
Hands-on tutorials

Build an iOS Application

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Build an iOS Application Hands-on tutorials

Build an iOS Application: Hands-on tutorials

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Build an iOS Application Hands-on tutorials

Table of Contents

Build an iOS Application .. i
Overview ... 1
What you will accomplish ... 1
Prerequisites .. 1
Modules .. 2

Module 1: Create an iOS app .. 3
Overview ... 1
What you will accomplish ... 1
Implementation ... 3
Conclusion .. 12

Module 2: Initialize Amplify ... 13
Overview ... 1
What you will accomplish ... 1
Key concepts ... 13
Implementation ... 3
Conclusion .. 12

Module 3: Add Authentication .. 19
Overview ... 1
What you will accomplish ... 1
Key concepts ... 13
Implementation ... 3

Module 4: Add a GraphQL API service and a database ... 31
Overview ... 1
What you will accomplish ... 1
Key concepts ... 13
Implementation ... 3
Conclusion .. 12

Module 5: Add the Ability to Store Images ... 44
Overview ... 1
What you will accomplish ... 1
Key concepts ... 13
Implementation ... 3
Conclusion .. 12
Congratulations! ... 59

iii

Build an iOS Application Hands-on tutorials

Build an iOS Application

AWS experience Beginner

Time to complete 60 minutes

Cost to complete Free Tier eligible

Service used AWS Amplify

Last updated January 24, 2024

Overview

In this tutorial, you will create a simple iOS application using AWS Amplify, a set of tools and
serverless services in the cloud. As you complete each module, you will initialize a local app using
the Amplify Command Line Interface (Amplify CLI), add user authentication, add a GraphQL API
and a database to store your data, and update your app to store images.

What you will accomplish

• Manage a serverless cloud backend from the command line

• Add auth to your app to enable sign-in and sign-out

• Add a GraphQL API, database, and storage solution

• Share your backend between multiple projects

Prerequisites

• An AWS account with the correct permissions (an Administrator role or root account will also
work, but we recommend a least-privileges approach).

• Node.js v 14.x or more recent.

• Xcode 15.x or more recent, available on the Mac App Store.

• AWS Command Line Interface AWS CLI 2.x or more recent.

Overview 1

https://aws.amazon.com/free/?e=gs2020&p=build-ios-app-amplify-intro
https://aws.amazon.com/amplify/?e=gs2020&p=build-ios-app-three
https://portal.aws.amazon.com/billing/signup#/start
https://nodejs.org/
https://developer.apple.com/xcode/
https://apps.apple.com/us/app/xcode/id497799835?mt=12s
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

Build an iOS Application Hands-on tutorials

Modules

This tutorial is divided into five short modules. You must complete each module in order before
moving on to the next one.

1. Module 1: Create an iOS app (10 minutes): Create an iOS app and test it in the iPhone
simulator.

2. Module 2: Initialize Amplify (10 minutes): Initialize a local app using AWS Amplify.

3. Module 3: Add Authentication (10 minutes): Add auth to your application.

4. Module 4: Add a GraphQL API service and a database (20 minutes): Create a GraphQL API.

5. Module 5: Add the Ability to Store Images (10 minutes): Add storage to your app.

You will be building this iOS application using the Terminal and Apple's Xcode IDE.

Modules 2

https://support.apple.com/en-gb/guide/terminal/welcome/mac
https://developer.apple.com/xcode/

Build an iOS Application Hands-on tutorials

Module 1: Create an iOS app

Time to complete > 10 minutes

Key concepts SwiftUI – SwiftUI is a simple way to build user
interfaces across all Apple platforms with the
power of the Swift programming language.

Services used AWS Amplify

Overview

In this tutorial, you will set up your AWS account and development environment. This will allow
you to interact with your AWS account and programmatically provision any resources you need.

What you will accomplish

In this module, you will:

• Create an iOS application

• Update the main view

• Build and test your application

Implementation

Step 1: Create and Deploy an iOS App

1. Start Xcode

Start Xcode and create a new project by going to File > New > Project... or by pressing Shift +
Cmd + N.

Overview 3

https://developer.apple.com/swiftui/
https://www.swift.org/
https://aws.amazon.com/amplify/

Build an iOS Application Hands-on tutorials

2. Choose your app template

Choose App under iOS, Application, and then choose Next.

Implementation 4

Build an iOS Application Hands-on tutorials

3. Name and configure the project

Type a name for your project, for example, Getting Started. Make sure the Interface is SwiftUI
and Language is Swift, then choose Next.

4. Finalize the project

Select a directory and choose Create to create the project.

Step 2: Create the main view

1. Create Note file

Create a new Swift File by clicking the plus (+) at the bottom of the navigation pane, or by
pressing Cmd + N.

Name the file Note.swift, and add the following content:

import Foundation

Implementation 5

Build an iOS Application Hands-on tutorials

struct Note {
 let id: String
 let name: String
 let description: String?
 let image: String?

 init(
 id: String = UUID().uuidString,
 name: String,
 description: String? = nil,
 image: String? = nil
) {
 self.id = id
 self.name = name
 self.description = description
 self.image = image
 }
}

This struct holds information about notes, such as a name, description and image.

Note

Only the name is a mandatory parameter in its initializer.

