aws

Real-Time Streaming User Guide

Amazon IVS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon IVS Real-Time Streaming User Guide

Amazon IVS: Real-Time Streaming User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon IVS Real-Time Streaming User Guide

Table of Contents

What is IVS Real-Time Streaming?ccccciiiiiieeeemenniiiiceiiniieeeesss 1
Global Solution, REGIONAL CONTIOLeieieeieeeeeee ettt ettt e e a e e nnan 2
Streaming and Viewing are GLoDal ... 2
CONLIOL IS REGIONAL ..ttt e et st e st e s te s e e e s se e e e e e s e sessastassassassnessensansanean 2
Getting Started With IVS ... iciiiiiiiititennneniiieecinitttsessssssssssssessesssssssssssssssssssssssssssssasssssssssnes 4
INEFOAUCTION ettt sttt et s sttt s e s b e st et s s e st et s aesba st e e esassestesassensensesersansenann 4
PrErEQUISITES .eeeiiieeititeectcrtee ettt st ae st e st e s sae s s ae s sae e st e s aesssaessaesssassseasssessseesssassseesseessseesseens 4
OthEr REFEIENCES ...ttt sttt et et et e st e e s e st et e e s sa st e e ssassesaenas 4
Real-Time Streaming TerMiNOLOGYcccciceeeeicieeeeeete ettt aesae et se e e s e e a e e e saesaenes 5
OVEIVIEBW OF STEPS ettt e te s e e et s a e st et e b e st e s se e s e e e e ss et et e stenbassassesseesesnsensanes 5
SEt UP TAM PEIMISSIONS ...ueeiiiieiieiieticieeittestessteestes st estesssessssesssesssaesssessssesssessseesssessssesssessssesssessssesssesssaasss 6
Use an Existing Policy for IVS PermiSSIiONScccceoeeerieeeieeetectecieste e eee e s saessessesse s e ssnennas 6
Optional: Create a Custom Policy for Amazon IVS Permissionsccccceeveeveeveecieniecesesieseereenens 6
Create a New User and Add PermiSSIONSccccueererieerenienirenenieesessesesessessesessessessesessessessssessesees 8
Add Permissions t0 @n EXiSTING USEIcc.ccuiiieieiiieieieceseseeee et saestestessesseeses e e s esaessessessasaans 9
CrEATE @ STAGE .ottt sttt s e st e st e e s s e e e e e a e e et e e b e e e b e e s e e saesese e aeesaeesnsanans 9
CONSOLE INSEIUCLIONS ...ttt sttt st et e s et a s st et s e s s e sae st e sasbantesassessensens 10
CLI TNSEFUCTIONS .ttt ettt st s e s bt at s b e st e s st s b e st esnesneebesseeaness 11
Distribute PartiCipant TOKENS ...ttt ettt st et saea ettt nas 11
CONSOLE INSEIUCLIONS ...ttt sttt st et e s et a s st et s e s s e sae st e sasbantesassessensens 12
CLI TNSEFUCTIONS .ttt ettt st s e s bt at s b e st e s st s b e st esnesneebesseeaness 12
AWS SDK INSTIUCTIONS ...ttt sttt et st st s st e st s b s e e st sse st e snaenne 13
Integrate the IVS BroadCast SDK ...ttt e e e e st sae st e saeste s se e s a e ae s 14
WVED ettt ettt sttt st b e st e b et e a et b et e R e b et e et et et e ae b et eneeaesenaesans 14
ANAIOIA .ottt ettt st et s e st et et e et st e s b et e e s s et et e s e be st et e s et et eseebe s et esententenaes 15
TOS ettt ettt et a et e et e R et et e R e A et e Rt e b et et e s et et e R e b et e e e s et et eaeesantentes 16
Publish and SUDSCHDE 10 VIAEO ..ottt sttt a st aas 17
WVED .ttt ettt ettt st e b e st et a et b et et a e s b et e e e b et et e s et et eneesatenaerans 17
ANAIOIA .ottt ettt sttt s e sttt e st st e e s b et e e s R et et e s et et et e s et et eseebe s e s esententesaes 25
TOS ettt sttt ettt a et s e s b et e A et et e R e A et e st e A et et e R et et e se b et e e e se st et eaeesententes 50
MONIEOKFING ceveiiiiiiiiiiiiiineeeannniiiiiieeeeetneesesssssssssssssssess 81
What iS @ STAg@ SESSIONT ...ttt e e e et et e s ae st e st e s e e e e st e s e testesasassaesaesaenaanean 81
View Stage Sessions and PartiCipants ...ttt st ae e an e 81

CONSOLE INSTIUCTIONS ettt ettt ettt et e e e ee et e eeeseateseassseeeaesssaeseesssaeseeessseessessseesassnseessannns 81

Amazon IVS Real-Time Streaming User Guide

View Events for @ PartiCiPant ...ttt st ste e a et sae s ae s 81
CONSOLE INSEIUCTIONS ..ttt sttt a et st e sae st e s b e s beesaesa e e e aessassansansan 81
CLI TNSTFUCTIONS «.eeviiititeeiteeteccteeteesteestessteeste s st esseessaess e eesae e s e essaesssaesssassseasssessssesssessseesssesssaesssessseens 82

ACCESS CLOUAWALER MELEICS ...ttt ettt st te e st e e e et et e be st e s b e s se e e s sa e e esnenaanean 83
CloudWatch Console INSTFUCLIONSecuveieiiieieececee ettt et sae e s s snenesaesaenean 83
CLI TNSTFUCTIONS «.eeviiititeeiteeteccteeteesteestessteeste s st esseessaess e eesae e s e essaesssaesssassseasssessssesssessseesssesssaesssessseens 84

CloudWatch Metrics: IVS Real-Time Streamingcccceiiceeiecieceeeeee ettt sve e e seeaessenas 84

IVS BroadCast SDKcccciiiiiiieeeeeeeesiiiseseceninessess 89

Platform REQUIFEIMENTScvieiieeeeeeeetetetete ettt e ctestestesteste e e e e e s e s e ste b e tassassessaesaessenaassensansenes 89
NALIVE PLAtFOIMS ...ttt e st e e e s st e st et e s ae st e s ae e e seeneennennanes 89
DESKEOP BIOWSENS ...ttt et testestestestesse e e e e ssaesae e e te st e st assassaesasssensansansansansassassesseenaenaan 90
Mobile Browsers (i0S and ANAIOid)ooeeeeeeeiiiiiieeeiieiteeeeeeeeeeeeseeeesseeessseesssssesssseesssseessssesssssessns 90

WEDVIBWS ...ttt sttt st s et e st et e st e s b et e e e e e e e e e e b e st et essassesseeseassastessansansassanseessessansantans 91

REQUIFEA DEVICE ACCESS .cveeeeeeeierectesteeeeee et e testestestessesseessesesessessassassassassasssessassansansansassassessssssessensenes 91

SUPPOIT ettt ettt e st e st e e st e st e s sae e st e s sae e st e sse e sae s sa e st assseasssassseesssassseessseesseesssessseesssessssesseenns 91
VEISIONING eutiiiiiiieeitirteecteerte et e e te e st e s stessaeesste s s st eessees st essa s st esssesssaesssaesstesssessssessseesssessseesssessseessaesssenns 92

WED GUIAE .ttt et ettt e st e st e et et s e e et et et et e ssassaeseesaenaentessassansasanseesesnsanean 92
GELEING STAMTEA ...ttt et et e st e st e s e s e e e e e st e st e st e saassesseeseesaesaensansans 93
Publishing and SUDSCHIDING ...ttt st e e e s e besaasrans 96
Known Issues and WOrKarOUNASc.cceeeeeeeeieienieiectesieseseeeeeseessestesaessessessessssssesensessessensenes 107
ErrOr HAnAUING c..ooeeeeeeeeeeee ettt st te e st st e st esae s e st e e e et e aesba st e aassasseennenaanes 109

ANAIOId GUIAE .ttt ettt e te e e e e e e et et et e st e st e s b e s saesessaensassestansansansasseesasssenaanes 112
GELEING STArTEA ...ttt e e e e et e ae b e s s e seesaesaenaennenaanes 113
Publishing and SUDSCHIDING ..ottt st sa et es 114
Known Issues and WOrKarOUNASc.cceeeeeeeeeeienieieceesesieseeeeeseessessessessessessessassssssensessessensenes 124
[T oY gl o F=Ta T | 1 oV OO TSROSO R 126

TOS GUIAE ettt ettt st s e et e e e e e e e et et et et e st e s s e s seeseesa e st assentassassessansanseessessansensensansans 128
GELEING STArTEA ...ttt e e e e e e et et et et e s b e seesaesa e e ennenaanes 129
Publishing and SUDSCHIDING ...ttt st sa e e es 131
How iOS Chooses Camera Resolution and Frame Rateccceeecieciececececeeececeeeete e 139
Known Issues and WOrKarOUNASc.cceceeeeeeieienieiectesteseseeeeeseessessesaessessesssssssssessessessessessenes 141
[T oY gl o =T T | 1 oV OO USRS 142

CUSTOM IMQAQGE SOUFCES ...ceveieeeitieieeciteste et sete st estessaessssessseessassseasssesssaesssassssesssessssesssesssessssesssesssaens 145
AN 3 T [o] I PSR TP RSOOSR 145
TOS ettt et e et e e et e e et et e ae et et e e reereere et et enteteeteeseeseeree e et entetetenseeseeseensenaantans 146

THird-Party CameEra FIlLEIS ...ttt te s e s ve e e e e sa et et e saesaesse e e e s e s ennenaantans 146

Amazon IVS Real-Time Streaming User Guide

Integrating Third-Party Camera FilLers ...ttt sae v saens 147
BYLEPLUS ..ttt ettt ettt te st e st s e e e ettt e b e e et et e e se e e e s e et e tetantanseesaeree st enneneanes 147
DEEPAR ..ttt et sttt e e e e bt e s a e e e b e e st e e b e e s s e e e b e e s e e et e e sa e e aa et e e aeesseennras 149

1 1 1= | o T OO OO PO SRR P SO OO P OUPP TP RRRPPOUPRRRPRRTPTONt 149
Background REPLACEMENTouieieeeeeeeee ettt e st e st e te s sse e e e s e s e aesaeneans 164
MODILE AUIO MOAES ..ottt sttt sa e st sttt s et et s s s e b e e e e saastesassensen 185
INEFOAUCTION ettt ettt st ettt et s st et et s s et et e e ssa st esassassenassenns 186
AUAIO MOAE PrESELS ..ottt stest et ae st s e st et s et et s e s e sae e s e sae st esassessesassessensssnnns 187
AAVANCEA USE CASESooueveieiirientiieienienteesestestsessesteessessestssessestesessassessesessestessssessessesessessesessessensns 189
INtegrating With Other SDKS ...ttt re et et e st e s tesse s se s e e aesaenaens 192
Using Amazon EventBridge With IVS ... iiiiiiiiiiiiiniiennneeiiiiiiiiiiinnsssssssssssssssecsssssssssssssens 193
Creating Amazon EventBridge Rules for AmMazon VS ...ttt 194
Examples: Composition State ChANGE ...ttt sa et aeas 195
EXamMPLES: STAag@ UPAte ...ttt ettt te e te e se e e sa et saesae st e s se s e e e e nennanaens 198
Server-Side COMPOSIHION ..cciiieeeeeeeciiiiiiiiiiiiiiieeennniiiiiiieeeietssses 200
BENETILS .ottt ettt et ettt et e b et et e sesae e eseeaan 200
IVS AP ettt ettt st e e e st e s e s st e e e s e e s b e e st e e b e e s s e e s b e e e e et e e a e e e b e e e e e ae e s s e e e s e et eeseesraannns 201
LQYOULS ettt ettt et st s e e s ae s s e e s ae e st e e b e e s sae s s e e saaesae e saesssa e ssassseansaeesaesssassseassaesssaensaans 202
GELEING STArTEA ...ttt e ettt e st e st e s s e s s e e e e e e s et e testassesseesaenaeananean 204
PrErEQUISITES .ottt ettt sre s st e s s ae s s e e s st e e st e s sae s saessaeessaessaessaesssaesssesssessssessssennees 204
CLI TNSEFUCTIONS ettt ettt st et ae st e st s b st e st s saesbessessaeenbesntesnesns 205
ENQDLE SCrEEN SHAIE ..ottt sttt sttt ettt s b e st e e s e saa s esaenans 208
COMPOSIEION LIFECYCLE ettt et e et st e b e st e s e e e e e e e s e aanaantan 211
ComMPOSite RECOIAING ..ccciiiiiiiineenneneiiiiiiceeiiiieeasessssssssssssesessses 213
... 213
PrErEQUISITES .eeeeiieeecttceteccterte ettt ettt re s st e s ae s s e e s e e e st e s saesssaeeaa e s st essseessaesssaesssassseesssessssennaes 213
Composite Recording Example: StartComposition with an S3 Bucket Destination 214
RECOIAING CONEENTES ...ttt e e et et sa et et esaeeseese e e e e e e e b e stesaessassesseesnessansansanes 216
Bucket Policy for StorageConfiguration ...t sa et saens 217
JSON MELAAALA FIlES ettt ettt e sae st ettt et e s e st s s et et s e saessesassans 218
Example: recording-start@d.JSON ...ttt ae e e e e e e sa et e aesaesrens 220
Example: recording-ended.jSON ...ttt ettt nean 221
Example: recording-fail@d.JSON ...ttt ettt s ae e ens 221
Playback of Recorded Content from Private BUCKELSc.coeeueeveieciiieeeeeeceeeeeeee e, 222
Setting Up Playback using CloudFront with CORS Enabledccoooveieoeenenieeeeeeeeiee 223
Example: S3 Bucket Policy with CloudFront and IVS ACCESSooeeueeeeeeeeieececeeeeeeee e 225

Amazon IVS Real-Time Streaming User Guide

TrOUDLESNOOTING ..ottt e et b ae st e s se s e s e e s e e et et estessassaeseensensansansans 227
KIOWIN ISSUE ..ttt ettt sttt ettt st esae s sae s ae s sse e s b e s s ae s saesssa e s b asssaasssesssaesssassseesssessssesssesnaens 227
OBS and WHIP SUPPOKT ...cciiiiiiiieeitnniiiiieeiiiiinecesssssssssssssssesse 228
OBS GUIAE .ttt sttt ettt e st et s st e st et s e ste st e e s s aste st ssassestesessessestesesansesessansensesassansenees 228
SErVICE QUOLAS cuueeeeeieeenecereeneeeeeeceresscseeseecssssscssssssessssscsssssssssssssssssesssssssssssssssssssssssssscssssssssssssssas 230
SErvIiCe QUOLA INCIBASES ...ueeeeeeeeeeeietieeeeeeteeeeeeiteeeeessereeeessaeeeesssssseeessssseesssssseessssssseesssssssessssssseeessnssnes 230
AP| Call RAtE QUOLAS .ottt ettt eare s s st e e ae e sasesssesaseesesessesssesasesnssasssesssesnnean 230
.. 230

(O] o 1= g @ T U] X = L TSR 231
.. 231
Streaming OPtiMIZAtionscciiiiiiiiiiiiieeneeiniiiiiieiiiiieseessssssissseceess 234
INEFOAUCTION .ottt et e et et et e st e st e st e s s e e ss e e et e s et antessasessaeseeseensessansansansansans 234
Adaptive Streaming: Layered Encoding with Simulcast ..o 234
Default Layers, Qualities, and Frameratescouieceeeneneeeeeeeeeeee et e e s s sne s 235
Configuring Layered Encoding with SIiMULCastc.coeeeeieiecieceeeceeeee e 236
Streaming CONFIGUIAtIONSc.ociiieeeceeeeeee ettt e st e st e s e e e e s e e e e saesaesaassessassnesaaneans 236
Changing Video Stream Bitrate ...ttt st 237
Changing Video Stream Framerate ...ttt ste e e s e s saesaesaesaesseesessnens 237
Optimizing Audio Bitrate and Stereo SUPPOIt ...t 238
Suggested OPLIMIZAtIONS ..ottt te s e e e e s e et e saesae s e sassnesaennan 240
RESOUICES & SUPPOIT covuiiiriiiirtniciinniiitmeisirsesiessesssssescsssessesssesssssssssssssss 241
RESOUICES ..ottt ettt e st e s sae s st e s te s st e st e s s st e e b e s s st e s ssesssaesssasssaesssassseesssessssesssessseesssessssessessseans 241
DIBIMIOS ettt sttt et s e e st e e s e e s b s b e e s st e e bt e et e s s e e et e e R e e e b e e R e e et e e s Rt e st e e s e e e ba e st eesaeessaanneas 241
SUPPOIT ettt ettt sttt e e st e st e s sae e s e e s s e e s se s ssa e s b e e seessaesssaesssassstesssessaessseesseesssesssaessseesseesssenne 242
GLOSSAIY wuuiiiieiiiiininnnnnnnenssissseeeenssnnes 243
(0T oYal 1Ty 1 L= 31 o 1T o oV UPTR 261
Real-Time Streaming User GUide ChANgEScuoieiiieieeeceeecec ettt aeaesaeaens 261
IVS Real-Time Streaming APl Reference Changes ... eeeceecieceeciececececes e sae e 276
RELEASE NOLES ...ceeeeeiiiiiiiiiiiiiiieeeeneiiiiiieeeiteess 278
MY 6, 2024 ...ttt ettt sttt ettt ettt et e b et e b et et e e b et e e s R et et e ae b et et eseneentenas 278
IVS Broadcast SDK: Web 1.11.0 (Real-Time Streaming)ccccceeveeeeeeveereecieseeseceseeeeeeeeseenens 278

APFIL 30, 2024 ...ttt ettt sttt sttt et et ea e s bt e st e st e b et et et et e e e s e tentesesaentenees 278
IVS Broadcast SDK: Web 1.10.7 (Real-Time Streaming)cccccceveeeeeeeeceeceeseeseseseeeeeeeeseenens 278

APFIL 30, 2024 ...ttt ettt sttt sttt et et a et e et e st e b et et e st et e e e s et et esesaentenees 279
Amazon IVS Broadcast SDK: Android 1.15.2, iOS 1.15.2 (Real-Time Streaming) 279

APFIL 22, 2024 ...ttt sttt ettt sttt et et a et st e st b et et b et e e e s e seaesesaesaenaes 280

