rule to get telemetry data (console)

Use the following steps to use the AWS Management Console to create an EventBridge rule
that receives telemetry data published by the Greengrass core. This allows web servers, email
addresses, and other topic subscribers to respond to the event. For more information, see Creating
a EventBridge rule that triggers on an event from an AWS resource in the Amazon EventBridge User
Guide.

1. Open the Amazon EventBridge console and choose Create rule.

2. Under Name and description, enter a name and description for the rule.

3. Choose Event bus- and enable the rule on the selected event bus..

4. Select the Rule type and choose Rule with an event pattern.

5. Choose Next.

6. For Event source, choose AWS events or EventBridge partner events.

7. For Sample event, choose AWS events, and select Greengrass Telemetry Data.

8. In Event pattern, make the following selections:

a. For Event source, choose AWS services.

b. For AWS service, choose Greengrass.

c. For Event type, choose Greengrass Telemetry Data.

Subscribing to receive telemetry data 1033

https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-targets.html
https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-getting-set-up.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-getting-set-up.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html
https://console.aws.amazon.com/events/

AWS IoT Greengrass Developer Guide, Version 1

9. Choose Next.

10. For Target 1, choose AWS service.

11. For Select a target, choose SQS queue.

12. For Queue, choose your function.

Create an event rule to get telemetry data (CLI)

Use the following steps to use the AWS CLI to create an EventBridge rule that receives telemetry
data published by the Greengrass core. This allows web servers, email addresses, and other topic
subscribers to respond to the event.

1. Create the rule.

• Replace thing-name with the thing name of the core.

To get the thing name, you use the get-core-definition-version command. The command
returns the ARN of the thing that contains the thing name.

aws events put-rule \
 --name TestRule \
 --event-pattern "{\"source\": [\"aws.greengrass\"], \"detail\": {\"ThingName\":
 [\"thing-name\"]}}"

Properties that are omitted from the pattern are ignored.

2. Add the topic as a rule target. The following example uses Amazon SQS but you can configure
other target types.

• Replace queue-arn with the ARN of your Amazon SQS queue.

aws events put-targets \
 --rule TestRule \
 --targets "Id"="1","Arn"="queue-arn"

Subscribing to receive telemetry data 1034

https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-core-definition-version.html

AWS IoT Greengrass Developer Guide, Version 1

Note

To allow Amazon EventBridge to invoke your target queue, you must add a resource-
based policy to your topic. For more information, see Amazon SQS permissions in the
Amazon EventBridge User Guide.

For more information, see Events and event patterns in EventBridge in the Amazon EventBridge
User Guide.

Troubleshooting AWS IoT Greengrass telemetry

Use the following information to help troubleshoot issues with configuring AWS IoT Greengrass
telemetry.

Error: The response contains "ConfigurationStatus": "OutOfSync" after you run
the get-thing-runtime-configuration command

Solutions:

• The AWS IoT Device Shadow service takes time to process runtime configuration updates and to
deliver the updates to the Greengrass core device. You might wait and check if telemetry settings
are in sync later.

• Make sure that your core device is online.

• Enable Amazon CloudWatch Logs in AWS IoT Core to monitor the shadow.

• Use AWS IoT metrics to monitor your thing.

Calling the local health check API

AWS IoT Greengrass contains a local HTTP API that provides a snapshot of the current state of local
worker processes that were started by AWS IoT Greengrass. This snapshot includes user-defined
Lambda functions and system Lambda functions. System Lambda functions are part of the AWS
IoT Greengrass Core software. They run as local worker processes on the core device and manage
operations such as message routing, local shadow sync, and automatic IP address detection.

The health check API supports the following requests:

Troubleshooting AWS IoT Greengrass telemetry 1035

https://docs.aws.amazon.com/eventbridge/latest/userguide/resource-based-policies-eventbridge.html#sqs-permissions
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html
https://docs.aws.amazon.com/iot/latest/developerguide/cloud-watch-logs.html#viewing-logs
https://docs.aws.amazon.com/iot/latest/developerguide/monitoring-cloudwatch.html

AWS IoT Greengrass Developer Guide, Version 1

• Send a GET request to get health information for all workers.

• Send a POST request to get health information for specified workers.

Requests are sent locally on the device and don't require an internet connection.

Get health information for all workers

Send a GET request to get health information about all running workers.

• Replace port with the port number of the IPC.

GET http://localhost:port/2016-11-01/health/workers

port

The port number of the IPC.

The value can vary between 1024 and 65535. The default value is 8000.

To change this port number, you can update the ggDaemonPort property in the config.json
file. For more information, see AWS IoT Greengrass core configuration file.

Example request

The following example curl request gets health information for all workers.

curl http://localhost:8000/2016-11-01/health/workers

JSON Response

This request returns an array of worker health information objects.

Example response

The following example response lists health information objects for all worker processes that were
started by AWS IoT Greengrass.

[
 {

Get health information for all workers 1036

AWS IoT Greengrass Developer Guide, Version 1

 "FuncArn": "arn:aws:lambda:::function:GGShadowService:1",
 "WorkerId" : "65515053-2f70-43dc-7cc0-1712bEXAMPLE",
 "ProcessId": "1234",
 "WorkerState": "Waiting"
 },
 {
 "FuncArn": "arn:aws:lambda:::function:GGSecretManager:1",
 "WorkerId": "a9916cc2-1b4d-4f0e-4b12-b1872EXAMPLE",
 "ProcessId": "9798",
 "WorkerState": "Waiting"
 },
 {
 "FuncArn": "arn:aws:lambda:us-west-2:123456789012:function:my-lambda-function:3",
 "WorkerId": "2e6f785e-66a5-42c9-67df-42073EXAMPLE",
 "ProcessId": "11837",
 "WorkerState": "Waiting"
 },
 ...
]

Get health information about specified workers

Send a POST request to get health information about specified workers. Replace port with the
port number of the IPC. The default is 8000.

POST http://localhost:port/2016-11-01/health/workers

Example request

The following example curl request gets health information for specified workers.

curl --data "@body.json" http://localhost:8000/2016-11-01/health/workers

Here's an example body.json request body:

{
 "FuncArns": [
 "arn:aws:lambda:::function:GGShadowService:1",
 "arn:aws:lambda:us-west-2:123456789012:function:my-lambda-function:3"
]
}

Get health information about specified workers 1037

AWS IoT Greengrass Developer Guide, Version 1

The request body contains a FuncArns array.

FuncArns

A list of Amazon Resource Names (ARNs) for the Lambda functions that represent the target
workers.

• For user-defined Lambda functions, specify the ARN of the currently deployed version. If you
added Lambda functions to the group using an alias ARN, you can use the GET request to get
all workers, and then choose the ARNs you want to query for.

• For system Lambda functions, specify the ARN of the corresponding Lambda function. For
more information, see the section called “System Lambda functions”.

Type: array of strings

Minimum length: 1

Maximum length: The total number of workers started by AWS IoT Greengrass on the core
device.

JSON Response

This request returns a Workers array and an InvalidArns array.

Workers

A list of health information objects for the specified workers.

Type: array of health information objects

InvalidArns

A list of function ARNs that are invalid, including function ARNs that don't have associated
workers.

Type: array of strings

Example response

The following example response lists health information objects for the specified workers.

{

Get health information about specified workers 1038

AWS IoT Greengrass Developer Guide, Version 1

 "Workers": [
 {
 "FuncArn": "arn:aws:lambda:::function:GGShadowService:1",
 "WorkerId" : "65515053-2f70-43dc-7cc0-1712bEXAMPLE",
 "ProcessId": "1234",
 "WorkerState": "Waiting"
 },
 {
 "FuncArn": "arn:aws:lambda:us-west-2:123456789012:function:my-lambda-
function:3",
 "WorkerId": "2e6f785e-66a5-42c9-67df-42073ESAMPLE",
 "ProcessId": "11837",
 "WorkerState": "Waiting"
 }
],
 "InvalidArns" : [
 "some-malformed-arn",
 "arn:aws:lambda:us-west-2:123456789012:function:some-unknown-function:1"
]
}

This request returns the following errors:

400 Invalid request

The request body is malformed. To resolve this issue, use the following format and resend the
request:

{"FuncArns":["function-1-arn","function-2-arn"]}

400 Request exceeds max number of workers

The number of ARNs specified in the FuncArns array exceeds the number of workers.

Worker health information

A health information object contains the following properties:

FuncArn

The ARN of the system Lambda function that represents the worker.

Worker health information 1039

AWS IoT Greengrass Developer Guide, Version 1

Type: string

WorkerId

The ID of the worker. This property can be useful for debugging. The runtime.log file and the
Lambda function logs contain the worker ID, so this property can be especially useful to debug
an on-demand Lambda function that spins up multiple instances.

Type: string

ProcessId

The process ID (PID) of the worker process.

Type: int

WorkerState

The state of the worker.

Type: string

The following are possible worker states:

Working

Processing a message.

Waiting

Waiting for a message. Applies to long-lived Lambda functions running as a daemon or
standalone process.

Starting

Spun up, getting started.

FailedInitialization

Failed to initialize.

Terminated

Stopped by the Greengrass daemon

NotStarted

Failed to start, making another start attempt.

Worker health information 1040

AWS IoT Greengrass Developer Guide, Version 1

Initialized

Successfully initialized.

System Lambda functions

You can request health information for the following system Lambda functions:

GGCloudSpooler

Manages the queue for MQTT messages that have AWS IoT Core as the source or target.

ARN: arn:aws:lambda:::function:GGCloudSpooler:1

GGConnManager

Routes MQTT messages between the Greengrass core and client devices.

ARN: arn:aws:lambda:::function:GGConnManager

GGDeviceCertificateManager

Listens to the AWS IoT shadow for changes to the core's IP endpoints and generates the server-
side certificate used by GGConnManager for mutual authentication.

ARN: arn:aws:lambda:::function:GGDeviceCertificateManager

GGIPDetector

Manages automatic IP address detection that enables devices in the Greengrass group to
discover the Greengrass core device. This service isn't applicable when you provide IP addresses
manually.

ARN: arn:aws:lambda:::function:GGIPDetector:1

GGSecretManager

Manages secure storage of local secrets and access by user-defined Lambda and connectors.

ARN: arn:aws:lambda:::function:GGSecretManager:1

GGShadowService

Manages local shadows for client devices.

ARN: arn:aws:lambda:::function:GGShadowService

Worker health information 1041

AWS IoT Greengrass Developer Guide, Version 1

GGShadowSyncManager

Synchronizes local shadows with the AWS Cloud for the core device and client devices, if the
device's syncShadow property is set to true.

ARN: arn:aws:lambda:::function:GGShadowSyncManager

GGStreamManager

Processes data streams locally and performs automatic exports to the AWS Cloud.

ARN: arn:aws:lambda:::function:GGStreamManager:1

GGTES

The local token exchange service that retrieves IAM credentials defined in the Greengrass group
role that local code uses to access AWS services.

ARN: arn:aws:lambda:::function:GGTES

Worker health information 1042

AWS IoT Greengrass Developer Guide, Version 1

Tagging your AWS IoT Greengrass resources

Tags can help you organize and manage your AWS IoT Greengrass groups. You can use tags to
assign metadata to groups, bulk deployments, and the cores, devices, and other resources that
are added to groups. Tags can also be used in IAM policies to define conditional access to your
Greengrass resources.

Note

Currently, Greengrass resource tags are not supported for AWS IoT billing groups or cost
allocation reports.

Tag basics

Tags allow you to categorize your AWS IoT Greengrass resources, for example, by purpose, owner,
and environment. When you have many resources of the same type, you can quickly identify a
resource based on the tags that are attached to it. A tag consists of a key and optional value, both
of which you define. We recommend that you design a set of tag keys for each resource type. Using
a consistent set of tag keys makes it easier for you to manage your resources. For example, you can
define a set of tags for your groups that helps you track the factory location of your core devices.
For more information, see AWS Tagging Strategies.

Tagging support in the AWS IoT console

You can create, view, and manage tags for your Greengrass Group resources in the AWS IoT
console. Before you create tags, be aware of tagging restrictions. For more information, see Tag
naming and usage conventions in the Amazon Web Services General Reference.

To assign tags when you create a group

You can assign tags to a group when you create the group. Choose Add new tag under the Tags
section to show the tagging input fields.

To view and manage tags from the group configuration page

You can view and manage tags from the group configuration page by choosing View settings.
In the Tags section for the group, choose Manage tags to add, edit, or remove group tags.

Tag basics 1043

https://aws.amazon.com/answers/account-management/aws-tagging-strategies
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html

AWS IoT Greengrass Developer Guide, Version 1

Tagging support in the AWS IoT Greengrass API

You can use the AWS IoT Greengrass API to create, list, and manage tags for AWS IoT Greengrass
resources that support tagging. Before you create tags, be aware of tagging restrictions. For more
information, see Tag naming and usage conventions in the Amazon Web Services General Reference.

• To add tags during resource creation, define them in the tags property of the resource.

• To add tags after a resource is created, or to update tag values, use the TagResource action.

• To remove tags from a resource, use the UntagResource action.

• To retrieve the tags that are associated with a resource, use the ListTagsForResource action
or get the resource and inspect its tags property.

The following table lists resources you can tag in the AWS IoT Greengrass API and their
corresponding Create and Get actions.

Resource Create Get

Group CreateGroup GetGroup

ConnectorDefinition CreateConnectorDef
inition

GetConnectorDefini
tion

CoreDefinition CreateCoreDefinition GetCoreDefinition

DeviceDefinition CreateDeviceDefini
tion

GetDeviceDefinition

FunctionDefinition CreateFunctionDefi
nition

GetFunctionDefinit
ion

LoggerDefinition CreateLoggerDefini
tion

GetLoggerDefinition

ResourceDefinition CreateResourceDefi
nition

GetResourceDefinit
ion

SubscriptionDefini
tion

CreateSubscription
Definition

GetSubscriptionDef
inition

Tagging support (API) 1044

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://docs.aws.amazon.com/greengrass/v1/apireference/creategroup-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getgroup-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/createconnectordefinition-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/createconnectordefinition-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getconnectordefinition-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getconnectordefinition-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/createcoredefinition-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getcoredefinition-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/createdevicedefinition-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/createdevicedefinition-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getdevicedefinition-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/createfunctiondefinition-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/createfunctiondefinition-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getfunctiondefinition-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getfunctiondefinition-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/createloggerdefinition-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/createloggerdefinition-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getloggerdefinition-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/createresourcedefinition-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/createresourcedefinition-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getresourcedefinition-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getresourcedefinition-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/createsubscriptiondefinition-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/createsubscriptiondefinition-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getsubscriptiondefinition-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getsubscriptiondefinition-get.html

AWS IoT Greengrass Developer Guide, Version 1

Resource Create Get

BulkDeployment StartBulkDeployment GetBulkDeploymentS
tatus

Use the following actions to list and manage tags for resources that support tagging:

• TagResource. Adds tags to a resource. Also used to change the value of the tag's key-value pair.

• ListTagsForResource. Lists the tags for a resource.

• UntagResource. Removes tags from a resource.

You can add or remove tags on a resource at any time. To change the value of a tag key, add a tag
to the resource that defines the same key and the new value. The new value overwrites the old
value. You can set a value to an empty string, but you can't set a value to null.

When you delete a resource, tags that are associated with the resource are also deleted.

Note

Don't confuse resource tags with the attributes that you can assign to AWS IoT things.
Although Greengrass cores are AWS IoT things, the resource tags that are described in this
topic are attached to a CoreDefinition, not the core thing.

Using tags with IAM policies

In your IAM policies, you can use resource tags to control user access and permissions. For example,
policies can allow users to create only those resources that have a specific tag. Policies can also
restrict users from creating or modifying resources that have certain tags. You can tag resources
during creation (called tag on create) so you don't have to run custom tagging scripts later.
When new environments are launched with tags, the corresponding IAM permissions are applied
automatically.

The following condition context keys and values can be used in the Condition element (also
called the Condition block) of the policy.

Using tags with IAM policies 1045

https://docs.aws.amazon.com/greengrass/v1/apireference/startbulkdeployment-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getbulkdeploymentstatus-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getbulkdeploymentstatus-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/tagresource-post.html
https://docs.aws.amazon.com/greengrass/v1/apireference/listtagsforresource-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/untagresource-delete.html

AWS IoT Greengrass Developer Guide, Version 1

greengrass:ResourceTag/tag-key: tag-value

Allow or deny user actions on resources with specific tags.

aws:RequestTag/tag-key: tag-value

Require that a specific tag be used (or not used) when making API requests to create or modify
tags on a taggable resource.

aws:TagKeys: [tag-key, ...]

Require that a specific set of tag keys be used (or not used) when making an API request to
create or modify a taggable resource.

Condition context keys and values can be used only on AWS IoT Greengrass actions that act
on a taggable resource. These actions take the resource as a required parameter. For example,
you can set conditional access on the GetGroupVersion. You can't set conditional access on
AssociateServiceRoleToAccount because no taggable resource (for example, group, core
definition, or device defintion) is referenced in the request.

For more information, see Controlling access using tags and IAM JSON policy reference in the IAM
User Guide. The JSON policy reference includes detailed syntax, descriptions and examples of the
elements, variables, and evaluation logic of JSON policies in IAM.

Example IAM policies

The following example policy applies tag-based permissions that constrain a beta user to actions
on beta resources only.

• The first statement allows an IAM user to act on resources that have the env=beta tag only.

• The second statement prevents an IAM user from removing the env=beta tag from resources.
This protects the user from removing their own access.

Note

If you use tags to control access to resources, you should also manage the permissions
that allow users to add tags or remove tags from those same resources. Otherwise, in
some cases, it might be possible for users to circumvent your restrictions and gain access
to a resource by modifying its tags.

Example IAM policies 1046

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

AWS IoT Greengrass Developer Guide, Version 1

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "greengrass:*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "greengrass:ResourceTag/env": "beta"
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": "greengrass:UntagResource",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/env": "beta"
 }
 }
 }
]
}

To allow users to tag on create, you must give them appropriate permissions. The following
example policy includes the "aws:RequestTag/env": "beta" condition on the
greengrass:TagResource and greengrass:CreateGroup actions, which allows users to
create a group only if they tag the group with env=beta. This effectively forces users to tag new
groups.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "greengrass:TagResource",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/env": "beta"

Example IAM policies 1047

AWS IoT Greengrass Developer Guide, Version 1

 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "greengrass:CreateGroup",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/env": "beta"
 }
 }
 }
]
}

The following snippet shows how you can specify multiple tag values for a tag key by enclosing
them in a list:

"StringEquals" : {
 "greengrass:ResourceTag/env" : ["dev", "test"]
}

See also

• Tagging AWS resources in the Amazon Web Services General Reference

See also 1048

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html

AWS IoT Greengrass Developer Guide, Version 1

AWS CloudFormation support for AWS IoT Greengrass

AWS CloudFormation is a service that can help you create, manage, and replicate your AWS
resources. You can use AWS CloudFormation templates to define AWS IoT Greengrass groups and
the client devices, subscriptions, and other components that you want to deploy. For an example,
see the section called “Example template”.

The resources and infrastructure that you generate from a template is called a stack. You
can define all of your resources in one template or refer to resources from other stacks. For
more information about AWS CloudFormation templates and features, see What is AWS
CloudFormation? in the AWS CloudFormation User Guide.

Creating resources

AWS CloudFormation templates are JSON or YAML documents that describe the properties and
relationships of AWS resources. The following AWS IoT Greengrass resources are supported:

• Groups

• Cores

• Client devices (devices)

• Lambda functions

• Connectors

• Resources (local, machine learning, and secret)

• Subscriptions

• Loggers (logging configurations)

In AWS CloudFormation templates, the structure and syntax of Greengrass resources are based
on the AWS IoT Greengrass API. For example, the example template associates a top-level
DeviceDefinition with a DeviceDefinitionVersion that contains an individual client
device. For more information, see the section called “Overview of the group object model”.

The AWS IoT Greengrass resource types reference in the AWS CloudFormation User Guide describes
the Greengrass resources that you can manage with AWS CloudFormation. When you use AWS
CloudFormation templates to create Greengrass resources, we recommend that you manage them

Create resources 1049

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_Greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

only from AWS CloudFormation. For example, you should update your template if you want to add,
change, or remove a device (instead of using the AWS IoT Greengrass API or AWS IoT console). This
allows you to use rollback and other AWS CloudFormation change management features. For more
information about using AWS CloudFormation to create and manage your resources and stacks, see
Working with stacks in the AWS CloudFormation User Guide.

For a walkthrough that shows how to create and deploy AWS IoT Greengrass resources in an AWS
CloudFormation template, see Automating AWS IoT Greengrass setup with AWS CloudFormation
on The Internet of Things on AWS Official Blog.

Deploying resources

After you create an AWS CloudFormation stack that contains your group version, you can use the
AWS CLI or AWS IoT console to deploy it.

Note

To deploy a group, you must have a Greengrass service role associated with your AWS
account. The service role allows AWS IoT Greengrass to access your resources in AWS
Lambda and other AWS services. This role should exist if you already deployed a Greengrass
group in the current AWS Region. For more information, see the section called “Greengrass
service role”.

To deploy the group (AWS CLI)

• Run the create-deployment command.

aws greengrass create-deployment --group-id GroupId --group-version-
id GroupVersionId --deployment-type NewDeployment

Note

The CommandToDeployGroup statement in the example template shows how to
output the command with your group and group version IDs when you create a
stack.

Deploy resources 1050

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://aws.amazon.com/blogs/iot/automating-aws-iot-greengrass-setup-with-aws-cloudformation/
https://docs.aws.amazon.com/greengrass/v1/apireference/createdeployment-post.html

AWS IoT Greengrass Developer Guide, Version 1

To deploy the group (console)

1. In the AWS IoT console navigation pane, under Manage, expand Greengrass devices, and
then choose Groups (V1).

2. Choose your group.

3. On the group configuration page, choose Deploy.

Example template

The following example template creates a Greengrass group that contains a core, client device,
function, logger, subscription, and two resources. To do this, the template follows the object
model of the AWS IoT Greengrass API. For example, the client devices that you want to add to
the group are contained in a DeviceDefinitionVersion resource, which is associated with a
DeviceDefinition resource. To add the devices to the group, the group version references the
ARN of the DeviceDefinitionVersion.

The template includes parameters that let you specify the certificate ARNs for the core and device
and the version ARN of the source Lambda function (which is an AWS Lambda resource). It uses the
Ref and GetAtt intrinsic functions to reference IDs, ARNs, and other attributes that are required
to create Greengrass resources.

The template also defines two AWS IoT devices (things), which represent the core and client device
that are added to the Greengrass group.

After you create the stack with your Greengrass resources, you can use the AWS CLI or the AWS IoT
console to deploy the group.

Note

The CommandToDeployGroup statement in the example shows how to output a complete
create-deployment CLI command that you can use to deploy your group.

JSON

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "AWS IoT Greengrass example template that creates a group version
 with a core, device, function, logger, subscription, and resources.",

Example template 1051

AWS IoT Greengrass Developer Guide, Version 1

 "Parameters": {
 "CoreCertificateArn": {
 "Type": "String"
 },
 "DeviceCertificateArn": {
 "Type": "String"
 },
 "LambdaVersionArn": {
 "Type": "String"
 }
 },
 "Resources": {
 "TestCore1": {
 "Type": "AWS::IoT::Thing",
 "Properties": {
 "ThingName": "TestCore1"
 }
 },
 "TestCoreDefinition": {
 "Type": "AWS::Greengrass::CoreDefinition",
 "Properties": {
 "Name": "DemoTestCoreDefinition"
 }
 },
 "TestCoreDefinitionVersion": {
 "Type": "AWS::Greengrass::CoreDefinitionVersion",
 "Properties": {
 "CoreDefinitionId": {
 "Ref": "TestCoreDefinition"
 },
 "Cores": [
 {
 "Id": "TestCore1",
 "CertificateArn": {
 "Ref": "CoreCertificateArn"
 },
 "SyncShadow": "false",
 "ThingArn": {
 "Fn::Join": [
 ":",
 [
 "arn:aws:iot",
 {
 "Ref": "AWS::Region"

Example template 1052

AWS IoT Greengrass Developer Guide, Version 1

 },
 {
 "Ref": "AWS::AccountId"
 },
 "thing/TestCore1"
]
]
 }
 }
]
 }
 },
 "TestClientDevice1": {
 "Type": "AWS::IoT::Thing",
 "Properties": {
 "ThingName": "TestClientDevice1"
 }
 },
 "TestDeviceDefinition": {
 "Type": "AWS::Greengrass::DeviceDefinition",
 "Properties": {
 "Name": "DemoTestDeviceDefinition"
 }
 },
 "TestDeviceDefinitionVersion": {
 "Type": "AWS::Greengrass::DeviceDefinitionVersion",
 "Properties": {
 "DeviceDefinitionId": {
 "Fn::GetAtt": [
 "TestDeviceDefinition",
 "Id"
]
 },
 "Devices": [
 {
 "Id": "TestClientDevice1",
 "CertificateArn": {
 "Ref": "DeviceCertificateArn"
 },
 "SyncShadow": "true",
 "ThingArn": {
 "Fn::Join": [
 ":",
 [

Example template 1053

AWS IoT Greengrass Developer Guide, Version 1

 "arn:aws:iot",
 {
 "Ref": "AWS::Region"
 },
 {
 "Ref": "AWS::AccountId"
 },
 "thing/TestClientDevice1"
]
]
 }
 }
]
 }
 },
 "TestFunctionDefinition": {
 "Type": "AWS::Greengrass::FunctionDefinition",
 "Properties": {
 "Name": "DemoTestFunctionDefinition"
 }
 },
 "TestFunctionDefinitionVersion": {
 "Type": "AWS::Greengrass::FunctionDefinitionVersion",
 "Properties": {
 "FunctionDefinitionId": {
 "Fn::GetAtt": [
 "TestFunctionDefinition",
 "Id"
]
 },
 "DefaultConfig": {
 "Execution": {
 "IsolationMode": "GreengrassContainer"
 }
 },
 "Functions": [
 {
 "Id": "TestLambda1",
 "FunctionArn": {
 "Ref": "LambdaVersionArn"
 },
 "FunctionConfiguration": {
 "Pinned": "true",
 "Executable": "run.exe",

Example template 1054

AWS IoT Greengrass Developer Guide, Version 1

 "ExecArgs": "argument1",
 "MemorySize": "512",
 "Timeout": "2000",
 "EncodingType": "binary",
 "Environment": {
 "Variables": {
 "variable1": "value1"
 },
 "ResourceAccessPolicies": [
 {
 "ResourceId": "ResourceId1",
 "Permission": "ro"
 },
 {
 "ResourceId": "ResourceId2",
 "Permission": "rw"
 }
],
 "AccessSysfs": "false",
 "Execution": {
 "IsolationMode": "GreengrassContainer",
 "RunAs": {
 "Uid": "1",
 "Gid": "10"
 }
 }
 }
 }
 }
]
 }
 },
 "TestLoggerDefinition": {
 "Type": "AWS::Greengrass::LoggerDefinition",
 "Properties": {
 "Name": "DemoTestLoggerDefinition"
 }
 },
 "TestLoggerDefinitionVersion": {
 "Type": "AWS::Greengrass::LoggerDefinitionVersion",
 "Properties": {
 "LoggerDefinitionId": {
 "Ref": "TestLoggerDefinition"
 },

Example template 1055

AWS IoT Greengrass Developer Guide, Version 1

 "Loggers": [
 {
 "Id": "TestLogger1",
 "Type": "AWSCloudWatch",
 "Component": "GreengrassSystem",
 "Level": "INFO"
 }
]
 }
 },
 "TestResourceDefinition": {
 "Type": "AWS::Greengrass::ResourceDefinition",
 "Properties": {
 "Name": "DemoTestResourceDefinition"
 }
 },
 "TestResourceDefinitionVersion": {
 "Type": "AWS::Greengrass::ResourceDefinitionVersion",
 "Properties": {
 "ResourceDefinitionId": {
 "Ref": "TestResourceDefinition"
 },
 "Resources": [
 {
 "Id": "ResourceId1",
 "Name": "LocalDeviceResource",
 "ResourceDataContainer": {
 "LocalDeviceResourceData": {
 "SourcePath": "/dev/TestSourcePath1",
 "GroupOwnerSetting": {
 "AutoAddGroupOwner": "false",
 "GroupOwner": "TestOwner"
 }
 }
 }
 },
 {
 "Id": "ResourceId2",
 "Name": "LocalVolumeResourceData",
 "ResourceDataContainer": {
 "LocalVolumeResourceData": {
 "SourcePath": "/dev/TestSourcePath2",
 "DestinationPath": "/volumes/TestDestinationPath2",
 "GroupOwnerSetting": {

Example template 1056

AWS IoT Greengrass Developer Guide, Version 1

 "AutoAddGroupOwner": "false",
 "GroupOwner": "TestOwner"
 }
 }
 }
 }
]
 }
 },
 "TestSubscriptionDefinition": {
 "Type": "AWS::Greengrass::SubscriptionDefinition",
 "Properties": {
 "Name": "DemoTestSubscriptionDefinition"
 }
 },
 "TestSubscriptionDefinitionVersion": {
 "Type": "AWS::Greengrass::SubscriptionDefinitionVersion",
 "Properties": {
 "SubscriptionDefinitionId": {
 "Ref": "TestSubscriptionDefinition"
 },
 "Subscriptions": [
 {
 "Id": "TestSubscription1",
 "Source": {
 "Fn::Join": [
 ":",
 [
 "arn:aws:iot",
 {
 "Ref": "AWS::Region"
 },
 {
 "Ref": "AWS::AccountId"
 },
 "thing/TestClientDevice1"
]
]
 },
 "Subject": "TestSubjectUpdated",
 "Target": {
 "Ref": "LambdaVersionArn"
 }
 }

Example template 1057

AWS IoT Greengrass Developer Guide, Version 1

]
 }
 },
 "TestGroup": {
 "Type": "AWS::Greengrass::Group",
 "Properties": {
 "Name": "DemoTestGroupNewName",
 "RoleArn": {
 "Fn::Join": [
 ":",
 [
 "arn:aws:iam:",
 {
 "Ref": "AWS::AccountId"
 },
 "role/TestUser"
]
]
 },
 "InitialVersion": {
 "CoreDefinitionVersionArn": {
 "Ref": "TestCoreDefinitionVersion"
 },
 "DeviceDefinitionVersionArn": {
 "Ref": "TestDeviceDefinitionVersion"
 },
 "FunctionDefinitionVersionArn": {
 "Ref": "TestFunctionDefinitionVersion"
 },
 "SubscriptionDefinitionVersionArn": {
 "Ref": "TestSubscriptionDefinitionVersion"
 },
 "LoggerDefinitionVersionArn": {
 "Ref": "TestLoggerDefinitionVersion"
 },
 "ResourceDefinitionVersionArn": {
 "Ref": "TestResourceDefinitionVersion"
 }
 },
 "Tags": {
 "KeyName0": "value",
 "KeyName1": "value",
 "KeyName2": "value"
 }

Example template 1058

AWS IoT Greengrass Developer Guide, Version 1

 }
 }
 },
 "Outputs": {
 "CommandToDeployGroup": {
 "Value": {
 "Fn::Join": [
 " ",
 [
 "groupVersion=$(cut -d'/' -f6 <<<",
 {
 "Fn::GetAtt": [
 "TestGroup",
 "LatestVersionArn"
]
 },
 ");",
 "aws --region",
 {
 "Ref": "AWS::Region"
 },
 "greengrass create-deployment --group-id",
 {
 "Ref": "TestGroup"
 },
 "--deployment-type NewDeployment --group-version-id",
 "$groupVersion"
]
]
 }
 }
 }
}

YAML

AWSTemplateFormatVersion: 2010-09-09
Description: >-
 AWS IoT Greengrass example template that creates a group version with a core,
 device, function, logger, subscription, and resources.
Parameters:
 CoreCertificateArn:
 Type: String

Example template 1059

AWS IoT Greengrass Developer Guide, Version 1

 DeviceCertificateArn:
 Type: String
 LambdaVersionArn:
 Type: String
Resources:
 TestCore1:
 Type: 'AWS::IoT::Thing'
 Properties:
 ThingName: TestCore1
 TestCoreDefinition:
 Type: 'AWS::Greengrass::CoreDefinition'
 Properties:
 Name: DemoTestCoreDefinition
 TestCoreDefinitionVersion:
 Type: 'AWS::Greengrass::CoreDefinitionVersion'
 Properties:
 CoreDefinitionId: !Ref TestCoreDefinition
 Cores:
 - Id: TestCore1
 CertificateArn: !Ref CoreCertificateArn
 SyncShadow: 'false'
 ThingArn: !Join
 - ':'
 - - 'arn:aws:iot'
 - !Ref 'AWS::Region'
 - !Ref 'AWS::AccountId'
 - thing/TestCore1
 TestClientDevice1:
 Type: 'AWS::IoT::Thing'
 Properties:
 ThingName: TestClientDevice1
 TestDeviceDefinition:
 Type: 'AWS::Greengrass::DeviceDefinition'
 Properties:
 Name: DemoTestDeviceDefinition
 TestDeviceDefinitionVersion:
 Type: 'AWS::Greengrass::DeviceDefinitionVersion'
 Properties:
 DeviceDefinitionId: !GetAtt
 - TestDeviceDefinition
 - Id
 Devices:
 - Id: TestClientDevice1
 CertificateArn: !Ref DeviceCertificateArn

Example template 1060

AWS IoT Greengrass Developer Guide, Version 1

 SyncShadow: 'true'
 ThingArn: !Join
 - ':'
 - - 'arn:aws:iot'
 - !Ref 'AWS::Region'
 - !Ref 'AWS::AccountId'
 - thing/TestClientDevice1
 TestFunctionDefinition:
 Type: 'AWS::Greengrass::FunctionDefinition'
 Properties:
 Name: DemoTestFunctionDefinition
 TestFunctionDefinitionVersion:
 Type: 'AWS::Greengrass::FunctionDefinitionVersion'
 Properties:
 FunctionDefinitionId: !GetAtt
 - TestFunctionDefinition
 - Id
 DefaultConfig:
 Execution:
 IsolationMode: GreengrassContainer
 Functions:
 - Id: TestLambda1
 FunctionArn: !Ref LambdaVersionArn
 FunctionConfiguration:
 Pinned: 'true'
 Executable: run.exe
 ExecArgs: argument1
 MemorySize: '512'
 Timeout: '2000'
 EncodingType: binary
 Environment:
 Variables:
 variable1: value1
 ResourceAccessPolicies:
 - ResourceId: ResourceId1
 Permission: ro
 - ResourceId: ResourceId2
 Permission: rw
 AccessSysfs: 'false'
 Execution:
 IsolationMode: GreengrassContainer
 RunAs:
 Uid: '1'
 Gid: '10'

Example template 1061

AWS IoT Greengrass Developer Guide, Version 1

 TestLoggerDefinition:
 Type: 'AWS::Greengrass::LoggerDefinition'
 Properties:
 Name: DemoTestLoggerDefinition
 TestLoggerDefinitionVersion:
 Type: 'AWS::Greengrass::LoggerDefinitionVersion'
 Properties:
 LoggerDefinitionId: !Ref TestLoggerDefinition
 Loggers:
 - Id: TestLogger1
 Type: AWSCloudWatch
 Component: GreengrassSystem
 Level: INFO
 TestResourceDefinition:
 Type: 'AWS::Greengrass::ResourceDefinition'
 Properties:
 Name: DemoTestResourceDefinition
 TestResourceDefinitionVersion:
 Type: 'AWS::Greengrass::ResourceDefinitionVersion'
 Properties:
 ResourceDefinitionId: !Ref TestResourceDefinition
 Resources:
 - Id: ResourceId1
 Name: LocalDeviceResource
 ResourceDataContainer:
 LocalDeviceResourceData:
 SourcePath: /dev/TestSourcePath1
 GroupOwnerSetting:
 AutoAddGroupOwner: 'false'
 GroupOwner: TestOwner
 - Id: ResourceId2
 Name: LocalVolumeResourceData
 ResourceDataContainer:
 LocalVolumeResourceData:
 SourcePath: /dev/TestSourcePath2
 DestinationPath: /volumes/TestDestinationPath2
 GroupOwnerSetting:
 AutoAddGroupOwner: 'false'
 GroupOwner: TestOwner
 TestSubscriptionDefinition:
 Type: 'AWS::Greengrass::SubscriptionDefinition'
 Properties:
 Name: DemoTestSubscriptionDefinition
 TestSubscriptionDefinitionVersion:

Example template 1062

AWS IoT Greengrass Developer Guide, Version 1

 Type: 'AWS::Greengrass::SubscriptionDefinitionVersion'
 Properties:
 SubscriptionDefinitionId: !Ref TestSubscriptionDefinition
 Subscriptions:
 - Id: TestSubscription1
 Source: !Join
 - ':'
 - - 'arn:aws:iot'
 - !Ref 'AWS::Region'
 - !Ref 'AWS::AccountId'
 - thing/TestClientDevice1
 Subject: TestSubjectUpdated
 Target: !Ref LambdaVersionArn
 TestGroup:
 Type: 'AWS::Greengrass::Group'
 Properties:
 Name: DemoTestGroupNewName
 RoleArn: !Join
 - ':'
 - - 'arn:aws:iam:'
 - !Ref 'AWS::AccountId'
 - role/TestUser
 InitialVersion:
 CoreDefinitionVersionArn: !Ref TestCoreDefinitionVersion
 DeviceDefinitionVersionArn: !Ref TestDeviceDefinitionVersion
 FunctionDefinitionVersionArn: !Ref TestFunctionDefinitionVersion
 SubscriptionDefinitionVersionArn: !Ref TestSubscriptionDefinitionVersion
 LoggerDefinitionVersionArn: !Ref TestLoggerDefinitionVersion
 ResourceDefinitionVersionArn: !Ref TestResourceDefinitionVersion
 Tags:
 KeyName0: value
 KeyName1: value
 KeyName2: value
Outputs:
 CommandToDeployGroup:
 Value: !Join
 - ' '
 - - groupVersion=$(cut -d'/' -f6 <<<
 - !GetAtt
 - TestGroup
 - LatestVersionArn
 -);
 - aws --region
 - !Ref 'AWS::Region'

Example template 1063

AWS IoT Greengrass Developer Guide, Version 1

 - greengrass create-deployment --group-id
 - !Ref TestGroup
 - '--deployment-type NewDeployment --group-version-id'
 - $groupVersion

Supported AWS Regions

Currently, you can create and manage AWS IoT Greengrass resources only in the following AWS
Regions:

• US East (Ohio)

• US East (N. Virginia)

• US West (Oregon)

• Asia Pacific (Mumbai)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• China (Beijing)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• AWS GovCloud (US-West)

Supported AWS Regions 1064

https://docs.aws.amazon.com/general/latest/gr/greengrass.html
https://docs.aws.amazon.com/general/latest/gr/greengrass.html

AWS IoT Greengrass Developer Guide, Version 1

Using AWS IoT Device Tester for AWS IoT Greengrass V1

AWS IoT Device Tester (IDT) is a downloadable testing framework that lets you validate IoT devices.
Because AWS IoT Greengrass Version 1 has been moved into maintenance mode, IDT for AWS
IoT Greengrass V1 no longer generates signed qualification reports. You will no longer be able to
qualify new AWS IoT Greengrass V1 devices to list in the AWS Partner Device Catalog through the
AWS Device Qualification Program. However, you can continue to use IDT for AWS IoT Greengrass
V1 to test your Greengrass V1 devices. We recommend that you use IDT for AWS IoT Greengrass V2
to qualify and list Greengrass devices in the AWS Partner Device Catalog.

IDT for AWS IoT Greengrass runs on your host computer (Windows, macOS, or Linux) connected
to the device to be tested. It runs tests and aggregates results. It also provides a command line
interface to manage the testing process.

AWS IoT Greengrass qualification suite

Use IDT for AWS IoT Greengrass to verify that the AWS IoT Greengrass Core software runs on your
hardware and can communicate with the AWS Cloud. It also performs end-to-end tests with AWS
IoT Core. For example, it verifies that your device can send and receive MQTT messages and process
them correctly.

AWS IoT Device Tester for AWS IoT Greengrass organizes tests using the concepts of test suites and
test groups.

AWS IoT Greengrass qualification suite 1065

https://docs.aws.amazon.com/greengrass/v1/developerguide/maintenance-policy.html
https://devices.amazonaws.com/
https://aws.amazon.com/partners/dqp/
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-tester-for-greengrass-ug.html
https://devices.amazonaws.com/

AWS IoT Greengrass Developer Guide, Version 1

• A test suite is the set of test groups used to verify that a device works with particular versions of
AWS IoT Greengrass.

• A test group is the set of individual tests related to a particular feature, such as Greengrass group
deployments and MQTT messaging.

For more information, see Use IDT to run the AWS IoT Greengrass qualification suite.

Custom test suites

Starting in IDT v4.0.0, IDT for AWS IoT Greengrass combines a standardized configuration setup
and result format with a test suite environment that enables you to develop custom test suites
for your devices and device software. You can add custom tests for your own internal validation or
provide them to your customers for device verification.

How a test writer configures a custom test suite determines the settings configurations that are
required to run custom test suites. For more information, see Use IDT to develop and run your own
test suites.

Supported versions of AWS IoT Device Tester for AWS IoT
Greengrass V1

Because AWS IoT Greengrass Version 1 has been moved into maintenance mode, IDT for AWS IoT
Greengrass V1 no longer generates signed qualification reports. We recommend that you use IDT
for AWS IoT Greengrass V2.

For information about IDT for AWS IoT Greengrass V2, see Using AWS IoT Device Tester for AWS
IoT Greengrass V2 in the AWS IoT Greengrass V2 Developer Guide.

Note

You receive a notification when you start a test run if IDT for AWS IoT Greengrass is not
compatible with the version of AWS IoT Greengrass you are using.

By downloading the software, you agree to the AWS IoT Device Tester License Agreement.

Custom test suites 1066

https://docs.aws.amazon.com/greengrass/v1/developerguide/maintenance-policy.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/idt-license.html

AWS IoT Greengrass Developer Guide, Version 1

Unsupported IDT versions for for AWS IoT Greengrass

This topic lists unsupported versions of IDT for AWS IoT Greengrass. Unsupported versions do not
receive bug fixes or updates. For more information, see the section called “Support policy for AWS
IoT Device Tester for AWS IoT Greengrass V1”.

IDT v4.4.1 for AWS IoT Greengrass versions v1.11.6, v1.10.5

Release notes:

• Enables you to validate and qualify devices running AWS IoT Greengrass core software
v1.11.6 and v1.10.5.

• Contains minor bug fixes.

Test suite version:

GGQ_1.3.1

• Released 2021.12.20

IDT v4.1.0 for AWS IoT Greengrass versions v1.11.4, v1.10.4

Release notes:

• Enables you to validate and qualify devices running AWS IoT Greengrass core software
v1.11.4 and v1.10.4.

• Fixes an issue that caused the logs that are displayed during a test run to use redundant
tags.

Test suite version:

GGQ_1.3.0

• Released 2021.06.23

• Adds retries for API calls to Lambda, IAM, and AWS STS to improve handling for
throttling or server issues.

• Adds support for Python 3.8 to the ML and Docker test cases.

IDT v4.0.2 for AWS IoT Greengrass versions v1.11.1, v1.11.0, v1.10.3

Release notes:

• Fixed an issue that caused IDT to mask Hardware Security Integration (HSI) errors.

• Enables you to develop and run your custom test suites using AWS IoT Device Tester for AWS
IoT Greengrass. For more information, see Use IDT to develop and run your own test suites.

Unsupported IDT versions for for AWS IoT Greengrass 1067

AWS IoT Greengrass Developer Guide, Version 1

• Provides code signed IDT applications for macOS and Windows. In macOS, if a security
warning message displays, you might need to grant a security exception for IDT. For more
information, see Security exception on macOS.

Note

AWS IoT Greengrass doesn't provide a Dockerfile or a Docker image for version 1.11.1 of
the AWS IoT Greengrass core software. To test your device for Docker qualification, use
an earlier version of AWS IoT Greengrass core software.

IDT v3.2.0 for AWS IoT Greengrass versions v1.11.0, v1.10.1, v1.10.0

Release notes:

• By default, IDT runs only required tests for qualification. To qualify for additional features,
you can modify the device.json file.

• Added a port number in device.json that you can configure for SSH connections.

• Docker supports only stream manager and machine learning (ML) without containerization.
Container, Docker, and Hardware Security Integration (HSI) are not available for Docker
devices.

• We merged device-ml.json and device-hsm.json into device.json.

IDT v3.1.3 for AWS IoT Greengrass versions: v1.10.x, v1.9.x, v1.8.x

Release notes:

• Added support for ML feature qualification for AWS IoT Greengrass v1.10.x and v1.9.x. You
can now use IDT to validate that your devices can perform ML inference locally with models
stored and trained in the cloud.

• Added --stop-on-first-failure for the run-suite command. You can use this option
to configure IDT to stop running on the first failure. We recommend using this option during
the debugging stage at the test groups level.

• Added a clock drift check for MQTT tests to ensure that the device under test uses the correct
system time. The time used must be within an acceptable time range.

Unsupported IDT versions for for AWS IoT Greengrass 1068

AWS IoT Greengrass Developer Guide, Version 1

• Added --update-idt for the run-suite command. You can use this option to set the
response for the prompt to update IDT.

• Added --update-managed-policy for the run-suite command. You can use this option
to set the response for the prompt to update the managed policy.

• Added a bug fix for automatic updates of IDT test suite versions. The fix ensures that IDT can
run the latest test suites that are available for your AWS IoT Greengrass version.

IDT v3.0.1 for AWS IoT Greengrass

Release notes:

• Added support for AWS IoT Greengrass v1.10.1.

• Automatic updates of IDT test suite versions. IDT can download the latest test suites that are
available for your AWS IoT Greengrass version. With this feature:

• Test suites are versioned using a major.minor.patch format. The initial test suite version
is GGQ_1.0.0.

• You can download new test suites interactively in the command line interface or set the
upgrade-test-suite flag when you start IDT.

For more information, see the section called “Test suite versions”.

• Added list-supported-products. You can use this command to list the AWS IoT
Greengrass and test suite versions that are supported by the installed version of IDT.

• Added list-test-cases. You can use this command to list the test cases that are available
in a test group.

• Added test-id for the run-suite command. You can use this option to run individual test
cases in a test group.

IDT v2.3.0 for AWS IoT Greengrass v1.10, v1.9.x, and v1.8.x

When testing on a physical device, AWS IoT Greengrass v1.10, v1.9.x, and v1.8.x are supported.

When testing in a Docker container, AWS IoT Greengrass v1.10 and v1.9.x are supported.

