
Programmer's Guide

ExpressLink

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

ExpressLink Programmer's Guide

ExpressLink: Programmer's Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

ExpressLink Programmer's Guide

Table of Contents

AWS IoT ExpressLink programmer's guide v1.0 .. 1
1 Hardware .. 3

1.1 Block diagram ... 3
1.2 Pin definitions ... 3

2 Run states ... 4
3 ExpressLink commands .. 5

3.1 Introduction ... 5
3.2 ExpressLink commands format ... 5
3.3 Delimiters and escaping ... 7
3.4 Maximum values ... 8
3.5 Data processing .. 8
3.6 Command responses and error codes .. 9
3.7 Power and connection control .. 12

4 Messaging ... 23
4.1 Messaging topic model ... 23

5 Configuration Dictionary ... 29
5.1 Data values referenced ... 34
5.2 Data accessed through the CONF command ... 35

6 Status dictionary .. 37
6.1 State commands .. 37

7 Event handling .. 37
7.1 Introduction .. 37
7.2 Event handling commands .. 38
7.3 Diagnostic commands (not covered by test) .. 39

8 ExpressLink module updates ... 40
8.1 ExpressLink module support of Host Processor OTA ... 41
8.2 OTA commands .. 44
8.3 OTA update jobs .. 50
8.4 Module OTA image signing ... 51
8.5 Module OTA signature verification ... 52
8.6 Module OTA certificate updates ... 52
8.7 Module OTA override .. 53
8.8 Synchronized Module and Host update sequence .. 54
8.9 Host OTA updates .. 54

iii

ExpressLink Programmer's Guide

8.10 Host OTA Signature Verification .. 55
8.11 Host OTA certificate update .. 55
8.12 Server Root Certificate Update .. 57
8.13 Over the Wire (OTW) module firmware update command ... 57

9 Additional services ... 59
9.1.1 TIME? # Request current time information .. 59
9.1.2 WHERE? # Request location information ... 59

10 Provisioning ... 59
10.1 ExpressLink Modules Activation ... 60
10.2 ExpressLink Evaluation Kits Quick Connect Flow .. 61
10.3 ExpressLink Production Onboarding Flow .. 61

iv

ExpressLink Programmer's Guide

AWS IoT ExpressLink programmer's guide v1.0

This document defines the Application Programming Interface (API) that all AWS IoT ExpressLink
compliant connectivity modules are required to implement to connect any host processor to the
AWS cloud.

If you have questions or issues that are not answered here, please visit the AWS re:Post for AWS IoT
ExpressLink page.

Topics

• 1 Hardware

• 2 Run states

• 3 ExpressLink commands

• 4 Messaging

• 5 Configuration Dictionary

• 6 Status dictionary

• 7 Event handling

• 8 ExpressLink module updates

• 9 Additional services

• 10 Provisioning

AWS IoT ExpressLink commands

• AT # Communication test

• CONF KEY={value} # Assignment

• CONF {certificate}=pem # Special certificate input formatting option

• CONF? key # Read the value of a configuration parameter

• CONF? {certificate} pem # Special certificate output formatting option

• CONFMODE [parameter] # Activate modal credential entry

• CONNECT # Explicitly request a module to connect to AWS IoT Core

• CONNECT? # Request the connection status

1

https://repost.aws/tags/TADqOo0ODORl2pC69DWwUFug/aws-io-t-express-link
https://repost.aws/tags/TADqOo0ODORl2pC69DWwUFug/aws-io-t-express-link

ExpressLink Programmer's Guide

• DIAG {command} [optional parameters] # Perform a diagnostic command

• DISCONNECT # Leave the connected state and enter the active state

• EVENT? # Request the next event in the queue

• FACTORY_RESET # Request a factory reset of the ExpressLink module

• GET # Request next message pending on any topic

• GET{#} # Request next message pending on the indicated topic

• GET0 # Request next message pending on an unassigned topic

• OTA ACCEPT # Allow the OTA operation to proceed

• OTA APPLY # Authorize the ExpressLink module to apply the new image.

• OTA CLOSE # The host OTA operation is completed

• OTA FLUSH # The contents of the OTA buffer are emptied

• OTA READ #bytes # Requests the next # bytes from the OTA buffer

• OTA SEEK {address} # Moves the read pointer to an absolute address

• OTA? # Fetches the current state of the OTA process

• OTW # Enter firmware update mode

• RESET # Request a full reset of the ExpressLink internal state

• SEND {topic} message # Publish msg on the specified topic

• SEND{#} message # Publish msg on a topic selected from topic list

• SLEEP{#} [duration] # Request to enter a low power mode

• SUBSCRIBE{#} # Subscribe to Topic#

• TIME? # Request current time information

• UNSUBSCRIBE{#} # Unsubscribe from Topic#

• WHERE? # Request location information

Tables

• Table 1 - Error codes

• Table 2 - Configuration dictionary persistent keys

• Table 3 - Configuration dictionary non-persistent keys

• Table 4 - ExpressLink event codes

• Table 5 - Reserved OTA file type codes (0-255)

2

ExpressLink Programmer's Guide

1 Hardware

1.1 Block diagram

Figure 1 - Simplified block diagram

1.2 Pin definitions

1.2.1 GND (input) – Ground

1.2.2 VCC (input) – 3.3v

1.2.3 TXD (output) – Serial interface Universal Asynchronous Receiver the Transmitter (UART) TX
from module

UART output to the host processor/application processor.

1.2.4 RXD (input) – Serial interface Universal Asynchronous Receiver the Transmitter (UART) RX
to module

UART input to the ExpressLink, from the host processor/application processor.

1 Hardware 3

ExpressLink Programmer's Guide

1.2.5 RST (input) – holds module in reset

When asserted (low), the ExpressLink module is held in reset (low power, disconnected, all
queues emptied and error conditions cleared).

1.2.6 WAKE (input) – low-power sleep mode wakeup

When not asserted (high), the ExpressLink module is allowed to enter a low power sleep mode.
If in low power sleep mode and asserted (low), this will awake the ExpressLink module.

1.2.7 Event (output) – Asynchronous Event Flag

When asserted, the ExpressLink module indicates to the host processor that an event has
occurred (disconnect error or message received on a subscribed topic) and a notification is
available in the event queue waiting to be delivered. It is de-asserted when the event queue is
emptied. A host processor can connect an interrupt input to this signal (rising edge) or can poll
the event queue at regular intervals (see 7.2.1 EVENT? # Request the next event in the queue).

2 Run states

An ExpressLink module operates as a state machine that moves through a number of internal
states (see figure 2 for a partial representation).

Figure 2 - ExpressLink internal states diagram (partial)

2 Run states 4

ExpressLink Programmer's Guide

The application or host processor is presented with a small command set that is independent from
the connectivity solution offered by the specific module (such as ethernet, cellular, and Wi-Fi).

The command interface is designed to be stateless, with all interactions initiated exclusively from
the host side. When an asynchronous event occurs (a message is received or an internal error
condition occurs), the ExpressLink module queues the event and flags its availability to the host. A
host can choose to ignore most event notifications and only periodically poll the receive queue if
desired. (See 7.2 Event handling commands.)

3 ExpressLink commands

3.1 Introduction

3.1.1.1 These commands are sent to and from the UART. The default UART configuration shall
be 115200, 8, N, 1 (baud rate: 115200; data bits: 8; parity: none; stop bits: 1). There is no hardware
or software flow control for UART communications.

3.1.1.2 The baud rate is NOT configurable.

3.1.1.3 No Local Echo is provided.

Note

Communication between the ExpressLink modules and the AWS Cloud are encrypted both
during transmission (using the TLS 1.2 protocol) and while at rest. However, the serial
interface (UART) between the host processor and the module isn't encrypted. If sensitive
data needs to be transmitted to and from the ExpressLink module, and unauthorized
persons can potentially gain physical control of the device, we recommend that the host
processor and the corresponding cloud application implement a suitable, additional end-
to-end message encryption scheme.

3.2 ExpressLink commands format

All ExpressLink commands assume the following general format:

AT+{command}[#]{separator}[parameter]{EOL}

Where:

3 ExpressLink commands 5

ExpressLink Programmer's Guide

3.2.1 {command}

A short character string (alphabetic plus "_" and "?") that matches one of the commands listed
in the following sections (CONNECT, TIME?, FACTORY_RESET).

Note: Commands are not case sensitive, although in this document, uppercase is always used
for consistency.

Returns:

3.2.1.1 ERR3 COMMAND NOT FOUND

If the command is unknown, then the module returns 'COMMAND NOT FOUND'.

3.2.2 [#]

An optional decimal (0..N) suffix qualifier (multiple digits allowed) is used by selected
commands as a first numerical parameter.

Returns:

3.2.2.1 ERR4 PARAMETER ERROR

If a numerical suffix was provided but the command did not expect it, or if a numerical suffix
is missing but required, the module returns 'ERR4 PARAMETER ERROR'.

3.2.2.2 ERR7 OUT OF RANGE

If the numeric suffix is out of the valid range for the command, the module returns 'ERR7
OUT OF RANGE'.

3.2.3 {separator}

A single ASCII space character (0x20).

Returns:

3.2.3.1 ERR2 PARSE ERROR

If ANY character other than 0x20 is present after the numerical suffix or '?' in the command
string, then the module returns 'ERR2 PARSE ERROR'.

3.2.4 [parameter]

An (escaped) ASCII string with the data required for the command.

3.2 ExpressLink commands format 6

ExpressLink Programmer's Guide

Returns:

3.2.4.1 ERR4 PARAMETER ERROR

If the command is unable to process the parameter supplied, then the module returns 'ERR4
PARAMETER ERROR'.

3.2.5 {EOL}

The ASCII line feed character (0x0a) or the ASCII carriage return character (0x0d).

3.2.6 Parameter string note

The parameter string includes all bytes from the separator to the {EOL}, not including either the
separator or the {EOL}. ALL ASCII values from 0 - 0x1F are valid in the parameter string which
allows for binary payloads if proper escaping is performed as detailed in 3.3 Delimiters and
escaping.

3.3 Delimiters and escaping

The format described in the previous section, and the specific choice of delimiters, removes the
need for quotes surrounding parameters, and for other delimiters between successive parameters.
As a further benefit, this removes the need for most escaping sequences with the exclusion of the
ASCII characters {EOL} (0x0a or 0x0d) and backslash ('\').

3.3.1 Escaping {EOL} in the parameter string

if a line feed or carriage return character (0x0a or 0x0d) is required in the parameter string it
must be replaced by the backslash escaped sequence as follows:

3.3.1.1 Line feed is escaped as: 0x5C 0x41 or '\A'.

3.3.1.2 Carriage return is escaped as: 0x5C 0x44 or '\D'.

3.3.2 Escaping backslash ('\') in the parameter string

Backslash (0x5C) in the parameter string is represented by the following sequence: 0x5C 0x5C
('\\').

