
Programmer's Guide

ExpressLink

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

ExpressLink Programmer's Guide

ExpressLink: Programmer's Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

ExpressLink Programmer's Guide

Table of Contents

AWS IoT ExpressLink programmer's guide v0.5 .. 1
1 Overview ... 2
2 Run states ... 3
3 ExpressLink commands .. 4

3.1 ExpressLink commands format ... 4
3.2 Delimiters and escaping ... 6
3.3 Maximum values ... 6
3.4 Data processing .. 6
3.5 Command responses and error codes .. 7
3.6 Power and connection control .. 10

4 Messaging ... 14
4.1 Messaging topic model ... 14

5 Configuration Dictionary ... 20
5.1 Data values referenced ... 21
5.2 Data accessed through the CONF command ... 21
5.3 Configuration commands ... 26

6 Event handling .. 27
6.1 Event handling commands .. 28
6.2 Diagnostic commands ... 29

7 ExpressLink module OTA updates ... 30
7.1 ExpressLink module support of Host Processor OTA ... 31
7.2 OTA commands .. 35
7.3 OTA update jobs .. 40
7.4 Module OTA signature verification ... 41
7.5 Module OTA certificate updates ... 41
7.6 Module OTA override .. 42
7.7 Synchronized Module and Host update sequence .. 42
7.8 Host OTA updates .. 43
7.9 Host OTA Signature Verification ... 43
7.10 Host OTA certificate update .. 44
7.11 Server Root Certificate Update .. 45

8 AWS IoT Services .. 46
8.1 Device Defender ... 46
8.2 AWS IoT Device Shadow .. 47

iii

ExpressLink Programmer's Guide

8.3 AWS IoT JOBS .. 47
9 Additional services ... 48

9.1.1 TIME?: Request current time information ... 48
9.1.2 WHERE?: Request location information ... 48

iv

ExpressLink Programmer's Guide

AWS IoT ExpressLink programmer's guide v0.5

Topics

• 1 Overview

• 2 Run states

• 3 ExpressLink commands

• 4 Messaging

• 5 Configuration Dictionary

• 6 Event handling

• 7 ExpressLink module OTA updates

• 8 AWS IoT Services

• 9 Additional services

AWS IoT ExpressLink commands

• AT

• CONF

• CONF {certificate key}=pem

• CONF?

• CONF? {certificate} pem

• CONFMODE

• CONNECT

• CONNECT?

• DEFENDER

• DIAG

• DISCONNECT

• EVENT?

• FACTORY_RESET

• GET

1

ExpressLink Programmer's Guide

• GET{#}

• GET0

• JOB

• OTA APPLY

• OTA CLOSE

• OTA FLUSH

• OTA READ

• OTA SEEK

• OTA?

• RESET

• SEND

• SHADOW

• SLEEP#

• SUBSCRIBE#

• TIME?

• UNSUBSCRIBE#

• WHERE?

Tables

• Table 1 - Error codes

• Table 2 - Configuration Dictionary Persistent Keys

• Table 3 - Configuration Dictionary Non-persistent Keys

• Table 4 - ExpressLink event codes

• Table 5 - Reserved OTA file type codes (0-255)

• Table 6 - ExpressLink Defender metrics

1 Overview

This document defines the Application Programming Interface (API) that all AWS IoT ExpressLink
compliant connectivity modules are required to implement to connect any host processor to the
AWS cloud.

1 Overview 2

ExpressLink Programmer's Guide

ExpressLink modules were conceived after discussions with microcontroller vendors, OEMs, and
module makers. These modules reduce the complexity and repetitiveness of connecting existing
and new hardware and software designs to new or different MCUs and RTOSs. This allows a
scalable migration for millions of embedded applications to cloud-connected applications.

2 Run states

Although an ExpressLink module operates as a state machine that moves through a number of
internal states (see figure 1 for a partial representation), its user interface is designed to abstract
these details entirely. This removes all the complexity from the concern of an application or host
processor.

Figure 1 - ExpressLink internal states diagram (partial)

The application or host processor is presented with a small command set that is independent from
the connectivity solution offered by the specific module (Ethernet, cellular, Wi-Fi, ...).

The command interface is designed to be stateless, with all interactions initiated exclusively from
the host side. When an asynchronous event occurs (a message is received or an internal error
condition occurs), the ExpressLink module queues the event and flags its availability to the host. A
host can choose to ignore most event notifications and only periodically poll the receive queue if
desired. (See 6.1 Event handling commands.)

2 Run states 3

ExpressLink Programmer's Guide

3 ExpressLink commands

These commands are sent to and from the UART. The default UART configuration shall be 115200,
8, N, 1 (baud rate: 115200; data bits: 8; parity: none; stop bits: 1). There is no hardware or software
flow control for UART communications. The baud rate is NOT configurable.

3.1 ExpressLink commands format

All ExpressLink commands assume the following general format:

◊ AT+{command}[#][?]{separator}[parameter]{eol}

Where:

3.1.1 {command}

A short, alphabetical character string matching one of the commands listed in the following
sections (CONNECT, SEND).

Note: Commands are not case sensitive, although in this document, uppercase is always used
for consistency.

Returns:

3.1.1.1 ERR3 COMMAND NOT FOUND

If the command is unknown, then the module returns 'COMMAND NOT FOUND'.

3.1.2 [#]

An optional decimal (0..N) suffix qualifier (multiple digits allowed, only used by a few
commands).

Returns:

3.1.2.1 ERR4 PARAMETER ERROR

If the command does not use a numeric suffix, the module returns 'PARAMETER ERROR'.

3.1.2.2 ERR4 PARAMETER ERROR

If the numeric suffix is out of the valid range for the command, the module returns
'PARAMETER ERROR'.

3 ExpressLink commands 4

ExpressLink Programmer's Guide

3.1.3 [?]

A query marker used with some commands to indicate that information is being requested.

Returns:

3.1.3.1 ERR22 INVALID QUERY

If the command does not respond to a query request, then the module returns 'INVALID
QUERY'.

3.1.4 {separator}

A single ASCII space character (0x20).

Returns:

3.1.4.1 ERR2 PARSE ERROR

If ANY character other than 0x20 is present after the first digit or '?' in the command string,
then the module returns 'PARSE ERROR'.

3.1.5 [parameter]

An (escaped) ASCII string with the data required for the command.

Returns:

3.1.5.1 ERR4 PARAMETER ERROR

If the command is unable to process the parameter supplied, then the module returns
'PARAMETER ERROR'.

3.1.6 {eol}

A single ASCII newline character (0x0a).

3.1.7 Parameter string note

The parameter string includes all bytes from the separator to the {eol}, not including either the
separator or the {eol}. ALL ASCII values from 0 - 0x1F are valid in the parameter string.

3.1.8 Numerical suffix range

The maximum value allowed for the numerical suffix is implementation-specific (typically 0-15).

3.1 ExpressLink commands format 5

ExpressLink Programmer's Guide

3.2 Delimiters and escaping

The format described in the previous section, and the specific choice of delimiters, removes the
need for quotes surrounding parameters, and for other delimiters between successive parameters.
As a further benefit, this removes the need for most escaping sequences with the exclusion of the
ASCII characters {eol} (0x0a) and backslash ('\').

3.2.1 Escaping {eol} in the parameter string

{eol} (0x0a) in the parameter string is represented by the following sequence: 0x5C 0x41

3.2.2 Escaping backslash ('\') in the parameter string

Backslash (0x5C) in the parameter string is represented by the following sequence: 0x5C 0x5C

3.2.2.1 All other combinations of the escape sequence are illegal and the module returns 'ERR5
INVALID ESCAPE'.

3.3 Maximum values

3.3.1 Maximum bytes in the formatted command string

The formatted command string as received by ExpressLink can be up to 5K bytes in length.

◊ AT+[5K bytes]{eol}

3.3.2 Maximum command word size

The command word portion of the command string can be up to 32 bytes long.

3.4 Data processing

3.4.1 Data entry

The data entry for a command begins with the 'AT+' and ends with the {eol}. The module will
not begin running a command before receiving the {eol}.

3.4.2 Data overflow

If the data buffer overflows during the data entry phase of a command, the ExpressLink module
continues to accept, but discards, the incoming data until the next {eol} arrives.

