
User Guide

Amazon Honeycode

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Honeycode User Guide

Amazon Honeycode: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Honeycode User Guide

Table of Contents

What Is Amazon Honeycode? .. 1
Connecting Amazon Honeycode to AWS .. 2
Accessing Developer Tools and APIs .. 3

AWS Software Development Kit (SDK) .. 3
Identity and Access Management (IAM) .. 3
Authentication ... 3
Authorization ... 3
Resource ARNs .. 4

Workbook ARN format ... 5
Table ARN format ... 5
Screen ARN format ... 6
Screen Automation ARN format .. 6

Authorizing Team Connections .. 7
ListTeamAssociations .. 7
ApproveTeamAssociation ... 7
RejectTeamAssociation ... 8

Interacting with Honeycode workbooks via SDK .. 9
App Screen APIs .. 9
Table Metadata APIs .. 9
Table Row Operation APIs .. 9
Import APIs .. 10
Tagging APIs .. 10
App Screen APIs ... 10

Setting up for App Screen APIs ... 11
ARNs and Honeycode IDs .. 18
GetScreenData ... 20
InvokeScreenAutomation ... 20
Sample API calls .. 21

Table Metadata APIs .. 9
Setting up for Table Metadata APIs ... 33
ARNs and Honeycode IDs .. 34
ListTables .. 36
ListTableColumns .. 37

Table Row Operation APIs .. 9

iii

Amazon Honeycode User Guide

Setting up for table row operation APIs ... 38
ARNs and Honeycode IDs .. 39
ListTableRows .. 42
QueryTableRows .. 50
BatchCreateTableRows ... 52
BatchUpdateTableRows ... 55
BatchUpsertTableRows .. 57
BatchDeleteTableRows ... 59

Import APIs .. 10
Setting up for import APIs ... 61
ARNs and Honeycode IDs .. 61
StartTableDataImportJob .. 63
DescribeTableDataImportJob ... 65

Tagging APIs .. 10
Setting up for Tagging APIs ... 68
ARNs and Honeycode IDs .. 68
TagResource ... 68
ListTagsForResource ... 69
UntagResource ... 70

Logging Amazon Honeycode API Calls with AWS CloudTrail .. 71
Honeycode activity in CloudTrail .. 71
Honeycode log files on CloudTrail ... 72
More AWS CloudTrail resources .. 74

FAQs .. 75
How many transactions can the APIs handle per second? .. 75
Can I trigger code elsewhere based on an event in Honeycode (e.g. a button being clicked on
in a Honeycode app or a row being added to a Honeycode table)? .. 76
Can I use system variables like SYS_USER, conditional visibility, or personalization in screens
I intend to use with Honeycode APIs? ... 76
Can I get a history of Honeycode API calls made on my account for security analysis and
operational troubleshooting purposes? ... 76
What is the size limit of the file that can be imported? .. 76
What file types can I import into Honeycode? ... 76
Would existing automations work on the new data? .. 77
Can I import data with emails and rowlink selections? .. 77
Can I control the column mapping from my data to the Honeycode table? 77

iv

Amazon Honeycode User Guide

Can I import from more than one file for a table? ... 77
What if I want to import more than 1000 rows? .. 77

Document History .. 78
AWS Glossary ... 80

v

Amazon Honeycode User Guide

What Is Amazon Honeycode?

Amazon Honeycode is a fully managed service that allows you to quickly build mobile and web
apps for teams—without programming. Build Amazon Honeycode apps for managing almost
anything, like projects, customers, operations, approvals, resources, and even your team.

To learn more about Amazon Honeycode, visit Getting Started with Honeycode

1

https://honeycodecommunity.aws/t/106

Amazon Honeycode User Guide

Connecting Amazon Honeycode to AWS

The AWS Management Console is where you can connect Amazon Honeycode to AWS. The console
enables you to connect a Honeycode team to an AWS account and upgrade or downgrade your
team plans.

If you do not have an AWS account, start by creating one following instructions here . Once you
have an AWS account, you can connect it to Honeycode by following the instructions here.

2

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://honeycodecommunity.aws/t/98

Amazon Honeycode User Guide

Accessing Developer Tools and APIs

Upgrading to a Plus or Pro plan is no longer required as a prerequisite to accessing developer tools
and Honeycode APIs.

AWS Software Development Kit (SDK)

The AWS Software Development Kit (SDK) is a software library that enables you to interact with
AWS Application Programming Interfaces (APIs). The AWS SDK supports Amazon Honeycode APIs.
To use the SDK you will need to connect your Amazon Honeycode team to an AWS account.

Identity and Access Management (IAM)

AWS Identity and Access Management (IAM) is a service that helps you securely control access to
AWS resources. You can use IAM to control who is authenticated (signed in) and authorized (has
permissions) to use resources.

Authentication

Amazon Honeycode APIs use SigV4 to authenticate callers. The endpoints reject any request that
doesn’t have the authorization header in the HTTP request. If you use the AWS SDK to send your
requests, the SDK clients authenticate your requests by using access keys that you provide.

Authenticating Requests on AWS documentation describes step-by-step how to calculate the
signature and include it in the request.

Authorization

Amazon Honeycode API requests are authorized using IAM policies. These IAM policies can specify
the specific actions and resources callers are allowed to access.

You can use either of these managed policies:

• AmazonHoneycodeWorkbookFullAccess

• AmazonHoneycodeFullAccess

AWS Software Development Kit (SDK) 3

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html

Amazon Honeycode User Guide

Or, you can create your own policies using honeycode:<action-name> actions. For more information
about policies, see IAM Documentation.

To set up the managed, full-access policy:

• Create a role in your AWS account to give access to all your workbooks.

• Make sure you give the new role a meaningful name.

• Attach either of the managed policies (AmazonHoneycodeWorkbookFullAccess or
AmazonHoneycodeFullAccess) to the role you just created.

• Assign the IAM role to the Active Directory Service user who will be making the API calls.

Resource ARNs

Honeycode resource ARNs are of the format
arn:aws:honeycode:AWS_Region:AWS_account_ID:Resource_Type:Resource_Path

Resource Type

Resource_Type indicates the type of resource represented by the ARN. The following resource
types are supported by Honeycode APIs.

• workbook

• table

• screen

• screen-automation

Resource Path

Resource_Path indicates the path to the resource represented by the ARN. Resource paths
for workbook resources start with workbook/. Each resource type will have a different path
to the resource. For example: workbook/Workbook_ID , workbook/Workbook_ID/
table/Table_ID , workbook/Workbook_ID/app/App_ID/screen/Screen_ID

Note that writing an IAM policy to give a user access to a workbook resource doesn't
automatically give the user access to all the resource types (tables, screens etc) in that
workbook. You need to use wildcards with specific resource types that you want to grant

Resource ARNs 4

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/assign_role.html
https://docs.aws.amazon.com/honeycode/latest/UserGuide/resource-workbook.html
https://docs.aws.amazon.com/honeycode/latest/UserGuide/resource-table.html
https://docs.aws.amazon.com/honeycode/latest/UserGuide/resource-screen.html
https://docs.aws.amazon.com/honeycode/latest/UserGuide/resource-screen-automation.html

Amazon Honeycode User Guide

access for, or use wildcards on all resource types to give broader access. For example the
wildcard resource ARN below gives a user access to all tables in all workbooks but it doesn't
give the user access to other resource types like workbook, screen or screen-automation.
arn:aws:honeycode:AWS_Region:AWS_account_ID:table:workbook/* On the flip side,
using the wildcard resource ARN below in a DENY policy prevents the user from accessing any table
in any workbook but it doesn't prevent them from accessing other resource types like workbook,
screen or screen-automation.

If you wish to allow or deny access to all resources in a single workbook, you need to use a wildcard
resource ARN that specifies * in both the Resource_Type and Resource_Path. For example:

arn:aws:honeycode:AWS_Region:AWS_account_ID:*:workbook/Workbook_ID*

Workbook ARN format

The ARN format for a workbook is

arn:aws:honeycode:AWS_Region:AWS_account_ID:workbook:workbook/Workbook_ID

You can also use wildcards to specify all workbooks.

arn:aws:honeycode:AWS_Region:AWS_account_ID:workbook:workbook/*

Table ARN format

The ARN format for a table is

arn:aws:honeycode:AWS_Region:AWS_account_ID:table:workbook/Workbook_ID/
table/Table_ID

You can also use wildcards to specify parts of the ARN and include multiple resources underneath.
To specify all tables in a workbook, you can use the following resource ARN:

arn:aws:honeycode:AWS_Region:AWS_account_ID:table:workbook/Workbook_ID/
table/*

To specify all tables in all workbooks, you can use the following resource ARN:

arn:aws:honeycode:AWS_Region:AWS_account_ID:table:workbook/*

Workbook ARN format 5

Amazon Honeycode User Guide

Screen ARN format

Note

App Screen APIs are currently only supported in Honeycode’s Classic Experience.

The ARN format for a screen is

arn:aws:honeycode:AWS_Region:AWS_account_ID:screen:workbook/WorkbookID/
app/App ID/screen/ScreenID

You can also use wildcards to specify parts of the ARN and include multiple resources underneath.

arn:aws:honeycode:AWS_Region:AWS_account_ID:screen:workbook/WorkbookID/
app/AppID/screen/*

To specify all screens in a single app you can use the following resource ARN:

arn:aws:honeycode:AWS_Region:AWS_account_ID:screen:workbook/WorkbookID/app/
*

Screen Automation ARN format

Note

App Screen APIs are currently only supported in Honeycode’s Classic Experience.

The ARN format for a screen automation is

arn:aws:honeycode:AWS_Region:AWS_account_ID:screen-
automation:workbook/WorkbookID/app/AppID/screen/ScreenID/
automation/AutomationID

You can also use wildcards to specify parts of the ARN and include multiple resources underneath.

arn:aws:honeycode:AWS_Region:AWS_account_ID:screen-
automation:workbook/WorkbookID/app/AppID/screen/ScreenID/automation/*

Screen ARN format 6

Amazon Honeycode User Guide

Similarly, to specify all automations in a single app you can use the following resource ARN in your
IAM policy:

arn:aws:honeycode:AWS_Region:AWS_account_ID:screen-
automation:workbook/WorkbookID/app/AppID/screen/*

To specify all automations in all apps in a workbook, use the following resource ARN:

arn:aws:honeycode:AWS_Region:AWS_account_ID:screen-
automation:workbook/WorkbookID/app/*

Finally, to specify all automations in all workbooks in your account, you can either use the resource
ARN "*" or an ARN in the following format:

arn:aws:honeycode:AWS_Region:AWS_account_ID:screen-automation:workbook/*

Authorizing Team Connections

Honeycode provides actions to view, approve, and reject teams associated with your account in
AWS Console. These actions are not available in AWS SDK.

You can use either of these managed policies:

• AmazonHoneycodeTeamAssociationFullAccess

• AmazonHoneycodeFullAccess

Or you can create your own policies using honeycode:<action-name> actions. Read more about
access management permissions and policies.

ListTeamAssociations

This action lists all pending and approved team connection requests for your AWS account.