3.3.2.1 All other combinations of the escape sequence are illegal and the module returns
'ERR5 INVALID ESCAPE'.

3.3 Delimiters and escaping 7

ExpressLink Programmer's Guide

3.4 Maximum values

3.4.1 Maximum bytes in the formatted command string

The formatted command string as received by ExpressLink can be up to 5K bytes in length.

AT+[up to 5K bytes]{EOL}

3.4.2 Maximum command word size

The command word portion of the command string can be up to 32 bytes long.

3.5 Data processing

3.5.1 Data entry

The data entry for a command begins with the 'AT+' and ends with the {EOL}. The module will
not begin running a command before it receives the {EOL}.

3.5.2 Data overflow

If the data buffer overflows during the data entry phase of a command, the ExpressLink module
continues to accept, but discards, the incoming data until the next {EOL} arrives.

3.5.2.1 The module returns 'ERR1 OVERFLOW' and the entire message is discarded.

3.5.3 Data arriving after {EOL}

Any data that arrives after {EOL} and before 'AT+' will be ignored and discarded. Note that this
includes multiple {EOL} characters–they will be ignored and discarded.

Example Examples:

abcdefAT{EOL} spurious characters preceding a command are ignored
OK

AT{0x0a}{0x0d} line feed followed by carriage return
OK

AT{0x0d}{0x0a} carriage return followed by line feed
OK

3.4 Maximum values 8

ExpressLink Programmer's Guide

AT{0x0d}{0x0d} multiple carriage returns
OK

3.6 Command responses and error codes

All commands respond according to the response format described in section 3.6.1 General
response formats: when the command has been completed. In some cases, this can take a
significant amount of time, but under no circumstances longer than the response timeout defined
in section 3.6.2 Response timeout.

3.6.1 General response formats:

OK[#]|ERR{#}{separator}[detail]{EOL}

Where:

OK[#]

Indicates that the command was valid and ran correctly. The optional numerical suffix [#]
indicates the number of additional output lines, with no additional lines expected if this suffix is
omitted.

ERR{#}

Indicates the command was invalid or an error occurred while running it. The required numerical
suffix is an error code as defined in Table 1 - Error codes .

{separator}

Is a single ASCII space character (ASCII 0x20).

[detail]

Is an optional ASCII string that contains the command response or error description.

{EOL}

Is composed of a carriage return (ASCII 0x0d) followed by a newline character (ASCII 0x0a).

3.6 Command responses and error codes 9

ExpressLink Programmer's Guide

Table 1 - Error codes

Code ExpressLink text Description

1 OVERFLOW More bytes have been
received than fit in the receive
buffer.

2 PARSE ERROR Message not formatted
correctly.

3 COMMAND NOT FOUND Invalid command.

4 PARAMETER ERROR Command does not recognize
the parameters.

5 INVALID ESCAPE An incorrect escape sequence
was detected.

6 NO CONNECTION Command requires an active
connection to AWS IoT.

7 OUT OF RANGE The index provided is out
of range (0 or greater than
MaxTopic).

8 PARAMETER UNDEFINED The key provided reference
s an empty configuration
parameter.

9 INVALID KEY LENGTH Key is longer than 16
characters.

10 INVALID KEY NAME A non-alphanumeric
character was used in the key
name.

11 UNKNOWN KEY The supplied key cannot be
found in the system.

3.6 Command responses and error codes 10

ExpressLink Programmer's Guide

Code ExpressLink text Description

12 KEY READONLY The key cannot be written.

13 KEY WRITEONLY The key cannot be read.

14 UNABLE TO CONNECT The module is unable to
connect.

15 TIME NOT AVAILABLE A time fix could not be
obtained.

16 LOCATION NOT AVAILABLE A location fix could not be
obtained.

17 MODE NOT AVAILABLE The requested mode is not
available.

18 ACTIVE CONNECTION An active connection prevents
the command from running.

19 HOST IMAGE NOT AVAILABLE A host OTA command was
issued but no valid HOTA
image is present in the OTA
buffer.

20 INVALID ADDRESS The OTA buffer pointer is out
of bounds (> image size).

21 INVALID OTA UPDATE The OTA update failed.

22 [reserved]

23 INVALID SIGNATURE A signature verification failed.

3.6 Command responses and error codes 11

ExpressLink Programmer's Guide

Note

Refer to section 3.3 Delimiters and escaping for how special characters are escaped in the
command response string.

3.6.2 Response timeout

The maximum runtime for every command must be listed in the datasheet. No command can take
more than 120 seconds to complete (the maximum time for a TCP connection timeout).

3.6.3 AT # Communication test

By sending only the 'AT' (attention) command, the host can verify the presence and readiness of
the module command parser.

Example:

AT{EOL} # request the module's attention

Returns:

OK{EOL}

If the module is connected and the command parser active, then the module returns 'OK'.

3.7 Power and connection control

3.7.1 CONNECT? # Request the connection status

Requests the current status of the connection to the AWS cloud and the device onboarding state
(see 10.3.1 ExpressLink onboarding states and transitions). The connection status indicates the
completion of the entire sequence of actions required for the module to connect and authenticate
with the AWS cloud. The onboarding state is determined by comparing the current Endpoint
configuration parameter (string) against the module default Endpoint (staging account) string
that is hardcoded as the factory reset value for the parameter (see the Endpoint entry in Table 2 -
Configuration dictionary persistent keys).

3.7 Power and connection control 12

ExpressLink Programmer's Guide

Returns:

OK {status}{onboarded}[CONNECTED/DISCONNECTED][STAGING/CUSTOMER]

3.7.1.1 OK 1 0 CONNECTED STAGING

If the device is connected to the staging account, then the module returns 'OK 1 0
CONNECTED STAGING'.

3.7.1.2 OK 0 0 DISCONNECTED STAGING

If the device is not connected to the staging account, then the module returns 'OK 0 0
DISCONNECTED STAGING'.

3.7.1.3 OK 1 1 CONNECTED CUSTOMER

If the device is connected and onboarded (customer account), then the module returns 'OK 1
1 CONNECTED CUSTOMER'.

3.7.1.4 OK 0 1 DISCONNECTED CUSTOMER

If the device is not connected (customer account), then the module returns 'OK 0 1
DISCONNECTED CUSTOMER'.

3.7.2 CONNECT # Explicitly request a module to connect to AWS IoT Core

Request a connection to the AWS Cloud, bringing an active device into a higher power consumption
mode where it is able to communicate with the AWS IoT Core endpoint.

Returns:

3.7.2.1 OK 1 CONNECTED

The module has successfully connected to AWS IoT Core.

3.7.2.2 ERR14 {#hint} UNABLE TO CONNECT [detail]

The module is unable to connect. Additional clues can be provided by the mandatory {#hint}
numerical code and the optional [detail] field. The hint numerical codes indicate the state
of advancement of the connection process when the failure occurred so that meaningful
debugging tips can be provided in the module documentation (including datasheets and FAQs).
They are numbered according to the following sequence of steps:

3.7 Power and connection control 13

ExpressLink Programmer's Guide

0. Not Allowed –
reported by a Wi-
Fi module while in
CONFMODE

1. Backoff algorithm
imposed delay (see
3.7.2.4)

2. Failed to access
network – reported
by a Wi-Fi module
when it fails to
connect to a local
access point/rou
ter or by a cellular
module if it fails
to connect to the
nearest cell tower.

Tip

Check SSID/
passphrase
or local
router state.

After this step the
device is assumed
to be able to
communicate over
the network (it
has obtained an IP
address).

3.7 Power and connection control 14

ExpressLink Programmer's Guide

3. Failed to reach AWS
endpoint – reported
when the device fails
to connect to an
AWS endpoint.

Tip

Check the
endpoint
configura
tion
parameter
(URL)

After this step, the
device is assumed
to have reached an
AWS server.

3.7 Power and connection control 15

ExpressLink Programmer's Guide

4. Failed to securely
authenticate with
AWS – reported
when the device
fails to upgrade the
socket to a secure
socket (TLS).

Tip

Check if the
AWS root
certificate
might have
expired.

After this step, a
secure socket is
established with
AWS.

3.7 Power and connection control 16

ExpressLink Programmer's Guide

5. Failed to login AWS
(MQTT) broker
– reported when
the MQTT login is
unsuccessful

Tip

Check if
the device
certificate
is present in
the customer
account
registry.

After this step, the
device should be
able to issue MQTT
commands.

3.7 Power and connection control 17

ExpressLink Programmer's Guide

6. Failed to register
for Jobs – reported
when the device
fails to publish
or subscribe to
standard AWS topics
used for JOBS/OTA
(connection dropped
by AWS server)

Tip

Check
policies
attached
to device
certificate.

After this step, the
device is connected
and fully functional.

Different modules will interpret the hint codes according to the specific wireless/networking
stack that is applicable for the given technology and will provide meaningful tips in the module
documentation. Some of the steps might not be applicable to all technologies (for example, the
hint code for step 2 might not apply for a LoRA or Bluetooth module that transitions directly
from step 1 to 3). Similarly, additional intermediate hint codes can be provided using dot
notation, as applicable, to provide finer granularity (for example, a hint code 5.1 can be added
between step 5 and step 6).

3.7.2.3 OK 1 CONNECTED

If the ExpressLink module is already connected, issuing a CONNECT command returns
immediately with a success response ('OK 1 CONNECTED').

3.7 Power and connection control 18

ExpressLink Programmer's Guide

3.7.2.4 ERR14 {#hint} UNABLE TO CONNECT [detail]

In case of a connection failure, the ExpressLink module keeps a timestamp of the event. This
is used to ensure that a subsequent (repeated) connection request complies with the correct
backoff timing limits. If the retry request from the host arrives too close to the previous attempt
(the interval between requests is shorter than the prescribed minimum backoff time), the
ExpressLink module automatically delays running the command. Delays will increase according
to the backoff algorithm until a successful connection is established.

Example:

AT+CONNECT # request to connect
OK 1 CONNECTED # connection established successfully

Or

ERR14 3 UNABLE TO CONNECT Invalid Endpoint? # Error detail and hint detail/tip
 provided
ERR14 5 UNABLE TO CONNECT Invalid Endpoint? # Hint code but no hint detail
 provided

3.7.3 DISCONNECT # Leave the connected state and enter the active state

This command allows the host to prepare for a transition to low power (using the SLEEP
command), or to update the connection parameters before it attempts to reconnect again with the
changed parameters (using a new CONNECT command).