Release notes:

Unsupported IDT versions for for AWS IoT Greengrass 1069

AWS IoT Greengrass Developer Guide, Version 1

• Added support for the section called “Run AWS IoT Greengrass in a Docker container”. You
can now use IDT to qualify and validate that your devices can run AWS IoT Greengrass in a
Docker container.

• Added an AWS managed policy (AWSIoTDeviceTesterForGreengrassFullAccess)
that defines the permissions required to run AWS IoT Device Tester. If new releases require
additional permissions, AWS adds them to this managed policy so you don't have to update
your IAM permissions.

• Introduced checks to validate that your environment (for example, device connectivity and
internet connectivity) is set up correctly before you run the test cases.

• Improved the Greengrass dependency checker in IDT to make it more flexible while checking
for libc on devices.

IDT v2.2.0 for AWS IoT Greengrass v1.10, v1.9.x, and v1.8.x

Release notes:

• Added support for AWS IoT Greengrass v1.10.

• Added support for the Greengrass Docker application deployment connector.

• Added support for AWS IoT Greengrass stream manager.

• Added support for AWS IoT Greengrass in the China (Beijing) Region.

IDT v2.1.0 for AWS IoT Greengrass v1.9.x, v1.8.x, and v1.7.x

Release notes:

• Added support for AWS IoT Greengrass v1.9.4.

• Added support for Linux-ARMv6l devices.

IDT v2.0.0 for AWS IoT Greengrass v1.9.3, v1.9.2, v.1.9.1, v1.9.0, v1.8.4, v1.8.3, and v1.8.2

Release notes:

• Removed dependency on Python for device under test.

• Test suite execution time reduced by more than 50 percent, which makes the qualification
process faster.

Unsupported IDT versions for for AWS IoT Greengrass 1070

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

AWS IoT Greengrass Developer Guide, Version 1

• Executable size reduced by more than 50 percent, which makes download and installation
faster.

• Improved timeout multiplier support for all test cases.

• Enhanced post-diagnostics messages to troubleshoot errors faster.

• Updated the permissions policy template required to run IDT.

• Added support for AWS IoT Greengrass v1.9.3.

IDT v1.3.3 for AWS IoT Greengrass v1.9.2, v1.9.1, v1.9.0, v1.8.3, and v1.8.2

Release notes:

• Added support for Greengrass v1.9.2 and v1.8.3.

• Added support for Greengrass OpenWrt.

• Added SSH user name and password device sign-in.

• Added native test bug fix for OpenWrt-ARMv7l platform.

IDT v1.2 for AWS IoT Greengrass v1.8.1

Release notes:

• Added a configurable timeout multiplier to address and troubleshoot timeout issues (for
example, low bandwidth connections).

IDT v1.1 for AWS IoT Greengrass v1.8.0

Release notes:

• Added support for AWS IoT Greengrass Hardware Security Integration (HSI).

• Added support for AWS IoT Greengrass container and no container.

• Added automated AWS IoT Greengrass service role creation.

• Improved test resource cleanup.

• Added test execution summary report.

IDT v1.1 for AWS IoT Greengrass v1.7.1

Release notes:

Unsupported IDT versions for for AWS IoT Greengrass 1071

AWS IoT Greengrass Developer Guide, Version 1

• Added support for AWS IoT Greengrass Hardware Security Integration (HSI).

• Added support for AWS IoT Greengrass container and no container.

• Added automated AWS IoT Greengrass service role creation.

• Improved test resource cleanup.

• Added test execution summary report.

IDT v1.0 for AWS IoT Greengrass v1.6.1

Release notes:

• Added OTA test bug fix for future AWS IoT Greengrass version compatibility.

Note

If you're using IDT v1.0 for AWS IoT Greengrass v1.6.1, you must create a Greengrass
service role. In later versions, IDT creates the service role for you.

Use IDT to run the AWS IoT Greengrass qualification suite

You can use AWS IoT Device Tester (IDT) for AWS IoT Greengrass to verify that the AWS IoT
Greengrass Core software runs on your hardware and can communicate with the AWS Cloud. It also
performs end-to-end tests with AWS IoT Core. For example, it verifies that your device can send
and receive MQTT messages and process them correctly.

Because AWS IoT Greengrass Version 1 has been moved into maintenance mode, IDT for AWS IoT
Greengrass V1 no longer generates signed qualification reports. If you want to add your hardware
to the AWS Partner Device Catalog, run the AWS IoT Greengrass V2 qualification suite to generate
test reports that you can submit to AWS IoT. For more information, see AWS Device Qualification
Program and Supported versions of IDT for AWS IoT Greengrass V2.

In addition to testing devices, IDT for AWS IoT Greengrass creates resources (for example, AWS IoT
things, AWS IoT Greengrass groups, Lambda functions, and so on) in your AWS account to facilitate
the qualification process.

To create these resources, IDT for AWS IoT Greengrass uses the AWS credentials configured in the
config.json file to make API calls on your behalf. These resources are provisioned at various
times during a test.

Use IDT to run the AWS IoT Greengrass qualification suite 1072

https://docs.aws.amazon.com/greengrass/v1/developerguide/maintenance-policy.html
https://aws.amazon.com/partners/dqp/
https://aws.amazon.com/partners/dqp/
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html

AWS IoT Greengrass Developer Guide, Version 1

When you use IDT for AWS IoT Greengrass to run the AWS IoT Greengrass qualification suite, IDT
performs the following steps:

1. Loads and validates your device and credential configurations.

2. Performs selected tests with the required local and cloud resources.

3. Cleans up local and cloud resources.

4. Generates tests reports that indicate if your device passed the tests required for qualification.

Test suite versions

IDT for AWS IoT Greengrass organizes tests into test suites and test groups.

• A test suite is the set of test groups used to verify that a device works with particular versions of
AWS IoT Greengrass.

• A test group is the set of individual tests related to a particular feature, such as Greengrass group
deployments and MQTT messaging.

Starting in IDT v3.0.0, test suites are versioned using a major.minor.patch format, for example
GGQ_1.0.0. When you download IDT, the package includes the latest test suite version.

Important

IDT supports the three latest test suite versions for device qualification. For more
information, see the section called “Support policy for AWS IoT Device Tester for AWS IoT
Greengrass V1”.
You can run list-supported-products to list the versions of AWS IoT Greengrass and
test suites that are supported by your current version of IDT. Tests from unsupported test
suite versions are not valid for device qualification. IDT doesn't print qualification reports
for unsupported versions.

Updates to IDT configuration settings

New tests might introduce new IDT configuration settings.

• If the settings are optional, IDT continues running the tests.

Test suite versions 1073

AWS IoT Greengrass Developer Guide, Version 1

• If the settings are required, IDT notifies you and stops running. After you configure the settings,
restart the test run.

Configuration settings are located in the <device-tester-extract-location>/configs
folder. For more information, see the section called “Configure IDT settings”.

If an updated test suite version adds configuration settings, IDT creates a copy of the original
configuration file in <device-tester-extract-location>/configs.

Test group descriptions

IDT v2.0.0 and later

Required Test Groups for Core Qualification

These test groups are required to qualify your AWS IoT Greengrass device for the AWS
Partner Device Catalog.

AWS IoT Greengrass Core Dependencies

Validates that your device meets all software and hardware requirements for the AWS IoT
Greengrass Core software.

The Software Packages Dependencies test case in this test group is not applicable
when testing in a Docker container.

Deployment

Validates that Lambda functions can be deployed on your device.

MQTT

Verifies the AWS IoT Greengrass message router functionality by checking local
communication between the Greengrass core and client devices, which are local IoT
devices.

Over-the-Air (OTA)

Validates that your device can successfully perform an OTA update of the AWS IoT
Greengrass Core software.

This test group is not applicable when testing in a Docker container.

Test group descriptions 1074

AWS IoT Greengrass Developer Guide, Version 1

Version

Checks that the version of AWS IoT Greengrass provided is compatible with the AWS IoT
Device Tester version you are using.

Optional Test Groups

These test groups are optional. If you choose to qualify for optional tests, your device is
listed with additional capabilities in the AWS Partner Device Catalog.

Container Dependencies

Validates that the device meets all of the software and hardware requirements to run
Lambda functions in container mode on a Greengrass core.

This test group is not applicable when testing in a Docker container.

Deployment Container

Validates that Lambda functions can be deployed on the device and run in container
mode on a Greengrass core.

This test group is not applicable when testing in a Docker container.

Docker Dependencies (Supported for IDT v2.2.0 and later)

Validates that the device meets all the required technical dependencies to use the
Greengrass Docker application deployment connector to run containers

This test group is not applicable when testing in a Docker container.

Hardware Security Integration (HSI)

Verifies that the provided HSI shared library can interface with the hardware security
module (HSM) and implements the required PKCS#11 APIs correctly. The HSM and shared
library must be able to sign a CSR, perform TLS operations, and provide the correct key
lengths and public key algorithm.

Stream Manager Dependencies (Supported for IDT v2.2.0 and later)

Validates that the device meets all of the required technical dependencies to run AWS IoT
Greengrass stream manager.

Machine Learning Dependencies (Supported for IDT v3.1.0 and later)

Validates that the device meets all of the required technical dependencies to perform ML
inference locally.

Test group descriptions 1075

AWS IoT Greengrass Developer Guide, Version 1

Machine Learning Inference Tests (Supported for IDT v3.1.0 and later)

Validates that ML inference can be performed on the given device under test. For
more information, see the section called “Optional: Configuring your device for ML
qualification”.

Machine Learning Inference Container Tests (Supported for IDT v3.1.0 and later)

Validates that ML inference can be performed on the given device under test and run
in container mode on a Greengrass core. For more information, see the section called
“Optional: Configuring your device for ML qualification”.

IDT v1.3.3 and earlier

Required Test Groups for Core Qualification

These tests are required to qualify your AWS IoT Greengrass device for the AWS Partner
Device Catalog.

AWS IoT Greengrass Core Dependencies

Validates that your device meets all software and hardware requirements for the AWS IoT
Greengrass Core software.

Combination (Device Security Interaction)

Verifies the functionality of the device certificate manager and IP detection on the
Greengrass core device by changing connectivity information on the Greengrass group in
the cloud. The test group rotates the AWS IoT Greengrass server certificate and verifies
that AWS IoT Greengrass allows connections.

Deployment (Required for IDT v1.2 and earlier)

Validates that Lambda functions can be deployed on your device.

Device Certificate Manager (DCM)

Verifies that the AWS IoT Greengrass device certificate manager can generate a server
certificate on startup and rotate certificates if they are close to expiration.

IP Detection (IPD)

Verifies that core connectivity information is updated when there are IP address changes
in a Greengrass core device. For more information, see Activate automatic IP detection.

Test group descriptions 1076

AWS IoT Greengrass Developer Guide, Version 1

Logging

Verifies that the AWS IoT Greengrass logging service can write to a log file using a user
Lambda function written in Python.

MQTT

Verifies the AWS IoT Greengrass message router functionality by sending messages on a
topic that is routed to two Lambda functions.

Native

Verifies that AWS IoT Greengrass can run native (compiled) Lambda functions.

Over-the-Air (OTA)

Validates that your device can successfully perform a OTA update of the AWS IoT
Greengrass Core software.

Penetration

Validates that the AWS IoT Greengrass Core software fails to start if hard link/soft link
protection and seccomp are not enabled. It is also used to verify other security-related
features.

Shadow

Verifies local shadow and shadow cloud-syncing functionality.

Spooler

Validates that the MQTT messages are queued with the default spooler configuration.

Token Exchange Service (TES)

Verifies that AWS IoT Greengrass can exchange its core certificate for valid AWS
credentials.

Version

Checks that the version of AWS IoT Greengrass provided is compatible with the AWS IoT
Device Tester version you are using.

Optional Test Groups

These tests are optional. If you choose to qualify for optional tests, your device is listed with
additional capabilities in the AWS Partner Device Catalog.

Test group descriptions 1077

https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

AWS IoT Greengrass Developer Guide, Version 1

Container Dependencies

Checks that the device meets all of the required dependencies to run Lambda functions
in container mode.

Hardware Security Integration (HSI)

Verifies that the provided HSI shared library can interface with the hardware security
module (HSM) and implements the required PKCS#11 APIs correctly. The HSM and shared
library must be able to sign a CSR, perform TLS operations, and provide the correct key
lengths and public key algorithm.

Local Resource Access

Verifies the local resource access (LRA) feature of AWS IoT Greengrass by providing access
to local files and directories owned by various Linux users and groups to containerized
Lambda functions through AWS IoT Greengrass LRA APIs. Lambda functions should be
allowed or denied access to local resources based on local resource access configuration.

Network

Verifies that socket connections can be established from a Lambda function. These
socket connections should be allowed or denied based on the Greengrass core
configuration.

Prerequisites for running the AWS IoT Greengrass qualification suite

This section describes the prerequisites for using AWS IoT Device Tester (IDT) for AWS IoT
Greengrass to run the AWS IoT Greengrass qualification suite.

Download the latest version of AWS IoT Device Tester for AWS IoT Greengrass

Download the latest version of IDT and extract the software into a location on your file system
where you have read and write permissions.

Note

IDT does not support being run by multiple users from a shared location, such as an NFS
directory or a Windows network shared folder. We recommend that you extract the IDT
package to a local drive and run the IDT binary on your local workstation.

Prerequisites 1078

AWS IoT Greengrass Developer Guide, Version 1

Windows has a path length limitation of 260 characters. If you are using Windows, extract
IDT to a root directory like C:\ or D:\ to keep your paths under the 260 character limit.

Create and configure an AWS account

Before you can use IDT for AWS IoT Greengrass, you must perform the following steps:

1. Create an AWS account. If you already have an AWS account, skip to step 2.

2. Configure permissions for IDT.

These account permissions allow IDT to access AWS services and create AWS resources, such as
AWS IoT things, Greengrass groups, and Lambda functions, on your behalf.

To create these resources, IDT for AWS IoT Greengrass uses the AWS credentials configured in the
config.json file to make API calls on your behalf. These resources are provisioned at various
times during a test.

Note

Although most tests qualify for Amazon Web Services Free Tier, you must provide a credit
card when you sign up for an AWS account. For more information, see Why do I need a
payment method if my account is covered by the Free Tier?.

Step 1: Create an AWS account

In this step, create and configure an AWS account. If you already have an AWS account, skip to the
section called “Step 2: Configure permissions for IDT”.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Prerequisites 1079

https://aws.amazon.com/free
https://aws.amazon.com/premiumsupport/knowledge-center/free-tier-payment-method/
https://aws.amazon.com/premiumsupport/knowledge-center/free-tier-payment-method/
https://portal.aws.amazon.com/billing/signup

AWS IoT Greengrass Developer Guide, Version 1

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

Prerequisites 1080

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html

AWS IoT Greengrass Developer Guide, Version 1

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Step 2: Configure permissions for IDT

In this step, configure the permissions that IDT for AWS IoT Greengrass uses to run tests and collect
IDT usage data. You can use the AWS Management Console or AWS Command Line Interface (AWS
CLI) to create an IAM policy and a test user for IDT, and then attach policies to the user. If you
already created a test user for IDT, skip to the section called “Configure your device to run IDT
tests” or the section called “Optional: Configuring your Docker container”.

• To Configure Permissions for IDT (Console)

• To Configure Permissions for IDT (AWS CLI)

To configure permissions for IDT (console)

Follow these steps to use the console to configure permissions for IDT for AWS IoT Greengrass.

1. Sign in to the IAM console.

2. Create a customer managed policy that grants permissions to create roles with specific
permissions.

a. In the navigation pane, choose Policies, and then choose Create policy.

b. On the JSON tab, replace the placeholder content with the following policy.

{
 "Version": "2012-10-17",
 "Statement": [

Prerequisites 1081

https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://console.aws.amazon.com/iam

AWS IoT Greengrass Developer Guide, Version 1

 {
 "Sid": "ManageRolePoliciesForIDTGreengrass",
 "Effect": "Allow",
 "Action": [
 "iam:DetachRolePolicy",
 "iam:AttachRolePolicy"
],
 "Resource": [
 "arn:aws:iam::*:role/idt-*",
 "arn:aws:iam::*:role/GreengrassServiceRole"
],
 "Condition": {
 "ArnEquals": {
 "iam:PolicyARN": [
 "arn:aws:iam::aws:policy/service-role/
AWSGreengrassResourceAccessRolePolicy",
 "arn:aws:iam::aws:policy/service-role/
GreengrassOTAUpdateArtifactAccess",
 "arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole"
]
 }
 }
 },
 {
 "Sid": "ManageRolesForIDTGreengrass",
 "Effect": "Allow",
 "Action": [
 "iam:CreateRole",
 "iam:DeleteRole",
 "iam:PassRole",
 "iam:GetRole"
],
 "Resource": [
 "arn:aws:iam::*:role/idt-*",
 "arn:aws:iam::*:role/GreengrassServiceRole"
]
 }
]
}

Prerequisites 1082

AWS IoT Greengrass Developer Guide, Version 1

Important

The following policy grants permission to create and manage roles required by IDT
for AWS IoT Greengrass. This includes permissions to attach the following AWS
managed policies:

• AWSGreengrassResourceAccessRolePolicy

• GreengrassOTAUpdateArtifactAccess

• AWSLambdaBasicExecutionRole

c. Choose Next: Tags.

d. Choose Next: Review.

e. For Name, enter IDTGreengrassIAMPermissions. Under Summary, review the
permissions granted by your policy.

f. Choose Create policy.

3. Create an IAM user and attach the permissions required by IDT for AWS IoT Greengrass.

a. Create an IAM user. Follow steps 1 through 5 in Creating IAM users (console) in the IAM
User Guide.

b. Attach the permissions to your IAM user:

i. On the Set permissions page, choose Attach existing policies directly.

ii. Search for the IDTGreengrassIAMPermissions policy that you created in the previous
step. Select the check box.

iii. Search for the AWSIoTDeviceTesterForGreengrassFullAccess policy. Select the check
box.

Note

The AWSIoTDeviceTesterForGreengrassFullAccess is an AWS managed policy
that defines the permissions IDT requires to create and access AWS resources
used for testing. For more information, see the section called “AWS managed
policy for IDT”.

c. Choose Next: Tags.

Prerequisites 1083

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSGreengrassResourceAccessRolePolicy
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/GreengrassOTAUpdateArtifactAccess
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSIoTDeviceTesterForGreengrassFullAccess

AWS IoT Greengrass Developer Guide, Version 1

d. Choose Next: Review to view a summary of your choices.

e. Choose Create user.

f. To view the user's access keys (access key IDs and secret access keys), choose Show next to
the password and access key. To save the access keys, choose Download.csv and save the
file to a secure location. You use this information later to configure your AWS credentials
file.

4. Next step: Configure your physical device.

To configure permissions for IDT (AWS CLI)

Follow these steps to use the AWS CLI to configure permissions for IDT for AWS IoT Greengrass. If
you already configured permissions in the console, skip to the section called “Configure your device
to run IDT tests” or the section called “Optional: Configuring your Docker container”.

1. On your computer, install and configure the AWS CLI if it's not already installed. Follow the
steps in Installing the AWS CLI in the AWS Command Line Interface User Guide.

Note

The AWS CLI is an open source tool that you can use to interact with AWS services from
your command-line shell.

2. Create a customer managed policy that grants permissions to manage IDT and AWS IoT
Greengrass roles.

Linux, macOS, or Unix

aws iam create-policy --policy-name IDTGreengrassIAMPermissions --policy-
document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ManageRolePoliciesForIDTGreengrass",
 "Effect": "Allow",
 "Action": [
 "iam:DetachRolePolicy",
 "iam:AttachRolePolicy"

Prerequisites 1084

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

AWS IoT Greengrass Developer Guide, Version 1

],
 "Resource": [
 "arn:aws:iam::*:role/idt-*",
 "arn:aws:iam::*:role/GreengrassServiceRole"
],
 "Condition": {
 "ArnEquals": {
 "iam:PolicyARN": [
 "arn:aws:iam::aws:policy/service-role/
AWSGreengrassResourceAccessRolePolicy",
 "arn:aws:iam::aws:policy/service-role/
GreengrassOTAUpdateArtifactAccess",
 "arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole"
]
 }
 }
 },
 {
 "Sid": "ManageRolesForIDTGreengrass",
 "Effect": "Allow",
 "Action": [
 "iam:CreateRole",
 "iam:DeleteRole",
 "iam:PassRole",
 "iam:GetRole"
],
 "Resource": [
 "arn:aws:iam::*:role/idt-*",
 "arn:aws:iam::*:role/GreengrassServiceRole"
]
 }
]
}'

Windows command prompt

aws iam create-policy --policy-name IDTGreengrassIAMPermissions --
policy-document '{\"Version\": \"2012-10-17\", \"Statement\": [{\"Sid
\": \"ManageRolePoliciesForIDTGreengrass\",\"Effect\": \"Allow\",
\"Action\": [\"iam:DetachRolePolicy\", \"iam:AttachRolePolicy\"],
 \"Resource\": [\"arn:aws:iam::*:role/idt-*\",\"arn:aws:iam::*:role/
GreengrassServiceRole\"],\"Condition\": {\"ArnEquals\": {\"iam:PolicyARN\":

Prerequisites 1085

AWS IoT Greengrass Developer Guide, Version 1

 [\"arn:aws:iam::aws:policy/service-role/AWSGreengrassResourceAccessRolePolicy
\",\"arn:aws:iam::aws:policy/service-role/GreengrassOTAUpdateArtifactAccess
\",\"arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole\"]}}},
{\"Sid\": \"ManageRolesForIDTGreengrass\",\"Effect\": \"Allow\",\"Action\":
 [\"iam:CreateRole\",\"iam:DeleteRole\", \"iam:PassRole\", \"iam:GetRole
\"],\"Resource\": [\"arn:aws:iam::*:role/idt-*\",\"arn:aws:iam::*:role/
GreengrassServiceRole\"]}]}'

Note

This step includes a Windows command prompt example because it uses a different
JSON syntax than Linux, macOS, or Unix terminal commands.

3. Create an IAM user and attach the permissions required by IDT for AWS IoT Greengrass.

a. Create an IAM user. In this example setup, the user is named IDTGreengrassUser.

aws iam create-user --user-name IDTGreengrassUser

b. Attach the IDTGreengrassIAMPermissions policy you created in step 2 to your IAM
user. Replace <account-id> in the command with the ID of your AWS account.

aws iam attach-user-policy --user-name IDTGreengrassUser --policy-arn
 arn:aws:iam::<account-id>:policy/IDTGreengrassIAMPermissions

c. Attach the AWSIoTDeviceTesterForGreengrassFullAccess policy to your IAM user.

aws iam attach-user-policy --user-name IDTGreengrassUser --policy-arn
 arn:aws:iam::aws:policy/AWSIoTDeviceTesterForGreengrassFullAccess

Note

The AWSIoTDeviceTesterForGreengrassFullAccess is an AWS managed policy that
defines the permissions IDT requires to create and access AWS resources used for
testing. For more information, see the section called “AWS managed policy for
IDT”.

4. Create a secret access key for the user.

Prerequisites 1086

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSIoTDeviceTesterForGreengrassFullAccess

AWS IoT Greengrass Developer Guide, Version 1

aws iam create-access-key --user-name IDTGreengrassUser

Store the output in a secure location. You use this information later to configure your AWS
credentials file.

5. Next step: Configure your physical device.

AWS managed policy for AWS IoT Device Tester

The AWSIoTDeviceTesterForGreengrassFullAccess managed policy allows IDT to run operations and
collect usage metrics. This policy grants the following IDT permissions:

• iot-device-tester:CheckVersion. Check whether a set of AWS IoT Greengrass, test suite,
and IDT versions are compatible.

• iot-device-tester:DownloadTestSuite. Download test suites.

• iot-device-tester:LatestIdt. Get information about the latest IDT version that is
available for download.

• iot-device-tester:SendMetrics. Publish usage data that IDT collects about your tests.

• iot-device-tester:SupportedVersion. Get the list of AWS IoT Greengrass and test suite
versions that are supported by IDT. This information is displayed in the command-line window.

Configure your device to run IDT tests

To configure your device you must install AWS IoT Greengrass dependencies, configure the AWS IoT
Greengrass Core software, configure your host computer to access your device, and configure user
permissions on your device.

Verify AWS IoT Greengrass dependencies on the device under test

Before IDT for AWS IoT Greengrass can test your devices, make sure that you have set up your
device as described in Getting started with AWS IoT Greengrass. For information about supported
platforms, see Supported platforms.

Configure the AWS IoT Greengrass software

IDT for AWS IoT Greengrass tests your device for compatibility with a specific version of AWS IoT
Greengrass. IDT provides two options for testing AWS IoT Greengrass on your devices:

Configure your device to run IDT tests 1087

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSIoTDeviceTesterForGreengrassFullAccess
https://docs.aws.amazon.com/greengrass/latest/developerguide/gg-gs.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html#gg-platforms

AWS IoT Greengrass Developer Guide, Version 1

• Download and use a version of the AWS IoT Greengrass Core software. IDT installs the software
for you.

• Use a version of the AWS IoT Greengrass Core software already installed on your device.

Note

Each version of AWS IoT Greengrass has a corresponding IDT version. You must download
the version of IDT that corresponds to the version of AWS IoT Greengrass you are using.

The following sections describe these options. You only need to do one.

Option 1: Download the AWS IoT Greengrass Core software and configure AWS IoT Device
Tester to use it

You can download the AWS IoT Greengrass Core software from the AWS IoT Greengrass Core
Software downloads page.

1. Find the correct architecture and Linux distribution, and then choose Download.

2. Copy the tar.gz file to the <device-tester-extract-location>/products/
greengrass/ggc.

Note

Do not change the name of the AWS IoT Greengrass tar.gz file. Do not place multiple
files in this directory for the same operating system and architecture. For example
having both greengrass-linux-armv7l-1.7.1.tar.gz and greengrass-linux-
armv7l-1.8.1.tar.gz files in that directory will cause the tests to fail.

Option 2: Use an existing installation of AWS IoT Greengrass with AWS IoT Device Tester

Configure IDT to test the AWS IoT Greengrass Core software installed on your device by adding the
greengrassLocation attribute to the device.json file in the <device-tester-extract-
location>/configs folder. For example:

"greengrassLocation" : "<path-to-greengrass-on-device>"

Configure your device to run IDT tests 1088

AWS IoT Greengrass Developer Guide, Version 1

For more information about the device.json file, see Configure device.json.

On Linux devices, the default location of the AWS IoT Greengrass Core software is /greengrass.

Note

Your device should have an installation of the AWS IoT Greengrass Core software that has
not been started.
Make sure you have added the ggc_user user and ggc_group on your device. For more
information, see Environment setup for AWS IoT Greengrass.

Configure your host computer to access your device under test

IDT runs on your host computer and must be able to use SSH to connect to your device. There are
two options to allow IDT to gain SSH access to your devices under test:

1. Follow the instructions here to create an SSH key pair and authorize your key to sign in to your
device under test without specifying a password.

2. Provide a user name and password for each device in the device.json file. For more
information, see Configure device.json.

You can use any SSL implementation to create an SSH key. The following instructions show
you how to use SSH-KEYGEN or PuTTYgen (for Windows). If you are using another SSL
implementation, refer to the documentation for that implementation.

IDT uses SSH keys to authenticate with your device under test.

To create an SSH key with SSH-KEYGEN

1. Create an SSH key.

You can use the Open SSH ssh-keygen command to create an SSH key pair. If you already have
an SSH key pair on your host computer, it is a best practice to create a SSH key pair specifically
for IDT. This way, after you have completed testing, your host computer can no longer connect
to your device without entering a password. It also allows you to restrict access to the remote
device to only those who need it.

Configure your device to run IDT tests 1089

https://docs.aws.amazon.com/greengrass/latest/developerguide/module1.html
https://www.ssh.com/ssh/keygen/
https://www.ssh.com/ssh/putty/windows/puttygen

AWS IoT Greengrass Developer Guide, Version 1

Note

Windows does not have an installed SSH client. For information about installing an
SSH client on Windows, see Download SSH Client Software.

The ssh-keygen command prompts you for a name and path to store the key pair. By default,
the key pair files are named id_rsa (private key) and id_rsa.pub (public key). On macOS
and Linux, the default location of these files is ~/.ssh/. On Windows, the default location is
C:\Users\<user-name>\.ssh.

When prompted, enter a key phrase to protect your SSH key. For more information, see
Generate a New SSH key.

2. Add authorized SSH keys to your device under test.

IDT must use your SSH private key to sign in to your device under test. To authorize your SSH
private key to sign in to your device under test, use the ssh-copy-id command from your host
computer. This command adds your public key into the ~/.ssh/authorized_keys file on
your device under test. For example:

$ ssh-copy-id <remote-ssh-user>@<remote-device-ip>

Where remote-ssh-user is the user name used to sign in to your device under test and
remote-device-ip is the IP address of the device under test to run tests against. For
example:

ssh-copy-id pi@192.168.1.5

When prompted, enter the password for the user name you specified in the ssh-copy-id
command.

ssh-copy-id assumes the public key is named id_rsa.pub and is stored the default location
(on macOS and Linux, ~/.ssh/ and on Windows, C:\Users\<user-name>\.ssh). If you
gave the public key a different name or stored it in a different location, you must specify the
fully qualified path to your SSH public key using the -i option to ssh-copy-id (for example,
ssh-copy-id -i ~/my/path/myKey.pub). For more information about creating SSH keys and
copying public keys, see SSH-COPY-ID.

Configure your device to run IDT tests 1090

https://www.ssh.com/ssh/#sec-Download-client-software
https://www.ssh.com/ssh/keygen/
https://www.ssh.com/ssh/copy-id

AWS IoT Greengrass Developer Guide, Version 1

To create an SSH key using PuTTYgen (Windows only)

1. Make sure you have the OpenSSH server and client installed on your device under test. For
more information, see OpenSSH.

2. Install PuTTYgen on your device under test.

3. Open PuTTYgen.

4. Choose Generate and move your mouse cursor inside the box to generate a private key.

5. From the Conversions menu, choose Export OpenSSH key, and save the private key with a
.pem file extension.

6. Add the public key to the /home/<user>/.ssh/authorized_keys file on device under test.

a. Copy the public key text from the PuTTYgen window.

b. Use PuTTY to create a session on your device under test.

i. From a command prompt or Windows Powershell window, run the following
command:

C:/<path-to-putty>/putty.exe -ssh <user>@<dut-ip-address>

ii. When prompted, enter your device's password.

iii. Use vi or another text editor to append the public key to the /home/<user>/.ssh/
authorized_keys file on your device under test.

7. Update your device.json file with your user name, the IP address, and path to the private
key file that you just saved on your host computer for each device under test. For more
information, see the section called “Configure device.json”. Make sure you provide the full path
and file name to the private key and use forward slashes ('/'). For example, for the Windows
path C:\DT\privatekey.pem, use C:/DT/privatekey.pem in the device.json file.

Configure user permissions on your device

IDT performs operations on various directories and files in a device under test. Some of these
operations require elevated permissions (using sudo). To automate these operations, IDT for AWS
IoT Greengrass must be able to run commands with sudo without being prompted for a password.

Follow these steps on the device under test to allow sudo access without being prompted for a
password.

Configure your device to run IDT tests 1091

https://www.openssh.com/
https://www.puttygen.com/

AWS IoT Greengrass Developer Guide, Version 1

Note

username refers to the SSH user used by IDT to access the device under test.

To add the user to the sudo group

1. On the device under test, run sudo usermod -aG sudo <username>.

2. Sign out and then sign back in for changes to take effect.

3. To verify your user name was added successfully, run sudo echo test. If you are not prompted
for a password, your user is configured correctly.

4. Open the /etc/sudoers file and add the following line to the end of the file:

<ssh-username> ALL=(ALL) NOPASSWD: ALL

Configure your device to test optional features

The following topics describe how to configure your devices to run IDT tests for optional features.
Follow these configuration steps only if you want to test these features. Otherwise, continue to the
section called “Configure IDT settings”.

Topics

• Optional: Configuring your Docker container for IDT for AWS IoT Greengrass

• Optional: Configuring your device for ML qualification

Optional: Configuring your Docker container for IDT for AWS IoT Greengrass

AWS IoT Greengrass provides a Docker image and Dockerfile that make it easier to run the AWS
IoT Greengrass Core software in a Docker container. After you set up the AWS IoT Greengrass
container, you can run IDT tests. Currently, only x86_64 Docker architectures are supported to run
IDT for AWS IoT Greengrass.

This feature requires IDT v2.3.0 or later.

The process of setting up the Docker container to run IDT tests depends on whether you use the
Docker image or Dockerfile provided by AWS IoT Greengrass.

Configure your device to run IDT tests 1092

AWS IoT Greengrass Developer Guide, Version 1

• Use the Docker image. The Docker image has the AWS IoT Greengrass Core software and
dependencies installed.

• Use the Dockerfile. The Dockerfile contains source code you can use to build custom AWS
IoT Greengrass container images. The image can be modified to run on different platform
architectures or to reduce the image size.

Note

AWS IoT Greengrass doesn't provide Dockerfiles or Docker images for AWS IoT
Greengrass core software version 1.11.1. To run IDT tests on your own custom container
images, your image must include the dependencies defined in the Dockerfile provided by
AWS IoT Greengrass.

The following features aren't available when you run AWS IoT Greengrass in a Docker container:

• Connectors that run in Greengrass container mode. To run a connector in a Docker container,
the connector must run in No container mode. To find connectors that support No container
mode, see the section called “AWS-provided Greengrass connectors”. Some of these connectors
have an isolation mode parameter that you must set to No container.

• Local device and volume resources. Your user-defined Lambda functions that run in the Docker
container must access devices and volumes on the core directly.

Configure the Docker image provided by AWS IoT Greengrass

Follow these steps to configure the AWS IoT Greengrass Docker image to run IDT tests.

Prerequisities

Before you start this tutorial, you must do the following.

• You must install the following software and versions on your host computer based on the AWS
Command Line Interface (AWS CLI) version that you choose.

AWS CLI version 2

• Docker version 18.09 or later. Earlier versions might also work, but we recommend 18.09 or
later.

• AWS CLI version 2.0.0 or later.

Configure your device to run IDT tests 1093

https://docs.docker.com/install/

AWS IoT Greengrass Developer Guide, Version 1

• To install the AWS CLI version 2, see Installing the AWS CLI version 2.

• To configure the AWS CLI, see Configuring the AWS CLI.

Note

To upgrade to a later AWS CLI version 2 on a Windows computer, you must repeat
the MSI installation process.

AWS CLI version 1

• Docker version 18.09 or later. Earlier versions might also work, but we recommend 18.09 or
later.

• Python version 3.6 or later.

• pip version 18.1 or later.

• AWS CLI version 1.17.10 or later

• To install the AWS CLI version 1, see Installing the AWS CLI version 1.

• To configure the AWS CLI, see Configuring the AWS CLI.

• To upgrade to the latest version of the AWS CLI version 1, run the following command.

pip install awscli --upgrade --user

Note

If you use the MSI installation of the AWS CLI version 1 on Windows, be aware of
the following:

• If the AWS CLI version 1 installation fails to install botocore, try using the Python
and pip installation.

• To upgrade to a later AWS CLI version 1, you must repeat the MSI installation
process.

• To access Amazon Elastic Container Registry (Amazon ECR) resources, you must grant the
following permission.

• Amazon ECR requires users to grant the ecr:GetAuthorizationToken permission through
an AWS Identity and Access Management (IAM) policy before they can authenticate to a
registry and push or pull images from an Amazon ECR repository. For more information, see

Configure your device to run IDT tests 1094

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-windows.html
https://docs.docker.com/install/
https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installing
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/install-windows.html#msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#awscli-install-windows-pip
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#awscli-install-windows-pip

AWS IoT Greengrass Developer Guide, Version 1

Amazon ECR Repository Policy Examples and Accessing One Amazon ECR Repository in the
Amazon Elastic Container Registry User Guide.

1. Download the Docker image and configure the container. You can download the prebuilt
image from Docker Hub or Amazon Elastic Container Registry (Amazon ECR) and run it on
Windows, macOS, and Linux (x86_64) platforms.

To download the Docker image from Amazon ECR, complete all of the steps in the section
called “Get the AWS IoT Greengrass container image from Amazon ECR”. Then, return to this
topic to continue the configuration.

2. Linux users only: Make sure the user that runs IDT has permission to run Docker commands.
For more information, see Manage Docker as a non-root user in the Docker documentation.

3. To run the AWS IoT Greengrass container, use the command for your operating system:

Linux

docker run --rm --init -it -d --name aws-iot-greengrass \
-p 8883:8883 \
-v <host-path-to-kernel-config-file>:<container-path> \
<image-repository>:<tag>

• Replace <host-path-to-kernel-config-file> with the path to the kernel
configuration file on the host and <container-path> with the path where the volume
is mounted in the container.

The kernel config file on the host is usually located in /proc/config.gz or /boot/
config-<kernel-release-date>. You can run uname -r to find the <kernel-
release-date> value.

Example: To mount the config file from /boot/config-<kernel-release-date>

-v /boot/config-4.15.0-74-generic:/boot/config-4.15.0-74-generic \

Example: To mount the config file from proc/config.gz

-v /proc/config.gz:/proc/config.gz \

Configure your device to run IDT tests 1095

https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-policy-examples.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-access-one-bucket
https://hub.docker.com/r/amazon/aws-iot-greengrass
https://docs.aws.amazon.com/AmazonECR/latest/userguide/what-is-ecr.html
https://docs.docker.com/install/linux/linux-postinstall/#manage-docker-as-a-non-root-user

AWS IoT Greengrass Developer Guide, Version 1

• Replace <image-repository>:<tag> in the command with the name of the repository
and tag of the target image.

Example: To point to the latest version of the AWS IoT Greengrass Core software

216483018798.dkr.ecr.us-west-2.amazonaws.com/aws-iot-greengrass:latest

To get the list of AWS IoT Greengrass Docker images, run the following command.

aws ecr list-images --region us-west-2 --registry-id 216483018798 --
repository-name aws-iot-greengrass

macOS

docker run --rm --init -it -d --name aws-iot-greengrass \
-p 8883:8883 \
<image-repository>:<tag>

• Replace <image-repository>:<tag> in the command with the name of the repository
and tag of the target image.

Example: To point to the latest version of the AWS IoT Greengrass Core software

216483018798.dkr.ecr.us-west-2.amazonaws.com/aws-iot-greengrass:latest

To get the list of AWS IoT Greengrass Docker images, run the following command:

aws ecr list-images --region us-west-2 --registry-id 216483018798 --
repository-name aws-iot-greengrass

Windows

docker run --rm --init -it -d --name aws-iot-greengrass \
-p 8883:8883 \
<image-repository>:<tag>

Configure your device to run IDT tests 1096

AWS IoT Greengrass Developer Guide, Version 1

• Replace <image-repository>:<tag> in the command with the name of the repository
and tag of the target image.

Example: To point to the latest version of the AWS IoT Greengrass Core software

216483018798.dkr.ecr.us-west-2.amazonaws.com/aws-iot-greengrass:latest

To get the list of AWS IoT Greengrass Docker images, run the following command:

aws ecr list-images --region us-west-2 --registry-id 216483018798 --
repository-name aws-iot-greengrass

Important

When testing with IDT, do not include the --entrypoint /greengrass-
entrypoint.sh \ argument that's used to run the image for general AWS IoT
Greengrass use.

4. Next step: Configure your AWS credentials and device.json file.

Configure the dockerfile provided by AWS IoT Greengrass

Follow these steps to configure the Docker image built from the AWS IoT Greengrass Dockerfile to
run IDT tests.

1. From the section called “AWS IoT Greengrass Docker software”, download the Dockerfile
package to your host computer and extract it.

2. Open README.md. The next three steps refer to sections in this file.

3. Make sure that you meet the requirements in the Prerequisites section.

4. Linux users only: Complete the Enable Symlink and Hardlink Protection and Enable IPv4
Network Forwarding steps.

5. To build the Docker image, complete all of the steps in Step 1. Build the AWS IoT Greengrass
Docker Image. Then, return to this topic to continue the configuration.

6. To run the AWS IoT Greengrass container, use the command for your operating system:

Configure your device to run IDT tests 1097

AWS IoT Greengrass Developer Guide, Version 1

Linux

docker run --rm --init -it -d --name aws-iot-greengrass \
-p 8883:8883 \
-v <host-path-to-kernel-config-file>:<container-path> \
<image-repository>:<tag>

• Replace <host-path-to-kernel-config-file> with the path to the kernel
configuration file on the host and <container-path> with the path where the volume
is mounted in the container.

The kernel config file on the host is usually located in /proc/config.gz or /boot/
config-<kernel-release-date>. You can run uname -r to find the <kernel-
release-date> value.

Example: To mount the config file from /boot/config-<kernel-release-date>

-v /boot/config-4.15.0-74-generic:/boot/config-4.15.0-74-generic \

Example: To mount the config file from proc/config.gz

-v /proc/config.gz:/proc/config.gz \

• Replace <image-repository>:<tag> in the command with the name of the repository
and tag of the target image.

Example: To point to the latest version of the AWS IoT Greengrass Core software

216483018798.dkr.ecr.us-west-2.amazonaws.com/aws-iot-greengrass:latest

To get the list of AWS IoT Greengrass Docker images, run the following command.

aws ecr list-images --region us-west-2 --registry-id 216483018798 --
repository-name aws-iot-greengrass

Configure your device to run IDT tests 1098

AWS IoT Greengrass Developer Guide, Version 1

macOS

docker run --rm --init -it -d --name aws-iot-greengrass \
-p 8883:8883 \
<image-repository>:<tag>

• Replace <image-repository>:<tag> in the command with the name of the repository
and tag of the target image.

Example: To point to the latest version of the AWS IoT Greengrass Core software

216483018798.dkr.ecr.us-west-2.amazonaws.com/aws-iot-greengrass:latest

To get the list of AWS IoT Greengrass Docker images, run the following command:

aws ecr list-images --region us-west-2 --registry-id 216483018798 --
repository-name aws-iot-greengrass

Windows

docker run --rm --init -it -d --name aws-iot-greengrass \
-p 8883:8883 \
<image-repository>:<tag>

• Replace <image-repository>:<tag> in the command with the name of the repository
and tag of the target image.

Example: To point to the latest version of the AWS IoT Greengrass Core software

216483018798.dkr.ecr.us-west-2.amazonaws.com/aws-iot-greengrass:latest

To get the list of AWS IoT Greengrass Docker images, run the following command:

aws ecr list-images --region us-west-2 --registry-id 216483018798 --
repository-name aws-iot-greengrass

Configure your device to run IDT tests 1099

AWS IoT Greengrass Developer Guide, Version 1

Important

When testing with IDT, do not include the --entrypoint /greengrass-
entrypoint.sh \ argument that's used to run the image for general AWS IoT
Greengrass use.

7. Next step: Configure your AWS credentials and device.json file.

Troubleshooting your Docker container setup for IDT for AWS IoT Greengrass

Use the following information to help troubleshoot issues with running a Docker container for IDT
for AWS IoT Greengrass testing.

WARNING: Error loading config file:/home/user/.docker/config.json - stat /home/
<user>/.docker/config.json: permission denied

If you get this error when running docker commands on Linux, run the following command.
Replace <user> in the following command with the user that runs IDT.

sudo chown <user>:<user> /home/<user>/.docker -R
sudo chmod g+rwx /home/<user>/.docker -R

Optional: Configuring your device for ML qualification

IDT for AWS IoT Greengrass provides machine learning (ML) qualification tests to validate that your
devices can perform ML inference locally using cloud-trained models.

To run ML qualification tests, you must first configure your devices as described in the section
called “Configure your device to run IDT tests”. Then, follow the steps in this topic to install
dependencies for the ML frameworks that you want to run.

IDT v3.1.0 or later is required to run tests for ML qualification.

Installing ML framework dependencies

All ML framework dependencies must be installed under the /usr/local/lib/python3.x/
site-packages directory. To make sure they are installed under the correct directory, we

Configure your device to run IDT tests 1100

AWS IoT Greengrass Developer Guide, Version 1

recommend that you use sudo root permissions when installing the dependencies. Virtual
environments are not supported for qualification tests.

Note

If you're testing Lambda functions that run with containerization (in Greengrass container
mode), creating symlinks for Python libraries under /usr/local/lib/python3.x isn't
supported. To avoid errors, you must install the dependencies under the correct directory.

Follow the steps to install the dependencies for your target framework:

• Install MXNet dependencies

• the section called “Install TensorFlow dependencies”

• Install DLR dependencies

Install Apache MXNet dependencies

IDT qualification tests for this framework have the following dependencies:

• Python 3.6 or Python 3.7.

Note

If you're using Python 3.6, you must create a symbolic link from Python 3.7 to Python
3.6 binaries. This configures your device to meet the Python requirement for AWS IoT
Greengrass. For example:

sudo ln -s path-to-python-3.6/python3.6 path-to-python-3.7/python3.7

• Apache MXNet v1.2.1 or later.

• NumPy. The version must be compatible with your MXNet version.

Installing MXNet

Follow the instructions in the MXNet documentation to install MXNet.

Configure your device to run IDT tests 1101

https://mxnet.apache.org/get_started/?platform=linux&language=python&processor=cpu&environ=pip&

AWS IoT Greengrass Developer Guide, Version 1

Note

If Python 2.x and Python 3.x are both installed on your device, use Python 3.x in the
commands that you run to install the dependencies.

Validating the MXNet installation

Choose one of the following options to validate the MXNet installation.

Option 1: SSH into your device and run scripts

1. SSH into your device.

2. Run the following scripts to verify that the dependencies are correctly installed.

sudo python3.7 -c "import mxnet; print(mxnet.__version__)"

sudo python3.7 -c "import numpy; print(numpy.__version__)"

The output prints the version number and the script should exit without error.

Option 2: Run the IDT dependency test

1. Make sure that device.json is configured for ML qualification. For more information, see the
section called “Configure device.json for ML qualification”.

2. Run the dependencies test for the framework.

devicetester_[linux | mac | win_x86-64] run-suite --group-id mldependencies --test-
id mxnet_dependency_check

The test summary displays a PASSED result for mldependencies.

Install TensorFlow dependencies

IDT qualification tests for this framework have the following dependencies:

Configure your device to run IDT tests 1102

AWS IoT Greengrass Developer Guide, Version 1

• Python 3.6 or Python 3.7.

Note

If you're using Python 3.6, you must create a symbolic link from Python 3.7 to Python
3.6 binaries. This configures your device to meet the Python requirement for AWS IoT
Greengrass. For example:

sudo ln -s path-to-python-3.6/python3.6 path-to-python-3.7/python3.7

• TensorFlow 1.x.

Installing TensorFlow

Follow the instructions in the TensorFlow documentation to install TensorFlow 1.x with pip or from
source.

Note

If Python 2.x and Python 3.x are both installed on your device, use Python 3.x in the
commands that you run to install the dependencies.