ApproveTeamAssociation

This action allows you to approve a pending team connection request and connect the team
to your AWS account. When connected, the AWS account will be used to bill any usage on your
Amazon Honeycode team. Refer to Amazon Honeycode pricing

Authorizing Team Connections 7

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://www.honeycode.aws/pricing

Amazon Honeycode User Guide

RejectTeamAssociation

This action allows you to reject a pending team connection request.

RejectTeamAssociation 8

Amazon Honeycode User Guide

Interacting with Honeycode workbooks via SDK

Amazon Honeycode has many APIs that let you programmatically interact with Honeycode
workbooks. You can use these APIs to read, write, update or delete data stored in Honeycode
workbooks.

Honeycode APIs can be broadly divided into four categories. Each category has several APIs
underneath them.

App Screen APIs

These APIs allow you to read, write, update or delete data stored in Honeycode workbooks as you
would interacting with Honeycode apps. As with any Honeycode app, you can control exactly the
data from your workbook that you want to expose to the APIs. The APIs are:

• GetScreenData

• InvokeScreenAutomation

Table Metadata APIs

These APIs allow you to retrieve metadata about tables in Honeycode workbooks. The APIs are:

• ListTables

• ListTableColumns

Table Row Operation APIs

These APIs allow you to read, append, update or delete data stored in Honeycode table rows. The
APIs are:

• ListTableRows

• QueryTableRows

• BatchCreateTableRows

• BatchUpdateTableRows

• BatchUpsertTableRows

App Screen APIs 9

API_GetScreenData.html
API_InvokeScreenAutomation.html
API_ListTables.html
API_ListTableColumns.html
API_ListTableRows.html
API_QueryTableRows.html
API_BatchCreateTableRows.html
API_BatchUpdateTableRows.html
API_BatchUpsertTableRows.html

Amazon Honeycode User Guide

• BatchDeleteTableRows

Import APIs

These APIs allow you to import data into tables in Honeycode workbooks and check on the status
of previously submitted import requests. The APIs are:

• StartTableDataImportJob

• DescribeTableDataImportJob

Tagging APIs

Honeycode tagging APIs allow you to create, list, and delete tags in workbooks, tables, screens
or screen automations. API users can use tagging APIs to manage tags on their resources for tag-
based authorization. The APIs are:

• TagResource

• ListTagsForResource

• UntagResource

App Screen APIs

Note

App Screen APIs are currently only supported in Honeycode’s Classic Experience.

App Screen APIs allow you to read, write, update or delete data stored in Honeycode workbooks as
you would interacting with Honeycode apps. As with any Honeycode app, you can control exactly
the data from your workbook that you want to expose to the APIs. The APIs are:

• GetScreenData

• InvokeScreenAutomation

Import APIs 10

API_BatchDeleteTableRows.html
API_StartTableDataImportJob.html
API_DescribeTableDataImportJob.html
API_TagResource.html
API_ListTagsForResource.html
API_UntagResource.html
API_GetScreenData.html
API_InvokeScreenAutomation.html

Amazon Honeycode User Guide

Setting up for App Screen APIs

Note

App Screen APIs are currently only supported in Honeycode’s Classic Experience.

To use App Screen APIs you’ll need to first create a table and add some data. Then build an app
and add a screen specific to each API action or automation. Although you can use any app for this
purpose, we recommend you create an app solely for API access.

Create table

You will need a workbook with tables to set up APIs. If you haven’t already done so, create a new
workbook and add a new table either by importing a CSV file or by adding data manually. In the
example below, we start with a simple tasks table.

Start building your app

Open your workbook from Honeycode Builder, and from the left navigation, click the + and select
“Build your own”. Formatting, font, and colors aren’t important for this app, so you can leave the
app styling as default, if you wish.

Setting up for App Screen APIs 11

https://builder.honeycode.aws/

Amazon Honeycode User Guide

Name your app objects

Honeycode APIs return the names of blocks and data cells, along with the values of data cells. Be
thoughtful as you name your objects as they are visible in the API response.

Configuring app screens

There are many ways you can configure your app, but here we’ll show you how to set up screens for
some common actions that you can use APIs to execute.

For the examples below, we used the managed policy, AmazonHoneycodeWorkbookFullAccess.

Read data

Based on the Tasks table above, let’s say you want to read items filtered by the Status column.
Here’s an example of one way to set up a screen that allows you to use the GetScreenData API to
read screen data programmatically.

Setting up for App Screen APIs 12

Amazon Honeycode User Guide

• Insert a Column list object, which can include a preconfigured filter

• Choose to filter by the Status column =$[Status filter]

• Make the =$[Status filter] data cell editable, if it isn’t already

• Check that the list source is set to =FILTER(Tasks,"(Tasks[Status]=$[Status filter] OR $[Status
filter]="""")")

• Confirm that both data cells in the list shared, and set the sources to the Tasks column and the
Status column

Note

The Column list is a preconfigured app object that includes some UI features not shown in
the image above.

Add a row

If you want to manipulate data using the InvokeScreenAutomation API to add rows, then set up the
screen and corresponding button in your app.

Setting up for App Screen APIs 13

Amazon Honeycode User Guide

• Add variable data cells and name them Task and Status

• Make the data cells editable

• To add the automation, select the button and click on the Actions tab in the button properties
panel

• Configure your automation to take data from the variable data cell =$[Tasks] and write it to the
Tasks column

• Repeat the automation for the variable data cell =$[Status]

Setting up for App Screen APIs 14

Amazon Honeycode User Guide

Setting up for App Screen APIs 15

Amazon Honeycode User Guide

Overwrite a row

If you want to manipulate data using the InvokeScreenAutomation API to overwrite existing rows,
then set up the screen and corresponding button in your app.

• Add a variable data cell, make it editable, and name it Row

• Under the Display tab, format the data cell as a rowlink and set the source as the Tasks table

• Add a block and set the data source as the variable data cell =$[Row]

• Add a variable data cell, name it Task, make it editable, and set the data source to the Task
column =[Task]

• Repeat the above step, naming it Status and setting the data source to to the Status column
=[Status]

• To add the automation, select the button and click on the Actions tab in the button properties
panel

• Configure your automation to take data from the variable data cell =$[Tasks] and write it to the
Tasks column

• Repeat the automation for the variable data cell =$[Status]

Setting up for App Screen APIs 16

Amazon Honeycode User Guide

Delete a row

If you want to manipulate data using the InvokeScreenAutomation API to delete existing rows, then
set up the screen and corresponding button in your app.

Setting up for App Screen APIs 17

Amazon Honeycode User Guide

• Add a variable data cell, make it editable, and name it Row

• Under the Display tab, format the data cell as a rowlink and set the data source as the Tasks
table

• To add the automation, select the button and click on the Actions tab in the button properties
panel

• Configure your automation to delete the context row (aka the triggering row) or a specified row

ARNs and Honeycode IDs

Note

App Screen APIs are currently only supported in Honeycode’s Classic Experience.

Amazon Resource Names (ARNs) uniquely identify AWS resources and are required for many
actions related to IAM policies and API calls.

Accessing ARN and IDs

In any app screen, you can right-click to bring up a menu. Select Get ARN and IDs

ARNs and Honeycode IDs 18

Amazon Honeycode User Guide

From the modal that appears, you can copy the screen ARN and IDs for the workbook, app, and
screen.

Similarly, you can right-click on any component that has an automation defined on it and select
Get ARN and IDs to get the screen automation ARN and IDs for the workbook, app, screen and
automation.

ARNs and Honeycode IDs 19

Amazon Honeycode User Guide

ARNs and authorization

If you are using the managed IAM policies AmazonHoneycodeWorkbookFullAccess or
AmazonHoneycodeFullAccess, you will not need the ARN for authorization. The ARN is only required
to to set up authorization using IAM at a granular level.

The Honeycode resources that need to be defined in custom IAM policies for App Screen APIs are
given below. Click the links to get more details on how to construct ARNs for those resources.

• GetScreenData: screen

• InvokeScreenAutomation: screen-automation

GetScreenData

Note

App Screen APIs are currently only supported in Honeycode’s Classic Experience.

The GetScreenData API allows you to retrieve data from a screen in a Honeycode app. The API
allows you to set local variables in the screen to filter, sort or otherwise affect what you display on
the screen.

To find more details about using this API check the GetScreenData API Reference page.

InvokeScreenAutomation

Note

App Screen APIs are currently only supported in Honeycode’s Classic Experience.

The InvokeScreenAutomation API allows you to invoke an action defined in a screen in a
Honeycode app. The API allows you to set local variables, which you can then use in the
automation you’re invoking. This allows you to automate Honeycode app interactions to write,
update or delete data in your workbook.

To find more details about using this API check the InvokeScreenAutomation API Reference page.

GetScreenData 20

resource-screen.html
resource-screen-automation.html
https://docs.aws.amazon.com/honeycode/latest/APIReference/API_GetScreenData.html
https://docs.aws.amazon.com/honeycode/latest/APIReference/API_InvokeScreenAutomation.html

Amazon Honeycode User Guide

Sample API calls

Note

App Screen APIs are currently only supported in Honeycode’s Classic Experience.

At this stage, you’re all set to use App Screen APIs using two supported SDKs. This section
demonstrates making simple API calls using the AWS CLI and Python SDK.

Sample API calls using AWS CLI

Note

App Screen APIs are currently only supported in Honeycode’s Classic Experience.

If you’ve already set up AWS CLI, this might be the easiest way to verify that everything is working.
If you haven’t already set up the CLI, follow the guide here.

In the examples below, we assume you’re operating on the workbook as defined in Setting up for
App Screen APIs

Making a basic query

An example of a basic query to read a list of tasks using the GetScreenData API.

Request:

aws honeycode get-screen-data \
 --profile <my-auth-profile> \
 --workbook-id <workbook-id> \
 --app-id <app-id> \
 --screen-id <screen-id> \
 --max-results 2

It loads the first two tasks from the Tasks table. Since there are more than two rows that match the
list formula, nextToken is included in the response to continue loading data in subsequent calls.

Response:

Sample API calls 21

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
setting-up-workboook.html
setting-up-workboook.html

Amazon Honeycode User Guide

{
 "nextToken": "<Next Token Value>",
 "results": {
 "Tasks List": {
 "headers": [
 {
 "format": "Text",
 "name": "Task"
 },
 {
 "format": "Text",
 "name": "Status"
 }
],
 "rows": [
 {
 "dataItems": [
 {
 "formattedValue": "Try Honeycode",
 "rawValue": "Try Honeycode"
 },
 {
 "formattedValue": "In Progress",
 "rawValue": "In Progress"
 }
],
 "tableRowId": "<A Row ID is here>"
 },
 {
 "dataItems": [
 {
 "formattedValue": "Create a new app in Honeycode",
 "rawValue": "Create a new app in Honeycode"
 },
 {
 "formattedValue": "Not Started",
 "rawValue": "Not Started"
 }
],
 "tableRowId": "<A Row ID is here>"
 }
]
 }

Sample API calls 22

Amazon Honeycode User Guide

 },
 "workbookCursor": <A number is here>
}

Using next token

This GetScreenData example takes the pagination token from the previous response and includes it
in the input JSON file for the next call. viewArn and maxResults are the same as in previous request.

