Table of Contents

What is GuardDuty? ... 1
Pricing for GuardDuty ... 1
Accessing GuardDuty .. 1
Getting started ... 3
Before you begin ... 3
Step 1: Enable Amazon GuardDuty ... 4
Step 2: Generate sample findings and explore basic operations 5
Step 3: Configure exporting GuardDuty findings to an Amazon S3 bucket 6
Step 4: Set up GuardDuty finding alerts through SNS 7
Next steps .. 9
Concepts and terminology .. 10
GuardDuty features activation .. 12
Feature activation ... 12
GuardDuty API changes ... 12
- Features activation compared to data sources 12
- Understanding how feature activation works 13
- Incorporating features activation changes 13
- Mapping dataSources to features ... 13
Foundational data sources .. 15
- AWS CloudTrail event logs .. 15
- How GuardDuty handles AWS CloudTrail global events 15
- AWS CloudTrail management events 16
- VPC Flow Logs ... 16
- DNS logs .. 16
GuardDuty EKS Protection .. 18
Features .. 18
- Kubernetes audit logs .. 18
- Runtime Monitoring .. 18
EKS Audit Log Monitoring ... 19
- Configuring EKS Audit Log Monitoring for a standalone account 19
- Configuring EKS Audit Log Monitoring in multiple-account environments 20
EKS Runtime Monitoring ... 24
- Verified platforms .. 25
- CPU and memory limits ... 26
- Configuring EKS Runtime Monitoring 26
- Managing GuardDuty agent manually 36
- Amazon ECR repository hosting GuardDuty agent 39
- Assessing coverage .. 40
- Setting up CPU and memory monitoring 44
- Runtime event types .. 45
- EKS add-on agent release history ... 50
GuardDuty Lambda Protection ... 52
Feature ... 52
- Lambda Network Activity Monitoring 52
Configuring Lambda Protection .. 53
- Configuring Lambda Protection for a standalone account 53
- Configuring Lambda Protection in multi-account environments 53
GuardDuty Malware Protection ... 59
Supported volumes in Malware Protection 60
Feature ... 61
- Elastic Block Storage (EBS) volume 61
GuardDuty service account .. 62
Customizations in Malware Protection ... 63
- General settings ... 63
EKS Runtime Monitoring finding types .. 136
CryptoCurrency:Runtime/BitcoinTool.B .. 137
Backdoor:Runtime/C&CActivity.B .. 138
UnauthorizedAccess:Runtime/ThreatCommand 138
UnauthorizedAccess:Runtime/TorClient ... 139
Trojan:Runtime/BlackholeTraffic ... 139
Trojan:Runtime/RunDomainRequestDNS ... 140
Trojan:Runtime/BlackholeTraffic ... 140
Trojan:Runtime/RunDomainRequestDNS ... 141
Trojan:Runtime/BlackholeTraffic ... 142
Trojan:Runtime/RunDomainRequestDNS ... 142
Trojan:Runtime/BlackholeTraffic ... 142
Trojan:Runtime/RunDomainRequestDNS ... 142
Trojan:Runtime/BlackholeTraffic ... 142
Trojan:Runtime/RunDomainRequestDNS ... 143
Impact:Runtime/AbusedDomainRequest.Reputation 144
Impact:Runtime/BitcoinDomainRequest.Reputation 144
Impact:Runtime/MaliciousDomainRequest.Reputation 145
Impact:Runtime/SuspiciousDomainRequest.Reputation 146
UnauthorizedAccess:Runtime/ThreatCommand 146
UnauthorizedAccess:Runtime/ThreatCommand 146
UnauthorizedAccess:Runtime/ThreatCommand 146
UnauthorizedAccess:Runtime/ThreatCommand 147
UnauthorizedAccess:Runtime/ThreatCommand 147
UnauthorizedAccess:Runtime/ThreatCommand 147
UnauthorizedAccess:Runtime/ThreatCommand 147
UnauthorizedAccess:Runtime/ThreatCommand 148
UnauthorizedAccess:Runtime/ThreatCommand 148
UnauthorizedAccess:Runtime/ThreatCommand 149
Impact:Runtime/CryptoMinerExecuted ... 151
Execution:Runtime/NewLibraryLoaded .. 151
PrivilegeEscalation:Runtime/ContainerMountsHostDirectory 152
PrivilegeEscalation:Runtime/UserfaultfdUsage .. 152
IAM finding types ... 153
 CredentialAccess:IAMUser/AnomalousBehavior .. 154
 DefenseEvasion:IAMUser/AnomalousBehavior ... 154
 Discovery:IAMUser/AnomalousBehavior ... 155
 Exfiltration:IAMUser/AnomalousBehavior .. 155
 Impact:IAMUser/AnomalousBehavior ... 156
 InitialAccess:IAMUser/AnomalousBehavior .. 156
 PenTest:IAMUser/KaliLinux ... 157
 PenTest:IAMUser/ParrotLinux ... 157
 PenTest:IAMUser/PentooLinux ... 157
 Persistence:IAMUser/AnomalousBehavior ... 158
 Policy:IAMUser/RootCredentialUsage .. 158
 PrivilegeEscalation:IAMUser/AnomalousBehavior .. 159
 Recon:IAMUser/MaliciousIPCaller .. 159
 Recon:IAMUser/MaliciousIPCaller.Custom .. 160
 Recon:IAMUser/ToriIPCaller ... 160
 Stealth:IAMUser/CloudTrailLoggingDisabled .. 160
 Stealth:IAMUser/PasswordPolicyChange ... 161
 UnauthorizedAccess:IAMUser/ConsoleLoginSuccess.B 161
 UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration.InsideAWS 162
 UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration.OutsideAWS 163
 UnauthorizedAccess:IAMUser/MaliciousIPCaller ... 163
 UnauthorizedAccess:IAMUser/MaliciousIPCaller.Custom 164
 UnauthorizedAccess:IAMUser/ToriIPCaller .. 164
Kubernetes audit logs finding types .. 165
 CredentialAccess:Kubernetes/MaliciousIPCaller ... 166
 CredentialAccess:Kubernetes/MaliciousIPCaller.Custom 166
 CredentialAccess:Kubernetes/SuccessfulAnonymousAccess 167
 CredentialAccess:Kubernetes/ToriIPCaller ... 167
 DefenseEvasion:Kubernetes/MaliciousIPCaller .. 168
 DefenseEvasion:Kubernetes/MaliciousIPCaller.Custom 168
 DefenseEvasion:Kubernetes/SuccessfulAnonymousAccess 168
 DefenseEvasion:Kubernetes/ToriIPCaller .. 168
 Discovery:Kubernetes/ContainerWithSensitiveMount 171
 Discovery:Kubernetes/MaliciousIPCaller ... 169
 Discovery:Kubernetes/MaliciousIPCaller.Custom ... 169
 Discovery:Kubernetes/SuccessfulAnonymousAccess 170
 Discovery:Kubernetes/ToriIPCaller ... 170
 Execution:Kubernetes/ExecInKubeSystemPod ... 171
 Impact:Kubernetes/MaliciousIPCaller .. 172
 Impact:Kubernetes/MaliciousIPCaller.Custom .. 172
 Impact:Kubernetes/SuccessfulAnonymousAccess .. 172
 Impact:Kubernetes/ToriIPCaller .. 173
 Persistence:Kubernetes/ContainerWithSensitiveMount 173
 Persistence:Kubernetes/MaliciousIPCaller ... 174
 Persistence:Kubernetes/MaliciousIPCaller.Custom 174
 Persistence:Kubernetes/SuccessfulAnonymousAccess 175
 Persistence:Kubernetes/ToriIPCaller ... 175
 Policy:Kubernetes/AdminAccessToDefaultServiceAccount 176
 Policy:Kubernetes/AnonymousAccessGranted .. 176
 Policy:Kubernetes/ExposedDashboard ... 177
 Policy:Kubernetes/KubeflowDashboardExposed ... 177
 PrivilegeEscalation:Kubernetes/PrivilegedContainer 177
Lambda Protection finding types ... 178
Backdoor: Lambda/C&CActivity.B .. 178
CryptoCurrency: Lambda/BitcoinTool.B .. 179
Trojan: Lambda/BlackholeTraffic .. 179
Trojan: Lambda/DropPoint .. 180
UnauthorizedAccess: Lambda/MaliciousIPCaller.Custom 180
UnauthorizedAccess: Lambda/TorClient .. 180
UnauthorizedAccess: Lambda/TorRelay ... 181
Malware Protection finding types ... 181
 Execution: EC2/MaliciousFile .. 182
 Execution: ECS/MaliciousFile ... 182
 Execution: Kubernetes/MaliciousFile .. 182
 Execution: Container/MaliciousFile ... 182
 Execution: EC2/SuspiciousFile ... 183
 Execution: ECS/SuspiciousFile .. 183
 Execution: Kubernetes/SuspiciousFile .. 184
 Execution: Container/SuspiciousFile ... 184
RDS Protection finding types .. 184
 CredentialAccess: RDS/AnomalousBehavior.SuccessfulLogin 185
 CredentialAccess: RDS/AnomalousBehavior.FailedLogin 186
 CredentialAccess: RDS/AnomalousBehavior.SuccessfulBruteForce 186
 CredentialAccess: RDS/MaliciousIPCaller.SuccessfulLogin 187
 CredentialAccess: RDS/MaliciousIPCaller.FailedLogin 187
 Discovery: RDS/MaliciousIPCaller .. 188
 CredentialAccess: RDS/TorIPCaller.SuccessfulLogin 188
 CredentialAccess: RDS/TorIPCaller.FailedLogin 189
 Discovery: RDS/TorIPCaller .. 189
S3 finding types .. 190
 Discovery: S3/AnomalousBehavior .. 190
 Discovery: S3/MaliciousIPCaller .. 191
 Discovery: S3/MaliciousIPCaller.Custom 191
 Discovery: S3/TorIPCaller ... 192
 Exfiltration: S3/AnomalousBehavior ... 192
 Exfiltration: S3/MaliciousIPCaller ... 193
 Impact: S3/AnomalousBehavior.Delete .. 193
 Impact: S3/AnomalousBehavior.Permission 194
 Impact: S3/AnomalousBehavior.Write ... 194
 Impact: S3/MaliciousIPCaller ... 195
 PenTest: S3/KaliLinux ... 195
 PenTest: S3/ParrotLinux ... 196
 PenTest: S3/PentooLinux ... 196
 Policy: S3/AccountBlockPublicAccessDisabled 196
 Policy: S3/AnonymousAccessGranted .. 197
 Policy: S3/BucketBlockPublicAccessDisabled 197
 Policy: S3/BucketPublicAccessGranted .. 198
 Stealth: S3/ServerAccessLoggingDisabled 198
 UnauthorizedAccess: S3/MaliciousIPCaller.Custom 199
 UnauthorizedAccess: S3/TorIPCaller ... 199
Retired finding types .. 199
 Exfiltration: S3/ObjectRead.Unusual ... 200
 Impact: S3/PermissionsModification.Unusual 201
 Impact: S3/ObjectDelete.Unusual .. 201
 Discovery: S3/BucketEnumeration.Unusual 201
 Persistence: IAMUser/NetworkPermissions 202
 Persistence: IAMUser/ResourcePermissions 202
 Persistence: IAMUser/UserPermissions .. 203
 PrivilegeEscalation: IAMUser/AdministrativePermissions 203
 Recon: IAMUser/NetworkPermissions ... 204
What is Amazon GuardDuty?

Amazon GuardDuty is a security monitoring service that analyzes and processes Foundational data sources (p. 15), such as AWS CloudTrail management events, AWS CloudTrail event logs, VPC flow logs (from Amazon EC2 instances), and DNS logs. It also processes Features such as Kubernetes audit logs, RDS login activity, S3 logs, EBS volumes, Runtime monitoring, and Lambda network activity logs. It uses threat intelligence feeds, such as lists of malicious IP addresses and domains, and machine learning to identify unexpected, potentially unauthorized, and malicious activity within your AWS environment. This can include issues like escalation of privileges, use of exposed credentials, or communication with malicious IP addresses, domains, presence of malware on your Amazon EC2 instances and container workloads, or discovery of unusual patterns of login events on your database. For example, GuardDuty can detect compromised EC2 instances and container workloads serving malware, or mining bitcoin. It also monitors AWS account access behavior for signs of compromise, such as unauthorized infrastructure deployments, like instances deployed in a Region that hasn’t been used before, or unusual API calls like a password policy change to reduce password strength.

GuardDuty informs you of the status of your AWS environment by producing security findings (p. 98) that you can view in the GuardDuty console or through Amazon EventBridge. GuardDuty also provides support for you to export your findings to an Amazon Simple Storage Service (S3) bucket, and integrate with other services such as AWS Security Hub and Detective.

Pricing for GuardDuty

For information about GuardDuty pricing, see Amazon GuardDuty Pricing.

Accessing GuardDuty

You can work with GuardDuty in any of the following ways:

GuardDuty console

https://console.aws.amazon.com/guardduty

The console is a browser-based interface to access and use GuardDuty. The GuardDuty console provides access to your GuardDuty account, data, and resources.

AWS command line tools

With AWS command line tools, you can issue commands at your system’s command line to perform GuardDuty tasks and AWS tasks. The command line tools are useful if you want to build scripts that perform tasks.

For information about installing and using AWS CLI, see AWS Command Line Interface User Guide. To view the available AWS CLI commands for GuardDuty, see CLI command reference.

GuardDuty HTTPS API

You can access GuardDuty and AWS programmatically by using the GuardDuty HTTPS API, which lets you issue HTTPS requests directly to the service. For more information, see the GuardDuty API Reference.

AWS SDKs

AWS provides software development kits (SDKs) that consist of libraries and sample code for various programming languages and platforms (Java, Python, Ruby, .NET, iOS, Android, and more). The SDKs
provide a convenient way to create programmatic access to GuardDuty. For information about the
AWS SDKs, including how to download and install them, see Tools for Amazon Web Services.
Getting started with GuardDuty

This tutorial provides a hands-on introduction to GuardDuty. The minimum requirements for enabling GuardDuty as a standalone account or as a GuardDuty administrator with AWS Organizations are covered in Step 1. Steps 2 through 5 cover using additional features recommended by GuardDuty to get the most out of your findings.

 Topics
 • Before you begin (p. 3)
 • Step 1: Enable Amazon GuardDuty (p. 4)
 • Step 2: Generate sample findings and explore basic operations (p. 5)
 • Step 3: Configure exporting GuardDuty findings to an Amazon S3 bucket (p. 6)
 • Step 4: Set up GuardDuty finding alerts through SNS (p. 7)
 • Next steps (p. 9)

Before you begin

GuardDuty is a threat detection service that monitors Foundational data sources (p. 15) such as AWS CloudTrail event logs, AWS CloudTrail management events, Amazon VPC Flow Logs, and DNS logs. GuardDuty also analyzes features associated with its protection types only if you enable them separately. Features include Kubernetes audit logs, RDS login activity, S3 logs, EBS volumes, Runtime monitoring, and Lambda network activity logs. Using these data sources and features (if enabled), GuardDuty generates security findings for your account.

After you enable GuardDuty, it starts monitoring your environment. You can disable GuardDuty for any account in any Region, at any time. This will stop GuardDuty from processing the foundational data sources and any features that were enabled separately.

You do not need to enable any of the Foundational data sources (p. 15) explicitly. Amazon GuardDuty pulls independent streams of data directly from those services. For a new GuardDuty account, all the available protection types that are supported in an AWS Region are enabled and included in the 30-day free trial period by default. You can opt out of any or all of them. If you're an existing GuardDuty customer, you can choose to enable any or all of the protection plans that are available in your AWS Region. For more information, see Features associated with each protection type in GuardDuty.

When enabling GuardDuty, consider the following items:

 • GuardDuty is a Regional service, meaning any of the configuration procedures you follow on this page must be repeated in each Region that you want to monitor with GuardDuty.

 We highly recommend that you enable GuardDuty in all supported AWS Regions. This enables GuardDuty to generate findings about unauthorized or unusual activity even in Regions that you are not actively using. This also enables GuardDuty to monitor AWS CloudTrail events for global AWS services such as IAM. If GuardDuty is not enabled in all supported Regions, its ability to detect activity that involves global services is reduced. For a full list of Regions where GuardDuty is available, see Regions and endpoints (p. 351).

 • Any user with administrator privileges in an AWS account can enable GuardDuty, however, following the security best practice of least privilege, it is recommended that you create an IAM role, user, or
Step 1: Enable Amazon GuardDuty

The first step to using GuardDuty is to enable it in your account. Once enabled, GuardDuty will immediately begin to monitor for security threats in the current Region.

If you want to manage GuardDuty findings for other accounts within your organization as a GuardDuty administrator, you must add member accounts and enable GuardDuty for them as well. Choose an option to learn how to enable GuardDuty for your environment.

Standalone account environment

1. Open the GuardDuty console at https://console.aws.amazon.com/guardduty/
2. Choose Get Started.
3. Choose Enable GuardDuty.

Multi-account environment

Important
As prerequisites for this process, you must be in the same organization as all the accounts you want to manage, and have access to the AWS Organizations management account in order to delegate an administrator for GuardDuty within your organization. Additional permissions may be required to delegate an administrator, for more info see Permissions required to designate a delegated administrator (p. 273).

To designate a GuardDuty delegated administrator

1. Open the AWS Organizations console at https://console.aws.amazon.com/organizations/, using the management account.
2. Open the GuardDuty console at https://console.aws.amazon.com/guardduty/.

Is GuardDuty already enabled in your account?

• If GuardDuty is not already enabled, you can select Get Started and then designate a GuardDuty delegated administrator on the Welcome to GuardDuty page.
• If GuardDuty is enabled, you can designate a GuardDuty delegated administrator on the Settings page.
3. Enter the twelve-digit AWS account ID of the account that you want to designate as the GuardDuty delegated administrator for the organization and choose Delegate.

 Note
 If GuardDuty is not already enabled, designating a delegated administrator will enable GuardDuty for that account in your current Region.

To add member accounts

This procedure covers adding members accounts to a GuardDuty delegated administrator account through AWS Organizations. There is also the option to add members by invitation. To learn more about both methods for associating members in GuardDuty, see Managing multiple accounts in Amazon GuardDuty (p. 270).

1. Log in to the delegated administrator account
2. Open the GuardDuty console at https://console.aws.amazon.com/guardduty/.
3. In the navigation panel, choose Settings, and then choose Accounts.

 The accounts table displays all of the accounts in the organization.
4. Choose the accounts that you want to add as members by selecting the box next to the account ID. Then from the Action menu select Add member.

 Tip
 You can automate adding new accounts as members by turning on the Auto-enable feature; however, this only applies to accounts that join your organization after the feature has been enabled.

Step 2: Generate sample findings and explore basic operations

When GuardDuty discovers a security issue, it generates a finding. A GuardDuty finding is a dataset containing details relating to that unique security issue. The finding's details can be used to help you investigate the issue.

GuardDuty supports generating sample findings with placeholder values, which can be used to test GuardDuty functionality and familiarize yourself with findings before needing to respond to a real security issue discovered by GuardDuty. Follow the guide below to generate sample findings for each finding type available in GuardDuty, for additional ways to generate sample findings, including generating a simulated security event within your account, see Sample findings (p. 112).

To create and explore sample findings

1. In the navigation pane, choose Settings.
2. On the Settings page, under Sample findings, choose Generate sample findings.
3. In the navigation pane, choose Summary to view the insights about the findings generated in your AWS environment. For more information about the components of the Summary dashboard, see Summary dashboard (p. 219).
4. In the navigation pane, choose Findings. The sample findings are displayed on the Current findings page with the prefix [SAMPLE].
5. Select a finding from the list to display details for the finding.

 - You can review the different information fields available in the finding details pane. Different types of findings can have different fields. For more information about the available fields
Step 3: Configure exporting GuardDuty findings to an Amazon S3 bucket

GuardDuty recommends configuring settings to export findings because it allows you to export your findings to an S3 bucket for indefinite storage beyond the GuardDuty 90-day retention period. This allows you to keep records of findings or track issues within your AWS environment over time. The process outlined here walks you through setting up a new S3 bucket and creating a new KMS key to encrypt findings from within the console. For more information about this, including how to use your own existing bucket or a bucket in another account, see Exporting findings (p. 238).

To configure S3 export findings option

1. To encrypt the findings, you’ll need a KMS key with a policy that allows GuardDuty to use that key for encryption. The following steps will help you create a new KMS key. If you are using a KMS key from another account, you need to apply the key policy by logging in to the AWS account that owns the key. The Region of your KMS key and S3 bucket must be the same. However, you can use this same bucket and key pair for each Region from where you want to export findings.

 b. To change the AWS Region, use the Region selector in the upper-right corner of the page.
 c. In the navigation pane, choose Customer managed keys.
 d. Choose Create key.
 e. Choose Symmetric under Key type, and then choose Next.

 Note
 For detailed steps about creating your KMS key, see Creating keys in the AWS Key Management Service Developer Guide.

 f. Provide an Alias for your key, and then choose Next.
 g. Choose Next, and then again choose Next to accept the default administration and usage permissions.
 h. After you Review the configuration, choose Finish to create the key.
i. On the **Customer managed keys** page, choose your key alias.

j. In the **Key policy** tab, choose **Switch to policy view**.

k. Choose **Edit** and add the following key policy to your KMS key, granting GuardDuty access to your key. This statement allows GuardDuty to use only the key to which you add this policy. When editing the key policy, ensure that the JSON syntax is valid. If you add the statement before the final statement, you must add a comma after the closing bracket.


```json
{
    "Sid": "AllowGuardDutyKey",
    "Effect": "Allow",
    "Principal": {
        "Service": "guardduty.amazonaws.com"
    },
    "Action": "kms:GenerateDataKey",
    "Resource": "arn:aws:kms:Region1:444455556666:key/KMSKeyId",
    "Condition": {
        "StringEquals": {
            "aws:SourceAccount": "111122223333",
            "aws:SourceArn": "arn:aws:guardduty:Region2:111122223333:detector/SourceDetectorID"
        }
    }
}
```

Replace `Region1` with the Region of your KMS key. Replace `444455556666` with the AWS account that owns the KMS key. Replace `KMSKeyId` with the key ID of the KMS key that you chose for encryption. To identify all these values – Region, AWS account, and key ID, view the **ARN** of your KMS key. To locate the key ARN, see Finding the key ID and ARN.

Similarly, replace `111122223333` with the AWS account of the GuardDuty account. Replace `Region2` with the Region of the GuardDuty account. Replace `SourceDetectorID` with the detector ID of the GuardDuty account for `Region2`.

You can find your own `detectorId` for your current Region on the **Settings** page in the https://console.aws.amazon.com/guardduty/ console.

l. Choose **Save**.

3. In the navigation pane, choose **Settings**.

4. Under **Findings export options**, choose **Configure now**.

5. Choose **New bucket**. Provide a unique name for your S3 bucket.

6. (Optional) you can test your new export settings by generating sample findings. In the navigation pane, choose **Settings**.

7. Under the **Sample findings** section, choose **Generate sample findings**. The new sample findings will appear as entries in the S3 bucket created by GuardDuty in up to five minutes.

Step 4: Set up GuardDuty finding alerts through SNS

GuardDuty integrates with Amazon EventBridge, which can be used to send findings data to other applications and services for processing. With EventBridge you can use GuardDuty findings to initiate automatic responses to your findings by connecting finding events to targets such as AWS Lambda functions, Amazon EC2 Systems Manager automation, Amazon Simple Notification Service (SNS) and more.
In this example you will create an SNS topic to be the target of an EventBridge rule, then you'll use EventBridge to create a rule that captures findings data from GuardDuty. The resulting rule forwards the finding details to an email address. To learn how you can send findings to Slack or Amazon Chime, and also modify the types of findings alerts are sent for, see Setup an Amazon SNS topic and endpoint (p. 246).

To create an SNS topic for your findings alerts

2. In the navigation pane, choose Topics.
3. Choose Create Topic.
4. For Type, select Standard.
5. For Name, enter GuardDuty.
6. Choose Create Topic. The topic details for your new topic will open.
7. In the Subscriptions section, choose Create subscription.
8. For Protocol, choose Email.
9. For Endpoint, enter the email address to send notifications to.
10. Choose Create subscription.

After you create your subscription, you must confirm the subscription through email.
11. To check for a subscription message, go to your email inbox, and in the subscription message, choose Confirm subscription.

Note
To check the email confirmation status, go to the SNS console and choose Subscriptions.

To create an EventBridge rule to capture GuardDuty findings and format them

2. In the navigation pane, choose Rules.
3. Choose Create rule.
4. Enter a name and description for the rule.

A rule can't have the same name as another rule in the same Region and on the same event bus.
5. For Event bus, choose default.
6. For Rule type, choose Rule with an event pattern.
7. Choose Next.
8. For Event source, choose AWS events.
9. For Event pattern, choose Event pattern form.
10. For Event source, choose AWS services.
11. For AWS service, choose GuardDuty.
12. For Event Type, choose GuardDuty Finding.
13. Choose Next.
14. For Target types, choose AWS service.
15. For Select a target, choose SNS topic, and for Topic, choose the name of the SNS topic you created earlier.
16. In the Additional settings section, for Configure target input, choose Input transformer.

Adding an input transformer formats the JSON finding data sent from GuardDuty into a human-readable message.
17. Choose Configure input transformer.
18. In the **Target input transformer** section, for **Input path**, paste the following code:

```json
{
    "severity": "$.detail.severity",
    "Finding_ID": "$.detail.id",
    "Finding_Type": "$.detail.type",
    "region": "$.region",
    "Finding_description": "$.detail.description"
}
```

19. To format the email, for **Template**, paste the following code:

```
"You have a severity <severity> GuardDuty finding type <Finding_Type> in the <region> region."
"Finding Description:"
"<Finding_description>".
"For more details open the GuardDuty console at https://console.aws.amazon.com/guardduty/home?region=<region>&/findings?search=id%3D<Finding_ID>"
```

20. Choose **Confirm**.

21. Choose **Next**.

22. (Optional) Enter one or more tags for the rule. For more information, see [Amazon EventBridge tags](#) in the **Amazon EventBridge User Guide**.

23. Choose **Next**.

24. Review the details of the rule and choose **Create rule**.

25. (Optional) Test your new rule by generating sample findings with the process in Step 2. You will receive an email for each sample finding generated.

Next steps

As you continue to use GuardDuty, you will come to understand the types of findings that are relevant to your environment. Whenever you receive a new finding, you can find information, including remediation recommendations about that finding, by selecting **Learn more** from the finding description in the finding details pane, or by searching for the finding name on **Finding types** (p. 117).

The following features will help you tune GuardDuty so that it can provide the most relevant findings for your AWS environment:

- To easily sort findings based on specific criteria, such as instance ID, account ID, S3 bucket name, and more, you can create and save filters within GuardDuty. For more information, see [Filtering findings](#).
- If you are receiving findings for expected behavior in your environment, you can automatically archive findings based on the criteria you define with [suppression rules](#).
- To prevent findings from being generated from a subset of trusted IPs, or to have GuardDuty monitor IPs outside its normal monitoring scope, you can set up [Trusted IP and threat lists](#).
Concepts and terminology

As you get started with Amazon GuardDuty, you can benefit from learning about its key concepts.

Account

A standard Amazon Web Services (AWS) account that contains your AWS resources. You can sign in to AWS with your account and enable GuardDuty.

You can also invite other accounts to enable GuardDuty and become associated with your AWS account in GuardDuty. If your invitations are accepted, your account is designated as the administrator GuardDuty account, and the added accounts become your member accounts. You can then view and manage those accounts' GuardDuty findings on their behalf.

Users of the administrator account can configure GuardDuty as well as view and manage GuardDuty findings for their own account and all of their member accounts. You can have up to 10,000 member accounts in GuardDuty.

Users of member accounts can configure GuardDuty as well as view and manage GuardDuty findings in their account (either through the GuardDuty management console or GuardDuty API). Users of member accounts can't view or manage findings in other members' accounts.

An AWS account can't be a GuardDuty administrator and member account at the same time. An AWS account can accept only one membership invitation. Accepting a membership invitation is optional.

For more information, see [Managing multiple accounts in Amazon GuardDuty](https://console.aws.amazon.com/guardduty/)

Detector

All GuardDuty findings are associated with a detector, which is an object that represents the GuardDuty service. The detector is a regional entity, and a unique detector is required in each AWS Region in which GuardDuty operates. When you enable GuardDuty in a Region, a new detector with a unique 32 alphanumeric detectorId is generated in that Region. The format of a detectorId is 12abc34d567e8fa901bc2d34e56789f0.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

Note

In multiple-account environments, all findings for member accounts roll up to the administrator account's detector.

Some GuardDuty functionality is configured through the detector, such as configuring CloudWatch Events notification frequency and the enabling or disabling of optional data sources for GuardDuty to process.

Data source

The origin or location of a set of data. To detect an unauthorized or unexpected activity in your AWS environment, GuardDuty analyzes and processes data from AWS CloudTrail event logs, AWS CloudTrail management events, AWS CloudTrail data events for S3, VPC flow logs, DNS logs, EKS audit logs, RDS login activity monitoring, and EBS volumes. For more information, see [Foundational data sources](p. 15).

Feature

A feature object configured for your GuardDuty protection plan helps to detect an unauthorized or unexpected activity in your AWS environment. Each GuardDuty protection plan configures the corresponding feature object to analyze and process data. Some of the feature objects include EKS audit logs, RDS login activity monitoring, and EBS volumes. For more information, see [Features activation in GuardDuty](p. 12).
Finding

A potential security issue discovered by GuardDuty. For more information, see Understanding Amazon GuardDuty findings (p. 98).

Findings are displayed in the GuardDuty console and contain a detailed description of the security issue. You can also retrieve your generated findings by calling the GetFindings and ListFindings API operations.

You can also see your GuardDuty findings through Amazon CloudWatch events. GuardDuty sends findings to Amazon CloudWatch via HTTPS protocol. For more information, see Creating custom responses to GuardDuty findings with Amazon CloudWatch Events (p. 244).

Scan options

When GuardDuty Malware Protection is enabled, it allows you to specify which Amazon EC2 instances and Amazon Elastic Block Store (EBS) volumes to scan or skip. This feature lets you add the existing tags that are associated with your EC2 instances and EBS volume to either an inclusion tags list or exclusion tags list. The resources associated to the tags that you add to an inclusion tags list, are scanned for malware, and those added to an exclusion tags list are not scanned. For more information, see Scan options with user-defined tags (p. 64).

Snapshots retention

When GuardDuty Malware Protection is enabled, it provides an option to retain the snapshots of your EBS volumes in your AWS account. GuardDuty generates the replica EBS volumes based on the snapshots of your EBS volumes. You can retain the snapshots of your EBS volumes only if the Malware Protection scan detects malware in the replica EBS volumes. If no malware is detected in the replica EBS volumes, GuardDuty automatically deletes the snapshots of your EBS volumes, irrespective of the snapshots retention setting. For more information, see Snapshots retention (p. 63).

Suppression rule

Suppression rules allow you to create very specific combinations of attributes to suppress findings. For example, you can define a rule through the GuardDuty filter to auto-archive Recon:EC2/Portscan from only those instances in a specific VPC, running a specific AMI, or with a specific EC2 tag. This rule would result in port scan findings being automatically archived from the instances that meet the criteria. However, it still allows alerting if GuardDuty detects those instances conducting other malicious activity, such as crypto-currency mining.

Suppression rules defined in the GuardDuty administrator account apply to the GuardDuty member accounts. GuardDuty member accounts can’t modify suppression rules.

With suppression rules, GuardDuty still generates all findings. Suppression rules provide suppression of findings while maintaining a complete and immutable history of all activity.

Typically suppression rules are used to hide findings that you have determined as false positives for your environment, and reduce the noise from low-value findings so you can focus on larger threats. For more information, see Suppression rules (p. 226).

Trusted IP list

A list of trusted IP addresses for highly secure communication with your AWS environment. GuardDuty does not generate findings based on trusted IP lists. For more information, see Working with trusted IP lists and threat lists (p. 231).

Threat IP list

A list of known malicious IP addresses. In addition to generating findings because of a potentially suspicious activity, GuardDuty also generates findings based on these threat lists. For more information, see Working with trusted IP lists and threat lists (p. 231).
Features activation in GuardDuty

When you enable Amazon GuardDuty for the first time or enable a protection type within GuardDuty, GuardDuty starts processing the corresponding Foundational data sources (p. 15) within your AWS environment. GuardDuty uses these data sources to process a stream of events, such as VPC flow logs, DNS logs, and AWS CloudTrail event and management logs. It then analyzes these events to identify potential security threats and generates findings in your account.

In addition to log data sources, GuardDuty can use additional data from other AWS services in your AWS environment to monitor and analyze for potential security threats.

Feature activation

When you add additional GuardDuty protections, for example, S3 Protection or EKS Protection, you can configure the GuardDuty feature corresponding to the protection type. Historically, GuardDuty protections were called dataSources in the APIs. However, after March 2023, new GuardDuty protection types are now configured as features and not dataSources. GuardDuty still supports configuring protection types launched before March 2023, as dataSources through the API, but new protection types are only available as features.

If you manage GuardDuty configuration and protection types through the console, you are not directly impacted by this change and don't need to take any action. Feature activation affects the behavior of the APIs that are invoked to enable GuardDuty or protection types within GuardDuty. For more information, see GuardDuty API changes (p. 12).

GuardDuty API changes in March 2023

The GuardDuty APIs configure protection features that don't belong to the list of Foundational data sources (p. 15). A feature object contains feature details, such as feature name and status, and may contain additional configuration for some of the features. This migration affects the following APIs in the Amazon GuardDuty API Reference:

- CreateDetector
- GetDetector
- UpdateDetector
- GetMemberDetectors
- UpdateMemberDetectors
- DescribeOrganizationConfiguration
- UpdateOrganizationConfiguration
- GetRemainingFreeTrialDays
- GetUsageStatistics

Features activation compared to data sources

Historically, all GuardDuty features were passed through a dataSources object in the API. From March 2023, GuardDuty prefers features object instead of the dataSources object in the API. All earlier data sources have corresponding features, but newer features may not have corresponding data sources.

The following list shows the comparison between dataSources and features object when passed through an API:
Understanding how feature activation works

The GuardDuty APIs will continue to return a dataSources object as applicable, and they will also return a features object containing the same information in a different format. GuardDuty features launched before March 2023 will be available through dataSources object and features object. GuardDuty launched features since March 2023 will only be available through the features object. You can't create or update a detector, or describe your AWS Organizations using both dataSources and features object notation in the same API request. To enable GuardDuty protection types, you will need to migrate your existing data sources to the features object by using the same APIs that now include the features object too.

Note
GuardDuty will not add new data source after this modification.

GuardDuty has deprecated the use of data sources. However, it still supports the foundational data sources (p. 15). The GuardDuty best practices recommend using features activation for any protection types that are already enabled for your account. The best practices also require using features activation when you enable a new protection type for your account.

Incorporating features activation changes

- If you manage GuardDuty configurations through APIs, SDKs, or AWS CloudFormation template, and want to enable potential new GuardDuty features, you will need to modify your code and template, respectively. For more information, see the updated APIs in the Amazon GuardDuty API Reference.
- For GuardDuty features configured prior to this upgrade, you can continue using the APIs, SDKs, or AWS CloudFormation template. However, we recommend that you switch to using feature object.

All the data sources have an equivalent feature object. For more information, see Mapping dataSources to features (p. 13).

- Presently, additionalConfiguration in the features object is only available for certain protection types.
- For such protection types, if your feature's additionalConfiguration status is set to ENABLED but your feature's configuration status is not set to ENABLED, GuardDuty will not take any action in this case.
- The following APIs get impacted by this:
 - UpdateDetector
 - UpdateMemberDetectors
 - UpdateOrganizationConfiguration

Mapping dataSources to features

The following table shows the mapping of protection types, dataSources, and features.
<table>
<thead>
<tr>
<th>GuardDuty protection type</th>
<th>Data source name</th>
<th>Feature name</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPC Flow Logs (p. 16)</td>
<td>flowLogs (read only; can't be modified)</td>
<td>FLOW_LOGS (read only; can't be modified)</td>
</tr>
<tr>
<td>DNS logs (p. 16)</td>
<td>dnsLogs (read only; can't be modified)</td>
<td>DNS_LOGS (read only; can't be modified)</td>
</tr>
<tr>
<td>CloudTrail events (p. 15)</td>
<td>cloudLogs (read only; can't be modified)</td>
<td>CLOUD_LOGS (read only; can't be modified)</td>
</tr>
<tr>
<td>S3 (p. 91)</td>
<td>s3Logs</td>
<td>S3_DATA_EVENTS</td>
</tr>
<tr>
<td>EKS Audit Log Monitoring (p. 19)</td>
<td>kubernetes.auditlogs</td>
<td>EKS_AUDIT_LOGS</td>
</tr>
<tr>
<td>Malware Protection (p. 59)</td>
<td>malwareProtection.scanEc2InstanceWithFindings.ebsVolumes</td>
<td>EBS_MALWARE_PROTECTION</td>
</tr>
<tr>
<td>RDS Login events (p. 84)</td>
<td></td>
<td>RDS_LOGIN_EVENTS</td>
</tr>
<tr>
<td>EKS Runtime Monitoring (p. 24)</td>
<td></td>
<td>EKS_RUNTIME_MONITORING</td>
</tr>
<tr>
<td>EKS Runtime Monitoring Add-on management (p. 24)</td>
<td>GuardDuty provides only feature activation support for these protection types.</td>
<td>EKS_RUNTIME_MONITORING.addition</td>
</tr>
<tr>
<td>Lambda Protection (p. 52)</td>
<td></td>
<td>LAMBDA_NETWORK_LOGS</td>
</tr>
</tbody>
</table>

*GetUsageStatistics uses its own dataSource names. For more information, see [Estimating GuardDuty cost (p. 287)] or [GetUsageStatistics].
Foundational data sources

GuardDuty uses the foundational data sources to detect communication with known malicious domains and IP addresses and identify anomalous behavior. While in transit from these sources to GuardDuty, all of the log data is encrypted. GuardDuty extracts various fields from these logs sources for profiling and anomaly detection, and then discards these logs.

The following sections describe how GuardDuty uses each supported data source. When you enable GuardDuty in your AWS account, GuardDuty automatically starts to monitor these log sources.

Topics

- AWS CloudTrail event logs (p. 15)
- AWS CloudTrail management events (p. 16)
- VPC Flow Logs (p. 16)
- DNS logs (p. 16)

AWS CloudTrail event logs

AWS CloudTrail provides you with a history of AWS API calls for your account, including API calls made using the AWS Management Console, the AWS SDKs, the command line tools, and certain AWS services. CloudTrail also helps you identify which users and accounts invoked AWS APIs for services that support CloudTrail, the source IP address from where the calls were invoked, and the time at which the calls were invoked. For more information, see What is AWS CloudTrail in AWS CloudTrail User Guide.

GuardDuty also monitors CloudTrail management events. When you enable GuardDuty, it starts consuming CloudTrail management events directly from CloudTrail through an independent and duplicated stream of events and analyzes your CloudTrail event logs. There is no additional charge when GuardDuty accesses the events recorded in CloudTrail.

GuardDuty does not manage your CloudTrail events or affect your existing CloudTrail configurations. Similarly, your CloudTrail configurations don’t affect how GuardDuty consumes and processes the event logs. To manage access and retention of your CloudTrail events, use the CloudTrail service console or API. For more information, see Viewing events with CloudTrail event history in AWS CloudTrail User Guide.

How GuardDuty handles AWS CloudTrail global events

For most AWS services, CloudTrail events are recorded in the AWS Region where they are created. For global services such as AWS Identity and Access Management (IAM), AWS Security Token Service (AWS STS), Amazon Simple Storage Service (Amazon S3), Amazon CloudFront, and Amazon Route 53 (Route 53), events are only generated in the Region where they occur but they have a global significance.

When GuardDuty consumes CloudTrail Global service events with security value such as network configurations or user permissions, it replicates those events and processes them in each Region where you have enabled GuardDuty. This behavior helps GuardDuty maintain user and role profiles in each Region, which is vital to detecting anomalous events.

We highly recommend that you enable GuardDuty in all AWS Regions which are enabled for your AWS account. This helps GuardDuty generate findings about unauthorized or unusual activity even in those Regions that you may not be using actively.
AWS CloudTrail management events

Management events are also known as control plane events. These events provide insight into management operations that are performed on resources in your AWS account.

The following are examples of CloudTrail management events that GuardDuty monitors:

- Configuring security (IAM AttachRolePolicy API operations)
- Configuring rules for routing data (Amazon EC2 CreateSubnet API operations)
- Setting up logging (AWS CloudTrail CreateTrail API operations)

VPC Flow Logs

The VPC Flow Logs feature of Amazon VPC captures information about the IP traffic going to and from network interfaces attached to the Amazon Elastic Compute Cloud (Amazon EC2) instances within your AWS environment.

When you enable GuardDuty, it immediately starts analyzing your VPC flow logs from Amazon EC2 instances within your account. It consumes VPC flow log events directly from the VPC Flow Logs feature through an independent and duplicative stream of flow logs. This process does not affect any of your existing flow logs configuration.

GuardDuty Lambda Protection (p. 52)

Lambda Protection is an optional enhancement to Amazon GuardDuty. Presently, Lambda Network Activity Monitoring includes Amazon VPC flow logs from all Lambda functions for your account, even those logs that don’t use VPC networking. To protect your Lambda function from potential security threats, you will need to configure Lambda Protection in your GuardDuty account. For more information, see GuardDuty Lambda Protection (p. 52).

GuardDuty EKS Protection (p. 18)

When you enable EKS Runtime Monitoring for an account, GuardDuty continues to analyze and generate security findings based on VPC Flow Logs (p. 16) from EKS EC2 nodes in the account. This helps GuardDuty to continue providing security coverage based on threat detection capabilities that are unique to VPC Flow Log coverage. This also helps GuardDuty to continue providing coverage in cases of EKS Runtime Monitoring coverage gaps. However, you will not be charged for both EKS Runtime Monitoring and VPC Flow Log monitoring from EKS EC2 nodes.

If GuardDuty is receiving runtime events from an EKS EC2 node, you will not be charged for the analysis of VPC Flow Logs from the instance. Alternatively, if GuardDuty is not receiving runtime events from the EKS EC2 node, then you will not be charged for the analysis of runtime events from the instance.

GuardDuty doesn’t manage your flow logs or make them accessible in your account. To manage access to and retention of your flow logs, you must configure the VPC Flow Logs feature.

DNS logs

If you use AWS DNS resolvers for your Amazon EC2 instances (the default setting), then GuardDuty can access and process your request and response DNS logs through the internal AWS DNS resolvers. If you use another DNS resolver, such as OpenDNS or GoogleDNS, or if you set up your own DNS resolvers, then GuardDuty cannot access and process data from this data source.
When you enable GuardDuty, it immediately starts analyzing your DNS logs from an independent stream of data. This data stream is separate from the data provided through the Route 53 Resolver query logging feature. Configuration of this feature does not affect GuardDuty analysis.
EKS Protection in Amazon GuardDuty

EKS Protection in Amazon GuardDuty provides threat detection coverage to help you protect Amazon EKS clusters within your AWS environment. EKS Protection includes EKS Audit Log Monitoring and EKS Runtime Monitoring.

EKS Audit Log Monitoring

EKS Audit Log Monitoring helps you detect potentially suspicious activities in EKS clusters within Amazon Elastic Kubernetes Service (Amazon EKS). EKS Audit Log Monitoring uses Kubernetes audit logs to capture chronological activities from users, applications using the Kubernetes API, and the control plane. For more information, see Kubernetes audit logs (p. 18).

EKS Runtime Monitoring

EKS Runtime Monitoring uses operating system-level events to help you detect potential threats in Amazon EKS nodes and containers within your Amazon EKS clusters. For more information, see Runtime Monitoring (p. 18).

Features in EKS Protection

Kubernetes audit logs

Kubernetes audit logs capture sequential actions within your Amazon EKS cluster, including activities from users, applications using the Kubernetes API, and the control plane. Audit logging is a component of all Kubernetes clusters. For more information, see Auditing in the Kubernetes documentation.

Amazon EKS allows Kubernetes audit logs to be ingested as Amazon CloudWatch Logs through the EKS control plane logging feature. GuardDuty doesn't manage your Amazon EKS control plane logging or make Kubernetes audit logs accessible in your account if you have not enabled them for Amazon EKS. To manage access to and retention of your Kubernetes audit logs, you must configure the Amazon EKS control plane logging feature. For more information, see Enabling and disabling control plane logs in the Amazon EKS User Guide.

For information about configuring EKS Audit Log Monitoring, see EKS Audit Log Monitoring (p. 19).

Runtime Monitoring

EKS Runtime Monitoring uses a new EKS add-on aws-guardduty-agent, also called as GuardDuty security agent. After GuardDuty security agent gets deployed on your EKS clusters, GuardDuty security agent can receive runtime events for these EKS clusters. Considering you have also enabled EKS Runtime Monitoring for your account, GuardDuty can now consume the events that add runtime visibility into individual EKS workloads, for example, file access, process execution, and network connections. EKS Runtime Monitoring helps you detect potential security threats by analyzing the runtime behavior of your EKS clusters.

GuardDuty doesn't manage the runtime events for your EKS clusters or makes them accessible in your account.
EKS Audit Log Monitoring

EKS Audit Log Monitoring helps you detect potentially suspicious activities in your EKS clusters within Amazon Elastic Kubernetes Service. When you enable EKS Audit Log Monitoring, GuardDuty immediately begins to monitor Kubernetes audit logs (p. 18) from your Amazon EKS clusters and analyze them for potentially malicious and suspicious activity. It consumes Kubernetes audit log events directly from the Amazon EKS control plane logging feature through an independent and duplicative stream of flow logs. This process does not require any additional set up or affect any existing Amazon EKS control plane logging configurations that you might have.

When you disable EKS Audit Log Monitoring, GuardDuty immediately stops monitoring and analyzing the Kubernetes audit logs for your EKS resources.

EKS Audit Log Monitoring may not be available in all the AWS Regions where GuardDuty is available. For more information, see Region-specific feature availability (p. 351).

How 30-day free trial period affects GuardDuty accounts

- When you enable GuardDuty for the first time (new GuardDuty account), EKS Audit Log Monitoring within EKS Protection is already enabled with a 30-day free trial period.
- The existing GuardDuty accounts can enable EKS Audit Log Monitoring for the first time with a 30-day trial period.
- If you've an existing GuardDuty account that has been using EKS Audit Log Monitoring before EKS Runtime Monitoring was generally available and this GuardDuty account already uses the pricing model for its AWS Region, no action is required to continue using EKS Audit Log Monitoring.

Configuring EKS Audit Log Monitoring for a standalone account

Choose your preferred access method to enable or disable EKS Audit Log Monitoring for a standalone account.

Console

2. In the navigation pane, choose EKS Protection.
3. Under the Configuration tab, you can view the current configuration status of EKS Audit Log Monitoring. In the EKS Audit Log Monitoring section, choose Enable to enable or Disable to disable the EKS Audit Log Monitoring feature.
4. Choose Save.

API/CLI

- Run the updateDetector API operation using the regional detector ID of the delegated administrator and passing the features object name as EKS_AUDIT_LOGS and status as ENABLED or DISABLED.

Alternatively, You can also enable or disable EKS Audit Log Monitoring running the a AWS CLI command. The following example code enables GuardDuty EKS Audit Log Monitoring. To disable it, replace ENABLED with DISABLED.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.
Configuring EKS Audit Log Monitoring in multiple-account environments

In a multiple-account environment, only the GuardDuty delegated administrator account has the option to enable or disable the EKS Audit Log Monitoring feature for the member accounts in their organization. The GuardDuty member accounts can't modify this configuration from their accounts. The delegated administrator account manages their member accounts using AWS Organizations. This delegated administrator can choose to auto-enable EKS Audit Log Monitoring for all the new accounts as they join the organization. For more information about multiple-account environments, see Managing multiple accounts in Amazon GuardDuty.

Configuring EKS Audit Log Monitoring for delegated administrator

Choose your preferred access method to configure EKS_AUDIT_LOGS for the delegated administrator account.

Console

 Make sure to use the management account credentials.
2. In the navigation pane, choose EKS Protection.
3. Under the Configuration tab, you can view the current configuration status of EKS Audit Log Monitoring in the respective section. To update the configuration for delegated administrator, choose Edit in the EKS Audit Log Monitoring pane.
4. Do one of the following:

 Using Enable for all accounts

 • Choose Enable for all accounts. This will enable the protection plan for all the active GuardDuty accounts in your AWS organization, including the new accounts that join the organization.
 • Choose Save.

 Using Configure accounts manually

 • To enable the protection plan only for the delegated administrator account, choose Configure accounts manually.
 • Choose Enable under the delegated administrator (this account) section.
 • Choose Save.

API/CLI

Run the updateDetector API operation using your own regional detector ID and passing the features object name as EKS_AUDIT_LOGS and status as ENABLED or DISABLED.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.
You can enable or disable EKS Audit Log Monitoring by running the following AWS CLI command.

```
aws guardduty update-member-detectors --detector-id 12abc34d567e8fa901bc2d34e56789f0 --accountids 555555555555 --features '[["Name": "EKS_AUDIT_LOGS", "Status": "ENABLED"]]
```

To disable EKS Audit Log Monitoring, replace ENABLED with DISABLED.

Auto-enable EKS Audit Log Monitoring for all member accounts

Choose your preferred access method to enable the EKS Audit Log Monitoring for existing member accounts in your organization.

Console

 Make sure to use the delegated administrator account credentials.

2. Do one of the following:

 Using the EKS Protection page

 1. In the navigation pane, choose **EKS Protection**.
 2. Under the **Configuration** tab, you can view the current status of EKS Audit Log Monitoring for active member accounts in your organization.

 To update the EKS Audit Log Monitoring configuration, choose **Edit**.

 3. Choose **Enable for all accounts**. This action automatically enables EKS Audit Log Monitoring for both the existing and new accounts in the organization.
 4. Choose **Save**.

 Note
 It may take up to 24 hours to update the configuration for the member accounts.

 Using the Accounts page

 1. In the navigation pane, choose **Accounts**.
 2. On the **Accounts** page, choose **Auto-enable** preferences before **Add accounts by invitation**.
 3. In the **Manage auto-enable preferences** window, choose **Enable for all accounts** under **EKS Audit Log Monitoring**.
 4. Choose **Save**.

If you can't use the **Enable for all accounts** option and want to customize EKS Audit Log Monitoring configuration for specific accounts in your organization, see [Selectively enable or disable EKS Audit Log Monitoring for member accounts](p. 24).
API/CLI

- To selectively enable or disable EKS Audit Log Monitoring for your member accounts, run the `updateMemberDetectors` API operation using your own detector ID.
- The following example shows how you can enable EKS Audit Log Monitoring for a single member account. To disable it, replace ENABLED with DISABLED.

You can find your own detectorId for your current Region on the Settings page in the `https://console.aws.amazon.com/guardduty/` console.

```
aws guardduty update-detector --detector-id 12abc34d567e8fa901bc2d34e56789f0
--accountids 111122223333 --features '[["name": "EKS_AUDIT_LOGS", "status": "ENABLED"]]
```

Note
You can also pass a list of account IDs separated by a space.

- When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

Enable EKS Audit Log Monitoring for all existing active member accounts

Choose your preferred access method to enable EKS Audit Log Monitoring for all existing active member accounts in the organization.

Console

 Sign in using the delegated administrator credentials.
2. In the navigation pane, choose EKS Protection.
3. On the EKS Protection page, you can view the current status of the GuardDuty-initiated malware scan configuration. Under the Active member accounts section, choose Actions.
4. From the Actions dropdown menu, choose Enable for all existing active member accounts.
5. Choose Save.

API/CLI

- To selectively enable or disable EKS Audit Log Monitoring for your member accounts, run the `updateMemberDetectors` API operation using your own detector ID.
- The following example shows how you can enable EKS Audit Log Monitoring for a single member account. To disable it, replace ENABLED with DISABLED.

You can find your own detectorId for your current Region on the Settings page in the `https://console.aws.amazon.com/guardduty/` console.

```
aws guardduty update-detector --detector-id 12abc34d567e8fa901bc2d34e56789f0
--accountids 111122223333 --features '[["name": "EKS_AUDIT_LOGS", "status": "ENABLED"]]
```

Note
You can also pass a list of account IDs separated by a space.
• When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

Auto-enable EKS Audit Log Monitoring for new member accounts

The newly added member accounts must Enable GuardDuty before selecting configuring GuardDuty-initiated malware scan. The member accounts managed by invitation can configure GuardDuty-initiated malware scan manually for their accounts. For more information, see Step 3 - Accept an invitation (p. 281).

Choose your preferred access method to enable EKS Audit Log Monitoring for new accounts that join your organization.

Console

The delegated administrator can enable EKS Audit Log Monitoring for new member accounts in an organization, using either the EKS Audit Log Monitoring or Accounts page.

To auto-enable EKS Audit Log Monitoring for new member accounts

1. Open the GuardDuty console at https://console.aws.amazon.com/guardduty/

Make sure to use the delegated administrator account credentials.

2. Do one of the following:
 • Using the EKS Protection page:
 1. In the navigation pane, choose EKS Protection.
 2. On the EKS Protection page, choose Edit in the EKS Audit Log Monitoring.
 3. Choose Configure accounts manually.
 4. Select Automatically enable for new member accounts. This step ensures that whenever a new account joins your organization, EKS Audit Log Monitoring will be automatically enabled for their account. Only the organization delegated administrator can modify this configuration.
 5. Choose Save.
 • Using the Accounts page:
 1. In the navigation pane, choose Accounts.
 2. On the Accounts page, choose Auto-enable preferences.
 3. In the Manage auto-enable preferences window, select Enable for new accounts under EKS Audit Log Monitoring.
 4. Choose Save.

API/CLI

• To selectively enable or disable EKS Audit Log Monitoring for your new accounts, invoke the UpdateOrganizationConfiguration API operation using your own detector ID.

• The following example shows how you can enable EKS Audit Log Monitoring for a single member account. To disable it, replace ENABLED with DISABLED. You can also pass a list of account IDs separated by a space.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.
Selectively enable or disable EKS Audit Log Monitoring for member accounts

Choose your preferred access method to enable or disable EKS Audit Log Monitoring for selective
member accounts in your organization.

Console

 Make sure to use the delegated administrator account credentials.
2. In the navigation pane, choose Accounts.
 On the Accounts page, review the EKS Audit Log Monitoring column for the status of your
 member account.
3. To enable or disable EKS Audit Log Monitoring
 Select an account that you want to configure for EKS Audit Log Monitoring. You can select
 multiple accounts at a time. Under the Edit Protection Plans dropdown, choose EKS Audit Log
 Monitoring, and then choose the appropriate option.

API/CLI

To selectively enable or disable EKS Audit Log Monitoring for your member accounts, invoke the
updateMemberDetectors API operation using your own detector ID.

The following example shows how you can enable EKS Audit Log Monitoring for a single member
account. To disable it, replace ENABLED with DISABLED. You can also pass a list of account IDs
separated by a space.

You can find your own detectorId for your current Region on the Settings page in the

aws guardduty update-member-detectors --detector-id 12abc34d567e8fa9o1bc2d34e56789f0 --features '[["Name": "EKS_AUDIT_LOGS", "Status": "ENABLED"]]'
• For GuardDuty to receive these runtime events, the GuardDuty security agent must be deployed on the EKS nodes within your EKS clusters. You can either choose GuardDuty to manage the security agent automatically or you can manage the security agent deployment and updates manually.

Manage agent automatically

If you choose GuardDuty to manage the security agent on your behalf, GuardDuty will fully automate the deployment of and update to the security agent for the EKS clusters. If you manage multiple accounts through AWS Organizations, you can configure EKS Runtime Monitoring for your organization. After the GuardDuty security agent gets deployed, GuardDuty can analyze the runtime events for potential threats.

Manage agent manually

If you choose to deploy and update the GuardDuty security agent manually, you will need to coordinate the deployment of the GuardDuty security agent software within your EKS clusters, across all accounts and AWS Regions where this feature is available. This will also require you to support secure data flow while monitoring for and addressing coverage gaps as new clusters and workloads are deployed.

For information about how to configure GuardDuty security agent automatically or manually, see Configuring EKS Runtime Monitoring (p. 26).

Note
GuardDuty supports EKS clusters running on Amazon EC2 instances. It doesn't support EKS clusters running on AWS Fargate.

How 30-day free trial period affects GuardDuty accounts

• When you enable GuardDuty for the first time, EKS Runtime Monitoring is enabled by default and is also included within the GuardDuty 30-day free trial period. The GuardDuty agent management option that allows GuardDuty to manage the EKS add-on GuardDuty agent on your behalf, is not enabled by default. You must decide whether you want GuardDuty to manage the security agent on your behalf, or deploy and manage the security agent manually. For more information, see Key concepts (p. 26).

• The 30-day free trial period for EKS Runtime Monitoring starts when EKS Runtime Monitoring gets enabled. This is independent of deployment of the GuardDuty security agent. For GuardDuty to receive the runtime events for monitoring and analyzing, make sure that you choose either manage agent automatically, or deploy and update the security agent on your EKS clusters manually.

The existing GuardDuty accounts can enable EKS Runtime Monitoring for the first time with a 30-day trial period.

Verified platforms

The OS distribution, kernel version, and CPU architecture affect the support provided by the GuardDuty security agent. The following table shows the verified configuration for deploying the GuardDuty agent and configuring EKS Runtime Monitoring.

<table>
<thead>
<tr>
<th>OS distrib</th>
<th>Kernel version</th>
<th>Kernel support</th>
<th>CPU architecture</th>
<th>Supported Kubernetes version</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL2</td>
<td>5.4</td>
<td>eBPF, Tracepoints, Kprobe</td>
<td>Supported</td>
<td>v1.21 - 1.27</td>
</tr>
<tr>
<td></td>
<td>5.10</td>
<td></td>
<td>Supported</td>
<td></td>
</tr>
</tbody>
</table>
CPU and memory limits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum limit</th>
<th>Maximum limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>200m</td>
<td>1000m</td>
</tr>
<tr>
<td>Memory</td>
<td>256 Mi</td>
<td>1024 Mi</td>
</tr>
</tbody>
</table>

After you enable EKS Runtime Monitoring and assess coverage to ensure that the Amazon EKS add-on GuardDuty agent has been deployed, you can set up and view the Container insight metrics. For more information, see Setting up CPU and memory monitoring (p. 44).

Configuring EKS Runtime Monitoring

Key concepts

Before you configure EKS Runtime Monitoring, consider the following key concepts:
• **EKS Runtime Monitoring** – GuardDuty detects potential threats by monitoring the runtime events for your EKS clusters, as captured by the GuardDuty security agent. If you enable EKS Runtime Monitoring or if it is already enabled for you by default (when you enable GuardDuty for the first time), you must deploy a GuardDuty security agent either automatically or manually, to receive the runtime events from this agent.

 When EKS Runtime Monitoring is enabled through the console, GuardDuty can start monitoring and analyzing the runtime events for all the existing EKS clusters for your accounts. For GuardDuty to receive these runtime events for monitoring and analyzing, make sure the agent is also deployed on the EKS clusters.

 When you disable EKS Runtime Monitoring, it has the following impact on your account:

 - GuardDuty immediately stops monitoring and analyzing the runtime events for all the existing EKS clusters.
 - If you had configured automated agent management through GuardDuty, this action also removes the security agent that GuardDuty had deployed. GuardDuty also removes the VPC endpoint that was created by GuardDuty so that the security agents can send the runtime events for your EKS clusters to GuardDuty, using this VPC endpoint. GuardDuty will not take any action if you deployed the security agent manually.

 • **Agent management** – If you want GuardDuty to deploy and update the required EKS add-on agent for all the existing and new EKS clusters in your account, choose **Manage agent automatically**. If you have enabled EKS Runtime Monitoring, setting GuardDuty to manage agent automatically will also create a VPC endpoint through which the security agent delivers the runtime events to GuardDuty. EKS Runtime Monitoring requires that your worker node has a valid network path to an active guardduty-data VPC endpoint. For managing agent automatically use case, on the basis of IP availability, GuardDuty selects the subnet to create a VPC endpoint. If you use advanced network topologies, you must validate that the connectivity is possible. When managing agent automatically through GuardDuty, EKS Runtime Monitoring doesn't create a shared VPC.

 If you want to manage the EKS add-on agent manually, you will need to coordinate the deployment of the GuardDuty security agent software within your EKS clusters, across all accounts and AWS Regions where this feature is available. This will also require you to support secure data flow while monitoring for and addressing coverage gaps as new clusters and workloads are continuously deployed. When managing the EKS add-on agent manually, make sure to configure EKS Runtime Monitoring for your accounts. The GuardDuty security agent may not work as expected if you don't configure EKS Runtime Monitoring. For more information about deploying the security agent manually, see [Managing GuardDuty agent manually](#) (p. 36).

 Note

 The security agent delivers the runtime events to GuardDuty. For GuardDuty to monitor the runtime events about the EKS workloads, make sure that the security agent is deployed and EKS Runtime Monitoring is also enabled for your accounts.

 • If you had configured GuardDuty to manage agent automatically, disabling EKS Runtime Monitoring will also remove the EKS add-on agent. GuardDuty will stop receiving runtime events for your existing and new EKS clusters. The removal of the EKS add-on agent doesn't automatically remove the amazon-guardduty namespace from your EKS cluster. If you want to delete the amazon-guardduty namespace, see [Deleting a namespace](#).

 To continue receiving the runtime events for your EKS clusters, you'll need to enable EKS Runtime Monitoring again and make sure to deploy the security agent (automatically or manually).

 • If you had deployed the EKS add-on agent manually, disabling EKS Runtime Monitoring will result in GuardDuty not receiving the runtime events for your existing and new EKS clusters. GuardDuty will not take any action to remove the agent from your EKS cluster.

 • If you had deployed the EKS add-on agent manually and now want to auto-manage the security agent deployment and updates, GuardDuty doesn't deploy a new security agent if the manually-created security agent was not deleted. Also, GuardDuty will update the existing security agent, as needed. GuardDuty can't validate if you have an already configured Amazon VPC endpoint.
associated to this GuardDuty security agent. If you want GuardDuty to continue using the manually-deployed GuardDuty agent, make sure you don't delete the associated Amazon VPC endpoint.

- If you had configured GuardDuty to manage agent automatically and now deselected this option, GuardDuty will not delete the GuardDuty security agent. To continue receiving the runtime events for your EKS clusters, make sure to deploy the security agent manually. For more information, see Managing GuardDuty agent manually (p. 36).

Understanding why GuardDuty chose Amazon VPC endpoint

GuardDuty chose Amazon VPC endpoint to send Runtime event types (p. 45) associated with your Amazon EKS clusters, from the Amazon EKS add-on agent to GuardDuty because of the following reasons:

- Amazon VPC (interface) endpoint is powered by PrivateLink. This allows GuardDuty to use the private network path to send the runtime events.
- Some AWS services may optionally include the cost of interface VPC endpoints associated with their service in the cost of their service. As long as you have enabled EKS Runtime Monitoring and have a GuardDuty agent running on your EKS clusters, you won't get charged for the network costs to send the secure telemetry (Runtime event types (p. 45)) to GuardDuty.
- The Amazon EKS worker node instances can run in non-public subnets. The GuardDuty agent running on these nodes can't reach the public endpoint for GuardDuty without using an Amazon VPC endpoint.

Configuring EKS Runtime Monitoring for a standalone account

For the accounts associated with AWS Organizations, see Configuring EKS Runtime Monitoring for multiple-account environments (p. 29).

Choose your preferred access method to enable or disable EKS Runtime Monitoring for your account.

Console

2. In the navigation pane, choose EKS Protection.
3. Under the Configuration tab, you can choose Edit to update the EKS Runtime Monitoring configuration for your account.
4. In the Edit EKS Runtime Monitoring configuration window, do the following:
 - Choose Enable to enable EKS Runtime Monitoring and Disable to disable EKS Runtime Monitoring for your account.
 - If you enabled EKS Runtime Monitoring, ensure to deploy the security agent either manually or automatically, to receive runtime events. If you want GuardDuty to manage the deployment of and updates to the security agent for all the existing and new EKS clusters in your account, configure GuardDuty agent management for your account. To do this, choose Enable in the GuardDuty agent management section.

 If you Disable the GuardDuty agent management for your account, make sure to deploy the GuardDuty agent manually. For more information, see Managing GuardDuty agent manually (p. 36).
5. Choose Save.

API/CLI

1. Run the updateDetector API operation using your own regional detector ID and passing the features object name as EKS_RUNTIME_MONITORING and status as ENABLED or DISABLED.
2. When you set Status as ENABLED for both EKS_RUNTIME_MONITORING and EKS_ADDON_MANAGEMENT, you allow GuardDuty to manage the security agent manually. GuardDuty will manage the deployment of and updates to the security agent for all the Amazon EKS clusters in your account.

When you set Status as ENABLED for EKS_RUNTIME_MONITORING but the Status for EKS_ADDON_MANAGEMENT is set to DISABLED or not set all, you must manage the GuardDuty security agent manually. For more information, see Managing GuardDuty agent manually.

3. You can also enable or disable EKS Runtime Monitoring running the a AWS CLI command. The following example code enables EKS Runtime Monitoring. To disable it, replace ENABLED with DISABLED.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

aws guardduty update-detector --detector-id 12abc34d567e8fa901bc2d34e56789f0 --features '[["Name": "EKS_RUNTIME_MONITORING", "Status": "ENABLED", "AdditionalConfiguration": [{"Name": "EKS_ADDON_MANAGEMENT", "Status": "ENABLED"}]]]

Configuring EKS Runtime Monitoring for multiple-account environments

In a multiple-account environments, only the GuardDuty delegated administrator account has the option to enable or disable the EKS Runtime Monitoring feature for the member accounts in their organization. The GuardDuty member accounts can't modify this configuration from their accounts. The delegated administrator account manages their member accounts using AWS Organizations. This delegated administrator can choose to auto-enable EKS Runtime Monitoring for all the new accounts when they join the organization. For more information about multi-account environments, see Managing multiple accounts in the Amazon GuardDuty User Guide.

Configuring EKS Runtime Monitoring for delegated administrator

Console

Make sure to use the management account credentials.

2. In the navigation pane, under Settings, choose EKS Protection.

3. Under the Configuration tab, choose Edit in the EKS Runtime Monitoring pane.

4. Do one of the following:

Using Enable for all accounts option

1. Choose Enable for all accounts. This configuration will enable the protection plan for the delegated administrator account.

2. Ensure to deploy the security agent either manually or automatically. If you want GuardDuty to manage the deployment of and updates to the security agent for all the existing and new EKS clusters in your account, you can select either Enable for all accounts or Configure accounts manually for delegated administrator agent management.

3. If you chose Enable for all accounts for the EKS Runtime Monitoring configuration and do not want to choose Enable for all accounts for GuardDuty agent management, you can choose Configure accounts manually.
4. Under the Configure accounts manually option, choose Enable for the Delegated Administrator (this account).

5. Choose Save.

Using Configure accounts manually option

1. In the EKS Runtime Monitoring section, choose Enable under the Delegated Administrator (this account) section.

2. Ensure to deploy the security agent either manually or automatically. If you want GuardDuty to manage the deployment of and updates to the security agent for all the existing and new EKS clusters in your account, you can select Enable for the Delegated Administrator (this account) in the GuardDuty agent management; otherwise, select Configure accounts manually for delegated administrator agent management. By default, for GuardDuty agent management, you can choose only the Configure accounts manually.

3. Choose Save.

5. Choose Save.

API/CLI

Run the updateDetector API operation using your own regional detector ID and passing the features object name as EKS_RUNTIME_MONITORING and status as ENABLED or DISABLED.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

You can enable or disable EKS Runtime Monitoring by running the following AWS CLI command. Make sure to use delegated administrator's valid detector ID.

Note

The following example code enables EKS Runtime Monitoring. To disable it, replace ENABLED with DISABLED.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

```bash
aws guardduty update-member-detectors --detector-id 12abc34d567e8fa901bc2d34e56789f0 --account-ids 555555555555 --features '[{"Name" : "EKS_RUNTIME_MONITORING", "Status" : "ENABLED", "AdditionalConfiguration" : [{"Name" : "EKS_ADDON_MANAGEMENT", "Status" : "ENABLED"}]}]'
```

Auto-enable EKS Runtime Monitoring for all member accounts

Choose your preferred access method to enable EKS Runtime Monitoring for all member accounts. This includes existing member accounts and the new accounts that join the organization.

Console

 Make sure to use the delegated administrator account credentials.

2. Do one of the following:

 Using the EKS Protection page

 1. In the navigation pane, choose EKS Protection.
2. On the **EKS Protection** page, you can view the current configuration status of EKS Runtime Monitoring. To change the configuration, choose **Edit** in the EKS Runtime Monitoring section.

3. Choose **Enable for all accounts**. This action automatically enables EKS Runtime Monitoring for both existing and new accounts in the organization.

4. Ensure to deploy the security agent either manually or automatically. If you want GuardDuty to manage the deployment of and updates to the security agent, continue with the next step; otherwise, choose **Save**. For more information, see [Managing GuardDuty agent manually](p. 36).

5. In the **GuardDuty agent management** section, you can view the current configuration status. To update the configuration, choose **Edit**.

6. If you chose **Enable for all accounts** in the **EKS Runtime Monitoring** section, you can choose to configure **GuardDuty agent management** with one of the following three options:
 - Choose **Enable for all accounts** so that GuardDuty deploys and manages the Amazon EKS add-on GuardDuty agent for all the accounts in the organization. This includes both existing and the new accounts that join the organization.
 - Choose **Configure accounts manually**. Under this option, you can choose to select the **Automatically enable for new member accounts** checkbox.
 - Choose **Configure accounts manually**. Under this option, you can choose to clear the **Automatically enable for new member accounts** checkbox. By clearing this, you choose to set the do not auto-enable configuration for any account. In this case, make sure to deploy the Amazon EKS add-on GuardDuty agent manually. For more information, see [Managing GuardDuty agent manually](p. 36).

7. Choose **Save**.

 Note
 It may take up to 24 hours to update the configuration for the member accounts.

Using the Accounts page

1. In the navigation pane, choose **Accounts**.

2. On the **Accounts** page, choose **Auto-enable** preferences before the **Add accounts by invitation** option.

3. In the **Manage auto-enable preferences** window, choose **Enable for all accounts** under **EKS Runtime Monitoring**. This action automatically enables EKS Runtime Monitoring for both existing and new accounts in the organization.

4. Ensure to deploy the security agent either manually or automatically. If you want GuardDuty to manage the deployment of and updates to the security agent, continue with the next step; otherwise, choose **Save changes**. For more information, see [Managing GuardDuty agent manually](p. 36).

5. If you chose **Enable for all accounts** in the **EKS Runtime Monitoring** section, you can choose to configure **EKS Runtime Monitoring - GuardDuty agent management** with one of the following three options:
 - Choose **Enable for all accounts** so that GuardDuty deploys and manages the Amazon EKS add-on GuardDuty agent for all the accounts in the organization. This includes both existing and the new accounts that join the organization.
 - Choose **Enable for new accounts**. This will apply to only those member accounts that are new to the organization.
 - Choose **Do not auto-enable**. In this case, make sure to deploy the Amazon EKS add-on GuardDuty agent manually. For more information, see [Managing GuardDuty agent manually](p. 36).

6. Choose **Save**.
Amazon GuardDuty Amazon GuardDuty User Guide
Configuring EKS Runtime Monitoring

Note
It may take up to 24 hours to update the configuration for the member accounts.

If you can't use the **Enable for all accounts** option, see [Selectively enable or disable EKS Runtime Monitoring for active member accounts](p. 35).

API/CLI

1. To selectively enable or disable EKS Runtime Monitoring for your member accounts, run the `updateMemberDetectors` API operation using your own `detector ID`.

 When you set `Status` as `ENABLED` for both `EKS_RUNTIME_MONITORING` and `EKS_ADDON_MANAGEMENT`, you allow GuardDuty to manage the security agent manually. GuardDuty will manage the deployment of and updates to the security agent for all the Amazon EKS clusters in your account.

 When you set `Status` as `ENABLED` for `EKS_RUNTIME_MONITORING` but the `Status` for `EKS_ADDON_MANAGEMENT` is set to `DISABLED` or not set at all, you must manage the GuardDuty security agent manually. For more information, see [Managing GuardDuty agent manually](https://github.com/).

2. Alternatively, you can use AWS CLI. The following example shows how you can enable EKS Runtime Monitoring for a single member account. To disable it, replace `ENABLED` with `DISABLED`.

 You can find your own `detectorId` for your current Region on the **Settings** page in the [GuardDuty console](https://console.aws.amazon.com/guardduty/).

   ```bash
   aws guardduty update-member-detectors --detector-id 12abc34d567e8fa901bc2d34e56789f0 --account-ids 111122223333 --features '[["Name" : "EKS_RUNTIME_MONITORING", "Status" : "ENABLED", "AdditionalConfiguration" : [["Name" : "EKS_ADDON_MANAGEMENT", "Status" : "ENABLED"]]]]
   ```

 Note
 You can also pass a list of account IDs separated by a space.

 When the code has successfully executed, it returns an empty list of `UnprocessedAccounts`. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

Configuring EKS Runtime Monitoring for all existing active member accounts

Choose your preferred access method to configure EKS Runtime Monitoring for all the existing active member accounts in your organization.

Console

1. Sign in to the AWS Management Console and open the GuardDuty console at [GuardDuty console](https://console.aws.amazon.com/guardduty/).

 Sign in using the delegated administrator credentials.

2. In the navigation pane, choose **EKS Protection**.

3. On the **EKS Protection** page, you can view the current status of the EKS Runtime Monitoring configuration.

4. Under the **Active member accounts** section, choose **Actions**.

5. From the **Actions** dropdown menu, choose **Enable for all existing active member accounts**.

32
6. Ensure to deploy the security agent either manually or automatically. If you want GuardDuty to manage the deployment of and updates to the security agent, continue with the next step; otherwise, choose Save. For more information, see Managing GuardDuty agent manually (p. 36).

7. Configuring GuardDuty agent management

In the GuardDuty agent management section, you can view the current configuration status.

If you chose Enable for all existing active member accounts in the EKS Runtime Monitoring section, you can choose to configure GuardDuty agent management with one of the following two options:

- Choose Configure accounts manually. Under this option, you can choose to select the Automatically enable for new member accounts checkbox.
- Choose Configure accounts manually. Under this option, you can choose to clear the Automatically enable for new member accounts checkbox. By clearing this, you choose to set the do not auto-enable configuration for any account. In this case, make sure to deploy the Amazon EKS add-on GuardDuty agent manually. For more information, see Managing GuardDuty agent manually (p. 36).

8. Choose Save.

Note
It may take up to 24 hours to update the configuration for the member accounts.

API/CLI

1. To selectively enable or disable EKS Runtime Monitoring for your member accounts, run the updateMemberDetectors API operation using your own detector ID.

 When you set Status as ENABLED for both EKS_RUNTIME_MONITORING and EKS_ADDON_MANAGEMENT, you allow GuardDuty to manage the security agent manually. GuardDuty will manage the deployment of and updates to the security agent for all the Amazon EKS clusters in your account.

 When you set Status as ENABLED for EKS_RUNTIME_MONITORING but the Status for EKS_ADDON_MANAGEMENT is set to DISABLED or not set all, you must manage the GuardDuty security agent manually. For more information, see Managing GuardDuty agent manually.

2. Alternatively, you can use AWS CLI. The following example shows how you can enable EKS Runtime Monitoring for a single member account. To disable it, replace ENABLED with DISABLED.

 You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty console.

   ```
   aws guardduty update-member-detectors --detector-id 12abc34d567e8fa901bc2d34e56789f0 --account-ids 111122223333 --features '[["Name" : "EKS_RUNTIME_MONITORING", "Status" : "ENABLED", "AdditionalConfiguration" : [["Name" : "EKS_ADDON_MANAGEMENT", "Status" : "ENABLED"]]]]
   ```

 Note
 You can also pass a list of account IDs separated by a space.

 When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.
Auto-enable EKS Runtime Monitoring for new members

The GuardDuty delegated administrator can auto-enable EKS Runtime Monitoring for new accounts that join your organization.

Console

 Sign in using the delegated administrator credentials.

2. In the navigation pane, choose **EKS Protection**.

3. On the **EKS Protection** page, you can view the current status of the EKS Runtime Monitoring configuration. To change the current configuration, choose **Edit**.

4. In the **Edit EKS Runtime Monitoring configuration** window, choose **Configure accounts manually**.

5. Select the **Automatically enable for new member accounts** checkbox.

6. Ensure to deploy the security agent either manually or automatically. If you want GuardDuty to manage the deployment of and updates to the security agent, continue with the next step; otherwise, choose **Save**. For more information, see [Managing GuardDuty agent manually](p. 36).

7. **Configuring GuardDuty agent management**

 In the **GuardDuty agent management** section, you can view the current configuration status.

 If you selected **Automatically enable for new member accounts** in the **EKS Runtime Monitoring** section, you can choose to configure **GuardDuty agent management** with one of the following two options:

 - Choose **Configure accounts manually**. Under this option, you can choose to select the **Automatically enable for new member accounts** checkbox.
 - Choose **Configure accounts manually**. Under this option, you can choose to clear the **Automatically enable for new member accounts** checkbox. By clearing this, you choose to set the do not auto-enable configuration for any account. In this case, make sure to deploy the Amazon EKS add-on GuardDuty agent manually. For more information, see [Managing GuardDuty agent manually](p. 36).

8. Choose **Save**.

 Note

 It may take up to 24 hours to update the configuration for the member accounts.

API/CLI

- To selectively enable or disable EKS Runtime Monitoring for your new accounts, invoke the `UpdateOrganizationConfiguration` API operation using your own `detector ID`.

- When you set `Status` as `ENABLED` for both `EKS_RUNTIME_MONITORING` and `EKS_ADDON_MANAGEMENT`, you allow GuardDuty to manage the security agent manually. GuardDuty will manage the deployment of and updates to the security agent for all the Amazon EKS clusters in your account.

 When you set `Status` as `ENABLED` for `EKS_RUNTIME_MONITORING` but the `Status` for `EKS_ADDON_MANAGEMENT` is set to `DISABLED` or not set all, you must manage the GuardDuty security agent manually. For more information, see [Managing GuardDuty agent manually](p. 36).

- The following example shows how you can enable EKS Runtime Monitoring for a single member account. To disable it, replace `ENABLED` with `DISABLED`. You can also pass a list of account IDs separated by a space.
You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

```
aws guardduty update-organization-configuration --detector-id 12abc34d567e8fa9b1bc2d34e56789f0 --autoEnable --features '[["Name": "EKS_RUNTIME_MONITORING", "AutoEnable": "NEW", "AdditionalConfiguration": [{"Name": "EKS_ADDON_MANAGEMENT", "AutoEnable": "NEW"}]]]'
```

Selectively enable or disable EKS Runtime Monitoring for active member accounts

Console

1. Open the GuardDuty console at https://console.aws.amazon.com/guardduty/. Make sure to use the delegated administrator account credentials.
2. In the navigation pane, choose Accounts.
3. On the Accounts page, review the columns for EKS Runtime Monitoring and Manage agent automatically. The values in these columns indicate if EKS Runtime Monitoring and GuardDuty agent management are Enabled or Not enabled for an account.
4. Choose the account for which you want to configure EKS Runtime Monitoring or GuardDuty agent management. You can choose multiple accounts at a time.
5. Choose Edit protection plans. Choose the appropriate action.
6. You must deploy a GuardDuty security agent either automatically or manually, to receive runtime events. If you want GuardDuty to manage the deployment of and updates to the security agent for your selected accounts, from Edit protection plans, choose EKS Runtime Monitoring - manage agent automatically, and then choose the appropriate action.

If you don't want GuardDuty to configure GuardDuty agent management, see Managing GuardDuty agent manually (p. 36).

API/CLI

To selectively enable or disable EKS Runtime Monitoring for your member accounts, invoke the updateMemberDetectors API operation using your own detector ID.

The following example shows how you can enable EKS Runtime Monitoring for a single member account. To disable it, replace ENABLED with DISABLED. You can also pass a list of account IDs separated by a space.

When you set Status as ENABLED for both EKS_RUNTIME_MONITORING and EKS_ADDON_MANAGEMENT, you allow GuardDuty to manage the security agent manually. GuardDuty will manage the deployment of and updates to the security agent for all the Amazon EKS clusters in your account.

When you set Status as ENABLED for EKS_RUNTIME_MONITORING but the Status for EKS_ADDON_MANAGEMENT is set to DISABLED or not set all, you must manage the GuardDuty security agent manually. For more information, see Managing GuardDuty agent manually.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

```
aws guardduty update-member-detectors --detector-id 12abc34d567e8fa9b1bc2d34e56789f0 --account-ids 111122223333 --features '[["Name": "EKS_RUNTIME_MONITORING", "Status": "ENABLED", "AdditionalConfiguration": [{"Name": "EKS_ADDON_MANAGEMENT", "Status": "ENABLED"}]]]'
```
Managing GuardDuty agent manually

This section describes how you can manage your Amazon EKS add-on agent (GuardDuty agent) after you enable EKS Runtime Monitoring. To use EKS Runtime Monitoring, you must enable EKS Runtime Monitoring and configure the Amazon EKS add-on, `aws-guardduty-agent`. Performing only one of these two steps will not help GuardDuty detect potential threats or generate findings.

Prerequisites to deploying GuardDuty security agent

This section describes the prerequisites to deploying GuardDuty security agent for your EKS clusters manually. Before proceeding, make sure you have already configured EKS Runtime Monitoring for your accounts. The GuardDuty security agent (EKS add-on) will not work if you don't configure EKS Runtime Monitoring. For more information, see Configuring EKS Runtime Monitoring (p. 26). After you complete the following steps, see Deploying GuardDuty security agent (p. 37).

Choose your preferred access method to create an Amazon VPC endpoint.

Console

Create VPC endpoint

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under Virtual private cloud, choose Endpoints.
3. Choose Create Endpoint.
4. On the Create endpoint page, for Service category, choose Other endpoint services.
5. For Service name, enter `com.amazonaws.us-east-1.guardduty-data`.

Make sure to replace `us-east-1` with the correct Region. This must be the same Region as the EKS cluster that belongs to your AWS account ID.

6. Choose Verify service.
7. After the service name is successfully verified, choose the VPC where your cluster resides.

Add the following policy to restrict VPC endpoint usage to specified account only. With the organization Condition provided below this policy, you can update the following policy to restrict access to your endpoint. To provide VPC endpoint support to specific account IDs in your organization, see Organization condition to restrict access to your endpoint (p. 37).

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Action": "*",
      "Resource": "*",
      "Effect": "Allow",
      "Principal": "*"
    },
    {
      "Condition": {
        "StringNotEquals": {
          "aws:PrincipalAccount": "111122223333"
        }
      },
      "Action": "*",
      "Resource": "*",
      "Effect": "Deny",
      "Principal": "*"
    }
  ]
}
```
Managing GuardDuty agent manually

The `aws:PrincipalAccount` account ID must match the account containing the VPC and VPC endpoint. The following list shows how to share the VPC endpoint with other AWS account IDs:

Organization condition to restrict access to your endpoint

- To specify multiple accounts to access the VPC endpoint, replace "aws:PrincipalAccount": "111122223333" with the following:

  ```json
  "aws:PrincipalAccount": [ "666666666666", "555555555555" ]
  ```

- To allow all the members from an organization to access the VPC endpoint, replace "aws:PrincipalAccount": "111122223333" with the following:

  ```json
  "aws:PrincipalOrgID": "o-abcdef0123"
  ```

- To restrict accessing a resource to an organization ID, add your `ResourceOrgID` to the policy.

 For more information, see [ResourceOrgID](#).