Validating the TensorFlow installation

Choose one of the following options to validate the TensorFlow installation.

Option 1: SSH into your device and run a script

1. SSH into your device.

2. Run the following script to verify that the dependency is correctly installed.

sudo python3.7 -c "import tensorflow; print(tensorflow.__version__)"

The output prints the version number and the script should exit without error.

Configure your device to run IDT tests 1103

https://www.tensorflow.org/install/pip
https://www.tensorflow.org/install/source
https://www.tensorflow.org/install/source

AWS IoT Greengrass Developer Guide, Version 1

Option 2: Run the IDT dependency test

1. Make sure that device.json is configured for ML qualification. For more information, see the
section called “Configure device.json for ML qualification”.

2. Run the dependencies test for the framework.

devicetester_[linux | mac | win_x86-64] run-suite --group-id mldependencies --test-
id tensorflow_dependency_check

The test summary displays a PASSED result for mldependencies.

Install Amazon SageMaker Neo Deep Learning Runtime (DLR) dependencies

IDT qualification tests for this framework have the following dependencies:

• Python 3.6 or Python 3.7.

Note

If you're using Python 3.6, you must create a symbolic link from Python 3.7 to Python
3.6 binaries. This configures your device to meet the Python requirement for AWS IoT
Greengrass. For example:

sudo ln -s path-to-python-3.6/python3.6 path-to-python-3.7/python3.7

• SageMaker Neo DLR.

• numpy.

After you install the DLR test dependencies, you must compile the model.

Installing DLR

Follow the instructions in the DLR documentation to install the Neo DLR.

Configure your device to run IDT tests 1104

https://neo-ai-dlr.readthedocs.io/en/latest/install.html#building-on-linux

AWS IoT Greengrass Developer Guide, Version 1

Note

If Python 2.x and Python 3.x are both installed on your device, use Python 3.x in the
commands that you run to install the dependencies.

Validating the DLR installation

Choose one of the following options to validate the DLR installation.

Option 1: SSH into your device and run scripts

1. SSH into your device.

2. Run the following scripts to verify that the dependencies are correctly installed.

sudo python3.7 -c "import dlr; print(dlr.__version__)"

sudo python3.7 -c "import numpy; print(numpy.__version__)"

The output prints the version number and the script should exit without error.

Option 2: Run the IDT dependency test

1. Make sure that device.json is configured for ML qualification. For more information, see the
section called “Configure device.json for ML qualification”.

2. Run the dependencies test for the framework.

devicetester_[linux | mac | win_x86-64] run-suite --group-id mldependencies --test-
id dlr_dependency_check

The test summary displays a PASSED result for mldependencies.

Compile the DLR model

You must compile the DLR model before you can use it for ML qualification tests. For steps, choose
one of the following options.

Configure your device to run IDT tests 1105

AWS IoT Greengrass Developer Guide, Version 1

Option 1: Use Amazon SageMaker to compile the model

Follow these steps to use SageMaker to compile the ML model provided by IDT. This model is
pretrained with Apache MXNet.

1. Verify that your device type is supported by SageMaker. For more information, see the target
device options the Amazon SageMaker API Reference. If your device type is not currently
supported by SageMaker, follow the steps in the section called “Option 2: Use TVM to compile
the DLR model”.

Note

Running the DLR test with a model compiled by SageMaker might take 4 or 5 minutes.
Don’t stop IDT during this time.

2. Download the tarball file that contains the uncompiled, pretrained MXNet model for DLR:

• dlr-noncompiled-model-1.0.tar.gz

3. Decompress the tarball. This command generates the following directory structure.

4. Move synset.txt out of the resnet18 directory. Make a note of the new location. You copy
this file to compiled model directory later.

5. Compress the contents of the resnet18 directory.

tar cvfz model.tar.gz resnet18v1-symbol.json resnet18v1-0000.params

6. Upload the compressed file to an Amazon S3 bucket in your AWS account, and then follow the
steps in Compile a Model (Console) to create a compilation job.

a. For Input configuration, use the following values:

• For Data input configuration, enter {"data": [1, 3, 224, 224]}.

• For Machine learning framework, choose MXNet.

b. For Output configuration, use the following values:

Configure your device to run IDT tests 1106

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice
https://docs.aws.amazon.com/greengrass/latest/developerguide/download-dlr-noncompiled-model-1.0.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-job-compilation-console.html

AWS IoT Greengrass Developer Guide, Version 1

• For S3 Output location, enter the path to the Amazon S3 bucket or folder where you
want to store the compiled model.

• For Target device, choose your device type.

7. Download the compiled model from the output location you specified, and then unzip the file.

8. Copy synset.txt into the compiled model directory.

9. Change the name of the compiled model directory to resnet18.

Your compiled model directory must have the following directory structure.

Option 2: Use TVM to compile the DLR model

Follow these steps to use TVM to compile the ML model provided by IDT. This model is pretrained
with Apache MXNet, so you must install MXNet on the computer or device where you compile the
model. To install MXNet, follow the instructions in the MXNet documentation.

Note

We recommend that you compile the model on your target device. This practice is optional,
but it can help ensure compatibility and mitigate potential issues.

1. Download the tarball file that contains the uncompiled, pretrained MXNet model for DLR:

• dlr-noncompiled-model-1.0.tar.gz

2. Decompress the tarball. This command generates the following directory structure.

Configure your device to run IDT tests 1107

https://mxnet.apache.org/get_started/?platform=linux&language=python&processor=cpu&environ=pip&
https://docs.aws.amazon.com/greengrass/latest/developerguide/download-dlr-noncompiled-model-1.0.html

AWS IoT Greengrass Developer Guide, Version 1

3. Follow the instructions in the TVM documentation to build and install TVM from source for
your platform.

4. After TVM is built, run the TVM compilation for the resnet18 model. The following steps are
based on Quick Start Tutorial for Compiling Deep Learning Models in the TVM documentation.

a. Open the relay_quick_start.py file from the cloned TVM repository.

b. Update the code that defines a neural network in relay. You can use one of following
options:

• Option 1: Use mxnet.gluon.model_zoo.vision.get_model to get the relay
module and parameters:

from mxnet.gluon.model_zoo.vision import get_model
block = get_model('resnet18_v1', pretrained=True)
mod, params = relay.frontend.from_mxnet(block, {"data": data_shape})

• Option 2: From the uncompiled model that you downloaded in step 1, copy the
following files to the same directory as the relay_quick_start.py file. These files
contain the relay module and parameters.

• resnet18v1-symbol.json

• resnet18v1-0000.params

c. Update the code that saves and loads the compiled module to use the following code.

from tvm.contrib import util
path_lib = "deploy_lib.so"
Export the model library based on your device architecture
lib.export_library("deploy_lib.so", cc="aarch64-linux-gnu-g++")
with open("deploy_graph.json", "w") as fo:
 fo.write(graph)
with open("deploy_param.params", "wb") as fo:
 fo.write(relay.save_param_dict(params))

d. Build the model:
Configure your device to run IDT tests 1108

https://docs.tvm.ai/install/from_source.html
https://docs.tvm.ai/install/from_source.html
https://tvm.apache.org/docs/tutorial/relay_quick_start.html#sphx-glr-tutorials-get-started-relay-quick-start-py
https://tvm.apache.org/docs/tutorial/relay_quick_start.html#define-neural-network-in-relay
https://tvm.apache.org/docs/tutorial/relay_quick_start.html#save-and-load-compiled-module

AWS IoT Greengrass Developer Guide, Version 1

python3 tutorials/relay_quick_start.py --build-dir ./model

This command generates the following files.

• deploy_graph.json

• deploy_lib.so

• deploy_param.params

5. Copy the generated model files into a directory named resnet18. This is your compiled
model directory.

6. Copy the compiled model directory to your host computer. Then copy synset.txt from the
uncompiled model that you downloaded in step 1 into the compiled model directory.

Your compiled model directory must have the following directory structure.

Next, configure your AWS credentials and device.json file.

Configure IDT settings to run the AWS IoT Greengrass qualification
suite

Before you run tests, you must configure settings for AWS credentials and devices on your host
computer.

Configure your AWS credentials

You must configure your IAM user credentials in the <device-tester-extract-location> /
configs/config.json file. Use the credentials for the IDT for AWS IoT Greengrass user created
in the section called “Create and configure an AWS account”. You can specify your credentials in
one of two ways:

• Credentials file

Configure IDT settings 1109

AWS IoT Greengrass Developer Guide, Version 1

• Environment variables

Configure AWS credentials with a credentials file

IDT uses the same credentials file as the AWS CLI. For more information, see Configuration and
credential files.

The location of the credentials file varies, depending on the operating system you are using:

• macOS, Linux: ~/.aws/credentials

• Windows: C:\Users\UserName\.aws\credentials

Add your AWS credentials to the credentials file in the following format:

[default]
aws_access_key_id = <your_access_key_id>
aws_secret_access_key = <your_secret_access_key>

To configure IDT for AWS IoT Greengrass to use AWS credentials from your credentials file, edit
your config.json file as follows:

{
 "awsRegion": "us-west-2",
 "auth": {
 "method": "file",
 "credentials": {
 "profile": "default"
 }
 }
}

Note

If you do not use the default AWS profile, be sure to change the profile name in your
config.json file. For more information, see Named profiles.

Configure IDT settings 1110

https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html

AWS IoT Greengrass Developer Guide, Version 1

Configure AWS credentials with environment variables

Environment variables are variables maintained by the operating system and used by system
commands. They are not saved if you close the SSH session. IDT for AWS IoT Greengrass can use
the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables to store your
AWS credentials.

To set these variables on Linux, macOS, or Unix, use export:

export AWS_ACCESS_KEY_ID=<your_access_key_id>
export AWS_SECRET_ACCESS_KEY=<your_secret_access_key>

To set these variables on Windows, use set:

set AWS_ACCESS_KEY_ID=<your_access_key_id>
set AWS_SECRET_ACCESS_KEY=<your_secret_access_key>

To configure IDT to use the environment variables, edit the auth section in your config.json file.
Here is an example:

{
 "awsRegion": "us-west-2",
 "auth": {
 "method": "environment"
 }
}

Configure device.json

In addition to AWS credentials, IDT for AWS IoT Greengrass needs information about the devices
that tests are run on (for example, IP address, login information, operating system, and CPU
architecture).

You must provide this information using the device.json template located in
<device_tester_extract_location>/configs/device.json:

Physical device

[
 {
 "id": "<pool-id>",

Configure IDT settings 1111

AWS IoT Greengrass Developer Guide, Version 1

 "sku": "<sku>",
 "features": [
 {
 "name": "os",
 "value": "linux | ubuntu | openwrt"
 },
 {
 "name": "arch",
 "value": "x86_64 | armv6l | armv7l | aarch64"
 },
 {
 "name": "container",
 "value": "yes | no"
 },
 {
 "name": "docker",
 "value": "yes | no"
 },
 {
 "name": "streamManagement",
 "value": "yes | no"
 },
 {
 "name": "hsi",
 "value": "yes | no"
 },
 {
 "name": "ml",
 "value": "mxnet | tensorflow | dlr | mxnet,dlr,tensorflow | no"
 },
 *********** Remove the section below if the device is not qualifying for ML
 **************,
 {
 "name": "mlLambdaContainerizationMode",
 "value": "container | process | both"
 },
 {
 "name": "processor",
 "value": "cpu | gpu"
 },

 **
],

Configure IDT settings 1112

AWS IoT Greengrass Developer Guide, Version 1

 *********** Remove the section below if the device is not qualifying for HSI

 "hsm": {
 "p11Provider": "/path/to/pkcs11ProviderLibrary",
 "slotLabel": "<slot_label>",
 "slotUserPin": "<slot_pin>",
 "privateKeyLabel": "<key_label>",
 "openSSLEngine": "/path/to/openssl/engine"
 },

 **
 *********** Remove the section below if the device is not qualifying for ML

 "machineLearning": {
 "dlrModelPath": "/path/to/compiled/dlr/model",
 "environmentVariables": [
 {
 "key": "<environment-variable-name>",
 "value": "<Path:$PATH>"
 }
],
 "deviceResources": [
 {
 "name": "<resource-name>",
 "path": "<resource-path>",
 "type": "device | volume"
 }
]
 },

 **
 "kernelConfigLocation": "",
 "greengrassLocation": "",
 "devices": [
 {
 "id": "<device-id>",
 "connectivity": {
 "protocol": "ssh",
 "ip": "<ip-address>",
 "port": 22,
 "auth": {
 "method": "pki | password",
 "credentials": {
 "user": "<user-name>",

Configure IDT settings 1113

AWS IoT Greengrass Developer Guide, Version 1

 "privKeyPath": "/path/to/private/key",
 "password": "<password>"
 }
 }
 }
 }
]
 }
]

Note

Specify privKeyPath only if method is set to pki.
Specify password only if method is set to password.

Docker container

[
 {
 "id": "<pool-id>",
 "sku": "<sku>",
 "features": [
 {
 "name": "os",
 "value": "linux | ubuntu | openwrt"
 },
 {
 "name": "arch",
 "value": "x86_64"
 },
 {
 "name": "container",
 "value": "no"
 },
 {
 "name": "docker",
 "value": "no"
 },
 {
 "name": "streamManagement",
 "value": "yes | no"

Configure IDT settings 1114

AWS IoT Greengrass Developer Guide, Version 1

 },
 {
 "name": "hsi",
 "value": "no"
 },
 {
 "name": "ml",
 "value": "mxnet | tensorflow | dlr | mxnet,dlr,tensorflow | no"
 },
 *********** Remove the section below if the device is not qualifying for ML
 **************,
 {
 "name": "mlLambdaContainerizationMode",
 "value": "process"
 },
 {
 "name": "processor",
 "value": "cpu | gpu"
 },

 **
],
 *********** Remove the section below if the device is not qualifying for ML

 "machineLearning": {
 "dlrModelPath": "/path/to/compiled/dlr/model",
 "environmentVariables": [
 {
 "key": "<environment-variable-name>",
 "value": "<Path:$PATH>"
 }
],
 "deviceResources": [
 {
 "name": "<resource-name>",
 "path": "<resource-path>",
 "type": "device | volume"
 }
]
 },

 **
 "kernelConfigLocation": "",
 "greengrassLocation": "",

Configure IDT settings 1115

AWS IoT Greengrass Developer Guide, Version 1

 "devices": [
 {
 "id": "<device-id>",
 "connectivity": {
 "protocol": "docker",
 "containerId": "<container-name | container-id>",
 "containerUser": "<user>"
 }
 }
]
 }
]

All fields that contain values are required as described here:

id

A user-defined alphanumeric ID that uniquely identifies a collection of devices called a device
pool. Devices that belong to a pool must have identical hardware. When you run a suite of
tests, devices in the pool are used to parallelize the workload. Multiple devices are used to run
different tests.

sku

An alphanumeric value that uniquely identifies the device under test. The SKU is used to track
qualified boards.

Note

If you want to list your board in the AWS Partner Device Catalog, the SKU you specify
here must match the SKU that you use in the listing process.

features

An array that contains the device's supported features. All features are required.

os and arch

Supported operating system (OS) and architecture combinations:

Configure IDT settings 1116

AWS IoT Greengrass Developer Guide, Version 1

• linux, x86_64

• linux, armv6l

• linux, armv7l

• linux, aarch64

• ubuntu, x86_64

• openwrt, armv7l

• openwrt, aarch64

Note

If you use IDT to test AWS IoT Greengrass running in a Docker container, only the
x86_64 Docker architecture is supported.

container

Validates that the device meets all of the software and hardware requirements to run
Lambda functions in container mode on a Greengrass core.

The valid value is yes or no.

docker

Validates that the device meets all the required technical dependencies to use the
Greengrass Docker application deployment connector to run containers

The valid value is yes or no.

streamManagement

Validates that the device meets all of the required technical dependencies to run AWS IoT
Greengrass stream manager.

The valid value is yes or no.

hsi

Verifies that the provided HSI shared library can interface with the hardware security
module (HSM) and implements the required PKCS#11 APIs correctly. The HSM and shared

Configure IDT settings 1117

AWS IoT Greengrass Developer Guide, Version 1

library must be able to sign a CSR, perform TLS operations, and provide the correct key
lengths and public key algorithm.

The valid value is yes or no.

ml

Validates that the device meets all of the required technical dependencies to perform ML
inference locally.

The valid value can be any combination of mxnet, tensorflow, dlr, and no (for example,
mxnet, mxnet,tensorflow, mxnet,tensorflow,dlr, or no).

mlLambdaContainerizationMode

Validates that the device meets all of the required technical dependencies to perform ML
inference in container mode on a Greengrass device.

The valid value is container, process, or both.

processor

Validates that the device meets all of the hardware requirements for the specified processor
type.

The valid value is cpu or gpu.

Note

If you don't want to use the container, docker, streamManager, hsi, or ml feature,
you can set the corresponding value to no.
Docker only supports feature qualification for streamManagement and ml.

machineLearning

Optional. Configuration information for ML qualification tests. For more information, see the
section called “Configure device.json for ML qualification”.

hsm

Optional. Configuration information for testing with an AWS IoT Greengrass Hardware Security
Module (HSM). Otherwise, the hsm property should be omitted. For more information, see
Hardware security integration.

Configure IDT settings 1118

AWS IoT Greengrass Developer Guide, Version 1

This property applies only if connectivity.protocol is set to ssh.

hsm.p11Provider

The absolute path to the PKCS#11 implementation's libdl-loadable library.

hsm.slotLabel

The slot label used to identify the hardware module.

hsm.slotUserPin

The user PIN used to authenticate the AWS IoT Greengrass core to the module.

hsm.privateKeyLabel

The label used to identify the key in the hardware module.

hsm.openSSLEngine

The absolute path to the OpenSSL engine's .so file that enables PKCS#11 support on
OpenSSL. Used by the AWS IoT Greengrass OTA update agent.

devices.id

A user-defined unique identifier for the device being tested.

connectivity.protocol

The communication protocol used to communicate with this device. Currently, the only
supported values are ssh for physical devices and docker for Docker containers.

connectivity.ip

The IP address of the device being tested.

This property applies only if connectivity.protocol is set to ssh.

connectivity.containerId

The container ID or name of the Docker container being tested.

This property applies only if connectivity.protocol is set to docker.

connectivity.auth

Authentication information for the connection.

Configure IDT settings 1119

AWS IoT Greengrass Developer Guide, Version 1

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method

The authentication method used to access a device over the given connectivity protocol.

Supported values are:

• pki

• password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.password

The password used for signing in to the device being tested.

This value applies only if connectivity.auth.method is set to password.

connectivity.auth.credentials.privKeyPath

The full path to the private key used to sign in to the device under test.

This value applies only if connectivity.auth.method is set to pki.

connectivity.auth.credentials.user

The user name for signing in to the device being tested.

connectivity.auth.credentials.privKeyPath

The full path to the private key used to sign in to the device being tested.

connectivity.port

Optional. The port number to use for SSH connections.

The default value is 22.

This property only applies if connectivity.protocol is set to ssh.

greengrassLocation

The location of AWS IoT Greengrass Core software on your devices.

Configure IDT settings 1120

AWS IoT Greengrass Developer Guide, Version 1

For physical devices, this value is only used when you use an existing installation of AWS IoT
Greengrass. Use this attribute to tell IDT to use the version of the AWS IoT Greengrass Core
software installed on your devices.

When running tests in a Docker container from Docker image or Dockerfile provided by AWS IoT
Greengrass, set this value to /greengrass.

kernelConfigLocation

Optional. The path to the kernel configuration file. AWS IoT Device Tester uses this file to
check if the devices have the required kernel features enabled. If not specified, IDT uses the
following paths to search for the kernel configuration file: /proc/config.gz and /boot/
config-<kernel-version>. AWS IoT Device Tester uses the first path it finds.

Configure device.json for ML qualification

This section describes the optional properties in the device configuration file that apply to ML
qualification. If you plan to run tests for ML qualification, you must define the properties that apply
to your use case.

You can use the device-ml.json template to define the configuration settings for your device.
This template contains the optional ML properties. You can also use device.json and add the
ML qualification properties. These files are located in <device-tester-extract-location>/
configs and includes ML qualification properties. If you use device-ml.json, you must rename
the file to device.json before you run IDT tests.

For information about device configuration properties that don't apply to ML qualification, see the
section called “Configure device.json”.

ml in the features array

The ML frameworks that your board supports. This property requires IDT v3.1.0 or later.

• If your board supports only one framework, specify the framework. For example:

{
 "name": "ml",
 "value": "mxnet"
}

Configure IDT settings 1121

AWS IoT Greengrass Developer Guide, Version 1

• If your board supports multiple frameworks, specify the frameworks as a comma-separated
list. For example:

{
 "name": "ml",
 "value": "mxnet,tensorflow"
}

mlLambdaContainerizationMode in the features array

The containerization mode that you want to test with. This property requires IDT v3.1.0 or later.

• Choose process to run ML inference code with a non-containerized Lambda function. This
option requires AWS IoT Greengrass v1.10.x or later.

• Choose container to run ML inference code with a containerized Lambda function.

• Choose both to run ML inference code with both modes. This option requires AWS IoT
Greengrass v1.10.x or later.

processor in the features array

Indicates the hardware accelerator that your board supports. This property requires IDT v3.1.0
or later.

• Choose cpu if your board uses a CPU as the processor.

• Choose gpu if your board uses a GPU as the processor.

machineLearning

Optional. Configuration information for ML qualification tests. This property requires IDT v3.1.0
or later.

dlrModelPath

Required to use the dlr framework. The absolute path to your DLR compiled model
directory, which must be named resnet18. For more information, see the section called
“Compile the DLR model”.

Note

The following is an example path on macOS: /Users/<user>/Downloads/
resnet18.

Configure IDT settings 1122

AWS IoT Greengrass Developer Guide, Version 1

environmentVariables

An array of key-value pairs that can dynamically pass settings to ML inference tests.
Optional for CPU devices. You can use this section to add framework-specific environment
variables required by your device type. For information about these requirements, see the
official website of the framework or the device. For example, to run MXNet inference tests
on some devices, the following environment variables might be required.

"environmentVariables": [
 ...
 {
 "key": "PYTHONPATH",
 "value": "$MXNET_HOME/python:$PYTHONPATH"
 },
 {
 "key": "MXNET_HOME",
 "value": "$HOME/mxnet/"
 },
 ...
]

Note

The value field might vary based on your MXNet installation.

If you're testing Lambda functions that run with containerization on GPU devices, add
environment variables for the GPU library. This makes it possible for the GPU to perform
computations. To use different GPU libraries, see the official documentation for the library
or device.

Note

Configure the following keys if the mlLambdaContainerizationMode feature is
set to container or both.

"environmentVariables": [
 {
 "key": "PATH",

Configure IDT settings 1123

AWS IoT Greengrass Developer Guide, Version 1

 "value": "<path/to/software/bin>:$PATH"
 },
 {
 "key": "LD_LIBRARY_PATH",
 "value": "<path/to/ld/lib>"
 },
 ...
]

deviceResources

Required by GPU devices. Contains local resources that can be accessed by Lambda
functions. Use this section to add local device and volume resources.

• For device resources, specify "type": "device". For GPU devices, device resources
should be GPU-related device files under /dev.

Note

The /dev/shm directory is an exception. It can be configured as a volume resource
only.

• For volume resources, specify "type": "volume".

Run the AWS IoT Greengrass qualification suite

After you set the required configuration, you can start the tests. The runtime of the full test suite
depends on your hardware. For reference, it takes approximately 30 minutes to complete the full
test suite on a Raspberry Pi 3B.

The following example run-suite commands show you how to run the qualification tests for a
device pool. A device pool is a set of identical devices.

IDT v3.0.0 and later

Run all test groups in a specified test suite.

devicetester_[linux | mac | win_x86-64] run-suite --suite-id GGQ_1.0.0 --pool-
id <pool-id>

Use the list-suites command to list the test suites that are in the tests folder.

Run the AWS IoT Greengrass qualification suite 1124

AWS IoT Greengrass Developer Guide, Version 1

Run a specific test group in a test suite.

devicetester_[linux | mac | win_x86-64] run-suite --suite-id GGQ_1.0.0 --group-
id <group-id> --pool-id <pool-id>

Use the list-groups command to list the test groups in a test suite.

Run a specific test case in a test group.

devicetester_[linux | mac | win_x86-64] run-suite --group-id <group-id> --test-
id <test-id>

Run multiple test cases in a test group.

devicetester_[linux | mac | win_x86-64] run-suite --group-id <group-id> --test-
id <test-id1>,<test-id2>

List the test cases in a test group.

devicetester_[linux | mac | win_x86-64] list-test-cases --group-id <group-id>

The options for the run-suite command are optional. For example, you can omit pool-id if
you have only one device pool defined in your device.json file. Or, you can omit suite-id if
you want to run the latest test suite version in the tests folder.

Note

IDT prompts you if a newer test suite version is available online. For more information,
see the section called “Set the default update behavior”.

For more information about run-suite and other IDT commands, see the section called “IDT
commands”.

IDT v2.3.0 and earlier

Run all test groups in a specified suite.

devicetester_[linux | mac | win_x86-64] run-suite --suite-id GGQ_1 --pool-
id <pool-id>

Run the AWS IoT Greengrass qualification suite 1125

AWS IoT Greengrass Developer Guide, Version 1

Run a specific test group.

devicetester_[linux | mac | win_x86-64] run-suite --suite-id GGQ_1 --group-
id <group-id> --pool-id <pool-id>

suite-id and pool-id are optional if you are running a single test suite on a single device
pool. This means that you have only one device pool defined in your device.json file.

Check for Greengrass dependencies

We recommend that you run the dependency checker test group to make sure all Greengrass
dependencies are installed before you run related test groups. For example:

• Run ggcdependencies before running core qualification test groups.

• Run containerdependencies before running container-specific test groups.

• Run dockerdependencies before running Docker-specific test groups.

• Run ggcstreammanagementdependencies before running stream manager-specific test
groups.

Set the default update behavior

When you start a test run, IDT checks online for a newer test suite version. If one is available, IDT
prompts you to update to the latest available version. You can set the upgrade-test-suite (or
u) flag to control the default update behavior. Valid values are:

• y. IDT downloads and uses the latest available version.

• n (default). IDT uses the version specified in the suite-id option. If suite-id is not specified,
IDT uses the latest version in the tests folder.

If you don't include the upgrade-test-suite flag, IDT prompts you when an update is available
and waits 30 seconds for your input (y or n). If no input is entered, it defaults to n and continues
running the tests.

The following examples show common use cases for this feature:

Run the AWS IoT Greengrass qualification suite 1126

AWS IoT Greengrass Developer Guide, Version 1

Automatically use the latest tests available for a test group.

devicetester_linux run-suite -u y --group-id mqtt --pool-id DevicePool1

Run tests in a specific test suite version.

devicetester_linux run-suite -u n --suite-id GGQ_1.0.0 --group-id mqtt --pool-id
 DevicePool1

Prompt for updates at runtime.

devicetester_linux run-suite --pool-id DevicePool1

IDT for AWS IoT Greengrass commands

The IDT commands are located in the <device-tester-extract-location>/bin directory.
Use them for the following operations:

IDT v3.0.0 and later

help

Lists information about the specified command.

list-groups

Lists the groups in a given test suite.

list-suites

Lists the available test suites.

list-supported-products

Lists the supported products, in this case AWS IoT Greengrass versions, and test suite
versions for the current IDT version.

list-test-cases

Lists the test cases in a given test group. The following option is supported:

• group-id. The test group to search for. This option is required and must specify a single
group.

Run the AWS IoT Greengrass qualification suite 1127

AWS IoT Greengrass Developer Guide, Version 1

run-suite

Runs a suite of tests on a pool of devices. The following are some supported options:

• suite-id. The test suite version to run. If not specified, IDT uses the latest version in the
tests folder.

• group-id. The test groups to run, as a comma-separated list. If not specified, IDT runs all
test groups in the test suite.

• test-id. The test cases to run, as a comma-separated list. When specified, group-id
must specify a single group.

• pool-id. The device pool to test. You must specify a pool if you have multiple device
pools defined in your device.json file.

• upgrade-test-suite. Controls how test suite version updates are handled. Starting in
IDT v3.0.0, IDT checks online for updated test suite versions. For more information, see the
section called “Test suite versions”.

• stop-on-first-failure. Configures IDT to stop execution on the first failure. This
option should be used with group-id to debug the specified test groups. Do not use this
option when running a full test-suite to generate a qualification report.

• update-idt. Sets the response for the prompt to update IDT. Y as input stops the test
execution if IDT detects there is a newer version. N as input continues the test execution.

• update-managed-policy. Y as input stops the test execution if IDT detects that the
user's managed policy isn’t updated. N as input continues the test execution.

For more information about run-suite options, use the help option:

devicetester_[linux | mac | win_x86-64] run-suite -h

IDT v2.3.0 and earlier

help

Lists information about the specified command.

list-groups

Lists the groups in a given test suite.

Run the AWS IoT Greengrass qualification suite 1128

AWS IoT Greengrass Developer Guide, Version 1

list-suites

Lists the available test suites.

run-suite

Runs a suite of tests on a pool of devices.

For more information about run-suite options, use the help option:

devicetester_[linux | mac | win_x86-64] run-suite -h

Understanding results and logs

This section describes how to view and interpret IDT result reports and logs.

Viewing results

While running, IDT writes errors to the console, log files, and test reports. After IDT completes the
qualification test suite, it generates two test reports. These reports can be found in <device-
tester-extract-location>/results/<execution-id>/. Both reports capture the results
from the qualification test suite execution.

The awsiotdevicetester_report.xml is the qualification test report that you submit to AWS
to list your device in the AWS Partner Device Catalog. The report contains the following elements:

• The IDT version.

• The AWS IoT Greengrass version that was tested.

• The SKU and the device pool name specified in the device.json file.

• The features of the device pool specified in the device.json file.

• The aggregate summary of test results.

• A breakdown of test results by libraries that were tested based on the device features (for
example, local resource access, shadow, MQTT, and so on).

The GGQ_Result.xml report is in JUnit XML format. You can integrate it into continuous
integration and deployment platforms like Jenkins, Bamboo, and so on. The report contains the
following elements:

Understanding results and logs 1129

https://llg.cubic.org/docs/junit/
https://jenkins.io/
https://www.atlassian.com/software/bamboo

AWS IoT Greengrass Developer Guide, Version 1

• Aggregate summary of test results.

• Breakdown of test results by the AWS IoT Greengrass functionality that was tested.

Interpreting IDT reports

The report section in awsiotdevicetester_report.xml or
awsiotdevicetester_report.xml lists the tests that were run and the results.

The first XML tag <testsuites> contains the summary of the test execution. For example:

<testsuites name="GGQ results" time="2299" tests="28" failures="0" errors="0"
 disabled="0">

Attributes used in the <testsuites> tag

name

The name of the test suite.

time

The time, in seconds, it took to run the qualification suite.

tests

The number of tests executed.

failures

The number of tests that were run, but did not pass.

errors

The number of tests that IDT couldn't execute.

disabled

This attribute is not used and can be ignored.

The awsiotdevicetester_report.xml file contains an <awsproduct> tag that contains
information about the product being tested and the product features that were validated after
running a suite of tests.

Understanding results and logs 1130

AWS IoT Greengrass Developer Guide, Version 1

Attributes used in the <awsproduct> tag

name

The name of the product being tested.

version

The version of the product being tested.

features

The features validated. Features marked as required are required to submit your board
for qualification. The following snippet shows how this information appears in the
awsiotdevicetester_report.xml file.

<feature name="aws-iot-greengrass-no-container" value="supported" type="required"></
feature>

Features marked as optional are not required for qualification. The following snippets show
optional features.

<feature name="aws-iot-greengrass-container" value="supported" type="optional"></
feature>

<feature name="aws-iot-greengrass-hsi" value="not-supported" type="optional"></
feature>

If there are no test failures or errors for the required features, your device meets the technical
requirements to run AWS IoT Greengrass and can interoperate with AWS IoT services. If you want
to list your device in the AWS Partner Device Catalog, you can use this report as qualification
evidence.

In the event of test failures or errors, you can identify the test that failed by reviewing the
<testsuites> XML tags. The <testsuite> XML tags inside the <testsuites> tag show the
test result summary for a test group. For example:

<testsuite name="combination" package="" tests="1" failures="0" time="161" disabled="0"
 errors="0" skipped="0">

Understanding results and logs 1131

AWS IoT Greengrass Developer Guide, Version 1

The format is similar to the <testsuites> tag, but with a skipped attribute that is not used and
can be ignored. Inside each <testsuite> XML tag, there are <testcase> tags for each executed
test for a test group. For example:

<testcase classname="Security Combination (IPD + DCM) Test Context" name="Security
 Combination IP Change Tests sec4_test_1: Should rotate server cert when IPD disabled
 and following changes are made:Add CIS conn info and Add another CIS conn info"
 attempts="1"></testcase>>

Attributes used in the <testcase> tag

name

The name of the test.

attempts

The number of times IDT executed the test case.

When a test fails or an error occurs, <failure> or <error> tags are added to the <testcase>
tag with information for troubleshooting. For example:

<testcase classname="mcu.Full_MQTT" name="AFQP_MQTT_Connect_HappyCase" attempts="1">
 <failure type="Failure">Reason for the test failure</failure>
 <error>Reason for the test execution error</error>
</testcase>

Viewing logs

IDT generates logs from test execution in <devicetester-extract-location>/
results/<execution-id>/logs. Two sets of logs are generated:

test_manager.log

Logs generated from the Test Manager component of AWS IoT Device Tester (for example, logs
related to configuration, test sequencing, and report generation).

<test_case_id>.log (for example, ota.log)

Logs of the test group, including logs from the device under test. When a test fails, a tar.gz
file that contains the logs of the device under test for the test is created (for example,
ota_prod_test_1_ggc_logs.tar.gz).

Understanding results and logs 1132

AWS IoT Greengrass Developer Guide, Version 1

For more information, see IDT for AWS IoT Greengrass troubleshooting.

Use IDT to develop and run your own test suites

Starting in IDT v4.0.0, IDT for AWS IoT Greengrass combines a standardized configuration setup
and result format with a test suite environment that enables you to develop custom test suites
for your devices and device software. You can add custom tests for your own internal validation or
provide them to your customers for device verification.

Use IDT to develop and run custom test suites, as follows:

To develop custom test suites

• Create test suites with custom test logic for the Greengrass device that you want to test.

• Provide IDT with your custom test suites to test runners. Include information about specific
settings configurations for your test suites.

To run custom test suites

• Set up the device that you want to test.

• Implement the settings configurations as required by the test suites that you want to use.

• Use IDT to run your custom test suites.

• View the test results and execution logs for the tests run by IDT.

Download the latest version of AWS IoT Device Tester for AWS IoT
Greengrass

Download the latest version of IDT and extract the software into a location on your file system
where you have read and write permissions.

Note

IDT does not support being run by multiple users from a shared location, such as an NFS
directory or a Windows network shared folder. We recommend that you extract the IDT
package to a local drive and run the IDT binary on your local workstation.
Windows has a path length limitation of 260 characters. If you are using Windows, extract
IDT to a root directory like C:\ or D:\ to keep your paths under the 260 character limit.

Use IDT to develop and run your own test suites 1133

AWS IoT Greengrass Developer Guide, Version 1

Test suite creation workflow

Test suites are composed of three types of files:

• JSON configuration files that provide IDT with information on how to execute the test suite.

• Test executable files that IDT uses to run test cases.

• Additional files required to run tests.

Complete the following basic steps to create custom IDT tests:

1. Create JSON configuration files for your test suite.

2. Create test case executables that contain the test logic for your test suite.

3. Verify and document the configuration information required for test runners to run the test
suite.

4. Verify that IDT can run your test suite and produce test results as expected.

To quickly build a sample custom suite and run it, follow the instructions in Tutorial: Build and run
the sample IDT test suite.

To get started creating a custom test suite in Python, see Tutorial: Develop a simple IDT test suite.

Tutorial: Build and run the sample IDT test suite

The AWS IoT Device Tester download includes the source code for a sample test suite. You can
complete this tutorial to build and run the sample test suite to understand how you can use AWS
IoT Device Tester for AWS IoT Greengrass to run custom test suites.

In this tutorial, you will complete the following steps:

1. Build the sample test suite

2. Use IDT to run the sample test suite

Prerequisites

To complete this tutorial, you need the following:

Test suite creation workflow 1134

AWS IoT Greengrass Developer Guide, Version 1

• Host computer requirements

• Latest version of AWS IoT Device Tester

• Python 3.7 or later

To check the version of Python installed on your computer, run the following command:

python3 --version

On Windows, if using this command returns an error, then use python --version instead. If
the returned version number is 3.7 or greater, then run the following command in a Powershell
terminal to set python3 as an alias for your python command.

Set-Alias -Name "python3" -Value "python"

If no version information is returned or if the version number is less than 3.7, follow the
instructions in Downloading Python to install Python 3.7+. For more information, see the
Python documentation.

• urllib3

To verify that urllib3 is installed correctly, run the following command:

python3 -c 'import urllib3'

If urllib3 is not installed, run the following command to install it:

python3 -m pip install urllib3

• Device requirements

• A device with a Linux operating system and a network connection to the same network as your
host computer.

We recommend that you use a Raspberry Pi with Raspberry Pi OS. Make sure you set up SSH
on your Raspberry Pi to remotely connect to it.

Tutorial: Build and run the sample IDT test suite 1135

https://www.python.org/downloads/
https://wiki.python.org/moin/BeginnersGuide/Download
https://docs.python.org
https://urllib3.readthedocs.io/en/latest/
https://www.raspberrypi.org/
https://www.raspberrypi.org/documentation/remote-access/ssh/

AWS IoT Greengrass Developer Guide, Version 1

Configure device information for IDT

Configure your device information for IDT to run the test. You must update the device.json
template located in the <device-tester-extract-location>/configs folder with the
following information.

[
 {
 "id": "pool",
 "sku": "N/A",
 "devices": [
 {
 "id": "<device-id>",
 "connectivity": {
 "protocol": "ssh",
 "ip": "<ip-address>",
 "port": "<port>",
 "auth": {
 "method": "pki | password",
 "credentials": {
 "user": "<user-name>",
 "privKeyPath": "/path/to/private/key",
 "password": "<password>"
 }
 }
 }
 }
]
 }
]

In the devices object, provide the following information:

id

A user-defined unique identifier for your device.

connectivity.ip

The IP address of your device.

connectivity.port

Optional. The port number to use for SSH connections to your device.

Tutorial: Build and run the sample IDT test suite 1136

AWS IoT Greengrass Developer Guide, Version 1

connectivity.auth

Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method

The authentication method used to access a device over the given connectivity protocol.

Supported values are:

• pki

• password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.user

The user name used to sign in to your device.

connectivity.auth.credentials.privKeyPath

The full path to the private key used to sign in to your device.

This value applies only if connectivity.auth.method is set to pki.

devices.connectivity.auth.credentials.password

The password used for signing in to your device.

This value applies only if connectivity.auth.method is set to password.

Note

Specify privKeyPath only if method is set to pki.
Specify password only if method is set to password.

Build the sample test suite

The <device-tester-extract-location>/samples/python folder contains sample
configuration files, source code, and the IDT Client SDK that you can combine into a test suite using
the provided build scripts. The following directory tree shows the location of these sample files:

Tutorial: Build and run the sample IDT test suite 1137

AWS IoT Greengrass Developer Guide, Version 1

<device-tester-extract-location>
...
tests
samples
...
python
configuration
src
build-scripts
build.sh
build.ps1
sdks
 ### ...
 ### python
 ### idt_client

To build the test suite, run the following commands on your host computer:

Windows

cd <device-tester-extract-location>/samples/python/build-scripts
./build.ps1

Linux, macOS, or UNIX

cd <device-tester-extract-location>/samples/python/build-scripts
./build.sh

This creates the sample test suite in the IDTSampleSuitePython_1.0.0 folder within
the <device-tester-extract-location>/tests folder. Review the files in the
IDTSampleSuitePython_1.0.0 folder to understand how the sample test suite is structured
and see various examples of test case executables and test configuration JSON files.

Next step: Use IDT to run the sample test suite that you created.

Use IDT to run the sample test suite

To run the sample test suite, run the following commands on your host computer:

cd <device-tester-extract-location>/bin

Tutorial: Build and run the sample IDT test suite 1138

AWS IoT Greengrass Developer Guide, Version 1

./devicetester_[linux | mac | win_x86-64] run-suite --suite-id IDTSampleSuitePython

IDT runs the sample test suite and streams the results to the console. When the test has finished
running, you see the following information:

========== Test Summary ==========
Execution Time: 5s
Tests Completed: 4
Tests Passed: 4
Tests Failed: 0
Tests Skipped: 0

Test Groups:
 sample_group: PASSED

Path to IoT Device Tester Report: /path/to/devicetester/
results/87e673c6-1226-11eb-9269-8c8590419f30/awsiotdevicetester_report.xml
Path to Test Execution Logs: /path/to/devicetester/
results/87e673c6-1226-11eb-9269-8c8590419f30/logs
Path to Aggregated JUnit Report: /path/to/devicetester/
results/87e673c6-1226-11eb-9269-8c8590419f30/IDTSampleSuitePython_Report.xml

Troubleshooting

Use the following information to help resolve any issues with completing the tutorial.

Test case does not run successfully

If the test does not run successfully, IDT streams the error logs to the console that can help you
troubleshoot the test run. Make sure that you meet all the prerequisites for this tutorial.

Cannot connect to the device under test

Verify the following:

• Your device.json file contains the correct IP address, port, and authentication information.

• You can connect to your device over SSH from your host computer.

Tutorial: Develop a simple IDT test suite

A test suite combines the following:

Tutorial: Develop a simple IDT test suite 1139

AWS IoT Greengrass Developer Guide, Version 1

• Test executables that contain the test logic

• JSON configuration files that describe the test suite

This tutorial shows you how to use IDT for AWS IoT Greengrass to develop a Python test suite that
contains a single test case. In this tutorial, you will complete the following steps:

1. Create a test suite directory

2. Create JSON configuration files

3. Create the test case executable

4. Run the test suite

Prerequisites

To complete this tutorial, you need the following:

• Host computer requirements

• Latest version of AWS IoT Device Tester

• Python 3.7 or later

To check the version of Python installed on your computer, run the following command:

python3 --version

On Windows, if using this command returns an error, then use python --version instead. If
the returned version number is 3.7 or greater, then run the following command in a Powershell
terminal to set python3 as an alias for your python command.

Set-Alias -Name "python3" -Value "python"

If no version information is returned or if the version number is less than 3.7, follow the
instructions in Downloading Python to install Python 3.7+. For more information, see the
Python documentation.

• urllib3

To verify that urllib3 is installed correctly, run the following command:

Tutorial: Develop a simple IDT test suite 1140

https://www.python.org/downloads/
https://wiki.python.org/moin/BeginnersGuide/Download
https://docs.python.org
https://urllib3.readthedocs.io/en/latest/

AWS IoT Greengrass Developer Guide, Version 1

python3 -c 'import urllib3'

If urllib3 is not installed, run the following command to install it:

python3 -m pip install urllib3

• Device requirements

• A device with a Linux operating system and a network connection to the same network as your
host computer.

We recommend that you use a Raspberry Pi with Raspberry Pi OS. Make sure you set up SSH
on your Raspberry Pi to remotely connect to it.

Create a test suite directory

IDT logically separates test cases into test groups within each test suite. Each test case must be
inside a test group. For this tutorial, create a folder called MyTestSuite_1.0.0 and create the
following directory tree within this folder:

MyTestSuite_1.0.0
suite
 ### myTestGroup
 ### myTestCase

Create JSON configuration files

Your test suite must contain the following required JSON configuration files:

Required JSON files

suite.json

Contains information about the test suite. See Configure suite.json.

group.json

Contains information about a test group. You must create a group.json file for each test
group in your test suite. See Configure group.json.

Tutorial: Develop a simple IDT test suite 1141

https://www.raspberrypi.org/
https://www.raspberrypi.org/documentation/remote-access/ssh/

AWS IoT Greengrass Developer Guide, Version 1

test.json

Contains information about a test case. You must create a test.json file for each test case in
your test suite. See Configure test.json.

1. In the MyTestSuite_1.0.0/suite folder, create a suite.json file with the following
structure:

{
 "id": "MyTestSuite_1.0.0",
 "title": "My Test Suite",
 "details": "This is my test suite.",
 "userDataRequired": false
}

2. In the MyTestSuite_1.0.0/myTestGroup folder, create a group.json file with the
following structure:

{
 "id": "MyTestGroup",
 "title": "My Test Group",
 "details": "This is my test group.",
 "optional": false
}

3. In the MyTestSuite_1.0.0/myTestGroup/myTestCase folder, create a test.json file
with the following structure:

{
 "id": "MyTestCase",
 "title": "My Test Case",
 "details": "This is my test case.",
 "execution": {
 "timeout": 300000,
 "linux": {
 "cmd": "python3",
 "args": [
 "myTestCase.py"
]
 },
 "mac": {
 "cmd": "python3",

Tutorial: Develop a simple IDT test suite 1142

AWS IoT Greengrass Developer Guide, Version 1

 "args": [
 "myTestCase.py"
]
 },
 "win": {
 "cmd": "python3",
 "args": [
 "myTestCase.py"
]
 }
 }
}

The directory tree for your MyTestSuite_1.0.0 folder should now look like the following:

MyTestSuite_1.0.0
suite
 ### suite.json
 ### myTestGroup
 ### group.json
 ### myTestCase
 ### test.json

Get the IDT client SDK

You use the IDT client SDK to enable IDT to interact with the device under test and to report test
results. For this tutorial, you will use the Python version of the SDK.

From the <device-tester-extract-location>/sdks/python/ folder, copy the idt_client
folder to your MyTestSuite_1.0.0/suite/myTestGroup/myTestCase folder.

To verify that the SDK was successfully copied, run the following command.

cd MyTestSuite_1.0.0/suite/myTestGroup/myTestCase
python3 -c 'import idt_client'

Create the test case executable

Test case executables contain the test logic that you want to run. A test suite can contain multiple
test case executables. For this tutorial, you will create only one test case executable.