3.4.2.1 The module returns 'ERR1 OVERFLOW' and the entire message is discarded.

3.2 Delimiters and escaping 6

ExpressLink Programmer's Guide

3.4.3 Data arriving after {eol}

Any data that arrives after {eol} and before 'AT+' will be ignored and discarded.

3.5 Command responses and error codes

All commands respond when the command has been completed. In some cases, this can take a
significant amount of time.

3.5.1 General response formats:

◊ OK|ERR{#}{separator}[detail]{eol}

Where:

• OK: Indicates that the command was valid and ran.

• ERR{#}: Error codes are listed in Table 1 - Error codes .

• {separator}: Is a single ASCII space character (0x20).

• [detail]: Is an optional ASCII string.

• {eol}: Is a single ASCII newline character (0x0a).

Table 1 - Error codes

Code ExpressLink text Description

1 OVERFLOW More bytes have been
received than fit in the receive
buffer.

2 PARSE ERROR Message not formatted
correctly.

3 COMMAND NOT FOUND Invalid command.

4 PARAMETER ERROR Command does not recognize
the parameters.

5 INVALID ESCAPE An incorrect escape sequence
was detected.

3.5 Command responses and error codes 7

ExpressLink Programmer's Guide

Code ExpressLink text Description

6 NO CONNECTION Command requires an active
connection to AWS IoT.

7 TOPIC OUT OF RANGE The topic index is larger than
the maximum valid topic
index.

8 TOPIC UNDEFINED The topic index provided
references an empty topic
position.

9 INVALID KEY LENGTH Key is longer than 16
characters.

10 INVALID KEY NAME A non-alphanumeric
character was used in the key
name.

11 UNKNOWN KEY The supplied key cannot be
found in the system.

12 KEY READONLY The key cannot be written.

13 KEY WRITEONLY The key cannot be read.

14 UNABLE TO CONNECT The module is unable to
connect.

15 TIME NOT AVAILABLE A time fix could not be
obtained.

16 LOCATION NOT AVAILABLE A location fix could not be
obtained.

17 MODE NOT AVAILABLE The requested mode is not
available.

3.5 Command responses and error codes 8

ExpressLink Programmer's Guide

Code ExpressLink text Description

18 ACTIVE CONNECTION An active connection prevents
the command from running.

19 HOST IMAGE NOT AVAILABLE A host OTA command was
issued but no valid HOTA
image is present in the OTA
buffer.

20 INVALID ADDRESS The OTA buffer pointer is out
of bounds (> image size).

21 INVALID OTA UPDATE The OTA update failed.

22 INVALID QUERY The command does provide a
query option.

23 INVALID SIGNATURE A signature verification failed.

3.5.2 Response timeout

The maximum runtime for every command must be listed in the datasheet. No command can take
more than 120 seconds to complete (the maximum time for a TCP connection timeout).

3.5.3 AT: Communication test

By sending only the 'AT' (attention) command, the host can verify the presence and readiness of
the module command parser.

Example:

AT{eol} # request the module's attention

Returns:

OK{eol}

If the module is connected and the command parser active, then the module returns 'OK'.

3.5 Command responses and error codes 9

ExpressLink Programmer's Guide

3.6 Power and connection control

3.6.1 CONNECT?: Request the connection status

Requests the current status of the module's connection to the AWS cloud.

Returns:

OK {status}

3.6.1.1 OK 1

If the connection is active, then the module returns 'OK 1'.

3.6.1.2 OK 0

If the connection is inactive, then the module returns 'OK 0'.

3.6.2 CONNECT: Explicitly request a module to connect to AWS IoT Core

Request a connection to the AWS cloud, bringing an active device into a higher power consumption
mode where it is able to communicate with the AWS IoT Core endpoint.

Returns:

3.6.2.1 OK 1 CONNECTED

The module has successfully connected to AWS IoT Core.

3.6.2.2 ERR14 UNABLE TO CONNECT [detail]

The module is unable to connect. Additional clues can be provided by the optional [detail]
provided (for example, 'Invalid Endpoint').

If the ExpressLink module is already connected, issuing a CONNECT command does not return an
error, but simply returns immediately with a success value ('OK CONNECTED').

In case of a connection failure, the ExpressLink module keeps a timestamp of the event. This is
used to ensure that a subsequent (repeated) connection request complies with the correct backoff
timing limits. If the retry request from the host arrives too close to the previous attempt (the
interval between requests is shorter than the prescribed minimum backoff time), the ExpressLink
module automatically delays running the command. Delays will increase according to the backoff
algorithm until a successful connection is established.

3.6 Power and connection control 10

ExpressLink Programmer's Guide

Example:

AT+CONNECT # request to connect
OK 1 CONNECTED # connection established successfully

Or

ERR14 UNABLE TO CONNECT Invalid Endpoint

3.6.3 DISCONNECT: Leave the connected state and enter the active state

This command allows the host to prepare for a transition to low power (using the SLEEP
command), or to update the connection parameters before it attempts to reconnect again with the
changed parameters (using a new CONNECT command).

Returns:

3.6.3.1 OK 0 DISCONNECTED

If the module is already disconnected, the command does not return an error, and instead returns
immediately with a success value ('OK').

3.6.4 SLEEP# [duration]: Request to enter a low power mode

This command forces the module to enter a low power mode. ExpressLink module manufacturers
can implement specific low power modes with increasing values (#) that correspond to deeper
sleep states (as capable) to provide the lowest power consumption and longest possible battery
life. The duration parameter, if present, indicates the number of seconds before the module awakes
automatically. If absent, the module remains in low power mode until a Reset event is generated
externally, or a new AT CONNECT command is received.

A SLEEP command without a numerical suffix defaults to mode 0. This is a basic low power
mode where the ExpressLink module disconnects and reduces its power consumption as low as
possible. At the same time, it maintains the serial interface active, and preserves the contents of all
configuration parameters and the status dictionary.

Be aware that advanced low power modes can deactivate the serial command interface. In these
cases, in absence of the sleep duration parameter, the only way to awaken the device is to apply an
external reset signal.

3.6 Power and connection control 11

ExpressLink Programmer's Guide

Similarly, a deep sleep state might imply loss of all volatile (RAM) information, including all module
state information and configuration parameters that are not maintained in non-volatile memory
(for example, Topics). The host processor must reconfigure such parameters as required by the
application.

Returns:

3.6.4.1 OK [{detail}]

The device is ready and will immediately proceed to the lower power mode selected.

3.6.4.2 ERR18 ACTIVE CONNECTION

The device cannot transition to a low power mode because there is an active cloud connection.
Use the DISCONNECT command first to shut down the connection.

Example 1:

AT+SLEEP 100 # Disconnect and suspend all activities for 100 seconds
OK # Drop connections and goes to sleep
AT+CONNECT # Resume connection and all pending activities

Example 2:

AT+SLEEP9 # Goes to deep sleep (proprietary mode) indefinitely
OK

Note that the device might require a hardware reset to be re-awakened, and all status (non-
volatile) information might be lost requiring a new initialization and configuration.

3.6.5 CONFMODE [parameter]: Activate modal credential entry

ExpressLink modules that require additional user credentials can be set by the host to enter
CONFMODE (see Figure 1) to enable or repurpose an interface to receive additional connection
credentials from user input.

Example 1: An ExpressLink Wi-Fi module could use this command to enter a SoftAP mode,
temporarily assume the role of an Access Point, and serve an HTML form. This would allow the
user to enter the local Wi-Fi router credentials using a mobile device web browser. The optional
parameter could be used to provide a customized, unique SSID based on the device UID.

3.6 Power and connection control 12

ExpressLink Programmer's Guide

Example 2: If a Bluetooth interface is available, the ExpressLink module could receive the
credentials using a serial interface (SPP profile). For Bluetooth LE modules, this could be performed
using a dedicated (GATT) service using a custom mobile application.

Returns:

3.6.5.1 OK CONFMODE ENABLED

The device has entered CONFMODE and is ready to receive user input.

3.6.5.2 ERR17 MODE NOT AVAILABLE

This ExpressLink model/version does not support CONFMODE.