Vi

Amazon IVS Real-Time Streaming User Guide

Amazon IVS Broadcast SDK: Android 1.17.0, iOS 1.17.0 (Real-Time Streaming) 280
MAICR 27T, 2024 ...ttt te e e s e e e e et et et e st e st et e s s e e s e e s e eaa et et e s e tastanteeseeseeaaententantantans 281
Amazon IVS Broadcast SDK: Android 1.16.0, iOS 1.16.0, Web 1.10.0 (Real-Time
SEIEAMING) weevieieieeeectecteeteee ettt et et et e s te st e e e e e e sa e e e s e ae b e sbessassessesseeseestessastansessansassaeseessensensanes 281
MAFCRN T3, 2024 ..ottt et eeat e s e sbe e ssbesesabesssstesssssesesstessssassssstesssseessssessssssessssesssstesssssesnn 283
Amazon IVS Broadcast SDK: Android 1.15.1, iOS 1.15.1 (Real-Time Streaming) 283
MAFCR T3, 2024 ..ottt e ettt e et e s e bt cessbesesabessssbesssssesesstsssssaesssssssssstsssssesssssssssssesssssesssssesns 284
Server-Side Composition APl UPAtescoeeieieeeieieieteteesestes et saestesaesse e eenesaenens 284
MAICR 8, 2024 ...ttt ettt te st e st e st e st e et e e e e e e et et et e st e s e e sa s e e nt et e tenteba st e seereeraenaenaantan 284
Server-Side Composition Layout UPdAtescoeeeieieiiciiceeeecececeeteeeee et 284
FEDIUAIY 22, 2024 ...ttt te e teete e e e e e et e st e st e s te st e s e s e e s e st et et e sassassasseessensansansansansansans 284
Amazon IVS Broadcast SDK: Android 1.15.0, iOS 1.15.0, Web 1.9.0 (Real-Time
SEIEAMING) weeveeieieeeecteteete ettt et et et este st e et e s e e sa e s e s e ae b e st e bessessesseesaesaessastansensansessaeseaseensensanes 284
FEDIUAIY 7, 2024 ...ttt et e e e et et e st e st e s seese s e e e e s et e stestastessassessaesaesaansensansansans 286
Server-Side Composition Layout UPdAtescceeeieieieieeececeeeceeeseetete e e e ae s 286
FEDIUAIY 6, 2024 ...ttt e et e et e st e st e s te e ae e e e e et et et et asaassaeseesaesaessansensansansans 288
OBS aNd WHIP SUPPOIT c..eoeieeeeectetetetestecteetee e et e tesaestessestesseesessesae s essassassessassesssessessensensansassans 288
FEDIUAIY T, 2024 ...ttt e e e et et et e st e st e s be e be e e e e e s et et e bestassasseesaesaassansensansansans 288
Amazon IVS Broadcast SDK: Android 1.14.1, iOS 1.14.1, Web 1.8.0 (Real-Time
SEIEAMING) weeeeeieieeeectectecterer ettt et et et este st e e te s e e sa e s e s e sae b e bessassesseeseeseesaessastansensansassaeseeseensensanes 288
JANUANY 3, 2024 ...ttt ettt s e s s e s st e s s st e s te s saa e s s e s se e st e s st e st assaaessaessseessessseesstesssessssennses 290
Amazon IVS Broadcast SDK: Android 1.13.4, iOS 1.13.4, Web 1.7.0 (Real-Time
SEIEAMING) weeeeeieieeeectectecterer ettt et et et este st e e te s e e sa e s e s e sae b e bessassesseeseeseesaessastansensansassaeseeseensensanes 290
(DT al=] 0] o Y=] a2 A O 1 SRRSO 292
NEeW CLOUAWALCR MELIICS ...uiiiiieeeteeeeeeteetete ettt sae st e s e s se e e e e e s e s e saesaansansans 292
(DT al=] a] o Y=] ot T A 0 1 SRR 293
Amazon IVS Broadcast SDK: Android 1.13.2 and iOS 1.13.2 (Real-Time Streaming) 293
NOVEIMDEE 27T, 2023 ..ottt eeeteeeeaeeesssteesatessseesesstesssseesssseessssesssstesesssesosessssesssssesssssessssesens 294
Amazon IVS Broadcast SDK: Android 1.13.1 (Real-Time Streaming)cccceceeveeeevercveceecrenenee. 294
NOVEIMDEE 17, 2023 ...ttt eeetteeeeaeeeesstesssatessseesssstesessessssseessssesssstesesssesosssssssessssesssssessssesens 295
Amazon IVS Broadcast SDK: Android 1.13.0 and iOS 1.13.0 (Real-Time Streaming) 295
NOVEIMDEE 16, 2023 ...ttt eeeteeeseeesssteessatesssseesesstesesseesssseessssesssssesssssessssssssssessssesssssessssessns 299
COMPOSItE RECOTAING .uviviiieieeeteteeee ettt ettt e e e e e e et et et e st e st e s se s e e e e e eaestestasaansassassaennanes 299
NOVEIMDEE 16, 2023 ...ttt eeeteeeseeesssteessatesssseesesstesesseesssseessssesssssesssssessssssssssessssesssssessssessns 300
Server-Side COMPOSITION ..cc.coiieieieecceeeeeesee ettt e stestesae s e s te e e e e e e e s e st e aessessassessassnennansaneans 300
OCLODEI T6, 2023 ...ttt steste s e e e e e e e e et et e st e st et e s s e s s essaesaessessantestassansassassaesesssensansansanean 300

vii

Amazon IVS Real-Time Streaming User Guide

Amazon IVS Broadcast SDK: Web 1.6.0 (Real-Time Streaming)ccccceeveeeeeeceeceeseeseneseeeenns 300
OCODEI T2, 2023 ...ttt ste e s e s e e e e e e e et et e st e st e te s s e s s e s saesaessessantassansansassassaesesssensansansanean 301
New CloudWatch Metrics and Participant Datacccveveiececeeececeeeceeee e 301
OCODEI T2, 2023 ...ttt te e st s e s e e e e e e e et et et e st et e s s e s s e e saesaesaessante st assansassassaesesssensansansanean 301
Amazon IVS Broadcast SDK: Android 1.12.1 (Real-Time Streaming)cccceceeveeveeverceeveecrenenee. 301
SEPLEMDBDEL T4, 2023eeeeeeeeeeeetete e rte et e e et et et e st e st e sbesse s e e e e e et e s e tetassassessaesaessensessansansansanes 302
Amazon IVS Broadcast SDK: Web 1.5.2 (Real-Time Streaming)ccccceeveeeeveecrecieceeseseeeeeenns 302
AUGUSE 23, 2023 ...ttt et e ste st e steste s e e e e e e ae st e st e st e sbassassesseesa e st essetassasassesseesaessensansentansensanes 302
Amazon IVS Broadcast SDK: Web 1.5.1, Android 1.12.0, and iOS 1.12.0 (Real-Time
SEIEAMING) weeveeieieeeecteteete ettt et et et este st e et e s e e sa e s e s e ae b e st e bessessesseesaesaessastansensansessaeseaseensensanes 302
AUGUST 7, 2023 ...ttt este st sste e st e st e s saess s e s sse e st e s sesssaassaaessaesssessssesssassssesssesssaesseesseessannns 305
Amazon IVS Broadcast SDK: Web 1.5.0, Android 1.11.0, and iOS 1.77.0 .cccocvvvveuvvvvveerereennnee. 305
AUGUSTE 7, 2023 ...ttt este st ste s st e st e s saess s e s sae e s st e s ssesssaasssaessaasssasssseessaesssesssesssaesseesseassasnns 306
REAL-TIME StrEAMING ...cciiieieieeeeee ettt et et e st e sae st e s se s e e e e s et eaestessassassessaesaansansanean 306

viii

Amazon IVS Real-Time Streaming User Guide

What is Amazon IVS Real-Time Streaming?

Amazon Interactive Video Service (IVS) Real-Time Streaming gives you everything you need to add
real-time audio and video to your applications.

Strengths:

» Real-time latency — Build applications for latency-sensitive use cases, helping your viewers stay
connected and engaged with IVS real-time streaming. Deliver live streams with a latency that can
be under 300 milliseconds from host to viewer.

» High concurrency — Unlock the potential of large-scale interactions with IVS real-time
streaming. Accommodate audiences of up to 10,000 viewers and enable up to 12 hosts to take
the virtual stage.

» Mobile optimized — IVS real-time streaming is optimized for mobile use cases, catering to a
diverse range of devices and network capabilities. By integrating the Amazon IVS broadcast
SDKs for Android and iOS, your users can engage as hosts or viewers, enjoying high-quality live
streams on their mobile devices.

Use cases:

» Guest spots — Create applications that allow hosts to promote guests "on stage," turning viewers
into hosts for real-time interactions.

» Versus (VS) mode — Produce experiences with side-by-side competitions and let viewers watch
hosts compete in real-time.

« Audio rooms — Invite listeners to join the conversation as guests and foster deeper engagement
in your audio rooms.

« Live video auctions — Turn auctions into interactive video events and maintain their excitement
and integrity with real-time latency.

In addition to the product documentation here, see https://ivs.rocks/, a dedicated site to browse
published content (demos, code samples, blog posts), estimate cost, and experience Amazon IVS
through live demos.

https://ivs.rocks/

Amazon IVS Real-Time Streaming User Guide

Global Solution, Regional Control

Streaming and Viewing are Global
You can use Amazon IVS to stream to viewers worldwide:

« When you stream, Amazon IVS automatically ingests video at a location near you.

» Viewers can watch your live streams globally.

Another way of saying this is that the "data plane" is global. The data plane refers to streaming/
ingesting and viewing.

Control is Regional

While the Amazon IVS data plane is global, the "control plane" is regional. The control plane refers
to the Amazon IVS console, API, and resources (stages).

Another way of saying this is that Amazon IVS is a "regional AWS service." That is, Amazon IVS
resources in each region are independent of similar resources in other regions. For example, a stage
that you create in one region is independent of stages you create in other regions.

When you use resources (e.g., create a stage), you must specify the region in which it will be
created. Subsequently, when you manage resources, you must do so from the same region where
they were created.

If you use the ... You specify the region by ...

Amazon IVS console Using the Select a Region drop-down in the top right of the navigation
bar.

Amazon IVS API Using the appropriate service endpoint. See the Amazon IVS Real-Time
Streaming APl Reference.

(If you access the API through an SDK, set up the SDK's region
parameter. See Tools to Build on AWS.)

AWS CLI Either:

« Appending --region <aws-region> to your CLI command.

Global Solution, Regional Control 2

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html
https://aws.amazon.com/tools/

Amazon IVS Real-Time Streaming User Guide

If you use the ... You specify the region by ...

 Putting the region in your local AWS configuration file.

Remember, regardless of the region in which a stage was created, you can stream to Amazon IVS
from anywhere, and viewers can watch from anywhere.

Control is Regional 3

Amazon IVS Real-Time Streaming User Guide

Getting Started with IVS Real-Time Streaming

This document takes you through the steps involved in integrating Amazon IVS Real-Time
Streaming into your app.

Topics

 Introduction

« Set Up IAM Permissions

« Create a Stage

« Distribute Participant Tokens

« Integrate the IVS Broadcast SDK

e Publish and Subscribe to Video

Introduction

Prerequisites

Before you use Real-Time Streaming for the first time, complete the following tasks. For
instructions, see Getting Started with IVS Low-Latency Streaming.

e Create an AWS Account

» Set Up Root and Administrative Users

Other References

IVS Web Broadcast SDK Reference

IVS Android Broadcast SDK Reference

IVS iOS Broadcast SDK Reference

IVS Real-Time Streaming API Reference

Introduction 4

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/getting-started.html
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-broadcast-docs/latest/android/
https://aws.github.io/amazon-ivs-broadcast-docs/latest/ios/
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html

Amazon IVS

Real-Time Streaming User Guide

Real-Time Streaming Terminology

Term

Stage

Host

Viewer

Participant

Participant token

Broadcast SDK

Overview of Steps

Description

A virtual space where
participants can exchange
video in real time.

A participant that sends local
video to the stage.

A participant that receives
video of the hosts.

A user connected to the stage
as a host or viewer.

A token that authenticates a
participant when they join a
stage.

A client library that enables
participants to send and
receive video.

1. the section called “Set Up IAM Permissions” — Create an AWS ldentity and Access Management

(IAM) policy that gives users a basic set of permissions and assign that policy to users.

2. Create a stage — Create a virtual space where participants can exchange video in real time.

3. Distribute participant tokens — Send tokens to participants so they can join your stage.

4. Integrate the IVS Broadcast SDK — Add the broadcast SDK to your app to enable participants to

send and receive video: the section called “Web", the section called “Android”, and the section

called "iOS".

5. Publish and subscribe to video — Send your video to the stage and receive video from other

hosts: the section called “Web", the section called “Android”, and the section called “iOS".

Real-Time Streaming Terminology

Amazon IVS Real-Time Streaming User Guide

Set Up IAM Permissions

Next, you must create an AWS Identity and Access Management (IAM) policy that gives users a
basic set of permissions (e.g., to create an Amazon IVS stage and create participant tokens) and
assign that policy to users. You can either assign the permissions when creating a new user or add
permissions to an existing user. Both procedures are given below.

For more information (for example, to learn about IAM users and policies, how to attach a policy to
a user, and how to constrain what users can do with Amazon IVS), see:

» Creating an IAM User in the IAM User Guide

o The information in Amazon IVS Security on IAM and "Managed Policies for IVS."

o The IAM information in Amazon IVS Security

You can either use an existing AWS managed policy for Amazon IVS or create a new policy that
customizes the permissions you want to grant to a set of users, groups, or roles. Both approaches
are described below.

Use an Existing Policy for IVS Permissions

In most cases, you will want to use an AWS managed policy for Amazon IVS. They are described
fully in the Managed Policies for IVS section of IVS Security.

» Use the IVSReadOnlyAccess AWS managed policy to give your application developers access
to all IVS Get and List API endpoints (for both low-latency and real-time streaming).

» Use the IVSFullAccess AWS managed policy to give your application developers access to all
IVS API endpoints (for both low-latency and real-time streaming).

Optional: Create a Custom Policy for Amazon IVS Permissions

Follow these steps:

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies, then choose Create policy. A Specify permissions
window opens..

Set Up IAM Permissions 6

https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html#Using_CreateUser_console
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/security.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/security.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/security-iam-awsmanpol.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon IVS

Real-Time Streaming User Guide

3. In the Specify permissions window, choose the JSON tab, and copy and paste the following

IVS policy to the Policy editor text area. (The policy does not include all Amazon IVS actions.

You can add/delete (Allow/Deny) endpoint access permissions as needed. See IVS Real-Time

Streaming AP| Reference for details on IVS endpoints.)

"Version": "2012-10-17",

"Statement":

{

"Effect": "Allow",

"Action'

"3
"ivs
"3
"na
"3
"na
"3
"na
"3
"ivs
"3
"ivs

1,

ivs:
:CreateParticipantToken",
ivs:
ivs:
ivs:
ivs:
ivs:
ivs:
ivs:

ivs:
:StartComposition",
ivs:

|:[

CreateStage",

GetStage",

GetStageSession",
ListStages",
ListStageSessions",
CreateEncoderConfiguration",
GetEncoderConfiguration",
ListEncoderConfigurations"”,

:GetComposition",

ListCompositions",

StopComposition"

"Resource": "*"

+
{

"Effect": "Allow",

"Action": [
"cloudwatch:DescribeAlarms",
"cloudwatch:GetMetricData",
"s3:DeleteBucketPolicy",
"s3:GetBucketLocation",
"s3:GetBucketPolicy",
"s3:PutBucketPolicy",

"servicequotas:
"servicequotas:
"servicequotas:

"servicequotas:ListServices",

"servicequotas:

1,

"Resource": "*"

ListAwSDefaultServiceQuotas",
ListRequestedServiceQuotaChangeHistoryByQuota",
ListServiceQuotas",

ListTagsForResource"

Optional: Create a Custom Policy for Amazon IVS Permissions

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/

Amazon IVS Real-Time Streaming User Guide

}

4. Still in the Specify permissions window, choose Next (scroll to the bottom of the window to see
this). A Review and create window opens.

5. On the Review and create window, enter a Policy name and optionally add a Description. Make
a note of the policy name, as you will need it when creating users (below). Choose Create policy
(at the bottom of the window).

6. You are returned to the IAM console window, where you should see a banner confirming that
your new policy was created.

Create a New User and Add Permissions

IAM User Access Keys

IAM access keys consist of an access key ID and a secret access key. They are used to sign
programmatic requests that you make to AWS. If you don't have access keys, you can create them
from the AWS Management Console. As a best practice, do not create root-user access keys.

The only time that you can view or download a secret access key is when you create access keys. You
cannot recover them later. However, you can create new access keys at any time; you must have
permissions to perform the required IAM actions.

Always store access keys securely. Never share them with third parties (even if an inquiry seems to
come from Amazon). For more information, see Managing access keys for IAM users in the IAM User
Guide.

Procedure
Follow these steps:

1. In the navigation pane, choose Users, then choose Create user. A Specify user details window
opens.

2. In the Specify user details window:
a. Under User details, type the new User name to be created.
b. Check Provide user access to the AWS Management Console.

¢. Under Console password, select Autogenerated password.

Create a New User and Add Permissions 8

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Amazon IVS Real-Time Streaming User Guide

d. Check Users must create a new password at next sign-in.
e. Choose Next. A Set permissions window opens.
3. Under Set permissions, select Attach policies directly. A Permissions policies window opens.

4. In the search box, enter an IVS policy name (either an AWS managed policy or your previously
created custom policy). When it is found, check the box to select the policy.

5. Choose Next (at the bottom of the window). A Review and create window opens.

6. On the Review and create window, confirm that all user details are correct, then choose Create
user (at the bottom of the window).

7. The Retrieve password window opens, containing your Console sign-in details. Save this
information securely for future reference. When you are done, choose Return to users list.

Add Permissions to an Existing User

Follow these steps:

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users, then choose an existing user name to be updated. (Choose
the name by clicking on it; do not check the selection box.)

3. On the Summary page, on the Permissions tab, choose Add permissions. An Add permissions
window opens.

4. Select Attach existing policies directly. A Permissions policies window opens.

5. In the search box, enter an IVS policy name (either an AWS managed policy or your previously
created custom policy). When the policy is found, check the box to select the policy.

6. Choose Next (at the bottom of the window). A Review window opens.
7. On the Review window, select Add permissions (at the bottom of the window).

8. On the Summary page, confirm that the IVS policy was added.

Create a Stage

A stage is a virtual space where participants can exchange video in real time. It is the foundational
resource of the Real-Time Streaming API. You can create a stage using either the console or the
CreateStage endpoint.

Add Permissions to an Existing User 9

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon IVS Real-Time Streaming User Guide

We recommend that where possible, you create a new stage for each logical session and delete
it when done, rather than keeping around old stages for possible reuse. If stale resources (old

stages, not to be reused) are not cleaned up, you're likely to hit the limit of the maximum number
of stages faster.

Console Instructions

1. Open the Amazon IVS console.

(You also can access the Amazon IVS console through the AWS Management Console.)

2. On the left navigation pane, select Stages, then select Create stage. The Create stage window
appears.

Amazon IVS > Video > Stages » Create stage

Create stage i

A stage allows participants to send and receive video and audio with others in real time. You can broadcast a stage to a
channel, allowing viewers to see and hear stage participants without needing to join the stage directly. Learn more [2

» How Amazon IVS stages work

Setup

Stage name - optional
stage-1

Maximum length: 128 characters. May include numbers, letters, underscores (_) and hyphens (-).

> Tags Info

A tag is a label that you assign to an AWS resource. Each tag consists of a key and an optional value. You can use tags to search and
filter your resources or track your AWS costs.

Cancel Create stage

3. Optionally enter a Stage name. Select Create stage to create the stage. The stage details page
appears, for the new stage.

Console Instructions 10

https://console.aws.amazon.com/ivs
https://console.aws.amazon.com/

Amazon IVS Real-Time Streaming User Guide

CLI Instructions

To install the AWS CLI, see Install or update the latest version of the AWS CLI.

Now you can use the CLI to create and manage resources. The stage API is under the ivs-realtime
namespace. For example, to create a stage:

aws ivs-realtime create-stage --name "test-stage"

The response is:

{
"stage": {
"arn": "arn:aws:ivs:us-west-2:376666121854:stage/VSWjvX5X0kUu3",
"name": "test-stage"
}
}

Distribute Participant Tokens

Customer Domain Amazon IVS Real-time Streaming

I
I
I
Client Application Server Application | API Data Plane
I
—Request participant token— !

—CreateParticipantToken—»
I

[4—Return token
|

<4¢—Return token

I
Join stage with token } '
I

Now that you have a stage, you need to create and distribute tokens to participants to enable them
to join the stage and start sending and receiving video.

As shown above, a client application asks your server application for a token, and the server
application calls CreateParticipantToken using an AWS SDK or SigV4 signed request. Since
AWS credentials are used to call the API, the token should be generated in a secure server-side
application, not the client-side application.

CLI Instructions 11

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html

Amazon IVS Real-Time Streaming User Guide

When creating a participant token, you can optionally specify the capabilities enabled by that
token. The default is PUBLISH and SUBSCRIBE, which allows the participant to send and receive
audio and video, but you could issue tokens with a subset of capabilities. For example, you could
issue a token with only the SUBSCRIBE capability for moderators. In that case, the moderators
could see the participants that are sending video but not send their own video.

You can create participant tokens via the console or CLI for testing and development, but most
likely you will want to create them with the AWS SDK in your production environment.

You will need a way to distribute tokens from your server to each client (e.g., via an API request).
We do not provide this functionality. For this guide, you can simply copy and paste the tokens into
client code in the following steps.

Important: Treat tokens as opaque; i.e., do not build functionality based on token contents. The
format of tokens could change in the future.

Console Instructions

. Navigate to the stage you created in the prior step.
. Select Create a participant token. The Create a participant token window appears.
. Enter a user ID to be associated with the token. This can be any UTF-8 encoded text.

. Select Create a participant token.

o A W N =

. Copy the token. Important: Be sure to save the token; IVS does not store it and you cannot retrieve
it later.

CLI Instructions

Creating a token with the AWS CLI requires that you first download and configure the CLI on your
machine. For details, see the AWS Command Line Interface User Guide. Note that generating
tokens with the AWS CLI is good for testing purposes, but for production use, we recommend that
you generate tokens on the server side with the AWS SDK (see instructions below).

1. Run the create-participant-token command with the stage ARN. Include any or all of the
following capabilities: "PUBLISH", "SUBSCRIBE".

aws ivs-realtime create-participant-token --stage-arn arn:aws:ivs:us-
west-2:376666121854:stage/VSWjvX5X0kU3 --capabilities '["PUBLISH", "SUBSCRIBE"]'

Console Instructions 12

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

Amazon IVS Real-Time Streaming User Guide

2. This returns a participant token:

"participantToken": {
"capabilities": [
"PUBLISH",
"SUBSCRIBE"

1,
"expirationTime": "2023-06-03T07:04:31+00:00",
"participantId": "tU@6DT5jCJeb",
"token":
"eyJhbGciOiJLTVMiLCJQeXAi0iJKV1QifQ.eyJ1leHAiOjE2NFEINDEOMjAsImp@aSI6ImpGcFdtdmVFTmIsUyIsIn].
TaKjllw9Qac6c5xBrdAk™ }

}

3. Save this token. You will need this to join the stage and send and receive video.

AWS SDK Instructions

You can use the AWS SDK to create tokens. Below are instructions for the AWS SDK using
JavaScript.

Important: This code must be executed on the server side and its output passed to the client.