2. Create view for Note objects

Next, create another file named NoteView.swift with the following content:

import SwiftUI

struct NoteView: View {
 @State var note: Note

 var body: some View {
 HStack(alignment: .center, spacing: 5.0) {
 VStack(alignment: .leading, spacing: 5.0) {
 Text(note.name)
 .bold()
 if let description = note.description {
 Text(description)
 }

Implementation 6

Build an iOS Application Hands-on tutorials

 }

 if let image = note.image {
 Spacer()

 Divider()

 Image(systemName: image)
 .resizable()
 .aspectRatio(contentMode: .fill)
 .frame(width: 30, height: 30)

 }
 }
 }
}

This defines a view that displays the information of a Note object, including creating
an Image from its image property.

3. Create view for Notes array

Create a new SwiftUI View file named NotesView.swift with the following content:

import SwiftUI

struct NotesView: View {
 @State var notes: [Note] = []

 var body: some View {
 NavigationStack{
 List {
 if notes.isEmpty {
 Text("No notes")
 }
 ForEach(notes, id: \.id) { note in
 NoteView(note: note)
 }
 }
 .navigationTitle("Notes")
 }
 }
}

Implementation 7

Build an iOS Application Hands-on tutorials

#Preview {
 NotesView()
}

This view will use the NoteView view to display all the notes in the notes array. If the array is
empty, it will show a "No notes" message, as you can see in the Canvas.

Note

If you do not see the canvas, you can enable it by going to Editor > Canvas. If you see
a Preview paused message, you can resume it by pressing the ↻ button next to it.

Implementation 8

Build an iOS Application Hands-on tutorials

4. Set and view Notes arguments

You can set the notes argument in the #Preview block to test how the view looks when the
array is populated. For example:

#Preview {
 NotesView(notes: [
 Note(
 name: "First note",
 description: "This is an example of a long note description that has
 \nexplicit line breaks.",
 image: "mic"

Implementation 9

Build an iOS Application Hands-on tutorials

),
 Note(
 name: "Second note",
 description: "This is a short description.",
 image: "phone"
),
 Note(
 name: "Third note"
)
])
}

5. Configure the App instance

Open the file that defines your App instance (for example, GettingStartedApp.swift) and
replace the ContentView() initialization with NotesView().

Implementation 10

Build an iOS Application Hands-on tutorials

Delete the ContentView.swift file, we will not be using it for this tutorial.

import SwiftUI

@main
struct GettingStartedApp: App {
 var body: some Scene {
 WindowGroup {
 NotesView()
 }
 }
}

Step 3: Build and test

Build and launch the app in the simulator by pressing the ► button in the toolbar. Alternatively, you
can also do it by going to Product > Run, or by pressing Cmd + R.

The iOS simulator will open and the app will run. As we are not setting a notes array, the default
empty array is used and the "No notes" message is displayed.

Implementation 11

Build an iOS Application Hands-on tutorials

Conclusion

You have successfully created an iOS app. You are ready to start building with Amplify!

Conclusion 12

Build an iOS Application Hands-on tutorials

Module 2: Initialize Amplify

Time to complete 10 minutes

Services used AWS Amplify

Overview

Now that you have created an iOS application, you will want to continue development and add
new features.

To start to use AWS Amplify in your application, you must install the Amplify command line,
initialize the Amplify project directory, configure your project to use the Amplify libraries, and
initialize Amplify libraries at runtime.

What you will accomplish

In this tutorial, you will:

• Initialize a new Amplify project

• Add Amplify libraries in your project

• Initialize Amplify libraries at runtime

Key concepts

Amplify CLI – Using the Amplify CLI you can create, manage, and remove AWS services directly
from your terminal.

Amplify libraries – Using Amplify libraries you can interact with AWS services from a web or
mobile application.

Implementation

Step 1: Install Amplify CLI

1. Install the CLI

Overview 13

https://aws.amazon.com/amplify/

Build an iOS Application Hands-on tutorials

To install AWS Amplify CLI, open Terminal, and enter the following command:

curl -sL https://aws-amplify.github.io/amplify-cli/install | bash
 && $SHELL

2. Configure the CLI

Configure it to connect to your AWS account by running the following command:

amplify configure

Follow the steps as instructed. You can find a more detailed guide here .

Step 2: Initialize an Amplify backend

To create the basic structure of our backend, we first need to initialize the Amplify project directory
and create our Cloud backend.

1. Initialize the backend

Open the Terminal , navigate to the root directory of your project and run the following
command:

amplify init

2. Enter a name

You will be asked to enter a name for the project. Keep the default name , and then validate
that the information is correct. The following code is an example.

? Enter a name for the project (iOSGettingStarted): accept the default, press enter
The following configuration will be applied:
Project information
| Name: iOSGettingStarted
| Environment: dev
| Default editor: Visual Studio Code
| App type: ios
? Initialize the project with the above configuration? Yes, press enter
Using default provider awscloudformation, press enter
? Select the authentication method you want to use: AWS profile, press enter

Implementation 14

https://docs.amplify.aws/lib/project-setup/prereq/q/platform/ios/#configure-the-amplify-cli

Build an iOS Application Hands-on tutorials

? Please choose the profile you want to use: default, press enter

3. Follow the prompts

Proceed with the remaining steps:

Initialize the project with the above configuration? (Y/n) Y
Select the authentication method you want to use: (Use arrow keys) AWS profile
Please choose the profile you want to use default

4. Verify initialization

This will provision the resources in the backend and might take a few minutes. Once it's done,
you will see the following information:

Deployment state saved successfully.
Initialized provider successfully.
Initialized your environment successfully.
Your project has been successfully initialized and connected

Step 3: Add Amplify libraries to your project

1. Add dependencies

Switch back to Xcode. Select File and choose Add Package Dependencies...

2. Search for the Amplify library

Enter the Amplify Libraries for Swift GitHub repo URL (https://github.com/aws-amplify/
amplify-swift) into the search bar, and press Enter.