3.6.5.3 ERR18 CURRENT CONNECTION

The device cannot enter CONFMODE because it is currently connected. The host must
disconnect first.

While in CONFMODE, an ExpressLink module can still process all commands that do not require an
active connection (for example, 'AT+CONF? Version'). Commands that require an active connection
return 'ERR6 NO CONNECTION'. Attempting to issue a CONNECT command while in CONFMODE
results in an 'ERR14 UNABLE TO CONNECT'.

The host may issue a RESET command at any time to shut down CONFMODE (see Figure 1).

A CONFMODE notification event (see Table 4 - ExpressLink event codes is provided to the host
when the entry of new credentials has been completed. Only after that can the host issue a new
CONNECT command to attempt to establish a connection using the newly entered credentials.

3.6.6 RESET: Request a reset of the ExpressLink internal state

This command disconnects the device (if connected) and resets its internal state. Non-persistent
configuration parameters (see Table 3 - Configuration Dictionary Non-persistent Keys) are
reinitialized, all subscriptions are terminated, and the message queue is emptied.

Returns:

3.6.6.1 OK

If the command was successful, the module returns 'OK'.

3.6 Power and connection control 13

ExpressLink Programmer's Guide

3.6.7 FACTORY_RESET: Request a factory reset of the ExpressLink module

This command performs a full factory reset of the ExpressLink module, including re-initializing all
non-persistent configuration parameters (see Table 3 - Configuration Dictionary Non-persistent
Keys), but also selected persistent parameters as indicated in Table 2 - Configuration Dictionary
Persistent Keys (see the Factory Reset column).

Returns:

3.6.7.1 OK

If the command was successful, the module returns 'OK'.

4 Messaging

4.1 Messaging topic model

The ExpressLink messaging system relies on a list of topics defined in the configuration dictionary
(see Table 2 - Configuration Dictionary Persistent Keys). Each topic is assigned an index that can
be used to dereference the assigned string value. Index 0 has a special meaning, while all other
index values up to an implementation-specific maximum index can be used by the host to define
additional topics. Messaging topics defined in this list are managed independently from other
topics eventually used by ExpressLink to handle Jobs, OTA, and shadow updates.

4.1.1.1

Topic Index 0 is reserved as a catch-all for messages that do not match other existing topics (the
list of topics must not contain an entry for Topic0).

4.1.1.2

Topic Index{MaxTopic} is an implementation-dependent value ≥ 16.

4.1.2 Topic usage rules

ExpressLink uses the following rules for creating the topics used to publish and subscribe.

4.1.2.1 Default TopicRoot

The default topic root is used to prefix topics that are used in SEND/GET and SUBSCRIBE
commands. The TopicRoot is meant to simplify the work the host must do to assemble a path

4 Messaging 14

ExpressLink Programmer's Guide

that contains its UID/ThingName (whose default value is as shown in Table 2 - Configuration
Dictionary Persistent Keys).

4.1.2.2 Topic Strings prefixed with '/' are complete

Topic strings that are prefixed with '/' are considered complete. The topic root will not be
prepended to the topic name. The leading '/' will be stripped before using the topic to publish
or subscribe.

4.1.2.3 Publish Data Topics are <TopicRoot>/<Topic@Index>

Topic names used for publishing are created by combining the TopicRoot (set in the CONF
dictionary) with the values at the indexed position in the topic table.

4.1.2.4 Receive Data Topics are <TopicRoot>/<Topic@Index>

Topic names used for subscriptions are created by combining the TopicRoot (set in the CONF
dictionary) with the value at the indexed position in the topic.

4.1.3 SEND {topic} message: Publish msg on the specified topic

Where:

{topic}

A string formatted according to topic rules.

message

The message to publish (string).

Example 1:

AT+SEND data Hello World # Publish the classic 'Hello World' message on topic 'data'
OK # Message sent

4.1.4 SEND{#} message: Publish msg on a topic selected from topic list

Where:

{#}

The index of a topic in CONFIG dictionary (1..MaxTopic).

4.1 Messaging topic model 15

ExpressLink Programmer's Guide

message

The message to publish (string).

Example 2:

AT+SEND2 Hello World # Publish 'Hello World' on Topic2
OK # Message Sent

Returns:

4.1.4.1 OK

If the message is sent successfully, then the module returns 'OK'.

4.1.4.2 ERR6 NO CONNECTION

If no connection has been made, then the module returns 'NO CONNECTION'.

Example 3:

AT+SEND1 Hello World # Publish Hello World on Topic1
ERR6 NO CONNECTION # A connection has not been established

4.1.4.3 ERR7 TOPIC OUT OF RANGE

If the supplied topic index is larger than the maximum allowed topic number, the module
returns 'TOPIC OUT OF RANGE'.

Example 4:

AT+SEND99 Hello World # Publish Hello World on Topic99
ERR7 TOPIC OUT OF RANGE # Topic 99 is not within the available range of topics

4.1.4.4 ERR8 TOPIC UNDEFINED

If the supplied topic index points to a topic entry that has not been defined, the module returns
'TOPIC NOT DEFINED'.

Example 5:

4.1 Messaging topic model 16

ExpressLink Programmer's Guide

AT+SEND3 Hello World # Publish Hello World on Topic3
ERR8 TOPIC UNDEFINED # The key Topic3 was not found in the config dictionary

4.1.5 GET: Request next message pending on any topic

Retrieve the next message received in the order of arrival.

Returns:

4.1.5.1 OK{separator}<Topic>{separator}<MESSAGE>{eol}

If a message is available on any topic, the module responds with 'OK' followed by the topic and
the message.

Example 1:

AT+GET # poll for messages received on any topic
OK data Hello World # a message was received from topic 'data'

4.1.5.2 OK{eol}

If no message was received on any topic, the module responds with 'OK' followed by {eol}.

4.1.6 GET0: Request next message pending on an unassigned topic

Retrieve the next message received on a topic that was not in the topic list.

Returns:

4.1.6.1 OK{separator}<Topic>{separator}<MESSAGE>{eol}

Example 2:

AT+GET0 # poll for messages received on any unassigned topic
OK data Hello World # a message was received from topic 'data'

4.1.6.2 OK{eol}

If no message was received on any unassigned topic, the module returns 'OK' followed by {eol}.

4.1 Messaging topic model 17

ExpressLink Programmer's Guide

4.1.7 GET{#}: Request next message pending on the indicated topic

Retrieve the next message received on a topic at the specified index # (1..MaxTopic) in the topic list.

Returns:

4.1.7.1 OK{separator}{MESSAGE}{eol}

If a message is available on the indicated topic, the module responds with 'OK' followed
immediately by the message.

Example 3:

AT+GET2 # select messages received on Topic2
OK Hello World # a message received on the topic at index 2 in the list of topics

4.1.7.2 OK{eol}

If a message is NOT available matching the requested topic, the module responds with 'OK'
followed by {eol}.

4.1.7.3

Even if there is no active connection, a normal read from the message queue takes place.

4.1.7.4 ERR7 TOPIC OUT OF RANGE

If the supplied topic index is larger than the maximum allowed topic number, then the module
returns 'TOPIC OUT OF RANGE'.

4.1.7.5 ERR8 TOPIC UNDEFINED

If the requested topic is not defined, then the module returns 'TOPIC UNDEFINED'.

4.1.7.6 Message queue overflow conditions

If the host fails to retrieve a message and does not free up space and the buffer capacity is
exceeded, an overrun occurs. The oldest message in the buffer will be lost. The condition will
be reported as a new (OVERFLOW) event and added to the event queue. It is then accessible to
the host processor by means of the EVENT? command. Also, the overflow condition is reported
in the status dictionary and can be verified by using the STAT? Overflow command. If there is
overflow, the number of messages-received events in the queue will exceed the actual number
of messages that are present.

4.1 Messaging topic model 18

ExpressLink Programmer's Guide

4.1.8 SUBSCRIBE{#}: Subscribe to the indicated topic

The module subscribes to the topic and start receiving messages. Incoming messages trigger
events. The messages can be read with a GET{#} command.

Note that this is a stateless feature; the ExpressLink module will request a subscription to the
MQTT broker, but will not retain information about its current state.