Tutorial: Develop a simple IDT test suite 1143

AWS IoT Greengrass Developer Guide, Version 1

1. Create the test suite file.

In the MyTestSuite_1.0.0/suite/myTestGroup/myTestCase folder, create a
myTestCase.py file with the following content:

from idt_client import *

def main():
 # Use the client SDK to communicate with IDT
 client = Client()

if __name__ == "__main__":
 main()

2. Use client SDK functions to add the following test logic to your myTestCase.py file:

a. Run an SSH command on the device under test.

from idt_client import *

def main():
 # Use the client SDK to communicate with IDT
 client = Client()

 # Create an execute on device request
 exec_req = ExecuteOnDeviceRequest(ExecuteOnDeviceCommand("echo 'hello
 world'"))

 # Run the command
 exec_resp = client.execute_on_device(exec_req)

 # Print the standard output
 print(exec_resp.stdout)

if __name__ == "__main__":
 main()

b. Send the test result to IDT.

from idt_client import *

def main():
 # Use the client SDK to communicate with IDT

Tutorial: Develop a simple IDT test suite 1144

AWS IoT Greengrass Developer Guide, Version 1

 client = Client()

 # Create an execute on device request
 exec_req = ExecuteOnDeviceRequest(ExecuteOnDeviceCommand("echo 'hello
 world'"))

 # Run the command
 exec_resp = client.execute_on_device(exec_req)

 # Print the standard output
 print(exec_resp.stdout)

 # Create a send result request
 sr_req = SendResultRequest(TestResult(passed=True))

 # Send the result
 client.send_result(sr_req)

if __name__ == "__main__":
 main()

Configure device information for IDT

Configure your device information for IDT to run the test. You must update the device.json
template located in the <device-tester-extract-location>/configs folder with the
following information.

[
 {
 "id": "pool",
 "sku": "N/A",
 "devices": [
 {
 "id": "<device-id>",
 "connectivity": {
 "protocol": "ssh",
 "ip": "<ip-address>",
 "port": "<port>",
 "auth": {
 "method": "pki | password",
 "credentials": {
 "user": "<user-name>",

Tutorial: Develop a simple IDT test suite 1145

AWS IoT Greengrass Developer Guide, Version 1

 "privKeyPath": "/path/to/private/key",
 "password": "<password>"
 }
 }
 }
 }
]
 }
]

In the devices object, provide the following information:

id

A user-defined unique identifier for your device.

connectivity.ip

The IP address of your device.

connectivity.port

Optional. The port number to use for SSH connections to your device.

connectivity.auth

Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method

The authentication method used to access a device over the given connectivity protocol.

Supported values are:

• pki

• password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.user

The user name used to sign in to your device.

Tutorial: Develop a simple IDT test suite 1146

AWS IoT Greengrass Developer Guide, Version 1

connectivity.auth.credentials.privKeyPath

The full path to the private key used to sign in to your device.

This value applies only if connectivity.auth.method is set to pki.

devices.connectivity.auth.credentials.password

The password used for signing in to your device.

This value applies only if connectivity.auth.method is set to password.

Note

Specify privKeyPath only if method is set to pki.
Specify password only if method is set to password.

Run the test suite

After you create your test suite, you want to make sure that it functions as expected. Complete the
following steps to run the test suite with your existing device pool to do so.

1. Copy your MyTestSuite_1.0.0 folder into <device-tester-extract-location>/
tests.

2. Run the following commands:

cd <device-tester-extract-location>/bin
./devicetester_[linux | mac | win_x86-64] run-suite --suite-id MyTestSuite

IDT runs your test suite and streams the results to the console. When the test has finished running,
you see the following information:

time="2020-10-19T09:24:47-07:00" level=info msg=Using pool: pool
time="2020-10-19T09:24:47-07:00" level=info msg=Using test suite "MyTestSuite_1.0.0"
 for execution
time="2020-10-19T09:24:47-07:00" level=info msg=b'hello world\n'
 suiteId=MyTestSuite groupId=myTestGroup testCaseId=myTestCase deviceId=my-device
 executionId=9a52f362-1227-11eb-86c9-8c8590419f30

Tutorial: Develop a simple IDT test suite 1147

AWS IoT Greengrass Developer Guide, Version 1

time="2020-10-19T09:24:47-07:00" level=info msg=All tests finished.
 executionId=9a52f362-1227-11eb-86c9-8c8590419f30
time="2020-10-19T09:24:48-07:00" level=info msg=

========== Test Summary ==========
Execution Time: 1s
Tests Completed: 1
Tests Passed: 1
Tests Failed: 0
Tests Skipped: 0

Test Groups:
 myTestGroup: PASSED

Path to IoT Device Tester Report: /path/to/devicetester/
results/9a52f362-1227-11eb-86c9-8c8590419f30/awsiotdevicetester_report.xml
Path to Test Execution Logs: /path/to/devicetester/
results/9a52f362-1227-11eb-86c9-8c8590419f30/logs
Path to Aggregated JUnit Report: /path/to/devicetester/
results/9a52f362-1227-11eb-86c9-8c8590419f30/MyTestSuite_Report.xml

Troubleshooting

Use the following information to help resolve any issues with completing the tutorial.

Test case does not run successfully

If the test does not run successfully, IDT streams the error logs to the console that can help you
troubleshoot the test run. Before you check the error logs, verify the following:

• The IDT client SDK is in the correct folder as described in this step.

• You meet all the prerequisites for this tutorial.

Cannot connect to the device under test

Verify the following:

• Your device.json file contains the correct IP address, port, and authentication information.

• You can connect to your device over SSH from your host computer.

Tutorial: Develop a simple IDT test suite 1148

AWS IoT Greengrass Developer Guide, Version 1

Create IDT test suite configuration files

This section describes the formats in which you create JSON configuration files that you include
when you write a custom test suite.

Required JSON files

suite.json

Contains information about the test suite. See Configure suite.json.

group.json

Contains information about a test group. You must create a group.json file for each test
group in your test suite. See Configure group.json.

test.json

Contains information about a test case. You must create a test.json file for each test case in
your test suite. See Configure test.json.

Optional JSON files

state_machine.json

Defines how tests are run when IDT runs the test suite. See Configure state_machine.json.

userdata_schema.json

Defines the schema for the userdata.json file that test runners can include in their setting
configuration. The userdata.json file is used for any additional configuration information
that is required to run the test but is not present in the device.json file. See Configure
userdata_schema.json.

JSON configuration files are placed in your <custom-test-suite-folder> as shown here.

<custom-test-suite-folder>
suite
 ### suite.json
 ### state_machine.json
 ### userdata_schema.json

Create IDT test suite configuration files 1149

AWS IoT Greengrass Developer Guide, Version 1

 ### <test-group-folder>
 ### group.json
 ### <test-case-folder>
 ### test.json

Configure suite.json

The suite.json file sets environment variables and determines whether user data is required
to run the test suite. Use the following template to configure your <custom-test-suite-
folder>/suite/suite.json file:

{
 "id": "<suite-name>_<suite-version>",
 "title": "<suite-title>",
 "details": "<suite-details>",
 "userDataRequired": true | false,
 "environmentVariables": [
 {
 "key": "<name>",
 "value": "<value>",
 },
 ...
 {
 "key": "<name>",
 "value": "<value>",
 }
]
}

All fields that contain values are required as described here:

id

A unique user-defined ID for the test suite. The value of id must match the name of the test
suite folder in which the suite.json file is located. The suite name and suite version must also
meet the following requirements:

• <suite-name> cannot contain underscores.

• <suite-version> is denoted as x.x.x, where x is a number.

The ID is shown in IDT-generated test reports.

Create IDT test suite configuration files 1150

AWS IoT Greengrass Developer Guide, Version 1

title

A user-defined name for the product or feature being tested by this test suite. The name is
displayed in the IDT CLI for test runners.

details

A short description of the purpose of the test suite.

userDataRequired

Defines whether test runners need to include custom information in a userdata.json file. If
you set this value to true, you must also include the userdata_schema.json file in your test
suite folder.

environmentVariables

Optional. An array of environment variables to set for this test suite.

environmentVariables.key

The name of the environment variable.

environmentVariables.value

The value of the environment variable.

Configure group.json

The group.json file defines whether a test group is required or optional. Use the following
template to configure your <custom-test-suite-folder>/suite/<test-group>/
group.json file:

{
 "id": "<group-id>",
 "title": "<group-title>",
 "details": "<group-details>",
 "optional": true | false,
}

All fields that contain values are required as described here:

Create IDT test suite configuration files 1151

AWS IoT Greengrass Developer Guide, Version 1

id

A unique user-defined ID for the test group. The value of id must match the name of the test
group folder in which the group.json file is located, and must not contain underscores (_).
The ID is used in IDT-generated test reports.

title

A descriptive name for the test group. The name is displayed in the IDT CLI for test runners.

details

A short description of the purpose of the test group.

optional

Optional. Set to true to display this test group as an optional group after IDT finishes running
required tests. Default value is false.

Configure test.json

The test.json file determines the test case executables and the environment variables that are
used by a test case. For more information about creating test case executables, see Create IDT test
case executables.

Use the following template to configure your <custom-test-suite-folder>/suite/<test-
group>/<test-case>/test.json file:

{
 "id": "<test-id>",
 "title": "<test-title>",
 "details": "<test-details>",
 "requireDUT": true | false,
 "requiredResources": [
 {
 "name": "<resource-name>",
 "features": [
 {
 "name": "<feature-name>",
 "version": "<feature-version>",
 "jobSlots": <job-slots>
 }
]
 }

Create IDT test suite configuration files 1152

AWS IoT Greengrass Developer Guide, Version 1

],
 "execution": {
 "timeout": <timeout>,
 "mac": {
 "cmd": "/path/to/executable",
 "args": [
 "<argument>"
],
 },
 "linux": {
 "cmd": "/path/to/executable",
 "args": [
 "<argument>"
],
 },
 "win": {
 "cmd": "/path/to/executable",
 "args": [
 "<argument>"
]
 }
 },
 "environmentVariables": [
 {
 "key": "<name>",
 "value": "<value>",
 }
]
}

All fields that contain values are required as described here:

id

A unique user-defined ID for the test case. The value of id must match the name of the test
case folder in which the test.json file is located, and must not contain underscores (_). The ID
is used in IDT-generated test reports.

title

A descriptive name for the test case. The name is displayed in the IDT CLI for test runners.

details

A short description of the purpose of the test case.

Create IDT test suite configuration files 1153

AWS IoT Greengrass Developer Guide, Version 1

requireDUT

Optional. Set to true if a device is required to run this test, otherwise set to false. Default
value is true. Test runners will configure the devices they will use to run the test in their
device.json file.

requiredResources

Optional. An array that provides information about resource devices needed to run this test.

requiredResources.name

The unique name to give the resource device when this test is running.

requiredResources.features

An array of user-defined resource device features.

requiredResources.features.name

The name of the feature. The device feature for which you want to use this device.
This name is matched against the feature name provided by the test runner in the
resource.json file.

requiredResources.features.version

Optional. The version of the feature. This value is matched against the feature version
provided by the test runner in the resource.json file. If a version is not provided, then
the feature is not checked. If a version number is not required for the feature, leave this
field blank.

requiredResources.features.jobSlots

Optional. The number of simultaneous tests that this feature can support. The default
value is 1. If you want IDT to use distinct devices for individual features, then we
recommend that you set this value to 1.

execution.timeout

The amount of time (in milliseconds) that IDT waits for the test to finish running. For more
information about setting this value, see Create IDT test case executables.

execution.os

The test case executables to run based on the operating system of the host computer that runs
IDT. Supported values are linux, mac, and win.

Create IDT test suite configuration files 1154

AWS IoT Greengrass Developer Guide, Version 1

execution.os.cmd

The path to the test case executable that you want to run for the specified operating system.
This location must be in the system path.

execution.os.args

Optional. The arguments to provide to run the test case executable.

environmentVariables

Optional. An array of environment variables set for this test case.

environmentVariables.key

The name of the environment variable.

environmentVariables.value

The value of the environment variable.

Note

If you specify the same environment variable in the test.json file and in the
suite.json file, the value in the test.json file takes precedence.

Configure state_machine.json

A state machine is a construct that controls the test suite execution flow. It determines the starting
state of a test suite, manages state transitions based on user-defined rules, and continues to
transition through those states until it reaches the end state.

If your test suite doesn't include a user-defined state machine, IDT will generate a state machine
for you. The default state machine performs the following functions:

• Provides test runners with the ability to select and run specific test groups, instead of the entire
test suite.

• If specific test groups are not selected, runs every test group in the test suite in a random order.

• Generates reports and prints a console summary that shows the test results for each test group
and test case.

Create IDT test suite configuration files 1155

AWS IoT Greengrass Developer Guide, Version 1

For more information about how the IDT state machine functions, see Configure the IDT state
machine.

Configure userdata_schema.json

The userdata_schema.json file determines the schema in which test runners provide user
data. User data is required if your test suite requires information that is not present in the
device.json file. For example, your tests might need Wi-Fi network credentials, specific open
ports, or certificates that a user must provide. This information can be provided to IDT as an input
parameter called userdata, the value for which is a userdata.json file, that users create in their
<device-tester-extract-location>/config folder. The format of the userdata.json file
is based on the userdata_schema.json file that you include in the test suite.

To indicate that test runners must provide a userdata.json file:

1. In the suite.json file, set userDataRequired to true.

2. In your <custom-test-suite-folder>, create a userdata_schema.json file.

3. Edit the userdata_schema.json file to create a valid IETF Draft v4 JSON Schema.

When IDT runs your test suite, it automatically reads the schema and uses it to validate the
userdata.json file provided by the test runner. If valid, the contents of the userdata.json file
are available in both the IDT context and in the state machine context.

Configure the IDT state machine

A state machine is a construct that controls the test suite execution flow. It determines the starting
state of a test suite, manages state transitions based on user-defined rules, and continues to
transition through those states until it reaches the end state.

If your test suite doesn't include a user-defined state machine, IDT will generate a state machine
for you. The default state machine performs the following functions:

• Provides test runners with the ability to select and run specific test groups, instead of the entire
test suite.

• If specific test groups are not selected, runs every test group in the test suite in a random order.

• Generates reports and prints a console summary that shows the test results for each test group
and test case.

Configure the IDT state machine 1156

https://json-schema.org/specification-links.html#draft-4

AWS IoT Greengrass Developer Guide, Version 1

The state machine for an IDT test suite must meet the following criteria:

• Each state corresponds to an action for IDT to take, such as to run a test group or product a
report file.

• Transitioning to a state executes the action associated with the state.

• Each state defines the transition rule for the next state.

• The end state must be either Succeed or Fail.

State machine format

You can use the following template to configure your own <custom-test-suite-folder>/
suite/state_machine.json file:

{
 "Comment": "<description>",
 "StartAt": "<state-name>",
 "States": {
 "<state-name>": {
 "Type": "<state-type>",
 // Additional state configuration
 }

 // Required states
 "Succeed": {
 "Type": "Succeed"
 },
 "Fail": {
 "Type": "Fail"
 }
 }
}

All fields that contain values are required as described here:

Comment

A description of the state machine.

Configure the IDT state machine 1157

AWS IoT Greengrass Developer Guide, Version 1

StartAt

The name of the state at which IDT starts running the test suite. The value of StartAt must be
set to one of the states listed in the States object.

States

An object that maps user-defined state names to valid IDT states. Each States.state-name
object contains the definition of a valid state mapped to the state-name.

The States object must include the Succeed and Fail states. For information about valid
states, see Valid states and state definitions.

Valid states and state definitions

This section describes the state definitions of all of the valid states that can be used in the IDT
state machine. Some of the following states support configurations at the test case level. However,
we recommend that you configure state transition rules at the test group level instead of the test
case level unless absolutely necessary.

State definitions

• RunTask

• Choice

• Parallel

• AddProductFeatures

• Report

• LogMessage

• SelectGroup

• Fail

• Succeed

RunTask

The RunTask state runs test cases from a test group defined in the test suite.

{

Configure the IDT state machine 1158

AWS IoT Greengrass Developer Guide, Version 1

 "Type": "RunTask",
 "Next": "<state-name>",
 "TestGroup": "<group-id>",
 "TestCases": [
 "<test-id>"
],
 "ResultVar": "<result-name>"
}

All fields that contain values are required as described here:

Next

The name of the state to transition to after executing the actions in the current state.

TestGroup

Optional. The ID of the test group to run. If this value is not specified, then IDT runs the test
group that the test runner selects.

TestCases

Optional. An array of test case IDs from the group specified in TestGroup. Based on the values
of TestGroup and TestCases, IDT determines the test execution behavior as follows:

• When both TestGroup and TestCases are specified, IDT runs the specified test cases from
the test group.

• When TestCases are specified but TestGroup is not specified, IDT runs the specified test
cases.

• When TestGroup is specified, but TestCases is not specified, IDT runs all of the test cases
within the specified test group.

• When neither TestGroup or TestCases is specified, IDT runs all test cases from the test
group that the test runner selects from the IDT CLI. To enable group selection for test
runners, you must include both RunTask and Choice states in your statemachine.json
file. For an example of how this works, see Example state machine: Run user-selected test
groups.

For more information about enabling IDT CLI commands for test runners, see the section
called “Enable IDT CLI commands”.

Configure the IDT state machine 1159

AWS IoT Greengrass Developer Guide, Version 1

ResultVar

The name of the context variable to set with the results of the test run. Do not specify this
value if you did not specify a value for TestGroup. IDT sets the value of the variable that you
define in ResultVar to true or false based on the following:

• If the variable name is of the form text_text_passed, then the value is set to whether all
tests in the first test group passed or were skipped.

• In all other cases, the value is set to whether all tests in all test groups passed or were
skipped.

Typically, you will use RunTask state to specify a test group ID without specifying individual test
case IDs, so that IDT will run all of the test cases in the specified test group. All test cases that are
run by this state run in parallel, in a random order. However, if all of the test cases require a device
to run, and only a single device is available, then the test cases will run sequentially instead.

Error handling

If any of the specified test groups or test case IDs are not valid, then this state issues the
RunTaskError execution error. If the state encounters an execution error, then it also sets the
hasExecutionError variable in the state machine context to true.

Choice

The Choice state lets you dynamically set the next state to transition to based on user-defined
conditions.

{
 "Type": "Choice",
 "Default": "<state-name>",
 "FallthroughOnError": true | false,
 "Choices": [
 {
 "Expression": "<expression>",
 "Next": "<state-name>"
 }
]
}

All fields that contain values are required as described here:

Configure the IDT state machine 1160

AWS IoT Greengrass Developer Guide, Version 1

Default

The default state to transition to if none of the expressions defined in Choices can be
evaluated to true.

FallthroughOnError

Optional. Specifies the behavior when the state encounters an error in evaluating expressions.
Set to true if you want to skip an expression if the evaluation results in an error. If
no expressions match, then the state machine transitions to the Default state. If the
FallthroughOnError value is not specified, it defaults to false.

Choices

An array of expressions and states to determine which state to transition to after executing the
actions in the current state.

Choices.Expression

An expression string that evaluates to a boolean value. If the expression evaluates to true,
then the state machine transitions to the state defined in Choices.Next. Expression strings
retrieve values from the state machine context and then perform operations on them to
arrive at a boolean value. For information about accesing the state machine context, see
State machine context.

Choices.Next

The name of the state to transition to if the expression defined in Choices.Expression
evaluates to true.

Error handling

The Choice state can require error handling in the following cases:

• Some variables in the choice expressions don’t exist in the state machine context.

• The result of an expression is not a boolean value.

• The result of a JSON lookup is not a string, number, or boolean.

You cannot use a Catch block to handle errors in this state. If you want to stop executing the state
machine when it encounters an error, you must set FallthroughOnError to false. However, we

Configure the IDT state machine 1161

AWS IoT Greengrass Developer Guide, Version 1

recommend that you set FallthroughOnError to true, and depending on your use case, do one
of the following:

• If a variable you are accessing is expected to not exist in some cases, then use the value of
Default and additional Choices blocks to specify the next state.

• If a variable that you are accessing should always exist, then set the Default state to Fail.

Parallel

The Parallel state lets you define and run new state machines in parallel with each other.

{
 "Type": "Parallel",
 "Next": "<state-name>",
 "Branches": [
 <state-machine-definition>
]
}

All fields that contain values are required as described here:

Next

The name of the state to transition to after executing the actions in the current state.

Branches

An array of state machine definitions to run. Each state machine definition must contain its
own StartAt, Succeed, and Fail states. The state machine definitions in this array cannot
reference states outside of their own definition.

Note

Because each branch state machine shares the same state machine context, setting
variables in one branch and then reading those variables from another branch might
result in unexpected behavior.

The Parallel state moves to the next state only after it runs all of the branch state machines.
Each state that requires a device will wait to run until the device is available. If multiple devices

Configure the IDT state machine 1162

AWS IoT Greengrass Developer Guide, Version 1

are available, this state runs test cases from multiple groups in parallel. If enough devices are not
available, then test cases will run sequentially. Because test cases are run in a random order when
they run in parallel, different devices might be used to run tests from the same test group.

Error handling

Make sure that both the branch state machine and the parent state machine transition to the Fail
state to handle execution errors.

Because branch state machines do not transmit execution errors to the parent state machine, you
cannot use a Catch block to handle execution errors in branch state machines. Instead, use the
hasExecutionErrors value in the shared state machine context. For an example of how this
works, see Example state machine: Run two test groups in parallel.

AddProductFeatures

The AddProductFeatures state lets you add product features to the
awsiotdevicetester_report.xml file generated by IDT.

A product feature is user-defined information about specific criteria that a device might meet.
For example, the MQTT product feature can designate that the device publishes MQTT messages
properly. In the report, product features are set as supported, not-supported, or a custom
value, based on whether specified tests passed.

Note

The AddProductFeatures state does not generate reports by itself. This state must
transition to the Report state to generate reports.

{
 "Type": "Parallel",
 "Next": "<state-name>",
 "Features": [
 {
 "Feature": "<feature-name>",
 "Groups": [
 "<group-id>"
],

Configure the IDT state machine 1163

AWS IoT Greengrass Developer Guide, Version 1

 "OneOfGroups": [
 "<group-id>"
],
 "TestCases": [
 "<test-id>"
],
 "IsRequired": true | false,
 "ExecutionMethods": [
 "<execution-method>"
]
 }
]
}

All fields that contain values are required as described here:

Next

The name of the state to transition to after executing the actions in the current state.

Features

An array of product features to show in the awsiotdevicetester_report.xml file.

Feature

The name of the feature

FeatureValue

Optional. The custom value to use in the report instead of supported. If this value is
not specified, then based on test results, the feature value is set to supported or not-
supported.

If you use a custom value for FeatureValue, you can test the same feature with different
conditions, and IDT concatenates the feature values for the supported conditions. For
example, the following excerpt shows the MyFeature feature with two separate feature
values:

...
{
 "Feature": "MyFeature",
 "FeatureValue": "first-feature-supported",
 "Groups": ["first-feature-group"]

Configure the IDT state machine 1164

AWS IoT Greengrass Developer Guide, Version 1

},
{
 "Feature": "MyFeature",
 "FeatureValue": "second-feature-supported",
 "Groups": ["second-feature-group"]
},
...

If both test groups pass, then the feature value is set to first-feature-supported,
second-feature-supported.

Groups

Optional. An array of test group IDs. All tests within each specified test group must pass for
the feature to be supported.

OneOfGroups

Optional. An array of test group IDs. All tests within at least one of the specified test groups
must pass for the feature to be supported.

TestCases

Optional. An array of test case IDs. If you specify this value, then the following apply:

• All of the specified test cases must pass for the feature to be supported.

• Groups must contain only one test group ID.

• OneOfGroups must not be specified.

IsRequired

Optional. Set to false to mark this feature as an optional feature in the report. The default
value is true.

ExecutionMethods

Optional. An array of execution methods that match the protocol value specified in the
device.json file. If this value is specified, then test runners must specify a protocol
value that matches one of the values in this array to include the feature in the report. If this
value is not specified, then the feature will always be included in the report.

To use the AddProductFeatures state, you must set the value of ResultVar in the RunTask
state to one of the following values:

Configure the IDT state machine 1165

AWS IoT Greengrass Developer Guide, Version 1

• If you specified individual test case IDs, then set ResultVar to group-id_test-id_passed.

• If you did not specify individual test case IDs, then set ResultVar to group-id_passed.

The AddProductFeatures state checks for test results in the following manner:

• If you did not specify any test case IDs, then the result for each test group is determined from
the value of the group-id_passed variable in the state machine context.

• If you did specify test case IDs, then the result for each of the tests is determined from the value
of the group-id_test-id_passed variable in the state machine context.

Error handling

If a group ID provided in this state is not a valid group ID, then this state results in the
AddProductFeaturesError execution error. If the state encounters an execution error, then it
also sets the hasExecutionErrors variable in the state machine context to true.

Report

The Report state generates the suite-name_Report.xml and
awsiotdevicetester_report.xml files. This state also streams the report to the console.

{
 "Type": "Report",
 "Next": "<state-name>"
}

All fields that contain values are required as described here:

Next

The name of the state to transition to after executing the actions in the current state.

You should always transition to the Report state towards the end of the test execution flow so
that test runners can view test results. Typically, the next state after this state is Succeed.

Error handling

If this state encounters issues with generating the reports, then it issues the ReportError
execution error.

Configure the IDT state machine 1166

AWS IoT Greengrass Developer Guide, Version 1

LogMessage

The LogMessage state generates the test_manager.log file and streams the log message to the
console.

{
 "Type": "LogMessage",
 "Next": "<state-name>"
 "Level": "info | warn | error"
 "Message": "<message>"
}

All fields that contain values are required as described here:

Next

The name of the state to transition to after executing the actions in the current state.

Level

The error level at which to create the log message. If you specify a level that is not valid, this
state generates an error message and discards it.

Message

The message to log.

SelectGroup

The SelectGroup state updates the state machine context to indicate which groups are selected.
The values set by this state are used by any subsequent Choice states.

{
 "Type": "SelectGroup",
 "Next": "<state-name>"
 "TestGroups": [
 <group-id>"
]
}

All fields that contain values are required as described here:

Configure the IDT state machine 1167

AWS IoT Greengrass Developer Guide, Version 1

Next

The name of the state to transition to after executing the actions in the current state.

TestGroups

An array of test groups that will be marked as selected. For each test group ID in this array, the
group-id_selected variable is set to true in the context. Make sure that you provide valid
test group IDs because IDT does not validate whether the specified groups exist.

Fail

The Fail state indicates that the state machine did not execute correctly. This is an end state for
the state machine, and each state machine definition must include this state.

{
 "Type": "Fail"
}

Succeed

The Succeed state indicates that the state machine executed correctly. This is an end state for the
state machine, and each state machine definition must include this state.

{
 "Type": "Succeed"
}

State machine context

The state machine context is a read-only JSON document that contains data that is available
to the state machine during execution. The state machine context is accessible only from the
state machine, and contains information that determines the test flow. For example, you can use
information configured by test runners in the userdata.json file to determine whether a specific
test is required to run.

The state machine context uses the following format:

{
 "pool": {
 <device-json-pool-element>

Configure the IDT state machine 1168

AWS IoT Greengrass Developer Guide, Version 1

 },
 "userData": {
 <userdata-json-content>
 },
 "config": {
 <config-json-content>
 },
 "suiteFailed": true | false,
 "specificTestGroups": [
 "<group-id>"
],
 "specificTestCases": [
 "<test-id>"
],
 "hasExecutionErrors": true
}

pool

Information about the device pool selected for the test run. For a selected device pool, this
information is retrieved from the corresponding top-level device pool array element defined in
the device.json file.

userData

Information in the userdata.json file.

config

Information pin the config.json file.

suiteFailed

The value is set to false when the state machine starts. If a test group fails in a RunTask
state, then this value is set to true for the remaining duration of the state machine execution.

specificTestGroups

If the test runner selects specific test groups to run instead of the entire test suite, this key is
created and contains the list of specific test group IDs.

specificTestCases

If the test runner selects specific test cases to run instead of the entire test suite, this key is
created and contains the list of specific test case IDs.

Configure the IDT state machine 1169

AWS IoT Greengrass Developer Guide, Version 1

hasExecutionErrors

Does not exit when the state machine starts. If any state encounters an execution errors, this
variable is created and set to true for the remaining duration of the state machine execution.

You can query the context using JSONPath notation. The syntax for JSONPath queries in state
definitions is {{$.query}}. You can use JSONPath queries as placeholder strings within some
states. IDT replaces the placeholder strings with the value of the evaluated JSONPath query from
the context. You can use placeholders for the following values:

• The TestCases value in RunTask states.

• The Expression value Choice state.

When you access data from the state machine context, make sure the following conditions are met:

• Your JSON paths must begin with $.

• Each value must evaluate to a string, a number, or a boolean.

For more information about using JSONPath notation to access data from the context, see Use the
IDT context.

Execution errors

Execution errors are errors in the state machine definition that the state machine encounters
when executing a state. IDT logs information about each error in the test_manager.log file and
streams the log message to the console.

You can use the following methods to handle execution errors:

• Add a Catch block in the state definition.

• Check the value of the hasExecutionErrors value in the state machine context.

Catch

To use Catch, add the following to your state definition:

"Catch": [
 {

Configure the IDT state machine 1170

AWS IoT Greengrass Developer Guide, Version 1

 "ErrorEquals": [
 "<error-type>"
]
 "Next": "<state-name>"
 }
]

All fields that contain values are required as described here:

Catch.ErrorEquals

An array of the error types to catch. If an execution error matches one of the specified values,
then the state machine transitions to the state specified in Catch.Next. See each state
definition for information about the type of error it produces.

Catch.Next

The next state to transition to if the current state encounters an execution error that matches
one of the values specified in Catch.ErrorEquals .

Catch blocks are handled sequentially until one matches. If the no errors match the ones listed
in the Catch blocks, then the state machines continues to execute. Because execution errors are
a result of incorrect state definitions, we recommend that you transition to the Fail state when a
state encounters an execution error.

hasExecutionError

When some states encounter execution errors, in addition to issuing the error, they also set the
hasExecutionError value to true in the state machine context. You can use this value to detect
when an error occurs, and then use a Choice state to transition the state machine to the Fail
state.

This method has the following characteristics.

• The state machine does not start with any value assigned to hasExecutionError, and this
value is not available until a particular state sets it. This means that you must explicitly set the
FallthroughOnError to false for the Choice states that access this value to prevent the
state machine from stopping if no execution errors occur.

• Once it is set to true, hasExecutionError is never set to false or removed from the
context. This means that this value is useful only the first time that it is set to true, and for all
subsequent states, it does not provide a meaningful value.

Configure the IDT state machine 1171

AWS IoT Greengrass Developer Guide, Version 1

• The hasExecutionError value is shared with all branch state machines in the Parallel state,
which can result in unexpected results depending on the order in which it is accessed.

Because of these characteristics, we do not recommend that you use this method if you can use a
Catch block instead.

Example state machines

This section provides some example state machine configurations.

Examples

• Example state machine: Run a single test group

• Example state machine: Run user-selected test groups

• Example state machine: Run a single test group with product features

• Example state machine: Run two test groups in parallel

Example state machine: Run a single test group

This state machine:

• Runs the test group with id GroupA, which must be present in the suite in a group.json file.

• Checks for execution errors and transitions to Fail if any are found.

• Generates a report and transitions to Succeed if there are no errors, and Fail otherwise.

{
 "Comment": "Runs a single group and then generates a report.",
 "StartAt": "RunGroupA",
 "States": {
 "RunGroupA": {
 "Type": "RunTask",
 "Next": "Report",
 "TestGroup": "GroupA",
 "Catch": [
 {
 "ErrorEquals": [
 "RunTaskError"
],
 "Next": "Fail"

Configure the IDT state machine 1172

AWS IoT Greengrass Developer Guide, Version 1

 }
]
 },
 "Report": {
 "Type": "Report",
 "Next": "Succeed",
 "Catch": [
 {
 "ErrorEquals": [
 "ReportError"
],
 "Next": "Fail"
 }
]
 },
 "Succeed": {
 "Type": "Succeed"
 },
 "Fail": {
 "Type": "Fail"
 }
 }
}

Example state machine: Run user-selected test groups

This state machine:

• Checks if the test runner selected specific test groups. The state machine does not check for
specific test cases because test runners cannot select test cases without also selecting a test
group.

• If test groups are selected:

• Runs the test cases within the selected test groups. To do so, the state machine does not
explicitly specify any test groups or test cases in the RunTask state.

• Generates a report after running all tests and exits.

• If test groups are not selected:

• Runs tests in test group GroupA.

• Generates reports and exits.

Configure the IDT state machine 1173

AWS IoT Greengrass Developer Guide, Version 1

{
 "Comment": "Runs specific groups if the test runner chose to do that, otherwise
 runs GroupA.",
 "StartAt": "SpecificGroupsCheck",
 "States": {
 "SpecificGroupsCheck": {
 "Type": "Choice",
 "Default": "RunGroupA",
 "FallthroughOnError": true,
 "Choices": [
 {
 "Expression": "{{$.specificTestGroups[0]}} != ''",
 "Next": "RunSpecificGroups"
 }
]
 },
 "RunSpecificGroups": {
 "Type": "RunTask",
 "Next": "Report",
 "Catch": [
 {
 "ErrorEquals": [
 "RunTaskError"
],
 "Next": "Fail"
 }
]
 },
 "RunGroupA": {
 "Type": "RunTask",
 "Next": "Report",
 "TestGroup": "GroupA",
 "Catch": [
 {
 "ErrorEquals": [
 "RunTaskError"
],
 "Next": "Fail"
 }
]
 },
 "Report": {
 "Type": "Report",

Configure the IDT state machine 1174

AWS IoT Greengrass Developer Guide, Version 1

 "Next": "Succeed",
 "Catch": [
 {
 "ErrorEquals": [
 "ReportError"
],
 "Next": "Fail"
 }
]
 },
 "Succeed": {
 "Type": "Succeed"
 },
 "Fail": {
 "Type": "Fail"
 }
 }
}

Example state machine: Run a single test group with product features

This state machine:

• Runs the test group GroupA.

• Checks for execution errors and transitions to Fail if any are found.

• Adds the FeatureThatDependsOnGroupA feature to the
awsiotdevicetester_report.xml file:

• If GroupA passes, the feature is set to supported.

• The feature is not marked optional in the report.

• Generates a report and transitions to Succeed if there are no errors, and Fail otherwise

{
 "Comment": "Runs GroupA and adds product features based on GroupA",
 "StartAt": "RunGroupA",
 "States": {
 "RunGroupA": {
 "Type": "RunTask",
 "Next": "AddProductFeatures",
 "TestGroup": "GroupA",
 "ResultVar": "GroupA_passed",

Configure the IDT state machine 1175

AWS IoT Greengrass Developer Guide, Version 1

 "Catch": [
 {
 "ErrorEquals": [
 "RunTaskError"
],
 "Next": "Fail"
 }
]
 },
 "AddProductFeatures": {
 "Type": "AddProductFeatures",
 "Next": "Report",
 "Features": [
 {
 "Feature": "FeatureThatDependsOnGroupA",
 "Groups": [
 "GroupA"
],
 "IsRequired": true
 }
]
 },
 "Report": {
 "Type": "Report",
 "Next": "Succeed",
 "Catch": [
 {
 "ErrorEquals": [
 "ReportError"
],
 "Next": "Fail"
 }
]
 },
 "Succeed": {
 "Type": "Succeed"
 },
 "Fail": {
 "Type": "Fail"
 }
 }
}

Configure the IDT state machine 1176

AWS IoT Greengrass Developer Guide, Version 1

Example state machine: Run two test groups in parallel

This state machine:

• Runs the GroupA and GroupB test groups in parallel. The ResultVar variables stored in
the context by the RunTask states in the branch state machines by are available to the
AddProductFeatures state.

• Checks for execution errors and transitions to Fail if any are found. This state machine does
not use a Catch block because that method does not detect execution errors in branch state
machines.

• Adds features to the awsiotdevicetester_report.xml file based on the groups that pass

• If GroupA passes, the feature is set to supported.

• The feature is not marked optional in the report.

• Generates a report and transitions to Succeed if there are no errors, and Fail otherwise

If two devices are configured in the device pool, both GroupA and GroupB can run at the same
time. However, if either GroupA or GroupB has multiple tests in it, then both devices may be
allocated to those tests. If only one device is configured, the test groups will run sequentially.

{
 "Comment": "Runs GroupA and GroupB in parallel",
 "StartAt": "RunGroupAAndB",
 "States": {
 "RunGroupAAndB": {
 "Type": "Parallel",
 "Next": "CheckForErrors",
 "Branches": [
 {
 "Comment": "Run GroupA state machine",
 "StartAt": "RunGroupA",
 "States": {
 "RunGroupA": {
 "Type": "RunTask",
 "Next": "Succeed",
 "TestGroup": "GroupA",
 "ResultVar": "GroupA_passed",
 "Catch": [
 {
 "ErrorEquals": [

Configure the IDT state machine 1177

AWS IoT Greengrass Developer Guide, Version 1

 "RunTaskError"
],
 "Next": "Fail"
 }
]
 },
 "Succeed": {
 "Type": "Succeed"
 },
 "Fail": {
 "Type": "Fail"
 }
 }
 },
 {
 "Comment": "Run GroupB state machine",
 "StartAt": "RunGroupB",
 "States": {
 "RunGroupA": {
 "Type": "RunTask",
 "Next": "Succeed",
 "TestGroup": "GroupB",
 "ResultVar": "GroupB_passed",
 "Catch": [
 {
 "ErrorEquals": [
 "RunTaskError"
],
 "Next": "Fail"
 }
]
 },
 "Succeed": {
 "Type": "Succeed"
 },
 "Fail": {
 "Type": "Fail"
 }
 }
 }
]
 },
 "CheckForErrors": {
 "Type": "Choice",

Configure the IDT state machine 1178

AWS IoT Greengrass Developer Guide, Version 1

 "Default": "AddProductFeatures",
 "FallthroughOnError": true,
 "Choices": [
 {
 "Expression": "{{$.hasExecutionErrors}} == true",
 "Next": "Fail"
 }
]
 },
 "AddProductFeatures": {
 "Type": "AddProductFeatures",
 "Next": "Report",
 "Features": [
 {
 "Feature": "FeatureThatDependsOnGroupA",
 "Groups": [
 "GroupA"
],
 "IsRequired": true
 },
 {
 "Feature": "FeatureThatDependsOnGroupB",
 "Groups": [
 "GroupB"
],
 "IsRequired": true
 }
]
 },
 "Report": {
 "Type": "Report",
 "Next": "Succeed",
 "Catch": [
 {
 "ErrorEquals": [
 "ReportError"
],
 "Next": "Fail"
 }
]
 },
 "Succeed": {
 "Type": "Succeed"
 },

Configure the IDT state machine 1179

AWS IoT Greengrass Developer Guide, Version 1

 "Fail": {
 "Type": "Fail"
 }
 }
}

Create IDT test case executables

You can create and place test case executables in a test suite folder in the following ways:

• For test suites that use arguments or environment variables from the test.json files to
determine which tests to run, you can create a single test case executable for the entire test
suite, or a test executable for each test group in the test suite.

• For a test suite where you want to run specific tests based on specified commands, you create
one test case executable for each test case in the test suite.

As a test writer, you can determine which approach is appropriate for your use case and structure
your test case executable accordingly. Make sure that your provide the correct test case executable
path in each test.json file, and that the specified executable runs correctly.

When all devices are ready for a test case to run, IDT reads the following files:

• The test.json for the selected test case determines the processes to start and the
environment variables to set.

• The suite.json for the test suite determines the environment variables to set.

IDT starts the required test exexutable process based on the commands and arguments specified in
the test.json file, and passes the required environment variables to the process.

Use the IDT Client SDK

The IDT Client SDKs let you simplify how you write test logic in your test executable with API
commands that you can use interact with IDT and your devices under test. IDT currently provides
the following SDKs:

• IDT Client SDK for Python

• IDT Client SDK for Go

Create IDT test case executables 1180

AWS IoT Greengrass Developer Guide, Version 1

These SDKs are located in the <device-tester-extract-location>/sdks folder. When you
create a new test case executable, you must copy the SDK that you want to use to the folder that
contains your test case executable and reference the SDK in your code. This section provides a brief
description of the available API commands that you can use in your test case executables.

In this section

• Device interaction

• IDT interaction

• Host interaction

Device interaction

The following commands enable you to communicate with the device under test without having to
implement any additional device interaction and connectivity management functions.

ExecuteOnDevice

Allows test suites to run shell commands on a device that support SSH or Docker shell
connections.

CopyToDevice

Allows test suites to copy a local file from the host machine that runs IDT to a specified location
on a device that supports SSH or Docker shell connections.

ReadFromDevice

Allows test suites to read from the serial port of devices that support UART connections.

Note

Because IDT does not manage direct connections to devices that are made using device
access information from the context, we recommend using these device interaction API
commands in your test case executables. However, if these commands do not meet your
test case requirements, then you can retrieve device access information from the IDT
context and use it to make a direct connection to the device from the test suite.
To make a direct connection, retrieve the information in the device.connectivity and
the resource.devices.connectivity fields for your device under test and for resource

Create IDT test case executables 1181

AWS IoT Greengrass Developer Guide, Version 1

devices, respectively. For more information about using the IDT context, see Use the IDT
context.

IDT interaction

The following commands enable your test suites to communicate with IDT.

PollForNotifications

Allows test suites to check for notifications from IDT.

GetContextValue and GetContextString

Allows test suites to retrieve values from the IDT context. For more information, see Use the IDT
context.

SendResult

Allows test suites to report test case results to IDT. This command must be called at the end of
each test case in a test suite.

Host interaction

The following command enable your test suites to communicate with the host machine.

PollForNotifications

Allows test suites to check for notifications from IDT.

GetContextValue and GetContextString

Allows test suites to retrieve values from the IDT context. For more information, see Use the IDT
context.

ExecuteOnHost

Allows test suites to run commands on the local machine and lets IDT manage the test case
executable lifecycle.

Enable IDT CLI commands

The run-suite command IDT CLI provides several options that let test runner customize test
execution. To allow test runners to use these options to run your custom test suite, you implement

Create IDT test case executables 1182

AWS IoT Greengrass Developer Guide, Version 1

support for the IDT CLI. If you do not implement support, test runners will still be able to run
tests, but some CLI options will not function correctly. To provide an ideal customer experience,
we recommend that you implement support for the following arguments for the run-suite
command in the IDT CLI:

timeout-multiplier

Specifies a value greater than 1.0 that will be applied to all timeouts while running tests.

Test runners can use this argument to increase the timeout for the test cases that they
want to run. When a test runner specifies this argument in their run-suite command, IDT
uses it to calculate the value of the IDT_TEST_TIMEOUT environment variable and sets the
config.timeoutMultiplier field in the IDT context. To support this argument, you must do
the following:

• Instead of directly using the timeout value from the test.json file, read the
IDT_TEST_TIMEOUT environment variable to obtain the correctly calculated timeout value.

• Retrieve the config.timeoutMultiplier value from the IDT context and apply it to long
running timeouts.

For more information about exiting early because of timeout events, see Specify exit behavior.

stop-on-first-failure

Specifies that IDT should stop running all tests if it encounters a failure.

When a test runner specifies this argument in their run-suite command, IDT will stop running
tests as soon as it encounters a failure. However, if test cases are running in parallel, then this
can lead to unexpected results. To implement support, make sure that if IDT encounters this
event, your test logic instructs all running test cases to stop, clean up temporary resources, and
report a test result to IDT. For more information about exiting early on failures, see Specify exit
behavior.

group-id and test-id

Specifies that IDT should run only the selected test groups or test cases.

Test runners can use these arguments with their run-suite command to specify the following
test execution behavior:

• Run all tests inside the specified test groups.

• Run a selection of tests from within a specified test group.

Create IDT test case executables 1183

AWS IoT Greengrass Developer Guide, Version 1

To support these arguments, the state machine for your test suite must include a specific set of
RunTask and Choice states in your state machine. If you are not using a custom state machine,
then the default IDT state machine includes the required states for you and you do not need
to take additional action. However, if you are using a custom state machine, then use Example
state machine: Run user-selected test groups as a sample to add the required states in your
state machine.

For more information about IDT CLI commands, see Debug and run custom test suites.

Write event logs

While the test is running, you send data to stdout and stderr to write event logs and error
messages to the console. For information about the format of console messages, see Console
message format.

When the IDT finishes running the test suite, this information is also available in the
test_manager.log file located in the <devicetester-extract-location>/
results/<execution-id>/logs folder.

You can configure each test case to write the logs from its test run, including logs from the device
under test, to the <group-id>_<test-id> file located in the <device-tester-extract-
location>/results/execution-id/logs folder. To do this, retrieve the path to the log file
from the IDT context with the testData.logFilePath query, create a file at that path, and write
the content that you want to it. IDT automatically updates the path based on the test case that is
running. If you choose not to create the log file for a test case, then no file is generated for that
test case.

You can also set up your text executable to create additional log files as needed in the <device-
tester-extract-location>/logs folder. We recommend that you specify unique prefixes for
log file names so your files don't get overwritten.

Report results to IDT

IDT writes test results to the awsiotdevicetester_report.xml and the suite-
name_report.xml files. These report files are located in <device-tester-extract-
location>/results/<execution-id>/. Both reports capture the results from the test suite
execution. For more information about the schemas that IDT uses for these reports, see Review IDT
test results and logs

Create IDT test case executables 1184

AWS IoT Greengrass Developer Guide, Version 1

To populate the contents of the suite-name_report.xml file, you must use the SendResult
command to report test results to IDT before the test execution finishes. If IDT cannot locate
the results of a test, it issues an error for the test case. The following Python excerpt shows the
commands to send a test result to IDT:

request-variable = SendResultRequest(TestResult(result))
client.send_result(request-variable)

If you do not report results through the API, IDT looks for test results in the test artifacts folder.
The path to this folder is stored in the testData.testArtifactsPath filed in the IDT context. In
this folder, IDT uses the first alphabetically sorted XML file it locates as the test result.

If your test logic produces JUnit XML results, you can write the test results to an XML file in the
artifacts folder to directly provide the results to IDT instead of parsing the results and then using
the API to submit them to IDT.

If you use this method, make sure that your test logic accurately summarizes the test results and
format your result file in the same format as the suite-name_report.xml file. IDT does not
perform any validation of the data that you provide, with the following exceptions:

• IDT ignores all properties of the testsuites tag. Instead, it calculates the tag properties from
other reported test group results.

• At least one testsuite tag must exist within testsuites.

Because IDT uses the same artifacts folder for all test cases and does not delete result files
between test runs, this method might also lead to erroneous reporting if IDT reads the incorrect
file. We recommend that you use the same name for the generated XML results file across all test
cases to overwrite the results for each test case and make sure that the correct results are available
for IDT to use. Although you can use a mixed approach to reporting in your test suite, that is, use
an XML result file for some test cases and submit results through the API for others, we do not
recommend this approach.

Specify exit behavior

Configure your text executable to always exit with an exit code of 0, even if a test case reports a
failure or an error result. Use non-zero exit codes only to indicate that a test case did not run or if
the test case executable could not communicate any results to IDT. When IDT receives a non-zero
exit code, it marks the test case has having encountered an error that prevented it from running.