Returns:

3.7.3.1 OK 0 DISCONNECTED

Note that if already disconnected, the command will return immediately with a success value
('OK 0 DISCONNECTED').

3.7.4 SLEEP{#} [duration] # Request to enter a low power mode

This command forces the module to enter a low power mode. ExpressLink module manufacturers
can implement specific low power modes with increasing values (#) that correspond to deeper
sleep states (as capable) to provide the lowest power consumption and longest possible battery

3.7 Power and connection control 19

ExpressLink Programmer's Guide

life. The manufacturer documents the power consumption figures achievable in such modes in the
module datasheet.

3.7.4.1 The [duration] parameter

If present, this indicates the number of seconds before the module awakes automatically.

3.7.4.2 If the duration parameter is absent, the module remains in low power mode until:

1. a hardware Reset is generated by the host lowering the RST pin.

2. a wakeup event is generated by the host lowering the WAKE pin.

3. a new AT command is sent by the host using the serial interface (this might not be possible in
case of advanced (deep) sleep modes, see 3.7.4.4)

3.7.4.3 A SLEEP command without a numerical suffix defaults to mode 0.

Mode 0 is the default low power mode where the ExpressLink module reduces its power
consumption as much as possible while it still maintains the serial interface active and preserves
the contents of all configuration parameters.

3.7.4.4 Before entering SLEEP mode, the device will empty the event queue.

Advanced low power modes can disable the serial command interface. In these cases, in absence
of the sleep duration parameter, the only way to awaken the device is to apply an external reset
or wake signal. Deep sleep states might cause loss of part or all volatile (RAM) information,
including all module state information including configuration parameters that are not
maintained in non-volatile memory (for example, Topics). The host processor must reconfigure
such parameters as required by the application.

Returns:

3.7.4.5 OK {mode}[{detail}]

The device is ready and will proceed to the lower power mode selected immediately after
sending the reply (and flushing the serial port output). {mode} indicates the sleep mode
activated.

3.7.4.6 ERR18 ACTIVE CONNECTION

The device cannot transition to a low power mode because there is an active cloud connection.
Use the DISCONNECT command first to shut down the connection.

3.7 Power and connection control 20

ExpressLink Programmer's Guide

3.7.4.7 Sleep mode fall back

When the host requests a SLEEP mode higher than any implemented on the specific
ExpressLink model, the module will fall back to the nearest/highest mode available. (For
example, SLEEP9, might fall back to SLEEP3 if mode 3 is the highest available or simply
SLEEP if no advanced modes are available.) The actual sleep mode activated is reported in the
response.

3.7.4.8 Upon returning to the active state, a STARTUP event is generated and added to the
event queue.

(See 7 Event handling.)

Example 1:

AT+SLEEP 100 # Disconnect and suspend all activities for 100 seconds
OK 0 # Enters sleep mode 0 (default)
AT+CONNECT # Resume connection

Example 2:

AT+SLEEP9 # Request a deep sleep (proprietary mode) indefinitely
OK 3 # Enters nearest/deepest sleep mode available on this model

Note that the device might require a hardware reset/wake event to be re-awakened, and all status
(non-volatile) information might be lost requiring a new initialization and configuration.

Example 3:

AT+SLEEP SOME TEXT
ERR4 PARAMETER ERROR # a numerical value is expected for {duration}

Example 4:

AT+SLEEP9A
ERR4 PARSE ERROR # a numerical value is expected for {mode}

3.7 Power and connection control 21

ExpressLink Programmer's Guide

3.7.5 CONFMODE [parameter] # Activate modal credential entry

ExpressLink modules that require additional user credentials can be set by the host to enter
CONFMODE (see Figure 2) to enable or repurpose an interface to receive additional connection
credentials from user input.

Example 1: An ExpressLink Wi-Fi module could use this command to enter a SoftAP mode,
temporarily assume the role of an Access Point, and serve an HTML form. This would allow the
user to enter the local Wi-Fi router credentials using a mobile device web browser. The optional
parameter could be used to provide a customized, unique SSID based on the device UID.

Example 2: If a Bluetooth interface is available, the ExpressLink module could receive the
credentials using a serial interface (SPP profile). For Bluetooth LE modules, this could be performed
using a dedicated (GATT) service using a custom mobile application.

Returns:

3.7.5.1 OK CONFMODE ENABLED

The device has entered CONFMODE and is ready to receive user input.

3.7.5.2 ERR17 MODE NOT AVAILABLE

This ExpressLink model/version does not support CONFMODE.

3.7.5.3 ERR18 ACTIVE CONNECTION

The device cannot enter CONFMODE because it is currently connected. The host must
disconnect first.

3.7.5.4 While in CONFMODE, an ExpressLink module can still process all commands that do not
require an active connection (for example, 'AT+CONF? Version').

3.7.5.5 Commands that require an active connection return 'ERR6 NO CONNECTION'.
Attempting to issue a CONNECT command while in CONFMODE results in an 'ERR14 UNABLE TO
CONNECT'.

3.7.5.6 The host may issue a RESET command at any time to shut down CONFMODE (see
Figure 2).

3.7.5.7 A CONFMODE notification event (see Table 4 - ExpressLink event codes is provided
to the host when the entry of new credentials has been completed. Only after that can the host

3.7 Power and connection control 22

ExpressLink Programmer's Guide

issue a new CONNECT command to attempt to establish a connection using the newly entered
credentials.

3.7.6 RESET # Request a full reset of the ExpressLink internal state

This command disconnects the device (if connected) and resets its internal state. Non-persistent
configuration parameters (see Table 3 - Configuration dictionary non-persistent keys) are
reinitialized, all subscriptions are terminated, and the message queue is emptied.

Returns:

3.7.6.1 OK{EOL}

If the command was successful, the module returns 'OK'.

3.7.6.2 A STARTUP event is added to the event queue when the process is completed.

3.7.7 FACTORY_RESET # Request a factory reset of the ExpressLink module

This command performs a full factory reset of the ExpressLink module, including re-initializing all
non-persistent configuration parameters (see Table 3 - Configuration dictionary non-persistent
keys) and selected persistent parameters (as indicated in Table 2 - Configuration dictionary
persistent keys in the Factory Reset column), and the message queues are emptied.

Returns:

3.7.7.1 OK{EOL}

If the command was successful, the module returns 'OK'.

3.7.7.2 A STARTUP event is added to the event queue when the process is completed.

4 Messaging

4.1 Messaging topic model

The ExpressLink messaging system relies on a list of topics defined in the configuration dictionary
(see Table 2 - Configuration dictionary persistent keys). Each topic is assigned an index that can
be used to dereference the assigned string value. Index 0 has a special meaning, while all other
index values up to an implementation-specific maximum index can be used by the host to define

4 Messaging 23

ExpressLink Programmer's Guide

additional topics. Messaging topics defined in this list are managed independently from other
topics eventually used by ExpressLink to handle Jobs, OTA, and shadow updates.

4.1.1.1

Topic Index 0 is reserved as a catch-all for messages that do not match other existing topics (the
list of topics must not contain an entry for Topic0). Attempting to send or subscribe to a topic
of index 0 will return ERR7 OUT OF RANGE.

4.1.1.2

Topic Index{MaxTopic} is an implementation-dependent value ≥ 16.

4.1.2 Topic usage rules

Topics are defined to be compatible with the MQTT 3.1.1 standard

4.1.3 SEND {topic} message # Publish msg on the specified topic

Note

As of version 1.0 the SEND{topic} command has been removed. This resolves an ambiguity
that occurred when a topic contained a space (0x20) character (allowed in MQTT3.1.1). Also
see a related change in 4.1.6 GET0 # Request next message pending on an unassigned
topic.

4.1.4 SEND{#} message # Publish msg on a topic selected from topic list

Send a message on a topic provided in the configuration dictionary. The configuration parameter
QoS value (only 0 and 1 are supported) at the time the command is issued determines the
applicable Quality of Service.

Where:

{#}

The index of a topic in CONFIG dictionary (1..MaxTopic).

message

The message to publish (string).

4.1 Messaging topic model 24

ExpressLink Programmer's Guide

Returns:

4.1.4.1 OK{EOL}

If the message is sent successfully, then the module returns 'OK'.

Example 1:

AT+SEND2 Hello World # Publish 'Hello World' on Topic2
OK # The message will be sent

4.1.4.2 ERR6 NO CONNECTION

If no connection has been made, then the module returns 'NO CONNECTION'.

Example 2:

AT+SEND1 Hello World # Publish Hello World on Topic1
ERR6 NO CONNECTION # A connection has not been established

4.1.4.3 ERR7 OUT OF RANGE

If the supplied topic index is larger than the maximum allowed topic number, the module
returns 'OUT OF RANGE'.

Example 3:

AT+SEND99 Hello World # Publish Hello World on Topic99
ERR7 OUT OF RANGE # Topic 99 is not within the available range of topics for this
 device

4.1.4.4 ERR8 PARAMETER UNDEFINED

If the supplied topic index points to a topic entry that has not been defined (empty), the
module returns 'PARAMETER UNDEFINED'.

Example 4:

AT+CONF Topic3={EOL} # Define Topic3 as empty
OK

AT+SEND3 Hello World # Publish Hello World on Topic3
ERR8 PARAMETER UNDEFINED # The selected topic was undefined

4.1 Messaging topic model 25

ExpressLink Programmer's Guide

4.1.5 GET # Request next message pending on any topic

Retrieve the next message received in the order of arrival.

Returns:

4.1.5.1 OK1{separator}{topic}{EOL}{message}{EOL}

If a message is available on any topic, the module responds with 'OK' followed by the topic and
the message.

Example:

AT+GET # poll for messages received on any topic
OK1 data{EOL} # a message was received from topic 'data' (expect another line)
Hello World{EOL} # the actual message received

4.1.5.2 OK{EOL}

If no message was received on any topic, the module responds with 'OK' followed by {EOL}.

4.1.6 GET0 # Request next message pending on an unassigned topic

Retrieve the next message received on a topic that was not in the topic list.

Note that the response to this command always produces two output line, an exception to the
general format defined in 3.6.1 General response formats:.

Returns:

4.1.6.1 OK1{separator}{topic}{EOL}{message}{EOL}

Example:

AT+GET0 # poll for messages received on any unassigned topic
OK1 data{EOL} # a message was received from topic 'data' (expect another line)
Hello World{EOL} # the actual message received

4.1.6.2 OK{EOL}

If no message was received on any unassigned topic, the module returns 'OK' followed by {EOL}.

4.1 Messaging topic model 26

ExpressLink Programmer's Guide

4.1.7 GET{#} # Request next message pending on the indicated topic

Retrieve the next message received on a topic at the specified index # (1..MaxTopic) in the topic list.