  ```json
  "aws:ResourceOrgID": "o-abcdef0123"
  ```

8. Under **Additional settings**, choose **Enable DNS name**.
9. Under **Subnets**, choose the subnets in which your cluster resides.
10. Under **Security groups**, choose a security group that has the in-bound port 443 enabled from your VPC (or your EKS cluster). If you don't already have a security group that has an in-bound port 443 enabled, [Create a security group](#).

 If there is an issue while restricting the in-bound permissions to your VPC (or cluster), provide the support to in-bound 443 port from any IP address (0.0.0.0/0).

API/CLI

- Invoke [CreateVpcEndpoint](#).
- Use the following values for the parameters:
 - For **Service name**, enter `com.amazonaws.us-east-1.guardduty-data`.
 Make sure to replace `us-east-1` with the correct Region. This must be the same Region as the EKS cluster that belongs to your AWS account ID.
 - For **DNSOptions**, enable private DNS option by setting it to `true`.
 - For **DNSOptions**, enable private DNS option by setting it to `true`.
 - For **DNSOptions**, enable private DNS option by setting it to `true`.

 For **AWS Command Line Interface**, see [create-vpc-endpoint](#).

Deploying GuardDuty security agent

This section describes how you can deploy the GuardDuty security agent for the first time for specific EKS clusters. Before you proceed with this section, make sure you have already set up the prerequisites and enabled EKS Runtime Monitoring for your accounts. The GuardDuty security agent (EKS add-on) will not work if you do not enable EKS Runtime Monitoring.

Choose your preferred access method to deploy the GuardDuty security agent for the first time.
Managing GuardDuty agent manually

Console
1. Open the Amazon EKS console at https://console.aws.amazon.com/eks/home#/clusters.
2. Choose your **Cluster name**.
3. Choose the **Add-ons** tab.
4. Choose **Get more add-ons**.
5. On the **Select add-ons** page, choose **Amazon GuardDuty EKS Runtime Monitoring**.
6. On the **Configure selected add-on settings** page, use the default settings. If the **Status** of your EKS add-on is **Requires activation**, choose **Activate GuardDuty**. This action will open the GuardDuty console to configure EKS Runtime Monitoring for your accounts.
7. After you’ve configured EKS Runtime Monitoring for your accounts, switch back to the Amazon EKS console. The **Status** of your EKS add-on should have changed to **Ready to install**. Choose **Next**.
8. On the **Review and create** page, verify all the details, and choose **Create**.
9. Navigate back to the cluster details and choose the **Resources** tab.
10. You can view the new pods with the prefix `aws-guardduty-agent`.

API/CLI
You can configure the Amazon EKS add-on agent (aws-guardduty-agent) using either of the following options:

- Invoke `CreateAddon` for your account.
- Use the following values for the request parameters:
 - For `addonName`, enter `aws-guardduty-agent`.
 - For information about supported `addonVersion`, see [Kubernetes versions supported by GuardDuty agent (p. 26)](https://console.aws.amazon.com/eks/home#/clusters).
- For AWS Command Line Interface, see `create-addon`.

Updating GuardDuty security agent

To update the GuardDuty security agent for your Amazon EKS clusters, see [Updating an add-on](https://console.aws.amazon.com/eks/home#/clusters).

Clean up your resources
You may want to remove your Amazon EKS add-on agent (aws-guardduty-agent) and delete the Amazon VPC endpoint in the following scenarios:

- You want to switch from managing agent manually to managing agent automatically through GuardDuty.
- You want to disable EKS Runtime Monitoring within EKS Protection.

In both the scenarios, GuardDuty will not take any action to remove the EKS add-on agent or the Amazon VPC endpoint associated with the EKS Runtime Monitoring configuration for your account. For more information, see [Key concepts (p. 26)](https://console.aws.amazon.com/eks/home#/clusters).

Removing Amazon EKS add-on agent
To remove the manually-deployed Amazon EKS add-on agent (aws-guardduty-agent), see [Deleting an add-on](https://console.aws.amazon.com/eks/home#/clusters).
Removing the EKS add-on agent doesn't remove the `amazon-guardduty` namespace from the EKS cluster. To delete the `amazon-guardduty` namespace, see Deleting a namespace.

Deleting Amazon VPC endpoint

To delete the Amazon VPC endpoint that was created as a prerequisite to the `aws-guardduty-agent` deployment, see Delete an interface endpoint.

Amazon ECR repository hosting GuardDuty agent

The following list of Amazon ECR repositories is used to host the Amazon EKS add-on agent for GuardDuty(`aws-guardduty-agent`).

<table>
<thead>
<tr>
<th>AWS Region</th>
<th>Amazon ECR repository URI</th>
</tr>
</thead>
<tbody>
<tr>
<td>US West (Oregon)</td>
<td>039403964562.dkr.ecr.us-west-2.amazonaws.com</td>
</tr>
<tr>
<td>Europe (Paris)</td>
<td>113643092156.dkr.ecr.eu-west-3.amazonaws.com</td>
</tr>
<tr>
<td>Asia Pacific (Mumbai)</td>
<td>610108029387.dkr.ecr.ap-south-1.amazonaws.com</td>
</tr>
<tr>
<td>Asia Pacific (Hyderabad)</td>
<td>618745550137.dkr.ecr.ap-south-2.amazonaws.com</td>
</tr>
<tr>
<td>Canada (Central)</td>
<td>001188825231.dkr.ecr.ca-central-1.amazonaws.com</td>
</tr>
<tr>
<td>Middle East (UAE)</td>
<td>601769779514.dkr.ecr.me-central-1.amazonaws.com</td>
</tr>
<tr>
<td>Europe (London)</td>
<td>109118265657.dkr.ecr.eu-west-2.amazonaws.com</td>
</tr>
<tr>
<td>Europe (Ireland)</td>
<td>373421517865.dkr.ecr.us-west-1.amazonaws.com</td>
</tr>
<tr>
<td>US East (N. Virginia)</td>
<td>031903291036.dkr.ecr.us-east-1.amazonaws.com</td>
</tr>
<tr>
<td>US East (Ohio)</td>
<td>591382732059.dkr.ecr.us-east-2.amazonaws.com</td>
</tr>
<tr>
<td>Europe (Ireland)</td>
<td>673884943994.dkr.ecr.eu-west-1.amazonaws.com</td>
</tr>
<tr>
<td>South America (São Paulo)</td>
<td>941219317354.dkr.ecr.sa-east-1.amazonaws.com</td>
</tr>
<tr>
<td>Europe (Stockholm)</td>
<td>366771026645.dkr.ecr.eu-north-1.amazonaws.com</td>
</tr>
<tr>
<td>Europe (Frankfurt)</td>
<td>409493279830.dkr.ecr.eu-central-1.amazonaws.com</td>
</tr>
<tr>
<td>Europe (Zurich)</td>
<td>718440343717.dkr.ecr.eu-central-2.amazonaws.com</td>
</tr>
</tbody>
</table>
Assessing coverage

Assessing coverage in EKS Runtime Monitoring

Coverage in EKS Runtime Monitoring helps you identify the combined status of EKS Runtime Monitoring, Amazon VPC endpoint, and GuardDuty security agent. If you have enabled EKS Runtime Monitoring in your GuardDuty accounts, ensured VPC endpoint is configured, and have the GuardDuty security agent running on all the Amazon Elastic Kubernetes Service (Amazon EKS) nodes within your EKS cluster, your EKS clusters may indicate that the coverage status is Healthy. If an issue is found related to any of these configurations, your EKS clusters indicate that the coverage status is Unhealthy. For example, EKS clusters that don't have VPC endpoint configured or are partially configured with the GuardDuty security agent are not entirely covered under EKS Runtime Monitoring threat detection.

Reviewing coverage statistics

The coverage statistics for the EKS clusters associated with your own accounts or your member accounts is the percentage of the healthy EKS clusters over all EKS clusters in the selected AWS Region. The following equation represents this as:

\[(\text{Healthy clusters}/\text{All clusters})\times 100\]

If you're a standalone account or member account, you can view the coverage statistics of all the EKS clusters associated with your account. If you're a GuardDuty administrator, you can view the coverage statistics for all the EKS clusters associated to your member accounts.

AWS Region

<table>
<thead>
<tr>
<th>AWS Region</th>
<th>Amazon ECR repository URI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia Pacific (Singapore)</td>
<td>584580519942.dkr.ecr.ap-southeast-1.amazonaws.com</td>
</tr>
<tr>
<td>Asia Pacific (Sydney)</td>
<td>011662287384.dkr.ecr.ap-southeast-2.amazonaws.com</td>
</tr>
<tr>
<td>Asia Pacific (Jakarta)</td>
<td>617474730032.dkr.ecr.ap-southeast-3.amazonaws.com</td>
</tr>
<tr>
<td>Asia Pacific (Tokyo)</td>
<td>781592569369.dkr.ecr.ap-northeast-1.amazonaws.com</td>
</tr>
<tr>
<td>Asia Pacific (Seoul)</td>
<td>732248494576.dkr.ecr.ap-northeast-2.amazonaws.com</td>
</tr>
<tr>
<td>Asia Pacific (Osaka)</td>
<td>810724417379.dkr.ecr.ap-northeast-3.amazonaws.com</td>
</tr>
<tr>
<td>Asia Pacific (Hong Kong)</td>
<td>790429075973.dkr.ecr.ap-east-1.amazonaws.com</td>
</tr>
<tr>
<td>Middle East (Bahrain)</td>
<td>541829937850.dkr.ecr.me-south-1.amazonaws.com</td>
</tr>
<tr>
<td>Europe (Milan)</td>
<td>528450769569.dkr.ecr.eu-south-1.amazonaws.com</td>
</tr>
<tr>
<td>Europe (Spain)</td>
<td>531047660167.dkr.ecr.eu-south-2.amazonaws.com</td>
</tr>
<tr>
<td>Africa (Cape Town)</td>
<td>379032919888.dkr.ecr.af-south-1.amazonaws.com</td>
</tr>
</tbody>
</table>
Choose one of the access methods to review the coverage statistics for your accounts.

Console

- Open the GuardDuty console at https://console.aws.amazon.com/guardduty/.
- Under **Settings**, choose **EKS Protection**.
- Under the **EKS clusters runtime coverage** tab, you can view the coverage statistics aggregated by the coverage status that is available under the **Clusters list** table.
 - You can filter the **Clusters list** by the following columns:
 - EKS_CLUSTER_NAME
 - COVERAGE_STATUS
 - ACCOUNT_ID
 - ADDON_VERSION
 - You can sort the **Clusters list** by any of the columns available in the table.
 - If any of your EKS clusters have the **Coverage status** as **Unhealthy**, the **Issue** column may include additional information about the reason for the **Unhealthy** coverage.

For more information about these issues, see [Troubleshooting coverage issues (p. 42)](#).

API/CLI

- Invoke **ListCoverage** API with your own valid detector ID, Region, and service endpoint. You can filter and sort the cluster list using this API.
 - You can change the example **filter-criteria** with one of the following options for **CriterionKey**:
 - EKS_CLUSTER_NAME
 - COVERAGE_STATUS
 - RESOURCE_TYPE
 - ACCOUNT_ID
 - ADDON_VERSION
 - You can change the example **AttributeName** in **sort-criteria** with the following options:
 - EKS_CLUSTER_NAME
 - COVERAGE_STATUS
 - ACCOUNT_ID
 - ADDON_VERSION
 - UPDATED_AT
 - You can change the **max-results** (up to 50).
 - You can find your own **detectorId** for your current Region on the **Settings** page in the [GuardDuty console](https://console.aws.amazon.com/guardduty/).

```
aws --region us-east-1 list-coverage --detector-id 12abc34d567e8fa901bc2d34e56789f0
  --sort-criteria '{"AttributeName": "EKS_CLUSTER_NAME", "OrderBy": "DESC"}'
  --filter-criteria '{"FilterCriterion": [{"CriterionKey": "ACCOUNT_ID", "FilterCondition":
    {"EqualsValue": "111122223333"} }] }' --max-results 5
```

- Invoke **GetCoverageStatistics** to retrieve coverage aggregated statistics based on the **statisticsType**.
 - You can change the example **statisticsType** to one of the following options:
 - COUNT_BY_COVERAGE_STATUS — Represents coverage statistics for EKS clusters aggregated by coverage status.
Assessing coverage

- COUNT_BY_RESOURCE_TYPE – Coverage statistics aggregated based on the type of AWS resource in the list.
- You can change the example filter-criteria in the command. You can use the following options for CriterionKey:
 - EKS_CLUSTER_NAME
 - COVERAGE_STATUS
 - RESOURCE_TYPE
 - ACCOUNT_ID
 - ADDON_VERSION
- You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

```
aws --region us-east-1 get-coverage-statistics --detector-id 12abc34d567e8fa901bc2d34e56789f0 --statistics-type COUNT_BY_COVERAGE_STATUS --filter-criteria '{"FilterCriterion": [{"CriterionKey": "ACCOUNT_ID", "FilterCondition": {"EqualsValue": "123456789012"}}] }'
```

Troubleshooting coverage issues

If the coverage status for your EKS cluster is Unhealthy, you can view the corresponding error either under the Issue column in the GuardDuty console, or by using the CoverageResource data type.

The structure of a coverage issue is Issue type:Extra information. Typically, the issues will have an optional Extra information that may include specific client-side exception or description about the issue. Based on Extra information, the following tables provide the recommended steps to troubleshoot the coverage issues.

<table>
<thead>
<tr>
<th>Issue type (prefix)</th>
<th>Extra information</th>
<th>Recommended troubleshooting steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addon creation failed</td>
<td>Addon aws-guardduty-agent is not compatible with current cluster version of cluster ClusterName. Addon specified is not supported.</td>
<td>Make sure that you're using one of those Kubernetes versions that support deploying the aws-guardduty-agent EKS add-on. For more information, see Kubernetes versions supported by GuardDuty agent (p. 26). For information about updating your Kubernetes version, see Updating an Amazon EKS cluster Kubernetes version.</td>
</tr>
<tr>
<td>VPC endpoint creation failed</td>
<td>VPC endpoint creation not supported for shared VPC vpcId</td>
<td>Not actionable Presently, EKS Runtime Monitoring doesn't support shared VPC.</td>
</tr>
<tr>
<td></td>
<td>Enabling private DNS requires both</td>
<td>Ensure that the following VPC attributes</td>
</tr>
<tr>
<td>Issue type (prefix)</td>
<td>Extra information</td>
<td>Recommended troubleshooting steps</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>enableDnsSupport and enableDnsHostnames VPC attributes set to true for <code>vpcId</code> (Service: Ec2, Status Code:400, Request ID: <code>a1b2c3d4-5678-90ab-cdef-EXAMPLE11111</code>),</td>
<td>are set to true – enableDnsSupport and enableDnsHostnames. For more information, see DNS attributes in your VPC.</td>
<td>If you're using Amazon VPC Console at https://console.aws.amazon.com/vpc/ to create the Amazon VPC, make sure to select both Enable DNS hostnames and Enable DNS resolution. For more information, see VPC configuration options.</td>
</tr>
<tr>
<td>Local EKS clusters</td>
<td>EKS addons are not supported on local outpost clusters.</td>
<td>Not actionable. For more information, see Amazon EKS on AWS outposts.</td>
</tr>
<tr>
<td>EKS Runtime Monitoring enablement permission not granted</td>
<td>* (optional)</td>
<td>1. If the extra information is available for this issue, fix the root cause and follow the next step. 2. Toggle EKS Runtime Monitoring to turn it off and then turn it on again. Ensure that the GuardDuty agent also gets deployed, whether automatically through GuardDuty or manually.</td>
</tr>
<tr>
<td>EKS Runtime Monitoring enablement resource provisioning in progress</td>
<td>* (optional)</td>
<td>Not actionable. After you enable EKS Runtime Monitoring, the coverage status might remain Unhealthy until the resource provisioning step completes. The coverage status gets monitored and updated periodically.</td>
</tr>
<tr>
<td>Addon creation failed</td>
<td>EKS Addon issue - AddonIssueCode: AddonIssueMessage</td>
<td>Using the issue message, you can identify and fix the root cause, and follow the process again. For a list of addon issue codes, see Addonissue.</td>
</tr>
<tr>
<td>Addon update failed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addon status unhealthy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Coverage status change event

When the status of an EKS cluster changes from either Healthy to Unhealthy or otherwise, by default, GuardDuty publishes this in the Amazon EventBridge bus for your account. You can also create an EventBridge rule to get a notification each time there is a change in the coverage status for any of your Amazon EKS clusters. For more information, see Create rule. In the EventBridge rules, you can use the pre-defined sample events and event patterns to receive coverage status notification. Additionally, you can create a custom event pattern by using the following example notification schema. Make sure to replace the values for your account. To get notified when the coverage status of your EKS cluster changes from Unhealthy to Healthy, the detail-type should be GuardDuty Runtime Protection Healthy; otherwise, the detail-type should be GuardDuty Runtime Protection Unhealthy.

```json
{
  "version": "0",
  "id": "event ID",
  "detail-type": "GuardDuty Runtime Protection Healthy",
  "source": "aws.guardduty",
  "account": "AWS account ID",
  "time": "event timestamp (string)",
  "region": "AWS Region",
  "resources": [
    
  ],
  "detail": {
    "schemaVersion": "1.0",
    "resourceAccountId": "string",
    "currentStatus": "string",
    "previousStatus": "string",
    "resourceDetails": {
      "resourceType": "EKS",
      "eksClusterDetails": {
        "clusterName": "string",
        "availableNodes": "string",
        "desiredNodes": "string",
        "addonVersion": "string"
      }
    },
    "issue": "string",
    "lastUpdatedAt": "timestamp"
  }
}
```

Setting up CPU and memory monitoring

After you enable EKS Runtime Monitoring and assess coverage to ensure that the Amazon EKS add-on GuardDuty agent has been deployed, you can set up and view the Container insight metrics.
The following steps can help you evaluate how the deployed agent performs against the CPU and memory limits (p. 26) for the GuardDuty agent:

1. Setting up Container Insights on Amazon EKS and Kubernetes
2. Amazon EKS and Kubernetes Container Insights metrics

Runtime event types used by GuardDuty

The GuardDuty security agent collects the following events types and sends them to the GuardDuty backend for threat detection and analysis. GuardDuty doesn't make these events accessible to you. If GuardDuty detects a potential threat and generates an EKS Runtime Monitoring finding, you can view the corresponding finding details.

Process events

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process name</td>
<td>Name of the observed process.</td>
</tr>
<tr>
<td>Process Path</td>
<td>Absolute path of the process executable.</td>
</tr>
<tr>
<td>Process ID</td>
<td>The ID assigned to the process by the operating system.</td>
</tr>
<tr>
<td>Namespace PID</td>
<td>The process ID of the process in a secondary PID namespace other than the host level PID namespace. For processes inside a container, it is the process ID observed inside the container.</td>
</tr>
<tr>
<td>Process User ID</td>
<td>The unique ID of the user that executed the process.</td>
</tr>
<tr>
<td>Process UUID</td>
<td>The unique ID assigned to the process by GuardDuty.</td>
</tr>
<tr>
<td>Process GID</td>
<td>Process ID of the process group.</td>
</tr>
<tr>
<td>Process EGID</td>
<td>Effective group ID of the process group.</td>
</tr>
<tr>
<td>Process EUID</td>
<td>Effective user ID of the process.</td>
</tr>
<tr>
<td>Process User Name</td>
<td>The user name that executed the process.</td>
</tr>
<tr>
<td>Process Start Time</td>
<td>The time when the process was created. This field is in the UTC date string format (2023-03-22T19:37:20.168Z).</td>
</tr>
<tr>
<td>Process Executable SHA-256</td>
<td>The SHA256 hash of the process executable.</td>
</tr>
<tr>
<td>Process Script Path</td>
<td>Path of the script file that was executed.</td>
</tr>
<tr>
<td>Process Environment Variable</td>
<td>The environment variable made available to the process. Only LD_PRELOAD and LD_LIBRARY_PATH get collected.</td>
</tr>
<tr>
<td>Process Present Working Directory (PWD)</td>
<td>Present working directory of the process.</td>
</tr>
<tr>
<td>Field name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Parent process</td>
<td>Process details of the parent process. A parent process is a process that created the observed process.</td>
</tr>
</tbody>
</table>

Container events

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container Name</td>
<td>Name of the container.</td>
</tr>
<tr>
<td>Container UID</td>
<td>The unique ID of the container assigned by the container runtime.</td>
</tr>
<tr>
<td>Container Runtime</td>
<td>The container runtime (such as docker or containerd) used to run the container.</td>
</tr>
<tr>
<td>Container Image ID</td>
<td>The ID of the container image.</td>
</tr>
<tr>
<td>Container Image Name</td>
<td>Name of the container image.</td>
</tr>
</tbody>
</table>

Kubernetes pod events

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pod ID</td>
<td>The ID of the Kubernetes pod.</td>
</tr>
<tr>
<td>Pod name</td>
<td>Name of the Kubernetes pod.</td>
</tr>
<tr>
<td>Pod Namespace</td>
<td>Name of the Kubernetes namespace to which the Kubernetes workload belongs.</td>
</tr>
<tr>
<td>Kubernetes Cluster Name</td>
<td>Name of the Kubernetes cluster.</td>
</tr>
</tbody>
</table>

DNS events

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socket Type</td>
<td>Type of socket to indicate communication semantics. For example, SOCKRAW.</td>
</tr>
<tr>
<td>Address Family</td>
<td>Represents the communication protocol associated with the address. For example, the address family AF_INET is used for IP v4 protocol.</td>
</tr>
<tr>
<td>Direction ID</td>
<td>The ID of the connection direction.</td>
</tr>
<tr>
<td>Protocol Number</td>
<td>The layer 4 protocol number such as 17 for UDP and 6 for TCP.</td>
</tr>
<tr>
<td>DNS Remote Endpoint IP</td>
<td>The remote IP of the connection.</td>
</tr>
<tr>
<td>DNS Remote Endpoint Port</td>
<td>The port number of the connection.</td>
</tr>
</tbody>
</table>
Runtime event types

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Local Endpoint IP</td>
<td>The local IP of the connection.</td>
</tr>
<tr>
<td>DNS Local Endpoint Port</td>
<td>The port number of the connection.</td>
</tr>
<tr>
<td>DNS Payload</td>
<td>The payload of DNS packets that contains DNS queries and responses.</td>
</tr>
</tbody>
</table>

Open events

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filepath</td>
<td>Path of the file that is opened in this event.</td>
</tr>
<tr>
<td>Flags</td>
<td>Describes the file access mode, such as read-only, write-only, and read-write.</td>
</tr>
</tbody>
</table>

Load module event

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Name</td>
<td>Name of the module loaded into the kernel.</td>
</tr>
</tbody>
</table>

Mprotect events

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Range</td>
<td>The address range for which the access protections were modified.</td>
</tr>
<tr>
<td>Memory Regions</td>
<td>Specifies the Region of a process's address space such as stack and heap.</td>
</tr>
<tr>
<td>Flags</td>
<td>Represents options that control the behavior of this event.</td>
</tr>
</tbody>
</table>

Mount events

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mount Target</td>
<td>The path where the mount source is mounted.</td>
</tr>
<tr>
<td>Mount Source</td>
<td>The path on the host that is mounted at the mount target.</td>
</tr>
<tr>
<td>Filesystem Type</td>
<td>Represents the type of mounted fileSystem.</td>
</tr>
<tr>
<td>Flags</td>
<td>Represents options that control the behavior of this event.</td>
</tr>
</tbody>
</table>
Link events

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Path</td>
<td>Path where the hard link gets created.</td>
</tr>
<tr>
<td>Target Path</td>
<td>Path of the file at which the hard link points.</td>
</tr>
</tbody>
</table>

Symlink events

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Path</td>
<td>Path where the symbolic link is created.</td>
</tr>
<tr>
<td>Target Path</td>
<td>Path of the file at which the symbolic link points.</td>
</tr>
</tbody>
</table>

Dup events

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old File Descriptor</td>
<td>A file descriptor that represents an open file object.</td>
</tr>
<tr>
<td>New File Descriptor</td>
<td>A new file descriptor that is a duplicate of the old file descriptor.</td>
</tr>
<tr>
<td></td>
<td>Both the old and new file descriptors represent the same open file object.</td>
</tr>
<tr>
<td>Dup Remote Endpoint IP</td>
<td>The remote IP address of the network socket represented by the old file descriptor. Only applicable when the old file descriptor represents a network socket.</td>
</tr>
<tr>
<td>Dup Remote Endpoint Port</td>
<td>The remote port of the network socket represented by the old file descriptor. Only applicable when the old file descriptor represents a network socket.</td>
</tr>
<tr>
<td>Dup Local Endpoint IP</td>
<td>The local IP address of the network socket represented by the old file descriptor. Only applicable when the old file descriptor represents a network socket.</td>
</tr>
<tr>
<td>Dup Local Endpoint Port</td>
<td>The local port of the network socket represented by the old file descriptor. Only applicable when the old file descriptor represents a network socket.</td>
</tr>
</tbody>
</table>

Memory map event

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filepath</td>
<td>Path of the file to which the memory is mapped.</td>
</tr>
</tbody>
</table>
Socket events

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address family</td>
<td>Represents the communication protocol associated with the address. For example, the address family AF_INET is used for IP version of 4 protocol.</td>
</tr>
<tr>
<td>Socket Type</td>
<td>Type of socket to indicate communication semantics. For example, SOCK_RAW.</td>
</tr>
<tr>
<td>Protocol number</td>
<td>Specifies a particular protocol within the address family. Usually there is a single protocol in address families. For example, the address family AF_INET only has the IP protocol.</td>
</tr>
</tbody>
</table>

Connect events

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address family</td>
<td>Represents the communication protocol associated with the address. For example, the address family AF_INET is used for IP v4 protocol.</td>
</tr>
<tr>
<td>Socket Type</td>
<td>Type of socket to indicate communication semantics. For example, SOCK_RAW.</td>
</tr>
<tr>
<td>Protocol Number</td>
<td>Specifying a particular protocol within the address family. Usually there is a single protocol in address families. For example, the address family AF_INET only has the IP protocol.</td>
</tr>
<tr>
<td>Filepath</td>
<td>Path of the socket file if the address family is AF_UNIX.</td>
</tr>
<tr>
<td>Remote Endpoint IP</td>
<td>The remote IP of the connection.</td>
</tr>
<tr>
<td>Remote Endpoint Port</td>
<td>The port number of the connection.</td>
</tr>
<tr>
<td>Local Endpoint IP</td>
<td>The local IP of the connection.</td>
</tr>
<tr>
<td>Local Endpoint Port</td>
<td>The port number of the connection.</td>
</tr>
</tbody>
</table>

Process VM Readv events

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags</td>
<td>Represents options that control the behavior of this event.</td>
</tr>
<tr>
<td>Target PID</td>
<td>Process ID of the process from which memory is being read.</td>
</tr>
<tr>
<td>Target Process UUID</td>
<td>The unique ID of the target process.</td>
</tr>
<tr>
<td>Target Executable Path</td>
<td>The absolute path of the target process executable file.</td>
</tr>
</tbody>
</table>
Process VM Writev events

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags</td>
<td>Represents options that control the behavior of this event.</td>
</tr>
<tr>
<td>Target PID</td>
<td>Process ID of the process to which memory is being written.</td>
</tr>
<tr>
<td>Target Process UUID</td>
<td>The unique ID of the target process.</td>
</tr>
<tr>
<td>Target Executable Path</td>
<td>The absolute path of the target process executable file.</td>
</tr>
</tbody>
</table>

Ptrace events

<table>
<thead>
<tr>
<th>Field name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target PID</td>
<td>Process ID of the target process.</td>
</tr>
<tr>
<td>Target Process UUID</td>
<td>The unique ID of the target process.</td>
</tr>
<tr>
<td>Target Executable Path</td>
<td>The absolute path of the target process executable file.</td>
</tr>
<tr>
<td>Flags</td>
<td>Represents options that control the behavior of this event.</td>
</tr>
</tbody>
</table>

EKS add-on agent release history

The following table shows the release version history of Amazon EKS add-on GuardDuty agent.

<table>
<thead>
<tr>
<th>Agent version</th>
<th>Container image</th>
<th>Release notes</th>
<th>Availability date</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1.2.0</td>
<td>x86_64 (AMD64): sha256:d610413d662ec042057f05d69e9f5a077ea307ffdb5ce3f11bcc3</td>
<td>In addition to AMD64-based instances, v1.2.0 now also supports Graviton (ARM64): sha256:174d7ab28b2f95e5309da80d9babe4a64f602dfe72c2b351a0ef9297a141bfa</td>
<td>June 16, 2023</td>
</tr>
<tr>
<td></td>
<td>Graviton (ARM64): sha256:174d7ab28b2f95e5309da80d9babe4a64f602dfe72c2b351a0ef9297a141bfa</td>
<td>Added and verified support for Bottlerocket Supports Kubernetes version 1.27 General performance enhancements and stability improvements.</td>
<td></td>
</tr>
<tr>
<td>v1.1.0</td>
<td>sha256:b19ba3a3c1a508d153263ae25ca9519979c10182930381c7b5</td>
<td>In addition to Kubernetes versions 1.21 and 1.22, v1.1.0 supports Kubernetes version 1.23</td>
<td>May 2, 2023</td>
</tr>
<tr>
<td>Agent version</td>
<td>Container image</td>
<td>Release notes</td>
<td>Availability date</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>v1.0.0</td>
<td>sha256:e38bdc2b1323e89113f1a31bd4bc8e5a8098525dd98e6981a28b9906b1e4411e</td>
<td>General performance enhancements and stability improvements.</td>
<td>March 30, 2023</td>
</tr>
</tbody>
</table>

This agent release also supports Kubernetes version 1.26.
Lambda Protection in Amazon GuardDuty

Lambda Protection helps you identify potential security threats when an AWS Lambda function gets invoked in your AWS environment. When you enable Lambda Protection, GuardDuty starts monitoring Lambda network activity logs, starting with VPC Flow Logs (p. 16) from all Lambda functions for account, including those logs that don't use VPC networking, and are generated when the Lambda function gets invoked. If GuardDuty identifies suspicious network traffic that is indicative of the presence of a potentially malicious piece of code in your Lambda function, GuardDuty will generate a finding.

Note
Lambda Network Activity Monitoring doesn't include the logs for Lambda@Edge functions.

You can configure Lambda Protection for any account or available AWS Regions, at any time. By default, an existing GuardDuty account can enable Lambda Protection with a 30-day trial period. For a new GuardDuty account, Lambda Protection is already enabled and included in the 30-day trial period. For information about usage statistics, see Estimating cost (p. 287).

GuardDuty monitors network activity logs generated by invoking the Lambda functions. Presently, Lambda Network Activity Monitoring includes Amazon VPC flow logs from all Lambda functions for your account, including those logs that don't use VPC networking, and are subject to change, including expansion to other network activity such as DNS query data generated by invoking the Lambda functions. The expansion into other forms of network activity monitoring will increase the volume of data that GuardDuty will process for Lambda Protection. This will directly impact the usage cost of Lambda Protection. Whenever GuardDuty starts monitoring an additional network activity log, it will provide a notice to the accounts that have turned on Lambda Protection, at least 30 days prior to the release.

Feature in Lambda Protection

Lambda Network Activity Monitoring

When you enable Lambda Protection, GuardDuty monitors Lambda network activity logs generated when a Lambda function associated to your account gets invoked. This helps you detect potential security threats to the Lambda function. GuardDuty monitors VPC flow logs from all your Lambda functions, including those logs that don't use VPC networking. For Lambda functions that are configured to use VPC networking, you don't need to enable VPC flow logs for the elastic network interfaces (ENI) created by Lambda for GuardDuty. GuardDuty only charges for the amount of Lambda network activity logs data processed (in GB) to generate a finding. GuardDuty optimizes cost by applying smart filters and analyzing a subset of Lambda network activity logs that are relevant to threat detection. For information about pricing, see Amazon GuardDuty pricing.

GuardDuty doesn't manage your Lambda network activity logs (including VPC and non-VPC flow logs) or make them accessible in your account.
Configuring Lambda Protection

Configuring Lambda Protection for a standalone account

For accounts associated with AWS Organizations, you can automate this process through GuardDuty console or API instructions, as described in the next section.

Choose your preferred access method to enable or disable Lambda Protection for a standalone account.

Console

2. In the navigation pane, under Settings, choose Lambda Protection.
3. The Lambda Protection page shows the current status for your account. You may enable or disable the feature at any time by selecting Enable or Disable.
4. Choose Save.

API/CLI

Run the updateDetector API operation using your own regional detector ID and passing the features object name as LAMBDA_NETWORK_LOGS and status as ENABLED or DISABLED.

You can also enable or disable Lambda Network Activity Monitoring by running the following AWS CLI command. Make sure to use your own valid detector ID.

Note
The following example code enables Lambda Network Activity Monitoring. To disable it, replace ENABLED with DISABLED.

```
aws guardduty update-detector --detector-id 12abc34d567e8fa901bc2d34e56789f0 --features 
[{
  "Name": "LAMBDA_NETWORK_LOGS",
  "Status": "ENABLED"
}]
```

Configuring Lambda Protection in multi-account environments

In a multi-account environment, only the GuardDuty delegated administrator account has the option to enable or disable Lambda Protection for the member accounts in their organization. The GuardDuty member accounts can't modify this configuration from their accounts. The delegated administrator account manages member accounts using AWS Organizations. The delegated administrator can choose to auto-enable Lambda Network Activity Monitoring for all the new accounts as they join the organization. For more information about multi-account environments, see Managing multiple accounts in Amazon GuardDuty.

Configuring Lambda Protection for delegated administrator

Choose your preferred access method to enable or disable Lambda Network Activity Monitoring for delegated administrator.
Configuring Lambda Protection in multi-account environments

Console

 Make sure to use the management account credentials.
2. In the navigation pane, under Settings, choose Lambda Protection.
4. Do one of the following:

 Using Enable for all accounts
 - Choose Enable for all accounts. This will enable the protection plan for all the active GuardDuty accounts in your AWS organization, including the new accounts that join the organization.
 - Choose Save.

 Using Configure accounts manually
 - To enable the protection plan only for the delegated administrator account, choose Configure accounts manually.
 - Choose Enable under the delegated administrator (this account) section.
 - Choose Save.

API/CLI

Run the updateDetector API operation using your own regional detector ID and passing the features object name as LAMBDA_NETWORK_LOGS and status as ENABLED or DISABLED.

You can enable or disable Lambda Network Activity Monitoring by running the following AWS CLI command. Make sure to use delegated administrator's valid detector ID.

Note

The following example code enables Lambda Network Activity Monitoring. To disable it, replace ENABLED with DISABLED.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

```
aws guardduty update-member-detectors --detector-id 12abc34d567e8fa901bc2d34e56789f0 --accountids 555555555555 --features '['"Name": "LAMBDA_NETWORK_LOGS", "Status": "ENABLED"]'
```

Auto-enable Lambda Network Activity Monitoring for all member accounts

Choose your preferred access method to enable the Lambda Network Activity Monitoring feature for all member accounts. This includes existing member accounts and the new accounts that join the organization.

Console

1. Sign in to the AWS Management Console and open the GuardDuty console at https://console.aws.amazon.com/guardduty/.
 Make sure to use the delegated administrator account credentials.
2. Do one of the following:
Using the Lambda Protection page

1. In the navigation pane, choose Lambda Protection.
2. Choose Enable for all accounts. This action automatically enables Lambda Network Activity Monitoring for both existing and new accounts in the organization.
3. Choose Save.

 Note
 It may take up to 24 hours to update the configuration for the member accounts.

Using the Accounts page

1. In the navigation pane, choose Accounts.
2. On the Accounts page, choose Auto-enable preferences before Add accounts by invitation.
3. In the Manage auto-enable preferences window, choose Enable for all accounts under Lambda Network Activity Monitoring.

 Note
 By default, this action automatically turns on the Auto-enable GuardDuty for new member accounts option.

4. Choose Save.

If you can't use the Enable for all accounts option, see Selectively enable or disable Lambda Network Activity Monitoring for member accounts (p. 57).

API/CLI

- To selectively enable or disable Lambda Network Activity Monitoring for your member accounts, invoke the updateMemberDetectors API operation using your own detector ID.

- The following example shows how you can enable Lambda Network Activity Monitoring for a single member account. To disable a member account, replace ENABLED with DISABLED.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

```
aws guardduty update-detector --detector-id 12abc34d567e8fa901bc2d54e56789f0 --accountids 111122223333 --features '[["Name": "LAMBDA_NETWORK_LOGS", "Status": "ENABLED"]]' 
```

You can also pass a list of account IDs separated by a space.

- When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

Enable Lambda Network Activity Monitoring for all existing active member accounts

Choose your preferred access method to enable Lambda Network Activity Monitoring for all the existing active member accounts in the organization.
Configuring Lambda Protection in multi-account environments

Console

To configure Lambda Network Activity Monitoring for all existing active member accounts

 - Sign in using the delegated administrator credentials.
2. In the navigation pane, choose **Lambda Protection**.
3. On the **Lambda Protection** page, you can view the current status of the configuration. Under the **Active member accounts** section, choose **Actions**.
4. From the **Actions** dropdown menu, choose **Enable for all existing active member accounts**.
5. Choose **Confirm**.

API/CLI

- To selectively enable or disable Lambda Network Activity Monitoring for your member accounts, invoke the `updateMemberDetectors` API operation using your own detector ID.
- The following example shows how you can enable Lambda Network Activity Monitoring for a single member account. To disable a member account, replace **ENABLED** with **DISABLED**.

You can find your own `detectorId` for your current Region on the **Settings** page in the https://console.aws.amazon.com/guardduty/

```bash
aws guardduty update-detector --detector-id 12abc34d567e8fa901bc2d34e56789f0 --accountids 111122223333 --features '[{"Name": "LAMBDA_NETWORK_LOGS", "Status": "ENABLED"}]
```

You can also pass a list of account IDs separated by a space.
- When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

Auto-enable Lambda Network Activity Monitoring for new member accounts

Choose your preferred access method to enable Lambda Network Activity Monitoring for new accounts that join your organization.

Console

The delegated administrator can enable Lambda Network Activity Monitoring for new member accounts in an organization, using either the **Lambda Protection** or **Accounts** page.

To auto-enable Lambda Network Activity Monitoring for new member accounts

 - Make sure to use the delegated administrator account credentials.
2. Do one of the following:
 - Using the **Lambda Protection** page:
 1. In the navigation pane, choose **Lambda Protection**.
 2. On the **Lambda Protection** page, choose **Edit**.
 3. Choose **Configure accounts manually**.
4. Select **Automatically enable for new member accounts**. This step ensures that whenever a new account joins your organization, Lambda Protection will be automatically enabled for their account. Only the organization delegated administrator can modify this configuration.

5. Choose **Save**.

 - **Using the Accounts page:**
 1. In the navigation pane, choose **Accounts**.
 2. On the **Accounts** page, choose **Auto-enable** preferences.
 3. In the **Manage auto-enable preferences** window, select **Enable for new accounts** under **Lambda Network Activity Monitoring**.
 4. Choose **Save**.

API/CLI

- To enable or disable Lambda Network Activity Monitoring for new member accounts, invoke the `UpdateOrganizationConfiguration` API operation using your own **detector ID**.
- The following example shows how you can enable Lambda Network Activity Monitoring for a single member account. To disable it, see [Selectively enable or disable Lambda Network Activity Monitoring for member accounts](#). If you don't want to enable it for all the new accounts joining the organization, set **AutoEnable** to **NONE**.

You can find your own `detectorId` for your current Region on the **Settings** page in the https://console.aws.amazon.com/guardduty/

```bash
aws guardduty update-organization-configuration --detector-id 12abc34d567e8fa901bc2d34e56789f0 --AutoEnable --features '[["Name": "LAMBDA_NETWORK_LOGS", "AutoEnable": "NEW"]]
```

You can also pass a list of account IDs separated by a space.

- When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

Selectively enable or disable Lambda Network Activity Monitoring for member accounts

Choose your preferred access method to selectively enable or disable Lambda Network Activity Monitoring for member accounts.

Console

 Make sure to use the delegated administrator account credentials.

2. In the navigation pane, under **Settings**, choose **Accounts**.

 On the **Accounts** page, review the **Lambda Network Activity Monitoring** column. It indicates whether or not Lambda Network Activity Monitoring is enabled.

3. Choose the account for which you want to configure Lambda Protection. You can choose multiple accounts at a time.

4. From the **Edit Protection Plans** dropdown menu, choose **Lambda Network Activity Monitoring**, and then choose an appropriate action.
Configuring Lambda Protection in multi-account environments

API/CLI

Invoke the `updateMemberDetectors` API using your own `detector ID`.

The following example shows how you can enable Lambda Network Activity Monitoring for a single member account. To disable it, replace `ENABLED` with `DISABLED`.

You can find your own `detectorId` for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/

```bash
aws guardduty update-member-detectors --detector-id 12abc34d567e8fa901bc2d34e56789f0 --account-ids 111122223333 --features '[["Name": "LAMBDA_NETWORK_LOGS", "Status": "ENABLED"]]
```

You can also pass a list of account IDs separated by a space.

When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.
Malware Protection in Amazon GuardDuty

Malware Protection helps you detect the potential presence of malware by scanning the Amazon Elastic Block Store (Amazon EBS) volumes that are attached to the Amazon Elastic Compute Cloud (Amazon EC2) instances and container workloads. Malware Protection provides scan options where you can decide if you want to include or exclude specific Amazon EC2 instances and container workloads at the time of scanning. It also provides an option to retain the snapshots of Amazon EBS volumes attached to the Amazon EC2 instances or container workloads, in your GuardDuty accounts. The snapshots get retained only when malware is found and Malware Protection findings are generated.

Malware Protection offers two types of scans to detect potentially malicious activity in your Amazon EC2 instances and container workloads – GuardDuty-initiated malware scan and On-demand malware scan. The following table shows the comparison between both the scan types.

<table>
<thead>
<tr>
<th>Factor</th>
<th>GuardDuty-initiated malware scan</th>
<th>On-demand malware scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>How the scan gets invoked</td>
<td>After you enable GuardDuty-initiated malware scan, whenever GuardDuty generates a finding that indicates the potential presence of malware in an Amazon EC2 instance or a container workload, GuardDuty automatically initiates an agentless malware scan on the Amazon EBS volumes attached to your potentially impacted resource. For more information, see GuardDuty-initiated malware scan (p. 67).</td>
<td>You can initiate an On-demand malware scan by providing the Amazon Resource Name (ARN) associated with your Amazon EC2 instance or container workload. You can initiate an On-demand malware scan even when no GuardDuty finding is generated for your resource. For more information, see On-demand malware scan (p. 78).</td>
</tr>
<tr>
<td>Configuration needed</td>
<td>To use GuardDuty-initiated malware scan, you must enable it for your account. For more information, see Configuring GuardDuty-initiated malware scan (p. 69).</td>
<td>To use On-demand malware scan, your account must have GuardDuty enabled. No further configuration is needed to initiated an On-demand malware scan.</td>
</tr>
<tr>
<td>Wait time to initiate a new scan</td>
<td>Whenever GuardDuty generates one of the Findings that invoke GuardDuty-initiated malware scan (p. 76), an automatic malware scan initiates once every 24 hours.</td>
<td>You can initiate an On-demand malware scan on the same resource after 1 hour from the start time of the previous scan.</td>
</tr>
<tr>
<td>Availability of the 30-day free trial</td>
<td>If you’ve enabled GuardDuty-initiated malware scan for the first time in your account,</td>
<td>There is no free trial period with On-demand malware scan for new or existing GuardDuty accounts.</td>
</tr>
</tbody>
</table>
Malware Protection is an optional enhancement to GuardDuty, and is designed in a way that it won't affect the performance of your resources. For information about how Malware Protection works within GuardDuty, see Feature in Malware Protection (p. 61). For information about availability of Malware Protection in different AWS Regions, see Regions and endpoints (p. 351).

Note
GuardDuty Malware Protection doesn't support ECS Fargate.

Supported volumes in Malware Protection

The following list describes which unencrypted and encrypted Amazon EBS volumes have scan support within Malware Protection:

- GuardDuty supports volumes that are both unencrypted and encrypted with a customer managed key. If your Amazon EBS volumes are encrypted with a customer managed key, GuardDuty uses the same key to encrypt the replica EBS volume.
- For unencrypted EBS volumes, GuardDuty uses its own key to encrypt the replica EBS volume. Malware Protection supports scanning EBS volumes attached to your Amazon EC2 instances and container workloads that reside in your AWS account.
- Malware Protection doesn't support scanning EBS volumes that are encrypted with the [default AWS managed key for EBS](https://docs.aws.amazon.com/efs/latest/ug/efs-amazon-efs-managed-keys.html).
- It also doesn't support scanning Amazon EC2 instances with `productCode` as `marketplace`. If a malware scan gets initiated for such an Amazon EC2 instance, the scan will be skipped. For more information, see UNSUPPORTED_PRODUCT_CODE_TYPE in Reasons for skipping resource during malware scan (p. 253).

By default, when the `CreateVolume` API is invoked with encryption set to `true` but the KMS key ID is not specified, the created volume gets encrypted with the [default AWS KMS key for EBS encryption](https://docs.aws.amazon.com/efs/latest/ug/efs-amazon-efs-managed-keys.html). However, when an encryption key is not explicitly provided, you can invoke the `ModifyEbsDefaultKmsKeyId` to modify the default key.

By using one of the following methods, you can update the EBS default key ID that will be used by the newly-created EBS volumes that choose to be encrypted by don't specify an associated KMS key ID. To modify the EBS default key ID, add the following necessary permission to your IAM policy: `ec2:modifyEbsDefaultKmsKeyId`.

You will incur usage cost for creating EBS volume snapshots and retaining snapshots. For more information, see Snapshots retention (p. 63).
To modify default KMS key ID of an Amazon EBS volume

Do one of the following:

- **Using an API** – You can use the ModifyEbsDefaultKmsKeyId API. For more information about how you can view the encryption status of your volume, see Create Amazon EBS volume.
- **Using AWS CLI command** – The following example modifies the default KMS key ID that will encrypt Amazon EBS volumes if you don't provide a KMS key ID. Make sure to replace the Region with the AWS Region of your KM key ID.

```bash
aws ec2 modify-ebs-default-kms-key-id --region us-west-2 --kms-key-id AKIAIOSFODNN7EXAMPLE
```

The above command will generate an output similar to the following output:

```json
{
  "KmsKeyId": "arn:aws:kms:us-west-2:444455556666:key/AKIAIOSFODNN7EXAMPLE"
}
```

For more information, see modify-ebs-default-kms-key-id.

Feature in Malware Protection

Elastic Block Storage (EBS) volume

This section explains how Malware Protection, including both GuardDuty-initiated malware scan and On-demand malware scan, scans the Amazon EBS volumes associated with your Amazon EC2 instances and container workloads. Before proceeding, consider the following customizations:

- **Scan options** – Malware Protection offers the capability to specify tags to either include or exclude Amazon EC2 instances and Amazon EBS volumes from the scanning process. Only GuardDuty-initiated malware scan supports scan options with user-defined tags. Both GuardDuty-initiated malware scan and On-demand malware scan support the global GuardDutyExcluded tag. For more information, see Scan options with user-defined tags (p. 64).
- **Snapshots retention** – Malware Protection provides an option to retain the snapshots of your Amazon EBS volumes in your AWS account. By default, this option is turned off. You can opt in for snapshots retention for both GuardDuty initiated and on-demand malware scans. For more information, see Snapshots retention (p. 63).

When GuardDuty generates a finding that is indicative of potential presence of malware in an Amazon EC2 instance or a container workload and you have enabled the GuardDuty initiated scan type within Malware Protection, a GuardDuty-initiated malware scan may get invoked on the basis of your scan options.

To initiate an On-demand malware scan on the Amazon EBS volumes associated with an Amazon EC2 instance, provide the Amazon Resource Name (ARN) of the Amazon EC2 instance.

As a response to an On-demand malware scan or automatically invoked GuardDuty-initiated malware scan, GuardDuty creates snapshots of the relevant EBS volumes attached to the potentially impacted resources, and shares them with the GuardDuty service account (p. 62). Next, Malware Protection creates encrypted replica EBS volumes from those snapshots, in the service account.

After the scan completes, GuardDuty deletes the encrypted replica EBS volumes and the snapshots of your EBS volumes. If malware is found and you've turned on the snapshots retention setting, the
snapshots of your EBS volumes won’t get deleted and are automatically retained in your AWS account. When no malware is found, the snapshots of your EBS volumes will not be retained, regardless of the snapshots retention setting. By default, the snapshots retention setting is turned off. For information about the costs of snapshots and their retention, see Amazon EBS pricing.

GuardDuty will retain each replica EBS volume in the service account for up to 55 hours. If there is a service outage, or failure with a replica EBS volume and its malware scan, GuardDuty will retain such an EBS volume for no more than seven days. The extended volume retention period is to triage and address the outage or failure. GuardDuty Malware Protection will delete the replica EBS volumes from the service account after the outage or failure is addressed, or once the extended retention period lapses.

GuardDuty service accounts by AWS Region

When a snapshot gets created and shared with a GuardDuty service account, a new event gets created in your CloudTrail logs. This event specifies the corresponding snapshotId and userId (GuardDuty service account for that AWS Region). For more information, see Feature in Malware Protection (p. 61).

The following example is a snippet from a CloudTrail event that shows the request body for the ModifySnapshotAttribute request:

```
"requestParameters": {
   "snapshotId": "snap-1234567890abcdef0",
   "createVolumePermission": {
      "add": {
         "items": [
            { "userId": "111122223333"
         }
      }
   },
   "attributeType": "CREATE_VOLUME_PERMISSION"
}
```

The following table shows the GuardDuty service accounts for each Region. The userId is the GuardDuty service account and depends on the selected Region.

<table>
<thead>
<tr>
<th>AWS Region</th>
<th>Region code</th>
<th>GuardDuty service account ID (userId)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US East (N. Virginia)</td>
<td>us-east-1</td>
<td>652050842985</td>
</tr>
<tr>
<td>US East (Ohio)</td>
<td>us-east-2</td>
<td>178123968615</td>
</tr>
<tr>
<td>US West (N. California)</td>
<td>us-west-1</td>
<td>669213148797</td>
</tr>
<tr>
<td>US West (Oregon)</td>
<td>us-west-2</td>
<td>447226417196</td>
</tr>
<tr>
<td>Asia Pacific (Mumbai)</td>
<td>ap-south-1</td>
<td>913179291432</td>
</tr>
<tr>
<td>Asia Pacific (Osaka)</td>
<td>ap-northeast-3</td>
<td>089661699081</td>
</tr>
<tr>
<td>Asia Pacific (Seoul)</td>
<td>ap-northeast-2</td>
<td>039163547507</td>
</tr>
<tr>
<td>Asia Pacific (Tokyo)</td>
<td>ap-northeast-1</td>
<td>874749492622</td>
</tr>
<tr>
<td>Asia Pacific (Singapore)</td>
<td>ap-southeast-1</td>
<td>247460962669</td>
</tr>
<tr>
<td>Asia Pacific (Sydney)</td>
<td>ap-southeast-2</td>
<td>124839743349</td>
</tr>
</tbody>
</table>
Customizations in Malware Protection

This section describes how you can customize the scanning options for your Amazon EC2 instances or container workloads when a malware scan gets invoked, either initiated on-demand or through GuardDuty.

General settings

Snapshots retention

GuardDuty provides you with the option to retain the snapshots of your EBS volumes in your AWS account. By default, the snapshots retention setting is turned off. The snapshots will only be retained if you have this setting turned on before the scan initiates.

As the scan initiates, GuardDuty generates the replica EBS volumes based on the snapshots of your EBS volumes. After the scan completes and the snapshots retention setting in your account was turned on already, the snapshots of your EBS volumes will be retained only when malware is found and Malware Protection finding types (p. 181) get generated. Whether or not you have turned on the snapshots retention setting, when no malware is detected, GuardDuty automatically deletes the snapshots of your EBS volumes.
Snapshots usage cost

During the malware scanning, as GuardDuty creates the snapshots of your Amazon EBS volumes, there is a usage cost associated with this step. If you turn on the snapshots retention setting for your account, when malware is found and the snapshots get retained, you will incur usage cost for the same. For information on cost of snapshots and their retention, see Amazon EBS pricing.

Choose your preferred access method to turn on the snapshots retention setting.

Console

2. In the navigation pane, under Protection plans, choose Malware Protection.
3. Choose General settings in the bottom section of the console. To retain the snapshots, turn on Snapshots retention.

API/CLI

1. Run UpdateMalwareScanSettings to update the current configuration for snapshot retention setting.
2. Alternatively, you can run the following AWS CLI command to automatically retain snapshots when GuardDuty Malware Protection generates findings.

 Ensure to replace the detector-id with your own valid detectorId.


   ```
   aws guardduty update-malware-scan-settings --detector-id 60b8777933648562554d637e0e4bb3b2 --ebs-snapshot-preservation "RETENTION_WITH_FINDING"
   ```

4. If you want to turn off snapshots retention, replace RETENTION_WITH_FINDING with NO_RETENTION.

Scan options with user-defined tags

By using GuardDuty-initiated malware scan, you can also specify tags to either include or exclude Amazon EC2 instances and Amazon EBS volumes from the scanning and threat detection process. You can customize each GuardDuty-initiated malware scan by editing tags in either the inclusion or exclusion tags list. Each list can include up to 50 tags.

If you don’t already have user-defined tags associated to your EC2 resources, see Tag your Amazon EC2 resources in the Amazon EC2 User Guide for Linux Instances or Tag your Amazon EC2 resources in the Amazon EC2 User Guide for Windows Instances.

Note
On-demand malware scan doesn't support scan options with user-defined tags. It supports Global GuardDutyExcluded tag (p. 67).

To exclude EC2 instances from malware scan

If you want to exclude any Amazon EC2 instance or Amazon EBS volume during the scanning process, you can set the GuardDutyExcluded tag to true for any Amazon EC2 instance or Amazon EBS volume, and GuardDuty won't scan it. For more information about GuardDutyExcluded tag, see Service-linked
role permissions for Malware Protection (p. 316). You can also add an Amazon EC2 instance tag to an exclusion list. If you add multiple tags to the exclusion tags list, any Amazon EC2 instance that contains at least one of these tags will be excluded from the malware scanning process.

Choose your preferred access method to add a tag associated with an Amazon EC2 instance, to an exclusion list.

Console

1. Open the GuardDuty console at https://console.aws.amazon.com/guardduty/
2. In the navigation pane, under Protection plans, choose Malware Protection.
4. Choose Exclusion tags and then choose to Confirm.
5. Specify the tag's Key and Value pair that you want to exclude. It is optional to provide the Value. After you add all the tags, choose Save.

Important
Tag keys and values are case-sensitive. For more, see Tag restrictions in the Amazon EC2 User Guide for Linux Instances or Tag restrictions in the Amazon EC2 User Guide for Windows Instances.

If a value for a key is not provided and the EC2 instance is tagged with the specified key, this EC2 instance will be excluded from the GuardDuty-initiated malware scan scanning process, regardless of the tag's assigned value.

API/CLI

- Update the malware scan settings by excluding an EC2 instance or a container workload from the scanning process.

The following AWS CLI example command adds a new tag to the exclusion tags list. Ensure to replace the example detector-id with your own valid detectorId.

MapEquals is a list of Key/Value pairs.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

```
aws guardduty update-malware-scan-settings --detector-id 60b8777933648562554d637e0e4bb3b2 --scan-resource-criteria '{"Exclude": ["EC2_INSTANCE_TAG" : {"MapEquals": ["TestKeyWithValue": "TestValue" ], "TestKeyWithoutValue"} ]}]' --ebs-snapshot-preservation "RETENTION_WITH_FINDING"
```

Important
Tag keys and values are case-sensitive. For more, see Tag restrictions in the Amazon EC2 User Guide for Linux Instances or Tag restrictions in the Amazon EC2 User Guide for Windows Instances.

To include EC2 instances in malware scan

If you want to scan an EC2 instance, add its tag to the inclusion list. When you add a tag to an inclusion tags list, an EC2 instance that doesn't contain any of the added tags is skipped from the malware scan. If you add multiple tags to the inclusion tags list, an EC2 instance that contains at least one of those tags is included in the malware scan. Sometimes, an EC2 instance may be skipped during the scanning process. For more information, see Reasons for skipping resource during malware scan (p. 253).
Choose your preferred access method to add a tag associated with an EC2 instance, to an inclusion list.

Console

2. In the navigation pane, under Protection plans, choose Malware Protection.
4. Choose Inclusion tags and then choose Confirm.
5. Choose Inclusion tags and specify the tag's Key and Value pair that you want to include in the scan. It is optional to provide the Value. After you have added all the inclusion tags, choose Save.

 Important
 Tag keys and values are case-sensitive. For more, see Tag restrictions in the Amazon EC2 User Guide for Linux Instances or Tag restrictions in the Amazon EC2 User Guide for Windows Instances.

 If value for a key is not provided an EC2 instance is tagged with the specified key, the EC2 instance will be included in the Malware Protection scanning process, regardless of the tag's assigned value.
6. Choose Add new inclusion tag and specify the tag's Key and Value pair that you want to include. It is optional to provide the Value.

 Important
 Tag keys and values are case-sensitive. For more, see Tag restrictions in the Amazon EC2 User Guide for Linux Instances or Tag restrictions in the Amazon EC2 User Guide for Windows Instances.

 If a value for a key is not provided an EC2 instance is tagged with the specified key, the EC2 instance will be included in the Malware Protection scanning process, regardless of the tag's assigned value.

API/CLI

- Update the malware scan settings to include an EC2 instance or a container workload in the scanning process.

 The following AWS CLI example command adds a new tag to the inclusion tags list. Ensure that you replace the example detector-id with your own valid detectorId. Replace the example TestKey and TestValue with the Key and Value pair of the tag associated with your EC2 resource.

 MapEquals is a list of Key/Value pairs.

 You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/

   ```
   aws guardduty update-malware-scan-settings --detector-id 60b777933648562554d637e0e4bb3b2 --scan-resource-criteria '{"Include": [{"EC2_INSTANCE_TAG": [{"MapEquals": [{"Key": "TestKeyWithValue", "Value": "TestValue" }, {"Key":"TestKeyWithoutValue" }]}}]}' --ebs-snapshot-preservation "RETENTION_WITH_FINDING"
   ```

 Important
 Tag keys and values are case-sensitive. For more, see Tag restrictions in the Amazon EC2 User Guide for Linux Instances or Tag restrictions in the Amazon EC2 User Guide for Windows Instances.
Note
It may take up to 5 minutes for GuardDuty to detect a new tag.

At any time, you can either choose Inclusion tags or Exclusion tags but not both. If you want to switch between the tags, choose that tag from the dropdown menu when you add new tags, and Confirm your selection. This action clears all your current tags.

Global GuardDutyExcluded tag

By default, the snapshots of your EBS volumes get created with a GuardDutyScanId tag. Do not remove this tag because doing so will prevent GuardDuty from accessing the snapshots. The Both Malware Protection scan types do not scan the Amazon EC2 instances or Amazon EBS volumes that have the GuardDutyExcluded tag set to true. If you initiate any Malware Protection scan on such a resource, a scan ID will be generated but the scan will be skipped with an EXCLUDED_BY_SCAN_SETTINGS reason. For more information, see Reasons for skipping resource during malware scan (p. 253).

GuardDuty-initiated malware scan

With GuardDuty-initiated malware scan enabled, whenever GuardDuty detects malicious activity that indicates the potential presence of malware in your Amazon EC2 instance or container workload and GuardDuty generates Findings that invoke GuardDuty-initiated malware scan (p. 76), GuardDuty automatically initiates an agentless scan on the Amazon Elastic Block Store(Amazon EBS) volumes attached to the potentially impacted Amazon EC2 instance or container workload to detect the presence of malware. With scan options, you can add inclusion tags associated with the resources that you want to scan or add exclusion tags associated with the resources that you want to skip from the scanning process. An automatic scan initiation will always consider your scan options. You can also choose to turn on the snapshots retention setting to retain the snapshots of your EBS volumes only if Malware Protection detects the presence of malware. For more information, see Customizations in Malware Protection (p. 63).

For each Amazon EC2 instance and container workload for which GuardDuty generates findings, an automatic GuardDuty-initiated malware scan gets invoked once every 24 hours. For information about how the Amazon EBS volumes attached to your Amazon EC2 instance or container workload are scanned, see Feature in Malware Protection (p. 61).

The following image describes how GuardDuty-initiated malware scan works.
When malware is found, GuardDuty generates Malware Protection finding types (p. 181). If GuardDuty doesn't generate a finding indicative of malware on the same resource, no GuardDuty-initiated malware scan will be invoked. You can also initiate an On-demand malware scan on the same resource. For more information, see On-demand malware scan (p. 78).

How 30-day free trial period affects GuardDuty accounts

You can choose to turn on or turn off the GuardDuty-initiated malware scan functionality for any account or available AWS Regions, at any time.
• When you activate GuardDuty for the first time (new GuardDuty account), GuardDuty-initiated malware scan is already turned on and included in the 30-day free trial period.

• The existing GuardDuty accounts can turn on GuardDuty-initiated malware scan for the first time with a 30-day free trial period.

• If you've an existing GuardDuty account that has been using Malware Protection before On-demand malware scan was generally available and this GuardDuty account already uses the pricing model for its AWS Region, no action is needed to continue using GuardDuty-initiated malware scan.

Note
If you're on a 30-day free trial period, the usage cost for creating the Amazon EBS volume snapshots and their retention will still apply. For more information, see Amazon EBS pricing.

For information about enabling GuardDuty-initiated malware scan, see Configuring GuardDuty-initiated malware scan (p. 69).

Configuring GuardDuty-initiated malware scan

Configuring GuardDuty-initiated malware scan for a standalone account

For accounts associated with AWS Organizations, you can automate this process through console settings, as described in the next section.

To enable or disable GuardDuty-initiated malware scan

Choose your preferred access method to configure GuardDuty-initiated malware scan for a standalone account.

Console

2. In the navigation pane, under Protection plans, choose Malware Protection.
3. The Malware Protection pane lists the current status of GuardDuty-initiated malware scan for your account. You may enable or disable it at any time by selecting Enable or Disable respectively.
4. Choose Save.

API/CLI

• Run the updateDetector API operation using your own regional detector ID and passing the dataSources object with EbsVolumes set to true or false.

You can also enable or disable GuardDuty-initiated malware scan using AWS command line tools by running the following AWS CLI command. Make sure to use your own valid detector ID.

Note
The following example code enables GuardDuty-initiated malware scan. To disable it, replace true with false.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.
aws guardduty update-detector --detector-id 12abc34d567e8fa901bc2d34e56789f0 --features [{'"Name" : "EBS_MALWARE_PROTECTION", "Status" : "ENABLED"}]

Configuring GuardDuty-initiated malware scan in multiple-account environments

In a multi-account environment, only GuardDuty administrator accounts can configure GuardDuty-initiated malware scan. GuardDuty administrator accounts can enable or disable the use of GuardDuty-initiated malware scan for their member accounts. Once the administrator configures GuardDuty-initiated malware scan for a member account, the member account will follow the administrator account settings and be unable to modify these settings through the console. GuardDuty administrator accounts that manage their member accounts with AWS Organizations support can choose to have GuardDuty-initiated malware scan enabled automatically on all the existing and new accounts in the organization. For more information, see Managing GuardDuty accounts with AWS Organizations (p. 272).

Establishing trusted access to enable GuardDuty-initiated malware scan

If the GuardDuty delegated administrator is not the same as the management account in your organization, the management account must enable GuardDuty-initiated malware scan for their organization. This way, the delegated administrator can create the Service-linked role permissions for Malware Protection (p. 316) in member accounts that are managed through AWS Organizations.

Note

Before you designate a GuardDuty delegated administrator, see Considerations when choosing a GuardDuty delegated administrator (p. 272).

Choose your preferred access method to allow the GuardDuty delegated administrator to enable GuardDuty-initiated malware scan for member accounts in the organization.

Console

 To log in, use the management account for your AWS Organizations organization.

2. a. If you have not designated a delegated administrator, then:

 On the **Settings** page, under **delegated administrator**, enter the 12-digit **account ID** that you want to designate to administer the GuardDuty policy in your organization. Choose **Delegate**.

 b. i. If you've already designated a delegated administrator that is different from the management account, then:

 On the **Settings** page, under **Delegated Administrator**, turn on the **Permissions** setting. This action will allow the delegated administrator to attach relevant permissions to the member accounts and enable GuardDuty-initiated malware scan in these member accounts.

 ii. If you've already designated a delegated administrator that is the same as the management account, then you can directly enable GuardDuty-initiated malware scan for the member accounts. For more information, see Auto-enable GuardDuty-initiated malware scan for all member accounts (p. 72).
Tip
If the delegated administrator is different from your management account, you must provide permissions to the delegated administrator to allow enabling GuardDuty-initiated malware scan for member accounts.

3. If you want to allow the delegated administrator to enable GuardDuty-initiated malware scan for member accounts in other Regions, change your AWS Region, and repeat the steps above.

API/CLI

1. Using your management account credentials, run the following command:

   ```bash
   aws organizations enable-aws-service-access --service-principal malware-protection.guardduty.amazonaws.com
   ```

2. (Optional) to enable GuardDuty-initiated malware scan for the management account that is not a delegated administrator, the management account will first create the Service-linked role permissions for Malware Protection (p. 316) explicitly in their account, and then enable GuardDuty-initiated malware scan from the delegated administrator, similar to any other member account.

   ```bash
   aws iam create-service-linked-role --aws-service-name malware-protection.guardduty.amazonaws.com
   ```

3. You have designated the delegated administrator in the currently selected AWS Region. If you have designated an account as a delegated administrator in one region, that account must be your delegated administrator in all other regions. Repeat the step above for all other Regions.

Configuring GuardDuty-initiated malware scan for delegated administrator

Choose your preferred access method to enable or disable GuardDuty-initiated malware scan for a delegated administrator account.

Console

 Make sure to use the management account credentials.

2. In the navigation pane, choose Malware Protection.

3. On the Malware Protection page, choose Edit next to GuardDuty-initiated malware scan.

4. Do one of the following:

 Using Enable for all accounts
 - Choose Enable for all accounts. This will enable the protection plan for all the active GuardDuty accounts in your AWS organization, including the new accounts that join the organization.
 - Choose Save.

 Using Configure accounts manually
 - To enable the protection plan only for the delegated administrator account, choose Configure accounts manually.
 - Choose Enable under the delegated administrator (this account) section.
• Choose Save.

API/CLI

Run the updateDetector API operation using your own regional detector ID and passing the
features object name as LAMBDA_NETWORK_LOGS and status as ENABLED or DISABLED.

You can enable or disable GuardDuty-initiated malware scan by running the following AWS CLI
command. Make sure to use delegated administrator's valid detector ID.

Note
The following example code enables GuardDuty-initiated malware scan. To disable it,
replace ENABLED with DISABLED.

You can find your own detectorId for your current Region on the Settings page in the https://
console.aws.amazon.com/guardduty/ console.

aws guardduty update-member-detectors --detector-id 12abc34d567e8fa901bc2d34e56789f0
--accountids 555555555555 --features "["Name": "EBS_MALWARE_PROTECTION", "Status": "ENABLED"]"

Auto-enable GuardDuty-initiated malware scan for all member accounts

Choose your preferred access method to enable the GuardDuty-initiated malware scan feature for
all member accounts. This includes existing member accounts and the new accounts that join the
organization.

Console

1. Sign in to the AWS Management Console and open the GuardDuty console at https://
console.aws.amazon.com/guardduty/.

 Make sure to use the delegated administrator account credentials.

2. Do one of the following:

Using the Malware Protection page

1. In the navigation pane, choose Malware Protection.

2. On the Malware Protection page, choose Edit in the GuardDuty-initiated malware scan
section.

3. Choose Enable for all accounts. This action automatically enables GuardDuty-initiated
malware scan for both existing and new accounts in the organization.

4. Choose Save.

 Note
 It may take up to 24 hours to update the configuration for the member accounts.

Using the Accounts page

1. In the navigation pane, choose Accounts.

2. On the Accounts page, choose Auto-enable preferences before Add accounts by invitation.

3. In the Manage auto-enable preferences window, choose Enable for all accounts under
GuardDuty-initiated malware scan.

4. Choose Save.
If you can't use the **Enable for all accounts** option, see *Selectively enable or disable GuardDuty-initiated malware scan for member accounts* (p. 74).

API/CLI

- To selectively enable or disable GuardDuty-initiated malware scan for your member accounts, invoke the `updateMemberDetectors` API operation using your own **detector ID**.
- The following example shows how you can enable GuardDuty-initiated malware scan for a single member account. To disable a member account, replace `ENABLED` with `DISABLED`.

You can find your own detectorId for your current Region on the **Settings** page in the https://console.aws.amazon.com/guardduty/

```bash
aws guardduty update-detector --detector-id 12abc34d567e8fa901bc2d34e56789f0 --accountids 111122223333 --features '[["Name": "EBS_MALWARE_PROTECTION", "Status": "ENABLED"]]
```

You can also pass a list of account IDs separated by a space.

- When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

Enable GuardDuty-initiated malware scan for all existing active member accounts

Choose your preferred access method to enable GuardDuty-initiated malware scan for all the existing active member accounts in the organization.

To configure GuardDuty-initiated malware scan for all existing active member accounts

 - Sign in using the delegated administrator credentials.
2. In the navigation pane, choose **Malware Protection**.
3. On the **Malware Protection**, you can view the current status of the GuardDuty-initiated malware scan configuration. Under the **Active member accounts** section, choose **Actions**.
4. From the **Actions** dropdown menu, choose **Enable for all existing active member accounts**.
5. Choose **Save**.

Auto-enable GuardDuty-initiated malware scan for new member accounts

The newly added member accounts must **Enable** GuardDuty before selecting configuring GuardDuty-initiated malware scan. The member accounts managed by invitation can configure GuardDuty-initiated malware scan manually for their accounts. For more information, see *Step 3 - Accept an invitation* (p. 281).

Choose your preferred access method to enable GuardDuty-initiated malware scan for new accounts that join your organization.

Console

The delegated administrator can enable GuardDuty-initiated malware scan for new member accounts in an organization, using either the **Malware Protection** or **Accounts** page.
To auto-enable GuardDuty-initiated malware scan for new member accounts

 Make sure to use the delegated administrator account credentials.

2. Do one of the following:
 • Using the Malware Protection page:
 1. In the navigation pane, choose Malware Protection.
 2. On the Malware Protection page, choose Edit in the GuardDuty-initiated malware scan.
 3. Choose Configure accounts manually.
 4. Select Automatically enable for new member accounts. This step ensures that whenever a new account joins your organization, GuardDuty-initiated malware scan will be automatically enabled for their account. Only the organization delegated administrator can modify this configuration.
 5. Choose Save.
 • Using the Accounts page:
 1. In the navigation pane, choose Accounts.
 2. On the Accounts page, choose Auto-enable preferences.
 3. In the Manage auto-enable preferences window, select Enable for new accounts under GuardDuty-initiated malware scan.
 4. Choose Save.

API/CLI

• To enable or disable GuardDuty-initiated malware scan for new member accounts, invoke the UpdateOrganizationConfiguration API operation using your own detector ID.

• The following example shows how you can enable GuardDuty-initiated malware scan for a single member account. To disable it, see Selectively enable or disable GuardDuty-initiated malware scan for member accounts (p. 74). If you don't want to enable it for all the new accounts joining the organization, set AutoEnable to NONE.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

aws guardduty update-organization-configuration --detector-id 12abc34d567e8fa901bc2d34e56789f0 --AutoEnable --features '[["Name": "EBS_MALWARE_PROTECTION", "AutoEnable": NEW]]'

You can also pass a list of account IDs separated by a space.

• When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

Selectively enable or disable GuardDuty-initiated malware scan for member accounts

Choose your preferred access method to configure GuardDuty-initiated malware scan for member accounts selectively.

Console

2. In the navigation pane, choose Accounts.
3. On the Accounts page, review the GuardDuty-initiated malware scan column for the status of your member account.
4. Select the account for which you want to configure GuardDuty-initiated malware scan. You can select multiple accounts at a time.
5. From the Edit protection plans menu, choose the appropriate option for GuardDuty-initiated malware scan.

API/CLI

To selectively enable or disable GuardDuty-initiated malware scan for your member accounts, invoke the updateMemberDetectors API operation using your own detector ID.

The following example shows how you can enable GuardDuty-initiated malware scan for a single member account. To disable it, replace ENABLED with DISABLED.

```bash
aws guardduty update-member-detectors --detector-id 12abc34d567e8fa901bc2d34e56789f0 --account-ids 111122223333 --features '十三届"Name": "EBS_MALWARE_PROTECTION", "Status": "ENABLED"']}
```

Note
You can also pass a list of account IDs separated by a space.

When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

To selectively enable or disable GuardDuty-initiated malware scan for your member accounts, run the updateMemberDetectors API operation using your own detector ID. The following example shows how you can enable GuardDuty-initiated malware scan for a single member account. To disable it, replace true with false.

```bash
aws guardduty update-member-detectors --detector-id 12abc34d567e8fa901bc2d34e56789f0 --account-ids 123456789012 --data-sources '{"MalwareProtection": {"ScanEc2InstanceWithFindings":{"EbsVolumes":true}}}
```

Note
You can also pass a list of account IDs separated by a space.

When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

Enable GuardDuty-initiated malware scan for existing accounts in the Organization managed via invitation

The GuardDuty Malware Protection service-linked role (SLR) must be created in member accounts. The administrator can't enable the GuardDuty-initiated malware scan feature in member accounts that are not managed by AWS Organizations.
Presently, you can perform the following steps through the GuardDuty console at https://console.aws.amazon.com/guardduty/ to enable GuardDuty-initiated malware scan for the existing member accounts.

Console

 Sign in using your administrator credentials.
2. In the navigation pane, choose Accounts.
3. Select the member account for which you want to enable GuardDuty-initiated malware scan. You can select multiple accounts at a time.
4. Choose Actions.
5. Choose Disassociate member.
6. In your member account, choose Malware Protection under Protection plans on the navigation pane.
7. Choose Enable GuardDuty-initiated malware scan. GuardDuty will create an SLR for the member account. For more information on SLR, see Service-linked role permissions for Malware Protection (p. 316).
8. In your administrator account, choose Accounts on the navigation pane.
9. Choose the member account that needs to be added back to the organization.
10. Choose Actions and then, choose Add member.

API/CLI

1. Use administrator account to run DisassociateMembers API on the member accounts that want to enable GuardDuty-initiated malware scan.
2. Use your member account to invoke UpdateDetector to enable GuardDuty-initiated malware scan.
 You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

   ```bash
   aws guardduty update-detector --detector-id 12abc34d567e8fa901bc2d34e56789f0 --data-sources '{"MalwareProtection":{"ScanEc2InstanceWithFindings":{"EbsVolumes":true}}}'
   ```
3. Use administrator account to run the CreateMembers API to add the member back to the organization.

Findings that invoke GuardDuty-initiated malware scan

A GuardDuty-initiated malware scan gets invoked when GuardDuty detects suspicious behavior indicative of malware on Amazon EC2 instance or container workloads.

- Backdoor:EC2/C&CActivity.B (p. 118)
- Backdoor:EC2/C&CActivity.BLDNS (p. 119)
- Backdoor:EC2/DenialOfService.Dns (p. 119)
- Backdoor:EC2/DenialOfService.Tcp (p. 120)
- Backdoor:EC2/DenialOfService.Udp (p. 120)
- Backdoor:EC2/DenialOfService.UdpOnTcpPorts (p. 121)
- Backdoor:EC2/DenialOfService.UnusualProtocol (p. 121)
Findings that invoke GuardDuty-initiated malware scan

- **Backdoor**:EC2/Spambot (p. 122)
- **CryptoCurrency**:EC2/BitcoinTool.B (p. 123)
- **CryptoCurrency**:EC2/BitcoinTool.B!DNS (p. 123)
- **Impact**:EC2/AbusedDomainRequest.Reputation (p. 125)
- **Impact**:EC2/BitcoinDomainRequest.Reputation (p. 125)
- **Impact**:EC2/MaliciousDomainRequest.Reputation (p. 126)
- **Impact**:EC2/PortSweep (p. 126)
- **Impact**:EC2/SuspiciousDomainRequest.Reputation (p. 127)
- **Impact**:EC2/WinRMBruteForce (p. 127) (Outbound only)
- **Recon**:EC2/Portscan (p. 129)
- **Trojan**:EC2/BlackholeTraffic (p. 129)
- **Trojan**:EC2/BlackholeTraffic!DNS (p. 130)
- **Trojan**:EC2/DGADomainRequest.B (p. 130)
- **Trojan**:EC2/DGADomainRequest.C!DNS (p. 131)
- **Trojan**:EC2/DNSDataExfiltration (p. 131)
- **Trojan**:EC2/DriveBySourceTraffic!DNS (p. 132)
- **Trojan**:EC2/DropPoint (p. 132)
- **Trojan**:EC2/DropPoint!DNS (p. 132)
- **Trojan**:EC2/PhishingDomainRequest!DNS (p. 133)
- **UnauthorizedAccess**:EC2/RDPBruteForce (p. 134) (Outbound only)
- **UnauthorizedAccess**:EC2/SSHBruteForce (p. 135) (Outbound only)
- **UnauthorizedAccess**:EC2/TorClient (p. 135)
- **UnauthorizedAccess**:EC2/TorRelay (p. 136)
- **Backdoor**:Runtime/C&CActivity.B (p. 138)
- **Backdoor**:Runtime/C&CActivity.B!DNS (p. 141)
- **CryptoCurrency**:Runtime/BitcoinTool.B (p. 137)
- **CryptoCurrency**:Runtime/BitcoinTool.B!DNS (p. 140)
- **Execution**:Runtime/NewBinaryExecuted (p. 147)
- **Execution**:Runtime/NewLibraryLoaded (p. 151)
- **Execution**:Runtime/ReverseShell (p. 150)
- **Impact**:Runtime/AbusedDomainRequest.Reputation (p. 144)
- **Impact**:Runtime/BitcoinDomainRequest.Reputation (p. 144)
- **Impact**:Runtime/CryptoMinerExecuted (p. 151)
- **Impact**:Runtime/MaliciousDomainRequest.Reputation (p. 145)
- **Impact**:Runtime/SuspiciousDomainRequest.Reputation (p. 146)
- **PrivilegeEscalation**:Runtime/CGroupsReleaseAgentModified (p. 148)
- **PrivilegeEscalation**:Runtime/ContainerMountsHostDirectory (p. 152)
- **PrivilegeEscalation**:Runtime/DockerSocketAccessed (p. 147)
- **PrivilegeEscalation**:Runtime/RuncContainerEscape (p. 148)
- **PrivilegeEscalation**:Runtime/UserfaultfdUsage (p. 152)
- **Trojan**:Runtime/BlackholeTraffic (p. 139)
- **Trojan**:Runtime/BlackholeTraffic!DNS (p. 142)
- **Trojan**:Runtime/DropPoint (p. 140)
- **Trojan**:Runtime/DropPoint!DNS (p. 142)
On-demand malware scan

On-demand malware scan helps you detect the presence of malware on Amazon Elastic Block Store (Amazon EBS) volumes attached to your Amazon EC2 instances. With no configuration needed, you can initiate an on-demand malware scan by providing the Amazon Resource Name (ARN) of the Amazon EC2 instance that you want to scan. You can initiate an on-demand malware scan either through the GuardDuty console or API. Before initiating an on-demand malware scan, you can set your preferred Snapshots retention setting. The following scenarios can help you identify when to use the On-demand malware scan scan type with GuardDuty:

- You want to detect the presence of malware in your Amazon EC2 instances without enabling GuardDuty-initiated malware scan.
- You have enabled GuardDuty-initiated malware scan and a scan was invoked automatically. After following the recommended remediation for the generated Malware Protection finding type, if you want to initiate a scan on the same resource, you can initiate an on-demand malware scan after 1 hour has passed from the previous scan start time.

On-demand malware scan doesn't require that 24 hours have passed from the time the previous malware scan was initiated. One hour should have passed before initiating an On-demand malware scan on the same resource. To avoid duplicating a malware scan on the same EC2 instance, see Re-scanning the same Amazon EC2 instance.

Note
On-demand malware scan is not included in the 30-day free trial period with GuardDuty. The usage cost applies to the total Amazon EBS volume scanned for each malware scan. For more information, see Amazon GuardDuty pricing. For information about the cost of creating the Amazon EBS volume snapshots and their retention, see Amazon EBS pricing.

How On-demand malware scan works

After you initiate an On-demand malware scan, GuardDuty creates snapshots of the Amazon EBS volumes attached to your Amazon EC2 instance whose Amazon Resource Name (ARN) was provided for the scan, and shares them with the GuardDuty service account. GuardDuty creates encrypted replica EBS volumes from those snapshots in the GuardDuty service account. For more information about how the Amazon EBS volumes are scanned, see Elastic Block Storage (EBS) volume.

If malware is found and you've enabled the snapshots retention setting, the snapshots of your EBS volume are automatically retained in your AWS account. On-demand malware scan generates the Malware Protection finding types. If malware is not found, regardless of the snapshots retention setting, the snapshots of your EBS volumes are deleted.

By default, the snapshots of your EBS volumes get created with a GuardDutyScanId tag. Do not remove this tag because doing so will prevent GuardDuty from accessing the snapshots. The Both Malware Protection scan types do not scan the Amazon EC2 instances or Amazon EBS volumes that have the GuardDutyExcluded tag set to true. If you initiate any Malware Protection scan on such a resource, a scan ID will be generated but the scan will be skipped with an EXCLUDED_BY_SCAN_SETTINGS reason. For more information, see Reasons for skipping resource during malware scan.

78
AWS Organizations service control policy – Denied access

Using the Service control policies (SCPs) in AWS Organizations, the delegated administrator can restrict permissions and deny actions such as initiating an on-demand malware scan for Amazon EC2 instance owned by your accounts.

As a GuardDuty member account, when you initiate an on-demand malware scan for your Amazon EC2 instances, you may receive an error. You can connect with the management account to understand why an SCP was set up for your member account. For more information, see SCP effects on permissions.

Getting started with On-demand malware scan

As a GuardDuty administrator, you can initiate an on-demand malware scan on behalf of your active member accounts that have the following prerequisites set up in their accounts. Standalone accounts and active member accounts in GuardDuty can also initiate an on-demand malware scan for their own Amazon EC2 instances.

Prerequisites

- GuardDuty must be enabled in the AWS Regions where you want to initiate the on-demand malware scan.
- Ensure that the AWS managed policy: AmazonGuardDutyFullAccess is attached to the IAM user or the IAM role. You will need the access key and secret key associated with the IAM user or the IAM role.
- As a delegated administrator, you have the option to initiate an on-demand malware scan on behalf of an active member account.
- If you’re a member account and the Service-linked role permissions for Malware Protection don’t exist, then initiating an on-demand malware scan for an Amazon EC2 instance that belongs to your account, will automatically create the SLR for Malware Protection.

Important

Ensure that no one deletes the SLR permissions for Malware Protection when the malware scan, whether GuardDuty-initiated or on-demand, is still in progress. Doing so will prevent the scan from completing successfully and providing definite scan result.

Before you initiate an on-demand malware scan, make sure that no scan was initiated on the same resource in the past 1 hour; otherwise, it will be de-duped. For more information, see Re-scanning the same resource (p. 80).

Initiating On-demand malware scan

Choose your preferred access method to initiate an on-demand malware scan.

Console

Initiate the scan using one of the following two options:

a. Using the Malware Protection page:
 i. In the navigation pane, under Protection plans, choose Malware Protection.
 ii. On the Malware Protection page, provide the Amazon EC2 instance ARN for which you want to initiate the scan.
Monitoring malware scan statuses and results

b. Using the Malware Scans page:
 i. In the navigation pane, choose Malware Scans.
 ii. Choose Start on-demand scan and provide the Amazon EC2 instance ARN\(^1\) for which
 you want to initiate the scan.
 iii. If this is a re-scan, select an Amazon EC2 instance ID on the Malware Scans page.

 Expand the Start on-demand scan dropdown and choose Re-scan selected instance.

2. After you successfully initiate a scan using either method, a scan ID gets generated. You can
 use this scan ID to track the progress of the scan. For more information, see Monitoring scan
 statuses and results in GuardDuty Malware Protection (p. 80).

API/CLI

Invoke StartMalwareScan that accepts the resourceArn of the Amazon EC2 instance\(^1\) for which
you want to initiate an on-demand malware scan.

```
aws guardduty start-malware-scan --resource-arn "arn:aws:ec2:us-east-1:555555555555:instance/i-b188560f"
```

After you successfully initiate a scan, StartMalwareScan returns a scanId. Invoke
DescribeMalwareScans monitor the progress of the initiated scan.

\(^1\)For information about the format of your Amazon EC2 instance ARN, see Amazon Resource Name
(ARN). For Amazon EC2 instances, you can use the following example ARN format by replacing the values
for the partition, Region, AWS account ID, and Amazon EC2 instance ID. For information about length of
your instance ID, see Resource IDs.