Prerequisite: To use the code sample below, you need to install the aws-sdk/client-ivs-realtime
package. For details, see Getting started with the AWS SDK for JavaScript.

import { IVSRealTimeClient, CreateParticipantTokenCommand } from "@aws-sdk/client-ivs-
realtime";

const ivsRealtimeClient = new IVSRealTimeClient({ region: 'us-west-2' });

const stageArn = 'arn:aws:ivs:us-west-2:123456789012:stage/L210UYabcdef’;

const createStageTokenRequest = new CreateParticipantTokenCommand({
stageArn,

D)8

const response = await ivsRealtimeClient.send(createStageTokenRequest);

console.log('token', response.participantToken.token);

AWS SDK Instructions 13

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/getting-started.html

Amazon IVS Real-Time Streaming User Guide

Integrate the IVS Broadcast SDK

IVS provides a broadcast SDK for web, Android, and iOS that you can integrate into your
application. The broadcast SDK is used for both sending and receiving video. In this section, we
write a simple application that enables two or more participants to interact in real time. The steps
below guide you through creating an app called BasicRealTime. The full app code is on CodePen
and GitHub:

» Web: https://codepen.io/amazon-ivs/pen/ZEqgrpo/cbe7ac3b0ecc8c0f0a5c0dc9d6d36433

» Android: https://github.com/aws-samples/amazon-ivs-real-time-streaming-android-samples

« i0S: https://github.com/aws-samples/amazon-ivs-real-time-streaming-ios-samples

Web

Set Up Files

To start, set up your files by creating a folder and an initial HTML and JS file:

mkdir realtime-web-example
cd realtime-web-example
touch index.html

touch app.js

You can install the broadcast SDK using a script tag or npm. Our example uses the script tag for
simplicity but is easy to modify if you choose to use npm later.

Using a Script Tag

The Web broadcast SDK is distributed as a JavaScript library and can be retrieved at https://web-
broadcast.live-video.net/1.11.0/amazon-ivs-web-broadcast.js.

When loaded via <script> tag, the library exposes a global variable in the window scope named
IVSBroadcastClient.

Using npm

To install the npm package:

Integrate the IVS Broadcast SDK 14

https://codepen.io/amazon-ivs/pen/ZEqgrpo/cbe7ac3b0ecc8c0f0a5c0dc9d6d36433
https://github.com/aws-samples/amazon-ivs-real-time-streaming-android-samples
https://github.com/aws-samples/amazon-ivs-real-time-streaming-ios-samples
https://web-broadcast.live-video.net/1.11.0/amazon-ivs-web-broadcast.js
https://web-broadcast.live-video.net/1.11.0/amazon-ivs-web-broadcast.js

Amazon IVS Real-Time Streaming User Guide

npm install amazon-ivs-web-broadcast

You can now access the IVSBroadcastClient object:

const { Stage } = IVSBroadcastClient;

Android

Create the Android Project

1. In Android Studio, create a New Project.

2. Choose Empty Views Activity.

Note: In some older versions of Android Studio, the View-based activity is called Empty Activity.
If your Android Studio window shows Empty Activity and does not show Empty Views Activity,
select Empty Activity. Otherwise, don't select Empty Activity, since we'll be using View APIs
(not Jetpack Compose).

3. Give your project a Name, then select Finish.

Install the Broadcast SDK

To add the Amazon IVS Android broadcast library to your Android development environment,

add the library to your module’s build.gradle file, as shown here (for the latest version of the
Amazon IVS broadcast SDK). In newer projects the mavenCentral repository may already be
included in your settings.gradle file, if that is the case you can omit the repositories block.
For our sample, we'll also need to enable data binding in the android block.

android {
dataBinding.enabled true

repositories {
mavenCentral()

}

dependencies {
implementation 'com.amazonaws:ivs-broadcast:1.17.0:stages@aar’

}

Android 15

Amazon IVS Real-Time Streaming User Guide

Alternately, to install the SDK manually, download the latest version from this location:

https://search.maven.org/artifact/com.amazonaws/ivs-broadcast

i0S

Create the iOS Project

1. Create a new Xcode project.

2. For Platform, select iOS.

3. For Application, select App.

4. Enter the Product Name of your app, then select Next.

5. Choose (navigate to) a directory in which to save the project, then select Create.

Next you need to bring in the SDK. We recommend that you integrate the broadcast SDK via
CocoaPods. Alternatively, you can manually add the framework to your project. Both methods are
described below.

Recommended: Install the Broadcast SDK (CocoaPods)

Assuming your project name is BasicRealTime, create a Podfile in the project folder with the
following contents and then run pod install:

target 'BasicRealTime' do
Comment the next line if you don't want to use dynamic frameworks
use_frameworks!

Pods for BasicRealTime

pod 'AmazonIVSBroadcast/Stages'
end

Alternate Approach: Install the Framework Manually

1. Download the latest version from https://broadcast.live-video.net/1.17.0/
AmazonlVSBroadcast-Stages.xcframework.zip.

2. Extract the contents of the archive. AmazonIVSBroadcast.xcframework contains the SDK for
both device and simulator.

ioS 16

https://search.maven.org/artifact/com.amazonaws/ivs-broadcast
https://broadcast.live-video.net/1.17.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.17.0/AmazonIVSBroadcast-Stages.xcframework.zip

Amazon IVS Real-Time Streaming User Guide

3. Embed AmazonIVSBroadcast.xcframework by dragging it into the Frameworks, Libraries,
and Embedded Content section of the General tab for your application target:
[] General Signing & Capabilities Resource Tags Info Build Settings Build Phases Build Rules

slisklEsy v Frameworks, Libraries, and Embedded Content

B BasicBroadcast

Name Embed
TARGETS
AmazonlVSBroadcast-iOS.xcframework Embed & Sign &

@ BasicBroadcast @ ScreenCapture.appex Embed Without Signing £

@ ScreenCapture

+

Configure Permissions

You need to update your project’s Info.plist to add two new entries for
NSCameraUsageDescription and NSMicrophoneUsageDescription. For the values, provide
user-facing explanations of why your app is asking for camera and microphone access.

Kay
w Information Property List {3 items)
» Application Scane Manifast (2 items)
Privacy - Microphone Usage Description ‘We nead access to your microphone to publish your audio feed

Privacy - Camera Usage Description We nead access to your camera to publish your video feed

Publish and Subscribe to Video

See the details below for web, Android, and iOS.

Web

Create HTML Boilerplate

First let's create the HTML boilerplate and import the library as a script tag:

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="UTF-8" />

Publish and Subscribe to Video 17

Amazon IVS Real-Time Streaming User Guide

<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />

<!-- Import the SDK -->

<script src="https://web-broadcast.live-video.net/1.11.0/amazon-ivs-web-
broadcast.js"></script>
</head>

<body>

<!-- TODO - fill in with next sections -->
<script src="./app.js"></script>

</body>
</html>

Accept Token Input and Add Join/Leave Buttons

Here we fill in the body with our input controls. These take as input the token, and they set up Join
and Leave buttons. Typically applications will request the token from your application's API, but for
this example you'll copy and paste the token into the token input.

<h1>IVS Real-Time Streaming</hl>
<hr />

<label for="token">Token</label>

<input type="text" id="token" name="token" />

<button class="button" id="join-button">Join</button>

<button class="button" id="leave-button" style="display: none;">Leave</button>
<hr />

Add Media Container Elements

These elements will hold the media for our local and remote participants. We add a script tag to
load our application's logic defined in app. js.

<!-- Local Participant -->
<div id="local-media"></div>

<!-- Remote Participants -->
<div id="remote-media'"></div>

Web 18

Amazon IVS Real-Time Streaming User Guide

<!-- Load Script -->
<script src="./app.js"></script>

This completes the HTML page and you should see this when loading index.html in a browser:

IVS Real-Time Streaming

Token ‘ Join ’

Create app.js

Let's move to defining the contents of our app. js file. Begin by importing all the requisite
properties from the SDK's global:

const {
Stage,
LocalStageStream,
SubscribeType,
StageEvents,
ConnectionState,
StreamType

} = IVSBroadcastClient;

Create Application Variables

Establish variables to hold references to our Join and Leave button HTML elements and store state
for the application:

let joinButton = document.getElementById("join-button");
let leaveButton = document.getElementById("leave-button");

// Stage management
let stage;

let joining = false;
let connected = false;
let localCamera;

let localMic;

Web 19

Amazon IVS Real-Time Streaming User Guide

let cameraStageStream;
let micStageStream;

Create joinStage 1: Define the Function and Validate Input

The joinStage function takes the input token, creates a connection to the stage, and begins to
publish video and audio retrieved from getUserMedia.

To start, we define the function and validate the state and token input. We'll flesh out this function
in the next few sections.

const joinStage = async () => {
if (connected || joining) {
retuzrn;

}

joining = true;
const token = document.getElementById('"token").value;

if (!token) {
window.alert("Please enter a participant token");
joining = false;
return;

// Fill in with the next sections
Iy

Create joinStage 2: Get Media to Publish

Here is the media that will be published to the stage:

async function getCamera() {
// Use Max Width and Height
return navigator.mediaDevices.getUserMedia({
video: true,
audio: false

1)

async function getMic() {
return navigator.mediaDevices.getUserMedia({

Web 20

Amazon IVS Real-Time Streaming User Guide

video: false,
audio: true
1);
}

// Retrieve the User Media currently set on the page
localCamera = await getCamera();
localMic = await getMic();

// Create StageStreams for Audio and Video
cameraStageStream = new LocalStageStream(localCamera.getVideoTracks()[0]);
micStageStream = new LocalStageStream(localMic.getAudioTracks()[0]);

Create joinStage 3: Define the Stage Strategy and Create the Stage

This stage strategy is the heart of the decision logic that the SDK uses to decide what to publish
and which participants to subscribe to. For more information on the function's purpose, see

Strategy.

This strategy is simple. After joining the stage, publish the streams we just retrieved and subscribe
to every remote participant's audio and video:

const strategy = {
stageStreamsToPublish() {
return [cameraStageStream, micStageStream];

iy
shouldPublishParticipant() {

return true;

I
shouldSubscribeToParticipant() {
return SubscribeType.AUDIO_VIDEO;

}
Iy

stage = new Stage(token, strategy);

Create joinStage 4: Handle Stage Events and Render Media

Stages emit many events. We'll need to listen to the STAGE_PARTICIPANT_STREAMS_ADDED
and STAGE_PARTICIPANT_LEFT to render and remove media to and from the page. A more
exhaustive set of events are listed in Events.

Web 21

Amazon IVS Real-Time Streaming User Guide

Note that we create four helper functions here to assist us in managing necessary DOM elements:
setupParticipant, teardownParticipant, createVideoEl, and createContainer.

stage.on(StageEvents.STAGE_CONNECTION_STATE_CHANGED, (state) => {
connected = state === ConnectionState.CONNECTED;

if (connected) {
joining = false;

joinButton.style = "display: none";
leaveButton.style = "display: inline-block";
}
1DF
stage.on(

StageEvents.STAGE_PARTICIPANT_STREAMS_ADDED,
(participant, streams) => {
console.log("Participant Media Added: ", participant, streams);

let streamsToDisplay = streams;

if (participant.islocal) {
// Ensure to exclude local audio streams, otherwise echo will occur
streamsToDisplay = streams.filtex(
(stream) => stream.streamType === StreamType.VIDEO

);

const videoEl = setupParticipant(participant);
streamsToDisplay.forEach((stream) =>
videoEl.srcObject.addTrack(stream.mediaStreamTrack)
);
}
);

stage.on(StageEvents.STAGE_PARTICIPANT_LEFT, (participant) => {
console.log("Participant Left: ", participant);
teardownParticipant(participant);

1DF

// Helper functions for managing DOM

function setupParticipant({ islLocal, id }) {

Web 22

Amazon IVS

Real-Time Streaming User Guide

const groupId = islLocal ? "local-media" : "remote-media";
const groupContainer = document.getElementById(groupId);

const participantContainerId = islLocal ? "local" : id;

const participantContainer = createContainer(participantContainerId);

const videoEl = createVideoEl(participantContainerId);

participantContainer.appendChild(videoEl);
groupContainer.appendChild(participantContainer);

return videoEl;

function teardownParticipant({ isLocal, id }) {

const groupId = islLocal ? "local-media" : "remote-media";
const groupContainer = document.getElementById(groupId);
const participantContainerId = islLocal ? "local" : id;

const participantDiv = document.getElementById(
participantContainerId + "-container"

);

if (!participantDiv) {
retuzrn;

}

groupContainer.removeChild(participantDiv);

function createVideoEl(id) {

const videoEl = document.createElement("video");
videoEl.id = id;

videoEl.autoplay = true;

videoEl.playsInline = true;

videoEl.srcObject = new MediaStream();

return videoEl;

function createContainer(id) {

const participantContainer = document.createElement("div");

participantContainer.classlList = "participant-container";
participantContainer.id = id + "-container";

return participantContainer;

Web

23

Amazon IVS Real-Time Streaming User Guide

Create joinStage 5: Join the Stage

Let's complete our joinStage function by finally joining the stage!

try {
await stage.join();
} catch (err) {
joining = false;
connected = false;
console.error(err.message);

Create leaveStage

Define the 1leaveStage function which the leave button will invoke.

const leaveStage = async () => {
stage.leave();

joining = false;
connected = false;

};

Initialize Input-Event Handlers

We'll add one last function to our app. js file. This function is invoked immediately when the page
loads and establishes event handlers for joining and leaving the stage.

const init = async () => {
try {
// Prevents issues on Safari/FF so devices are not blank
await navigator.mediaDevices.getUserMedia({ video: true, audio: true });
} catch (e) {
alert(
"Problem retrieving media! Enable camera and microphone permissions."

);

joinButton.addEventListener("click", () => {
joinStage();
3);

Web 24

Amazon IVS Real-Time Streaming User Guide

leaveButton.addEventListener("click", () => {

leaveStage();
joinButton.style = "display: inline-block";
leaveButton.style = "display: none";

1)

i
init(); // call the function

Run the Application and Provide a Token

At this point you can share the web page locally or with others, open the page, and putin a
participant token and join the stage.

What's Next?

For more detailed examples involving npm, React, and more, see the IVS Broadcast SDK: Web Guide
(Real-Time Streaming Guide).

Android

Create Views

We start by creating a simple layout for our app using the auto-created activity_main.xml file.
The layout contains an EditText to add a token, a Join Button, a TextView to show the stage
state, and a CheckBox to toggle publishing.

Android 25

Amazon IVS Real-Time Streaming User Guide

[] RealTime — activity_main.xml [RealTime.BasicRealTime.main]

\ITime = src = main = res layo activity_main.xml JasicRea e 0 e (Experimental) API 33 ¥

o = Android ~ € z o — activity_main.xml
&

% BasicRealTime = Code
> manifests
o — Palette Q & — activity_main.xml AR '. 0 Pixel = 33 (©) BasicRealTime
Ab TextVi ®
@ Button =

com.amazonaws.ivs.realtim¢ Common
g MainActivity
 MainViewModel) _ M Image
% ParticipantAdapter " i= Recycl...
¢ Participantitem [=] Fragm...
¢ StagelLayoutManager M Scroll..
¢ StageParticipant < witch

n
»

| ES

% java elpe SN
res G . S8 Publish B
drawable
layout
é y_main.xml
item_stage_participant.x
mipmap
values Component Tree
xml 3 <layout>
=res v "\, ConstraintLayout
> @ Gradle Scripts v *\, main_controls...
Ab main_token
@ main_join
Ab main_state
Ab main_puk
v/ main_puk

i= main_recycler_...

= Structure

A, Build = TODO © Problems © Services & App Inspection

Here is the XML behind the view:

<?xml version="1.0" encoding="utf-8"7?>

<layout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools">

<androidx.constraintlayout.widget.ConstraintLayout
android:keepScreenOn="true"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".BasicActivity">

<androidx.constraintlayout.widget.ConstraintLayout
android:id="@+id/main_controls_container"
android:layout_width="match_parent"

SUOIIBINON B

sao1ne@ Buiuuny 3

39|14 821neg O]

IT§, Layout Inspector
T ® | 1611 0f 4096M

Android

26

Amazon IVS

Real-Time Streaming User Guide

android:layout_height="wrap_content"
android:background="@color/cardview_dark_background"
android:padding="12dp"
app:layout_constraintTop_toTopOf="parent">

<EditText
android:id="@+id/main_token"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:autofillHints="@null"
android:backgroundTint="@color/white"
android:hint="@string/token"
android:imeOptions="actionDone"
android:inputType="text"
android:textColor="@color/white"
app:layout_constraintEnd_toStartOf="@id/main_join"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />

<Button
android:id="@+id/main_join"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:backgroundTint="@color/black"
android:text="@string/join"
android:textAllCaps="true"
android:textColor="@color/white"
android:textSize="16sp"

app:layout_constraintBottom_toBottomOf="@+id/main_token"

app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toEndOf="@id/main_token" />

<TextView
android:id="@+id/main_state"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/state"
android:textColor="@color/white"
android:textSize="18sp"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintStart_toStartOf="parent"

app:layout_constraintTop_toBottomOf="@id/main_token" />

<TextView

Android

27

Amazon IVS

Real-Time Streaming User Guide

android:id="@+id/main_publish_text"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/publish"
android:textColor="@color/white"

android:textSize="18sp"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toStartOf="@id/main_publish_checkbox"
app:layout_constraintTop_toBottomOf="@id/main_token" />

<CheckBox
android:id="@+id/main_publish_checkbox"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:buttonTint="@color/white"
android:checked="true"
app:layout_constraintBottom_toBottomOf="@id/main_publish_text"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toTopOf="@id/main_publish_text" />

</androidx.constraintlayout.widget.ConstraintlLayout>

<androidx.recyclerview.widget.RecyclerView

android:id="@+id/main_recycler_view"
android:layout_width="match_parent"

android:layout_height="0dp"
app:layout_constraintTop_toBottomOf="@+id/main_controls_container"
app:layout_constraintBottom_toBottomOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

<layout>

We referenced a couple of string IDs here, so we'll create our entire strings. xml file now:

<resources>
<string
<string
<string
<string
<string
<string

</resources>

name="app_name'">BasicRealTime</string>
name="join">Join</string>
name="leave">Leave</string>
name="token">Participant Token</string>
name="publish">Publish</string>
name="state">State: %1$s</string>

Android

28

Amazon IVS

Real-Time Streaming User Guide

Let’s link those views in the XML to our MainActivity.kt:

import android.widget.Button

import android.widget.CheckBox
import android.widget.EditText
import android.widget.TextView

import androidx.recyclerview.widget.RecyclerView

private lateinit var checkboxPublish: CheckBox
private lateinit var recyclerView: RecyclerView
private lateinit var buttonJoin: Button

private lateinit var textViewState: TextView
private lateinit var editTextToken: EditText

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)

checkboxPublish = findViewById(R.id.main_publish_checkbox)
recyclerView = findViewById(R.id.main_recycler_view)
buttonJoin = findViewById(R.id.main_join)

textViewState = findViewById(R.id.main_state)
editTextToken = findViewById(R.id.main_token)

Now we create an item view for our RecyclerView. To do this, right-click your

res/layout directory and select New > Layout Resource File. Name this new file

item_stage_participant.xml.

Android

29

Amazon IVS Real-Time Streaming User Guide

RealTime - activity_main.xml [RealTime.BasicReal Time.main]
src - main = res activity_main.xml & BasicRealTime v [}, Resizable (Experimental) APl 33 ¥

= Android v €3 e - activity_main.xml|
v i BasicRealTime
> manifests <anoroilgx.constralintLayoutT.W1agetT.LonsTraintLayout
¥ Java :id
com.amazonaws.ivs.realtimi :layout_width

¢ MainActivity :layout_height
¢ MainViewModel :background
¢ ParticipantAdapter

g Participantitem

¢ StagelLayoutManager

g StageParticipant

:padding

I Project

:layout_constraintTop_toTopOf

<EditText
:id
drawable :layout_width
layc New Kotlin Class/File 1t
Layout Resource File ts
Sample Data Directory ~ int
Cut File

Copy Scratch File S8N
Copy Path/Reference... Directory

Add C++ to Module

= res

, Paste Image Asset
> & Gradle Sc

Find Usages Vector Asset 1tEnd_toStart0f

M Bookmarks

Find in Files... Kotlin Script (Beta) 1tStart_toStartOf
Replace in Files... Kotlin Worksheet (Beta) ntTop_toTopOf
Analyze CMakeLists.txt

Variants

Refactor Activity
Fragment
Folder

Service

K Buil

Bookmarks
Show In Resource Manager

Reformat Code UiComponent

Structure

Optimize Imports Automotive

XML

P Version Contr
Open In Wear
1 Create anew Lay 19:1 w ©R | 943 of 4096M

Delete..