Returns:

4.1.7.1 OK{separator}{message}{EOL}

If a message is available on the indicated topic, the module responds with 'OK' followed
immediately by the message.

Example:

AT+GET2 # select messages received on Topic2
OK Hello World # a message received on the topic at index 2 in the list of topics

4.1.7.2 OK{EOL}

If a message is NOT available matching the requested topic, the module responds with 'OK'
followed by {EOL}.

4.1.7.3 OK{message}{EOL}

Even if there is no active connection, a normal read from the message queue takes place and
might return a valid message.

4.1.7.4 ERR7 TOPIC OUT OF RANGE

If the supplied topic index is larger than the maximum allowed topic number, then the module
returns 'TOPIC OUT OF RANGE'.

4.1.7.5 ERR8 PARAMETER UNDEFINED

If the requested topic is not defined (empty), then the module returns 'PARAMETER
UNDEFINED'.

4.1.7.6 Message queue overflow conditions

If the host fails to retrieve a message in time and so does not free up space and the buffer
capacity is exceeded, an overrun occurs and new messages arriving from the cloud may be
lost. The condition will be reported as an OVERFLOW event (see Table 4 - ExpressLink event
codes) and added to the event queue. It is then accessible to the host processor by means of

4.1 Messaging topic model 27

ExpressLink Programmer's Guide

the EVENT? command. If there is an overflow, the number of messages-received events in the
queue will exceed the actual number of messages that are present.

4.1.8 SUBSCRIBE{#} # Subscribe to Topic#

The module subscribes to the topic and starts receiving messages. Incoming messages trigger
events. The messages can be read with a GET{#} command.

Note that this is a stateless feature; the ExpressLink module will request a subscription to the
MQTT broker, but will not retain information about its current state.

4.1.8.1 If a topic number is provided, use the topic at the specified index.

Note

Sending a message to a topic to which a module is subscribed results in the broker sending
a copy back to the module.

Example 1:

AT+CONF Topic1=sensor1/state
OK

AT+SUBSCRIBE1 # The module will subscribe to the topic sensor1/state
OK

Returns:

4.1.8.2 ERR6 NO CONNECTION

If no connection has been made, then the module returns 'NO CONNECTION'.

4.1.8.3 ERR8 PARAMETER UNDEFINED

If the requested topic is not defined (empty), then the module returns 'PARAMETER
UNDEFINED'.

4.1.8.4 ERR7 OUT OF RANGE

If the supplied topic index is larger than the maximum allowed topic number, then the module
returns 'OUT OF RANGE'.

4.1 Messaging topic model 28

ExpressLink Programmer's Guide

4.1.9 UNSUBSCRIBE{#} # Unsubscribe from Topic#

The device unsubscribes from the selected topic and stops receiving its messages/events.

4.1.9.1 Use the topic at the specified index.

Example:

AT+CONF Topic1=sensor1/state
OK

AT+SUBSCRIBE1 # The module will subscribe to topic sensor1/state
OK
...
AT+UNSUBSCRIBE1 # The module will unsubscribe from topic sensor1/state

Returns:

4.1.9.2 ERR6 NO CONNECTION

If no connection has been made, then the module returns 'NO CONNECTION'.

4.1.9.3 ERR8 PARAMETER UNDEFINED

If the requested topic is not defined (empty), then the module returns 'PARAMETER
UNDEFINED'.

4.1.9.4 ERR7 OUT OF RANGE

If the supplied topic index is larger than the maximum allowed topic number, then the module
returns 'OUT OF RANGE'.

5 Configuration Dictionary

The configuration dictionary is a key-value store containing all the options necessary for the proper
functioning of ExpressLink modules. All keys are case sensitive.

Configuration key-value pairs listed in Table 2 are meant to be long lived (persist) throughout the
life of the application and so are stored in non-volatile memory. Note that these key-value pairs
have factory preset values, and can be read only or write only.

5 Configuration Dictionary 29

ExpressLink Programmer's Guide

Table 2 - Configuration dictionary persistent keys

Configura
tion
Parameter

Type Initial Value Factory
Reset

Buff Size Description

About R Vendor -
Model

N 64 A concatena
tion of
Vendor name
and Model
name.

Version R X.Y.Z N 32 The specific
module
firmware
version.

TechSpec R TechSpec
version

N 16 The Technical
Specifica
tion version
this model
implements
(for example
'v0.6', 'v1.0').

ThingName R UID N 64 The UID
provided by
the HW root
of trust and
present in
the device
certifica
te (also
see 10.1.3
ExpressLi
nk Birth
Certificate).

5 Configuration Dictionary 30

ExpressLink Programmer's Guide

Configura
tion
Parameter

Type Initial Value Factory
Reset

Buff Size Description

Certificate R Device Birth
Certificate

N ≥4KB Device
certifica
te used to
authentic
ate with
AWS cloud,
signed by the
manufactu
rer CA (also
see 10.1.3
ExpressLi
nk Birth
Certificate).

CustomName R/W {empty} Y ≥128 Custom
Product
Name, can
be set by the
host.

Endpoint R/W Staging
account
endpoint

Y ≥128KB The endpoint
of the AWS
account to
which the
ExpressLi
nk module
connects
(also see
10.3.1
ExpressLink
onboardin
g states and
transitions).

5 Configuration Dictionary 31

ExpressLink Programmer's Guide

Configura
tion
Parameter

Type Initial Value Factory
Reset

Buff Size Description

RootCA R/W AWS root CA N The server
root certifica
te that will
be used to
authentic
ate the cloud
Endpoint
(also see 8.12
Server Root
Certificate
Update).

Defender R/W 0 Y The Device
Defender
upload
interval in
seconds. (0
indicates the
service is
disabled.)

HOTAcerti
ficate

R/W {empty} Y ≥4KB Host OTA
certificate
(see 8.10
Host OTA
Signature
Verification).

5 Configuration Dictionary 32

ExpressLink Programmer's Guide

Configura
tion
Parameter

Type Initial Value Factory
Reset

Buff Size Description

OTAcertif
icate

R/W Vendor OTA
Certificate

N ≥4KB Module OTA
certifica
te. Vendor
and Model
specific
(see 8.5
Module OTA
signature
verificat
ion). (Wi-
Fi modules
only.)

SSID R/W {Empty} Y 32 SSID of local
router (Wi-
Fi modules
only).

Passphrase W {Empty} Y 64 Passphras
e of local
router (Wi-
Fi modules
only).

APN R/W {default} Y 128 Access
Point Name
(Cellular
modules
only).

The additional configuration parameters in Table 3 are non-persistent. They are re-initialized at
power up, and following any reset event. The host processor might have to re-configure them
following a reset and (possibly) a deep sleep awakening (depending on the implementation).

5 Configuration Dictionary 33

ExpressLink Programmer's Guide

Table 3 - Configuration dictionary non-persistent keys

Configuration
Parameter

Type Initial Value Buff Size Description

QoS R/W 0 1 QoS level
selected
for SEND
commands

Topic1 R/W {Empty} ≥128KB Custom defined
topic 1

Topic2 R/W {Empty} Custom defined
topic 2

...

Topic<Max
Topic>

R/W {Empty} Custom defined
topic MaxTopic

5.1 Data values referenced

5.1.1.1 Maximum key length is 16 characters

A parameter name (key) can be from 1 to 16 characters.

Returns:

5.1.1.2 ERR9 INVALID KEY LENGTH

If a parameter name (key) exceeds 16 characters, the ExpressLink module returns 'ERR9
INVALID KEY LENGTH'.

5.1.1.3 Valid key characters are 0-9, A-Z, a-z

A parameter name (key) may only contain alphanumeric characters.

5.1 Data values referenced 34

ExpressLink Programmer's Guide

Returns:

5.1.1.4 ERR10 INVALID KEY NAME

If a non-alphanumeric character is used in a key name, then the ExpressLink module returns
'ERR10 INVALID KEY NAME'.

5.1.1.5 ERR11 UNKNOWN KEY

If the parameter name (key) is not found in Table 2 - Configuration dictionary persistent
keys or Table 3 - Configuration dictionary non-persistent keys , then the module returns
'ERR11 UNKNOWN KEY'.

5.1.1.6 ERR4 PARAMETER ERROR

If the parameter (value) length exceeds the buffer size as defined in Table 2 - Configuration
dictionary persistent keys or Table 3 - Configuration dictionary non-persistent keys .

5.2 Data accessed through the CONF command

5.2.1 CONF KEY={value} # Assignment

Assign a value to a configuration parameter present in the configuration dictionary. (See 8.11.1
CONF? {certificate} pem # Special certificate output formatting option).

Returns:

5.2.1.1 OK{EOL}

If the write is successful, then the module returns 'OK'.

Example:

AT+CONF Topic1={EOL} # Assign the empty string to Topic 1
OK

5.2.1.2 ERR9 INVALID KEY LENGTH

If the key is too long, then the module returns 'INVALID KEY LENGTH'.

5.2.1.3 ERR10 INVALID KEY NAME

If the key uses incorrect characters, then the module returns 'INVALID KEY NAME'.

5.2 Data accessed through the CONF command 35

ExpressLink Programmer's Guide

5.2.1.4 ERR11 UNKNOWN KEY

If the key is not present in the dictionary, then the module returns 'UNKNOWN KEY'.

Example:

AT+CONF VERSION=1.0 # Incorrect capitalization
ERR11 UNKNOWN KEY # The key is not recognized as spelled

5.2.1.5 ERR12 KEY READONLY

Some keys are read-only and cannot be written. If the key cannot be written to, then the
module returns 'KEY READONLY' (for example, ThingName, Certificate, About).

Example

AT+CONF VERSION=1.0 # Attempt to manually modify the Version parameter
ERR12 KEY READONLY

5.2.1.6 ERR23 INVALID SIGNATURE

When updating a certificate (for example, Certificate, OTAcertificate, HOTAcertificate) if a
required signature verification failed, then the module returns 'INVALID SIGNATURE'. (See 8.11
Host OTA certificate update for more detail on the signature verification rules that apply to
different types of certificates.)

5.2.2 CONF? key # Read the value of a configuration parameter

Returns:

5.2.2.1 OK {value}

If the read is successful, then the module returns 'OK'.

5.2.2.2 ERR9 INVALID KEY LENGTH

If the key is too long, then the module returns 'INVALID KEY LENGTH'.

5.2.2.3 ERR10 INVALID KEY NAME

If the key uses incorrect characters, then the module returns 'INVALID KEY NAME'.

5.2 Data accessed through the CONF command 36

ExpressLink Programmer's Guide

5.2.2.4 ERR11 UNKNOWN KEY

If the key is not present in the system, then the module returns 'UNKNOWN KEY'.