```
arn:aws:ec2:us-east-1:555555555555:instance/i-b188560f
```

Re-scanning the same Amazon EC2 instance

Whether a scan is GuardDuty-initiated or on-demand, you can initiate a new on-demand malware scan
on the same EC2 instance after 1 hour from the start time of the previous malware scan. If the new
malware scan gets initiated within 1 hour of initiation of the previous malware scan, your request will
result in the following error, and no scan ID will get generated for this request.

A scan was initiated on this resource recently. You can request a scan on the
same resource one hour after the previous scan start time.

For information about how to initiate a new scan on the same resource, see Initiating On-demand
malware scan (p. 79).

To track the status of the malware scans, see Monitoring scan statuses and results in GuardDuty Malware
Protection (p. 80).

Monitoring scan statuses and results in GuardDuty Malware Protection

You can monitor the scan status of each GuardDuty Malware Protection scan. The possible values for
scan Status are Completed, Running, Skipped, and Failed.
After the scan completes, the **Scan result** is populated for scans that have the **Status** as Completed. Possible values for **Scan result** are **Clean** and **Infected**. Using **Scan type**, you can identify if the malware scan was **GuardDuty initiated** or **On demand**.

Scan results for each malware scan has a retention period of 90 days. Choose your preferred access method to track the status of your malware scan.

Console

2. In the navigation pane, choose **Malware scans**.
3. You can filter the malware scans by the following **Properties** available in the **filter criteria**.

 - Scan ID
 - Account ID
 - EC2 instance ARN
 - Scan type
 - Scan status

For information on properties used for filter criteria, see [Finding details (p. 98)](#).

API/CLI

1. After the malware scan has a scan result, you can filter the malware scans on the basis of **EC2_INSTANCE_ARN**, **SCAN_ID**, **ACCOUNT_ID**, **SCAN_TYPE GUARDDUTY_FINDING_ID**, **SCAN_STATUS**, and **SCAN_START_TIME**.

 The **GUARDDUTY_FINDING_ID** filter criteria is available when the **SCAN_TYPE** is GuardDuty initiated. For information about any filter criteria, see [Finding details (p. 98)](#).

2. You can change the example **filter-criteria** in the command below. Presently, you can filter on the basis of one **CriterionKey** at a time. The options for **CriterionKey** are **EC2_INSTANCE_ARN**, **SCAN_ID**, **ACCOUNT_ID**, **SCAN_TYPE GUARDDUTY_FINDING_ID**, **SCAN_STATUS**, and **SCAN_START_TIME**.

 If you use the same **CriterionKey** as below, ensure to replace the example **EqualsValue** with your own valid AWS **scan-id**.

 Replace the example **detector-id** with your own valid **detector-id**. You can change the **max-results** (up to 50) and the **sort-criteria**. The **AttributeName** is mandatory and must be **scanStartTime**.

   ```
   aws guardduty describe-malware-scans --detector-id 60b877933648562554d637e0e4bb3b2 --max-results 1 --sort-criteria '{"AttributeName": "scanStartTime", "OrderBy": "DESC"} ' --filter-criteria '{"FilterCriterion": [{"CriterionKey": "SCAN_ID", "FilterCondition": {"EqualsValue": "123456789012"} }] }'
   ```

 - The response of this command displays a maximum of one result with details about the affected resource and malware findings (if Infected).

Note

A filter on malware scans with **Scan type = GuardDuty initiated** will result in only those scans which were initiated after the **Scan type** field was introduced in GuardDuty. Presently, the result of this filter will return null.
Malware Protection quotas

Malware Protection has the following default availability of varied resources that the feature uses.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Default</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction and analysis of data in compressed or archived file</td>
<td>5</td>
<td>The maximum number of nested levels allowed in an archived file.</td>
</tr>
<tr>
<td>Number of files within an archived file</td>
<td>1000</td>
<td>The maximum number of files that can be scanned within an archive. This count is the sum of the number of files extracted from the archive and the number of files extracted from all the nested archives.</td>
</tr>
<tr>
<td>Number of threats</td>
<td>32</td>
<td>The maximum number of threats that you can view in the findings panel. GuardDuty Malware Protection may have detected more threat names. If the number of detected threat names is higher than the default value, you can view the JSON details by selecting the Finding ID under the finding name in the details panel of the GuardDuty console.</td>
</tr>
<tr>
<td>Number of files per detected threat</td>
<td>5</td>
<td>The maximum number of files identified per detected threat. For example, if GuardDuty detects 10 files associated with a single threat, the threat will display a maximum of 5 files.</td>
</tr>
<tr>
<td>EBS volumes per scan per instance</td>
<td>11</td>
<td>The maximum number of EBS volumes that GuardDuty can scan per EC2 instance. If there are more than 11 EBS volumes that need to be scanned, GuardDuty Malware Protection sorts the deviceName alphabetically, and selects the first 11 EBS volumes.</td>
</tr>
<tr>
<td>Supported encryption types</td>
<td>Unencrypted and encrypted with Customer managed keys.</td>
<td>Malware Protection supports EBS volumes that are both unencrypted and encrypted with Customer managed keys. Malware Protection doesn't support EBS volumes encrypted with EBS managed key.</td>
</tr>
<tr>
<td>EBS volume size</td>
<td>1024 GB</td>
<td>The maximum EBS volume size in GB that GuardDuty Malware Protection can handle.</td>
</tr>
<tr>
<td>Scope</td>
<td>Default</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Supported file system types</td>
<td>GuardDuty Malware Protection can scan the following file system types:</td>
<td>Protection can scan in each Region.</td>
</tr>
<tr>
<td></td>
<td>• New Technology File System (NTFS)</td>
<td>N/A.</td>
</tr>
<tr>
<td></td>
<td>• X File System (XFS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Second extended (ext2) File System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fourth extended (ext4) File System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• File Allocation Table (FAT) File System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Virtual File Allocation Table (VFAT) File System</td>
<td></td>
</tr>
<tr>
<td>Scan options tags</td>
<td>50</td>
<td>The maximum number of resource tags that you can add to customize your malware scan options setting. For more information, see Scan options with user-defined tags (p. 64).</td>
</tr>
<tr>
<td>Finding retention period</td>
<td>90</td>
<td>The maximum number of days that GuardDuty retains a finding. For the latest information, see Quotas for Amazon GuardDuty (p. 347).</td>
</tr>
<tr>
<td>Malware scan retention period</td>
<td>90</td>
<td>The maximum number of days that GuardDuty Malware Protection retains the history of a scan. For more information on viewing recent malware scans, see Monitoring scan statuses and results in GuardDuty Malware Protection (p. 80).</td>
</tr>
<tr>
<td>Transactions per second (TPS) for On-demand malware scan</td>
<td>1</td>
<td>The number of On-demand malware scan requests that can be initiated per second in each Region.</td>
</tr>
<tr>
<td>Burst limit for On-demand malware scan</td>
<td>1</td>
<td>The number of concurrent malware On-demand malware scan requests that can be initiated per second in each Region.</td>
</tr>
</tbody>
</table>
GuardDuty RDS Protection

RDS Protection in Amazon GuardDuty analyzes and profiles RDS login activity for potential access threats to your Amazon Aurora databases (Amazon Aurora MySQL-Compatible Edition and Aurora PostgreSQL-Compatible Edition). This feature allows you to identify potentially suspicious login behavior. RDS Protection doesn't require additional infrastructure; it is designed so as not to affect the performance of your database instances.

When RDS Protection detects a potentially suspicious or anomalous login attempt that indicates a threat to your database, GuardDuty generates a new finding with details about the potentially compromised database.

You can enable or disable the RDS Protection feature for any account in any AWS Region where this feature is available within Amazon GuardDuty, at any time. An existing GuardDuty account can enable RDS Protection with a 30-day trial period. For a new GuardDuty account, RDS Protection is already enabled and included in the 30-day free trial period. For more information, see Estimating cost (p. 287).

Note
When the RDS Protection feature is not enabled, GuardDuty neither ingests RDS login activity nor detects anomalous or suspicious login behavior.

For information about the AWS Regions where GuardDuty doesn't yet support RDS Protection, see Region-specific feature availability (p. 351).

Supported Amazon Aurora databases

The following table shows the supported Aurora database versions.

<table>
<thead>
<tr>
<th>Amazon Aurora DB engine</th>
<th>Supported engine versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aurora MySQL</td>
<td>• 2.10.2 or later</td>
</tr>
<tr>
<td></td>
<td>• 3.02.1 or later</td>
</tr>
<tr>
<td>Aurora PostgreSQL</td>
<td>• 10.17 or later</td>
</tr>
<tr>
<td></td>
<td>• 11.12 or later</td>
</tr>
<tr>
<td></td>
<td>• 12.7 or later</td>
</tr>
<tr>
<td></td>
<td>• 13.3 or later</td>
</tr>
<tr>
<td></td>
<td>• 14.3 or later</td>
</tr>
</tbody>
</table>

How RDS Protection uses RDS login activity monitoring

RDS Protection in Amazon GuardDuty helps you protect the supported Amazon Aurora (Aurora) databases in your account. After you enable the RDS Protection feature, GuardDuty immediately starts monitoring RDS login activity from Aurora databases in your account. GuardDuty continuously monitors and profiles RDS login activity for suspicious activity, for example, unauthorized access to Aurora database in your account, from a previously unseen external actor. When you enable RDS Protection for the first time or you have a newly created database instance, a learning period is required to baseline normal behavior. For this reason, newly enabled or newly created database instances may not have an
associated anomalous login finding for up to two weeks of time. For more information, see RDS login activity monitoring (p. 90).

When RDS Protection detects a potential threat, such as an unusual pattern in a series of successful, failed, or incomplete login attempts, GuardDuty generates a new finding with details about the potentially compromised database instance. For more information, see RDS Protection finding types (p. 184). If you disable RDS Protection, GuardDuty immediately stops monitoring RDS login activity and is unable to detect any potential threat to your supported database instances.

Note
GuardDuty doesn't manage your Supported databases (p. 84) or RDS login activity, or make RDS login activity available to you.

Configuring RDS Protection for a standalone account

Console
2. In the navigation pane, choose RDS Protection.
3. The RDS Protection page shows the current status for your account. You may enable or disable the feature at any time by selecting Enable or Disable. Confirm your selection.

API/CLI
Run the updateDetector API operation using your own regional detector ID and passing the features object name as RDS_LOGIN_EVENTS and status as ENABLED or DISABLED.

You can also enable or disable RDS Protection by running the following AWS CLI command. Make sure to use your own valid detector ID.

Note
The following example code enables RDS Protection. To disable it, replace ENABLED with DISABLED.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

```
aws guardduty update-detector --detector-id 12abc34d567e8fa901bc2d34e56789f0 --features '[["Name" : "RDS_LOGIN_EVENTS", "Status" : "ENABLED"]]
```

Configuring RDS Protection in multiple-account environments

In a multiple-account environment, only the GuardDuty delegated administrator account has the option to enable or disable the RDS Protection feature for the member accounts in their organization. The GuardDuty member accounts can't modify this configuration from their accounts. The delegated administrator account manages their member accounts using AWS Organizations. This delegated administrator can choose to auto-enable RDS login activity monitoring for all the new accounts as they join the organization. For more information about multiple-account environments, see Managing multiple accounts in Amazon GuardDuty.
Configuring RDS Protection for delegated administrator

Choose your preferred access method to configure RDS Login Activity Monitoring for the delegated administrator account.

Console

 Make sure to use the management account credentials.
2. In the navigation pane, choose RDS Protection.
3. On the RDS Protection page, choose Edit.
4. Do one of the following:

 Using Enable for all accounts
 - Choose Enable for all accounts. This will enable the protection plan for all the active GuardDuty accounts in your AWS organization, including the new accounts that join the organization.
 - Choose Save.

 Using Configure accounts manually
 - To enable the protection plan only for the delegated administrator account, choose Configure accounts manually.
 - Choose Enable under the delegated administrator (this account) section.
 - Choose Save.

API/CLI

Run the updateDetector API operation using your own regional detector ID and passing the features object name as RDS_LOGIN_EVENTS and status as ENABLED or DISABLED.

You can enable or disable RDS Protection by running the following AWS CLI command. Make sure to use delegated administrator's valid detector ID.

 Note
 The following example code enables RDS Protection. To disable it, replace ENABLED with DISABLED.

 You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/console.

   ```
   aws guardduty update-member-detectors --detector-id 12abc34d567e8fa901bc2d34e56789f0 --accountids 555555555555 --features '[{"Name": "RDS_LOGIN_EVENTS", "Status": "ENABLED"}]
   ```

Auto-enable RDS Protection for all member accounts

Choose your preferred access method to enable the RDS Protection feature for all member accounts. This includes existing member accounts and the new accounts that join the organization.

Console

Make sure to use the delegated administrator account credentials.

2. Do one of the following:

Using the RDS Protection page

1. In the navigation pane, choose RDS Protection.
2. Choose **Enable for all accounts**. This action automatically enables RDS Protection for both existing and new accounts in the organization.
3. Choose **Save**.

 Note
 It may take up to 24 hours to update the configuration for the member accounts.

Using the Accounts page

1. In the navigation pane, choose **Accounts**.
2. On the **Accounts** page, choose **Auto-enable** preferences before **Add accounts by invitation**.
3. In the **Manage auto-enable preferences** window, choose **Enable for all accounts** under **RDS Login Activity Monitoring**.
4. Choose **Save**.

If you can't use the **Enable for all accounts** option, see Selectively enable or disable RDS Protection for member accounts (p. 89).

API/CLI

- To selectively enable or disable RDS Protection for your member accounts, invoke the `updateMemberDetectors` API operation using your own **detector ID**.

- The following example shows how you can enable RDS Protection for a single member account. To disable it, replace **ENABLED** with **DISABLED**.

You can find your own detectorId for your current Region on the **Settings** page in the https://console.aws.amazon.com/guardduty/

```bash
aws guardduty update-detector --detector-id 12abc34d567e8fa901bc2d34e56789f0 --accountids 111222223333 --features '[["name": "RDS_LOGIN_EVENTS", "status": "ENABLED"]]'
```

Note
You can also pass a list of account IDs separated by a space.

- When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

Enable RDS Protection for all existing active member accounts

Choose your preferred access method to enable RDS Protection for all the existing active member accounts in your organization.
Console

To configure RDS Protection for all existing active member accounts

1. Sign in to the AWS Management Console and open the GuardDuty console at https://console.aws.amazon.com/guardduty/
 - Sign in using the delegated administrator credentials.
2. In the navigation pane, choose RDS Protection.
3. On the RDS Protection page, you can view the current status of the configuration. Under the Active member accounts section, choose Actions.
4. From the Actions dropdown menu, choose Enable for all existing active member accounts.
5. Choose Confirm.

API/CLI

- To selectively enable or disable RDS Protection for your member accounts, invoke the updateMemberDetectors API operation using your own detector ID.
- The following example shows how you can enable RDS Protection for a single member account. To disable it, replace ENABLED with DISABLED.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

```
aws guardduty update-detector --detector-id 12abc34d567e8fa901bc2d34e56789f0
--accountids 111122223333 --features '[["name": "RDS_LOGIN_EVENTS", "status": "ENABLED"]]
```

Note
- You can also pass a list of account IDs separated by a space.
- When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

Auto-enable RDS Protection for new member accounts

Choose your preferred access method to enable RDS login activity for new accounts that join your organization.

Console

The delegated administrator can enable for new member accounts in an organization through the console, using either the RDS Protection or Accounts page.

To auto-enable RDS Protection for new member accounts

1. Open the GuardDuty console at https://console.aws.amazon.com/guardduty/
 - Make sure to use the delegated administrator account credentials.
2. Do one of the following:
 - Using the RDS Protection page:
 1. In the navigation pane, choose RDS Protection.
 2. On the RDS Protection page, choose Edit.
3. Choose **Configure accounts manually**.
4. Select **Automatically enable for new member accounts**. This step ensures that whenever a new account joins your organization, RDS Protection will be automatically enabled for their account. Only the organization delegated administrator can modify this configuration.
5. Choose **Save**.

- Using the **Accounts** page:
 1. In the navigation pane, choose **Accounts**.
 2. On the **Accounts** page, choose **Auto-enable** preferences.
 3. In the **Manage auto-enable preferences** window, select **Enable for new accounts** under **RDS Login Activity Monitoring**.
 4. Choose **Save**.

API/CLI

- To selectively enable or disable RDS Protection for your member accounts, invoke the `UpdateOrganizationConfiguration` API operation using your own **detector ID**.
- The following example shows how you can enable RDS Protection for a single member account. To disable it, see **Selectively enable or disable RDS Protection for member accounts (p. 89)**. If you don't want to enable it for all the new accounts joining the organization, set `autoEnable` to **NONE**.

You can find your own `detectorId` for your current Region on the **Settings** page in the https://console.aws.amazon.com/guardduty/ console.

```bash
aws guardduty update-organization-configuration --detector-id 12abc34d567e8fa901bc2d34e56789f0 --autoEnable --features '[["Name":"RDS_LOGIN_EVENTS", "autoEnable": NEW]]'
```

Note

You can also pass a list of account IDs separated by a space.

- When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

Selectively enable or disable RDS Protection for member accounts

Choose your preferred access method to selectively enable or disable monitoring RDS login activity for member accounts.

Console

 Make sure to use the delegated administrator account credentials.

2. In the navigation pane, choose **Accounts**.

 On the **Accounts** page, review the **RDS login activity** column for the status of your member account.
3. **To selectively enable or disable RDS login activity**

Select the account for which you want to configure RDS Protection. You can select multiple accounts at a time. In the **Edit Protection Plans** dropdown menu, choose **RDS Login Activity**, and then choose the appropriate option.

API/CLI

To selectively enable or disable RDS Protection for your member accounts, invoke the `updateMemberDetectors` API operation using your own detector ID.

The following example shows how you can enable RDS Protection for a single member account. To disable it, replace `ENABLED` with `DISABLED`.

You can find your own detectorId for your current Region on the Settings page in the [GuardDuty](https://console.aws.amazon.com/guardduty) console.

```bash
aws guardduty update-member-detectors --detector-id 12abc34d567e8fa901bc2d34e56789f0 --accountids 111122223333 --features '[["Name": "RDS_LOGIN_EVENTS", "Status": "ENABLED"]]'
```

Note

You can also pass a list of account IDs separated by a space.

When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

Feature in RDS Protection

RDS login activity monitoring

RDS login activity captures both successful and failed login attempts made to the [Supported Amazon Aurora databases](p. 84) in your AWS environment. To help you protect your databases, GuardDuty RDS Protection continuously monitors the login activity for potentially suspicious login attempts. For example, an adversary may attempt to brute-force access to an Amazon Aurora database by guessing the database's password.

When you enable the RDS Protection feature, GuardDuty automatically starts to monitor RDS login activity for your databases directly from the Aurora service. If there is an indication of anomalous login behavior, GuardDuty generates a finding with details about the potentially compromised database. When you enable RDS Protection for the first time or you have a newly created database instance, a learning period is required to baseline normal behavior. For this reason, newly enabled or newly created database instances may not have an associated anomalous login finding for up to two weeks of time.

The RDS Protection feature does not require any additional setup; it does not affect any of your existing Amazon Aurora database configurations. GuardDuty doesn't manage your supported databases or RDS login activity, or make the RDS login activity available to you.

If you choose to auto-enable the RDS Protection feature for new member accounts as they join your organization, this action automatically enables GuardDuty for those new member accounts. For more information about configuring RDS login activity monitoring as a feature, see [GuardDuty RDS Protection](p. 84).
Amazon S3 Protection in Amazon GuardDuty

S3 Protection helps Amazon GuardDuty monitor AWS CloudTrail data events for Amazon Simple Storage Service (Amazon S3) that include object-level API operations to identify potential security risks for data within your Amazon S3 buckets.

GuardDuty monitors both AWS CloudTrail management events and AWS CloudTrail S3 data events to identify potential threats in your Amazon S3 resources. Both the data sources monitor different kinds of activities. Examples of CloudTrail management events for S3 include operations that list or configure Amazon S3 buckets, such as ListBuckets, DeleteBuckets, and PutBucketReplication. Examples of CloudTrail data events for S3 include object-level API operations, such asGetObject, ListObjects, DeleteObject, and PutObject.

When you enable Amazon GuardDuty for an AWS account, GuardDuty starts monitoring CloudTrail management events and this is not configurable. You can enable or disable the S3 Protection feature (that monitors CloudTrail data events for S3) for any account in any AWS Region where this feature is available within Amazon GuardDuty, at any time. An AWS account that has already enabled GuardDuty can now enable S3 Protection for the first time with a 30-day free trial period. For an AWS account that enables GuardDuty for the first time, S3 Protection is already enabled and included in the 30-day free trial period. For more information, see Estimating GuardDuty cost (p. 287).

We recommend you enable S3 Protection in GuardDuty. If this feature is not enabled, GuardDuty will not be able to fully monitor your Amazon S3 buckets or generate findings for suspicious access to the data stored in your S3 buckets.

How GuardDuty uses S3 data events

When you enable S3 data events (S3 Protection), GuardDuty begins to analyze S3 data events from all of your S3 buckets, and monitors them for malicious and suspicious activity. For more information, see AWS CloudTrail data events for S3 (p. 97).

GuardDuty does not process requests to objects that you have made publicly accessible, but it does alert you when a bucket is made publicly accessible. When GuardDuty detects a threat based on S3 data event monitoring, it generates a security finding. For information about the types of findings GuardDuty can generate for Amazon S3 buckets, see GuardDuty S3 finding types (p. 190).

If you disable S3 Protection, GuardDuty stops S3 data event monitoring of the data stored in your S3 buckets.

Configuring S3 Protection for a standalone account

For accounts associated by AWS Organizations, this process can be automated through console settings. For more information, see Configuring S3 Protection in multiple-account environments (p. 92).
To enable or disable S3 Protection

Choose your preferred access method to configure S3 Protection for a standalone account.

Console

1. Sign in to the AWS Management Console and open the GuardDuty console at https://console.aws.amazon.com/guardduty/.
2. In the navigation pane, choose S3 Protection.
3. The S3 Protection page provides the current status of S3 Protection for your account. Choose Enable or Disable to enable or disable S3 Protection at any point in time.
4. Choose Confirm to confirm your selection.

API/CLI

1. Run updateDetector by using your valid detector ID for the current Region and passing the features object name as S3_DATA_EVENTS set to ENABLED or DISABLED to enable or disable S3 Protection, respectively.

 Note

 You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

2. Alternatively, you can use AWS Command Line Interface. To enable S3 Protection, run the following command and make sure to use your own valid detector ID.

   ```
   aws guardduty update-detector --detector-id 12abc34d567e8fa901bc2d34e56789f0 --features '[{"Name" : "S3_DATA_EVENTS", "Status" : "ENABLED"}]'
   ```

 To disable S3 Protection, replace ENABLED with DISABLED in the example.

Configuring S3 Protection in multiple-account environments

In a multi-account environment, only the GuardDuty delegated administrator account has the option to configure (enable or disable) S3 Protection for the member accounts in their AWS organization. The GuardDuty member accounts can't modify this configuration from their accounts. The GuardDuty delegated administrator account manages their member accounts using AWS Organizations. The delegated administrator can choose to have S3 Protection automatically enabled on all accounts, only new accounts, or no accounts in the organization. For more information, see Managing accounts with AWS Organizations (p. 272).

Configuring S3 Protection for delegated administrator

Choose your preferred access method to configure S3 Protection for the delegated administrator account.

Console

2. Make sure to use the management account credentials.
3. In the navigation pane, choose S3 Protection.
3. On the **S3 Protection** page, choose **Edit**.
4. Do one of the following:

Using Enable for all accounts

- Choose **Enable for all accounts**. This will enable the protection plan for all the active GuardDuty accounts in your AWS organization, including the new accounts that join the organization.
- Choose **Save**.

Using Configure accounts manually

- To enable the protection plan only for the delegated administrator account, choose **Configure accounts manually**.
- Choose **Enable** under the **delegated administrator (this account)** section.
- Choose **Save**.

API/CLI

Run `updateDetector` by using the detector ID of the delegated administrator account for the current Region and passing the `features` object name as `S3_DATA_EVENTS` and status as `ENABLED` or `DISABLED`.

Alternatively, you can configure S3 Protection by using AWS Command Line Interface. Run the following command, and make sure to replace `12abc34d567e8fa901bc2d34e56789f0` with the detector ID of the delegated administrator account for the current Region and `555555555555` with the AWS account ID of the delegated administrator account.

You can find your own `detectorId` for your current Region on the **Settings** page in the https://console.aws.amazon.com/guardduty/ console.

```bash
aws guardduty update-member-detectors --detector-id 12abc34d567e8fa901bc2d34e56789f0 --accountids 555555555555 --features '[["Name": "RDS_LOGIN_EVENTS", "Status": "ENABLED"]]
```

Auto-enable S3 Protection for all member accounts in the organization

Console

 - Sign in using your administrator account.
2. Do one of the following:

 Using the S3 Protection page

 1. In the navigation pane, choose **S3 Protection**.
 2. Choose **Enable for all accounts**. This action automatically enables S3 Protection for both existing and new accounts in the organization.
 3. Choose **Save**.

 Note
 - It may take up to 24 hours to update the configuration for the member accounts.
Using the Accounts page

1. In the navigation pane, choose Accounts.
2. On the Accounts page, choose Auto-enable preferences before Add accounts by invitation.
3. In the Manage auto-enable preferences window, choose Enable for all accounts under S3 Protection.
4. Choose Save.

If you can't use the Enable for all accounts option, see Selectively enable or disable S3 Protection in member accounts (p. 96).

API/CLI

- To selectively enable or disable S3 Protection for your member accounts, invoke the updateMemberDetectors API operation using your own detector ID.

- The following example shows how you can enable S3 Protection for a single member account. Make sure to replace 12abc34d567e8fa901bc2d34e56789f0 with the detector-id of the delegated administrator account, and 111122223333. To disable S3 Protection, replace ENABLED with DISABLED.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

```sh
aws guardduty update-detector --detector-id 12abc34d567e8fa901bc2d34e56789f0
--accountids 111122223333 --features '[["name": "S3_DATA_EVENTS", "status": "ENABLED"]]
```

Note
You can also pass a list of account IDs separated by a space.

- When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

Enable S3 Protection for all existing active member accounts

Choose your preferred access method to enable S3 Protection for all the existing active member accounts in your organization.

Console

1. Sign in to the AWS Management Console and open the GuardDuty console at https://console.aws.amazon.com/guardduty/.

 Sign in using the delegated administrator credentials.
2. In the navigation pane, choose S3 Protection.
3. On the S3 Protection page, you can view the current status of the configuration. Under the Active member accounts section, choose Actions.
4. From the Actions dropdown menu, choose Enable for all existing active member accounts.
5. Choose Confirm.
API/CLI

- To selectively enable or disable S3 Protection for your member accounts, invoke the `updateMemberDetectors` API operation using your own detector ID.

- The following example shows how you can enable S3 Protection for a single member account. Make sure to replace `12abc34d567e8fa901bc2d34e56789f0` with the detector-id of the delegated administrator account, and `111122223333`. To disable S3 Protection, replace ENABLED with DISABLED.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

```
aws guardduty update-detector --detector-id 12abc34d567e8fa901bc2d34e56789f0 --accountids 111122223333 --features '[["name": "S3_DATA_EVENTS", "status": "ENABLED"]]
```

Note
You can also pass a list of account IDs separated by a space.

- When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

Auto-enable S3 Protection for new member accounts

Choose your preferred access method to enable S3 Protection for new accounts that join your organization.

Console

The delegated administrator can enable for new member accounts in an organization through the console, using either the S3 Protection or Accounts page.

To auto-enable S3 Protection for new member accounts

 Make sure to use the delegated administrator account credentials.

2. Do one of the following:
 - Using the S3 Protection page:
 1. In the navigation pane, choose S3 Protection.
 2. On the S3 Protection page, choose Edit.
 3. Choose Configure accounts manually.
 4. Select Automatically enable for new member accounts. This step ensures that whenever a new account joins your organization, S3 Protection will be automatically enabled for their account. Only the organization delegated administrator can modify this configuration.
 5. Choose Save.
 - Using the Accounts page:
 1. In the navigation pane, choose Accounts.
 2. On the Accounts page, choose Auto-enable preferences.
 3. In the Manage auto-enable preferences window, select Enable for new accounts under S3 Protection.
4. Choose **Save**.

API/CLI

- To selectively enable or disable S3 Protection for your member accounts, invoke the `UpdateOrganizationConfiguration` API operation using your own detector ID.
- The following example shows how you can enable S3 Protection for a single member account. To disable it, see Selectively enable or disable RDS Protection for member accounts (p. 89). Set the preferences to automatically enable or disable the protection plan in that Region for new accounts (NEW) that join the organization, all the accounts (ALL), or none of the accounts (NONE) in the organization. For more information, see `autoEnableOrganizationMembers`. Based on your preference, you may need to replace NEW with ALL or NONE.

```bash
aws guardduty update-organization-configuration --detector-id 12abc34d567e8fa901bc2d34e56789f0 --autoEnable --features '[["Name": "S3_DATA_EVENTS", "autoEnable": NEW]]'
```

Note

You can also pass a list of account IDs separated by a space.

- When the code has successfully executed, it returns an empty list of `UnprocessedAccounts`. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

Selectively enable or disable S3 Protection in member accounts

Choose your preferred access method to selectively enable or disable S3 Protection for member accounts.

Console

 Make sure to use the delegated administrator account credentials.

2. In the navigation pane, choose **Accounts**.

 On the **Accounts** page, review the **S3 Protection** column for the status of your member account.

3. **To selectively enable or disable S3 Protection**

 Select the account for which you want to configure S3 Protection. You can select multiple accounts at a time. In the **Edit Protection Plans** dropdown menu, choose **S3Pro**, and then choose the appropriate option.

API/CLI

To selectively enable or disable S3 Protection for your member accounts, run the `updateMemberDetectors` API operation using your own detector ID. The following example shows how you can enable S3 Protection for a single member account. To disable it, replace `true` with `false`.

You can find your own `detectorId` for your current Region on the **Settings** page in the https://console.aws.amazon.com/guardduty/ console.
aws guardduty update-member-detectors --detector-id 12abc34d567e8fa901bc2d34e56789f0 --account-ids 123456789012 --features '[["Name" : "S3_DATA_EVENTS", "Status" : "ENABLED"]]'

Note
You can also pass a list of account IDs separated by a space.

When the code has successfully executed, it returns an empty list of UnprocessedAccounts. If there were any problems changing the detector settings for an account, that account ID is listed along with a summary of the issue.

Note
If you use scripts to on-board new accounts and want to disable S3 Protection in your new accounts, you can modify the `createDetector` API operation with the optional `dataSources` object as described in this topic.

Automatically disabling S3 Protection for new GuardDuty accounts

Important
By default, S3 Protection is enabled automatically for AWS accounts that join GuardDuty for the first time.

If you are a GuardDuty administrator enabling GuardDuty for the first time on a new account and do not want S3 Protection enabled by default, you can disable it by modifying the `createDetector` API operation with the optional `features` object. The following example uses the AWS CLI to enable a new GuardDuty detector with the S3 Protection disabled.

```bash
aws guardduty create-detector --enable --features '[["Name" : "S3_DATA_EVENTS", "Status" : "DISABLED"]]
```

Feature in S3 Protection

AWS CloudTrail data events for S3

Data events, also known as data plane operations, provide insight into the resource operations performed on or within a resource. They are often high-volume activities.

The following are examples of CloudTrail data events for S3 that GuardDuty can monitor:

- GetObject API operations
- PutObject API operations
- ListObjects API operations
- DeleteObject API operations

When you enable GuardDuty for the first time, S3 Protection is enabled by default and is also included in the 30-day free trial period. However, this feature is optional and you can choose to enable or disable it for any account or Region at any time. For more information about configuring Amazon S3 as a feature, see [GuardDuty S3 Protection](p. 91).
Understanding Amazon GuardDuty findings

A GuardDuty finding represents a potential security issue detected within your network. GuardDuty generates a finding whenever it detects unexpected and potentially malicious activity in your AWS environment.

You can view and manage your GuardDuty findings on the Findings page in the GuardDuty console or by using the AWS CLI or API operations. For an overview of the ways you can manage findings see Managing Amazon GuardDuty findings (p. 219).

Topics:

Finding details (p. 98)

Learn about the types of data available within GuardDuty findings.

Sample findings (p. 112)

Learn how to generate sample findings to test or better understand GuardDuty.

GuardDuty finding format (p. 110)

Understand the format of GuardDuty finding types and the different threat purposes tracked by GuardDuty.

Finding types (p. 117)

View and search all available GuardDuty finding by type. Each finding type entry includes an explanation of that finding as well as tips and suggestions for remediation.

Finding details

In the Amazon GuardDuty console, you can view finding details in the finding summary section. Finding details vary based on the finding type.

There are two primary details that determine what kind of information is available for any finding. The first is the resource type, which can be Instance, AccessKey, S3Bucket, Kubernetes cluster, ECS cluster, Container, RDSDBInstance, or Lambda. The second detail that determines finding information is Resource Role. Resource role can be Target for access keys, meaning the resource was the target of suspicious activity. For instance type findings, resource role can also be Actor, which means that your resource was the actor carrying out suspicious activity. This topic describes some of the commonly available details for findings.

Finding overview

A finding's Overview section contains the most basic identifying features of the finding, including the following information:

- **Account ID** – The ID of the AWS account in which the activity took place that prompted GuardDuty to generate this finding.
- **Count** – The number of times GuardDuty has aggregated an activity matching this pattern to this finding ID.
Resource

The Resource affected gives details about the AWS resource that was targeted by the initiating activity. The information available varies based on resource type and action type.

Resource role – The role of the AWS resource that initiated the finding. This value can be TARGET or ACTOR, and represents whether your resource was the target of the suspicious activity or the actor that performed the suspicious activity.

Resource type – The type of the affected resource. If multiple resources were involved, a finding can include multiple resource types. The resource types are Instance, AccessKey, S3Bucket, KubernetesCluster, ECSCluster, Container, RDSDBInstance, and Lambda. Depending on the resource type, different finding details are available. Select a resource option tab to learn about the details available for that resource.

Instance

Instance details:

Note
Some instance details may be missing if the instance has already been stopped or if the underlying API invocation originated from an EC2 instance in a different Region when making a cross-Region API call.

- Instance ID – The ID of the EC2 instance involved in the activity that prompted GuardDuty to generate the finding.
- Instance Type – The type of the EC2 instance involved in the finding.
- Launch Time – The time and date that the instance was launched.
- Outpost ARN – The Amazon Resource Name (ARN) of AWS Outposts. Only applicable to AWS Outposts instances. For more information, see What is AWS Outposts?
- Security Group Name – The name of the Security Group attached to the involved instance.
- Security Group ID – The ID of the Security Group attached to the involved instance.
- Instance state – The current state of the targeted instance.
• **Availability Zone** – The AWS Region Availability Zone in which the involved instance is located.
• **Image ID** – The ID of the Amazon Machine Image used to build the instance involved in the activity.
• **Image Description** – A description of the ID of the Amazon Machine Image used to build the instance involved in the activity.
• **Tags** – A list of tags attached to this resource, listed in the format of `key:value`.

AccessKey

Access Key details:

• **Access key ID** – The Access key ID of the user engaged in the activity that prompted GuardDuty to generate the finding.
• **Principal ID** – The principal ID of the user engaged in the activity that prompted GuardDuty to generate the finding.
• **User type** – The type of user engaged in the activity that prompted GuardDuty to generate the finding. For more information, see CloudTrail `userIdentity` element.
• **User name** – The name of the user engaged in the activity that prompted GuardDuty to generate the finding.

S3Bucket

Amazon S3 bucket details:

• **Name** – The name of the bucket involved in the finding.
• **ARN** – The ARN of the bucket involved in the finding.
• **Owner** – The canonical user ID of the user that owns the bucket involved in the finding. For more information on canonical user IDs see AWS account identifiers.
• **Type** – The type of bucket finding, can be either Destination or Source.
• **Default server side encryption** – The encryption details for the bucket.
• **Bucket Tags** – A list of tags attached to this resource, listed in the format of `key:value`.
• **Effective Permissions** – An evaluation of all effective permissions and policies on the bucket that indicates whether the involved bucket is publicly exposed. Values can be **Public** or **Not public**.

EKSCluster

Kubernetes cluster details:

• **Name** – The name of the Kubernetes cluster.
• **ARN** – The ARN that identifies the cluster.
• **Created At** – The time and date when this cluster was created.

Note

Timestamps for findings in the GuardDuty console appear in your local time zone, while JSON exports and CLI outputs display timestamps in UTC.

• **VPC ID** – The ID of the VPC that is associated to your cluster.
• **Status** – The current status of the cluster.
• **Tags** – The metadata that you apply to the cluster to help you to categorize and organize them. Each tag consists of a key and an optional value, listed in the format `key:value`. You get to define both key and value.

Cluster tags do not propagate to any other resource associated with the cluster.
Kubernetes workload details:

- **Type** – The type of Kubernetes workload, such as pod, deployment, and job.
- **Name** – The name of the Kubernetes workload.
- **Uid** – The unique ID of the Kubernetes workload.
- **Created at** – The time and date when this workload was created.
- **Labels** – The key-value pairs attached to the Kubernetes workload.
- **Containers** – The details of the container running as a part of Kubernetes workload.
- **Namespace** – The workload belongs to this Kubernetes namespace.
- **Volumes** – The volumes used by the Kubernetes workload.
 - **Host path** – Represents a preexisting file or directory on the host machine that the volume maps to.
 - **Name** – The name of the volume.
- **pod security context** – Defines the privilege and access control settings for all containers in a pod.
- **Host network** – Set to true if the pods are included in the Kubernetes workload.

Kubernetes user details:

- **Groups** – Kubernetes RBAC (role-access based control) groups of the user involved in the activity that generated the finding.
- **ID** – Unique ID of the Kubernetes user.
- **Username** – Name of the Kubernetes user involved in the activity that generated the finding.
- **Session name** – Entity that assumed the IAM role with Kubernetes RBAC permissions.

ECSCluster

ECS cluster details:

- **ARN** – The ARN that identifies the cluster.
- **Name** – The name of the cluster.
- **Status** – The current status of the cluster.
- **Active services count** – The number of services that are running on the cluster in an ACTIVE state. You can view these services with ListServices.
- **Registered container instances count** – The number of container instances registered into the cluster. This includes container instances in both ACTIVE and DRAINING status.
- **Running tasks count** – The number of tasks in the cluster that are in the RUNNING state.
- **Tags** – The metadata that you apply to the cluster to help you to categorize and organize them. Each tag consists of a key and an optional value, listed in the format key:value. You get to define both key and value.
- **Containers** – The details about the container that's associated with the task:
 - **Container name** – The name of the container.
 - **Container image** – The image of the container.
- **Task details** – The details of a task in a cluster.
 - **ARN** – The Amazon Resource Name (ARN) of the task.
 - **Definition ARN** – The Amazon Resource Name (ARN) of the task definition that creates the task.
 - **Version** – The version counter for the task.
 - **Task created at** – The Unix timestamp when the task was created.
 - **Task started at** – The Unix timestamp when the task started.
• **Task started by** – The tag specified when a task is started.

Container

Container details:

• **Container runtime** – The container runtime (such as `docker` or `containerd`) used to run the container.
• **ID** – The container instance ID or full ARN entries for the container instance.
• **Name** – The name of the container.
• **Image** – The image of the container instance.
• **Volume mounts** – List of container volume mounts. A container can mount a volume under its file system.
• **Security context** – The container security context defines privilege and access control settings for a container.
• **Process details** – Describes the details of the process that is associated to the finding.

RDSDBInstance

RDSDBInstance details:

Note

This resource is available in RDS Protection findings related to the database instance.

• **Database Instance ID** – The identifier associated to the database instance that was involved in the GuardDuty finding.
• **Engine** – The database engine name of the database instance involved in the finding. Possible values are Aurora MySQL-Compatible or Aurora PostgreSQL-Compatible.
• **Engine version** – The version of the database engine that was involved in the GuardDuty finding.
• **Database cluster ID** – The identifier of the database cluster that contains the database instance ID involved in the GuardDuty finding.
• **Database instance ARN** – The ARN that identifies the database instance involved in the GuardDuty finding.

Lambda

Lambda function details

• **Function name** – The name of the Lambda function involved in the finding.
• **Function version** – The version of the Lambda function involved in the finding.
• **Function description** – A description of the Lambda function involved in the finding.
• **Function ARN** – The Amazon Resource Name (ARN) of the Lambda function involved in the finding.
• **Revision ID** – The Amazon Resource Name (ARN) of the Lambda function involved in the finding.
• **Role** – The execution role of the Lambda function involved in the finding.
• **VPC configuration** – The Amazon VPC configuration, including the VPC ID, security group, and subnet IDs associated with your Lambda function.
• **VPC ID** – The ID of the Amazon VPC that is associated with the Lambda function involved in the finding.
• **Subnet IDs** – The ID of the subnets that are associated with your Lambda function.
• **Security Group** – The security group attached to the involved Lambda function. This includes the security group name and group ID.
• **Tags** – A list of tags attached to this resource, listed in the format of key:value pair.

RDS database (DB) user details

Note
This section is applicable to findings when you enable the RDS Protection feature in GuardDuty. For more information, see *GuardDuty RDS Protection (p. 84)*.

The GuardDuty finding provides the following user and authentication details of the potentially compromised database:

- **User** – The user name used to make the anomalous login attempt.
- **Application** – The application name used to make the anomalous login attempt.
- **Database** – The name of the database instance involved in the anomalous login attempt.
- **SSL** – The version of the Secure Socket Layer (SSL) used for the network.
- **Auth method** – The authentication method used by the user involved in the finding.

EKS Runtime Monitoring runtime details

Note
These details may be available only if GuardDuty generates one of the *EKS Runtime Monitoring finding types (p. 136)*.

This section contains the runtime details such as process details and any required context. Process details describe information about the observed process and runtime context describes any additional information about the potentially suspicious activity.

Process details

- **Name** – The name of the process.
- **Executable path** – The absolute path of the process executable file.
- **Executable SHA-256** – The SHA256 hash of the process executable.
- **Namespace PID** – The process ID of the process in a secondary PID namespace other than the host level PID namespace. For processes inside a container, it is the process ID observed inside the container.
- **Present working directory** – The present working directory of the process.
- **Process ID** – The ID assigned to the process by the operating system.
- **startTime** – The time when the process started. This is in UTC date string format (2023-03-22T19:37:20.168Z).
- **UUID** – The unique ID assigned to the process by GuardDuty.
- **Parent UUID** – The unique ID of the parent process. This ID is assigned to the parent process by GuardDuty.
- **User** – The user that executed the process.
- **User ID** – The ID of the user that executed the process.
- **Effective user ID** – The effective user ID of the process at the time of the event.
- **Lineage** – Information about the ancestors of the process.
 - **Process ID** – The ID assigned to the process by the operating system.
 - **UUID** – The unique ID assigned to the process by GuardDuty.
 - **Executable path** – The absolute path of the process executable file.
 - **Effective user ID** – The effective user ID of the process at the time of the event.
Amazon GuardDuty Amazon GuardDuty User Guide

EBS volumes scan details

- Parent UUID – The unique ID of the parent process. This ID is assigned to the parent process by GuardDuty.
- Start Time – The time when the process started.
- Namespace PID – The process ID of the process in a secondary PID namespace other than the host level PID namespace. For processes inside a container, it is the process ID observed inside the container.
- User ID – The user ID of the user that executed the process.
- Name – Name of the process.

Runtime context

From the following fields, a generated finding may include only those fields that are relevant to the finding type.

- Mount Source – The path on the host that is mounted by the container.
- Mount Target – The path in the container that is mapped to the host directory.
- Filesystem Type – Represents the type of the mounted filesystem.
- Flags – Represents options that control the behavior of the event involved in this finding.
- Modifying Process – Information about the process that created or modified a binary, script, or a library, inside a container at runtime.
- Modified At – The timestamp at which the process created or modified a binary, script, or library inside a container at runtime. This field is in the UTC date string format (2023-03-22T19:37:20.168Z).
- Library Path – The path to the new library that was loaded.
- LD Preload Value – The value of the LD_PRELOAD environment variable.
- Socket Path – The path to the Docker socket that was accessed.
- Runc Binary Path – The path to the runc binary.
- Release Agent Path – The path to the cgroup release agent file.

EBS volumes scan details

Note

This section is applicable to findings when you turn on the GuardDuty-initiated malware scan in GuardDuty Malware Protection (p. 59).

The EBS volumes scan provides details about the EBS volume attached to the potentially compromised EC2 instance or container workload.

- Scan ID – The identifier of the malware scan.
- Scan started at – The date and time when the malware scan started.
- Scan completed at – The date and time when the malware scan completed.
- Trigger Finding ID – The finding ID of the GuardDuty finding that initiated this malware scan.
- Sources – The possible values are Bitdefender and AWS.
- Scan detections – The complete view of details and results for each malware scan.
 - Scanned item count – The total number of scanned files. It provides details such as totalGb, files, and volumes.
 - Threats detected item count – The total number of malicious files detected during the scan.
 - Highest severity threat details – The details of the highest severity threat detected during the scan and the number of malicious files. It provides details such as severity, threatName, and count.
 - Threats detected by Name – The container element grouping threats of all severity levels. It provides details such as itemCount, uniqueThreatNameCount, shortened, and threatNames.
Malware Protection finding details

Note
This section is applicable to findings when you turn on the GuardDuty-initiated malware scan in GuardDuty Malware Protection (p. 59).

When the Malware Protection scan detects malware, you can view the scan details by selecting the corresponding finding on the Findings page in the https://console.aws.amazon.com/guardduty/console. The severity of your Malware Protection finding depends on the severity of the GuardDuty finding.

Note
The GuardDutyFindingDetected tag specifies that the snapshots contains malware.

The following information is available under the Threats detected section in the details panel.

- **Name** – The name of the threat, obtained by grouping the files by detection.
- **Severity** – The severity of the threat detected.
- **Hash** – The SHA-256 of the file.
- **File path** – The location of the malicious file in the EBS volume.
- **File name** – The name of the file in which the threat was detected.
- **Volume ARN** – The ARN of the scanned EBS volumes.

The following information is available under the Malware scan details section in the details panel.

- **Scan ID** – The scan ID of the malware scan.
- **Scan started at** – The date and time when the scan started.
- **Scan completed at** – The date and time when the scan completed.
- **Files scanned** – The total number of scanned files and directories.
- **Total GB scanned** – The amount of storage scanned during the process.
- **Trigger finding ID** – The finding ID of the GuardDuty finding that initiated this malware scan.

The following information is available under the Volume details section in the details panel.

- **Volume ARN** – The Amazon Resource Name (ARN) of the volume.
- **SnapshotARN** – The ARN of the snapshot of the EBS volume.
- **Status** – The scan status of the volume, such as Running, Skipped, and Completed.
- **Encryption type** – The type of encryption used to encrypt the volume. For example, CMCMK.
- **Device name** – The name of the device. For example, /dev/xvda.

Action

A finding's Action gives details about the type of activity that triggered the finding. The information available varies based on action type.

Action type – The finding activity type. This value can be NETWORK_CONNECTION, PORT_PROBE, DNS_REQUEST, AWS_API_CALL, or RDS_LOGIN_ATTEMPT. The information available varies based on action type:

- **NETWORK_CONNECTION** – Indicates that network traffic was exchanged between the identified EC2 instance and the remote host. This action type has the following additional information:
- **Connection direction** – The network connection direction observed in the activity that prompted GuardDuty to generate the finding. The values can be one of the following:
• **INBOUND** – Indicates that a remote host initiated a connection to a local port on the identified EC2 instance in your account.
• **OUTBOUND** – Indicates that the identified EC2 instance initiated a connection to a remote host.
• **UNKNOWN** – Indicates that GuardDuty could not determine the direction of the connection.
• **Protocol** – The network connection protocol observed in the activity that prompted GuardDuty to generate the finding.
• **Local IP** – The original source IP address of the traffic that triggered the finding. This info can be used to distinguish between the IP address of an intermediate layer through which traffic flows, and the original source IP address of the traffic that triggered the finding. For example the IP address of an EKS pod as opposed to the IP address of the instance on which the EKS pod is running.
• **Blocked** – Indicates whether the targeted port is blocked.
• **PORT_PROBE** – Indicates that a remote host probed the identified EC2 instance on multiple open ports. This action type has the following additional information:
 • **Local IP** – The original source IP address of the traffic that triggered the finding. This info can be used to distinguish between the IP address of an intermediate layer through which traffic flows, and the original source IP address of the traffic that triggered the finding. For example the IP address of an EKS pod as opposed to the IP address of the instance on which the EKS pod is running.
 • **Blocked** – Indicates whether the targeted port is blocked.
• **DNS_REQUEST** – Indicates that the identified EC2 instance queried a domain name. This action type has the following additional information:
 • **Protocol** – The network connection protocol observed in the activity that prompted GuardDuty to generate the finding.
 • **Blocked** – Indicates whether the targeted port is blocked.
• **AWS_API_CALL** – Indicates that an AWS API was invoked. This action type has the following additional information:
 • **API** – The name of the API operation that was invoked and thus prompted GuardDuty to generate this finding.

 Note
 These operations can also include non-API events captured by AWS CloudTrail. For more information, see [Non-API events captured by CloudTrail](#).
 • **User Agent** – The user agent that made the API request. This value tells you whether the call was made from the AWS Management Console, an AWS service, the AWS SDKs, or the AWS CLI.
 • **ERROR CODE** – If the finding was triggered by a failed API call this displays the error code for that call.
 • **Service name** – The DNS name of the service that attempted to make the API call that triggered the finding.
• **RDS_LOGIN_ATTEMPT** – Indicates that a login attempt was made to the potentially compromised database from a remote IP address.
• **IP address** – The remote IP address that was used to make the potentially suspicious login attempt.

Actor or Target

A finding has an **Actor** section if the **Resource role** was **TARGET**. This indicates that your resource was targeted by suspicious activity, and the **Actor** section contains details about the entity that targeted your resource.

A finding has a **Target** section if the **Resource role** was **ACTOR**. This indicates that your resource was involved in suspicious activity against a remote host, and this section contains information on the IP or domain that your resource targeted.

The information available in the **Actor** or **Target** section can include the following:
• **Affiliated** – Details about whether the AWS account of the remote API caller is related to your GuardDuty environment. If this value is `true`, the API caller is affiliated to your account in some manner; if `false`, the API caller is from outside your environment.

• **Remote Account ID** – The account ID that owns the egress IP address that was used to access the resource at the final network.

• **IP address** – The IP address involved in the activity that prompted GuardDuty to generate the finding.

• **Location** – Location information for the IP address involved in the activity that prompted GuardDuty to generate the finding.

• **Organization** – ISP organization information of the IP address involved in the activity that prompted GuardDuty to generate the finding.

• **Port** – The port number involved in the activity that prompted GuardDuty to generate the finding.

• **Domain** – The domain involved in the activity that prompted GuardDuty to generate the finding.

Additional information

All findings have an **Additional information** section that can include the following information:

• **Threat list name** – The name of the threat list that includes the IP address or the domain name involved in the activity that prompted GuardDuty to generate the finding.

• **Sample** – A true or false value that indicates whether this is a sample finding.

• **Archived** – A true or false value that indicates whether this is a finding that has been archived.

• **Unusual** – Activity details that were not observed historically. These can include an unusual (previously not observed) user, location, time, bucket, login behavior, or ASN Org.

• **Unusual protocol** – The network connection protocol involved in the activity that prompted GuardDuty to generate the finding.

• **Agent details** – Details about the security agent that is currently deployed on the EKS cluster in your AWS account. This is only applicable to EKS Runtime Monitoring finding types.

 • **Agent version** – The version of the GuardDuty security agent.

 • **Agent Id** – The unique identifier of the GuardDuty security agent.

Evidence

Findings based on threat intelligence have an **Evidence** section that includes the following information:

• **Threat intelligence details** – The name of the threat list that the recognized Threat name appears on.

• **Threat name** – The name of the malware family, or other identifier, associated with the threat.

Anomalous behavior

Findings types that end in **AnomalousBehavior** indicate that the finding was generated by the GuardDuty anomaly detection machine learning (ML) model. The ML model evaluates all API requests to your account and identifies anomalous events that are associated with tactics used by adversaries. The ML model tracks various factors of the API request, such as the user that made the request, the location the request was made from, and the specific API that was requested.

Details about which factors of the API request are unusual for the CloudTrail user identity that invoked the request can be found in the finding details. The identities are defined by the [CloudTrail userIdentity](#).
Anomalous behavior

Element, and the possible values are: Root, IAMUser, AssumedRole, FederatedUser, AWSAccount, or AWSService.

In addition to the details available for all GuardDuty findings that are associated with API activity, AnomalousBehavior findings have additional details that are outlined in the following section. These details can be viewed in the console and are also available in the finding's JSON.

- **Anomalous APIs** – A list of API requests that were invoked by the user identity in proximity to the primary API request associated with the finding. This pane further breaks down the details of the API event in the following ways.
 - The first API listed is the primary API, which is the API request associated with the highest-risk observed activity. This is the API that triggered the finding and correlates to the attack stage of the finding type. This is also the API that is detailed under the Action section in the console, and in the finding's JSON.
 - Any other APIs listed are additional anomalous APIs from the listed user identity observed in proximity to the primary API. If there is only one API on the list, the ML model did not identify any additional API requests from that user identity as anomalous.
 - The list of APIs is divided based on whether an API was successfully called, or if the API was unsuccessfully called, meaning an error response was received. The type of error response received is listed above each unsuccessfully called API. Possible error response types are: access denied, access denied exception, auth failure, instance limit exceeded, invalid permission - duplicate, invalid permission - not found, and operation not permitted.
 - APIs are categorized by their associated service.

 Note
 For more context, choose Historical APIs to view the details about the top APIs, to a maximum of 20, usually seen for both the user identity and all users within the account. The APIs are marked Rare (less than once a month), Infrequent (a few times a month), or Frequent (daily to weekly), depending on how often they are used within your account.

- **Unusual Behavior (Account)** – This section gives additional details about the profiled behavior for your account. The information tracked in this panel includes:
 - **ASN Org** – The ASN Org that the anomalous API call was made from.
 - **User Name** – The name of the user that made the anomalous API call.
 - **User Agent** – The user agent used to make the anomalous API call. The user agent is the method used to make the call such as aws-cli or Botocore.
 - **User Type** – The type of user that made the anomalous API call. Possible values are AWS_SERVICE, ASSUMED_ROLE, IAM_USER, or ROLE.
 - **Bucket** – The name of the S3 bucket that is being accessed.

- **Unusual Behavior (User Identity)** – This section gives additional details about the profiled behavior for the User Identity involved with the finding. When a behavior isn't identified as historical, this means the GuardDuty ML model hasn't previously seen this user identity making this API call in this way within the training period. The following additional details about the User Identity are available:
 - **ASN Org** – The ASN Org the anomalous API call was made from.
 - **User Agent** – The user agent used to make the anomalous API call. The user agent is the method used to make the call such as aws-cli or Botocore.
 - **Bucket** – The name of the S3 bucket that is being accessed.

- **Unusual Behavior (Bucket)** – This section gives additional details about the profiled behavior for the S3 bucket associated with the finding. When a behavior isn't identified as historical, this means the GuardDuty ML model hasn't previously seen API calls made to this bucket in this way within the training period. The information tracked in this section includes:
 - **ASN Org** – The ASN Org the anomalous API call was made from.
 - **User Name** – The name of the user that made the anomalous API call.
• **User Agent**– The user agent used to make the anomalous API call. The user agent is the method used to make the call such as aws-cli or Botocore.

• **User Type** – The type of user that made the anomalous API call. Possible values are AWS_SERVICE, ASSUMED_ROLE, IAM_USER, or ROLE.

 Note
 For more context on historical behaviors, choose Historical behavior in either Unusual behavior (Account), User ID, or Bucket section to view details about the expected behavior in your account for each of the following categories: Rare (less than once a month), Infrequent (a few times a month), or Frequent (daily to weekly), depending on how often they are used within your account.

• **Unusual Behavior (Database)** – This section provides additional details about the profiled behavior for the database instance associated with the finding. When a behavior isn't identified as historical, it means that the GuardDuty ML model hasn't previously seen a login attempt made to this database instance in this way within the training period. The information tracked for this section in the finding panel includes:

 • **User name** – The user name used to make the anomalous login attempt.
 • **ASN Org** – The ASN Org that the anomalous login attempt was made from.
 • **Application name** – The application name used to make the anomalous login attempt.
 • **Database name** – The name of the database instance involved in the anomalous login attempt.

 Note
 The Historical behavior section provides more context on the previously observed User names, ASN Orgs, Application names, and Database names for the associated database. Each unique value has an associated count representing the number of times this value was observed in a successful login event.

S3 volume-based anomalies

This section details the contextual information for S3 volume-based anomalies. The volume-based finding ([Exfiltration:S3/AnomalousBehavior](p. 192)) monitors for unusual numbers of S3 API calls made to the S3 buckets by users, indicating potential data exfiltration. The following S3 API calls are monitored for volume-based anomaly detection.

• GetObject
• CopyObject.Read
• SelectObjectContent

The following metrics would help to build a baseline of usual behavior when an IAM entity accesses an S3 bucket. To detect data exfiltration, volume-based anomaly detection finding evaluates all the activities against the usual behavioral baseline. Choose Historical behavior in the Unusual behavior (User Identity), Observed Volume (User Identity), and Observed Volume (Bucket) sections to view the following metrics, respectively.

• Number of s3-apiname API calls invoked by the IAM user or IAM role (depends on which one was issued) associated with the affected S3 bucket over the past 24 hours.

• Number of s3-apiname API calls invoked by the IAM user or IAM role (depends on which one was issued) associated with all S3 buckets over the past 24 hours.

• Number of s3-apiname API calls across all IAM user or IAM role (depends on which one was issued) associated with the affected S3 bucket over the past 24 hours.
RDS login activity-based anomalies

This section details the count of login attempts performed by the unusual actor and is grouped by the result of the login attempts. The RDS Protection finding types (p. 184) identify anomalous behavior by monitoring the login events for unusual patterns of successfulLoginCount, failedLoginCount, and incompleteConnectionCount.

- **successfulLoginCount** – This counter represents the sum of successful connections (correct combination of login attributes) made to the database instance by the unusual actor. Login attributes include user name, password, and database name.
- **failedLoginCount** – This counter represents the sum of failed (unsuccessful) login attempts made to establish a connection to the database instance. This indicates that one or more attributes of the login combination, such as user name, password, or database name were incorrect.
- **incompleteConnectionCount** – This counter represents the number of connection attempts that can’t be classified as successful or failed. These connections are closed before the database provides a response. For example, port scanning where the database port is connected but no piece of information is sent to the database, or the connection was aborted before the login completed in a successful or failed attempt.

GuardDuty finding format

When GuardDuty detects suspicious or unexpected behavior in your AWS environment, it generates a finding. A finding is a notification that contains the details about a potential security issue that GuardDuty discovers. The finding details (p. 116) include information about what happened, which AWS resources were involved in the suspicious activity, when this activity took place, and other information.

One of the most useful pieces of information in the finding details is a finding type. The purpose of the finding type is to provide a concise yet readable description of the potential security issue. For example, the GuardDuty Recon:EC2/PortProbeUnprotectedPort finding type quickly informs you that somewhere in your AWS environment, an EC2 instance has an unprotected port that a potential attacker is probing.

GuardDuty uses the following format for naming the various types of findings that it generates:

ThreatPurpose:ResourceTypeAffected/ThreatFamilyName.DetectionMechanism!Artifact

Each part of this format represents an aspect of a finding type. These aspects have the following explanations:

- **ThreatPurpose** - describes the primary purpose of a threat, an attack type or a stage of a potential attack. See the following section for a complete list of GuardDuty threat purposes.
- **ResourceTypeAffected** - describes which AWS resource type is identified in this finding as the potential target of an adversary. Currently, GuardDuty can generate findings for EC2, S3, IAM, and EKS resources.
- **ThreatFamilyName** - describes the overall threat or potential malicious activity that GuardDuty is detecting. For example, a value of NetworkPortUnusual indicates that an EC2 instance identified in the GuardDuty finding has no prior history of communications on a particular remote port that also is identified in the finding.
- **DetectionMechanism** - describes the method in which GuardDuty detected the finding. This can be used to indicate a variation on a common finding type or a finding that GuardDuty used a specific mechanism to detect. For example, **Backdoor:EC2/DenialOfService.Tcp** indicates denial of service (DoS) was detected over TCP. The UDP variant is **Backdoor:EC2/DenialOfService.Udp**.

A value of **.Custom** indicates that GuardDuty detected the finding based on your custom threat lists, while **.Reputation** indicates that GuardDuty detected the finding using a domain reputation score model.
Threat Purposes

In GuardDuty a threat purpose describes the primary purpose of a threat, an attack type, or a stage of a potential attack. For example, some threat purposes, such as Backdoor, indicate a type of attack. However, some threat purposes, such as Impact, align with MITRE ATT&CK tactics. The MITRE ATT&CK tactics indicate different phases in an adversary's attack cycle. In the current release of GuardDuty, ThreatPurpose can have the following values:

Backdoor

This value indicates that an adversary has compromised an AWS resource and altered the resource so that it is capable of contacting its home command and control (C&C) server to receive further instructions for malicious activity.

Behavior

This value indicates that GuardDuty has detected activity or activity patterns that are different from the established baseline for the AWS resources involved.

CredentialAccess

This value indicates that GuardDuty has detected activity patterns that an adversary may use to steal credentials, such as account IDs or passwords, from your environment. This threat purpose is based on MITRE ATT&CK tactics.

Cryptocurrency

This value indicates that GuardDuty has detected that an AWS resource in your environment is hosting software that is associated with cryptocurrencies (for example, Bitcoin).

DefenseEvasion

This value indicates that GuardDuty has detected activity or activity patterns that an adversary may use to avoid detection while infiltrating your environment. This threat purpose is based on MITRE ATT&CK tactics.

Discovery

This value indicates that GuardDuty has detected activity or activity patterns that an adversary may use to expand their knowledge of your systems and internal networks. This threat purpose is based on MITRE ATT&CK tactics.

Execution

This value indicates that GuardDuty has detected that an adversary may try to run malicious code to explore the network or steal data. This threat purpose is based on MITRE ATT&CK tactics.

Exfiltration

This value indicates that GuardDuty has detected activity or activity patterns that an adversary may use when attempting to steal data from your network. This threat purpose is based on MITRE ATT&CK tactics.

Impact

This value indicates that GuardDuty has detected activity or activity patterns that suggest that an adversary is attempting to manipulate, interrupt, or destroy your systems and data. This threat purpose is based on MITRE ATT&CK tactics.

InitialAccess

This threat purpose is based on MITRE ATT&CK tactics.
Pentest

Sometimes owners of AWS resources or their authorized representatives intentionally run tests against AWS applications to find vulnerabilities, such as open security groups or access keys that are overly-permissive. These pen tests are done in an attempt to identify and lock down vulnerable resources before they are discovered by adversaries. However, some of the tools used by authorized pen testers are freely available and therefore can be used by unauthorized users or adversaries to run probing tests. Although GuardDuty can't identify the true purpose behind such activity, the Pentest value indicates that GuardDuty is detecting such activity, that it is similar to the activity generated by known pen testing tools, and that it could indicate malicious probing of your network.

Persistence

This value indicates that GuardDuty has detected activity or activity patterns that an adversary may use to try and maintain access to your systems even if their initial access route is cut off. For example, this could include creating a new IAM user after gaining access through an existing user's compromised credentials. When the existing user's credentials are deleted, the adversary will retain access on the new user that was not detected as part of the original event. This threat purpose is based on MITRE ATT&CK tactics.

Policy

This value indicates that your AWS account is exhibiting behavior that goes against recommended security best practices.

PrivilegeEscalation

This value informs you that the involved principal within your AWS environment is exhibiting behavior that an adversary may use to gain higher-level permissions to your network. This threat purpose is based on MITRE ATT&CK tactics.

Recon

This value indicates that GuardDuty has detected activity or activity patterns that an adversary may use when preforming reconnaissance of your network to determine how they can broaden their access or utilize your resources. For example, this activity can include scoping out vulnerabilities in your AWS environment by probing ports, listing users, database tables, and so on.

Stealth

This value indicates that an adversary is actively trying to hide their actions. For example, they might use an anonymizing proxy server, making it extremely difficult to gauge the true nature of the activity.

Trojan

This value indicates that an attack is using Trojan programs that silently carry out malicious activity. Sometimes this software takes on an appearance of a legitimate program. Sometimes users accidentally run this software. Other times this software might run automatically by exploiting a vulnerability.

UnauthorizedAccess

This value indicates that GuardDuty is detecting suspicious activity or a suspicious activity pattern by an unauthorized individual.

Generating sample findings in GuardDuty

You can generate sample findings with Amazon GuardDuty to help you visualize and understand the various finding types that GuardDuty can generate. When you generate sample findings, GuardDuty populates your current findings list with one sample finding for each supported finding type.
The generated samples are approximations populated with placeholder values. These samples may look
different from real findings for your environment, but you can use them to test various configurations for
GuardDuty, such as your CloudWatch Events or filters. For a list of available values for finding types are
listed in Finding types (p. 117) table.

To generate some common findings based on simulated activity within your environment see
Automatically generating common GuardDuty findings (p. 113) below.

Generating sample findings through the GuardDuty
console or API

Choose your preferred access method to generate sample findings.

Note
The console method generates one of each finding type. Single sample findings can only be
generated through the API.

Console
Use the following procedure to generate sample findings. This process generates one sample finding
for each GuardDuty finding type.

2. In the navigation pane, choose **Settings**.
3. On the **Settings** page, under **Sample findings**, choose **Generate sample findings**.
4. In the navigation pane, choose **Findings**. The sample findings are displayed on the **Current
findings** page with the prefix [SAMPLE].

API/CLI
You can generate a single sample finding matching any of the GuardDuty finding types through the
CreateSampleFindings API, the available values for finding types are listed in Finding types (p. 117)
table.

This is useful for the testing of CloudWatch Events rules or automation based on findings. The
following example shows how to generate a single sample finding of the Backdoor:EC2/DenialOfService.Tcp type using the AWS CLI.

You can find your own detectorId for your current Region on the **Settings** page in the https://
console.aws.amazon.com/guardduty/ console.

```
aws guardduty create-sample-findings --detector-id 12abc34d567e8fa901bc2d34e56789f0 --
finding-types Backdoor:EC2/DenialOfService.Tcp
```

The title of sample findings generated through these methods always begins with [SAMPLE] in the
console. Sample findings have a value of "sample": true in the additionalInfo section of the finding
JSON details.

Automatically generating common GuardDuty
findings

You can use the following scripts to automatically generate several common GuardDuty findings. The
guardduty-tester.template uses AWS CloudFormation to create an isolated environment with a bastion
host, a tester Amazon EC2 instance that you can access through SSH, and two target EC2 instances. Then you can run `guardduty_tester.sh` to start an interaction between the tester EC2 instance, the target Windows EC2 instance, and the target Linux EC2 instance, to simulate five types of common attacks that GuardDuty can detect and notify you about with generated findings.

1. As a prerequisite, you must enable GuardDuty in the account and Region in which you want to run `guardduty-tester.template` and `guardduty_tester.sh`. For more information about enabling GuardDuty, see Getting started with GuardDuty (p. 3).

 You must also generate a new or use an existing EC2 key pair in each Region in which you want to run these scripts. This EC2 key pair is used as a parameter in the `guardduty-tester.template` script that you use to create a new CloudFormation stack. For more information about generating key pairs, see Amazon EC2 key pairs.

2. Create a new CloudFormation stack using `guardduty-tester.template`. For detailed instructions about creating a stack, see Creating a stack. Before you run `guardduty-tester.template`, modify it with values for the following parameters: Stack Name to identify your new stack, Availability Zone where you want to run the stack, and Key Pair that you can use to launch the EC2 instances. Then you can use the corresponding private key to access EC2 instances through SSH.

 The `guardduty-tester.template` takes around 10 minutes to run and complete. It creates your environment and copies `guardduty_tester.sh` onto your tester EC2 instance.

3. In the AWS CloudFormation console, choose the checkbox next to your new running AWS CloudFormation stack. In the displayed set of tabs, select the Output tab. Note the IP addresses assigned to the bastion host and the tester EC2 instance. You need both of these IP addresses in order to access the tester EC2 instance through SSH.

4. Create the following entry in your `~/.ssh/config` file to log into your instance through the bastion host.

   ```
   Host bastion
   HostName {Elastic IP Address of Bastion}
   User ec2-user
   IdentityFile ~/.ssh/{your-ssh-key.pem}
   