4.1.8.1 If a topic number is provided, use the topic at the specified index.

Note

Sending a message to a topic to which a module is subscribed results in the broker sending
a copy back to the module.

Example 1:

AT+CONF TopicRoot=building1/floor1
AT+CONF Topic1=sensor1/state
AT+SUBSCRIBE1 # The module will subscribe to the topic building1/floor1/sensor1/
state

Example 2:

AT+CONF Topic2=/sensor1/state
AT+SUBSCRIBE2 # The module will subscribe to the topic sensor1/state

Returns:

4.1.8.2 ERR6 NO CONNECTION

If no connection has been made, then the module returns 'NO CONNECTION'.

4.1.8.3 ERR8 TOPIC UNDEFINED

If the requested topic is not defined, then the module returns 'TOPIC NOT DEFINED'.

4.1.8.4 ERR7 TOPIC OUT OF RANGE

If the supplied topic index is larger than the maximum allowed topic number, then the module
returns 'TOPIC OUT OF RANGE'.

4.1 Messaging topic model 19

ExpressLink Programmer's Guide

4.1.9 UNSUBSCRIBE{#}: Unsubscribe from Topic#

The device unsubscribes from the selected topic and stops receiving its messages/events.

4.1.9.1 Use the topic at the specified index.

Note

Sending a message to a topic to which the module is subscribed results in the broker
sending a copy back to the module.

Example 1:

AT+CONF TopicRoot=building1/floor1
AT+CONF Topic1=sensor1/state
AT+SUBSCRIBE1 # The module will subscribe to topic building1/floor1/sensor1/state
...
AT+UNSUBSCRIBE1 # The module will unsubscribe topic building1/floor1/sensor1/state

Returns:

4.1.9.2 ERR6 NO CONNECTION

If no connection has been made, then the module returns 'NO CONNECTION'.

4.1.9.3 ERR8 TOPIC UNDEFINED

If the requested topic is not defined, then the module returns 'TOPIC NOT DEFINED'.

4.1.9.4 ERR7 TOPIC INDEX OUT OF RANGE

If the supplied topic index is larger than the maximum allowed topic number, then the module
returns 'TOPIC OUT OF RANGE'.

5 Configuration Dictionary

The configuration dictionary is a key-value store containing all the options necessary for the proper
functioning of ExpressLink modules.

5 Configuration Dictionary 20

ExpressLink Programmer's Guide

5.1 Data values referenced

5.1.1.1 Maximum key length is 16 characters

A key can be from 1 to 16 characters.

5.1.1.2 ERR9 INVALID KEY LENGTH

If the command sends a key with more than 16 characters, the ExpressLink module returns
'ERR9 INVALID KEY LENGTH'.

5.1.1.3 Valid key characters are 0-9, A-Z, a-z

A key may only contain alphanumeric characters in any order.

5.1.1.4 ERR10 INVALID KEY NAME

If a non-alphanumeric character is used in a key name, then the ExpressLink module returns
'ERR10 INVALID KEY NAME'.

5.1.1.5 ERR11 UNKNOWN KEY

All keys are predefined in the ExpressLink module. If an invalid key is used, then the module
returns 'ERR11 UNKNOWN KEY'.

5.2 Data accessed through the CONF command

5.2.1 Assignment using 'CONF key=value'

Returns:

5.2.1.1 OK

If the write is successful, then the module returns 'OK'.

5.2.1.2 ERR9 INVALID KEY LENGTH

If the key is too long, then the module returns 'INVALID KEY LENGTH'.

5.2.1.3 ERR10 INVALID KEY NAME

If the key uses incorrect characters, then the module returns 'INVALID KEY NAME'.

5.2.1.4 ERR11 UNKNOWN KEY

If the key is not present in the system, then the module returns 'UNKNOWN KEY'.

5.1 Data values referenced 21

ExpressLink Programmer's Guide

5.2.1.5 ERR12 KEY READONLY

Some keys are read-only and cannot be written. If the key is not present in the system, then the
module returns 'KEY READONLY'.

Example 1:

AT+CONF VERSION=HELLO
ERR12 KEY READONLY

5.2.2 Retrieval using 'CONF? key'

Returns:

5.2.2.1 OK

If the read is successful, then the module returns 'OK'.

5.2.2.2 ERR9 INVALID KEY LENGTH

If the key is too long, then the module returns 'INVALID KEY LENGTH'.

5.2.2.3 ERR10 INVALID KEY NAME

If the key uses incorrect characters, then the module returns 'INVALID KEY NAME'.

5.2.2.4 ERR11 UNKNOWN KEY

If the key is not present in the system, then the module returns 'UNKNOWN KEY'.

5.2.2.5 ERR13 KEY WRITEONLY

Some keys are write-only and cannot be read. If the key cannot be read, then the module
returns 'KEY WRITEONLY'.

Example 2:

AT+CONF? Passphrase
ERR13 KEY WRITEONLY

Key-value pairs can be used to set default values for command parameters, to set credentials,
and to select connectivity options and timing preferences. These configuration key-value pairs are
meant to be long-lived (persist) throughout the life of the application and are therefore stored in

5.2 Data accessed through the CONF command 22

ExpressLink Programmer's Guide

non-volatile memory. A basic set of key-value pairs is defined for all ExpressLink devices (EndPoint,
Certificate). Some of these key-value pairs have factory presets and/or are read only.

Table 2 - Configuration Dictionary Persistent Keys

Configura
tion
Parameter

Type Persist Initial Value Factory
Reset

Description

About R Y Vendor -
Model

N A descripti
ve string that
uniquely
identifies the
device make
and model -
communica
tion capabilit
ies.

Version R Y Current
module
firmware
version

N The specific
ExpressLi
nk firmware
version.

TechSpec R Y Technical
Specification
Compatibility

N The Technical
Specifica
tion version
this model is
based upon
(for example
'v0.6').

ThingName R Y UID N The UID
as natively
provided by
the module
HW root of
trust.

5.2 Data accessed through the CONF command 23

ExpressLink Programmer's Guide

Configura
tion
Parameter

Type Persist Initial Value Factory
Reset

Description

Certificate R Y Device Birth
Certificate

N Device
certifica
te used to
authentic
ate with
AWS cloud,
signed by the
manufacturer
CA.

EndPoint R/W Y Staging
account
endpoint

Y The endpoint
of the AWS
account to
which the
ExpressLi
nk module
connects.

TopicRoot R/W Y UID Y The default
prefix that is
used for all
user defined
topics.

Defender R/W Y 0 Y The Device
Defender
upload
interval in
seconds. (0
indicates the
service is
disabled.)

5.2 Data accessed through the CONF command 24

ExpressLink Programmer's Guide

Configura
tion
Parameter

Type Persist Initial Value Factory
Reset

Description

HOTAcerti
ficate

R/W Y {empty} Y Host OTA
certificate
(see chapter
9.10).

OTAcertif
icate

R/W Y Vendor OTA
Certificate

N Module OTA
certifica
te. Vendor
and Model
specific (see
chapter
9.5). (Wi-
Fi modules
only.)

SSID R/W Y {Empty} Y SSID of local
router (Wi-
Fi modules
only).

Passphrase W Y {Empty} Y Passphras
e of local
router (Wi-
Fi modules
only).

APN R/W Y {default} Y Cellular
modules
only.

Additional configuration parameters are non-persistent, and they are re-initialized at power up,
or following any reset event. Among these are the topics list items. The host processor has to

5.2 Data accessed through the CONF command 25

ExpressLink Programmer's Guide

re-initialize them following any reset, and possibly a deep-sleep awakening (depending on the
implementation).

Table 3 - Configuration Dictionary Non-persistent Keys

Configuration
Parameter

Type Persist Initial Value Description

IPv4Address R N 0.0.0.0 Current device
IPv4 address

IPv6Address R N :: Current device
IPv6 address

DNSAddress R N 0.0.0.0 Current DNS
address (IPv4 or
IPv6)

GatewayAddress R N 0.0.0.0 Current router IP
address (IPv4 or
IPv6)

Topic1 R/W N {Empty} Custom defined
topic 1

Topic2 R/W N {Empty} Custom defined
topic 2

...