E Kk kK K K kK K

App Inspection I{ Layout Inspector

The layout for this item is simple: it contains a view for rendering a participant’s video stream and a
list of labels for displaying information about the participant:

Android 30

Amazon IVS

Real-Time Streaming User Guide

[] RealTime - item_stage_participant.xml [RealTime.BasicRealTime.main]

main = res layout item_stage_participant.xml & Ba
& Android v @ = = ©» — activity_main.xml

% BasicRealTime
> manifests
Palette Q & — item_stage_participant.xml
o java
Ab TextView ®

@ Button =

com.amazonaws.ivs.realtim(Con
g MainActivity
 MainViewModel P ImageView
x ParticipantAdapter : i= Recycler...
x Participantitem [=] Fragmen..
¢ StagelLayoutManager M ScrollView
3 - Wi You (Di d
¢ StageParticipant ® Switch QDiecomecity

n R

| ES

> B%java S Video Muted: false
Audio Muted: false
v res
& re; Audio Level: 100 dB

drawable
layout
activity_main.xml
item_stage_participant.x
mipmap
values Component Tree
xml X Participantitem
=res [=] participant_preview...
M Gradle Scripts » H LinearLayout
Ab participant_parti...
Ab participant_publi
Ab participant_subs...
Ab participant_video...
Ab participant_audi...

Ab participant_audi...

com.amazonav vs.realtime.basicrealtime.Participantitem FramelLayout
A, Build = TODO © Problems © Services & App Inspection

... (today

Here is the XML:

<?xml version="1.0" encoding="utf-8"7?>

(Experimental) API 33 ¥

0 Pixel

= 33

4 spaces

=0 Split

= A

slpeio §

e@ Buuuny 3

out Inspector

559 of 4096M

<com.amazonaws.ivs.realtime.basicrealtime.ParticipantItem xmlns:android="http://

schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent">

<FramelLayout
android:id="@+id/participant_preview_container"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:background="@android:color/darker_gray" />

Android

31

Amazon IVS

Real-Time Streaming User Guide

<LinearLayout

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:background="#50000000"
android:orientation="vertical"
android:paddinglLeft="4dp"
android:paddingTop="2dp"
android:paddingRight="4dp"
android:paddingBottom="2dp"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent">

<TextView
android:
android:
android:
android:
android:

id="@+id/participant_participant_id"

layout_width="wrap_content"
layout_height="wrap_content"
textColor="@android:color/white"
textSize="16sp"

tools:text="You (Disconnected)" />

<TextView
android:
android:
android:
android:
android:

id="@+id/participant_publishing"
layout_width="wrap_content"
layout_height="wrap_content"
textColor="@android:color/white"
textSize="16sp"

tools:text="NOT_PUBLISHED" />

<TextView
android:
android:
android:
android:
android:

id="@+id/participant_subscribed"
layout_width="wrap_content"
layout_height="wrap_content"
textColor="@android:color/white"
textSize="16sp"

tools:text="NOT_SUBSCRIBED" />

<TextView
android:
android:
android:
android:
android:

id="@+id/participant_video_muted"
layout_width="wrap_content"
layout_height="wrap_content"
textColor="@android:color/white"
textSize="16sp"

Android

32

Amazon IVS

Real-Time Streaming User Guide

tools:text="Video Muted: false" />

<TextView
android:id="@+id/participant_audio_muted"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textColor="@android:color/white"
android:textSize="16sp"
tools:text="Audio Muted: false" />

<TextView
android:id="@+id/participant_audio_level"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textColor="@android:color/white"
android:textSize="16sp"
tools:text="Audio Level: -100 dB" />

</LinearLayout>

</com.amazonaws.ivs.realtime.basicrealtime.ParticipantItem>

This XML file inflates a class we haven't created yet, ParticipantItem. Because the XML includes
the full namespace, be sure to update this XML file to your namespace. Let's create this class and
set up the views, but otherwise leave it blank for now.

Create a new Kotlin class, ParticipantItem:

package com.amazonaws.ivs.realtime.basicrealtime

import
import
import
import
import

android.content.Context
android.util.AttributeSet
android.widget.FramelLayout
android.widget.TextView
kotlin.math.roundTolInt

class ParticipantItem @JvmOverloads constructor(
context: Context,
attrs: AttributeSet? = null,
defStyleAttr: Int = 0O,
defStyleRes: Int = 0,

) : FramelLayout(context, attrs, defStyleAttr, defStyleRes) {

Android

33

Amazon IVS Real-Time Streaming User Guide

private lateinit var previewContainer: Framelayout
private lateinit var textViewParticipantId: TextView
private lateinit var textViewPublish: TextView
private lateinit var textViewSubscribe: TextView
private lateinit var textViewVideoMuted: TextView
private lateinit var textViewAudioMuted: TextView
private lateinit var textViewAudiolevel: TextView

override fun onFinishInflate() {
super.onfFinishInflate()
previewContainer = findViewById(R.id.participant_preview_container)
textViewParticipantId = findViewById(R.id.participant_participant_id)
textViewPublish = findViewById(R.id.participant_publishing)
textViewSubscribe = findViewById(R.id.participant_subscribed)
textViewVideoMuted = findViewById(R.id.participant_video_muted)

textViewAudioMuted = findViewById(R.id.participant_audio_muted)
textViewAudiolLevel = findViewById(R.id.participant_audio_level)
}
}
Permissions

To use the camera and microphone, you need to request permissions from the user. We follow a
standard permissions flow for this:

override fun onStart() {
super.onStart()
requestPermission()

private val requestPermissionlLauncher =
registerForActivityResult(ActivityResultContracts.RequestMultiplePermissions())
{ permissions ->
if (permissions[Manifest.permission.CAMERA] == true &&
permissions[Manifest.permission.RECORD_AUDIO] == true) {
viewModel.permissionGranted() // we will add this later

private val permissions = listOf(
Manifest.permission.CAMERA,
Manifest.permission.RECORD_AUDIO,

Android 34

Amazon IVS Real-Time Streaming User Guide

private fun requestPermission() {
when {
this.hasPermissions(permissions) -> viewModel.permissionGranted() // we will
add this later
else -> requestPermissionLauncher.launch(permissions.toTypedArray())

private fun Context.hasPermissions(permissions: List<String>): Boolean {
return permissions.all {
ContextCompat.checkSelfPermission(this, it) ==
PackageManager.PERMISSION_GRANTED
}

App State

Our application keeps track of the participants locally in a MainViewModel .kt and the state will
be communicated back to the MainActivity using Kotlin's StateFlow.

Create a new Kotlin class MainViewModel:

package com.amazonaws.ivs.realtime.basicrealtime

import android.app.Application
import androidx.lifecycle.AndroidViewModel

class MainViewModel(application: Application) : AndroidViewModel(application),
Stage.Strategy, StageRenderer {

In MainActivity.kt we manage our view model:

import androidx.activity.viewModels

private val viewModel: MainViewModel by viewModels()

To use AndroidViewModel and these Kotlin ViewModel extensions, you'll need to add the
following to your module’'s build.gradle file:

Android 35

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-state-flow/

Amazon IVS Real-Time Streaming User Guide

implementation 'androidx.core:core-ktx:1.10.1'

implementation "androidx.activity:activity-ktx:1.7.2"
implementation 'androidx.appcompat:appcompat:1.6.1"
implementation 'com.google.android.material:material:1.10.0'
implementation "androidx.lifecycle:lifecycle-extensions:2.2.0"

def lifecycle_version = "2.6.1"

implementation "androidx.lifecycle:lifecycle-livedata-ktx:$lifecycle_version"
implementation "androidx.lifecycle:lifecycle-viewmodel-ktx:$lifecycle_version"
implementation 'androidx.constraintlayout:constraintlayout:2.1.4'

RecyclerView Adapter

We'll create a simple RecyclerView.Adapter subclass to keep track of our participants and
update our RecyclerView on stage events. But first, we need a class that represents a participant.
Create a new Kotlin class StageParticipant:

package com.amazonaws.ivs.realtime.basicrealtime

import com.amazonaws.ivs.broadcast.Stage
import com.amazonaws.ivs.broadcast.StageStream

class StageParticipant(val islLocal: Boolean, var participantId: String?) {
var publishState = Stage.PublishState.NOT_PUBLISHED
var subscribeState = Stage.SubscribeState.NOT_SUBSCRIBED
var streams = mutablelListOf<StageStream>()

val stableID: String
get() {

return if (isLocal) {
"LocalUser"

} else {
requireNotNull(participantId)

We'll use this class in the ParticipantAdapter class that we'll create next. We start by defining
the class and creating a variable to track the participants:

package com.amazonaws.ivs.realtime.basicrealtime

Android 36

Amazon IVS Real-Time Streaming User Guide

import android.view.LayoutInflater
import android.view.ViewGroup
import androidx.recyclerview.widget.RecyclerView

class ParticipantAdapter : RecyclerView.Adapter<ParticipantAdapter.ViewHolder>() {

private val participants = mutablelListOf<StageParticipant>()

We also have to define our RecyclerView.ViewHolder before implementing the rest of the
overrides:

class ViewHolder(val participantItem: ParticipantItem)
RecyclerView.ViewHolder(participantItem)

Using this, we can implement the standard RecyclerView.Adapter overrides:

override fun onCreateViewHolder(parent: ViewGroup, viewType: Int): ViewHolder {
val item = LayoutInflater.from(parent.context)
.inflate(R.layout.item_stage_participant, parent, false) as ParticipantItem
return ViewHolder(item)

override fun getItemCount(): Int {
return participants.size

override fun getItemId(position: Int): Long =
participants[position]
.stablelD
.hashCode()
.toLong()

override fun onBindViewHolder(holder: ViewHolder, position: Int) {
return holder.participantItem.bind(participants[position])

override fun onBindViewHolder(holder: ViewHolder, position: Int, payloads:
MutableList<Any>) {
val updates = payloads.filterIsInstance<StageParticipant>()
if (updates.isNotEmpty()) {
updates.forEach { holder.participantItem.bind(it) // implemented later }
} else {
super.onBindViewHolder(holder, position, payloads)

Android 37

Amazon IVS Real-Time Streaming User Guide

}

Finally, we add new methods that we will call from our MainViewModel when changes to
participants are made. These methods are standard CRUD operations on the adapter.

fun participantJoined(participant: StageParticipant) {
participants.add(participant)
notifyItemInserted(participants.size - 1)

fun participantLeft(participantId: String) {
val index = participants.indexOfFirst { it.participantId == participantId }
if (index !'= -1) {
participants.removeAt(index)
notifyItemRemoved(index)

fun participantUpdated(participantId: String?, update: (participant: StageParticipant)
-> Unit) {
val index = participants.indexOfFirst { it.participantId == participantId }
if (index != -1) {
update(participants[index])
notifyItemChanged(index, participants[index])

Back in MainViewModel we need to create and hold a reference to this adapter:

internal val participantAdapter = ParticipantAdapter()

Stage State

We also need to track some stage state within MainViewModel. Let's define those properties now:

private val _connectionState = MutableStateFlow(Stage.ConnectionState.DISCONNECTED)
val connectionState = _connectionState.asStateFlow()

private var publishEnabled: Boolean = false
set(value) {
field = value

Android 38

Amazon IVS Real-Time Streaming User Guide

// Because the strategy returns the value of “checkboxPublish.isChecked”, just
call ‘refreshStrategy'.
stage?.refreshStrategy()

private var deviceDiscovery: DeviceDiscovery? = null
private var stage: Stage? = null
private var streams = mutablelListOf<LocalStageStream>()

To see your own preview before joining a stage, we create a local participant immediately:

init {
deviceDiscovery = DeviceDiscovery(application)

// Create a local participant immediately to render our camera preview and
microphone stats

val localParticipant = StageParticipant(true, null)

participantAdapter.participantJoined(localParticipant)

We want to make sure we clean up these resources when our ViewModel is cleaned up. We
override onCleared() right away, so we don't forget to clean these resources.

override fun onCleared() {
stage?.release()
deviceDiscovery?.release()
deviceDiscovery = null
super.onCleared()

Now we populate our local streams property as soon as permissions are granted, implementing
the permissionsGranted method that we called earlier:

internal fun permissionGranted() {
val deviceDiscovery = deviceDiscovery ?: return
streams.clear()
val devices = deviceDiscovery.listlLocalDevices()

// Camera

devices
.filter { it.descriptor.type == Device.Descriptor.DeviceType.CAMERA }
.maxByOrNull { it.descriptor.position == Device.Descriptor.Position.FRONT }

?.let { streams.add(ImagelLocalStageStream(it)) }

Android 39

Amazon IVS Real-Time Streaming User Guide

// Microphone

devices
.filter { it.descriptor.type == Device.Descriptor.DeviceType.MICROPHONE }
.maxByOrNull { it.descriptor.isDefault }
?.let { streams.add(AudiolLocalStageStream(it)) }

stage?.refreshStrategy()

// Update our local participant with these new streams
participantAdapter.participantUpdated(null) {
it.streams.clear()
it.streams.addAll(streams)

Implementing the Stage SDK

Three core concepts underlie real-time functionality: stage, strategy, and renderer. The design goal
is minimizing the amount of client-side logic necessary to build a working product.

Stage.Strategy

Our Stage.Strategy implementation is simple:

override fun stageStreamsToPublishForParticipant(
stage: Stage,
participantInfo: ParticipantInfo
): MutablelList<LocalStageStream> {
// Return the camera and microphone to be published.
// This is only called if “shouldPublishFromParticipant”™ returns true.
return streams

override fun shouldPublishFromParticipant(stage: Stage, participantInfo:
ParticipantInfo): Boolean {
return publishEnabled

override fun shouldSubscribeToParticipant(stage: Stage, participantInfo:
ParticipantInfo): Stage.SubscribeType {
// Subscribe to both audio and video for all publishing participants.
return Stage.SubscribeType.AUDIO_VIDEO

Android 40

Amazon IVS Real-Time Streaming User Guide

To summarize, we publish based on our internal publishEnabled state, and if we publish we
will publish the streams we collected earlier. Finally for this sample, we always subscribe to other
participants, receiving both their audio and video.

StageRenderer

The StageRenderer implementation also is fairly simple, though given the number of functions
it contains quite a bit more code. The general approach in this renderer is to update our
ParticipantAdapter when the SDK notifies us of a change to a participant. There are certain
scenarios where we handle local participants differently, because we have decided to manage them
ourselves so they can see their camera preview before joining.

override fun onError(exception: BroadcastException) {
Toast.makeText(getApplication(), "onError ${exception.localizedMessagel}",
Toast.LENGTH_LONG).show()
Log.e("BasicRealTime", "onError $exception")

override fun onConnectionStateChanged(
stage: Stage,
connectionState: Stage.ConnectionState,
exception: BroadcastException?

) {

_connectionState.value = connectionState

override fun onParticipantJoined(stage: Stage, participantInfo: ParticipantInfo) {
if (participantInfo.islLocal) {
// If this is the local participant joining the stage, update the participant
with a null ID because we
// manually added that participant when setting up our preview
participantAdapter.participantUpdated(null) {
it.participantId = participantInfo.participantId
}
} else {
// If they are not local, add them normally
participantAdapter.participantJoined(
StageParticipant(
participantInfo.islocal,
participantInfo.participantId

Android 41

Amazon IVS Real-Time Streaming User Guide

}

override fun onParticipantLeft(stage: Stage, participantInfo: ParticipantInfo) {
if (participantInfo.islLocal) {
// If this is the local participant leaving the stage, update the ID but keep
it around because
// we want to keep the camera preview active
participantAdapter.participantUpdated(participantInfo.participantId) {
it.participantIld = null
}
} else {
// If they are not local, have them leave normally
participantAdapter.participantLeft(participantInfo.participantId)

override fun onParticipantPublishStateChanged(
stage: Stage,
participantInfo: ParticipantInfo,
publishState: Stage.PublishState
) {
// Update the publishing state of this participant
participantAdapter.participantUpdated(participantInfo.participantId) {
it.publishState = publishState

override fun onParticipantSubscribeStateChanged(
stage: Stage,
participantInfo: ParticipantInfo,
subscribeState: Stage.SubscribeState
) {
// Update the subscribe state of this participant
participantAdapter.participantUpdated(participantInfo.participantId) {
it.subscribeState = subscribeState

override fun onStreamsAdded(stage: Stage, participantInfo: ParticipantInfo, streams:
MutablelList<StageStream>) {
// We don't want to take any action for the local participant because we track
those streams locally
if (participantInfo.islLocal) {
return

Android 42

Amazon IVS Real-Time Streaming User Guide

}

// For remote participants, add these new streams to that participant's streams

array.
participantAdapter.participantUpdated(participantInfo.participantId) {
it.streams.addAll(streams)

override fun onStreamsRemoved(stage: Stage, participantInfo: ParticipantInfo, streams:
MutablelList<StageStream>) {

// We don't want to take any action for the local participant because we track
those streams locally

if (participantInfo.islocal) {

return
}
// For remote participants, remove these streams from that participant's streams
array.

participantAdapter.participantUpdated(participantInfo.participantId) {
it.streams.removeAll(streams)

override fun onStreamsMutedChanged(
stage: Stage,
participantInfo: ParticipantInfo,
streams: MutablelList<StageStream>
) {
// We don't want to take any action for the local participant because we track
those streams locally
if (participantInfo.islLocal) {
return
}
// For remote participants, notify the adapter that the participant has been
updated. There is no need to modify
// the “streams’ property on the ‘StageParticipant’ because it is the same
"StageStream® instance. Just
// query the “isMuted’ property again.
participantAdapter.participantUpdated(participantInfo.participantId) {3}

Android 43

Amazon IVS Real-Time Streaming User Guide

Implementing a Custom RecyclerView LayoutManager

Laying out different numbers of participants can be complex. You want them to take up the entire
parent view's frame but you don’t want to handle each participant configuration independently. To
make this easy, we'll walk through implementing a RecyclerView.LayoutManager.

Create another new class, StageLayoutManager, which should extend GridLayoutManager.
This class is designed to calculate the layout for each participant based on the number of
participants in a flow-based row/column layout. Each row is the same height as the others, but
columns can be different widths per row. See the code comment above the 1ayouts variable for a
description of how to customize this behavior.

package com.amazonaws.ivs.realtime.basicrealtime

import android.content.Context
import androidx.recyclerview.widget.GridlLayoutManager
import androidx.recyclerview.widget.RecyclerView

class StagelLayoutManager(context: Context?) : GridLayoutManager(context, 6) {

companion object {
/**
* This 2D array contains the description of how the grid of participants
should be rendered
* The index of the 1st dimension is the number of participants needed to
active that configuration
* Meaning if there is 1 participant, index @ will be used. If there are 5

participants, index 4 will be used.
*

* The 2nd dimension is a description of the layout. The length of the array is

the number of rows that
* will exist, and then each number within that array is the number of columns

in each row.
*

* See the code comments next to each index for concrete examples.

*
* This can be customized to fit any layout configuration needed.
*/
val layouts: List<List<Int>> = 1istOf(
// 1 participant
list0f(1), // 1 row, full width
// 2 participants

Android 44

Amazon IVS Real-Time Streaming User Guide

listOf(1, 1), // 2 rows, all columns are full width

// 3 participants

listof(1, 2), // 2 rows, first row's column is full width then 2nd row's
columns are 1/2 width

// 4 participants

list0f(2, 2), // 2 rows, all columns are 1/2 width

// 5 participants

list0of(1, 2, 2), // 3 rows, first row's column is full width, 2nd and 3rd
row's columns are 1/2 width

// 6 participants

list0of(2, 2, 2), // 3 rows, all column are 1/2 width

// 7 participants

listof(2, 2, 3), // 3 rows, 1lst and 2nd row's columns are 1/2 width, 3rd
row's columns are 1/3rd width

// 8 participants

list0of(2, 3, 3),

// 9 participants

list0f(3, 3, 3),

// 10 participants

listof(2, 3, 2, 3),

// 11 participants

listof(2, 3, 3, 3),

// 12 participants

list0of(3, 3, 3, 3),

)
}
init {
spanSizelLookup = object : SpanSizelLookup() {
override fun getSpanSize(position: Int): Int {
if (itemCount <= 0) {
return 1
}
// Calculate the row we're in
val config = layouts[itemCount - 1]
var row = 0
var curPosition = position
while (curPosition - config[row] >= @) {
curPosition -= config[row]
Tow++
}
// spanCount == max spans, config[row] = number of columns we want
// So spanCount / config[row] would be something like 6 / 3 if we want
3 columns.

Android 45

Amazon IVS Real-Time Streaming User Guide

// So this will take up 2 spans, with a max of 6 is 1/3rd of the view.
return spanCount / config[row]

override fun onLayoutChildren(recycler: RecyclerView.Recycler?, state:
RecyclerView.State?) {
if (itemCount <= @ || state?.isPrelLayout == true) return

val parentHeight = height
val itemHeight = parentHeight / layouts[itemCount - 1].size // height divided
by number of rows.

// Set the height of each view based on how many rows exist for the current
participant count.
for (i in @ until childCount) {
val child = getChildAt(i) ?: continue
val layoutParams = child.layoutParams as RecyclerView.LayoutParams
if (layoutParams.height != itemHeight) {
layoutParams.height = itemHeight
child.layoutParams = layoutParams

}

// After we set the height for all our views, call super.