Create IDT test case executables 1185

AWS IoT Greengrass Developer Guide, Version 1

IDT might request or expect a test case to stop running before it has finished in the following
events. Use this information to configure your test case executable to detect each of these events
from the test case:

Timeout

Occurs when a test case runs for longer than the timeout value specified in the test.json file.
If the test runner used the timeout-multiplier argument to specify a timeout multiplier,
then IDT calculates the timeout value with the multiplier.

To detect this event, use the IDT_TEST_TIMEOUT environment variable. When a test runner
launches a test, IDT sets the value of the IDT_TEST_TIMEOUT environment variable to the
calculated timeout value (in seconds) and passes the variable to the test case executable. You
can read the variable value to set an appropriate timer.

Interrupt

Occurs when the test runner interrupts IDT. For example, by pressing Ctrl+C.

Because terminals propagate signals to all child processes, you can simply configure a signal
handler in your test cases to detect interrupt signals.

Alternatively, you can periodically poll the API to check the value of the
CancellationRequested boolean in the PollForNotifications API response. When
IDT receives an interrupt signal, it sets the value of the CancellationRequested boolean to
true.

Stop on first failure

Occurs when a test case that is running in parallel with the current test case fails and the test
runner used the stop-on-first-failure argument to specify that IDT should stop when it
encounters any failure.

To detect this event, you can periodically poll the API to check the value of the
CancellationRequested boolean in the PollForNotifications API response. When
IDT encounters a failure and is configured to stop on first failure, it sets the value of the
CancellationRequested boolean to true.

When any of these events occur, IDT waits for 5 minutes for any currently running test cases
to finish running. If all running test cases do not exit within 5 minutes, IDT forces each of their

Create IDT test case executables 1186

AWS IoT Greengrass Developer Guide, Version 1

processes to stop. If IDT has not received test results before the processes end, it will mark the test
cases as having timed out. As a best practice, you should ensure that your test cases perform the
following actions when they encounter one of the events:

1. Stop running normal test logic.

2. Clean up any temporary resources, such as test artifacts on the device under test.

3. Report a test result to IDT, such as a test failure or an error.

4. Exit.

Use the IDT context

When IDT runs a test suite, the test suite can access a set of data that can be used to determine
how each test runs. This data is called the IDT context. For example, user data configuration
provided by test runners in a userdata.json file is made available to test suites in the IDT
context.

The IDT context can be considered a read-only JSON document. Test suites can retrieve data from
and write data to the context using standard JSON data types like objects, arrays, numbers and so
on.

Context schema

The IDT context uses the following format:

{
 "config": {
 <config-json-content>
 "timeoutMultiplier": timeout-multiplier
 },
 "device": {
 <device-json-device-element>
 },
 "devicePool": {
 <device-json-pool-element>
 },
 "resource": {
 "devices": [
 {
 <resource-json-device-element>
 "name": "<resource-name>"

Use the IDT context 1187

AWS IoT Greengrass Developer Guide, Version 1

 }
]
 },
 "testData": {
 "awsCredentials": {
 "awsAccessKeyId": "<access-key-id>",
 "awsSecretAccessKey": "<secret-access-key>",
 "awsSessionToken": "<session-token>"
 },
 "logFilePath": "/path/to/log/file"
 },
 "userData": {
 <userdata-json-content>
 }
}

config

Information from the config.json file. The config field also contains the following
additional field:

config.timeoutMultiplier

The multiplier for the any timeout value used by the test suite. This value is specified by the
test runner from the IDT CLI. The default value is 1.

device

Information about the device selected for the test run. This information is equivalent to the
devices array element in the device.json file for the selected device.

devicePool

Information about the device pool selected for the test run. This information is equivalent to
the top-level device pool array element defined in the device.json file for the selected device
pool.

resource

Information about resource devices from the resource.json file.

resource.devices

This information is equivalent to the devices array defined in the resource.json file.
Each devices element includes the following additional field:

Use the IDT context 1188

AWS IoT Greengrass Developer Guide, Version 1

resource.device.name

The name of the resource device. This value is set to the requiredResource.name
value in the test.json file.

testData.awsCredentials

The AWS credentials used by the test to connect to the AWS cloud. This information is obtained
from the config.json file.

testData.logFilePath

The path to the log file to which the test case writes log messages. The test suite creates this
file if it doesn't exist.

userData

Information provided by the test runner in the userdata.json file.

Access data in the context

You can query the context using JSONPath notation from your JSON files and from your text
executable with the GetContextValue and GetContextString APIs. The syntax for JSONPath
strings to access the IDT context varies as follows:

• In suite.json and test.json, you use {{query}}. That is, do not use the root element $. to
start your expression.

• In statemachine.json, you use {{$.query}}.

• In API commands, you use query or {{$.query}}, depending on the command. For more
information, see the inline documentation in the SDKs.

The following table describes the operators in a typical JSONPath expression:

Operator Description

$ The root element. Because the top-level
context value for IDT is an object, you will
typically use $. to start your queries.

.childName Accesses the child element with name
childName from an object. If applied to an

Use the IDT context 1189

AWS IoT Greengrass Developer Guide, Version 1

Operator Description

array, yields a new array with this operator
applied to each element. The element name
is case sensitive. For example, the query to
access the awsRegion value in the config
object is $.config.awsRegion .

[start:end] Filters elements from an array, retrieving items
beginning from the start index and going up
to the end index, both inclusive.

[index1, index2, ... , indexN] Filters elements from an array, retrieving items
from only the specified indices.

[?(expr)] Filters elements from an array using the expr
expression. This expression must evaluate to a
boolean value.

To create filter expressions, use the following syntax:

<jsonpath> | <value> operator <jsonpath> | <value>

In this syntax:

• jsonpath is a JSONPath that uses standard JSON syntax.

• value is any custom value that uses standard JSON syntax.

• operator is one of the following operators:

• < (Less than)

• <= (Less than or equal to)

• == (Equal to)

If the JSONPath or value in your expression is an array, boolean, or object value, then this is
the only supported binary operator that you can use.

• >= (Greater than or equal to)

• > (Greater than)

Use the IDT context 1190

AWS IoT Greengrass Developer Guide, Version 1

• =~ (Regular expression match). To use this operator in a filter expression, the JSONPath or
value on the left side of your expression must evaluate to a string and the right side must be a
pattern value that follows the RE2 syntax.

You can use JSONPath queries in the form {{query}} as placeholder strings within the args and
environmentVariables fields in test.json files and within the environmentVariables
fields in suite.json files. IDT performs a context lookup and populates the fields with the
evaluated value of the query. For example, in the suite.json file, you can use placeholder strings
to specify environment variable values that change with each test case and IDT will populate
the environment variables with the correct value for each test case. However, when you use
placeholder strings in test.json and suite.json files, the following considerations apply for
your queries:

• You must each occurrence of the devicePool key in your query in all lower case. That is, use
devicepool instead.

• For arrays, you can use only arrays of strings. In addition, arrays use a non-standard item1,
item2,...,itemN format. If the array contains only one element, then it is serialized as item,
making it indistinguishable from a string field.

• You cannot use placeholders to retrieve objects from the context.

Because of these considerations, we recommend that whenever possible, you use the API to access
the context in your test logic instead of placeholder strings in test.json and suite.json files.
However, in some cases it might be more convenient to use JSONPath placeholders to retrieve
single strings to set as environment variables.

Configure settings for test runners

To run custom test suites, test runners must configure their settings based on the test suite that
they want to run. Settings are specified based on JSON configuration file templates located in the
<device-tester-extract-location>/configs/ folder. If required, test runners must also set
up AWS credentials that IDT will use to connect to the AWS cloud.

As a test writer, you will need to configure these files to debug your test suite. You must provide
instructions to test runners so that they can configure the following settings as needed to run your
test suites.

Configure settings for test runners 1191

https://github.com/google/re2/wiki/Syntax

AWS IoT Greengrass Developer Guide, Version 1

Configure device.json

The device.json file contains information about the devices that tests are run on (for example,
IP address, login information, operating system, and CPU architecture).

Test runners can provide this information using the following template device.json file located
in the <device-tester-extract-location>/configs/ folder.

[
 {
 "id": "<pool-id>",
 "sku": "<pool-sku>",
 "features": [
 {
 "name": "<feature-name>",
 "value": "<feature-value>",
 "configs": [
 {
 "name": "<config-name>",
 "value": "<config-value>"
 }
],
 }
],
 "devices": [
 {
 "id": "<device-id>",
 "connectivity": {
 "protocol": "ssh | uart | docker",
 // ssh
 "ip": "<ip-address>",
 "port": <port-number>,
 "auth": {
 "method": "pki | password",
 "credentials": {
 "user": "<user-name>",
 // pki
 "privKeyPath": "/path/to/private/key",

 // password
 "password": "<password>",
 }
 },

Configure settings for test runners 1192

AWS IoT Greengrass Developer Guide, Version 1

 // uart
 "serialPort": "<serial-port>",

 // docker
 "containerId": "<container-id>",
 "containerUser": "<container-user-name>",
 }
 }
]
 }
]

All fields that contain values are required as described here:

id

A user-defined alphanumeric ID that uniquely identifies a collection of devices called a device
pool. Devices that belong to a pool must have identical hardware. When you run a suite of
tests, devices in the pool are used to parallelize the workload. Multiple devices are used to run
different tests.

sku

An alphanumeric value that uniquely identifies the device under test. The SKU is used to track
qualified devices.

Note

If you want to list your board in the AWS Partner Device Catalog, the SKU you specify
here must match the SKU that you use in the listing process.

features

Optional. An array that contains the device's supported features. Device features are user-
defined values that you configure in your test suite. You must provide your test runners with
information about the feature names and values to include in the device.json file. For
example, if you want to test a device that functions as an MQTT server for other devices, then
you can configure your test logic to validate specific supported levels for a feature named
MQTT_QOS. Test runners provide this feature name and set the feature value to the QOS

Configure settings for test runners 1193

AWS IoT Greengrass Developer Guide, Version 1

levels supported by their device. You can retrieve the provided information from the IDT
context with the devicePool.features query, or from the state machine context with the
pool.features query.

features.name

The name of the feature.

features.value

The supported feature values.

features.configs

Configuration settings, if needed, for the feature.

features.config.name

The name of the configuration setting.

features.config.value

The supported setting values.

devices

An array of devices in the pool to be tested. At least one device is required.

devices.id

A user-defined unique identifier for the device being tested.

connectivity.protocol

The communication protocol used to communicate with this device. Each device in a pool
must use the same protocol.

Currently, the only supported values are ssh and uart for physical devices, and docker for
Docker containers.

connectivity.ip

The IP address of the device being tested.

This property applies only if connectivity.protocol is set to ssh.

connectivity.port

Optional. The port number to use for SSH connections.

Configure settings for test runners 1194

AWS IoT Greengrass Developer Guide, Version 1

The default value is 22.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth

Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method

The authentication method used to access a device over the given connectivity protocol.

Supported values are:

• pki

• password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.password

The password used for signing in to the device being tested.

This value applies only if connectivity.auth.method is set to password.

connectivity.auth.credentials.privKeyPath

The full path to the private key used to sign in to the device under test.

This value applies only if connectivity.auth.method is set to pki.

connectivity.auth.credentials.user

The user name for signing in to the device being tested.

connectivity.serialPort

Optional. The serial port to which the device is connected.

This property applies only if connectivity.protocol is set to uart.

connectivity.containerId

The container ID or name of the Docker container being tested.

This property applies only if connectivity.protocol is set to docker.

Configure settings for test runners 1195

AWS IoT Greengrass Developer Guide, Version 1

connectivity.containerUser

Optional. The name of the user to user inside the container. The default value is the user
provided in the Dockerfile.

The default value is 22.

This property applies only if connectivity.protocol is set to docker.

Note

To check if test runners configure the incorrect device connection for a test, you can
retrieve pool.Devices[0].Connectivity.Protocol from the state machine
context and compare it to the expected value in a Choice state. If an incorrect protocol
is used, then print a message using the LogMessage state and transition to the Fail
state.
Alternatively, you can use error handling code to report a test failure for incorrect device
types.

(Optional) Configure userdata.json

The userdata.json file contains any additional information that is required by a test
suite but is not specified in the device.json file. The format of this file depends on the
userdata_scheme.json file that is defined in the test suite. If you are a test writer, make sure
you provide this information to users who will run the test suites that you write.

(Optional) Configure resource.json

The resource.json file contains information about any devices that will be used as resource
devices. Resource devices are devices that are required to test certain capabilities of a device under
test. For example, to test a device's Bluetooth capability, you might use a resource device to test
that your device can connect to it successfully. Resource devices are optional, and you can require
as many resources devices as you need. As a test writer, you use the test.json file to define the
resource device features that are required for a test. Test runners then use the resource.json file
to provide a pool of resource devices that have the required features. Make sure you provide this
information to users who will run the test suites that you write.

Test runners can provide this information using the following template resource.json file
located in the <device-tester-extract-location>/configs/ folder.

Configure settings for test runners 1196

AWS IoT Greengrass Developer Guide, Version 1

[
 {
 "id": "<pool-id>",
 "features": [
 {
 "name": "<feature-name>",
 "version": "<feature-value>",
 "jobSlots": <job-slots>
 }
],
 "devices": [
 {
 "id": "<device-id>",
 "connectivity": {
 "protocol": "ssh | uart | docker",
 // ssh
 "ip": "<ip-address>",
 "port": <port-number>,
 "auth": {
 "method": "pki | password",
 "credentials": {
 "user": "<user-name>",
 // pki
 "privKeyPath": "/path/to/private/key",

 // password
 "password": "<password>",
 }
 },

 // uart
 "serialPort": "<serial-port>",

 // docker
 "containerId": "<container-id>",
 "containerUser": "<container-user-name>",
 }
 }
]
 }
]

All fields that contain values are required as described here:

Configure settings for test runners 1197

AWS IoT Greengrass Developer Guide, Version 1

id

A user-defined alphanumeric ID that uniquely identifies a collection of devices called a device
pool. Devices that belong to a pool must have identical hardware. When you run a suite of
tests, devices in the pool are used to parallelize the workload. Multiple devices are used to run
different tests.

features

Optional. An array that contains the device's supported features. The information required
in this field is defined in the test.json files in the test suite and determines which tests to run
and how to run those tests. If the test suite does not require any features, then this field is not
required.

features.name

The name of the feature.

features.version

The feature version.

features.jobSlots

Setting to indicate how many tests can concurrently use the device. The default value is 1.

devices

An array of devices in the pool to be tested. At least one device is required.

devices.id

A user-defined unique identifier for the device being tested.

connectivity.protocol

The communication protocol used to communicate with this device. Each device in a pool
must use the same protocol.

Currently, the only supported values are ssh and uart for physical devices, and docker for
Docker containers.

connectivity.ip

The IP address of the device being tested.

This property applies only if connectivity.protocol is set to ssh.

Configure settings for test runners 1198

AWS IoT Greengrass Developer Guide, Version 1

connectivity.port

Optional. The port number to use for SSH connections.

The default value is 22.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth

Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method

The authentication method used to access a device over the given connectivity protocol.

Supported values are:

• pki

• password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.password

The password used for signing in to the device being tested.

This value applies only if connectivity.auth.method is set to password.

connectivity.auth.credentials.privKeyPath

The full path to the private key used to sign in to the device under test.

This value applies only if connectivity.auth.method is set to pki.

connectivity.auth.credentials.user

The user name for signing in to the device being tested.

connectivity.serialPort

Optional. The serial port to which the device is connected.

Configure settings for test runners 1199

AWS IoT Greengrass Developer Guide, Version 1

This property applies only if connectivity.protocol is set to uart.

connectivity.containerId

The container ID or name of the Docker container being tested.

This property applies only if connectivity.protocol is set to docker.

connectivity.containerUser

Optional. The name of the user to user inside the container. The default value is the user
provided in the Dockerfile.

The default value is 22.

This property applies only if connectivity.protocol is set to docker.

(Optional) Configure config.json

The config.json file contains configuration information for IDT. Typically, test runners will not
need to modify this file except to provide their AWS user credentials for IDT, and optionally, an
AWS region. If AWS credentials with required permissions are provided AWS IoT Device Tester
collects and submits usage metrics to AWS. This is an opt-in feature and is used to improve IDT
functionality. For more information, see IDT usage metrics.

Test runners can configure their AWS credentials in one of the following ways:

• Credentials file

IDT uses the same credentials file as the AWS CLI. For more information, see Configuration and
credential files.

The location of the credentials file varies, depending on the operating system you are using:

• macOS, Linux: ~/.aws/credentials

• Windows: C:\Users\UserName\.aws\credentials

• Environment variables

Environment variables are variables maintained by the operating system and used by system
commands. Variables defined during an SSH session are not available after that session is closed.
IDT can use the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables to
store AWS credentials

Configure settings for test runners 1200

https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html

AWS IoT Greengrass Developer Guide, Version 1

To set these variables on Linux, macOS, or Unix, use export:

export AWS_ACCESS_KEY_ID=<your_access_key_id>
export AWS_SECRET_ACCESS_KEY=<your_secret_access_key>

To set these variables on Windows, use set:

set AWS_ACCESS_KEY_ID=<your_access_key_id>
set AWS_SECRET_ACCESS_KEY=<your_secret_access_key>

To configure AWS credentials for IDT, test runners edit the auth section in the config.json file
located in the <device-tester-extract-location>/configs/ folder.

{
 "log": {
 "location": "logs"
 },
 "configFiles": {
 "root": "configs",
 "device": "configs/device.json"
 },
 "testPath": "tests",
 "reportPath": "results",
 "awsRegion": "<region>",
 "auth": {
 "method": "file | environment",
 "credentials": {
 "profile": "<profile-name>"
 }
 }
}
]

All fields that contain values are required as described here:

Note

All paths in this file are defined relative to the <device-tester-extract-location>.

Configure settings for test runners 1201

AWS IoT Greengrass Developer Guide, Version 1

log.location

The path to the logs folder in the <device-tester-extract-location>.

configFiles.root

The path to the folder that contains the configuration files.

configFiles.device

The path to the device.json file.

testPath

The path to the folder that contains test suites.

reportPath

The path to the folder that will contain test results after IDT runs a test suite.

awsRegion

Optional. The AWS region that test suites will use. If not set, then test suites will use the default
region specified in each test suite.

auth.method

The method IDT uses to retrieve AWS credentials. Supported values are file to retrieve
credentials from a credentials file, and environment to retrieve credentials using environment
variables.

auth.credentials.profile

The credentials profile to use from the credentials file. This property applies only if
auth.method is set to file.

Debug and run custom test suites

After the required configuration is set, IDT can run your test suite. The runtime of the full test
suite depends on the hardware and the composition of the test suite. For reference, it takes
approximately 30 minutes to complete the full AWS IoT Greengrass qualification test suite on a
Raspberry Pi 3B.

As you write your test suite, you can use IDT to run the test suite in debug mode to check your code
before you run it or provide it to test runners.

Debug and run custom test suites 1202

AWS IoT Greengrass Developer Guide, Version 1

Run IDT in debug mode

Because test suites depend on IDT to interact with devices, provide the context, and receive results,
you cannot simply debug your test suites in an IDE without any IDT interaction. To do so, the IDT
CLI provides the debug-test-suite command that lets you run IDT in debug mode. Run the
following command to view the available options for debug-test-suite:

devicetester_[linux | mac | win_x86-64] debug-test-suite -h

When you run IDT in debug mode, IDT does not actually launch the test suite or run the state
machine; instead, it interacts with your IDE to responds to requests made from the test suite
running in the IDE and prints the logs to the console. IDT does not time out and waits to exit
until manually interrupted. In debug mode, IDT also does not run the state machine and will
not generate any report files. To debug your test suite, you must use your IDE to provide some
information that IDT usually obtains from the configuration JSON files. Make sure you provide the
following information:

• Environment variables and arguments for each test. IDT will not read this information from
test.json or suite.json.

• Arguments to select resource devices. IDT will not read this information from test.json.

To debug your test suites, complete the following steps:

1. Create the setting configuration files that are required to run the test suite. For example, if
your test suite requires the device.json, resource.json, and user data.json, make
sure you configure all of them as needed.

2. Run the following command to place IDT in debug mode and select any devices that are
required to run the test.

devicetester_[linux | mac | win_x86-64] debug-test-suite [options]

After you run this command, IDT waits for requests from the test suite and then responds to
them. IDT also generates the environment variables that are required for the case process for
the IDT Client SDK.

3. In your IDE, use the run or debug configuration to do the following:

a. Set the values of the IDT-generated environment variables.

Debug and run custom test suites 1203

AWS IoT Greengrass Developer Guide, Version 1

b. Set the value of any environment variables or arguments that you specified in your
test.json and suite.json file.

c. Set breakpoints as needed.

4. Run the test suite in your IDE.

You can debug and re-run the test suite as many times as needed. IDT does not time out in
debug mode.

5. After you complete debugging, interrupt IDT to exit debug mode.

IDT CLI commands to run tests

The following section describes the IDT CLI commands:

IDT v4.0.0

help

Lists information about the specified command.

list-groups

Lists the groups in a given test suite.

list-suites

Lists the available test suites.

list-supported-products

Lists the supported products for your version of IDT, in this case AWS IoT Greengrass
versions, and AWS IoT Greengrass qualification test suite versions available for the current
IDT version.

list-test-cases

Lists the test cases in a given test group. The following option is supported:

• group-id. The test group to search for. This option is required and must specify a single
group.

run-suite

Runs a suite of tests on a pool of devices. The following are some commonly used options:

Debug and run custom test suites 1204

AWS IoT Greengrass Developer Guide, Version 1

• suite-id. The test suite version to run. If not specified, IDT uses the latest version in the
tests folder.

• group-id. The test groups to run, as a comma-separated list. If not specified, IDT runs all
test groups in the test suite.

• test-id. The test cases to run, as a comma-separated list. When specified, group-id
must specify a single group.

• pool-id. The device pool to test. Test runners must specify a pool if they have multiple
device pools defined in your device.json file.

• timeout-multiplier. Configures IDT to modify the test execution timeout specified in
the test.json file for a test with a user-defined multiplier.

• stop-on-first-failure. Configures IDT to stop execution on the first failure. This
option should be used with group-id to debug the specified test groups.

• userdata. Sets the file that contains user data information required to run the test suite.
This is required only if userdataRequired is set to true in the suite.json file for the
test suite.

For more information about run-suite options, use the help option:

devicetester_[linux | mac | win_x86-64] run-suite -h

debug-test-suite

Run the test suite in debug mode. For more information, see Run IDT in debug mode.

Review IDT test results and logs

This section describes the format in which IDT generates console logs and test reports.

Console message format

AWS IoT Device Tester uses a standard format for printing messages to the console when it starts a
test suite. The following excerpt shows an example of a console message generated by IDT.

time="2000-01-02T03:04:05-07:00" level=info msg=Using suite: MyTestSuite_1.0.0
executionId=9a52f362-1227-11eb-86c9-8c8590419f30

Most console messages consist of the following fields:

Review IDT test results and logs 1205

AWS IoT Greengrass Developer Guide, Version 1

time

A full ISO 8601 timestamp for the logged event.

level

The message level for the logged event. Typically, the logged message level is one of info,
warn, or error. IDT issues a fatal or panic message if it encounters an expected event that
causes it to exit early.

msg

The logged message.

executionId

A unique ID string for the current IDT process. This ID is used to differentiate between individual
IDT runs.

Console messages generated from a test suite provide additional information about the device
under test and the test suite, test group, and test cases that IDT runs. The following excerpt shows
an example of a console message generated from a test suite.

time="2000-01-02T03:04:05-07:00" level=info msg=Hello world! suiteId=MyTestSuite
groupId=myTestGroup testCaseId=myTestCase deviceId=my-device
executionId=9a52f362-1227-11eb-86c9-8c8590419f30

The test-suite specific part of the console message contains the following fields:

suiteId

The name of the test suite currently running.

groupId

The ID of the test group currently running.

testCaseId

The ID of the test case current running.

deviceId

A ID of the device under test that the current test case is using.

Review IDT test results and logs 1206

AWS IoT Greengrass Developer Guide, Version 1

To print a test summary to the console when a IDT finishes running a test, you must include a
Report state in your state machine. The test summary contains information about the test suite,
the test results for each group that was run, and the locations of the generated logs and report
files. The following example shows a test summary message.

========== Test Summary ==========
Execution Time: 5m00s
Tests Completed: 4
Tests Passed: 3
Tests Failed: 1
Tests Skipped: 0

Test Groups:
 GroupA: PASSED
 GroupB: FAILED

Failed Tests:
 Group Name: GroupB
 Test Name: TestB1
 Reason: Something bad happened

Path to IoT Device Tester Report: /path/to/awsiotdevicetester_report.xml
Path to Test Execution Logs: /path/to/logs
Path to Aggregated JUnit Report: /path/to/MyTestSuite_Report.xml

AWS IoT Device Tester report schema

awsiotdevicetester_report.xml is a signed report that contains the following information:

• The IDT version.

• The test suite version.

• The report signature and key used to sign the report.

• The device SKU and the device pool name specified in the device.json file.

• The product version and the device features that were tested.

• The aggregate summary of test results. This information is the same as that contained in the
suite-name_report.xml file.

<apnreport>

Review IDT test results and logs 1207

AWS IoT Greengrass Developer Guide, Version 1

 <awsiotdevicetesterversion>idt-version</awsiotdevicetesterversion>
 <testsuiteversion>test-suite-version</testsuiteversion>
 <signature>signature</signature>
 <keyname>keyname</keyname>
 <session>
 <testsession>execution-id</testsession>
 <starttime>start-time</starttime>
 <endtime>end-time</endtime>
 </session>
 <awsproduct>
 <name>product-name</name>
 <version>product-version</version>
 <features>
 <feature name="<feature-name>" value="supported | not-supported | <feature-
value>" type="optional | required"/>
 </features>
 </awsproduct>
 <device>
 <sku>device-sku</sku>
 <name>device-name</name>
 <features>
 <feature name="<feature-name>" value="<feature-value>"/>
 </features>
 <executionMethod>ssh | uart | docker</executionMethod>
 </device>
 <devenvironment>
 <os name="<os-name>"/>
 </devenvironment>
 <report>
 <suite-name-report-contents>
 </report>
</apnreport>

The awsiotdevicetester_report.xml file contains an <awsproduct> tag that contains
information about the product being tested and the product features that were validated after
running a suite of tests.

Attributes used in the <awsproduct> tag

name

The name of the product being tested.

Review IDT test results and logs 1208

AWS IoT Greengrass Developer Guide, Version 1

version

The version of the product being tested.

features

The features validated. Features marked as required are required for the test suite to
validate the device. The following snippet shows how this information appears in the
awsiotdevicetester_report.xml file.

<feature name="ssh" value="supported" type="required"></feature>

Features marked as optional are not required for validation. The following snippets show
optional features.

<feature name="hsi" value="supported" type="optional"></feature>

<feature name="mqtt" value="not-supported" type="optional"></feature>

Test suite report schema

The suite-name_Result.xml report is in JUnit XML format. You can integrate it into continuous
integration and deployment platforms like Jenkins, Bamboo, and so on. The report contains an
aggregate summary of test results.

<testsuites name="<suite-name> results" time="<run-duration>" tests="<number-of-test>"
 failures="<number-of-tests>" skipped="<number-of-tests>" errors="<number-of-tests>"
 disabled="0">
 <testsuite name="<test-group-id>" package="" tests="<number-of-tests>"
 failures="<number-of-tests>" skipped="<number-of-tests>" errors="<number-of-tests>"
 disabled="0">
 <!--success-->
 <testcase classname="<classname>" name="<name>" time="<run-duration>"/>
 <!--failure-->
 <testcase classname="<classname>" name="<name>" time="<run-duration>">
 <failure type="<failure-type>">
 reason
 </failure>
 </testcase>
 <!--skipped-->
 <testcase classname="<classname>" name="<name>" time="<run-duration>">

Review IDT test results and logs 1209

https://llg.cubic.org/docs/junit/
https://jenkins.io/
https://www.atlassian.com/software/bamboo

AWS IoT Greengrass Developer Guide, Version 1

 <skipped>
 reason
 </skipped>
 </testcase>
 <!--error-->
 <testcase classname="<classname>" name="<name>" time="<run-duration>">
 <error>
 reason
 </error>
 </testcase>
 </testsuite>
</testsuites>

The report section in both the awsiotdevicetester_report.xml or suite-
name_report.xml lists the tests that were run and the results.

The first XML tag <testsuites> contains the summary of the test execution. For example:

<testsuites name="MyTestSuite results" time="2299" tests="28" failures="0" errors="0"
 disabled="0">

Attributes used in the <testsuites> tag

name

The name of the test suite.

time

The time, in seconds, it took to run the test suite.

tests

The number of tests executed.

failures

The number of tests that were run, but did not pass.

errors

The number of tests that IDT couldn't execute.

disabled

This attribute is not used and can be ignored.

Review IDT test results and logs 1210

AWS IoT Greengrass Developer Guide, Version 1

In the event of test failures or errors, you can identify the test that failed by reviewing the
<testsuites> XML tags. The <testsuite> XML tags inside the <testsuites> tag show the
test result summary for a test group. For example:

<testsuite name="combination" package="" tests="1" failures="0" time="161" disabled="0"
 errors="0" skipped="0">

The format is similar to the <testsuites> tag, but with a skipped attribute that is not used and
can be ignored. Inside each <testsuite> XML tag, there are <testcase> tags for each executed
test for a test group. For example:

<testcase classname="Security Test" name="IP Change Tests" attempts="1"></testcase>>

Attributes used in the <testcase> tag

name

The name of the test.

attempts

The number of times IDT executed the test case.

When a test fails or an error occurs, <failure> or <error> tags are added to the <testcase>
tag with information for troubleshooting. For example:

<testcase classname="mcu.Full_MQTT" name="MQTT_TestCase" attempts="1">
 <failure type="Failure">Reason for the test failure</failure>
 <error>Reason for the test execution error</error>
</testcase>

IDT usage metrics

If you provide AWS credentials with required permissions, AWS IoT Device Tester collects and
submits usage metrics to AWS. This is an opt-in feature and is used to improve IDT functionality.
IDT collects information such as the following:

• The AWS account ID used to run IDT

• The IDT CLI commands used to run tests

IDT usage metrics 1211

AWS IoT Greengrass Developer Guide, Version 1

• The test suite that are run

• The test suites in the <device-tester-extract-location> folder

• The number of devices configured in the device pool

• Test case names and run times

• Test result information, such as whether tests passed, failed, encountered errors, or were skipped

• Product features tested

• IDT exit behavior, such as unexpected or early exits

All of the information that IDT sends is also logged to a metrics.log file in the <device-
tester-extract-location>/results/<execution-id>/ folder. You can view the log file to
see the information that was collected during a test run. This file is generated only if you choose to
collect usage metrics.

To disable metrics collection, you do not need to take additional action. Simply do not store your
AWS credentials, and if you do have stored AWS credentials, do not configure the config.json
file to access them.

Configure your AWS credentials

If you do not already have an AWS account, you must create one. If you already have an AWS
account, you simply need to configure the required permissions for your account that allow IDT to
send usage metrics to AWS on your behalf.

Step 1: Create an AWS account

In this step, create and configure an AWS account. If you already have an AWS account, skip to the
section called “Step 2: Configure permissions for IDT”.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

IDT usage metrics 1212

https://portal.aws.amazon.com/billing/signup

AWS IoT Greengrass Developer Guide, Version 1

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

IDT usage metrics 1213

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

AWS IoT Greengrass Developer Guide, Version 1

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Step 2: Configure permissions for IDT

In this step, configure the permissions that IDT uses to run tests and collect IDT usage data. You
can use the AWS Management Console or AWS Command Line Interface (AWS CLI) to create an IAM
policy and a user for IDT, and then attach policies to the user.

• To Configure Permissions for IDT (Console)

• To Configure Permissions for IDT (AWS CLI)

To configure permissions for IDT (console)

Follow these steps to use the console to configure permissions for IDT for AWS IoT Greengrass.

1. Sign in to the IAM console.

2. Create a customer managed policy that grants permissions to create roles with specific
permissions.

a. In the navigation pane, choose Policies, and then choose Create policy.

b. On the JSON tab, replace the placeholder content with the following policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot-device-tester:SendMetrics"
],
 "Resource": "*"
 }
]

IDT usage metrics 1214

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://console.aws.amazon.com/iam

AWS IoT Greengrass Developer Guide, Version 1

}

c. Choose Next: Tags.

d. Choose Next: Review.

e. For Name, enter IDTUsageMetricsIAMPermissions. Under Summary, review the
permissions granted by your policy.

f. Choose Create policy.

3. Create an IAM user and attach permissions to the user.

a. Create an IAM user. Follow steps 1 through 5 in Creating IAM users (console) in the IAM
User Guide. If you already created an IAM user, skip to the next step.

b. Attach the permissions to your IAM user:

i. On the Set permissions page, choose Attach existing policies directly.

ii. Search for the IDTUsageMetricsIAMPermissions policy that you created in the
previous step. Select the check box.

c. Choose Next: Tags.

d. Choose Next: Review to view a summary of your choices.

e. Choose Create user.

f. To view the user's access keys (access key IDs and secret access keys), choose Show next to
the password and access key. To save the access keys, choose Download.csv and save the
file to a secure location. You use this information later to configure your AWS credentials
file.

To configure permissions for IDT (AWS CLI)

Follow these steps to use the AWS CLI to configure permissions for IDT for AWS IoT Greengrass. If
you already configured permissions in the console, skip to the section called “Configure your device
to run IDT tests” or the section called “Optional: Configuring your Docker container”.

1. On your computer, install and configure the AWS CLI if it's not already installed. Follow the
steps in Installing the AWS CLI in the AWS Command Line Interface User Guide.

IDT usage metrics 1215

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

AWS IoT Greengrass Developer Guide, Version 1

Note

The AWS CLI is an open source tool that you can use to interact with AWS services from
your command-line shell.

2. Create the following customer managed policy that grants permissions to manage IDT and
AWS IoT Greengrass roles.

Linux, macOS, or Unix

aws iam create-policy --policy-name IDTUsageMetricsIAMPermissions --policy-
document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot-device-tester:SendMetrics"
],
 "Resource": "*"
 }
]
}'

Windows command prompt

aws iam create-policy --policy-name IDTUsageMetricsIAMPermissions --policy-
document
 '{\"Version\": \"2012-10-17\",
 \"Statement\": [{\"Effect\": \"Allow\", \"Action\": [\"iot-device-
tester:SendMetrics\"], \"Resource": \"*\"}]}'

Note

This step includes a Windows command prompt example because it uses a different
JSON syntax than Linux, macOS, or Unix terminal commands.

3. Create an IAM user and attach the permissions required by IDT for AWS IoT Greengrass.

a. Create an IAM user.

IDT usage metrics 1216

AWS IoT Greengrass Developer Guide, Version 1

aws iam create-user --user-name user-name

b. Attach the IDTUsageMetricsIAMPermissions policy you created to your IAM user.
Replace user-name with your IAM user name and <account-id> in the command with
the ID of your AWS account.

aws iam attach-user-policy --user-name user-name --policy-arn
 arn:aws:iam::<account-id>:policy/IDTGreengrassIAMPermissions

4. Create a secret access key for the user.

aws iam create-access-key --user-name user-name

Store the output in a secure location. You use this information later to configure your AWS
credentials file.

Provide AWS credentials to IDT

To allow IDT to access your AWS credentials and submit metrics to AWS, do the following:

1. Store the AWS credentials for your IAM user as environment variables or in a credentials file:

a. To use environment variables, run the following command:

AWS_ACCESS_KEY_ID=access-key
AWS_SECRET_ACCESS_KEY=secret-access-key

b. To use the credentials file, add the following information to the .aws/credentials
file:

[profile-name]
aws_access_key_id=access-key
aws_secret_access_key=secret-access-key

2. Configure the auth section of the config.json file. For more information, see (Optional)
Configure config.json.

IDT usage metrics 1217

AWS IoT Greengrass Developer Guide, Version 1

IDT for AWS IoT Greengrass troubleshooting

IDT for AWS IoT Greengrass writes these errors to various locations based on the type of errors.
Errors are written to the console, log files, and test reports.

Error codes

The following table lists the error codes generated by IDT for AWS IoT Greengrass.

Error code Error code name Possible root cause Troubleshooting

101 InternalError An internal error
occurred. Check logs under the

<device-tester-
extract-loca
tion> /results
directory. If you
cannot debug the
issue, contact AWS
Developer Support.

102 TimeoutError The test cannot
be completed in a
limited time range.
This can happen if:

•
There is a slow
network connectio
n between the test
machine and device
(for example, if you
are using a VPN
network).

•
A slow network
delays the
communication

•
Check the network
connection and
speed.

•
Make sure that you
did not modify any
file under the /
test directory.

•
Try running the
failed test group
manually with "--
group-id" flag.

•
Try running the
test suite by

IDT for AWS IoT Greengrass troubleshooting 1218

https://aws.amazon.com/premiumsupport/plans/developers/
https://aws.amazon.com/premiumsupport/plans/developers/

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

between the device
and cloud.

•
The timeout
field in test
configuration files
(test.json) has
been mistakenly
modified.

increasing the test
timeouts. For more
information, see
Timeout errors.

103 PlatformNotSupport
Error

Incorrect OS/archit
ecture combinati
on specified in
device.json .

Change your
configuration to one
of the supported
combinations:

•
Linux, x86_64

•
Linux, ARMv6l

•
Linux, ARMv7l

•
Linux, AArch64

•
Ubuntu, x86_64

•
OpenWRT, ARMv7l

•
OpenWRT, AArch64

For more informati
on, see Configure
device.json.

Error codes 1219

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

104 VersionNotSupportE
rror

The AWS IoT
Greengrass Core
software version is
not supported by the
version of IDT you are
using.

Use the device_te
ster_bin version
command to find
the supported
version of the AWS
IoT Greengrass
Core software. For
example, if you are
using macOS, use
 ./devicetester_mac
_x86_64 version.

To find the version of
AWS IoT Greengras
s Core software that
you are using:

•
If you are running
tests with preinstal
led AWS IoT
Greengrass Core
software, use SSH
to connect to your
AWS IoT Greengras
s core device and
run <path-to-
preinstal
led-green
grass-loc
ation> /greengra
ss/ggc/core/
greengrassd --
version

•

Error codes 1220

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

If you are running
tests with a
different version
of the AWS IoT
Greengrass Core
software, go to
the devicetes
ter_green
grass_
<os>/products

/greengrass/
gcc directory. The
AWS IoT Greengras
s Core software
version is part of
the .zip file name.

You can test a
different version
of the AWS IoT
Greengrass Core
software. For more
information, see
Getting started with
AWS IoT Greengrass.

Error codes 1221

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

105 LanguageNotSupport
Error

IDT supports
Python for AWS IoT
Greengrass libraries
and SDKs only.

Make sure:

•
The SDK package
under devicetes
ter_green
grass_ <os>/
products/
greengrass/
ggsdk is the
Python SDK.

•
The contents of
the bin folder
under devicetes
ter_green
grass_ <os>
/tests/GG
Q_1.0.0/s
uite/reso
urces/run
.runtimef
arm/bin have
not been changed.

Error codes 1222

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

106 ValidationError Some fields in
device.json or
config.json are
invalid.

Check the error
message on the right
side of the error code
in the report.

•
Invalid auth type
for device: Specify
the correct method
to connect to your
device. For more
information, see
the section called
“Configure device.js
on”.

•
Invalid private key
path: Specify the
correct path to
your private key.
For more informati
on, see Configure
device.json.

•
Invalid AWS
Region: Specify a
valid AWS Region
in your config.js
on file. For more
information,
see AWS service
endpoints.

•
AWS credentia
ls: Set valid AWS

Error codes 1223

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

credentials on your
test machine (by
using environme
nt variables or
the credentia
ls file). Verify
that the auth
 field is configure
d correctly. For
more informati
on, see the section
called “Create and
configure an AWS
account”.

•
Invalid HSM
input: Check
your p11Provid
er , privateKe
yLabel ,
slotLabel ,
slotUserPin ,
and openSSLEn
gine fields in
 device.json .

Error codes 1224

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

107 SSHConnectionFailed The test machine
cannot connect
to the configured
device.

Verify that the
following fields in
your device.json
file are correct:

•
ip

•
user

•
privKeyPath

•
password

For more informati
on, see Configure
device.json.

Error codes 1225

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

108 RunCommandError A test failed to
execute a command
on the device under
test.

Verify that root
access is allowed for
the configured user in
device.json .

A password is
required by some
devices when
executing commands
with root access.
Make sure root access
is allowed without a
password. For more
information, see the
documentation for
your device.

Try running the
failing command
manually on your
device to see if an
error occurs.

109 PermissionDeniedEr
ror

No root access. Set root access for
the configured user
on your device.

110 CreateFileError Unable to create a
file.

Check your device's
disk space and
directory permissio
ns.

111 CreateDirError Unable to create a
directory.

Check your device's
disk space and
directory permissio
ns.

Error codes 1226

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

112 InvalidPathError The path to the AWS
IoT Greengrass Core
software is incorrect.

Verify that the path
in the error message
is valid. Do not
edit any files under
the devicetes
ter_green
grass_ <os>
directory.

113 InvalidFileError A file is invalid. Verify that the file in
the error message is
valid.

114 ReadFileError The specified file
cannot be read.

Verify the following:

•
File permissions are
correct.

•
limits.config
allows enough files
to be open.

•
The file specified in
the error message
exists and is valid.

If you are testing on
macOS, increase the
open files limit. The
default limit is 256,
which is enough for
testing.

Error codes 1227

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

115 FileNotFoundError A required file was
not found.

Verify the following:

•
A compresse
d Greengrass
file exists under
devicetes
ter_green
grass_ <os>/
products/
greengrass/
ggc. You can
download the AWS
IoT Greengras
s Core tar file
from the AWS
IoT Greengrass
Core Software
downloads page.

•
The SDK package
exists under
devicetes
ter_green
grass_ <os>/
products/
greengrass/
ggsdk.

•
The files under
devicetes
ter_green
grass_ <os>/
tests have not
been modified.

Error codes 1228

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

116 OpenFileFailed Unable to open the
specified file.

Verify the following:

•
The file specified in
the error message
exists and is valid.

•
limits.config
allows enough files
to be open.

If you are testing on
macOS, increase the
open files limit. The
default limit is 256,
which is enough for
testing.

117 WriteFileFailed Failed to write file
(can be the DUT or
test machine).

Verify that the
directory specified
in the error message
exists and that you
have write permissio
n.

118 FileCleanUpError A test failed to
remove the specified
file or directory or to
umount the specified
file on the remote
device.

If the binary file is
still running, the file
might be locked.
End the process and
delete the specified
file.

119 InvalidInputError Invalid configuration. Verify that your
suite.json file is
valid.

Error codes 1229

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

120 InvalidCredentialError Invalid AWS credentia
ls.

•
Verify your AWS
credentials. For
more informati
on, see the section
called “Configure
your AWS credentia
ls”.

•
Check your
network connectio
n and rerun
the test group.
Network problems
can also casue this
error.

121 AWSSessionError Failed to create an
AWS session.

This error can occur
if AWS credentials
are invalid or the
internet connection
is unstable. Try using
the AWS CLI to call an
AWS API operation.

122 AWSApiCallError An AWS API error
occurred.

This error might be
due to a network
issue. Check your
network before
retrying the test
group.

Error codes 1230

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

123 IpNotExistError
IP address is not
included in connectiv
ity information.

Check your internet
connection. You
can use the AWS
IoT Greengrass
console to check
the connectivity
information for the
AWS IoT Greengras
s core thing that is
being used by the
test. If there are 10
endpoints included
 in the connectivity
information, you
can remove some
or all of them and
rerun the test. For
more information,
see Connectivity
information.

124 OTAJobNot
CompleteError

An OTA job did not
complete.

Check your internet
connection and retry
the OTA test group.

Error codes 1231

https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-connectivity-info.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-connectivity-info.html

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

125 CreateGreengrassSe
rviceRoleError

One of the following
occurred:

•
An error occurred
while creating a
role.

•
An error occurred
while attaching a
policy to the AWS
IoT Greengrass
service role.

•
The policy
associated with
the service role is
invalid.

•
An error occurred
when associating
a role with an AWS
account.

Configure the AWS
IoT Greengrass
service role. For more
information, see
the section called
“Greengrass service
role”.

126 DependenciesNotPre
sentError

One or more
dependencies
required for the
specific test are
not present on the
device.

Check the test log to
see which dependenc
ies are missing
on your device:
<device-tester-
extract-loca
tion> /results/
<execution-

id>/logs/<test-
case-name.log>

Error codes 1232

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

127 InvalidHSMConfigur
ation

The provided HSM/
PKCS configuration is
incorrect.

In your device.js
on file, provide
the configuration
required to interact
with the HSM using
PKCS#11.

Error codes 1233

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

128 OTAJobNot
SuccededError

The OTA job did not
succeed.

•
If you ran the
ota test group
individually, run
the ggcdepend
encies test
group to verify
that all dependenc
ies (such as wget)
are present. Then
retry the ota test
group.

•
Review the
detailed logs
under <device-
tester-
extract-
location> /
results/
<execution-

id>/logs/ for
troubleshooting
and error informati
on. Specifically,
check the following
logs:

•
Console log
(test_mana
ger.log)

•
OTA test case
log (ota_test.
log)

Error codes 1234

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

•
GGC daemon
log (ota_test_
ggc_logs.
tar.gz)

•
OTA agent log
(ota_test_
ota_logs.
tar.gz)

•
Check your internet
connectivity and
retry the ota test
group.

•
If the problem
persists, contact
AWS Developer
Support.

129 NoConnectivityError The host agent is
failing to connect to
internet.

Check your network
connection and
firewall settings.
Retry the test group
after the connectivity
issue is resolved.

130 NoPermissionError The IAM user you are
using to run IDT for
AWS IoT Greengras
s does not have
permission to create
the AWS resources
required to run IDT.

See Permissions
policy template for
the policy template
that grants the
permissions require
d to run IDT for AWS
IoT Greengrass.

Error codes 1235

https://aws.amazon.com/premiumsupport/plans/developers/
https://aws.amazon.com/premiumsupport/plans/developers/
https://docs.aws.amazon.com/greengrass/latest/developerguide/policy-template.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/policy-template.html

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

131 LeftoverAgentExist
Error

Your device is running
AWS IoT Greengras
s processes when
you attempt to start
IDT for AWS IoT
Greengrass.

Make sure there is no
existing Greengrass
daemon running on
your device.

•
You can use this
command to
stop daemon:
sudo ./<absolute
-path-to-
greengras
s-daemon> /
greengrassd stop.

•
You can also
terminate the
Greengrass
daemon by PID.

Note

If you are
using an
existing
installation
of AWS IoT
Greengras
s configure
d to start
automatically
after reboot,
you must stop
the daemon
after reboot

Error codes 1236

AWS IoT Greengrass Developer Guide, Version 1

Error code Error code name Possible root cause Troubleshooting

and before
running the
test suite.