   Host tester
   ForwardAgent yes
   HostName {Local IP Address of RedTeam Instance}
   User ec2-user
   IdentityFile ~/.ssh/{your-ssh-key.pem}
   ProxyCommand ssh bastion nc %h %p
   ServerAliveInterval 240
   ```

 Now you can call `ssh tester` to log into your target EC2 instance. For more information about configuring and connecting to EC2 instances through bastion hosts, see https://aws.amazon.com/blogs/security/securely-connect-to-linux-instances-running-in-a-private-amazon-vpc/.

5. After you connect to the tester EC2 instance, run `guardduty_tester.sh` to initiate interaction between your tester and target EC2 instances, simulate attacks, and generate GuardDuty findings.

Severity levels for GuardDuty findings

Each GuardDuty finding has an assigned severity level and value that reflects the potential risk the finding could have to your network as determined by our security engineers. The value of the severity can fall anywhere within the 1.0 to 8.9 range, with higher values indicating greater security risk. To help you determine a response to a potential security issue that is highlighted by a finding, GuardDuty breaks down this range into, High, Medium, and Low severity levels.

Note

Values 0 and between 9.0 and 10.0 are reserved for future use.
The following are the presently defined severity levels and values for the GuardDuty findings as well as general recommendations for each:

<table>
<thead>
<tr>
<th>Severity level</th>
<th>Value range</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>7.0 - 8.9</td>
</tr>
</tbody>
</table>

A High severity level indicates that the resource in question (an EC2 instance or a set of IAM user sign-in credentials) is compromised and is actively being used for unauthorized purposes.

We recommend that you treat any High severity finding security issue as a priority and take immediate remediation steps to prevent further unauthorized use of your resources. For example, clean up your EC2 instance or terminate it, or rotate the IAM credentials. See Remediation Steps (p. 257) for more details.

| Medium | 4.0 - 6.9 |

A Medium severity level indicates suspicious activity that deviates from normally observed behavior and, depending on your use case, may be indicative of a resource compromise.

We recommend that you investigate the implicated resource at your earliest convenience. Remediation steps will vary by resource and Finding family, but in general, you should be looking to confirm that the activity is authorized and consistent with your use case. If you cannot identify the cause, or confirm the activity was authorized, you should consider the resource compromised and follow Remediation Steps (p. 257) to secure the resource.

Here are some things to consider when reviewing a Medium level finding:

- Check if an authorized user has installed new software that changed the behavior of a resource (for example, allowed higher than normal traffic, or enabled communication on a new port).
- Check if an authorized user changed the control panel settings, for example, modified a security group setting.
- Run an anti-virus scan on the implicated resource to detect unauthorized software.
- Verify the permissions that are attached to the implicated IAM role, user, group, or set of credentials. These might have to be changed or rotated.

| Low | 1.0 - 3.9 |

A Low severity level indicates attempted suspicious activity that did not compromise your network, for example, a port scan or a failed intrusion attempt.

There is no immediate recommended action, but it is worth making note of this information as it may indicate someone is looking for weak points in your network.

GuardDuty finding aggregation

All findings are dynamic, meaning that, if GuardDuty detects new activity related to the same security issue it will update the original finding with the new information, instead of generating a new finding. This behavior allows you to identify ongoing issues, without needing to look through multiple similar reports, and reduces the overall noise from security issues you are already aware of.

For example, for UnauthorizedAccess:EC2/SSHBruteForce finding, multiple access attempts against your instance will be aggregated to the same finding ID, increasing the Count number in the finding's details. This is because that finding represents a single security issue with the instance indicating that the SSH port on the instance is not properly secured against this type of activity. However, if GuardDuty detects SSH access activity targeting a new instance in your environment, it
will create a new finding with a unique finding ID to alert you to the fact that there is a security issue associated with the new resource.

When a finding is aggregated it is updated with information from the latest occurrence of that activity. This means that in the above example, if your instance is the target of a brute force attempt from a new actor, the finding details will be updated to reflect the remote IP of the most recent source and older information will be replaced. Full information about individual activity attempts will still be available in your CloudTrail or VPC Flow Logs.

The criteria that alert GuardDuty to generate a new finding instead of aggregating an existing one is dependent on the finding type. The aggregation criteria for each finding type are determined by our security engineers to give you the best overview of distinct security issues within your account.

Locating and analyzing GuardDuty findings

Use the following procedure to view and analyze your GuardDuty findings.

2. Choose Findings and then select a specific finding to view its details.

 The details for each finding will differ depending on the Finding type, resources involved, and nature of the activity. For more information on available finding fields see Finding details (p. 98).

3. (Optional) If you wish to archive a finding, select it from the list of your findings and then choose the Actions menu. Then choose Archive.

 Archived findings can be viewed by choosing Archived from the Current dropdown.

 Currently in GuardDuty users from GuardDuty member accounts can’t archive findings.

 Important

 If you archive a finding manually using the procedure above, all subsequent occurrences of this finding (generated after the archiving is complete) are added to the list of your current findings. To never see this finding in your current list, you can auto-archive it. For more information, see Suppression rules (p. 226).

4. (Optional) To download a finding, select it from the list of your findings and then choose the Actions menu. Then choose Export. When you Export a finding, you can see its full JSON document.

 Note

 In some cases, GuardDuty becomes aware that certain findings are false positives after they have been generated. GuardDuty provides a Confidence field in the finding's JSON, and sets its value to zero. This way GuardDuty lets you know that you can safely ignore such findings.
Finding types

For information about important changes to the GuardDuty finding types, including newly added or retired finding types, see Document history for Amazon GuardDuty (p. 354).

For information about finding types which are now retired, see Retired finding types (p. 199).

GuardDuty EC2 finding types

The following findings are specific to Amazon EC2 resources and always have a Resource Type of Instance. The severity and details of the findings differ based on the Resource Role, which indicates whether the EC2 resource was the target of suspicious activity or the actor performing the activity.

The findings listed here include the data sources and models used to generate that finding type. For more information data sources and models see Foundational data sources (p. 15).

Note
Instance details may be missing for some EC2 findings if the instance has already been terminated or if the underlying API call was part of a cross-Region API call that originated from an EC2 instance in a different Region.

For all EC2 findings, it is recommended that you examine the resource in question to determine if it is behaving in an expected manner. If the activity is authorized, you can use Suppression Rules or Trusted IP lists to prevent false positive notifications for that resource. If the activity is unexpected, the security best practice is to assume the instance has been compromised and take the actions detailed in Remediating a compromised Amazon EC2 instance (p. 257).

Topics
- Backdoor:EC2/C&CActivity.B (p. 118)
- Backdoor:EC2/C&CActivity.B!DNS (p. 119)
- Backdoor:EC2/DenialOfService.Dns (p. 119)
- Backdoor:EC2/DenialOfService.Tcp (p. 120)
- Backdoor:EC2/DenialOfService.Udp (p. 120)
- Backdoor:EC2/DenialOfService.UdpOnTcpPorts (p. 121)
- Backdoor:EC2/Spambot (p. 122)
- Behavior:EC2/NetworkPortUnusual (p. 122)
- Behavior:EC2/TrafficVolumeUnusual (p. 122)
- CryptoCurrency:EC2/BitcoinTool.B (p. 123)
- CryptoCurrency:EC2/BitcoinTool.B!DNS (p. 123)
- DefenseEvasion:EC2/UnusualDNSResolver (p. 124)
- DefenseEvasion:EC2/UnusualDoHActivity (p. 124)
- DefenseEvasion:EC2/UnusualDoTActivity (p. 125)
- Impact:EC2/AbusedDomainRequest.Reputation (p. 125)
- Impact:EC2/MaliciousDomainRequest.Reputation (p. 126)
Backdoor:EC2/C&CActivity.B

An EC2 instance is querying an IP that is associated with a known command and control server.

Default severity: High

- **Data source:** VPC flow logs

This finding informs you that the listed instance within your AWS environment is querying an IP associated with a known command and control (C&C) server. The listed instance might be compromised. Command and control servers are computers that issue commands to members of a botnet.

A botnet is a collection of internet-connected devices which might include PCs, servers, mobile devices, and Internet of Things devices, that are infected and controlled by a common type of malware. Botnets are often used to distribute malware and gather misappropriated information, such as credit card numbers. Depending on the purpose and structure of the botnet, the C&C server might also issue commands to begin a distributed denial of service (DDoS) attack.

Note

If the IP queried is log4j-related, then fields of the associated finding will include the following values:

- `service.additionalInfo.threatListName = Amazon`
- `service.additionalInfo.threatName = Log4j Related`
Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

Backdoor:EC2/C&CActivity.B!DNS

An EC2 instance is querying a domain name that is associated with a known command and control server.

Default severity: High

- **Data source**: DNS logs

This finding informs you that the listed instance within your AWS environment is querying a domain name associated with a known command and control (C&C) server. The listed instance might be compromised. Command and control servers are computers that issue commands to members of a botnet.

A botnet is a collection of internet-connected devices which might include PCs, servers, mobile devices, and Internet of Things devices, that are infected and controlled by a common type of malware. Botnets are often used to distribute malware and gather misappropriated information, such as credit card numbers. Depending on the purpose and structure of the botnet, the C&C server might also issue commands to begin a distributed denial of service (DDoS) attack.

Note

If the domain name queried is log4j-related, then the fields of the associated finding will include the following values:

- service.additionalInfo.threatListName = Amazon
- service.additionalInfo.threatName = Log4j Related

Note

To test how GuardDuty generates this finding type, you can make a DNS request from your instance (using `dig` for Linux or `nslookup` for Windows) against a test domain `guarddutyc2activityb.com`.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

Backdoor:EC2/DenialOfService.Dns

An EC2 instance is behaving in a manner that may indicate it is being used to perform a Denial of Service (DoS) attack using the DNS protocol.

Default severity: High

- **Data source**: VPC flow logs
This finding informs you that the listed EC2 instance within your AWS environment is generating a large volume of outbound DNS traffic. This may indicate that the listed instance is compromised and being used to perform denial-of-service (DoS) attacks using DNS protocol.

Note
This finding detects DoS attacks only against publicly routable IP addresses, which are primary targets of DoS attacks.

Remediation recommendations:
If this activity is unexpected, your instance may be compromised. For more information, see [Remediating a compromised Amazon EC2 instance](p. 257).

Backdoor:EC2/DenialOfService.Tcp

An EC2 instance is behaving in a manner indicating it is being used to perform a Denial of Service (DoS) attack using the TCP protocol.

Default severity: High

- **Data source:** VPC flow logs

This finding informs you that the listed EC2 instance within your AWS environment is generating a large volume of outbound TCP traffic. This may indicate that the instance is compromised and being used to perform denial-of-service (DoS) attacks using TCP protocol.

Note
This finding detects DoS attacks only against publicly routable IP addresses, which are primary targets of DoS attacks.

Remediation recommendations:
If this activity is unexpected, your instance may be compromised. For more information, see [Remediating a compromised Amazon EC2 instance](p. 257).

Backdoor:EC2/DenialOfService.Udp

An EC2 instance is behaving in a manner indicating it is being used to perform a Denial of Service (DoS) attack using the UDP protocol.

Default severity: High

- **Data source:** VPC flow logs

This finding informs you that the listed EC2 instance within your AWS environment is generating a large volume of outbound UDP traffic. This may indicate that the listed instance is compromised and being used to perform denial-of-service (DoS) attacks using UDP protocol.

Note
This finding detects DoS attacks only against publicly routable IP addresses, which are primary targets of DoS attacks.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see [Remediating a compromised Amazon EC2 instance (p. 257)](#).

Backdoor:EC2/DenialOfService.UdpOnTcpPorts

An EC2 instance is behaving in a manner that may indicate it is being used to perform a Denial of Service (DoS) attack using the UDP protocol on a TCP port.

Default severity: High

- **Data source:** VPC flow logs

This finding informs you that the listed EC2 instance within your AWS environment is generating a large volume of outbound UDP traffic targeted to a port that is typically used for TCP communication. This may indicate that the listed instance is compromised and being used to perform a denial-of-service (DoS) attacks using UDP protocol on a TCP port.

Note

This finding detects DoS attacks only against publicly routable IP addresses, which are primary targets of DoS attacks.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see [Remediating a compromised Amazon EC2 instance (p. 257)](#).

Backdoor:EC2/DenialOfService.UnusualProtocol

An EC2 instance is behaving in a manner that may indicate it is being used to perform a Denial of Service (DoS) attack using an unusual protocol.

Default severity: High

- **Data source:** VPC flow logs

This finding informs you that the listed EC2 instance in your AWS environment is generating a large volume of outbound traffic from an unusual protocol type that is not typically used by EC2 instances, such as Internet Group Management Protocol. This may indicate that the instance is compromised and is being used to perform denial-of-service (DoS) attacks using an unusual protocol. This finding detects DoS attacks only against publicly routable IP addresses, which are primary targets of DoS attacks.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see [Remediating a compromised Amazon EC2 instance (p. 257)](#).
Backdoor:EC2/Spambot

An EC2 instance is exhibiting unusual behavior by communicating with a remote host on port 25.

Default severity: Medium

- Data source: VPC flow logs

This finding informs you that the listed EC2 instance in your AWS environment is communicating with a remote host on port 25. This behavior is unusual because this EC2 instance has no prior history of communications on port 25. Port 25 is traditionally used by mail servers for SMTP communications. This finding indicates your EC2 instance might be compromised for use in sending out spam.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

Behavior:EC2/NetworkPortUnusual

An EC2 instance is communicating with a remote host on an unusual server port.

Default severity: Medium

- Data source: VPC flow logs

This finding informs you that the listed EC2 instance in your AWS environment is behaving in a way that deviates from the established baseline. This EC2 instance has no prior history of communications on this remote port.

Note

If the EC2 instance communicated on port 389 or port 1389, then the associated finding severity will be modified to High, and the finding fields will include the following value:

- service.additionalInfo.context = Possible log4j callback

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

Behavior:EC2/TrafficVolumeUnusual

An EC2 instance is generating unusually large amounts of network traffic to a remote host.

Default severity: Medium
• **Data source:** VPC flow logs

This finding informs you that the listed EC2 instance in your AWS environment is behaving in a way that deviates from the established baseline. This EC2 instance has no prior history of sending this much traffic to this remote host.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see [Remediating a compromised Amazon EC2 instance](p. 257).

CryptoCurrency:EC2/BitcoinTool.B

An EC2 instance is querying an IP address that is associated with cryptocurrency-related activity.

Default severity: High

• **Data source:** VPC flow logs

This finding informs you that the listed EC2 instance in your AWS environment is querying an IP Address that is associated with Bitcoin or other cryptocurrency-related activity. Bitcoin is a worldwide cryptocurrency and digital payment system that can be exchanged for other currencies, products, and services. Bitcoin is a reward for bitcoin-mining and is highly sought after by threat actors.

Remediation recommendations:

If you use this EC2 instance to mine or manage cryptocurrency, or this instance is otherwise involved in blockchain activity, this finding could be expected activity for your environment. If this is the case in your AWS environment, we recommend that you set up a suppression rule for this finding. The suppression rule should consist of two filter criteria. The first criteria should use the **Finding type** attribute with a value of CryptoCurrency:EC2/BitcoinTool.B. The second filter criteria should be the **Instance ID** of the instance involved in blockchain activity. To learn more about creating suppression rules see [Suppression rules](p. 226).

If this activity is unexpected, your instance is likely compromised, see [Remediating a compromised Amazon EC2 instance](p. 257).

CryptoCurrency:EC2/BitcoinTool.B!DNS

An EC2 instance is querying a domain name that is associated with cryptocurrency-related activity.

Default severity: High

• **Data source:** DNS logs

This finding informs you that the listed EC2 instance in your AWS environment is querying a domain name that is associated with Bitcoin or other cryptocurrency-related activity. Bitcoin is a worldwide...
cryptocurrency and digital payment system that can be exchanged for other currencies, products, and services. Bitcoin is a reward for bitcoin-mining and is highly sought after by threat actors.

Remediation recommendations:

If you use this EC2 instance to mine or manage cryptocurrency, or this instance is otherwise involved in blockchain activity, this finding could be expected activity for your environment. If this is the case in your AWS environment, we recommend that you set up a suppression rule for this finding. The suppression rule should consist of two filter criteria. The first criteria should use the **Finding type** attribute with a value of `CryptoCurrency:EC2/BitcoinTool.B!DNS`. The second filter criteria should be the **Instance ID** of the instance involved in blockchain activity. To learn more about creating suppression rules see [Suppression rules](p. 226).

If this activity is unexpected, your instance is likely compromised, see [Remediating a compromised Amazon EC2 instance](p. 257).

DefenseEvasion:EC2/UnusualDNSResolver

An Amazon EC2 instance is communicating with an unusual public DNS resolver.

Default severity: Medium

- **Data source:** VPC flow logs

This finding informs you that the listed Amazon EC2 instance in your AWS environment is behaving in a way that deviates from the baseline behavior. This EC2 instance has no recent history of communicating with this public DNS resolver. The **Unusual** field in the finding details panel in the GuardDuty console can provide information about the queried DNS resolver.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see [Remediating a compromised Amazon EC2 instance](p. 257).

DefenseEvasion:EC2/UnusualDoHAActivity

An Amazon EC2 instance is performing an unusual DNS over HTTPS (DoH) communication.

Default severity: Medium

- **Data source:** VPC flow logs

This finding informs you that the listed Amazon EC2 instance within your AWS environment is behaving in a way that deviates from the established baseline. This EC2 instance doesn't have any recent history of DNS over HTTPS (DoH) communications with this public DoH server. The **Unusual** field in the finding details can provide information about the queried DoH server.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see [Remediating a compromised Amazon EC2 instance](p. 257).
DefenseEvasion:EC2/UnusualDoTActivity

An Amazon EC2 instance is performing an unusual DNS over TLS (DoT) communication.

Default severity: Medium

- **Data source:** VPC flow logs

This finding informs you that the listed EC2 instance in your AWS environment is behaving in a way that deviates from the established baseline. This EC2 instance doesn't have any recent history of DNS over TLS (DoT) communications with this public DoT server. The **Unusual** field in the finding details panel can provide information about the queried DoT server.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

Impact:EC2/AbusedDomainRequest.Reputation

An EC2 instance is querying a low reputation domain name that is associated with known abused domains.

Default severity: Medium

- **Data source:** DNS logs

This finding informs you that the listed Amazon EC2 instance within your AWS environment is querying a low reputation domain name associated with known abused domains or IP addresses. Examples of abused domains are top level domain names (TLDs) and second-level domain names (2LDs) providing free subdomain registrations as well as dynamic DNS providers. Threat actors tend to use these services to register domains for free or at low costs. Low reputation domains in this category may also be expired domains resolving to a registrar's parking IP address and therefore may no longer be active. A parking IP is where a registrar directs traffic for domains that have not been linked to any service. The listed Amazon EC2 instance may be compromised as threat actors commonly use these registrar's or services for C&C and malware distribution.

Low reputation domains are based on a reputation score model. This model evaluates and ranks the characteristics of a domain to determine its likelihood of being malicious.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

Impact:EC2/BitcoinDomainRequest.Reputation

An EC2 instance is querying a low reputation domain name that is associated with cryptocurrency-related activity.
Impact: EC2/MaliciousDomainRequest.Reputation

An EC2 instance is querying a low reputation domain that is associated with known malicious domains.

Default severity: High

- **Data source:** DNS logs

This finding informs you that the listed Amazon EC2 instance within your AWS environment is querying a low reputation domain name associated with known malicious domains or IP addresses. For example, domains may be associated with a known sinkhole IP address. Sinkholed domains are domains that were previously controlled by a threat actor, and requests made to them can indicate the instance is compromised. These domains may also be correlated with known malicious campaigns or domain generation algorithms.

Low reputation domains are based on a reputation score model. This model evaluates and ranks the characteristics of a domain to determine its likelihood of being malicious.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see [Remediating a compromised Amazon EC2 instance](p. 257).

Impact: EC2/PortSweep

An EC2 instance is probing a port on a large number of IP addresses.
Default severity: High

- **Data source:** VPC flow logs

This finding informs you the listed EC2 instance in your AWS environment is probing a port on a large number of publicly routable IP addresses. This type of activity is typically used to find vulnerable hosts to exploit. In the finding details panel in your GuardDuty console, only the most recent remote IP address gets displayed.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

Impact:EC2/SuspiciousDomainRequest.Reputation

An EC2 instance is querying a low reputation domain name that is suspicious in nature due to its age, or low popularity.

Default severity: Low

- **Data source:** DNS logs

This finding informs you that the listed Amazon EC2 instance within your AWS environment is querying a low reputation domain name that is suspected of being malicious. noticed characteristics of this domain that were consistent with previously observed malicious domains, however, our reputation model was unable to definitively relate it to a known threat. These domains are typically newly observed or receive a low amount of traffic.

Low reputation domains are based on a reputation score model. This model evaluates and ranks the characteristics of a domain to determine its likelihood of being malicious.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

Impact:EC2/WinRMBruteForce

An EC2 instance is performing an outbound Windows Remote Management brute force attack.

Default severity: Low*

- **Note**

 This finding's severity is low if your EC2 instance was the target of a brute force attack. This finding's severity is high if your EC2 instance is the actor being used to perform the brute force attack.

- **Data source:** VPC flow logs
This finding informs you that the listed EC2 instance in your AWS environment is performing a Windows Remote Management (WinRM) brute force attack aimed at gaining access to the Windows Remote Management service on Windows-based systems.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see [Remediating a compromised Amazon EC2 instance](p. 257).

Recon:EC2/PortProbeEMRUnprotectedPort

An EC2 instance has an unprotected EMR related port which is being probed by a known malicious host.

Default severity: High

- **Data source:** VPC flow logs

This finding informs you that an EMR related sensitive port on the listed EC2 instance that is part of a cluster in your AWS environment is not blocked by a security group, an access control list (ACL), or an on-host firewall such as Linux IPTables, and that known scanners on the internet are actively probing it. Ports that can trigger this finding, such as port 8088 (YARN Web UI port), could potentially be used for remote code execution.

Remediation recommendations:

You should block open access to ports on clusters from the internet and restrict access only to specific IP addresses that require access to these ports. For more information see, [Security Groups for EMR Clusters](p. 257).

Recon:EC2/PortProbeUnprotectedPort

An EC2 instance has an unprotected port that is being probed by a known malicious host.

Default severity: Low

- **Note**
 This finding's default severity is Low. However, if the port being probed is used by (9200 or 9300), the finding's severity is High.

- **Data source:** VPC flow logs

This finding informs you that a port on the listed EC2 instance in your AWS environment is not blocked by a security group, access control list (ACL), or an on-host firewall such as Linux IPTables, and that known scanners on the internet are actively probing it.

If the identified unprotected port is 22 or 3389 and you are using these ports to connect to your instance, you can still limit exposure by allowing access to these ports only to the IP addresses from your corporate network IP address space. To restrict access to port 22 on Linux, see [Authorizing Inbound Traffic for Your Linux Instances](p. 257). To restrict access to port 3389 on Windows, see [Authorizing Inbound Traffic for Your Windows Instances](p. 257).

Remediation recommendations:
There may be cases in which instances are intentionally exposed, for example if they are hosting web servers. If this is the case in your AWS environment, we recommend that you set up a suppression rule for this finding. The suppression rule should consist of two filter criteria. The first criteria should use the Finding type attribute with a value of Recon:EC2/PortProbeUnprotectedPort. The second filter criteria should match the instance or instances that serve as a bastion host. You can use either the Instance image ID attribute or the Tag value attribute, depending on which criteria is identifiable with the instances that host these tools. For more information about creating suppression rules see Suppression rules (p. 226).

If this activity is unexpected, your instance is likely compromised, see Remediating a compromised Amazon EC2 instance (p. 257).

Recon:EC2/Portscan

An EC2 instance is performing outbound port scans to a remote host.

Default severity: Medium

- Data source: VPC flow logs

This finding informs you that the listed EC2 instance in your AWS environment is engaged in a possible port scan attack because it is trying to connect to multiple ports over a short period of time. The purpose of a port scan attack is to locate open ports to discover which services the machine is running and to identify its operating system.

Remediation recommendations:

This finding can be a false positive when vulnerability assessment applications are deployed on EC2 instances in your environment because these applications conduct port scans to alert you about misconfigured open ports. If this is the case in your AWS environment, we recommend that you set up a suppression rule for this finding. The suppression rule should consist of two filter criteria. The first criteria should use the Finding type attribute with a value of Recon:EC2/Portscan. The second filter criteria should match the instance or instances that host these vulnerability assessment tools. You can use either the Instance image ID attribute or the Tag value attribute depending on which criteria are identifiable with the instances that host these tools. For more information about creating suppression rules see Suppression rules (p. 226).

If this activity is unexpected, your instance is likely compromised, see Remediating a compromised Amazon EC2 instance (p. 257).

Trojan:EC2/BlackholeTraffic

An EC2 instance is attempting to communicate with an IP address of a remote host that is a known black hole.

Default severity: Medium

- Data source: VPC flow logs

This finding informs you the listed EC2 instance in your AWS environment might be compromised because it is trying to communicate with an IP address of a black hole (or sink hole). Black holes are
places in the network where incoming or outgoing traffic is silently discarded without informing the source that the data didn't reach its intended recipient. A black hole IP address specifies a host machine that is not running or an address to which no host has been assigned.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

Trojan:EC2/BlackholeTraffic!DNS

An EC2 instance is querying a domain name that is being redirected to a black hole IP address.

Default severity: Medium

- **Data source:** DNS logs

This finding informs you the listed EC2 instance in your AWS environment might be compromised because it is querying a domain name that is being redirected to a black hole IP address. Black holes are places in the network where incoming or outgoing traffic is silently discarded without informing the source that the data didn't reach its intended recipient.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

Trojan:EC2/DGADomainRequest.B

An EC2 instance is querying algorithmically generated domains. Such domains are commonly used by malware and could be an indication of a compromised EC2 instance.

Default severity: High

- **Data source:** DNS logs

This finding informs you that the listed EC2 instance in your AWS environment is trying to query domain generation algorithm (DGA) domains. Your EC2 instance might be compromised.

DGAs are used to periodically generate a large number of domain names that can be used as rendezvous points with their command and control (C&C) servers. Command and control servers are computers that issue commands to members of a botnet, which is a collection of internet-connected devices that are infected and controlled by a common type of malware. The large number of potential rendezvous points makes it difficult to effectively shut down botnets because infected computers attempt to contact some of these domain names every day to receive updates or commands.

Note

This finding is based on analysis of domain names using advanced heuristics and may identify new DGA domains that are not present in threat intelligence feeds.
Remediation recommendations:
If this activity is unexpected, your instance may be compromised. For more information, see [Remediating a compromised Amazon EC2 instance](p. 257).

Trojan:EC2/DGADomainRequest.C!DNS

An EC2 instance is querying algorithmically generated domains. Such domains are commonly used by malware and could be an indication of a compromised EC2 instance.

Default severity: High

- **Data source:** DNS logs

This finding informs you that the listed EC2 instance in your AWS environment is trying to query domain generation algorithm (DGA) domains. Your EC2 instance might be compromised.

DGAs are used to periodically generate a large number of domain names that can be used as rendezvous points with their command and control (C&C) servers. Command and control servers are computers that issue commands to members of a botnet, which is a collection of internet-connected devices that are infected and controlled by a common type of malware. The large number of potential rendezvous points makes it difficult to effectively shut down botnets because infected computers attempt to contact some of these domain names every day to receive updates or commands.

Note
This finding is based on known DGA domains from GuardDuty's threat intelligence feeds.

Remediation recommendations:
If this activity is unexpected, your instance may be compromised. For more information, see [Remediating a compromised Amazon EC2 instance](p. 257).

Trojan:EC2/DNSDataExfiltration

An EC2 instance is exfiltrating data through DNS queries.

Default severity: High

- **Data source:** DNS logs

This finding informs you that the listed EC2 instance in your AWS environment is running malware that uses DNS queries for outbound data transfers. This type of data transfer is indicative of a compromised instance and could result in the exfiltration of data. DNS traffic is not typically blocked by firewalls. For example, malware in a compromised EC2 instance can encode data, (such as your credit card number), into a DNS query and send it to a remote DNS server that is controlled by an attacker.

Remediation recommendations:
If this activity is unexpected, your instance may be compromised. For more information, see [Remediating a compromised Amazon EC2 instance](p. 257).
Trojan:EC2/DriveBySourceTraffic!DNS

An EC2 instance is querying a domain name of a remote host that is a known source of Drive-By download attacks.

Default severity: High

- Data source: DNS logs

This finding informs you that the listed EC2 instance in your AWS environment might be compromised because it is querying a domain name of a remote host that is a known source of drive-by download attacks. These are unintended downloads of computer software from the internet that can trigger an automatic installation of a virus, spyware, or malware.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

Trojan:EC2/DropPoint

An EC2 instance is attempting to communicate with an IP address of a remote host that is known to hold credentials and other stolen data captured by malware.

Default severity: Medium

- Data source: VPC flow logs

This finding informs you that an EC2 instance in your AWS environment is trying to communicate with an IP address of a remote host that is known to hold credentials and other stolen data captured by malware.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

Trojan:EC2/DropPoint!DNS

An EC2 instance is querying a domain name of a remote host that is known to hold credentials and other stolen data captured by malware.

Default severity: Medium

- Data source: DNS logs

This finding informs you that an EC2 instance in your AWS environment is querying a domain name of a remote host that is known to hold credentials and other stolen data captured by malware.
Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

Trojan:EC2/PhishingDomainRequest!DNS

An EC2 instance is querying domains involved in phishing attacks. Your EC2 instance might be compromised.

Default severity: High

- Data source: DNS logs

This finding informs you that there is an EC2 instance in your AWS environment that is trying to query a domain involved in phishing attacks. Phishing domains are set up by someone posing as a legitimate institution in order to induce individuals to provide sensitive data, such as personally identifiable information, banking and credit card details, and passwords. Your EC2 instance may be trying to retrieve sensitive data stored on a phishing website, or it may be attempting to set up a phishing website. Your EC2 instance might be compromised.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

UnauthorizedAccess:EC2/MaliciousIPCaller.Custom

An EC2 instance is making connections to an IP address on a custom threat list.

Default severity: Medium

- Data source: VPC flow logs

This finding informs you that an EC2 instance in your AWS environment is communicating with an IP address included on a threat list that you uploaded. In GuardDuty, a threat list consists of known malicious IP addresses. GuardDuty generates findings based on uploaded threat lists. The threat list used to generate this finding will be listed in the finding's details.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

UnauthorizedAccess:EC2/MetadataDNSRebind

An EC2 instance is performing DNS lookups that resolve to the instance metadata service.

Default severity: High
UnauthorizedAccess:EC2/MetaDataDNSRebind

This finding informs you that an EC2 instance in your AWS environment is querying a domain that resolves to the EC2 metadata IP address (169.254.169.254). A DNS query of this kind may indicate that the instance is a target of a DNS rebinding technique. This technique can be used to obtain metadata from an EC2 instance, including the IAM credentials associated with the instance.

DNS rebinding involves tricking an application running on the EC2 instance to load return data from a URL, where the domain name in the URL resolves to the EC2 metadata IP address (169.254.169.254). This causes the application to access EC2 metadata and possibly make it available to the attacker.

It is possible to access EC2 metadata using DNS rebinding only if the EC2 instance is running a vulnerable application that allows injection of URLs, or if someone accesses the URL in a web browser running on the EC2 instance.

Remediation recommendations:

In response to this finding, you should evaluate if there is a vulnerable application running on the EC2 instance, or if someone used a browser to access the domain identified in the finding. If the root cause is a vulnerable application, you should fix the vulnerability. If someone browsed the identified domain, you should block the domain or prevent users from accessing it. If you determine this finding was related to either case above, revoke the session associated with the EC2 instance.

Some AWS customers intentionally map the metadata IP address to a domain name on their authoritative DNS servers. If this is the case in your environment, we recommend that you set up a suppression rule for this finding. The suppression rule should consist of two filter criteria. The first criteria should use the Finding type attribute with a value of UnauthorizedAccess:EC2/MetaDataDNSRebind. The second filter criteria should be DNS request domain and the value should match the domain you have mapped to the metadata IP address (169.254.169.254). For more information on creating suppression rules see Suppression rules (p. 226).

UnauthorizedAccess:EC2/RDPBruteForce

An EC2 instance has been involved in RDP brute force attacks.

Default severity: Low*

Note
This finding's severity is low if your EC2 instance was the target of a brute force attack. This finding's severity is high if your EC2 instance is the actor being used to perform the brute force attack.

Data source: VPC flow logs

This finding informs you that an EC2 instance in your AWS environment was involved in a brute force attack aimed at obtaining passwords to RDP services on Windows-based systems. This can indicate unauthorized access to your AWS resources.

Remediation recommendations:

If your instance’s Resource Role is ACTOR, this indicates your instance has been used to perform RDP brute force attacks. Unless this instance has a legitimate reason to be contacting the IP address listed as the Target, it is recommended that you assume your instance has been compromised and take the actions listed in Remediating a compromised Amazon EC2 instance (p. 257).
UnauthorizedAccess:EC2/SSHBruteForce

An EC2 instance has been involved in SSH brute force attacks.

Default severity: Low*

Note
This finding's severity is low if a brute force attack is aimed at one of your EC2 instances. This finding's severity is high if your EC2 instance is being used to perform the brute force attack.

• Data source: VPC flow logs

This finding informs you that an EC2 instance in your AWS environment was involved in a brute force attack aimed at obtaining passwords to SSH services on Linux-based systems. This can indicate unauthorized access to your AWS resources.

Note
This finding is generated only through monitoring traffic on port 22. If your SSH services are configured to use other ports, this finding is not generated.

Remediation recommendations:

If the target of the brute force attempt is a bastion host, this may represent expected behavior for your AWS environment. If this is the case, we recommend that you set up a suppression rule for this finding. The suppression rule should consist of two filter criteria. The first criteria should use the Finding type attribute with a value of UnauthorizedAccess:EC2/SSHBruteForce. The second filter criteria should match the instance or instances that serve as a bastion host. You can use either the Instance image ID attribute or the Tag value attribute depending on which criteria is identifiable with the instances that host these tools. For more information about creating suppression rules see Suppression rules (p. 226).

If this activity is not expected for your environment and your instance's Resource Role is TARGET, this finding can be remediated by securing your SSH port to only trusted IPs through Security Groups, ACLs, or firewalls. For more information, see Tips for securing your EC2 instances (Linux).

If your instance's Resource Role is ACTOR, this indicates the instance has been used to perform SSH brute force attacks. Unless this instance has a legitimate reason to be contacting the IP address listed as the Target, it is recommended that you assume your instance has been compromised and take the actions listed in Remediating a compromised Amazon EC2 instance (p. 257).

UnauthorizedAccess:EC2/TorClient

Your EC2 instance is making connections to a Tor Guard or an Authority node.

Default severity: High

• Data source: VPC flow logs
This finding informs you that an EC2 instance in your AWS environment is making connections to a Tor Guard or an Authority node. Tor is software for enabling anonymous communication. Tor Guards and Authority nodes act as initial gateways into a Tor network. This traffic can indicate that this EC2 instance has been compromised and is acting as a client on a Tor network. This finding may indicate unauthorized access to your AWS resources with the intent of hiding the attacker’s true identity.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

UnauthorizedAccess:EC2/TorRelay

Your EC2 instance is making connections to a Tor network as a Tor relay.

Default severity: High

- Data source: VPC flow logs

This finding informs you that an EC2 instance in your AWS environment is making connections to a Tor network in a manner that suggests that it’s acting as a Tor relay. Tor is software for enabling anonymous communication. Tor increases anonymity of communication by forwarding the client’s possibly illicit traffic from one Tor relay to another.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

EKS Runtime Monitoring finding types

Amazon GuardDuty generates the following EKS Runtime Monitoring findings to indicate potential threats based on the operating system-level behavior from EC2 hosts and containers in your Amazon EKS clusters.

Note
Runtime Monitoring finding types are based on the runtime logs collected from hosts. The logs contain fields such as file paths that may be controlled by a malicious actor. These fields are also included in GuardDuty findings to provide runtime context. When processing Runtime Monitoring findings outside of GuardDuty console, you must sanitize finding fields. For example, you can HTML encode finding fields when displaying them on a webpage.

Topics
- CryptoCurrency:Runtime/BitcoinTool.B (p. 137)
- Backdoor:Runtime/C&CActivity.B (p. 138)
- UnauthorizedAccess:Runtime/TorRelay (p. 138)
- UnauthorizedAccess:Runtime/TorClient (p. 139)
- Trojan:Runtime/BlackholeTraffic (p. 139)
- Trojan:Runtime/DropPoint (p. 140)
- CryptoCurrency:Runtime/BitcoinTool.BIDNS (p. 140)
CryptoCurrency:Runtime/BitcoinTool.B

An Amazon EC2 instance or a container is querying an IP address that is associated with a cryptocurrency-related activity.

Default severity: High

- Feature: Runtime Monitoring

This finding informs you that the listed EC2 instance or a container in your AWS environment is querying an IP Address that is associated with a cryptocurrency-related activity. Threat actors may seek to take control over compute resources to maliciously repurpose them for unauthorized cryptocurrency mining.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:

If you use this EC2 instance or a container to mine or manage cryptocurrency, or either of these is otherwise involved in blockchain activity, the CryptoCurrency:Runtime/BitcoinTool.B finding could represent expected activity for your environment. If this is the case in your AWS environment, we recommend that you set up a suppression rule for this finding. The suppression rule should consist
of two filter criteria. The first filter criterion should use the **Finding type** attribute with a value of **CryptoCurrency:Runtime/BitcoinTool.B**. The second filter criterion should be the **Instance ID** of the instance or the **Container Image ID** of the container involved in cryptocurrency or blockchain-related activity. For more information, see [Suppression rules](#).

If this activity is unexpected, your resource might have been compromised. For more information, see [Remediating EKS Runtime Monitoring findings](p. 265).

Backdoor:Runtime/C&CActivity.B

An Amazon EC2 instance or a container is querying an IP that is associated with a known command and control server.

Default severity: High

- **Feature:** Runtime Monitoring

This finding informs you that the listed EC2 instance or a container within your AWS environment is querying an IP associated with a known command and control (C&C) server. The listed instance or container might be potentially compromised. Command and control servers are computers that issue commands to members of a botnet.

A botnet is a collection of internet-connected devices that might include PCs, servers, mobile devices, and Internet of Things devices, that are infected and controlled by a common type of malware. Botnets are often used to distribute malware and gather misappropriated information, such as credit card numbers. Depending on the purpose and structure of the botnet, the C&C server might also issue commands to begin a distributed denial of service (DDoS) attack.

Note

If the IP queried is log4j-related, then the fields of the associated finding will include the following values:

- service.additionalInfo.threatListName = Amazon
- service.additionalInfo.threatName = Log4j Related

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view **Resource type** in the findings panel in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource might have been compromised. For more information, see [Remediating EKS Runtime Monitoring findings](p. 265).

UnauthorizedAccess:Runtime/TorRelay

Your Amazon EC2 instance or a container is making connections to a Tor network as a Tor relay.

Default severity: High

- **Feature:** Runtime Monitoring
UnauthorizedAccess:Runtime/TorClient

This finding informs you that an EC2 instance or a container in your AWS environment is making connections to a Tor network in a manner that suggests that it's acting as a Tor relay. Tor is software for enabling anonymous communication. Tor increases anonymity of communication by forwarding the client's possibly illicit traffic from one Tor relay to another.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

UnauthorizedAccess:Runtime/TorClient

Your Amazon EC2 instance or a container is making connections to a Tor Guard or an Authority node.

Default severity: High

- Feature: Runtime Monitoring

Trojan:Runtime/BlackholeTraffic

An Amazon EC2 instance or a container is attempting to communicate with an IP address of a remote host that is a known black hole.

Default severity: Medium

- Feature: Runtime Monitoring
This finding informs you the listed EC2 instance or a container in your AWS environment might be compromised because it is trying to communicate with an IP address of a black hole (or sink hole). Black holes are places in the network where incoming or outgoing traffic is silently discarded without informing the source that the data didn't reach its intended recipient. A black hole IP address specifies a host machine that is not running or an address to which no host has been assigned.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

Trojan:Runtime/DropPoint

An Amazon EC2 instance or a container is attempting to communicate with an IP address of a remote host that is known to hold credentials and other stolen data captured by malware.

Default severity: Medium

- **Feature:** Runtime Monitoring

This finding informs you that an EC2 instance or a container in your AWS environment is trying to communicate with an IP address of a remote host that is known to hold credentials and other stolen data captured by malware.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

CryptoCurrency:Runtime/BitcoinTool.B!DNS

An Amazon EC2 instance or a container is querying a domain name that is associated with a cryptocurrency activity.

Default severity: High

- **Feature:** Runtime Monitoring

This finding informs you that the listed EC2 instance or a container in your AWS environment is querying a domain name that is associated with Bitcoin or other cryptocurrency-related activity. Threat actors may seek to take control over the compute resources in order to maliciously repurpose them for unauthorized cryptocurrency mining.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.
Remediation recommendations:

If you use this EC2 instance or container to mine or manage cryptocurrency, or either of these is otherwise involved in blockchain activity, the CryptoCurrency:Runtime/BitcoinTool.B!DNS finding could be an expected activity for your environment. If this is the case in your AWS environment, we recommend that you set up a suppression rule for this finding. The suppression rule should consist of two filter criterion. The first criteria should use the Finding type attribute with a value of CryptoCurrency:Runtime/BitcoinTool.B!DNS. The second filter criteria should be the Instance ID of the instance or the Container Image ID of the container involved in cryptocurrency or blockchain activity. For more information, see Suppression Rules.

If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

Backdoor:Runtime/C&CActivity.B!DNS

An Amazon EC2 instance or a container is querying a domain name that is associated with a known command and control server.

Default severity: High

- Feature: Runtime Monitoring

This finding informs you that the listed EC2 instance or the container within your AWS environment is querying a domain name associated with a known command and control (C&C) server. The listed EC2 instance or the container might be compromised. Command and control servers are computers that issue commands to members of a botnet.

A botnet is a collection of internet-connected devices which might include PCs, servers, mobile devices, and Internet of Things devices, that are infected and controlled by a common type of malware. Botnets are often used to distribute malware and gather misappropriated information, such as credit card numbers. Depending on the purpose and structure of the botnet, the C&C server might also issue commands to begin a distributed denial of service (DDoS) attack.

Note
If the domain name queried is log4j-related, then the fields of the associated finding will include the following values:

- service.additionalInfo.threatListName = Amazon
- service.additionalInfo.threatName = Log4j Related

Note
To test how GuardDuty generates this finding type, you can make a DNS request from your instance (using `dig` for Linux or `nslookup` for Windows) against a test domain `guarddutyc2activityb.com`.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).
Trojan:Runtime/BlackholeTraffic!DNS

An Amazon EC2 instance or a container is querying a domain name that is being redirected to a black hole IP address.

Default severity: Medium

- **Feature:** Runtime Monitoring

This finding informs you the listed EC2 instance or the container in your AWS environment might be compromised because it is querying a domain name that is being redirected to a black hole IP address. Black holes are places in the network where incoming or outgoing traffic is silently discarded without informing the source that the data didn't reach its intended recipient.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view **Resource type** in the findings panel in the GuardDuty console.

If this activity is unexpected, your resource might have been compromised. For more information, see [Remediating EKS Runtime Monitoring findings](p. 265).

Trojan:Runtime/DropPoint!DNS

An Amazon EC2 instance or a container is querying a domain name of a remote host that is known to hold credentials and other stolen data captured by malware.

Default severity: Medium

- **Feature:** Runtime Monitoring

This finding informs you that an EC2 instance or a container in your AWS environment is querying a domain name of a remote host that is known to hold credentials and other stolen data captured by malware.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view **Resource type** in the findings panel in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource might have been compromised. For more information, see [Remediating EKS Runtime Monitoring findings](p. 265).

Trojan:Runtime/DGADomainRequest.C!DNS

An Amazon EC2 instance or a container is querying algorithmically generated domains. Such domains are commonly used by malware and could be an indication of a compromised EC2 instance or a container.

Default severity: High
Feature: Runtime Monitoring

This finding informs you that the listed EC2 instance or the container in your AWS environment is trying to query domain generation algorithm (DGA) domains. Your resource might have been compromised.

DGAs are used to periodically generate a large number of domain names that can be used as rendezvous points with their command and control (C&C) servers. Command and control servers are computers that issue commands to members of a botnet, which is a collection of internet-connected devices that are infected and controlled by a common type of malware. The large number of potential rendezvous points makes it difficult to effectively shut down botnets because infected computers attempt to contact some of these domain names every day to receive updates or commands.

Note
This finding is based on known DGA domains from GuardDuty threat intelligence feeds.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:
If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

Trojan:Runtime/DriveBySourceTraffic!DNS

An Amazon EC2 instance or a container is querying a domain name of a remote host that is a known source of Drive-By download attacks.

Default severity: High

Feature: Runtime Monitoring

This finding informs you that the listed EC2 instance or the container in your AWS environment might be compromised because it is querying a domain name of a remote host that is a known source of drive-by download attacks. These are unintended downloads of computer software from the internet that can initiate an automatic installation of a virus, spyware, or malware.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:
If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

Trojan:Runtime/PhishingDomainRequest!DNS

An Amazon EC2 instance or a container is querying domains involved in phishing attacks.

Default severity: High

Feature: Runtime Monitoring
This finding informs you that there is an EC2 instance or a container in your AWS environment that is trying to query a domain involved in phishing attacks. Phishing domains are set up by someone posing as a legitimate institution in order to induce individuals to provide sensitive data, such as personally identifiable information, banking and credit card details, and passwords. Your EC2 instance or the container might be trying to retrieve sensitive data stored on a phishing website, or it may be attempting to set up a phishing website. Your EC2 instance or the container might be compromised.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

Impact:Runtime/AbusedDomainRequest.Reputation

An Amazon EC2 instance or a container is querying a low reputation domain name that is associated with known abused domains.

Default severity: Medium

- Feature: Runtime Monitoring

This finding informs you that the listed EC2 instance or the container within your AWS environment is querying a low reputation domain name associated with known abused domains or IP addresses. Examples of abused domains are top level domain names (TLDs) and second-level domain names (2LDs) providing free subdomain registrations as well as dynamic DNS providers. Threat actors tend to use these services to register domains for free or at low costs. Low reputation domains in this category may also be expired domains resolving to a registrar's parking IP address and therefore may no longer be active. A parking IP is where a registrar directs traffic for domains that have not been linked to any service. The listed Amazon EC2 instance or the container may be compromised as threat actors commonly use these registrar's or services for C&C and malware distribution.

Low reputation domains are based on a reputation score model. This model evaluates and ranks the characteristics of a domain to determine its likelihood of being malicious.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

Impact:Runtime/BitcoinDomainRequest.Reputation

An Amazon EC2 instance or a container is querying a low reputation domain name that is associated with cryptocurrency-related activity.
Default severity: High

- **Feature:** Runtime Monitoring

This finding informs you that the listed EC2 instance or the container within your AWS environment is querying a low reputation domain name associated with Bitcoin or other cryptocurrency-related activity. Threat actors may seek to take control over compute resources to maliciously repurpose them for unauthorized cryptocurrency mining.

Low reputation domains are based on a reputation score model. This model evaluates and ranks the characteristics of a domain to determine its likelihood of being malicious.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view **Resource type** in the findings panel in the GuardDuty console.

Remediation recommendations:

If you use this EC2 instance or the container to mine or manage cryptocurrency, or if these resources are otherwise involved in blockchain activity, this finding could represent expected activity for your environment. If this is the case in your AWS environment, we recommend that you set up a suppression rule for this finding. The suppression rule should consist of two filter criteria. The first filter criterion should use the **Finding type** attribute with a value of Impact:Runtime/BitcoinDomainRequest.Reputation. The second filter criterion should be the **Instance ID** of the instance or the **Container Image ID** of the container is involved in cryptocurrency or blockchain-related activity. For more information, see [Suppression rules](#).

If this activity is unexpected, your resource might have been compromised. For more information, see [Remediating EKS Runtime Monitoring findings](#) (p. 265).

Impact:Runtime/MaliciousDomainRequest.Reputation

An Amazon EC2 instance or a container is querying a low reputation domain that is associated with known malicious domains.

Default severity: High

- **Feature:** Runtime Monitoring

This finding informs you that the listed EC2 instance or the container within your AWS environment is querying a low reputation domain name associated with known malicious domains or IP addresses. For example, domains may be associated with a known sinkhole IP address. Sinkholed domains are domains that were previously controlled by a threat actor, and requests made to them can indicate the instance is compromised. These domains may also be correlated with known malicious campaigns or domain generation algorithms.

Low reputation domains are based on a reputation score model. This model evaluates and ranks the characteristics of a domain to determine its likelihood of being malicious.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view **Resource type** in the findings panel in the GuardDuty console.
Remediation recommendations:
If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

Impact: Runtime/SuspiciousDomainRequest.Reputation

An Amazon EC2 instance or a container is querying a low reputation domain name that is suspicious in nature due to its age, or low popularity.

Default severity: Low
- Feature: Runtime Monitoring

This finding informs you that the listed EC2 instance or the container within your AWS environment is querying a low reputation domain name that is suspected of being malicious. noticed characteristics of this domain that were consistent with previously observed malicious domains, however, our reputation model was unable to definitively relate it to a known threat. These domains are typically newly observed or receive a low amount of traffic.

Low reputation domains are based on a reputation score model. This model evaluates and ranks the characteristics of a domain to determine its likelihood of being malicious.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:
If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

UnauthorizedAccess: Runtime/MetadataDNSRebind

An Amazon EC2 instance or a container is performing DNS lookups that resolve to the instance metadata service.

Default severity: High
- Feature: Runtime Monitoring

This finding informs you that an EC2 instance or a container in your AWS environment is querying a domain that resolves to the EC2 metadata IP address (169.254.169.254). A DNS query of this kind may indicate that the instance is a target of a DNS rebinding technique. This technique can be used to obtain metadata from an EC2 instance, including the IAM credentials associated with the instance.

DNS rebinding involves tricking an application running on the EC2 instance to load return data from a URL, where the domain name in the URL resolves to the EC2 metadata IP address (169.254.169.254). This causes the application to access EC2 metadata and possibly make it available to the attacker.
It is possible to access EC2 metadata using DNS rebinding only if the EC2 instance is running a vulnerable application that allows injection of URLs, or if someone accesses the URL in a web browser running on the EC2 instance.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:

In response to this finding, you should evaluate if there is a vulnerable application running on the EC2 instance or on the container, or if someone used a browser to access the domain identified in the finding. If the root cause is a vulnerable application, fix the vulnerability. If someone browsed the identified domain, block the domain or prevent users from accessing it. If you determine this finding was related to either case above, Revoke the session associated with the EC2 instance.

Some AWS customers intentionally map the metadata IP address to a domain name on their authoritative DNS servers. If this is the case in your environment, we recommend that you set up a suppression rule for this finding. The suppression rule should consist of two filter criteria. The first filter criterion should use the Finding type attribute with a value of UnauthorizedAccess:Runtime/MetaDataDNSRebind. The second filter criterion should be DNS request domain or the Container Image ID of the container. The DNS request domain value should match the domain you have mapped to the metadata IP address (169.254.169.254). For information about creating suppression rules, see Suppression rules.

If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

Execution:Runtime/NewBinaryExecuted

A newly created or recently modified binary file in a container has been executed.

Default severity: Medium

- Feature: Runtime Monitoring

This finding informs you that a newly created or a recently modified binary file in a container was executed. It is the best practice to keep containers immutable at runtime, and binary files, scripts, or libraries should not be created or modified during the lifetime of the container. It is highly suspicious that the newly created binaries were executed in the container environment. This behavior is indicative of a malicious actor that has gained access to the workload, and has downloaded and executed malware or other software as part of the potential compromise.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

PrivilegeEscalation:Runtime/DockerSocketAccessed

A process inside a container is communicating with Docker daemon using Docker socket.
Default severity: Medium

- Feature: Runtime Monitoring

The Docker socket is a Unix Domain Socket that Docker daemon (dockerd) uses to communicate with its clients. A client can perform various actions, such as creating containers by communicating with Docker daemon through the Docker socket. It is suspicious for a container process to access the Docker socket. A container process can escape the container and get a host-level access by communicating with the Docker socket and creating a privileged container.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

PrivilegeEscalation:Runtime/RuncContainerEscape

An attempt to gain host access of a container was detected.

Default severity: High

- Feature: Runtime Monitoring

This finding informs you that the host runC binary file has been potentially overwritten. runC is the low-level container runtime that high-level container runtimes, such as Docker and Containerd, use to spawn and run containers. runC is always executed with root privileges because it needs to perform a low-level task of creating a container. A well-known vulnerability (CVE-2019-5736 Detail) in the past allowed malicious containers to override the host's runC binary file and gained root-level access to the host when the modified runC binary was executed.

This finding may also indicate that a malicious actor has potentially executed a command in one of the following two types of containers:

- A new container with an attacker-controlled image.
- An existing container that was previously accessible to the attacker with write permissions.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

PrivilegeEscalation:Runtime/CGroupsReleaseAgentModified

A container escape through runC was detected in an Amazon EKS cluster.
This finding informs you that an attempt to modify a control group (cgroup) release agent file has been detected. Linux uses control groups (cgroups) to limit, account for, and isolate the resource usage of a collection of processes. Each cgroup has a release agent file (release_agent), a script that Linux executes when any process inside the cgroup terminates. The release agent file is always executed at the host level. A threat actor inside a container can escape to the host by writing arbitrary commands to the release agent file that belongs to a cgroup. When a process inside that cgroup terminates, the commands written by the actor get executed.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

A process injection using proc filesystem was detected in a container or an Amazon EC2 instance.

Default severity: High

- Feature: Runtime Monitoring

Process injection is a technique that threat actors use to inject code into processes to evade defenses and potentially elevate privileges. The proc filesystem (procfs) is a special filesystem in Linux that presents the virtual memory of process as a file. The path of that file is /proc/PID/mem, where PID is the unique ID of the process. A threat actor can write to this file to inject code into the process. This finding identifies potential attempts to write to this file.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource type might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

A process injection using ptrace system call was detected in a container or an Amazon EC2 instance.

Default severity: Medium

- Feature: Runtime Monitoring
Process injection is a technique that threat actors use to inject code into processes to evade defenses and potentially elevate privileges. A process can use ptrace system call to inject code into another process. This finding identifies a potential attempt to inject code into a process using the ptrace system call.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource type might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

DefenseEvasion:Runtime/ProcessInjection.VirtualMemoryWrite

A process injection through a direct write to virtual memory was detected in a container or an Amazon EC2 instance.

Default severity: High

• Feature: Runtime Monitoring

Process injection is a technique that threat actors use to inject code into processes to evade defenses and potentially elevate privileges. A process can use a system call such as process_vm_writev to directly inject code into another process's virtual memory. This finding identifies a potential attempt to inject code into a process using a system call for writing to the virtual memory of the process.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource type might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

Execution:Runtime/ReverseShell

A process in a container or an Amazon EC2 instance has created a reverse shell.

Default severity: High

• Feature: Runtime Monitoring

A reverse shell is a shell session created on a connection that is initiated from the target host to the actor's host. This is opposite to a normal shell that is initiated from the actor's host to the target's host. Threat actors create a reverse shell to execute commands on the target after gaining initial access to the target. This finding identifies a potential attempt to create a reverse shell.

Remediation recommendations:

If this activity is unexpected, your resource type might have been compromised.
DefenseEvasion:Runtime/FilelessExecution

A process in a container or an Amazon EC2 instance is executing code from memory.

Default severity: Medium

- **Feature:** Runtime Monitoring

This finding informs you when a process is executed using an in-memory executable file on disk. This is a common defense evasion technique that avoids writing the malicious executable to the disk to evade file system scanning-based detection. Although this technique is used by malware, it also has some legitimate use cases. One of the examples is a just-in-time (JIT) compiler that writes compiled code to memory and executes it from memory.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

Impact:Runtime/CryptoMinerExecuted

A container or an Amazon EC2 instance is executing a binary file that is associated with a cryptocurrency mining activity.

Default severity: High

- **Feature:** Runtime Monitoring

This finding informs you that a container or an EC2 instance in your AWS environment is executing a binary file that is associated with a cryptocurrency mining activity. Threat actors may seek to take control over compute resources to maliciously repurpose them for unauthorized cryptocurrency mining.

The runtime agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the findings panel in the GuardDuty console.

Remediation recommendations:

The runtime agent monitors events from multiple resources. To identify the affected resource, view Resource type in the findings details in the GuardDuty console and see Remediating EKS Runtime Monitoring findings (p. 265).

Execution:Runtime/NewLibraryLoaded

A newly created or recently modified library was loaded by a process inside a container.

Default severity: Medium
PrivilegeEscalation:Runtime/ContainerMountsHostDirectory

A process inside a container mounted a host filesystem at runtime.

Default severity: Medium

- Feature: Runtime Monitoring

Multiple container escape techniques involve mounting a host filesystem inside a container at runtime. This finding informs you that a process inside a container potentially attempted to mount a host filesystem, which may indicate an attempt to escape to the host.

The runtime agent monitors events from multiple resources. To identify the affected resource, view Resource type in the findings details in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

PrivilegeEscalation:Runtime/UserfaultfdUsage

A process used userfaultfd system calls to handle page faults in user space.

Default severity: Medium

- Feature: Runtime Monitoring

Typically, page faults are handled by the kernel in kernel space. However, userfaultfd system call allows a process to handle page faults on a filesystem in user space. This is a useful feature that enables
implementation of user-space filesystems. On the other hand, it can also be used by a potentially malicious process to interrupt kernel from user space. Interrupting kernel by using userfaultfd system call is a common exploitation technique to extend race windows during exploitation of kernel race conditions. Use of userfaultfd may indicate suspicious activity on the Amazon Elastic Compute Cloud (Amazon EC2) instance.

The runtime agent monitors events from multiple resources. To identify the affected resource, view Resource type in the findings details in the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your resource might have been compromised. For more information, see Remediating EKS Runtime Monitoring findings (p. 265).

GuardDuty IAM finding types

The following findings are specific to IAM entities and access keys and always have a Resource Type of AccessKey. The severity and details of the findings differ based on the finding type.

The findings listed here include the data sources and models used to generate that finding type. For more information, see Foundational data sources (p. 15).

For all IAM-related findings, we recommend that you examine the entity in question and ensure that their permissions follow the best practice of least privilege. If the activity is unexpected, the credentials may be compromised. For information about remediating findings, see Remediating compromised AWS credentials (p. 259).

Topics

- CredentialAccess:IAMUser/AnomalousBehavior (p. 154)
- DefenseEvasion:IAMUser/AnomalousBehavior (p. 154)
- Discovery:IAMUser/AnomalousBehavior (p. 155)
- Exfiltration:IAMUser/AnomalousBehavior (p. 155)
- Impact:IAMUser/AnomalousBehavior (p. 156)
- InitialAccess:IAMUser/AnomalousBehavior (p. 156)
- PenTest:IAMUser/KaliLinux (p. 157)
- PenTest:IAMUser/ParrotLinux (p. 157)
- PenTest:IAMUser/PentooLinux (p. 157)
- Persistence:IAMUser/AnomalousBehavior (p. 158)
- Policy:IAMUser/RootCredentialUsage (p. 158)
- PrivilegeEscalation:IAMUser/AnomalousBehavior (p. 159)
- Recon:IAMUser/MaliciousIPCaller (p. 159)
- Recon:IAMUser/MaliciousIPCaller.Custom (p. 160)
- Recon:IAMUser/TorIPCaller (p. 160)
- Stealth:IAMUser/CloudTrailLoggingDisabled (p. 160)
- Stealth:IAMUser/PasswordPolicyChange (p. 161)
- UnauthorizedAccess:IAMUser/ConsoleLoginSuccess.B (p. 161)
- UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration.InsideAWS (p. 162)
- UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration.OutsideAWS (p. 163)
- UnauthorizedAccess:IAMUser/MaliciousIPCaller (p. 163)
- UnauthorizedAccess:IAMUser/MaliciousIPCaller.Custom (p. 164)
CredentialAccess:IAMUser/AnomalousBehavior

An API used to gain access to an AWS environment was invoked in an anomalous way.

Default severity: Medium

Data source: CloudTrail management event

This finding informs you that an anomalous API request was observed in your account. This finding may include a single API or a series of related API requests made in proximity by a single user identity. The API observed is commonly associated with the credential access stage of an attack when an adversary is attempting to collect passwords, usernames, and access keys for your environment. The APIs in this category are GetPasswordData, GetSecretValue, and GenerateDbAuthToken.

This API request was identified as anomalous by GuardDuty's anomaly detection machine learning (ML) model. The ML model evaluates all API requests in your account and identifies anomalous events that are associated with techniques used by adversaries. The ML model tracks various factors of the API request, such as, the user that made the request, the location the request was made from, and the specific API that was requested. Details on which factors of the API request are unusual for the user identity that invoked the request can be found in the finding details.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

DefenseEvasion:IAMUser/AnomalousBehavior

An API used to evade defensive measures was invoked in an anomalous way.

Default severity: Medium

Data source: CloudTrail management event

This finding informs you that an anomalous API request was observed in your account. This finding may include a single API or a series of related API requests made in proximity by a single user identity. The API observed is commonly associated with defense evasion tactics where an adversary is trying to cover their tracks and avoid detection. APIs in this category are typically delete, disable, or stop operations, such as, DeleteFlowLogs, DisableAlarmActions, or StopLogging.

This API request was identified as anomalous by GuardDuty's anomaly detection machine learning (ML) model. The ML model evaluates all API requests in your account and identifies anomalous events that are associated with techniques used by adversaries. The ML model tracks various factors of the API request, such as, the user that made the request, the location the request was made from, and the specific API that was requested. Details on which factors of the API request are unusual for the user identity that invoked the request can be found in the finding details.

Remediation recommendations:
Discovery:IAMUser/AnomalousBehavior

An API commonly used to discover resources was invoked in an anomalous way.

Default severity: Low

- **Data source:** CloudTrail management event

This finding informs you that an anomalous API request was observed in your account. This finding may include a single API or a series of related API requests made in proximity by a single user identity. The API observed is commonly associated with the discovery stage of an attack when an adversary is gathering information to determine if your AWS environment is susceptible to a broader attack. APIs in this category are typically get, describe, or list operations, such as, DescribeInstances, GetRolePolicy, or ListAccessKeys.

This API request was identified as anomalous by GuardDuty’s anomaly detection machine learning (ML) model. The ML model evaluates all API requests in your account and identifies anomalous events that are associated with techniques used by adversaries. The ML model tracks various factors of the API request, such as, the user that made the request, the location the request was made from, and the specific API that was requested. Details on which factors of the API request are unusual for the user identity that invoked the request can be found in the finding details.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

Exfiltration:IAMUser/AnomalousBehavior

An API commonly used to collect data from an AWS environment was invoked in an anomalous way.

Default severity: High

- **Data source:** CloudTrail management event

This finding informs you that an anomalous API request was observed in your account. This finding may include a single API or a series of related API requests made in proximity by a single user identity. The API observed is commonly associated with exfiltration tactics where an adversary is trying to collect data from your network using packaging and encryption to avoid detection. APIs for this finding type are management (control-plane) operations only and are typically related to S3, snapshots, and databases, such as, PutBucketReplication, CreateSnapshot, or RestoreDBInstanceFromDBSnapshot.

This API request was identified as anomalous by GuardDuty’s anomaly detection machine learning (ML) model. The ML model evaluates all API requests in your account and identifies anomalous events that are associated with techniques used by adversaries. The ML model tracks various factors of the API request, such as, the user that made the request, the location the request was made from, and the specific API
Impact: IAMUser/AnomalousBehavior

An API commonly used to tamper with data or processes in an AWS environment was invoked in an anomalous way.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

InitialAccess: IAMUser/AnomalousBehavior

An API commonly used to gain unauthorized access to an AWS environment was invoked in an anomalous way.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).
associated with techniques used by adversaries. The ML model tracks various factors of the API request, such as, the user that made the request, the location the request was made from, and the specific API that was requested. Details on which factors of the API request are unusual for the user identity that invoked the request can be found in the finding details.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

PenTest:IAMUser/KaliLinux

An API was invoked from a Kali Linux EC2 machine.

Default severity: Medium

• Data source: CloudTrail management event

This finding informs you that a machine running Kali Linux is making API calls using credentials that belong to the listed AWS account in your environment. Kali Linux is a popular penetration testing tool that security professionals use to identify weaknesses in EC2 instances that require patching. Attackers also use this tool to find EC2 configuration weaknesses and gain unauthorized access to your AWS environment.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

PenTest:IAMUser/ParrotLinux

An API was invoked from a Parrot Security Linux machine.

Default severity: Medium

• Data source: CloudTrail management event

This finding informs you that a machine running Parrot Security Linux is making API calls using credentials that belong to the listed AWS account in your environment. Parrot Security Linux is a popular penetration testing tool that security professionals use to identify weaknesses in EC2 instances that require patching. Attackers also use this tool to find EC2 configuration weaknesses and gain unauthorized access to your AWS environment.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

PenTest:IAMUser/PentooLinux

An API was invoked from a Pentoo Linux machine.

Default severity: Medium
This finding informs you that a machine running Pentoo Linux is making API calls using credentials that belong to the listed AWS account in your environment. Pentoo Linux is a popular penetration testing tool that security professionals use to identify weaknesses in EC2 instances that require patching. Attackers also use this tool to find EC2 configuration weaknesses and gain unauthorized access to your AWS environment.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

Persistence:IAMUser/AnomalousBehavior

An API commonly used to maintain unauthorized access to an AWS environment was invoked in an anomalous way.

Default severity: Medium

This finding informs you that an anomalous API request was observed in your account. This finding may include a single API or a series of related API requests made in proximity by a single user identity. The API observed is commonly associated with persistence tactics where an adversary has gained access to your environment and is attempting to maintain that access. APIs in this category are typically create, import, or modify operations, such as, CreateAccessKey, ImportKeyPair, or ModifyInstanceAttribute.

This API request was identified as anomalous by GuardDuty's anomaly detection machine learning (ML) model. The ML model evaluates all API requests in your account and identifies anomalous events that are associated with techniques used by adversaries. The ML model tracks various factors of the API request, such as, the user that made the request, the location the request was made from, and the specific API that was requested. Details on which factors of the API request are unusual for the user identity that invoked the request can be found in the finding details.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

Policy:IAMUser/RootCredentialUsage

An API was invoked using root user sign-in credentials.

Default severity: Low

This finding informs you that the root user sign-in credentials of the listed AWS account in your environment are being used to make requests to AWS services. It is recommended that users never use root user sign-in credentials to access AWS services. Instead, AWS services should be accessed using least
privilege temporary credentials from AWS Security Token Service (STS). For situations where AWS STS is not supported, IAM user credentials are recommended. For more information, see IAM Best Practices.

Note
If S3 threat detection is enabled for the account this finding may be generated in response to attempts to run S3 data plane operations on S3 resources using the root user sign-in credentials of the AWS account. The API call used will be listed in the finding details. If S3 threat detection is not enabled this finding can only be triggered by Event log APIs. For more information about S3 threat detection, see S3 protection.

Remediation recommendations:
If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

PrivilegeEscalation:IAMUser/AnomalousBehavior

An API commonly used to obtain high-level permissions to an AWS environment was invoked in an anomalous way.

Default severity: Medium

- **Data source**: CloudTrail management events

This finding informs you that an anomalous API request was observed in your account. This finding may include a single API or a series of related API requests made in proximity by a single user identity. The API observed is commonly associated with privilege escalation tactics where an adversary is attempting to gain higher-level permissions to an environment. APIs in this category typically involve operations that change IAM policies, roles, and users, such as, AssociateIamInstanceProfile, AddUserToGroup, or PutUserPolicy.

This API request was identified as anomalous by GuardDuty's anomaly detection machine learning (ML) model. The ML model evaluates all API requests in your account and identifies anomalous events that are associated with techniques used by adversaries. The ML model tracks various factors of the API request, such as, the user that made the request, the location the request was made from, and the specific API that was requested. Details on which factors of the API request are unusual for the user identity that invoked the request can be found in the finding details.

Remediation recommendations:
If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

Recon:IAMUser/MaliciousIPCaller

An API was invoked from a known malicious IP address.

Default severity: Medium

- **Data source**: CloudTrail management events

This finding informs you that an API operation that can list or describe AWS resources in an account within your environment was invoked from an IP address that is included on a threat list. An attacker
may use stolen credentials to perform this type of reconnaissance of your AWS resources in order to find more valuable credentials or determine the capabilities of the credentials they already have.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see [Remediating compromised AWS credentials](p. 259).

Recon:IAMUser/MaliciousIPCaller.Custom

An API was invoked from a known malicious IP address.

Default severity: Medium

- **Data source:** CloudTrail management events

This finding informs you that an API operation that can list or describe AWS resources in an account within your environment was invoked from an IP address that is included on a custom threat list. The threat list used will be listed in the finding's details. An attacker might use stolen credentials to perform this type of reconnaissance of your AWS resources in order to find more valuable credentials or determine the capabilities of the credentials they already have.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see [Remediating compromised AWS credentials](p. 259).

Recon:IAMUser/TorIPCaller

An API was invoked from a Tor exit node IP address.

Default severity: Medium

- **Data source:** CloudTrail management events

This finding informs you that an API operation that can list or describe AWS resources in an account within your environment was invoked from a Tor exit node IP address. Tor is software for enabling anonymous communication. It encrypts and randomly bounces communications through relays between a series of network nodes. The last Tor node is called the exit node. An attacker would use Tor to mask their true identity.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see [Remediating compromised AWS credentials](p. 259).

Stealth:IAMUser/CloudTrailLoggingDisabled

AWS CloudTrail logging was disabled.

Default severity: Low
• **Data source:** CloudTrail management events

This finding informs you that a CloudTrail trail within your AWS environment was disabled. This can be an attacker's attempt to disable logging to cover their tracks by eliminating any trace of their activity while gaining access to your AWS resources for malicious purposes. This finding can be triggered by a successful deletion or update of a trail. This finding can also be triggered by a successful deletion of an S3 bucket that stores the logs from a trail that is associated with GuardDuty.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

Stealth:IAMUser/PasswordPolicyChange

Account password policy was weakened.

Default severity: Low*

Note

This finding's severity can be Low, Medium, or High depending on the severity of the changes made to password policy.

• **Data source:** CloudTrail management events

The AWS account password policy was weakened on the listed account within your AWS environment. For example, it was deleted or updated to require fewer characters, not require symbols and numbers, or required to extend the password expiration period. This finding can also be triggered by an attempt to update or delete your AWS account password policy. The AWS account password policy defines the rules that govern what kinds of passwords can be set for your IAM users. A weaker password policy permits the creation of passwords that are easy to remember and potentially easier to guess, thereby creating a security risk.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

UnauthorizedAccess:IAMUser/ConsoleLoginSuccess.B

Multiple worldwide successful console logins were observed.

Default severity: Medium

• **Data source:** CloudTrail management events

This finding informs you that multiple successful console logins for the same IAM user were observed around the same time in various geographical locations. Such anomalous and risky access location patterns indicate potential unauthorized access to your AWS resources.

Remediation recommendations:
If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

UnauthorizedAccess:IAMUser/
InstanceCredentialExfiltration.InsideAWS

Credentials that were created exclusively for an EC2 instance through an Instance launch role are being used from another account within AWS.

Default severity: High*

Note
This finding's default severity is High. However, if the API was invoked by an account affiliated with your AWS environment, the severity is Medium.

• Data source: CloudTrail management events or S3 data events

This finding informs you when your EC2 instance credentials are used to invoke APIs from an IP address that is owned by a different AWS account than the one that the associated EC2 instance is running in.

AWS does not recommend redistributing temporary credentials outside of the entity that created them (for example, AWS applications, EC2, or Lambda). However, authorized users can export credentials from their EC2 instances to make legitimate API calls. If the remoteAccountDetails.Affiliated field is True the API was invoked from an account associated with your AWS environment. To rule out a potential attack and verify the legitimacy of the activity, contact the IAM user to whom these credentials are assigned.

Note
If GuardDuty observes continued activity from a remote account, its machine learning (ML) model will identify this as an expected behavior. Therefore, GuardDuty will stop generating this finding for activity from that remote account. GuardDuty will continue to generate findings for new behavior from other remote accounts and will re-evaluate learned remote accounts as the behavior changes over time.

Remediation recommendations:

In response to this finding you can use the following workflow to determine a course of action:

1. Identify the remote account involved from the service.action.awsApiCallAction.remoteAccountDetails.accountId field.
2. Next determine if that account is affiliated with your GuardDuty environment from the service.action.awsApiCallAction.remoteAccountDetails.affiliated field.
3. If the account is affiliated, contact the remote account owner, and the owner of the EC2 instance credentials to investigate.
4. If the account is not affiliated, first evaluate is that account is associated with your organization but is not a part of your GuardDuty multi-account set up, or if GuardDuty has not yet been enabled in the account. Otherwise contact the owner of the EC2 credentials to determine if there is a use case for a remote account to use these credentials.
5. If the owner of the credentials does not recognize the remote account the credentials may have been compromised by a threat actor operating within AWS. You should take the steps recommended in Remediating a compromised Amazon EC2 instance (p. 257) to secure your environment. Additionally you can submit an abuse report to the AWS Trust and Safety team to begin an investigation into the
UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration.OutsideAWS

Credentials that were created exclusively for an EC2 instance through an Instance launch role are being used from an external IP address.

Default severity: High

- Data source: CloudTrail management events or S3 data events

This finding informs you that a host outside of AWS has attempted to run AWS API operations using temporary AWS credentials that were created on an EC2 instance in your AWS environment. The listed EC2 instance might be compromised, and the temporary credentials from this instance might have been exfiltrated to a remote host outside of AWS. AWS does not recommend redistributing temporary credentials outside of the entity that created them (for example, AWS applications, EC2, or Lambda). However, authorized users can export credentials from their EC2 instances to make legitimate API calls. To rule out a potential attack and verify the legitimacy of the activity, validate if the use of instance credentials from the remote IP in the finding is expected.

Note
If GuardDuty observes continued activity from a remote account, its machine learning (ML) model will identify this as an expected behavior. Therefore, GuardDuty will stop generating this finding for activity from that remote account. GuardDuty will continue to generate findings for new behavior from other remote accounts and will re-evaluate learned remote accounts as the behavior changes over time.

Remediation recommendations:

This finding is generated when networking is configured to route internet traffic such that it egresses from an on-premises gateway rather than from a VPC Internet Gateway (IGW). Common configurations, such as using AWS Outposts, or VPC VPN connections, can result in traffic routed this way. If this is expected behavior, we recommend that you use suppression rules and create a rule that consists of two filter criteria. The first criteria is finding type, which should be UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration.OutsideAWS. The second filter criteria is API caller IPv4 Address with the IP address or CIDR range of your on-premises internet gateway. To learn more about creating suppression rules see Suppression rules (p. 226).

Note
If GuardDuty observes continued activity from an external source its machine learning model will identify this as expected behavior and stop generating this finding for activity from that source. GuardDuty will continue to generate findings for new behavior from other sources, and will reevaluate learned sources as behavior changes over time.

If this activity is unexpected your credentials may be compromised, see Remediating compromised AWS credentials (p. 259).

UnauthorizedAccess:IAMUser/MaliciousIPCaller

An API was invoked from a known malicious IP address.
UnauthorizedAccess:IAMUser/MaliciousIPCaller.Custom

Default severity: Medium

• Data source: CloudTrail management events

This finding informs you that an API operation (for example, an attempt to launch an EC2 instance, create a new IAM user, or modify your AWS privileges) was invoked from a known malicious IP address. This can indicate unauthorized access to AWS resources within your environment.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

UnauthorizedAccess:IAMUser/MaliciousIPCaller.Custom

An API was invoked from an IP address on a custom threat list.

Default severity: Medium

• Data source: CloudTrail management events

This finding informs you that an API operation (for example, an attempt to launch an EC2 instance, create a new IAM user, or modify AWS privileges) was invoked from an IP address that is included on a threat list that you uploaded. A threat list consists of known malicious IP addresses. This can indicate unauthorized access to AWS resources within your environment.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

UnauthorizedAccess:IAMUser/TorIPCaller

An API was invoked from a Tor exit node IP address.

Default severity: Medium

• Data source: CloudTrail management events

This finding informs you that an API operation (for example, an attempt to launch an EC2 instance, create a new IAM user, or modify your AWS privileges) was invoked from a Tor exit node IP address. Tor is software for enabling anonymous communication. It encrypts and randomly bounces communications through relays between a series of network nodes. The last Tor node is called the exit node. This can indicate unauthorized access to your AWS resources with the intent of hiding the attacker’s true identity.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).
Kubernetes audit logs finding types

The following findings are specific to Kubernetes resources and have a resource_type of EKSCluster. The severity and details of the findings differ based on finding type.

For all Kubernetes type findings we recommend that you examine the resource in question to determine if the activity is expected or potentially malicious. For guidance on remediating a compromised Kubernetes resource identified by a GuardDuty finding, see Remediating EKS Audit Log Monitoring findings discovered by GuardDuty (p. 261).

Note
If the activity because of which these findings get generated is expected, consider adding Suppression rules (p. 226) to prevent future alerts.

Topics
- CredentialAccess:Kubernetes/MaliciousIPCaller (p. 166)
- CredentialAccess:Kubernetes/MaliciousIPCaller.Custom (p. 166)
- CredentialAccess:Kubernetes/SuccessfulAnonymousAccess (p. 167)
- CredentialAccess:Kubernetes/TorIPCaller (p. 167)
- DefenseEvasion:Kubernetes/MaliciousIPCaller (p. 168)
- DefenseEvasion:Kubernetes/MaliciousIPCaller.Custom (p. 168)
- DefenseEvasion:Kubernetes/SuccessfulAnonymousAccess (p. 168)
- DefenseEvasion:Kubernetes/TorIPCaller (p. 169)
- Discovery:Kubernetes/MaliciousIPCaller (p. 169)
- Discovery:Kubernetes/MaliciousIPCaller.Custom (p. 170)
- Discovery:Kubernetes/SuccessfulAnonymousAccess (p. 170)
- Discovery:Kubernetes/TorIP Caller (p. 171)
- Execution:Kubernetes/ExecInKubeSystemPod (p. 171)
- Impact:Kubernetes/MaliciousIPCaller (p. 172)
- Impact:Kubernetes/MaliciousIPCaller.Custom (p. 172)
- Impact:Kubernetes/SuccessfulAnonymousAccess (p. 172)
- Impact:Kubernetes/TorIPCaller (p. 173)
- Persistence:Kubernetes/ContainerWithSensitiveMount (p. 173)
- Persistence:Kubernetes/MaliciousIPCaller (p. 174)
- Persistence:Kubernetes/MaliciousIPCaller.Custom (p. 174)
- Persistence:Kubernetes/SuccessfulAnonymousAccess (p. 175)
- Persistence:Kubernetes/TorIPCaller (p. 175)
- Policy:Kubernetes/AdminAccessToDefaultServiceAccount (p. 176)
- Policy:Kubernetes/AnonymousAccessGranted (p. 176)
- Policy:Kubernetes/ExposedDashboard (p. 177)
- Policy:Kubernetes/KubeflowDashboardExposed (p. 177)
- PrivilegeEscalation:Kubernetes/PrivilegedContainer (p. 177)

Note
Before Kubernetes version 1.14, the system:unauthenticated group was associated to system:discovery and system:basic-user ClusterRoles by default. This association may allow unintended access from anonymous users. Cluster updates do not revoke these permissions. Even if you updated your cluster to version 1.14 or higher, these permissions
may still be enabled. We recommend that you disassociate these permissions from the system:unauthenticated group. For guidance on revoking these permissions, see Review and revoke unnecessary anonymous access in the Amazon EKS best practice guide.

CredentialAccess:Kubernetes/MaliciousIPCaller

An API commonly used to access credentials or secrets in a Kubernetes cluster was invoked from a known malicious IP address.

Default severity: High

- **Feature**: Kubernetes audit logs

This finding informs you that an API operation was invoked from an IP address that is associated with known malicious activity. The API observed is commonly associated with the credential access tactics where an adversary is attempting to collect passwords, usernames, and access keys for your Kubernetes cluster.

Remediation recommendations:

If the user reported in the finding under the KubernetesUserDetails section is system:anonymous, investigate why the anonymous user was permitted to invoke the API and revoke the permissions if needed. If the user is an authenticated user, investigate to determine if the activity was legitimate or malicious. If the activity was malicious revoke access of the user and reverse any changes made by an adversary to your cluster. See Remediating EKS Audit Log Monitoring findings (p. 261) for guidance.

CredentialAccess:Kubernetes/MaliciousIPCaller.Custom

An API commonly used to access credentials or secrets in a Kubernetes cluster was invoked from an IP address on a custom threat list.

Default severity: High

- **Feature**: Kubernetes audit logs

This finding informs you that an API operation was invoked from an IP address that is included on a threat list that you uploaded. The threat list associated with this finding is listed in the Additional Information section of a finding's details. The API observed is commonly associated with the credential access tactics where an adversary is attempting to collect passwords, usernames, and access keys for your Kubernetes cluster.

Remediation recommendations:

If the user reported in the finding under the KubernetesUserDetails section is system:anonymous, investigate why the anonymous user was permitted to invoke the API and revoke the permissions if needed. If the user is an authenticated user, investigate to determine if the activity was legitimate or
CredentialAccess:Kubernetes/SuccessfulAnonymousAccess

An API commonly used to access credentials or secrets in a Kubernetes cluster was invoked by an unauthenticated user.

Default severity: High

- Feature: Kubernetes audit logs

This finding informs you that an API operation was successfully invoked by the system:anonymous user. API calls made by system:anonymous are unauthenticated. The observed API is commonly associated with the credential access tactics where an adversary is attempting to collect passwords, usernames, and access keys for your Kubernetes cluster. This activity indicates that anonymous or unauthenticated access is permitted on the API action reported in the finding and may be permitted on other actions. If this behavior is not expected, it may indicate a configuration mistake or that your credentials are compromised.

Remediation recommendations:

You should examine the permissions that have been granted to the system:anonymous user on your cluster and ensure that all the permissions are needed. If the permissions were granted mistakenly or maliciously, you should revoke access of the user and reverse any changes made by an adversary to your cluster. See Review and revoke unnecessary anonymous access for guidance.

CredentialAccess:Kubernetes/TorIPCaller

An API commonly used to access credentials or secrets in a Kubernetes cluster was invoked from a Tor exit node IP address.

Default severity: High

- Feature: Kubernetes audit logs

This finding informs you that an API was invoked from a Tor exit node IP address. The API observed is commonly associated with the credential access tactics where an adversary is attempting to collect passwords, usernames, and access keys for your Kubernetes cluster. Tor is software for enabling anonymous communication. It encrypts and randomly bounces communications through relays between a series of network nodes. The last Tor node is called the exit node. This can indicate unauthorized access to your Kubernetes cluster resources with the intent of hiding the attacker's true identity.

Remediation recommendations:

If the user reported in the finding under the KubernetesUserDetails section is system:anonymous, investigate why the anonymous user was permitted to invoke the API and revoke the permissions if needed. If the user is an authenticated user, investigate to determine if the activity was legitimate or malicious. If the activity was malicious revoke access of the user and reverse any changes made by an adversary to your cluster. See Remediating EKS Audit Log Monitoring findings (p. 261) for guidance.
DefenseEvasion:Kubernetes/MaliciousIPCaller

An API commonly used to evade defensive measures was invoked from a known malicious IP address.

Default severity: High

- Feature: Kubernetes audit logs

This finding informs you that an API operation was invoked from an IP address that is associated with known malicious activity. The API observed is commonly associated with defense evasion tactics where an adversary is trying to hide their actions to avoid detection.

Remediation recommendations:

If the user reported in the finding under the KubernetesUserDetails section is system:anonymous, investigate why the anonymous user was permitted to invoke the API and revoke the permissions if needed. If the user is an authenticated user, investigate to determine if the activity was legitimate or malicious. If the activity was malicious revoke access of the user and reverse any changes made by an adversary to your cluster. See Remediating EKS Audit Log Monitoring findings (p. 261) for guidance.

DefenseEvasion:Kubernetes/MaliciousIPCaller.Custom

An API commonly used to evade defensive measures was invoked from an IP address on a custom threat list.

Default severity: High

- Feature: Kubernetes audit logs

This finding informs you that an API operation was invoked from an IP address that is included on a threat list that you uploaded. The threat list associated with this finding is listed in the Additional Information section of a finding's details. The API observed is commonly associated with defense evasion tactics where an adversary is trying to hide their actions to avoid detection.

Remediation recommendations:

If the user reported in the finding under the KubernetesUserDetails section is system:anonymous, investigate why the anonymous user was permitted to invoke the API and revoke the permissions if needed. If the user is an authenticated user, investigate to determine if the activity was legitimate or malicious. If the activity was malicious revoke access of the user and reverse any changes made by an adversary to your cluster. See Remediating EKS Audit Log Monitoring findings (p. 261) for guidance.

DefenseEvasion:Kubernetes/SuccesfulAnonymousAccess

An API commonly used to evade defensive measures was invoked by an unauthenticated user.
Default severity: High

- Feature: Kubernetes audit logs

This finding informs you that an API operation was successfully invoked by the system:anonymous user. API calls made by system:anonymous are unauthenticated. The observed API is commonly associated with defense evasion tactics where an adversary is trying to hide their actions to avoid detection. This activity indicates that anonymous or unauthenticated access is permitted on the API action reported in the finding and may be permitted on other actions. If this behavior is not expected, it may indicate a configuration mistake or that your credentials are compromised.

Remediation recommendations:

You should examine the permissions that have been granted to the system:anonymous user on your cluster and ensure that all the permissions are needed. If the permissions were granted mistakenly or maliciously, you should revoke access of the user and reverse any changes made by an adversary to your cluster. See Review and revoke unnecessary anonymous access for guidance.

DefenseEvasion:Kubernetes/TorIPCaller

An API commonly used to evade defensive measures was invoked from a Tor exit node IP address.

Default severity: High

- Feature: Kubernetes audit logs

This finding informs you that an API was invoked from a Tor exit node IP address. The API observed is commonly associated with defense evasion tactics where an adversary is trying to hide their actions to avoid detection. Tor is software for enabling anonymous communication. It encrypts and randomly bounces communications through relays between a series of network nodes. The last Tor node is called the exit node. This can indicate unauthorized access to your Kubernetes cluster with the intent of hiding the adversary's true identity.

Remediation recommendations:

If the user reported in the finding under the KubernetesUserDetails section is system:anonymous, investigate why the anonymous user was permitted to invoke the API and revoke the permissions if needed. If the user is an authenticated user, investigate to determine if the activity was legitimate or malicious. If the activity was malicious revoke access of the user and reverse any changes made by an adversary to your cluster. See Remediating EKS Audit Log Monitoring findings (p. 261) for guidance.

Discovery:Kubernetes/MaliciousIPCaller

An API commonly used to discover resources in a Kubernetes cluster was invoked from an IP address.

Default severity: Medium

- Feature: Kubernetes audit logs
This finding informs you that an API operation was invoked from an IP address that is associated with known malicious activity. The observed API is commonly used with the discovery stage of an attack wherein an attacker is gathering information to determine if your Kubernetes cluster is susceptible to a broader attack.

Remediation recommendations:

If the user reported in the finding under the KubernetesUserDetails section is system:anonymous, investigate why the anonymous user was permitted to invoke the API and [revoke the permissions](#) if needed. If the user is an authenticated user, investigate to determine if the activity was legitimate or malicious. If the activity was malicious revoke access of the user and reverse any changes made by an adversary to your cluster. See [Remediating EKS Audit Log Monitoring findings](p. 261) for guidance.

Discovery:Kubernetes/MaliciousIPCaller.Custom

An API commonly used to discover resources in a Kubernetes cluster was invoked from an IP address on a custom threat list.

Default severity: Medium

- **Feature:** Kubernetes audit logs

This finding informs you that an API was invoked from an IP address that is included on a threat list that you uploaded. The threat list associated with this finding is listed in the Additional Information section of a finding's details. The observed API is commonly used with the discovery stage of an attack wherein an attacker is gathering information to determine if your Kubernetes cluster is susceptible to a broader attack.

Remediation recommendations:

If the user reported in the finding under the KubernetesUserDetails section is system:anonymous, investigate why the anonymous user was permitted to invoke the API and [revoke the permissions](#) if needed. If the user is an authenticated user, investigate to determine if the activity was legitimate or malicious. If the activity was malicious revoke access of the user and reverse any changes made by an adversary to your cluster. See [Remediating EKS Audit Log Monitoring findings](p. 261) for guidance.

Discovery:Kubernetes/SuccessfulAnonymousAccess

An API commonly used to discover resources in a Kubernetes cluster was invoked by an unauthenticated user.

Default severity: Medium

- **Feature:** Kubernetes audit logs

This finding informs you that an API operation was successfully invoked by the system:anonymous user. API calls made by system:anonymous are unauthenticated. The observed API is commonly associated with the discovery stage of an attack when an adversary is gathering information on your Kubernetes cluster. This activity indicates that anonymous or unauthenticated access is permitted on the API action reported in the finding and may be permitted on other actions. If this behavior is not expected, it may indicate a configuration mistake or that your credentials are compromised.
Remediation recommendations:

You should examine the permissions that have been granted to the system:anonymous user on your cluster and ensure that all the permissions are needed. If the permissions were granted mistakenly or maliciously, you should revoke access of the user and reverse any changes made by an adversary to your cluster. See Review and revoke unnecessary anonymous access for guidance.

Discovery: Kubernetes/TorIPCaller

An API commonly used to discover resources in a Kubernetes cluster was invoked from a Tor exit node IP address.

Default severity: Medium

- Feature: Kubernetes audit logs

This finding informs you that an API was invoked from a Tor exit node IP address. The observed API is commonly used with the discovery stage of an attack wherein an attacker is gathering information to determine if your Kubernetes cluster is susceptible to a broader attack. Tor is software for enabling anonymous communication. It encrypts and randomly bounces communications through relays between a series of network nodes. The last Tor node is called the exit node. This can indicate unauthorized access to your Kubernetes cluster with the intent of hiding the adversary's true identity.

Remediation recommendations:

If the user reported in the finding under the KubernetesUserDetails section is system:anonymous, investigate why the anonymous user was permitted to invoke the API and revoke the permissions if needed. If the user is an authenticated user, investigate to determine if the activity was legitimate or malicious. If the activity was malicious revoke access of the user and reverse any changes made by an adversary to your cluster. See Remediating EKS Audit Log Monitoring findings (p. 261) for guidance.

Execution: Kubernetes/ExecInKubeSystemPod

A command was executed inside a pod within the kube-system namespace

Default severity: Medium

- Feature: Kubernetes audit logs

This finding informs you that a command was executed in a pod within the kube-system namespace using Kubernetes exec API. kube-system namespace is a default namespaces, which is primarily used for system level components such as kube-dns and kube-proxy. It is very uncommon to execute commands inside pods or containers under kube-system namespace and may indicate suspicious activity.

Remediation recommendations:

If the execution of this command is unexpected, the credentials of the user identity used to execute the command may be compromised. Revoke access of the user and reverse any changes made by an adversary to your cluster. See Remediating EKS Audit Log Monitoring findings (p. 261) for guidance.
Impact: Kubernetes/MaliciousIPCaller

An API commonly used to tamper with resources in a Kubernetes cluster was invoked from a known malicious IP address.

Default severity: High
- Feature: Kubernetes audit logs

This finding informs you that an API operation was invoked from an IP address that is associated with known malicious activity. The observed API is commonly associated with impact tactics where an adversary is trying to manipulate, interrupt, or destroy data within your AWS environment.

Remediation recommendations:

If the user reported in the finding under the KubernetesUserDetails section is system:anonymous, investigate why the anonymous user was permitted to invoke the API and revoke the permissions if needed. If the user is an authenticated user, investigate to determine if the activity was legitimate or malicious. If the activity was malicious revoke access of the user and reverse any changes made by an adversary to your cluster. See Remediating EKS Audit Log Monitoring findings (p. 261) for guidance.

Impact: Kubernetes/MaliciousIPCaller.Custom

An API commonly used to tamper with resources in a Kubernetes cluster was invoked from an IP address on a custom threat list.

Default severity: High
- Feature: Kubernetes audit logs

This finding informs you that an API operation was invoked from an IP address that is included on a threat list that you uploaded. The threat list associated with this finding is listed in the Additional Information section of a finding's details. The observed API is commonly associated with impact tactics where an adversary is trying to manipulate, interrupt, or destroy data within your AWS environment.

Remediation recommendations:

If the user reported in the finding under the KubernetesUserDetails section is system:anonymous, investigate why the anonymous user was permitted to invoke the API and revoke the permissions if needed. If the user is an authenticated user, investigate to determine if the activity was legitimate or malicious. If the activity was malicious revoke access of the user and reverse any changes made by an adversary to your cluster. See Remediating EKS Audit Log Monitoring findings (p. 261) for guidance.

Impact: Kubernetes/SuccessfulAnonymousAccess

An API commonly used to tamper with resources in a Kubernetes cluster was invoked by an unauthenticated user.
Default severity: High

- Feature: Kubernetes audit logs

This finding informs you that an API operation was successfully invoked by the system:anonymous user. API calls made by system:anonymous are unauthenticated. The observed API is commonly associated with the impact stage of an attack when an adversary is tampering with resources in your cluster. This activity indicates that anonymous or unauthenticated access is permitted on the API action reported in the finding and may be permitted on other actions. If this behavior is not expected, it may indicate a configuration mistake or that your credentials are compromised.

Remediation recommendations:

You should examine the permissions that have been granted to the system:anonymous user on your cluster and ensure that all the permissions are needed. If the permissions were granted mistakenly or maliciously, you should revoke access of the user and reverse any changes made by an adversary to your cluster. See Review and revoke unnecessary anonymous access for guidance.

Impact: Kubernetes/TorIPCaller

An API commonly used to tamper with resources in a Kubernetes cluster was invoked from a Tor exit node IP address.

Default severity: High

- Feature: Kubernetes audit logs

This finding informs you that an API was invoked from a Tor exit node IP address. The API observed is commonly associated with impact tactics where an adversary is trying to manipulate, interrupt, or destroy data within your AWS environment. Tor is software for enabling anonymous communication. It encrypts and randomly bounces communications through relays between a series of network nodes. The last Tor node is called the exit node. This can indicate unauthorized access to your Kubernetes cluster with the intent of hiding the adversary's true identity.

Remediation recommendations:

If the user reported in the finding under the KubernetesUserDetails section is system:anonymous, investigate why the anonymous user was permitted to invoke the API and revoke the permissions if needed. If the user is an authenticated user, investigate to determine if the activity was legitimate or malicious. If the activity was malicious revoke access of the user and reverse any changes made by an adversary to your cluster. See Remediating EKS Audit Log Monitoring findings (p. 261) for guidance.

Persistence: Kubernetes/ContainerWithSensitiveMount

A container was launched with a sensitive external host path mounted inside.

Default severity: Medium

- Feature: Kubernetes audit logs
This finding informs you that a container was launched with a configuration that included a sensitive host path with write access in the `volumeMounts` section. This makes the sensitive host path accessible and writable from inside the container. This technique is commonly used by adversaries to gain access to the host's filesystem.

Remediation recommendations:

If this container launch is unexpected, the credentials of the user identity used to launch the container may be compromised. Revoke access of the user and reverse any changes made by an adversary to your cluster. See [Remediating Kubernetes findings](#) for guidance. If this container launch is expected, it's recommended that you use a suppression rule consisting of a filter criteria based on the `resource.KubernetesDetails.KubernetesWorkloadDetails.containers.imagePrefix` field. In the filter criteria the `imagePrefix` field should be same as the `imagePrefix` specified in the finding. To learn more about creating suppression rules see [Suppression rules](#).

Persistence:Kubernetes/MaliciousIPCaller

An API commonly used to obtain persistent access to a Kubernetes cluster was invoked from a known malicious IP address.

Default severity: Medium

- **Feature:** Kubernetes audit logs

This finding informs you that an API operation was invoked from an IP address that is associated with known malicious activity. The API observed is commonly associated with persistence tactics where an adversary has gained access to your Kubernetes cluster and is attempting to maintain that access.

Remediation recommendations:

If the user reported in the finding under the `KubernetesUserDetails` section is `system:anonymous`, investigate why the anonymous user was permitted to invoke the API and [revoke the permissions](#) if needed. If the user is an authenticated user, investigate to determine if the activity was legitimate or malicious. If the activity was malicious revoke access of the user and reverse any changes made by an adversary to your cluster. See [Remediating EKS Audit Log Monitoring findings (p. 261)](#) for guidance.

Persistence:Kubernetes/MaliciousIPCaller.Custom

An API commonly used to obtain persistent access to a Kubernetes cluster was invoked from an IP address on a custom threat list.

Default severity: Medium

- **Feature:** Kubernetes audit logs

This finding informs you that an API operation was invoked from an IP address that is included on a threat list that you uploaded. The threat list associated with this finding is listed in the [Additional Information](#) section of a finding's details. The API observed is commonly associated with persistence...
tactics where an adversary has gained access to your Kubernetes cluster and is attempting to maintain that access.

Remediation recommendations:

If the user reported in the finding under the KubernetesUserDetails section is system:anonymous, investigate why the anonymous user was permitted to invoke the API and revoke the permissions if needed. If the user is an authenticated user, investigate to determine if the activity was legitimate or malicious. If the activity was malicious revoke access of the user and reverse any changes made by an adversary to your cluster. See Remediating EKS Audit Log Monitoring findings (p. 261) for guidance.

Persistence:Kubernetes/SuccessfulAnonymousAccess

An API commonly used to obtain high-level permissions to a Kubernetes cluster was invoked by an unauthenticated user.

Default severity: High

- **Feature:** Kubernetes audit logs

This finding informs you that an API operation was successfully invoked by the system:anonymous user. API calls made by system:anonymous are unauthenticated. The observed API is commonly associated with the persistence tactics where an adversary has gained access to your cluster and is attempting to maintain that access. This activity indicates that anonymous or unauthenticated access is permitted on the API action reported in the finding and may be permitted on other actions. If this behavior is not expected, it may indicate a configuration mistake or that your credentials are compromised.

Remediation recommendations:

You should examine the permissions that have been granted to the system:anonymous user on your cluster and ensure that all the permissions are needed. If the permissions were granted mistakenly or maliciously, you should revoke access of the user and reverse any changes made by an adversary to your cluster. See Review and revoke unnecessary anonymous access for guidance.

Persistence:Kubernetes/TorIPCaller

An API commonly used to obtain persistent access to a Kubernetes cluster was invoked from a Tor exit node IP address.

Default severity: Medium

- **Feature:** Kubernetes audit logs

This finding informs you that an API was invoked from a Tor exit node IP address. The API observed is commonly associated with persistence tactics where an adversary has gained access to your Kubernetes cluster and is attempting to maintain that access. Tor is software for enabling anonymous communication. It encrypts and randomly bounces communications through relays between a series of network nodes. The last Tor node is called the exit node. This can indicate unauthorized access to your AWS resources with the intent of hiding the attacker's true identity.

Remediation recommendations:
If the user reported in the finding under the KubernetesUserDetails section is system:anonymous, investigate why the anonymous user was permitted to invoke the API and revoke the permissions if needed. If the user is an authenticated user, investigate to determine if the activity was legitimate or malicious. If the activity was malicious revoke access of the user and reverse any changes made by an adversary to your cluster. See Remediating EKS Audit Log Monitoring findings (p. 261) for guidance.

Policy: Kubernetes/AdminAccessToDefaultServiceAccount

The default service account was granted admin privileges on a Kubernetes cluster.

Default severity: High

- **Feature:** Kubernetes audit logs

This finding informs you that the default service account for a namespace in your Kubernetes cluster was granted admin privileges. Kubernetes creates a default service account for all the namespaces in the cluster. It automatically assigns the default service account as an identity to pods that have not been explicitly associated to another service account. If the default service account has admin privileges, it may result in pods being unintentionally launched with admin privileges. If this behavior is not expected, it may indicate a configuration mistake or that your credentials are compromised.

Remediation recommendations:

You should not use the default service account to grant permissions to pods. Instead you should create a dedicated service account for each workload and grant permission to that account on a needs basis. To fix this issue, you should create dedicated service accounts for all your pods and workloads and update the pods and workloads to migrate from the default service account to their dedicated accounts. Then you should remove the admin permission from the default service account. See Remediating EKS Audit Log Monitoring findings (p. 262) for additional guidance and resources.

Policy: Kubernetes/AnonymousAccessGranted

The system:anonymous user was granted API permission on a Kubernetes cluster.

Default severity: High

- **Feature:** Kubernetes audit logs

This finding informs you that a user on your Kubernetes cluster successfully created a ClusterRoleBinding or RoleBinding to bind the user system:anonymous to a role. This enables unauthenticated access to the API operations permitted by the role. If this behavior is not expected, it may indicate a configuration mistake or that your credentials are compromised.

Remediation recommendations:

You should examine the permissions that have been granted to the system:anonymous user or system:unauthenticated group on your cluster and revoke unnecessary anonymous access. See Review and revoke unnecessary anonymous access for guidance. If the permissions were granted...
maliciously, you should revoke access of the user that granted the permissions and reverse any changes made by an adversary to your cluster. See Remediating Kubernetes findings for guidance.

Policy:Kubernetes/ExposedDashboard

The dashboard for a Kubernetes cluster was exposed to the internet

Default severity: Medium

- **Feature:** Kubernetes audit logs

This finding informs you that Kubernetes dashboard for your cluster was exposed to the internet by a Load Balancer service. An exposed dashboard makes the management interface of your cluster accessible from the internet and allows adversaries to exploit any authentication and access control gaps that may be present.

Remediation recommendations:

You should ensure that strong authentication and authorization is enforced on Kubernetes Dashboard. You should also implement network access control to restrict access to the dashboard from specific IP addresses.

Policy:Kubernetes/KubeflowDashboardExposed

The **Kubeflow** dashboard for a Kubernetes cluster was exposed to the Internet

Default severity: Medium

- **Feature:** Kubernetes audit logs

This finding informs you that **Kubeflow** dashboard for your cluster was exposed to the Internet by a Load Balancer service. An exposed **Kubeflow** dashboard makes the management interface of your **Kubeflow** environment accessible from the Internet and allows adversaries to exploit any authentication and access control gaps that may be present.

Remediation recommendations:

You should ensure that strong authentication and authorization is enforced on **Kubeflow** Dashboard. You should also implement network access control to restrict access to the dashboard from specific IP addresses.

PrivilegeEscalation:Kubernetes/PrivilegedContainer

A privileged container with root level access was launched on your Kubernetes cluster.

Default severity: Medium

- **Feature:** Kubernetes audit logs
This finding informs you that a privileged container was launched on your Kubernetes cluster using an image has never before been used to launch privileged containers in your cluster. A privileged container has root level access to the host. Adversaries can launch privileged containers as a privilege escalation tactic to gain access to and then compromise the host.

Remediation recommendations:

If this container launch is unexpected, the credentials of the user identity used to launch the container may be compromised. Revoke access of the user and reverse any changes made by an adversary to your cluster. See [Remediating EKS Audit Log Monitoring findings](#) for guidance.

Lambda Protection finding types

This section describes the finding types that are specific to your AWS Lambda resources and have the `resourceType` listed as Lambda. For all Lambda findings, we recommend that you examine the resource in question and determine if it is behaving in an expected manner. If the activity is authorized, you can use [Suppression rules](#) or [Trusted IP and threat lists](#) to prevent false positive notifications for that resource.

If the activity is unexpected, the security best practice is to assume that Lambda has been potentially compromised and follow the remediation recommendations.

Topics

- Backdoor:Lambda/C&CActivity.B (p. 178)
- CryptoCurrency:Lambda/BitcoinTool.B (p. 179)
- Trojan:Lambda/BlackholeTraffic (p. 179)
- Trojan:Lambda/DropPoint (p. 180)
- UnauthorizedAccess:Lambda/MaliciousIPCaller.Custom (p. 180)
- UnauthorizedAccess:Lambda/TorClient (p. 180)
- UnauthorizedAccess:Lambda/TorRelay (p. 181)

Backdoor:Lambda/C&CActivity.B

A Lambda function is querying an IP address that is associated with a known command and control server.

Default severity: High

- **Feature:** Lambda Network Activity Monitoring

This finding informs you that a listed Lambda function within your AWS environment is querying an IP address that is associated with a known command and control (C&C) server. The Lambda function associated to the generated finding is potentially compromised. C&C servers are computers that issue commands to members of a botnet.

A botnet is a collection of internet-connected devices, which might include PCs, servers, mobile devices, and Internet of Things devices, that is infected and controlled by a common type of malware. Botnets are often used to distribute malware and gather misappropriated information, such as credit card numbers. Depending on the purpose and structure of the botnet, the C&C server might also issue commands to begin a distributed denial of service.
Remediation recommendations:

If this activity is unexpected, your Lambda function may be compromised. For more information, see Remediating a compromised Lambda function (p. 269).

CryptoCurrency:Lambda/BitcoinTool.B

A Lambda function is querying an IP address that is associated with a cryptocurrency-related activity.

Default severity: High

- **Feature:** Lambda Network Activity Monitoring

This finding informs you that the listed Lambda function in your AWS environment is querying an IP address that is associated with a Bitcoin or other cryptocurrency-related activity. Threat actors may seek to take control over Lambda functions in order to maliciously repurpose them for unauthorized cryptocurrency mining.

Remediation recommendations:

If you use this Lambda function to mine or manage cryptocurrency, or this function is otherwise involved in a blockchain activity, it is potentially an expected activity for your environment. If this is the case in your AWS environment, we recommend that you set up a suppression rule for this finding. The suppression rule should consist of two filter criteria. The first criterion should use the finding type attribute with a value of CryptoCurrency:Lambda/BitcoinTool.B. The second filter criterion should be the Lambda function name of the function involved in blockchain activity. For information about creating suppression rules, see Suppression rules.

If this activity is unexpected, your Lambda function is potentially compromised. For more information, see Remediating a compromised Lambda function (p. 269).

Trojan:Lambda/BlackholeTraffic

A Lambda function is attempting to communicate with an IP address of a remote host that is a known black hole.

Default severity: Medium

- **Feature:** Lambda Network Activity Monitoring

This finding informs you that a listed Lambda function within your AWS environment is trying to communicate with an IP address of a black hole (or a sink hole). Black holes are places in the network where incoming or outgoing traffic is silently discarded without informing the source that the data didn't reach its intended recipient. A black hole IP address specifies a host machine that is not running or an address to which no host has been assigned. The listed Lambda function is potentially compromised.

Remediation recommendations:

If this activity is unexpected, your Lambda function may be compromised. For more information, see Remediating a compromised Lambda function (p. 269).
Trojan:Lambda/DropPoint

A Lambda function is attempting to communicate with an IP address of a remote host that is known to hold credentials and other stolen data captured by malware.

Default severity: Medium

- Feature: Lambda Network Activity Monitoring

This finding informs you that a listed Lambda function within your AWS environment is trying to communicate with an IP address of a remote host that is known to hold credentials and other stolen data captured by malware.

Remediation recommendations:

If this activity is unexpected, your Lambda function may be compromised. For more information, see Remediating a compromised Lambda function (p. 269).

UnauthorizedAccess:Lambda/MaliciousIPCaller.Custom

A Lambda function is making connections to an IP address on a custom threat list.

Default severity: Medium

- Feature: Lambda Network Activity Monitoring

This finding informs you that a Lambda function in your AWS environment is communicating with an IP address included on a threat list that you uploaded. In GuardDuty, a threat list consists of known malicious IP addresses. GuardDuty generates findings based on the uploaded threat lists. You can view the details of the threat list in the finding details on the GuardDuty console.

Remediation recommendations:

If this activity is unexpected, your Lambda function may be compromised. For more information, see Remediating a compromised Lambda function (p. 269).

UnauthorizedAccess:Lambda/TorClient

A Lambda function is making connections to a Tor Guard or an Authority node.

Default severity: High

- Feature: Lambda Network Activity Monitoring
This finding informs you that a Lambda function in your AWS environment is making connections to a Tor Guard or an Authority node. Tor is software for enabling anonymous communication. Tor Guards and Authority node act as initial gateways into a Tor network. This traffic can indicate that this Lambda function has been potentially compromised. It is now acting as a client on a Tor network.

Remediation recommendations:

If this activity is unexpected, your Lambda function may be compromised. For more information, see [Remediating a compromised Lambda function](p. 269).

UnauthorizedAccess:Lambda/TorRelay

A Lambda function is making connections to a Tor network as a Tor relay.

Default severity: High

- **Feature:** Lambda Network Activity Monitoring

This finding informs you that a Lambda function in your AWS environment is making connections to a Tor network in a manner that suggests that it's acting as a Tor relay. Tor is software for enabling anonymous communication. Tor enables anonymous communication by forwarding the client's potentially illicit traffic from one Tor relay to another.

Remediation recommendations:

If this activity is unexpected, your Lambda function may be compromised. For more information, see [Remediating a compromised Lambda function](p. 269).

Malware Protection finding types

GuardDuty Malware Protection provides a single Malware Protection finding for all threats detected during the scan of an EC2 instance or a container workload. The finding includes the total number of detections made during the scan, and based on the severity, provides details for the top 32 threats that it detects. Unlike other GuardDuty findings, Malware Protection findings are not updated when the same EC2 instance or container workload is scanned again.

A new Malware Protection finding is generated for each scan that detects malware. Malware Protection findings include information about the corresponding scan that produced the finding as well as the GuardDuty finding that initiated this scan. This makes it easier to correlate the suspicious behavior with the detected malware.

Note

When GuardDuty detects malicious activity on a container workload, Malware Protection doesn't generate an EC2 level finding.

The following findings are specific to GuardDuty Malware Protection.

Topics

- [Execution:EC2/MaliciousFile](p. 182)
- [Execution:ECS/MaliciousFile](p. 182)
- [Execution:Kubernetes/MaliciousFile](p. 182)
- [Execution:Container/MaliciousFile](p. 182)
• Execution:EC2/MaliciousFile (p. 183)
• Execution:ECS/MaliciousFile (p. 183)
• Execution:Kubernetes/MaliciousFile (p. 184)
• Execution:Container/MaliciousFile (p. 184)

Execution:EC2/MaliciousFile

A malicious file has been detected on an EC2 instance.

Default severity: Varies depending on the detected threat.

This finding indicates that the GuardDuty Malware Protection scan has detected one or more malicious files on the listed EC2 instance within your AWS environment. This listed instance might be compromised. For more information, see Threats detected section in the findings' details.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

Execution:ECS/MaliciousFile

A malicious file has been detected on an ECS cluster.

Default severity: Varies depending on the detected threat.

This finding indicates that the GuardDuty Malware Protection scan has detected one or more malicious files on a container workload that belongs to an ECS cluster. For more information, see Threats detected section in the findings' details.

Remediation recommendations:

If this activity is unexpected, your container belonging to the ECS cluster may be compromised. For more information, see Remediating a compromised ECS cluster (p. 259).

Execution:Kubernetes/MaliciousFile

A malicious file has been detected on an Kubernetes cluster.

Default severity: Varies depending on the detected threat.

This finding indicates that the GuardDuty Malware Protection scan has detected one or more malicious files on a container workload that belongs to a Kubernetes cluster. If this is an EKS managed cluster, the findings details will provide additional information about the impacted EKS resource. For more information, see Threats detected section in the findings' details.

Remediation recommendations:

If this activity is unexpected, your container workload may be compromised. For more information, see Remediating EKS Audit Log Monitoring findings discovered by GuardDuty (p. 261).

Execution:Container/MaliciousFile

A malicious file has been detected on a standalone container.
Default severity: Varies depending on the detected threat.

This finding indicates that the GuardDuty Malware Protection scan has detected one or more malicious files on a container workload and no cluster information has been identified. For more information, see Threats detected section in the findings' details.

Remediation recommendations:

If this activity is unexpected, your container workload may be compromised. For more information, see Remediating a compromised standalone container (p. 260).

Execution:EC2/SuspiciousFile

A suspicious file has been detected on an EC2 instance.

Default severity: Varies depending on the detected threat.

This finding indicates that the GuardDuty Malware Protection scan has detected one or more suspicious files on an EC2 instance. For more information, see Threats detected section in the findings' details.

SuspiciousFile type detections indicate that potentially unwanted programs such as adware, spyware, or dual use tools are present on an impacted resource. These programs could have a negative impact on your resource, or be used by attackers for malicious purposes. For example, networking tools can be used legitimately or maliciously by adversaries as hack tools to try and compromise resources.

When a suspicious file has been detected, evaluate whether you expect to see the detected file in your AWS environment. If the file is unexpected, follow the remediation recommendations provided in the next section.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

Execution:ECS/SuspiciousFile

A suspicious file has been detected on an ECS cluster.

Default severity: Varies depending on the detected threat.

This finding indicates that the GuardDuty Malware Protection scan has detected one or more suspicious files on a container that belongs to an ECS cluster. For more information, see Threats detected section in the findings' details.

SuspiciousFile type detections indicate that potentially unwanted programs such as adware, spyware, or dual use tools are present on an impacted resource. These programs could have a negative impact on your resource, or be used by attackers for malicious purposes. For example, networking tools can be used legitimately or maliciously by adversaries as hack tools to try and compromise resources.

When a suspicious file has been detected, evaluate whether you expect to see the detected file in your AWS environment. If the file is unexpected, follow the remediation recommendations provided in the next section.

Remediation recommendations:

If this activity is unexpected, your container belonging to the ECS cluster may be compromised. For more information, see Remediating a compromised ECS cluster (p. 259).
A suspicious file has been detected on a Kubernetes cluster.

Default severity: Varies depending on the detected threat.

This finding indicates that the GuardDuty Malware Protection scan has detected one or more suspicious files on a container that belongs to a Kubernetes cluster. If this is an EKS managed cluster, the findings' details will provide additional information about the impacted EKS. For more information, see **Threats detected** section in the findings' details.

SuspiciousFile type detections indicate that potentially unwanted programs such as adware, spyware, or dual use tools are present on an impacted resource. These programs could have a negative impact on your resource, or be used by attackers for malicious purposes. For example, networking tools can be used legitimately or maliciously by adversaries as hack tools to try and compromise resources.

When a suspicious file has been detected, evaluate whether you expect to see the detected file in your AWS environment. If the file is unexpected, follow the remediation recommendations provided in the next section.

Remediation recommendations:

If this activity is unexpected, your container workload may be compromised. For more information, see **Remediating EKS Audit Log Monitoring findings discovered by GuardDuty** (p. 261).

A suspicious file has been detected on a standalone container.

Default severity: Varies depending on the detected threat.

This finding indicates that the GuardDuty Malware Protection scan has detected one or more suspicious files on a container with no cluster information. For more information, see **Threats detected** section in the findings' details.

SuspiciousFile type detections indicate that potentially unwanted programs such as adware, spyware, or dual use tools are present on an impacted resource. These programs could have a negative impact on your resource, or be used by attackers for malicious purposes. For example, networking tools can be used legitimately or maliciously by adversaries as hack tools to try and compromise resources.

When a suspicious file has been detected, evaluate whether you expect to see the detected file in your AWS environment. If the file is unexpected, follow the remediation recommendations provided in the next section.

Remediation recommendations:

If this activity is unexpected, your container workload may be compromised. For more information, see **Remediating a compromised standalone container** (p. 260).

GuardDuty RDS Protection finding types

GuardDuty RDS Protection detects anomalous login behavior on your database instance. The following findings are specific to the Supported Amazon Aurora databases (p. 84) and will have a **Resource Type** of RDSDBInstance. The severity and details of the findings will differ based on the finding type.

Topics
CredentialAccess:RDS/AnomalousBehavior.SuccessfulLogin

A user successfully logged into an RDS database in your account in an anomalous way.

Default severity: Variable

Note
Depending on the anomalous behavior associated with this finding, the default severity can be Low, Medium, and High.

- **Low** – If the user name associated with this finding logged in from an IP address that is associated with a private network.
- **Medium** – If the user name associated with this finding logged in from a public IP address.
- **High** – If there is a consistent pattern of failed login attempts from public IP addresses indicative of overly permissive access policies.

Feature: RDS login activity monitoring

This finding informs you that an anomalous successful login was observed on an RDS database in your AWS environment. This may indicate that a previous unseen user logged into an RDS database for the first time. A common scenario is an internal user logging into a database that is accessed programmatically by applications and not by individual users.

This successful login was identified as anomalous by the GuardDuty anomaly detection machine learning (ML) model. The ML model evaluates all database login events in your Supported Amazon Aurora databases (p. 84) and identifies anomalous events that are associated with techniques used by adversaries. The ML model tracks various factors of the RDS login activity such as the user that made the request, the location the request was made from, and the specific database connection details that were used. For information about the login events that are potentially unusual, see RDS login activity-based anomalies (p. 110).

Remediation recommendations:

If this activity is unexpected for the associated database, it is recommended to change the password of the associated database user, and review available audit logs for activity performed by the anomalous user. Medium and high severity findings may indicate that there is an overly permissive access policy to the database, and user credentials may have been exposed or compromised. It is recommended to place the database in a private VPC, and limit the security group rules to allow traffic only from the necessary
CredentialAccess:RDS/AnomalousBehavior.FailedLogin

One or more unusual failed login attempts were observed on an RDS database in your account.

Default severity: Low

- **Feature:** RDS login activity monitoring

This finding informs you that one or more anomalous failed logins were observed on an RDS database in your AWS environment. A failed login attempts from public IP addresses may indicate that the RDS database in your account has been subject to an attempted brute force attack by a potentially malicious actor.

These failed logins were identified as anomalous by the GuardDuty anomaly detection machine learning (ML) model. The ML model evaluates all database login events in your supported Amazon Aurora databases (p. 84) and identifies anomalous events that are associated with techniques used by adversaries. The ML model tracks various factors of the RDS login activity such as the user that made the request, the location the request was made from, and the specific database connection details that were used. For information about the RDS login activity that are potentially unusual, see RDS login activity-based anomalies (p. 110).

Remediation recommendations:

If this activity is unexpected for the associated database, it may indicate that the database is publicly exposed or there is an overly permissive access policy to the database. It is recommended to place the database in a private VPC, and limit the security group rules to allow traffic only from the necessary sources. For more information, see Remediating potentially compromised database with failed login events (p. 267).

CredentialAccess:RDS/AnomalousBehavior.SuccessfulBruteForce

A user successfully logged into an RDS database in your account from a public IP address in an anomalous way after a consistent pattern of unusual failed login attempts.

Default severity: High

- **Feature:** RDS login activity monitoring

This finding informs you that an anomalous login indicative of a successful brute force was observed on an RDS database in your AWS environment. Prior to an anomalous successful login, a consistent pattern of unusual failed login attempts was observed. This indicates that the user and password associated with the RDS database in your account may have been compromised, and the RDS database may have been accessed by a potentially malicious actor.
This successful brute force login was identified as anomalous by the GuardDuty anomaly detection machine learning (ML) model. The ML model evaluates all database login events in your Supported Amazon Aurora databases (p. 84) and identifies anomalous events that are associated with techniques used by adversaries. The ML model tracks various factors of the RDS login activity such as the user that made the request, the location the request was made from, and the specific database connection details that were used. For information about the RDS login activity that are potentially unusual, see RDS login activity-based anomalies (p. 110).

Remediation recommendations:

This activity indicates that database credentials may have been exposed or compromised. It is recommended to change the password of the associated database user, and review available audit logs for activity performed by the potentially compromised user. A consistent pattern of unusual failed login attempts indicate an overly permissive access policy to the database or the database may have also been public exposed. It is recommended to place the database in a private VPC, and limit the security group rules to allow traffic only from the necessary sources. For more information, see Remediating potentially compromised database with successful login events (p. 267).

CredentialAccess:RDS/MaliciousIPCaller.SuccessfulLogin

A user successfully logged into an RDS database in your account from a known malicious IP address.

Default severity: High

- **Feature:** RDS login activity monitoring

This finding informs you that a successful RDS login activity occurred from an IP address that is associated with a known malicious activity in your AWS environment. This indicates that the user and password associated with the RDS database in your account may have been compromised, and the RDS database may have been accessed by a potentially malicious actor.

Remediation recommendations:

If this activity is unexpected for the associated database, it may indicate that the user credentials may have been exposed or compromised. It is recommended to change the password of the associated database user, and review the available audit logs for activity performed by the compromised user. This activity may also indicate that there is an overly permissive access policy to the database or the database is publicly exposed. It is recommended to place the database in a private VPC, and limit the security group rules to allow traffic only from the necessary sources. For more information, see Remediating potentially compromised database with successful login events (p. 267).

CredentialAccess:RDS/MaliciousIPCaller.FailedLogin

An IP address that is associated with a known malicious activity unsuccessfully attempted to log in to an RDS database in your account.

Default severity: Medium

- **Feature:** RDS login activity monitoring
This finding informs you that an IP address associated with known malicious activity attempted to log in to an RDS database in your AWS environment, but failed to provide the correct user name or password. This indicates that a potentially malicious actor may be attempting to compromise the RDS database in your account.

Remediation recommendations:

If this activity is unexpected for the associated database, it may indicate that there is an overly permissive access policy to the database or the database is publicly exposed. It is recommended to place the database in a private VPC, and limit the security group rules to allow traffic only from the necessary sources. For more information, see [Remediating potentially compromised database with failed login events](p. 267).

Discovery:RDS/MaliciousIPCaller

An IP address that is associated with a known malicious activity probed an RDS database in your account; no authentication attempt was made.

Default severity: Medium

- **Feature:** RDS login activity monitoring

This finding informs you that an IP address associated with known a malicious activity probed an RDS database in your AWS environment, though no login attempt was made. This may indicate that a potentially malicious actor is attempting to scan for a publicly accessible infrastructure.

Remediation recommendations:

If this activity is unexpected for the associated database, it may indicate that there is an overly permissive access policy to the database or the database is publicly exposed. It is recommended to place the database in a private VPC, and limit the security group rules to allow traffic only from the necessary sources. For more information, see [Remediating potentially compromised database with failed login events](p. 267).

CredentialAccess:RDS/TorIPCaller.SuccessfulLogin

A user successfully logged into an RDS database in your account from a Tor exit node IP address.

Default severity: High

- **Feature:** RDS login activity monitoring

This finding informs you that a user successfully logged in to an RDS database in your AWS environment, from a Tor exit node IP address. Tor is a software for enabling anonymous communication. It encrypts and randomly bounces communications through relays between a series of network nodes. The last Tor node is called the exit node. This can indicate unauthorized access to the RDS resources in your account, with the intent of hiding the anonymous user's true identity.

Remediation recommendations:
If this activity is unexpected for the associated database, it may indicate that the user credentials may have been exposed or compromised. It is recommended to change the password of the associated database user, and review the available audit logs for activity performed by the compromised user. This activity may also indicate that there is an overly permissive access policy to the database or the database is publicly exposed. It is recommended to place the database in a private VPC, and limit the security group rules to allow traffic only from the necessary sources. For more information, see Remediating potentially compromised database with successful login events (p. 267).

CredentialAccess:RDS/TorIPCaller.FailedLogin

A Tor IP address attempted to unsuccessfully log in to an RDS database in your account.

Default severity: Medium

- **Feature:** RDS login activity monitoring

This finding informs you that a Tor exit node IP address attempted to log in to an RDS database in your AWS environment, but failed to provide the correct user name or password. Tor is a software for enabling anonymous communication. It encrypts and randomly bounces communications through relays between a series of network nodes. The last Tor node is called the exit node. This can indicate unauthorized access to the RDS resources in your account, with the intent of hiding the anonymous user's true identity.

Remediation recommendations:

If this activity is unexpected for the associated database, it may indicate that there is an overly permissive access policy to the database or the database is publicly exposed. It is recommended to place the database in a private VPC, and limit the security group rules to allow traffic only from the necessary sources. For more information, see Remediating potentially compromised database with failed login events (p. 267).

Discovery:RDS/TorIPCaller

A Tor exit node IP address probed an RDS database in your account, no authentication attempt was made.

Default severity: Medium

- **Feature:** RDS login activity monitoring

This finding informs you that a Tor exit node IP address probed an RDS database in your AWS environment, though no login attempt was made. This may indicate that a potentially malicious actor is attempting to scan for publicly accessible infrastructure. Tor is a software for enabling anonymous communication. It encrypts and randomly bounces communications through relays between a series of network nodes. The last Tor node is called the exit node. This can indicate unauthorized access to the RDS resources in your account, with the intent of hiding the potentially malicious actor's true identity.

Remediation recommendations:

If this activity is unexpected for the associated database, it may indicate that there is an overly permissive access policy to the database or the database is publicly exposed. It is recommended to place the database in a private VPC, and limit the security group rules to allow traffic only from the necessary sources.
GuardDuty S3 finding types

The following findings are specific to Amazon S3 resources and will have a Resource Type of S3Bucket if the data source is CloudTrail data events for S3, or AccessKey if the data source is CloudTrail management events. The severity and details of the findings will differ based on the finding type and the permission associated with the bucket.

The findings listed here include the data sources and models used to generate that finding type. For more information data sources and models, see Foundational data sources (p. 15).

Important
Findings with a data source of CloudTrail data events for S3 are only generated if you have S3 protection enabled for GuardDuty. S3 protection is enabled by default in all accounts created after July 31, 2020. For information about how to enable or disable S3 protection, see Amazon S3 Protection in Amazon GuardDuty (p. 91)

For all S3Bucket type findings, it is recommended that you examine the permissions on the bucket in question and the permissions of any users involved in the finding, if the activity is unexpected see the remediation recommendations detailed in Remediating a compromised S3 bucket (p. 258).

Topics
- Discovery:S3/AnomalousBehavior (p. 190)
- Discovery:S3/MaliciousIPCaller (p. 191)
- Discovery:S3/MaliciousIPCaller.Custom (p. 191)
- Discovery:S3/TorIPCaller (p. 192)
- Exfiltration:S3/AnomalousBehavior (p. 192)
- Exfiltration:S3/MaliciousIPCaller (p. 193)
- Impact:S3/AnomalousBehavior.Delete (p. 193)
- Impact:S3/AnomalousBehavior.Permission (p. 194)
- Impact:S3/AnomalousBehavior.Write (p. 194)
- Impact:S3/MaliciousIPCaller (p. 195)
- PenTest:S3/KaliLinux (p. 195)
- PenTest:S3/ParrotLinux (p. 196)
- PenTest:S3/PentooLinux (p. 196)
- Policy:S3/AccountBlockPublicAccessDisabled (p. 196)
- Policy:S3/BucketAnonymousAccessGranted (p. 197)
- Policy:S3/BucketBlockPublicAccessDisabled (p. 197)
- Policy:S3/BucketPublicAccessGranted (p. 198)
- Stealth:S3/ServerAccessLoggingDisabled (p. 198)
- UnauthorizedAccess:S3/MaliciousIPCaller.Custom (p. 199)
- UnauthorizedAccess:S3/TorIPCaller (p. 199)

Discovery:S3/AnomalousBehavior

An API commonly used to discover S3 objects was invoked in an anomalous way.
Default severity: Low

- **Data source:** CloudTrail data events for S3

This finding informs you that an IAM entity has invoked an S3 API to discover S3 buckets in your environment, such as ListObjects. This type of activity is associated with the discovery stage of an attack wherein an attacker gathers information to determine if your AWS environment is susceptible to a broader attack. This activity is suspicious because the IAM entity invoked the API in an unusual way. For example, an IAM entity with no previous history invokes an S3 API, or an IAM entity invokes an S3 API from an unusual location.

This API was identified as anomalous by GuardDuty's anomaly detection machine learning (ML) model. The ML model evaluates all the API requests in your account and identifies anomalous events that are associated with techniques used by adversaries. It tracks various factors of the API requests, such as the user who made the request, the location from which the request was made, the specific API that was requested, the bucket that was requested, and the number of API calls made. For more information on which factors of the API request are unusual for the user identity that invoked the request, see Finding details.

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see Remediating a compromised S3 bucket (p. 258).

Discovery:S3/MaliciousIPCaller

An S3 API commonly used to discover resources in an AWS environment was invoked from a known malicious IP address.

Default severity: High

- **Data source:** CloudTrail data events for S3

This finding informs you that an S3 API operation was invoked from an IP address that is associated with known malicious activity. The observed API is commonly associated with the discovery stage of an attack when an adversary is gathering information about your AWS environment. Examples include GetObjectAcl and ListObjects.

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see Remediating a compromised S3 bucket (p. 258).

Discovery:S3/MaliciousIPCaller.Custom

An S3 API was invoked from an IP address on a custom threat list.

Default severity: High

- **Data source:** CloudTrail data events for S3
This finding informs you that an S3 API, such as GetObjectAcl or ListObjects, was invoked from an IP address that is included on a threat list that you uploaded. The threat list associated with this finding is listed in the Additional information section of a finding's details. This type of activity is associated with the discovery stage of an attack wherein an attacker is gathering information to determine if your AWS environment is susceptible to a broader attack.

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see Remediating a compromised S3 bucket (p. 258).

Discovery:S3/TorIPCaller

An S3 API was invoked from a Tor exit node IP address.

Default severity: Medium

- Data source: CloudTrail data events for S3

This finding informs you that an S3 API, such as GetObjectAcl or ListObjects, was invoked from a Tor exit node IP address. This type of activity is associated with the discovery stage of an attack wherein an attacker is gathering information to determine if your AWS environment is susceptible to a broader attack. Tor is software for enabling anonymous communication. It encrypts and randomly bounces communications through relays between a series of network nodes. The last Tor node is called the exit node. This can indicate unauthorized access to your AWS resources with the intent of hiding the attacker's true identity.

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see Remediating a compromised S3 bucket (p. 258).

Exfiltration:S3/AnomalousBehavior

An IAM entity invoked an S3 API in a suspicious way.

Default severity: High

- Data source: CloudTrail data events for S3

This finding informs you that an IAM entity is making API calls that involve an S3 bucket and this activity differs from that entity's established baseline. The API call used in this activity is associated with the exfiltration stage of an attack, wherein an attacker attempts to collect data. This activity is suspicious because the IAM entity invoked the API in an unusual way. For example, an IAM entity with no previous history invokes an S3 API, or an IAM entity invokes an S3 API from an unusual location.

This API was identified as anomalous by GuardDuty's anomaly detection machine learning (ML) model. The ML model evaluates all the API requests in your account and identifies anomalous events that are associated with techniques used by adversaries. It tracks various factors of the API requests, such as the user who made the request, the location from which the request was made, the specific API that was
Exfiltration:S3/MaliciousIPCaller

An S3 API commonly used to collect data from an AWS environment was invoked from a known malicious IP address.

Default severity: High

- Data source: CloudTrail data events for S3

This finding informs you that an S3 API operation was invoked from an IP address that is associated with known malicious activity. The observed API is commonly associated with exfiltration tactics where an adversary is trying to collect data from your network. Examples include GetObject and CopyObject.

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see Remediating a compromised S3 bucket (p. 258).

Impact:S3/AnomalousBehavior.Delete

An IAM entity invoked an S3 API that attempts to delete data in a suspicious way.

Default severity: High

- Data source: CloudTrail data events for S3

This finding informs you that an IAM entity in your AWS environment is making API calls that involve an S3 bucket, and this behavior differs from that entity's established baseline. The API call used in this activity is associated with an attack that attempts to delete data. This activity is suspicious because the IAM entity invoked the API in an unusual way. For example, an IAM entity with no previous history invokes an S3 API, or an IAM entity invokes an S3 API from an unusual location.

This API was identified as anomalous by GuardDuty's anomaly detection machine learning (ML) model. The ML model evaluates all the API requests in your account and identifies anomalous events that are associated with techniques used by adversaries. It tracks various factors of the API requests, such as the user who made the request, the location from which the request was made, the specific API that was requested, the bucket that was requested, and the number of API calls made. For more information on which factors of the API request are unusual for the user identity that invoked the request, see Finding details.
Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see Remediating a compromised S3 bucket (p. 258).

We recommend an audit of your S3 bucket's contents to determine if you the previous object version can or should be restored.

Impact:S3/AnomalousBehavior.Permission

An API commonly used to set the access control list (ACL) permissions was invoked in an anomalous way.

Default severity: High

- Data source: CloudTrail data events for S3

This finding informs you that an IAM entity in your AWS environment has changed a bucket policy or ACL on the listed S3 buckets. This change may publicly expose your S3 buckets to all the authenticated AWS users.

This API was identified as anomalous by GuardDuty's anomaly detection machine learning (ML) model. The ML model evaluates all the API requests in your account and identifies anomalous events that are associated with techniques used by adversaries. It tracks various factors of the API requests, such as the user who made the request, the location from which the request was made, the specific API that was requested, the bucket that was requested, and the number of API calls made. For more information on which factors of the API request are unusual for the user identity that invoked the request, see Finding details.

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see Remediating a compromised S3 bucket (p. 258).

We recommend an audit of your S3 bucket's contents to ensure that no objects were unexpectedly allowed to be accessed publicly.

Impact:S3/AnomalousBehavior.Write

An IAM entity invoked an S3 API that attempts to write data in a suspicious way.

Default severity: Medium

- Data source: CloudTrail data events for S3

This finding informs you that an IAM entity in your AWS environment is making API calls that involve an S3 bucket, and this behavior differs from that entity's established baseline. The API call used in this activity is associated with an attack that attempts to write data. This activity is suspicious because the IAM entity invoked the API in an unusual way. For example, an IAM entity with no previous history invokes an S3 API, or an IAM entity invokes an S3 API from an unusual location.
This API was identified as anomalous by GuardDuty's anomaly detection machine learning (ML) model. The ML model evaluates all the API requests in your account and identifies anomalous events that are associated with techniques used by adversaries. It tracks various factors of the API requests, such as the user who made the request, the location from which the request was made, the specific API that was requested, the bucket that was requested, and the number of API calls made. For more information on which factors of the API request are unusual for the user identity that invoked the request, see Finding details.

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see Remediating a compromised S3 bucket (p. 258).

We recommend an audit of your S3 bucket's contents to ensure that this API call didn't write malicious or unauthorized data.

Impact:S3/MaliciousIPCaller

An S3 API commonly used to tamper with data or processes in an AWS environment was invoked from a known malicious IP address.

Default severity: High

- Data source: CloudTrail data events for S3

This finding informs you that an S3 API operation was invoked from an IP address that is associated with known malicious activity. The observed API is commonly associated with impact tactics where an adversary is trying manipulate, interrupt, or destroy data within your AWS environment. Examples include PutObject and PutObjectAcl.

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see Remediating a compromised S3 bucket (p. 258).

PenTest:S3/KaliLinux

An S3 API was invoked from a Kali Linux machine.

Default severity: Medium

- Data source: CloudTrail data events for S3

This finding informs you that a machine running Kali Linux is making S3 API calls using credentials that belong to your AWS account. Your credentials might be compromised. Kali Linux is a popular penetration testing tool that security professionals use to identify weaknesses in EC2 instances that require patching. Attackers also use this tool to find EC2 configuration weaknesses and gain unauthorized access to your AWS environment.
Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see Remediating a compromised S3 bucket (p. 258).

PenTest:S3/ParrotLinux

An S3 API was invoked from a Parrot Security Linux machine.

Default severity: Medium

- **Data source:** CloudTrail data events for S3

This finding informs you that a machine running Parrot Security Linux is making S3 API calls using credentials that belong to your AWS account. Your credentials might be compromised. Parrot Security Linux is a popular penetration testing tool that security professionals use to identify weaknesses in EC2 instances that require patching. Attackers also use this tool to find EC2 configuration weaknesses and gain unauthorized access to your AWS environment.

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see Remediating a compromised S3 bucket (p. 258).

PenTest:S3/PentooLinux

An S3 API was invoked from a Pentoo Linux machine.

Default severity: Medium

- **Data source:** CloudTrail data events for S3

This finding informs you that a machine running Pentoo Linux is making S3 API calls using credentials that belong to your AWS account. Your credentials might be compromised. Pentoo Linux is a popular penetration testing tool that security professionals use to identify weaknesses in EC2 instances that require patching. Attackers also use this tool to find EC2 configuration weaknesses and gain unauthorized access to your AWS environment.

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see Remediating a compromised S3 bucket (p. 258).

Policy:S3/AccountBlockPublicAccessDisabled

An IAM entity invoked an API used to disable S3 Block Public Access on an account.

Default severity: Low
Policy:S3/BucketAnonymousAccessGranted

An IAM principal has granted access to an S3 bucket to the internet by changing bucket policies or ACLs.

Default severity: High

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see Remediating a compromised S3 bucket (p. 258).

Policy:S3/BucketBlockPublicAccessDisabled

An IAM entity invoked an API used to disable S3 Block Public Access on a bucket.

Default severity: Low

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see Remediating a compromised S3 bucket (p. 258).
This finding informs you that Block Public Access was disabled for the listed S3 bucket. When enabled, S3 Block Public Access settings are used to filter the policies or access control lists (ACLs) applied to buckets as a security measure to prevent inadvertent public exposure of data.

Typically, S3 Block Public Access is turned off on a bucket to allow public access to the bucket or to the objects within. When S3 Block Public Access is disabled for a bucket, access to the bucket is controlled by the policies or ACLs applied to it. This does not mean that the bucket is shared publicly, but you should audit the policies and ACLs applied to the bucket to confirm that appropriate permissions are applied.

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see [Remediating a compromised S3 bucket](#).
UnauthorizedAccess:S3/MaliciousIPCaller.Custom

An S3 API was invoked from an IP address on a custom threat list.

Default severity: High

- **Data source:** CloudTrail data events for S3

This finding informs you that an S3 API operation, for example, PutObject or PutObjectAcl, was invoked from an IP address that is included on a threat list that you uploaded. The threat list associated with this finding is listed in the **Additional information** section of a finding's details.

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see [Remediating a compromised S3 bucket](p. 258).

UnauthorizedAccess:S3/TorIPCaller

An S3 API was invoked from a Tor exit node IP address.

Default severity: High

- **Data source:** CloudTrail data events for S3

This finding informs you that an S3 API operation, such as PutObject or PutObjectAcl, was invoked from a Tor exit node IP address. Tor is software for enabling anonymous communication. It encrypts and randomly bounces communications through relays between a series of network nodes. The last Tor node is called the exit node. This finding can indicate unauthorized access to your AWS resources with the intent of hiding the attacker's true identity.

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see [Remediating a compromised S3 bucket](p. 258).

Retired finding types

A finding is a notification that contains details about a potential security issue that GuardDuty discovers. For information about important changes to the GuardDuty finding types, including newly added or retired finding types, see [Document history for Amazon GuardDuty](p. 354).
The following finding types are retired and no longer generated by GuardDuty.

Important

You can’t reactivate retired GuardDuty finding types.

Topics

- Exfiltration:S3/ObjectRead.Unusual (p. 200)
- Impact:S3/PermissionsModification.Unusual (p. 201)
- Impact:S3/ObjectDelete.Unusual (p. 201)
- Discovery:S3/BucketEnumeration.Unusual (p. 201)
- Persistence:IAMUser/NetworkPermissions (p. 202)
- Persistence:IAMUser/ResourcePermissions (p. 202)
- Persistence:IAMUser/UserPermissions (p. 203)
- Recon:IAMUser/NetworkPermissions (p. 204)
- Recon:IAMUser/ResourcePermissions (p. 204)
- Recon:IAMUser/UserPermissions (p. 205)
- ResourceConsumption:IAMUser/ComputeResources (p. 205)
- Stealth:IAMUser/LoggingConfigurationModified (p. 206)
- UnauthorizedAccess:IAMUser/ConsoleLogin (p. 206)
- UnauthorizedAccess:EC2/TorIPCaller (p. 207)
- Backdoor:EC2/XORDDOS (p. 207)
- Behavior:IAMUser/InstanceLaunchUnusual (p. 207)
- CryptoCurrency:EC2/BitcoinTool.A (p. 208)
- UnauthorizedAccess:IAMUser/UnusualASNCaller (p. 208)

Exfiltration:S3/ObjectRead.Unusual

An IAM entity invoked an S3 API in a suspicious way.

Default severity: Medium

Note

This finding's default severity is Medium. However, if the API is invoked using temporary AWS credentials that are created on an instance, the finding's severity is High.

- **Data source:** CloudTrail data events for S3

This finding informs you that a IAM entity in your AWS environment is making API calls that involve an S3 bucket and that differ from that entity's established baseline. The API call used in this activity is associated with the exfiltration stage of an attack, wherein and attacker is attempting to collect data. This activity is suspicious because the way the IAM entity invoked the API was unusual. For example, this IAM entity had no prior history of invoking this type of API, or the API was invoked from an unusual location.

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see Remediating a compromised S3 bucket (p. 258).
Impact:S3/PermissionsModification.Unusual

An IAM entity invoked an API to modify permissions on one or more S3 resources.

Default severity: Medium*

- **Note**
 This finding's default severity is Medium. However, if the API is invoked using temporary AWS credentials that are created on an instance, the finding's severity is High.

This finding informs you that an IAM entity is making API calls designed to modify the permissions on one or more buckets or objects in your AWS environment. This action may be performed by an attacker to allow information to be shared outside of the account. This activity is suspicious because the way the IAM entity invoked the API was unusual. For example, this IAM entity had no prior history of invoking this type of API, or the API was invoked from an unusual location.

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see [Remediating a compromised S3 bucket](p. 258).

Impact:S3/ObjectDelete.Unusual

An IAM entity invoked an API used to delete data in an S3 bucket.

Default severity: Medium*

- **Note**
 This finding's default severity is Medium. However, if the API is invoked using temporary AWS credentials that are created on an instance, the finding's severity is High.

This finding informs you that a specific IAM entity in your AWS environment is making API calls designed to delete data in the listed S3 bucket by deleting the bucket itself. This activity is suspicious because the way the IAM entity invoked the API was unusual. For example, this IAM entity had no prior history of invoking this type of API, or the API was invoked from an unusual location.

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see [Remediating a compromised S3 bucket](p. 258).

Discovery:S3/BucketEnumeration.Unusual

An IAM entity invoked an S3 API used to discover S3 buckets within your network.

Default severity: Medium*

- **Note**
 This finding's default severity is Medium. However, if the API is invoked using temporary AWS credentials that are created on an instance, the finding's severity is High.
This finding informs you that an IAM entity has invoked an S3 API to discover S3 buckets in your environment, such as ListBuckets. This type of activity is associated with the discovery stage of an attack wherein an attacker is gathering information to determine if your AWS environment is susceptible to a broader attack. This activity is suspicious because the way the IAM entity invoked the API was unusual. For example, this IAM entity had no prior history of invoking this type of API, or the API was invoked from an unusual location.

Remediation recommendations:

If this activity is unexpected for the associated principal, it may indicate that the credentials have been exposed or your S3 permissions are not restrictive enough. For more information, see Remediating a compromised S3 bucket (p. 258).

Persistence:IAMUser/NetworkPermissions

An IAM entity invoked an API commonly used to change the network access permissions for security groups, routes, and ACLs in your AWS account.

Default severity: Medium

Note

This finding's default severity is Medium. However, if the API is invoked using temporary AWS credentials that are created on an instance, the finding's severity is High.

This finding indicates that a specific principal (AWS account root user, IAM role, or user) in your AWS environment is exhibiting behavior that is different from the established baseline. This principal has no prior history of invoking this API.

This finding is triggered when network configuration settings are changed under suspicious circumstances, such as when a principal invokes the CreateSecurityGroup API with no prior history of doing so. Attackers often attempt to change security groups to allow certain inbound traffic on various ports to improve their ability to access an EC2 instance.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

Persistence:IAMUser/ResourcePermissions

A principal invoked an API commonly used to change the security access policies of various resources in your AWS account.

Default severity: Medium

Note

This finding's default severity is Medium. However, if the API is invoked is using temporary AWS credentials that are created on an instance, the finding's severity is High.

This finding indicates that a specific principal (AWS account root user, IAM role, or user) in your AWS environment is exhibiting behavior that is different from the established baseline. This principal has no prior history of invoking this API.
This finding is triggered when a change is detected to policies or permissions attached to AWS resources, such as when a principal in your AWS environment invokes the `PutBucketPolicy` API with no prior history of doing so. Some services, such as Amazon S3, support resource-attached permissions that grant one or more principals access to the resource. With stolen credentials, attackers can change the policies attached to a resource in order to gain access to that resource.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

Persistence::IAMUser/UserPermissions

A principal invoked an API commonly used to add, modify, or delete IAM users, groups or policies in your AWS account.

Default severity: Medium*
Note
This finding's default severity is Medium. However, if the API is invoked using temporary AWS credentials that are created on an instance, the finding's severity is High.

This finding indicates that a specific principal (AWS account root user, IAM role, or user) in your AWS environment is exhibiting behavior that is different from the established baseline. This principal has no prior history of invoking this API.

This finding is triggered by suspicious changes to the user-related permissions in your AWS environment, such as when a principal in your AWS environment invokes the `AttachUserPolicy` API with no prior history of doing so. Attackers may use stolen credentials to create new users, add access policies to existing users, or create access keys to maximize their access to an account, even if their original access point is closed. For example, the owner of the account might notice that a particular IAM user or password was stolen and delete it from the account. However, they might not delete other users that were created by a fraudulently created admin principal, leaving their AWS account accessible to the attacker.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

PrivilegeEscalation::IAMUser/AdministrativePermissions

A principal has attempted to assign a highly permissive policy to themselves.

Default severity: Low*
Note
This finding's severity is Low if the attempt at privilege escalation was unsuccessful, and Medium if the attempt at privilege escalation was successful.

This finding indicates that a specific IAM entity in your AWS environment is exhibiting behavior that can be indicative of a privilege escalation attack. This finding is triggered when an IAM user or role attempts
to assign a highly permissive policy to themselves. If the user or role in question is not meant to have administrative privileges, either the user's credentials may be compromised or the role's permissions may not be configured properly.

Attackers will use stolen credentials to create new users, add access policies to existing users, or create access keys to maximize their access to an account even if their original access point is closed. For example, the owner of the account might notice that a particular IAM user's sign-in credential was stolen and deleted it from the account, but might not delete other users that were created by a fraudulently created admin principal, leaving their AWS account still accessible to the attacker.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

Recon:IAMUser/NetworkPermissions

A principal invoked an API commonly used to change the network access permissions for security groups, routes, and ACLs in your AWS account.

Default severity: Medium*

Note
This finding's default severity is Medium. However, if the API is invoked using temporary AWS credentials that are created on an instance, the finding's severity is High.

This finding indicates that a specific principal (AWS account root user, IAM role, or user) in your AWS environment is exhibiting behavior that is different from the established baseline. This principal has no prior history of invoking this API.

This finding is triggered when resource access permissions in your AWS account are probed under suspicious circumstances. For example, if a principal invoked the DescribeInstances API with no prior history of doing so. An attacker might use stolen credentials to perform this type of reconnaissance of your AWS resources in order to find more valuable credentials or determine the capabilities of the credentials they already have.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

Recon:IAMUser/ResourcePermissions

A principal invoked an API commonly used to change the security access policies of various resources in your AWS account.

Default severity: Medium*

Note
This finding's default severity is Medium. However, if the API is invoked using temporary AWS credentials that are created on an instance, the finding's severity is High.
This finding indicates that a specific principal (AWS account root user, IAM role, or user) in your AWS environment is exhibiting behavior that is different from the established baseline. This principal has no prior history of invoking this API.

This finding is triggered when resource access permissions in your AWS account are probed under suspicious circumstances. For example, if a principal invoked the DescribeInstances API with no prior history of doing so. An attacker might use stolen credentials to perform this type of reconnaissance of your AWS resources in order to find more valuable credentials or determine the capabilities of the credentials they already have.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

Recon:IAMUser/UserPermissions

A principal invoked an API commonly used to add, modify, or delete IAM users, groups or policies in your AWS account.

Default severity: Medium

Note

This finding's default severity is Medium. However, if the API is invoked using temporary AWS credentials that are created on an instance, the finding's severity is High.

This finding is triggered when user permissions in your AWS environment are probed under suspicious circumstances. For example, if a principal (AWS account root user, IAM role, or IAM user) invoked the ListInstanceProfilesForRole API with no prior history of doing so. An attacker might use stolen credentials to perform this type of reconnaissance of your AWS resources in order to find more valuable credentials or determine the capabilities of the credentials they already have.

This finding indicates that a specific principal in your AWS environment is exhibiting behavior that is different from the established baseline. This principal has no prior history of invoking this API in this way.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

ResourceConsumption:IAMUser/ComputeResources

A principal invoked an API commonly used to launch Compute resources like EC2 Instances.

Default severity: Medium

Note

This finding's default severity is Medium. However, if the API is invoked using temporary AWS credentials that are created on an instance, the finding's severity is High.

This finding is triggered when EC2 instances in the listed account within your AWS environment are launched under suspicious circumstances. This finding indicates that a specific principal in your AWS environment is exhibiting behavior that is different from the established baseline; for example, if a principal (AWS account root user, IAM role, or IAM user) invoked the RunInstances API with no prior history of doing so. This might be an indication of an attacker using stolen credentials to steal compute

205
time (possibly for cryptocurrency mining or password cracking). It can also be an indication of an attacker using an EC2 instance in your AWS environment and its credentials to maintain access to your account.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see [Remediating compromised AWS credentials](p. 259).

Stealth:IAMUser/LoggingConfigurationModified

A principal invoked an API commonly used to stop CloudTrail Logging, delete existing logs, and otherwise eliminate traces of activity in your AWS account.

Default severity: Medium

Note

This finding's default severity is Medium. However, if the API is invoked using temporary AWS credentials that are created on an instance, the finding's severity is High.

This finding is triggered when the logging configuration in the listed AWS account within your environment is modified under suspicious circumstances. This finding informs you that a specific principal in your AWS environment is exhibiting behavior that is different from the established baseline; for example, if a principal (AWS account root user, IAM role, or IAM user) invoked the `StopLogging` API with no prior history of doing so. This can be an indication of an attacker trying to cover their tracks by eliminating any trace of their activity.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see [Remediating compromised AWS credentials](p. 259).

UnauthorizedAccess:IAMUser/ConsoleLogin

An unusual console login by a principal in your AWS account was observed.

Default severity: Medium

Note

This finding's default severity is Medium. However, if the API is invoked using temporary AWS credentials that are created on an instance, the finding's severity is High.

This finding is triggered when a console login is detected under suspicious circumstances. For example, if a principal with no prior history of doing so, invoked the `ConsoleLogin` API from a never-before-used client or an unusual location. This could be an indication of stolen credentials being used to gain access to your AWS account, or a valid user accessing the account in an invalid or less secure manner (for example, not over an approved VPN).

This finding informs you that a specific principal in your AWS environment is exhibiting behavior that is different from the established baseline. This principal has no prior history of login activity using this client application from this specific location.

Remediation recommendations:
If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

UnauthorizedAccess:EC2/TorIPCaller

Your EC2 instance is receiving inbound connections from a Tor exit node.

Default severity: Medium

This finding informs you that an EC2 instance in your AWS environment is receiving inbound connections from a Tor exit node. Tor is software for enabling anonymous communication. It encrypts and randomly bounces communications through relays between a series of network nodes. The last Tor node is called the exit node. This finding can indicate unauthorized access to your AWS resources with the intent of hiding the attacker's true identity.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

Backdoor:EC2/XORDDOS

An EC2 instance is attempting to communicate with an IP address that is associated with XOR DDoS malware.

Default severity: High

This finding informs you that an EC2 instance in your AWS environment is attempting to communicate with an IP address that is associated with XOR DDoS malware. This EC2 instance might be compromised. XOR DDoS is Trojan malware that hijacks Linux systems. To gain access to the system, it launches a brute force attack in order to discover the password to Secure Shell (SSH) services on Linux. After SSH credentials are acquired and the login is successful, it uses root user privileges to run a script that downloads and installs XOR DDoS. This malware is then used as part of a botnet to launch distributed denial of service (DDoS) attacks against other targets.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

Behavior:IAMUser/InstanceLaunchUnusual

A user launched an EC2 instance of an unusual type.

Default severity: High

This finding informs you that a specific user in your AWS environment is exhibiting behavior that is different from the established baseline. This user has no prior history of launching an EC2 instance of this type. Your sign-in credentials might be compromised.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).
CryptoCurrency:EC2/BitcoinTool.A

EC2 instance is communicating with Bitcoin mining pools.

Default severity: High

This finding informs you that an EC2 instance in your AWS environment is communicating with Bitcoin mining pools. In the field of cryptocurrency mining, a mining pool is the pooling of resources by miners who share their processing power over a network to split the reward according to the amount of work they contributed to solving a block. Unless you use this EC2 instance for Bitcoin mining, your EC2 instance might be compromised.

Remediation recommendations:

If this activity is unexpected, your instance may be compromised. For more information, see Remediating a compromised Amazon EC2 instance (p. 257).

UnauthorizedAccess:IAMUser/UnusualASNCaller

An API was invoked from an IP address of an unusual network.

Default severity: High

This finding informs you that certain activity was invoked from an IP address of an unusual network. This network was never observed throughout the AWS usage history of the described user. This activity can include a console login, an attempt to launch an EC2 instance, create a new IAM user, modify your AWS privileges, etc. This can indicate unauthorized access to your AWS resources.

Remediation recommendations:

If this activity is unexpected, your credentials may be compromised. For more information, see Remediating compromised AWS credentials (p. 259).

Findings by resource type

The following pages are categorized by resource type associated to a GuardDuty finding:

- EC2 finding types (p. 117)
- EKS Runtime Monitoring finding types (p. 136)
- IAM finding types (p. 153)
- Kubernetes audit logs finding types (p. 165)
- Lambda Protection finding types (p. 178)
- Malware Protection finding types (p. 181)
- RDS Protection finding types (p. 184)
- S3 finding types (p. 190)

Findings table

The following table shows all of the active finding types sorted by the foundational data source or feature, as applicable. Some of the following finding types may have a variable severity, indicated by an
Findings table

An asterisk (*) indicates that the severity of a finding type can vary depending on the context. For information about the variable severity of a finding type, view the detailed description of that finding type.

<table>
<thead>
<tr>
<th>Finding type</th>
<th>Resource type</th>
<th>Foundational data source/Feature</th>
<th>Finding severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery:S3/AnomalousBehavior</td>
<td>Amazon S3</td>
<td>CloudTrail data events for S3</td>
<td>Low</td>
</tr>
<tr>
<td>Discovery:S3/MaliciousIPCaller</td>
<td>Amazon S3</td>
<td>CloudTrail data events for S3</td>
<td>High</td>
</tr>
<tr>
<td>Discovery:S3/MaliciousIPCaller.Custom</td>
<td>Amazon S3</td>
<td>CloudTrail data events for S3</td>
<td>High</td>
</tr>
<tr>
<td>Discovery:S3/TorIPCaller</td>
<td>Amazon S3</td>
<td>CloudTrail data events for S3</td>
<td>Medium</td>
</tr>
<tr>
<td>Exfiltration:S3/AnomalousBehavior</td>
<td>Amazon S3</td>
<td>CloudTrail data events for S3</td>
<td>High</td>
</tr>
<tr>
<td>Exfiltration:S3/MaliciousIPCaller</td>
<td>Amazon S3</td>
<td>CloudTrail data events for S3</td>
<td>High</td>
</tr>
<tr>
<td>Impact:S3/AnomalousBehavior.Delete</td>
<td>Amazon S3</td>
<td>CloudTrail data events for S3</td>
<td>High</td>
</tr>
<tr>
<td>Impact:S3/AnomalousBehavior.Permission</td>
<td>Amazon S3</td>
<td>CloudTrail data events for S3</td>
<td>High</td>
</tr>
<tr>
<td>Impact:S3/AnomalousBehavior.Write</td>
<td>Amazon S3</td>
<td>CloudTrail data events for S3</td>
<td>Medium</td>
</tr>
<tr>
<td>Impact:S3/MaliciousIPCaller</td>
<td>Amazon S3</td>
<td>CloudTrail data events for S3</td>
<td>High</td>
</tr>
<tr>
<td>PenTest:S3/KaliLinux</td>
<td>Amazon S3</td>
<td>CloudTrail data events for S3</td>
<td>Medium</td>
</tr>
<tr>
<td>PenTest:S3/ParrotLinux</td>
<td>Amazon S3</td>
<td>CloudTrail data events for S3</td>
<td>Medium</td>
</tr>
<tr>
<td>PenTest:S3/PentooLinux</td>
<td>Amazon S3</td>
<td>CloudTrail data events for S3</td>
<td>Medium</td>
</tr>
<tr>
<td>UnauthorizedAccess:Amazon S3/TorIPCaller</td>
<td>Amazon S3</td>
<td>CloudTrail data events for S3</td>
<td>High</td>
</tr>
<tr>
<td>UnauthorizedAccess:Amazon S3/MaliciousIPCaller.Custom</td>
<td>Amazon S3</td>
<td>CloudTrail data events for S3</td>
<td>High</td>
</tr>
<tr>
<td>CredentialAccess:IAMUser/AnomalousBehavior</td>
<td>IAM management event</td>
<td>CloudTrail management event</td>
<td>Medium</td>
</tr>
<tr>
<td>DefenseEvasion:IAMUser/AnomalousBehavior</td>
<td>IAM management event</td>
<td>CloudTrail management event</td>
<td>Medium</td>
</tr>
<tr>
<td>Discovery:IAMUser/AnomalousBehavior</td>
<td>IAM management event</td>
<td>CloudTrail management event</td>
<td>Low</td>
</tr>
<tr>
<td>Finding type</td>
<td>Resource type</td>
<td>Foundational data source/Feature</td>
<td>Finding severity</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>Exfiltration:IAMUser/AnomalousBehavior (p. 155)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>High</td>
</tr>
<tr>
<td>Impact:IAMUser/AnomalousBehavior (p. 156)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>High</td>
</tr>
<tr>
<td>InitialAccess:IAMUser/AnomalousBehavior (p. 156)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>Medium</td>
</tr>
<tr>
<td>PenTest:IAMUser/KaliLinux (p. 157)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>Medium</td>
</tr>
<tr>
<td>PenTest:IAMUser/ParrotLinux (p. 157)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>Medium</td>
</tr>
<tr>
<td>PenTest:IAMUser/PentooLinux (p. 157)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>Medium</td>
</tr>
<tr>
<td>Persistence:IAMUser/AnomalousBehavior (p. 158)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>Medium</td>
</tr>
<tr>
<td>Stealth:IAMUser/PasswordPolicyChange (p. 161)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>Low*</td>
</tr>
<tr>
<td>UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration.InsideAWS (p. 162)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>High*</td>
</tr>
<tr>
<td>Policy:S3/AccountBlockPublicAccessDisabled (p. 196)</td>
<td>Amazon S3</td>
<td>CloudTrail management event</td>
<td>Low</td>
</tr>
<tr>
<td>Policy:S3/BucketAnonymousAccessGranted (p. 197)</td>
<td>Amazon S3</td>
<td>CloudTrail management event</td>
<td>High</td>
</tr>
<tr>
<td>Policy:S3/BucketBlockPublicAccessDisabled (p. 197)</td>
<td>Amazon S3</td>
<td>CloudTrail management event</td>
<td>Low</td>
</tr>
<tr>
<td>Policy:S3/BucketPublicAccessGranted (p. 198)</td>
<td>Amazon S3</td>
<td>CloudTrail management event</td>
<td>High</td>
</tr>
<tr>
<td>PrivilegeEscalation:IAMUser/AnomalousBehavior (p. 159)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>Medium</td>
</tr>
<tr>
<td>Recon:IAMUser/MaliciousIPCaller (p. 159)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>Medium</td>
</tr>
<tr>
<td>Recon:IAMUser/MaliciousIPCaller.Custom (p. 160)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>Medium</td>
</tr>
<tr>
<td>Recon:IAMUser/TorIPCaller (p. 160)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>Medium</td>
</tr>
<tr>
<td>Stealth:IAMUser/CloudTrailLoggingDisabled (p. 160)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>Low</td>
</tr>
<tr>
<td>Stealth:S3/ServerAccessLoggingDisabled (p. 198)</td>
<td>Amazon S3</td>
<td>CloudTrail management event</td>
<td>Low</td>
</tr>
<tr>
<td>UnauthorizedAccess:IAMUser/ConsoleLoginSuccess.B (p. 161)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>Medium</td>
</tr>
<tr>
<td>Finding type</td>
<td>Resource type</td>
<td>Foundational data source/Feature</td>
<td>Finding severity</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>----------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>UnauthorizedAccess: IAMUser/MaliciousIPCaller (p. 163)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>Medium</td>
</tr>
<tr>
<td>UnauthorizedAccess: IAMUser/MaliciousIPCaller Custom (p. 164)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>Medium</td>
</tr>
<tr>
<td>UnauthorizedAccess: IAMUser/TorIPCaller (p. 164)</td>
<td>IAM</td>
<td>CloudTrail management event</td>
<td>Medium</td>
</tr>
<tr>
<td>Policy: IAMUser/RootCredentialUsage (p. 158)</td>
<td>IAM</td>
<td>CloudTrail management events or CloudTrail data events for S3</td>
<td>Low</td>
</tr>
<tr>
<td>UnauthorizedAccess: IAMUser/InstanceCredentialExfiltration,OutsideAWS</td>
<td>IAM</td>
<td>CloudTrail management events or CloudTrail data events for S3</td>
<td>High</td>
</tr>
<tr>
<td>Backdoor: EC2/C&CActivity,Bl DNS (p. 119)</td>
<td>Amazon EC2</td>
<td>DNS logs</td>
<td>High</td>
</tr>
<tr>
<td>CryptoCurrency: EC2/BitcoinTool,B! DNS (p. 123)</td>
<td>Amazon EC2</td>
<td>DNS logs</td>
<td>High</td>
</tr>
<tr>
<td>Impact: EC2/AbusedDomainRequest,Reputation (p. 125)</td>
<td>Amazon EC2</td>
<td>DNS logs</td>
<td>Medium</td>
</tr>
<tr>
<td>Impact: EC2/BitcoinDomainRequest,Reputation (p. 125)</td>
<td>Amazon EC2</td>
<td>DNS logs</td>
<td>High</td>
</tr>
<tr>
<td>Impact: EC2/MaliciousDomainRequest,Reputation (p. 126)</td>
<td>Amazon EC2</td>
<td>DNS logs</td>
<td>High</td>
</tr>
<tr>
<td>Impact: EC2/SuspiciousDomainRequest,Reputation (p. 127)</td>
<td>Amazon EC2</td>
<td>DNS logs</td>
<td>Low</td>
</tr>
<tr>
<td>Trojan: EC2/BlackholeTraffic! DNS (p. 130)</td>
<td>Amazon EC2</td>
<td>DNS logs</td>
<td>Medium</td>
</tr>
<tr>
<td>Trojan: EC2/DGADomainRequest,Bl (p. 130)</td>
<td>Amazon EC2</td>
<td>DNS logs</td>
<td>High</td>
</tr>
<tr>
<td>Trojan: EC2/DGADomainRequest,Cl DNS (p. 131)</td>
<td>Amazon EC2</td>
<td>DNS logs</td>
<td>High</td>
</tr>
<tr>
<td>Trojan: EC2/DNSDataExfiltration (p. 131)</td>
<td>Amazon EC2</td>
<td>DNS logs</td>
<td>High</td>
</tr>
<tr>
<td>Trojan: EC2/DriveBySourceTraffic! DNS (p. 132)</td>
<td>Amazon EC2</td>
<td>DNS logs</td>
<td>High</td>
</tr>
<tr>
<td>Trojan: EC2/DropPoint! DNS (p. 132)</td>
<td>Amazon EC2</td>
<td>DNS logs</td>
<td>Medium</td>
</tr>
<tr>
<td>Finding type</td>
<td>Resource type</td>
<td>Foundational data source/Feature</td>
<td>Finding severity</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------</td>
<td>----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Trojan:EC2/PhishingDomainRequest!DNS (p. 133)</td>
<td>Amazon EC2</td>
<td>DNS logs</td>
<td>High</td>
</tr>
<tr>
<td>UnauthorizedAccess:Amazon EC2MetadataDNSRebind (p. 133)</td>
<td>Amazon EC2</td>
<td>DNS logs</td>
<td>High</td>
</tr>
<tr>
<td>Execution:Container/MaliciousFile (p. 182)</td>
<td>Container EBS volumes</td>
<td>Varies depending on the detected threat</td>
<td></td>
</tr>
<tr>
<td>Execution:Container/SuspiciousFile (p. 184)</td>
<td>Container EBS volumes</td>
<td>Varies depending on the detected threat</td>
<td></td>
</tr>
<tr>
<td>Execution:EC2/MaliciousFile (p. 182)</td>
<td>EC2 EBS volumes</td>
<td>Varies depending on the detected threat</td>
<td></td>
</tr>
<tr>
<td>Execution:EC2/SuspiciousFile (p. 183)</td>
<td>EC2 EBS volumes</td>
<td>Varies depending on the detected threat</td>
<td></td>
</tr>
<tr>
<td>Execution:ECS/MaliciousFile (p. 182)</td>
<td>ECS EBS volumes</td>
<td>Varies depending on the detected threat</td>
<td></td>
</tr>
<tr>
<td>Execution:ECS/SuspiciousFile (p. 183)</td>
<td>ECS EBS volumes</td>
<td>Varies depending on the detected threat</td>
<td></td>
</tr>
<tr>
<td>Execution:Kubernetes/MaliciousFile (p. 182)</td>
<td>Kubernetes EBS volumes</td>
<td>Varies depending on the detected threat</td>
<td></td>
</tr>
<tr>
<td>Execution:Kubernetes/SuspiciousFile (p. 184)</td>
<td>Kubernetes EBS volumes</td>
<td>Varies depending on the detected threat</td>
<td></td>
</tr>
<tr>
<td>CredentialAccess:Kubernetes/MaliciousIPCaller (p. 166)</td>
<td>Kubernetes audit logs</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CredentialAccess:Kubernetes/MaliciousIPCaller.Custom (p. 166)</td>
<td>Kubernetes audit logs</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CredentialAccess:Kubernetes/SuccessfulAnonymousAccess (p. 167)</td>
<td>Kubernetes audit logs</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CredentialAccess:Kubernetes/TorIPCaller (p. 167)</td>
<td>Kubernetes audit logs</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>DefenseEvasion:Kubernetes/MaliciousIPCaller (p. 168)</td>
<td>Kubernetes audit logs</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>DefenseEvasion:Kubernetes/MaliciousIPCaller.Custom (p. 168)</td>
<td>Kubernetes audit logs</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Finding type</td>
<td>Resource type</td>
<td>Foundational data source/Feature</td>
<td>Finding severity</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>----------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>DefenseEvasion: Kubernetes</td>
<td>Kubernetes</td>
<td>Kubernetes audit logs</td>
<td>High</td>
</tr>
<tr>
<td>SuccessfulAnonymousAccess</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TorIPCaller (p. 169)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DefenseEvasion: Kubernetes</td>
<td>Kubernetes</td>
<td>Kubernetes audit logs</td>
<td>High</td>
</tr>
<tr>
<td>TorIPCaller (p. 169)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discovery: Kubernetes</td>
<td>Kubernetes</td>
<td>Kubernetes audit logs</td>
<td>Medium</td>
</tr>
<tr>
<td>MaliciousIPCaller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p. 169)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discovery: Kubernetes</td>
<td>Kubernetes</td>
<td>Kubernetes audit logs</td>
<td>Medium</td>
</tr>
<tr>
<td>MaliciousIPCaller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Custom (p. 170)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discovery: Kubernetes</td>
<td>Kubernetes</td>
<td>Kubernetes audit logs</td>
<td>Medium</td>
</tr>
<tr>
<td>SuccessfulAnonymousAccess</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TorIPCaller (p. 170)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Execution: Kubernetes</td>
<td>Kubernetes</td>
<td>Kubernetes audit logs</td>
<td>Medium</td>
</tr>
<tr>
<td>ExecInKubeSystemPod (p. 171)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact: Kubernetes</td>
<td>Kubernetes</td>
<td>Kubernetes audit logs</td>
<td>High</td>
</tr>
<tr>
<td>MaliciousIPCaller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p. 172)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact: Kubernetes</td>
<td>Kubernetes</td>
<td>Kubernetes audit logs</td>
<td>High</td>
</tr>
<tr>
<td>MaliciousIPCaller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Custom (p. 172)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact: Kubernetes</td>
<td>Kubernetes</td>
<td>Kubernetes audit logs</td>
<td>High</td>
</tr>
<tr>
<td>SuccessfulAnonymousAccess</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TorIPCaller (p. 173)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistence: Kubernetes</td>
<td>Kubernetes</td>
<td>Kubernetes audit logs</td>
<td>Medium</td>
</tr>
<tr>
<td>ContainerWithSensitiveMount (p. 173)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistence: Kubernetes</td>
<td>Kubernetes</td>
<td>Kubernetes audit logs</td>
<td>Medium</td>
</tr>
<tr>
<td>MaliciousIPCaller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p. 174)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistence: Kubernetes</td>
<td>Kubernetes</td>
<td>Kubernetes audit logs</td>
<td>Medium</td>
</tr>
<tr>
<td>MaliciousIPCaller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Custom (p. 174)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistence: Kubernetes</td>
<td>Kubernetes</td>
<td>Kubernetes audit logs</td>
<td>High</td>
</tr>
<tr>
<td>SuccessfulAnonymousAccess</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TorIPCaller (p. 175)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Policy: Kubernetes</td>
<td>Kubernetes</td>
<td>Kubernetes audit logs</td>
<td>High</td>
</tr>
<tr>
<td>AdminAccessToDefaultServiceAccount (p. 176)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Policy: Kubernetes</td>
<td>Kubernetes</td>
<td>Kubernetes audit logs</td>
<td>High</td>
</tr>
<tr>
<td>AnonymousAccessGranted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p. 176)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Policy: Kubernetes</td>
<td>Kubernetes</td>
<td>Kubernetes audit logs</td>
<td>Medium</td>
</tr>
<tr>
<td>KubeflowDashboardExposed (p. 177)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Policy: Kubernetes</td>
<td>Kubernetes</td>
<td>Kubernetes audit logs</td>
<td>Medium</td>
</tr>
<tr>
<td>ExposedDashboard (p. 177)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

213
<table>
<thead>
<tr>
<th>Finding type</th>
<th>Resource type</th>
<th>Foundational data source/Feature</th>
<th>Finding severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrivilegeEscalation:Kubernetes/PrivilegedContainer (p. 177)</td>
<td>Kubernetes/PrivilegedContainer</td>
<td>Kubernetes audit logs</td>
<td>Medium</td>
</tr>
<tr>
<td>Backdoor:Lambda/Lambda C&CActivity.B (p. 178)</td>
<td>Lambda/Lambda C&CActivity.B</td>
<td>Lambda Network Activity Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>Trojan:Lambda/BlackholeTraffic (p. 179)</td>
<td>Lambda/BlackholeTraffic</td>
<td>Lambda Network Activity Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>Trojan:Lambda/DropPoint (p. 180)</td>
<td>Lambda/DropPoint</td>
<td>Lambda Network Activity Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>UnauthorizedAccess:Lambda/TorClient (p. 180)</td>
<td>Lambda/TorClient</td>
<td>Lambda Network Activity Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>UnauthorizedAccess:Lambda/TorRelay (p. 181)</td>
<td>Lambda/TorRelay</td>
<td>Lambda Network Activity Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>CredentialAccess:RDS/AnomalousBehavior.FailedLogin (p. 186)</td>
<td>RDS/AnomalousBehavior.FailedLogin</td>
<td>RDS Login Activity Monitoring</td>
<td>Low</td>
</tr>
<tr>
<td>CredentialAccess:RDS/AnomalousBehavior.SuccessfulLogin (p. 185)</td>
<td>RDS/AnomalousBehavior.SuccessfulLogin</td>
<td>RDS Login Activity Monitoring</td>
<td>Variable*</td>
</tr>
<tr>
<td>CredentialAccess:RDS/MaliciousIPCaller.FailedLogin (p. 187)</td>
<td>RDS/MaliciousIPCaller.FailedLogin</td>
<td>RDS Login Activity Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>CredentialAccess:RDS/MaliciousIPCaller.SuccessfulLogin (p. 187)</td>
<td>RDS/MaliciousIPCaller.SuccessfulLogin</td>
<td>RDS Login Activity Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>Discovery:RDS/MaliciousIPCaller.FailedLogin (p. 188)</td>
<td>RDS/MaliciousIPCaller.FailedLogin</td>
<td>RDS Login Activity Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>Finding type</td>
<td>Resource type</td>
<td>Foundational data source/Feature</td>
<td>Finding severity</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------</td>
<td>----------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Discovery:RDS/TorIPCaller (p. 189)</td>
<td>Supported Amazon Aurora databases (p. 84)</td>
<td>RDS Login Activity Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>Backdoor:Runtime/C&CActivity.B (p. 138)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>Backdoor:Runtime/C&CActivity.B!DNS (p. 141)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>CryptoCurrency:Runtime/BitcoinTool.B! (p. 137)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>CryptoCurrency:Runtime/BitcoinTool.B!DNS (p. 140)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>DefenseEvasion:Runtime/FilelessExecution (p. 151)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>DefenseEvasion:Runtime/ProcessInjection.Proc (p. 149)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>DefenseEvasion:Runtime/ProcessInjection.Ptrace (p. 149)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>DefenseEvasion:Runtime/ProcessInjection.VirtualMemoryWrite (p. 150)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>Execution:Runtime/NewBinaryExecuted (p. 147)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>Execution:Runtime/NewLibraryLoaded (p. 151)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>Execution:Runtime/ReverseShell (p. 150)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>Impact:Runtime/AbusedDomainRequest.Reputation (p. 144)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>Impact:Runtime/BitcoinDomainRequest.Reputation (p. 144)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>Finding type</td>
<td>Resource type</td>
<td>Foundational data source/Feature</td>
<td>Finding severity</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
<td>-----------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Impact:Runtime/ CryptoMinerExecuted</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>Impact:Runtime/ MaliciousDomainRequest.Reputation</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>Impact:Runtime/ SuspiciousDomainRequest.Reputation</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>Low</td>
</tr>
<tr>
<td>PrivilegeEscalation:Runtime/ CGroupsReleaseAgentModified</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>PrivilegeEscalation:Runtime/ ContainerMountsHostDirectory</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>PrivilegeEscalation:Runtime/ DockerSocketAccessed</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>PrivilegeEscalation:Runtime/ RuncContainerEscape</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>PrivilegeEscalation:Runtime/ UserfaultfdUsage</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>Trojan:Runtime/ BlackholeTraffic</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>Trojan:Runtime/ BlackholeTraffic! DNS (p. 142)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>Trojan:Runtime/ DropPoint (p. 140)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>Trojan:Runtime/ DGADomainRequest.DNS (p. 142)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>Trojan:Runtime/ DriveBySourceTraffic! DNS (p. 143)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>Trojan:Runtime/ DropPoint! DNS (p. 142)</td>
<td>Instance, EKS Cluster, or Container</td>
<td>Runtime Monitoring</td>
<td>Medium</td>
</tr>
<tr>
<td>Finding type</td>
<td>Resource type</td>
<td>Foundational data source/Feature</td>
<td>Finding severity</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>----------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Trojan:Runtime/PhishingDomainRequest!DNS</td>
<td>Instance, EKSCluster, or Container</td>
<td>Runtime Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>UnauthorizedAccess:MetadataDNSRebind</td>
<td>Instance, EKSCluster, or Container</td>
<td>Runtime Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>UnauthorizedAccess:TorClient</td>
<td>Instance, EKSCluster, or Container</td>
<td>Runtime Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>UnauthorizedAccess:TorRelay</td>
<td>Instance, EKSCluster, or Container</td>
<td>Runtime Monitoring</td>
<td>High</td>
</tr>
<tr>
<td>Backdoor:EC2/C&CActivity.B</td>
<td>EC2</td>
<td>VPC flow logs</td>
<td>High</td>
</tr>
<tr>
<td>Backdoor:EC2/DenialOfService.Dns</td>
<td>EC2</td>
<td>VPC flow logs</td>
<td>High</td>
</tr>
<tr>
<td>Backdoor:EC2/DenialOfService.Tcp</td>
<td>EC2</td>
<td>VPC flow logs</td>
<td>High</td>
</tr>
<tr>
<td>Backdoor:EC2/DenialOfService.Udp</td>
<td>EC2</td>
<td>VPC flow logs</td>
<td>High</td>
</tr>
<tr>
<td>Backdoor:EC2/DenialOfService.UdpOnTcpPorts</td>
<td>EC2</td>
<td>VPC flow logs</td>
<td>High</td>
</tr>
<tr>
<td>Backdoor:EC2/Spambot</td>
<td>EC2</td>
<td>VPC flow logs</td>
<td>Medium</td>
</tr>
<tr>
<td>Behavior:EC2/NetworkPortUnusual</td>
<td>EC2</td>
<td>VPC flow logs</td>
<td>Medium</td>
</tr>
<tr>
<td>Behavior:EC2/TrafficVolumeUnusual</td>
<td>EC2</td>
<td>VPC flow logs</td>
<td>Medium</td>
</tr>
<tr>
<td>CryptoCurrency:EC2BitcoinTool.B</td>
<td>EC2</td>
<td>VPC flow logs</td>
<td>High</td>
</tr>
<tr>
<td>DefenseEvasion:EC2UnusualDNSResolver</td>
<td>EC2</td>
<td>VPC flow logs</td>
<td>Medium</td>
</tr>
<tr>
<td>DefenseEvasion:EC2UnusualDoHActivity</td>
<td>EC2</td>
<td>VPC flow logs</td>
<td>Medium</td>
</tr>
<tr>
<td>DefenseEvasion:EC2UnusualDoTAActivity</td>
<td>EC2</td>
<td>VPC flow logs</td>
<td>Medium</td>
</tr>
<tr>
<td>Impact:EC2/PortSweep</td>
<td>EC2</td>
<td>VPC flow logs</td>
<td>High</td>
</tr>
<tr>
<td>Finding type</td>
<td>Resource type</td>
<td>Foundational data source/Feature</td>
<td>Finding severity</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>----------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Impact:EC2/WinRMBruteForce (p. 127)</td>
<td>EC2 VPC flow logs</td>
<td>Low*</td>
<td></td>
</tr>
<tr>
<td>Recon:EC2/PortProbeEMRUnprotectedPort (p. 128)</td>
<td>EC2 VPC flow logs</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Recon:EC2/PortProbeUnprotectedPort (p. 128)</td>
<td>EC2 VPC flow logs</td>
<td>Low*</td>
<td></td>
</tr>
<tr>
<td>Recon:EC2/Portscanning (p. 129)</td>
<td>EC2 VPC flow logs</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Trojan:EC2/BlackholeTraffic (p. 129)</td>
<td>EC2 VPC flow logs</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Trojan:EC2/DropPoint (p. 132)</td>
<td>EC2 VPC flow logs</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>UnauthorizedAccess:EC2/MaliciousIPCaller Custom (p. 133)</td>
<td>EC2 VPC flow logs</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>UnauthorizedAccess:EC2/RDPBruteForce (p. 134)</td>
<td>EC2 VPC flow logs</td>
<td>Low*</td>
<td></td>
</tr>
<tr>
<td>UnauthorizedAccess:EC2/SSHBruteForce (p. 135)</td>
<td>EC2 VPC flow logs</td>
<td>Low*</td>
<td></td>
</tr>
<tr>
<td>UnauthorizedAccess:EC2/TorClient (p. 135)</td>
<td>EC2 VPC flow logs</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>UnauthorizedAccess:EC2/TorRelay (p. 136)</td>
<td>EC2 VPC flow logs</td>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>
Managing Amazon GuardDuty findings

GuardDuty offers several important features to help you sort, store, and manage your findings. These features will help you tailor findings to your specific environment, reduce noise from low value findings, and help you focus on threats to your unique AWS environment. Review the topics on this page to understand how you can use these features to increase the value of GuardDuty’s findings.

Topics:

Summary dashboard (p. 219)

Learn about the components of the summary dashboard available in the GuardDuty console.

Filtering findings (p. 222)

Learn how to filter GuardDuty findings based on criteria you specify.

Suppression rules (p. 226)

Learn how to automatically filter the findings GuardDuty alerts you to through suppression rules. Suppression rules automatically archive findings based on filters.

Working with trusted IP lists and threat lists (p. 231)

Customize the GuardDuty monitoring scope using IP Lists and Threat Lists based on publicly-routable IP addresses. Trusted IP lists prevent non-DNS findings from being generated from IP’s you consider trusted, while Threat Intel Lists will cause GuardDuty to alert you of activity from user-defined IPs.

Exporting findings (p. 238)

Configure automatic exporting of your findings to an S3 Bucket so you can maintain records past 90-day findings retention period. This historical data can be used to track suspicious activity in your account and help you evaluate whether your remediation actions were successful.

Creating custom responses to GuardDuty findings with Amazon CloudWatch Events (p. 244)

Set up automatic notifications for GuardDuty findings through Amazon CloudWatch events. You can also automate other tasks through CloudWatch Events to help you respond to findings.

Understanding CloudWatch Logs and reasons for skipping resources during Malware Protection scan (p. 252)

Learn how you can audit the CloudWatch Logs for GuardDuty Malware Protection and what are the reasons because of which your impacted Amazon EC2 instance or Amazon EBS volumes may have been skipped during the scanning process.

Reporting false positives in GuardDuty Malware Protection (p. 255)

Learn about the false positive experience in GuardDuty Malware Protection and how you can report false positive threat detections.

Summary dashboard

The Summary dashboard provides an aggregated view of the GuardDuty findings generated in your AWS account in the current Region. Presently, the dashboard supports a volume of up to 5,000 findings.
Accessing the Summary dashboard

On the GuardDuty console, the **Summary** dashboard shows a consolidated view of up to last 5,000 GuardDuty findings generated in the current Region.

To access the Summary dashboard

2. In the navigation pane, choose **Summary**. When you open the console, GuardDuty shows the **Summary** dashboard.
3. By default, the summary gets displayed for the same day – **Today**. The GuardDuty console provides an option to view the summary for the **Last 2 days**, **Last 7 days**, and **Last 30 days**. To change the default time range, choose one of the options from the dropdown above the **Overview** pane.
4. **Filter the data**
 - The **Accounts with most findings**, **Resources with most findings**, and **Least occurring findings** widgets help you filter the data on the basis of the level of severity of the findings.
 - The **Resources with most findings** widget also helps you filter the data on the basis of your potentially impacted resource type.

 A member account can view the details of the potentially impacted resource that belongs to their own account. If you’re a GuardDuty administrator and want to view the details of the potentially impacted resource, open the GuardDuty console using the credentials of the associated member account.

Understanding the Summary dashboard

The **Summary** dashboard shows the aggregated data in the following sections. Before you proceed to view and understand the summary, make sure to choose the desired AWS Region from the Region selector at the top of the console. Also, make sure to choose the desired time range from the dropdown menu provided above the **Overview** pane. If no findings were generated for the chosen parameters, no data will be available in any of the widgets.

Out of a volume of up to last 5,000 GuardDuty findings, the summary dashboard with **Accounts with most findings**, **Resources with most findings**, and **Least occurring findings** shows the data based off of the top 5 results. For a deeper analysis, see the **Findings** page in the GuardDuty console.

Overview

This section provides the following data:

- **Total findings**: Indicates the total number of findings generated in your account in the current Region.
• **High severity findings**: Indicates the number of GuardDuty findings that have a high severity level in the current Region.

• **Resources with findings**: Indicates the number of resources that are associated to a finding and have been potentially compromised.

• **Accounts with findings**: Indicates the number of accounts in which at least one finding was generated. If you’re a standalone account, the value in this field is 1.

For the time ranges **Last 7 days** and **Last 30 days**, the **Overview** pane may show the percentage difference in the findings generated week over week (WoW) or month over month (MoM), respectively. If no findings were generated in the week or the month before, then with no data to compare, the percentage difference may not be available.

If you're a GuardDuty administrator, all of these fields provide the summarized data across all the member accounts in your AWS organization.

Findings by severity

This section displays a bar chart with the total number of findings against the chosen time range. You can view the number of findings with low, medium, or high severity, generated on a specific date within the chosen time range.

Most common finding types

This section provides a pie chart illustration of the top five common finding types as observed from a volume of up to last 5,000 GuardDuty findings generated in the current Region. This pie chart displays the following data when hovered over each sector:

• **Findings count**: Indicates the number of times this finding has been generated in the chosen time range.

• **Severity**: Indicates the severity level of the finding – for example, Medium and High.

• **Percentage**: Indicates the share of this finding type in the pie chart.

• **Last generated**: Indicates how much time has passed since this finding type was last generated.

Accounts with most findings

This section provides the following data:

• **Account**: Indicates the AWS account ID where the finding was generated.

• **Finding count**: Indicates the number of times a finding was generated for this account ID.

• **Last generated**: Indicates how much time has passed since a finding type was last generated for this account ID.

• **High severity**: By default, the data is shown for the high severity finding types. Possible options for this field are **High severity**, **Medium severity**, and **All severity**.

Resources with findings

This section provides the following data:

• **Resource**: Indicates the potentially impacted resource type and if this resource belongs to your account, you can access the quick link to view the resource details. If you're a GuardDuty administrator, you can view the details of the potentially impacted resource by accessing the GuardDuty console with the credentials of the member account to which this resource belongs.

• **Account**: Indicates the AWS account ID to which this resource belongs.
• **Finding count**: Indicates the number of times that this resource was associated to a finding.

• **Last generated**: Indicates how much time has passed since a finding type associated to this resource was last generated.

• **All resource types**: By default, the data is shown for all of the resource types. By using the dropdown, you can view the data for a specific resource type, such as **Instance**, **AccessKey**, **Lambda**, and others.

• **High severity**: By default, the data is shown for the high severity finding types. By using the dropdown, you can view the data for other severity levels. Possible options are **High severity**, **Medium severity**, and **All severity**.

Least occurring findings

This section provides the details of the finding types that are not generated often in your AWS environment. This insight can help you investigate and take action on an emergent threat pattern in your environment. The table shows the following data:

• **Finding type**: Indicates the finding type name.

• **Finding count**: Indicates the number of times that this finding type was generated in the chosen time range.

• **Last generated**: Indicates how much time has passed since this finding type was last generated.

• **High severity**: By default, the data is shown for the high severity finding types. Possible options for this field are **High severity**, **Medium severity**, and **All severity**.

Providing feedback on the Summary dashboard

GuardDuty encourages you to provide feedback on the Summary dashboard's usability, features, and performance. This will help us improve the dashboard.

To provide feedback on the Summary dashboard

2. In the navigation pane, choose **Summary**. When you open the GuardDuty console, it shows the **Summary** dashboard.
3. Choose **Feedback** at the top-right corner of the dashboard. This will open up a form. After you provide the feedback, choose **Submit**.

Filtering findings

A finding filter allows you to view findings that match the criteria you specify and filter out any unmatched findings. You can easily create finding filters using the Amazon GuardDuty console, or you can create them with the **CreateFilter** API using JSON. Review the following sections to understand how to create a filter in the console. To use these filters to automatically archive incoming findings, see **Suppression rules** (p. 226).

Creating filters in the GuardDuty console

Finding filters can be created and tested through the GuardDuty console. You can save filters created through the console for use in suppression rules or future filter operations. A filter is made up of at least one filter criteria, which consists of one filter attribute paired with at least one value.

When you create filters, be aware of the following:

• Filters do not accept wild cards.
• You can specify a minimum of one attribute and up to a maximum of 50 attributes as the criteria for a particular filter.
• When you use the equal to or not equal to condition to filter on an attribute value, such as Account ID, you can specify a maximum of 50 values.
• Each filter criteria attribute is evaluated as an AND operator. Multiple values for the same attribute are evaluated as AND/OR.

To filter findings (console)
1. Choose Add filter criteria above the displayed list of your GuardDuty findings.
2. In the expanded list of attributes, select the attribute that you want to specify as the criteria for your filter, such as Account ID or Action type.

 Note
 See the filter attribute table on this page for a list of attributes that you can use to create filter criteria.
3. In the displayed text field, specify a value for each selected attribute and then choose Apply.

 Note
 After you apply a filter, you can convert the filter to exclude findings that match the filter by choosing the black dot to the left of the filter name. This effectively creates a "not equals" filter for the selected attribute.
4. To save the specified attributes and their values (filter criteria) as a filter, select Save. Enter the filter name and description, and then choose Done.

Filter attributes

When you create filters or sort findings using the API operations, you must specify filter criteria in JSON. These filter criteria correlate to a finding's details JSON. The following table contains a list of the console display names for filter attributes and their equivalent JSON field names.

<table>
<thead>
<tr>
<th>Console field name</th>
<th>JSON field name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account ID</td>
<td>accountId</td>
</tr>
<tr>
<td>Finding ID</td>
<td>id</td>
</tr>
<tr>
<td>Region</td>
<td>region</td>
</tr>
<tr>
<td>Severity</td>
<td>severity</td>
</tr>
<tr>
<td>Finding type</td>
<td>type</td>
</tr>
<tr>
<td>Updated at</td>
<td>updatedAt</td>
</tr>
<tr>
<td>Access Key ID</td>
<td>resource.accessKeyDetails.accessKeyId</td>
</tr>
<tr>
<td>Principal ID</td>
<td>resource.accessKeyDetails.principalId</td>
</tr>
<tr>
<td>Username</td>
<td>resource.accessKeyDetails.userName</td>
</tr>
<tr>
<td>User type</td>
<td>resource.accessKeyDetails.userType</td>
</tr>
<tr>
<td>Console field name</td>
<td>JSON field name</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>IAM instance profile ID</td>
<td>resource.instanceDetails.iamInstanceProfile.id</td>
</tr>
<tr>
<td>Instance ID</td>
<td>resource.instanceDetails.instanceId</td>
</tr>
<tr>
<td>Instance image ID</td>
<td>resource.instanceDetails.imageId</td>
</tr>
<tr>
<td>Instance tag key</td>
<td>resource.instanceDetails.tags.key</td>
</tr>
<tr>
<td>Instance tag value</td>
<td>resource.instanceDetails.tags.value</td>
</tr>
<tr>
<td>IPv6 address</td>
<td>resource.instanceDetails.networkInterfaces.ipv6Addresses</td>
</tr>
<tr>
<td>Private IPv4 address</td>
<td>resource.instanceDetails.networkInterfaces.privateIpAddresses.privateIpAddress</td>
</tr>
<tr>
<td>Public DNS name</td>
<td>resource.instanceDetails.networkInterfaces.publicDnsName</td>
</tr>
<tr>
<td>Public IP</td>
<td>resource.instanceDetails.networkInterfaces.publicIp</td>
</tr>
<tr>
<td>Security group ID</td>
<td>resource.instanceDetails.networkInterfaces.securityGroups.groupId</td>
</tr>
<tr>
<td>Security group name</td>
<td>resource.instanceDetails.networkInterfaces.securityGroups.groupName</td>
</tr>
<tr>
<td>Subnet ID</td>
<td>resource.instanceDetails.networkInterfaces.subnetId</td>
</tr>
<tr>
<td>VPC ID</td>
<td>resource.instanceDetails.networkInterfaces.vpcId</td>
</tr>
<tr>
<td>Outpost ARN</td>
<td>resource.instanceDetails.outpostARN</td>
</tr>
<tr>
<td>Resource type</td>
<td>resource.resourceType</td>
</tr>
<tr>
<td>Bucket permissions</td>
<td>resource.s3BucketDetails.publicAccess.effectivePermission</td>
</tr>
<tr>
<td>Bucket name</td>
<td>resource.s3BucketDetails.name</td>
</tr>
<tr>
<td>Bucket tag key</td>
<td>resource.s3BucketDetails.tags.key</td>
</tr>
<tr>
<td>Bucket tag value</td>
<td>resource.s3BucketDetails.tags.value</td>
</tr>
<tr>
<td>Bucket type</td>
<td>resource.s3BucketDetails.type</td>
</tr>
<tr>
<td>Action type</td>
<td>service.action.actionType</td>
</tr>
<tr>
<td>API called</td>
<td>service.action.awsApiCallAction.api</td>
</tr>
<tr>
<td>API caller type</td>
<td>service.action.awsApiCallAction.callerType</td>
</tr>
<tr>
<td>API Error Code</td>
<td>service.action.awsApiCallAction.errorCode</td>
</tr>
<tr>
<td>API caller city</td>
<td>service.action.awsApiCallAction.remotelpDetails.city.cityName</td>
</tr>
<tr>
<td>API caller country</td>
<td>service.action.awsApiCallAction.remotelpDetails.country.countryName</td>
</tr>
<tr>
<td>API caller IPv4 address</td>
<td>service.action.awsApiCallAction.remotelpDetails.ipAddressV4</td>
</tr>
<tr>
<td>API caller ASN ID</td>
<td>service.action.awsApiCallAction.remotelpDetails.organization.asn</td>
</tr>
<tr>
<td>API caller ASN name</td>
<td>service.action.awsApiCallAction.remotelpDetails.organization.asnName</td>
</tr>
<tr>
<td>API caller service name</td>
<td>service.action.awsApiCallAction.serviceName</td>
</tr>
<tr>
<td>DNS request domain</td>
<td>service.action.dnsRequestAction.domain</td>
</tr>
<tr>
<td>Console field name</td>
<td>JSON field name</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Network connection blocked</td>
<td>service.action.networkConnectionAction.blocked</td>
</tr>
<tr>
<td>Network connection direction</td>
<td>service.action.networkConnectionAction.connectionDirection</td>
</tr>
<tr>
<td>Network connection local port</td>
<td>service.action.networkConnectionAction.localPortDetails.port</td>
</tr>
<tr>
<td>Network connection protocol</td>
<td>service.action.networkConnectionAction.protocol</td>
</tr>
<tr>
<td>Network connection city</td>
<td>service.action.networkConnectionAction.remoteIpDetails.city.cityName</td>
</tr>
<tr>
<td>Network connection country</td>
<td>service.action.networkConnectionAction.remoteIpDetails.country.countryName</td>
</tr>
<tr>
<td>Network connection remote IPv4 address</td>
<td>service.action.networkConnectionAction.remoteIpDetails.ipAddressV4</td>
</tr>
<tr>
<td>Network connection remote IP ASN ID</td>
<td>service.action.networkConnectionAction.remoteIpDetails.organization.asn</td>
</tr>
<tr>
<td>Network connection remote IP ASN name</td>
<td>service.action.networkConnectionAction.remoteIpDetails.organization.asnOrg</td>
</tr>
<tr>
<td>Network connection remote port</td>
<td>service.action.networkConnectionAction.remotePortDetails.port</td>
</tr>
<tr>
<td>Remote account affiliated</td>
<td>service.awsApiCallAction.remoteAccountDetails.affiliated</td>
</tr>
<tr>
<td>Kubernetes API caller IPv4 address</td>
<td>service.kubernetesApiCallAction.remoteIpDetails.ipAddressV4</td>
</tr>
<tr>
<td>Kubernetes API call request URI</td>
<td>service.kubernetesApiCallAction.requestUri</td>
</tr>
<tr>
<td>Network connection local IPv4 address</td>
<td>service.action.networkConnectionAction.localIpDetails.ipAddressV4</td>
</tr>
<tr>
<td>Protocol</td>
<td>service.action.networkConnectionAction.protocol</td>
</tr>
<tr>
<td>API call service name</td>
<td>service.awsApiCallAction.serviceName</td>
</tr>
<tr>
<td>API caller account ID</td>
<td>service.awsApiCallAction.remoteAccountDetails.accountId</td>
</tr>
<tr>
<td>Threat list name</td>
<td>service.additionalInfo.threatListName</td>
</tr>
<tr>
<td>Resource role</td>
<td>service.resourceRole</td>
</tr>
<tr>
<td>EKS cluster name</td>
<td>resource.eksClusterDetails.name</td>
</tr>
<tr>
<td>Kubernetes workload name</td>
<td>resource.kubernetesDetails.kubernetesWorkloadDetails.name</td>
</tr>
<tr>
<td>Kubernetes workload namespace</td>
<td>resource.kubernetesDetails.kubernetesWorkloadDetails.namespace</td>
</tr>
<tr>
<td>Kubernetes user name</td>
<td>resource.kubernetesDetails.kubernetesUserDetails.username</td>
</tr>
<tr>
<td>Kubernetes container image</td>
<td>resource.kubernetesDetails.kubernetesWorkloadDetails.containers.image</td>
</tr>
<tr>
<td>Scan ID</td>
<td>service.ebsVolumeScanDetails.scanId</td>
</tr>
<tr>
<td>Threat name</td>
<td>service.ebsVolumeScanDetails.scanDetections.threatDetectedByName.threatNames.name</td>
</tr>
<tr>
<td>Threat severity</td>
<td>service.ebsVolumeScanDetails.scanDetections.threatDetectedByName.threatNames.severity</td>
</tr>
<tr>
<td>File SHA</td>
<td>service.ebsVolumeScanDetails.scanDetections.threatDetectedByName.threatNames.filePaths.hash</td>
</tr>
<tr>
<td>ECS cluster name</td>
<td>resource.ecsClusterDetails.name</td>
</tr>
<tr>
<td>ECS container image</td>
<td>resource.ecsClusterDetails.taskDetails.containers.image</td>
</tr>
</tbody>
</table>
Suppression rules

A suppression rule is a set of criteria, consisting of a filter attribute paired with a value, used to filter findings by automatically archiving new findings that match the specified criteria. Suppression rules can be used to filter low-value findings, false positive findings, or threats you do not intend to act on, to make it easier to recognize the security threats with the most impact to your environment.

After you create a suppression rule, new findings that match the criteria defined in the rule are automatically archived as long as the suppression rule is in place. You can use an existing filter to create a suppression rule or create a suppression rule from a new filter you define. You can configure suppression rules to suppress entire finding types, or define more granular filter criteria to suppress only specific instances of a particular finding type. Your suppression rules can be edited at any time.

Suppressed findings are not sent to AWS Security Hub, Amazon Simple Storage Service, Amazon Detective, or Amazon EventBridge, reducing finding noise level if you consume GuardDuty findings via Security Hub, a third-party SIEM, or other alerting and ticketing applications. If you've enabled GuardDuty Malware Protection (p. 59), the suppressed GuardDuty findings won't initiate a malware scan.

GuardDuty continues to generate findings even when they match your suppression rules, however, those findings are automatically marked as archived. The archived finding is stored in GuardDuty for 90-days and can be viewed at any time during that period. You can view suppressed findings in the GuardDuty console by selecting Archived from the findings table, or through the GuardDuty API using the ListFindings API with a findingCriteria criterion of service.archived equal to true.

Note
In a multi-account environment only the GuardDuty administrator can create suppression rules.
Common use cases for suppression rules and examples

The following finding types have common use cases for applying suppression rules, select the finding name to learn more about that finding, or review the info to build a suppression rule for that finding type from the console.

Important
GuardDuty recommends that you build suppression rules reactively and only for findings you have repeatedly identified false positives for.

- **UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration.OutsideAWS (p. 163)** – Use a suppression rule to automatically archive findings generated when VPC networking is configured to route internet traffic such that it egresses from an on-premises gateway rather than from a VPC Internet Gateway.

 This finding is generated when networking is configured to route internet traffic such that it egresses from an on-premises gateway rather than from a VPC Internet Gateway (IGW). Common configurations, such as using AWS Outposts, or VPC VPN connections, can result in traffic routed this way. If this is expected behavior, it's recommended that you use suppression rules in and create a rule that consists of two filter criteria. The first criteria is **finding type**, which should be UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration. The second filter criteria is **API caller IPv4 address** with the IP address or CIDR range of your on-premises internet gateway. The example below represents the filter you would use to suppress this finding type based on API caller IP address.

 Finding type: UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration API caller IPv4 address: 198.51.100.6

 Note
 To include multiple API caller IPs you can add a new API Caller IPv4 address filter for each.

- **Recon:EC2/Portscan (p. 129)** – Use a suppression rule to automatically archive findings when using a vulnerability assessment application.

 The suppression rule should consist of two filter criteria. The first criteria should use the **Finding type** attribute with a value of Recon:EC2/Portscan. The second filter criteria should match the instance or instances that host these vulnerability assessment tools. You can use either the **Instance image ID** attribute or the **Tag** value attribute depending on which criteria are identifiable with the instances that host these tools. The example below represents the filter you would use to suppress this finding type based on instances with a certain AMI.

 Finding type: Recon:EC2/Portscan Instance image ID: ami-9999999999

- **UnauthorizedAccess:EC2/SSHBruteForce (p. 135)** – Use a suppression rule to automatically archive findings when it is targeted to bastion instances.

 If the target of the brute force attempt is a bastion host, this may represent expected behavior for your AWS environment. If this is the case, we recommend that you set up a suppression rule for this finding. The suppression rule should consist of two filter criteria. The first criteria should use the **Finding type** attribute with a value of UnauthorizedAccess:EC2/SSHBruteForce. The second filter criteria should match the instance or instances that serve as a bastion host. You can use either the **Instance image ID** attribute or the **Tag** value attribute depending on which criteria is identifiable with the instances that host these tools. The example below represents the filter you would use to suppress this finding type based on instances with a certain instance tag value.

• **Recon:EC2/PortProbeUnprotectedPort** (p. 128) – Use a suppression rule to automatically archive findings when it is targeted to intentionally exposed instances.

There may be cases in which instances are intentionally exposed, for example if they are hosting web servers. If this is the case in your AWS environment, we recommend that you set up a suppression rule for this finding. The suppression rule should consist of two filter criteria. The first criteria should use the **Finding type** attribute with a value of Recon:EC2/PortProbeUnprotectedPort. The second filter criteria should match the instance or instances that serve as a bastion host. You can use either the **Instance image ID** attribute or the **Tag** value attribute, depending on which criteria is identifiable with the instances that host these tools. The example below represents the filter you would use to suppress this finding type based on instances with a certain instance tag key in the console.