5.2.2.5 ERR13 KEY WRITEONLY

Some keys are write-only and cannot be read. If the key cannot be read, then the module
returns 'KEY WRITEONLY'.

Example:

AT+CONF? Passphrase
ERR13 KEY WRITEONLY

6 Status dictionary

The status dictionary has been removed since revision 0.6 of the ExpressLink Specifications.

Refer to the CONNECT? command to obtain the current connection status.

Also refer to the OTA? command to obtain the OTA process status.

The Overflow mechanism has been simplified. The OVERFLOW event does not have a
corresponding status bit associated anymore.

6.1 State commands

The STAT command has been removed since version 0.6.

7 Event handling

7.1 Introduction

Events are asynchronous messages on one of the subscribed topics that the ExpressLink module
has received and queued. They can also be error messages that reflect an unexpected change in the
module's internal state.

Events are appended to the module event queue (FIFO). The host can poll the event queue
periodically. Or, if connected, it can poll the event queue following an interrupt (rising edge) on the
EVENT pin.

6 Status dictionary 37

ExpressLink Programmer's Guide

7.1.1.1 The event queue depth is an implementation dependent parameter that must be
documented by the vendor in the module datasheet.

7.1.1.2 The EVENT pin is asserted (HIGH) when the event queue contains one or more events.
The EVENT pin is automatically de-asserted as soon as the host processor has emptied the event
queue.

7.2 Event handling commands

7.2.1 EVENT? # Request the next event in the queue

Returns:

7.2.1.1 OK [{event_identifier} {parameter} {mnemonic [detail]}]{EOL}

When the queue contains one or more events, the module response returns the first event in
order of arrival (FIFO). See Table 4 below for the predefined event types.

7.2.1.2 OK{EOL}

If the event queue is empty, then the 'OK' response is followed immediately by {EOL}.

The following table contains the definition of common event identifiers and error codes
implemented by all ExpressLink modules; they should be considered reserved:

Table 4 - ExpressLink event codes

Event Identifier Parameter Mnemonic Description

1 Topic Index MSG A message was
received on topic #.

2 0 STARTUP The module has
entered the active
state.

3 0 CONLOST Connection
unexpectedly lost.

7.2 Event handling commands 38

ExpressLink Programmer's Guide

Event Identifier Parameter Mnemonic Description

4 0 OVERRUN Receive buffer
Overrun (topic in
detail).

5 0 OTA OTA event (see the
OTA? command for
details).

6 [reserved]

7 0 CONFMODE CONFMODE exit with
success.

≤ 999 - RESERVED.

≥1000 - Available for custom
implementation.

7.2.1.3 Sleep, reset, and factory reset commands automatically clear all events pending.

7.3 Diagnostic commands (not covered by test)

7.3.1 DIAG {command} [optional parameters] # Perform a diagnostic command

A number of diagnostic commands can be added to assist the developer in their debugging efforts.
These commands are implementation specific and depend on the media and type of module. See
the manufacturer's datasheet for specific details.

Diagnostic commands are not checked as part of the ExpressLink qualification test suite.

Diagnostic commands must be documented in the vendor device datasheet.

The following are examples of possible diagnostic commands for a Wi-Fi module:

Example 1:

AT+DIAG PING xxx.xxx.xxx.xxx # Initiate a Ping of the IP address provided

7.3 Diagnostic commands (not covered by test) 39

ExpressLink Programmer's Guide

Example 2:

AT+DIAG SCAN seconds # Initiates a SCAN of nearby Wi-Fi access points with a timeout
 of
...
OK {SCANRES} -32db SSID1\n-48db SSID2\n ... -90dB SSIDx

8 ExpressLink module updates

ExpressLink modules natively support firmware updates utilizing the AWS IoT OTA service (as
currently implemented in the AWS Embedded C-SDK v.202103.00) and Over the Wire (OTW). To
support the OTA feature, ExpressLink modules provide additional bulk storage space (non-volatile
memory). The amount of non-volatile memory available is sufficient to store at least two full
copies of the ExpressLink module's own firmware image – a current known-good copy and a new
copy. This is intended to provide a backup in case of a fatal failure during the update process.

When an ExpressLink firmware update job is triggered (using the AWS IoT OTA console), the update
process begins and takes place in five steps:

1. Without disrupting the Host processor communication, the module starts receiving chunks of
the new firmware image.

2. Each chunk is checked for integrity and acknowledged, retried as necessary, and stored in bulk
memory.

3. When all chunks are reassembled in bulk memory, the module performs a final signature check.

4. Only if successfully verified, the module notifies the Host processor.

5. Upon receiving an explicit request, the ExpressLink module initiates a reboot.

This process provides two types of security/safety assurance to the user:

• It makes sure that only valid memory images are accepted.

• The potentially disruptive process of rebooting is performed in agreement with the host processor
to avoid impacting the overall product functionality and potential safety hazards.

The host processor is notified of the module's OTA ready/pending status by means of an event.
(See the EVENT? command.)

8 ExpressLink module updates 40

ExpressLink Programmer's Guide

The host processor can poll the OTA process state at any time using the OTA? Command. (See 8.2
OTA commands.)

8.1 ExpressLink module support of Host Processor OTA

ExpressLink modules are designed to support Host processor updates Over the Air (HOTA). This is
done in a shared responsibility model in collaboration with the host processor. The Bulk Storage
memory capacity of the module might be shared between the module and host OTA images, so
that only one of the two is guaranteed to be supported at any time, although manufacturers can
choose to differentiate their products by offering a larger amount of non-volatile memory. Consult
the manufacturer's datasheet to verify the amount of memory available on a specific model.

The HOTA feature is not limited to supporting only host processor firmware images but can also be
used to transport, stage, and verify the delivery of any large payload including pictures, audio files,
or any binary blobs that may potentially contain multiple files of different natures.

The mechanism utilized to trigger and perform the transfer of host processor images makes use
of the same underlying services as the module OTA (namely, AWS IoT Jobs and AWS IoT OTA). It
utilizes a collaborative model based on the paradigm of a mailbox. ExpressLink devices act as the
recipient of envelopes meant for the host. They can verify the envelope's integrity (checksum) and
authenticity (signature) before notifying the host by raising a flag (event). It is up to the host to
periodically check for flags, and when ready, to retrieve the contents of the mailbox. ExpressLink
devices, much like actual mailboxes, are not concerned with the nature of the contents of the
envelopes. Once the envelope is retrieved, and the flag lowered, they are ready (empty) to receive
more mail. Successive attempts to deliver more updates to a host processor will be NACKed until
the host either retrieves the update or rejects it and clears the flag without retrieving the contents.

The communication between the host processor and the ExpressLink module required to deliver an
OTA payload can be represented in the following diagram:

8.1.1.1 ExpressLink OTA/HOTA process

ExpressLink module Host Processor

Receives an event indicating an OTA request
and generates an event (also raising the
EVENT Pin).

EVENT? polls the event queue.

8.1 ExpressLink module support of Host Processor OTA 41

ExpressLink Programmer's Guide

ExpressLink module Host Processor

Returns OK OTA indicating an OTA event.

OTA? checks the OTA state.

Returns an OTA or HOTA ready state.

if OTA ready

When safe, issue an OTA APPLY command to
allow the ExpressLink module to update its
firmware and reboot (or OTA FLUSH to abort).

If HOTA ready Retrieve the payload in chunks of appropriate
size.

READ 1024 – Requests the first chunk of
payload data.

Delivers first chunk of payload data and
advances pointer.

The process repeats until the entire payload is
transferred to the host processor.

At any point, the Host processor can request
a pointer reset or terminate the process
altogether.

The module returns a 0 sized chunk, indicating
transfer complete.

CLOSE – indicate to the ExpressLink module
that the buffer can now be freed and the
process was completed successfully.

8.1 ExpressLink module support of Host Processor OTA 42

ExpressLink Programmer's Guide

ExpressLink module Host Processor

The ExpressLink module returns a Job
complete notification to the AWS IoT OTA
service.

The Host processor is not required to retrieve the entire payload at once, nor to follow a strictly
sequential process, the fetching pointer can be moved (seek) to allow random access to the
payload contents. Also, the size of the chunks retrieved by the Host processor is independent
from the chunking performed during the image download by the module. Instead, this is intended
to be the most convenient value depending on the host processor's serial interface buffer size,
the Host processor's own (flash) memory page size, and/or binary format decoding needs (for
example, INTEL HEX...). Consequently, the host processor can choose the reboot directly from the
ExpressLink module host OTA memory or can choose to transfer only parts of the payload to be
consumed by other subsystems as necessary.

Figure 3 - ExpressLink module OTA state diagram

8.1 ExpressLink module support of Host Processor OTA 43

ExpressLink Programmer's Guide

Figure 4 - ExpressLink Host OTA state diagram

The serial interface commands involved in the implementation of the OTA and Host OTA features
are summarized here:

8.2 OTA commands

8.2.1 OTA? # Fetches the current state of the OTA process

Returns:

OK {code} {detail}

8.2.2 OTA codes

0 No OTA in progress.

1 A new module OTA update is being proposed.
The host can inspect the version number and
decide to accept or reject it. The {detail} field
provides the version information (string).

2 A new Host OTA update is being proposed.
The host can inspect the version details and

8.2 OTA commands 44

ExpressLink Programmer's Guide

decide to accept or reject it. The {detail} field
provides the metadata that is entered by the
operator (string).

3 OTA in progress. The download and signature
verification steps have not been completed
yet.

4 A new module firmware image has arrived.
The signature has been verified and the
ExpressLink module is ready to reboot. (Also,
an event was generated.)

5 A new host image has arrived. The signature
has been verified and the ExpressLink module
is ready to read its contents to the host. The
size of the file is indicated in the response
detail. (Also, an event was generated.)

Example 1:

AT+OTA? # check the OTA status
OK 3 # an OTA operation is in progress, the module OTA buffer is in use

Example 2:

AT+OTA? # check the OTA status
OK 1 v2.5.7 # a module OTA firmware update is proposed

Note

The host has the ultimate say to allow this update to proceed (downloading) by sending the
OTA ACCEPT command, or to reject it immediately (if it is deemed incompatible with the
host version) by sending the OTA FLUSH command.

8.2 OTA commands 45

ExpressLink Programmer's Guide

8.2.3 OTA ACCEPT # Allow the OTA operation to proceed

The host allows the module to download a new image for the module or the host OTA.

Returns:

8.2.3.1 OK{EOL}

If a valid request was pending and the host is allowing the OTA operation to commence, the
host returns 'OK'.

8.2.3.2 ERR21 INVALID OTA UPDATE

If no OTA update is pending, the host returns 'INVALID OTA UPDATE'.