Topic<Max
Topic>

R/W N {Empty} Custom defined
topic MaxTopic

5.3 Configuration commands

5.3.1 CONF key=value: Assign a value to selected configuration parameter

Assigns a specific value to the specified configuration parameter.

5.3 Configuration commands 26

ExpressLink Programmer's Guide

Returns:

OK

If the command was successful, the module returns 'OK'.

ERR# {message}

If the command was not successful, the module returns an error.

Example:

AT+CONF SSID=MY_SSID # Assign the preferred (local) Wi-Fi router SSID

5.3.2 CONF? key: Read value of selected configuration parameter

Query the value of a configuration parameter.

Returns:

OK {value}

If the command was successful, the module returns 'OK' followed by the value.

ERR# {message}

If the command was not successful, the module returns an error.

Example:

AT+CONF? MyParameter

6 Event handling

Events are asynchronous messages on one of the subscribed topics that the ExpressLink module
has received and queued. They can also be error messages that reflect an unexpected change in the
module's internal state.

Events can be polled periodically by the host processor using the EVENT? command, or if
connected, following an interrupt that is the result of the module activating the EVENT pin. The

6 Event handling 27

ExpressLink Programmer's Guide

EVENT pin is automatically deactivated as soon as the host processor has emptied the queue of
pending events.

If the event queue contains one or more events, the value returned by an EVENT? command is the
last event that occurred. The event queue depth is implementation dependent; a queue length of 1
means that only the last event (or the highest priority error) is reported in case of overrun.

Note

Sleep, reset, and factory reset commands automatically clear all pending events.

6.1 Event handling commands

6.1.1 EVENT?: Request the next event in the queue

Returns:

6.1.1.1 OK [{event_identifier} {parameter} {mnemonic [detail] }]{{eol}

6.1.1.2 OK{eol}

If the event queue is empty, then the 'OK' response is followed immediately by {eol}.

The following table contains the definition of common event identifiers and error codes
implemented by all ExpressLink modules; they should be considered reserved:

Table 4 - ExpressLink event codes

Event Identifier Parameter Mnemonic Description

1 Topic Index MSG A message was
received on topic #.

2 0 STARTUP The module has
entered the active
state.

3 0 CONLOST Connection lost.

6.1 Event handling commands 28

ExpressLink Programmer's Guide

Event Identifier Parameter Mnemonic Description

4 0 OVERRUN Receive buffer
Overrun (topic in
detail).

5 0 OTA OTA event (see OTA?
for detail).

6 0 SHADOW SHADOW Event.

7 0 CONFMODE CONFMODE exit with
success.

≤ 999 - RESERVED.

≥1000 - Available for custom
implementation.

6.2 Diagnostic commands

6.2.1 DIAG {command} [optional parameters]: Perform a diagnostic command

A number of diagnostic commands can be added to assist the developer in their debugging efforts.
These commands are implementation specific and depend on the media and type of module. See
the manufacturer's datasheet for specific details.

The following are examples of possible diagnostic commands for a Wi-Fi module:

Example 1:

AT+DIAG PING xxx.xxx.xxx.xxx # Initiate a Ping of the IP address provided

Example 2:

AT+DIAG SCAN seconds # Initiates a SCAN of nearby Wi-Fi access points with a timeout
 of
...
OK {SCANRES} -32db SSID1\n-48db SSID2\n ... -90dB SSIDx

6.2 Diagnostic commands 29

ExpressLink Programmer's Guide

In the results, the list of SSIDs is provided in the response detail as a multiline string with the
newline characters escaped ('\n').

7 ExpressLink module OTA updates

ExpressLink modules natively support over the air (OTA) firmware updates utilizing the AWS IoT
OTA service (as currently implemented in the AWS Embedded C-SDK v.202103.00). To support the
OTA feature, ExpressLink modules provide additional bulk storage space (non-volatile memory).
The amount of non-volatile memory available is sufficient to store at least two full copies of the
ExpressLink module's own firmware image -- a current known-good copy and a new copy. Consult
the manufacturer's datasheet to verify the amount of memory available on a specific model.

When an ExpressLink firmware update job is triggered (using the AWS IoT OTA console), the update
process begins and takes place in five steps:

1. Without disrupting the Host processor communication, the module starts receiving chunks of
the new firmware image.

2. Each chunk is checked for integrity and acknowledged, retried as necessary, and stored in bulk
memory.

3. When all chunks are reassembled in bulk memory, the module performs a final signature check.

4. Only if successfully verified, the module notifies the Host processor.

5. Upon receiving an explicit request, the ExpressLink module initiates a reboot.

This process provides two types of security/safety assurance to the user:

• It makes sure that only valid memory images are accepted.

• The potentially disruptive process of rebooting is performed in agreement with the host
processor to avoid impacting the overall product functionality and potential safety hazards.

The host processor is notified of the module's OTA ready/pending status by means of an event.
(See the EVENT? command.)

The host processor can poll the OTA process state at any time using the OTA? Command. (See 7.2
OTA commands.)

7 ExpressLink module OTA updates 30

ExpressLink Programmer's Guide

7.1 ExpressLink module support of Host Processor OTA

ExpressLink modules are designed to support Host processor updates Over the Air (HOTA). This is
done in a shared responsibility model in collaboration with the host processor. The Bulk Storage
memory capacity of the module might be shared between the module and host OTA images, so
that only one of the two is guaranteed to be supported at any time, although manufacturers can
choose to differentiate their products by offering a larger amount of non-volatile memory. Consult
the manufacturer's datasheet to verify the amount of memory available on a specific model.

The HOTA feature is not limited to supporting only host processor firmware images but can also be
used to transport, stage, and verify the delivery of any large payload including pictures, audio files,
or any binary blobs that may potentially contain multiple files of different natures.

The mechanism utilized to trigger and perform the transfer of host processor images makes use
of the same underlying services as the module OTA (namely, AWS IoT Jobs and AWS IoT OTA). It
utilizes a collaborative model based on the paradigm of a mailbox. ExpressLink devices act as the
recipient of envelopes meant for the host. They can verify the envelope's integrity (checksum) and
authenticity (signature) before notifying the host by raising a flag (event). It is up to the host to
periodically check for flags, and when ready, to retrieve the contents of the mailbox. ExpressLink
devices, much like actual mailboxes, are not concerned with the nature of the contents of the
envelopes. Once the envelope is retrieved, and the flag lowered, they are ready (empty) to receive
more mail. Successive attempts to deliver more updates to a host processor will be NACKed until
the host either retrieves the update or rejects it and clears the flag without retrieving the contents.

The communication between the host processor and the ExpressLink module required to deliver an
OTA payload can be represented in the following diagram:

7.1.1.1 ExpressLink OTA/HOTA process

ExpressLink module Host Processor

Receives an event indicating an OTA request
and generates an event (also raising the
EVENT Pin).

EVENT? polls the event queue.

Returns OK OTA indicating an OTA event.

OTA? checks the OTA state.

7.1 ExpressLink module support of Host Processor OTA 31

ExpressLink Programmer's Guide

ExpressLink module Host Processor

Returns an OTA pending code (1) and
metadata about the proposed update (for
example, "v2.5.7").

OTA ACCEPT or OTA FLUSH

Accepts or rejects the proposed update based
on metadata provided.

Starts Receiving an OTA payload. The host processor can shut down the
process at any time by issuing the OTA FLUSH
command.

When download completed, generates an
event (and raises the EVENT Pin).

EVENT? polls the event queue.

Returns: OK - OTA Indicates OTA event.

OTA? Checks the OTA state.

Returns an OTA or HOTA ready state.

 If OTA ready...

When safe, issue an OTA APPLY command to
allow the ExpressLink module to update its
firmware and reboot (or OTA FLUSH to shut
down).

 If HOTA ready... Retrieve the payload in chunks of appropriate
size.

READ 1024 Requests first chunk of payload
data.

7.1 ExpressLink module support of Host Processor OTA 32

ExpressLink Programmer's Guide

ExpressLink module Host Processor

Delivers first chunk of payload data and
advances pointer.

The process repeats until the entire payload is
transferred to the host processor.

At any point, the Host processor can request
a pointer reset or terminate the process
altogether.

The module returns a 0 sized chunk, indicating
transfer complete.

CLOSE - indicate to the ExpressLink module
that the buffer can now be freed and the
process was completed successfully.