```
Finding type: Recon:EC2/PortProbeUnprotectedPort Instance tag key: prod
```

Recommended suppression rules for EKS Runtime Monitoring findings

• **PrivilegeEscalation:Runtime/DockerSocketAccessed** (p. 147) gets generated when a process inside a container communicates with the Docker socket. There may be containers in your environment that may need to access the Docker socket for legitimate reasons. Access from such containers will generate PrivilegeEscalation:Runtime/DockerSocketAccessed finding. If this is a case in your AWS environment, we recommend that you set up a suppression rule for this finding type. The first criteria should use the **Finding type** field with value equal to PrivilegeEscalation:Runtime/DockerSocketAccessed. The second filter criteria is **Executable path** field with value equal to the process's executablePath in the generated finding. Alternatively, the second filter criteria can use **Executable SHA-256** field with value equal to the process's executableSha256 in the generated finding.

• Kubernetes clusters run their own DNS servers as pods, such as coredns. Therefore, for each DNS lookup from a pod, GuardDuty captures two DNS events – one from the pod and the other from the server pod. This may generate duplicates for the following DNS findings:

 • Backdoor:Runtime/C&CActivity.B!DNS (p. 141)
 • CryptoCurrency:Runtime/BitcoinTool.B!DNS (p. 140)
 • Impact:Runtime/AbusedDomainRequest.Reputation (p. 144)
 • Impact:Runtime/BitcoinDomainRequest.Reputation (p. 144)
 • Impact:Runtime/MaliciousDomainRequest.Reputation (p. 145)
 • Impact:Runtime/SuspiciousDomainRequest.Reputation (p. 146)
 • Trojan:Runtime/BlackholeTraffic!DNS (p. 142)
 • Trojan:Runtime/DGADomainRequest.C!DNS (p. 142)
 • Trojan:Runtime/DriveBySourceTraffic!DNS (p. 143)
 • Trojan:Runtime/DropPoint!DNS (p. 142)
 • Trojan:Runtime/PhishingDomainRequest!DNS (p. 143)

The duplicate findings will include pod, container, and process details that correspond to your DNS server pod. You may set up a suppression rule to suppress these duplicate findings using these fields. The first filter criteria should use the **Finding type** field with value equal to a DNS finding type from the list of findings provided earlier in this section. The second filter criteria could be either **Executable path** with value equal to your DNS server's executablePath or **Executable SHA-256** with value equal to your DNS server's executableSHA256 in the generated finding. As an optional third filter criteria, you can use **Kubernetes container image** field with value equal to the container image of your DNS server pod in the generated finding.
To create suppression rules in GuardDuty

Choose your preferred access method to create or manage suppression rules in GuardDuty.

Console

You can visualize, create, and manage suppression rules using the GuardDuty console. Suppression rules are generated in the same manner as filters, and your existing saved filters can be used as suppression rules. For more information about creating filters, see Filtering findings (p. 222).

To create a suppression rule using the console:

2. On the Findings page, choose Suppress findings to open the suppression rule panel.
3. To open the filter criteria menu, enter the filter criteria in the Add filter criteria. You can choose a criterion from the list. Enter a valid value for the chosen criterion.

 Note
 To determine the valid value, view the findings table and choose a finding that you want to suppress. Review it's details in the findings panel.

 You can add multiple filter criteria and ensure that only those findings appear in the table that you want to suppress.
4. Enter a Name and Description for the suppression rule. Valid characters include alphanumeric characters, period (.), dash (-), underscore (_), and whitespaces.
5. Choose Save.

You can also create a suppression rule from an existing saved filter. For more information about creating filters, see Filtering findings (p. 222).

To create a suppression rule from a saved filter:

2. On the Findings page, choose Suppress Findings to open the suppression rule panel.
3. From the Saved rules drop down, choose a saved filter.
4. You can also add new filter criteria. If you don't need additional filter criteria, skip this step.

 To open the filter criteria menu, enter the filter criteria in the Add filter criteria. You can choose a criterion from the list. Enter a valid value for the chosen criterion.

 Note
 To determine the valid value, view the findings table and choose a finding that you want to suppress. Review it's details in the findings panel.

5. Enter a Name and Description for the suppression rule. Valid characters include alphanumeric characters, period (.), dash (-), underscore (_), and whitespaces.
6. Choose Save.

To delete a suppression rule:

2. On the Findings page, choose Suppress Findings to open the suppression rule panel.
3. From the Saved rules drop down, choose a saved filter.
4. Choose Delete rule.
To create suppression rules in GuardDuty

API/CLI

To create a suppression rule using API:

1. You can create suppression rules through the CreateFilter API. To do so, specify the filter criteria in a JSON file following the format of the example detailed below. The below example will suppress any unarchived low-severity findings that has a DNS request to the test.example.com domain. For medium-severity findings, the input list will be ["4", "5", "7"]. For high-severity findings, the input list will be ["6", "7", "8"]. You can also filter on the basis of any one value in the list.

   ```json
   {
     "Criterion": {
       "service.archived": {
         "Eq": [
           "false"
       ],
       "service.action.dnsRequestAction.domain": {
         "Eq": [
           "test.example.com"
       ],
       "severity": {
         "Eq": [
           "1",
           "2",
           "3"
       ]
     }
   }
   }
   ```

 For a list of JSON field names and their console equivalent see Filter attributes (p. 223).

 To test your filter criteria, use the same JSON criterion in the ListFindings API, and confirm that the correct findings have been selected. To test your filter criteria using AWS CLI follow the example using your own detectorId and .json file.

 You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

   ```bash
   aws guardduty list-findings --detector-id 12abc34d567e8fa901bc2d34e56789f0 --finding-criteria file://criteria.json
   ```

2. Upload your filter to be used as suppression rule with the CreateFilter API or by using the AWS CLI following the example below with your own detector ID, a name for the suppression rule, and .json file.

 You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

   ```bash
   aws guardduty create-filter --action ARCHIVE --detector-id 12abc34d567e8fa901bc2d34e56789f0 --name yourfiltername --finding-criteria file://criteria.json
   ```
You can view a list of your filters programmatically with the `ListFilter` API. You can view the details of an individual filter by supplying the filter name to the `GetFilter` API. Update filters using `UpdateFilter` or delete them with the `DeleteFilter` API.

Working with trusted IP lists and threat lists

Amazon GuardDuty monitors the security of your AWS environment by analyzing and processing VPC Flow Logs, AWS CloudTrail event logs, and DNS logs. You can customize this monitoring scope by configuring GuardDuty to stop alerts for trusted IPs from your own trusted IP lists and alert on known malicious IPs from your own threat lists.

Trusted IP lists and threat lists apply only to traffic destined for publicly routable IP addresses. The effects of a list apply to all VPC Flow Log and CloudTrail findings, but do not apply to DNS findings.

GuardDuty can be configured to use the following types of lists.

Trusted IP list

Trusted IP lists consist of IP addresses that you have trusted for secure communication with your AWS infrastructure and applications. GuardDuty does not generate VPC flow log or CloudTrail findings for IP addresses on trusted IP lists. You can include a maximum of 2000 IP addresses and CIDR ranges in a single trusted IP list. At any given time, you can have only one uploaded trusted IP list per AWS account per Region.

Threat IP list

Threat lists consist of known malicious IP addresses. This list can be supplied by third-party threat intelligence or created specifically for your organization. In addition to generating findings because of a potentially suspicious activity, GuardDuty also generates findings based on these threat lists. You can include a maximum of 250,000 IP addresses and CIDR ranges in a single threat list. GuardDuty only generates findings based on an activity that involves IP addresses and CIDR ranges in your threat lists; the findings are not generated based on the domain names. At any given point in time, you can have up to six uploaded threat lists per AWS account per each Region.

Note

If you include the same IP on both a trusted IP list and threat list it will be processed by the trusted IP list first, and will not generate a finding.

In multi-account environments, only users from GuardDuty administrator accounts can add and manage trusted IP lists and threat lists. Trusted IP lists and threat lists that are uploaded by the administrator account are imposed on GuardDuty functionality in its member accounts. In other words, in member accounts GuardDuty generates findings based on activity that involves known malicious IP addresses from the administrator's threat lists and does not generate findings based on activity that involves IP addresses from the administrator's trusted IP lists. For more information, see [Managing multiple accounts in Amazon GuardDuty](p. 270).

List formats

GuardDuty accepts lists in the following formats.

The maximum size of each file that hosts your trusted IP list or threat IP list is 35MB. In your trusted IP lists and threat IP lists, IP addresses and CIDR ranges must appear one per line. Only IPv4 addresses are accepted.
• Plaintext (TXT)

This format supports both CIDR block and individual IP addresses. The following sample list uses the Plaintext (TXT) format.