132 DeviceTimeOffsetEr
ror

The device has the
incorrect time.

Set your device to the
correct time.

133 InvalidMLConfigura
tion

The provided ML
configuration is
incorrect.

In your device.js
on file, provide the
correct configuration
required to run ML
inference tests. For
more information,
see the section called
“Optional: Configuri
ng your device for ML
qualification”.

Resolving IDT for AWS IoT Greengrass errors

When you use IDT, you must get the correct configuration files in place before you run IDT for AWS
IoT Greengrass. If you are getting parsing and configuration errors, your first step is to locate and
use a configuration template appropriate for your environment.

If you are still having issues, see the following debugging process.

Topics

• Where do I look for errors?

• Parsing errors

• Required parameter missing error

• Could not start test error

• Not authorized to access resource error

• Permission denied errors

Resolving IDT for AWS IoT Greengrass errors 1237

AWS IoT Greengrass Developer Guide, Version 1

• SSH connection errors

• Timeout errors

• Command not found errors while testing

• Security exception on macOS

Where do I look for errors?

High-level errors are displayed on the console during execution, and a summary of the failed tests
with the error is displayed when all tests are complete. awsiotdevicetester_report.xml
contains a summary of all the errors that caused a test to fail. The log files for each test run are
stored in a directory named with an UUID for the test execution that was displayed on the console
during the test run.

The test logs directory is located in <device-tester-extract-location>/
results/<execution-id>/logs/. This directory contains the following files, which are useful
for debugging.

File Description

test_manager.log
All of the logs that were written to the console
during the test execution. A summary of the
results is located at the end of this file, which
includes a list of which tests failed.

The warning and error logs in this file can give
you some information about the failures.

<test-group-id> __<test-name> .log Detailed logs for the specific test.

<test-name> _ggc_logs.tar.gz A compressed collection of all the logs the
AWS IoT Greengrass core daemon generated
during the test. For more information, see
Troubleshooting AWS IoT Greengrass.

<test-name> _ota_logs.tar.gz A compressed collection of logs generated by
the AWS IoT Greengrass OTA agent during the
test. For OTA tests only.

Resolving IDT for AWS IoT Greengrass errors 1238

https://docs.aws.amazon.com/greengrass/latest/developerguide/gg-troubleshooting.html

AWS IoT Greengrass Developer Guide, Version 1

File Description

<test-name> _basic_assertion_p
ublisher_ggad_logs.tar.gz

A compressed collection of logs generated by
the AWS IoT publisher device during the test.

<test-name> _basic_assertion_s
ubscriber_ggad_logs.tar.gz

A compressed collection of logs generated by
the AWS IoT subscriber device during the test.

Parsing errors

Occasionally, a typo in a JSON configuration can lead to parsing errors. Most of the time, the issue
is a result of omitting a bracket, comma, or quotation mark from your JSON file. IDT performs
JSON validation and prints debugging information. It prints the line where the error occurred, the
line number, and the column number of the syntax error. This information should be enough to
help you fix the error, but if you still cannot locate the error, you can perform validation manually
in your IDE, a text editor such as Atom or Sublime, or through an online tool like JSONLint.

Required parameter missing error

Because new features are being added to IDT, changes to the configuration files might be
introduced. Using an old configuration file might break your configuration. If this happens, the
<test_case_id>.log file under /results/<execution-id>/logs explicitly lists all missing
parameters. IDT also validates your JSON configuration file schemas to ensure that the latest
supported version has been used.

Could not start test error

You might encounter errors that point to failures during test start. There are several possible
causes, so do the following:

• Make sure that the pool name you included in your execution command actually exists. The pool
name is referenced directly from your device.json file.

• Make sure that the devices in your pool have correct configuration parameters.

Not authorized to access resource error

You might see the <user or role> is not authorized to access this
resource error message in the terminal output or in the test_manager.log

Resolving IDT for AWS IoT Greengrass errors 1239

AWS IoT Greengrass Developer Guide, Version 1

file under /results/<execution-id>/logs. To resolve this issue, attach the
AWSIoTDeviceTesterForGreengrassFullAccess managed policy to your test user. For more
information, see the section called “Create and configure an AWS account”.

Permission denied errors

IDT performs operations on various directories and files in a device under test. Some of these
operations require root access. To automate these operations, IDT must be able to run commands
with sudo without typing a password.

Follow these steps to allow sudo access without typing a password.

Note

user and username refer to the SSH user used by IDT to access the device under test.

1. Use sudo usermod -aG sudo <ssh-username> to add your SSH user to the sudo group.

2. Sign out and then sign in for changes to take effect.

3. Open /etc/sudoers file and add the following line to the end of the file: <ssh-username>
ALL=(ALL) NOPASSWD: ALL

Note

As a best practice, we recommend that you use sudo visudo when you edit /etc/
sudoers.

SSH connection errors

When IDT cannot connect to a device under test, connection failures are logged in /
results/<execution-id>/logs/<test-case-id>.log. SSH failure messages appear at the
top of this log file because connecting to a device under test is one of the first operations that IDT
performs.

Most Windows setups use the PuTTy terminal application to connect to Linux hosts. This
application requires that standard PEM private key files are converted into a proprietary Windows
format called PPK. When IDT is configured in your device.json file, use PEM files only. If you use

Resolving IDT for AWS IoT Greengrass errors 1240

AWS IoT Greengrass Developer Guide, Version 1

a PPK file, IDT cannot create an SSH connection with the AWS IoT Greengrass device and cannot
run tests.

Timeout errors

You can increase the timeout for each test by specifying a timeout multiplier, which is applied to
the default value of each test's timeout. Any value configured for this flag must be greater than or
equal to 1.0.

To use the timeout multiplier, use the flag --timeout-multiplier when running the tests. For
example:

./devicetester_linux run-suite --suite-id GGQ_1.0.0 --pool-id DevicePool1 --timeout-
multiplier 2.5

For more information, run run-suite --help.

Command not found errors while testing

You need an older version of the OpenSSL library (libssl1.0.0) to run tests on AWS IoT Greengrass
devices. Most current Linux distributions use libssl version 1.0.2 or later (v1.1.0).

For example, on a Raspberry Pi, run the following commands to install the required version of
libssl:

1. wget http://ftp.us.debian.org/debian/pool/main/o/openssl/
libssl1.0.0_1.0.2l-1~bpo8+1_armhf.deb

2. sudo dpkg -i libssl1.0.0_1.0.2l-1~bpo8+1_armhf.deb

Security exception on macOS

When you run IDT on host machine that uses macOS 10.15, the notarization ticket for IDT is not
correctly detected and IDT is blocked from being run. To run IDT, you will need to grant a security
exception to the devicetester_mac_x86-64 executable.

To grant a security exception to the IDT executable

1. Launch System Preferences from the Apple menu.

Resolving IDT for AWS IoT Greengrass errors 1241

AWS IoT Greengrass Developer Guide, Version 1

2. Choose Security & Privacy, then on the General tab, click the lock icon to make changes to
security settings.

3. Look for the message "devicetester_mac_x86-64" was blocked from use because
it is not from an identified developer. and choose Allow Anyway.

4. Accept the security warning.

If you have questions about the IDT support policy, contact AWS Customer Support.

Support policy for AWS IoT Device Tester for AWS IoT
Greengrass V1

AWS IoT Device Tester (IDT) for AWS IoT Greengrass is a downloadable testing framework that
lets you validate and qualify your AWS IoT Greengrass devices for inclusion in the AWS Partner
Device Catalog. We recommend that you use the most recent version of AWS IoT Greengrass and
IDT to test or qualify your devices. For more information, see Supported versions of IDT for AWS
IoT Greengrass V2 in the AWS IoT Greengrass Version 2 Developer Guide.

You can also use any of the supported versions of AWS IoT Greengrass and IDT to test or qualify
your devices. Although you can continue to use unsupported versions of IDT, those versions do not
receive bug fixes or updates.

Important

As of April 4, 2022, AWS IoT Device Tester (IDT) for AWS IoT Greengrass V1 no longer
generates signed qualification reports. You can no longer qualify new AWS IoT Greengrass
V1 devices to list in the AWS Partner Device Catalog through the AWS Device Qualification
Program. While you can't qualify Greengrass V1 devices, you can continue to use IDT for
AWS IoT Greengrass V1 to test your Greengrass V1 devices. We recommend that you use
IDT for AWS IoT Greengrass V2 to qualify and list Greengrass devices in the AWS Partner
Device Catalog.

If you have questions about the support policy, contact AWS Customer Support.

Support policy for AWS IoT Device Tester for AWS IoT Greengrass V1 1242

https://aws.amazon.com/contact-us/
https://aws.amazon.com/partners/dqp/
https://devices.amazonaws.com/
https://devices.amazonaws.com/
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://devices.amazonaws.com/
https://aws.amazon.com/partners/programs/dqp/
https://aws.amazon.com/partners/programs/dqp/
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-tester-for-greengrass-ug.html
https://devices.amazonaws.com/
https://devices.amazonaws.com/
https://aws.amazon.com/contact-us/

AWS IoT Greengrass Developer Guide, Version 1

Troubleshooting AWS IoT Greengrass

This section provides troubleshooting information and possible solutions to help resolve issues
with AWS IoT Greengrass.

For information about AWS IoT Greengrass quotas (limits), see Service Quotas in the Amazon Web
Services General Reference.

AWS IoT Greengrass Core issues

If the AWS IoT Greengrass Core software does not start, try the following general troubleshooting
steps:

• Make sure that you install the binaries that are appropriate for your architecture. For more
information, see AWS IoT Greengrass Core Software.

• Make sure that your core device has local storage available. For more information, see the section
called “Troubleshooting storage issues”.

• Check runtime.log and crash.log for error messages. For more information, see the section
called “Troubleshooting with logs”.

Search the following symptoms and errors to find information to help troubleshoot issues with an
AWS IoT Greengrass core.

Issues

• Error: The configuration file is missing the CaPath, CertPath or KeyPath. The Greengrass daemon
process with [pid = <pid>] died.

• Error: Failed to parse /<greengrass-root>/config/config.json.

• Error: Error occurred while generating TLS config: ErrUnknownURIScheme

• Error: Runtime failed to start: unable to start workers: container test timed out.

• Error: Failed to invoke PutLogEvents on local Cloudwatch, logGroup: /GreengrassSystem/
connection_manager, error: RequestError: send request failed caused by: Post http://<path>/
cloudwatch/logs/: dial tcp <address>: getsockopt: connection refused, response: { }.

• Error: Unable to create server due to: failed to load group: chmod /<greengrass-root>/
ggc/deployment/lambda/arn:aws:lambda:<region>:<account-id>:function:<function-
name>:<version>/<file-name>: no such file or directory.

AWS IoT Greengrass Core issues 1243

https://docs.aws.amazon.com/general/latest/gr/greengrass.html#limits_greengrass

AWS IoT Greengrass Developer Guide, Version 1

• The AWS IoT Greengrass Core software doesn't start after you changed from running with no
containerization to running in a Greengrass container.

• Error: Spool size should be at least 262144 bytes.

• Error: [ERROR]-Cloud messaging error: Error occurred while trying to publish a message.
{"errorString": "operation timed out"}

• Error: container_linux.go:344: starting container process caused "process_linux.go:424: container
init caused \"rootfs_linux.go:64: mounting \\\"/greengrass/ggc/socket/greengrass_ipc.sock
\\\" to rootfs \\\"/greengrass/ggc/packages/<version>/rootfs/merged\\\" at \\\"/
greengrass_ipc.sock\\\" caused \\\"stat /greengrass/ggc/socket/greengrass_ipc.sock: permission
denied\\\"\"".

• Error: Greengrass daemon running with PID: <process-id>. Some system components failed to
start. Check 'runtime.log' for errors.

• Device shadow does not sync with the cloud.

• ERROR: unable to accept TCP connection. accept tcp [::]:8000: accept4: too many open files.

• Error: Runtime execution error: unable to start lambda container. container_linux.go:259:
starting container process caused "process_linux.go:345: container init caused
\"rootfs_linux.go:50: preparing rootfs caused \\\"permission denied\\\"\"".

• Warning: [WARN]-[5]GK Remote: Error retrieving public key data: ErrPrincipalNotConfigured:
private key for MqttCertificate is not set.

• Error: Permission denied when attempting to use role arn:aws:iam::<account-id>:role/<role-
name> to access s3 url https://<region>-greengrass-updates.s3.<region>.amazonaws.com/core/
<architecture>/greengrass-core-<distribution-version>.tar.gz.

• The AWS IoT Greengrass core is configured to use a network proxy and your Lambda function
can't make outgoing connections.

• The core is in an infinite connect-disconnect loop. The runtime.log file contains a continuous
series of connect and disconnect entries.

• Error: unable to start lambda container. container_linux.go:259: starting container process
caused "process_linux.go:345: container init caused \"rootfs_linux.go:62: mounting \\\"proc\\\"
to rootfs \\\"

• [ERROR]-runtime execution error: unable to start lambda container. {"errorString": "failed to
initialize container mounts: failed to mask greengrass root in overlay upper dir: failed to create
mask device at directory <ggc-path>: file exists"}

• [ERROR]-Deployment failed. {"deploymentId": "<deployment-id>", "errorString": "container test
process with pid <pid> failed: container process state: exit status 1"}

AWS IoT Greengrass Core issues 1244

AWS IoT Greengrass Developer Guide, Version 1

• Error: [ERROR]-runtime execution error: unable to start lambda container. {"errorString": "failed
to initialize container mounts: failed to create overlay fs for container: mounting overlay at /
greengrass/ggc/packages/<ggc-version>/rootfs/merged failed: failed to mount with args
source=\"no_source\" dest=\"/greengrass/ggc/packages/<ggc-version>/rootfs/merged\"
fstype=\"overlay\" flags=\"0\" data=\"lowerdir=/greengrass/ggc/packages/<ggc-version>/
dns:/,upperdir=/greengrass/ggc/packages/<ggc-version>/rootfs/upper,workdir=/greengrass/
ggc/packages/<ggc-version>/rootfs/work\": too many levels of symbolic links"}

• Error: [DEBUG]-Failed to get routes. Discarding message.

• Error: [Errno 24] Too many open <lambda-function>,[Errno 24] Too many open files

• Error: ds server failed to start listening to socket: listen unix <ggc-path>/ggc/socket/
greengrass_ipc.sock: bind: invalid argument

• [INFO] (Copier) aws.greengrass.StreamManager: stdout. Caused by:
com.fasterxml.jackson.databind.JsonMappingException: Instant exceeds minimum or maximum
instant

• GPG error: https://dnw9lb6lzp2d8.cloudfront.net stable InRelease: The following signatures
were invalid: EXPKEYSIG 68D644ABD2327D47 AWS Greengrass Master Key

Error: The configuration file is missing the CaPath, CertPath or
KeyPath. The Greengrass daemon process with [pid = <pid>] died.

Solution: You might see this error in crash.log when the AWS IoT Greengrass Core software does
not start. This can occur if you're running v1.6 or earlier. Do one of the following:

• Upgrade to v1.7 or later. We recommend that you always run the latest version of the AWS IoT
Greengrass Core software. For download information, see AWS IoT Greengrass Core Software.

• Use the correct config.json format for your AWS IoT Greengrass Core software version. For
more information, see the section called “AWS IoT Greengrass core configuration file”.

Note

To find which version of the AWS IoT Greengrass Core software is installed on the core
device, run the following commands in your device terminal.

cd /greengrass-root/ggc/core/

Error: The configuration file is missing the CaPath, CertPath or KeyPath. The Greengrass daemon
process with [pid = <pid>] died.

1245

AWS IoT Greengrass Developer Guide, Version 1

sudo ./greengrassd --version

Error: Failed to parse /<greengrass-root>/config/config.json.

Solution: You might see this error when the AWS IoT Greengrass Core software does not start.
Make sure the Greengrass configuration file is using valid JSON format.

Open config.json (located in /greengrass-root/config) and validate the JSON format. For
example, make sure that commas are used correctly.

Error: Error occurred while generating TLS config:
ErrUnknownURIScheme

Solution: You might see this error when the AWS IoT Greengrass Core software does not start.
Make sure the properties in the crypto section of the Greengrass configuration file are valid. The
error message should provide more information.

Open config.json (located in /greengrass-root/config) and check the crypto section.
For example, certificate and key paths must use the correct URI format and point to the correct
location.

Error: Runtime failed to start: unable to start workers: container test
timed out.

Solution: You might see this error when the AWS IoT Greengrass Core software does not start. Set
the postStartHealthCheckTimeout property in the Greengrass configuration file. This optional
property configures the amount of time (in milliseconds) that the Greengrass daemon waits for the
post-start health check to finish. The default value is 30 seconds (30000 ms).

Open config.json (located in /greengrass-root/config). In the runtime object, add the
postStartHealthCheckTimeout property and set the value to a number greater than 30000.
Add a comma where needed to create a valid JSON document. For example:

Error: Failed to parse /<greengrass-root>/config/config.json. 1246

AWS IoT Greengrass Developer Guide, Version 1

 ...
 "runtime" : {
 "cgroup" : {
 "useSystemd" : "yes"
 },
 "postStartHealthCheckTimeout" : 40000
 },
 ...

Error: Failed to invoke PutLogEvents on local Cloudwatch, logGroup: /
GreengrassSystem/connection_manager, error: RequestError: send
request failed caused by: Post http://<path>/cloudwatch/logs/: dial
tcp <address>: getsockopt: connection refused, response: { }.

Solution: You might see this error when the AWS IoT Greengrass Core software does not start. This
can occur if you're running AWS IoT Greengrass on a Raspberry Pi and the required memory setup
has not been completed. For more information, see this step.

Error: Unable to create server due to: failed to load group:
chmod /<greengrass-root>/ggc/deployment/lambda/
arn:aws:lambda:<region>:<account-id>:function:<function-
name>:<version>/<file-name>: no such file or directory.

Solution: You might see this error when the AWS IoT Greengrass Core software does not start.
If you deployed a Lambda executable to the core, check the function's Handler property in the
group.json file (located in /greengrass-root/ggc/deployment/group). If the handler is not
the exact name of your compiled executable, replace the contents of the group.json file with an
empty JSON object ({}), and run the following commands to start AWS IoT Greengrass:

cd /greengrass/ggc/core/
sudo ./greengrassd start

Error: Failed to invoke PutLogEvents on local Cloudwatch, logGroup: /GreengrassSystem/
connection_manager, error: RequestError: send request failed caused by: Post http://<path>/
cloudwatch/logs/: dial tcp <address>: getsockopt: connection refused, response: { }.

1247

AWS IoT Greengrass Developer Guide, Version 1

Then, use the AWS Lambda API to update the function configuration's handler parameter, publish
a new function version, and update the alias. For more information, see AWS Lambda function
versioning and aliases.

Assuming that you added the function to your Greengrass group by alias (recommended), you can
now redeploy your group. (If not, you must point to the new function version or alias in your group
definition and subscriptions before you deploy the group.)

The AWS IoT Greengrass Core software doesn't start after you changed
from running with no containerization to running in a Greengrass
container.

Solution: Check that you are not missing any container dependencies.

Error: Spool size should be at least 262144 bytes.

Solution: You might see this error when the AWS IoT Greengrass Core software does not start.
Open the group.json file (located in /greengrass-root/ggc/deployment/group), replace
the contents of the file with an empty JSON object ({}), and run the following commands to start
AWS IoT Greengrass:

cd /greengrass/ggc/core/
sudo ./greengrassd start

Then follow the steps in the the section called “To cache messages in local storage” procedure. For
the GGCloudSpooler function, make sure to specify a GG_CONFIG_MAX_SIZE_BYTES value that's
greater than or equal to 262144.

Error: [ERROR]-Cloud messaging error: Error occurred while trying to
publish a message. {"errorString": "operation timed out"}

Solution: You might see this error in GGCloudSpooler.log when the Greengrass core is unable
to send MQTT messages to AWS IoT Core. This can occur if the core environment has limited
bandwidth and high latency. If you're running AWS IoT Greengrass v1.10.2 or later, try increasing

The AWS IoT Greengrass Core software doesn't start after you changed from running with no
containerization to running in a Greengrass container.

1248

https://docs.aws.amazon.com/cli/latest/reference/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
https://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html

AWS IoT Greengrass Developer Guide, Version 1

the mqttOperationTimeout value in the config.json file. If the property is not present, add it to
the coreThing object. For example:

{
 "coreThing": {
 "mqttOperationTimeout": 10,
 "caPath": "root-ca.pem",
 "certPath": "hash.cert.pem",
 "keyPath": "hash.private.key",
 ...
 },
 ...
}

The default value is 5 and the minimum value is 5.

Error: container_linux.go:344: starting container process caused
"process_linux.go:424: container init caused \"rootfs_linux.go:64:
mounting \\\"/greengrass/ggc/socket/greengrass_ipc.sock\\\" to
rootfs \\\"/greengrass/ggc/packages/<version>/rootfs/merged\\\" at
\\\"/greengrass_ipc.sock\\\" caused \\\"stat /greengrass/ggc/socket/
greengrass_ipc.sock: permission denied\\\"\"".

Solution: You might see this error in runtime.log when the AWS IoT Greengrass Core software
does not start. This occurs if your umask is higher than 0022. To resolve this issue, you must set the
umask to 0022 or lower. A value of 0022 grants everyone read permission to new files by default.

Error: Greengrass daemon running with PID: <process-id>. Some
system components failed to start. Check 'runtime.log' for errors.

Solution: You might see this error when the AWS IoT Greengrass Core software does not start.
Check runtime.log and crash.log for specific error information. For more information, see the
section called “Troubleshooting with logs”.

Error: container_linux.go:344: starting container process caused "process_linux.go:424: container init
caused \"rootfs_linux.go:64: mounting \\\"/greengrass/ggc/socket/greengrass_ipc.sock\\\" to rootfs \
\\"/greengrass/ggc/packages/<version>/rootfs/merged\\\" at \\\"/greengrass_ipc.sock\\\" caused \\
\"stat /greengrass/ggc/socket/greengrass_ipc.sock: permission denied\\\"\"".

1249

AWS IoT Greengrass Developer Guide, Version 1

Device shadow does not sync with the cloud.

Solution: Make sure that AWS IoT Greengrass has permissions for iot:UpdateThingShadow
and iot:GetThingShadow actions in the Greengrass service role. If the service role uses the
AWSGreengrassResourceAccessRolePolicy managed policy, these permissions are included
by default.

See Troubleshooting shadow synchronization timeout issues.

ERROR: unable to accept TCP connection. accept tcp [::]:8000: accept4:
too many open files.

Solution: You might see this error in the greengrassd script output. This can occur if the file
descriptor limit for the AWS IoT Greengrass Core software has reached the threshold and must be
increased.

Use the following command and then restart the AWS IoT Greengrass Core software.

ulimit -n 2048

Note

In this example, the limit is increased to 2048. Choose a value appropriate for your use
case.

Error: Runtime execution error: unable to start lambda container.
container_linux.go:259: starting container process caused
"process_linux.go:345: container init caused \"rootfs_linux.go:50:
preparing rootfs caused \\\"permission denied\\\"\"".

Solution: Either install AWS IoT Greengrass directly under the root directory, or make sure that the
directory where the AWS IoT Greengrass Core software is installed and its parent directories have
execute permissions for everyone.

Device shadow does not sync with the cloud. 1250

AWS IoT Greengrass Developer Guide, Version 1

Warning: [WARN]-[5]GK Remote: Error retrieving public key data:
ErrPrincipalNotConfigured: private key for MqttCertificate is not set.

Solution: AWS IoT Greengrass uses a common handler to validate the properties of all security
principals. This warning in runtime.log is expected unless you specified a custom private key for
the local MQTT server. For more information, see the section called “Security principals”.

Error: Permission denied when attempting to use role
arn:aws:iam::<account-id>:role/<role-name> to access s3 url https://
<region>-greengrass-updates.s3.<region>.amazonaws.com/core/
<architecture>/greengrass-core-<distribution-version>.tar.gz.

Solution: You might see this error when an over-the-air (OTA) update fails. In the signer role policy,
add the target AWS Region as a Resource. This signer role is used to presign the S3 URL for the
AWS IoT Greengrass software update. For more information, see S3 URL signer role.

The AWS IoT Greengrass core is configured to use a network proxy and
your Lambda function can't make outgoing connections.

Solution: Depending on your runtime and the executables used by the Lambda function to
create connections, you might also receive connection timeout errors. Make sure your Lambda
functions use the appropriate proxy configuration to connect through the network proxy. AWS
IoT Greengrass passes the proxy configuration to user-defined Lambda functions through the
http_proxy, https_proxy, and no_proxy environment variables. They can be accessed as
shown in the following Python snippet.

import os
print(os.environ['http_proxy'])

Use the same case as the variable defined in your environment, for example, all lower case
http_proxy or all upper case HTTP_PROXY. For these variables, AWS IoT Greengrass supports
both.

Warning: [WARN]-[5]GK Remote: Error retrieving public key data: ErrPrincipalNotConfigured: private
key for MqttCertificate is not set.

1251

AWS IoT Greengrass Developer Guide, Version 1

Note

Most common libraries used to make connections (such as boto3 or cURL and python
requests packages) use these environment variables by default.

The core is in an infinite connect-disconnect loop. The runtime.log file
contains a continuous series of connect and disconnect entries.

Solution: This can happen when another device is hard-coded to use the core thing name as the
client ID for MQTT connections to AWS IoT. Simultaneous connections in the same AWS Region and
AWS account must use unique client IDs. By default, the core uses the core thing name as the client
ID for these connections.

To resolve this issue, you can change the client ID used by the other device for the connection
(recommended) or override the default value for the core.

To override the default client ID for the core device

1. Run the following command to stop the Greengrass daemon:

cd /greengrass-root/ggc/core/
sudo ./greengrassd stop

2. Open greengrass-root/config/config.json for editing as the su user.

3. In the coreThing object, add the coreClientId property, and set the value to your custom
client ID. The value must be between 1 and 128 characters. It must be unique in the current
AWS Region for the AWS account.

"coreClientId": "MyCustomClientId"

4. Start the daemon.

cd /greengrass-root/ggc/core/
sudo ./greengrassd start

The core is in an infinite connect-disconnect loop. The runtime.log file contains a continuous series of
connect and disconnect entries.

1252

AWS IoT Greengrass Developer Guide, Version 1

Error: unable to start lambda container. container_linux.go:259:
starting container process caused "process_linux.go:345: container init
caused \"rootfs_linux.go:62: mounting \\\"proc\\\" to rootfs \\\"

Solution: On some platforms, you might see this error in runtime.log when AWS IoT Greengrass
tries to mount the /proc file system to create a Lambda container. Or, you might see similar
errors, such as operation not permitted or EPERM. These errors can occur even if tests run on
the platform by the dependency checker script pass.

Try one of the following possible solutions:

• Enable the CONFIG_DEVPTS_MULTIPLE_INSTANCES option in the Linux kernel.

• Set the /proc mount options on the host to rw,relatim only.

• Upgrade the Linux kernel to 4.9 or later.

Note

This issue is not related to mounting /proc for local resource access.

[ERROR]-runtime execution error: unable to start lambda container.
{"errorString": "failed to initialize container mounts: failed to mask
greengrass root in overlay upper dir: failed to create mask device at
directory <ggc-path>: file exists"}

Solution: You might see this error in runtime.log when the deployment fails. This error occurs if a
Lambda function in the AWS IoT Greengrass group cannot access the /usr directory in the core's
file system.

To resolve this issue, add a local volume resource to the group and then deploy the group. This
resource must:

Error: unable to start lambda container. container_linux.go:259: starting container process caused
"process_linux.go:345: container init caused \"rootfs_linux.go:62: mounting \\\"proc\\\" to rootfs \\\"

1253

AWS IoT Greengrass Developer Guide, Version 1

• Specify /usr as the Source path and Destination path.

• Automatically add OS group permissions of the Linux group that owns the resource.

• Be affiliated with the Lambda function and allow read-only access.

[ERROR]-Deployment failed. {"deploymentId": "<deployment-id>",
"errorString": "container test process with pid <pid> failed: container
process state: exit status 1"}

Solution: You might see this error in runtime.log when the deployment fails. This error occurs if a
Lambda function in the AWS IoT Greengrass group cannot access the /usr directory in the core's
file system.

You can confirm that this is the case by checking GGCanary.log for additional errors. If the
Lambda function cannot access the /usr directory, GGCanary.log will contain the following
error:

[ERROR]-standard_init_linux.go:207: exec user process caused "no such file or
 directory"

To resolve this issue, add a local volume resource to the group and then deploy the group. This
resource must:

• Specify /usr as the Source path and Destination path.

• Automatically add OS group permissions of the Linux group that owns the resource.

• Be affiliated with the Lambda function and allow read-only access.

[ERROR]-Deployment failed. {"deploymentId": "<deployment-id>", "errorString": "container test process
with pid <pid> failed: container process state: exit status 1"}

1254

AWS IoT Greengrass Developer Guide, Version 1

Error: [ERROR]-runtime execution error: unable to start lambda
container. {"errorString": "failed to initialize container mounts:
failed to create overlay fs for container: mounting overlay at /
greengrass/ggc/packages/<ggc-version>/rootfs/merged failed: failed
to mount with args source=\"no_source\" dest=\"/greengrass/ggc/
packages/<ggc-version>/rootfs/merged\" fstype=\"overlay\" flags=
\"0\" data=\"lowerdir=/greengrass/ggc/packages/<ggc-version>/
dns:/,upperdir=/greengrass/ggc/packages/<ggc-version>/rootfs/
upper,workdir=/greengrass/ggc/packages/<ggc-version>/rootfs/work
\": too many levels of symbolic links"}

Solution: You might see this error in the runtime.log file when the AWS IoT Greengrass Core
software doesn't start. This issue might be more common on Debian operating systems.

To resolve this issue, do the following:

1. Upgrade the AWS IoT Greengrass Core software to v1.9.3 or later. This should automatically
resolve this issue.

2. If you still get this error after you upgrade the AWS IoT Greengrass Core software, set the
system.useOverlayWithTmpfs property to true in the config.json file.

Example Example

{
 "system": {
 "useOverlayWithTmpfs": true
 },
 "coreThing": {
 "caPath": "root-ca.pem",
 "certPath": "cloud.pem.crt",
 "keyPath": "cloud.pem.key",
 ...
 },
 ...
}

Error: [ERROR]-runtime execution error: unable to start lambda container. {"errorString": "failed to
initialize container mounts: failed to create overlay fs for container: mounting overlay at /greengrass/
ggc/packages/<ggc-version>/rootfs/merged failed: failed to mount with args source=\"no_source
\" dest=\"/greengrass/ggc/packages/<ggc-version>/rootfs/merged\" fstype=\"overlay\" flags=\"0\"
data=\"lowerdir=/greengrass/ggc/packages/<ggc-version>/dns:/,upperdir=/greengrass/ggc/packages/
<ggc-version>/rootfs/upper,workdir=/greengrass/ggc/packages/<ggc-version>/rootfs/work\": too
many levels of symbolic links"}

1255

AWS IoT Greengrass Developer Guide, Version 1

Note

Your AWS IoT Greengrass Core software version is shown in the error message. To find your
Linux kernel version, run uname -r.

Error: [DEBUG]-Failed to get routes. Discarding message.

Solution: Check the subscriptions in your group and make sure that the subscription listed in the
[DEBUG] message exists.

Error: [Errno 24] Too many open <lambda-function>,[Errno 24] Too
many open files

Solution: You might see this error in your Lambda function log file if the function instantiates
StreamManagerClient in the function handler. We recommend that you create the client outside
the handler. For more information, see the section called “Use StreamManagerClient to work with
streams”.

Error: ds server failed to start listening to socket: listen unix <ggc-
path>/ggc/socket/greengrass_ipc.sock: bind: invalid argument

Solution: You might see this error when the AWS IoT Greengrass Core software doesn't start. This
error occurs when the AWS IoT Greengrass Core software is installed to a folder with a long file
path. Reinstall the AWS IoT Greengrass Core software to a folder with a file path that has fewer
than 79 bytes, if you don't use a write directory, or 83 bytes, if you do use a write directory.

[INFO] (Copier) aws.greengrass.StreamManager: stdout. Caused by:
com.fasterxml.jackson.databind.JsonMappingException: Instant
exceeds minimum or maximum instant

When you upgrade AWS IoT Greengrass core software to v1.11.3, you might see the following error
in the stream manager logs if stream manager fails to start.

Error: [DEBUG]-Failed to get routes. Discarding message. 1256

AWS IoT Greengrass Developer Guide, Version 1

2021-07-16T00:54:58.568Z [INFO] (Copier) aws.greengrass.StreamManager:
 stdout. Caused by: com.fasterxml.jackson.databind.JsonMappingException:
 Instant exceeds minimum or maximum instant (through reference chain:
 com.amazonaws.iot.greengrass.streammanager.export.PersistedSuccessExportStatesV1["lastExportTime"]).
 {scriptName=services.aws.greengrass.StreamManager.lifecycle.startup.script,
 serviceName=aws.greengrass.StreamManager, currentState=STARTING}
2021-07-16T00:54:58.579Z [INFO] (Copier) aws.greengrass.StreamManager: stdout.
 Caused by: java.time.DateTimeException: Instant exceeds minimum or maximum instant.
 {scriptName=services.aws.greengrass.StreamManager.lifecycle.startup.script,
 serviceName=aws.greengrass.StreamManager, currentState=STARTING}

If you're using a version of AWS IoT Greengrass core software older than v1.11.3, and you want to
upgrade to a later version, use an OTA update to upgrade to v1.11.4.

GPG error: https://dnw9lb6lzp2d8.cloudfront.net stable InRelease: The
following signatures were invalid: EXPKEYSIG 68D644ABD2327D47
AWS Greengrass Master Key

When you run apt update on a device where you installed the AWS IoT Greengrass core software
from an APT repository, you might see the following error.

Err:4 https://dnw9lb6lzp2d8.cloudfront.net stable InRelease
 The following signatures were invalid: EXPKEYSIG 68D644ABD2327D47 AWS Greengrass
 Master Key
Reading package lists... Done
W: GPG error: https://dnw9lb6lzp2d8.cloudfront.net stable InRelease: The following
 signatures were invalid: EXPKEYSIG 68D644ABD2327D47 AWS Greengrass Master Key

This error occurs because AWS IoT Greengrass no longer offers the option to install or update the
AWS IoT Greengrass core software from the APT repository. To successfully run apt update,
remove the AWS IoT Greengrass repository from the device's sources list.

sudo rm /etc/apt/sources.list.d/greengrass.list
sudo apt update

Deployment issues

Use the following information to help troubleshoot deployment issues.

GPG error: https://dnw9lb6lzp2d8.cloudfront.net stable InRelease: The following signatures were
invalid: EXPKEYSIG 68D644ABD2327D47 AWS Greengrass Master Key

1257

AWS IoT Greengrass Developer Guide, Version 1

Issues

• Your current deployment does not work and you want to revert to a previous working
deployment.

• You see a 403 Forbidden error on deployment in the logs.

• A ConcurrentDeployment error occurs when you run the create-deployment command for the
first time.

• Error: Greengrass is not authorized to assume the Service Role associated with this account, or
the error: Failed: TES service role is not associated with this account.

• Error: unable to execute download step in deployment. error while downloading: error while
downloading the Group definition file: ... x509: certificate has expired or is not yet valid

• The deployment doesn't finish.

• Error: Unable to find java or java8 executables, or the error: Deployment <deployment-id> of
type NewDeployment for group <group-id> failed error: worker with <worker-id> failed to
initialize with reason Installed Java version must be greater than or equal to 8

• The deployment doesn't finish, and runtime.log contains multiple "wait 1s for container to stop"
entries.

• The deployment doesn't finish, and runtime.log contains "[ERROR]-Greengrass deployment
error: failed to report deployment status back to cloud {"deploymentId": "<deployment-id>",
"errorString": "Failed to initiate PUT, endpoint: https://<deployment-status>, error: Put https://
<deployment-status>: proxyconnect tcp: x509: certificate signed by unknown authority"}"

• Error: Deployment <deployment-id> of type NewDeployment for group <group-id> failed error:
Error while processing. group config is invalid: 112 or [119 0] don't have rw permission on the
file: <path>.

• Error: <list-of-function-arns> are configured to run as root but Greengrass is not configured to
run Lambda functions with root permissions.

• Error: Deployment <deployment-id> of type NewDeployment for group <group-id> failed error:
Greengrass deployment error: unable to execute download step in deployment. error while
processing: unable to load the group file downloaded: could not find UID based on user name,
userName: ggc_user: user: unknown user ggc_user.

• Error: [ERROR]-runtime execution error: unable to start lambda container. {"errorString": "failed
to initialize container mounts: failed to mask greengrass root in overlay upper dir: failed to create
mask device at directory <ggc-path>: file exists"}

Deployment issues 1258

AWS IoT Greengrass Developer Guide, Version 1

• Error: Deployment <deployment-id> of type NewDeployment for group <group-id> failed
error: process start failed: container_linux.go:259: starting container process caused
"process_linux.go:250: running exec setns process for init caused \"wait: no child processes\"".

• Error: [WARN]-MQTT[client] dial tcp: lookup <host-prefix>-ats.iot.<region>.amazonaws.com: no
such host ... [ERROR]-Greengrass deployment error: failed to report deployment status back to
cloud ... net/http: request canceled while waiting for connection (Client.Timeout exceeded while
awaiting headers)

Your current deployment does not work and you want to revert to a
previous working deployment.

Solution: Use the AWS IoT console or AWS IoT Greengrass API to redeploy a previous working
deployment. This deploys the corresponding group version to your core device.

To redeploy a deployment (console)

1. On the group configuration page, choose the Deployments tab. This page displays the
deployment history for the group, including the date and time, group version, and status of
each deployment attempt.

2. Find the row that contains the deployment you want to redeploy. Select the deployment you
want to redeploy and choose Redeploy.

To redeploy a deployment (CLI)

1. Use ListDeployments to find the ID of the deployment you want to redeploy. For example:

Your current deployment does not work and you want to revert to a previous working deployment. 1259

https://docs.aws.amazon.com/greengrass/v1/apireference/listdeployments-get.html

AWS IoT Greengrass Developer Guide, Version 1

aws greengrass list-deployments --group-id 74d0b623-c2f2-4cad-9acc-ef92f61fcaf7

The command returns the list of deployments for the group.

{
 "Deployments": [
 {
 "DeploymentId": "8d179428-f617-4a77-8a0c-3d61fb8446a6",
 "DeploymentType": "NewDeployment",
 "GroupArn": "arn:aws:greengrass:us-west-2:123456789012:/greengrass/
groups/74d0b623-c2f2-4cad-9acc-ef92f61fcaf7/versions/8dd1d899-4ac9-4f5d-
afe4-22de086efc62",
 "CreatedAt": "2019-07-01T20:56:49.641Z"
 },
 {
 "DeploymentId": "f8e4c455-8ac4-453a-8252-512dc3e9c596",
 "DeploymentType": "NewDeployment",
 "GroupArn": "arn:aws:greengrass:us-west-2::123456789012:/greengrass/
groups/74d0b623-c2f2-4cad-9acc-ef92f61fcaf7/versions/4ad66e5d-3808-446b-940a-
b1a788898382",
 "CreatedAt": "2019-07-01T20:41:47.048Z"
 },
 {
 "DeploymentId": "e4aca044-bbd8-41b4-b697-930ca7c40f3e",
 "DeploymentType": "NewDeployment",
 "GroupArn": "arn:aws:greengrass:us-west-2::123456789012:/greengrass/
groups/74d0b623-c2f2-4cad-9acc-ef92f61fcaf7/versions/1f3870b6-850e-4c97-8018-
c872e17b235b",
 "CreatedAt": "2019-06-18T15:16:02.965Z"
 }
]
}

Note

These AWS CLI commands use example values for the group and deployment ID. When
you run the commands, make sure to replace the example values.

2. Use CreateDeployment to redeploy the target deployment. Set the deployment type to
Redeployment. For example:

Your current deployment does not work and you want to revert to a previous working deployment. 1260

https://docs.aws.amazon.com/greengrass/v1/apireference/createdeployment-post.html

AWS IoT Greengrass Developer Guide, Version 1

aws greengrass create-deployment --deployment-type Redeployment \
 --group-id 74d0b623-c2f2-4cad-9acc-ef92f61fcaf7 \
 --deployment-id f8e4c455-8ac4-453a-8252-512dc3e9c596

The command returns the ARN and ID of the new deployment.

{
 "DeploymentId": "f9ed02b7-c28e-4df6-83b1-e9553ddd0fc2",
 "DeploymentArn": "arn:aws:greengrass:us-west-2::123456789012:/greengrass/
groups/74d0b623-c2f2-4cad-9acc-ef92f61fcaf7/deployments/f9ed02b7-c28e-4df6-83b1-
e9553ddd0fc2"
}

3. Use GetDeploymentStatus to get the status of the deployment.

You see a 403 Forbidden error on deployment in the logs.

Solution: Make sure the policy of the AWS IoT Greengrass core in the cloud includes
"greengrass:*" as an allowed action.

A ConcurrentDeployment error occurs when you run the create-
deployment command for the first time.

Solution: A deployment might be in progress. You can run get-deployment-status to see if a
deployment was created. If not, try creating the deployment again.

Error: Greengrass is not authorized to assume the Service Role
associated with this account, or the error: Failed: TES service role is not
associated with this account.

Solution: You might see this error when the deployment fails. Check that a Greengrass service
role is associated with your AWS account in the current AWS Region. For more information, see

You see a 403 Forbidden error on deployment in the logs. 1261

https://docs.aws.amazon.com/greengrass/v1/apireference/getdeploymentstatus-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getdeploymentstatus-get.html

AWS IoT Greengrass Developer Guide, Version 1

the section called “Manage the service role (CLI)” or the section called “Manage the service role
(console)”.

Error: unable to execute download step in deployment. error while
downloading: error while downloading the Group definition file: ...
x509: certificate has expired or is not yet valid

Solution: You might see this error in runtime.log when the deployment fails. If you receive a
Deployment failed error that contains the message x509: certificate has expired
or is not yet valid, check the device clock. TLS and X.509 certificates provide a secure
foundation for building IoT systems, but they require accurate times on servers and clients. IoT
devices should have the correct time (within 15 minutes) before they attempt to connect to AWS
IoT Greengrass or other TLS services that use server certificates. For more information, see Using
Device Time to Validate AWS IoT Server Certificates on The Internet of Things on AWS Official Blog.

The deployment doesn't finish.

Solution: Do the following:

• Make sure that the AWS IoT Greengrass daemon is running on your core device. In your core
device terminal, run the following commands to check whether the daemon is running and start
it, if needed.

1. To check whether the daemon is running:

ps aux | grep -E 'greengrass.*daemon'

If the output contains a root entry for /greengrass/ggc/packages/1.11.6/bin/
daemon, then the daemon is running.

The version in the path depends on the AWS IoT Greengrass Core software version that's
installed on your core device.

2. To start the daemon:

cd /greengrass/ggc/core/

Error: unable to execute download step in deployment. error while downloading: error while
downloading the Group definition file: ... x509: certificate has expired or is not yet valid

1262

https://aws.amazon.com/blogs/iot/using-device-time-to-validate-aws-iot-server-certificates/
https://aws.amazon.com/blogs/iot/using-device-time-to-validate-aws-iot-server-certificates/

AWS IoT Greengrass Developer Guide, Version 1

sudo ./greengrassd start

• Make sure that your core device is connected and the core connection endpoints are configured
properly.

Error: Unable to find java or java8 executables, or the error:
Deployment <deployment-id> of type NewDeployment for group
<group-id> failed error: worker with <worker-id> failed to initialize
with reason Installed Java version must be greater than or equal to 8

Solution: If stream manager is enabled for the AWS IoT Greengrass core, you must install the
Java 8 runtime on the core device before you deploy the group. For more information, see the
requirements for stream manager. Stream manager is enabled by default when you use the Default
Group creation workflow in the AWS IoT console to create a group.

Or, disable stream manager and then deploy the group. For more information, see the section
called “Configure settings (console)”.

The deployment doesn't finish, and runtime.log contains multiple "wait
1s for container to stop" entries.

Solution: Run the following commands in your core device terminal to restart the AWS IoT
Greengrass daemon.

cd /greengrass/ggc/core/
sudo ./greengrassd stop
sudo ./greengrassd start

Error: Unable to find java or java8 executables, or the error: Deployment <deployment-id> of type
NewDeployment for group <group-id> failed error: worker with <worker-id> failed to initialize with
reason Installed Java version must be greater than or equal to 8

1263

AWS IoT Greengrass Developer Guide, Version 1

The deployment doesn't finish, and runtime.log contains "[ERROR]-
Greengrass deployment error: failed to report deployment status back
to cloud {"deploymentId": "<deployment-id>", "errorString": "Failed
to initiate PUT, endpoint: https://<deployment-status>, error: Put
https://<deployment-status>: proxyconnect tcp: x509: certificate
signed by unknown authority"}"

Solution: You might see this error in runtime.log when the Greengrass core is configured to use
an HTTPS proxy connection and the proxy server certificate chain isn't trusted on the system. To
try to resolve this issue, add the certificate chain to the root CA certificate. The Greengrass core
adds the certificates from this file to the certificate pool used for TLS authentication in HTTPS and
MQTT connections with AWS IoT Greengrass.

The following example shows a proxy server CA certificate added to the root CA certificate file:

My proxy CA
-----BEGIN CERTIFICATE-----
MIIEFTCCAv2gAwIQWgIVAMHSAzWG/5YVRYtRQOxXUTEpHuEmApzGCSqGSIb3DQEK
\nCwUAhuL9MQswCQwJVUzEPMAVUzEYMBYGA1UECgwP1hem9uLmNvbSBJbmMuMRww
... content of proxy CA certificate ...
+vHIRlt0e5JAm5\noTIZGoFbK82A0/nO7f/t5PSIDAim9V3Gc3pSXxCCAQoFYnui
GaPUlGk1gCE84a0X\n7Rp/lND/PuMZ/s8YjlkY2NmYmNjMCAXDTE5MTEyN2cM216
gJMIADggEPADf2/m45hzEXAMPLE=
-----END CERTIFICATE-----

Amazon Root CA 1
-----BEGIN CERTIFICATE-----
MIIDQTCCAimgF6AwIBAgITBmyfz/5mjAo54vB4ikPmljZKyjANJmApzyMZFo6qBg
ADA5MQswCQYDVQQGEwJVUzEPMA0tMVT8QtPHRh8jrdkGA1UEChMGDV3QQDExBBKW
... content of root CA certificate ...
o/ufQJQWUCyziar1hem9uMRkwFwYVPSHCb2XV4cdFyQzR1KldZwgJcIQ6XUDgHaa
5MsI+yMRQ+hDaXJiobldXgjUka642M4UwtBV8oK2xJNDd2ZhwLnoQdeXeGADKkpy
rqXRfKoQnoZsG4q5WTP46EXAMPLE
-----END CERTIFICATE-----

By default, the root CA certificate file is located in /greengrass-root/certs/root.ca.pem. To
find the location on your core device, check the crypto.caPath property in config.json.