Make sure that Up to Next Major Version is selected from the Dependency Rule dropdown,
and select Add Package.

Implementation 15

https://github.com/aws-amplify/amplify-swift
https://github.com/aws-amplify/amplify-swift

Build an iOS Application Hands-on tutorials

3. Select the library

Once the libraries are fetched, you will be asked to select which ones you wish to add to your
target.

In the drop down, next to Amplify, choose GettingStarted.

Select None in for the rest of the Package Products in the Add to Target section, and choose
Add Package.

Implementation 16

Build an iOS Application Hands-on tutorials

Step 4: Initialize Amplify at runtime

• Modify the file

Open the GettingStartedApp.swift file and replace its content with the following
information:

import Amplify
import SwiftUI

@main
struct GettingStartedApp: App {
 init() {
 do {
 try Amplify.configure()
 print("Initialized Amplify")
 } catch {
 print("Could not initialize Amplify: \(error)")

Implementation 17

Build an iOS Application Hands-on tutorials

 }
 }

 var body: some Scene {
 WindowGroup {
 NotesView()
 }
 }
}

Step 5: Verify your setup

• Build the project

To verify everything works as expected, build the project.

Select the Product menu and then select Build , or press Cmd + B .

There should be no error.

Conclusion

You have initialized the Amplify project and are now ready to start adding features! In the next
module, we will add an entire user authentication flow with just a few lines of code.

Conclusion 18

Build an iOS Application Hands-on tutorials

Module 3: Add Authentication

Time to complete 5 minutes

Services used AWS Amplify

Overview

The next feature you will be adding is user authentication. In this module, you will learn how to
authenticate a user with the Amplify CLI and libraries, using Amazon Cognito, a managed user
identity provider.

You will also learn how to use the Amazon Cognito hosted UI (user interface) to present an entire
user authentication flow, allowing users to sign up, sign in, and reset their password with just a few
lines of code.

Using a hosted UI means the application uses the Amazon Cognito web pages for the sign-in and
sign-up UI flows. The user of the app is redirected to a web page hosted by Amazon Cognito and
redirected back to the app after sign-in.

Amplify also offers a native UI component for authentication flows. You can follow these workshop
instructions to learn more.

What you will accomplish

In this module, you will:

• Create and deploy an authentication service

• Configure your iOS app to include Amazon Cognito hosted UI authentication

Key concepts

Amplify libraries – Using Amplify libraries you can interact with AWS services from a web or
mobile application.

Authentication – In software, authentication is the process of verifying and managing the identity
of a user using an authentication service or API.

Overview 19

https://aws.amazon.com/amplify/
https://aws.amazon.com/cognito/
https://amplify-ios-workshop.go-aws.com/70_add_custom_gui/30_customized_ui.html
https://amplify-ios-workshop.go-aws.com/70_add_custom_gui/30_customized_ui.html

Build an iOS Application Hands-on tutorials

Implementation

Step 1: Create the authentication service

1. Add authorization

To create the authentication service, open Terminal and run the following command in your
project root directory:

amplify add auth

2. Configure authorization options

Select the following options, when prompted:

Do you want to use the default authentication and security configuration?
 # Default configuration with Social Provider (Federation)
How do you want users to be able to sign in?
 # Username
Do you want to configure advanced settings?
 # No, I am done.
What domain name prefix do you want to use?
 «default value»
Enter your redirect signin URI:
 gettingstarted://
Do you want to add another redirect signin URI? (y/N)
 N
Enter your redirect signout URI:
 gettingstarted://
Do you want to add another redirect signout URI? (y/N)
 N
Select the social providers you want to configure for your user pool:
 «Do not select any and just press enter»

Note

Do not forget to type the redirect URIs. They are needed for the redirection for
Amazon Cognito Hosted UI to work.

3. Deploy the service

Implementation 20

Build an iOS Application Hands-on tutorials

Run the following command to deploy the service:

amplify push

Press Enter (Y) when asked to continue.

Step 2: Add the Amplify Authentication library to the project

1. Open the general tab

To add the Amplify Authentication library to the dependencies of your project, navigate to
the General tab of your Target application (Your Project > Targets > General).

Select the plus (+) in the Frameworks, Libraries, and Embedded Content section.

2. Select the plugin

Implementation 21

Build an iOS Application Hands-on tutorials

Select AWSCognitoAuthPlugin,and choose Add.

Step 3: Configure the Amplify Authentication library at runtime

• Configure authentication

Navigate back to Xcode, and open the GettingStartedApp.swift file. To configure Amplify
Authentication, you will need to:

• Add the import AWSCognitoAuthPlugin statement.

Implementation 22

Build an iOS Application Hands-on tutorials

• Create the AWSCognitoAuthPlugin plugin and register it with.