// This works because our RecyclerView can not scroll and all views are always
visible with stable IDs.

super.onLayoutChildren(recycler, state)

override fun canScrollVertically(): Boolean = false
override fun canScrollHorizontally(): Boolean = false

Back in MainActivity.kt we need to set the adapter and layout manager for our
RecyclerView:

// In onCreate after setting recyclerView.
recyclerView.layoutManager = StagelayoutManager(this)
recyclerView.adapter = viewModel.participantAdapter

Android 46

Amazon IVS Real-Time Streaming User Guide

Hooking Up Ul Actions
We are getting close; there are just a few Ul actions that we need to hook up.

First we'll have our MainActivity observe the StateFlow changes from MainViewModel:

// At the end of your onCreate method
lifecycleScope.launch {
repeatOnLifecycle(Lifecycle.State.CREATED) {
viewModel.connectionState.collect { state ->
buttonJoin.setText(if (state == ConnectionState.DISCONNECTED) R.string.join
else R.string.leave)
textViewState.text = getString(R.string.state, state.name)

Next we add listeners to our Join button and Publish checkbox:

buttonJoin.setOnClickListener {
viewModel. joinStage(editTextToken.text.toString())

}

checkboxPublish.setOnCheckedChangelListener { _, isChecked ->
viewModel.setPublishEnabled(isChecked)

Both of the above call functionality in our MainViewModel, which we implement now:

internal fun joinStage(token: String) {
if (_connectionState.value != Stage.ConnectionState.DISCONNECTED) {
// If we're already connected to a stage, leave it.
stage?.leave()
} else {
if (token.isEmpty()) {
Toast.makeText(getApplication(), "Empty Token", Toast.LENGTH_SHORT).show()
return

try {
// Destroy the old stage first before creating a new one.
stage?.release()
val stage = Stage(getApplication(), token, this)
stage.addRenderer(this)

Android 47

Amazon IVS Real-Time Streaming User Guide

stage.join()
this.stage = stage
} catch (e: BroadcastException) {
Toast.makeText(getApplication(), "Failed to join stage
${e.localizedMessage}", Toast.LENGTH_LONG).show()
e.printStackTrace()

internal fun setPublishEnabled(enabled: Boolean) {
publishEnabled = enabled

Rendering the Participants

Finally, we need to render the data we receive from the SDK onto the participant item that we
created earlier. We already have the RecyclerView logic finished, so we just need to implement
the bind APl in ParticipantItem.

We'll start by adding the empty function and then walk through it step by step:

fun bind(participant: StageParticipant) {

First we'll handle the easy state, the participant ID, publish state, and subscribe state. For these, we
just update our TextViews directly:

val participantId = if (participant.islocal) {

"You (${participant.participantId ?: "Disconnected"})"
} else {

participant.participantId

}
textViewParticipantId.text = participantId

textViewPublish.text = participant.publishState.name
textViewSubscribe.text = participant.subscribeState.name

Next we'll update the audio and video muted states. To get the muted state, we need to find the
ImageDevice and AudioDevice from the streams array. To optimize performance, we remember
the last attached device IDs.

Android 48

Amazon IVS Real-Time Streaming User Guide

// This belongs outside the “bind™ API.
null
null

private var imageDeviceUrn: String?
private var audioDeviceUrn: String?

// This belongs inside the “bind" API.
val newImageStream = participant

.streams

.firstOrNull { it.device is ImageDevice }
textViewVideoMuted.text = if (newImageStream != null) {

if (newImageStream.muted) "Video muted" else "Video not muted"
} else {

"No video stream"

val newAudioStream = participant

.streams

.firstOrNull { it.device is AudioDevice }
textViewAudioMuted.text = if (newAudioStream != null) {

if (newAudioStream.muted) "Audio muted" else "Audio not muted"
} else {

"No audio stream"

Finally we want to render a preview for the imageDevice:

if (newImageStream?.device?.descriptor?.urn != imageDeviceUrn) {
// If the device has changed, remove all subviews from the preview container
previewContainer.removeAllViews()
(newImageStream?.device as? ImageDevice)?.let {
val preview = it.getPreviewView(BroadcastConfiguration.AspectMode.FIT)
previewContainer.addView(preview)
preview.layoutParams = Framelayout.LayoutParams(
FrameLayout.LayoutParams.MATCH_PARENT,
FramelLayout.LayoutParams.MATCH_PARENT

}

imageDeviceUrn = newImageStream?.device?.descriptor?.urn

And we display audio stats from the audioDevice:

if (newAudioStream?.device?.descriptor?.urn != audioDeviceUrn) {

Android 49

Amazon IVS

Real-Time Streaming User Guide

(newAudioStream?.device as? AudioDevice)?.let {
it.setStatsCallback { _, rms ->
textViewAudioLevel.text = "Audio Level: ${rms.roundToInt()} dB"

}
}
}
audioDeviceUrn
iOS

Create Views

= newAudioStream?.device?.descriptor?.urn

We start by using the auto-created ViewController.swift file to import
AmazonIVSBroadcast and then add some @IBOutlets to link:

import AmazonIVSBroadcast

class ViewController:

@IBOutlet
@IBOutlet
@IBOutlet
@IBOutlet
@IBOutlet

private
private
private
private
private

UIViewController {

var
var
var
var
var

textFieldToken: UITextField!

buttonJoin: UIButton!

labelState: UILabel!

switchPublish: UISwitch!
collectionViewParticipants: UICollectionView!

Now we create those views and link them up in Main.storyboard. Here is the view structure that

we'll use:

ioS

50

Amazon IVS Real-Time Streaming User Guide

s RealTimeSamples

BasicRealTime Any iOS Device (arm64) Build Succeeded | 5/30/23 at 0B:03

oa] £ ¥ Main.storyboard (Base] 3l ViewController.swift EE Info.plist

. . BasicRealTime) & BasicRealTime) X Main.storyboard } X Main.storyboard (Base)) No Selection
BasicRealTime

BasicRealTime ~ ji View Controller Scene
Boilerplate @ View Contraller
(E Assets.xcassets
E2 Info.plist
X Main.storyboard
3l ParticipantCollectionViewCell.swift
2 ParticipantCollectionViewCell.xib Stack View
3\ ParticipantCollectionViewLayout.swift F Text Field Token
3 StagelayoutCalculator.swift > @ Button Join Sie: Discennacted

3 StageParticipant.swift

B Controls Container
tack View

Stack View

L Label State
3l ViewController.swift L Publish
Products @ Switch Publish

BasicRealTime.app Constraints
Canstraints

Pods @ First Responder
iy Pods-BasicRealTime.debug.xcconfig B Exit
Pods-BasicRealTime.release.xcconfig & Storyboard Entry Point
Frameworks
& Pods_BasicRealTime.framework
Pods

For AutoLayout configuration, we need to customize three views. The first view is Collection View
Participants (a UICollectionView). Bound Leading, Trailing, and Bottom to Safe Area. Also
bound Top to Controls Container.

ioS 51

Amazon IVS Real-Time Streaming User Guide

[Ba..ime ny iOS Device (arm64) Build Succeeded | 5/30/23 at 0B:

RealTimeSam

% Main.storyboard (Base) 3\ ViewController. swift ==

n 5 ealTime) & Ba..e) X M.rd) X M..se)) i Vi..ne) @ Vi..ler) [l] View) [l Collection View Participants Scroll View
BasicRealTime !

BasicRealTime Visw Controller Scans Indicator Insets
Boilerplate @ View Controller

[Assets.xcassets W view Left Right
Safe Area

Info.plist '@
Collection View Participants
y
igitaiistory board v |l Controls Container

3 ParticipantCollectionViewCell.swift W Stack View Content Layout Guides

Top

Content Insets | Automatic
Adjustment Behavior

2 ParticipantCollectionViewCell.xib ~ [l Stack View
3\ ParticipantCollectionViewLayout.swift F Text Fiald Toksn State: Disconnected

. B Button Joi

3 StagelayoutCalculator.swift " ! ?" on ! e e

M stack View ol 148.33
L Label State ¢ ¥

3l ViewController.s L Publish

View

3 StageParticipant.s

e 669.67
Products @ Switch Publ Wwidth Height

BasicRealTime.app Copn s Arrange Position View
Pod > |& Constraints
ods
@ First Responder Layout | Inferred (Const:
Pods-BasicReal Time.debug.xcconfig B Exit

: . Layout Margins | Default
Pods-BasicRealTime.release.xcconfig & Storyboard Entry Point b &

= Preserve Superview Margins
= Follow Readable Width
& Pods_BasicRealTime.framework +

Pods

Frameworks

¥ Safe Area Relative Margins

Constraints

Horizontal

Align Tralling to: Safe Area

Align Leading to: Safe Area

Vertical

Align Bottom to: Safe Area

Top Space 10: trols Container

Content Hugging Priority
Horlzontal 250

The second view is Controls Container. Bound Leading, Trailing, and Top to Safe Area:

ioS 52

Amazon IVS

Real-Time Streaming User Guide

BasicRealTime
BasicRealTime
Boilerplate
L) Assets.xcassets
B9 Info.plist
X Main.storyboard
3l ParticipantCollectionViewCell.swift
2 ParticipantCollectionViewCell.xib
3 ParticipantCollectionViewLayout.swift
3 StagelayoutCalculator.swift
3 StageParticipant.swil
3l ViewController.swi
Products
BasicRealTime.app
Pods
Pods-BasicReal Time.debug.xcconfig
Pods-BasicRealTime.release.xcconfig
Frameworks
& Pods_BasicRealTime.framework
Pods

RealTimeSam...

@ Ba..ime

% Main.storyboard (Base) 3\ ViewController. swift ==

RealTime) Ba..ime) X Ma.ard) % Ma..se)) @ Vie..ene) @ Vie..ller } [l View

i@ View Controller Scene
@ View Controller
W view
[Safe Area
B Collection View Participants
O controls con
W Stack View
v [Stack View
F Text Field Token
8 Button Join
v [Stack View
L Label State
L Publish
@ Switch Publish
Constraints

State: Disconnected

> Constraints
@ First Responder
B Exit

& Storyboard Entry Point

Any iOS Device (arm64) Build Succeeded | 5/30/23 at 08:03

2 Il Contrals Container

Preserve Superview Margins
Follow Readable Width
W Safe Area Relative Margins

Layout Guides
Safe Area
Keyboard

Constraints

This Size Class
Horizontal

Tralling Space to: Stack View
Equals: B

Leading Space to: Stack View

Equals: 8

Align Tralling to: Safe Area

Align Leading to: Safe Area

Vertical

Bottom Space to: Stack View
Equals: B

Top Space to: Stack View
Equals: 8
Bottom Space to: ion View P...

Align Top to: Safe Area

Content Hugging Priority

Horizontal 260

Vertical 250

Content Compression Resistance Priority

Horizontal
Vertical
Intrinsic Size Default (System Defined)

Ambiguity | Always Verify

The third and last view is Vertical Stack View. Bound Top, Leading, Trailing, and Bottom to
Superview. For styling, set the spacing to 8 instead of 0.

ioS

53

Amazon IVS

Real-Time Streaming User Guide

BasicRealTime
BasicRealTime
Boilerplate
L) Assets.xcassets
B9 Info.plist
X Main.storyboard
3l ParticipantCollectionViewCell.swift
2 ParticipantCollectionViewCell.xib
3 ParticipantCollectionViewLayout.swift
3 StagelayoutCalculator.swift
3 StageParticipant.swil
3l ViewController.swi
Products
BasicRealTime.app
Pods
Pods-BasicReal Time.debug.xcconfig
Pods-BasicRealTime.release.xcconfig
Frameworks
& Pods_BasicRealTime.framework
Pods

RealTimeSam...

% Main.storyboard (Base) 3\ ViewController. swift

BasicRealTime) & B..e) X M.d ..)) i@ V..e) @ V..er) [l View) [l Controls Container) [l Stack View

i@ View Controller Scene
@ View Controller
W view
[Safe Area
B Collection View Participants
B Controls Container
v [stack View
v [Stack View
F Text Field Token
8 Button Join
v [Stack View
L Label State
L Publish
@ Switch Publish
Constraints

State: Disconnected

> Constraints
@ First Responder
B Exit

& Storyboard Entry Point

3 Ba..ime) J” Any iOS Device (arm64) Build Succeeded | 5/30/23 at 08:03

73.33
Width Height

Arrange | Position View
Layout | Inferred (Constraints)
Layout Margins | Default
= Preserve Superview Margins

+ Follow Readable Width
+ ¥ Safe Area Relative Margins

Layout Guides
Safe Area
Keyboard

Constraints

All This Size Class

Horizontal

Tralling Space to:
Equals:

Leading Space to:
Equals:
Vertical

Bottom Space to:
Equals:

Top Space to:
Equals:

Content Hugging Priority
Horizontal 260
Vertical 250
Content Compression Resistance Priority
Horizontal
Vertical
Intrinsic Size Default (System Defined)

Ambiguity | Always Verify

The UlStackViews will handle the layout of the remaining views. For all three UlStackViews, use
Fill as the Alignment and Distribution.

ioS

54

Amazon IVS

Real-Time Streaming User Guide

] m]
H 2 Q

~ [£ BasicRealTime

v BasicRealTime
> Boilerplate
(E Assets.xcassets
E2 Info.plist
X Main.storyboard
3l ParticipantCollectionViewCell.swift
2 ParticipantCollectionViewCell.xib
3 ParticipantCollectionViewLayout.swift
3 StagelayoutCalculator.swift
3 StageParticipant.swift
3l ViewController.swift
Products
BasicRealTime.app
Pods
Pods-BasicReal Time.debug.xcconfig
Pods-BasicRealTime.release.xcconfig
Frameworks
& Pods_BasicRealTime.framework
Pods

1+ RealTimeSam...

oa] £ ¥ Main.storyboard (Base]

BasicRealTime) B} X .)X .)

View Controller Scene
~ @ View Controller
v [l view
[Safe Area
> [@ collection View Participants
v [l Controls Container
v [Stack View
~ [Stack View
F Text Field Token
> (B Button Join
v [Stack View
L Label State
L Publish
@ Switch Publish
Constraints
Constraints
@ First Responder
B Exit

& Storyboard Entry Point

3l ViewController.swift

3 Ba..ime) J” Any iOS Device (arm64) Build Succeeded | 5/30/23 at 08:03

==

b @ @ E

Stack View
Axis
Alignment
Distribution

Spacing

Content Mode
Semantic
Tag

Interaction

Alpha
Background

Tint

Drawing

Stretching

Horizontal
Fill
Fill

8

Baseline Relative

Scale To Fill

Unspecified

¥ User Interaction Enabled
Multiple Touch

=S Dafault
Default
Opaque
Hidden
¥ Clears Graphics Context
Clips to Bounds
¥ Autoresize Subviews
ofg
x Y
1%
width Helght

¥ Installed

Finally, let's link these views to our ViewController. From above, map the following views:

Text Field Join binds to textFieldToken.

« Button Join binds to buttonJoin.

« Label State binds to 1abelState.

« Switch Publish binds to switchPublish.

« Collection View Participants binds to collectionViewParticipants.

Also use this time to set the dataSource of the Collection View Participants item to the owning
ViewController:

ioS 55

Amazon IVS

Real-Time Streaming User Guide

BasicRealTime
BasicRealTime
Boilerplate
Assets.xcassets
B9 Info.plist
X Main.storyboard
3l ParticipantCollectionViewCell.swift
2 ParticipantCollectionViewCell.xib
3 ParticipantCollectionViewLayout.swift
3 StagelayoutCalculator.swift
3 StageParticipant.swift
3l ViewController.swift
Products
BasicRealTime.app
Pods
Pods-BasicReal Time.debug.xcconfig

> Pods-BasicRealTime.release.xcconfig
Frameworks

& Pods_BasicRealTime.framework
Pods

1+ RealTimeSam...

3 Ba..ime) J* Any iOS Device (arm64)

% Main.storyboard (Base) 3\ ViewController. swift

RealTime) & Ba..e) X M..rd) X M..se)) i Vi..ne)} @ Vi.ler) [l View

View Controller Scene
@ view Controller
W view
[Safe Area
> [E collection View Participants
v [l Controls Container
v [Stack View
M Stack View
F Text Field Token
8 Button Join
tack View

State: Disconnected
)

L Label State
L Publish
@ Switch Publish
Constraints
Constraints
@ First Responder

B Exit

& Storyboard Entry Point

Build Succeeded | 5/30/23 at 08:03
==

» @ Collection View Participants

New Referencing

Referencing Outlet Collections

New Referencing Outle

Now we create the UICollectionViewCell subclass in which to render the participants. Start by
creating a new Cocoa Touch Class file:

ioS

56

Amazon IVS

Real-Time Streaming User Guide

Choose a template for your new file:

ios

macOS

watchOS tvOS DriverKit

Source

Swift File

Header File

Cocoa Touch
Class

Ul Test
Case Class

Unit Test
Case Class

Metal File

User Interface

SwiftUl View

Storyboard

Objective-C File

Launch Screen

Name it ParticipantUICollectionViewCell and make it a subclass of
UICollectionViewCell in Swift. We start in the Swift file again, creating our @IBOutlets to

link:

import AmazonIVSBroadcast

class ParticipantCollectionViewCell: UICollectionViewCell {

@IBOutlet
@IBOutlet
@IBOutlet
@IBOutlet
@IBOutlet
@IBOutlet
@IBOutlet

private var
private
private
private
private
private

private

var
var
var
var
var
var

viewPreviewContainer: UIView!
labelParticipantId: UILabel!
labelSubscribeState: UILabel!
labelPublishState: UILabel!
labelVideoMuted: UILabel!
labelAudioMuted: UILabel!
labelAudioVolume: UILabel!

ioS

57

Amazon IVS Real-Time Streaming User Guide

In the associated XIB file, create this view hierarchy:

fResitimaSans 3 Ba..imi Any iOS Device (arm64) Build Succesded | 5/30/23 at 08:03

1ain.storyboard (Base) 3 ViewController.swift % ParticipantC..nViewCell.xib
. . BasicRealTime) & BasicRealTime) X ParticipantCollectionViewCell.xib) No Selection
~ [£ BasicRealTime

~ BasicRealTime @ Placeholders

> Boilerplate File's Owner
L Assets.xcassets [First Responder
B9 Info.plist
24 Main.storyboard [Safe Area

3l ParticipantCollectionViewCell.swift B View Preview Container

¥ ParticipantCollectionViewCell.xib -l v""f‘

3 ParticipantCollectionViewLayout. swift v . “"E:h‘:f:micipmld
3 StageLayoutCalculator.swift Label Subscribe State
3 StageParticipant.swift Label Publish State
3 ViewController.swift Label Video Muted
Proaiete Label Audio Muted
Label Audio Volume

> Constraints Parti D
Pods » [0/ Constraints articipant

Pods-BasicReal Time.debug.xcconfig EEE Fgll;lgljng

Video Muted: false

~ [l Participant Collection View Cell

BasicRealTime.app

Pods-BasicRealTime.release.xcconfig

Frameworks Audio Mutex
& Pods_BasicRealTime.framework
Pods

No Selection

For AutoLayout, we'll modify three views again. The first view is View Preview Container. Set
Trailing, Leading, Top, and Bottom to Participant Collection View Cell.

ioS 58

Amazon IVS

Real-Time Streaming User Guide

BasicRealTime
BasicRealTime
Boilerplate
L) Assets.xcassets
B9 Info.plist
24 Main.storyboard
3l ParticipantCollectionViewCell.swift
2 ParticipantCollectionViewCell.xib
3 ParticipantCollectionViewLayout.swift
3 StagelayoutCalculator.swift
3 StageParticipant.swil
3l ViewController.swi
Products
BasicRealTime.app
Pods
Pods-BasicReal Time.debug.xcconfig
Pods-BasicRealTime.release.xcconfig
Frameworks
& Pods_BasicRealTime.framework
Pods

RealTimeSam...

Ba..ime Any iOS Device (arm64) Build Succesded | 5/30/23 at 08:03

fain.storyboard (Base) 3 ViewController.swift % ParticipantC...ViewCeil xib

RealTime B ITime) X Partic...ell.xib) [l Par it Collection View Cell [l View P

Placsholders
3 File's Owner
@ First Responder

~ [l Participant Collection View Cell

Safe Area
[view Preview Container
v [l View

W Stack View
Label Participant Id
Label Subscribe State
Label Publish State
Label Video Muted
Label Audic Muted
Label Audio Volume

Constraints

Constraints -
Subscribing

Published

Video Muted: false
Audio Muted: false
Audio Level: -100dB

w Container View

Width

Arrange Position View

Helght

Laycut Inferred (Constraints)

Layout Margins | Default

+ Preserve Superview Margins
* Follow Readable Width
+ ¥ Safe Area Relative Margins

Layout Guides
Safe Area
Keyboard

GConstraints

This Size Class
Horizontal

Tralling Space to:

Leading Space to:

Vertical

Bottom Space to:

Top Space to:

Content Hugging Priority
Horlzontal 260
Vertical 250

Participant Colle.

ant Colle.

Partic

Content Compression Resistance Priority

Horizontal 7560

Vertical 750

Intrineis Slva | Mafault (Quetam Natinadl

The second view is View. Set Leading and Top to Participant Collection View Cell and change the
value to 4.

ioS

59

Amazon IVS Real-Time Streaming User Guide

RealTimeSam...