```
192.0.2.0/24
198.51.100.1
203.0.113.1
```

• Structured Threat Information Expression (STIX)

This format supports both CIDR block and individual IP addresses. The following sample list uses the STIX format.

```
<?xml version="1.0" encoding="UTF-8"?>
<stix:STIX_Package
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:stix="http://stix.mitre.org/stix-1"
 xmlns:stixCommon="http://stix.mitre.org/common-1"
 xmlns:ttp="http://stix.mitre.org/TTP-1"
 xmlns:cybox="http://cybox.mitre.org/cybox-2"
 xmlns:AddressObject="http://cybox.mitre.org/objects#AddressObject-2"
 xmlns:cyboxVocabs="http://cybox.mitre.org/default_vocabularies-2"
 xmlns:example="http://example.com/"
 xsi:schemaLocation="
 http://stix.mitre.org/stix-1 http://stix.mitre.org/XMLSchema/core/1.2/stix_core.xsd
 http://stix.mitre.org/Campaign-1 http://stix.mitre.org/XMLSchema/campaign/1.2/campaign.xsd
 http://stix.mitre.org/Indicator-2 http://stix.mitre.org/XMLSchema/indicator/2.2/indicator.xsd
 http://stix.mitre.org/TTP-2 http://stix.mitre.org/XMLSchema/ttp/1.2/ttp.xsd
 http://stix.mitre.org/default_vocabularies-1 http://stix.mitre.org/XMLSchema/default_vocabularies/1.2.0/stix_default_vocabularies.xsd
 http://cybox.mitre.org/objects#AddressObject-2 http://cybox.mitre.org/XMLSchema/objects/AddressObject.xsd"
 id="example:STIXPackage-a78fc4e3-df94-42dd-a074-6de62babfe16"
 version="1.2">
 <stix:Observables
  xsi:type="AddressObject:AddressObjectType"
  category="ipv4-addr">
  <cybox:Object id="example:object-b422417f-bf78-4b34-ba2d-de4b09590a6d">
   <cybox:Properties
    xsi:type="AddressObject:AddressObjectType"
    category="ipv4-addr">
    <AddressObject:Address_Value>192.0.2.0</AddressObject:Address_Value>
   </cybox:Properties>
  </cybox:Object>
  <cybox:Object id="example:object-dc73b749-8a31-46be-803f-71df77565391">
   <cybox:Properties
    xsi:type="AddressObject:AddressObjectType"
    category="ipv4-addr">
    <AddressObject:Address_Value>198.51.100.1</AddressObject:Address_Value>
   </cybox:Properties>
  </cybox:Object>
  <cybox:Object id="example:object-1742fa06-8b5e-4449-9d89-6f9f32595784">
   <cybox:Properties
    xsi:type="AddressObject:AddressObjectType"
    category="ipv4-addr">
    <AddressObject:Address_Value>203.0.113.1</AddressObject:Address_Value>
   </cybox:Properties>
  </cybox:Object>
</stix:Observables>
</stix:STIX_Package>
```
List formats

- **Open Threat Exchange (OTX)™ CSV**

 This format supports both CIDR block and individual IP addresses. The following sample list uses the OTX™ CSV format.

<table>
<thead>
<tr>
<th>Indicator type, Indicator, Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIDR, 192.0.2.0/24, example</td>
</tr>
<tr>
<td>IPv4, 198.51.100.1, example</td>
</tr>
<tr>
<td>IPv4, 203.0.113.1, example</td>
</tr>
</tbody>
</table>

- **FireEye™ iSIGHT Threat Intelligence CSV**

 This format supports both CIDR block and individual IP addresses. The following sample list uses a FireEye™ CSV format.

  ```plaintext
  reportId, title, threatScape, audience, intelligenceType, publishDate, reportLink, webLink, emailIdentifier, senderAddress, senderName, sourceDomain, sourceIp, subject, recipient, emailLanguage, fileName, fileSize, fuzzyHash, fileIdentifier, md5, sha1, sha256, description, fileType, packer, userAgent, registry, fileCompilationDateTime, filePath, asn, cidr, domain, domainTimeOfLookup, networkIdentifier, ip, port, protocol, registrantEmail, registrantName, networkType, url, malwareFamily, malwareFamilyId, actor, actorId, observationTime
  01-00000001, Example, Test, Operational, threat, 1494944400, https://www.example.com/report/01-00000001, https://www.example.com/report/01-00000001, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Related, , , , , network, , Ursnif, 21a14673-8d94-46d5-89ab-8281a0466099, , 1494944400
  01-00000002, Example, Test, Operational, threat, 1494944400, https://www.example.com/report/01-00000002, https://www.example.com/report/01-00000002, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Related, 198.51.100.1, , , , network, , Ursnif, 12ab7bc4-62ed-49fa-99e3-14b92afc41bf, , 1494944400
  01-00000003, Example, Test, Operational, threat, 1494944400, https://www.example.com/report/01-00000003, https://www.example.com/report/01-00000003, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Related, 203.0.113.1, , , , network, , Ursnif, 8a78c3db-7bcb-40bc-a080-75bd35a2572d, , 1494944400
  ```

- **Proofpoint™ ET Intelligence Feed CSV**

 This format supports only individual IP addresses. The following sample list uses the Proofpoint CSV format. The `ports` parameter is optional. If you skip the port, ensure to leave a trailing comma (,) at the end.

  ```plaintext
  ip, category, score, first_seen, last_seen, ports ()
  198.51.100.1, 1, 100, 2000-01-01, 2000-01-01, 80
  203.0.113.1, 1, 100, 2000-01-01, 2000-01-01, 80
  ```

- **AlienVault™ Reputation Feed**

 This format supports only individual IP addresses. The following sample list uses the AlienVault format.
Permissions required to upload trusted IP lists and threat lists

Various IAM identities require special permissions to work with trusted IP lists and threat lists in GuardDuty. An identity with the attached AmazonGuardDutyFullAccess (p. 323) managed policy can only rename and deactivate uploaded trusted IP lists and threat lists.

To grant various identities full access to working with trusted IP lists and threat lists (in addition to renaming and deactivating, this includes adding, activating, deleting, and updating the location or name of the lists), make sure that the following actions are present in the permissions policy attached to a user, group, or role:

```
{
    "Effect": "Allow",
    "Action": [
        "iam:PutRolePolicy",
        "iam:DeleteRolePolicy"
    ],
    "Resource": "arn:aws:iam::555555555555:role/aws-service-role/guardduty.amazonaws.com/AWSServiceRoleForAmazonGuardDuty"
}
```

Important

These actions are not included in the AmazonGuardDutyFullAccess managed policy.

Using server-side encryption for trusted IP lists and threat lists

GuardDuty supports the following encryption types for lists: SSE-AES256 and SSE-KMS. SSE-C is not supported. For more information on encryption types for S3 see Protecting data using server-side encryption.

If your list is encrypted using server-side encryption SSE-KMS you must grant the GuardDuty service-linked role AWSServiceRoleForAmazonGuardDuty permission to decrypt the file in order to activate the list. Add the following statement to the KMS key policy and replace the account ID with your own:

```
{
    "Sid": "AllowGuardDutyServiceRole",
    "Effect": "Allow",
    "Principal": {
        "AWS": "arn:aws:iam::123456789123:role/aws-service-role/guardduty.amazonaws.com/AWSServiceRoleForAmazonGuardDuty"
    },
    "Action": "kms:Decrypt",
    "Resource": "*"
}
```
Adding and activating a trusted IP list or a threat IP list

Choose one of the following access methods to add and activate a trusted IP list or a threat IP list.

Console

(Optional) step 1: Fetching location URL of your list

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.
2. In the navigation pane, choose Buckets.
3. Choose the Amazon S3 bucket name that contains the specific list that you want to add.
4. Choose the object (list) name to view its details.
5. Under the Properties tab, copy the S3 URI for this object.

Step 2: Adding a trusted IP list or a threat list

Important
By default, at any given point in time, you can have only one trusted IP list. Similarly, you can have up to six threat lists.

2. In the navigation pane, choose Lists.
3. On the List management page, choose Add a trusted IP list or Add a threat list.
4. Based on your selection, a dialog box will appear. Do the following steps:
 a. For List name, enter a name for your list.
 b. For Location, provide the location where you have uploaded your list. If you don’t already have it, see Step 1: Fetching location URL of your list (p. 235).
 c. Select the I agree check box.
 d. Choose Add list. By default, the Status of the added list is Inactive. For the list to be effective, you must activate the list.

Format of location URL

- https://s3.amazonaws.com/bucket.name/file.txt
- https://s3-aws-region.amazonaws.com/bucket.name/file.txt
- http://bucket.s3.amazonaws.com/file.txt
- http://bucket.s3-aws-region.amazonaws.com/file.txt
- s3://bucket.name/file.txt

Step 3: Activating a trusted IP list or a threat list

2. In the navigation pane, choose Lists.
3. On the List management page, select the list that you want to activate.
4. Choose Actions, and then choose Activate. It may take up to 15 min for the list to be effective.
API/CLI

For trusted IP lists

- Run `CreateIPSet`. Make sure to provide the `detectorId` of the member account for which you want to create this trusted IP list.
 - Alternatively, you can do this by running the following AWS Command Line Interface command and make sure to replace the `detector-id` with the `detector ID` of the member account for which you will update the trusted IP list.

```bash
aws guardduty create-ip-set --detector-id 12abc34d567e8fa901bc2d34e56789f0 --name AnyOrganization List --format Plaintext --location https://s3.amazonaws.com/DOC-EXAMPLE-BUCKET2/DOC-EXAMPLE-SOURCE-FILE.format --activate
```

For threat lists

- Run `CreateThreatIntelSet`. Make sure to provide the `detectorId` of the member account for which you want to create this threat list.
 - Alternatively, you can do this by running the following AWS Command Line Interface command. Make sure to provide the `detectorId` of the member account for which you want to create a threat list.

```bash
aws guardduty create-threat-intel-set --detector-id 12abc34d567e8fa901bc2d34e56789f0 --name AnyOrganization List --format Plaintext --location https://s3.amazonaws.com/DOC-EXAMPLE-BUCKET2/DOC-EXAMPLE-SOURCE-FILE.format --activate
```

Note
After you activate or update any IP list, GuardDuty might take up to 15 minutes to sync the list.

Updating trusted IP lists and threat lists

You can update the name of a list or the IP addresses added to a list that has already been added and activated. If you update a list, you must activate it again for GuardDuty to use the latest version of the list.

Choose one of the access methods to update a trusted IP or threat list.

Console

2. In the navigation pane, choose Lists.
3. On the List management page, select the trusted IP set or a threat list that you want to update.
4. Choose Actions, and then choose Edit.
5. In the Update list dialog box, update the information as needed.
6. Choose the I agree check box, and then choose Update list. The value in the Status column will change to Inactive.
7. Reactivating the updated list
 a. On the List management page, select the list that you want to activate again.
 b. Choose Actions, and then choose Activate.
De-activating or deleting a trusted IP list or threat list

Choose one of the access methods to delete (by using the console) or deactivate (by using API/CLI) a trusted IP list, or a threat list.

Console

2. In the navigation pane, choose **Lists**.
3. On the **List management** page, select the list that you want to delete.
4. Choose **Actions**, and then choose **Delete**.
5. Confirm the action and choose **Delete**. The specific list will no longer be available in the table.

API/CLI

1. **For a trusted IP list**

Run `UpdateIPSet` to update a trusted IP list.

 - Alternatively, you can run the following AWS CLI command to update a trusted IP list and make sure to replace the `detector-id` with the detector ID of the member account for which you will update the trusted IP list.

   ```
   aws guardduty update-ip-set --detector-id 12abc34d567e8fa901bc2d34e56789f0 --name AnyOrganization List --ip-set-id d4b94fc952d6912b8f3060768example --activate
   ```

2. **For a threat list**

Run `UpdateThreatIntelSet` to update a threat list

 - Alternatively, you can run the following AWS CLI command to update a threat list and make sure to replace the `detector-id` with the detector ID of the member account for which you will update the threat list.

   ```
   aws guardduty update-ip-set --detector-id 12abc34d567e8fa901bc2d34e56789f0 --name AnyOrganization List --ip-set-id d4b94fc952d6912b8f3060768example --activate
   ```
Alternatively, you can run the following AWS CLI command to update a trusted IP list and make sure to replace the `detector-id` with the detector ID of the member account for which you will update the threat list.

```
aws guardduty update-ip-set --detector-id 12abc34d567e8fa901bc2d34e56789f0 --name AnyOrganization List --ip-set-id d4b94fc952d6912b8f3060768example --no-activate
```

Exporting findings

GuardDuty supports exporting active findings to CloudWatch Events and, optionally, to an Amazon S3 bucket. New Active findings that GuardDuty generates are automatically exported within about 5 minutes after the finding is generated. You can set the frequency for how often updates to Active findings are exported to CloudWatch Events. The frequency that you select applies to the exporting of new occurrences of existing findings to CloudWatch Events, your S3 bucket (if configured), and Detective (if integrated). For more information on updates to existing findings see GuardDuty finding aggregation (p. 115).

Key concepts before you proceed with the steps to export findings:

- **Export settings are regional** – You need to configure export options for each Region where you use GuardDuty. However, you can use the Amazon S3 bucket in a single Region as the export destination for each Region you use GuardDuty in.

- **Archived findings not exported** – Archived findings, including new instances of suppressed findings, are not exported. If you un-archive a finding, its status is updated to Active, and it will be exported at the next interval.

- **GuardDuty administrator can export findings from associated member accounts** – If you configure export findings in a GuardDuty administrator account, all the findings from the associated member accounts that are generated in the current Region are also exported to the same location that you configured for the administrator account.

- **Exporting findings to Amazon S3 buckets in different AWS Regions** – GuardDuty supports the following export settings:
 - For the findings generated in a commercial Region, you can choose to export these findings to an Amazon S3 bucket in any commercial Region. You can't export such findings to an Amazon S3 bucket in an opt-in Region.
 - For the findings generated in an opt-in Region, you can choose to export these findings to the same opt-in Region where they're generated, or any commercial Region. You can't export such findings to another opt-in Region.

To configure settings for exporting Active findings to an Amazon S3 bucket you will need a KMS key that GuardDuty can use to encrypt findings, and an S3 bucket with permissions that allows GuardDuty to upload objects. Review this topic to learn how to configure findings export and frequency.

Permissions required to configure findings export

When you configure options for exporting findings, you select a bucket to store the findings in and a KMS key to use for data encryption. In addition to permissions to GuardDuty actions, you must also have permissions to the following actions to successfully configure options for exporting findings.

- kms:ListAliases
- s3:CreateBucket
- s3:GetBucketLocation
Granting GuardDuty permission to a KMS key

Important
If your policy explicitly denies putObjectAcl you will be unable to publish findings.

Granting GuardDuty permission to a KMS key

GuardDuty encrypts the findings data in your bucket by using AWS Key Management Service. To successfully configure findings export, you must first give GuardDuty permission to use a KMS key. You can grant the permissions by attaching the policy to your KMS key.

If you plan to use a new KMS key for GuardDuty findings, see create a key. If you are using a KMS key from another account, you need to apply the key policy by logging in to the AWS account that owns the key. When you configure export findings, you’ll also need the key ARN from this account.

Steps to modify the KMS key policy to allow GuardDuty use this key

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.
3. Create a new key or choose an existing key that you plan to use for encrypting exported findings. The key must be in the same Region as the bucket, however, you can use this same bucket and key pair for each Region from where you want to export findings.
4. Choose your key. Under General configuration panel, copy the key ARN.
5. In the Key policy section, choose Edit.

 Tip
 If Switch to policy view is displayed, choose that to display Key policy, and then choose Edit.

6. Add the following key policy to your KMS key, granting GuardDuty access to your key. This statement allows GuardDuty to use only the key that you changed the policy for. When editing the key policy, make sure your JSON syntax is valid, if you add the statement before the final statement, you must add a comma after the closing bracket.

```json
{
   "Sid": "AllowGuardDutyKey",
   "Effect": "Allow",
   "Principal": {
      "Service": "guardduty.amazonaws.com"
   },
   "Action": "kms:GenerateDataKey",
   "Resource": "arn:aws:kms:Region1:444455556666:key/KMSKeyId",
   "Condition": {
      "StringEquals": {
         "aws:SourceAccount": "123456789012",
         "aws:SourceArn": "arn:aws:guardduty:Region2:123456789012:detector/SourceDetectorID"
      }
   }
}
```

7. Replace Region1 with the Region of the KMS key. Replace 444455556666 with the AWS account ID that was used to create the KMS key. Replace KMSKeyId with the key ID of the KMS key that you chose for encryption. To identify these values, view the ARN of this KMS key.
Granting GuardDuty permissions to a bucket

When using a pre–existing bucket withing your account, or in a different AWS account, you must grant GuardDuty permission to upload objects to that bucket. You grant these permissions by adding an S3 bucket policy. If you are using a pre–existing bucket, expand the following section for step-by-step instructions on adding a bucket policy.

To add a bucket policy that allows GuardDuty to upload objects your bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.
2. Choose the bucket you plan to use for exported findings.
3. Choose Permissions, and then choose Bucket Policy.
4. Copy the example policy and paste it into the Bucket policy editor.
5. Replace the placeholder values in the example policy with the values appropriate for your environment.

 Replace myBucketName. Replace [optional prefix] with a folder location for your exported findings (GuardDuty will create this location during set up if it does not already exist). Replace Region with the Region that the KMS key is in. Replace 123456789012 with the AWS account number of the account where GuardDuty is set up. Replace KMSKeyId with the key ID of the key that you chose for encryption and replace SourceDetectorID with the source account's GuardDuty detector ID for the current Region.

Example policy

The following example policy shows how to grant GuardDuty permission to send findings to your Amazon S3 bucket. If you change the path after you configure findings export, you must modify the policy to grant permission to the new location.

```json
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Sid": "AllowGuardDutygetBucketLocation",
         "Effect": "Allow",
         "Principal": {
```
Granting GuardDuty permissions to a bucket

```
"Service": "guardduty.amazonaws.com",
"Action": "s3:GetBucketLocation",
"Resource": "arn:aws:s3:::myBucketName",
"Condition": {
  "StringEquals": {
    "aws:SourceAccount": "111122223333",
    "aws:SourceArn": "arn:aws:guardduty:Region:111122223333:detector/SourceDetectorID"
  }
},

"Sid": "AllowGuardDutyPutObject",
"Effect": "Allow",
"Principal": {
  "Service": "guardduty.amazonaws.com"
},
"Action": "s3:PutObject",
"Resource": "arn:aws:s3:::myBucketName/[optional prefix]/*",
"Condition": {
  "StringEquals": {
    "aws:SourceAccount": "111122223333",
    "aws:SourceArn": "arn:aws:guardduty:Region:111122223333:detector/SourceDetectorID"
  }
},

"Sid": "DenyUnencryptedUploadsThis is optional",
"Effect": "Deny",
"Principal": {
  "Service": "guardduty.amazonaws.com"
},
"Action": "s3:PutObject",
"Resource": "arn:aws:s3:::myBucketName/[optional prefix]/*",
"Condition": {
  "StringNotEquals": {
    "s3:x-amz-server-side-encryption": "aws:kms"
  }
},

"Sid": "DenyIncorrectHeaderThis is optional",
"Effect": "Deny",
"Principal": {
  "Service": "guardduty.amazonaws.com"
},
"Action": "s3:PutObject",
"Resource": "arn:aws:s3:::myBucketName/[optional prefix]/*",
"Condition": {
  "StringNotEquals": {
    "s3:x-amz-server-side-encryption-aws-kms-key-id": "arn:aws:kms:Region:111122223333:key/KMSKeyId"
  }
},

"Sid": "DenyNon-HTTPS",
"Effect": "Deny",
"Principal": "*",
"Action": "s3:*",
"Resource": "arn:aws:s3:::myBucketName/[optional prefix]/*",
"Condition": {
```
"Bool": {
 "aws:SecureTransport": "false"
}
}
]

Note
If you're using GuardDuty in a manually-enabled Region, replace the value for the service with the Regional endpoint for the Region. For example, if you're using GuardDuty in the Middle East (Bahrain) (me-south-1) Region, replace "Service": "guardduty.amazonaws.com" with "guardduty.me-south-1.amazonaws.com".

Exporting findings to a bucket with the Console

When you configure findings export, you can choose an existing S3 bucket or have GuardDuty create a new bucket to store exported findings in. If you choose to use a new bucket, GuardDuty applies all necessary permissions to the created bucket. If you use an existing bucket, you must first update the bucket policy to allow GuardDuty to put findings into the bucket.

You may also export findings to an existing bucket in another account.

When choosing a new or existing bucket in your account, you can add a prefix. When configuring findings export GuardDuty creates a new folder in the S3 bucket for your findings. The prefix will prepend the default folder structure created by GuardDuty, which is /AWSLogs/111122223333/GuardDuty/Region.

Important
The KMS key and S3 bucket must be in the same Region.

Before completing these steps makes sure you have configured a KMS key and, if using an existing bucket, added a bucket policy to allow GuardDuty to create objects.

New bucket in your account

To configure findings export using a new bucket

1. Add a policy to the KMS key that GuardDuty will use to encrypt findings. For example policy, see Granting GuardDuty permission to a KMS key (p. 239).
2. Open the GuardDuty console at https://console.aws.amazon.com/guardduty/.
3. Choose Settings.
 a. On the Settings page, under S3 bucket in the Finding export options section, choose Configure now.
 b. Choose New bucket to create a new bucket to store exported findings.
 In the Name the bucket field, enter a name for the bucket. The name must be unique across all S3 buckets. Bucket names must start with a lowercase letter or a number.
 c. If you used an [optional prefix] in your bucket policy you must enter that prefix under Log file prefix, otherwise this is optional. When you enter a value, the example path below the field is updated to reflect the path to bucket location where your exported findings will be stored.
 d. Under KMS encryption, do one of the following:
 • Select Choose key from your account.

Then choose the key alias of the key that you changed the policy for from the Key alias list.
• Select **Choose key from another account**.

Then enter the full ARN to the key that you changed the policy for.

The key that you choose must be in the same Region as the bucket. To learn how to find the key ARN, see [Finding the key ID and ARN](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_public_permissions.html).

e. Choose **Save**.

Existing bucket in your account

To configure findings export using an existing bucket

1. Add a policy to the KMS key GuardDuty will use to encrypt findings. For an example policy see [Granting GuardDuty permission to a KMS key](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_public_permissions.html).
2. Attach a policy granting GuardDuty permission to upload objects to your S3 bucket. For an example policy see [Granting GuardDuty permissions to a bucket](https://docs.aws.amazon.com/GuardDuty/latest/GetStarted/gd-get-started-grant-permissions.html).
4. Choose **Settings**.

a. On the **Settings** page, under **S3 bucket** in the **Finding export options** section, choose **Configure now**.

b. Choose **Existing bucket in your account**.

In the **Name the bucket** field enter the name of your bucket.

c. Optional. Under **Log file prefix**, enter a path prefix to use. GuardDuty will create a new folder in the bucket with specified prefix name. When you enter a value, the example path below the field is updated to reflect the path to exported findings in the bucket.

d. Under **KMS encryption**, do one of the following:

 • Select **Choose key from your account**.

 Then choose the key alias of the key that you changed the policy for from the **Key alias** list.

 • Select **Choose key from another account**.

 Then enter the full ARN to the key that you changed the policy for.

 The key that you choose must be in the same Region as the bucket. To learn how to find the key ARN, see [Finding the key ID and ARN](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_public_permissions.html) in the **AWS Key Management Service Developer Guide**.

e. Choose **Save**.

Existing bucket in another account

To configure findings export using an existing bucket in another account

1. Add a policy to the KMS key GuardDuty will use to encrypt findings. For an example policy see [Granting GuardDuty permission to a KMS key](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_public_permissions.html).
2. Attach a policy granting GuardDuty permission to upload objects to the S3 bucket in another account. For an example policy, see [Granting GuardDuty permissions to a bucket](https://docs.aws.amazon.com/GuardDuty/latest/GetStarted/gd-get-started-grant-permissions.html).

Note

Use the account ID of the account that owns the bucket in the policy.

4. Choose **Settings**.
a. Choose **Existing bucket in another account**.
b. In the **Bucket ARN field**, enter the ARN for the bucket from another account to use.
c. Under **KMS encryption** enter the full ARN of the key that you changed the policy for.

The key you choose must be in the same Region as the bucket. To learn how to find the key ARN, see [Finding the key ID and ARN](#).
d. Choose **Save**.

Export access error

After you configure finding export options, if GuardDuty is unable to export findings, an error message is displayed on the **Settings** page. This can happen when GuardDuty can no longer access the target resource, such as when the S3 bucket is deleted or the permissions to the bucket are changed. This can also happen when the KMS key used to encrypt data in the bucket becomes inaccessible.

When exporting fails, GuardDuty sends a notification to the email associated with the account to let you know about the issue. If you don't resolve the issue, GuardDuty disables finding export in the account. You can update the configuration to restart finding export at any time.

If you receive this error, review the information in this topic about how to enable and configure findings export. For example, review the key policy and confirm that the correct policy is applied to the KMS key that you chose for encryption.

Setting the frequency for exporting updated active findings

Configure the frequency for exporting updated Active findings as appropriate for your environment. By default, updated findings are exported every 6 hours. This means that any findings that are updated after the most recent export are included in the next export. If updated findings are exported every 6 hours and the export occurs at 12:00, any finding that you update after 12:00 is exported at 18:00.

To set the frequency

2. Choose **Settings**.
3. In the **Findings export options** section, choose **Frequency for updated findings**. This sets the frequency for exporting updated Active findings to both CloudWatch Events and Amazon S3. You can choose from the following:
 - Update CWE and S3 every 15 minutes
 - Update CWE and S3 every 1 hour
 - Update CWE and S3 every 6 hours (default)
4. Choose **Save**.

Creating custom responses to GuardDuty findings with Amazon CloudWatch Events

GuardDuty creates an event for [Amazon CloudWatch Events](https://console.aws.amazon.com/cloudwatch/home) when any change in findings takes place. Finding changes that will create a CloudWatch event include newly generated findings or newly aggregated findings. Events are emitted on a best effort basis.
Every GuardDuty finding is assigned a finding ID. GuardDuty creates a CloudWatch event for every finding with a unique finding ID. All subsequent occurrences of an existing finding are aggregated to the original finding. For more information, see GuardDuty finding aggregation (p. 115).

Note

If your account is a GuardDuty delegated administrator, the CloudWatch events are published to your account as well as to the member account where the finding was generated.

By using CloudWatch events with GuardDuty, you can automate tasks to help you respond to security issues revealed by GuardDuty findings.

In order to receive notifications about GuardDuty findings based on CloudWatch Events, you must create a CloudWatch Events rule and a target for GuardDuty. This rule enables CloudWatch to send notifications for findings that GuardDuty generates to the target that is specified in the rule. For more information, see Creating a CloudWatch Events rule and target for GuardDuty (CLI) (p. 250).

Topics

- CloudWatch Events notification frequency for GuardDuty (p. 245)
- CloudWatch event format for GuardDuty (p. 246)
- Creating a CloudWatch Events rule to notify you of GuardDuty findings (console) (p. 246)
- Creating a CloudWatch Events rule and target for GuardDuty (CLI) (p. 250)
- CloudWatch Events for GuardDuty multi-account environments (p. 251)

CloudWatch Events notification frequency for GuardDuty

Notifications for newly–generated findings with a unique finding ID

GuardDuty sends a notification based on its CloudWatch event within 5 minutes of the finding. This event (and this notification) also includes all subsequent occurrences of this finding that take place in the first 5 minutes since this finding with a unique ID is generated.

Note

By default, the frequency of notifications about the newly–generated findings is 5 minutes. This frequency cannot be updated.

Notifications for subsequent finding occurrences

By default, for every finding with a unique finding ID, GuardDuty aggregates all subsequent occurrences of a particular finding type that take place within the 6-hour intervals into one single event. GuardDuty then sends a notification about these subsequent occurrences based in this event. By default, for the subsequent occurrences of the existing findings, GuardDuty sends notifications based on CloudWatch events every 6 hours.

Only an administrator account can customize the default frequency of notifications sent about the subsequent finding occurrences to CloudWatch events. Users from member accounts cannot customize this frequency. The frequency value set by the administrator account in its own account is imposed on GuardDuty functionality in all its member accounts. If a user from an administrator account sets this frequency value to 1 hour, all member accounts will also have the 1 hour frequency of receiving notifications about the subsequent finding occurrences. For more information, see Managing multiple accounts in Amazon GuardDuty (p. 270).

Note

As an administrator, you can customize the default frequency of notifications about the subsequent finding occurrences. Possible values are 15 minutes, 1 hour, or the default 6
Monitoring archived GuardDuty findings with CloudWatch Events

For the manually archived findings, the initial and all subsequent occurrences of these findings (generated after the archiving is complete) are sent to CloudWatch Events per frequency described above.

For the auto-archived findings, the initial and all subsequent occurrences of these findings (generated after the archiving is complete) are not sent to CloudWatch Events.

CloudWatch event format for GuardDuty

The CloudWatch event for GuardDuty has the following format.

```
{
  "version": "0",
  "id": "cd2d702e-ab31-411b-9344-793ce56b1bc7",
  "detail-type": "GuardDuty Finding",
  "source": "aws.guardduty",
  "account": "111122223333",
  "time": "1970-01-01T00:00:00Z",
  "region": "us-east-1",
  "resources": [],
  "detail": {GUARDDUTY_FINDING_JSON_OBJECT}
}
```

Note
The detail value returns the JSON details of a single finding as an object, as opposed to returning the "findings" value which can support multiple findings within an array.

For the complete list of all the parameters included in GUARDDUTY_FINDING_JSON_OBJECT, see GetFindings. The id parameter that appears in GUARDDUTY_FINDING_JSON_OBJECT is the finding ID previously described.

Creating a CloudWatch Events rule to notify you of GuardDuty findings (console)

You can use CloudWatch Events with GuardDuty to set up automated finding alerts by sending GuardDuty finding events to a messaging hub to help increase the visibility of GuardDuty findings. This topic shows you how to send findings alerts to email, Slack, or Amazon Chime by setting up an SNS topic and then connecting that topic to a CloudWatch Events event rule.

Setup an Amazon SNS topic and endpoint

To begin, you must first set up a topic in Amazon Simple Notification Service and add an endpoint. For more information on refer to the SNS guide.

This procedure establishes where you want to send GuardDuty finding data. The SNS topic can be added to an CloudWatch Events Event rule during or after the creation of the Event Rule.
Email setup

Creating an SNS topic

2. Select Topics from the navigation pane and then Create Topic.
3. In the Create topic section, select Standard. Next, enter a Topic name, for example GuardDuty_to_Email. Other details are optional.
4. Choose Create Topic. The Topic details for your new topic will open.
5. In the Subscriptions section select Create Subscription
6. a. From the Protocol menu, select Email.
 b. In the Endpoint field add the email address you would like to receive notifications at.
 Note
 You will be required to confirm your subscription through your email client after creating it.
 c. Choose Create subscription
7. Check for a subscription message in your inbox and choose Confirm Subscription

Slack setup

Creating an SNS topic

2. Select Topics from the navigation pane and then Create Topic.
3. In the Create topic section, select Standard. Next, enter a Topic name, for example GuardDuty_to_Slack. Other details are optional. Choose Create topic to finalize.

Configuring an AWS Chatbot client

1. Navigate to the AWS Chatbot console
2. From the Configured clients panel, select Configure new client.
3. Choose Slack and confirm with "Configure".
 Note
 When choosing Slack you must confirm permissions for AWS Chatbot to access your channel by selecting "allow".
4. Select Configure new channel to open the configuration details pane.
 a. Enter a name for the channel.
 b. For Slack channel, choose the channel that you want to use. To use private Slack channel with AWS Chatbot, choose Private channel.
 c. In Slack, copy the Channel ID of the private channel by right-clicking on the channel name and selecting Copy Link.
 d. On the AWS Management Console, in the AWS Chatbot window, paste the ID you copied from slack into the Private channel ID field.
 e. In Permissions, chose to create an IAM role using a template, if you do not have a role already.
 f. For Policy templates, choose Notification permissions. This is the IAM policy template for AWS Chatbot. It provides the necessary read and list permissions for CloudWatch alarms, events and logs, and for Amazon SNS topics.
 g. Choose the Region you previously created your SNS topic in, and then select the Amazon SNS topic you created to send notifications to the Slack channel.
5. Select **Configure**.

Chime setup

Creating an SNS topic

2. Select **Topics** from the navigation pane and then **Create Topic**.
3. In the Create topic section, select **Standard**. Next, enter a Topic name, for example **GuardDuty_to_Chime**. Other details are optional. Choose **Create topic** to finalize.

Configuring a AWS Chatbot client

1. Navigate to the AWS Chatbot console
2. From the **Configured clients** panel, select **Configure new client**.
3. Choose Chime and confirm with "Configure".
4. From the **Configuration details** pane, enter a name for the channel.
5. In Chime open the desired chat room
 a. Choose the gear icon in the upper-right corner and choose **Manage webhooks and bots**.
 b. Select **Copy URL** to copy the webhook URL to your clipboard.
6. On the AWS Management Console, in the AWS Chatbot window, paste the URL you copied into the **Webhook URL** field.
7. In **Permissions**, chose to create an IAM role using a template, if you do not have a role already.
8. For **Policy** templates, choose Notification permissions. This is the IAM policy template for AWS Chatbot. It provides the necessary read and list permissions for CloudWatch alarms, events and logs, and for Amazon SNS topics.
9. Choose the Region you previously created your SNS topic in, and then select the Amazon SNS topic you created to send notifications to the Chime room.
10. Select **Configure**.

Setup a CloudWatch event for GuardDuty findings

2. Select **Rules** from the navigation pane and then **Create Rule**.
3. From the **Service Name** menu, choose **GuardDuty**.
4. From the **Event Type** menu, choose **GuardDuty Finding**.
5. In **Event Pattern Preview** choose **Edit**.
6. Paste the below JSON code into **Event Pattern Preview** and choose **Save**

```json
{
    "source": [
        "aws.guardduty"
    ],
    "detail-type": [
        "GuardDuty Finding"
    ],
    "detail": {
        "severity": [
            4,
            4.0
        ]
    }
}
```
Note

The above code will alert for any Medium to High finding.

7. In the Targets section click Add Target.
8. From the Select Targets menu, choose SNS Topic.
9. For Select Topic select the name of the SNS Topic you created in Step 1.
10. Configure the input for the event.
Creating a CloudWatch Events rule and target for GuardDuty (CLI)

The following procedure shows how to use AWS CLI commands to create a CloudWatch Events rule and target for GuardDuty. Specifically, the procedure shows you how to create a rule that enables CloudWatch to send events for all findings that GuardDuty generates and add an AWS Lambda function as a target for the rule.

Note
In addition to Lambda functions, GuardDuty and CloudWatch support the following target types: Amazon EC2 instances, Amazon Kinesis streams, Amazon ECS tasks, AWS Step Functions state machines, the run command, and built-in targets.

You can also create a CloudWatch Events rule and target for GuardDuty through the CloudWatch Events console. For more information and detailed steps, see Creating a CloudWatch Events rule that triggers on an event. In the Event Source section, select GuardDuty for Service name and GuadDuty Finding for Event Type.

To create a rule and target

1. To create a rule that enables CloudWatch to send events for all findings that GuardDuty generates, run the following CloudWatch CLI command.
AWS events put-rule --name Test --event-pattern "{"source": ["aws.guardduty"]}"

Important
You can further customize your rule so that it instructs CloudWatch to send events only for a subset of the GuardDuty-generated findings. This subset is based on the finding attribute or attributes that are specified in the rule. For example, use the following CLI command to create a rule that enables CloudWatch to only send events for the GuardDuty findings with the severity of either 5 or 8:

AWS events put-rule --name Test --event-pattern "{"source": ["aws.guardduty"], "detail-type": ["GuardDuty Finding"], "detail": {"severity": [5, 8]}}"

For this purpose, you can use any of the property values that are available in the JSON for GuardDuty findings.

2. To attach a Lambda function as a target for the rule that you created in step 1, run the following CloudWatch CLI command.

AWS events put-targets --rule Test --targets Id=1,Arn=arn:aws:lambda:us-east-1:111122223333:function:<your_function>

Note
Make sure to replace <your_function> in the command above with your actual Lambda function for the GuardDuty events.

3. To add the permissions required to invoke the target, run the following Lambda CLI command.

AWS lambda add-permission --function-name <your_function> --statement-id 1 --action 'lambda:InvokeFunction' --principal events.amazonaws.com

Note
Make sure to replace <your_function> in the command above with your actual Lambda function for the GuardDuty events.

Note
In the procedure above, we're using a Lambda function as the target for the rule that triggers CloudWatch Events. You can also configure other AWS resources as targets to trigger CloudWatch Events. For more information, see PutTargets.

CloudWatch Events for GuardDuty multi-account environments

As a GuardDuty administrator CloudWatch Event rules in your account will trigger based on applicable findings from your member accounts. This means that if you set up a finding notifications through CloudWatch Events in your administrator account, as detailed in the preceding section, you will be notified of high and medium severity findings generated by your member accounts in addition to your own.

You can identify the member account the GuardDuty finding originated from with the accountId field of the finding's JSON details.

To start writing a custom event rule for a specific member account in your environment in the console, create a new rule and paste the following template into Event Pattern Preview, adding the account ID of the member account you want to trigger the event.

```json
{
  "source": [
    "aws.guardduty"
  ]
}```
Note
This example will trigger on any findings for the listed account ID. Multiple IDs can be added, separated by a comma following JSON syntax.

Understanding CloudWatch Logs and reasons for skipping resources during Malware Protection scan

GuardDuty Malware Protection publishes events to your Amazon CloudWatch log group /aws/guardduty/malware-scan-events. For each of the events related to the malware scan, you can monitor the status and scan result of your impacted resources. Certain Amazon EC2 resources and Amazon EBS volumes may have been skipped during the Malware Protection scan.

Auditing CloudWatch Logs in GuardDuty Malware Protection

There are three types of scan events supported in the /aws/guardduty/malware-scan-events CloudWatch log group.

<table>
<thead>
<tr>
<th>Malware Protection scan event name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC2_SCAN_STARTED</td>
<td>Created when an GuardDuty Malware Protection is initiating the process of malware scan, such as preparing to take a snapshot of an EBS volume.</td>
</tr>
<tr>
<td>EC2_SCAN_COMPLETED</td>
<td>Created when GuardDuty Malware Protection scan completes for at least one of the EBS volumes of the impacted resource. This event also includes the snapshotId that belongs to the scanned EBS volume. After the scan completes, the scan result will either be CLEAN, THREATS_FOUND, or NOT_SCANNED.</td>
</tr>
<tr>
<td>EC2_SCAN_SKIPPED</td>
<td>Created when GuardDuty Malware Protection scan skips all the EBS volumes of the impacted resource. To identify the skip reason, select the corresponding event, and view the details. For more information on skip reasons, see Reasons for skipping resource during malware scan (p. 253) below.</td>
</tr>
</tbody>
</table>
Note
If you're using an AWS Organizations, CloudWatch log events from member accounts in
Organizations get published to both administrator and member account's log group.

Choose your preferred access method to view and query CloudWatch events.

Console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
   console.aws.amazon.com/cloudwatch/.
2. In the navigation pane, under Logs, choose Log groups. Choose the /aws/guardduty/malware-
   scan-events log group to view the scan events for GuardDuty Malware Protection.

To run a query, choose Log Insights.

For information about running a query, see Analyzing log data with CloudWatch Logs Insights in
the Amazon CloudWatch User Guide.

3. Choose Scan ID to monitor the details of the impacted resource and malware findings. For
   example, you can run the following query to filter the CloudWatch log events by using scanId.
   Make sure to use your own valid scan-id.

```
fields @timestamp, @message, scanRequestDetails.scanId as scanId
| filter scanId like "77a6f6115da4bd95f4e4ca398492bccc0"
| sort @timestamp asc
```

API/CLI

- To work with log groups, see Search log entries using the AWS CLI in the Amazon CloudWatch User
  Guide.

  Choose the /aws/guardduty/malware-scan-events log group to view the scan events for
  GuardDuty Malware Protection.

- To view and filter log events, see GetLogEvents and FilterLogEvents, respectively, in the Amazon
  CloudWatch API Reference.

GuardDuty Malware Protection log retention

The default log retention period for /aws/guardduty/malware-scan-events log group is 90 days, after
which the log events are deleted automatically. To change the log retention policy for your CloudWatch
log group, see Change log data retention in CloudWatch Logs or PutRetentionPolicy.

Reasons for skipping resource during malware scan

In the events related to the malware scan, certain EC2 resources and EBS volumes may have been
skipped during the scanning process. The following table lists the reasons why GuardDuty Malware
Protection may not scan the resources. If applicable, use the proposed steps to resolve these issues, and
scan these resources the next time GuardDuty Malware Protection initiates a malware scan. The other
issues are used to inform you about the course of events and are non-actionable.

<table>
<thead>
<tr>
<th>Reasons for skipping</th>
<th>Explanation</th>
<th>Proposed steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESOURCE_NOT_FOUND</td>
<td>The resourceArn provided to the initiate</td>
<td>Validate the resourceArn of your</td>
</tr>
<tr>
<td></td>
<td>the on-demand</td>
<td>Amazon EC2 instance or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reasons for skipping</td>
<td>Explanation</td>
<td>Proposed steps</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ACCOUNT_INELIGIBLE</td>
<td>The AWS account ID from which you tried initiating an On-demand malware scan has not enabled GuardDuty.</td>
<td>Verify that GuardDuty is enabled for this AWS account. When you enable GuardDuty in a new AWS Region it may take up to 20 minutes to sync.</td>
</tr>
<tr>
<td>UNSUPPORTED_KEY_ENCRYPTION</td>
<td>GuardDuty Malware Protection supports volumes that are both unencrypted and encrypted with customer managed key. It doesn't support scanning EBS volumes that are encrypted using Amazon EBS encryption.</td>
<td>Replace your encryption key with a customer managed key. For more information on the types of encryption that GuardDuty supports, see Supported volumes in Malware Protection (p. 60).</td>
</tr>
<tr>
<td>EXCLUDED_BY_SCAN_SETTINGS</td>
<td>The EC2 instance or EBS volume was excluded during the malware scan. There are two possibilities - either the tag was added to the inclusion list but the resource isn't associated with this tag, the tag was added to the exclusion list and the resource is associated with this tag, or the GuardDutyExcluded tag is set to true for this resource.</td>
<td>Update your scan options or the tags associated to your Amazon EC2 resource. For more information, see Scan options with user-defined tags (p. 64).</td>
</tr>
<tr>
<td>UNSUPPORTED_VOLUME_SIZE</td>
<td>The volume is greater than 1024 GB.</td>
<td>Not actionable.</td>
</tr>
<tr>
<td>NO_VOLUMES_ATTACHED</td>
<td>GuardDuty Malware Protection found the instance in your account but no EBS volume was attached to this instance to proceed with the scan.</td>
<td>Not actionable.</td>
</tr>
<tr>
<td>UNABLE_TOSCAN</td>
<td>It is an internal service error.</td>
<td>Not actionable.</td>
</tr>
</tbody>
</table>
## Reporting false positives in GuardDuty Malware Protection

GuardDuty Malware Protection scans may identify a harmless file in your Amazon EC2 instance or container workload as being malicious or harmful. To improve your experience with Malware Protection, you can report false positives.

### Reasons for skipping

<table>
<thead>
<tr>
<th>Reason</th>
<th>Explanation</th>
<th>Proposed steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNAPSHOT_NOT_FOUND</td>
<td>The snapshots created from the EBS volumes and shared with the service account was not found, and GuardDuty Malware Protection couldn't proceed with the scan.</td>
<td>Check CloudTrail to ensure that the snapshots were not removed intentionally.</td>
</tr>
<tr>
<td>SNAPSHOT_QUOTA_REACHED</td>
<td>You have reached the maximum volume allowed for snapshots for each Region. This prevents not just retaining but also creating new snapshots.</td>
<td>You can either remove old snapshots or request for quota increase. You can view the default limit for Snapshots per Region and how to request quota increase under Service quotas in the AWS General Reference Guide.</td>
</tr>
<tr>
<td>MAX_NUMBER_OF_ATTACHED_VOLUMES_REACHED</td>
<td>More than 11 EBS volumes were attached to an EC2 instance. GuardDuty Malware Protection scanned the first 11 EBS volumes, obtained by sorting the deviceName alphabetically.</td>
<td>Not actionable.</td>
</tr>
<tr>
<td>UNSUPPORTED_PRODUCT_CODE_TYPE</td>
<td>GuardDuty doesn't support scanning of instances with productCode as marketplace. For more information, see Paid AMIs in the Amazon EC2 User Guide for Linux Instances. For information on productCode, see ProductCode in the Amazon EC2 API Reference.</td>
<td>Not actionable.</td>
</tr>
</tbody>
</table>
and the GuardDuty service, you can report false positive results if you believe that a file identified as being malicious or harmful during a scan doesn’t actually contain malware.

**False positive file submission**

2. When you identify what appears to be a false positive result, contact AWS Support to initiate the process of false positive file submission.
3. Choose **Malware Scans**.
4. Choose a scan to view its **Finding ID**.
5. Provide the **Finding ID**. You must also provide the SHA-256 hash of the file. This is required to ensure that GuardDuty Malware Protection has received the correct file.
6. The AWS Support team will provide you an Amazon Simple Storage Service (S3) URL that you can use to upload the file and SHA-256 hash. Inform the AWS Support team after you have successfully uploaded the file.

**Warning**

Do not directly provide the file or SHA-256 hash to AWS Support. You should only upload the file and hash to Amazon S3 through the provided URL. If you fail to upload the file and hash within seven days of receiving the URL, it will become invalid. If the URL becomes invalid, you’ll have to reach out to AWS Support to receive a new URL.

GuardDuty keeps your file for no more than 30 days. GuardDuty team members will analyze your submission and take appropriate steps to improve your experience with Malware Protection and the GuardDuty service.
Remediating security issues discovered by GuardDuty

Amazon GuardDuty generates findings (p. 98) that indicate potential security issues. In this release of GuardDuty, the potential security issues indicate either a compromised EC2 instance or container workload, or a set of compromised credentials in your AWS environment. The following sections describe the recommended remediation steps for these scenarios. If there are alternative remediation scenarios they will be described in the entry for that specific finding type. You can access the full information about a finding type by selecting it from the Active findings types table (p. 117).

Topics
- Remediating a compromised Amazon EC2 instance (p. 257)
- Remediating a compromised S3 bucket (p. 258)
- Remediating a compromised ECS cluster (p. 259)
- Remediating compromised AWS credentials (p. 259)
- Remediating a compromised standalone container (p. 260)
- Remediating EKS Audit Log Monitoring findings discovered by GuardDuty (p. 261)
- Remediating EKS Runtime Monitoring findings (p. 265)
- Remediating a compromised database (p. 266)
- Remediating a compromised Lambda function (p. 269)

Remediating a compromised Amazon EC2 instance

Follow these recommended steps to remediate a compromised EC2 instance in your AWS environment:

1. Isolate the impacted Amazon EC2 instance.

   Investigate the potentially compromised instance for malware and remove any discovered malware. You may use On-demand malware scan (p. 78) to identify malware in the potentially compromised EC2 instance, or check AWS Marketplace to see if there are helpful partner products to identify and remove malware.

2. Identify the source of the suspicious activity

   If malware is detected, then based on the finding type in your account, identify and stop the potentially unauthorized activity on your EC2 instance. This may require actions such as closing any open ports, changing access policies, and upgrading applications to correct vulnerabilities.

   If you are unable to identify and stop unauthorized activity on your EC2 instance, we recommend that you terminate the compromised EC2 instance and replace it with a new instance as needed. The following are additional resources for securing your EC2 instances:
   - Security and Networking sections in Best practices for Amazon EC2
   - Amazon EC2 security groups for Linux instances and Amazon EC2 security groups for Windows instances
   - Security in Amazon EC2
   - Tips for securing your EC2 instances (Linux).
   - AWS security best practices
Remediating a compromised S3 bucket

Follow these recommended steps to remediate a compromised Amazon S3 bucket in your AWS environment:

1. **Identify the affected S3 resource.**

   A GuardDuty finding for S3 will list an S3 bucket, the bucket's Amazon Resource Name (ARN) and a bucket owner in the finding details.

2. **Identify the source of the suspicious activity and the API call used.**

   The API call used will be listed as API in the finding details. The source will be an IAM principal (either an IAM role, user, or account) and identifying details will be listed in the finding. Depending on the source type, Remote IP address or source domain info will be available and can help you evaluate whether the source was authorized. If the finding involved credentials from an EC2 instance the details for that resource will also be included.

3. **Determine whether the call source was authorized to access the identified resource.**

   For example consider the following:
   - If an IAM user was involved, is it possible their credentials have been compromised? See the following section on Remediating Compromised AWS Credentials.
   - If an API was invoked from a principal that has no prior history of invoking this type of API, does this source need access permissions for this operation? Can the bucket permissions be further restricted?
   - If the access was seen from the **user name** ANONYMOUS.PRINCIPAL with **user type** of AWSAccount this indicates the bucket is public and was accessed. Should this bucket be public? If not, review the security recommendations below for alternative solutions to sharing S3 resources.
   - If the access was though a successful PreflightRequest call seen from the **user name** ANONYMOUS.PRINCIPAL with **user type** of AWSAccount this indicates the bucket has a cross-origin resource sharing (CORS) policy set. Should this bucket have a CORS policy? If not, ensure the bucket is not inadvertently public and review the security recommendations below for alternative solutions to sharing S3 resources. For more information on CORS see Using cross-origin resource sharing (CORS) in the S3 user guide.

4. **Determine whether the S3 bucket contains sensitive data.**

   Use Amazon Macie to determine whether the S3 bucket contains sensitive data, such as personally identifiable information (PII), financial data, or credentials. If automated sensitive data discovery is enabled for your Macie account, review the S3 bucket's details to gain a better understanding of your S3 bucket's contents. If this feature is disabled for your Macie account, we recommend turning it on to expedite your assessment. Alternatively, you can create and run a sensitive data discovery job to inspect the S3 bucket's objects for sensitive data. For more information, see Discovering sensitive data with Macie.

If the access was authorized, you can ignore the finding. The https://console.aws.amazon.com/guardduty/ console allows you to set up rules to entirely suppress individual findings so that they no longer appear. For more information, see Suppression rules (p. 226).
If you determine that your S3 data has been exposed or accessed by an unauthorized party review the following S3 security recommendations to tighten permissions and restrict access. Appropriate remediation solutions will depend on the needs of your specific environment.

**These are some recommendations based on specific S3 access needs:**

- For a centralized way to limit public access to your S3 data use S3 block public access. Block public access settings can be enabled for access points, buckets, and AWS Accounts through four different settings to control granularity of access. For more information see [S3 Block Public Access Settings](#).
- AWS Access policies can be used to control how IAM users can access your resources or how your buckets can be accessed. For more information see [Using Bucket Policies and User Policies](#).

Additionally you can use Virtual Private Cloud (VPC) endpoints with S3 bucket policies to restrict access to specific VPC endpoints. For more information see [Example Bucket Policies for VPC Endpoints for Amazon S3](#).

- To temporarily allow access to your S3 objects to trusted entities outside your account you can create a Presigned URL through S3. This access is created using your account credentials and depending on the credentials used can last 6 hours to 7 days. For more information see [Generating presigned URLs with S3](#).
- For use cases that require that sharing of S3 objects between different sources you can use S3 Access Points to create permission sets that restrict access to only those within your private network. For more information see [Managing data access with Amazon S3 access points](#).
- To securely grant access to your S3 resources to other AWS Accounts you can use an access control list (ACL), for more information see [Managing S3 Access with ACLs](#).

For a full overview of S3 security options see [S3 Security best practices](#).

**Remediating a compromised ECS cluster**

Follow these recommended steps to remediate a compromised ECS cluster in your AWS environment:

1. **Identify the affected ECS cluster.**
   
   The GuardDuty Malware Protection finding for ECS provides the **ECS cluster details** in the finding's details panel.

2. **Evaluate the source of malware**
   
   Evaluate if the detected malware was in the container's image. If malware was in the image, identify all other tasks which are running using this image. For information on running tasks, see [ListTasks](#).

3. **Isolate the impacted tasks**
   
   Isolate the impacted tasks by denying all ingress and egress traffic to the task. A deny all traffic rule may help stop an attack that is already underway, by severing all connections to the task.

   If the access was authorized, you can ignore the finding. The [https://console.aws.amazon.com/guardduty/](https://console.aws.amazon.com/guardduty/) console allows you to set up rules to entirely suppress individual findings so that they no longer appear. For more information, see [Suppression rules (p. 226)](#).

**Remediating compromised AWS credentials**

Follow these recommended steps to remediate compromised credentials in your AWS environment:

1. **Identify the affected IAM entity and the API call used.**
The API call used will be listed as API in the finding details. The IAM entity (either an IAM role or user) and its identifying information will be listed in the Resource section of a finding's details. The type of IAM entity involved can be determined by the User Type field, the name of the IAM entity will be in the User name field. The type of IAM entity involved in the finding can also be determined by the Access key ID used.

For keys beginning with AKIA:

This type of key is a long term customer-managed credential associated with an IAM user or AWS account root user. For information about managing access keys for IAM users, see Managing access keys for IAM users.

For keys beginning with ASIA:

This type of key is a short term temporary credential generated by AWS Security Token Service. These keys exists for only a short time and cannot be viewed or managed in the AWS Management Console. IAM roles will always use AWS STS credentials, but they can also be generated for IAM Users, for more information on AWS STS see IAM: Temporary security credentials.

If a role was used the User name field will indicate the name of the role used. You can determine how the key was requested with AWS CloudTrail by examining the sessionIssuer element of the CloudTrail log entry, for more information see IAM and AWS STS information in CloudTrail.

2. Review permissions for the IAM entity.

Open the IAM console, depending on the type of entity used, choose the Users or Roles tab, and locate the affected entity by typing the identified name into the search field. Use the Permission and Access Advisor tabs to review effective permissions for that entity.

3. Determine whether the IAM entity credentials were used legitimately.

Contact the user of the credentials to determine if the activity was intentional.

For example, find out if the user did the following:

- Invoked the API operation that was listed in the GuardDuty finding
- Invoked the API operation at the time that is listed in the GuardDuty finding
- Invoked the API operation from the IP address that is listed in the GuardDuty finding

If this activity is a legitimate use of the AWS credentials, you can ignore the GuardDuty finding. The https://console.aws.amazon.com/guardduty/ console allows you to set up rules to entirely suppress individual findings so that they no longer appear. For more information, see Suppression rules (p. 226).

If you can’t confirm if this activity is a legitimate use, it could be the result of a compromise to the particular access key, the IAM user’s sign-in credentials, or possibly the entire AWS account. If you suspect your credentials have been compromised, review the information in the My AWS account may be compromised article to remediate this issue.

Remediating a compromised standalone container

1. Isolate the container

To identify the malicious container workload, follow the steps below:

- Open the GuardDuty console at https://console.aws.amazon.com/guardduty/.
- On the Findings page, choose the corresponding finding to open the findings panel.
- In the findings panel, under the Resource affected section, you can view the container’s ID and Name.
Isolate this container from other container workloads.

2. **Pause the container**

Suspend all the processes in your container. For information on how to freeze your container, see [Pause a container](#).

**Stop the container**

If the step above fails, and the container doesn't pause, stop the container from running. If you've enabled the [Snapshots retention](#) feature, GuardDuty will retain the snapshots of your EBS volumes that contain malware.

For information on how to stop the container, see [Stop a container](#).

3. **Evaluate the presence of malware**

Evaluate if malware was in the container's image.

If the access was authorized, you can ignore the finding. The [https://console.aws.amazon.com/guardduty](https://console.aws.amazon.com/guardduty) console allows you to set up rules to entirely suppress individual findings so that they no longer appear. The GuardDuty console allows you to set up rules to entirely suppress individual findings so that they no longer appear. For more information, see [Suppression rules](#).

---

**Remediating EKS Audit Log Monitoring findings discovered by GuardDuty**

Amazon GuardDuty generates findings that indicate potential Kubernetes security issues when EKS Audit Log Monitoring is enabled for your account. For more information, see [EKS Audit Log Monitoring](#). The following sections describe the recommended remediation steps for these scenarios. Specific remediation actions are described in the entry for that specific finding type. You can access the full information about a finding type by selecting it from the [Active findings types table](#).

If any of the EKS Audit Log Monitoring finding types were generated expectantly, you can consider adding [Suppression rules](#) to prevent future alerts.

Different types of attacks and configuration issues can trigger GuardDuty Kubernetes findings. This guide helps you identify the root causes of GuardDuty findings against your cluster and outlines appropriate remediation guidance. The following are the primary root causes that lead to GuardDuty Kubernetes findings:

- Configuration issues (p. 262)
- Compromised users (p. 262)
- Compromised pods (p. 264)
- Compromised nodes (p. 265)
- Compromised container images (p. 265)

**Note**

Before Kubernetes version 1.14, the system:unauthenticated group was associated to system:discovery and system:basic-user ClusterRoles by default. This may allow unintended access from anonymous users. Cluster updates do not revoke these permissions, which means that even if you have updated your cluster to version 1.14 or later, these
permissions may still be in place. We recommend that you disassociate these permissions from the system:unauthenticated group. For instructions on removing these permissions, see Review and revoke unnecessary anonymous access.

Configuration issues

If a finding indicates a configuration issue, see the remediation section of that finding for guidance on resolving that particular issue. For more information, see the following finding types that indicate configuration issues:

- Policy:Kubernetes/AnonymousAccessGranted (p. 176)
- Policy:Kubernetes/ExposedDashboard (p. 177)
- Policy:Kubernetes/AdminAccessToDefaultServiceAccount (p. 176)
- Policy:Kubernetes/KubeflowDashboardExposed (p. 177)
- Any finding that ends in SuccessfulAnonymousAccess.

Remediating compromised Kubernetes users

A GuardDuty finding can indicate a compromised Kubernetes user when a user identified in the finding has performed an unexpected API action. You can identify the user in the Kubernetes user details section of a finding details in the console, or in the resources.eksClusterDetails.kubernetesDetails.kubernetesUserDetails of the findings JSON. These user details include userName, uid, and the Kubernetes groups that the user belongs to.

If the user was accessing the workload using an IAM entity, you can use the Access Key details section to identify the details of an IAM role or user. See the following user types and their remediation guidance.

**Note**
You can use Amazon Detective to further investigate the IAM role or user identified in the finding. While viewing the finding details in GuardDuty console, choose Investigate in Detective. Then select AWS user or role from the listed items to investigate it in Detective.

**Built-in Kubernetes admin** – The default user assigned by Amazon EKS to the IAM identity that created the cluster. This user type is identified by the user name kubernetes-admin.

**To revoke access of a built-in Kubernetes admin:**

- Identify the userType from the Access Key details section.
  - If the userType is Role and the role belongs to an EC2 instance role:
    - Identify that instance then follow the instructions in Remediating a compromised Amazon EC2 instance (p. 257).
  - If the userType is User, or is a Role that was assumed by a user:
    1. Rotate the access key of that user.
    2. Rotate any secrets that user had access to.
    3. Review the information in My AWS account may be compromised for further details.

**OIDC authenticated user** – A user granted access through an OIDC provider. Typically an OIDC user has an email address as a user name. You can check if your cluster uses OIDC with the following command:

```
aws eks list-identity-provider-configs --cluster-name your-cluster-name
```

**To revoke access of an OIDC authenticated user:**

1. Rotate the credentials of that user in the OIDC provider.
2. Rotate any secrets that user had access to.

**AWS-Auth ConfigMap defined user** – An IAM user that was granted access through an AWS-auth ConfigMap. For more information, see Managing users or IAM roles for your cluster in the &EKS; user guide. You can review their permissions using the following command: `kubectl edit configmaps aws-auth --namespace kube-system`

To revoke access of an AWS ConfigMap user:

1. Use the following command to open the ConfigMap.

   ```bash
 kubectl edit configmaps aws-auth --namespace kube-system
   ```

2. Identify the role or user entry under the **mapRoles** or **mapUsers** section with the same user name as the one reported in the Kubernetes user details section of your GuardDuty finding. See the following example, where the admin user has been identified in a finding.

   ```yaml
 apiVersion: v1
 data:
 mapRoles: |
 user name: system:node:EC2_PrivateDNSName
 groups: |
 - system:bootstrappers
 - system:nodes
 mapUsers: |
 - userarn: arn:aws:iam::123456789012:user/admin
 username: admin
 groups: |
 - system:masters
 - userarn: arn:aws:iam::111122223333:user/ops-user
 username: ops-user
 groups: |
 - system:masters
   ```

3. Remove that user from the ConfigMap. See the following example where the admin user has been removed.

   ```yaml
 apiVersion: v1
 data:
 mapRoles: |
 username: system:node:{{EC2PrivateDNSName}}
 groups: |
 - system:bootstrappers
 - system:nodes
 mapUsers: |
 - userarn: arn:aws:iam::111122223333:user/ops-user
 username: ops-user
 groups: |
 - system:masters
   ```

4. If the **userType** is **User**, or is a **Role** that was assumed by a user:
   a. **Rotate the access key** of that user.
   b. Rotate any secrets that user had access to.
   c. Review the information in My AWS account may be compromised for further details.

If the finding does not have a **resource.accessKeyDetails** section, the user is a Kubernetes service account.
**Service account** – The service account provides an identity for pods and can be identified by a user name with the following format: `system:serviceaccount:namespace:service_account_name`.

To revoke access to a service account:
1. Rotate the service account credentials.
2. Review the guidance for pod compromise in the following section.

**Remediating compromised Kubernetes pods**

When GuardDuty specifies details of a pod or workload resource inside the `resource.kubernetesDetails.kubernetesWorkloadDetails` section, that pod or workload resource is likely compromised. A GuardDuty finding can indicate a single pod has been compromised or that multiple pods have been compromised through a higher-level resource. See the following compromise scenarios for guidance on how to identify the pod or pods that have been compromised.

**Single pods compromise**

If the `type` field inside the `resource.kubernetesDetails.kubernetesWorkloadDetails` section is `pods`, the finding identifies a single pods. The name field is the name of the pods and namespace field is its namespace. Use the instructions in **Identify the offending pods and worker node** to identify the worker node running the pods.

**Pods compromised through workload resource**

If the `type` field inside the `resource.kubernetesDetails.kubernetesWorkloadDetails` section identifies a **Workload Resource**, such as a Deployment, it is likely that all of the pods within that workload resource have been compromised. Use the instructions in **Identify the offending pods and worker nodes using workload name** to identify all the pods of the Workload Resource and the nodes they are running on.

**Pods compromised through service account**

If a GuardDuty finding identifies a Service Account in the `resource.kubernetesDetails.kubernetesUserDetails` section, it is likely that pods using the identified service account are compromised. The user name reported by a finding is a service account if it has the following format: `system:serviceaccount:namespace:service_account_name`. Use the instructions in **Identify the offending pods and worker nodes using service account name** to identify all the pods using the service account and nodes they are running on.

After you have identified all the compromised pods and the nodes they are running on, use the following instructions in **the EKS best practices guide** to isolate the pod, rotate its credentials, and gather data for forensic analysis.

**To remediate a compromised pod:**

1. Identify the vulnerability that compromised the pods.
2. Implement the fix for that vulnerability and start new replacement pods.
3. Delete the vulnerable pods. For more information see **Redeploy compromised Pod or Workload Resource**.

If the worker node has been assigned an IAM role that allows Pods to gain access to other AWS resources, remove those roles from the instance to prevent further damage from the attack. Similarly, if the Pod has been assigned an IAM role, evaluate whether you can safely remove the IAM policies from the role without impacting other workloads.
Remediating compromised container images

When a GuardDuty finding indicates a pod compromise, the image used to launch the pod could be malicious or compromised. GuardDuty findings identify the container image within the resource.kubernetesDetails.kubernetesWorkloadDetails.containers.image field. You can determine if the image is malicious by scanning it for malware.

To remediate a compromised container image:

1. Stop using the image immediately and remove it from your image repository.
2. Identify all pods using the image. For more information see Identify pods with vulnerable or compromised container images and worker nodes.
3. Isolate the compromised pods, rotate credentials and gather data for analysis. For more information see the following instructions in the EKS best practices guide.
4. Delete all pods using the compromised image.

Remediating compromised Kubernetes nodes

A GuardDuty finding can indicate a node compromise if the user identified in the finding represents a node identity or if the finding indicates the use of a privileged container.

The user identity is a worker node if the username field has following format: system:node:nodeName. For example, system:node:ip-192-168-3-201.ec2.internal. This indicates that the adversary has gained access to the node and it is using the node's credentials to talk to the Kubernetes API endpoint.

A finding indicates the use of a privileged container if one or more of the containers listed in the finding has the resource.kubernetesDetails.kubernetesWorkloadDetails.containers.securityContext.privileged finding field set to True.

To remediate a compromised node:

1. Use the instructions in the EKS best practices guide to isolate the pod, rotate its credentials, and gather data for forensic analysis.
2. Identify the service accounts used by all of the pods running on the node. Review their permissions and rotate the service accounts if needed.
3. Terminate the node.

Remediating EKS Runtime Monitoring findings

When you enable EKS Runtime Monitoring for your account, Amazon GuardDuty may generate EKS Runtime Monitoring finding types (p. 136) that indicate potential security issues in your AWS environment. For EKS Runtime Monitoring (p. 24), the potential security issues indicate either a compromised EC2 instance, container workload, an EKS cluster, or a set of compromised credentials in your AWS environment. The security agent monitors events from multiple resource types. To identify the potentially compromised resource, view Resource type in the generated finding details in the GuardDuty console. The following section describes the recommended remediation steps for each resource type. For alternate or additional remediation recommendations, see Kubernetes audit logs finding types (p. 165).

Instance

If the Resource type in the finding details is Instance, it indicates that either an EC2 instance or an EKS node is potentially compromised.
Remediating a compromised database

GuardDuty generates **RDS Protection finding types** (p. 184) that indicate potentially suspicious and anomalous login behavior in your **Supported databases** (p. 84) after you enable **GuardDuty RDS Protection** (p. 84). Using RDS login activity, GuardDuty analyzes and profiles threats by identifying unusual patterns in login attempts.

**Note**

You can access the full information about a finding type by selecting it from the **Findings table** (p. 208).

Follow these recommended steps to remediate a potentially compromised Amazon Aurora database in your AWS environment.

**Topics**

- **Remediating potentially compromised database with successful login events** (p. 267)
- **Remediating potentially compromised database with failed login events** (p. 267)
- **Remediating potentially compromised credentials** (p. 268)
- **Restrict network access** (p. 268)
Remediating potentially compromised database with successful login events

The following recommended steps can help you remediate a potentially compromised Aurora database that exhibits unusual behavior related to successful login events.

1. Identify the affected database and user.

   The generated GuardDuty finding provides the name of the affected database and the corresponding user details. For more information, see Finding details (p. 98).

2. Confirm whether this behavior is expected or unexpected.

   The following list specifies potential scenarios that may have caused GuardDuty to generate a finding:
   - A user who logs in to their database after a long time has passed.
   - A user who logs in to their database on an occasional basis, for example, a financial analyst who logs in each quarter.
   - A potentially suspicious actor who is involved in a successful login attempt potentially compromises the database.

3. Begin this step if the behavior is unexpected.

   1. Restrict database access

      Restrict database access for the suspected accounts and the source of this login activity. For more information, see Remediating potentially compromised credentials (p. 268) and Restrict network access (p. 268).

   2. Assess the impact and determine what information was accessed.

      - If available, review the audit logs to identify the pieces of information that might have been accessed. For more information, see Monitoring events, logs, and streams in an Amazon Aurora DB cluster in the Amazon Aurora User Guide.
      - Determine if any sensitive or protected information was accessed or modified.

Remediating potentially compromised database with failed login events

The following recommended steps can help you remediate a potentially compromised Aurora database that exhibits unusual behavior related to failed login events.

1. Identify the affected database and user.

   The generated GuardDuty finding provides the name of the affected database and the corresponding user details. For more information, see Finding details (p. 98).

2. Identify the source of the failed login attempts.

   The generated GuardDuty finding provides the IP address and ASN organization (if it was a public connection) under the Actor section of the finding panel.

   An Autonomous System (AS) is a group of one or more IP prefixes (lists of IP addresses accessible on a network) run by one or more network operators that maintain a single, clearly-defined routing policy. Network operators need Autonomous System Numbers (ASNs) to control routing within their networks and to exchange routing information with other internet service providers (ISPs).

3. Confirm that this behavior is unexpected.
Examine if this activity represents an attempt to gain additional unauthorized access to the database as follows:

- If the source is internal, examine if an application is misconfigured and attempting a connection repeatedly.
- If this is an external actor, examine whether the corresponding database is public facing or is misconfigured and thus allowing potential malicious actors to brute force common user names.

4. **Begin this step if the behavior is unexpected.**

   1. **Restrict database access**

      Restrict database access for the suspected accounts and the source of this login activity. For more information, see Remediating potentially compromised credentials (p. 268) and Restrict network access (p. 268).

   2. **Perform root-cause analysis and determine the steps that potentially led to this activity.**

      Set up an alert to get notified when an activity modifies a networking policy and creates an insecure state. For more information, see Firewall policies in AWS Network Firewall in the AWS Network Firewall Developer Guide.

---

### Remediating potentially compromised credentials

A GuardDuty finding may indicate that the user credentials for an affected database have been compromised when the user identified in the finding has performed an unexpected database operation. You can identify the user in the RDS DB user details section within the finding panel in the console, or within the resource.rdsDbUserDetails of the findings JSON. These user details include user name, application used, database accessed, SSL version, and authentication method.

- To revoke access or rotate passwords for specific users that are involved in the finding, see Security with Amazon Aurora MySQL, or Security with Amazon Aurora PostgreSQL in the Amazon Aurora User Guide.

- Use AWS Secrets Manager to securely store and automatically rotate the secrets for Amazon Relational Database Service (RDS) databases. For more information, see AWS Secrets Manager tutorials in the AWS Secrets Manager User Guide.

- Use IAM database authentication to manage database users' access without the need for passwords. For more information, see IAM database authentication in the Amazon Aurora User Guide.

For more information, see Security best practices for Amazon Relational Database Service in the Amazon RDS User Guide.

### Restrict network access

A GuardDuty finding may indicate that a database is accessible beyond your applications, or Virtual Private Cloud (VPC). If the remote IP address in the finding is an unexpected connection source, audit the security groups. A list of security groups attached to the database is available under Security groups in the https://console.aws.amazon.com/rds/ console, or in the resource.rdsDbInstanceDetails.dbSecurityGroups of the findings JSON. For more information on configuring security groups, see Controlling access with security groups in the Amazon RDS User Guide.

If you're using a firewall, restrict network access to the database by reconfiguring the Network Access Control Lists (NACLs). For more information, see Firewalls in AWS Network Firewall in the AWS Network Firewall Developer Guide.
Remediating a compromised Lambda function

When GuardDuty generates a Lambda Protection finding and the activity is unexpected, your Lambda function may be compromised. We recommend completing the following steps to remediate a compromised Lambda function.

To remediate Lambda Protection findings

1. **Identify the affected Lambda function version.**

   A GuardDuty finding for Lambda Protection provides the name, Amazon Resource Name (ARN), function version, and revision ID associated with the Lambda function listed in the finding details.

2. **Identify the source of the suspicious activity.**

   a. Review the code associated with the Lambda function version involved in the finding.
   b. Review the imported libraries and layers of the Lambda function version involved in the finding.
   c. If you have enabled Scanning AWS Lambda functions with Amazon Inspector, review the Amazon Inspector findings associated with the Lambda function involved in the finding.
   d. Review the AWS CloudTrail logs to identify the principal that caused the function update and ensure that the activity was authorized or expected.

3. **Remediate the impacted Lambda function.**

   a. Disable the execution triggers of the Lambda function involved in the finding. For more information, see DeleteFunctionEventInvokeConfig.
   b. Review the Lambda code and update the libraries imports and Lambda function layers to remove the potentially suspicious libraries and layers.
   c. Mitigate Amazon Inspector findings related to the Lambda function involved in the finding.
Managing multiple accounts in Amazon GuardDuty

To manage multiple accounts in Amazon GuardDuty, you must choose a single AWS account to be the administrator account for GuardDuty. You can then associate other AWS accounts with the administrator account as member accounts. There are two ways to associate accounts with a GuardDuty administrator account: either through an AWS Organizations organization that both accounts are members of, or by sending an invitation through GuardDuty.

GuardDuty recommends using the AWS Organizations method. For more information about setting up an organization, see Creating an organization in the AWS Organizations User Guide.

Managing multiple accounts with AWS Organizations

If the account that you want to specify as the GuardDuty administrator account is part of an organization in AWS Organizations, then you can specify that account as the organization's delegated administrator for GuardDuty. The account that is registered as the delegated administrator automatically becomes the GuardDuty administrator account.

You can use this administrator account to enable and manage GuardDuty for any account in the organization when you add that account as a member account.

If you already have a GuardDuty administrator account with associated member accounts by invitation, you can register that account as the GuardDuty delegated administrator for the organization. When you do, all currently associated member accounts remain members, allowing you to take full advantage of the added functionality of managing your GuardDuty accounts with AWS Organizations.

For more information about supporting multiple accounts in GuardDuty through an organization see Managing GuardDuty accounts with AWS Organizations (p. 272).

Managing multiple accounts by invitation

If the accounts you want to associate are not part of your AWS Organizations organization, you can specify a administrator account in GuardDuty and then use the administrator account to invite other AWS accounts to become member accounts. When the invited account accepts the invitation, that account becomes a GuardDuty member account associated with the administrator account.

For more information about supporting multiple accounts by Invitation in GuardDuty see Managing GuardDuty accounts by invitation (p. 280).

Understanding the relationship between GuardDuty administrator and member accounts

When you use GuardDuty in a multiple-account environment, the administrator account can manage certain aspects of GuardDuty on behalf of the member accounts. The primary functions the administrator account can perform are the following:
• Add and remove associated member accounts. The process by which this is done differs based on whether the accounts are associated through organizations or by invitation.