Your code should look like the following:

import Amplify
import AWSCognitoAuthPlugin
import SwiftUI

@main
struct GettingStartedApp: App {
 init() {
 do {
 try Amplify.add(plugin: AWSCognitoAuthPlugin())
 try Amplify.configure()
 print("Initialized Amplify")
 } catch {
 print("Could not initialize Amplify: \(error)")
 }
 }

 var body: some Scene {
 WindowGroup {
 NotesView()
 }
 }
}

Step 4: Create a class to support authentication operations

Create a new Swift file named AuthenticationService.swift with the following content:

import Amplify
import AuthenticationServices
import AWSCognitoAuthPlugin
import SwiftUI

@MainActor
class AuthenticationService: ObservableObject {
 @Published var isSignedIn = false

 func fetchSession() async {

Implementation 23

Build an iOS Application Hands-on tutorials

 do {
 let result = try await Amplify.Auth.fetchAuthSession()
 isSignedIn = result.isSignedIn
 print("Fetch session completed. isSignedIn = \(isSignedIn)")
 } catch {
 print("Fetch Session failed with error: \(error)")
 }
 }

 func signIn(presentationAnchor: ASPresentationAnchor) async {
 do {
 let result = try await Amplify.Auth.signInWithWebUI(
 presentationAnchor: presentationAnchor,
 options: .preferPrivateSession()
)
 isSignedIn = result.isSignedIn
 print("Sign In completed. isSignedIn = \(isSignedIn)")
 } catch {
 print("Sign In failed with error: \(error)")
 }
 }

 func signOut() async {
 guard let result = await Amplify.Auth.signOut() as? AWSCognitoSignOutResult
 else {
 return
 }

 switch result {
 case .complete, .partial:
 isSignedIn = false
 case .failed:
 break
 }

 print("Sign Out completed. isSignedIn = \(isSignedIn)")
 }
}

This class takes care of handling authentication by relying on Amplify's HostedUI capabilities, while
also informing whether a user is signed in or not.

Implementation 24

Build an iOS Application Hands-on tutorials

Step 5: Update the UI with authentication

1. Create authentication for signing in

Create a new Swift file named LandingView.swift with the following content:

import AuthenticationServices
import SwiftUI

struct LandingView: View {
 @EnvironmentObject private var authenticationService: AuthenticationService
 @State private var isLoading = true

 var body: some View {
 ZStack {
 if isLoading {
 ProgressView()
 }

 Group {
 if authenticationService.isSignedIn {
 NotesView()
 } else {
 Button("Sign in") {
 Task {
 await authenticationService.signIn(presentationAnchor:
 window)
 }
 }
 }
 }
 .opacity(isLoading ? 0.5 : 1)
 .disabled(isLoading)
 }
 .task {
 isLoading = true
 await authenticationService.fetchSession()
 if !authenticationService.isSignedIn {
 await authenticationService.signIn(presentationAnchor: window)
 }
 isLoading = false
 }
 }

Implementation 25

Build an iOS Application Hands-on tutorials

 private var window: ASPresentationAnchor {
 if let delegate = UIApplication.shared.connectedScenes.first?.delegate as?
 UIWindowSceneDelegate,
 let window = delegate.window as? UIWindow {
 return window
 }
 return ASPresentationAnchor()
 }
}

This view takes care of the following:

• Before the view first appears, it will fetch the current user status using
the authenticationService property. This is done in the view's task(priority:_:) method.

• If the user is signed in, it will display the NotesView.

• If the user is not signed in, it will automatically invoke the HostedUI workflow. If the user
does not sign in and closes that workflow, a "Sign In" button will be displayed that can be
used to start the authentication workflow again.

We've marked the authenticationService variable with a @EnvironmentObject property
wrapper annotation, meaning we need to set it using the environmentObject(_:) view
modifier on an ancestor view.

Update the GettingStartedApp.swift file body to create this view instead, and to set
the AuthenticationService object with the following:

var body: some Scene {
 WindowGroup {
 LandingView()
 .environmentObject(AuthenticationService())
 }
}

2. Create authentication for signing out

Open the NotesView.swift file and replace its contents with the following:

struct NotesView: View {
 @EnvironmentObject private var authenticationService: AuthenticationService

Implementation 26

Build an iOS Application Hands-on tutorials

 @State var notes: [Note] = []

 var body: some View {
 NavigationStack {
 List {
 if notes.isEmpty {
 Text("No notes")
 }
 ForEach(notes, id: \.id) { note in
 NoteView(note: note)
 }
 }
 .navigationTitle("Notes")
 .toolbar {
 Button("Sign Out") {
 Task {
 await authenticationService.signOut()
 }
 }
 }
 }
 }
}

We've added a Sign Out button in the toolbar that calls authenticationService.signOut(). As
this object has already been added when creating the LandingView ancestor, we don't need to
do anything else.

Step 6: Build and test

Build and launch the app in the simulator by pressing the ► button in the toolbar. Alternatively, you
can also do it by going to Product -> Run, or by pressing Cmd + R.

The iOS simulator will open and the app should prompt you to sign in first.

Once you've finished that process, the Notes view will display with a Sign Out button at the top
right. If you choose it, you should land in the Sign in view again.

Implementation 27

Build an iOS Application Hands-on tutorials

Landing view

Hosted UI: Sign in

Implementation 28

Build an iOS Application Hands-on tutorials

Hosted UI: Sign up

Hosted UI: Confirmation

Implementation 29

Build an iOS Application Hands-on tutorials

List of notes

Implementation 30

Build an iOS Application Hands-on tutorials

Module 4: Add a GraphQL API service and a database

Time to complete 20 minutes

Services used AWS Amplify

Overview

Now that you have created and configured the app with user authentication, you will add an API
and create, read, update, delete (CRUD) operations on a database.

In this module, you will add an API to our app using the Amplify CLI and libraries. The API you will
be creating is a GraphQL API that uses AWS AppSync (a managed GraphQL service) which is backed
by Amazon DynamoDB (a NoSQL database). For an introduction to GraphQL, visit this page.

The app you will be building is a note-taking app where users can create, delete, and list notes.
This example gives you a good idea of how to build many popular types of CRUD+L (create, read,
update, delete, and list) applications.

What you will accomplish

In this tutorial, you will:

• Create and deploy a GraphQL API

• Write frontend code to interact with the API

Key concepts

API – Provides a programming interface that allows communication and interactions between
multiple software intermediaries.