The deployment doesn't finish, and runtime.log contains "[ERROR]-Greengrass deployment error:
failed to report deployment status back to cloud {"deploymentId": "<deployment-id>", "errorString":
"Failed to initiate PUT, endpoint: https://<deployment-status>, error: Put https://<deployment-status>:
proxyconnect tcp: x509: certificate signed by unknown authority"}"

1264

AWS IoT Greengrass Developer Guide, Version 1

Note

greengrass-root represents the path where the AWS IoT Greengrass Core software is
installed on your device. Typically, this is the /greengrass directory.

Error: Deployment <deployment-id> of type NewDeployment for group
<group-id> failed error: Error while processing. group config is invalid:
112 or [119 0] don't have rw permission on the file: <path>.

Solution: Make sure that the owner group of the <path> directory has read and write permissions
to the directory.

Error: <list-of-function-arns> are configured to run as root but
Greengrass is not configured to run Lambda functions with root
permissions.

Solution: You might see this error in runtime.log when the deployment fails. Make sure that
you have configured AWS IoT Greengrass to allow Lambda functions to run with root permissions.
Either change the value of allowFunctionsToRunAsRoot in greengrass_root/config/
config.json to yes or change the Lambda function to run as another user/group. For more
information, see the section called “Running a Lambda function as root”.

Error: Deployment <deployment-id> of type NewDeployment for
group <group-id> failed error: Greengrass deployment error: unable to
execute download step in deployment. error while processing: unable
to load the group file downloaded: could not find UID based on user
name, userName: ggc_user: user: unknown user ggc_user.

Solution: If the default access identity of the AWS IoT Greengrass group uses the standard
system accounts, the ggc_user user and ggc_group group must be present on the device. For

Error: Deployment <deployment-id> of type NewDeployment for group <group-id> failed error: Error
while processing. group config is invalid: 112 or [119 0] don't have rw permission on the file: <path>.

1265

AWS IoT Greengrass Developer Guide, Version 1

instructions that show how to add the user and group, see this step. Make sure to enter the names
exactly as shown.

Error: [ERROR]-runtime execution error: unable to start lambda
container. {"errorString": "failed to initialize container mounts: failed
to mask greengrass root in overlay upper dir: failed to create mask
device at directory <ggc-path>: file exists"}

Solution: You might see this error in runtime.log when the deployment fails. This error occurs if
a Lambda function in the Greengrass group can't access the /usr directory in the core's file system.
To resolve this issue, add a local volume resource to the group and then deploy the group. The
resource must:

• Specify /usr as the Source path and Destination path.

• Automatically add OS group permissions of the Linux group that owns the resource.

• Be affiliated with the Lambda function and allow read-only access.

Error: Deployment <deployment-id> of type NewDeployment for group
<group-id> failed error: process start failed: container_linux.go:259:
starting container process caused "process_linux.go:250: running exec
setns process for init caused \"wait: no child processes\"".

Solution: You might see this error when the deployment fails. Retry the deployment.

Error: [ERROR]-runtime execution error: unable to start lambda container. {"errorString": "failed to
initialize container mounts: failed to mask greengrass root in overlay upper dir: failed to create mask
device at directory <ggc-path>: file exists"}

1266

AWS IoT Greengrass Developer Guide, Version 1

Error: [WARN]-MQTT[client] dial tcp: lookup <host-prefix>-
ats.iot.<region>.amazonaws.com: no such host ... [ERROR]-Greengrass
deployment error: failed to report deployment status back to
cloud ... net/http: request canceled while waiting for connection
(Client.Timeout exceeded while awaiting headers)

Solution: You might see this error if you're using systemd-resolved, which enables the DNSSEC
setting by default. As a result, many public domains are not recognized. Attempts to reach the AWS
IoT Greengrass endpoint fail to find the host, so your deployments remain in the In Progress
state.

You can use the following commands and output to test for this issue. Replace the region
placeholder in the endpoints with your AWS Region.

$ ping greengrass-ats.iot.region.amazonaws.com
ping: greengrass-ats.iot.region.amazonaws.com: Name or service not known

$ systemd-resolve greengrass-ats.iot.region.amazonaws.com
greengrass-ats.iot.region.amazonaws.com: resolve call failed: DNSSEC validation failed:
 failed-auxiliary

One possible solution is to disable DNSSEC. When DNSSEC is false, DNS lookups are not DNSSEC
validated. For more information, see this known issue for systemd.

1. Add DNSSEC=false to /etc/systemd/resolved.conf.

2. Restart systemd-resolved.

For information about resolved.conf and DNSSEC, run man resolved.conf in your terminal.

Create group and create function issues

Use the following information to help troubleshoot issues with creating an AWS IoT Greengrass
group or Greengrass Lambda function.

Issues

Error: [WARN]-MQTT[client] dial tcp: lookup <host-prefix>-ats.iot.<region>.amazonaws.com: no such
host ... [ERROR]-Greengrass deployment error: failed to report deployment status back to cloud ... net/
http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers)

1267

https://github.com/systemd/systemd/issues/9867

AWS IoT Greengrass Developer Guide, Version 1

• Error: Your 'IsolationMode' configuration for the group is invalid.

• Error: Your 'IsolationMode' configuration for function with arn <function-arn> is invalid.

• Error: MemorySize configuration for function with arn <function-arn> is not allowed in
IsolationMode=NoContainer.

• Error: Access Sysfs configuration for function with arn <function-arn> is not allowed in
IsolationMode=NoContainer.

• Error: MemorySize configuration for function with arn <function-arn> is required in
IsolationMode=GreengrassContainer.

• Error: Function <function-arn> refers to resource of type <resource-type> that is not allowed in
IsolationMode=NoContainer.

• Error: Execution configuration for function with arn <function-arn> is not allowed.

Error: Your 'IsolationMode' configuration for the group is invalid.

Solution: This error occurs when the IsolationMode value in the DefaultConfig
of function-definition-version is not supported. Supported values are
GreengrassContainer and NoContainer.

Error: Your 'IsolationMode' configuration for function with arn
<function-arn> is invalid.

Solution: This error occurs when the IsolationMode value in the <function-arn>
of the function-definition-version is not supported. Supported values are
GreengrassContainer and NoContainer.

Error: MemorySize configuration for function with arn <function-arn>
is not allowed in IsolationMode=NoContainer.

Solution: This error occurs when you specify a MemorySize value and you choose to run without
containerization. Lambda functions that are run without containerization cannot have memory

Error: Your 'IsolationMode' configuration for the group is invalid. 1268

AWS IoT Greengrass Developer Guide, Version 1

limits. You can either remove the limit or you can change the Lambda function to run in an AWS
IoT Greengrass container.

Error: Access Sysfs configuration for function with arn <function-arn> is
not allowed in IsolationMode=NoContainer.

Solution: This error occurs when you specify true for AccessSysfs and you choose to run
without containerization. Lambda functions run without containerization must have their code
updated to access the file system directly and cannot use AccessSysfs. You can either specify a
value of false for AccessSysfs or you can change the Lambda function to run in an AWS IoT
Greengrass container.

Error: MemorySize configuration for function with arn <function-arn>
is required in IsolationMode=GreengrassContainer.

Solution: This error occurs because you did not specify a MemorySize limit for a Lambda function
that you are running in an AWS IoT Greengrass container. Specify a MemorySize value to resolve
the error.

Error: Function <function-arn> refers to resource of type <resource-
type> that is not allowed in IsolationMode=NoContainer.

Solution: You cannot access Local.Device, Local.Volume, ML_Model.SageMaker.Job,
ML_Model.S3_Object, or S3_Object.Generic_Archive resource types when you run a
Lambda function without containerization. If you need those resource types, you must run in an
AWS IoT Greengrass container. You can also access local devices directly when running without
containerization by changing the code in your Lambda function.

Error: Access Sysfs configuration for function with arn <function-arn> is not allowed in
IsolationMode=NoContainer.

1269

AWS IoT Greengrass Developer Guide, Version 1

Error: Execution configuration for function with arn <function-arn> is
not allowed.

Solution: This error occurs when you create a system Lambda function with GGIPDetector or
GGCloudSpooler and you specified IsolationMode or RunAs configuration. You must omit the
Execution parameters for this system Lambda function.

Discovery issues

Use the following information to help troubleshoot issues with the AWS IoT Greengrass Discovery
service.

Issues

• Error: Device is a member of too many groups, devices may not be in more than 10 groups

Error: Device is a member of too many groups, devices may not be in
more than 10 groups

Solution: This is a known limitation. A client device can be a member of up to 10 groups.

Machine learning resource issues

Use the following information to help troubleshoot issues with machine learning resources.

Issues

• InvalidMLModelOwner - GroupOwnerSetting is provided in ML model resource, but GroupOwner
or GroupPermission is not present

• NoContainer function cannot configure permission when attaching Machine Learning resources.
<function-arn> refers to Machine Learnin resource <resource-id> with permission <ro/rw> in
resource access policy.

Error: Execution configuration for function with arn <function-arn> is not allowed. 1270

AWS IoT Greengrass Developer Guide, Version 1

• Function <function-arn> refers to Machine Learning resource <resource-id> with missing
permission in both ResourceAccessPolicy and resource OwnerSetting.

• Function <function-arn> refers to Machine Learning resource <resource-id> with permission \"rw
\", while resource owner setting GroupPermission only allows \"ro\".

• NoContainer Function <function-arn> refers to resources of nested destination path.

• Lambda <function-arn> gains access to resource <resource-id> by sharing the same group owner
id

InvalidMLModelOwner - GroupOwnerSetting is provided in ML model
resource, but GroupOwner or GroupPermission is not present

Solution: You receive this error if a machine learning resource contains the
ResourceDownloadOwnerSetting object but the required GroupOwner or GroupPermission
property isn't defined. To resolve this issue, define the missing property.

NoContainer function cannot configure permission when attaching
Machine Learning resources. <function-arn> refers to Machine Learnin
resource <resource-id> with permission <ro/rw> in resource access
policy.

Solution: You receive this error if a non-containerized Lambda function specifies function-level
permissions to a machine learning resource. Non-containerized functions must inherit permissions
from the resource owner permissions defined on the machine learning resource. To resolve this
issue, choose to inherit resource owner permissions (console) or remove the permissions from the
Lambda function's resource access policy (API).

InvalidMLModelOwner - GroupOwnerSetting is provided in ML model resource, but GroupOwner or
GroupPermission is not present

1271

https://docs.aws.amazon.com/greengrass/v1/apireference/definitions-resourcedownloadownersetting.html

AWS IoT Greengrass Developer Guide, Version 1

Function <function-arn> refers to Machine Learning resource
<resource-id> with missing permission in both ResourceAccessPolicy
and resource OwnerSetting.

Solution: You receive this error if permissions to the machine learning resource aren't configured
for the attached Lambda function or the resource. To resolve this issue, configure permissions in
the ResourceAccessPolicy property for the Lambda function or the OwnerSetting property for the
resource.

Function <function-arn> refers to Machine Learning resource
<resource-id> with permission \"rw\", while resource owner setting
GroupPermission only allows \"ro\".

Solution: You receive this error if the access permissions defined for the attached Lambda function
exceed the resource owner permissions defined for the machine learning resource. To resolve this
issue, set more restrictive permissions for the Lambda function or less restrictive permissions for
the resource owner.

NoContainer Function <function-arn> refers to resources of nested
destination path.

Solution: You receive this error if multiple machine learning resources attached to a non-
containerized Lambda function use the same destination path or a nested destination path. To
resolve this issue, specify separate destination paths for the resources.

Lambda <function-arn> gains access to resource <resource-id> by
sharing the same group owner id

Solution: You receive this error in runtime.log if the same OS group is specified as the Lambda
function's Run as identity and the resource owner for a machine learning resource, but the resource
is not attached to the Lambda function. This configuration gives the Lambda function implicit
permissions that it can use to access the resource without AWS IoT Greengrass authorization.

Function <function-arn> refers to Machine Learning resource <resource-id> with missing permission in
both ResourceAccessPolicy and resource OwnerSetting.

1272

https://docs.aws.amazon.com/greengrass/v1/apireference/definitions-resourceaccesspolicy.html
https://docs.aws.amazon.com/greengrass/v1/apireference/definitions-ownersetting.html

AWS IoT Greengrass Developer Guide, Version 1

To resolve this issue, use a different OS group for one of the properties or attach the machine
learning resource to the Lambda function.

AWS IoT Greengrass core in Docker issues

Use the following information to help troubleshoot issues with running an AWS IoT Greengrass
core in a Docker container.

Issues

• Error: Unknown options: -no-include-email.

• Warning: IPv4 is disabled. Networking will not work.

• Error: A firewall is blocking file Sharing between windows and the containers.

• Error: An error occurred (AccessDeniedException) when calling the GetAuthorizationToken
operation: User: arn:aws:iam::<account-id>:user/<user-name> is not authorized to perform:
ecr:GetAuthorizationToken on resource: *

• Error: Cannot create container for the service greengrass: Conflict. The container name "/aws-iot-
greengrass" is already in use.

• Error: [FATAL]-Failed to reset thread's mount namespace due to an unexpected error: "operation
not permitted". To maintain consistency, GGC will crash and need to be manually restarted.

Error: Unknown options: -no-include-email.

Solution: This error can occur when you run the aws ecr get-login command. Make sure
that you have the latest AWS CLI version installed (for example, run: pip install awscli --
upgrade --user). If you're using Windows and you installed the CLI using the MSI installer, you
must repeat the installation process. For more information, see Installing the AWS Command Line
Interface on Microsoft Windows in the AWS Command Line Interface User Guide.

Warning: IPv4 is disabled. Networking will not work.

Solution: You might receive this warning or a similar message when running AWS IoT Greengrass
on a Linux computer. Enable IPv4 network forwarding as described in this step. AWS IoT

AWS IoT Greengrass core in Docker issues 1273

https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html

AWS IoT Greengrass Developer Guide, Version 1

Greengrass cloud deployment and MQTT communications don't work when IPv4 forwarding isn't
enabled. For more information, see Configure namespaced kernel parameters (sysctls) at runtime in
the Docker documentation.

Error: A firewall is blocking file Sharing between windows and the
containers.

Solution: You might receive this error or a Firewall Detected message when running Docker
on a Windows computer. This can also occur if you are signed in on a virtual private network (VPN)
and your network settings are preventing the shared drive from being mounted. In that situation,
turn off VPN and re-run the Docker container.

Error: An error occurred (AccessDeniedException) when calling the
GetAuthorizationToken operation: User: arn:aws:iam::<account-
id>:user/<user-name> is not authorized to perform:
ecr:GetAuthorizationToken on resource: *

You might receive this error when running the aws ecr get-login-password command if you
don't have sufficient permissions to access an Amazon ECR repository. For more information, see
Amazon ECR Repository Policy Examples and Accessing One Amazon ECR Repository in the Amazon
ECR User Guide.

Error: Cannot create container for the service greengrass: Conflict. The
container name "/aws-iot-greengrass" is already in use.

Solution: This can occur when the container name is used by an older container. To resolve this
issue, run the following command to remove the old Docker container:

docker rm -f $(docker ps -a -q -f "name=aws-iot-greengrass")

Error: A firewall is blocking file Sharing between windows and the containers. 1274

https://docs.docker.com/engine/reference/commandline/run/#configure-namespaced-kernel-parameters-sysctls-at-runtime
https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-policy-examples.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/security_iam_id-based-policy-examples.html

AWS IoT Greengrass Developer Guide, Version 1

Error: [FATAL]-Failed to reset thread's mount namespace due to an
unexpected error: "operation not permitted". To maintain consistency,
GGC will crash and need to be manually restarted.

Solution: This error in runtime.log can occur when you try to deploy a GreengrassContainer
Lambda function to an AWS IoT Greengrass core running in a Docker container. Currently, only
NoContainer Lambda functions can be deployed to a Greengrass Docker container.

To resolve this issue, make sure that all Lambda functions are in NoContainer mode and
start a new deployment. Then, when starting the container, don't bind-mount the existing
deployment directory onto the AWS IoT Greengrass core Docker container. Instead, create an
empty deployment directory in its place and bind-mount that in the Docker container. This allows
the new Docker container to receive the latest deployment with Lambda functions running in
NoContainer mode.

For more information, see the section called “Run AWS IoT Greengrass in a Docker container”.

Troubleshooting with logs

You can configure logging settings for a Greengrass group, such as whether to send logs to
CloudWatch Logs, store logs on the local file system, or both. To get detailed information when
troubleshooting issues, you can temporarily change the logging level to DEBUG. Changes to logging
settings take effect when you deploy the group. For more information, see the section called
“Configure logging for AWS IoT Greengrass”.

On the local file system, AWS IoT Greengrass stores logs in the following locations. Reading the
logs on the file system requires root permissions.

greengrass-root/ggc/var/log/crash.log

Shows messages generated when an AWS IoT Greengrass core crashes.

greengrass-root/ggc/var/log/system/runtime.log

Shows messages about which component failed.

greengrass-root/ggc/var/log/system/

Contains all logs from AWS IoT Greengrass system components, such as the certificate manager
and the connection manager. By using the messages in ggc/var/log/system/ and ggc/var/

Error: [FATAL]-Failed to reset thread's mount namespace due to an unexpected error: "operation not
permitted". To maintain consistency, GGC will crash and need to be manually restarted.

1275

AWS IoT Greengrass Developer Guide, Version 1

log/system/runtime.log, you should be able to find out which error occurred in AWS IoT
Greengrass system components.

greengrass-root/ggc/var/log/system/localwatch/

Contains the logs for the AWS IoT Greengrass component that handles uploading Greengrass
logs to CloudWatch Logs. If you cannot view Greengrass logs in CloudWatch, then you can use
these logs for troubleshooting.

greengrass-root/ggc/var/log/user/

Contains all logs from user-defined Lambda functions. Check this folder to find error messages
from your local Lambda functions.

Note

By default, greengrass-root is the /greengrass directory. If a write directory is
configured, then the logs are under that directory.

If the logs are configured to be stored on the cloud, use CloudWatch Logs to view log messages.
crash.log is found only in file system logs on the AWS IoT Greengrass core device.

If AWS IoT is configured to write logs to CloudWatch, check those logs if connection errors occur
when system components attempt to connect to AWS IoT.

For more information about AWS IoT Greengrass logging, see the section called “Monitoring with
AWS IoT Greengrass logs”.

Note

Logs for AWS IoT Greengrass Core software v1.0 are stored under the greengrass-root/
var/log directory.

Troubleshooting storage issues

When the local file storage is full, some components might start failing:

• Local shadow updates do not occur.

Troubleshooting storage issues 1276

AWS IoT Greengrass Developer Guide, Version 1

• New AWS IoT Greengrass core MQTT server certificates cannot be downloaded locally.

• Deployments fail.

You should always be aware of the amount of free space available locally. You can calculate free
space based on the sizes of deployed Lambda functions, the logging configuration (see the section
called “Troubleshooting with logs”), and the number of shadows stored locally.

Troubleshooting messages

All messages sent locally in AWS IoT Greengrass are sent with QoS 0. By default, AWS IoT
Greengrass stores messages in an in-memory queue. Therefore, unprocessed messages are lost
when the Greengrass core restarts; for example, after a group deployment or device reboot.
However, you can configure AWS IoT Greengrass (v1.6 or later) to cache messages to the file
system so they persist across core restarts. You can also configure the queue size. If you configure a
queue size, make sure that it's greater than or equal to 262144 bytes (256 KB). Otherwise, AWS IoT
Greengrass might not start properly. For more information, see the section called “MQTT message
queue”.

Note

When using the default in-memory queue, we recommend that you deploy groups or
restart the device when the service disruption is the lowest.

You can also configure the core to establish persistent sessions with AWS IoT. This allows the core
to receive messages sent from the AWS Cloud while the core is offline. For more information, see
the section called “MQTT persistent sessions with AWS IoT Core”.

Troubleshooting shadow synchronization timeout issues

Significant delays in communication between a Greengrass core device and the cloud might cause
shadow synchronization to fail because of a timeout. In this case, you should see log entries similar
to the following:

[2017-07-20T10:01:58.006Z][ERROR]-cloud_shadow_client.go:57,Cloud shadow
 client error: unable to get cloud shadow what_the_thing_is_named for
 synchronization. Get https://1234567890abcd.iot.us-west-2.amazonaws.com:8443/things/

Troubleshooting messages 1277

AWS IoT Greengrass Developer Guide, Version 1

what_the_thing_is_named/shadow: net/http: request canceled (Client.Timeout exceeded
 while awaiting headers)
[2017-07-20T10:01:58.006Z][WARN]-sync_manager.go:263,Failed to get cloud
 copy: Get https://1234567890abcd.iot.us-west-2.amazonaws.com:8443/things/
what_the_thing_is_named/shadow: net/http: request canceled (Client.Timeout exceeded
 while awaiting headers)
[2017-07-20T10:01:58.006Z][ERROR]-sync_manager.go:375,Failed to execute sync operation
 {what_the_thing_is_named VersionDiscontinued []}"

A possible fix is to configure the amount of time that the core device waits for a
host response. Open the config.json file in greengrass-root/config and add a
system.shadowSyncTimeout field with a timeout value in seconds. For example:

{
 "system": {
 "shadowSyncTimeout": 10
 },
 "coreThing": {
 "caPath": "root-ca.pem",
 "certPath": "cloud.pem.crt",
 "keyPath": "cloud.pem.key",
 ...
 },
 ...
}

If no shadowSyncTimeout value is specified in config.json, the default is 5 seconds.

Note

For AWS IoT Greengrass Core software v1.6 and earlier, the default shadowSyncTimeout
is 1 second.

Check AWS re:Post

If you're unable to resolve your issue using the troubleshooting information in this topic, you can
search the Troubleshooting or check the AWS IoT Greengrass tag on AWS re:Post for related issues
or post a new question. Members of the AWS IoT Greengrass team actively monitor AWS re:Post.

Check AWS re:Post 1278

https://repost.aws/tags/TA4ckIed1sR4enZBey29rKTg/aws-io-t-greengrass

AWS IoT Greengrass Developer Guide, Version 1

Document history for AWS IoT Greengrass

The following table describes important changes to the AWS IoT Greengrass Developer Guide after
June 2018. For notification about updates to this documentation, you can subscribe to an RSS feed.

Change Description Date

Update to end of support for
v1.11.x Snap

Updated the end of support
information for AWS IoT
Greengrass core v 1.11.x Snap
on snapcraft.io .

September 22, 2023

End of support for v1.11.x
Snap

Added end of support
information for AWS IoT
Greengrass core v 1.11.x Snap
on snapcraft.io .

September 19, 2023

Docker images for AWS IoT
Greengrass v1.11.6

The Docker images for AWS
IoT Greengrass Core software
v1.11.6 are available on
Amazon Elastic Container
Registry (Amazon ECR) and
Docker Hub. We recommend
that you always run the latest
version.

April 12, 2022

AWS IoT Device Tester (IDT)
for AWS IoT Greengrass V1
deprecation

IDT for AWS IoT Greengras
s V1 will no longer generate
signed qualification reports.

April 4, 2022

Support update for AWS IoT
Device Tester for AWS IoT
Greengrass

IDT for AWS IoT Greengrass
version 4.4.1 now supports
using AWS IoT Greengrass
core software version v1.11.6
for device qualification.

March 24, 2022

AWS IoT Greengrass version
1.11.6 released

Version 1.11.6 of the AWS
IoT Greengrass Core software

March 24, 2022

1279

https://docs.aws.amazon.com/greengrass/v1/developerguide/maintenance-policy.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/maintenance-policy.html
https://snapcraft.io/aws-iot-greengrass
https://docs.aws.amazon.com/greengrass/v1/developerguide/maintenance-policy.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/maintenance-policy.html
https://snapcraft.io/aws-iot-greengrass
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-versions
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-versions

AWS IoT Greengrass Developer Guide, Version 1

is available. This version
contains performance
improvements and bug fixes.
We recommend that you
always run the latest version.

IoT SiteWise connector
version 12 released

Version 12 of the IoT SiteWise
connector is available. This
release contains bug fixes.

December 23, 2021

Docker images for AWS IoT
Greengrass v1.11.5 and
v1.10.5

The Docker images for AWS
IoT Greengrass Core software
v1.11.5 and v1.10.5 are
available on Amazon Elastic
Container Registry (Amazon
ECR) and Docker Hub. We
recommend that you always
run the latest version.

December 22, 2021

AWS IoT Greengrass V1
maintenance policy

The AWS IoT Greengras
s V1 maintenance policy
defines the different levels
of maintenance and updates
for the AWS IoT Greengrass
V1 service and the AWS IoT
Greengrass core software
v1.x.

December 20, 2021

AWS IoT Device Tester version
4.4.1 released

IDT for AWS IoT Greengrass
version 4.4.1 is now available
. This release includes the
AWS IoT Greengrass qualifica
tion suite (GGQ) v1.3.1, and
supports using AWS IoT
Greengrass core software
versions v1.11.5 and v1.10.5
for device qualification.

December 20, 2021

1280

https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/maintenance-policy.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/maintenance-policy.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/dev-test-versions.html

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Greengrass versions
1.11.5 and 1.10.5 released

Versions 1.11.5 and 1.10.5 of
the AWS IoT Greengrass Core
software are available. These
versions contain performan
ce improvements and bug
fixes. We recommend that you
always run the latest version.

December 12, 2021

Republished AWS IoT
Greengrass v1.11.4 and
v1.10.4 Docker images

Docker images for AWS IoT
Greengrass Core software
versions 1.11.4 and 1.10.4
have been republished on
Amazon Elastic Container
Registry (Amazon ECR) and
Docker Hub to address bug
fixes with BusyBox. To use the
latest Docker images, use the
1.11.4-1 or 1.10.4-1 tags.
For more information about
available tags, see amazon/
aws-iot-greengrass in Docker
Hub.

December 8, 2021

CloudWatch Metrics
connector supports duplicate
timestamps in input data

You can now send input data
with duplicate timestamps to
this connector.

November 19, 2021

Cross-service confused deputy
prevention update

AWS IoT Greengrass supports
using the aws:SourceArn
and aws:SourceAccount
global condition context keys
in IAM resource policies to
prevent the confused deputy
problem.

November 1, 2021

1281

https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-versions
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-versions
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://hub.docker.com/r/amazon/aws-iot-greengrass/tags
https://hub.docker.com/r/amazon/aws-iot-greengrass/tags
https://docs.aws.amazon.com/greengrass/v1/developerguide/cloudwatch-metrics-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/cloudwatch-metrics-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/cloudwatch-metrics-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/cross-service-confused-deputy-prevention.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/cross-service-confused-deputy-prevention.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

AWS IoT Greengrass Developer Guide, Version 1

Docker images for AWS IoT
Greengrass v1.11.4

The Docker images for AWS
IoT Greengrass Core software
v1.11.4 are available on
Amazon Elastic Container
Registry (Amazon ECR) and
Docker Hub. We recommend
that you always run the latest
version.

August 24, 2021

Published AWS IoT Greengras
s v1.11.4 snap

Version 1.11.4 of the AWS IoT
Greengrass snap is available
. We recommend that you
always run the latest version.

August 20, 2021

Support update for AWS IoT
Device Tester for AWS IoT
Greengrass

IDT for AWS IoT Greengrass
version 4.1.0 now supports
using AWS IoT Greengrass
core software version v1.11.4
for device qualification.

August 18, 2021

AWS IoT Greengrass version
1.11.4 released

Version 1.11.4 of the AWS
IoT Greengrass Core software
is available. This release
fixes an issue with stream
manager that prevented
upgrades to v1.11.3 from an
earlier version of the AWS IoT
Greengrass Core software. We
recommend that you always
run the latest version.

August 17, 2021

1282

https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-snapstore-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-snapstore-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.11
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.11

AWS IoT Greengrass Developer Guide, Version 1

VPC endpoints (AWS PrivateLi
nk)

AWS IoT Greengrass now
supports interface VPC
endpoints (AWS PrivateLink)
for the AWS IoT Greengras
s control plane. You can
establish a private connectio
n between your VPC and the
AWS IoT Greengrass control
plane.

August 16, 2021

AWS IoT Device Tester version
4.1.0 released

Version 4.1.0 of AWS IoT
Device Tester for AWS IoT
Greengrass is available. This
version supports using AWS
IoT Greengrass core software
versions 1.11.3 and 1.10.4 for
device qualification.

June 23, 2021

Published AWS IoT Greengras
s v1.11.3 snap

Version 1.11.3 of the AWS
IoT Greengrass snap contains
performance improvements
and bug fixes. We recommend
that as a best practice you
always run the latest version.

June 15, 2021

Docker images for AWS IoT
Greengrass v1.11.3 and
v1.10.4 released

The Docker images for
AWS IoT Greengrass Core
software v1.11.3 and v1.10.4
are available on Amazon
Elastic Container Registry
(Amazon ECR) and Docker
Hub. These versions of AWS
IoT Greengrass Core contain
performance improvements
and bug fixes. We recommend
that you always run the latest
version.

June 15, 2021

1283

https://docs.aws.amazon.com/greengrass/v1/developerguide/vpc-interface-endpoints
https://docs.aws.amazon.com/greengrass/v1/developerguide/vpc-interface-endpoints
https://docs.aws.amazon.com/greengrass/v1/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-snapstore-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-snapstore-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Greengrass version
1.11.3 released

Version 1.11.3 of the AWS
IoT Greengrass Core software
is available. This version
contains performance
improvements and bug fixes.
We recommend that you
always run the latest version.

June 14, 2021

AWS IoT Greengrass version
1.10.4 released

Version 1.10.4 of the AWS
IoT Greengrass Core software
is available. This version
contains performance
improvements and bug fixes.
We recommend that you
always run the latest version.

June 14, 2021

Modbus-TCP Protocol Adapter
version 2 released

Version 2 of the Modbus-TCP
Protocol Adapter connector is
available. This release added
support for ASCII, UTF8, and
ISO8859 encoded source
strings.

May 24, 2021

Docker application
deployment connector
version 7 released

Version 7 of the Greengras
s Docker application
deployment connector is
available.

April 5, 2021

AWS IoT Greengrass version
1.11.1 released

Version 1.11.1 of the AWS
IoT Greengrass Core software
is available. This version
contains performance
improvements and bug fixes.
We recommend that you
always run the latest version.

March 29, 2021

1284

https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.11
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.11
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.10
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.10
https://docs.aws.amazon.com/greengrass/v1/developerguide/modbus-tcp-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/modbus-tcp-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/docker-app-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/docker-app-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/docker-app-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.11
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.11

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Device Tester version
4.0.2 released

Version 4.0.2 of AWS IoT
Device Tester for AWS IoT
Greengrass is available. This
version replaces IDT v4.0.0
and adds support for version
1.11.1 of AWS IoT Greengras
s Core software. This also
fixes an issue that caused IDT
to mask Hardware Security
Integration (HSI) errors.

March 29, 2021

IoT SiteWise connector
version 11 released

Version 11 of the IoT SiteWise
connector is available. This
launches support for strings
that contain hidden or
unprintable characters. This
release also includes general
performance improvements
and bug fixes.

March 24, 2021

Republished AWS IoT
Greengrass v1.11.0 snap

AWS IoT Greengrass snap
version 1.11.0 has been
republished on Snapcraft
to address bug fixes and
a possible application
crash when using the
Python interpreter. AWS IoT
Greengrass doesn’t provide
snaps for software versions
1.10 and 1.9.

March 19, 2021

Support update for AWS IoT
Device Tester for AWS IoT
Greengrass

IDT for AWS IoT Greengrass
version 4.0.0 now supports
using AWS IoT Greengrass
core software version v1.10.3
for device qualification.

March 18, 2021

1285

https://docs.aws.amazon.com/greengrass/v1/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-snapstore-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-snapstore-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/device-tester-for-greengrass-ug.html

AWS IoT Greengrass Developer Guide, Version 1

Republished AWS IoT
Greengrass v1.8.4 snap

AWS IoT Greengrass snap
version 1.8.4 has been
republished on Snapcraft
to address bug fixes and a
possible application crash
when using the Python
interpreter.

March 15, 2021

Republished AWS IoT
Greengrass v1.11.0 Docker
image for Armv7l

The Docker image for
AWS IoT Greengrass Core
software version 1.11.0 for
the Armv7l platform has
been republished on Amazon
Elastic Container Registry
(Amazon ECR) and Docker
Hub to address bug fixes
and a possible application
crash when using the Python
interpreter.

March 8, 2021

AWS IoT Greengrass v1.10.3
Docker images released

Docker images for AWS IoT
Greengrass Core software
version 1.10.3 are now
available on Amazon Elastic
Container Registry (Amazon
ECR) and Docker Hub.

March 8, 2021

1286

https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-snapstore-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-snapstore-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download

AWS IoT Greengrass Developer Guide, Version 1

Republished AWS IoT
Greengrass v1.11.0 and v1.9.4
Docker images

Docker images for AWS IoT
Greengrass Core software
versions 1.11.0 and 1.9.4 have
been republished on Amazon
Elastic Container Registry
(Amazon ECR) and Docker
Hub to address bug fixes
and a possible application
crash when using the Python
interpreter. The Docker
images for Armv7l have not
been republished at this time.

February 26, 2021

AWS IoT Greengrass version
1.10.3 released

Version 1.10.3 of the AWS IoT
Greengrass Core software is
available. This version adds
the systemComponentAut
hTimeout core configura
tion property and contains
performance improvements
and bug fixes. We recommend
that you always run the latest
version.

February 24, 2021

IoT SiteWise connector
version 10 released

Version 10 of the IoT SiteWise
connector is available. This
release resolves stability
issues with the StreamMan
ager client when connectio
n is lost, and improves OPC-
UA value handling when
a SourceTimestamp is
absent. Use the IoT SiteWise
connector to send local device
and equipment data to asset
properties in IoT SiteWise.

January 22, 2021

1287

https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.10
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.10
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html

AWS IoT Greengrass Developer Guide, Version 1

IoT SiteWise connector
version 9 released

Version 9 of the IoT SiteWise
connector is available. This
launches support for custom
Greengrass StreamManager
stream destinations, OPC-UA
deadbanding, custom scan
mode and custom scan rate.
This also includes improved
performance during configura
tion updates made from the
IoT SiteWise gateway. Use
the IoT SiteWise connector
to send local device and
equipment data to asset
properties in IoT SiteWise.

December 15, 2020

AWS IoT Device Tester version
4.0.0 released

Version 4.0.0 of AWS IoT
Device Tester for AWS IoT
Greengrass is available. This
version enables you to use
IDT to develop and run your
custom test suites for device
validation. This also includes
code signed IDT applications
for macOS and Windows.

December 15, 2020

AWS IoT Greengrass snap
v1.11

Version 1.11.0 of the AWS
IoT Greengrass snap supports
noncontainerized Lambda
functions. We recommend
that as a best practice you
always run the latest version.

December 6, 2020

1288

https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/install-ggc.html#gg-snap-support
https://docs.aws.amazon.com/greengrass/v1/developerguide/install-ggc.html#gg-snap-support

AWS IoT Greengrass Developer Guide, Version 1

IoT SiteWise connector
version 8 released

Version 8 of the IoT SiteWise
connector is available. This
release improves stability
when the connector experienc
es intermittent network
connectivity. Use the IoT
SiteWise connector to send
local device and equipment
data to asset properties in IoT
SiteWise.

November 19, 2020

Kinesis Firehose connector
supports No container mode

You can use the Isolation
Mode parameter to
configure the containerization
mode for the connector.

October 19, 2020

Docker application
deployment connector
version 6 released

Version 6 of the Greengras
s Docker application
deployment connector is
available.

September 18, 2020

AWS IoT Greengrass version
1.11.0 released

Version 1.11.0 of the AWS IoT
Greengrass Core software is
available. This version adds
the system health telemetry
feature and a local health
check API. Stream manager
can now export data to
Amazon Simple Storage
Service (Amazon S3) and
IoT SiteWise. This version
also contains performance
improvements and bug fixes.
We recommend that you
always run the latest version.

September 16, 2020

1289

https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/kinesis-firehose-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/kinesis-firehose-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/docker-app-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/docker-app-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/docker-app-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.11
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.11

AWS IoT Greengrass Developer Guide, Version 1

IoT SiteWise connector
version 7 released

Version 7 of the IoT SiteWise
connector is available. This
release fixes an issue with
gateway metrics. Use the IoT
SiteWise connector to send
local device and equipment
data to asset properties in IoT
SiteWise.

August 14, 2020

ServiceNow MetricBase
Integration, Splunk Integrati
on, and Twilio Notificat
ions connectors support No
container mode

You can use the Isolation
Mode parameter to
configure the containerization
mode for the connector.

July 30, 2020

SNS connector supports No
container mode

You can use the Isolation
Mode parameter to
configure the containerization
mode for the connector.

July 6, 2020

CloudWatch Metrics
connector supports No
container mode

You can use the Isolation
Mode parameter to
configure the containerization
mode for the connector.

June 17, 2020

AWS IoT Greengrass version
1.10.2 released

Version 1.10.2 of the AWS IoT
Greengrass Core software is
available. This version adds
the mqttOperationTimeo
ut core configuration
property and contains
performance improvements
and bug fixes. We recommend
that you always run the latest
version.

June 8, 2020

1290

https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/connectors-list.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/connectors-list.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/connectors-list.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/connectors-list.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/connectors-list.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/sns-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/sns-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/cloudwatch-metrics-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/cloudwatch-metrics-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/cloudwatch-metrics-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.10
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.10

AWS IoT Greengrass Developer Guide, Version 1

Tensorflow machine learning
installers deprecated

AWS IoT Greengrass Tensorflo
w prepackaged machine
learning installers have been
deprecated. Machine learning
samples have been upgraded
to Python 3.7.

May 29, 2020

Chainer framework support
and Greengrass machine
learning installers deprecated

AWS IoT Greengrass
prepackaged machine
learning installers and
downloads for MXNet and
DLR have been deprecated.
Chainer framework support
and associated downloads
have been deprecated.

May 4, 2020

IoT SiteWise connector
version 6 released

Version 6 of the IoT SiteWise
connector is available. This
release adds support for
CloudWatch metrics and
automatic discovery of new
OPC-UA tags. This means you
don't need to restart your
gateway when tags change
for your OPC-UA sources.
This version of the connector
requires stream manager
and AWS IoT Greengrass
Core software v1.10.0 or
higher. Use the IoT SiteWise
connector to send local device
and equipment data to asset
properties in IoT SiteWise.

April 29, 2020

1291

https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ml-runtimes-libs
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ml-runtimes-libs
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ml-runtimes-libs
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ml-runtimes-libs
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ml-runtimes-libs
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html

AWS IoT Greengrass Developer Guide, Version 1

Connectors upgraded to
Python 3.7

Connectors that support the
Python runtime have been
upgraded to Python 3.7. We
recommend that you upgrade
your connector versions from
Python 2.7 to Python 3.7.

April 29, 2020

Greengrass device setup can
run in silent mode

You can run Greengrass
device setup in silent mode so
that the script doesn't prompt
you for any values.

April 27, 2020

New Docker base images You can download AWS IoT
Greengrass Docker images
that are built on Alpine Linux
(x86_64, Armv7l, or AArch64)
base images.

April 23, 2020

AWS IoT Greengrass version
1.10.1 released

Version 1.10.1 of the AWS
IoT Greengrass Core software
is available. This version
contains performance
improvements and bug fixes.
We recommend that you
always run the latest version.

April 16, 2020

New security chapter AWS IoT Greengrass security
content has been reorganized,
with new information added.

March 30, 2020

Use APT package manager to
install AWS IoT Greengrass

On supported Debian-based
Linux distributions, you can
use apt to install the AWS IoT
Greengrass Core software on
your devices.

February 26, 2020

1292

https://docs.aws.amazon.com/greengrass/v1/developerguide/connectors-list
https://docs.aws.amazon.com/greengrass/v1/developerguide/connectors-list
https://docs.aws.amazon.com/greengrass/v1/developerguide/quick-start.html#gg-device-setup-silent-mode
https://docs.aws.amazon.com/greengrass/v1/developerguide/quick-start.html#gg-device-setup-silent-mode
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-docker-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.10
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.10
https://docs.aws.amazon.com/greengrass/v1/developerguide/security.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/install-ggc.html#ggc-package-manager
https://docs.aws.amazon.com/greengrass/v1/developerguide/install-ggc.html#ggc-package-manager

AWS IoT Greengrass Developer Guide, Version 1

IoT SiteWise connector
version 5 released

Version 5 of the IoT SiteWise
connector is available. This
release fixes a compatibility
issue with AWS IoT Greengras
s Core software v1.9.4. Use
the IoT SiteWise connector
to send local device and
equipment data to asset
properties in IoT SiteWise.

February 12, 2020

New script to quickly set up a
core device

You can use Greengrass
device setup to configure
your core device in minutes.
Also, AWS IoT Greengrass now
supports Node.js 12.x Lambda
functions.

December 20, 2019

AWS IoT Greengrass version
1.10.0 released

Version 1.10.0 of the AWS IoT
Greengrass Core software is
available. The new features
in this version include Stream
manager, container support
with the Docker applicati
on deployment connector,
non-containerized Lambda
functions that can access
machine learning resources,
support for MQTT persisten
t sessions with AWS IoT, and
support for local MQTT traffic
over a specified port.

November 25, 2019

Console support for
deployment notifications

Use the Amazon EventBrid
ge console to create event
rules that trigger when your
Greengrass group deploymen
ts change state.

November 14, 2019

1293

https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/quick-start.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/quick-start.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.10
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.10
https://docs.aws.amazon.com/greengrass/v1/developerguide/deployment-notifications.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/deployment-notifications.html

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Greengrass version
1.9.4 released

Version 1.9.4 of the AWS IoT
Greengrass Core software
is available. This version
contains performance
improvements and bug
fixes. As a best practice, we
recommend that you always
run the latest version.

October 17, 2019

Console support for
managing the Greengrass
service role

Use new and improved
features in the AWS IoT
console to manage your
Greengrass service role.

October 4, 2019

Console support for
managing group-level tags

You can create, view, and
manage tags for your
Greengrass groups in the AWS
IoT console.

September 23, 2019

New machine learning
connectors

Use the ML Feedback
connector to publish model
input and predictions and
the ML Object Detection
connector to run a local
object detection inference
 service.

September 19, 2019

1294

https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.9
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.9
https://docs.aws.amazon.com/greengrass/v1/developerguide/service-role.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/service-role.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/service-role.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/tagging.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/tagging.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/connectors-list.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/connectors-list.html

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Greengrass version
1.9.3 released

Version 1.9.3 of the AWS IoT
Greengrass Core software is
available. This version allows
you to install the AWS IoT
Greengrass Core software
on Raspbian distributions
on Armv6l architectures,
supports OTA updates on port
443 with ALPN, and contains
a bug fix for binary payloads
sent from Python 2.7 Lambda
functions to other Lambda
functions.

September 12, 2019

AWS IoT Greengrass version
1.8.4 released

Version 1.8.4 of the AWS IoT
Greengrass Core software
is available. This version
contains performance
improvements and bug fixes.
If you're running v1.8.x, we
recommend that you upgrade
to v1.8.4 or v1.9.3. For earlier
versions, we recommend that
you upgrade to v1.9.3.

August 30, 2019

AWS IoT Greengrass version
1.9.2 released with support
for OpenWrt

Version 1.9.2 of the AWS IoT
Greengrass Core software is
available. This version allows
you to install the AWS IoT
Greengrass Core software on
OpenWrt distributions with
Armv8 (AArch64) and Armv7l
architectures.

June 20, 2019

1295

https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.9
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.9
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.8
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.8
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.9
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.9
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.9

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Greengrass version
1.8.3 released

Version 1.8.3 of the AWS IoT
Greengrass Core software
is available. This version
contains general performance
improvements and bug fixes.
If you're running v1.8.x, we
recommend that you upgrade
to v1.8.3 or v1.9.2. For earlier
versions, we recommend that
you upgrade to v1.9.2.

June 20, 2019

AWS IoT Greengrass version
1.9.1 released

Version 1.9.1 of the AWS IoT
Greengrass Core software
is available. This version
contains a bug fix for
messages from AWS IoT that
contain a wildcard character
in the topic.

May 10, 2019

AWS IoT Greengrass version
1.8.2 released

Version 1.8.2 of the AWS IoT
Greengrass Core software
is available. This version
contains general performance
improvements and bug fixes.
If you're running v1.8.x, we
recommend that you upgrade
to v1.8.2 or v1.9.0. For earlier
versions, we recommend that
you upgrade to v1.9.0.

May 2, 2019

AWS IoT Greengrass version
1.9.0 released

New features: Support for
Python 3.7 and Node.js 8.10
Lambda runtimes, optimized
MQTT connections, and
Elliptic Curve (EC) key support
for the local MQTT server.

May 1, 2019

1296

https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.8
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.8
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.9
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.9
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.8
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.8
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.9
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.9

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Greengrass version
1.8.1 released

Version 1.8.1 of the AWS IoT
Greengrass Core software
is available. This version
contains general performan
ce improvements and bug
fixes. As a best practice, we
recommend that you always
run the latest version.

April 18, 2019

AWS IoT Greengrass snap
available on snapcraft

Use the AWS IoT Greengras
s Snap Store app to quickly
design, test, and deploy
software on Linux devices
with AWS IoT Greengrass.

April 1, 2019

Support for more access
control using tag-based
permissions

You can use tags in AWS
Identity and Access
Management (IAM) policies
to control access to your AWS
IoT Greengrass resources.

March 29, 2019

IoT Analytics connector
released

Use the IoT Analytics
connector to send local device
data to AWS IoT Analytics
 channels.

March 15, 2019

Batch support in Kinesis
Firehose connector

The Kinesis Firehose
connector supports sending
batched data records to
Amazon Data Firehose at a
specified interval.

March 15, 2019

AWS CloudFormation support
for AWS IoT Greengrass
resources

Use AWS CloudFormation
templates to create and
manage AWS IoT Greengrass
resources.

March 15, 2019

1297

https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.8
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.8
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-snapstore-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-snapstore-download
https://docs.aws.amazon.com/greengrass/v1/developerguide/tagging.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/tagging.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/tagging.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-analytics-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-analytics-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/kinesis-firehose-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/kinesis-firehose-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/cloudformation-support.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/cloudformation-support.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/cloudformation-support.html

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Greengrass version
1.8.0 released

New features: Configurable
default access identity for
Lambda functions, support
for HTTPS traffic over port
443, and predictably named
client IDs for MQTT connectio
ns with AWS IoT.