Note that nextToken is different for different calls, even with the same set of parameters. The token
expires after one hour, so if you paste the request below, you’ll get an error response that the
token is expired. You’ll need to run the previous request and copy the token from the output into
this request.

Request:

aws honeycode get-screen-data \
--profile <my-auth-profile> \
--workbook-id <workbook-id> \
--app-id <app-id> \
--screen-id <screen-id> \
--max-results 2 \
--next-token [Next Token Value]

Response:

Includes data for the next two tasks. If there are more results matching the query, a new
pagination token is included in the response.

{
 "nextToken": "<Next Token Value>",
 "results": {
 "Tasks List": {
 "headers": [
 {
 "format": "Text",
 "name": "Task"
 },
 {
 "format": "Text",
 "name": "Status"
 }

Sample API calls 23

Amazon Honeycode User Guide

],
 "rows": [
 {
 "dataItems": [
 {
 "formattedValue": "Try API in Honeycode",
 "rawValue": "Try API in Honeycode"
 },
 {
 "formattedValue": "Not Started",
 "rawValue": "Not Started"
 }
],
 "tableRowId": "<A Row ID is here>"
 },
 {
 "dataItems": [
 {
 "formattedValue": "Read a book",
 "rawValue": "Read a book"
 },
 {
 "formattedValue": "Not Started",
 "rawValue": "Not Started"
 }
],
 "tableRowId": "<A Row Id is here>"
 }
]
 }
 },
 "workbookCursor": <A number is here>
}

Passing named variables

This GetScreenData example loads the the list used in the previous example, filtered by the status
“Not Started”.

Request:

aws honeycode get-screen-data \
--profile <my-auth-profile> \

Sample API calls 24

Amazon Honeycode User Guide

--workbook-id <workbook-id> \
--app-id <app-id> \
--screen-id <screen-id> \
--max-results 2 \
--variables '{"Status Filter": { "rawValue": "Not Started"}}'

Response:

Includes data for the for all the tasks that match the specified status. If there are more results
matching the query, a new pagination token is included in the response.

{
 "nextToken": "<Next Token Value>",
 "results": {
 "Tasks List": {
 "headers": [
 {
 "format": "Text",
 "name": "Task"
 },
 {
 "format": "Text",
 "name": "Status"
 }
],
 "rows": [
 {
 "dataItems": [
 {
 "formattedValue": "Create a new app in Honeycode",
 "rawValue": "Create a new app in Honeycode"
 },
 {
 "formattedValue": "Not Started",
 "rawValue": "Not Started"
 }
],
 "tableRowId": "<A Row ID is here>"
 },
 {
 "dataItems": [
 {
 "formattedValue": "Try API in Honeycode",

Sample API calls 25

Amazon Honeycode User Guide

 "rawValue": "Try API in Honeycode"
 },
 {
 "formattedValue": "Not Started",
 "rawValue": "Not Started"
 }
],
 "tableRowId": "<A Row ID is here>"
 },
 {
 "dataItems": [
 {
 "formattedValue": "Read a book",
 "rawValue": "Read a book"
 },
 {
 "formattedValue": "Not Started",
 "rawValue": "Not Started"
 }
],
 "tableRowId": "<A Row ID is here>"
 }
]
 }
 },
 "workbookCursor": <A number is here>
}

Adding a row

This InvokeScreenAutomation example adds a new row with the values “Test” and “Not Started” in
the Tasks table.

The variables field of the InvokeScreenAutomation request is an optional field. It is used to set the
value of the variable used in the automation. It is a map with the variable name as the map key and
the value to set as the map value. In the example below, the variables used in the automation are
$[Task] and $[Status].

{
 "variables": {
 "Task": {
 "rawValue": "Test"
 },

Sample API calls 26

Amazon Honeycode User Guide

 "Status": {
 "rawValue": "Not Started"
 }
 }
}

Request:

aws honeycode invoke-screen-automation \
--profile <my-auth-profile> \
--workbook-id <workbook-id> \
--app-id <app-id> \
--screen-id <screen-id> \
--screen-automation-id <screen-automation-id> \
--client-request-token <client-request-token> \
--variables '{"Task": {"rawValue": "Test"}, "Status":{"rawValue": "Not Started"}}'

Response:

A new task with the name “Test” is added to the Tasks table.

Overwriting a row

In this InvokeScreenAutomation example, the variables used in the automation are $[Row],
$[Task] and $[Status]. The table row ID for the variable $[Row] is located in the output of the
GetScreenData calls.

{
 "Row": {
 "rawValue": "<Table row ID goes here>"
 },
 "Task": {
 "rawValue": "Test"
 },
 "Status": {
 "rawValue": "In Progress"
 }
}

Request:

aws honeycode invoke-screen-automation \

Sample API calls 27

Amazon Honeycode User Guide

--profile <my-auth-profile> \
--workbook-id <workbook-id> \
--app-id <app-id> \
--screen-id <screen-id> \
--screen-automation-id <screen-automation-id> \
--client-request-token <client-request-token> \
--variables '{"Row": {"rawValue": "<Table row ID goes here>"}, "Task": {"rawValue":
 "Test"}, "Status":{"rawValue": "In Progress"}}'

Response:

The status of the “Test” task is updated.

Deleting a row

In this example, the variable used in the automation is $[Row]. The table row ID for the variable
$[Row] is be located in the output of the GetScreenData calls. A sample call might look like:

{
 "variables": {
 "Row": {
 "rawValue": "<Table row ID goes here>"
 }
 }
}

Request:

aws honeycode invoke-screen-automation \
--profile <my-auth-profile> \
--workbook-id <workbook-id> \
--app-id <app-id> \
--screen-id <screen-id> \
--screen-automation-id <screen-automation-id> \
--table-row-id <table-row-id> \
--client-request-token <client-request-token> \
--variables '{"Row": {"rawValue": "<Table row ID goes here>"}}'

Response:

The “Test” task is deleted.

Sample API calls 28

Amazon Honeycode User Guide

Sample API calls using Python SDK

Note

App Screen APIs are currently only supported in Honeycode’s Classic Experience.

If you haven't installed the SDK already, follow the guide here.

You can use the code snippet below to set up a client. Here, we're using a profile to set up the
session, but you can choose to do it in other ways.

import boto3
import json

session = boto3.Session(profile_name = 'sample-honeycode-profile')
honeycode_client = session.client('honeycode', region_name = 'us-west-2')

Making a basic query

An example of a basic query to read a list of tasks using the GetScreenData API. The following code
snippet can be used to make a call to get rows from the Tasks table.

Request:

response = honeycode_client.get_screen_data(
 workbookId = '<workbookId>',
 appId = '<appId>',
 screenId = '<screenId>',
 maxResults = 2
)
print(json.dumps(response, indent = 4))

Note that we set maxResults to 2 to demonstrate pagination. The default is 100, and its inclusion is
optional.

Response:

{
 "ResponseMetadata": {
 "RequestId": "<RequestId is here>",
 "HTTPStatusCode": 200,

Sample API calls 29

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html

Amazon Honeycode User Guide

 "HTTPHeaders": {
 "content-type": "application/json",
 "content-length": "1295",
 "connection": "keep-alive",
 "date": "Tue, 05 May 2020 22:01:41 GMT",
 "x-amzn-requestid": "<RequestId is here>",
 "x-amzn-remapped-x-amzn-requestid": "<RequestId is here>",
 "x-amzn-remapped-content-length": "1295",
 "x-amz-apigw-id": "MFBK0F3WPHcFcCg=",
 "x-amzn-trace-id": "<TraceId is here>",
 "x-amzn-remapped-date": "<Timestamp here>",
 },
 "RetryAttempts": 0
 },
 "results": {
 "nextToken": "<Next Token Value>",
 "results": {
 "Tasks List": {
 "headers": [
 {
 "format": "Text",
 "name": "Task"
 },
 {
 "format": "Text",
 "name": "Status"
 }
],
 "rows": [
 {
 "dataItems": [
 {
 "formattedValue": "Try API in Honeycode",
 "rawValue": "Try API in Honeycode"
 },
 {
 "formattedValue": "Not Started",
 "rawValue": "Not Started"
 }
],
 "tableRowId": "<A Row ID is here>"
 },
 {
 "dataItems": [

Sample API calls 30

Amazon Honeycode User Guide

 {
 "formattedValue": "Read a book",
 "rawValue": "Read a book"
 },
 {
 "formattedValue": "Not Started",
 "rawValue": "Not Started"
 }
],
 "tableRowId": "<A Row Id is here>"
 }
]
 }
 },
 }
 "workbookCursor": <A number is here>,
 "nextToken": "<Token string is here>"
}

Using next token

This GetScreenData example takes the pagination token from the previous response and includes it
in the input JSON file for the next call. viewArn and maxResults are the same as in previous request.

Note that nextToken is different for different calls, even with the same set of parameters. The token
expires after one hour, so if you save the response somewhere and reuse it later, you’ll get an error
response that the token is expired. You’ll need to run the previous request and use the token from
the output into this request.

response = honeycode_client.get_screen_data(
 workbookId = '<workbook-id>',
 appId = '<app-id>',
 screenId = '<screen-id>',
 maxResults = 2
)

next_token = response['nextToken']

response = honeycode_client.get_screen_data(
 workbookId = '<workbook-id>',
 appId = '<app-id>',
 screenId = '<screen-id>',
 maxResults = 2,

Sample API calls 31

Amazon Honeycode User Guide

 nextToken = next_token
)
print(json.dumps(response, indent = 2))

Passing named local variables

Request:

This GetScreenData example filters the Tasks table to display only tasks that are with the status
“Not Started.”

response = honeycode_client.get_screen_data(
 workbookId = '<workbook-id>',
 appId = '<app-id>',
 screenId = '<screen-id>',
 variables = {"Status Filter": { "rawValue": "Not Started"}}
)
print(json.dumps(response, indent = 2))

Adding, overwriting and deleting rows

This InvokeScreenAutomation example shows how to add, overwrite, and delete rows in a Tasks
table.

Create row automation
honeycode_client.invoke_screen_automation(
 workbookId = '<workbook-id>',
 appId = '<app-id>',
 screenId = '<create-row-screen-id>',
 screenAutomationId = '<screen-automation-id>',
 variables = {"Task": {"rawValue": "Test"}, "Status":{"rawValue": "Not Started"}}
)

Update row automation
honeycode_client.invoke_screen_automation(
 workbookId = '<workbook-id>',
 appId = '<app-id>',
 screenId = '<update-row-screen-id>',
 screenAutomationId = '<screen-automation-id>',
 variables = {"Row": {"rawValue": "<Table row ID goes here>"}, "Task": {"rawValue":
 "Test"}, "Status":{"rawValue": "In Progress"}}
)

Sample API calls 32

Amazon Honeycode User Guide

Delete row automation
honeycode_client.invoke_screen_automation(
 workbookId = '<workbook-id>',
 appId = '<app-id>',
 screenId = '<delete-row-screen-id>',
 screenAutomationId = '<screen-automation-id>',
 variables = {"Row": {"rawValue": "<Table row ID goes here>"}}
)

Table Metadata APIs

Table metadata APIs allow you to retrieve metadata about tables in Honeycode workbooks. The
APIs are:

• ListTables

• ListTableColumns

Setting up for Table Metadata APIs

For these APIs, you’ll need to first create a table and add some data.