Example:

AT+OTA? # Check the OTA state
OK 0 # No pending OTA request (host or module)
AT+OTA ACCEPT # accept the OTA download
ERR21 INVALID OTA UPDATE # No OTA pending, nothing there for the host to accept

8.2.4 OTA READ #bytes # Requests the next # bytes from the OTA buffer

The read operation is designed to allow the host processor to retrieve the contents of the OTA
buffer starting from the current position (0 initially). The # bytes must be provided as a decimal
value.

Returns:

8.2.4.1 OK {count} ABABABAB... {checksum}

The byte count is expressed in hex (from 1 to 6 digits), each byte is then presented as a pair of
hex digits (no spaces) for a total of count*2 characters followed by a checksum (4 hex digits).

The reading pointer is advanced by count bytes. Count can be less than requested or 0 if the end
of the payload was reached. If the count is zero, the data and checksum portion are omitted.

The maximum #bytes a module can read is implementation specific and will be declared by
the manufacturer in the device datasheet. If the requested value is greater than the maximum
supported by the module, the module will return the maximum value possible.

8.2 OTA commands 46

ExpressLink Programmer's Guide

The checksum is provided as a 16-bit (4 digit hex value) computed as the sum of all data (byte)
values returned (modulo 2^16).

Example 1:

AT+OTA READ 2 # request 2 bytes of data from the OTA buffer
OK 02 ABAB CK

Example 2:

AT+OTA READ 256 # request 256 bytes of data from the OTA buffer
OK 100 ABABAB....AB CK

Example 3:

AT+OTA READ 16 # request 16 bytes of data from the OTA buffer
OK 0C ABABAB.. CK # reached the end of the OTA buffer, only 12 bytes were
 available

8.2.4.2 ERR19 HOST OTA IMAGE NOT AVAILABLE

The module returns an error if the OTA buffer is empty, or if it is in use and the download or
signature verification processes have not been completed. The host processor should first check
the OTA status using the OTA? command.

8.2.5 OTA SEEK {address} # Moves the read pointer to an absolute address

This command moves the read pointer to the specified address in the OTA buffer. If no address is
specified, the read pointer is moved back to the beginning (0). The # bytes must be provided as a
decimal value.

Returns:

OK {address}

If the pointer was successfully moved the module returns 'OK'. The address is returned in hex
(from 1 to 6 digits).

Example 1:

AT+OTA SEEK 1024 # move the read pointer to location 1024

8.2 OTA commands 47

ExpressLink Programmer's Guide

OK 400

Example 2:

AT+OTA SEEK # move the read pointer back to location 0
OK 0

8.2.5.1 ERR20 INVALID ADDRESS

If the address provided was out of bounds (> OTA buffer content size), then the module returns
'INVALID ADDRESS'.

8.2.5.2 ERR19 HOST OTA IMAGE NOT AVAILABLE

An error is issued if the OTA buffer is empty or in use and the download or signature verification
processes have not been completed. The host processor should first check the OTA status using
the OTA? command.

8.2.6 OTA APPLY # Authorize the ExpressLink module to apply the new image.

When an ExpressLink module OTA image has been downloaded and is ready to be applied,
the host processor is notified by an event. When it is appropriate (safe for the application), the
host processor should activate the boot command to update its own firmware version. Upon
completion, the OTA buffer is emptied, making it available for additional OTA operations. The OTA
status is cleared.

Returns:

8.2.6.1 OK{EOL}

The module has initiated a boot sequence.

8.2.6.2 ERR19 HOST OTA IMAGE NOT AVAILABLE

An error is returned if the OTA buffer is empty or it is in use and the download or signature
verification processes have not been completed. The host processor should first check the OTA
status using the OTA? command.

8.2.6.3 ERR21 INVALID OTA UPDATE

The module is unable to apply the new module images (integrity issue or version
incompatibility).

8.2 OTA commands 48

ExpressLink Programmer's Guide

8.2.6.4 ERR23 INVALID SIGNATURE

The new image signature check failed.

8.2.6.5 Upon successful completion of the boot sequence, the ExpressLink module
communicates the new status and firmware revision number to the AWS IoT OTA service.

8.2.6.6 The event queue is emptied and a STARTUP event is generated to inform the host
processor that the process has completed.

8.2.6.7 The host processor should expect all state and configuration parameters of the module
to be reset in a way similar to a Reset command (although additional changes may apply and are
implementation and firmware version dependent).

8.2.7 OTA CLOSE # The host OTA operation is completed

The host's use of the OTA buffer is terminated and the buffer can be released. The OTA flag is
cleared and the operation is reported to the AWS IoT Core as successfully completed.

Returns:

8.2.7.1 OK{EOL}

When the ExpressLink module returns 'OK', it indicates that the command was received
correctly, but the actual run sequence (that requires a handshake with the AWS IoT OTA service)
can still fail later. In that case, an event is generated to inform the host and help diagnose the
problem.

8.2.8 OTA FLUSH # The contents of the OTA buffer are emptied

The OTA buffer is immediately released. The OTA flag is cleared. Any pending OTA operation is
stopped. The OTA operation is reported as failed.

Returns:

8.2.8.1 OK{EOL}

When the ExpressLink module returns 'OK', it indicates the command was received correctly, but
the actual run sequence (that requires a handshake with the AWS IoT OTA service) can still fail
at a later time. In that case, an event will be generated to inform the host and help diagnose
the problem.

8.2 OTA commands 49

ExpressLink Programmer's Guide

8.3 OTA update jobs

OTA updates are meant to be issued by the customers' fleet managers through the AWS Cloud
console using the AWS IoT OTA Update Manager service. This is built upon the AWS IoT Jobs
service and is designed to allow customers to send updates to selected groups of devices in a fleet.
(For more information, see Prerequisites for OTA updates using MQTT in the AWS FreeRTOS User
Guide.)

The OTA service has the following basic requirements:

• Each device must be associated with a policy allowing it to publish and subscribe to the AWS
reserved topics for streams/* and jobs/*. This policy will be automatically added to the thing
created in the staging account (see the JITP template) and later moved to the customer's account
using the AWS IoT API.

• The customer will create an S3 bucket to hold the firmware update file downloaded from the
manufacturer's support web page.

• The customer will create an OTA update role to allow the service to operate in the account

• The operator initiating the update process must have an OTA User policy that authorizes them to
operate the service.

The OTA Job creation can be instantiated from the AWS CLI or from the AWS IoT Console.

The OTA Jobs service is generic and can transfer (stream) any type of file to a selected group of
devices. Metadata that communicates the nature of the incoming OTA payload, the file signing
method (if used), and a number of additional options are provided by the user and transferred
to the ExpressLink module in the form a JSON string. ExpressLink devices require the fileType
attribute to be set to values according to Table 5:

Table 5 - Reserved OTA file type codes (0-255)

fileType Reserved for Signed Certificate Req. Host
Permission

101 Module
firmware update

Required Module OTA Y

8.3 OTA update jobs 50

https://docs.aws.amazon.com/freertos/latest/userguide/ota-mqtt-freertos.html

ExpressLink Programmer's Guide

fileType Reserved for Signed Certificate Req. Host
Permission

103 Module OTA
certificate
update

Self1 Module OTA N

107 Server Root
certificate
update

Self1 Server Root N

202 Host update Optional Host OTA N

204 Host OTA
certificate
update

Self1 Host OTA N

[1] Certificates are already hashed and signed, no additional signing is required.

These codes allow the ExpressLink modules that receive them to determine and initiate the
corresponding module or host update processes described in this chapter. Different signing rules
apply to each type of update/file and the certificates used for the validation of the signatures can
themselves be updated.

8.4 Module OTA image signing

ExpressLink module manufacturers may create a new profile with the AWS Code Signing service for
each ExpressLink module model they qualify and introduce to production. This profile will then be
used exclusively to sign images before distributing them to their customer base (publishing them
on a dedicated manufacturer support web page).

For a complete workflow detailing all steps required for the generation of signed image, see
Creating an OTA update with the AWS CLI in the FreeRTOS User Guide.

ExpressLink manufacturers are free to choose any signature and hashing algorithms compatible
with AWS IoT Core specifications to best match the cryptographic capabilities of their modules.

8.4 Module OTA image signing 51

https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-cli-workflow.html

ExpressLink Programmer's Guide

8.5 Module OTA signature verification

In order for ExpressLink modules to validate module OTA updates, they must be provided at the
time they are manufactured with an OTA certificate that contains the public key that corresponds
to the private key that will be used by the manufacturer to sign the update image files.

Module OTA certificates are not secret and therefore are not required to reside in the secure key
storage of the module, but they must be stored "independently" of the module binary image. They
can be stored in a separate non-volatile memory partition, or simply at a reserved address that is
not overwritten during the OTA update process. If the module OTA certificate were statically linked
in (that is, were part of) the binary module image, it would become impossible for customers to
skip updates, forcing a strictly continuous sequence because each new signature might depend on a
new certificate (possibly) included in one (or each) of the previous updates.

Module OTA jobs will include additional metadata to clearly identify the module's manufacturer,
model, and version (major and minor) to allow the ExpressLink executive to discard incorrect OTA
images ahead of time, and so prevent the costly and lengthy download altogether.

Note how this metadata is input by the customer's dev-op at the time the Job is created and
could therefore be incorrectly associated with a firmware update file meant for an incompatible
model from the same vendor. The use of a unique signature profile per model, recommended in the
previous section, acts as an additional safeguard to ensure that incompatible binary images will be
eventually rejected and the update stopped; it will act as a "signature check failure" that prevents
potentially disastrous consequences.

8.6 Module OTA certificate updates

The certificates used for the module OTA signature validation (not to be confused with the module
birth certificate used to authenticate with the AWS cloud) may be accessed (read) by means of the
serial API (see the CONF? command). Module OTA certificates may also be updated using the OTA
mechanism or using the the serial API:

• Module OTA certificate updates performed using OTA use the fileType code indicated in Table 5 -
Reserved OTA file type codes (0-255) (Module OTA certificate update).

• Module OTA certificate updates performed using the AT+CONF command use the key
OTAcertificate.

Example:

8.5 Module OTA signature verification 52

ExpressLink Programmer's Guide

AT+CONF OTAcertificate=<x509.pem>2

[2] Some escaping required to accommodate newlines may be present in the certificate (.pem) file.

Returns:

8.6.1.1 OK{EOL}

The module returns 'OK' if the new certificate was valid.

8.6.1.2 ERR23 INVALID SIGNATURE

The module returns 'INVALID SIGNATURE' if the new certificate could not be verified.

8.6.1.3 The new certificate must be signed with the private key corresponding to the previous
valid module OTA certificate.

8.6.1.4 Module OTA certificate updates performed using the OTA mechanism do not require the
host to accept the update nor to control its run timing.