GraphQL – A query language and server-side API implementation based on a typed representation
of your application. This API representation is declared using a schema based on the GraphQL type
system. To learn more about GraphQL, visit this page.

Overview 31

https://aws.amazon.com/amplify/
https://graphql.org/
https://aws.amazon.com/appsync/
https://aws.amazon.com/dynamodb/
https://graphql.org/learn/
https://graphql.org/learn/

Build an iOS Application Hands-on tutorials

Implementation

Step 1: Create a GraphQL API service and a database

1. Add the Amplify API

Open the Terminal, navigate to your project root directory , and run the following command:

amplify add api

2. Configure the API

When prompted, make the following selections:

Select from one of the below mentioned services:
 # GraphQL
Authorization modes:
 Choose the default authorization type for the API
 # Amazon Cognito User Pool
Configure additional auth types?
 N

3. Confirm selections

Validate the selected options, and choose Continue.

Here is the GraphQL API that we will create. Select a setting to edit or continue
 (Use arrow keys)
 Name: gettingstarted
 Authorization modes: Amazon Cognito User Pool (default)
 Conflict detection (required for DataStore): Disabled
Continue

4. Edit the schema

Select Blank Schema and choose Y when asked to edit the schema:

Choose a schema template:
 # Blank Schema
Do you want to edit the schema now?
 Y

Implementation 32

Build an iOS Application Hands-on tutorials

5. Update the schema

As we want to represent the model we previously defined in the Note.swift file, use the
following schema and save the file:

type Note
@model
@auth (rules: [{ allow: owner }]) {
 id: ID!
 name: String!
 description: String
 image: String
}

The data model is made of one class named Note and four String properties: id and name
 are mandatory; description and image are optional.

• The @model transformer indicates we want to create a database to store these data.

• The @auth transformer adds authentication rules to allow access to these data. For this
project, we want only the owner of Notes to have access to them.

Delete the Note.swift file, we will re-generate the models in the next step.

Step 2: Generate client-side code

Amplify generates client-side code.

• Generate the code

To generate the code, run the following command in your terminal:

amplify codegen models

This creates Swift files in the amplify/generated/models directory and automatically add
them to your project.

Implementation 33

Build an iOS Application Hands-on tutorials

Step 3: Deploy the API service and database

1. Deploy the backend database

To deploy the backend API and database we have just created, in your terminal run the
following command:

amplify push

2. Push the deployment

When prompted, make the following selections:

amplify push
Are you sure you want to continue?
 Y
Do you want to generate code for your newly created GraphQL API?
 N

Step 4: Add API client library to the project

1. Open the general tab

Navigate to the General tab of your Target application (Your Project > Targets > General), and
select the plus (+) in the Frameworks, Libraries, and Embedded Content section.

Implementation 34

Build an iOS Application Hands-on tutorials

2. Choose the plugin

Choose the AWSAPIPlugin , and select Add.

Implementation 35

Build an iOS Application Hands-on tutorials

3. Verify the dependency created

You have now added AWSAPIPlugin as a dependency for your project.

Implementation 36

Build an iOS Application Hands-on tutorials

Step 5: Configure the Amplify API library at runtime

• Configure the library

Navigate back to Xcode , and open the GettingStartedApp.swift file.

To configure Amplify API, you will need to:

• Add the import AWSAPIPlugin statement.

• Create the AWSAPIPlugin plugin and register it with Amplify.

Your code should look like the following:

import Amplify
import AWSAPIPlugin
import AWSCognitoAuthPlugin
import SwiftUI

@main
struct GettingStartedApp: App {
 init() {
 do {
 try Amplify.add(plugin: AWSCognitoAuthPlugin())
 try Amplify.add(plugin: AWSAPIPlugin(modelRegistration:
 AmplifyModels()))
 try Amplify.configure()
 print("Initialized Amplify");
 } catch {
 print("Could not initialize Amplify: \(error)")
 }
 }

 var body: some Scene {
 WindowGroup {
 LandingView()
 .environmentObject(AuthenticationService())
 }
 }
}

Implementation 37

Build an iOS Application Hands-on tutorials

Step 6: Create a class to support API CRUD operations

• Create a NotesService.swift file

Create a new Swift file named NotesService.swift with the following code.

import Amplify
import SwiftUI

@MainActor
class NotesService: ObservableObject {
 @Published var notes: [Note] = []

 func fetchNotes() async {
 do {
 let result = try await Amplify.API.query(request: .list(Note.self))
 switch result {
 case .success(let notesList):
 print("Fetched \(notesList.count) notes")
 notes = notesList.elements
 case .failure(let error):
 print("Fetch Notes failed with error: \(error)")
 }
 } catch {
 print("Fetch Notes failed with error: \(error)")
 }
 }

 func save(_ note: Note) async {
 do {
 let result = try await Amplify.API.mutate(request: .create(note))
 switch result {
 case .success(let note):
 print("Save note completed")
 notes.append(note)
 case .failure(let error):
 print("Save Note failed with error: \(error)")
 }
 } catch {
 print("Save Note failed with error: \(error)")
 }
 }

Implementation 38

Build an iOS Application Hands-on tutorials

 func delete(_ note: Note) async {
 do {
 let result = try await Amplify.API.mutate(request: .delete(note))
 switch result {
 case .success(let note):
 print("Delete note completed")
 notes.removeAll(where: { $0.id == note.id })
 case .failure(let error):
 print("Delete Note failed with error: \(error)")
 }
 } catch {
 print("Delete Note failed with error: \(error)")
 }
 }
}

This class allows to fetch all notes, save a new note, and delete an existing note, while also
publishing the fetched notes in a notes array.