Create table

If you haven’t already done so, create a new workbook and add a new table either by importing a
CSV file or by adding data manually. In the example below, we start with a simple table that tracks
stock prices.

Table Metadata APIs 33

API_ListTables.html
API_ListTableColumns.html

Amazon Honeycode User Guide

ARNs and Honeycode IDs

Table metadata APIs require the workbook id as input. You will need an app to get the workbook
id. Simply right-click on any app object in builder to access the Get ARN and IDs modal. If you don't
have a use case for an app, you can use the App Wizard to quickly create a simple app to grab the
Workbook ID and then delete the app as necessary.

Accessing Workbook ID

In the new experience, go to the Data section of the Properties Panel and select See all integration
options. In the pop-up modal, select APIs (Advanced). From here, you can copy the ID for the
Workbook. You can ignore the other fields (Amazon Resource Name, App ID, Screen ID, Automation
ID) as they are not needed for table metadata APIs.

On any app screen in the classic experience, you can right-click to bring up a menu. Select Get ARN
and IDs.

ARNs and Honeycode IDs 34

Amazon Honeycode User Guide

From the modal that appears, you can copy the ID for the workbook. You can ignore the other
fields on that modal (Amazon Resource Name, App ID, Screen ID) as they are not needed for table
metadata APIs.

ARNs and authorization

ARNs and Honeycode IDs 35

Amazon Honeycode User Guide

If you are using the managed IAM policies AmazonHoneycodeWorkbookFullAccess or
AmazonHoneycodeFullAccess, you will not need the ARN for authorization. The ARN is only required
to to set up authorization using IAM at a granular level.

The Honeycode resources that need to be defined in custom IAM policies for table metadata APIs
are given below. Click the links to get more details on how to construct ARNs for those resources.

• ListTables: workbook

• ListTableColumns: table

ListTables

The ListTables API allows you to retrieve a list of all the tables in a workbook.

To find more details about using this API check the ListTables API Reference page.

In the examples below, replace <workbook-id> with your workbook id.

AWS CLI Example

aws honeycode list-tables \
 --workbook-id "<workboook-id>"

Python SDK Example

response = honeycode_client.list_tables(
 workbookId = '<workbook-id>')

Response

{
 "tables": [
 {
 "tableId": "<table-id>",
 "tableName": "Stocks"
 }
],
 "workbookCursor": 1273158992
}

ListTables 36

resource-workbook.html
resource-table.html
https://docs.aws.amazon.com/honeycode/latest/APIReference/API_ListTables.html

Amazon Honeycode User Guide

ListTableColumns

The ListTableColumns API allows you to retrieve a list of all the columns in a table in a workbook.

To find more details about using this API check the ListTableColumns API Reference page.

In the examples below, replace <workbook-id> with your workbook id and <table-id> with the
table id from the response of ListTables API call.

AWS CLI Example

aws honeycode list-table-columns \
 --workbook-id "<workboook-id>" \
 --table-id "<table-id>"

Python SDK Example

response = honeycode_client.list_table_columns(
 workbookId = '<workbook-id>',
 tableId = '<table-id>')

Response

{
 "tableColumns": [
 {
 "format": "AUTO",
 "tableColumnId": "<symbol-column-id>",
 "tableColumnName": "Symbol"
 },
 {
 "format": "CURRENCY",
 "tableColumnId": "<price-column-id>",
 "tableColumnName": "Price"
 },
 {
 "format": "CURRENCY",
 "tableColumnId": "<previous-price-column-id>",
 "tableColumnName": "Previous Price"
 },
 {

ListTableColumns 37

https://docs.aws.amazon.com/honeycode/latest/APIReference/API_ListTableColumns.html

Amazon Honeycode User Guide

 "format": "PERCENTAGE",
 "tableColumnId": "<percentage-change-column-id>",
 "tableColumnName": "Change"
 },
 {
 "format": "DATE_TIME",
 "tableColumnId": "<last-update-column-id>",
 "tableColumnName": "Last Update"
 }
],
 "workbookCursor": 1288302476
}

Table Row Operation APIs

The table row operation APIs are useful when wanting to connect your Honeycode tables with
external sources. There are several things that you can do:

• Create or add new rows to a table

• Read or retrieve rows from a table

• Update or edit rows in a table

• Delete or remove rows from a table

The APIs are:

• ListTableRows

• QueryTableRows

• BatchCreateTableRows

• BatchUpdateTableRows

• BatchUpsertTableRows

• BatchDeleteTableRows

Setting up for table row operation APIs

For these APIs, you’ll need to first create a table and add some data.

Create table

Table Row Operation APIs 38

API_ListTableRows.html
API_QueryTableRows.html
API_BatchCreateTableRows.html
API_BatchUpdateTableRows.html
API_BatchUpsertTableRows.html
API_BatchDeleteTableRows.html

Amazon Honeycode User Guide

If you haven’t already done so, create a new workbook and add a new table either by importing a
CSV file or by adding data manually. In the example below, we start with a simple table that tracks
stock prices.

ARNs and Honeycode IDs

Table row operation APIs require the workbook id as input. You will need an app to get the
workbook id. Simply right-click on any app object in builder to access the Get ARN and IDs modal.
If you don't have a use case for an app, you can use the App Wizard to quickly create a simple app
to grab the Workbook ID and then delete the app as necessary.

Accessing Workbook ID

In the new experience, go to the Data section of the Properties Panel and select See all integration
options. In the pop-up modal, select APIs (Advanced). From here, you can copy the ID for the
Workbook. You can ignore the other fields (Amazon Resource Name, App ID, Screen ID, Automation
ID) as they are not needed for table row operation APIs.

ARNs and Honeycode IDs 39

Amazon Honeycode User Guide

On any app screen in the classic experience, you can right-click to bring up a menu. Select Get ARN
and IDs.

From the modal that appears, you can copy the ID for the workbook. You can ignore the other
fields on that modal (Amazon Resource Name, App ID, Screen ID) as they are not needed for table
row operation APIs.

ARNs and Honeycode IDs 40

Amazon Honeycode User Guide

ARNs and authorization

If you are using the managed IAM policies AmazonHoneycodeWorkbookFullAccess or
AmazonHoneycodeFullAccess, you will not need the ARN for authorization. The ARN is only required
to set up authorization using IAM at a granular level.

The Honeycode resources that need to be defined in custom IAM policies for table row operation
APIs are given below. Click the links to get more details on how to construct ARNs for those
resources.

• ListTableRows: table

• QueryTableRows: table

• BatchCreateTableRows: table

• BatchUpdateTableRows: table

• BatchUpsertTableRows: table

• BatchDeleteTableRows: table

ARNs and Honeycode IDs 41

resource-table.html
resource-table.html
resource-table.html
resource-table.html
resource-table.html
resource-table.html

Amazon Honeycode User Guide

ListTableRows

The ListTableRows API allows you to retrieve a list of rows in a table in a workbook.

To find more details about using this API check the ListTableRows API Reference page.

In the examples below, replace <workbook-id> with your workbook id and <table-id> with
the table id returned by the ListTables API call. Note that maxResults is set to 3 to show how
pagination works.

AWS CLI Example

aws honeycode list-table-rows \
 --workbook-id "<workboook-id>" \
 --table-id "<table-id>" \
 --max-results 3

Python SDK Example

response = honeycode_client.list_table_rows(
 workbookId = '<workbook-id>',
 tableId = '<table-id>',
 maxResults = 3)

Response

{
 "columnIds": [
 "<symbol-column-id>",
 "<price-column-id>",
 "<previous-price-column-id>",
 "<percentage-change-column-id>",
 "<last-update-column-id>"
],
 "nextToken": "<token-for-page-2>",
 "rows": [
 {
 "cells": [
 {
 "format": "AUTO",
 "formattedValue": "AMZN",
 "rawValue": "AMZN"

ListTableRows 42

https://docs.aws.amazon.com/honeycode/latest/APIReference/API_ListTableRows.html

Amazon Honeycode User Guide

 },
 {
 "format": "CURRENCY",
 "formattedValue": "$3,241.16",
 "rawValue": "3241.16"
 },
 {
 "format": "CURRENCY",
 "formattedValue": "$3,048.41",
 "rawValue": "3048.41"
 },
 {
 "format": "PERCENTAGE",
 "formattedValue": "6.32%",
 "formula": "=[Price]/[Previous Price]-1",
 "rawValue": "0.06322968367116"
 },
 {
 "format": "DATE_TIME",
 "formattedValue": "11/4/20 6:00 PM",
 "rawValue": "44139.75"
 }
],
 "rowId": "<amzn-row-id>"
 },
 {
 "cells": [
 {
 "format": "AUTO",
 "formattedValue": "AAPL",
 "rawValue": "AAPL"
 },
 {
 "format": "CURRENCY",
 "formattedValue": "$114.95",
 "rawValue": "114.95"
 },
 {
 "format": "CURRENCY",
 "formattedValue": "$110.44",
 "rawValue": "110.44"
 },
 {
 "format": "PERCENTAGE",

ListTableRows 43

Amazon Honeycode User Guide

 "formattedValue": "4.08%",
 "formula": "=[Price]/[Previous Price]-1",
 "rawValue": "0.040836653386454"
 },
 {
 "format": "DATE_TIME",
 "formattedValue": "11/4/20 6:00 PM",
 "rawValue": "44139.75"
 }
],
 "rowId": "<aapl-row-id>"
 },
 {
 "cells": [
 {
 "format": "AUTO",
 "formattedValue": "FB",
 "rawValue": "FB"
 },
 {
 "format": "CURRENCY",
 "formattedValue": "$287.38",
 "rawValue": "287.38"
 },
 {
 "format": "CURRENCY",
 "formattedValue": "$265.30",
 "rawValue": "265.3"
 },
 {
 "format": "PERCENTAGE",
 "formattedValue": "8.32%",
 "formula": "=[Price]/[Previous Price]-1",
 "rawValue": "0.083226535996985"
 },
 {
 "format": "DATE_TIME",
 "formattedValue": "11/4/20 6:00 PM",
 "rawValue": "44139.75"
 }
],
 "rowId": "<fb-row-id>"
 }
],

ListTableRows 44

Amazon Honeycode User Guide

 "workbookCursor": 1288302476
}

Note that the nextToken in the response indicates that there is more data to load. You can pass
that value as the nextToken parameter in a subsequent request to retrieve page 2. The new
response will have no nextToken since all 6 rows in the table have been loaded.