• Manage the status of GuardDuty within associated member accounts, including enabling and suspending GuardDuty.

  **Note**
  Delegated administrator accounts managed with AWS Organizations automatically enable GuardDuty in accounts added as members.

• Customize findings within the GuardDuty network through the creation and management of suppression rules, trusted IP lists, and threat lists. Member accounts lose access to these features in a multiple-account environment.

The following table details the relationship between GuardDuty administrator and member accounts.

Account designations listed as **Self** can take the listed action only in their own accounts. A designation of **Any** indicates that account can perform the described action for any associated account, and **All** denotes actions that are applied to all associated accounts when taken by the designated account. Table cells with dashes (–) indicate that an account of that designation cannot perform the listed action.

<table>
<thead>
<tr>
<th>Action</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>View all AWS Organizations member accounts regardless of GuardDuty status</td>
<td>Any</td>
</tr>
<tr>
<td>Automatically enable S3 Protection for new accounts</td>
<td>All</td>
</tr>
<tr>
<td>Automatically enable EKS Protection for new accounts</td>
<td>All</td>
</tr>
<tr>
<td>Automatically enable Malware Protection for new accounts</td>
<td>All</td>
</tr>
<tr>
<td>Enable GuardDuty</td>
<td>Any</td>
</tr>
<tr>
<td>View GuardDuty findings</td>
<td>Any</td>
</tr>
<tr>
<td>Archive findings</td>
<td>Any</td>
</tr>
<tr>
<td>Apply suppression rules</td>
<td>All</td>
</tr>
<tr>
<td>Generate sample findings</td>
<td>Self</td>
</tr>
<tr>
<td>Create trusted or threat IP lists</td>
<td>All</td>
</tr>
<tr>
<td>Update trusted or threat IP lists</td>
<td>All</td>
</tr>
<tr>
<td>Delete trusted or threat IP lists</td>
<td>All</td>
</tr>
<tr>
<td>Set EventBridge notification frequency</td>
<td>All</td>
</tr>
<tr>
<td>Set Amazon S3 location for exporting findings</td>
<td>All</td>
</tr>
<tr>
<td>Suspend GuardDuty</td>
<td>Any*</td>
</tr>
</tbody>
</table>
* Indicates this action must be taken for all associated accounts before being taken in the designated account.

Managing GuardDuty accounts with AWS Organizations

When you use GuardDuty with an AWS Organizations organization, you can designate any account within the organization to be the GuardDuty delegated administrator. Only the organization management account can designate a delegated administrator.

An account that gets designated as a delegated administrator becomes a GuardDuty administrator account, has GuardDuty enabled automatically in the designated AWS Region, and also has the permission to enable and manage GuardDuty for all of the accounts in the organization within that Region. The other accounts in the organization can be viewed and added as GuardDuty member accounts associated with this delegated administrator account.

If you have already set up a GuardDuty administrator account with associated member accounts by invitation and the member accounts are part of the same organization, their Type changes from **By Invitation** to **Via Organizations** when you set a GuardDuty delegated administrator for your organization. If a delegated administrator previously added members by invitation that are not part of the same organization, their Type remains **By Invitation**. In both the cases, the previously added accounts are member accounts associated with the organization's GuardDuty delegated administrator.

You can continue to add accounts as members even if they are outside of your organization. For more information, see Adding and managing accounts by invitations (p. 280) or Designating a GuardDuty delegated administrator and managing members (p. 274).

Considerations when choosing a GuardDuty delegated administrator

The following factors define how a delegated administrator operates in GuardDuty:

**A delegated administrator can manage a maximum of 10,000 members.**

There is a limit of 10,000 member accounts per GuardDuty delegated administrator. This includes member accounts that are added through AWS Organizations or those who accepted the GuardDuty administrator’s invitation to join their organization. However, there could be more than 10,000 accounts in your organization. The number of the Accounts page of the GuardDuty console.

If you exceed the 10,000 member accounts limit, you will receive a notification through CloudWatch, AWS Health Dashboard, and an email is also sent to the delegated administrator account.

**A delegated administrator is Regional.**

Unlike AWS Organizations, GuardDuty is a Regional service. The GuardDuty delegated administrators and their member accounts must be added through AWS Organizations in each desired Region where you have GuardDuty enabled. If the organization management account designates a GuardDuty delegated administrator in only US East (N. Virginia), then delegated administrator will only manage member accounts added to the organization in that Region. For more information on Regions in GuardDuty see Regions and endpoints (p. 351).

**Recommended for an AWS organization to have the same GuardDuty delegated administrator across all the AWS Regions.**

We recommend you designate the same GuardDuty delegated administrator to your organization across all the AWS Regions where you have enabled GuardDuty. If you designate an account as
a delegated administrator in one Region, it is recommended that you use the same account as
designated administrator in all other Regions.

You can designate a new delegated administrator at any point in time. For more information
about removing the existing delegated administrator, see Removing a GuardDuty delegated
administrator (p. 279).

Not recommended to set your organization's management account as the delegated administrator.

Your organization's management account can be the delegated administrator. However, the
AWS security best practices follow the principle of least privilege and doesn't recommend this
configuration.

Changing a delegated administrator does not disable GuardDuty for member accounts.

If you remove a delegated administrator, GuardDuty removes all the member accounts associated
with this delegated administrator. GuardDuty still remains enabled for all these member accounts.

Permissions required to designate a delegated administrator

When delegating a GuardDuty delegated administrator you must have permissions to enable GuardDuty
as well as certain AWS Organizations API actions. You can add the following statement at the end of an
IAM policy to grant these permissions:

```json
{
 "Sid": "PermissionsForGuardDutyAdmin",
 "Effect": "Allow",
 "Action": [
 "guardduty:EnableOrganizationAdminAccount",
 "organizations:EnableAWSServiceAccess",
 "organizations:RegisterDelegatedAdministrator",
 "organizations:ListDelegatedAdministrators",
 "organizations:ListAWSServiceAccessForOrganization",
 "organizations:DescribeOrganizationalUnit",
 "organizations:DescribeAccount",
 "organizations:DescribeOrganization"
],
 "Resource": "*"
}
```

Additionally, if you wish to designate your AWS Organizations management account as the GuardDuty
delegated administrator that entity will need CreateServiceLinkedRole permissions to initialize
GuardDuty. To do this, add the following statement to the IAM policy and replace `111122223333` with
the AWS account ID of your organization's management account:

```json
{
 "Sid": "PermissionsToEnableGuardDuty",
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": "arn:aws:iam::111122223333:role/aws-service-role/guardduty.amazonaws.com/AWSServiceRoleForAmazonGuardDuty",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "guardduty.amazonaws.com"
 }
 }
}
```
Note
If you're using GuardDuty in a manually-enabled Region, replace the value for the "Service" with the Regional endpoint for the Region. For example, if you're using GuardDuty in the Middle East (Bahrain) (me-south-1) Region, replace "Service": "guardduty.amazonaws.com" with "Service": "guardduty.me-south-1.amazonaws.com".

Designating a GuardDuty delegated administrator and managing members

Choose one of the following access methods to designate a delegated administrator for your AWS organization and manage member accounts.

Console

**Step 1 – Designate a GuardDuty delegated administrator for your organization**

1. Open the GuardDuty console at [https://console.aws.amazon.com/guardduty/](https://console.aws.amazon.com/guardduty/). To log in, use the management account credentials for your AWS Organizations organization.

2. If you have already enabled GuardDuty for the management account, skip this step and follow the next step.

   If you haven't enabled GuardDuty yet, select **Get Started**, and then designate a GuardDuty delegated administrator on the **Welcome to GuardDuty** page.

   **Note**
   The management account must have the GuardDuty service-linked role (SLR) so that the delegated administrator can enable and manage GuardDuty in that account. Once you enable GuardDuty in a Region for the management account, this SLR gets created automatically.

3. Do this step after you have enabled GuardDuty for the management account. In the navigation pane of the GuardDuty console, choose **Settings**. On the **Settings** page, enter the 12-digit AWS account ID of the account that you want to designate as the GuardDuty delegated administrator for the organization.

4. Choose **Delegate**.

   If GuardDuty is not enabled for your delegated administrator account, it won't be able to take any action. If not already done so, make sure to enable GuardDuty for the newly designated delegated administrator account.

5. *(Recommended)* Repeat the previous step to designate the delegated administrator in each AWS Region where you have GuardDuty enabled.

After you designate the delegated administrator, you can only use the organization management account to change or remove the delegated administrator account.

The next step is to add members to your organization in each Region where you have GuardDuty enabled.

**Important**
When you add an account as a member, GuardDuty gets automatically enabled for that member account in the current Region only. This behavior differs from the invitation method, in which GuardDuty must be enabled prior to adding the account as a member. For information about the invitation method, see [Managing accounts by invitation (p. 280)](#).

**Step 2 – Configuring auto-enable preferences for organization**

To log in, use the GuardDuty administrator credentials.

2. In the navigation pane, choose **Accounts**.

3. The **Accounts** page provides configuration options to the GuardDuty administrator to **Auto-enable** GuardDuty on behalf of the member accounts that belong to the organization. You can find this option above the section that displays the **Accounts** table. This support is available to configure GuardDuty and all the supported optional protection plans in your AWS Region. You can select one of the following configuration options for GuardDuty on behalf of your member accounts:

- **Enable for all accounts** – Select to enable the corresponding option for all the member accounts in an organization automatically. This includes new accounts that join the organization and those accounts that may have been suspended or removed from the organization.

  **Note**
  It may take up to 24 hours to update the configuration for all the member accounts.

- **Auto-enable for new accounts** – Select to enable GuardDuty for new member accounts automatically when they join your organization.

- **Do not enable** – Select to prevent enabling the corresponding option for any account in your organization. In this case, the GuardDuty administrator will manage each account individually.

4. Choose **Save changes**.
If you want to use the same preferences in each Region, update your preferences in each of the supported Regions individually.

**Note**

Some of the optional protection plans may not be available in all the AWS Regions where GuardDuty is available. For more information, see Regions and endpoints (p. 351).

**Step 3 – Add accounts as members to your organization**

1. Open the GuardDuty console at https://console.aws.amazon.com/guardduty/. To log in, use the delegated administrator credentials.

2. In the navigation pane, choose Accounts.

The accounts table displays all of the accounts that are added either Via Organizations (AWS Organizations) or By Invitation. If a member account is not associated with the organization's GuardDuty administrator, the Status of this member account is Not a member.

3. Select one or multiple account IDs that you want to add as members. These account IDs must have the Type as Via Organizations.

Accounts that are added through invitation are not a part of your organization. You can manage such accounts individually. For more information, see Managing accounts by invitation (p. 280).

4. Choose the Actions dropdown and then choose Add member. After you add this account as a member, the auto-enable GuardDuty configuration will apply. Based on the settings in Step 1 (p. 274), the GuardDuty configuration of these accounts may change.

5. You can select the down arrow of the Status column to sort the accounts by the Not a member status and then choose each account that doesn't have GuardDuty enabled in the current Region.

If none of the accounts listed in the accounts table have been added as a member yet, you can enable GuardDuty in the current Region for all organization accounts. Choose Enable in the banner at the top of the page. This action automatically turns on the Auto-enable GuardDuty configuration so that GuardDuty gets enabled for any new account that joins the organization.

6. Choose Confirm to add the accounts as members. This action also enables GuardDuty for all of the selected accounts. The Status for the accounts will change to Enabled.

7. (Recommended) Repeat these steps in each AWS Region. This ensures that the delegated administrator can manage findings and other configurations for member accounts in all the Regions where you have GuardDuty enabled.

The auto-enable feature enables GuardDuty for all future members of your organization. This allows your GuardDuty delegated administrator to manage any new members that are created within or get added to the organization. When the number of member accounts reaches the limit of 10,000, the Auto-enable feature is automatically turned off. If you remove a member account and the total number of members decreases to fewer than 10,000, the Auto-enable feature turns back on.

**(Optional) step 4: Configure protection plans for individual accounts**

You can configure protection plans for individual accounts through the Accounts page.


2. In the navigation pane, choose Accounts.
3. Select one or more accounts for which you want to configure a protection plan. Repeat the following steps for each protection plan that you want to configure:
   a. Choose **Edit Protection Plans**.
   b. From the list of protection plans, choose one protection plan that you want to configure.
   c. Choose one of the actions that you want to perform for this protection plan, and then choose **Confirm**.
   d. For the selected account, the column corresponding to the configured protection plan will show the updated configuration as **Enabled** or **Not enabled**.

**API/CLI**

**Step 1: Designate a delegated administrator for your organization**

1. Run `enableOrganizationAdminAccount` using the credentials of the AWS account of the organization's management account.
   - Alternatively, you can use AWS Command Line Interface to do this. The following AWS CLI command designates a delegated administrator for your current Region only. Run the following AWS CLI command and make sure to replace `111111111111` with the AWS account ID of the account you want to designate as a GuardDuty delegated administrator:

   ```bash
 aws guardduty enable-organization-admin-account --admin-account-id 111111111111
   ```

   To designate the delegated administrator for other Regions, specify the Region in the AWS CLI command. The following example demonstrates how to enable a delegated administrator in US West (Oregon). Make sure to replace `us-west-2` with the Region for which you want to assign the GuardDuty delegated administrator.

   ```bash
 aws guardduty enable-organization-admin-account --admin-account-id 111111111111 --region us-west-2
   ```

   For information about the AWS Regions where GuardDuty is available, see [GuardDuty endpoints and quotas](https://console.aws.amazon.com/guardduty/

   **Note**
   If GuardDuty is not enabled for your delegated administrator account, it won't be able to take any action. If not already done so, make sure to enable GuardDuty for the newly designated delegated administrator account.

2. (Recommended) repeat the previous step to designate the delegated administrator in each AWS Region where you have GuardDuty enabled.

**Step 2: Configuring auto-enable preferences for the organization**

1. Run `updateOrganizationConfiguration` by using the credentials of the GuardDuty delegated administrator account, to automatically enable or disable GuardDuty in that Region for new accounts that join the organization, all the accounts, or none of the accounts in the organization.

   You can find your own `detectorId` for your current Region on the **Settings** page in the [https://console.aws.amazon.com/guardduty/](https://console.aws.amazon.com/guardduty/) console.

   **Note**
   For information about the various auto-enable configurations, see [autoEnableOrganizationMembers](https://console.aws.amazon.com/guardduty/).
2. To set auto-enable preferences for any of the supported optional protection plans in your Region, follow the steps provided in the corresponding documentation sections of each protection plan.

3. You can validate the preferences for your organization in the current Region. Run describeOrganizationConfiguration. Make sure to specify the detector ID of the delegated administrator account.

   **Note**
   It may take up to 24 hours to update the configuration for all the member accounts.

- 1. Alternatively, run the following AWS CLI command to set the preferences to automatically enable or disable GuardDuty in that Region for new accounts (NEW) that join the organization, all the accounts (ALL), or none of the accounts (NONE) in the organization. For more information, see autoEnableOrganizationMembers. Based on your preference, you may need to replace NEW with ALL or NONE. Make sure to specify the detector ID of the delegated administrator account that manages the organization configuration.

   You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

   ```
 aws guardduty update-organization-configuration --detector-id 12abc34d567e8fa901bc2d34e56789f0 --auto-enable-organization-members=NEW
   ```

2. You can validate the preferences for your organization in the current Region. Run the following AWS CLI command by using the detector ID of the delegated administrator.

   ```
 aws guardduty describe-organization-configuration --detector-id 12abc34d567e8fa901bc2d34e56789f0
   ```

2. (Recommended) repeat the previous step in each Region by using the delegated administrator detector ID.

### Step 3: Add accounts as members to your organization

- Run CreateMembers using the credentials of the delegated administrator designated in Step 2 (p. 277).

You must specify the regional detector ID of the delegated administrator and the account details (AWS account IDs and corresponding email addresses) of the accounts that you want to add as GuardDuty members. You can create one or more members with this API operation.

**Important**
When you add an account as a GuardDuty member, it will automatically have GuardDuty enabled in that Region. There is an exception to the organization management account. Before the management account account gets added as a GuardDuty member, it must have GuardDuty enabled.

- Alternatively, you can use AWS Command Line Interface. Run the following AWS CLI command and make sure to use your own valid detector ID, AWS account ID, and the email address associated with the account ID.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.
Removing a GuardDuty delegated administrator

You can view a list of all organization members by using `ListAccounts` or by running the following AWS CLI command:

```bash
aws organizations list-accounts
```

## Removing a GuardDuty delegated administrator

**Note**
Only the Organizations management account can remove a delegated administrator.

Select one of the following access methods to remove the delegated administrator from the current Region. After you have removed the delegated administrator from each Region, only then you can designate a new delegated administrator by following the steps in [Designating a GuardDuty delegated administrator and managing members](p. 274).

### Console

**Important**
If you are the organization's management account and have designated a different account as the delegated administrator, this account will be removed from every Region.

2. Sign in by using the credentials of the organization's management account.
3. In the navigation pane, choose **Settings**.
4. On the **Settings** page, under **Delegated Administrator** section, choose **Remove**.
5. In the **Remove Administrator** window, choose **Confirm**. This will remove the delegated administrator from the current Region.

If your management account is the same as the delegated administrator, make sure to repeat all the steps for each Region.

### API/CLI

1. Run `DisableOrganizationAdminAccount` using the credentials of the organization's management account. Ensure to provide a valid detector ID for the delegated administrator account.

   You can find your own_detectorId for your current Region on the **Settings** page in the [https://console.aws.amazon.com/guardduty/](https://console.aws.amazon.com/guardduty/) console.

   - Alternatively, run the following CLI command to remove the delegated administrator. Make sure to replace `111111111111` with the detector ID of the delegated administrator:

   ```bash
 aws guardduty disable-organization-admin-account --admin-account-id 111111111111
   ```

2. Repeat the previous step to remove the delegated administrator from each Region.
Managing GuardDuty accounts by invitation

To manage accounts outside of your organization, you can use the legacy invitation method. When you use this method, your account is designated as a administrator account when another account accepts your invitation to become a member account.

If your account is not a administrator account, you can accept an invitation from another account. When you accept, your account becomes a member account. An AWS account cannot be a GuardDuty administrator and member account at the same time.

Accounts associated by invitation have the same overall administrator-to-member relationship as accounts associated by AWS Organizations, as described in Understanding the relationship between GuardDuty administrator and member accounts (p. 270). However, invitation administrator account users cannot enable GuardDuty on behalf of associated member accounts or view other non-member accounts within their AWS Organizations organization.

Important
Cross-regional data transfer may occur when GuardDuty creates member accounts using this method. In order to verify member accounts’ email addresses, GuardDuty uses an email verification service that operates only in the US East (N. Virginia) Region.

Adding and managing accounts by invitations

Choose one of the access methods to add and invite accounts to become GuardDuty member accounts as a GuardDuty administrator.

Console

Step 1 - Add an account

2. In the navigation pane, choose Accounts.
3. Choose Add accounts by invitation in the top pane.
4. On the Add member accounts page, under Enter account details, enter the AWS account ID and email address associated with the account that you want to add.
5. To add another row to enter account details one at a time, choose Add another account. You can also choose Upload .csv file with account details to add accounts in bulk.

Important
The first line of your csv file must contain the header, as depicted in the following example – Account ID, Email. Each subsequent line must contain a single valid AWS account ID and its associated email address. The format of a row is valid if it contains only one AWS account ID and the associated email address separated by a comma.

<table>
<thead>
<tr>
<th>Account ID, Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>55555555555555555555, <a href="mailto:user@example.com">user@example.com</a></td>
</tr>
</tbody>
</table>

6. After you have added all the accounts' details, choose Next. You can view the newly-added accounts in the Accounts table. The Status of these accounts will be Invite not sent. For information about sending an invite to one or more added accounts, see Step 2 - Invite an account (p. 280).

Step 2 - Invite an account

2. In the navigation pane, choose Accounts.
3. Select one or more accounts that you want to invite to Amazon GuardDuty.
4. Choose Actions dropdown menu and then choose Invite.
5. In the Invitation to GuardDuty dialog box, enter an (optional) invitation message.

If the invited account does not have access to email, select the checkbox Also send an email notification to the root user on the invitee's AWS account and generate an alert in the invitee's AWS Health Dashboard.

6. Choose Send invitation. If the invitees have access to the specified email address they can view the invite by opening the GuardDuty console at https://console.aws.amazon.com/guardduty/.
7. When an invitee accepts the invite, the value in the Status column changes to Invited. For information about accepting an invite, see Step 3 - Accept an invitation (p. 281).

Step 3 - Accept an invitation

   Important
   You must enable GuardDuty before you can view or accept a membership invitation.
2. Do the following only if you haven't enabled GuardDuty yet; otherwise, you can skip this step and continue with the next step.

   If you haven't yet enabled GuardDuty, choose Get Started on the Amazon GuardDuty page.

   On the Welcome to GuardDuty page, choose Enable GuardDuty.
3. After you enable GuardDuty for your account, use the following steps to accept the membership invitation:
   a. In the navigation pane, choose Settings.
   b. Choose Accounts.
   c. On the Accounts, ensure to verify the owner of the account from which you accept the invitation. Turn on Accept to accept the membership invite.
4. After you accept the invite, your account becomes a GuardDuty member account. The account whose owner sent the invitation becomes the GuardDuty administrator account. The administrator account will know that you have accepted the invitation. The Accounts table in their GuardDuty account will get updated. The value in the Status column corresponding to your member account ID will change to Monitored. The administrator account owner can now view and manage GuardDuty and protection plan configurations on behalf of your account. The administrator account can also view and manage GuardDuty findings generated for your member account.

API/CLI

You can designate a GuardDuty administrator, and create or add GuardDuty member accounts by invitation through the API operations. Run the following GuardDuty API operations in order to designate administrator and member accounts in GuardDuty.

Complete the following procedure using the credentials of the AWS account that you want to designate as the GuardDuty administrator account.

Creating or adding member accounts

1. Run the CreateMembers API operation using the credentials of the AWS account that has GuardDuty enabled. This is the account that you want to be the administrator GuardDuty account.
You must specify the detector ID of the current AWS account and the account ID and email address of the accounts that you want to become GuardDuty members. You can create one or more members with this API operation.

You can also use AWS Command Line Tools to designate a administrator account by running the following CLI command. Make sure to use your own valid detector ID, account ID, and email.

You can find your own detectorId for your current Region on the **Settings** page in the [https://console.aws.amazon.com/guardduty/](https://console.aws.amazon.com/guardduty/) console.

```bash
aws guardduty create-members --detector-id 12abc34d567e8fa901bc2d34e56789f0 --account-details AccountId=111122223333,Email=guardduty-member@organization.com
```

2. Run **InviteMembers** by using the credentials of the AWS account that has GuardDuty enabled. This is the account that you want to be the administrator GuardDuty account.

You must specify the detector ID of the current AWS account and the account IDs of the accounts that you want to become GuardDuty members. You can invite one or more members with this API operation.

**Note**

You can also specify an optional invitation message by using the message request parameter.

You can also use AWS Command Line Interface to designate member accounts by running the following command. Make sure to use your own valid detector ID and valid account IDs for the accounts you want to invite.

You can find your own detectorId for your current Region on the **Settings** page in the [https://console.aws.amazon.com/guardduty/](https://console.aws.amazon.com/guardduty/) console.

```bash
aws guardduty invite-members --detector-id 12abc34d567e8fa901bc2d34e56789f0 --account-ids 111122223333
```

### Accepting invitations

Complete the following procedure using the credentials of each AWS account that you want to designate as a GuardDuty member account.

1. Run the **CreateDetector** API operation for each AWS account that was invited to become a GuardDuty member account and that you want to accept an invitation.

   You must specify if the detector resource is to be enabled using the GuardDuty service. A detector must be created and enabled in order for GuardDuty to become operational. You must first enable GuardDuty before accepting an invitation.

   You can also do this by using AWS Command Line Tools using the following CLI command.

   ```bash
 aws guardduty create-detector --enable
   ```

2. Run the **AcceptAdministratorInvitation** API operation for each AWS account that you want to accept the membership invitation, using that account's credentials.

   You must specify the detector ID of this AWS account for the member account, the account ID of the administrator account that sent the invitation, and the invitation ID of the invitation that you are accepting. You can find the account ID of the administrator account in the invitation email or by using the **ListInvitations** operation of the API.
You can also accept an invitation using AWS Command Line Tools by running the following CLI command. Make sure to use a valid detector ID, administrator account ID, and an invitation ID.

You can find your own detector ID for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

```bash
aws guardduty accept-invitation --detector-id 12abc34d567e8fa901bc2d34e56789f0 --administrator-id 444455556666 --invitation-id 84b097800250d17d1872b34c4daadcf5
```

Consolidating GuardDuty administrator accounts under a single organization delegated administrator

GuardDuty recommends using association through AWS Organizations to manage member accounts under a delegated administrator account. You can use the example process outlined below to consolidate administrator and member associated by invitation in an organization under a single GuardDuty delegated administrator.

**Note**
Accounts that are already being managed by a delegated administrator, or active member accounts that are associated with delegated administrator accounts can't be added to a different GuardDuty delegated administrator account. Each organization can have only one GuardDuty delegated administrator account per region, and each member account can have only one delegated administrator.

Choose one of the access methods to consolidate GuardDuty administrator accounts under a single delegated administrator.

**Console**

   
   To log in, use the credentials of the management account of the organization.

2. All the accounts for which you want to manage GuardDuty must be a part of your organization. For information about adding an account to your organization, see Inviting an AWS account to join your organization.

3. Make sure all the member accounts are associated with the account that you want to designate as the single delegated administrator. Disassociate any member account that is still associated with the pre-existing administrator accounts.

   The following steps will help you disassociate member accounts from the pre-existing administrator account:
   
   b. To log in, use the credentials of the pre-existing administrator account.
   c. In the navigation pane, choose Accounts.
   d. On the Accounts page, select one or more accounts that you want to disassociate from the administrator account.
   e. Choose Actions and then choose Disassociate account.
   f. Choose Confirm to finalize the step.


   To log in, use the management account credentials.
5. In the navigation pane, choose **Settings**. On the **Settings** page, designate the GuardDuty delegated administrator for the organization.

6. Log in to the designated delegated administrator account.

7. Add members from the organization. For more information, see Managing GuardDuty accounts with AWS Organizations (p. 272).

**API/CLI**

1. All the accounts for which you want to manage GuardDuty must be a part of your organization. For information about adding an account to your organization, see Inviting an AWS account to join your organization.

2. Make sure all the member accounts are associated with the account that you want to designate as the single delegated administrator.

   a. Run **DisassociateMembers** to disassociate any member account that is still associated with the pre-existing administrator accounts.

   b. Alternatively, you can use AWS Command Line Interface to run the following command and replace `777777777777` with the detector ID of the pre-existing administrator from which you want to disassociate the member account. Replace `666666666666` with the AWS account ID of the member account that you want to disassociate.

   ```bash
 aws guardduty disassociate-members --detector-id 777777777777 --account-ids 666666666666
   ```

3. Run **EnableOrganizationAdminAccount** to delegate an AWS account as the GuardDuty delegated administrator.

   Alternatively, you can use AWS Command Line Interface to run the following command to delegate a GuardDuty delegated administrator:

   ```bash
 aws guardduty enable-organization-admin-account --admin-account-id 777777777777
   ```

4. Add members from the organization. For more information, see Create or add member member accounts using API (p. 281).

   **Important**
   
   Remember that GuardDuty is a regional service. It is recommended that you designate your delegated administrator account and add all your members in every region to maximize the effectiveness of GuardDuty.

**Enable GuardDuty in multiple accounts simultaneously**

Use the following method to enable GuardDuty in multiple accounts at the same time.

**Use Python scripts to enable GuardDuty in multiple accounts simultaneously**

You can automate the enabling or disabling of GuardDuty on multiple accounts using the scripts from the sample repository on GitHub at [https://github.com/aws-samples/amazon-guardduty-multiaccount-scripts](https://github.com/aws-samples/amazon-guardduty-multiaccount-scripts). Use the process in this section to enable GuardDuty for a list of member accounts using Amazon EC2. For information about using the disable script or setting up the script locally refer, to the GitHub instructions.
The enableguardduty.py script enables GuardDuty, sends invitations from the administrator account, and accepts invitations in all member accounts. The result is a administrator GuardDuty account that contains all security findings for all member accounts. Because GuardDuty is isolated by Region, findings for each member account roll up to the corresponding Region in the administrator account. For example, the us-east-1 Region in your GuardDuty administrator account contains the security findings for all us-east-1 findings from all associated member accounts.

These scripts have a dependency on a shared IAM role with the managed policy – AWS managed policy: AmazonGuardDutyFullAccess (p. 323). This policy provides entities access to GuardDuty and must be present on the administrator account and in each account for which you want to enable GuardDuty.

The following process enables GuardDuty in all available Regions by default. You can enable GuardDuty in specified Regions only by using the optional --enabled_regions argument and providing a comma-separated list of Regions. You can also optionally customize the invitation message that is sent to member accounts by opening the enableguardduty.py and editing the gd_invite_message string.

1. Create an IAM role in the GuardDuty administrator account and attach the AWS managed policy: AmazonGuardDutyFullAccess (p. 323) policy to enable GuardDuty.
2. Create an IAM role in each member account you want to be managed by your GuardDuty administrator account. This role must have the same name as the role created in step 1, it should allow the administrator account as a trusted entity, and it should have the same AmazonGuardDutyFullAccess managed policy described previously.
3. Launch a new Amazon Linux instance with an attached role that has the following trust relationship that allows the instance to assume a service role.

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
```

4. Log in to the new instance and run the following commands to set it up.

```
sudo yum install git python
sudo yum install python-pip
pip install boto3
aws configure
git clone https://github.com/aws-samples/amazon-guardduty-multiaccount-scripts.git
cd amazon-guardduty-multiaccount-scripts
sudo chmod +x disableguardduty.py enableguardduty.py
```

5. Create a CSV file containing a list of account IDs and emails of the member accounts that you added a role to in step 2. Accounts must appear one per line, and the account ID and email address must be separated by a comma, as in the following example.

```
111122223333,guardduty-member@organization.com
```

**Note**
The CSV file must be in the same location as your enableguardduty.py script. You can copy an existing CSV file from Amazon S3 to your current directory with the following method.
Enable GuardDuty in multiple accounts simultaneously

6. Run the Python script. Make sure to supply your GuardDuty administrator account ID, the name of the role created in the first steps, and the name of your CSV file as arguments.

```bash
aws s3 cp s3://my-bucket/my_key_name example.csv
```

```python
python enableguardduty.py --master_account 444455556666 --assume_role roleName accountId.csv
```
Estimating GuardDuty cost

You can use the GuardDuty console or API operations to estimate the daily average usage costs for GuardDuty. During the 30-day free trial period, the cost estimation projects what your estimated costs will be after the trial period. If you are operating in a multi-account environment, your GuardDuty administrator account can monitor cost metrics for all of the member accounts.

You can view cost estimation based on the following metrics:

- **Account ID** – Lists the estimated cost for your account, or for your member accounts if you are operating as a GuardDuty administrator account.
- **Data source** – Lists the estimated cost on the specified data source for the following GuardDuty data source types: VPC flow logs, CloudTrail management logs, CloudTrail data events, or DNS logs.
- **Feature** – Lists the estimated cost on the specified data source for the following GuardDuty features: CloudTrail data events for S3, EKS Audit Log Monitoring, EBS volume data, RDS login activity Runtime Monitoring, or Lambda Network Activity Monitoring.
- **S3 buckets** – Lists the estimated cost for S3 data events on a specified bucket or the most expensive buckets for accounts in your environment.

**Note**

S3 bucket statistics are only available if **S3 Protection** is enabled for the account. For more information, see [Amazon S3 Protection in Amazon GuardDuty](p. 91).

Understanding how GuardDuty calculates usage costs

The estimates displayed in the GuardDuty console may differ slightly than those in your AWS Billing and Cost Management console. The following list explains how GuardDuty estimates usage costs:

- The GuardDuty usage estimate is for the current Region only.
- The GuardDuty usage estimate is an average daily cost based on the past 7 to 30 days of usage.

**Note**

If the usage duration of GuardDuty or a feature within GuardDuty is less than 7 days, the usage estimate is shown as **Pending**.

- The trial usage cost estimate includes the estimate for foundational data sources and features that are currently in the trial period. Each feature and data source within GuardDuty has its own trial period but it may overlap with the trial period of GuardDuty or another feature that was enabled at the same time.
- The GuardDuty usage estimate includes GuardDuty volume pricing discounts per Region, as detailed on the [Amazon GuardDuty Pricing](p. 16) page, but only for individual accounts meeting the volume pricing tiers. Volume pricing discounts are not included in estimates for combined total usage between accounts within an organization. For information about combined usage volume discount pricing, see [AWS Billing: Volume Discounts](p. 16).

When you enable EKS Runtime Monitoring for an account, GuardDuty continues to analyze and generate security findings based on [VPC Flow Logs](p. 16) from EKS EC2 nodes in the account. This helps GuardDuty to continue providing security coverage based on threat detection capabilities that are unique to VPC Flow Log coverage. This also helps GuardDuty to continue providing coverage in cases of EKS...
Runtime Monitoring coverage gaps. However, you will not be charged for both EKS Runtime Monitoring and VPC Flow Log monitoring from EKS EC2 nodes.

If GuardDuty is receiving runtime events from an EKS EC2 node, you will not be charged for the analysis of VPC Flow Logs from the instance. Alternatively, if GuardDuty is not receiving runtime events from the EKS EC2 node, then you will not be charged for the analysis of runtime events from the instance.

### How GuardDuty estimates usage cost for CloudTrail events

When you enable GuardDuty, it automatically starts consuming AWS CloudTrail event logs recorded for your account in the selected AWS Region. GuardDuty replicates Global service events logs and then processes these events independently in each Region where you have GuardDuty enabled. This helps GuardDuty maintain user and role profiles in each Region to identify anomalies.

Your CloudTrail configuration does not impact GuardDuty usage cost or the way GuardDuty processes your event logs. Your GuardDuty usage cost is affected by your usage of AWS APIs which log to CloudTrail. For more information, see [AWS CloudTrail event logs](#).

### Reviewing GuardDuty usage statistics

Choose your preferred access method to review the usage statistics for your GuardDuty account. If you're a GuardDuty administrator, the following methods will help you review the usage statistics for all the members.

**Console**

   
   Make sure to use the GuardDuty administrator account.
2. In the navigation pane, choose **Usage**.
3. GuardDuty administrator accounts with members see a list of all managed accounts. Single accounts see a breakdown by data source.

   If you have member accounts, you can view statistics for an individual account by selecting that account in the Accounts table. If S3 protection is enabled for the selected account, the top S3 buckets by usage cost are displayed in the **By data source** panel.

   **Note**
   
   A green dot indicates that a free trial period is active.

**API/CLI**

Invoke the [GetUsageStatistics](#) API operation using the credentials of GuardDuty administrator account. Provide the following information to run the command:

- (Required) provide the Regional GuardDuty detector ID of the account for which you want to retrieve the statistics.
- (Required) provide one of the types of statistics to retrieve: SUM_BY_ACCOUNT | SUM_BY_DATA_SOURCE | SUM_BYRESOURCE | TOP_RESOURCES.
- (Required) provide at least one data source to query from the following options:
  
  FLOW_LOGS | CLOUD_TRAIL | DNS_LOGS | S3_LOGS | KUBERNETES_AUDIT_LOGS | EC2_MALWARE_SCAN | RDS_LOGIN_EVENTS | EKS_RUNTIME_MONITORING | LAMBDA_NETWORK_LOGS.
• (Optional) provide a list of account IDs for which you want to retrieve usage statistics.

You can also use the AWS Command Line Interface. The following command is an example to get that retrieves the sum of usage for all the data sources and features. Make sure to replace the detector-id with your own valid detector ID. For standalone accounts, this command returns the usage cost over the past 30 days for your account only. If you are a GuardDuty administrator with member accounts, you see costs listed by account for all members.

You can find your own detectorId for your current Region on the Settings page in the https://console.aws.amazon.com/guardduty/ console.

```bash
aws guardduty get-usage-statistics --detector-id 12abc34d567e8fa901bc2d3e56789f0 --usage-statistic-type SUM_BY_ACCOUNT --usage-criteria '{"DataSources": ["FLOW_LOGS", "CLOUD_TRAIL", "DNS_LOGS", "S3_LOGS", "KUBERNETES_AUDIT_LOGS", "EC2_MALWARE_SCAN", "RDS_LOGIN_EVENTS", "EKS_RUNTIME_MONITORING", "LAMBDAP_NETWORK_LOGS"]}
```
Security in Amazon GuardDuty

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center and network architecture that is built to meet the requirements of the most security-sensitive organizations.

Security is a shared responsibility between AWS and you. The Shared Responsibility Model describes this as security of the cloud and security in the cloud:

- **Security of the cloud** – AWS is responsible for protecting the infrastructure that runs AWS services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-party auditors regularly test and verify the effectiveness of our security as part of the AWS compliance programs. To learn about the compliance programs that apply to GuardDuty, see AWS services in scope by compliance program.

- **Security in the cloud** – Your responsibility is determined by the AWS service that you use. You are also responsible for other factors including the sensitivity of your data, your company’s requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when using GuardDuty. It shows you how to configure GuardDuty to meet your security and compliance objectives. You also learn how to use other AWS services that help you to monitor and secure your GuardDuty resources.

Contents

- Data protection in Amazon GuardDuty (p. 290)
- Logging Amazon GuardDuty API calls with AWS CloudTrail (p. 292)
- Identity and Access Management for Amazon GuardDuty (p. 295)
- Compliance validation for Amazon GuardDuty (p. 326)
- Resilience in Amazon GuardDuty (p. 327)
- Infrastructure security in Amazon GuardDuty (p. 327)

Data protection in Amazon GuardDuty

The AWS shared responsibility model applies to data protection in Amazon GuardDuty. As described in this model, AWS is responsible for protecting the global infrastructure that runs all of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on this infrastructure. This content includes the security configuration and management tasks for the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set up individual users with AWS IAM Identity Center (successor to AWS Single Sign-On) or AWS Identity and Access Management (IAM). That way, each user is given only the permissions necessary to fulfill their job duties. We also recommend that you secure your data in the following ways:

- Use multi-factor authentication (MFA) with each account.
- Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.
- Set up API and user activity logging with AWS CloudTrail.
- Use AWS encryption solutions, along with all default security controls within AWS services.
- Use advanced managed security services such as Amazon Macie, which assists in discovering and securing sensitive data that is stored in Amazon S3.
If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a command line interface or an API, use a FIPS endpoint. For more information about the available FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your customers’ email addresses, into tags or free-form text fields such as a Name field. This includes when you work with GuardDuty or other AWS services using the console, API, AWS CLI, or AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that you do not include credentials information in the URL to validate your request to that server.

Encryption at rest

All GuardDuty customer data is encrypted at rest using AWS encryption solutions.

GuardDuty data, such as findings, is encrypted at rest using AWS Key Management Service (AWS KMS) using AWS owned customer managed keys.

Encryption in transit

GuardDuty analyzes log data from other services. It encrypts all data in transit from these services with HTTPS and KMS. Once GuardDuty extracts the information it needs from the logs, they are discarded. For more information on how GuardDuty uses information from other services, see GuardDuty data sources (p. 15).

GuardDuty data is encrypted in transit between services.

Opting out of using your data for service improvement

You can choose to opt out of having your data used to develop and improve GuardDuty and other AWS security services by using the AWS Organizations opt-out policy. You can choose to opt out even if GuardDuty doesn’t currently collect any such data. For more information about how to opt out, see AI services opt-out policies in the AWS Organizations User Guide.

Note

For you to use the opt-out policy, your AWS accounts must be centrally managed by AWS Organizations. If you haven’t already created an organization for your AWS accounts, see Creating and managing an organization in the AWS Organizations User Guide.

Opting out has the following effects:

- GuardDuty will delete the data that it collected and stored prior to your opt out (if any).
- After you opt out, GuardDuty will no longer collect or store this data.

EKS Runtime Monitoring

EKS Runtime Monitoring in EKS Protection provides runtime threat detection for Amazon Elastic Kubernetes Service (Amazon EKS) clusters in your account. After you enable EKS Runtime Monitoring and deploy an EKS add-on security agent on your EKS clusters, GuardDuty monitors and analyzes the EKS container workloads runtime events, such as file access, process execution, and network connections.

While GuardDuty doesn’t currently collect command-line arguments, module arguments, and program arguments that you may direct to your EKS clusters, future versions of the security agent may do so to
develop and improve its EKS Runtime Monitoring threat detections, and the GuardDuty service. This collected data may also be used to develop and improve other AWS security services. Your trust, privacy, and the security of your content are our highest priority, and ensure that our use complies with our commitments to you. For more information, see Data Privacy FAQ.

GuardDuty Malware Protection

GuardDuty Malware Protection scans and detects malware contained in EBS volumes attached to your potentially compromised Amazon EC2 instance and container workloads. When GuardDuty Malware Protection identifies an EBS volume file as being malicious or harmful, GuardDuty Malware Protection collects and stores this file to develop and improve its malware detections, and the GuardDuty service. This file may also be used to develop and improve other AWS security services. Your trust, privacy, and the security of your content are our highest priority, and ensure that our use complies with our commitments to you. For more information, see Data Privacy FAQ.

Logging Amazon GuardDuty API calls with AWS CloudTrail

Amazon GuardDuty is integrated with AWS CloudTrail, a service that provides a record of actions taken by a user, role, or an AWS service in GuardDuty. CloudTrail captures all API calls for GuardDuty as events, including calls from the GuardDuty console and from code calls to the GuardDuty APIs. If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon Simple Storage Service (Amazon S3) bucket, including events for GuardDuty. If you don't configure a trail, you can still view the most recent events in the CloudTrail console in Event history. Using the information collected by CloudTrail, you can determine the request that was made to GuardDuty, the IP address the request was made from, who made the request, when it was made, and additional details.

For more information about CloudTrail, including how to configure and enable it, see the AWS CloudTrail User Guide.

GuardDuty information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When supported event activity occurs in GuardDuty, that activity is recorded in a CloudTrail event along with other AWS service events in Event history. You can view, search, and download recent events in your AWS account. For more information, see Viewing events with CloudTrail event history.

For an ongoing record of events in your AWS account, including events for GuardDuty, create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create a trail in the console, the trail applies to all Regions. The trail logs events from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can configure other AWS services to further analyze and act upon the event data collected in CloudTrail logs. For more information, see:

- Overview for creating a trail
- CloudTrail supported services and integrations
- Configuring Amazon SNS notifications for CloudTrail
- Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from multiple accounts

Every event or log entry contains information about who generated the request. The identity information helps you determine the following:
• Whether the request was made with root user or IAM user’s sign-in credentials
• Whether the request was made with temporary security credentials for a role or federated user
• Whether the request was made by another AWS service

For more information, see CloudTrail userIdentity element.

GuardDuty control plane events in CloudTrail

By default, CloudTrail logs all the GuardDuty API operations provided in the Amazon GuardDuty API Reference as events in CloudTrail files.

GuardDuty data events in CloudTrail

EKS Runtime Monitoring (p. 24) uses a GuardDuty security agent Amazon EKS add-on (aws-guardduty-agent) that collects Runtime event types (p. 45) for your Amazon Elastic Kubernetes Service (Amazon EKS) nodes and workloads, and sends them to GuardDuty for threat detection and analysis. For more information about GuardDuty findings, see Understanding Amazon GuardDuty findings (p. 98).

Logging and monitoring data events

You can optionally configure the AWS CloudTrail logs to view the data events for your GuardDuty security agent.

To create and configure CloudTrail, see Data events in the AWS CloudTrail User Guide and follow the instructions for Logging data events with advanced event selectors in the AWS Management Console.

While logging the trail, ensure to make the following changes:
• For the Data event type, choose GuardDuty detector.
• For the Log selector template, choose Log all events.
• Expand the JSON view for the configuration. It should be similar to the following JSON:

```
[
 {
 "name": "",
 "fieldSelectors": [
 {
 "field": "eventCategory",
 "equals": [
 "Data"
]
 },
 {
 "field": "resources.type",
 "equals": [
 "AWS::GuardDuty::Detector"
]
 }
]
 }
]
```

After you enable the selector for the trail, navigate to the S3 console at https://console.aws.amazon.com/s3/. You can download the data events from your S3 bucket chosen at the time of configuring the CloudTrail logs.
Example: GuardDuty log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that you specify. CloudTrail log files contain one or more log entries. An event represents a single request from any source and includes information about the requested action, the date and time of the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the data plane event.

```
{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "111122223333:aws:ec2-instance:i-123412341234example",
 "arn": "arn:aws:sts::111122223333:assumed-role/aws:ec2-instance/i-123412341234example",
 "accountId": "111122223333",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "111122223333:aws:ec2-instance",
 "arn": "arn:aws:iam::111122223333:role/aws:ec2-instance",
 "accountId": "111122223333",
 "userName": "aws:ec2-instance"
 },
 "attributes": {
 "creationDate": "2023-03-05T04:00:21Z",
 "mfaAuthenticated": "false"
 },
 "ec2RoleDelivery": "2.0"
 },
 "eventTime": "2023-03-05T06:03:49Z",
 "eventSource": "guardduty.amazonaws.com",
 "eventName": "SendSecurityTelemetry",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "54.240.230.177",
 "userAgent": "aws-sdk-rust/0.54.1 os/linux lang/rust/1.66.0",
 "requestParameters": null,
 "responseElements": null,
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEbbbb",
 "readOnly": false,
 "resources": [{
 "accountId": "111122223333",
 "type": "AWS::GuardDuty::Detector",
 "ARN": "arn:aws:guardduty:us-west-2:111122223333:detector/12abc34d567e8fa901bc2d34e56789f0"
 }],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "111122223333",
 "eventCategory": "Data",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256",
 "clientProvidedHostHeader": "guardduty-data.us-east-1.amazonaws.com"
 }
 },
 "eventTime": "2023-03-05T06:03:49Z",
 "eventSource": "guardduty.amazonaws.com",
 "eventName": "SendSecurityTelemetry",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "54.240.230.177",
 "userAgent": "aws-sdk-rust/0.54.1 os/linux lang/rust/1.66.0",
 "requestParameters": null,
 "responseElements": null,
 "requestID": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "eventID": "a1b2c3d4-5678-90ab-cdef-EXAMPLEbbbb",
 "readOnly": false,
 "resources": [{
 "accountId": "111122223333",
 "type": "AWS::GuardDuty::Detector",
 "ARN": "arn:aws:guardduty:us-west-2:111122223333:detector/12abc34d567e8fa901bc2d34e56789f0"
 }],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "111122223333",
 "eventCategory": "Data",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ECDHE-RSA-AES128-GCM-SHA256",
 "clientProvidedHostHeader": "guardduty-data.us-east-1.amazonaws.com"
 }
}
```
The following example shows a CloudTrail log entry that demonstrates the CreateIPThreatIntelSet action (control plane event).

```json
{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::444455555666:user/Alice",
 "accountId": "444455555666",
 "accessKeyId": "AKIAI44QH8DHEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-06-14T22:54:20Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::444455555666:user/Alice",
 "accountId": "444455555666",
 "userName": "Alice"
 }
 },
 "eventTime": "2018-06-14T22:57:56Z",
 "eventSource": "guardduty.amazonaws.com",
 "eventName": "CreateThreatIntelSet",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "54.240.230.177",
 "userAgent": "console.amazonaws.com",
 "requestParameters": {
 "detectorId": "12abc34d567e8fa901bc2d34e56789f0",
 "name": "Example",
 "format": "TXT",
 "activate": false,
 "location": "https://s3.amazonaws.com/bucket.name/file.txt"
 },
 "responseElements": {
 "threatIntelSetId": "1ab200428351c99d859bf61992460d24"
 },
 "requestId": "5f6bf981-7026-11e8-a9fc-5b37d2684c5c",
 "eventName": "CreatedThreatIntelSet",
 "recipientAccountIds": ['444455555666']
 }
}
```

From this event information, you can determine that the request was made to create a threat list Example in GuardDuty. You can also see that the request was made by a user named Alice on June 14, 2018.

Identity and Access Management for Amazon GuardDuty

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely control access to AWS resources. IAM administrators control who can be authenticated (signed in) and
authorized (have permissions) to use GuardDuty resources. IAM is an AWS service that you can use with no additional charge.

Topics

- Audience (p. 296)
- Authenticating with identities (p. 296)
- Managing access using policies (p. 298)
- How Amazon GuardDuty works with IAM (p. 300)
- Identity-based policy examples for Amazon GuardDuty (p. 305)
- Using service-linked roles for Amazon GuardDuty (p. 310)
- Troubleshooting Amazon GuardDuty identity and access (p. 321)
- AWS managed policies for Amazon GuardDuty (p. 322)

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you do in GuardDuty.

Service user – If you use the GuardDuty service to do your job, then your administrator provides you with the credentials and permissions that you need. As you use more GuardDuty features to do your work, you might need additional permissions. Understanding how access is managed can help you request the right permissions from your administrator. If you cannot access a feature in GuardDuty, see Troubleshooting Amazon GuardDuty identity and access (p. 321).

Service administrator – If you're in charge of GuardDuty resources at your company, you probably have full access to GuardDuty. It's your job to determine which GuardDuty features and resources your service users should access. You must then submit requests to your IAM administrator to change the permissions of your service users. Review the information on this page to understand the basic concepts of IAM. To learn more about how your company can use IAM with GuardDuty, see How Amazon GuardDuty works with IAM (p. 300).

IAM administrator – If you're an IAM administrator, you might want to learn details about how you can write policies to manage access to GuardDuty. To view example GuardDuty identity-based policies that you can use in IAM, see Identity-based policy examples for Amazon GuardDuty (p. 305).

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity source. AWS IAM Identity Center (successor to AWS Single Sign-On) (IAM Identity Center) users, your company's single-sign-on authentication, and your Google or Facebook credentials are examples of federated identities. When you sign in as a federated identity, your administrator previously set up identity federation using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a command line interface (CLI) to cryptographically sign your requests by using your credentials. If you don't use AWS tools, you must sign requests yourself. For more information about using the recommended method to sign requests yourself, see Signing AWS API requests in the IAM User Guide.
Regardless of the authentication method that you use, you might be required to provide additional security information. For example, AWS recommends that you use multi-factor authentication (MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the AWS IAM Identity Center (successor to AWS Single Sign-On) User Guide and Using multi-factor authentication (MFA) in AWS in the IAM User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to all AWS services and resources in the account. This identity is called the AWS account root user and is accessed by signing in with the email address and password that you used to create the account. We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your root user credentials and use them to perform the tasks that only the root user can perform. For the complete list of tasks that require you to sign in as the root user, see Tasks that require root user credentials in the AWS Account Management Reference Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS Directory Service, the Identity Center directory, or any user that accesses AWS services by using credentials provided through an identity source. When federated identities access AWS accounts, they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center (successor to AWS Single Sign-On). You can create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users and groups in your own identity source for use across all your AWS accounts and applications. For information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity Center (successor to AWS Single Sign-On) User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person or application. Where possible, we recommend relying on temporary credentials instead of creating IAM users who have long-term credentials such as passwords and access keys. However, if you have specific use cases that require long-term credentials with IAM users, we recommend that you rotate access keys. For more information, see Rotate access keys regularly for use cases that require long-term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You can use groups to specify permissions for multiple users at a time. Groups make permissions easier to manage for large sets of users. For example, you could have a group named IAMAdmins and give that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but a role is intended to be assumable by anyone who needs it. Users have permanent long-term credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user (instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or AWS API
Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources. A policy is an object in AWS that, when associated with an identity or resource, defines their permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes a request. Permissions in the policies determine whether the request is allowed or denied. Most policies are stored operation or by using a custom URL. For more information about methods for using roles, see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

- **Federated user access** – To assign permissions to a federated identity, you create a role and define permissions for the role. When a federated identity authenticates, the identity is associated with the role and is granted the permissions that are defined by the role. For information about roles for federation, see Creating a role for a third-party Identity Provider in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control what your identities can access after they authenticate, IAM Identity Center correlates the permission set to a role in IAM. For information about permissions sets, see Permission sets in the AWS IAM Identity Center (successor to AWS Single Sign-On) User Guide.

- **Temporary IAM user permissions** – An IAM user or role can assume an IAM role to temporarily take on different permissions for a specific task.

- **Cross-account access** – You can use an IAM role to allow someone (a trusted principal) in a different account to access resources in your account. Roles are the primary way to grant cross-account access. However, with some AWS services, you can attach a policy directly to a resource (instead of using a role as a proxy). To learn the difference between roles and resource-based policies for cross-account access, see How IAM roles differ from resource-based policies in the IAM User Guide.

- **Cross-service access** – Some AWS services use features in other AWS services. For example, when you make a call in a service, it’s common for that service to run applications in Amazon EC2 or store objects in Amazon S3. A service might do this using the calling principal's permissions, using a service role, or using a service-linked role.

- **Principal permissions** – When you use an IAM user or role to perform actions in AWS, you are considered a principal. Policies grant permissions to a principal. When you use some services, you might perform an action that then triggers another action in a different service. In this case, you must have permissions to perform both actions. To see whether an action requires additional dependent actions in a policy, see Actions, resources, and condition keys for Amazon GuardDuty in the Service Authorization Reference.

- **Service role** – A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For more information, see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

- **Service-linked role** – A service-linked role is a type of service role that is linked to an AWS service. The service can assume the role to perform an action on your behalf. Service-linked roles appear in your AWS account and are owned by the service. An IAM administrator can view, but not edit the permissions for service-linked roles.

- **Applications running on Amazon EC2** – You can use an IAM role to manage temporary credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role to an EC2 instance and make it available to all of its applications, you create an instance profile that is attached to the instance. An instance profile contains the role and enables programs that are running on the EC2 instance to get temporary credentials. For more information, see Using an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user) in the IAM User Guide.
Managing access using policies

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on the resources that they need, an IAM administrator can create IAM policies. The administrator can then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the operation. For example, suppose that you have a policy that allows the `iam:GetRole` action. A user with that policy can get role information from the AWS Management Console, the AWS CLI, or the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity, such as an IAM user, group of users, or role. These policies control what actions users and roles can perform, on which resources, and under what conditions. To learn how to create an identity-based policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline policies are embedded directly into a single user, group, or role. Managed policies are standalone policies that you can attach to multiple users, groups, and roles in your AWS account. Managed policies include AWS managed policies and customer managed policies. To learn how to choose between a managed policy or an inline policy, see Choosing between managed policies and inline policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that support resource-based policies, service administrators can use them to control access to a specific resource. For the resource where the policy is attached, the policy defines what actions a specified principal can perform on that resource and under what conditions. You must specify a principal in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS services.

Resource-based policies are inline policies that are located in that service. You can't use AWS managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have permissions to access a resource. ACLs are similar to resource-based policies, although they do not use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum permissions granted to you by the more common policy types.

- **Permissions boundaries** – A permissions boundary is an advanced feature in which you set the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user or role). You can set a permissions boundary for an entity. The resulting permissions are the intersection of an entity's identity-based policies and its permissions boundaries. Resource-based policies that specify
the user or role in the Principal field are not limited by the permissions boundary. An explicit deny in any of these policies overrides the allow. For more information about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

- **Service control policies (SCPs)** – SCPs are JSON policies that specify the maximum permissions for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a service for grouping and centrally managing multiple AWS accounts that your business owns. If you enable all features in an organization, then you can apply service control policies (SCPs) to any or all of your accounts. The SCP limits permissions for entities in member accounts, including each AWS account root user. For more information about Organizations and SCPs, see How SCPs work in the AWS Organizations User Guide.

- **Session policies** – Session policies are advanced policies that you pass as a parameter when you programmatically create a temporary session for a role or federated user. The resulting session's permissions are the intersection of the user or role's identity-based policies and the session policies. Permissions can also come from a resource-based policy. An explicit deny in any of these policies overrides the allow. For more information, see Session policies in the IAM User Guide.

### Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated to understand. To learn how AWS determines whether to allow a request when multiple policy types are involved, see Policy evaluation logic in the IAM User Guide.

### How Amazon GuardDuty works with IAM

Before you use IAM to manage access to GuardDuty, learn what IAM features are available to use with GuardDuty.

#### IAM features you can use with Amazon GuardDuty

<table>
<thead>
<tr>
<th>IAM feature</th>
<th>GuardDuty support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity-based policies (p. 301)</td>
<td>Yes</td>
</tr>
<tr>
<td>Resource-based policies (p. 301)</td>
<td>No</td>
</tr>
<tr>
<td>Policy actions (p. 301)</td>
<td>Yes</td>
</tr>
<tr>
<td>Policy resources (p. 302)</td>
<td>Yes</td>
</tr>
<tr>
<td>Policy condition keys (p. 302)</td>
<td>Yes</td>
</tr>
<tr>
<td>ACLs (p. 303)</td>
<td>No</td>
</tr>
<tr>
<td>ABAC (tags in policies) (p. 303)</td>
<td>Partial</td>
</tr>
<tr>
<td>Temporary credentials (p. 304)</td>
<td>Yes</td>
</tr>
<tr>
<td>Principal permissions (p. 304)</td>
<td>Yes</td>
</tr>
<tr>
<td>Service roles (p. 304)</td>
<td>Yes</td>
</tr>
<tr>
<td>Service-linked roles (p. 304)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

To get a high-level view of how GuardDuty and other AWS services work with most IAM features, see AWS services that work with IAM in the IAM User Guide.
Identity-based policies for GuardDuty

| Supports identity-based policies | Yes |

Identity-based policies are JSON permissions policy documents that you can attach to an identity, such as an IAM user, group of users, or role. These policies control what actions users and roles can perform, on which resources, and under what conditions. To learn how to create an identity-based policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well as the conditions under which actions are allowed or denied. You can't specify the principal in an identity-based policy because it applies to the user or role to which it is attached. To learn about all of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the IAM User Guide.

Identity-based policy examples for GuardDuty

To view examples of GuardDuty identity-based policies, see Identity-based policy examples for Amazon GuardDuty (p. 305).

Resource-based policies within GuardDuty

| Supports resource-based policies | No |

Resource-based policies are JSON policy documents that you attach to a resource. Examples of resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that support resource-based policies, service administrators can use them to control access to a specific resource. For the resource where the policy is attached, the policy defines what actions a specified principal can perform on that resource and under what conditions. You must specify a principal in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS services.

To enable cross-account access, you can specify an entire account or IAM entities in another account as the principal in a resource-based policy. Adding a cross-account principal to a resource-based policy is only half of establishing the trust relationship. When the principal and the resource are in different AWS accounts, an IAM administrator in the trusted account must also grant the principal entity (user or role) permission to access the resource. They grant permission by attaching an identity-based policy to the entity. However, if a resource-based policy grants access to a principal in the same account, no additional identity-based policy is required. For more information, see How IAM roles differ from resource-based policies in the IAM User Guide.

Policy actions for GuardDuty

| Supports policy actions | Yes |

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny access in a policy. Policy actions usually have the same name as the associated AWS API operation. There are some exceptions, such as permission-only actions that don't have a matching API operation. There are also
some operations that require multiple actions in a policy. These additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of GuardDuty actions, see Actions defined by Amazon GuardDuty in the Service Authorization Reference.

Policy actions in GuardDuty use the following prefix before the action:

\[\text{guardduty}\]

To specify multiple actions in a single statement, separate them with commas.

\["Action": [\n   "guardduty:action1",\n   "guardduty:action2"\n]\]

To view examples of GuardDuty identity-based policies, see Identity-based policy examples for Amazon GuardDuty (p. 305).

Policy resources for GuardDuty

<table>
<thead>
<tr>
<th>Supports policy resources</th>
<th>Yes</th>
</tr>
</thead>
</table>

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies. Statements must include either a Resource or a NotResource element. As a best practice, specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard (*) to indicate that the statement applies to all resources.

"Resource": "*

To see a list of GuardDuty resource types and their ARNs, see Resources defined by Amazon GuardDuty in the Service Authorization Reference. To learn with which actions you can specify the ARN of each resource, see Actions defined by Amazon GuardDuty.

To view examples of GuardDuty identity-based policies, see Identity-based policy examples for Amazon GuardDuty (p. 305).

Policy condition keys for GuardDuty

<table>
<thead>
<tr>
<th>Supports service-specific policy condition keys</th>
<th>Yes</th>
</tr>
</thead>
</table>
Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement is in effect. The Condition element is optional. You can create conditional expressions that use condition operators, such as equals or less than, to match the condition in the policy with values in the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single Condition element, AWS evaluates them using a logical AND operation. If you specify multiple values for a single condition key, AWS evaluates the condition using a logical OR operation. All of the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant an IAM user permission to access a resource only if it is tagged with their IAM user name. For more information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of GuardDuty condition keys, see Condition keys for Amazon GuardDuty in the Service Authorization Reference. To learn which actions and resources you can use a condition key, see Actions defined by Amazon GuardDuty.

To view examples of GuardDuty identity-based policies, see Identity-based policy examples for Amazon GuardDuty (p. 305).

### Access control lists (ACLs) in GuardDuty

<table>
<thead>
<tr>
<th>Supports ACLs</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

Access control lists (ACLs) control which principals (account members, users, or roles) have permissions to access a resource. ACLs are similar to resource-based policies, although they do not use the JSON policy document format.

### Attribute-based access control (ABAC) with GuardDuty

<table>
<thead>
<tr>
<th>Supports ABAC (tags in policies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial</td>
</tr>
</tbody>
</table>

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then you design ABAC policies to allow operations when the principal's tag matches the tag on the resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the service. If a service supports all three condition keys for only some resource types, then the value is Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.
### Using Temporary credentials with GuardDuty

<table>
<thead>
<tr>
<th>Supports temporary credentials</th>
<th>Yes</th>
</tr>
</thead>
</table>

Some AWS services don't work when you sign in using temporary credentials. For additional information, including which AWS services work with temporary credentials, see [AWS services that work with IAM in the IAM User Guide](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_for_service.html).

You are using temporary credentials if you sign in to the AWS Management Console using any method except a user name and password. For example, when you access AWS using your company's single sign-on (SSO) link, that process automatically creates temporary credentials. You also automatically create temporary credentials when you sign in to the console as a user and then switch roles. For more information about switching roles, see [Switching to a role (console)](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_for_service.html) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use those temporary credentials to access AWS. AWS recommends that you dynamically generate temporary credentials instead of using long-term access keys. For more information, see [Temporary security credentials in IAM](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_for_service.html).

### Cross-service principal permissions for GuardDuty

<table>
<thead>
<tr>
<th>Supports principal permissions</th>
<th>Yes</th>
</tr>
</thead>
</table>

When you use an IAM user or role to perform actions in AWS, you are considered a principal. Policies grant permissions to a principal. When you use some services, you might perform an action that then triggers another action in a different service. In this case, you must have permissions to perform both actions. To see whether an action requires additional dependent actions in a policy, see [Actions, resources, and condition keys for Amazon GuardDuty](https://docs.aws.amazon.com/GuardDuty/latest/UserGuide/gd-actions.html) in the Service Authorization Reference.

### Service roles for GuardDuty

<table>
<thead>
<tr>
<th>Supports service roles</th>
<th>Yes</th>
</tr>
</thead>
</table>

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For more information, see [Creating a role to delegate permissions to an AWS service](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_for_service.html) in the IAM User Guide.

**Warning**

Changing the permissions for a service role might break GuardDuty functionality. Edit service roles only when GuardDuty provides guidance to do so.

### Service-linked roles for GuardDuty

<table>
<thead>
<tr>
<th>Supports service-linked roles</th>
<th>Yes</th>
</tr>
</thead>
</table>

A service-linked role is a type of service role that is linked to an AWS service. The service can assume the role to perform an action on your behalf. Service-linked roles appear in your AWS account and are owned by the service. An IAM administrator can view, but not edit the permissions for service-linked roles.

For details about creating or managing GuardDuty service-linked roles, see [Using service-linked roles for Amazon GuardDuty](https://docs.aws.amazon.com/GuardDuty/latest/UserGuide/gd-service-linked-roles.html) (p. 310).
Identity-based policy examples for Amazon GuardDuty

By default, users and roles don't have permission to create or modify GuardDuty resources. They also can't perform tasks by using the AWS Management Console, AWS Command Line Interface (AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they need, an IAM administrator can create IAM policies. The administrator can then add the IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by GuardDuty, including the format of the ARNs for each of the resource types, see Actions, resources, and condition keys for Amazon GuardDuty in the Service Authorization Reference.

Topics

• Policy best practices (p. 305)
• Using the GuardDuty console (p. 306)
• Permissions required to enable GuardDuty (p. 306)
• Allow users to view their own permissions (p. 306)
• Custom IAM policy to grant read-only access to GuardDuty (p. 307)
• Deny Access to GuardDuty findings (p. 307)
• Using a custom IAM policy to limit access to GuardDuty resources (p. 308)

Policy best practices

Identity-based policies determine whether someone can create, access, or delete GuardDuty resources in your account. These actions can incur costs for your AWS account. When you create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To get started granting permissions to your users and workloads, use the AWS managed policies that grant permissions for many common use cases. They are available in your AWS account. We recommend that you reduce permissions further by defining AWS customer managed policies that are specific to your use cases. For more information, see AWS managed policies or AWS managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the permissions required to perform a task. You do this by defining the actions that can be taken on specific resources under specific conditions, also known as least-privilege permissions. For more information about using IAM to apply permissions, see Policies and permissions in IAM in the IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your policies to limit access to actions and resources. For example, you can write a policy condition to specify that all requests must be sent using SSL. You can also use conditions to grant access to service actions if they are used through a specific AWS service, such as AWS CloudFormation. For more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional permissions – IAM Access Analyzer validates new and existing policies so that the policies adhere to the IAM
policy language (JSON) and IAM best practices. IAM Access Analyzer provides more than 100 policy checks and actionable recommendations to help you author secure and functional policies. For more information, see IAM Access Analyzer policy validation in the IAM User Guide.

- **Require multi-factor authentication (MFA)** – if you have a scenario that requires IAM users or a root user in your AWS account, turn on MFA for additional security. To require MFA when API operations are called, add MFA conditions to your policies. For more information, see Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User Guide.

**Using the GuardDuty console**

To access the Amazon GuardDuty console, you must have a minimum set of permissions. These permissions must allow you to list and view details about the GuardDuty resources in your AWS account. If you create an identity-based policy that is more restrictive than the minimum required permissions, the console won’t function as intended for entities (users or roles) with that policy.

You don’t need to allow minimum console permissions for users that are making calls only to the AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation that they’re trying to perform.

To ensure that users and roles can still use the GuardDuty console, also attach the GuardDuty ConsoleAccess or ReadOnly AWS managed policy to the entities. For more information, see Adding permissions to a user in the IAM User Guide.

**Permissions required to enable GuardDuty**

To grant permissions that various IAM identities (users, groups, and roles) must have, attach the required AWS managed policy: AmazonGuardDutyFullAccess (p. 323) policy to enable GuardDuty.

**Allow users to view their own permissions**

This example shows how you might create a policy that allows IAM users to view the inline and managed policies that are attached to their user identity. This policy includes permissions to complete this action on the console or programmatically using the AWS CLI or AWS API.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"],
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:GetUserPolicy"
],
 "Resource": ["arn:aws:iam::*:group/${aws:username}"],
 }
]
}
```
Custom IAM policy to grant read-only access to GuardDuty

To grant read-only access to GuardDuty you can use the AmazonGuardDutyReadOnlyAccess managed policy.

To create a custom policy that grants an IAM role, user, or group read-only access to GuardDuty, you can use the following statement:

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "guardduty:ListMembers",
 "guardduty:GetMembers",
 "guardduty:ListInvitations",
 "guardduty:ListDetectors",
 "guardduty:GetDetector",
 "guardduty:ListFindings",
 "guardduty:GetFindings",
 "guardduty:ListIPSets",
 "guardduty:GetIPSet",
 "guardduty:ListThreatIntelSets",
 "guardduty:GetThreatIntelSet",
 "guardduty:GetInvitationsCount",
 "guardduty:GetFindingsStatistics",
 "guardduty:DescribeMalwareScans",
 "guardduty:UpdateMalwareScanSettings",
 "guardduty:GetMalwareScanSettings"
],
 "Resource": "*"
 }
]
}
```

Deny Access to GuardDuty findings

You can use the following policy to deny an IAM role, user, or group access to GuardDuty findings. Users can't view findings or the details about findings, but they can access all other GuardDuty operations:

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "guardduty:CreateDetector",
 "guardduty:DeleteDetector",
 "guardduty:UpdateDetector",
 "guardduty:GetFindings",
 "guardduty:GetInvitationsCount",
 "guardduty:GetFindingsStatistics",
 "guardduty:DescribeMalwareScans",
 "guardduty:UpdateMalwareScanSettings",
 "guardduty:GetMalwareScanSettings"
],
 "Resource": "*"
 }
]
}
```
Identity-based policy examples

"guardduty:GetDetector",
"guardduty:ListDetectors",
"guardduty:CreateIPSet",
"guardduty:DeleteIPSet",
"guardduty:UpdateIPSet",
"guardduty:GetIPSet",
"guardduty:ListIPSets",
"guardduty:CreateThreatIntelSet",
"guardduty:DeleteThreatIntelSet",
"guardduty:UpdateThreatIntelSet",
"guardduty:GetThreatIntelSet",
"guardduty:ListThreatIntelSets",
"guardduty:ArchiveFindings",
"guardduty:UnarchiveFindings",
"guardduty:CreateSampleFindings",
"guardduty:CreateMembers",
"guardduty:InviteMembers",
"guardduty:GetMembers",
"guardduty:DeleteMembers",
"guardduty:DisassociateMembers",
"guardduty:StartMonitoringMembers",
"guardduty:StopMonitoringMembers",
"guardduty:ListMembers",
"guardduty:GetMasterAccount",
"guardduty:DisassociateFromMasterAccount",
"guardduty:AcceptAdministratorInvitation",
"guardduty:ListInvitations",
"guardduty:GetInvitationsCount",
"guardduty:DeclineInvitations",
"guardduty:DeleteInvitations"
],
"Resource": "*"
},
{
"Effect": "Allow",
"Action": [
"iam:CreateServiceLinkedRole"
],
"Resource": "arn:aws:iam::123456789012:role/aws-service-role/guardduty.amazonaws.com/AWSServiceRoleForAmazonGuardDuty",
"Condition": {
"StringLike": {
"iam:AWSServiceName": "guardduty.amazonaws.com"
}
}
},
{
"Effect": "Allow",
"Action": [
"iam:PutRolePolicy",
"iam:DeleteRolePolicy"
],
"Resource": "arn:aws:iam::123456789012:role/aws-service-role/guardduty.amazonaws.com/AWSServiceRoleForAmazonGuardDuty"
}
]

Using a custom IAM policy to limit access to GuardDuty resources

To define a user’s access to GuardDuty based on the detector ID, you can use all GuardDuty API actions in your custom IAM policies, except the following operations:
• `guardduty:CreateDetector`
• `guardduty:DeclineInvitations`
• `guardduty:DeleteInvitations`
• `guardduty:GetInvitationsCount`
• `guardduty:ListDetectors`
• `guardduty:ListInvitations`

Use the following operations in an IAM policy to define a user's access to GuardDuty based on the IPSet ID and ThreatIntelSet ID:

• `guardduty:DeleteIPSet`
• `guardduty:DeleteThreatIntelSet`
• `guardduty:GetIPSet`
• `guardduty:GetThreatIntelSet`
• `guardduty:UpdateIPSet`
• `guardduty:UpdateThreatIntelSet`

The following examples show how to create policies using some of the preceding operations:

• This policy allows a user to run the `guardduty:UpdateDetector` operation, using the detector ID of 1234567 in the us-east-1 Region:

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["guardduty:UpdateDetector"],
 "Resource": "arn:aws:guardduty:us-east-1:123456789012:detector/1234567"
 }
]
}
```

• This policy allows a user to run the `guardduty:UpdateIPSet` operation, using the detector ID of 1234567 and the IPSet ID of 000000 in the us-east-1 Region:

**Note**
Make sure that the user has the permissions required to access trusted IP lists and threat lists in GuardDuty. For more information, see Permissions required to upload trusted IP lists and threat lists (p. 234).

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["guardduty:UpdateIPSet"],
 }
]
}
```
• This policy allows a user to run the `guardduty:UpdateIPSet` operation, using any detector ID and the IPSet ID of 000000 in the us-east-1 Region:

  **Note**  
  Make sure that the user has the permissions required to access trusted IP lists and threat lists in GuardDuty. For more information, see Permissions required to upload trusted IP lists and threat lists (p. 234).

  ```json
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["guardduty:UpdateIPSet"],
 "Resource": "arn:aws:guardduty:us-east-1:123456789012:detector/*/ipset/000000"
 }
]
 }
  ```

• This policy allows a user to run the `guardduty:UpdateIPSet` operation, using their detector ID and any IPSet ID in the us-east-1 Region:

  **Note**  
  Make sure that the user has the permissions required to access trusted IP lists and threat lists in GuardDuty. For more information, see Permissions required to upload trusted IP lists and threat lists (p. 234).

  ```json
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["guardduty:UpdateIPSet"],
 }
]
 }
  ```

**Using service-linked roles for Amazon GuardDuty**

Amazon GuardDuty uses AWS Identity and Access Management (IAM) service-linked roles. A service-linked role (SLR) is a unique type of IAM role that is linked directly to GuardDuty. Service-linked roles are predefined by GuardDuty and include all the permissions that GuardDuty requires to call other AWS services on your behalf.

With service-linked role, you can set up GuardDuty without adding the necessary permissions manually. GuardDuty defines the permissions of its service-linked role, and unless the permissions are defined otherwise, only GuardDuty can assume the role. The defined permissions include the trust policy and the permissions policy, and that permissions policy can't be attached to any other IAM entity.

GuardDuty supports using service-linked roles in all of the Regions where GuardDuty is available. For more information, see Regions and endpoints (p. 351).
You can delete the GuardDuty service-linked role only after first disabling GuardDuty in all Regions where it is enabled. This protects your GuardDuty resources because you can't inadvertently remove permission to access them.

For information about other services that support service-linked roles, see AWS services that work with IAM in the IAM User Guide and look for the services that have Yes in the Service-Linked Role column. Choose a Yes with a link to view the service-linked role documentation for that service.

Service-linked role permissions for GuardDuty

GuardDuty uses the service-linked role (SLR) named AWSServiceRoleForAmazonGuardDuty. The SLR allows GuardDuty to perform the following tasks. It also allows GuardDuty to include the retrieved metadata belonging to the EC2 instance in the findings that GuardDuty may generate about the potential threat. The AWSServiceRoleForAmazonGuardDuty service-linked role trusts the guardduty.amazonaws.com service to assume the role.

With this permissions policy, GuardDuty can perform the following tasks:

- Use Amazon EC2 actions to manage and retrieve information about your EC2 instances, images, and networking components such as VPCs, subnets, transit gateways, and security groups.
- Use AWS Organizations actions to describe associated accounts.
- Use Amazon S3 actions to retrieve information about S3 buckets and objects.
- Use AWS Lambda actions to retrieve information about your Lambda functions and tags.
- Use Amazon EKS actions to manage and retrieve information about the EKS clusters and manage Amazon EKS add-ons on EKS clusters. The EKS actions also retrieve the information about the tags associated to GuardDuty.
- Use IAM to create the Service-linked role permissions for Malware Protection (p. 316) after Malware Protection has been enabled.

The role is configured with the following AWS managed policy, named AmazonGuardDutyServiceRolePolicy.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeInstances",
 "ec2:DescribeImages",
 "ec2:DescribeVpcEndpoints",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcPeeringConnections",
 "ec2:DescribeTransitGatewayAttachments",
 "organizations:ListAccounts",
 "organizations:DescribeAccount",
 "s3:GetBucketPublicAccessBlock",
 "s3:GetEncryptionConfiguration",
 "s3:GetBucketTagging",
 "s3:GetAccountPublicAccessBlock",
 "s3:ListAllMyBuckets",
 "s3:GetBucketAcl",
 "s3:GetBucketPolicy",
 "s3:GetBucketPolicyStatus",
 "lambda:GetFunctionConfiguration",
 "lambda:ListTags",
 "eks:ListClusters",
 "eks:DescribeCluster",
 "ec2:DescribeVpcEndpointServices"
]
 }
]
}
```
"ec2:DescribeSecurityGroups"
{
  "Resource": "*"
},
{
  "Effect": "Allow",
  "Action": "iam:CreateServiceLinkedRole",
  "Resource": "*",
  "Condition": {
    "StringEquals": {
      "iam:AWSServiceName": "malware-protection.guardduty.amazonaws.com"
    }
  }
},
{
  "Effect": "Allow",
  "Action": "ec2:CreateVpcEndpoint",
  "Resource": "arn:aws:ec2:*:*:vpc-endpoint/*",
  "Condition": {
    "ForAnyValue:StringEquals": {
      "aws:TagKeys": "GuardDutyManaged"
    },
    "StringLike": {
      "ec2:VpceServiceName": [
        "com.amazonaws.*.guardduty-data",
        "com.amazonaws.*.guardduty-data-fips"
      ]
    }
  }
},
{
  "Effect": "Allow",
  "Action": ["ec2:ModifyVpcEndpoint", "ec2:DeleteVpcEndpoints"],
  "Resource": "arn:aws:ec2:*:*:vpc-endpoint/*",
  "Condition": {
    "Null": {
      "aws:ResourceTag/GuardDutyManaged": false
    }
  }
},
{
  "Effect": "Allow",
  "Action": ["ec2:CreateVpcEndpoint", "ec2:ModifyVpcEndpoint"],
},
{
  "Effect": "Allow",
  "Action": "ec2:CreateTags",
  "Resource": "arn:aws:ec2:*:*:vpc-endpoint/*",
  "Condition": {
    "StringEquals": {
      "ec2:CreateAction": "CreateVpcEndpoint"
    },
    "ForAnyValue:StringEquals": {
      "aws:TagKeys": "GuardDutyManaged"
    }
  }
}
Amazon GuardDuty Amazon GuardDuty User Guide

Using service-linked roles

```
{
 "Effect": "Allow",
 "Action": [
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:AuthorizeSecurityGroupEgress",
 "ec2:RevokeSecurityGroupIngress",
 "ec2:RevokeSecurityGroupEgress",
 "ec2:DeleteSecurityGroup"
],
 "Resource": "arn:aws:ec2:*::*:security-group/**",
 "Condition": {
 "Null": {
 "aws:ResourceTag/GuardDutyManaged": false
 }
 }
},
{
 "Effect": "Allow",
 "Action": "ec2:CreateSecurityGroup",
 "Resource": "arn:aws:ec2:*::*:security-group/**",
 "Condition": {
 "StringLike": {
 "aws:RequestTag/GuardDutyManaged": "*"
 }
 }
},
{
 "Effect": "Allow",
 "Action": "ec2:CreateSecurityGroup",
 "Resource": "arn:aws:ec2:*::*:vpc/**"
},
{
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": "arn:aws:ec2:*::*:security-group/**",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "CreateSecurityGroup"
 },
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": "GuardDutyManaged"
 }
 }
},
{
 "Effect": "Allow",
 "Action": "eks:CreateAddon",
 "Resource": "arn:aws:eks:*::*:cluster/**",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": "GuardDutyManaged"
 }
 }
},
{
 "Effect": "Allow",
 "Action": [
 "eks:DeleteAddon",
 "eks:UpdateAddon",
 "eks:DescribeAddon"
],
 "Resource": "arn:aws:eks:*::*:addon/*/aws-guardduty-agent/**"
}
```
Using service-linked roles

```
"Effect": "Allow",
"Action": "eks:TagResource",
"Resource": "arn:aws:eks:*::*:cluster/*",
"Condition": {
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": "GuardDutyManaged"
 }
}
```

The following is the trust policy that is attached to the AWSServiceRoleForAmazonGuardDuty service-linked role:

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "guardduty.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
```

Creating a service-linked role for GuardDuty

The AWSServiceRoleForAmazonGuardDuty service-linked role is automatically created when you enable GuardDuty for the first time or enable GuardDuty in a supported Region where you previously didn't have it enabled. You can also create the service-linked role manually using the IAM console, the AWS CLI, or the IAM API.

**Important**

The service-linked role that is created for the GuardDuty delegated administrator account doesn't apply to the member GuardDuty accounts.

You must configure permissions to allow an IAM principal (such as a user, group, or role) to create, edit, or delete a service-linked role. For the AWSServiceRoleForAmazonGuardDuty service-linked role to be successfully created, the IAM principal that you use GuardDuty with must have the required permissions. To grant the required permissions, attach the following policy to this user, group, or role:

**Note**

Replace the sample *account ID* in the following example with your actual AWS account ID.

```
[
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "guardduty:*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
]
 }
]
]
```
Using service-linked roles

For more information about creating the role manually, see Creating a service-linked role in the IAM User Guide.

Editing a service-linked role for GuardDuty

GuardDuty doesn't allow you to edit the AWSServiceRoleForAmazonGuardDuty service-linked role. After you create a service-linked role, you can't change the name of the role because various entities might reference the role. However, you can edit the description of the role using IAM. For more information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for GuardDuty

If you no longer need to use a feature or service that requires a service-linked role, we recommend that you delete that role. That way you don't have an unused entity that isn't actively monitored or maintained.

Important

If you have enabled Malware Protection, deleting AWSServiceRoleForAmazonGuardDuty doesn't automatically delete AWSServiceRoleForAmazonGuardDutyMalwareProtection. If you want to delete AWSServiceRoleForAmazonGuardDutyMalwareProtection, see Deleting a service-linked role for Malware Protection.

You must first disable GuardDuty in all Regions where it is enabled in order to delete the AWSServiceRoleForAmazonGuardDuty. If the GuardDuty service isn't disabled when you try to delete the service-linked role, the deletion fails. For more information, see Suspending or disabling GuardDuty (p. 341).

When you disable GuardDuty, the AWSServiceRoleForAmazonGuardDuty doesn't get deleted automatically. If you enable GuardDuty again, it'll start using the existing AWSServiceRoleForAmazonGuardDuty.

To manually delete the service-linked role using IAM

Use the IAM console, the AWS CLI, or the IAM API to delete the AWSServiceRoleForAmazonGuardDuty service-linked role. For more information, see Deleting a service-linked role in the IAM User Guide.

Supported AWS Regions

Amazon GuardDuty supports using the AWSServiceRoleForAmazonGuardDuty service-linked role in all the AWS Regions where GuardDuty is available. For a list of Regions where GuardDuty is currently available, see Amazon GuardDuty endpoints and quotas in the Amazon Web Services General Reference.
Service-linked role permissions for Malware Protection

Malware Protection uses the service-linked role (SLR) named AWSServiceRoleForAmazonGuardDutyMalwareProtection. This SLR allows Malware Protection to perform agentless scans to detect malware in your GuardDuty account. It allows GuardDuty to create an EBS volume snapshot in your account, and share that snapshot with the GuardDuty service account. After GuardDuty evaluates the snapshot, it includes the retrieved EC2 instance and container workload metadata in the Malware Protection findings. The AWSServiceRoleForAmazonGuardDutyMalwareProtection service-linked role trusts the malware-protection.guardduty.amazonaws.com service to assume the role.

The permissions policy for the role allows Malware Protection to perform tasks such as:

- Use Amazon EC2 actions to retrieve information about your EC2 instances, volumes, and snapshots. Malware Protection also provides permission to access the Amazon EKS and Amazon ECS cluster metadata.
- Create snapshots for EBS volumes that have GuardDutyExcluded tag not set to true. By default, the snapshots get created with a GuardDutyScanId tag. Don't remove this tag, otherwise Malware Protection will not have access to the snapshots.
  
  **Important**
  When you set the GuardDutyExcluded to true, the GuardDuty service won't be able to access these snapshots in the future. This is because the other statements in this service-linked role prevent GuardDuty from performing any action on the snapshots that have the GuardDutyExcluded set to true.

- Allow sharing and deleting snapshots only if the GuardDutyScanId tag exists and GuardDutyExcluded tag is not set to true.

  **Note**
  Doesn't allow Malware Protection to make the snapshots public.

- Access customer managed keys, except those that have a GuardDutyExcluded tag set to true, to call CreateGrant to create and access an encrypted EBS volume from the encrypted snapshot that gets shared with the GuardDuty service account. For a list of GuardDuty service accounts for each Region, see GuardDuty service accounts by AWS Region (p. 62).

- Access customers' CloudWatch logs to create the Malware Protection log group as well as put the malware scan events logs under the /aws/guardduty/malware-scan-events log group.

- Allow the customer to decide if they want to keep the snapshots on which malware was detected, in their account. If the scan detects malware, the service-linked role allows GuardDuty to add two tags to snapshots - GuardDutyFindingDetected and GuardDutyExcluded.

  **Note**
  The GuardDutyFindingDetected tag specifies that the snapshots contains malware.

- Determine if a volume is encrypted with an EBS managed key. GuardDuty performs the DescribeKey action to determine the key Id of the EBS-managed key in your account.

GuardDuty support volumes that are both unencrypted and encrypted with customer managed keys. However, GuardDuty doesn't support volumes encrypted with EBS managed keys. For more information, see Supported volumes in Malware Protection (p. 60).

- Allow Amazon EC2 to call AWS KMS on behalf of Malware Protection to perform several cryptographic actions on customer managed keys. Actions such as kms:ReEncryptTo and kms:ReEncryptFrom are required to share the snapshots that are encrypted with the customer managed keys. Only those keys are accessible for which the GuardDutyExcluded tag is not set to true.