March 7, 2019

AWS IoT Greengrass versions
1.7.1 and 1.6.1 released

Versions 1.7.1 and 1.6.1 of
the AWS IoT Greengrass Core
software are available. These
versions require Linux kernel
version 3.17 or later. We
recommend that customers
 running any version of the
Greengrass core software
upgrade to version 1.7.1
immediately.

February 11, 2019

SageMaker Neo deep learning
runtime

The SageMaker Neo deep
learning runtime supports
machine learning models that
have been optimized by the
SageMaker Neo deep learning
compiler.

November 28, 2018

Run AWS IoT Greengrass in a
Docker container

You can run AWS IoT
Greengrass in a Docker
container by configuring your
Greengrass group to run with
no containerization.

November 26, 2018

1298

https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.8
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-version-1.8
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-versions
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-versions
https://docs.aws.amazon.com/greengrass/v1/developerguide/ml-inference.html#precompiled-ml-libraries
https://docs.aws.amazon.com/greengrass/v1/developerguide/ml-inference.html#precompiled-ml-libraries
https://docs.aws.amazon.com/greengrass/v1/developerguide/run-gg-in-docker-container.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/run-gg-in-docker-container.html

AWS IoT Greengrass Developer Guide, Version 1

AWS IoT Greengrass version
1.7.0 released

New features: Greengras
s connectors, local secrets
manager, isolation and
permission settings for
Lambda functions, hardware
root of trust security,
 connection using ALPN or
network proxy, and Raspbian
Stretch support.

November 26, 2018

AWS IoT Greengrass software
downloads

The AWS IoT Greengrass Core
software, AWS IoT Greengras
s Core SDK, and AWS IoT
Greengrass Machine Learning
SDK packages are available
for dowload through Amazon
CloudFront.

November 26, 2018

AWS IoT Device Tester for
AWS IoT Greengrass

Use AWS IoT Device Tester
for AWS IoT Greengrass to
verify that your CPU architect
ure, kernel configuration, and
drivers work with AWS IoT
Greengrass.

November 26, 2018

AWS CloudTrail logging for
AWS IoT Greengrass API calls

AWS IoT Greengrass is
integrated with AWS
CloudTrail, a service that
provides a record of actions
taken by a user, role, or an
AWS service in AWS IoT
Greengrass.

October 29, 2018

1299

https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-versions
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-versions
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-downloads
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#gg-downloads
https://docs.aws.amazon.com/greengrass/v1/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/logging-using-cloudtrail.html

AWS IoT Greengrass Developer Guide, Version 1

Support for TensorFlow
v1.10.1 on NVIDIA Jetson TX2

The TensorFlow precompil
ed library for NVIDIA Jetson
TX2 that AWS IoT Greengrass
provides now uses TensorFlow
v1.10.1. This supports Jetpack
3.3 and CUDA Toolkit 9.0.

October 18, 2018

Support for MXNet v1.2.1
machine learning resources

AWS IoT Greengrass supports
machine learning models
that are trained using MXNet
v1.2.1.

August 29, 2018

AWS IoT Greengrass version
1.6.0 released

New features: Lambda
executables, configurable
message queue, configura
ble reconnect retry interval,
volume resources under /
proc, and configurable write
directory.

July 26, 2018

Earlier updates

The following table describes important changes to the AWS IoT Greengrass Developer Guide
before July 2018.

Change Description Date

AWS IoT
Greengrass
Version 1.5.0
Released

New features:

• Local machine learning inference using cloud-trained models.
For more information, see Perform machine learning inference.

• Greengrass Lambda functions support binary input data, in
addition to JSON.

For more information, see AWS IoT Greengrass Core versions.

March
29,
2018

Earlier updates 1300

https://docs.aws.amazon.com/greengrass/v1/developerguide/module1.html#setup-filter.other
https://docs.aws.amazon.com/greengrass/v1/developerguide/module1.html#setup-filter.other
https://docs.aws.amazon.com/greengrass/v1/developerguide/ml-inference.html#precompiled-ml-libraries
https://docs.aws.amazon.com/greengrass/v1/developerguide/ml-inference.html#precompiled-ml-libraries
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-versions
https://docs.aws.amazon.com/greengrass/v1/developerguide/what-is-gg.html#ggc-versions

AWS IoT Greengrass Developer Guide, Version 1

Change Description Date

AWS IoT
Greengrass
Version 1.3.0
Released

New features:

• Over-the-air (OTA) update agent capable of handling cloud-dep
loyed, Greengrass update jobs. For more information, see OTA
updates of AWS IoT Greengrass Core software.

• Access local peripherals and resources from Greengrass Lambda
functions. For more information, see Access local resources with
Lambda functions and connectors.

November
27,
2017

AWS IoT
Greengrass
Version 1.1.0
Released

New features:

• Reset deployed AWS IoT Greengrass groups. For more informati
on, see Reset deployments.

• Support for Node.js 6.10 and Java 8 Lambda runtimes, in
addition to Python 2.7.

September
20,
2017

AWS IoT
Greengrass
Version 1.0.0
Released

AWS IoT Greengrass is generally available. June
7,
2017

Earlier updates 1301

	AWS IoT Greengrass
	Table of Contents
	
	What is AWS IoT Greengrass?
	AWS IoT Greengrass Core software
	AWS IoT Greengrass Core software versions

	AWS IoT Greengrass groups
	Devices in AWS IoT Greengrass
	SDKs
	Supported platforms and requirements
	AWS IoT Greengrass downloads
	AWS IoT Greengrass Core software
	AWS IoT Greengrass snap software
	AWS IoT Greengrass Docker software
	AWS IoT Greengrass Core SDK
	Supported machine learning runtimes and libraries
	Machine learning samples

	AWS IoT Greengrass ML SDK software

	We want to hear from you
	Install the AWS IoT Greengrass Core software
	Download and extract the AWS IoT Greengrass Core software package
	Run the Greengrass device setup script
	Install the AWS IoT Greengrass Core software from an APT repository
	Use systemd scripts to manage the Greengrass daemon lifecycle
	Uninstall the AWS IoT Greengrass core software using the APT repository
	Remove the AWS IoT Greengrass core software repository sources

	Run AWS IoT Greengrass in a Docker container
	Run AWS IoT Greengrass in a snap
	Snap concepts
	What's new with AWS IoT Greengrass snap v1.11.x
	Getting started with AWS IoT Greengrass snap
	Requirements
	Install and configure the AWS IoT Greengrass snap

	Deploying a Lambda function
	Stopping the AWS IoT Greengrass daemon
	Uninstalling the AWS IoT Greengrass snap
	Troubleshooting the AWS IoT Greengrass snap
	Got permission denied errors.
	error: cannot perform the following tasks: - Run service command "start" for services ["greengrassd"] of snap "aws-iot-greengrass" ([start snap.aws-iot-greengrass.greengrassd.service] failed with exit status 1: Job for snap.aws-iot-greengrass.greengrassd.service failed because the control process exited with error code. See "systemctl status snap.aws-iot-greengrass.greengrassd.service" and "journalctl -xe" for details.)
	/var/snap/aws-iot-greengrass/current/ggc-write-directory/packages/1.11.5/rootfs/merged is not an absolute path or is a symlink.
	The snapd daemon failed to restart after you ran the sudo snap refresh snapd command.

	Archive an AWS IoT Greengrass Core software installation

	Configure the AWS IoT Greengrass core
	AWS IoT Greengrass core configuration file
	Service endpoints must match the root CA certificate type
	Endpoints in config.json

	Connect on port 443 or through a network proxy
	Allowing endpoints

	Configure a write directory for AWS IoT Greengrass
	Configure MQTT settings
	Message quality of service
	MQTT message queue for cloud targets
	To cache messages in local storage

	MQTT persistent sessions with AWS IoT Core
	To configure MQTT persistent sessions

	Client IDs for MQTT connections with AWS IoT
	Configure the MQTT port for local messaging
	Timeout for publish, subscribe, unsubscribe operations in MQTT connections with the AWS Cloud

	Activate automatic IP detection
	Configure the init system to start the Greengrass daemon
	See also

	AWS IoT Greengrass Version 1 maintenance policy
	AWS IoT Greengrass versioning scheme
	Lifecycle phases for major versions of the AWS IoT Greengrass Core software
	Maintenance policy for AWS IoT Greengrass Core software
	Maintenance phase schedule

	Deprecation schedule
	Support policy for AWS Lambda functions on Greengrass core devices
	Support policy for AWS IoT Device Tester for AWS IoT Greengrass V1
	End of maintenance schedule
	End of maintenance for AWS IoT Greengrass Core software v1.x Docker images
	End of maintenance for AWS IoT Greengrass Core software v1.x APT repository
	End of maintenance for AWS IoT Greengrass Core software v1.11.x Snap

	Getting started with AWS IoT Greengrass
	Choose how to get started with AWS IoT Greengrass
	Requirements
	Create an AWS account
	Sign up for an AWS account
	Create an administrative user

	Quick start: Greengrass device setup
	Requirements
	Run Greengrass device setup
	Troubleshooting issues
	Error: Python (python3.7) not found. Attempting to install it...
	Additional troubleshooting

	Greengrass device setup configuration options
	Provide AWS account credentials
	Provide input values
	Input values

	Run Greengrass device setup in silent mode
	Provide credentials as environment variables
	Provide credentials as input values

	Module 1: Environment setup for Greengrass
	Setting up a Raspberry Pi
	Setting up an Amazon EC2 instance
	Setting up other devices

	Module 2: Installing the AWS IoT Greengrass Core software
	Provision an AWS IoT thing to use as a Greengrass core
	Create an AWS IoT Greengrass group for the core
	Install and run AWS IoT Greengrass on the core device

	Module 3 (part 1): Lambda functions on AWS IoT Greengrass
	Create and package a Lambda function
	Configure the Lambda function for AWS IoT Greengrass
	Deploy cloud configurations to a Greengrass core device
	Verify the Lambda function is running on the core device

	Module 3 (part 2): Lambda functions on AWS IoT Greengrass
	Create and package the Lambda function
	Configure long-lived Lambda functions for AWS IoT Greengrass
	Test long-lived Lambda functions
	Test on-demand Lambda functions

	Module 4: Interacting with client devices in an AWS IoT Greengrass group
	Create client devices in an AWS IoT Greengrass group
	Configure subscriptions
	Install the AWS IoT Device SDK for Python
	Test communications

	Module 5: Interacting with device shadows
	Configure devices and subscriptions
	Download required files
	Test communications (device syncs disabled)
	Test communications (device syncs enabled)

	Module 6: Accessing other AWS services
	Configure the group role
	Create and configure the Lambda function
	Configure subscriptions
	Test communications

	Module 7: Simulating hardware security integration
	Install the SoftHSM software
	Configure SoftHSM
	Import the private key into SoftHSM
	Configure the Greengrass core to use SoftHSM
	Test the configuration
	See also

	OTA updates of AWS IoT Greengrass Core software
	Requirements
	IAM permissions for OTA updates

	Considerations
	Greengrass OTA update agent
	Integration with init systems
	Managed respawn with OTA updates

	Create an OTA update
	CreateSoftwareUpdateJob API

	Deploy AWS IoT Greengrass groups to an AWS IoT Greengrass core
	Deploying groups from the AWS IoT console
	Deploying groups with the AWS IoT Greengrass API
	Getting the group ID

	Overview of the AWS IoT Greengrass group object model
	Groups
	Group versions
	Group components
	Updating groups

	See also
	Get deployment notifications
	Group deployment status change event
	Prerequisites for creating EventBridge rules
	Configure deployment notifications (console)
	Configure deployment notifications (CLI)
	Configure deployment notifications (AWS CloudFormation)
	See also

	Reset deployments
	Reset deployments from the AWS IoT console
	Reset deployments with the AWS IoT Greengrass API
	See also

	Create bulk deployments for groups
	Prerequisites
	Step 1: Create and upload the bulk deployment input file
	Step 2: Create and configure an IAM execution role
	Step 3: Allow your execution role access to your S3 Bucket
	Step 4: Deploy the groups
	Step 5: Test the deployment
	Troubleshooting bulk deployments
	Troubleshoot input file errors
	Check for concurrent bulk deployments
	Check ErrorDetails
	Check the AWS IoT Greengrass core log

	See also

	Run Lambda functions on the AWS IoT Greengrass core
	SDKs for Greengrass Lambda functions
	Migrating cloud-based Lambda functions

	Reference Lambda functions by alias or version
	Controlling execution of Greengrass Lambda functions by using group-specific configuration
	Group-specific configuration settings
	Running a Lambda function as root
	Considerations when choosing Lambda function containerization
	Determine the isolation modes supported by your Greengrass device

	Setting the default access identity for Lambda functions in a group
	Setting default containerization for Lambda functions in a group

	Communication flows for Greengrass Lambda functions
	Communication using MQTT messages
	Other communication flows

	Retrieve the input MQTT topic (or subject)
	Lifecycle configuration for Greengrass Lambda functions
	Lambda executables
	Create a Lambda executable

	Running AWS IoT Greengrass in a Docker container
	Prerequisites
	Step 1: Get the AWS IoT Greengrass container image from Amazon ECR
	Pull the container image (Linux)
	Pull the container image (macOS)
	Pull the container image (Windows)

	Step 2: Create and configure the Greengrass group and core
	Step 3: Run AWS IoT Greengrass locally
	Run Greengrass locally (Linux)
	Run Greengrass locally (macOS)
	Run Greengrass locally (Windows)

	Step 4: Configure "No container" containerization for the Greengrass group
	Step 5: Deploy Lambda functions to the AWS IoT Greengrass Docker container
	Step 6: (Optional) Deploy client devices that interact with Greengrass running in the Docker container
	Stopping the AWS IoT Greengrass Docker container
	Troubleshooting AWS IoT Greengrass in a Docker container
	Error: Cannot perform an interactive login from a non TTY device.
	Error: Unknown options: -no-include-email.
	Warning: IPv4 is disabled. Networking will not work.
	Error: A firewall is blocking file Sharing between windows and the containers.
	Error: An error occurred (AccessDeniedException) when calling the GetAuthorizationToken operation: User: arn:aws:iam::<account-id>:user/<user-name> is not authorized to perform: ecr:GetAuthorizationToken on resource: *
	Debugging AWS IoT Greengrass in a Docker container
	To persist Greengrass runtime logs outside of the Docker container
	To attach an interactive shell to the Docker container

	Access local resources with Lambda functions and connectors
	Supported resource types
	Requirements
	Volume resources under the /proc directory

	Group owner file access permission
	See also
	How to configure local resource access using the AWS command line interface
	Create local resources
	Create the Greengrass function
	Add the Lambda function to the group
	Troubleshooting

	How to configure local resource access using the AWS Management Console
	Prerequisites
	Step 1: Create a Lambda function deployment package
	Step 2: Create and publish a Lambda function
	Step 3: Add the Lambda function to the Greengrass group
	Step 4: Add a local resource to the Greengrass group
	Step 5: Add subscriptions to the Greengrass group
	Step 6: Deploy the AWS IoT Greengrass group
	Test local resource access

	Perform machine learning inference
	How AWS IoT Greengrass ML inference works
	Machine learning resources
	Supported model sources

	Requirements
	Runtimes and libraries for ML inference
	SageMaker Neo deep learning runtime
	MXNet versioning
	MXNet on Raspberry Pi
	TensorFlow model-serving limitations on Raspberry Pi

	Access machine learning resources from Lambda functions
	Access permissions for machine learning resources
	Resource owner properties

	Defining access permissions for Lambda functions (console)
	Defining access permissions for Lambda functions (API)
	Accessing machine learning resources from Lambda function code
	Troubleshooting
	InvalidMLModelOwner - GroupOwnerSetting is provided in ML model resource, but GroupOwner or GroupPermission is not present
	NoContainer function cannot configure permission when attaching Machine Learning resources. <function-arn> refers to Machine Learnin resource <resource-id> with permission <ro/rw> in resource access policy.
	Function <function-arn> refers to Machine Learning resource <resource-id> with missing permission in both ResourceAccessPolicy and resource OwnerSetting.
	Function <function-arn> refers to Machine Learning resource <resource-id> with permission \"rw\", while resource owner setting GroupPermission only allows \"ro\".
	NoContainer Function <function-arn> refers to resources of nested destination path.
	Lambda <function-arn> gains access to resource <resource-id> by sharing the same group owner id

	See also

	How to configure machine learning inference using the AWS Management Console
	Prerequisites
	Step 1: Configure the Raspberry Pi
	Step 2: Install the MXNet framework
	Step 3: Create an MXNet model package
	Step 4: Create and publish a Lambda function
	Step 5: Add the Lambda function to the Greengrass group
	Step 6: Add resources to the Greengrass group
	Using SageMaker trained models

	Step 7: Add a subscription to the Greengrass group
	Step 8: Deploy the Greengrass group
	Step 9: Test the inference app
	Troubleshooting AWS IoT Greengrass ML inference
	Check error logs
	Unpacking error in runtime.log

	Verify that the Lambda function is successfully deployed
	Verify that the inference model is successfully deployed

	Next steps
	Configuring an Intel Atom
	Configuring an NVIDIA Jetson TX2

	How to configure optimized machine learning inference using the AWS Management Console
	Prerequisites
	Step 1: Configure the Raspberry Pi
	Step 2: Install the Amazon SageMaker Neo deep learning runtime
	Step 3: Create an inference Lambda function
	Step 4: Add the Lambda function to the Greengrass group
	Step 5: Add a SageMaker Neo-optimized model resource to the Greengrass group
	Step 6: Add your camera device resource to the Greengrass group
	Step 7: Add subscriptions to the Greengrass group
	Step 8: Deploy the Greengrass group
	Test the inference example
	Configuring an Intel Atom
	Configuring an NVIDIA Jetson TX2
	Troubleshooting AWS IoT Greengrass ML inference
	Check error logs
	Verify the Lambda function is successfully deployed
	Verify the inference model is successfully deployed
	Lambda function cannot find /dev/dri/renderD128

	Next steps

	Manage data streams on the AWS IoT Greengrass core
	Stream management workflow
	Requirements
	Data security
	Local data security
	Client authentication

	See also
	Configure AWS IoT Greengrass stream manager
	Stream manager parameters
	Configure stream manager settings (console)
	To check if stream manager is enabled (console)
	To enable or disable stream manager during group creation (console)
	To enable or disable stream manager for an existing group (console)
	To change stream manager settings (console)

	Configure stream manager settings (CLI)
	To check if stream manager is enabled (CLI)
	To enable, disable, or configure stream manager (CLI)

	See also

	Use StreamManagerClient to work with streams
	Create message stream
	Requirements
	Examples

	Append message
	Requirements
	Examples
	AWS IoT Analytics or Kinesis Data Streams export destinations
	AWS IoT SiteWise export destinations
	Amazon S3 export destinations

	Read messages
	Requirements
	Examples

	List streams
	Requirements
	Examples

	Describe message stream
	Requirements
	Examples

	Update message stream
	Requirements
	Examples
	Constraints for updating streams

	Delete message stream
	Requirements
	Examples

	See also
	Export configurations for supported AWS Cloud destinations
	AWS IoT Analytics channels
	Requirements
	Exporting to AWS IoT Analytics

	Amazon Kinesis data streams
	Requirements
	Exporting to Kinesis Data Streams

	AWS IoT SiteWise asset properties
	Requirements
	Exporting to AWS IoT SiteWise

	Amazon S3 objects
	Requirements
	Exporting to Amazon S3
	Manage input data

	Monitor export tasks

	Export data streams to the AWS Cloud (console)
	Prerequisites
	Step 1: Create a Lambda function deployment package
	Step 2: Create a Lambda function
	Step 3: Add a Lambda function to the Greengrass group
	Step 4: Enable stream manager
	Step 5: Configure local logging
	Step 6: Deploy the Greengrass group
	Step 7: Test the application
	See also

	Export data streams to the AWS Cloud (CLI)
	Prerequisites
	Step 1: Create a Lambda function deployment package
	Step 2: Create a Lambda function
	Step 3: Create a function definition and version
	Step 4: Create a logger definition and version
	Step 5: Get the ARN of your core definition version
	Step 6: Create a group version
	Step 7: Create a deployment
	Step 8: Test the application
	See also

	Deploy secrets to the AWS IoT Greengrass core
	Secrets encryption
	Requirements
	Specify the private key for secret encryption
	Allow AWS IoT Greengrass to get secret values
	See also
	Working with secret resources
	Creating and managing secrets
	Including staging labels in secret resources
	Create and manage secret resources (console)
	Creating secret resources (console)
	Managing secret resources (console)

	Create and manage secret resources (CLI)
	Creating secret resources (CLI)
	Managing secret resources (CLI)

	Using local secrets in connectors and Lambda functions

	How to create a secret resource (console)
	Prerequisites
	Step 1: Create a Secrets Manager secret
	Step 2: Add a secret resource to a Greengrass group
	Step 3: Create a Lambda function deployment package
	Step 4: Create a Lambda function
	Step 5: Add the Lambda function to the Greengrass group
	Step 6: Attach the secret resource to the Lambda function
	Step 7: Add subscriptions to the Greengrass group
	Step 8: Deploy the Greengrass group
	Test the Lambda function
	See also

	Integrate with services and protocols using Greengrass connectors
	Requirements
	Using Greengrass connectors
	Configuration parameters
	Parameters used to access group resources
	Updating connector parameters

	Inputs and outputs
	Input topics

	Containerization support
	Upgrading connector versions
	Logging for connectors
	AWS-provided Greengrass connectors
	CloudWatch Metrics connector
	Requirements
	Connector Parameters
	Create Connector Example (AWS CLI)

	Input data
	Output data
	Usage Example
	Example

	Licenses
	Changelog
	See also

	Device Defender connector
	Requirements
	Connector Parameters
	Create Connector Example (AWS CLI)

	Input data
	Output data
	Licenses
	Changelog
	See also

	Docker application deployment connector
	Requirements
	Accessing Docker images from private repositories

	Parameters
	Create Connector Example (AWS CLI)

	Input data
	Output data
	Setting up the Docker user on the AWS IoT Greengrass core
	Usage information
	Communicating with Docker containers
	Configure MQTT communication with Docker containers

	Security notes
	Licenses
	Changelog
	See also

	IoT Analytics connector
	Requirements
	Parameters
	Create Connector Example (AWS CLI)

	Input data
	Output data
	Usage Example
	Example

	Limits
	Licenses
	Changelog
	See also

	IoT Ethernet IP Protocol Adapter connector
	Requirements
	Connector Parameters
	Create Connector Example (AWS CLI)

	Input data
	Output data
	Licenses
	Changelog
	See also

	IoT SiteWise connector
	Requirements
	Parameters
	Create Connector Example (AWS CLI)

	Input data
	Output data
	Limits
	Licenses
	Changelog
	See also

	Kinesis Firehose
	Requirements
	Connector Parameters
	Input data
	Output data
	Usage Example
	Example

	Licenses
	Changelog
	See also

	ML Feedback connector
	Requirements
	Parameters
	Create Connector Example (AWS CLI)
	FeedbackConfigurationMap example
	Sampling strategies

	Input data
	Output data
	Usage Example
	Licenses
	See also

	ML Image Classification connector
	Requirements
	Connector Parameters
	Create Connector Example (AWS CLI)

	Input data
	Output data
	Usage Example
	Installing MXNet dependencies on the AWS IoT Greengrass core
	Logging and troubleshooting
	Licenses
	Changelog
	See also

	ML Object Detection connector
	Requirements
	Object detection model requirements

	Connector Parameters
	Create Connector Example (AWS CLI)

	Input data
	Output data
	Usage Example
	Installing Neo deep learning runtime dependencies on the AWS IoT Greengrass core
	Logging and troubleshooting
	Licenses
	See also

	Modbus-RTU Protocol Adapter connector
	Requirements
	Connector Parameters
	Create Connector Example (AWS CLI)

	Input data
	Output data
	Modbus RTU requests and responses
	Example requests and responses
	Response status: Exception
	Response status: No response

	Usage Example
	Example

	Licenses
	Changelog
	See also

	Modbus-TCP Protocol Adapter connector
	Requirements
	Connector Parameters
	Create Connector Example (AWS CLI)

	Input data
	Output data
	Licenses
	Changelog
	See also

	Raspberry Pi GPIO connector
	Requirements
	GPIO Pin sequence

	Connector Parameters
	Create Connector Example (AWS CLI)

	Input data
	Output data
	Usage Example
	Example

	Licenses
	Changelog
	See also

	Serial Stream connector
	Requirements
	Connector Parameters
	Create Connector Example (AWS CLI)

	Input data
	Output data
	Usage Example
	Example

	Licenses
	Changelog
	See also

	ServiceNow MetricBase Integration connector
	Requirements
	Connector Parameters
	Create Connector Example (AWS CLI)

	Input data
	Output data
	Usage Example
	Example

	Licenses
	Changelog
	See also

	SNS connector
	Requirements
	Connector Parameters
	Create Connector Example (AWS CLI)

	Input data
	Output data
	Usage Example
	Example

	Licenses
	Changelog
	See also

	Splunk Integration connector
	Requirements
	Connector Parameters
	Create Connector Example (AWS CLI)

	Input data
	Output data
	Usage Example
	Example

	Licenses
	Changelog
	See also

	Twilio Notifications connector
	Requirements
	Connector Parameters
	Create Connector Example (AWS CLI)

	Input data
	Output data
	Usage Example
	Example

	Licenses
	Changelog
	See also

	Getting started with Greengrass connectors (console)
	Prerequisites
	Step 1: Create a Secrets Manager secret
	Step 2: Add a secret resource to a Greengrass group
	Step 3: Add a connector to the Greengrass group
	Step 4: Create a Lambda function deployment package
	Step 5: Create a Lambda function in the AWS Lambda console
	Step 6: Add a Lambda function to the Greengrass group
	Step 7: Add subscriptions to the Greengrass group
	Step 8: Deploy the Greengrass group
	Test the solution
	See also

	Getting started with Greengrass connectors (CLI)
	Prerequisites
	Step 1: Create a Secrets Manager secret
	Step 2: Create a resource definition and version
	Step 3: Create a connector definition and version
	Step 4: Create a Lambda function deployment package
	Step 5: Create a Lambda function
	Step 6: Create a function definition and version
	Step 7: Create a subscription definition and version
	Step 8: Create a group version
	Step 9: Create a deployment
	Test the solution
	See also

	Greengrass Discovery RESTful API
	Request
	Response
	Discovery authorization
	Example discover response documents

	Security in AWS IoT Greengrass
	Overview of AWS IoT Greengrass security
	Device connection workflow
	Configuring AWS IoT Greengrass security
	AWS IoT Greengrass core security principals
	Managed subscriptions in the MQTT messaging workflow
	TLS cipher suites support

	Data protection in AWS IoT Greengrass
	Data encryption
	Encryption in transit
	Data in transit over the internet
	Data in transit over the local network
	Data on the core device

	Encryption at rest
	Data at rest in the AWS Cloud
	Data at rest on the Greengrass core

	Key management for the Greengrass core device

	Hardware security integration
	Requirements
	Hardware security configuration for an AWS IoT Greengrass core
	Provisioning practices for AWS IoT Greengrass hardware security
	Supported cipher suites for hardware security integration
	Configure support for over-the-air updates
	Backward compatibility with earlier versions of the AWS IoT Greengrass core software
	Hardware without PKCS#11 support
	See also

	Device authentication and authorization for AWS IoT Greengrass
	X.509 certificates
	Certificate authority (CA) certificates
	Certificate rotation on the local MQTT server

	AWS IoT policies for data plane operations
	AWS IoT Greengrass policy actions

	Minimal AWS IoT policy for the AWS IoT Greengrass core device

	Identity and access management for AWS IoT Greengrass
	Audience
	Authenticating with identities
	AWS account root user
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	See also
	How AWS IoT Greengrass works with IAM
	Identity-based policies for AWS IoT Greengrass
	Actions
	Resources
	Condition keys
	Examples

	Resource-based policies for AWS IoT Greengrass
	Access control lists (ACLs)
	Authorization based on AWS IoT Greengrass tags
	IAM roles for AWS IoT Greengrass
	Using temporary credentials with AWS IoT Greengrass
	Service-linked roles
	Service roles
	Choosing an IAM role in the AWS IoT Greengrass console

	Greengrass service role
	Managing the Greengrass service role (console)
	Find your Greengrass service role (console)
	Create the Greengrass service role (console)
	Change the Greengrass service role (console)
	Detach the Greengrass service role (console)

	Managing the Greengrass service role (CLI)
	Get the Greengrass service role (CLI)
	Create the Greengrass service role (CLI)
	Remove the Greengrass service role (CLI)

	See also

	Greengrass group role
	Managing the Greengrass group role (console)
	Find your Greengrass group role (console)
	Add or change the Greengrass group role (console)
	Remove the Greengrass group role (console)

	Managing the Greengrass group role (CLI)
	Get the Greengrass group role (CLI)
	Create the Greengrass group role (CLI)
	Remove the Greengrass group role (CLI)

	See also

	Cross-service confused deputy prevention
	Identity-based policy examples for AWS IoT Greengrass
	Policy best practices
	AWS managed policies for AWS IoT Greengrass
	Policy examples
	Allow users to view their own permissions

	Troubleshooting identity and access issues for AWS IoT Greengrass
	I'm not authorized to perform an action in AWS IoT Greengrass
	Error: Greengrass is not authorized to assume the Service Role associated with this account, or the error: Failed: TES service role is not associated with this account.
	Error: Permission denied when attempting to use role arn:aws:iam::<account-id>:role/<role-name> to access s3 url https://<region>-greengrass-updates.s3.<region>.amazonaws.com/core/<architecture>/greengrass-core-<distribution-version>.tar.gz.
	Device shadow does not sync with the cloud.
	I'm not authorized to perform iam:PassRole
	I'm an administrator and want to allow others to access AWS IoT Greengrass
	I want to allow people outside of my AWS account to access my AWS IoT Greengrass resources

	Compliance validation for AWS IoT Greengrass
	Resilience in AWS IoT Greengrass
	Infrastructure security in AWS IoT Greengrass
	Configuration and vulnerability analysis in AWS IoT Greengrass
	AWS IoT Greengrass and interface VPC endpoints (AWS PrivateLink)
	Considerations for AWS IoT Greengrass VPC endpoints
	Create an interface VPC endpoint for AWS IoT Greengrass control plane operations
	Creating a VPC endpoint policy for AWS IoT Greengrass

	Security best practices for AWS IoT Greengrass
	Grant minimum possible permissions
	Don't hardcode credentials in Lambda functions
	Don't log sensitive information
	Create targeted subscriptions
	Keep your device clock in sync
	Manage device authentication with the Greengrass core
	See also

	Logging and monitoring in AWS IoT Greengrass
	Monitoring tools
	See also
	Monitoring with AWS IoT Greengrass logs
	Accessing CloudWatch Logs
	Accessing file system logs
	Default logging configuration
	Configure logging for AWS IoT Greengrass
	Configure logging (console)
	Configure logging (API)
	Configuration example

	Logging limitations
	Transactions per second
	Memory
	Clock skew
	Disk usage
	Log loss

	CloudTrail logs

	Logging AWS IoT Greengrass API calls with AWS CloudTrail
	AWS IoT Greengrass information in CloudTrail
	Understanding AWS IoT Greengrass log file entries
	See also

	Gathering system health telemetry data from AWS IoT Greengrass core devices
	Configuring telemetry settings
	Requirements
	Configure telemetry settings (console)
	Configure telemetry settings (CLI)
	TelemetryConfiguration object

	Subscribing to receive telemetry data
	Telemetry event
	Prerequisites for creating EventBridge rules
	Create an event rule to get telemetry data (console)
	Create an event rule to get telemetry data (CLI)

	Troubleshooting AWS IoT Greengrass telemetry
	Error: The response contains "ConfigurationStatus": "OutOfSync" after you run the get-thing-runtime-configuration command

	Calling the local health check API
	Get health information for all workers
	JSON Response

	Get health information about specified workers
	JSON Response

	Worker health information
	System Lambda functions

	Tagging your AWS IoT Greengrass resources
	Tag basics
	Tagging support in the AWS IoT console
	Tagging support in the AWS IoT Greengrass API

	Using tags with IAM policies
	Example IAM policies

	See also

	AWS CloudFormation support for AWS IoT Greengrass
	Creating resources
	Deploying resources
	Example template
	Supported AWS Regions

	Using AWS IoT Device Tester for AWS IoT Greengrass V1
	AWS IoT Greengrass qualification suite
	Custom test suites
	Supported versions of AWS IoT Device Tester for AWS IoT Greengrass V1
	Unsupported IDT versions for for AWS IoT Greengrass

	Use IDT to run the AWS IoT Greengrass qualification suite
	Test suite versions
	Updates to IDT configuration settings

	Test group descriptions
	Prerequisites for running the AWS IoT Greengrass qualification suite
	Download the latest version of AWS IoT Device Tester for AWS IoT Greengrass
	Create and configure an AWS account
	Step 1: Create an AWS account
	Sign up for an AWS account
	Create an administrative user

	Step 2: Configure permissions for IDT

	AWS managed policy for AWS IoT Device Tester

	Configure your device to run IDT tests
	Verify AWS IoT Greengrass dependencies on the device under test
	Configure the AWS IoT Greengrass software
	Option 1: Download the AWS IoT Greengrass Core software and configure AWS IoT Device Tester to use it
	Option 2: Use an existing installation of AWS IoT Greengrass with AWS IoT Device Tester

	Configure your host computer to access your device under test
	Configure user permissions on your device
	Configure your device to test optional features
	Optional: Configuring your Docker container for IDT for AWS IoT Greengrass
	Configure the Docker image provided by AWS IoT Greengrass
	Configure the dockerfile provided by AWS IoT Greengrass
	Troubleshooting your Docker container setup for IDT for AWS IoT Greengrass
	WARNING: Error loading config file:/home/user/.docker/config.json - stat /home/<user>/.docker/config.json: permission denied

	Optional: Configuring your device for ML qualification
	Installing ML framework dependencies
	Install Apache MXNet dependencies
	Installing MXNet
	Validating the MXNet installation
	Option 1: SSH into your device and run scripts
	Option 2: Run the IDT dependency test

	Install TensorFlow dependencies
	Installing TensorFlow
	Validating the TensorFlow installation
	Option 1: SSH into your device and run a script
	Option 2: Run the IDT dependency test

	Install Amazon SageMaker Neo Deep Learning Runtime (DLR) dependencies
	Installing DLR
	Validating the DLR installation
	Option 1: SSH into your device and run scripts
	Option 2: Run the IDT dependency test

	Compile the DLR model
	Option 1: Use Amazon SageMaker to compile the model
	Option 2: Use TVM to compile the DLR model

	Configure IDT settings to run the AWS IoT Greengrass qualification suite
	Configure your AWS credentials
	Configure AWS credentials with a credentials file
	Configure AWS credentials with environment variables

	Configure device.json
	Configure device.json for ML qualification

	Run the AWS IoT Greengrass qualification suite
	Check for Greengrass dependencies
	Set the default update behavior
	IDT for AWS IoT Greengrass commands

	Understanding results and logs
	Viewing results
	Interpreting IDT reports
	Viewing logs

	Use IDT to develop and run your own test suites
	Download the latest version of AWS IoT Device Tester for AWS IoT Greengrass
	Test suite creation workflow
	Tutorial: Build and run the sample IDT test suite
	Prerequisites
	Configure device information for IDT
	Build the sample test suite
	Use IDT to run the sample test suite
	Troubleshooting

	Tutorial: Develop a simple IDT test suite
	Prerequisites
	Create a test suite directory
	Create JSON configuration files
	Get the IDT client SDK
	Create the test case executable
	Configure device information for IDT
	Run the test suite
	Troubleshooting

	Create IDT test suite configuration files
	Configure suite.json
	Configure group.json
	Configure test.json
	Configure state_machine.json
	Configure userdata_schema.json

	Configure the IDT state machine
	State machine format
	Valid states and state definitions
	RunTask
	Choice
	Parallel
	AddProductFeatures
	Report
	LogMessage
	SelectGroup
	Fail
	Succeed

	State machine context
	Execution errors
	Catch
	hasExecutionError

	Example state machines
	Example state machine: Run a single test group
	Example state machine: Run user-selected test groups
	Example state machine: Run a single test group with product features
	Example state machine: Run two test groups in parallel

	Create IDT test case executables
	Use the IDT Client SDK
	Device interaction
	IDT interaction
	Host interaction

	Enable IDT CLI commands
	Write event logs
	Report results to IDT
	Specify exit behavior

	Use the IDT context
	Context schema
	Access data in the context

	Configure settings for test runners
	Configure device.json
	(Optional) Configure userdata.json
	(Optional) Configure resource.json
	(Optional) Configure config.json

	Debug and run custom test suites
	Run IDT in debug mode
	IDT CLI commands to run tests

	Review IDT test results and logs
	Console message format
	AWS IoT Device Tester report schema
	Test suite report schema

	IDT usage metrics
	Configure your AWS credentials
	Step 1: Create an AWS account
	Sign up for an AWS account
	Create an administrative user

	Step 2: Configure permissions for IDT

	Provide AWS credentials to IDT

	IDT for AWS IoT Greengrass troubleshooting
	Error codes
	Resolving IDT for AWS IoT Greengrass errors
	Where do I look for errors?
	Parsing errors
	Required parameter missing error
	Could not start test error
	Not authorized to access resource error
	Permission denied errors
	SSH connection errors
	Timeout errors
	Command not found errors while testing
	Security exception on macOS

	Support policy for AWS IoT Device Tester for AWS IoT Greengrass V1

	Troubleshooting AWS IoT Greengrass
	AWS IoT Greengrass Core issues
	Error: The configuration file is missing the CaPath, CertPath or KeyPath. The Greengrass daemon process with [pid = <pid>] died.
	Error: Failed to parse /<greengrass-root>/config/config.json.
	Error: Error occurred while generating TLS config: ErrUnknownURIScheme
	Error: Runtime failed to start: unable to start workers: container test timed out.
	Error: Failed to invoke PutLogEvents on local Cloudwatch, logGroup: /GreengrassSystem/connection_manager, error: RequestError: send request failed caused by: Post http://<path>/cloudwatch/logs/: dial tcp <address>: getsockopt: connection refused, response: { }.
	Error: Unable to create server due to: failed to load group: chmod /<greengrass-root>/ggc/deployment/lambda/arn:aws:lambda:<region>:<account-id>:function:<function-name>:<version>/<file-name>: no such file or directory.
	The AWS IoT Greengrass Core software doesn't start after you changed from running with no containerization to running in a Greengrass container.
	Error: Spool size should be at least 262144 bytes.
	Error: [ERROR]-Cloud messaging error: Error occurred while trying to publish a message. {"errorString": "operation timed out"}
	Error: container_linux.go:344: starting container process caused "process_linux.go:424: container init caused \"rootfs_linux.go:64: mounting \\\"/greengrass/ggc/socket/greengrass_ipc.sock\\\" to rootfs \\\"/greengrass/ggc/packages/<version>/rootfs/merged\\\" at \\\"/greengrass_ipc.sock\\\" caused \\\"stat /greengrass/ggc/socket/greengrass_ipc.sock: permission denied\\\"\"".
	Error: Greengrass daemon running with PID: <process-id>. Some system components failed to start. Check 'runtime.log' for errors.
	Device shadow does not sync with the cloud.
	ERROR: unable to accept TCP connection. accept tcp [::]:8000: accept4: too many open files.
	Error: Runtime execution error: unable to start lambda container. container_linux.go:259: starting container process caused "process_linux.go:345: container init caused \"rootfs_linux.go:50: preparing rootfs caused \\\"permission denied\\\"\"".
	Warning: [WARN]-[5]GK Remote: Error retrieving public key data: ErrPrincipalNotConfigured: private key for MqttCertificate is not set.
	Error: Permission denied when attempting to use role arn:aws:iam::<account-id>:role/<role-name> to access s3 url https://<region>-greengrass-updates.s3.<region>.amazonaws.com/core/<architecture>/greengrass-core-<distribution-version>.tar.gz.
	The AWS IoT Greengrass core is configured to use a network proxy and your Lambda function can't make outgoing connections.
	The core is in an infinite connect-disconnect loop. The runtime.log file contains a continuous series of connect and disconnect entries.
	Error: unable to start lambda container. container_linux.go:259: starting container process caused "process_linux.go:345: container init caused \"rootfs_linux.go:62: mounting \\\"proc\\\" to rootfs \\\"
	[ERROR]-runtime execution error: unable to start lambda container. {"errorString": "failed to initialize container mounts: failed to mask greengrass root in overlay upper dir: failed to create mask device at directory <ggc-path>: file exists"}
	[ERROR]-Deployment failed. {"deploymentId": "<deployment-id>", "errorString": "container test process with pid <pid> failed: container process state: exit status 1"}
	Error: [ERROR]-runtime execution error: unable to start lambda container. {"errorString": "failed to initialize container mounts: failed to create overlay fs for container: mounting overlay at /greengrass/ggc/packages/<ggc-version>/rootfs/merged failed: failed to mount with args source=\"no_source\" dest=\"/greengrass/ggc/packages/<ggc-version>/rootfs/merged\" fstype=\"overlay\" flags=\"0\" data=\"lowerdir=/greengrass/ggc/packages/<ggc-version>/dns:/,upperdir=/greengrass/ggc/packages/<ggc-version>/rootfs/upper,workdir=/greengrass/ggc/packages/<ggc-version>/rootfs/work\": too many levels of symbolic links"}
	Error: [DEBUG]-Failed to get routes. Discarding message.
	Error: [Errno 24] Too many open <lambda-function>,[Errno 24] Too many open files
	Error: ds server failed to start listening to socket: listen unix <ggc-path>/ggc/socket/greengrass_ipc.sock: bind: invalid argument
	[INFO] (Copier) aws.greengrass.StreamManager: stdout. Caused by: com.fasterxml.jackson.databind.JsonMappingException: Instant exceeds minimum or maximum instant
	GPG error: https://dnw9lb6lzp2d8.cloudfront.net stable InRelease: The following signatures were invalid: EXPKEYSIG 68D644ABD2327D47 AWS Greengrass Master Key

	Deployment issues
	Your current deployment does not work and you want to revert to a previous working deployment.
	You see a 403 Forbidden error on deployment in the logs.
	A ConcurrentDeployment error occurs when you run the create-deployment command for the first time.
	Error: Greengrass is not authorized to assume the Service Role associated with this account, or the error: Failed: TES service role is not associated with this account.
	Error: unable to execute download step in deployment. error while downloading: error while downloading the Group definition file: ... x509: certificate has expired or is not yet valid
	The deployment doesn't finish.
	Error: Unable to find java or java8 executables, or the error: Deployment <deployment-id> of type NewDeployment for group <group-id> failed error: worker with <worker-id> failed to initialize with reason Installed Java version must be greater than or equal to 8
	The deployment doesn't finish, and runtime.log contains multiple "wait 1s for container to stop" entries.
	The deployment doesn't finish, and runtime.log contains "[ERROR]-Greengrass deployment error: failed to report deployment status back to cloud {"deploymentId": "<deployment-id>", "errorString": "Failed to initiate PUT, endpoint: https://<deployment-status>, error: Put https://<deployment-status>: proxyconnect tcp: x509: certificate signed by unknown authority"}"
	Error: Deployment <deployment-id> of type NewDeployment for group <group-id> failed error: Error while processing. group config is invalid: 112 or [119 0] don't have rw permission on the file: <path>.
	Error: <list-of-function-arns> are configured to run as root but Greengrass is not configured to run Lambda functions with root permissions.
	Error: Deployment <deployment-id> of type NewDeployment for group <group-id> failed error: Greengrass deployment error: unable to execute download step in deployment. error while processing: unable to load the group file downloaded: could not find UID based on user name, userName: ggc_user: user: unknown user ggc_user.
	Error: [ERROR]-runtime execution error: unable to start lambda container. {"errorString": "failed to initialize container mounts: failed to mask greengrass root in overlay upper dir: failed to create mask device at directory <ggc-path>: file exists"}
	Error: Deployment <deployment-id> of type NewDeployment for group <group-id> failed error: process start failed: container_linux.go:259: starting container process caused "process_linux.go:250: running exec setns process for init caused \"wait: no child processes\"".
	Error: [WARN]-MQTT[client] dial tcp: lookup <host-prefix>-ats.iot.<region>.amazonaws.com: no such host ... [ERROR]-Greengrass deployment error: failed to report deployment status back to cloud ... net/http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers)

	Create group and create function issues
	Error: Your 'IsolationMode' configuration for the group is invalid.
	Error: Your 'IsolationMode' configuration for function with arn <function-arn> is invalid.
	Error: MemorySize configuration for function with arn <function-arn> is not allowed in IsolationMode=NoContainer.
	Error: Access Sysfs configuration for function with arn <function-arn> is not allowed in IsolationMode=NoContainer.
	Error: MemorySize configuration for function with arn <function-arn> is required in IsolationMode=GreengrassContainer.
	Error: Function <function-arn> refers to resource of type <resource-type> that is not allowed in IsolationMode=NoContainer.
	Error: Execution configuration for function with arn <function-arn> is not allowed.

	Discovery issues
	Error: Device is a member of too many groups, devices may not be in more than 10 groups

	Machine learning resource issues
	InvalidMLModelOwner - GroupOwnerSetting is provided in ML model resource, but GroupOwner or GroupPermission is not present
	NoContainer function cannot configure permission when attaching Machine Learning resources. <function-arn> refers to Machine Learnin resource <resource-id> with permission <ro/rw> in resource access policy.
	Function <function-arn> refers to Machine Learning resource <resource-id> with missing permission in both ResourceAccessPolicy and resource OwnerSetting.
	Function <function-arn> refers to Machine Learning resource <resource-id> with permission \"rw\", while resource owner setting GroupPermission only allows \"ro\".
	NoContainer Function <function-arn> refers to resources of nested destination path.
	Lambda <function-arn> gains access to resource <resource-id> by sharing the same group owner id

	AWS IoT Greengrass core in Docker issues
	Error: Unknown options: -no-include-email.
	Warning: IPv4 is disabled. Networking will not work.
	Error: A firewall is blocking file Sharing between windows and the containers.
	Error: An error occurred (AccessDeniedException) when calling the GetAuthorizationToken operation: User: arn:aws:iam::<account-id>:user/<user-name> is not authorized to perform: ecr:GetAuthorizationToken on resource: *
	Error: Cannot create container for the service greengrass: Conflict. The container name "/aws-iot-greengrass" is already in use.
	Error: [FATAL]-Failed to reset thread's mount namespace due to an unexpected error: "operation not permitted". To maintain consistency, GGC will crash and need to be manually restarted.

	Troubleshooting with logs
	Troubleshooting storage issues
	Troubleshooting messages
	Troubleshooting shadow synchronization timeout issues
	Check AWS re:Post

	Document history for AWS IoT Greengrass
	Earlier updates