Step 7: Update the existing UI

• List notes

Make the following changes to the NotesView.swift file:

• Add a new @EnvironmentObject private var notesService: NotesService property

• Delete the local notes array and instead use published notesService.notes when creating
the List items in the ForEach loop.

• Call notesService.fetchNotes() when the view appears. We can do this using the
task(priority:_:) method.

Your file should look like the following code.

struct NotesView: View {
 @EnvironmentObject private var authenticationService: AuthenticationService
 @EnvironmentObject private var notesService: NotesService

 var body: some View {
 NavigationStack{
 List {

Implementation 39

Build an iOS Application Hands-on tutorials

 if notesService.notes.isEmpty {
 Text("No notes")
 }
 ForEach(notesService.notes, id: \.id) { note in
 NoteView(note: note)
 }
 }
 .navigationTitle("Notes")
 .toolbar {
 Button("Sign Out") {
 Task {
 await authenticationService.signOut()
 }
 }
 }
 }
 .task {
 await notesService.fetchNotes()
 }
 }
}

Step 8: Build and test

1. Run the project

To verify everything works as expected, build, and run the project.

Choose the ► button in the toolbar. Alternatively, you can also do it by navigating to Product
-> Run , or by pressing Cmd + R .

The iOS simulator will open and the app should show you the Notes view, assuming you are
still signed in.

2. Create a new note

Choose the " # New Note " button at the bottom to create a new list.

Implementation 40

Build an iOS Application Hands-on tutorials

3. Enter details

Enter details for the note and choose Save Note.

4. View note

Implementation 41

Build an iOS Application Hands-on tutorials

View the note in the list.

5. Delete the note

You can delete a note by swiping from the left of its row.

Implementation 42

Build an iOS Application Hands-on tutorials

Conclusion

You have now added a GraphQL API and configured create, read, and delete functionality in your
app. In the next module, we will add UI and behavior to manage pictures.

Conclusion 43

Build an iOS Application Hands-on tutorials

Module 5: Add the Ability to Store Images

Time to complete 5 minutes

Services used AWS Amplify

Overview

Now that the notes app is working, you will add the ability to associate an image with each note.

In this module, you will use the Amplify CLI and libraries to create a storage service using Amazon
S3. Then, you will update the iOS app to enable image uploading, fetching, and rendering.

What you will accomplish

In this tutorial, you will:

• Create a storage service

• Update your iOS app with logic to upload and download images

• Update the UI of your iOS app

Key concepts

Storage service – Storing and querying of files, such as images and videos, is a common
requirement for applications. One option to do this is to Base64 encode the file and send it as a
string to save in the database. This comes with disadvantages, such as the encoded file being larger
than the original binary, the operation being computationally expensive, and the added complexity
around encoding and decoding properly. Another option is to have a storage service specifically
built and optimized for file storage.

Storage services like Amazon S3 exist to make this as easy, performant, and inexpensive as
possible.

Overview 44

https://aws.amazon.com/amplify/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/

Build an iOS Application Hands-on tutorials

Implementation

Step 1: Create the storage service

1. Add storage

Open the Terminal, navigate to your project root directory, and run the following command:

amplify add storage

2. Configure options

When prompted, make the following selections:

Select from one of the below mentioned services:
 # Content (Images, audio, video, etc.)

Provide a friendly name for your resource that will be used to label this category
 in the project
 image

Provide bucket name
 «default value»

Who should have access:
 # Auth users only

What kind of access do you want for Authenticated users?
 # create/update
 # read
 # delete
 «i.e. select all options»

Do you want to add a Lambda Trigger for your S3 Bucket?
 N

3. Deploy the service

Finally, deploy the service by running the following command:

amplify push

Implementation 45

Build an iOS Application Hands-on tutorials

Are you sure you want to continue?
 Y

Step 2: Add the Amplify Storage library to the project

1. Open the general tab

Navigate to the General tab of your Target application (Your Project > Targets > General), and
select the plus (+) in the Frameworks, Libraries, and Embedded Content section.

2. Choose the plugin

Choose AWSS3StoragePlugin, and select Add.

Implementation 46

Build an iOS Application Hands-on tutorials

3. Verify dependency

You will see AWSS3StoragePlugin as a dependency for your project.

Implementation 47

Build an iOS Application Hands-on tutorials

Step 3: Configure the Amplify Storage library at runtime

• Modify the Xcode

Navigate back to Xcode and open the GettingStartedApp.swift file. To configure Amplify API,
you will need to:

• Add theimport AWSS3StoragePluginstatement.

• Create the AWSS3StoragePluginplugin, and register it with Amplify.

Your code should look like the following.

import Amplify
import AWSAPIPlugin
import AWSCognitoAuthPlugin
import AWSS3StoragePlugin
import SwiftUI

@main
struct GettingStartedApp: App {
 init() {
 do {
 try Amplify.add(plugin: AWSCognitoAuthPlugin())
 try Amplify.add(plugin: AWSAPIPlugin(modelRegistration:
 AmplifyModels()))
 try Amplify.add(plugin: AWSS3StoragePlugin())
 try Amplify.configure()
 print("Initialized Amplify");
 } catch {
 print("Could not initialize Amplify: \(error)")
 }
 }

 var body: some Scene {
 WindowGroup {
 LandingView()
 .environmentObject(NotesService())
 .environmentObject(AuthenticationService())
 }
 }
}