AWS CLI Example (nextToken)

aws honeycode list-table-rows \
 --workbook-id "<workboook-id>" \
 --table-id "<table-id>" \
 --max-results 3 \
 --next-token "<token-for-page-2>"

Python SDK Example (nextToken)

response = honeycode_client.list_table_rows(
 workbookId = '<workbook-id>',
 tableId = '<table-id>',
 maxResults = 3,
 nextToken = '<token-for-page-2>')

Response (nextToken)

{
 "columnIds": [
 "<symbol-column-id>",
 "<price-column-id>",
 "<previous-price-column-id>",
 "<percentage-change-column-id>",
 "<last-update-column-id>"
],
 "rows": [
 {
 "cells": [
 {
 "format": "AUTO",
 "formattedValue": "GOOG",
 "rawValue": "GOOG"
 },
 {

ListTableRows 45

Amazon Honeycode User Guide

 "format": "CURRENCY",
 "formattedValue": "$1,749.13",
 "rawValue": "1749.13"
 },
 {
 "format": "CURRENCY",
 "formattedValue": "$1,650.21",
 "rawValue": "1650.21"
 },
 {
 "format": "PERCENTAGE",
 "formattedValue": "5.99%",
 "formula": "=[Price]/[Previous Price]-1",
 "rawValue": "0.05994388592967"
 },
 {
 "format": "DATE_TIME",
 "formattedValue": "11/4/20 6:00 PM",
 "rawValue": "44139.75"
 }
],
 "rowId": "<goog-row-id>"
 },
 {
 "cells": [
 {
 "format": "AUTO",
 "formattedValue": "NFLX",
 "rawValue": "NFLX"
 },
 {
 "format": "CURRENCY",
 "formattedValue": "$496.95",
 "rawValue": "496.95"
 },
 {
 "format": "CURRENCY",
 "formattedValue": "$487.22",
 "rawValue": "487.22"
 },
 {
 "format": "PERCENTAGE",
 "formattedValue": "2.00%",
 "formula": "=[Price]/[Previous Price]-1",

ListTableRows 46

Amazon Honeycode User Guide

 "rawValue": "0.019970444563031"
 },
 {
 "format": "DATE_TIME",
 "formattedValue": "11/4/20 6:00 PM",
 "rawValue": "44139.75"
 }
],
 "rowId": "<nflx-row-id>"
 },
 {
 "cells": [
 {
 "format": "AUTO",
 "formattedValue": "MSFT",
 "rawValue": "MSFT"
 },
 {
 "format": "CURRENCY",
 "formattedValue": "$216.39",
 "rawValue": "216.39"
 },
 {
 "format": "CURRENCY",
 "formattedValue": "$206.43",
 "rawValue": "206.43"
 },
 {
 "format": "PERCENTAGE",
 "formattedValue": "4.82%",
 "formula": "=[Price]/[Previous Price]-1",
 "rawValue": "0.04824880104636"
 },
 {
 "format": "DATE_TIME",
 "formattedValue": "11/4/20 6:00 PM",
 "rawValue": "44139.75"
 }
],
 "rowId": "<msft-row-id>"
 }
],
 "workbookCursor": 1288302476

ListTableRows 47

Amazon Honeycode User Guide

}

ListTableRows API can also be called with specific row ids in the input. In this case, the API returns
only the requested row ids.

AWS CLI Example (row ids)

aws honeycode list-table-rows \
 --workbook-id "<workboook-id>" \
 --table-id "<table-id>" \
 --row-ids '["<amzn-row-id>", "<msft-row-id>"]'

Python SDK Example (row ids)

response = honeycode_client.list_table_rows(
 workbookId = '<workbook-id>',
 tableId = '<table-id>',
 rowIds = ['<amzn-row-id>', '<msft-row-id>'])

Response

{
 "columnIds": [
 "<symbol-column-id>",
 "<price-column-id>",
 "<previous-price-column-id>",
 "<percentage-change-column-id>",
 "<last-update-column-id>"
],
 "rows": [
 {
 "cells": [
 {
 "format": "AUTO",
 "formattedValue": "AMZN",
 "rawValue": "AMZN"
 },
 {
 "format": "CURRENCY",
 "formattedValue": "$3,241.16",
 "rawValue": "3241.16"
 },

ListTableRows 48

Amazon Honeycode User Guide

 {
 "format": "CURRENCY",
 "formattedValue": "$3,048.41",
 "rawValue": "3048.41"
 },
 {
 "format": "PERCENTAGE",
 "formattedValue": "6.32%",
 "formula": "=[Price]/[Previous Price]-1",
 "rawValue": "0.06322968367116"
 },
 {
 "format": "DATE_TIME",
 "formattedValue": "11/4/20 6:00 PM",
 "rawValue": "44139.75"
 }
],
 "rowId": "<amzn-row-id>"
 },
 {
 "cells": [
 {
 "format": "AUTO",
 "formattedValue": "MSFT",
 "rawValue": "MSFT"
 },
 {
 "format": "CURRENCY",
 "formattedValue": "$216.39",
 "rawValue": "216.39"
 },
 {
 "format": "CURRENCY",
 "formattedValue": "$206.43",
 "rawValue": "206.43"
 },
 {
 "format": "PERCENTAGE",
 "formattedValue": "4.82%",
 "formula": "=[Price]/[Previous Price]-1",
 "rawValue": "0.04824880104636"
 },
 {
 "format": "DATE_TIME",

ListTableRows 49

Amazon Honeycode User Guide

 "formattedValue": "11/4/20 6:00 PM",
 "rawValue": "44139.75"
 }
],
 "rowId": "<msft-row-id>"
 }
],
 "workbookCursor": 1288302476
}

QueryTableRows

Note

This API does not currently support multi-select picklist values in the new Honeycode
experience.

The QueryTableRows API can be used to query for specific rows in the table using a filter function.

To find more details about using this API check the QueryTableRows API Reference page.

The following example finds all stocks that had more than 6.00% change from the previous price.
Replace <workbook-id> with your workbook id and <table-id> with the table id from the
response of ListTables API call.

AWS CLI Example

aws honeycode query-table-rows \
 --workbook-id "<workboook-id>" \
 --table-id "<table-id>" \
 --filter-formula '{"formula": "=Filter(Stocks,\"Stocks[Change]>0.06\")"}'

Python SDK Example

response = honeycode_client.query_table_rows(
 workbookId = '<workbook-id>',
 tableId = '<table-id>',
 filterFormula = { "formula": "=Filter(Stocks,\"Stocks[Change]>0.06\")"})

QueryTableRows 50

https://docs.aws.amazon.com/honeycode/latest/APIReference/API_QueryTableRows.html

Amazon Honeycode User Guide

Response

{
 "columnIds": [
 "<symbol-column-id>",
 "<price-column-id>",
 "<previous-price-column-id>",
 "<percentage-change-column-id>",
 "<last-update-column-id>"
],
 "rows": [
 {
 "cells": [
 {
 "format": "AUTO",
 "formattedValue": "AMZN",
 "rawValue": "AMZN"
 },
 {
 "format": "CURRENCY",
 "formattedValue": "$3,241.16",
 "rawValue": "3241.16"
 },
 {
 "format": "CURRENCY",
 "formattedValue": "$3,048.41",
 "rawValue": "3048.41"
 },
 {
 "format": "PERCENTAGE",
 "formattedValue": "6.32%",
 "formula": "=[Price]/[Previous Price]-1",
 "rawValue": "0.06322968367116"
 },
 {
 "format": "DATE_TIME",
 "formattedValue": "11/4/20 6:00 PM",
 "rawValue": "44139.75"
 }
],
 "rowId": "<amzn-row-id>"
 },
 {

QueryTableRows 51

Amazon Honeycode User Guide

 "cells": [
 {
 "format": "AUTO",
 "formattedValue": "FB",
 "rawValue": "FB"
 },
 {
 "format": "CURRENCY",
 "formattedValue": "$287.38",
 "rawValue": "287.38"
 },
 {
 "format": "CURRENCY",
 "formattedValue": "$265.30",
 "rawValue": "265.3"
 },
 {
 "format": "PERCENTAGE",
 "formattedValue": "8.32%",
 "formula": "=[Price]/[Previous Price]-1",
 "rawValue": "0.083226535996985"
 },
 {
 "format": "DATE_TIME",
 "formattedValue": "11/4/20 6:00 PM",
 "rawValue": "44139.75"
 }
],
 "rowId": "<fb-row-id>"
 }
],
 "workbookCursor": 1288302476
}

BatchCreateTableRows

The BatchCreateTableRows API can be used to append a batch of rows to the end of a table.

To find more details about using this API check the BatchCreateTableRows API Reference page.

The following example demonstrates using BatchCreateTableRows API to add two rows at the end
of a table. Replace <workbook-id> with your workbook id and <table-id> with the table id
from the response of ListTables API call.

BatchCreateTableRows 52

https://docs.aws.amazon.com/honeycode/latest/APIReference/API_BatchCreateTableRows.html

Amazon Honeycode User Guide

Note:

• This API takes batchItemId in the input. This is an identifier that you can assign to that
particular row so that you can link the row id in the response with the item in the request.

• The cellsToCreate map needs the ids of the columns in the table. You can get these ids from
the ListTableColumns API response.

• The column Change has a column level formula. So it does not need to be included in the
input as the column formula will be automatically applied to the new rows. You can include the
column in the input if you want to override the column formula for the new rows with a different
value.

AWS CLI Example

aws honeycode batch-create-table-rows \
 --workbook-id "<workboook-id>" \
 --table-id "<table-id>" \
 --rows-to-create '[
 {
 "batchItemId": "item-001",
 "cellsToCreate": {
 "<symbol-column-id>": { "fact": "AAA" },
 "<price-column-id>": { "fact": "23.47" },
 "<previous-price-column-id>": { "fact": "27.27" },
 "<last-updated-column-id>": { "fact": "11/5/20 6:00 PM" }
 }
 },
 {
 "batchItemId": "item-002",
 "cellsToCreate": {
 "<symbol-column-id>": { "fact": "BBB" },
 "<price-column-id>": { "fact": "108" },
 "<previous-price-column-id>": { "fact": "127.2" },
 "<last-updated-column-id>": { "fact": "11/5/20 6:00 PM" }
 }
 }
]'

Python SDK Example

def create_row_data(batch_item_id, symbol, price, previous_price, last_updated):

BatchCreateTableRows 53

Amazon Honeycode User Guide

 return {
 "batchItemId": batch_item_id,
 "cellsToCreate": {
 "<symbol-column-id>": { "fact": symbol },
 "<price-column-id>": { "fact": price },
 "<previous-price-column-id>": { "fact": previous_price},
 "<last-updated-column-id>": { "fact": last_updated }
 }
 }

response = honeycode_client.batch_create_table_rows(
 workbookId = '<workbook-id>',
 tableId = '<table-id>',
 rowsToCreate = [
 create_row_data("item-001", "AAA", "23.47", "27.27", "11/5/20 6:00 PM"),
 create_row_data("item-002", "BBB", "108", "127.2", "11/5/20 6:00 PM")
])

Response

{
 "createdRows": {
 "item-001": "<aaa-row-id>",
 "item-002": "<bbb-row-id>"
 },
 "workbookCursor": 1288497196
}

After the rows are inserted, this is how the table looks:

BatchCreateTableRows 54

Amazon Honeycode User Guide

BatchUpdateTableRows

The BatchUpdateTableRows API can be used to update the data in one or more columns of specific
rows in a table.