The role is configured with the following AWS managed policy, named AmazonGuardDutyMalwareProtectionServiceRolePolicy.
```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeInstances",
 "ec2:DescribeVolumes",
 "ec2:DescribeSnapshots",
 "ecs:ListClusters",
 "ecs:ListContainerInstances",
 "ecs:ListTasks",
 "ecs:DescribeTasks",
 "eks:DescribeCluster"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "ec2:CreateSnapshot",
 "Resource": "arn:aws:ec2:*:*:volume/**",
 "Condition": {
 "Null": {
 "aws:ResourceTag/GuardDutyExcluded": "true"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "ec2:CreateSnapshot",
 "Resource": "arn:aws:ec2:*:*:snapshot/**",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:TagKeys": "GuardDutyScanId"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": "arn:aws:ec2:*:*:*/*",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction": "CreateSnapshot"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": "arn:aws:ec2:*:*:snapshot/**",
 "Condition": {
 "StringLike": {
 "ec2:ResourceTag/GuardDutyScanId": "*"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": [
 "GuardDutyExcluded",
 "GuardDutyFindingDetected"
]
 }
 }
 }
]
}
```
"Action": ["ec2:DeleteSnapshot","ec2:ModifySnapshotAttribute"],
"Resource": "arn:aws:ec2:*:*:snapshot/*",
"Condition": {
"StringLike": {
"ec2:ResourceTag/GuardDutyScanId": "*"
},
"Null": {
"aws:ResourceTag/GuardDutyExcluded": "true"
}
},
"Effect": "Deny",
"Action": ["ec2:ModifySnapshotAttribute"],
"Resource": "arn:aws:ec2:*:*:snapshot/*",
"Condition": {
"StringEquals": {
"ec2:Add/group": "all"
}
},
"Effect": "Allow",
"Action": "kms:CreateGrant",
"Resource": "arn:aws:kms:*:*:key/*",
"Condition": {
"Null": {
"aws:ResourceTag/GuardDutyExcluded": "true"
},
"StringLike": {
"kms:EncryptionContext:aws:ebs:id": "snap-*"
},
"ForAllValues:StringEquals": {
"kms:GrantOperations": [
"Decrypt","CreateGrant","GenerateDataKeyWithoutPlaintext","ReEncryptFrom","ReEncryptTo","RetireGrant","DescribeKey"
]
},
"Bool": {
"kms:GrantIsForAWSResource": "true"
}
},
"Effect": "Allow",
"Action": ["kms:ReEncryptTo","kms:ReEncryptFrom"],
"Resource": "arn:aws:kms:*:*:key/*",
"Condition": {
"StringLike": {
"kms:ViaService": "ec2.*.amazonaws.com"
}
},
"Null": {
"aws:ResourceTag/GuardDutyExcluded": "true"
Using service-linked roles

The following trust policy is attached to the AWSServiceRoleForAmazonGuardDutyMalwareProtection service-linked role:

```
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "malware-protection.guardduty.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
```

Creating a service-linked role for Malware Protection

The AWSServiceRoleForAmazonGuardDutyMalwareProtection service-linked role is automatically created when you enable Malware Protection for the first time or enable Malware Protection in a supported Region where you previously didn't have it enabled. You can also create the AWSServiceRoleForAmazonGuardDutyMalwareProtection service-linked role manually using the IAM console, the IAM CLI, or the IAM API.

**Note**

By default, if you are new to Amazon GuardDuty, Malware Protection is automatically enabled.

**Important**

The service-linked role that is created for the GuardDuty delegated administrator account doesn't apply to the member GuardDuty accounts.

You must configure permissions to allow an IAM principal (such as a user, group, or role) to create, edit, or delete a service-linked role. For the AWSServiceRoleForAmazonGuardDutyMalwareProtection
service-linked role to be successfully created, the IAM identity that you use GuardDuty with must have the required permissions. To grant the required permissions, attach the following policy to this user, group, or role:

```json
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "guardduty:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": [
 "malware-protection.guardduty.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "organizations:EnableAWSServiceAccess",
 "organizations:RegisterDelegatedAdministrator",
 "organizations:ListDelegatedAdministrators",
 "organizations:ListAWSServiceAccessForOrganization",
 "organizations:DescribeOrganizationalUnit",
 "organizations:DescribeAccount",
 "organizations:DescribeOrganization"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:GetRole",
 "Resource": "arn:aws:iam::*:role/*AWSServiceRoleForAmazonGuardDutyMalwareProtection"
 }
}]
```

For more information about creating the role manually, see Creating a service-linked role in the IAM User Guide.

Editing a service-linked role for Malware Protection

Malware Protection doesn't allow you to edit the AWSServiceRoleForAmazonGuardDutyMalwareProtection service-linked role. After you create a service-linked role, you can't change the name of the role because various entities might reference the role. However, you can edit the description of the role using IAM. For more information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for Malware Protection

If you no longer need to use a feature or service that requires a service-linked role, we recommend that you delete that role. That way you don't have an unused entity that isn't actively monitored or maintained.
Important
In order to delete the AWSServiceRoleForAmazonGuardDutyMalwareProtection, you must first disable Malware Protection in all of the Regions where it is enabled. If Malware Protection isn't disabled when you try to delete the service-linked role, the deletion will fail. For more information, see To enable or disable GuardDuty-initiated malware scan (p. 69).

When you choose Disable to stop the Malware Protection service, the AWSServiceRoleForAmazonGuardDutyMalwareProtection is not automatically deleted. If you then choose Enable to start the Malware Protection service again, GuardDuty will start using the existing AWSServiceRoleForAmazonGuardDutyMalwareProtection.

To manually delete the service-linked role using IAM
Use the IAM console, the AWS CLI, or the IAM API to delete the AWSServiceRoleForAmazonGuardDutyMalwareProtection service-linked role. For more information, see Deleting a service-linked role in the IAM User Guide.

Supported AWS Regions
Amazon GuardDuty supports using the AWSServiceRoleForAmazonGuardDutyMalwareProtection service-linked role in all the AWS Regions where Malware Protection is available.

For a list of Regions where GuardDuty is currently available, see Amazon GuardDuty endpoints and quotas in the Amazon Web Services General Reference.

Note
Malware Protection is currently unavailable in AWS GovCloud (US-East) and AWS GovCloud (US-West).

Troubleshooting Amazon GuardDuty identity and access
Use the following information to help you diagnose and fix common issues that you might encounter when working with GuardDuty and IAM.

Topics
- I am not authorized to perform an action in GuardDuty (p. 321)
- I'm not authorized to perform iam:PassRole. (p. 322)
- I want to allow people outside of my AWS account to access my GuardDuty resources. (p. 322)

I am not authorized to perform an action in GuardDuty
If you receive an error that you're not authorized to perform an action, your policies must be updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console to view details about a fictional my-example-widget resource but doesn't have the fictional guardduty:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform: guardduty:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-example-widget resource by using the guardduty:GetWidget action.
If you need help, contact your AWS administrator. Your administrator is the person who provided you with your sign-in credentials.

I'm not authorized to perform iam:PassRole.

If you receive an error that you're not authorized to perform the iam:PassRole action, your policies must be updated to allow you to pass a role to GuardDuty.

Some AWS services allow you to pass an existing role to that service instead of creating a new service role or service-linked role. To do this, you must have permissions to pass the role to the service.

The following example error occurs when an IAM user named marymajor tries to use the console to perform an action in GuardDuty. However, the action requires the service to have permissions that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided you with your sign-in credentials.

I want to allow people outside of my AWS account to access my GuardDuty resources.

You can create a role that users in other accounts or people outside of your organization can use to access your resources. You can specify who is trusted to assume the role. For services that support resource-based policies or access control lists (ACLs), you can use those policies to grant people access to your resources.

To learn more, consult the following:

- To learn whether GuardDuty supports these features, see [How Amazon GuardDuty works with IAM](p. 300).
- To learn how to provide access to your resources across AWS accounts that you own, see [Providing access to an IAM user in another AWS account that you own](p. 300) in the IAM User Guide.
- To learn how to provide access to your resources to third-party AWS accounts, see [Providing access to AWS accounts owned by third parties](p. 300) in the IAM User Guide.
- To learn how to provide access through identity federation, see [Providing access to externally authenticated users (identity federation)](p. 300) in the IAM User Guide.
- To learn the difference between using roles and resource-based policies for cross-account access, see [How IAM roles differ from resource-based policies](p. 300) in the IAM User Guide.

AWS managed policies for Amazon GuardDuty

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to write policies yourself. It takes time and expertise to [create IAM customer managed policies](p. 300) that provide your team with only the permissions they need. To get started quickly, you can use our AWS managed policies. These policies cover common use cases and are available in your AWS account. For more information about AWS managed policies, see [AWS managed policies](p. 300) in the IAM User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in AWS managed policies. Services occasionally add additional permissions to an AWS managed policy to
support new features. This type of update affects all identities (users, groups, and roles) where the policy is attached. Services are most likely to update an AWS managed policy when a new feature is launched or when new operations become available. Services do not remove permissions from an AWS managed policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services and resources. When a service launches a new feature, AWS adds read-only permissions for new operations and resources. For a list and descriptions of job function policies, see AWS managed policies for job functions in the IAM User Guide.

AWS managed policy: AmazonGuardDutyFullAccess

You can attach the AmazonGuardDutyFullAccess policy to your IAM identities.

This policy grants administrative permissions that allow a user full access to all GuardDuty actions.

Permissions details

This policy includes the following permissions.

- **GuardDuty** – Allows users full access to all GuardDuty actions.
- **IAM** – Allows users to create the GuardDuty service-linked role. This allows a GuardDuty administrator to enable GuardDuty for member accounts.
- **Organizations** – Allows users to designate a delegated administrator and manage members for a GuardDuty organization.

The permission to perform an **iam:GetRole** action on AWS:ServiceRoleForAmazonGuardDutyMalwareProtection establishes if the service-linked role (SLR) for Malware Protection exists in an account.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "guardduty:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": [
 "guardduty.amazonaws.com",
 "malware-protection.guardduty.amazonaws.com"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "organizations:EnableAWSServiceAccess",
 "Condition": [
 "organizations:RegisterDelegatedAdministrator",
 "organizations:UpdateOrganizationsAccessAnalyzer",
 "organizations:ViewOrganizationsAccessAnalyzer"
]
 }
]
}
```
AWS managed policy: AmazonGuardDutyReadOnlyAccess

You can attach the AmazonGuardDutyReadOnlyAccess policy to your IAM identities.

This policy grants read-only permissions that allow a user to view GuardDuty findings and details of your GuardDuty organization.

Permissions details

This policy includes the following permissions.

- **GuardDuty** – Allows users to view GuardDuty findings and perform API operations that start with Get, List, or Describe.
- **Organizations** – Allows users to retrieve information about your GuardDuty organization configuration, including details of the delegated administrator account.

```json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "guardduty:Describe*",
 "guardduty:Get*",
 "guardduty:List*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "organizations:ListDelegatedAdministrators",
 "organizations:ListAWSServiceAccessForOrganization",
 "organizations:DescribeOrganizationalUnit",
 "organizations:DescribeAccount",
 "organizations:DescribeOrganization"
],
 "Resource": "*"
 }
]
}
```
AWS managed policy: AmazonGuardDutyServiceRolePolicy

You can't attach AmazonGuardDutyServiceRolePolicy to your IAM entities. This AWS managed policy is attached to a service-linked role that allows GuardDuty to perform actions on your behalf. For more information, see Service-linked role permissions for GuardDuty (p. 311).

GuardDuty updates to AWS managed policies

View details about updates to AWS managed policies for GuardDuty since this service began tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed on the GuardDuty Document history page.

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmazonGuardDutyServiceRolePolicy</td>
<td>GuardDuty added new permissions to support the upcoming GuardDuty EKS Runtime Monitoring feature.</td>
<td>March 8, 2023</td>
</tr>
</tbody>
</table>
| AmazonGuardDutyServiceRolePolicy | GuardDuty has added new permissions to allow GuardDuty to create Service-linked role for Malware Protection (p. 316). This will help GuardDuty streamline the process of enabling Malware Protection. GuardDuty can now perform the following IAM action:  
```json
{
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "malware-protection.guardduty.amazonaws.com"
 }
 }
}
``` | Feb 21, 2023 |
| AmazonGuardDutyFullAccess (p. 323) | GuardDuty updated ARN for iam:GetRole to *AWSServiceRoleForAmazonGuardDutyMalwareProtection. | Jul 26, 2022 |
| AmazonGuardDutyFullAccess (p. 323) | GuardDuty added a new AWSServiceName to allow the creation of service-linked role using iam:CreateServiceLinkedRole for GuardDuty Malware Protection service. | Jul 26, 2022 |
Amazon GuardDuty User Guide

Compliance validation

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GuardDuty can now perform the <code>iam:GetRole</code> action to gain information for</td>
<td>Aug 3, 2021</td>
</tr>
<tr>
<td></td>
<td><code>AWSServiceRole</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AmazonGuardDutyServiceRolePolicy – Update to an existing policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GuardDuty added new permissions to allow GuardDuty to use Amazon EC2 networking actions to improve findings.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GuardDuty can now perform the following EC2 actions to gain information about how your EC2 instances are communicating. This information is used to improve finding accuracy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>ec2:DescribeVpcEndpoints</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>ec2:DescribeSubnets</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>ec2:DescribeVpcPeeringConnections</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>ec2:DescribeTransitGatewayAttachments</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GuardDuty started tracking changes for its AWS managed policies.</td>
<td>Aug 3, 2021</td>
</tr>
</tbody>
</table>

Compliance validation for Amazon GuardDuty

To learn whether an AWS service is within the scope of specific compliance programs, see AWS services in Scope by Compliance Program and choose the compliance program that you are interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your data, your company's compliance objectives, and applicable laws and regulations. AWS provides the following resources to help with compliance:

- **Security and Compliance Quick Start Guides** – These deployment guides discuss architectural considerations and provide steps for deploying baseline environments on AWS that are security and compliance focused.
- **Architecting for HIPAA Security and Compliance on Amazon Web Services** – This whitepaper describes how companies can use AWS to create HIPAA-eligible applications.

**Note**

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible Services Reference.

- **AWS Compliance Resources** – This collection of workbooks and guides might apply to your industry and location.
- **Evaluating Resources with Rules** in the AWS Config Developer Guide – The AWS Config service assesses how well your resource configurations comply with internal practices, industry guidelines, and regulations.
• **AWS Security Hub** – This AWS service provides a comprehensive view of your security state within AWS. Security Hub uses security controls to evaluate your AWS resources and to check your compliance against security industry standards and best practices. For a list of supported services and controls, see Security Hub controls reference.

• **AWS Audit Manager** – This AWS service helps you continuously audit your AWS usage to simplify how you manage risk and compliance with regulations and industry standards.

### Resilience in Amazon GuardDuty

The AWS global infrastructure is built around AWS Regions and Availability Zones. Regions provide multiple physically separated and isolated Availability Zones, which are connected through low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can design and operate applications and databases that automatically fail over between zones without interruption. Availability Zones are more highly available, fault tolerant, and scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see [AWS global infrastructure](#).

### Infrastructure security in Amazon GuardDuty

As a managed service, Amazon GuardDuty is protected by AWS global network security. For information about AWS security services and how AWS protects infrastructure, see [AWS Cloud Security](#). To design your AWS environment using the best practices for infrastructure security, see [Infrastructure Protection](#) in Security Pillar AWS Well-Architected Framework.

You use AWS published API calls to access GuardDuty through the network. Clients must support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is associated with an IAM principal. Or you can use the [AWS Security Token Service](#) (AWS STS) to generate temporary security credentials to sign requests.
AWS service integrations with GuardDuty

GuardDuty can be integrated with other AWS security services. These services can ingest data from GuardDuty to allow you to view findings in new ways. Review the following integration options to learn more about how that service is set up to work with GuardDuty.

Integrating GuardDuty with AWS Security Hub

AWS Security Hub collects security data from across your AWS accounts, services, and supported third-party partner products to assess the security state of your environment according to industry standards and best practices. In addition to evaluating your security posture, Security Hub creates a central location for findings across all of your integrated AWS services, and AWS Partner products. Enabling Security Hub with GuardDuty will automatically allow GuardDuty findings data to be ingested by Security Hub.

For more information about using Security Hub with GuardDuty see Integration with AWS Security Hub (p. 328).

Integrating GuardDuty with Amazon Detective

Amazon Detective uses log data from across your AWS accounts to create data visualizations for your resources and IP addresses interacting with your environment. Detective's visualizations help you quickly and easily investigate security issues. You can pivot from GuardDuty finding details to information in the Detective console once both services are enabled.

For more information about using Detective with GuardDuty see Integration with Amazon Detective (p. 339).

Integration with AWS Security Hub

AWS Security Hub provides you with a comprehensive view of your security state in AWS and helps you to check your environment against security industry standards and best practices. Security Hub collects security data from across AWS accounts, services, and supported third-party partner products and helps you to analyze your security trends and identify the highest priority security issues.

The Amazon GuardDuty integration with Security Hub enables you to send findings from GuardDuty to Security Hub. Security Hub can then include those findings in its analysis of your security posture.

Contents

- How Amazon GuardDuty sends findings to AWS Security Hub (p. 329)
  - Types of findings that GuardDuty sends to Security Hub (p. 329)
    - Latency for sending findings (p. 329)
    - Retrying when Security Hub is not available (p. 329)
    - Updating existing findings in Security Hub (p. 329)
- Viewing GuardDuty findings in AWS Security Hub (p. 329)
  - Interpreting GuardDuty finding names in AWS Security Hub (p. 329)
  - Typical finding from GuardDuty (p. 337)
How Amazon GuardDuty sends findings to AWS Security Hub

In AWS Security Hub, security issues are tracked as findings. Some findings come from issues that are detected by other AWS services or by third-party partners. Security Hub also has a set of rules that it uses to detect security issues and generate findings.

Security Hub provides tools to manage findings from across all of these sources. You can view and filter lists of findings and view details for a finding. See Viewing findings in the AWS Security Hub User Guide. You can also track the status of an investigation into a finding. See Taking action on findings in the AWS Security Hub User Guide.

All findings in Security Hub use a standard JSON format called the AWS Security Finding Format (ASFF). The ASFF includes details about the source of the issue, the affected resources, and the current status of the finding. See AWS Security Finding Format (ASFF) in the AWS Security Hub User Guide.

Amazon GuardDuty is one of the AWS services that sends findings to Security Hub

Types of findings that GuardDuty sends to Security Hub

Once the integration is enabled, GuardDuty sends all of the findings it generates to Security Hub. The findings are sent to Security Hub using the AWS Security Finding Format (ASFF). In ASFF, the Types field provides the finding type.

Latency for sending findings

When GuardDuty creates a new finding, it is usually sent to Security Hub within five minutes.

Retrying when Security Hub is not available

If Security Hub is not available, GuardDuty retries sending the findings until they are received.

Updating existing findings in Security Hub

After it sends a finding to Security Hub, GuardDuty sends updates to reflect additional observations of the finding activity to Security Hub. The rate at which aggregated findings are updated is based on the Export update frequency (p. 244) specified.

Archiving or unarchiving a GuardDuty finding will not update the finding in Security Hub. This means that manually unarchived findings that become active in GuardDuty will not be sent to Security Hub

Viewing GuardDuty findings in AWS Security Hub

To view your GuardDuty findings in Security Hub select See Findings under Amazon GuardDuty from the summary page. Alternatively you can select Findings from the navigation panel and filter the findings to display only GuardDuty findings by selecting the Product name: field with a value of GuardDuty.

Interpreting GuardDuty finding names in AWS Security Hub

GuardDuty sends the findings to Security Hub using the AWS Security Finding Format (ASFF). In ASFF, the Types field provides the finding type. ASFF types use a different naming scheme than GuardDuty types. The table below details all the GuardDuty finding types with their ASFF counterpart as they appear in Security Hub.
### Note
For some GuardDuty finding types Security Hub assigns different ASFF finding names depending on whether the finding detail's Resource Role was ACTOR or TARGET. For more information see Finding details (p. 98).

<table>
<thead>
<tr>
<th>GuardDuty finding type</th>
<th>ASFF finding type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backdoor:EC2/Spambot</td>
<td>TTPs/Command and Control/Backdoor:EC2-Spambot</td>
</tr>
<tr>
<td>Behavior:EC2/NetworkPortUnusual</td>
<td>Unusual Behaviors/VM/Behavior:EC2-NetworkPortUnusual</td>
</tr>
<tr>
<td>Backdoor:Lambda/C&amp;CActivity.B</td>
<td>TTPs/Command and Control/Backdoor:Lambda-C&amp;CActivity.B</td>
</tr>
<tr>
<td>Backdoor:Runtime/C&amp;CActivity.B</td>
<td>TTPs/Command and Control/Backdoor:Runtime-C&amp;CActivity.B</td>
</tr>
<tr>
<td>Backdoor:Runtime/C&amp;CActivity.B!DNS</td>
<td>TTPs/Command and Control/Backdoor:Runtime-C&amp;CActivity.B!DNS</td>
</tr>
<tr>
<td>CredentialAccess:IAMUser/AnomalousBehavior</td>
<td>TTPs/Credential Access/IAMUser-AnomalousBehavior</td>
</tr>
<tr>
<td>CredentialAccess:RDS/MaliciousIPCaller.FailedLogin</td>
<td>TTPs/Credential Access/RDS-MaliciousIPCaller.FailedLogin</td>
</tr>
<tr>
<td>GuardDuty finding type</td>
<td>ASFF finding type</td>
</tr>
<tr>
<td>------------------------------------------------------------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>CredentialAccess:RDS/MaliciousIPCaller.SuccessfulLogin</td>
<td>TTPs/Credential Access/RDS-MaliciousIPCaller.SuccessfulLogin</td>
</tr>
<tr>
<td>CredentialAccess:RDS/TorIPCaller.FailedLogin</td>
<td>TTPs/Credential Access/RDS-TorIPCaller.FailedLogin</td>
</tr>
<tr>
<td>CredentialAccess:RDS/TorIPCaller.SuccessfulLogin</td>
<td>TTPs/Credential Access/RDS-TorIPCaller.SuccessfulLogin</td>
</tr>
<tr>
<td>Discovery:IAMUser/AnomalousBehavior</td>
<td>TTPs/Discovery/IAMUser-AnomalousBehavior</td>
</tr>
<tr>
<td>Discovery:RDS/MaliciousIPCaller</td>
<td>TTPs/Discovery/RDS-MaliciousIPCaller</td>
</tr>
<tr>
<td>Discovery:RDS/TorIPCaller</td>
<td>TTPs/Discovery/RDS-TorIPCaller</td>
</tr>
<tr>
<td>Discovery:S3/AnomalousBehavior</td>
<td>TTPs/Discovery:S3-AnomalousBehavior</td>
</tr>
<tr>
<td>Discovery:S3/BucketEnumeration.Unusual</td>
<td>TTPs/Discovery:S3-BucketEnumeration.Unusual</td>
</tr>
<tr>
<td>Discovery:S3/MaliciousIPCaller.Custom</td>
<td>TTPs/Discovery:S3-MaliciousIPCaller.Custom</td>
</tr>
<tr>
<td>Discovery:S3/TorIPCaller</td>
<td>TTPs/Discovery:S3-TorIPCaller</td>
</tr>
<tr>
<td>Discovery:S3/MaliciousIPCaller</td>
<td>TTPs/Discovery:S3-MaliciousIPCaller</td>
</tr>
<tr>
<td>Execution:EC2/MaliciousFile</td>
<td>TTPs/Execution/Execution:EC2-MaliciousFile</td>
</tr>
<tr>
<td>Execution:ECS/MaliciousFile</td>
<td>TTPs/Execution/Execution:ECS-MaliciousFile</td>
</tr>
</tbody>
</table>
# GuardDuty finding type vs ASFF finding type

<table>
<thead>
<tr>
<th>GuardDuty finding type</th>
<th>ASFF finding type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution: Kubernetes/MaliciousFile</td>
<td>TTPs/Execution:Execution:Kubernetes-MaliciousFile</td>
</tr>
<tr>
<td>Execution: Container/MaliciousFile</td>
<td>TTPs/Execution:Execution:Container-MaliciousFile</td>
</tr>
<tr>
<td>Execution: EC2/SuspiciousFile</td>
<td>TTPs/Execution:Execution:EC2-SuspiciousFile</td>
</tr>
<tr>
<td>Execution: ECS/SuspiciousFile</td>
<td>TTPs/Execution:Execution:ECS-SuspiciousFile</td>
</tr>
<tr>
<td>Execution: Kubernetes/SuspiciousFile</td>
<td>TTPs/Execution:Execution:Kubernetes-SuspiciousFile</td>
</tr>
<tr>
<td>Execution: Container/SuspiciousFile</td>
<td>TTPs/Execution:Execution:Container-SuspiciousFile</td>
</tr>
<tr>
<td>Execution: Runtime/NewBinaryExecuted</td>
<td>TTPs/Execution:Execution:Runtime-NewBinaryExecuted</td>
</tr>
<tr>
<td>Execution: Runtime/NewLibraryLoaded</td>
<td>TTPs/Execution:Execution:Runtime-NewLibraryLoaded</td>
</tr>
<tr>
<td>Execution: Runtime/ReverseShell</td>
<td>TTPs/Execution:Execution:Runtime-ReverseShell</td>
</tr>
<tr>
<td>Exfiltration: S3/AnomalousBehavior</td>
<td>TTPs/Exfiltration:S3-AnomalousBehavior</td>
</tr>
<tr>
<td>Exfiltration: S3/ObjectRead.Unusual</td>
<td>TTPs/Exfiltration:S3-ObjectRead.Unusual</td>
</tr>
<tr>
<td>Exfiltration: S3/MaliciousIPCaller</td>
<td>TTPs/Exfiltration:S3-MaliciousIPCaller</td>
</tr>
<tr>
<td>Impact: EC2/PortSweep</td>
<td>TTPs/Impact:Impact:EC2-PortSweep</td>
</tr>
<tr>
<td>Impact: IAMUser/AnomalousBehavior</td>
<td>TTPs/Impact:IAMUser-AnomalousBehavior</td>
</tr>
<tr>
<td>Impact: Runtime/CryptoMinerExecuted</td>
<td>TTPs/Impact:Impact:Runtime-CryptoMinerExecuted</td>
</tr>
<tr>
<td>GuardDuty finding type</td>
<td>ASFF finding type</td>
</tr>
<tr>
<td>-------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Impact:S3/AnomalousBehavior.Write</td>
<td>TTPs/Impact:S3-AnomalousBehavior.Write</td>
</tr>
<tr>
<td>Impact:S3/PermissionsModification.Unusual</td>
<td>TTPs/Impact:S3-PermissionsModification.Unusual</td>
</tr>
<tr>
<td>Impact:S3/MaliciousIPCaller</td>
<td>TTPs/Impact:S3-MaliciousIPCaller</td>
</tr>
<tr>
<td>InitialAccess:IAMUser/AnomalousBehavior</td>
<td>TTPs/Initial Access/IAMUser-AnomalousBehavior</td>
</tr>
<tr>
<td>PenTest:IAMUser/KaliLinux</td>
<td>TTPs/PenTest:IAMUser/KaliLinux</td>
</tr>
<tr>
<td>PenTest:IAMUser/ParrotLinux</td>
<td>TTPs/PenTest:IAMUser/ParrotLinux</td>
</tr>
<tr>
<td>PenTest:IAMUser/PentooLinux</td>
<td>TTPs/PenTest:IAMUser/PentooLinux</td>
</tr>
<tr>
<td>PenTest:S3/KaliLinux</td>
<td>TTPs/PenTest:S3-KaliLinux</td>
</tr>
<tr>
<td>PenTest:S3/ParrotLinux</td>
<td>TTPs/PenTest:S3-ParrotLinux</td>
</tr>
<tr>
<td>PenTest:S3/PentooLinux</td>
<td>TTPs/PenTest:S3-PentooLinux</td>
</tr>
<tr>
<td>Persistence:IAMUser/AnomalousBehavior</td>
<td>TTPs/Persistence/IAMUser-AnomalousBehavior</td>
</tr>
<tr>
<td>Persistence:IAMUser/NetworkPermissions</td>
<td>TTPs/Persistence/Persistence:IAMUser-NetworkPermissions</td>
</tr>
<tr>
<td>Persistence:IAMUser/ResourcePermissions</td>
<td>TTPs/Persistence/Persistence:IAMUser-ResourcePermissions</td>
</tr>
<tr>
<td>Persistence:IAMUser/UserPermissions</td>
<td>TTPs/Persistence/Persistence:IAMUser-UserPermissions</td>
</tr>
<tr>
<td>Policy:IAMUser/RootCredentialUsage</td>
<td>TTPs/Policy:IAMUser-RootCredentialUsage</td>
</tr>
<tr>
<td>Policy:S3/AccountBlockPublicAccessDisabled</td>
<td>TTPs/Policy:S3-AccountBlockPublicAccessDisabled</td>
</tr>
<tr>
<td>Policy:S3/BucketBlockPublicAccessDisabled</td>
<td>Effects/Data Exposure/Policy:S3-BucketBlockPublicAccessDisabled</td>
</tr>
<tr>
<td>PrivilegeEscalation:IAMUser/AnomalousBehavior</td>
<td>TTPs/Privilege Escalation/IAMUser-AnomalousBehavior</td>
</tr>
<tr>
<td>PrivilegeEscalation:IAMUser/AdministrativePermissions</td>
<td>TTPs/Privilege Escalation/IAMUser-AdministrativePermissions</td>
</tr>
<tr>
<td>GuardDuty finding type</td>
<td>ASFF finding type</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>PrivilegeEscalation:Runtime/ContainerMountsHostDirectory</td>
<td>TTPs/Privilege Escalation/PrivilegeEscalation:Runtime-ContainerMountsHostDirectory</td>
</tr>
<tr>
<td>PrivilegeEscalation:Runtime/CGroupsReleaseAgentModified</td>
<td>TTPs/Privilege Escalation/PrivilegeEscalation:Runtime-CGroupsReleaseAgentModified</td>
</tr>
<tr>
<td>PrivilegeEscalation:Runtime/DockerSocketAccessed</td>
<td>TTPs/Privilege Escalation/PrivilegeEscalation:Runtime-DockerSocketAccessed</td>
</tr>
<tr>
<td>PrivilegeEscalation:Runtime/RuncContainerEscape</td>
<td>TTPs/Privilege Escalation/PrivilegeEscalation:Runtime-RuncContainerEscape</td>
</tr>
<tr>
<td>PrivilegeEscalation:Runtime/UserfaultfdUsage</td>
<td>TTPs/Privilege Escalation/PrivilegeEscalation:Runtime-UserfaultfdUsage</td>
</tr>
<tr>
<td>Recon:EC2/PortProbeEMRUnprotectedPort</td>
<td>TTPs/Discovery/Recon:EC2-PortProbeEMRUnprotectedPort</td>
</tr>
<tr>
<td>Recon:EC2/PortProbeUnprotectedPort</td>
<td>TTPs/Discovery/Recon:EC2-PortProbeUnprotectedPort</td>
</tr>
<tr>
<td>Recon:EC2/Portscan</td>
<td>TTPs/Discovery/Recon:EC2-Portscan</td>
</tr>
<tr>
<td>Recon:IAMUser/MaliciousIPCaller</td>
<td>TTPs/Discovery/Recon:IAMUser-MaliciousIPCaller</td>
</tr>
<tr>
<td>Recon:IAMUser/NetworkPermissions</td>
<td>TTPs/Discovery/Recon:IAMUser-NetworkPermissions</td>
</tr>
<tr>
<td>Recon:IAMUser/TorIPCaller</td>
<td>TTPs/Discovery/Recon:IAMUser-TorIPCaller</td>
</tr>
<tr>
<td>Recon:IAMUser/UserPermissions</td>
<td>TTPs/Discovery/Recon:IAMUser-UserPermissions</td>
</tr>
<tr>
<td>Stealth:IAMUser/LoggingConfigurationModified</td>
<td>TTPs/Defense Evasion/Stealth:IAMUser-LoggingConfigurationModified</td>
</tr>
<tr>
<td>Stealth:IAMUser/PasswordPolicyChange</td>
<td>TTPs/Defense Evasion/Stealth:IAMUser-PasswordPolicyChange</td>
</tr>
<tr>
<td>Trojan:EC2/BlackholeTraffic</td>
<td>TTPs/Command and Control/Trojan:EC2-BlackholeTraffic</td>
</tr>
<tr>
<td>GuardDuty finding type</td>
<td>ASFF finding type</td>
</tr>
<tr>
<td>------------------------------------------------</td>
<td>-------------------------------------------------------</td>
</tr>
<tr>
<td>Trojan:EC2/BlackholeTraffic!DNS</td>
<td>TTPs/Command and Control/Trojan:EC2-BlackholeTraffic!DNS</td>
</tr>
<tr>
<td>Trojan:EC2/DGADomainRequest.C!DNS</td>
<td>TTPs/Command and Control/Trojan:EC2-DGADomainRequest.C!DNS</td>
</tr>
<tr>
<td>Trojan:EC2/DNSDataExfiltration</td>
<td>TTPs/Command and Control/Trojan:EC2-DNSDataExfiltration</td>
</tr>
<tr>
<td>Trojan:EC2/DriveBySourceTraffic!DNS</td>
<td>TTPs/Initial Access/Trojan:EC2-DriveBySourceTraffic!DNS</td>
</tr>
<tr>
<td>Trojan:EC2/DropPoint</td>
<td>Effects/Data Exfiltration/Trojan:EC2-DropPoint</td>
</tr>
<tr>
<td>Trojan:EC2/DropPoint!DNS</td>
<td>Effects/Data Exfiltration/Trojan:EC2-DropPoint!DNS</td>
</tr>
<tr>
<td>Trojan:EC2/PhishingDomainRequest!DNS</td>
<td>TTPs/Command and Control/Trojan:EC2-PhishingDomainRequest!DNS</td>
</tr>
<tr>
<td>Trojan:Lambda/BlackholeTraffic</td>
<td>TTPs/Command and Control/Trojan:Lambda-BlackholeTraffic</td>
</tr>
<tr>
<td>Trojan:Lambda/DropPoint</td>
<td>Effects/Data Exfiltration/Trojan:Lambda-DropPoint</td>
</tr>
<tr>
<td>Trojan:Runtime/BlackholeTraffic</td>
<td>TTPs/Command and Control/Trojan:Runtime-BlackholeTraffic</td>
</tr>
<tr>
<td>Trojan:Runtime/BlackholeTraffic!DNS</td>
<td>TTPs/Command and Control/Trojan:Runtime-BlackholeTraffic!DNS</td>
</tr>
<tr>
<td>Trojan:Runtime/DGADomainRequest.C!DNS</td>
<td>TTPs/Command and Control/Trojan:Runtime-DGADomainRequest.C!DNS</td>
</tr>
<tr>
<td>Trojan:Runtime/DriveBySourceTraffic!DNS</td>
<td>TTPs/Initial Access/Trojan:Runtime-DriveBySourceTraffic!DNS</td>
</tr>
<tr>
<td>Trojan:Runtime/DropPoint</td>
<td>Effects/Data Exfiltration/Trojan:Runtime-DropPoint</td>
</tr>
<tr>
<td>Trojan:Runtime/DropPoint!DNS</td>
<td>Effects/Data Exfiltration/Trojan:Runtime-DropPoint!DNS</td>
</tr>
<tr>
<td>Trojan:Runtime/PhishingDomainRequest!DNS</td>
<td>TTPs/Command and Control/Trojan:Runtime-PhishingDomainRequest!DNS</td>
</tr>
</tbody>
</table>
### GuardDuty finding type | ASFF finding type
---|---
UnauthorizedAccess:IAMUser/MaliciousIPCaller | TTPs/UnauthorizedAccess:IAMUser-MaliciousIPCaller
UnauthorizedAccess:IAMUser/TorIPCaller | TTPs/Command and Control/UnauthorizedAccess:IAMUser-TorIPCaller
UnauthorizedAccess:Lambda/TorClient | Effects/Resource Consumption/UnauthorizedAccess:Lambda-TorClient
UnauthorizedAccess:Lambda/TorRelay | Effects/Resource Consumption/UnauthorizedAccess:Lambda-TorRelay
UnauthorizedAccess:Runtime/MetadataDNSRebind | TTPs/UnauthorizedAccess:Runtime-MetadataDNSRebind
UnauthorizedAccess:Runtime/TorRelay | Effects/Resource Consumption/UnauthorizedAccess:Runtime-TorRelay
UnauthorizedAccess:Runtime/TorClient | Effects/Resource Consumption/UnauthorizedAccess:Runtime-TorClient
UnauthorizedAccess:S3/TorIPCaller | TTPs/UnauthorizedAccess:S3-TorIPCaller
Typical finding from GuardDuty

GuardDuty sends findings to Security Hub using the AWS Security Finding Format (ASFF).

Here is an example of a typical finding from GuardDuty.

```json
{
 "SchemaVersion": "2018-10-08",
 "Id": "arn:aws::guardduty:us-east-1:193043430472:detector/d4b040365221be2b54a6264dc9a4bc64/finding/46ba0ac2845071e23ccdeb2ae03bfdea",
 "ProductArn": "arn:aws::securityhub:us-east-1:product/aws/guardduty",
 "GeneratorId": "arn:aws::guardduty:us-east-1:193043430472:detector/d4b040365221be2b54a6264dc9a4bc64",
 "AwsAccountId": "193043430472",
 "Types": [
 "TTPs/Initial Access/UnauthorizedAccess:EC2-SSHBruteForce"
],
 "FirstObservedAt": "2020-08-22T09:15:57Z",
 "LastObservedAt": "2020-09-30T11:56:49Z",
 "CreatedAt": "2020-08-22T09:34:34.146Z",
 "UpdatedAt": "2020-09-30T12:14:00.206Z",
 "Severity": {
 "Product": 2,
 "Label": "MEDIUM",
 "Normalized": 40
 },
 "Title": "199.241.229.197 is performing SSH brute force attacks against i-0c10c2c78631a356.",
 "Description": "199.241.229.197 is performing SSH brute force attacks against i-0c10c2c78631a356. Brute force attacks are used to gain unauthorized access to your instance by guessing the SSH password.,
 "SourceUrl": "https://us-east-1.console.aws.amazon.com/guardduty/home?region=us-east-1#/findings?macros=current&fId=46ba0ac2845071e23ccdeb2ae03bfdea",
 "ProductFields": {
 "aws/guardduty/service/action/networkConnectionAction/remotePortDetails/portName": "Unknown",
 "aws/guardduty/service/service/organization/asnOrg": "CENTURYLINK-US-LEGACY-QWEST",
 "aws/guardduty/service/action/networkConnectionAction/remoteIpDetails/organization/org": "CenturyLink",
 "aws/guardduty/service/action/networkConnectionAction/remoteIpDetails/country/countryName": "United States",
 "aws/guardduty/service/service/action/networkConnectionAction/localIpDetails/ipAddressV4": "172.31.43.6",
 "aws/guardduty/service/detectorId": "d4b040365221be2b54a6264dc9a4bc64",
 "aws/guardduty/service/service/action/actionType": "NETWORK_CONNECTION",
 "aws/guardduty/service/service/action/networkConnectionAction/connectionDirection": "INBOUND",
 "aws/guardduty/service/service/action/networkConnectionAction/remotePortDetails/port": "46717",
 "aws/guardduty/service/service/action/networkConnectionAction/localIpDetails/country/countryName": "United States",
 "aws/guardduty/service/service/evidence": "",
 "aws/guardduty/service/service/action/networkConnectionAction/localIpDetails/ipAddressV4": "199.241.229.197",
 "aws/guardduty/service/service/action/networkConnectionAction/remoteIpDetails/ipAddressV4": "199.241.229.197",
 "aws/guardduty/service/service/action/networkConnectionAction/remoteIpDetails/ipAddressV4": "199.241.229.197",
 "aws/guardduty/service/service/action/networkConnectionAction/remotePortDetails/port": "46717",
 "aws/guardduty/service/service/action/networkConnectionAction/localPortDetails/portName": "SSH",
 "aws/guardduty/service/service/action/networkConnectionAction/localIpDetails/ipAddressV4": "172.31.43.6",
 "aws/guardduty/service/service/action/networkConnectionAction/localIpDetails/ipAddressV4": "172.31.43.6",
 "aws/guardduty/service/service/action/networkConnectionAction/localIpDetails/ipAddressV4": "172.31.43.6",
 "aws/guardduty/service/service/action/networkConnectionAction/localPortDetails/portName": "SSH",
 "aws/guardduty/service/service/action/networkConnectionAction/localPortDetails/portName": "SSH"
 }
}
```
Enabling and configuring the integration


When you enable both GuardDuty and Security Hub, the integration is enabled automatically. GuardDuty immediately begins to send findings to Security Hub.

Stopping the publication of findings to Security Hub

To stop sending findings to Security Hub, you can use either the Security Hub console or the API.

See Disabling and enabling the flow of findings from an integration (console) or Disabling the flow of findings from an integration (Security Hub API, AWS CLI) in the AWS Security Hub User Guide.
Integration with Amazon Detective

Amazon Detective helps you quickly analyze and investigate security events across one or more AWS accounts by generating data visualizations that represent the ways your resources behave and interact over time. Detective creates visualizations of GuardDuty findings.

Detective ingests finding details for all finding types, and provides access to the entity profiles to investigate different entities that are involved with the finding. An entity can be an AWS account, an AWS resource within an account, or an external IP Address that has interacted with your resources. The GuardDuty console supports pivoting to Amazon Detective from the following entities, depending on finding type: AWS account, IAM role, user, or role session, user agent, federated user, Amazon EC2 instance, or IP address.

Contents

- Enabling the integration (p. 339)
- Pivoting to Amazon Detective from a GuardDuty finding (p. 339)
- Using the integration with a GuardDuty multi-account environment (p. 340)

Enabling the integration

To use Amazon Detective with GuardDuty you must first enable Amazon Detective. For information on how to enable Detective, see Setting up Amazon Detective in the Amazon Detective Administration Guide.

When you enable both GuardDuty and Detective, the integration is enabled automatically. Once enabled, Detective will immediately ingest your GuardDuty findings data.

Note

GuardDuty sends findings to Detective based on the GuardDuty findings export frequency. By default, the export frequency for updates to existing findings is 6 hours. To ensure Detective receives the most recent updates to your findings it is recommended that you change the export frequency to 15 minutes in each region in which you use Detective with GuardDuty. For more information see Setting the frequency for exporting updated active findings (p. 244).

Pivoting to Amazon Detective from a GuardDuty finding

2. Choose a single finding from your findings table.
3. Choose Investigate with Detective from the finding details pane.
4. Choose an aspect of the finding to investigate with Amazon Detective. This opens the Detective console for that finding or entity.

If the pivot does not behave as expected, see Troubleshooting the pivot in the Amazon Detective User Guide.

Note

If you archive a GuardDuty finding in the Detective console, that finding gets archived in the GuardDuty console as well.
Using the integration with a GuardDuty multi-account environment

If you are managing a multi-account environment in GuardDuty, you must add your member accounts to Amazon Detective in order to see Detective data visualizations for findings and entities in those accounts.

It is recommended that you use the same GuardDuty Administrator account as the administrator account for Detective. For more information on adding member accounts in Detective see Inviting member accounts.

**Note**
Detective is a regional service, meaning you must enable Detective and add your member accounts in each region in which you want to use the integration.
Suspending or disabling GuardDuty

You can use the GuardDuty console to suspend or disable the GuardDuty service. You don’t get charged for using GuardDuty when the service is suspended.

- All optional data sources must be disassociated from all detectors in all regions before you can suspend or disable GuardDuty.
- All member accounts must be disassociated or deleted before you can suspend or disable GuardDuty.
- If you suspend GuardDuty, it no longer monitors the security of your AWS environment or generates new findings. Your existing findings remain intact and are not affected by the GuardDuty suspension. You can choose to re-enable GuardDuty later.
- If you disable GuardDuty, your existing findings and the GuardDuty configuration are lost and can’t be recovered. If you want to save your existing findings, you must export them before you stop GuardDuty. For information on how to export findings, see Exporting findings (p. 238).

To suspend or disable GuardDuty

2. In the navigation pane, choose Settings.
3. In the Suspend GuardDuty section, choose Suspend GuardDuty or Disable GuardDuty, then Confirm your action.

To re-enable GuardDuty after suspending

2. In the navigation pane, choose Settings.
3. Choose Re-enable GuardDuty.
Subscribing to Amazon SNS GuardDuty announcements

This section provides information about subscribing to Amazon SNS (Simple Notification Service) for GuardDuty announcements to receive notifications about newly released finding types, updates to the existing finding types, and other functionality changes. Notifications are available in all formats that Amazon SNS supports.

The GuardDuty SNS sends announcement about updates to the GuardDuty service across AWS to any subscribed account. To receive notifications about findings within your account, see Creating custom responses to GuardDuty findings with Amazon CloudWatch Events (p. 244).

**Note**
Your IAM user must have sns::subscribe permissions to subscribe to an SNS.

You can subscribe an Amazon SQS queue to this notification topic, but you must use a topic ARN that is in the same Region. For more information, see Tutorial: Subscribing an Amazon SQS queue to an Amazon SNS topic in the Amazon Simple Queue Service developer guide.

You can also use an AWS Lambda function to trigger events when notifications are received. For more information, see Invoking Lambda functions using Amazon SNS notifications in the Amazon Simple Queue Service developer guide.

The Amazon SNS topic ARNs for each Region are shown below.

<table>
<thead>
<tr>
<th>AWS Region</th>
<th>Amazon SNS topic ARN</th>
</tr>
</thead>
<tbody>
<tr>
<td>us-east-1</td>
<td>arn:aws:sns:us-east-1:242987662583:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>us-east-2</td>
<td>arn:aws:sns:us-east-2:118283430703:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>us-west-1</td>
<td>arn:aws:sns:us-west-1:144182107116:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>ca-central-1</td>
<td>arn:aws:sns:ca-central-1:107430051933:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>eu-north-1</td>
<td>arn:aws:sns:eu-north-1:97384112453:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>eu-west-1</td>
<td>arn:aws:sns:eu-west-1:965013871422:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>eu-west-2</td>
<td>arn:aws:sns:eu-west-2:506403581195:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>eu-west-3</td>
<td>arn:aws:sns:eu-west-3:436163563069:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>eu-central-1</td>
<td>arn:aws:sns:eu-central-1:378365507264:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>AWS Region</td>
<td>Amazon SNS topic ARN</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ap-east-1</td>
<td>arn:aws:sns:ap-east-1:6466020203151:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>ap-northeast-1</td>
<td>arn:aws:sns:ap-northeast-1:741172661024:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>ap-southeast-1</td>
<td>arn:aws:sns:ap-southeast-1:476419727788:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>ap-south-1</td>
<td>arn:aws:sns:ap-south-1:926826061926:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>sa-east-1</td>
<td>arn:aws:sns:sa-east-1:955633302743:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>cn-north-1</td>
<td>arn:aws-cn:sns:cn-north-1:002991820229:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>cn-northwest-1</td>
<td>arn:aws-cn:sns:cn-northwest-1:003033775354:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>me-south-1</td>
<td>arn:aws:sns:me-south-1:552740612889:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>me-central-1</td>
<td>arn:aws:sns:me-central-1:030935290150:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>eu-south-1</td>
<td>arn:aws:sns:eu-south-1:188461706213:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>eu-south-2</td>
<td>arn:aws:sns:eu-south-2:445632894446:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>us-gov-east-1</td>
<td>arn:aws:sns:us-gov-east-1:143972945659:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>ap-northeast-3</td>
<td>arn:aws:sns:ap-northeast-3:129086577509:GuardDutyAnnouncements</td>
</tr>
<tr>
<td>ap-southeast-3</td>
<td>arn:aws:sns:ap-southeast-3:225965583551:GuardDutyAnnouncements</td>
</tr>
</tbody>
</table>
To subscribe to the GuardDuty update notification email in the AWS Management Console

2. In the Region list, choose the same Region as the topic ARN to which to subscribe. This example uses the us-west-2 Region.
3. In the left navigation pane, choose Subscriptions, Create subscription.
5. For Protocol, choose Email. For Endpoint, type an email address that you can use to receive the notification.
6. Choose Create subscription.
7. In your email application, open the message from AWS Notifications and open the link to confirm your subscription.

Your web browser displays a confirmation response from Amazon SNS.

To subscribe to the GuardDuty update notification email with the AWS CLI

1. Run the following command with the AWS CLI:
   ```bash
 aws sns --region us-west-2 subscribe --topic-arn arn:aws:sns:us-west-2:934957504740:GuardDutyAnnouncements --protocol email --notification-endpoint your_email@your_domain.com
   ```
2. In your email application, open the message from AWS Notifications and open the link to confirm your subscription.

   Your web browser displays a confirmation response from Amazon SNS.

### Amazon SNS message format

An example GuardDuty update notification message about new findings is shown below:

```json
{
 "Type": "Notification",
 "MessageId": "9101dc6b-726f-4df0-8646-ec2f94e674bc",
 "Message": "{\"version\":\"1\",\"type\":\"NEW_FINDINGS\",\"findingDetails\":{{\"link \":"https://docs.aws.amazon.com//guardduty/latest/ug/guardduty_unauthorized.html",\"findingType\":\"UnauthorizedAccess:EC2/TorClient\",\"findingDescription\":\"This finding informs you that an EC2 instance in your AWS environment is making connections to a Tor Guard or an Authority node. Tor is software for enabling anonymous communication. Tor Guards and Authority nodes act as initial gateways into a Tor network. This traffic can indicate that this EC2 instance is acting as a client on a Tor network. A common use for a Tor client is to circumvent network monitoring and filter for access to unauthorized or illicit content. Tor clients can also generate nefarious Internet traffic, including.
```
attacking SSH servers. This activity can indicate that your EC2 instance is compromised.
"}],
"Timestamp" : "2018-03-09T00:25:43.483Z",
"SignatureVersion" : "1",
"Signature" : "XWox8GDGLRlCgDX01x/fg9Lu/88PBs8fLM6oQYQmuUFzkucohobi1dea3bjqdcHcwr7qdhMPqNLPn7y91bWVVUqdaG1rmkAI8athvAS+4AQD/VQjshsEnlj+GaiW +ozAu06X6GopO2FgntPmrojCMeMonjz7HpV/BKrUZMr3pyQym5d4wWB7xBPYhUMuLoZI1V8YFs5F MtqQV/ YLnhSyEu8BP1GtLquauxksc0tPP/v+jhQMLFLgXq9L1acqR1htNIBxWL7PSI+BVkvin6AL7PksvqQ7FegHFXsit +6p8Gy0vKQqa8G7hZhr1Abpvyka7J3NR0/6ssyrj1jg="
}

The parsed Message value (with escaped quotes removed) is shown below:

```
{
 "version": "1",
 "type": "NEW_FINDINGS",
 "findingDetails": {
 "link": "https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html",
 "findingType": "UnauthorizedAccess:EC2/TorClient",
 "findingDescription": "This finding informs you that an EC2 instance in your AWS environment is making connections to a Tor Guard or an Authority node. Tor is software for enabling anonymous communication. Tor Guards and Authority nodes act as initial gateways into a Tor network. This traffic can indicate that this EC2 instance is acting as a client on a Tor network. A common use for a Tor client is to circumvent network monitoring and filter for access to unauthorized or illicit content. Tor clients can also generate nefarious Internet traffic, including attacking SSH servers. This activity can indicate that your EC2 instance is compromised."
 }
}
```

An example GuardDuty update notification message about GuardDuty functionality updates is shown below:

```
{
 "Type" : "Notification",
 "MessageId" : "9101dc6b-726f-4df0-8646-ec2f94e674bc",
 "Message" : "{"version":"1","type":"NEW_FEATURES","featureDetails":
 [{"featureDescription":"Customers with high-volumes of global CloudTrail events should see a net positive impact on their GuardDuty costs.","featureLink":"https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_data-sources.html#guardduty_cloudtrail"
]}
},
 "Timestamp" : "2018-03-09T00:25:43.483Z",
 "SignatureVersion" : "1",
 "Signature" : "XWox8GDGLRlCgDX01x/fg9Lu/88PBs8fLM6oQYQmuUFzkucohobi1dea3bjqdcHcwr7qdhMPqNLPn7y91bWVVUqdaG1rmkAI8athvAS+4AQD/VQjshsEnlj+GaiW +ozAu06X6GopO2FgntPmrojCMeMonjz7HpV/BKrUZMr3pyQym5d4wWB7xBPYhUMuLoZI1V8YFs5F MtqQV/ YLnhSyEu8BP1GtLquauxksc0tPP/v+jhQMLFLgXq9L1acqR1htNIBxWL7PSI+BVkvin6AL7PksvqQ7FegHFXsit +6p8Gy0vKQqa8G7hZhr1Abpvyka7J3NR0/6ssyrj1jg="
}
```
The parsed Message value (with escaped quotes removed) is shown below:

```json

{ "version": "1",
 "type": "NEW_FEATURES",
 "FeatureDetails": [{
 "featureDescription": "Customers with high-volumes of global CloudTrail events should see a net positive impact on their GuardDuty costs.",
 "featureLink": "https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_data-sources.html#guardduty_cloudtrail"
 }]
}

An example GuardDuty update notification message about updated findings is shown below:

```json

{ "Type": "Notification",
  "MessageId": "9101dc6b-726f-4df0-8646-ec2f94e674bc",
  "Message": "{"version":"1","type":"UPDATED_FINDINGS","findingDetails": [{"link":"https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html","findingType":"UnauthorizedAccess:EC2/TorClient","description":"Increased severity value from 5 to 8."}]}",
  "Timestamp": "2018-03-09T00:25:43.483Z",
  "SignatureVersion": "1",
  "Signature": "XWox8GDGLrIfgDOXlo/fG9Lu/88PBS0FLGm6oqY0mJFZkucuhobsdea3BjqdCHcwR7qdhMPQnlPnN7y9iBrwWUqAdGjrukAI8athvAS+4AQD/VTQjrhvEnl+jGa1W+ozAu006XG0pOzFgc7c7MROjCMxMo+zn7Hp8/8KRuMZR3pyQYm5d4wWB7zXBPYhUMNoZ1V8YFs5SFMtgQV/YLhSyuEu0BPL9tQauXDscc0bPP/vjhgQLFxIQ9LTadcQlRHyN1BxXLL87PSI+8Vv(:k16Al7PhksvDQ7FgHFXsit+6p8Gy0vKcqe8G7ZHr1AbpYVka7J5NR0/6ssyrj1ig==",
}
```

The parsed Message value (with escaped quotes removed) is shown below:

```json

[ "version": "1",
  "type": "UPDATED_FINDINGS",
  "findingDetails": [{
    "link": "https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_unauthorized.html",
    "findingType": "UnauthorizedAccess:EC2/TorClient",
    "description": "Increased severity value from 5 to 8."
  }]
]
```
Quotas for Amazon GuardDuty

Your AWS account has default quotas, formerly referred to as limits, for each AWS service. Unless otherwise noted, each quota is Region-specific. You can request increases for some quotas, and other quotas cannot be increased.

To view the quotas for GuardDuty, open the Service Quotas console. In the navigation pane, choose AWS services and select Amazon GuardDuty.

To request a quota increase, see Requesting a quota increase in the Service Quotas User Guide.

Your AWS account has the following quotas for Amazon GuardDuty per Region.

Note
For quotas specific to GuardDuty Malware Protection, see Malware Protection quotas (p. 82).

<table>
<thead>
<tr>
<th>Resource</th>
<th>Default</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detectors</td>
<td>1</td>
<td>The maximum number of detector resources that you can create per AWS account per Region. You cannot request a quota increase.</td>
</tr>
<tr>
<td>Filters</td>
<td>100</td>
<td>The maximum number of saved filters per AWS account per Region. You cannot request a quota increase.</td>
</tr>
<tr>
<td>Finding retention period</td>
<td>90 days</td>
<td>The maximum number of days a finding is retained. You cannot request a quota increase.</td>
</tr>
<tr>
<td>IP addresses and CIDR ranges per Trusted IP List</td>
<td>2,000</td>
<td>The maximum number of IP addresses and CIDR ranges that you can include in a single Trusted IP List. You cannot request a quota increase.</td>
</tr>
<tr>
<td>IP addresses and CIDR ranges per Threat List</td>
<td>250,000</td>
<td>The maximum number of IP address and CIDR ranges that you can include in a Threat List. You cannot request a quota increase.</td>
</tr>
<tr>
<td>Resource</td>
<td>Default</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Maximum file size</td>
<td>35 MB</td>
<td>The maximum file size for the file used to upload a list of IP addresses or CIDR ranges to include in a Trusted IP List or a Threat List. You cannot request a quota increase.</td>
</tr>
<tr>
<td>Member accounts (by invitation)</td>
<td>5000</td>
<td>The maximum number of member accounts associated with a administrator account.</td>
</tr>
<tr>
<td>Member accounts</td>
<td>10,000</td>
<td>The maximum number of member accounts associated with a administrator account through AWS Organizations. This includes member accounts that are added to the organization by invitation.</td>
</tr>
<tr>
<td>Threat intel sets</td>
<td>6</td>
<td>The maximum number of Threat intel sets that you can add per AWS account per Region. You cannot request a quota increase.</td>
</tr>
<tr>
<td>Trusted IP sets</td>
<td>1</td>
<td>The maximum number of trusted IP sets that can be uploaded and activated per AWS account per Region. You cannot request a quota increase.</td>
</tr>
</tbody>
</table>
Troubleshooting Amazon GuardDuty

When you receive issues related to performing an action specific to GuardDuty, consult the topics in this section.

Topics

- I am initiating an On-demand malware scan but it results in a missing required permissions error. (p. 349)
- I receive an iam:GetRole error while working with Malware Protection. (p. 349)
- I want to manage multiple accounts but don't have required AWS Organizations management permission. (p. 349)
- I am a GuardDuty administrator who needs to enable GuardDuty-initiated malware scan but doesn't use AWS managed policy: AmazonGuardDutyFullAccess to manage GuardDuty. (p. 350)
- Other troubleshooting issues (p. 350)

I am initiating an On-demand malware scan but it results in a missing required permissions error.

If you receive an error suggesting that you do not have the required permissions to start an On-demand malware scan on an Amazon EC2 instance, verify that you've attached the AWS managed policy: AmazonGuardDutyFullAccess (p. 323) policy to your IAM role.

If you're a member of an AWS organization and still receive the same error, connect with your management account. For more information, see AWS Organizations SCP – Denied access (p. 79).

I receive an iam:GetRole error while working with Malware Protection.

If you receive this error – Unable to get role: AWSServiceRoleForAmazonGuardDutyMalwareProtection, it means that you're missing the permission to either enable GuardDuty-initiated malware scan or use On-demand malware scan. Verify that you've attached the AWS managed policy: AmazonGuardDutyFullAccess (p. 323) policy to your IAM role.

I want to manage multiple accounts but don't have required AWS Organizations management permission.

If you receive this error – The request failed because you do not have required AWS Organization master permission., it means that you're missing the permission to enable GuardDuty-initiated malware scan for multiple accounts in your organization. For more information on
I am a GuardDuty administrator who needs to enable GuardDuty-initiated malware scan but doesn't use AWS managed policy: AmazonGuardDutyFullAccess to manage GuardDuty.

- Configure the IAM role that you use with GuardDuty to have the required permissions to enable GuardDuty-initiated malware scan. For more information on the required permissions, see Creating a service-linked role for Malware Protection.
- Attach the AWS managed policy: AmazonGuardDutyFullAccess (p. 323) to your IAM role. This will help you enable GuardDuty-initiated malware scan for the member accounts.

Other troubleshooting issues

If you don't find a scenario suitable to your issue, view the following troubleshooting options:

- For general IAM issues when you access the https://console.aws.amazon.com/guardduty/, see Troubleshooting Amazon GuardDuty identity and access (p. 321).
- For authentication and authorization issues when you access AWS AWS Console Home, see Troubleshooting IAM.
Regions and endpoints

To view the AWS Regions where Amazon GuardDuty is available, see Amazon GuardDuty endpoints in the Amazon Web Services General Reference.

We recommend that you enable GuardDuty in all supported AWS Regions. This enables GuardDuty to generate findings about unauthorized or unusual activity even in Regions that you are not actively using. This also allows GuardDuty to monitor AWS CloudTrail events for the supported AWS Regions, its ability to detect activity that involves global services is reduced.

Region-specific feature availability

A list of regional differences to specify the availability of GuardDuty features.

Amazon EC2 finding types – DefenseEvasion:EC2/UnusualDoHActivity (p. 124) and DefenseEvasion:EC2/UnusualDoTActivity (p. 125)

The following table shows the AWS Regions where GuardDuty is available but these two Amazon EC2 finding types are not yet supported.

<table>
<thead>
<tr>
<th>AWS Region</th>
<th>Region code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia Pacific (Seoul)</td>
<td>ap-northeast-2</td>
</tr>
<tr>
<td>Asia Pacific (Osaka)</td>
<td>ap-northeast-3</td>
</tr>
<tr>
<td>Asia Pacific (Jakarta)</td>
<td>ap-southeast-3</td>
</tr>
</tbody>
</table>

GuardDuty features with Region disparity

The following table shows which GuardDuty features might not be available in the specified AWS Regions.

<table>
<thead>
<tr>
<th>AWS Region</th>
<th>GuardDuty features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia Pacific (Melbourne)</td>
<td>Available</td>
</tr>
<tr>
<td>Asia Pacific (Hyderabad)</td>
<td>–</td>
</tr>
<tr>
<td>Europe (Spain)</td>
<td>–</td>
</tr>
<tr>
<td>Europe (Zurich)</td>
<td>–</td>
</tr>
<tr>
<td>Middle East (UAE)</td>
<td>– Available</td>
</tr>
<tr>
<td>Israel (Tel Aviv)</td>
<td>– Available</td>
</tr>
</tbody>
</table>

The following APIs in Amazon GuardDuty API Reference may have regional differences because of the unavailability of some of the data sources in these Regions:
Region-specific feature availability

- CreateDetector
- UpdateDetector
- UpdateMemberDetectors
- UpdateOrganizationConfiguration
- GetDetector
- GetMemberDetectors
- DescribeOrganizationConfiguration
- DescribeMalwareScans
- UpdateMalwareScanSettings
- GetMalwareScanSettings

AWS GovCloud (US) Regions

For latest information, see Amazon GuardDuty in the AWS GovCloud (US) User Guide.

China Regions

For latest information, see Feature availability and implementation differences.
GuardDuty legacy actions and parameters

Amazon GuardDuty has deprecated some of the API actions and parameters but still supports them. The best practice is to use the new API actions and parameters that replace the legacy options. The following table compares the legacy and new actions and parameters.

<table>
<thead>
<tr>
<th>Legacy actions/parameters</th>
<th>New actions/parameters</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>DisassociateFromMasterAccount</td>
<td>DisassociateFromAdministratorAccount</td>
<td>With the same implementation in both the actions, GuardDuty uses the term Administrator in DisassociateFromAdministratorAccount.</td>
</tr>
<tr>
<td>autoEnable parameter in</td>
<td>autoEnableOrganizationMembers</td>
<td>With autoEnableOrganizationMembers, the GuardDuty administrator can audit and enforce GuardDuty for all member accounts to either of the values. Using the APIs, it may take up to 24 hours to update the configuration for all the member accounts. For more information about the possible values of the autoEnableOrganizationMembers field, see autoEnableOrganizationMembers.</td>
</tr>
<tr>
<td>dataSources parameter in</td>
<td>features</td>
<td>Starting March 2023, you can configure Malware Protection in Amazon GuardDuty (p. 59) and the new GuardDuty protection plans using features. The protection plans launched prior to March 2023, including Malware Protection still support configuration using dataSources. If you use APIs to configure a protection plan, each API request can either include dataSources or features, not both.</td>
</tr>
</tbody>
</table>

GuardDuty has several deprecated actions and parameters. However, it continues to support them. The best practice is to use the new API actions and parameters that replace the legacy options. The table below compares the legacy and new actions and parameters.

Legacy actions/parameters

- DisassociateFromMasterAccount

New actions/parameters

- DisassociateFromAdministratorAccount

Comparison

- With the same implementation in both the actions, GuardDuty uses the term Administrator in DisassociateFromAdministratorAccount.

Starting March 2023, you can configure Malware Protection in Amazon GuardDuty (p. 59) and the new GuardDuty protection plans using features. The protection plans launched prior to March 2023, including Malware Protection, still support configuration using dataSources. If you use APIs to configure a protection plan, each API request can either include dataSources or features, not both.
Document history for Amazon GuardDuty

The following table describes important changes in each release of the GuardDuty user guide.

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>GuardDuty is now available in Israel (Tel Aviv) Region</td>
<td>Added Israel (Tel Aviv) Region to the list of AWS Regions where GuardDuty is now available. The following protection plans are also available in the Israel (Tel Aviv) Region:</td>
<td>August 24, 2023</td>
</tr>
<tr>
<td></td>
<td>• GuardDuty EKS Protection (p. 18) includes both EKS Audit Log Monitoring and EKS Runtime Monitoring.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• GuardDuty Lambda Protection (p. 52).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• GuardDuty Malware Protection (p. 59).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• GuardDuty S3 Protection (p. 91).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For more information about protection plan availability in the Israel (Tel Aviv) Region, see Regions and endpoints (p. 351).</td>
<td></td>
</tr>
<tr>
<td>GuardDuty added auto-enable configuration for your organization at protection plan level</td>
<td>Update organization configuration for the protection plans in your Region. Possible configuration options are either enable for all accounts, auto-enable for new accounts, or do not auto-enable for any account in your organization.</td>
<td>August 16, 2023</td>
</tr>
<tr>
<td>S3 finding types which identify anomalous behavior using GuardDuty's anomaly detection machine learning (ML) model are now available in Asia Pacific (Osaka)</td>
<td>The following findings types are now available in the Asia Pacific (Osaka) Region:</td>
<td>August 10, 2023</td>
</tr>
<tr>
<td></td>
<td>• Discovery:S3/AnomalousBehavior</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Impact:S3/AnomalousBehavior:Write</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Impact:S3/AnomalousBehavior:Delete</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>August 8, 2023</td>
<td>EKS Runtime Monitoring is now available in Asia Pacific (Melbourne)</td>
<td></td>
</tr>
<tr>
<td>July 19, 2023</td>
<td>Updated the list of GuardDuty findings that invoke GuardDuty-initiated malware scan</td>
<td></td>
</tr>
<tr>
<td>June 29, 2023</td>
<td>GuardDuty supports 10,000 member accounts through AWS Organizations</td>
<td></td>
</tr>
<tr>
<td>June 22, 2023</td>
<td>EKS Runtime Monitoring announces three new finding types.</td>
<td></td>
</tr>
<tr>
<td>June 16, 2023</td>
<td>EKS Runtime Monitoring released new agent v1.2.0 that supports Kubernetes version 1.2.0 that also supports ARM64-based instances.</td>
<td></td>
</tr>
<tr>
<td>June 12, 2023</td>
<td>GuardDuty console provides a summarized view of your findings.</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>EKS Audit Log Monitoring is now available in Asia Pacific (Hyderabad), Asia Pacific (Melbourne), Europe (Zurich), and Europe (Spain)</td>
<td>Enable EKS Audit Log Monitoring (in EKS Protection) for your accounts to monitor Kubernetes audit logs from your Amazon EKS clusters and analyze them for potentially malicious and suspicious activity.</td>
<td>June 1, 2023</td>
</tr>
<tr>
<td>EKS Audit Log Monitoring is now available in Middle East (UAE)</td>
<td>EKS Audit Log Monitoring in EKS Protection is now available in Middle East (UAE). Enable EKS Audit Log Monitoring for your accounts to monitor Kubernetes audit logs from your Amazon EKS clusters and analyze them for potentially malicious and suspicious activity.</td>
<td>May 3, 2023</td>
</tr>
<tr>
<td>GuardDuty Malware Protection announces On-demand malware scan</td>
<td>Malware Protection helps you detect the potential presence of malware in the Amazon EBS volumes attached to your Amazon EC2 instances and container workloads. It now offers two types of scans – GuardDuty initiated and on-demand. GuardDuty-initiated malware scan initiates an agentless scan in the Amazon EBS volumes automatically only when GuardDuty generates one of the Findings that invoke GuardDuty-initiated malware scan. You can initiate an On-demand malware scan for Amazon EC2 instances in your account by providing the Amazon Resource Name (ARN) associated to that Amazon EC2 instance. For more information about how both the scan types differ, see Malware Protection.</td>
<td>April 27, 2023</td>
</tr>
<tr>
<td>GuardDuty announces Lambda Protection</td>
<td>Lambda Protection helps you identify potential security threats in your AWS Lambda functions.</td>
<td>April 20, 2023</td>
</tr>
<tr>
<td></td>
<td>• GuardDuty-initiated malware scan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• On-demand malware scan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lambda Protection finding types (p. 178)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Remediating a compromised Lambda function (p. 269)</td>
<td></td>
</tr>
<tr>
<td>Event</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>GuardDuty is now available in the Asia Pacific (Melbourne) Region</td>
<td>Added Asia Pacific (Melbourne) to the list of AWS Regions where GuardDuty is available. For information about which features are available in this Region, see Regions and endpoints.</td>
<td>April 19, 2023</td>
</tr>
<tr>
<td>GuardDuty added 3 new EC2 findings types</td>
<td>GuardDuty introduces new finding types to detect the use of external DNS resolvers and encrypted DNS technologies. For information about AWS Regions where these finding types are supported, see Regions and endpoints.</td>
<td>April 5, 2023</td>
</tr>
<tr>
<td></td>
<td>• DefenseEvasion:EC2/UnusualDNSResolver (p. 124)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DefenseEvasion:EC2/UnusualDoHActivity (p. 124)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DefenseEvasion:EC2/UnusualDoTActivity (p. 125)</td>
<td></td>
</tr>
<tr>
<td>GuardDuty announces EKS Runtime Monitoring in EKS Protection</td>
<td>EKS Runtime Monitoring within EKS Protection provides runtime threat detection for your Amazon EKS clusters in AWS environment. It uses an Amazon EKS add-on agent (aws-guardduty-agent) that collects Runtime events from your EKS workloads. After GuardDuty receives these runtime events, it monitors and analyzes them to identify potential suspicious security threats. For more information, see Finding details and EKS Runtime Monitoring finding types.</td>
<td>March 30, 2023</td>
</tr>
</tbody>
</table>
| **GuardDuty adds a new functionality – autoEnableOrganizationMembers** | Amazon GuardDuty adds a new organization configuration option that helps GuardDuty administrators audit and enforce (if required) that GuardDuty is enabled for ALL the members of their organization. The best practice now is to use `autoEnableOrganizationMembers` instead of `autoEnable`. `autoEnable` is deprecated but still supported. The following APIs are impacted by this new functionality:

- `DescribeOrganizationConfiguration`
- `UpdateOrganizationConfiguration`
- `DisassociateMembers`
- `DeleteMembers`
- `DisassociateFromAdministratorAccount`
- `StopMonitoringMembers` | March 23, 2023 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The RDS Protection feature in Amazon GuardDuty is now generally available</td>
<td>GuardDuty RDS Protection monitors and profiles RDS login activity to identify suspicious login behavior on your Amazon Aurora database instances. For information about which AWS Regions support RDS Protection, see Regions and endpoints.</td>
<td>March 16, 2023</td>
</tr>
<tr>
<td>GuardDuty announces feature activation</td>
<td>Historically, the GuardDuty API allowed configuration of both features and data sources, but now, all new GuardDuty protection types will be configured as features and not as data sources. GuardDuty still supports the data sources via API but will not add a new API. Features activation affects the behavior of the APIs used to enable GuardDuty or a protection type within GuardDuty. If you manage your GuardDuty accounts through API, SDK, or CFN template, see GuardDuty API changes in March 2023.</td>
<td>March 16, 2023</td>
</tr>
<tr>
<td>GuardDuty Malware Protection is now available in Middle East (UAE) Region</td>
<td>The Malware Protection feature in GuardDuty is supported in the Middle East (UAE) Region. For more information, see Regions and endpoints.</td>
<td>March 13, 2023</td>
</tr>
<tr>
<td>Event</td>
<td>Details</td>
<td>Date</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>Amazon GuardDuty has updated the Service-linked role (SLR)</td>
<td>GuardDuty added the following new permissions to support the upcoming GuardDuty EKS Runtime Monitoring feature.</td>
<td>March 8, 2023</td>
</tr>
<tr>
<td></td>
<td>• Use Amazon EKS actions to manage and retrieve information about the EKS clusters, and manage EKS add-ons on EKS clusters. The EKS actions also retrieve the information about the tags associated with GuardDuty.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"eks:ListClusters", "eks:DescribeCluster", "ec2:DescribeVpcEndpointServices", "ec2:DescribeSecurityGroups"</td>
<td></td>
</tr>
<tr>
<td>Amazon GuardDuty has updated the Service-linked role (SLR)</td>
<td>The GuardDuty SLR has been updated to allow creation of Malware Protection SLR after Malware Protection has been enabled.</td>
<td>February 21, 2023</td>
</tr>
<tr>
<td>GuardDuty requires TLS v1.2 or later</td>
<td>To communicate with AWS resources, GuardDuty requires and supports TLS v1.2 or later. For more information, see Data protection and Infrastructure security.</td>
<td>February 14, 2023</td>
</tr>
<tr>
<td>GuardDuty is now available in Asia Pacific (Hyderabad) Region</td>
<td>Added Asia Pacific (Hyderabad) Region to the list of AWS Regions where GuardDuty is available. For more information, see Regions and endpoints.</td>
<td>February 14, 2023</td>
</tr>
<tr>
<td>Amazon GuardDuty User Guide is aligned with IAM best practices</td>
<td>Updated guide to align with the IAM best practices. For more information, see Security best practices in IAM.</td>
<td>February 10, 2023</td>
</tr>
<tr>
<td>GuardDuty is now available in Europe (Spain) Region</td>
<td>Added Europe (Spain) to the list of AWS Regions where GuardDuty is available. For more information, see Regions and endpoints.</td>
<td>February 8, 2023</td>
</tr>
<tr>
<td>GuardDuty is now available in Europe (Zurich) Region</td>
<td>Added Europe (Zurich) to the list of AWS Regions where GuardDuty is available. For more information, see Regions and endpoints.</td>
<td>December 12, 2022</td>
</tr>
<tr>
<td>Preview release of a new feature – GuardDuty RDS Protection</td>
<td>GuardDuty RDS Protection monitors and profiles RDS login activity to identify suspicious login behavior on your Amazon Aurora database instances. Presently, it is available for a preview release in five AWS Regions. For more information, see Regions and endpoints.</td>
<td>November 30, 2022</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GuardDuty is now available in Middle East (UAE) Region</td>
<td>Added Middle East (UAE) to the list of AWS Regions where GuardDuty is available. For more information, see Regions and endpoints.</td>
<td>October 6, 2022</td>
</tr>
</tbody>
</table>
Added content for a new feature – GuardDuty Malware Protection

GuardDuty Malware Protection is an optional enhancement to Amazon GuardDuty. While GuardDuty identifies the resources at risk, Malware Protection detects the malware that may be the source of the compromise. With Malware Protection enabled, whenever GuardDuty detects suspicious behavior on an Amazon EC2 instance or a container workload indicative of malware, GuardDuty Malware Protection initiates an agentless scan on the EBS volumes attached to impacted EC2 instance or container workloads to detect the presence of malware. For information about how Malware Protection works and configuring this feature, see GuardDuty Malware Protection.

- For information about Malware Protection findings, see Finding details.
- For information about remediating the compromised EC2 instance and a standalone container, see Remediating security issues discovered by GuardDuty.
- For information about auditing CloudWatch logs for malware scans and reasons for skipping a resource during malware scan, see Understanding CloudWatch Logs and skip reasons.
- For information about false positive threat detections, see Reporting false positives in GuardDuty Malware Protection.

Retired one finding type

Exfiltration:S3/ObjectRead.Unusual has been retired.

July 26, 2022

July 5, 2022
<table>
<thead>
<tr>
<th>Added new S3 finding types which identify anomalous behavior using GuardDuty's anomaly detection machine learning (ML) model.</th>
<th>Added the following new S3 finding types. These finding types identify if an API request invoked an IAM entity in an anomalous way. The ML model evaluates all API requests in your account and identifies anomalous events that are associated with techniques used by adversaries. To learn more about each of these new findings, see S3 finding types.</th>
<th>July 5, 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Discovery:S3/AnomalousBehavior</td>
<td>• Discovery:S3/AnomalousBehavior</td>
<td></td>
</tr>
<tr>
<td>• Impact:S3/AnomalousBehavior:Write</td>
<td>• Impact:S3/AnomalousBehavior:Write</td>
<td></td>
</tr>
<tr>
<td>• Impact:S3/AnomalousBehavior:Delete</td>
<td>• Impact:S3/AnomalousBehavior:Delete</td>
<td></td>
</tr>
<tr>
<td>• Impact:S3/AnomalousBehavior:Permission</td>
<td>• Impact:S3/AnomalousBehavior:Permission</td>
<td></td>
</tr>
<tr>
<td>• Exfiltration:S3/AnomalousBehavior</td>
<td>• Exfiltration:S3/AnomalousBehavior</td>
<td></td>
</tr>
<tr>
<td>Added GuardDuty EKS Protection content for GuardDuty</td>
<td>GuardDuty can now generate findings for your Amazon EKS resources through the monitoring of Kubernetes audit logs. To learn how to configure this feature, see EKS Protection in Amazon GuardDuty. For a list of findings GuardDuty can generate for Amazon EKS resources, see Kubernetes findings. New remediation guidance has been added to support remediating these findings in the Kubernetes finding remediation guide.</td>
<td>January 25, 2022</td>
</tr>
<tr>
<td>Added 1 new finding</td>
<td>A new finding UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration.InsideAWS has been added. This finding informs you when your instance credentials are accessed by an AWS account outside your AWS environment.</td>
<td>January 20, 2022</td>
</tr>
<tr>
<td>Updated the finding types to help identify issues related to log4j (p. 117)</td>
<td>Amazon GuardDuty has updated the following finding types to help identify and prioritize issues related to CVE-2021-44228 and CVE-2021-45046: Backdoor:EC2/C&CActivity.B; Backdoor:EC2/C&CActivity.B! DNS; Behavior:EC2/NetworkPortUnusual.</td>
<td>December 22, 2021</td>
</tr>
<tr>
<td>Finding Changes</td>
<td>UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration has been changed to UnauthorizedAccess:IAMUser/InstanceCredentialExfiltration.OutsideAWS. This improved version of the finding learns the typical locations your credentials are used from to reduce findings from traffic routed through on premise networks.</td>
<td>September 7, 2021</td>
</tr>
<tr>
<td>Update to GuardDuty SLR</td>
<td>The GuardDuty SLR has been updated with new actions to improve finding accuracy.</td>
<td>August 3, 2021</td>
</tr>
<tr>
<td>Added data source information for each finding type.</td>
<td>Finding descriptions now contain information about data sources that GuardDuty uses to generate that finding.</td>
<td>May 10, 2021</td>
</tr>
<tr>
<td>Added EC2 findings based on domain reputation.</td>
<td>Added 4 new Impact finding types based on domain reputation.</td>
<td>January 27, 2021</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>Added 4 new finding types.</td>
<td>Added 3 new S3 MaliciousIPCaller findings.</td>
<td>December 21, 2020</td>
</tr>
<tr>
<td>Retired the UnauthorizedAccess:EC2/TorIPCaller finding type.</td>
<td>The UnauthorizedAccess:EC2/TorIPCaller finding type is now retired from GuardDuty.</td>
<td>October 1, 2020</td>
</tr>
<tr>
<td>Added the Impact:EC2/PortSweep finding type.</td>
<td>Added a new Impact finding, Impact:EC2/PortSweep.</td>
<td>September 17, 2020</td>
</tr>
<tr>
<td>GuardDuty is now available in the Africa (Cape Town) and Europe (Milan) Regions.</td>
<td>Added Africa (Cape Town) and Europe (Milan) to the list of AWS Regions in which GuardDuty is available.</td>
<td>July 31, 2020</td>
</tr>
<tr>
<td>Added new usage details for monitoring GuardDuty costs.</td>
<td>You can now use new metrics to query GuardDuty usage cost data for your account and accounts you manage. A new overview of usage costs is available in the console at https://console.aws.amazon.com/guardduty/. More detailed information can be accessed through the API.</td>
<td>July 31, 2020</td>
</tr>
<tr>
<td>Added content covering S3 protection through S3 data event monitoring in GuardDuty.</td>
<td>GuardDuty S3 Protection is now available through the monitoring of S3 data plane events as a new data source. New accounts will have this feature enabled automatically. If you are already using GuardDuty you can enable the new data source for yourself or your member accounts.</td>
<td>July 31, 2020</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Added 14 new S3 Findings.</td>
<td>14 new S3 finding types have been added for S3 control plane and data plane sources.</td>
<td>July 31, 2020</td>
</tr>
<tr>
<td>Added additional support for S3 findings and changed 2 existing finding types names.</td>
<td>GuardDuty findings now include more details for findings involving S3 buckets. Existing finding types that were related to S3 activity have been renamed: Policy:IAMUser/S3BlockPublicAccessDisabled has been changed to Policy:S3/BucketBlockPublicAccessDisabled. Stealth:IAMUser/S3ServerAccessLoggingDisabled has been changed to Stealth:S3/ServerAccessLoggingDisabled.</td>
<td>May 28, 2020</td>
</tr>
<tr>
<td>Added content for AWS Organizations integration.</td>
<td>GuardDuty now integrates with AWS Organizations delegated administrators to allow you to manage GuardDuty accounts within your organization. When you set a delegated administrator as your GuardDuty administrator you can automatically enable GuardDuty for any organization member to be managed by the delegated administrator account. You can also automatically enable GuardDuty in new AWS Organizations member accounts. Learn more.</td>
<td>April 20, 2020</td>
</tr>
<tr>
<td>Added content for the export findings feature.</td>
<td>Added content that describes the Export Findings feature of GuardDuty.</td>
<td>November 14, 2019</td>
</tr>
<tr>
<td>Retired the Backdoor:EC2/XORDDOS finding type.</td>
<td>The Backdoor:EC2/XORDDOS finding type is now retired from GuardDuty.</td>
<td>June 12, 2019</td>
</tr>
<tr>
<td>Added the PrivilegeEscalation finding type.</td>
<td>The PrivilegeEscalation finding type detects when users attempt to assign escalated, more permissive privileges to their accounts.</td>
<td>May 14, 2019</td>
</tr>
<tr>
<td>GuardDuty is now available in the Europe (Stockholm) Region.</td>
<td>Added Europe (Stockholm) to the list of AWS Regions in which GuardDuty is available.</td>
<td>May 9, 2019</td>
</tr>
<tr>
<td>Added a new finding type, Recon:EC2/PortProbeEMRUnprotectedPort.</td>
<td>This finding informs you that an EMR-related sensitive port on an EC2 Instance is not blocked and is being actively probed.</td>
<td>May 8, 2019</td>
</tr>
<tr>
<td>Added 5 new finding types that detect if your EC2 instances are potentially being used for denial of service (DoS) attacks.</td>
<td>These findings inform you of EC2 instances in your environment that are behaving in a manner that may indicate they is being used to perform Denial of Service (DoS) attacks.</td>
<td>March 8, 2019</td>
</tr>
<tr>
<td>Added a new finding type: Policy:IAMUser/RootCredentialUsage</td>
<td>Policy:IAMUser/RootCredentialUsage finding type informs you that the root user sign-in credentials of your AWS account are being used to make programmatic requests to AWS services.</td>
<td>January 24, 2019</td>
</tr>
<tr>
<td>UnauthorizedAccess:IAMUser/UnusualASNCaller finding type has been retired</td>
<td>The UnauthorizedAccess:IAMUser/UnusualASNCaller finding type has been retired. You will now be notified about activity invoked from unusual networks via other active GuardDuty finding types. The generated finding type will be based on the category of the API that was invoked from an unusual network.</td>
<td>December 21, 2018</td>
</tr>
<tr>
<td>Added two new finding types: PenTest:IAMUser/ParrotLinux and PenTest:IAMUser/PentooLinux</td>
<td>PenTest:IAMUser/ParrotLinux finding type informs you that a computer running Parrot Security Linux is making API calls using credentials that belong to your AWS account. PenTest:IAMUser/PentooLinux finding type informs you that a machine running Pentoo Linux is making API calls using credentials that belong to your AWS account. Learn more</td>
<td>December 21, 2018</td>
</tr>
<tr>
<td>Added support for the Amazon GuardDuty announcements SNS topic</td>
<td>You can now subscribe to the GuardDuty announcements SNS topic to receive notifications about newly released finding types, updates to the existing finding types, and other functionality changes. Notifications are available in all formats that Amazon SNS supports. Learn more</td>
<td>November 21, 2018</td>
</tr>
<tr>
<td>Added two new finding types: UnauthorizedAccess:EC2/TorClient and UnauthorizedAccess:EC2/TorRelay</td>
<td>UnauthorizedAccess:EC2/TorClient finding type informs you that an EC2 instance in your AWS environment is making connections to a Tor Guard or an Authority node. UnauthorizedAccess:EC2/TorRelay finding type informs you that an EC2 instance in your AWS environment is making connections to a Tor network in a manner that suggests that it's acting as a Tor relay. Learn more</td>
<td>November 16, 2018</td>
</tr>
<tr>
<td>Added a new finding type: CryptoCurrency:EC2/BitcoinTool.B</td>
<td>This finding informs you that an EC2 instance in your AWS environment is querying a domain name that is associated with Bitcoin, or other cryptocurrency-related activity. Learn more</td>
<td>November 9, 2018</td>
</tr>
<tr>
<td>Added support for updating the frequency of notifications sent to CloudWatch Events</td>
<td>You can now update the frequency of notifications sent to CloudWatch Events for the subsequent occurrences of existing findings. Possible values are 15 minutes, 1 hour, or the default 6 hours. Learn more</td>
<td>October 9, 2018</td>
</tr>
<tr>
<td>Added Region support</td>
<td>Added Region support for AWS GovCloud (US-West) Learn more</td>
<td>July 25, 2018</td>
</tr>
<tr>
<td>Added support for AWS CloudFormation StackSets in GuardDuty</td>
<td>You can use the Enable Amazon GuardDuty template to enable GuardDuty simultaneously in multiple accounts. Learn more</td>
<td>June 25, 2018</td>
</tr>
<tr>
<td>Added support for GuardDuty auto-archive rules</td>
<td>Customers can now build granular auto-archive rules for suppression of findings. For findings that match an auto-archive rule, GuardDuty automatically marks them as archived. This enables customers to further tune GuardDuty to keep only relevant findings in the current findings table. Learn more</td>
<td>May 4, 2018</td>
</tr>
<tr>
<td>GuardDuty is available in the Europe (Paris) Region</td>
<td>GuardDuty is now available in Europe (Paris), allowing you to extend continuous security monitoring and threat detection in this Region. Learn more</td>
<td>March 29, 2018</td>
</tr>
<tr>
<td>Creating GuardDuty administrator and member accounts through AWS CloudFormation is now supported.</td>
<td>For more information, see AWS::GuardDuty::master and AWS::GuardDuty::member.</td>
<td>March 6, 2018</td>
</tr>
<tr>
<td>Added nine new CloudTrail-based anomaly detections.</td>
<td>These new finding types are automatically enabled in GuardDuty in all supported Regions. Learn more</td>
<td>February 28, 2018</td>
</tr>
<tr>
<td>Added three new threat intelligence detections (finding types).</td>
<td>These new finding types are automatically enabled in GuardDuty in all supported Regions. Learn more</td>
<td>February 5, 2018</td>
</tr>
<tr>
<td>Limit increase for GuardDuty member accounts.</td>
<td>With this release, you can have up to 1000 GuardDuty member accounts added per AWS account (GuardDuty administrator account). Learn more</td>
<td>January 25, 2018</td>
</tr>
<tr>
<td>Changes in upload and further management of trusted IP lists and threat lists for GuardDuty administrator and member accounts.</td>
<td>With this release, Users from administrator GuardDuty accounts can upload and manage trusted IP lists and threat lists. Users from member GuardDuty accounts can’t upload and manage lists. Trusted IP lists and threat lists that are uploaded by the administrator account are imposed on GuardDuty functionality in its member accounts. Learn more</td>
<td>January 25, 2018</td>
</tr>
</tbody>
</table>
Earlier updates

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial publication</td>
<td>Initial publication of the Amazon GuardDuty User Guide.</td>
<td>November 28, 2017</td>
</tr>
</tbody>
</table>
AWS glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.