The ExpressLink module returns a Job
complete notification to the AWS IoT OTA
service.

The Host processor is not required to retrieve the entire payload at once, nor to follow a strictly
sequential process, the fetching pointer can be moved (seek) to allow random access to the
payload contents. Also, the size of the chunks retrieved by the Host processor is independent
from the chunking performed during the image download by the module. Instead, this is intended
to be the most convenient value depending on the host processor's serial interface buffer size,
the Host processor's own (flash) memory page size, and/or binary format decoding needs (for
example, INTEL HEX...). Consequently, the host processor can choose the reboot directly from the
ExpressLink module host OTA memory or can choose to transfer only parts of the payload to be
consumed by other subsystems as necessary.

7.1 ExpressLink module support of Host Processor OTA 33

ExpressLink Programmer's Guide

Figure 2 - ExpressLink module OTA state diagram

Figure 3 - ExpressLink Host OTA state diagram

The serial interface commands involved in the implementation of the OTA and Host OTA features
are summarized here:

7.1 ExpressLink module support of Host Processor OTA 34

ExpressLink Programmer's Guide

7.2 OTA commands

7.2.1 OTA?: Fetches the current state of the OTA process

Returns:

OK {code} {detail}

7.2.2 OTA codes:

0 No OTA in progress.

1 A new module OTA update is being proposed.
The host can inspect the version number and
decide to accept or reject it. The {detail} field
provides the version information (string).

2 A new Host OTA update is being proposed.
The host can inspect the version details and
decide to accept or reject it. The {detail} field
provides the metadata that is entered by the
operator (string).

3 OTA in progress. The download and signature
verification steps have not been completed
yet.

4 A new module firmware image has arrived.
The signature has been verified and the
ExpressLink module is ready to reboot. (Also,
an event was generated.)

5 A new host image has arrived. The signature
has been verified and the ExpressLink module
is ready to read its contents to the host. The
size of the file is indicated in the response
detail. (Also, an event was generated.)

7.2 OTA commands 35

ExpressLink Programmer's Guide

Example 1:

AT+OTA? # check the OTA status
OK 3 # an OTA operation is in progress, the module OTA buffer is in use

Example 2:

AT+OTA? # check the OTA status
OK 1 v2.5.7 # a module OTA firmware update is proposed

Note

The host has the ultimate say to allow this update to proceed (downloading) by sending
the OTA ACCEPT command or to reject it immediately (if it is deemed incompatible with the
host version) by sending the OTA FLUSH command.

7.2.3 OTA ACCEPT: Allow the OTA operation to proceed

The host allows the module to download a new image for the module or the host OTA.

Returns:

OK

The OTA operation is allowed to commence.

Example:

AT+OTA ACCEPT # accept the OTA download
OK 1

7.2.4 OTA READ #bytes: Requests the next # bytes from the OTA buffer

The read operation is designed to allow the host processor to retrieve the contents of the OTA
buffer starting from the current position (0 initially). The # bytes must be provided as a decimal
value.

7.2 OTA commands 36

ExpressLink Programmer's Guide

Returns:

OK {count} ABABABAB... {checksum}

The byte count is expressed in hex (from 1 to 6 digits), each byte is then presented as a pair of
hex digits (no spaces) for a total of count*2 characters followed by a checksum (4 hex digits).

The reading pointer is advanced by count bytes. Count can be less than requested or 0 if
the end of the payload was reached. If the count is zero, the data and checksum portion are
omitted.

7.2.4.1 ERR19 HOST OTA IMAGE NOT AVAILABLE

The module returns an error if the OTA buffer is empty, or if it is in use and the download or
signature verification processes have not been completed. The host processor should first check
the OTA status using the OTA? command.

Example 1:

AT+OTA READ 2 # request 2 bytes of data from the OTA buffer
OK 02 ABAB CK

Example 2:

AT+OTA READ 256 # request 256 bytes of data from the OTA buffer
OK 100 ABABAB....AB CK

Example 3:

AT+OTA READ 16 # request 16 bytes of data from the OTA buffer
OK 0C ABABAB.. CK # reached the end of the OTA buffer, only 12 bytes were available

7.2.5 OTA SEEK {address}: Moves the read pointer to an absolute address

This command moves the read pointer to the specified address in the OTA buffer. If no address is
specified, the read pointer is moved back to the beginning (0). The # bytes must be provided as a
decimal value.

7.2 OTA commands 37

ExpressLink Programmer's Guide

Returns:

OK {address}

If the pointer was successfully moved the module returns 'OK'. The address is returned in hex
(from 1 to 6 digits).

7.2.5.1 ERR20 INVALID ADDRESS

If the address provided was out of bounds (> OTA buffer content size), then the module returns
'ERR20'.

7.2.5.2 ERR19 HOST OTA IMAGE NOT AVAILABLE

An error is issued if the OTA buffer is empty or in use and the download or signature verification
processes have not been completed. The host processor should first check the OTA status using
the OTA? command.

Example 1:

AT+OTA SEEK 1024 # move the read pointer to location 1024
OK 400

Example 2:

AT+OTA SEEK # move the read pointer back to location 0
OK 0

7.2.6 OTA APPLY: Authorize the ExpressLink module to apply the new image.

When an ExpressLink module OTA image has been downloaded and is ready to be applied,
the host processor is notified by an event. When it is appropriate (safe for the application), the
host processor should activate the boot command to update its own firmware version. Upon
completion, the OTA buffer is emptied, making it available for additional OTA operations. The OTA
status is cleared.

Returns:

7.2.6.1 OK

The module has initiated a boot sequence.

7.2 OTA commands 38

ExpressLink Programmer's Guide

7.2.6.2 ERR19 HOST OTA IMAGE NOT AVAILABLE

An error is returned if the OTA buffer is empty or it is in use and the download or signature
verification processes have not been completed. The host processor should first check the OTA
status using the OTA? command.

7.2.6.3 ERR21 INVALID OTA UPDATE

The module is unable to apply the new module images.

Upon successful completion of the boot sequence, the ExpressLink module communicates the new
status and firmware revision number to the AWS IoT OTA service. An event is generated to inform
the host processor of the process completion result. The host processor must assume that all state
and configuration parameters of the module are reset in a way similar to a factory reset command.

7.2.7 OTA CLOSE: The host OTA operation is completed

The host's use of the OTA buffer is terminated and the buffer can be released. The OTA flag is
cleared and the operation is reported to the AWS IoT Core as successfully completed.

Returns:

7.2.7.1 OK

When the ExpressLink module returns 'OK' it indicates the command was received correctly, but
the actual run sequence (that requires a handshake with the AWS IoT OTA service) can still fail
later. In that case, an event is generated to inform the host and help diagnose the problem.

7.2.8 OTA FLUSH: The contents of the OTA buffer are emptied

The OTA buffer is immediately released. The OTA flag is cleared. Any pending OTA operation is
stopped. The OTA operation is reported as failed.

Returns:

7.2.8.1 OK

When the ExpressLink module returns 'OK' it indicates the command was received correctly, but
the actual run sequence (that requires a handshake with the AWS IoT OTA service) can still fail
at a later time. In that case, an event will be generated to inform the host and help diagnose
the problem.

7.2 OTA commands 39

ExpressLink Programmer's Guide

7.3 OTA update jobs

OTA updates are meant to be issued by the customers' fleet managers through the AWS cloud
console using the AWS IoT OTA Update Manager service. This is built upon the AWS IoT Jobs
service and is designed to allow customers to send updates to selected groups of devices in a fleet.
(For more information, see Prerequisites for OTA updates using MQTT in the AWS FreeRTOS User
Guide.) The OTA Job creation can be instantiated from the AWS CLI or from the AWS IoT Console.

The OTA Jobs service is generic and can transfer (stream) any type of file to a selected group of
devices. Meta-data that communicates the nature of the incoming OTA payload, the file signing
method (if used), and a number of additional options are provided by the user and transferred
to the ExpressLink module in the form a JSON string. ExpressLink devices require the fileType
attribute to be set to values according to Table 5 - Reserved OTA file type codes (0-255) .