To find more details about using this API check the BatchUpdateTableRows API Reference page.

The following example demonstrates using BatchUpdateTableRows API to update the price column
of one row and the date column of another row in the same request. Replace <workbook-id>
with your workbook id and <table-id> with the table id from the response of ListTables API call.
The row ids <aaa-row-id> and <bbb-row-id> are from the output of the BatchCreateTableRows
API call.

AWS CLI Example

aws honeycode batch-update-table-rows \
 --workbook-id "<workboook-id>" \
 --table-id "<table-id>" \
 --rows-to-update '[
 {
 "rowId": "<aaa-row-id>",
 "cellsToUpdate": {
 "<price-column-id>": { "fact": "24.74" }
 }
 },
 {

BatchUpdateTableRows 55

https://docs.aws.amazon.com/honeycode/latest/APIReference/API_BatchUpdateTableRows.html

Amazon Honeycode User Guide

 "rowId": "<bbb-row-id>",
 "cellsToUpdate": {
 "<last-updated-column-id>": { "fact": "11/7 5:59 PM" }
 }
 }
]'

Python SDK Example

response = honeycode_client.batch_update_table_rows(
 workbookId = '<workbook-id>',
 tableId = '<table-id>',
 rowsToUpdate = [
 {
 "rowId": "<aaa-row-id>",
 "cellsToUpdate": {
 "<price-column-id>": { "fact": "24.74" }
 }
 },
 {
 "rowId": "<bbb-row-id>",
 "cellsToUpdate": {
 "<last-updated-column-id>": { "fact": "11/7 5:59 PM" }
 }
 }
])

Response

{
 "workbookCursor": 1288538679
}

After the rows are updated, this is how the table looks:

BatchUpdateTableRows 56

Amazon Honeycode User Guide

BatchUpsertTableRows

Note

This API does not currently support multi-select picklist values in the new Honeycode
experience.

The BatchUpsertTableRows API can be used to upsert one or more rows in a table. The upsert
operation takes a filter formula as input and uses it to find matching rows in the table. If matching
rows are found, cells in those rows are updated as specified in the request. If a matching row is not
found, a new row is created and cells in the new row are set as specified in the request.

To find more details about using this API check the BatchUpsertTableRows API Reference page.

The following example shows this API being called with two batch items. One batch item finds an
existing row and updates it and the second batch item creates a new row. Replace <workbook-id>
with your workbook id and <table-id> with the table id from the response of ListTables API call.

AWS CLI Example

aws honeycode batch-upsert-table-rows \
 --workbook-id "<workboook-id>" \
 --table-id "<table-id>" \
 --rows-to-upsert '[

BatchUpsertTableRows 57

https://docs.aws.amazon.com/honeycode/latest/APIReference/API_BatchUpsertTableRows.html

Amazon Honeycode User Guide

 {
 "batchItemId": "item-001",
 "filter": { "formula": "=Filter(Stocks,\"Stocks[Symbol]=%\",\"BBB\")" },
 "cellsToUpdate": {
 "<symbol-column-id>": { "fact": "BBB" },
 "<price-column-id>": { "fact": "25.32" },
 "<previous-price-column-id>": { "fact": "28.76" },
 "<last-updated-column-id>": { "fact": "11/8 6:13 PM" }
 }
 },
 {
 "batchItemId": "item-002",
 "filter": { "formula": "=Filter(Stocks,\"Stocks[Symbol]=%\",\"CCC\")" },
 "cellsToUpdate": {
 "<symbol-column-id>": { "fact": "CCC" },
 "<price-column-id>": { "fact": "110.8" },
 "<previous-price-column-id>": { "fact": "108.10" },
 "<last-updated-column-id>": { "fact": "11/8 6:13 PM" }
 }
 }
]'

Python SDK Example

def upsert_row_data(batch_item_id, filter_formula, symbol, price, previous_price,
 last_updated):
 return {
 "batchItemId": batch_item_id,
 "filter": { "formula": filter_formula },
 "cellsToUpdate": {
 "<symbol-column-id>": { "fact": symbol },
 "<price-column-id>": { "fact": price },
 "<previous-price-column-id>": { "fact": previous_price},
 "<last-updated-column-id>": { "fact": last_updated }
 }
 }

response = honeycode_client.batch_upsert_table_rows(
 workbookId = '<workbook-id>',
 tableId = '<table-id>',
 rowsToUpsert = [
 upsert_row_data("item-001", "=Filter(Stocks,\"Stocks[Symbol]=%\",\"BBB\")",
 "BBB", "25.32", "28.76", "11/8 6:13 PM"),

BatchUpsertTableRows 58

Amazon Honeycode User Guide

 upsert_row_data("item-002", "=Filter(Stocks,\"Stocks[Symbol]=%\",\"CCC\")",
 "CCC", "110.8", "108.10", "11/8 6:13 PM")
])

Response

{
 "rows": {
 "item-001": {
 "rowIds": ["<bbb-row-id>"],
 "upsertAction": "UPDATED"
 },
 "item-002": {
 "rowIds": ["<ccc-row-id>"],
 "upsertAction": "APPENDED"
 }
 },
 "workbookCursor": 1288566784
}

After the rows are upserted, this is how the table looks:

BatchDeleteTableRows

The BatchDeleteTableRows API will delete the list of rows passed in the input.

To find more details about using this API check the BatchDeleteTableRows API Reference page.

BatchDeleteTableRows 59

https://docs.aws.amazon.com/honeycode/latest/APIReference/API_BatchDeleteTableRows.html

Amazon Honeycode User Guide

The following example illustrates this by deleting the rows with stock symbols AAA , BBB and CCC
using their row ids. Replace <workbook-id> with your workbook id and <table-id> with the
table id from the response of ListTables API call.

AWS CLI Example

aws honeycode batch-delete-table-rows \
 --workbook-id "<workboook-id>" \
 --table-id "<table-id>" \
 --rowIds '["<aaa-row-id>", "<bbb-row-id">, "<ccc-row-id>"]'

Python SDK Example

response = honeycode_client.batch_delete_table_rows(
 workbookId = '<workbook-id>',
 tableId = '<table-id>',
 rowIds = ["<aaa-row-id>", "<bbb-row-id">, "<ccc-row-id>"])

Response

{
 "workbookCursor": 1288604696
}

After the rows are deleted, this is how the table looks:

BatchDeleteTableRows 60

Amazon Honeycode User Guide

Import APIs

The import APIs are useful when you want to bulk load data into tables in a workbook. The APIs
are:

• StartTableDataImportJob

• DescribeTableDataImportJob

Setting up for import APIs

For the import APIs, you’ll need to first create a table.

Create table

If you haven’t already done so, create a new workbook and add a new table. In the examples below,
we use a simple table that tracks stock prices.

ARNs and Honeycode IDs

Import APIs require the workbook id as input. You will need an app to get the workbook id. Simply
right-click on any app object in builder to access the Get ARN and IDs modal. If you don't have
a use case for an app, you can use the App Wizard to quickly create a simple app to grab the
Workbook ID and then delete the app as necessary.

Accessing Workbook ID

In the new experience, go to the Data section of the Properties Panel and select See all integration
options. In the pop-up modal, select APIs (Advanced). From here, you can copy the ID for the

Import APIs 61

API_StartTableDataImportJob.html
API_DescribeTableDataImportJob.html

Amazon Honeycode User Guide

Workbook. You can ignore the other fields (Amazon Resource Name, App ID, Screen ID, Automation
ID) as they are not needed for import APIs.

On any app screen in the classic experience, you can right-click to bring up a menu. Select Get ARN
and IDs.

From the modal that appears, you can copy the ID for the workbook. You can ignore the other
fields on that modal (Amazon Resource Name, App ID, Screen ID) as they are not needed for import
APIs.

ARNs and Honeycode IDs 62

Amazon Honeycode User Guide

ARNs and authorization

If you are using the managed IAM policies AmazonHoneycodeWorkbookFullAccess or
AmazonHoneycodeFullAccess, you will not need the ARN for authorization. The ARN is only required
to to set up authorization using IAM at a granular level.

The Honeycode resources that need to be defined in custom IAM policies for import APIs are given
below. Click the links to get more details on how to construct ARNs for those resources.

• StartTableDataImportJob: table

• DescribeTableDataImportJob: table

StartTableDataImportJob

The StartTableDataImportJob API starts a table data import job that runs in the background.
Once the job is started, you can use the DescribeTableDataImportJob API to find the status of the
import.

To find more details about using this API check the StartTableDataImportJob API Reference page.

StartTableDataImportJob 63

resource-table.html
resource-table.html
https://docs.aws.amazon.com/honeycode/latest/APIReference/API_StartTableDataImportJob.html

Amazon Honeycode User Guide

The following example shows how to import a CSV file to the Stocks table. First, create a CSV file
with contents as follows:

Symbol,Price,Previous Price,Last Update
AAA,123.17,182.21,11/9/20 6:23 PM
BBB,127.27,128.13,11/9/20 6:23 PM

Upload this CSV to an S3 bucket. Use the following AWS CLI command to generate a presigned
URL for the CSV. Be sure to replace with the S3 bucket name and with the name of the file you
uploaded.

aws s3 presign s3://<bucket-name>/<file-name>

Copy the presigned URL from the output. This URL will need to be passed in as a parameter in
the call to StartTableDataImportJob API. Now the file is ready for import. In the examples below,
replace <workbook-id> with your workbook id.

AWS CLI Example

aws honeycode start-table-data-import-job \
 --workbook-id '<workbook-id>' \
 --destination-table-id '<table-id>' \
 --dataSource '{ "dataSourceConfig": {"dataSourceUrl": "<presigned-url>" } }' \
 --dataFormat 'DELIMITED_TEXT' \
 --import-options '{
 "destinationOptions": {
 "columnMap": {
 "<symbol-column-id>": { "columnIndex": 1 },
 "<price-column-id>": { "columnIndex": 2 },
 "<previous-price-column-id>": { "columnIndex": 3 },
 "<last-update-column-id>": { "columnIndex": 4 }
 }
 },
 "delimitedTextOptions": {
 "delimiter": ",",
 "hasHeaderRow": true,
 "ignoreEmptyRows": true,
 "dataCharacterEncoding": "UTF-8"
 }
 }' \
 --client-request-token '<request-token>'

StartTableDataImportJob 64

Amazon Honeycode User Guide

Python SDK Example

response = honeycode_client.start_table_data_import_job(
 workbookId = '<workbook-id>',
 destinationTableId = '<table-id>',
 dataSource = { "dataSourceConfig": {"dataSourceUrl": "<presigned-url>" } },
 dataFormat = 'DELIMITED_TEXT',
 importOptions = {
 "destinationOptions": {
 "columnMap": {
 "<symbol-column-id>": { "columnIndex": 1 },
 "<price-column-id>": { "columnIndex": 2 },
 "<previous-price-column-id>": { "columnIndex": 3 },
 "<last-update-column-id>": { "columnIndex": 4 }
 }
 },
 "delimitedTextOptions": {
 "delimiter": ",",
 "hasHeaderRow": true,
 "ignoreEmptyRows": true,
 "dataCharacterEncoding": "UTF-8"
 }
 },
 clientRequestToken = '<request-token>')

Response

{
 "jobId": "<job-id>",
 "jobStatus": "SUBMITTED"
}

DescribeTableDataImportJob

The DescribeTableDataImportJob API describes a table data import job that was started previously.