8.6.1.5 Module OTA certificates are NOT deleted upon a factory reset.

8.7 Module OTA override

As described in 8.1.1.1 ExpressLink OTA/HOTA process, the host processor is given ultimate
control over the ExpressLink module firmware update process, including whether to accept or
reject an incoming image, and control over when the process starts. While this mechanism is meant
to prevent scenarios where host and module firmware versions could become incompatible or the
module reboot could happen at an inconvenient time (possibly affecting the device functional
safety), we must consider cases where a poorly behaved (or too basic) host application might
indefinitely prevent an ExpressLink module from being updated to fix a critical bug or an identified
security threat. To this end, an additional piece of metadata that uses the attribute <force:YES> will
be provided to bypass the host control and to activate an immediate module firmware update.

Note

A forced module OTA update cleans the module OTA buffer (bulk memory), and erases all
its contents, potentially including a host payload previously occupying this memory. This is
an extremely invasive operation and, as such, should be used only when strictly necessary
and with the customer's full understanding of its implications for the host application.

8.7 Module OTA override 53

ExpressLink Programmer's Guide

8.8 Synchronized Module and Host update sequence

When new capabilities or API changes are introduced by a new ExpressLink module firmware
version that potentially has backward compatibility issues (side-effects) affecting the host
application, the following recommended update sequence should be applied:

1. The manufacturer publishes the new module image and documents the incompatibilities.

2. The customer evaluates the opportunity to apply the update to their fleet and its impact on the
host application.

3. The customer develops a new host application with old and new ExpressLink module support.

4. A host firmware OTA update is sent to (and accepted by) the host.

5. After rebooting, the host can verify the module current version.

6. An OTA module update must then be offered to the (new) host.

7. The new host can validate the proposed new module version and "allow" the module update.

8. The new host can then switch to the new module API or start using the new feature.

If the host and module fail to stay in step with this sequence, it can be terminated at any point
without irreversible consequences and restarted.

8.9 Host OTA updates

Host application updates can be sent to an ExpressLink module using the same OTA mechanisms
used for the module's own OTA updates. Thanks to the host OTA feature, ExpressLink modules
provide two important services:

• The ability to transport and reconstruct a potentially large payload into the OTA buffer
(bulk memory space inside the module) making it available for retrieval by the host in small
increments to optimize the host memory resources. The payload can be of any nature (for
example, pictures, sounds, and video) and could in fact be a bundle itself, composed of multiple
files concatenated together.

• The ability to perform an authenticity check, relieving the host of the heavy cryptographical
effort required to hash and verify a cryptographical signature. This second feature is optional in
this case, because a host application might perform integrity and authenticity checks on its own,
using secrets not accessible to the ExpressLink module or using another custom defined protocol.

8.8 Synchronized Module and Host update sequence 54

ExpressLink Programmer's Guide

8.10 Host OTA Signature Verification

Metadata provided during OTA Job creation indicates to the module whether the optional
signature verification is required.

A host OTA certificate that contains the public key that corresponds to the customer's private host
OTA signing key, must be provided by the customer.

The certificates used for the host OTA signature validation are accessible for reading by means of
the serial API (see the CONF? command).

8.11 Host OTA certificate update

Host OTA certificates can also be updated using the same OTA mechanism or using the AT
command interface. In both cases, the new certificate must be signed with the private key
corresponding to the previous valid host OTA certificate. The host OTA certificate can be updated
by the module manufacturer (OEM) at the end of the product assembly line using the AT+CONF
command, or later using the OTA mechanism by making use of the code indicated in Table 5 -
Reserved OTA file type codes (0-255) (Host OTA certificate update).

Host OTA certificate updates performed using the OTA mechanism do not require the host to
accept the update nor to control when it is run.

The host OTA certificate is a configuration parameter initially undefined (empty) and cleared at
factory reset.

When the host OTA certificate is undefined, the signature verification of an incoming (first) host
OTA certificate payload cannot and will NOT be verified.

8.11.1 CONF? {certificate} pem # Special certificate output formatting option

The special qualifier pem can be appended to read a certificate configuration dictionary key
(Certificate, OTAcertificate, HOTAcertificate, RootCA) and produce output in a format that allows
the developer to cut and paste the output directly into a standard .pem file for later upload to the
AWS IoT dashboard.

Note

The response to this command is an exception to the general format described in 3.6.1
General response formats: because it produces more than one output line.

8.10 Host OTA Signature Verification 55

ExpressLink Programmer's Guide

Example:

AT+CONF? HOTAcertificate pem{EOL}

Returns:

8.11.1.1 OK# pem{EOL}

The command returns 'OK' with the number (#) of additional lines, followed by those additional
lines composing the certificate, for example:

OK9 pem
-----BEGIN CERTIFICATE-----
MIIDWTCCAkGgAwIBAgIUeKvfYpklvnnattQF09ug9UULjZwwDQYJKoZIhvcNAQEL
BQAwTTFLMEkGA1UECwxCQW1hem9uIFdlYiBTZXJ2aWNlcyBPPUFtYXpvbi5jb20g
...
KHiN1yooauYJKaKr5eJilRAhdYsV2t9X3EFD60/eKmZyD+NE68jAwK/OvokhIGms
cZAj8m0QwqvPkZ0Y2Yc+hPSipQl/hLsg4W/GtbA2MPkTGcvkCBHLYgLBBGpe
-----END CERTIFICATE-----

8.11.2 CONF {certificate}=pem # Special certificate input formatting option

The special value pem can be used to input a certificate (Certificate, OTAcertificate,
HOTAcertificate, RootCA) as a multi-line string to allow the developer to directly cut and paste the
content of a standard .pem file.

Example:

AT+CONF HOTAcertificate=pem
-----BEGIN CERTIFICATE-----
MIIDWTCCAkGgAwIBAgIUeKvfYpklvnnattQF09ug9UULjZwwDQYJKoZIhvcNAQEL
BQAwTTFLMEkGA1UECwxCQW1hem9uIFdlYiBTZXJ2aWNlcyBPPUFtYXpvbi5jb20g
...
KHiN1yooauYJKaKr5eJilRAhdYsV2t9X3EFD60/eKmZyD+NE68jAwK/OvokhIGms
cZAj8m0QwqvPkZ0Y2Yc+hPSipQl/hLsg4W/GtbA2MPkTGcvkCBHLYgLBBGpe
-----END CERTIFICATE-----

8.11 Host OTA certificate update 56

ExpressLink Programmer's Guide

Returns:

8.11.2.1 OK{EOL}

The module returns 'OK' if the new certificate was valid.

8.11.2.2 ERR23 INVALID SIGNATURE

The module returns 'INVALID SIGNATURE' if the new certificate could not be verified.

These command extensions are meant for the developer to use to manually input/output
certificates from a terminal application without worrying about escaping the many newline
characters contained in a typical .pem file. When a host processor reads or writes to the same
certificates, the developer can easily implement the necessary escaping programmatically, resulting
in single line (long) strings.

8.12 Server Root Certificate Update

All ExpressLink modules are pre-provisioned with a long-lived AWS server root certificate that is
used to validate the endpoint (server) during the TLS connection setup. A new certificate can be
provided by means of the AT command interface or the OTA mechanism, using the code indicated
in Table 5 - Reserved OTA file type codes (0-255) (Server Root certificate update).

8.12.1.1 Server root certificate updates performed using the OTA mechanism do not require
the host to accept the update nor to control its run timing.

8.12.1.2 Server Root certificates are NOT deleted upon a factory reset

8.13 Over the Wire (OTW) module firmware update command

A direct module firmware update mechanism is offered as a convenient alternative for customers
that intend to update module firmware during, or immediately after, the assembly/testing line.

The OTW command allows the host to act as the conduit for a new firmware image to the module
through the same interface used for the AT commands. Alternatively, a customer's Automated
Testing Equipment can seize control of the interface and take over communication with the module
(holding the host processor in RESET).

8.13.1 OTW # Enter firmware update mode

When it receives this command, the module enters a custom bootloader interface that allows you
to transfer a complete image to the reserved bulk storage memory.

8.12 Server Root Certificate Update 57

ExpressLink Programmer's Guide

Returns:

8.13.1.1 OK{EOL}

The module is in OTW mode and ready to receive the new firmware image.

8.13.1.2 The actual protocol used to negotiate the transfer of the file is implementation
dependent (XMODEM) and must be documented by each vendor in the module datasheet.

8.13.1.3 The OTW process can be terminated at any point by issuing a hardware reset (pulling
the RST pin low).

When the transfer is completed, the same firmware integrity, version compatibility and signature
verification process described for the module OTA will be applied. At this point, the module returns
one of the values shown here:

Returns:

8.13.1.4 OK{EOL}

The image was downloaded successfully. The module will now reboot from the new image in
bulk storage.

8.13.1.5 The process will erase all volatile configuration parameters (Topics, PATHs) and re-
initialize some of the non-volatile ones in the same way as a Reset command (actual details can
be implementation and firmware version dependent).

8.13.1.6 When the boot process completes successfully, the event queue is emptied and a
new STARTUP event is generated.

8.13.1.7 ERR21 INVALID OTA UPDATE

If the module is unable to apply the new module images (because of version incompatibility
or an integrity check failure), the module returns 'INVALID OTA UPDATE'. The update process is
stopped and any OTA memory used is freed.

8.13.1.8 ERR23 INVALID SIGNATURE

If the image signature check fails, the module returns 'INVALID SIGNATURE'. The update process
is stopped and any OTA memory used is freed.

8.13 Over the Wire (OTW) module firmware update command 58

ExpressLink Programmer's Guide

9 Additional services

9.1.1 TIME? # Request current time information

ExpressLink modules must provide time information as available from SNTP, GPS, or cellular
network sources. Note that devices can choose to maintain a time reference internally, even when
disconnected or in sleep mode, depending on implementation-specific software or hardware
capabilities.

Returns:

9.1.1.1 OK {date YYYY/MM/DD} {time hh:mm:ss.xx} {source}

If time information is available and recently obtained, the module returns it.

9.1.1.2 ERR15 TIME NOT AVAILABLE

If a recent time fix could not be obtained, the module returns 'TIME NOT AVAILABLE'.

9.1.2 WHERE? # Request location information

ExpressLink modules can optionally provide last location information as available from GPS,
GNSS, cellular networks, or other triangulation methods. A timestamp is provided to let the host
determine the currency of the information. The implementation of this command is optional.

Returns:

9.1.2.1 OK {date} {time} {lat} {long} {elev} {accuracy} {source}

If location coordinates could be obtained at date/time, the module returns it.

9.1.2.2 ERR16 LOCATION NOT AVAILABLE

If a location fix could not be obtained, the module returns 'LOCATION NOT AVAILABLE'.