Table 5 - Reserved OTA file type codes (0-255)

fileType Reserved for Signed Certificate Req. Host
Permission

101 Module
firmware update

Required Module OTA Y

103 Module OTA
certificate
update

Self1 Module OTA N

107 Server Root
certificate
update

Self1 Server Root N

202 Host update Optional Host OTA N

204 Host OTA
certificate
update

Self1 Host OTA N

[1] Certificates are already hashed and signed, no additional signing is required.

7.3 OTA update jobs 40

https://docs.aws.amazon.com/freertos/latest/userguide/ota-mqtt-freertos.html

ExpressLink Programmer's Guide

These codes allow the ExpressLink modules that receive them to determine and initiate the
corresponding module or host update processes described in this chapter. Different signing rules
apply to each type of update/file and the certificates used for the validation of the signatures can
themselves be updated.

7.4 Module OTA signature verification

ExpressLink modules are pre-provisioned with a manufacturer's module certificate that is used to
validate the signature of firmware update image.

Module OTA jobs include additional meta-data to clearly identify the module's manufacturer,
model, and major and minor versions. This allows the ExpressLink executive to discard incorrect
OTA images ahead of time to prevent unnecessary downloads.

7.5 Module OTA certificate updates

The certificates used for the module OTA signature validation (not to be confused with the module
birth certificate used to authenticate with the AWS cloud) may be accessed (read) by means of the
serial API (see the CONF? command). Module OTA certificates may also be updated using the OTA
mechanism or using the the serial API:

• Module OTA certificate updates performed using OTA use the fileType code indicated in Table 5 -
Reserved OTA file type codes (0-255) (Module OTA certificate update).

• Module OTA certificate updates performed using the AT+CONF command use the key
OTAcertificate.

Example:

AT+CONF OTAcertificate=<x509.pem>2

[2] Some escaping required to accommodate newlines may be present in the certificate (.pem) file.

Returns:

7.5.1.1 OK

The module returns 'OK' if the new certificate was valid.

7.5.1.2 ERR23 INVALID SIGNATURE

The module returns 'ERR23' if the new certificate could not be verified.

7.4 Module OTA signature verification 41

ExpressLink Programmer's Guide

The new certificate must be signed with the private key corresponding to the previous valid
module OTA certificate.

Module OTA certificate updates performed using the OTA mechanism do not require the host to
accept the update nor to control its run timing.

Module OTA certificates are NOT deleted upon a factory reset.

7.6 Module OTA override

As described in 7.1.1.1 ExpressLink OTA/HOTA process, the host processor is given ultimate control
over the ExpressLink module firmware update process, including whether to accept or reject an
incoming image, and control over when the process starts. While this mechanism is meant to
prevent scenarios where host and module firmware versions could become incompatible or the
module reboot could happen at an inconvenient time (possibly affecting the device functional
safety), we must consider cases where a poorly behaved (or too basic) host application might
indefinitely prevent an ExpressLink module from being updated to fix a critical bug or an identified
security threat. To this end, an additional piece of meta-data that uses the attribute <force:YES>
will be provided to bypass the host control and to activate an immediate module firmware update.

Note

A forced module OTA update cleans the module OTA buffer (bulk memory), and erase all its
contents, potentially including a host payload previously occupying this memory. This is an
extremely invasive operation and, as such, should be used only when strictly necessary and
with the customer's full understanding of its implications for the host application.

7.7 Synchronized Module and Host update sequence

When new capabilities or API changes are introduced by a new ExpressLink module firmware
version that potentially has backward compatibility issues (side-effects) affecting the host
application, the following recommended update sequence should be applied:

1. The manufacturer publishes the new module image and documents the incompatibilities.

2. The customer evaluates the opportunity to apply the update to their fleet and its impact on the
host application.

3. The customer develops a new host application with old and new ExpressLink module support.

7.6 Module OTA override 42

ExpressLink Programmer's Guide

4. A host firmware OTA update is sent to (and accepted by) the host.

5. After rebooting, the host can verify the module current version.

6. An OTA module update must then be offered to the (new) host.

7. The new host can validate the proposed new module version and "allow" the module update.

8. The new host can then switch to the new module API or start using the new feature.

If the host and module fail to stay in step with this sequence, it can be terminated at any point
without irreversible consequences and restarted.

7.8 Host OTA updates

Host application updates can be sent to an ExpressLink module using the same OTA mechanisms
used for the module's own OTA updates. Thanks to the host OTA feature, ExpressLink modules
provide two important services:

• The ability to transport and reconstruct a potentially large payload into the OTA buffer
(bulk memory space inside the module) making it available for retrieval by the host in small
increments to optimize the host memory resources. The payload can be of any nature (for
example, pictures, sounds, and video) and could in fact be a bundle itself, composed of multiple
files concatenated together.

• The ability to perform an authenticity check, relieving the host of the heavy cryptographical
effort required to hash and verify a cryptographical signature. This second feature is optional in
this case, because a host application might perform integrity and authenticity checks on its own,
using secrets not accessible to the ExpressLink module or using another custom defined protocol.

7.9 Host OTA Signature Verification

Meta-data provided during OTA Job creation indicates to the module whether the optional
signature verification is required.

A host OTA certificate that contains the public key that corresponds to the customer's private host
OTA signing key, must be provided by the customer.

The certificates used for the host OTA signature validation are accessible for reading by means of
the serial API (see the CONF? command).

7.8 Host OTA updates 43

ExpressLink Programmer's Guide

7.10 Host OTA certificate update

Host OTA certificates can also be updated using the same OTA mechanism or using the AT
command interface. In both cases, the new certificate must be signed with the private key
corresponding to the previous valid host OTA certificate. The host OTA certificate can be updated
by the module manufacturer (OEM) at the end of the product assembly line using the AT+CONF
command, or later using the OTA mechanism by making use of the code indicated in Table 5 -
Reserved OTA file type codes (0-255) (Host OTA certificate update).

Host OTA certificate updates performed using the OTA mechanism do not require the host to
accept the update nor to control when it is run.

The host OTA certificate is a configuration parameter initially undefined (empty) and cleared at
factory reset.

When the host OTA certificate is undefined, the signature verification of an incoming (first) host
OTA certificate payload cannot and will NOT be verified.

7.10.1 CONF? {certificate} pem: Special certificate output formatting option

The special qualifier pem can be appended to read a certificate configuration dictionary key
(Certificate, OTAcertificate, HOTAcertificate) and produce output in a format that allows the
developer to cut and paste the output directly into a standard .pem file for later upload to the AWS
IoT dashboard.

Example:

AT+CONF? HOTAcertificate pem

Returns:

7.10.1.1 OK pem

OK pem
-----BEGIN CERTIFICATE-----
MIIDWTCCAkGgAwIBAgIUeKvfYpklvnnattQF09ug9UULjZwwDQYJKoZIhvcNAQEL
BQAwTTFLMEkGA1UECwxCQW1hem9uIFdlYiBTZXJ2aWNlcyBPPUFtYXpvbi5jb20g
...
KHiN1yooauYJKaKr5eJilRAhdYsV2t9X3EFD60/eKmZyD+NE68jAwK/OvokhIGms
cZAj8m0QwqvPkZ0Y2Yc+hPSipQl/hLsg4W/GtbA2MPkTGcvkCBHLYgLBBGpe

7.10 Host OTA certificate update 44

ExpressLink Programmer's Guide

-----END CERTIFICATE-----

7.10.2 CONF {certificate key}=pem: Special certificate input formatting option

The special value pem can be used to input a certificate (Certificate, OTAcertificate,
HOTAcertificate) as a multi-line string to allow the developer to cut and paste directly the content
of a standard .pem file.

Example:

AT+CONF HOTAcertificate=pem
-----BEGIN CERTIFICATE-----
MIIDWTCCAkGgAwIBAgIUeKvfYpklvnnattQF09ug9UULjZwwDQYJKoZIhvcNAQEL
BQAwTTFLMEkGA1UECwxCQW1hem9uIFdlYiBTZXJ2aWNlcyBPPUFtYXpvbi5jb20g
...
KHiN1yooauYJKaKr5eJilRAhdYsV2t9X3EFD60/eKmZyD+NE68jAwK/OvokhIGms
cZAj8m0QwqvPkZ0Y2Yc+hPSipQl/hLsg4W/GtbA2MPkTGcvkCBHLYgLBBGpe
-----END CERTIFICATE-----

Returns:

7.10.2.1 OK

The module returns 'OK' if the new certificate was valid.