To find more details about using this API check the DescribeTableDataImportJob API Reference
page.

AWS CLI Example

aws honeycode describe-table-data-import-job \

DescribeTableDataImportJob 65

https://docs.aws.amazon.com/honeycode/latest/APIReference/API_DescribeTableDataImportJob.html

Amazon Honeycode User Guide

 --workbook-id '<workbook-id>' \
 --table-id '<table-id>' \
 --job-id '<job-id>'

Python SDK Example

response = honeycode_client.describe_table_data_import_job(
 workbookId = '<workbook-id>',
 tableId = '<table-id>',
 jobId = '<job-id>')

Response

{
 "jobMetadata": {
 "dataSource": {
 "dataSourceConfig": {
 "dataSourceUrl": "<presigned-url>"
 }
 },
 "importOptions": {
 "delimitedTextOptions": {
 "dataCharacterEncoding": "UTF-8",
 "delimiter": ",",
 "hasHeaderRow": true,
 "ignoreEmptyRows": false
 },
 "destinationOptions": {
 "columnMap": {
 "<price-column-id>": {
 "columnIndex": 2
 },
 "<previous-price-column-id>": {
 "columnIndex": 3
 },
 "<symbol-column-id>": {
 "columnIndex": 1
 },
 "<last-update-column-id>": {
 "columnIndex": 4
 }
 }

DescribeTableDataImportJob 66

Amazon Honeycode User Guide

 }
 },
 "submitTime": 1.60456803175E9,
 "submitter": {
 "userArn": "<submitter-user-arn>"
 }
 },
 "jobStatus": "COMPLETED"
}

After the import job is completed, this is how the table looks.

Tagging APIs

Honeycode tagging APIs allow you to create, list, and delete tags in workbooks, tables, screens
or screen automations. API users can use tagging APIs to manage tags on their resources for tag-
based authorization. The APIs are:

• TagResource

• ListTagsForResource

• UntagResource

Tagging APIs 67

API_TagResource.html
API_ListTagsForResource.html
API_UntagResource.html

Amazon Honeycode User Guide

Setting up for Tagging APIs

To set up the Tagging APIs, you need to have a workbook, a table, an app screen, or an app screen
automation. Each of these produces an Amazon Resource Name (ARN) that will be necessary in a
later step.

To set up a table, refer to: Setting up for Table Metadata APIs

To set up an app screen or an app screen automation, refer to: Setting up for App Screen APIs

ARNs and Honeycode IDs

Amazon Resource Names (ARNs) uniquely identify AWS resources and are required for many
actions related to IAM policies and API calls.

For more details regarding honeycode arn. Refer to Honeycode ARN formats

To get a workbook or table ARN, refer to: ARNs and Honeycode IDs

To get an app screen or an app screen automation ARN, refer to: ARNs and Honeycode IDs

ARNs and authorization

If you are using the managed IAM policies AmazonHoneycodeWorkbookFullAccess or
AmazonHoneycodeFullAccess, you will not need the ARN for authorization. The ARN is only required
to set up authorization using IAM at a granular level.

The Honeycode resources that need to be defined in custom IAM policies for import APIs are given
below. Click the links to get more details on how to construct ARNs for those resources.

• TagResource: workbook, table, screen, screen-automation

• ListTagsForResource: workbook, table, screen, screen-automation

• UntagResource: workbook, table, screen, screen-automation

TagResource

The TagResource API allows you to tag a resource.

For more details regarding this API, check the TagResource API Reference page.

In the examples below, replace <resource-arn> with your resource ARN.

Setting up for Tagging APIs 68

setting-up-for-table-metadata-apis.html
setting-up-workbook.html
honeycode-resources.html
table-metadata-arns-and-ids.html
app-screen-arns-and-ids.html
resource-workbook.html
resource-table.html
resource-screen.html
resource-screen-automation.html
resource-workbook.html
resource-table.html
resource-screen.html
resource-screen-automation.html
resource-workbook.html
resource-table.html
resource-screen.html
resource-screen-automation.html
https://docs.aws.amazon.com/honeycode/latest/APIReference/API_TagResource.html

Amazon Honeycode User Guide

AWS CLI Example

aws honeycode tag-resource \
 --resource-arn '<resource-arn>' \
 --tags '{
 "key1": "value1"
 }'

Python SDK Example

response = honeycode_client.tag_resource(
 resourceArn='<resource-arn>',
 tags={'key1': 'value1'})

Response

{}

ListTagsForResource

The ListTagsForResource API allows you to list all of the tags for a resource.

For more details regarding this API, check the ListTagsForResource API Reference page.

In the examples below, replace <resource-arn> with your resource ARN.

AWS CLI Example

aws honeycode list-tags-for-resource \
 --resource-arn '<resource-arn>'

Python SDK Example

response = honeycode_client.list_tags_for_resource(
 resourceArn='<resource-arn>')

Response

{

ListTagsForResource 69

https://docs.aws.amazon.com/honeycode/latest/APIReference/API_ListTagsForResource.html

Amazon Honeycode User Guide

 "tags": {
 "key1": "value1"
 }
}

UntagResource

The UntagResource API allows you to untag a resource.

For more details regarding this API, check the UntagResource API Reference page.

In the examples below, replace <resource-arn> with your resource ARN.

AWS CLI Example

aws honeycode untag-resource \
 --resource-arn '<resource-arn>' \
 --tag-keys 'key1'

Python SDK Example

response = honeycode_client.untag_resource(
 resourceArn='<resource-arn>',
 tagKeys=['key1'])

Response

{}

UntagResource 70

https://docs.aws.amazon.com/honeycode/latest/APIReference/API_UntagResource.html

Amazon Honeycode User Guide

Logging Amazon Honeycode API Calls with AWS
CloudTrail

Amazon Honeycode APIs are integrated with AWS CloudTrail, a service that records all API calls and
events for AWS accounts. CloudTrail is enabled when you create an AWS account.

Using the information recorded by CloudTrail, you can identify trends and further isolate activity by
attributes, such as what API call was made, when, who made the request, and the IP address.

To learn more about CloudTrail, see the AWS CloudTrail User Guide

Honeycode activity in CloudTrail

When API activity occurs in Amazon Honeycode apps, the activity is recorded in a CloudTrail event.
You can view, search, and download recent events in your AWS account.

For an ongoing record of events in Amazon Honeycode, as well as your other AWS accounts, you
can create a trail. A trail enables CloudTrail to continuously deliver events as log files to an Amazon
S3 bucket.

All Amazon Honeycode API actions are logged by CloudTrail. For example, any calls to the
GetScreenData or InvokeScreenAutomation actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine:

• Whether the request was made with root or AWS IAM user credentials

• Whether the request was made with temporary security credentials for a role or federated user

• Whether the request was made by another AWS service

For more information, see the CloudTrail userIdentity Element .

If you don't configure a trail, you can still view the most recent events in the CloudTrail console's
event history. For more information, see Viewing Events with CloudTrail Event History .

Honeycode activity in CloudTrail 71

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon Honeycode User Guide

Honeycode log files on CloudTrail

CloudTrail log files contain one or more log entries. An event represents a single request from
any source and includes information about the requested action, the date and time of the action,
request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the Amazon
Honeycode API calls, so they won't appear in any specific order.

The following example shows a CloudTrail log entry of the GetScreenData action.

{
 "awsRegion": "us-west-2",
 "eventID": "3b61e597-4bf1-4c17-aac5-70440468f7d9",
 "eventName": "GetScreenData",
 "eventSource": "honeycode.amazonaws.com",
 "eventTime": "2020-05-21T07:07:39Z",
 "eventType": "AwsApiCall",
 "eventVersion": "1.05",
 "readOnly": true,
 "recipientAccountId": "123456789012",
 "requestID": "73ae2ce0-214b-4dc8-9378-a7a2e2d7aa4e",
 "requestParameters": {
 "appId": "9507a45a-8e7c-4b9b-bdc7-80c29b5ee3e2",
 "maxResults": 10,
 "screenId": "44e50421-8b7c-4074-a6bd-ba5d581ab020",
 "variables": "***",
 "workbookId": "cf8aff9e-3aa3-45e4-b60e-1512a2fa462c"
 },
 "responseElements": null,
 "sourceIPAddress": "12.345.67.890",
 "userAgent": "Jersey/${project.version} (HttpUrlConnection 1.8.0_201)",
 "userIdentity": {
 "accessKeyId": "ACESSKEYIDEXAMPLE12",
 "accountId": "123456789012",
 "arn": "arn:aws:sts::123456789012:assumed-role/honeycode-full-access/
HoneycodeTests-cf9c31ee-dcfd-439c-9ba0-8bb68766bcfe",
 "principalId": "PRINCIPALIDEXAMPLE1234:HoneycodeTests-cf9c31ee-
dcfd-439c-9ba0-8bb68766bcfe",
 "sessionContext": {
 "attributes": {
 "creationDate": "2020-05-21T07:07:39Z",
 "mfaAuthenticated": "false"
 },

Honeycode log files on CloudTrail 72

Amazon Honeycode User Guide

 "sessionIssuer": {
 "accountId": "123456789012",
 "arn": "arn:aws:iam::123456789012:role/honeycode-full-access",
 "principalId": "PRINCIPALIDEXAMPLE1234",
 "type": "Role",
 "userName": "honeycode-full-access"
 },
 "webIdFederationData": {}
 },
 "type": "AssumedRole"
 }
}

Similarly, the following example shows a CloudTrail log entry of the InvokeScreenAutomation
action.