Implementation 48

Build an iOS Application Hands-on tutorials

Step 4: Create a class to support image CRUD operations

• Create a StorageSwift file

Create a new Swift file named StorageService.swift with the following content:

import Amplify
import Foundation

class StorageService: ObservableObject {
 func upload(_ data: Data, name: String) async {
 let task = Amplify.Storage.uploadData(
 key: name,
 data: data,
 options: .init(accessLevel: .private)
)
 do {
 let result = try await task.value
 print("Upload data completed with result: \(result)")
 } catch {
 print("Upload data failed with error: \(error)")
 }
 }

 func download(withName name: String) async -> Data? {
 let task = Amplify.Storage.downloadData(
 key: name,
 options: .init(accessLevel: .private)
)
 do {
 let result = try await task.value
 print("Download data completed")
 return result
 } catch {
 print("Download data failed with error: \(error)")
 return nil
 }
 }

 func remove(withName name: String) async {
 do {
 let result = try await Amplify.Storage.remove(
 key: name,

Implementation 49

Build an iOS Application Hands-on tutorials

 options: .init(accessLevel: .private)
)
 print("Remove completed with result: \(result)")
 } catch {
 print("Remove failed with error: \(error)")
 }
 }
}

The methods in this class simply call their Amplify counterpart. Amplify Storage has three file
protection levels:

• Public: Accessible by all users

• Protected: Readable by all users, but only writable by the creating user

• Private: Readable and writable only by the creating user

For this app, we want the images to only be available to the note owner, so we set
the accessLevel: .private property in each operation's options.

Step 5: Update the existing UI

1. Create a RemoteImage file

Create a new Swift file named RemoteImage.swift with the following content:

import SwiftUI

struct RemoteImage: View {
 @EnvironmentObject private var storageService: StorageService
 @State private var image: UIImage? = nil
 @State private var isLoading = true
 var name: String

 var body: some View {
 content
 .task {
 if let data = await storageService.download(withName: name) {
 image = UIImage(data: data)
 }
 isLoading = false

Implementation 50

Build an iOS Application Hands-on tutorials

 }
 }

 @ViewBuilder
 private var content: some View {
 if isLoading {
 ProgressView()
 } else if let image {
 Image(uiImage: image)
 .resizable()
 .aspectRatio(contentMode: .fill)
 } else {
 EmptyView()
 }
 }
}

This view will attempt to download the data using the storage service and the provided
name, while displaying a loading view while the operation is in progress. If the data cannot be
downloaded, it shows an empty view.

2. Update the NoteView file

Next, update NoteView.swift to use this new view when displaying the image:

 if let image = note.image {
 Spacer()
 RemoteImage(name: image)
 .frame(width: 30, height: 30)
 }

3. Update the GettingStartedApp file

Finally, update the GettingStartedApp.swift's body to set the StorageService object:

 var body: some Scene {
 WindowGroup {
 LandingView()
 .environmentObject(NotesService())
 .environmentObject(AuthenticationService())
 .environmentObject(StorageService())
 }

Implementation 51

Build an iOS Application Hands-on tutorials

 }

4. Create a PicturePicker file

In order to allow the user to select a picture from their library, create a new Swift file
named PicturePicker.swift with the following content:

import PhotosUI
import SwiftUI

struct PicturePicker: View {
 @State private var selectedPhoto: PhotosPickerItem? = nil
 @Binding var selectedData: Data?

 var body: some View {
 VStack {
 if let selectedData, let image = UIImage(data: selectedData) {
 Image(uiImage: image)
 .resizable()
 .frame(width: 100, height: 100)
 .clipShape(Circle())
 .overlay(Circle().stroke(Color.white, lineWidth: 4))
 .shadow(radius: 10)
 }

 PhotosPicker(title, selection: $selectedPhoto)
 }
 .onChange(of: selectedPhoto) {
 Task {
 selectedData = try? await selectedPhoto?.loadTransferable(type:
 Data.self)
 }
 }
 }

 private var title: String {
 return selectedPhoto == nil ? "Choose a picture" : "Change picture"
 }
}

5. Update the SaveNoteView file

Make the following changes to the SaveNoteView.swift files:

Implementation 52

Build an iOS Application Hands-on tutorials

• Add a new @EnvironmentObject private var storageService: StorageService property.

• Replace the type of the image property to Data instead of String.

• Display PicturePicker(selectedData: $image) on the Picture section instead of a text field.

• Modify the Save Note button's action to also save the image using storageService. Keep in
mind that the note's image value should match the name you give to the stored image.

You file should look like the following:

struct SaveNoteView: View {
 @Environment(\.dismiss) private var dismiss
 @EnvironmentObject private var notesService: NotesService
 @EnvironmentObject private var storageService: StorageService
 @State private var name = ""
 @State private var description = ""
 @State private var image: Data? = nil

 var body: some View {
 Form {
 Section("Details") {
 TextField("Name", text: $name)
 TextField("Description", text: $description)
 }

 Section("Picture") {
 PicturePicker(selectedData: $image)
 }

 Button("Save Note") {
 let imageName = image != nil ? UUID().uuidString : nil
 let note = Note(
 name: name,
 description: description.isEmpty ? nil : description,
 image: imageName
)

 Task {
 if let image, let imageName {
 await storageService.upload(image, name: imageName)
 }
 await notesService.save(note)

Implementation 53

Build an iOS Application Hands-on tutorials

 dismiss()
 }
 }
 }
 }
}

6. Configure image deletion

To delete images that are associated with a note that is deleted, update
the NotesView.swift file:

• Add a new @EnvironmentObject private var storageService: StorageService property

• Call storageService.remove(withName:) inside the onDelete callback after
calling notesService.delete(_:).