Ba..ime) J* AnyiOS Device (arm64) Build Succeeded | 5/30/23 at 08:03

fain.storyboard (Base) 3 ViewController.swift % ParticipantC...ViewCeil xib &

RealTime RealTime) X Part antColl...ionViewCell.xib) [l] Parti t Collection View Cell) [l] View View

BasicRealTime
BasicRealTime
Boilerplate
L) Assets.xcassets
B9 Info.plist
24 Main.storyboard
3l ParticipantCollectionViewCell.swift
2 ParticipantCollectionViewCell.xib
3 ParticipantCollectionViewLayout.swift
3 StagelayoutCalculator.swift
3 StageParticipant.swil
3l ViewController.swi
Products
BasicRealTime.app
Pods
Pods-BasicReal Time.debug.xcconfig
Pods-BasicRealTime.release.xcconfig
Frameworks
& Pods_BasicRealTime.framework
Pods

Placeholders

3 File's Owner
@ First Responder

~ [l Participant Collection View Cell

Safe Area
B View Preview Container
~ [view
W Stack View
Label Participant Id
Label Subscribe State
Label Publish State
Label Video Muted
Label Audic Muted
Label Audio Volume
Constraints
Constraints

Subscribing
Published

Video Muted: false §

Audio Muted: false

Audio Level: -100dB

Arrange

Layout

Layout Margins
-

-

-

Layout Guides

GConstraints

L

Frame Rectangle

0%
136 &
Width Helght
Position View
Inferred (Constraints)
Default

Preserve Superview Margins
Follow Readable Width

¥ Safe Area Relative Margins

Safe Area
Keyboard

Size Class

1o

Horizontal

Tralling Space to: Stack View
Equals: 4

Leading Space to: Stack View
Equals: 4

Leading Space to: Participant Colle,

Vertical

Bottom Spaca to: Stack View
Equals: &
Top Space to: Stack View

Equals: 4

Top Space to:

Content Hugging Priority

Horizontal 2560
Vertical 250

The third view is Stack View. Set Trailing, Leading, Top, and Bottom to Superview and change the
value to 4.

ioS 60

Amazon IVS Real-Time Streaming User Guide

RealTimeSam...
> Rl

> 7 Any iOS D...e (arm64) Build Succeeded | 5/30/23 at 08:03 +

B8 | < Y Main.storyboard (Base) X Participant... ViewCell.xib AView 2 = [

BasicRealTime BasicRealTime) X Particip...Cell.xib) El Particip...iew Cell) [l View) B Stack View View

v BasicRealTime

v @& BasicRealTime & Placeholders Frame Rectangle

& File's Owner - el - 2
@ First Responder

v Boilerplate

AppDelegate.swift
3 AppDelegate.swi 1028

Y LaunchScreen.storyboard Height

3 SceneDelegate.swift

v &8 Participant Collection View Cell Width
[l Safe Area

W View Preview Container

Arrange _ Position View
3 UlView+Extensions.swift

(&) Assets.xcassets v W View
E8 Info.plist

X Main.storyboard M
3 ParticipantCollectionViewCell.swift M
X ParticipantCollectionViewCell.xib

3 ParticipantCollectionViewLayout.swift
3 StagelayoutCalculator.swift

3 StageParticipant.swift

Constraints
Constraints

v B stack view

Label Participant Id
Label Subscribe State
Label Publish State
Label Video Muted
Label Audio Muted

L .oom
Label Audio Volume Participant ID

Subscribing
Published

Layout Inferred (Constraints)

Layout Margins | Default
Preserve Superview Margins
Follow Readable Width
¥ Safe Area Relative Margins
Layout Guides
Safe Area
Keyboard

Constraints

Video Muted: false
Audio Muted: false
Audio Level: -100dB

3 ViewController.swift
Products

BasicRealTime.app
Pods

ods-BasicRealTime.debug.xcconfig Al This Size Class

'ods-BasicRealTime.release.xcconfig Horizontal
v & Frameworks Trailing Space to:
& Pods_BasicRealTime.framework Equals:
> Pods Leading Space to:

Equals:

Vertical
Bottom Space to:
Equals:

Top Space to:
Equals:

Content Hugging Priority
Horizontal 250

Phone 14 Pro Vertical [ESN

— Content Compression Resistance Priorit;
+ (G Filter = onten pression Resistance Priority
\ 2en

Permissions and Idle Timer

Going back to our ViewController, we will disable the system idle timer to prevent the device
from going to sleep while our application is being used:

override func viewDidAppear(_ animated: Bool) {
super.viewDidAppear(animated)
// Prevent the screen from turning off during a call.
UIApplication.shared.isIdleTimerDisabled = true

override func viewDidDisappear(_ animated: Bool) {
super.viewDidDisappear(animated)
UIApplication.shared.isIdleTimerDisabled = false

Next we request camera and microphone permissions from the system:

ioS 61

Amazon IVS Real-Time Streaming User Guide

private func checkPermissions() {
checkOrGetPermission(for: .video) { [weak self] granted in
guard granted else {
print("Video permission denied")
return
}
self?.checkOrGetPermission(for: .audio) { [weak self] granted in
guard granted else {
print("Audio permission denied")
return
}

self?.setupLocalUser() // we will cover this later

private func checkOrGetPermission(for mediaType: AVMediaType, _ result: @escaping
(Bool) -> Void) {
func mainThreadResult(_ success: Bool) {
DispatchQueue.main.async {
result(success)

}
switch AVCaptureDevice.authorizationStatus(for: mediaType) {
case .authorized: mainThreadResult(true)
case .notDetermined:
AVCaptureDevice.requestAccess(for: mediaType) { granted in
mainThreadResult(granted)
}
case .denied, .restricted: mainThreadResult(false)
@unknown default: mainThreadResult(false)

}

App State

We need to configure our collectionViewParticipants with the layout file that we created
earlier:

override func viewDidLoad() {
super.viewDidLoad()
// We render everything to exactly the frame, so don't allow scrolling.
collectionViewParticipants.isScrollEnabled = false

ioS 62

Amazon IVS Real-Time Streaming User Guide

collectionViewParticipants.register(UINib(nibName: "ParticipantCollectionViewCell",
bundle: .main), forCellWithReuseIdentifier: "ParticipantCollectionViewCell")

}

To represent each participant, we create a simple struct called StageParticipant. This can be
included in the ViewController.swift file, or a new file can be created.

import Foundation
import AmazonIVSBroadcast

struct StageParticipant {
let islLocal: Bool
var participantId: String?
var publishState: IVSParticipantPublishState = .notPublished
var subscribeState: IVSParticipantSubscribeState = .notSubscribed
var streams: [IVSStageStream] = []

init(isLocal: Bool, participantId: String?) {
self.islocal = islocal
self.participantId = participantId

To track those participants, we keep an array of them as a private property in our
ViewController:

private var participants = [StageParticipant]()

This property will be used to power our UICollectionViewDataSource that was linked from
the storyboard earlier:

extension ViewController: UICollectionViewDataSource {

func collectionView(_ collectionView: UICollectionView, numberOfItemsInSection
section: Int) -> Int {
return participants.count

func collectionView(_ collectionView: UICollectionView, cellForItemAt indexPath:
IndexPath) -> UICollectionViewCell {
if let cell = collectionView.dequeueReusableCell(withReuseIdentifier:
"ParticipantCollectionViewCell", for: indexPath) as? ParticipantCollectionViewCell {

ioS 63

Amazon IVS Real-Time Streaming User Guide

cell.set(participant: participants[indexPath.row])
return cell

} else {

fatalError("Couldn't load custom cell type
'ParticipantCollectionViewCell'")

}

To see your own preview before joining a stage, we create a local participant immediately:

override func viewDidLoad() {
/* existing UICollectionView code */
participants.append(StageParticipant(isLocal: true, participantId: nil))

This results in a participant cell being rendered immediately once the app is running, representing
the local participant.

Users want to be able to see themselves before joining a stage, so next we implement the
setuplLocalUser () method that gets called from the permissions-handling code earlier. We store
the camera and microphone reference as IVSLocalStageStream objects.

private var streams = [IVSLocalStageStream]()
private let deviceDiscovery = IVSDeviceDiscovery()

private func setuplLocalUser() {

// Gather our camera and microphone once permissions have been granted
let devices = deviceDiscovery.listlLocalDevices()
streams.removeAll()
if let camera = devices.compactMap({ $0 as? IVSCamera }).first {
streams.append(IVSLocalStageStream(device: camera))
// Use a front camera if available.
if let frontSource = camera.listAvailableInputSources().first(where:
{ $0.position == .front }) {
camera.setPreferredInputSource(frontSource)

}

if let mic = devices.compactMap({ $0 as? IVSMicrophone }).first {
streams.append(IVSLocalStageStream(device: mic))

ioS 64

Amazon IVS Real-Time Streaming User Guide

participants[@].streams = streams
participantsChanged(index: @, changeType: .updated)

Here we've found the device's camera and microphone through the SDK and stored them in

our local streams object, then assigned the streams array of the first participant (the local
participant that we created earlier) to our streams. Finally we call participantsChanged with
an index of 0 and changeType of updated. That function is a helper function for updating our
UICollectionView with nice animations. Here's what it looks like:

private func participantsChanged(index: Int, changeType: ChangeType) {
switch changeType {
case .joined:
collectionViewParticipants?.insertItems(at: [IndexPath(item: index, section:
2)1)
case .updated:
// Instead of doing reloadItems, just grab the cell and update it ourselves. It
saves a create/destroy of a cell
// and more importantly fixes some UI flicker. We disable scrolling so the
index path per cell
// never changes.
if let cell = collectionViewParticipants?.cellForItem(at: IndexPath(item:
index, section: @)) as? ParticipantCollectionViewCell {
cell.set(participant: participants[index])
}
case .left:
collectionViewParticipants?.deleteltems(at: [IndexPath(item: index, section:
2)1)
}

Don't worry about cell . set yet; we'll get to that later, but that's where we will render the cell’s
contents based on the participant.

The ChangeType is a simple enum:

enum ChangeType {
case joined, updated, left

ioS 65

Amazon IVS Real-Time Streaming User Guide

Finally, we want to keep track of whether the stage is connected. We use a simple bool to track

that, which will automatically update our Ul when it is updated itself.

private var connectingOrConnected = false {

didSet {
buttonJoin.setTitle(connectingOrConnected ? "Leave" : "Join", for: .normal)
buttonJoin.tintColor = connectingOrConnected ? .systemRed : .systemBlue

}

Implement the Stage SDK

Three core concepts underlie real-time functionality: stage, strategy, and renderer. The design goal

is minimizing the amount of client-side logic necessary to build a working product.
IVSStageStrategy

Our IVSStageStrategy implementation is simple:

extension ViewController: IVSStageStrategy {

func stage(_ stage: IVSStage, streamsToPublishForParticipant participant:

IVSParticipantInfo) -> [IVSLocalStageStream] {
// Return the camera and microphone to be published.
// This is only called if “shouldPublishParticipant’® returns true.
return streams

func stage(_ stage: IVSStage, shouldPublishParticipant participant:
IVSParticipantInfo) -> Bool {
// Our publish status is based directly on the UISwitch view
return switchPublish.isOn

func stage(_ stage: IVSStage, shouldSubscribeToParticipant participant:
IVSParticipantInfo) -> IVSStageSubscribeType {

// Subscribe to both audio and video for all publishing participants.

return .audioVideo

ioS

66

Amazon IVS Real-Time Streaming User Guide

To summarize, we only publish if the publish switch is in the “on" position, and if we publish we will
publish the streams that we collected earlier. Finally, for this sample, we always subscribe to other
participants, receiving both their audio and video.

IVSStageRenderer

The IVSStageRenderer implementation also is fairly simple, though given the number of
functions it contains quite a bit more code. The general approach in this renderer is to update

our participants array when the SDK notifies us of a change to a participant. There are certain
scenarios where we handle local participants differently, because we have decided to manage them
ourselves so they can see their camera preview before joining.

extension ViewController: IVSStageRenderer {

func stage(_ stage: IVSStage, didChange connectionState: IVSStageConnectionState,
withError error: Error?) {
labelState.text = connectionState.text
connectingOrConnected = connectionState != .disconnected

func stage(_ stage: IVSStage, participantDidJoin participant: IVSParticipantInfo) {
if participant.islocal {
// If this is the local participant joining the Stage, update the first
participant in our array because we
// manually added that participant when setting up our preview
participants[@].participantId = participant.participantId
participantsChanged(index: @, changeType: .updated)
} else {
// If they are not local, add them to the array as a newly joined
participant.
participants.append(StageParticipant(isLocal: false, participantId:
participant.participantId))
participantsChanged(index: (participants.count - 1), changeType: .joined)

func stage(_ stage: IVSStage, participantDidlLeave participant: IVSParticipantInfo)

if participant.islLocal {
// If this is the local participant leaving the Stage, update the first
participant in our array because
// we want to keep the camera preview active
participants[@].participantId = nil

ioS 67

Amazon IVS Real-Time Streaming User Guide

participantsChanged(index: @, changeType: .updated)
} else {
// If they are not local, find their index and remove them from the array.
if let index = participants.firstIndex(where: { $0.participantId ==
participant.participantId }) {
participants.remove(at: index)
participantsChanged(index: index, changeType: .left)

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didChange
publishState: IVSParticipantPublishState) {
// Update the publishing state of this participant
mutatingParticipant(participant.participantId) { data in
data.publishState = publishState

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didChange
subscribeState: IVSParticipantSubscribeState) {
// Update the subscribe state of this participant
mutatingParticipant(participant.participantId) { data in
data.subscribeState = subscribeState

func stage(_ stage: IVSStage, participant: IVSParticipantInfo,

didChangeMutedStreams streams: [IVSStageStream]) {

// We don't want to take any action for the local participant because we track
those streams locally

if participant.islLocal { return }

// For remote participants, notify the UICollectionView that they have updated.
There is no need to modify

// the “streams’ property on the ‘StageParticipant’ because it is the same
"IVSStageStream’™ instance. Just

// query the “isMuted’ property again.

if let index = participants.firstIndex(where: { $0.participantId ==
participant.participantId }) {

participantsChanged(index: index, changeType: .updated)

ioS 68

Amazon IVS Real-Time Streaming User Guide

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didAdd streams:

[IVSStageStream]) {

// We don't want to take any action for the local participant because we track
those streams locally

if participant.islLocal { return }

// For remote participants, add these new streams to that participant's streams
array.

mutatingParticipant(participant.participantId) { data in

data.streams.append(contentsOf: streams)

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didRemove streams:
[IVSStageStream]) {
// We don't want to take any action for the local participant because we track
those streams locally
if participant.islLocal { return }
// For remote participants, remove these streams from that participant's
streams array.
mutatingParticipant(participant.participantId) { data in
let oldUrns = streams.map { $0.device.descriptor().urn }
data.streams.removeAll(where: { stream in
return oldUrns.contains(stream.device.descriptor().urn)

1)

// A helper function to find a participant by its ID, mutate that participant, and
then update the UICollectionView accordingly.
private func mutatingParticipant(_ participantId: String?, modifier: (inout
StageParticipant) -> Void) {
guard let index = participants.firstIndex(where: { $0.participantId ==
participantId }) else {
fatalError("Something is out of sync, investigate if this was a sample app
or SDK issue.")

}

var participant = participants[index]
modifier(&participant)

participants[index] = participant
participantsChanged(index: index, changeType: .updated)

ioS

69

Amazon IVS Real-Time Streaming User Guide

This code uses an extension to convert the connection state into human-friendly text:

extension IVSStageConnectionState {

var text: String {
switch self {
case .disconnected: return "Disconnected"
case .connecting: return "Connecting"
case .connected: return "Connected"
@unknown default: fatalError()
}

Implementing a Custom UlCollectionViewLayout

Laying out different numbers of participants can be complex. You want them to take up the entire

parent view's frame but you don’t want to handle each participant configuration independently. To

make this easy, we'll walk through implementing a UICollectionViewLayout.

Create another new file, ParticipantCollectionViewlLayout.swift, which should extend
UICollectionViewLayout. This class will use another class called StageLayoutCalculator,
which we'll cover soon. The class receives calculated frame values for each participant and then

generates the necessary UICollectionViewLayoutAttributes objects.

import Foundation
import UIKit

/**

Code modified from https://developer.apple.com/documentation/uikit/views_and_controls/

collection_views/layouts/customizing_collection_view_layouts?language=objc
*/
class ParticipantCollectionViewLayout: UICollectionViewlLayout {

private let layoutCalculator = StagelLayoutCalculator()

private var contentBounds = CGRect.zero
private var cachedAttributes = [UICollectionViewLayoutAttributes]()

override func prepare() {
super.prepare()

guard let collectionView = collectionView else { return }

ioS

Amazon IVS Real-Time Streaming User Guide

cachedAttributes.removeAll()
contentBounds = CGRect(origin: .zero, size: collectionView.bounds.size)

layoutCalculator.calculateFrames(participantCount:
collectionView.numberOfItems(inSection: 0),
width: collectionView.bounds.size.width,
height: collectionView.bounds.size.height,
padding: 4)
.enumerated()
.forEach { (index, frame) in
let attributes = UICollectionViewlLayoutAttributes(forCellWith:
IndexPath(item: index, section: 0))
attributes.frame = frame
cachedAttributes.append(attributes)
contentBounds = contentBounds.union(frame)

override var collectionViewContentSize: CGSize {
return contentBounds.size

override func shouldInvalidatelLayout(forBoundsChange newBounds: CGRect) -> Bool {
guard let collectionView = collectionView else { return false }
return !newBounds.size.equalTo(collectionView.bounds.size)

override func layoutAttributesForItem(at indexPath: IndexPath) ->
UICollectionViewlLayoutAttributes? {
return cachedAttributes[indexPath.item]

override func layoutAttributesForElements(in rect: CGRect) ->
[UICollectionViewLayoutAttributes]? {
var attributesArray = [UICollectionViewlLayoutAttributes]()

// Find any cell that sits within the query rect.
guard let lastIndex = cachedAttributes.indices.last, let firstMatchIndex =
binSearch(rect, start: @, end: lastIndex) else {
return attributesArray

ioS 71

Amazon IVS Real-Time Streaming User Guide

// Starting from the match, loop up and down through the array until all the
attributes
// have been added within the query rect.
for attributes in cachedAttributes[..<firstMatchIndex].reversed() {
guard attributes.frame.maxY >= rect.minY else { break }
attributesArray.append(attributes)

for attributes in cachedAttributes[firstMatchIndex...] {
guard attributes.frame.minY <= rect.maxY else { break }
attributesArray.append(attributes)

return attributesArray

// Perform a binary search on the cached attributes array.
func binSearch(_ rect: CGRect, start: Int, end: Int) -> Int? {
if end < start { return nil }

let mid = (start + end) / 2
let attr = cachedAttributes[mid]

if attr.frame.intersects(rect) {
return mid
} else {
if attr.frame.maxY < rect.minY {
return binSearch(rect, start: (mid + 1), end: end)
} else {
return binSearch(rect, start: start, end: (mid - 1))

More important is the StageLayoutCalculator.swift class. It is designed to calculate the
frames for each participant based on the number of participants in a flow-based row/column
layout. Each row is the same height as the others, but the columns can be different widths per row.
See the code comment above the layouts variable for a description of how to customize this
behavior.

import Foundation
import UIKit

ioS 72

Amazon IVS

Real-Time Streaming User Guide

class StagelLayoutCalculator {

/// This 2D array contains the description of how the grid of participants should

be rendered

/// The index of the 1lst dimension is the number of participants needed to active

that configuration
/// Meaning if there is 1 participant, index @ will be used. If there are 5
participants, index 4 will be used.

/17

/// The 2nd dimension is a description of the layout. The length of the array is
the number of rows that

/// will exist, and then each number within that array is the number of columns in

each row.

/17

/// See the code comments next to each index for concrete examples.