{
 "awsRegion": "us-west-2",
 "eventID": "30c82beb-4d38-41ef-9dd2-961ed827412a",
 "eventName": "InvokeScreenAutomation",
 "eventSource": "honeycode.amazonaws.com",
 "eventTime": "2020-05-21T07:07:29Z",
 "eventType": "AwsApiCall",
 "eventVersion": "1.05",
 "readOnly": false,
 "recipientAccountId": "123456789012",
 "requestID": "18e22c8a-495c-4c0f-b3d3-e308541baef5",
 "requestParameters": {
 "appId": "5c132f99-d482-45be-b4f5-6deaf8067d0a",
 "automationId": "124bb3c9-8ab3-4d39-b380-6a43b63dc666",
 "clientRequestToken": "c5f201b9-76ed-4329-bb46-d4a6cc4fc638",
 "rowId": "row:6655a2f2-1e70-45a9-86ec-4d3c63d443b6/f9b70edb-486a-36b4-
b72b-89df6f92be44",
 "screenAutomationId": "124bb3c9-8ab3-4d39-b380-6a43b63dc666",
 "screenId": "d2d4b6c6-c5e4-45fc-b342-019132ffb4f8",
 "variables": "***",
 "workbookId": "aa34dd68-2077-440e-abca-470deef13e9b"
 },
 "responseElements": {
 "workbookCursor": 815985817
 },

Honeycode log files on CloudTrail 73

Amazon Honeycode User Guide

 "sourceIPAddress": "54.244.61.237",
 "userAgent": "Jersey/${project.version} (HttpUrlConnection 1.8.0_201)",
 "userIdentity": {
 "accessKeyId": "ACESSKEYIDEXAMPLE12",
 "accountId": "123456789012",
 "arn": "arn:aws:sts::123456789012:assumed-role/honeycode-full-access/
HoneycodeTests-3941fe61-25ee-4df1-ba85-411bb7e01472",
 "principalId": "PRINCIPALIDEXAMPLE1234:HoneycodeTests-3941fe61-25ee-4df1-
ba85-411bb7e01472",
 "sessionContext": {
 "attributes": {
 "creationDate": "2020-05-21T07:07:26Z",
 "mfaAuthenticated": "false"
 },
 "sessionIssuer": {
 "accountId": "123456789012",
 "arn": "arn:aws:iam::123456789012:role/honeycode-full-access",
 "principalId": "PRINCIPALIDEXAMPLE1234",
 "type": "Role",
 "userName": "honeycode-full-access"
 },
 "webIdFederationData": {}
 },
 "type": "AssumedRole"
 }
}

More AWS CloudTrail resources

Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

More AWS CloudTrail resources 74

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

Amazon Honeycode User Guide

FAQs

Topics

• How many transactions can the APIs handle per second?

• Can I trigger code elsewhere based on an event in Honeycode (e.g. a button being clicked on in a
Honeycode app or a row being added to a Honeycode table)?

• Can I use system variables like SYS_USER, conditional visibility, or personalization in screens I
intend to use with Honeycode APIs?

• Can I get a history of Honeycode API calls made on my account for security analysis and
operational troubleshooting purposes?

• What is the size limit of the file that can be imported?

• What file types can I import into Honeycode?

• Would existing automations work on the new data?

• Can I import data with emails and rowlink selections?

• Can I control the column mapping from my data to the Honeycode table?

• Can I import from more than one file for a table?

• What if I want to import more than 1000 rows?

How many transactions can the APIs handle per second?

Throttling will be per AWS Account. Currently, these are the limits (subject to change):

• GetScreenData: 25 tps rate/250 tps burst

• InvokeScreenAutomation: 5 tps rate/50 tps burst

• StartTableDataImportJob: 1 tps rate/5 tps burst

• DescribeTableDataImportJob: 5 tps rate/25 tps burst

• ListWorkbooks, ListTables, ListTableColumns, QueryTableRows, ListTableRows and
ListTagsForResource: 25 tps rate/250 tps burst

• BatchCreateTableRows, BatchDeleteTableRows, BatchUpdateTableRows, BatchUpsertTableRows,
TagResource and UntagResource: 5 tps rate/50 tps burst

How many transactions can the APIs handle per second? 75

Amazon Honeycode User Guide

Can I trigger code elsewhere based on an event in Honeycode
(e.g. a button being clicked on in a Honeycode app or a row
being added to a Honeycode table)?

Yes, you can use webhooks. Please see this article.

Can I use system variables like SYS_USER, conditional visibility,
or personalization in screens I intend to use with Honeycode
APIs?

No. These concepts are meant to control the app experience for users. However, since there is no
concept of logged-in user when interacting with apps programmatically, they will not be expressed
when screens are read from the APIs.

Can I get a history of Honeycode API calls made on my account
for security analysis and operational troubleshooting purposes?

Yes. To receive a history of Honeycode API calls made on your account, simply turn on CloudTrail in
the AWS Management Console. The AWS API call history produced by CloudTrail enables security
analysis, resource change tracking, and compliance auditing. Learn more about CloudTrail here.

What is the size limit of the file that can be imported?

The file size should be less than 100 MB. The file that you want to import has to be a delimited
text file containing one table, where each line represents a row, and fields separated by a delimiter
such as a comma. It can contain up to 1000 rows, including headers. The file can have any number
of columns; however, a maximum of 99 columns will be imported by the API. If there are more
than 99 columns, it will import the first 99 columns. Alternatively, a column mapping can also be
specified to import particular columns.

What file types can I import into Honeycode?

The file that you want to import has to be a delimited text file containing one table, where each
line represents a row, and fields separated by a delimiter such as comma, tab or a pipe. The

Can I trigger code elsewhere based on an event in Honeycode (e.g. a button being clicked on in a
Honeycode app or a row being added to a Honeycode table)?

76

https://honeycodecommunity.aws/t/7867
https://aws.amazon.com/cloudtrail/

Amazon Honeycode User Guide

delimiter can be specified at the time of import. Support for other file types is not present at the
moment. You could try converting your data to a comma separated (CSV) or tab separated (TSV)
format to import into Honeycode.

Would existing automations work on the new data?

Yes. If the table you are importing data into has some automations associated with it, they will
continue to trigger for the new data.

Can I import data with emails and rowlink selections?

Yes. As a precursor, the target Honeycode table column must be formatted as Contact/Rowlink
before importing data. Emails of team members who belong to the org in which the workbook is
created will get auto-formatted as a contact. For emails that don’t, the data will still be imported.
However, the email will show as plain text and not contact formatted. Rowlinks will be detected
from the input data, as long as the values match the display value of corresponding rowlink.

Can I control the column mapping from my data to the
Honeycode table?

Yes. You can specify column mapping in importOptions. For details, check the API Reference
page for StartTableDataImportJob here .

Can I import from more than one file for a table?

You can import data from only one file into one table in a single API call. However, you can make
multiple calls to the import API sequentially for each file. Please note that your billing tier limits
will still apply. For instance, if you are in the free tier, you can only have 2500 rows in the table, and
import will honor the same limits.

What if I want to import more than 1000 rows?

With one operation, you can only import 1000 rows. However, you can break the file into multiple
files, each containing 1000 rows and call import sequentially for each part. Please note that your
billing tier limits will still apply. For instance, if you are in the free tier, you can only have 2500 rows
in the table, and import will honor the same limits.

Would existing automations work on the new data? 77

https://docs.aws.amazon.com/honeycode/latest/APIReference/API_StartTableDataImportJob.html#API_StartTableDataImportJob_RequestBody

Amazon Honeycode User Guide

Document History for User Guide

The following table describes the documentation for this release of Amazon Honeycode.

• API version: latest

• Latest documentation update: August 10, 2022

Change Description Date

Added notification banner
regarding the end of beta
service to guide

The Amazon Honeycode beta
service is ending on February
29, 2024. Added a deprecati
on banner to each topic in the
guide with information.

February 22, 2024

Multi-select picklists Honeycode Added read and
write API support for multi-
select picklist.

January 14, 2022

Honeycode tagging APIs Honeycode released new APIs
to allow user to create, delete
and list tags on resources. For
more information, see Getting
started with Honeycode
tagging APIs

January 12, 2022

New APIs to interact with
Honeycode tables

Honeycode introduced APIs to
read and write directly from
tables. Use APIs to pull table
and column metadata, then
use the read and write APIs
to programmatically read
and write from the tables.
For more information, see
Interacting with Honeycode
workbooks via SDK

December 1, 2020

78

tagging-apis.html
tagging-apis.html
tagging-apis.html
getting-started.html
getting-started.html

Amazon Honeycode User Guide

Initial Version Initial version of the
documentation for Amazon
Honeycode

June 24, 2020

79

Amazon Honeycode User Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

80

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Amazon Honeycode
	Table of Contents
	What Is Amazon Honeycode?
	Connecting Amazon Honeycode to AWS
	Accessing Developer Tools and APIs
	AWS Software Development Kit (SDK)
	Identity and Access Management (IAM)
	Authentication
	Authorization
	Resource ARNs
	Workbook ARN format
	Table ARN format
	Screen ARN format
	Screen Automation ARN format

	Authorizing Team Connections
	ListTeamAssociations
	ApproveTeamAssociation
	RejectTeamAssociation

	Interacting with Honeycode workbooks via SDK
	App Screen APIs
	Table Metadata APIs
	Table Row Operation APIs
	Import APIs
	Tagging APIs
	App Screen APIs
	Setting up for App Screen APIs
	Configuring app screens

	ARNs and Honeycode IDs
	GetScreenData
	InvokeScreenAutomation
	Sample API calls
	Sample API calls using AWS CLI
	Making a basic query
	Using next token
	Passing named variables
	Adding a row
	Overwriting a row
	Deleting a row

	Sample API calls using Python SDK
	Making a basic query
	Using next token
	Passing named local variables
	Adding, overwriting and deleting rows

	Table Metadata APIs
	Setting up for Table Metadata APIs
	ARNs and Honeycode IDs
	ListTables
	AWS CLI Example
	Python SDK Example
	Response

	ListTableColumns
	AWS CLI Example
	Python SDK Example
	Response

	Table Row Operation APIs
	Setting up for table row operation APIs
	ARNs and Honeycode IDs
	ListTableRows
	AWS CLI Example
	Python SDK Example
	Response
	AWS CLI Example (nextToken)
	Python SDK Example (nextToken)
	Response (nextToken)
	AWS CLI Example (row ids)
	Python SDK Example (row ids)
	Response

	QueryTableRows
	AWS CLI Example
	Python SDK Example
	Response

	BatchCreateTableRows
	AWS CLI Example
	Python SDK Example
	Response

	BatchUpdateTableRows
	AWS CLI Example
	Python SDK Example
	Response

	BatchUpsertTableRows
	AWS CLI Example
	Python SDK Example
	Response

	BatchDeleteTableRows
	AWS CLI Example
	Python SDK Example
	Response

	Import APIs
	Setting up for import APIs
	ARNs and Honeycode IDs
	StartTableDataImportJob
	AWS CLI Example
	Python SDK Example
	Response

	DescribeTableDataImportJob
	AWS CLI Example
	Python SDK Example
	Response

	Tagging APIs
	Setting up for Tagging APIs
	ARNs and Honeycode IDs
	TagResource
	AWS CLI Example
	Python SDK Example
	Response

	ListTagsForResource
	AWS CLI Example
	Python SDK Example
	Response

	UntagResource
	AWS CLI Example
	Python SDK Example
	Response

	Logging Amazon Honeycode API Calls with AWS CloudTrail
	Honeycode activity in CloudTrail
	Honeycode log files on CloudTrail
	More AWS CloudTrail resources

	FAQs
	How many transactions can the APIs handle per second?
	Can I trigger code elsewhere based on an event in Honeycode (e.g. a button being clicked on in a Honeycode app or a row being added to a Honeycode table)?
	Can I use system variables like SYS_USER, conditional visibility, or personalization in screens I intend to use with Honeycode APIs?
	Can I get a history of Honeycode API calls made on my account for security analysis and operational troubleshooting purposes?
	What is the size limit of the file that can be imported?
	What file types can I import into Honeycode?
	Would existing automations work on the new data?
	Can I import data with emails and rowlink selections?
	Can I control the column mapping from my data to the Honeycode table?
	Can I import from more than one file for a table?
	What if I want to import more than 1000 rows?

	Document History for User Guide
	AWS Glossary