7.10.2.2 ERR23 INVALID SIGNATURE

The module returns 'ERR23' if the new certificate could not be verified.

These command extensions are meant for the developer to use to manually input/output
certificates from a terminal application without worrying about escaping the many newline
characters contained in a typical .pem file. When a host processor reads or writes to the same
certificates, the developer can easily implement the necessary escaping programmatically, resulting
in single line (long) strings.

7.11 Server Root Certificate Update

All ExpressLink modules are pre-provisioned with a long-lived AWS server root certificate that is
used to validate the endpoint (server) during the TLS connection setup. A new certificate can be

7.11 Server Root Certificate Update 45

ExpressLink Programmer's Guide

provided by means of the AT command interface or the OTA mechanism, using the code indicated
in Table 5 - Reserved OTA file type codes (0-255) (Server Root certificate update).

Server root certificate updates performed using the OTA mechanism do not require the host to
accept the update nor to control its run timing.

Server Root certificates are NOT deleted upon a factory reset

8 AWS IoT Services

8.1 Device Defender

ExpressLink devices support the AWS IoT Device Defender service. They can publish a basic set of
metrics to IoT Core at a configurable interval, including:

Table 6 - ExpressLink Defender metrics

ExpressLink Custom Metric Type Description

Bytes Out Count Number of bytes sent since
last update.

Messages sent Count Number of messages sent
since last update.

Messages received Count Number of messages received
since last update.

Hard Reset Event Flag Set to 1 if a hardware reset
occurred since last update.

Reconnect Events Flag Set to 1 if a reconnect
occurred since last update.

Flash Memory Writes Count Number of writes to flash
memory since last update.

All ExpressLink custom metrics are volatile in nature, as their values are reset to 0 after each
periodic update (or set to 1 upon a device reset/reboot for the specific events).

8 AWS IoT Services 46

https://docs.aws.amazon.com/iot/latest/developerguide/device-defender.html

ExpressLink Programmer's Guide

The device defender feature is activated by setting the Defender configuration parameter to a value
greater than 0 in the configuration dictionary (using the AT+CONF command).

The Defender parameter value is used to indicate the number of seconds between successive
updates of the Device Defender metrics.

The Defender parameter is non-volatile so that an ExpressLink device resumes sending Device
Defender metrics at the rate to which it was configured after any reset (soft command or
hardware).

Examples:

AT+CONF Defender=0 # Device Defender metrics are disabled

NOTE: This is the initialized value after a factory reset (see Table 2 - Configuration Dictionary
Persistent Keys).

AT+CONF Defender=60 # Device Defender metrics will be sent every minute
AT+CONF Defender=3600 # Device Defender metrics will be sent every hour

8.1.1 DEFENDER: {not implemented in this version}

The DEFENDER command is reserved for use with the AWS IoT Device defender service.

8.2 AWS IoT Device Shadow

8.2.1 SHADOW: {not implemented in this version}

The SHADOW command is reserved for the support of the Device Shadow service.

8.3 AWS IoT JOBS

8.3.1 JOB: {not implemented in this version}

The JOB command is reserved for the support of the AWS IoT Jobs service.

8.2 AWS IoT Device Shadow 47

ExpressLink Programmer's Guide

9 Additional services

9.1.1 TIME?: Request current time information

ExpressLink modules must provide time information as available from SNTP, GPS, or cellular
network sources. Note that devices can choose to maintain a time reference internally, even when
disconnected or in sleep mode, depending on implementation-specific software or hardware
capabilities.

Returns:

9.1.1.1 OK {date YYYY/MM/DD} {time hh:mm:ss.xx} {source}

If time information is available and recently obtained.

9.1.1.2 ERR15 TIME NOT AVAILABLE

If a recent time fix could not be obtained.

9.1.2 WHERE?: Request location information

ExpressLink modules can optionally provide last location information as available from GPS,
GNSS, cellular networks, or other triangulation methods. A timestamp is provided to let the host
determine the currency of the information. The implementation of this command is optional.

Returns:

9.1.2.1 OK {date} {time} {lat} {long} {elev} {accuracy} {source}

If location coordinates could be obtained at date/time.

9.1.2.2 ERR16 LOCATION NOT AVAILABLE

If a location fix could not be obtained.

9 Additional services 48

	ExpressLink
	Table of Contents
	AWS IoT ExpressLink programmer's guide v0.5
	1 Overview
	2 Run states
	3 ExpressLink commands
	3.1 ExpressLink commands format
	3.2 Delimiters and escaping
	3.3 Maximum values
	3.4 Data processing
	3.5 Command responses and error codes
	3.5.1 General response formats:
	3.5.2 Response timeout
	3.5.3 AT: Communication test

	3.6 Power and connection control
	3.6.1 CONNECT?: Request the connection status
	3.6.2 CONNECT: Explicitly request a module to connect to AWS IoT Core
	3.6.3 DISCONNECT: Leave the connected state and enter the active state
	3.6.4 SLEEP# [duration]: Request to enter a low power mode
	3.6.5 CONFMODE [parameter]: Activate modal credential entry
	3.6.6 RESET: Request a reset of the ExpressLink internal state
	3.6.7 FACTORY_RESET: Request a factory reset of the ExpressLink module

	4 Messaging
	4.1 Messaging topic model
	4.1.2 Topic usage rules
	4.1.3 SEND {topic} message: Publish msg on the specified topic
	4.1.4 SEND{#} message: Publish msg on a topic selected from topic list
	4.1.5 GET: Request next message pending on any topic
	4.1.6 GET0: Request next message pending on an unassigned topic
	4.1.7 GET{#}: Request next message pending on the indicated topic
	4.1.8 SUBSCRIBE{#}: Subscribe to the indicated topic
	4.1.9 UNSUBSCRIBE{#}: Unsubscribe from Topic#

	5 Configuration Dictionary
	5.1 Data values referenced
	5.2 Data accessed through the CONF command
	5.2.1 Assignment using 'CONF key=value'
	5.2.2 Retrieval using 'CONF? key'

	5.3 Configuration commands
	5.3.1 CONF key=value: Assign a value to selected configuration parameter
	5.3.2 CONF? key: Read value of selected configuration parameter

	6 Event handling
	6.1 Event handling commands
	6.1.1 EVENT?: Request the next event in the queue

	6.2 Diagnostic commands
	6.2.1 DIAG {command} [optional parameters]: Perform a diagnostic command

	7 ExpressLink module OTA updates
	7.1 ExpressLink module support of Host Processor OTA
	7.2 OTA commands
	7.2.1 OTA?: Fetches the current state of the OTA process
	7.2.2 OTA codes:
	7.2.3 OTA ACCEPT: Allow the OTA operation to proceed
	7.2.4 OTA READ #bytes: Requests the next # bytes from the OTA buffer
	7.2.5 OTA SEEK {address}: Moves the read pointer to an absolute address
	7.2.6 OTA APPLY: Authorize the ExpressLink module to apply the new image.
	7.2.7 OTA CLOSE: The host OTA operation is completed
	7.2.8 OTA FLUSH: The contents of the OTA buffer are emptied

	7.3 OTA update jobs
	7.4 Module OTA signature verification
	7.5 Module OTA certificate updates
	7.6 Module OTA override
	7.7 Synchronized Module and Host update sequence
	7.8 Host OTA updates
	7.9 Host OTA Signature Verification
	7.10 Host OTA certificate update
	7.10.1 CONF? {certificate} pem: Special certificate output formatting option
	7.10.2 CONF {certificate key}=pem: Special certificate input formatting option

	7.11 Server Root Certificate Update

	8 AWS IoT Services
	8.1 Device Defender
	8.1.1 DEFENDER: {not implemented in this version}

	8.2 AWS IoT Device Shadow
	8.2.1 SHADOW: {not implemented in this version}

	8.3 AWS IoT JOBS
	8.3.1 JOB: {not implemented in this version}

	9 Additional services
	9.1.1 TIME?: Request current time information
	9.1.2 WHERE?: Request location information