/17

/// This can be customized to fit any layout configuration needed.
private let layouts:

// 1

participant

[[Int]] = [

L1171, // 1 row, full width

// 2

L1, 11, // 2 rows,

// 3

participants

participants

all columns are full width

L1, 21, // 2 rows, first row's column is full width then 2nd row's columns
are 1/2 width

// 4
[2,
// 5
[1,
columns are
// 6
[2,
/] 7
[2,
columns are
// 8
[2,
// 9
[3,

// 10 participants

[2,

// 11 participants

L 2,

participants

21, // 2 rows,

participants
2,21, //53
1/2 width
participants
2,21, //3
participants
2,31, // 3
1/3rd width
participants
3, 31,
participants
3, 31,

3, 2, 31,

3, 3, 31,

rows,

TowsS,

TowS,

all columns are 1/2 width

first row's column is full width, 2nd and 3rd row's

all column are 1/2 width

1st and 2nd row's columns are 1/2 width, 3rd row's

ioS

73

Amazon IVS Real-Time Streaming User Guide

// 12 participants
L8 8 &, & 1,

// Given a frame (this could be for a UICollectionView, or a Broadcast Mixer's
canvas), calculate the frames for each
// participant, with optional padding.
func calculateFrames(participantCount: Int, width: CGFloat, height: CGFloat,
padding: CGFloat) -> [CGRect] {
if participantCount > layouts.count {
fatalError("Only \(layouts.count) participants are supported at this time")

}

if participantCount == 0 {
return []

}

var currentIndex = 0

var lastFrame: CGRect = .zero

// If the height is less than the width, the rows and columns will be flipped.
// Meaning for 6 participants, there will be 2 rows of 3 columns each.
let isVertical = height > width

let halfPadding = padding / 2.0
let layout = layouts[participantCount - 1] // 1 participant is in index @, so
let rowHeight = (isVertical ? height : width) / CGFloat(layout.count)

var frames = [CGRect]()
for row in @ ..< layout.count {
// layout[row] is the number of columns in a layout
let itemWidth = (isVertical ? width : height) / CGFloat(layout[row])
let segmentFrame = CGRect(x: (isVertical ? @ : lastFrame.maxX) +
halfPadding,
y: (isVertical ? lastFrame.maxY : Q) +

halfPadding,

width: (isVertical ? itemWidth : rowHeight) -
padding,

height: (isVertical ? rowHeight : itemWidth) -
padding)

for column in @ ..< layout[row] {
var frame = segmentFrame
if isVertical {

ioS 74

Amazon IVS Real-Time Streaming User Guide
frame.origin.x = (itemWidth * CGFloat(column)) + halfPadding
} else {
frame.origin.y = (itemWidth * CGFloat(column)) + halfPadding
}
frames.append(frame)
currentIndex += 1
}
lastFrame = segmentFrame
lastFrame.origin.x += halfPadding
lastFrame.origin.y += halfPadding
}
return frames
}
}

Back in Main.storyboard, be sure to set the layout class for the UICollectionView to the class

we just created:

ioS

75

Amazon IVS

Real-Time Streaming User Guide

Hooking Up Ul Actions

We are getting close, there are a few IBActions that we need to create.

il
H 2 Q

BasicRealTime
v @& BasicRealTime
Boilerplate
Assets,xcassets
EE Info.plist
X Main.storyboard
3\ ParticipantCollectionViewCell.swift
X ParticipantCollectionViewCell.xib
3\ ParticipantCollectionViewLayout.swift
3 StagelayoutCalculator.swift
3 StageParticipant.swift
3 ViewController.swift
Products
BasicRealTime.app
Pods
‘s Pods-BasicRealTime.debug.xcconfig
&y Pods-BasicRealTime.release.xcconfig
Frameworks
& Pods_BasicRealTime.framework
Pods

1+ RealTimeSam...

3 Main.storyboard (Base)

BasicRealTime

O Ba..ime)

v i@ View Controller Scene

@ View Controller
W view
Safe Area

v [@ Collection View Participants
& Participant Collection V..

B Controls Container

Constraints

@ First Responder

B exit

® Storyboard Entry Point

Any [0S Device (arm64) Build Succeeded | 5/30/23 at 08:03

3 ViewController.swift 3 Stagelayou...culator.s

Ba..e) % M.rd) X M..¢)) i@ Vi.ne) @ Vi.ler) I View) B Collection View Participants

State: Disconnected

Collection View
Items

Layout ~Custom
Class ParticipantCollectionViewLayout @ =
Module

& Inherit Module From Target

Prefetch ¥ Prefetching Enabled

Drag and Drop Spring Loaded

Scroll View

Indicators ~Default Style
¥ Show Horizontal Indicator
¥ Show Vertical Indicator
Scrolling ¥ Scrolling Enabled
Paging Enabled
Direction Lock Enabled
Bounce ¥ Bounce On Scroll
¥ Bounce On Zoom
Bounce Horizontally
Bounce Vertically

Zoom 18
Min

Content Touch ¥ Delay Touch Down

¥ Can Cancel On Scroll

Keyboard | Do not dismiss

View
Content Mode | Scale To Fill
Semantic | Unspecified
Tag
Interaction ¥ User Interaction Enabled
¥ Multiple Touch
Alpha
+ Background WEEEE Default (System Background... ¢
Tint Default
Drawing % Opaque
Hidden
¥ Clears Graphics Context

¥ Clips to Bounds
¥ Autoresize Subviews

First we'll handle the join button. It responds differently based on the value of
connectingOrConnected. When it is already connected, it just leaves the stage. If it is
disconnected, it reads the text from the token UITextField and creates a new IVSStage with
that text. Then we add our ViewController as the strategy, errorDelegate, and renderer for

the IVSStage, and finally we join the stage asynchronously.

@IBAction private func joinTapped(_ sender: UIButton) {
if connectingOrConnected {
// If we're already connected to a Stage, leave it.

stage?.leave()
} else {
guard let token

textFieldToken.text else {

ioS

76

Amazon IVS Real-Time Streaming User Guide

print("No token")
return

}

// Hide the keyboard after tapping Join

textFieldToken.resignFirstResponder()

do {
// Destroy the old Stage first before creating a new one.
self.stage = nil
let stage = try IVSStage(token: token, strategy: self)
stage.errorDelegate = self
stage.addRenderer(self)
try stage.join()
self.stage = stage

} catch {
print("Failed to join stage - \(error)")

}

}
}

The other Ul action we need to hook up is the publish switch:

@IBAction private func publishToggled(_ sender: UISwitch) {

// Because the strategy returns the value of “switchPublish.isOn", just call

‘refreshStrategy .
stage?.refreshStrategy()

Rendering the Participants

Finally, we need to render the data we receive from the SDK onto the participant cell that we
created earlier. We already have the UICollectionView logic finished, so we just need to

implement the set APlin ParticipantCollectionViewCell.swift.

We'll start by adding the empty function and then walk through it step by step:

func set(participant: StageParticipant) {

First we handle the easy state, the participant ID, publish state, and subscribe state. For these, we

just update our UILabels directly:

ioS

77

Amazon IVS Real-Time Streaming User Guide

labelParticipantId.text = participant.islLocal ? "You (\(participant.participantId ??
"Disconnected"))" : participant.participantId

labelPublishState.text = participant.publishState.text

labelSubscribeState.text = participant.subscribeState.text

The text properties of the publish and subscribe enums come from local extensions:

extension IVSParticipantPublishState {
var text: String {
switch self {
case .notPublished: return "Not Published"
case .attemptingPublish: return "Attempting to Publish"
case .published: return "Published"
@unknown default: fatalError()
}

extension IVSParticipantSubscribeState {
var text: String {

switch self {
case .notSubscribed: return "Not Subscribed"
case .attemptingSubscribe: return "Attempting to Subscribe"
case .subscribed: return "Subscribed"
@unknown default: fatalError()
}

Next we update the audio and video muted states. To get the muted states we need to find the
IVSImageDevice and IVSAudioDevice from the streams array. To optimize performance, we
will remember the last devices attached.

// This belongs outside “set(participant:)’
private var registeredStreams: Set<IVSStageStream> = []
private var imageDevice: IVSImageDevice? {
return registeredStreams.lazy.compactMap { $0.device as? IVSImageDevice }.first

}

private var audioDevice: IVSAudioDevice? {
return registeredStreams.lazy.compactMap { $0.device as? IVSAudioDevice }.first

ioS 78

Amazon IVS Real-Time Streaming User Guide

// This belongs inside “set(participant:)’
let existingAudioStream = registeredStreams.first { $0.device is IVSAudioDevice }
let existingImageStream = registeredStreams.first { $0.device is IVSImageDevice }

registeredStreams = Set(participant.streams)

let newAudioStream = participant.streams.first { $0.device is IVSAudioDevice }
let newImageStream = participant.streams.first { $0.device is IVSImageDevice }

// “isMuted != false’ covers the stream not existing, as well as being muted.
labelVideoMuted.text = "Video Muted: \(newImageStream?.isMuted != false)"
labelAudioMuted.text = "Audio Muted: \(newAudioStream?.isMuted != false)"

Finally we want to render a preview for the imageDevice and display audio stats from the
audioDevice:

if existingImageStream !== newImageStream {
// The image stream has changed
updatePreview() // We’ll cover this next

if existingAudioStream !== newAudioStream {
(existingAudioStream?.device as? IVSAudioDevice)?.setStatsCallback(nil)
audioDevice?.setStatsCallback({ [weak self] stats in
self?.labelAudioVolume.text = String(format: "Audio Level: %.0f dB", stats.rms)
1)
// When the audio stream changes, it will take some time to receive new stats.
Reset the value temporarily.
self.labelAudioVolume.text = "Audio Level: -100 dB"

The last function we need to create is updatePreview(), which adds a preview of the participant
to our view:

private func updatePreview() {
// Remove any old previews from the preview container
viewPreviewContainer.subviews.forEach { $0.removeFromSuperview() }
if let imageDevice = self.imageDevice {
if let preview = try? imageDevice.previewView(with: .fit) {
viewPreviewContainer.addSubviewMatchFrame(preview)

ioS 79

Amazon IVS Real-Time Streaming User Guide

}

The above uses a helper function on UIView to make embedding subviews easier:

extension UIView {
func addSubviewMatchFrame(_ view: UIView) {

view.translatesAutoresizingMaskIntoConstraints = false

self.addSubview(view)

NSLayoutConstraint.activate([
view.topAnchor.constraint(equalTo: self.topAnchor, constant: 0),
view.bottomAnchor.constraint(equalTo: self.bottomAnchor, constant: 0),
view.leadingAnchor.constraint(equalTo: self.leadingAnchor, constant: 0),
view.trailingAnchor.constraint(equalTo: self.trailingAnchor, constant: 0),

D

ioS 80

Amazon IVS Real-Time Streaming User Guide

Monitoring Amazon IVS Real-Time Streaming

What is a Stage Session?

A stage session begins when the first participant joins a stage and ends a few minutes after the last
participant stops publishing to the stage. Stage sessions help with debugging long-lived stages by
separating out events and participants into short-lived sessions.

View Stage Sessions and Participants

Console Instructions

1. Open the Amazon IVS console.

(You also can access the Amazon IVS console through the AWS Management Console.)

2. On the navigation pane, choose Stages. (If the nav pane is collapsed, first open it by choosing
the hamburger icon.)

3. Choose the stage to go to its details page.

4. Scroll down the page until you see the Stage sessions section, then select a stage session to
view its details page.

5. To view participants in the session, scroll down until you see the Participants section, then
select a participant to view its details page, including charts for Amazon CloudWatch metrics.

View Events for a Participant

Events are sent when a participant’s status in a stage changes, such as joining a stage or
encountering an error trying to publish to a stage. Not all errors cause events; e.g., client-side
network errors and token-signature errors are not sent as events. To handle these errors in your
client application, use the IVS broadcast SDKs.

Console Instructions

1. Navigate to the participant details page as instructed above.

What is a Stage Session? 81

https://console.aws.amazon.com/ivs
https://console.aws.amazon.com

Amazon IVS Real-Time Streaming User Guide

2. Scroll down until you see the Events section. This displays an ordered list of participant events.
See Using Amazon EventBridge with Amazon IVS for details on events that are emitted for
participants.

CLI Instructions

Accessing stage-session events with the AWS CLI is an advanced option and requires that you
first download and configure the CLI on your machine. For details, see the AWS Command Line
Interface User Guide.

1. List stage sessions to find a stage session:

aws ivs-realtime list-stage-sessions --stage-arn <arn>

2. List participants for a stage session to find a participant:

aws ivs-realtime list-participants --stage-arn <arn> -session-id <sessionId>

3. List events for a stage session and participant:

aws ivs-realtime list-participant-events --stage-arn <arn> --session-id <sessionId>
—-participant-id <participantId>

Here is a sample response to the list-participant-events call:

{
"events": [

{
"eventTime": "2023-04-04T22:48:41+00:00",
"name": "JOINED",
"participantId": "AdRezB1l021t0"

1,

{
"eventTime": "2023-04-04T22:48:41+00:00",
"name": "SUBSCRIBE_STARTED",
"participantId": "AdRezB1021tQ",
"remoteParticipantId": "Ou5b5n5XLMdC"

1,

{

"eventTime": "2023-04-04T722:49:45+00:00",

CLI Instructions 82

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

Amazon IVS Real-Time Streaming User Guide

"name": "SUBSCRIBE_STOPPED",
"participantId": "AdRezB1021tQ",
"remoteParticipantId": "Ou5b5n5XLMdC"

.

{
"eventTime": "2023-04-04T22:49:45+00:00",
"name": "LEFT",
"participantId": "AdRezBl021tQ"

}

Access CloudWatch Metrics

For CloudWatch metrics to be available, the following IVS Broadcast SDK versions are required:
Web 1.5.0 or later, Android 1.12.0 or later, or iOS 1.12.0 or later.

CloudWatch Console Instructions

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the side navigation, expand the Metrics dropdown, then select All metrics.

3. On the Browse tab, using the unlabeled dropdown at the left, select your “home” region, where
your channel(s) was(were) created. For more on regions, see Global Solution, Regional Control.
For a list of supported regions, see the Amazon IVS page in the AWS General Reference.

4. At the bottom of the Browse tab, select the IVSRealTime namespace.
5. Do one of the following:
a. In the search bar, enter your resource ID (part of the ARN, arn:::ivs:stage/<resource
id>).
Then select IVSRealTime > Stage Metrics.

b. If IVSRealTime appears as a selectable service under AWS Namespaces, select it. It will
be listed if you use Amazon IVS Real-Time Streaming and it is sending metrics to Amazon
CloudWatch. (If IVSRealTime is not listed, you do not have any Amazon IVS metrics.)

Then choose a dimension grouping as desired; available dimensions are listed in CloudWatch
Metrics below.

6. Choose metrics to add to the graph. Available metrics are listed in CloudWatch Metrics below.

Access CloudWatch Metrics 83

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/what-is.html#what-is-aws
https://docs.aws.amazon.com/general/latest/gr/ivs.html

Amazon IVS Real-Time Streaming User Guide

You also can access your stream session’s CloudWatch chart from the stream session’s details page,
by selecting the View in CloudWatch button.

CLI Instructions

You also can access the metrics using the AWS CLI. This requires that you first download and
configure the CLI on your machine. For details, see the AWS Command Line Interface User Guide.

Then, to access Amazon IVS real-time streaming metrics using the AWS CLI:

e At a command prompt, run:

aws cloudwatch list-metrics --namespace AWS/IVSRealTime

For more information, see Using Amazon CloudWatch Metrics in the Amazon CloudWatch User
Guide.

CloudWatch Metrics: IVS Real-Time Streaming

Amazon IVS provides the following metrics in the AWS/IVSRealTime namespace.
For CloudWatch metrics to be available, Web Broadcast SDK 1.5.2 or later must be used.

The dimension can have the following valid values:

The Stage dimension is a resource ID (part of the ARN, arn:::stage/<resource id>).

The Participant dimensionisa participantID.

The SimulcastLayer is "hi", "mid", "low", or "no-rid" for a MediaType of "video" or "disabled"
for a MediaType of "audio." This value also can be empty.

The MediaType dimension is "video" or "audio" (string).

Metric Dimension Description
DownloadP Stage Each sample represents the percentage of packets that
acketlLoss were lost by a given subscriber while downloading from

the IVS server.

CLI Instructions 84

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

Amazon IVS

Real-Time Streaming User Guide

Metric

DownloadP
acketLoss

DroppedFr
ames

Dimension

Stage, Par
ticipant

Stage

Description

Unit: Percent

Valid statistics: Average, Maximum, Minimum — Average
number, largest number, or smallest number (respecti
vely) of packet loss over the configured interval

Filters DownloadPacketLoss by participant,

for subscribers who are also publishers. Samples
represent the percentage of packets that were lost by
the subscriber while downloading from the IVS server.
Samples are emitted only when the participant is also a
publisher.

Unit: Percent

Valid statistics: Average, Maximum, Minimum — Average
number, largest number, or smallest number (respecti
vely) of dropped frames over the configured interval

Each sample represents the percentage of frames that
were dropped by a given subscriber.

Unit: Percent

Valid statistics: Average, Maximum, Minimum — Average
number, largest number, or smallest number (respecti
vely) of dropped frames over the configured interval

CloudWatch Metrics: IVS Real-Time Streaming

85

Amazon IVS Real-Time Streaming User Guide
Metric Dimension Description
DroppedFr Stage, Par Filters DroppedFrames by participant, for subscribe
ames ticipant rs who are also publishers. Samples represent the
percentage of frames that were dropped between the
subscribing participant and all publishers in the stage.
Samples are emitted only when the participant is also a
publisher.
Unit: Percent
Valid statistics: Average, Maximum, Minimum — Average
number, largest number, or smallest number (respecti
vely) of dropped frames over the configured interval
PublishBi Stage Samples emitted represent the total rate at which a
trate given publisher is sending both video and audio data
(summed across all simulcast layers).
Unit: Bits/second
Valid statistics: Average, Maximum, Minimum — Average
number, largest number, or smallest number (respecti
vely) of bitrate over the configured interval
PublishBi Stage, Filters PublishBitrate by participant, simulcast
trate Participa layer, and media type. The simulcast layer ID is set by
nt, the broadcast SDK. When simulcast is disabled, this layer
Simulcast ID will be set to "disabled". The media type is either
Layer, video or audio.
MediaType

Unit: Bits/second

Valid statistics: Average, Maximum, Minimum — Average
number, largest number, or smallest number (respecti
vely) of bitrate over the configured interval

CloudWatch Metrics: IVS Real-Time Streaming

86

Amazon IVS Real-Time Streaming User Guide
Metric Dimension Description
Publishers Stage Number of participants publishing to the stage.
Unit: Count
Valid statistics: Average, Maximum, Minimum
PublishRe Stage, Number of pixels across the smaller of the width or
solution Participa height of the frame. For example, for a landscape frame
nt, of size 1920x1080, the PublishResolution is 1080. For a
Simulcast portrait frame of size 720x1280, the PublishResolution
Layer, is 720.
MediaType
Unit: Count
Valid statistics: Average, Maximum, Minimum
Subscribe Stage Samples emitted represent the total rate at which a
Bitrate given subscriber is receiving both video and audio data.
Unit: Bits/second
Valid statistics: Average, Maximum, Minimum — Average
number, largest number, or smallest number (respecti
vely) of bitrate over the configured interval
Subscribe Stage, Par Filters SubscribeBitrate by participant, for
Bitrate ticipant, subscribers who are also publishers. Samples represent
MediaType the bitrate at which a given subscriber is receiving the

given MediaType .Samples are only emitted while the
subscribing participant is publishing.

Unit: Bits/second

Valid statistics: Average, Maximum, Minimum — Average
number, largest number, or smallest number (respecti
vely) of bitrate over the configured interval

CloudWatch Metrics: IVS Real-Time Streaming

87

Amazon IVS Real-Time Streaming User Guide
Metric Dimension Description
Subscribers Stage Number of participants subscribed to the stage.

Note that participants that are actively publishing
and subscribing are counted as both publishers and
subscribers.

Unit: Count

Valid statistics: Average, Maximum, Minimum

CloudWatch Metrics: IVS Real-Time Streaming

88

Amazon IVS Real-Time Streaming User Guide

IVS Broadcast SDK (Real-Time Streaming)

The Amazon Interactive Video Services (IVS) Real-Time Streaming broadcast SDK is for developers
who are building applications with Amazon IVS. This SDK is designed to leverage the Amazon IVS
architecture and will see continual improvement and new features, alongside Amazon IVS. As a
native broadcast SDK, it is designed to minimize the performance impact on your application and
on the devices with which your users access your application.

Note that the broadcast SDK is used for both sending and receiving video; i.e., you use the same
SDK for hosts and viewers. No separate player SDK needed.

Your application can leverage the key features of the Amazon IVS broadcast SDK:

« High quality streaming — The broadcast SDK supports high quality streaming. Capture video
from your camera and encode it at up to 720p.

« Automatic Bitrate Adjustments — Smartphone users are mobile, so their network conditions
can change throughout the course of a broadcast. The Amazon IVS broadcast SDK automatically
adjusts the video bitrate to accommodate changing network conditions.

« Portrait and Landscape Support — No matter how your users hold their devices, the image
appears right-side up and properly scaled. The broadcast SDK supports both portrait and
landscape canvas sizes. It automatically manages the aspect ratio when the users rotate their
device away from the configured orientation.

« Secure Streaming — Your user’s broadcasts are encrypted using TLS, so they can keep their
streams secure.

« External Audio Devices — The Amazon IVS broadcast SDK supports audio jack, USB, and
Bluetooth SCO external microphones.

Platform Requirements
Native Platforms

Platform Supported Versions

Android 9.0 and later -- note customers can build with version 5.0 but will not be
able to use real-time streaming functionality.

Platform Requirements 89

Amazon IVS Real-Time Streaming User Guide
Platform Supported Versions
i0S 14 and later

IVS supports a minimum of 4 major iOS versions and 6 major Android versions. Our current version

support may extend beyond these minimums. Customers will be notified via SDK release notes at

least 3 months in advance of a major version no longer being supported.