10 Provisioning

All ExpressLink modules will be equipped with a pre-provisioned hardware root of trust (on chip
or external secure element, secure enclave, TPM, iSIM). This will provide the necessary unique
identifier (UID) of the module, a key pair (public, private) and will hold a certificate that is signed by

9 Additional services 59

ExpressLink Programmer's Guide

a CA shared with AWS as part of ExpressLink program. This certificate will be used to transfer the
module public key to the AWS endpoint upon activation.

10.1 ExpressLink Modules Activation

Upon first use, or following a complete factory reset, each ExpressLink module is ready to establish
a connection according to the model's specific connectivity capabilities (Wi-Fi, Cellular, ...). In case
of Wi-Fi modules, this is possible only after the end-user has provided the module with the proper
Wi-Fi credentials for a local, compatible Wi-Fi Access Point (router).

10.1.1 ExpressLink Staging Account Authentication

Each ExpressLink module is ready to establish a connection with a default AWS IoT ExpressLink
staging account. The connection is mutually authenticated using the ExpressLink birth certificate
(and an AWS server certificate) and upgraded to a secure socket connection (Mutual TLS).

10.1.2 ExpressLink Staging Account Endpoint

During the qualification process, AWS assigns each ExpressLink manufacturing partner a dedicated
staging account and the associated, unique AWS endpoint (URL).

10.1.2.1 The assigned staging account endpoint is set as the "factory default" for the Endpoint
configuration parameter (see Table 2 - Configuration dictionary persistent keys).

10.1.3 ExpressLink Birth Certificate

Each ExpressLink device must be provided with an X.509 certificate that conforms to the following
specification:

• 10.1.3.1 The Serial Number must contain the device Unique ID (a unique, nonsequential 128-
bit or larger number) also assigned as the ExpressLink module ThingName configuration.

• 10.1.3.2 The certificate signature is provided by a Certificate Authority that has been
registered by the vendor with AWS IoT Core for the exclusive use of the vendor ExpressLink
modules.

• 10.1.3.3 The expiration date is set to no less than 10 years from the device certificate issue.

10.1 ExpressLink Modules Activation 60

ExpressLink Programmer's Guide

10.1.4 ExpressLink staging account device registration

Using the staging account endpoint, the ExpressLink module proceeds to login to the AWS IoT Core
MQTT broker. If successful, an automated process (JITP or similar) creates a thing and associated
policies using an ExpressLink template and appends it to the staging account registry.

10.2 ExpressLink Evaluation Kits Quick Connect Flow

ExpressLink Evaluation Kits are able to use the ExpressLink staging account to deliver a fast, out-
of-box experience. As soon as connected they are able to publish data to an ExpressLink MQTT
topic ("data") and subscribe to any ExpressLink MQTT topic ("state"). AWS provides a simple
web application (Quick Connect) to all ExpressLink users to visualize the data published by the
Host processor (using animated graphs) and to send customizable commands back to their Host
processors.

Developers are also able to register their ExpressLink modules to their private developer's accounts
and proceed to application development with a few simple, manual steps, including:

• extracting the device certificate

• uploading it to their private accounts

• updating the ExpressLink endpoint

10.2.1 Workshop Default Wi-Fi Credentials (Optional)

To reduce the number of configuration steps and time required to establish a Wi-Fi connection, a
default set of Wi-Fi credentials can be provided in the configuration dictionary at factory reset.

Using default Wi-Fi credentials can be convenient in workshop, classroom or seminar environments
to avoid several (10+) users attempting to simultaneously use a CONFMODE (Bluetooth)
connection. This greatly simplifies the room set up.

If implemented, the manufacturer documents such credentials in the module datasheet.

10.3 ExpressLink Production Onboarding Flow

Onboarding is the process of creating a "thing" corresponding to each physical device in the
customer account registry in order to provide access to the account's IoT core services. Each thing
must be associated with a valid certificate and access policy document.

10.2 ExpressLink Evaluation Kits Quick Connect Flow 61

ExpressLink Programmer's Guide

In a production flow, ExpressLink customers can use any of a number of automated onboarding
techniques as required by their application, including:

• Pre-registration, where the modules' certificates are obtained before assembly and uploaded to
the customer account in advance.

• End of (assembly) Line registration, where module certificates are collected after product
assembly and individually uploaded to the customer's AWS account.

• End of Line batch registration, where module certificates are collected after product assembly
and shipped in batches to the customer for upload into the AWS account.

• Just in Time Registration, where the device onboards to the customer account at first connection.
(This requires pre-registration of the module manufacturer's CA to the customer account.)

10.3.1 ExpressLink onboarding states and transitions

10.3.1.1 At first activation or following a factory reset, all ExpressLink devices default to
the Evaluation and Test state where they connect to the manufacturer's staging account. The
configuration parameter Endpoint (see Table 2 - Configuration dictionary persistent keys) controls
this behavior. When (and only when) in the Evaluation and Test state, ExpressLink modules must
automatically subscribe to the endpoint-update topic: <ThingName>/expresslink_config. When
it receives a message on the update topic with the following format: {"Endpoint" : "value"}, the
module will update the Endpoint configuration parameter with the requested new value.

10.3.1.2 The host can retrieve the MSG event produced (GET0) and use it to implement
additional optional features, such as to alert the user of the device of a successful onboarding
(registration).

10.3.1.3 The module will also automatically disconnect. The related CONLOST event will inform
the host that it must re-establish a new connection, this time to the newly assigned endpoint.

10.3.1.4 The host can query the state of the module using the CONNECT? command and
inspecting the second numerical parameter provided in the response (see 3.7.1 CONNECT? #
 Request the connection status) without having to inspect the contents of the Endpoint
configuration parameter (or knowing/assuming the default Endpoint value to compare against).

10.3 ExpressLink Production Onboarding Flow 62

ExpressLink Programmer's Guide

Figure 6 - ExpressLink onboarding states diagram

Once onboarded, all ExpressLink modules behave as fully owned devices and connect to the
customer/OEM account as the ExpressLink things are transferred to the chosen OEM registry.
It is the responsibility of the OEM to manage the product life cycle, use the OTA services to
apply module updates (with images provided by the ExpressLink module vendor) and apply host
processor application updates as needed.

10.3 ExpressLink Production Onboarding Flow 63

	ExpressLink
	Table of Contents
	AWS IoT ExpressLink programmer's guide v1.0
	1 Hardware
	1.1 Block diagram
	1.2 Pin definitions

	2 Run states
	3 ExpressLink commands
	3.1 Introduction
	3.2 ExpressLink commands format
	3.3 Delimiters and escaping
	3.4 Maximum values
	3.5 Data processing
	3.6 Command responses and error codes
	3.6.1 General response formats:
	3.6.2 Response timeout
	3.6.3 AT ⁞ Communication test

	3.7 Power and connection control
	3.7.1 CONNECT? ⁞ Request the connection status
	3.7.2 CONNECT ⁞ Explicitly request a module to connect to AWS IoT Core
	3.7.3 DISCONNECT ⁞ Leave the connected state and enter the active state
	3.7.4 SLEEP{#} [duration] ⁞ Request to enter a low power mode
	3.7.5 CONFMODE [parameter] ⁞ Activate modal credential entry
	3.7.6 RESET ⁞ Request a full reset of the ExpressLink internal state
	3.7.7 FACTORY_RESET ⁞ Request a factory reset of the ExpressLink module

	4 Messaging
	4.1 Messaging topic model
	4.1.2 Topic usage rules
	4.1.3 SEND {topic} message ⁞ Publish msg on the specified topic
	4.1.4 SEND{#} message ⁞ Publish msg on a topic selected from topic list
	4.1.5 GET ⁞ Request next message pending on any topic
	4.1.6 GET0 ⁞ Request next message pending on an unassigned topic
	4.1.7 GET{#} ⁞ Request next message pending on the indicated topic
	4.1.8 SUBSCRIBE{#} ⁞ Subscribe to Topic#
	4.1.9 UNSUBSCRIBE{#} ⁞ Unsubscribe from Topic#

	5 Configuration Dictionary
	5.1 Data values referenced
	5.2 Data accessed through the CONF command
	5.2.1 CONF KEY={value} ⁞ Assignment
	5.2.2 CONF? key ⁞ Read the value of a configuration parameter

	6 Status dictionary
	6.1 State commands

	7 Event handling
	7.1 Introduction
	7.2 Event handling commands
	7.2.1 EVENT? ⁞ Request the next event in the queue

	7.3 Diagnostic commands (not covered by test)
	7.3.1 DIAG {command} [optional parameters] ⁞ Perform a diagnostic command

	8 ExpressLink module updates
	8.1 ExpressLink module support of Host Processor OTA
	8.2 OTA commands
	8.2.1 OTA? ⁞ Fetches the current state of the OTA process
	8.2.2 OTA codes
	8.2.3 OTA ACCEPT ⁞ Allow the OTA operation to proceed
	8.2.4 OTA READ #bytes ⁞ Requests the next # bytes from the OTA buffer
	8.2.5 OTA SEEK {address} ⁞ Moves the read pointer to an absolute address
	8.2.6 OTA APPLY ⁞ Authorize the ExpressLink module to apply the new image.
	8.2.7 OTA CLOSE ⁞ The host OTA operation is completed
	8.2.8 OTA FLUSH ⁞ The contents of the OTA buffer are emptied

	8.3 OTA update jobs
	8.4 Module OTA image signing
	8.5 Module OTA signature verification
	8.6 Module OTA certificate updates
	8.7 Module OTA override
	8.8 Synchronized Module and Host update sequence
	8.9 Host OTA updates
	8.10 Host OTA Signature Verification
	8.11 Host OTA certificate update
	8.11.1 CONF? {certificate} pem ⁞ Special certificate output formatting option
	8.11.2 CONF {certificate}=pem ⁞ Special certificate input formatting option

	8.12 Server Root Certificate Update
	8.13 Over the Wire (OTW) module firmware update command
	8.13.1 OTW ⁞ Enter firmware update mode

	9 Additional services
	9.1.1 TIME? ⁞ Request current time information
	9.1.2 WHERE? ⁞ Request location information

	10 Provisioning
	10.1 ExpressLink Modules Activation
	10.1.1 ExpressLink Staging Account Authentication
	10.1.2 ExpressLink Staging Account Endpoint
	10.1.3 ExpressLink Birth Certificate
	10.1.4 ExpressLink staging account device registration

	10.2 ExpressLink Evaluation Kits Quick Connect Flow
	10.2.1 Workshop Default Wi-Fi Credentials (Optional)

	10.3 ExpressLink Production Onboarding Flow
	10.3.1 ExpressLink onboarding states and transitions