Your file should look like the following:

struct NotesView: View {
 @EnvironmentObject private var authenticationService: AuthenticationService
 @EnvironmentObject private var notesService: NotesService
 @EnvironmentObject private var storageService: StorageService
 @State private var isSavingNote = false

 var body: some View {
 NavigationStack{
 List {
 if notesService.notes.isEmpty {
 Text("No notes")
 }
 ForEach(notesService.notes, id: \.id) { note in
 NoteView(note: note)
 }
 .onDelete { indices in
 for index in indices {
 let note = notesService.notes[index]
 Task {
 await notesService.delete(note)
 if let image = note.image {
 await storageService.remove(withName: image)
 }

Implementation 54

Build an iOS Application Hands-on tutorials

 }
 }
 }
 }
 .navigationTitle("Notes")
 .toolbar {
 Button("Sign Out") {
 Task {
 await authenticationService.signOut()
 }
 }
 }
 .toolbar {
 ToolbarItem(placement: .bottomBar) {
 Button("# New Note") {
 isSavingNote = true
 }
 .bold()
 }
 }
 .sheet(isPresented: $isSavingNote) {
 SaveNoteView()
 }
 }
 .task {
 await notesService.fetchNotes()
 }
 }
}

Step 6: Build and test

• Run the project

To verify everything works as expected, build, and run the project.

Choose the ► button in the toolbar. Alternatively, you can also do it by going to Product ->
Run, or by pressing Cmd + R.

The iOS simulator will open and the app should show you the Notes view, assuming you are
still signed in.

Implementation 55

Build an iOS Application Hands-on tutorials

You can tap on the "# New Note" button at the bottom to create a new list, and now you
should be able to select a picture from the device's photo library.

List of notes

Implementation 56

Build an iOS Application Hands-on tutorials

Create a note

Select a picture

Implementation 57

Build an iOS Application Hands-on tutorials

Note with picture

(Optional) Step 7: Share your backend among multiple projects

Amplify makes it easy to share a single backend among multiple frontend applications.

1. Synchronize your local project

Open the Terminal, navigate to your other project directory, and run the following command:

amplify pull

2. Configure options

When prompted, make the following selections:

Select the authentication method you want to use
 # AWS profile
Please choose the profile you want to use (Use arrow keys)
 # default
Which app are you working on?
 # GettingStarted («id»)
Choose your default editor:
 # «Choose your desired editor»

Implementation 58

Build an iOS Application Hands-on tutorials

Choose the type of app that you're building …
 # «Choose your desired app type, and any subsequent configuration related to
 it»
Do you plan on modifying this backend?
 # N

(Optional) Clean up resources

When creating a backend for a test or a prototype, or just for learning purposes like this tutorial,
you should delete the Cloud resources you created.

• Delete the project

Open Terminal, navigate to your project root folder, and run the following command:

amplify delete

Conclusion

You have built an iOS application using AWS Amplify! You have added authentication to your app
allowing users to sign up, sign in, and manage their account. The app also has a scalable GraphQL
API configured with an Amazon DynamoDB database which users can use to create and delete
notes. You have also added file storage using Amazon S3, which users can use to upload images
and view them in their app.

To conclude this guide, you can find instructions to reuse or delete the backend you have been
using in this tutorial.

Congratulations!

You successfully built a web application on AWS! As a great next step, dive deeper into specific AWS
technologies and take your application to the next level.

Conclusion 59

	Build an iOS Application
	Table of Contents
	Build an iOS Application
	Overview
	What you will accomplish
	Prerequisites
	Modules

	Module 1: Create an iOS app
	Overview
	What you will accomplish
	Implementation
	Step 1: Create and Deploy an iOS App
	Step 2: Create the main view
	Step 3: Build and test

	Conclusion

	Module 2: Initialize Amplify
	Overview
	What you will accomplish
	Key concepts
	Implementation
	Step 1: Install Amplify CLI
	Step 2: Initialize an Amplify backend
	Step 3: Add Amplify libraries to your project
	Step 4: Initialize Amplify at runtime
	Step 5: Verify your setup

	Conclusion

	Module 3: Add Authentication
	Overview
	What you will accomplish
	Key concepts
	Implementation
	Step 1: Create the authentication service
	Step 2: Add the Amplify Authentication library to the project
	Step 3: Configure the Amplify Authentication library at runtime
	Step 4: Create a class to support authentication operations
	Step 5: Update the UI with authentication
	Step 6: Build and test
	Landing view
	Hosted UI: Sign in
	Hosted UI: Sign up
	Hosted UI: Confirmation
	List of notes

	Module 4: Add a GraphQL API service and a database
	Overview
	What you will accomplish
	Key concepts
	Implementation
	Step 1: Create a GraphQL API service and a database
	Step 2: Generate client-side code
	Step 3: Deploy the API service and database
	Step 4: Add API client library to the project
	Step 5: Configure the Amplify API library at runtime
	Step 6: Create a class to support API CRUD operations
	Step 7: Update the existing UI
	Step 8: Build and test

	Conclusion

	Module 5: Add the Ability to Store Images
	Overview
	What you will accomplish
	Key concepts
	Implementation
	Step 1: Create the storage service
	Step 2: Add the Amplify Storage library to the project
	Step 3: Configure the Amplify Storage library at runtime
	Step 4: Create a class to support image CRUD operations
	Step 5: Update the existing UI
	Step 6: Build and test
	List of notes
	Create a note
	Select a picture
	Note with picture

	(Optional) Step 7: Share your backend among multiple projects
	(Optional) Clean up resources

	Conclusion
	Congratulations!