Desktop Browsers

Browser Supported
Platforms

Chrome Windows,
macOS

Firefox Windows,
macOS

Edge Windows 8.1
and later

Safari macOS

Supported Versions

Two major versions (current and most recent prior
version)

Two major versions (current and most recent prior
version)

Two major versions (current and most recent prior
version)

Excludes Edge Legacy

Two major versions (current and most recent prior
version)

Mobile Browsers (iOS and Android)

Browser Supported
Platforms
Chrome iOS, Android

Supported Versions

Two major versions (current and most recent prior
version)

Desktop Browsers

90

Amazon IVS Real-Time Streaming User Guide

Browser Supported Supported Versions
Platforms
Firefox Android Two major versions (current and most recent prior
version)
Safari i0S Two major versions (current and most recent prior
version)

Known Limitations

« On all mobile devices, we do not recommend publishing/subscribing with four or more
participants at the same time, due to issues with video artifacts and black screens. If you require
more participants, configure audio-only publish and subscribe.

« We do not recommend compositing a stage and broadcasting it to a channel on Android Mobile
Web, due to performance considerations and potential crashes. If broadcast functionality is
required, integrate the IVS real-time streaming Android broadcast SDK.

Webviews

The Web broadcast SDK does not provide support for webviews or weblike environments (TVs,
consoles, etc). For mobile implementations, see the Real-Time Streaming Broadcast SDK Guide for
Android and for iOS.

Required Device Access

The broadcast SDK requires access to the device's cameras and microphones, both those built into
the device and those connected through Bluetooth, USB, or audio jack.

Support

The broadcast SDK is continually improved. See Amazon IVS Release Notes for available versions

and fixed issues. If appropriate, before contacting support, update your version of the broadcast
SDK and see if that resolves your issue.

Webviews 91

Amazon IVS Real-Time Streaming User Guide

Versioning

The Amazon IVS broadcast SDKs use semantic versioning.

For this discussion, suppose:

« The latest release is 4.1.3.
» The latest release of the prior major version is 3.2.4.

e The latest release of version 1.x is 1.5.6.

Backward-compatible new features are added as minor releases of the latest version. In this case,
the next set of new features will be added as version 4.2.0.

Backward-compatible, minor bug fixes are added as patch releases of the latest version. Here, the
next set of minor bug fixes will be added as version 4.1.4.

Backward-compatible, major bug fixes are handled differently; these are added to several versions:

« Patch release of the latest version. Here, this is version 4.1.4.
« Patch release of the prior minor version. Here, this is version 3.2.5.

» Patch release of the latest version 1.x release. Here, this is version 1.5.7.

Major bug fixes are defined by the Amazon IVS product team. Typical examples are critical security
updates and selected other fixes necessary for customers.

Note: In the examples above, released versions increment without skipping any numbers (e.g., from
4.1.3 to 4.1.4). In reality, one or more patch numbers may remain internal and not be released, so
the released version could increment from 4.1.3 to, say, 4.1.6.

IVS Broadcast SDK: Web Guide (Real-Time Streaming)

The IVS real-time streaming Web broadcast SDK gives developers the tools to build interactive,
real-time experiences on the web. This SDK is for developers who are building web applications
with Amazon IVS.

The Web broadcast SDK enables participants to send and receive video. The SDK supports the
following operations:

Versioning 92

https://semver.org/

Amazon IVS Real-Time Streaming User Guide

« Join a stage

« Publish media to other participants in the stage

o Subscribe to media from other participants in the stage

« Manage and monitor video and audio published to the stage
» Get WebRTC statistics for each peer connection

« All operations from the IVS low-latency streaming Web broadcast SDK

Latest version of Web broadcast SDK: 1.11.0 (Release Notes)

Reference documentation: For information on the most important methods available in the
Amazon IVS Web Broadcast SDK, see https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-
reference. Make sure the most current version of the SDK is selected.

Sample code: The samples below are a good place to get started quickly with the SDK:

o HTML and JavaScript

¢ React

Platform requirements: See Amazon IVS Broadcast SDK for a list of supported platforms

Getting Started

Imports

The building blocks for real-time are located in a different namespace than the root broadcasting
modules.

Using a Script Tag

Using the same script imports, the classes and enums defined in the examples below can be found
on the global object IVSBroadcastClient:

const { Stage, SubscribeType } = IVSBroadcastClient;

Using npm

The classes, enums, and types also can be imported from the package module:

Getting Started 93

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#may06-24-broadcast-web-rt
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://codepen.io/amazon-ivs/project/editor/DYapzL#
https://codepen.io/amazon-ivs/project/editor/ZzWobn
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast.html

Amazon IVS Real-Time Streaming User Guide

import { Stage, SubscribeType, LocalStageStream } from 'amazon-ivs-web-broadcast'

Server-Side Rendering Support

The Web Broadcast SDK Stages library cannot be loaded in a server-side context, as it references
browser primitives necessary to the functioning of the library when loaded. To work around this,
load the library dynamically, as demonstrated in the Web Broadcast Demo using Next and React.

Request Permissions

Your app must request permission to access the user’'s camera and microphone, and it must be
served using HTTPS. (This is not specific to Amazon IVS; it is required for any website that needs
access to cameras and microphones.)

Here's an example function showing how you can request and capture permissions for both audio
and video devices:

async function handlePermissions() {
let permissions = {
audio: false,
video: false,
};
try {
const stream = await navigator.mediaDevices.getUserMedia({ video: true, audio:
true 1});
for (const track of stream.getTracks()) {
track.stop();
}
permissions = { video: true, audio: true };
} catch (err) {
permissions = { video: false, audio: false };
console.error(err.message);

}
// If we still don't have permissions after requesting them display the error
message
if (!permissions.video) {
console.error('Failed to get video permissions.');
} else if (!permissions.audio) {
console.error('Failed to get audio permissions.');

Getting Started 94

https://github.com/aws-samples/amazon-ivs-broadcast-web-demo/blob/main/hooks/useBroadcastSDK.js#L26-L31

Amazon IVS Real-Time Streaming User Guide

For additional information, see the Permissions APl and MediaDevices.getUserMedia().

List Available Devices

To see what devices are available to capture, query the browser's MediaDevices.enumerateDevices()
method:

const devices = await navigator.mediaDevices.enumerateDevices();
window.videoDevices = devices.filter((d) => d.kind === 'videoinput');
window.audioDevices = devices.filter((d) => d.kind === 'audioinput');

Retrieve a MediaStream from a Device

After acquiring the list of available devices, you can retrieve a stream from any number of devices.
For example, you can use the getUserMedia() method to retrieve a stream from a camera.

If you'd like to specify which device to capture the stream from, you can explicitly set the
deviceld in the audio or video section of the media constraints. Alternately, you can omit the
deviceld and have users select their devices from the browser prompt.

You also can specify an ideal camera resolution using the width and height constraints. (Read
more about these constraints here.) The SDK automatically applies width and height constraints
that correspond to your maximum broadcast resolution; however, it's a good idea to also apply
these yourself to ensure that the source aspect ratio is not changed after you add the source to the
SDK.

For real-time streaming, ensure that media is constrained to 720p resolution. Specifically, your
getUserMedia and getDisplayMedia constraint values for width and height must not exceed
921600 (1280*720) when multiplied together.

const videoConfiguration = {
maxWidth: 1280,
maxHeight: 720,
maxFramerate: 30,

}
window.cameraStream = await navigator.mediaDevices.getUserMedia({
video: {
deviceld: window.videoDevices[Q].deviceld,
width: {

Getting Started 95

https://developer.mozilla.org/en-US/docs/Web/API/Permissions_API
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/enumerateDevices
https://developer.mozilla.org/en-US/docs/Web/API/MediaTrackConstraints#properties_of_video_tracks

Amazon IVS Real-Time Streaming User Guide

ideal: videoConfiguration.maxWidth,

1,

height: {
ideal:videoConfiguration.maxHeight,

1,

.

1);

window.microphoneStream = await navigator.mediaDevices.getUserMedia({
audio: { deviceId: window.audioDevices[@].devicelId 1},

1)

Publishing and Subscribing

Concepts

Three core concepts underlie real-time functionality: stage, strategy, and events. The design goal is

minimizing the amount of client-side logic necessary to build a working product.
Stage

The Stage class is the main point of interaction between the host application and the SDK. It
represents the stage itself and is used to join and leave the stage. Creating and joining a stage
requires a valid, unexpired token string from the control plane (represented as token). Joining and
leaving a stage are simple:

const stage = new Stage(token, strategy)

try {
await stage.join();
} catch (error) {
// handle join exception

stage.leave();

Strategy

The StageStrategy interface provides a way for the host application to communicate
the desired state of the stage to the SDK. Three functions need to be implemented:
shouldSubscribeToParticipant, shouldPublishParticipant, and
stageStreamsToPublish. All are discussed below.

Publishing and Subscribing 96

Amazon IVS Real-Time Streaming User Guide

To use a defined strategy, pass it to the Stage constructor. The following is a complete example
of an application using a strategy to publish a participant's webcam to the stage and subscribe to
all participants. Each required strategy function's purpose is explained in detail in the subsequent

sections.

const devices = await navigator.mediaDevices.getUserMedia({
audio: true,
video: {
width: { max: 1280 },
height: { max: 720 },

1)
const myAudioTrack
const myVideoTrack = new LocalStageStream(devices.getVideoTracks()[0]);

new LocalStageStream(devices.getAudioTracks()[0]);

// Define the stage strategy, implementing required functions
const strategy = {

audioTrack: myAudioTrack,

videoTrack: myVideoTrack,

// optional

updateTracks(newAudioTrack, newVideoTrack) {
this.audioTrack = newAudioTrack;
this.videoTrack newVideoTrack;

},

// required
stageStreamsToPublish() {
return [this.audioTrack, this.videoTrack];

}I

// required
shouldPublishParticipant(participant) {
return true;

},
// required

shouldSubscribeToParticipant(participant) {
return SubscribeType.AUDIO_VIDEO;

I

// Initialize the stage and start publishing

Publishing and Subscribing

97

Amazon IVS Real-Time Streaming User Guide

const stage = new Stage(token, strategy);
await stage.join();

// To update later (e.g. in an onClick event handler)
strategy.updateTracks(myNewAudioTrack, myNewVideoTrack);
stage.refreshStrategy();

Subscribing to Participants

shouldSubscribeToParticipant(participant: StageParticipantInfo): SubscribeType

When a remote participant joins the stage, the SDK queries the host application about the desired
subscription state for that participant. The options are NONE, AUDIO_ONLY, and AUDIO_VIDEO.
When returning a value for this function, the host application does not need to worry about the
publish state, current subscription state, or stage connection state. If AUDIO_VIDEO is returned,
the SDK waits until the remote participant is publishing before it subscribes, and it updates the
host application by emitting events throughout the process.

Here is a sample implementation:
const strategy = {
shouldSubscribeToParticipant: (participant) => {

return SubscribeType.AUDIO_VIDEO;

// ... other strategy functions

This is the complete implementation of this function for a host application that always wants all
participants to see each other; e.g., a video chat application.

More advanced implementations also are possible. Use the userInfo property on
ParticipantInfo to selectively subscribe to participants based on server-provided attributes:

const strategy = {

shouldSubscribeToParticipant(participant) {
switch (participant.info.userInfo) {
case 'moderator':

Publishing and Subscribing 98

Amazon IVS Real-Time Streaming User Guide

return SubscribeType.NONE;
case 'guest':

return SubscribeType.AUDIO_VIDEO;
default:

return SubscribeType.NONE;

// . . . other strategies properties

This can be used to create a stage where moderators can monitor all guests without being seen or
heard themselves. The host application could use additional business logic to let moderators see
each other but remain invisible to guests.

Publishing

shouldPublishParticipant(participant: StageParticipantInfo): boolean

Once connected to the stage, the SDK queries the host application to see if a particular participant
should publish. This is invoked only on local participants that have permission to publish based on
the provided token.

Here is a sample implementation:
const strategy = {
shouldPublishParticipant: (participant) => {

return true;

// . . . other strategies properties

This is for a standard video chat application where users always want to publish. They can mute
and unmute their audio and video, to instantly be hidden or seen/heard. (They also can use
publish/unpublish, but that is much slower. Mute/unmute is preferable for use cases where
changing visibility often is desirable.)

Choosing Streams to Publish

stageStreamsToPublish(): LocalStageStream[];

Publishing and Subscribing 99

Amazon IVS Real-Time Streaming User Guide

When publishing, this is used to determine what audio and video streams should be published. This
is covered in more detail later in Publish a Media Stream.

Updating the Strategy

The strategy is intended to be dynamic: the values returned from any of the above functions can
be changed at any time. For example, if the host application does not want to publish until the end
user taps a button, you could return a variable from shouldPublishParticipant (something
like hasUserTappedPublishButton). When that variable changes based on an interaction by
the end user, call stage.refreshStrategy() to signal to the SDK that it should query the
strategy for the latest values, applying only things that have changed. If the SDK observes that the
shouldPublishParticipant value has changed, it starts the publish process. If the SDK queries
and all functions return the same value as before, the refreshStrategy call does not modify the
stage.

If the return value of shouldSubscribeToParticipant changes from AUDIO_VIDEO to
AUDIO_ONLY, the video stream is removed for all participants with changed returned values, if a
video stream existed previously.

Generally, the stage uses the strategy to most efficiently apply the difference between the previous
and current strategies, without the host application needing to worry about all the state required
to manage it properly. Because of this, think of calling stage.refreshStrategy() as a cheap
operation, because it does nothing unless the strategy changes.

Events

A Stage instance is an event emitter. Using stage.on(), the state of the stage is communicated
to the host application. Updates to the host application’s Ul usually can be supported entirely by
the events. The events are as follows:

stage.on(StageEvents.STAGE_CONNECTION_STATE_CHANGED, (state) => {})

stage.on(StageEvents.STAGE_PARTICIPANT_JOINED, (participant) => {3})

stage.on(StageEvents.STAGE_PARTICIPANT_LEFT, (participant) => {})

stage.on(StageEvents.STAGE_PARTICIPANT_PUBLISH_STATE_CHANGED, (participant, state) =>
)

stage.on(StageEvents.STAGE_PARTICIPANT_SUBSCRIBE_STATE_CHANGED, (participant, state) =>
)

stage.on(StageEvents.STAGE_PARTICIPANT_STREAMS_ADDED, (participant, streams) => {})

stage.on(StageEvents.STAGE_PARTICIPANT_STREAMS_REMOVED, (participant, streams) => {})

stage.on(StageEvents.STAGE_STREAM_MUTE_CHANGED, (participant, stream) => {})

Publishing and Subscribing 100

Amazon IVS Real-Time Streaming User Guide

For most of these events, the corresponding ParticipantInfo is provided.

It is not expected that the information provided by the events impacts the return values of the
strategy. For example, the return value of shouldSubscribeToParticipant is not expected to
change when STAGE_PARTICIPANT_PUBLISH_STATE_CHANGED is called. If the host application
wants to subscribe to a particular participant, it should return the desired subscription type
regardless of that participant’s publish state. The SDK is responsible for ensuring that the desired
state of the strategy is acted on at the correct time based on the state of the stage.

Publish a Media Stream

Local devices like microphones and cameras are retrieved using the same steps as outlined above
in Retrieve a MediaStream from a Device. In the example we use MediaStream to create a list of
LocalStageStream objects used for publishing by the SDK:

try {
// Get stream using steps outlined in document above
const stream = await getMediaStreamFromDevice();

let streamsToPublish = stream.getTracks().map(track => {
new LocalStageStream(track)

1)
// Create stage with strategy, or update existing strategy

const strategy = {
stageStreamsToPublish: () => streamsToPublish

Publish a Screenshare

Applications often need to publish a screenshare in addition to the user's web camera. Publishing a
screenshare necessitates creating an additional Stage with its own unique token.

// Invoke the following lines to get the screenshare's tracks
const media = await navigator.mediaDevices.getDisplayMedia({

video: {
width: {
max: 1280,
.
height: {

Publishing and Subscribing 101

Amazon IVS Real-Time Streaming User Guide

max: 720,

}
1)

const screenshare = { videoStream: new LocalStageStream(media.getVideoTracks()[0Q]) };
const screenshareStrategy = {
stageStreamsToPublish: () => {
return [screenshare.videoStream];

},
shouldPublishParticipant: (participant) => {

return true;

iy

shouldSubscribeToParticipant: (participant) => {
return SubscribeType.AUDIO_VIDEO;

}

const screenshareStage = new Stage(screenshareToken, screenshareStrategy);
await screenshareStage.join();

Display and Remove Participants

After subscribing is completed, you receive an array of StageStream objects through the
STAGE_PARTICIPANT_STREAMS_ADDED event. The event also gives you participant info to help
when displaying media streams:

stage.on(StageEvents.STAGE_PARTICIPANT_STREAMS_ADDED, (participant, streams) => {
const streamsToDisplay = streams;

if (participant.islLocal) {
// Ensure to exclude local audio streams, otherwise echo will occur
streamsToDisplay = streams.filter(stream => stream.streamType ===
StreamType.VIDEOQ)

}

// Create or find video element already available in your application
const videoEl = getParticipantVideoElement(participant.id);

// Attach the participants streams

videoEl.srcObject = new MediaStream();

streamsToDisplay.forEach(stream =>
videoEl.srcObject.addTrack(stream.mediaStreamTrack));

D

Publishing and Subscribing 102

Amazon IVS Real-Time Streaming User Guide

When a participant stops publishing or is unsubscribed from a stream, the
STAGE_PARTICIPANT_STREAMS_REMOVED function is called with the streams that were removed.
Host applications should use this as a signal to remove the participant’s video stream from the
DOM.

STAGE_PARTICIPANT_STREAMS_REMOVED is invoked for all scenarios in which a stream might be
removed, including:

« The remote participant stops publishing.
» A local device unsubscribes or changes subscription from AUDIO_VIDEO to AUDIO_ONLY.
« The remote participant leaves the stage.

» The local participant leaves the stage.

Because STAGE_PARTICIPANT_STREAMS_REMOVED is invoked for all scenarios, no custom
business logic is required around removing participants from the Ul during remote or local leave
operations.

Mute and Unmute Media Streams

LocalStageStream objects have a setMuted function that controls whether the stream
is muted. This function can be called on the stream before or after it is returned from the
stageStreamsToPublish strategy function.

Important: If a new LocalStageStream object instance is returned by
stageStreamsToPublish after a call to refreshStrategy, the mute state of the new stream
object is applied to the stage. Be careful when creating new LocalStageStream instances to
make sure the expected mute state is maintained.

Monitor Remote Participant Media Mute State

When participants change the mute state of their video or audio, the
STAGE_STREAM_MUTE_CHANGED event is triggered with a list of streams that have changed. Use
the isMuted property on StageStream to update your Ul accordingly:

stage.on(StageEvents.STAGE_STREAM_MUTE_CHANGED, (participant, stream) => {
if (stream.streamType === 'video' && stream.isMuted) {
// handle UI changes for video track getting muted
}
D)

Publishing and Subscribing 103

Amazon IVS Real-Time Streaming User Guide

Also, you can look at StageParticipantinfo for state information on whether audio or video is

muted:

stage.on(StageEvents.STAGE_STREAM_MUTE_CHANGED, (participant, stream) => {
if (participant.videoStopped || participant.audioMuted) {
// handle UI changes for either video or audio

D

Get WebRTC Statistics

To get the latest WebRTC statistics for a publishing stream or subscribing stream, use getStats
on StageStream. This is an asynchronous method with which you can retrieve statistics either via
await or by chaining a promise. The result is an RTCStatsReport which is a dictionary containing
all standard statistics.

try {

const stats = await stream.getStats();
} catch (error) {

// Unable to retrieve stats

Optimizing Media

It's recommended to limit getUserMedia and getDisplayMedia calls to the following
constraints for the best performance:

const CONSTRAINTS = {
video: {
width: { ideal: 1280 }, // Note: flip width and height values if portrait is
desired
height: { ideal: 720 },
framerate: { ideal: 30 1},
.
};

You can further constrain the media through additional options passed to the LocalStageStream
constructor:

const localStreamOptions = {
minBitrate?: number;

Publishing and Subscribing 104

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference#stageparticipantinfo

Amazon IVS Real-Time Streaming User Guide

}

maxBitrate?: number;
maxFramerate?: number;
simulcast: {

enabled: boolean

const localStream = new LocalStageStream(track, localStreamOptions)

In the code above:

e« minBitrate sets a minimum bitrate that the browser should be expected to use. However, a low

complexity video stream may push the encoder to go lower than this bitrate.

« maxBitrate sets a maximum bitrate that the browser should be expected to not exceed for this
stream.

« maxFramerate sets a maximum frame rate that the browser should be expected to not exceed
for this stream.

» The simulcast option is usable only on Chromium-based browsers. It enables sending three
rendition layers of the stream.

This allows the server to choose which rendition to send to other participants, based on their
networking limitations.

When simulcast is specified along with a maxBitrate and/or maxFramerate value, it

is expected that the highest rendition layer will be configured with these values in mind,
provided the maxBitrate does not go below the internal SDK's second highest layer's default
maxBitrate value of 900 kbps.

If maxBitrate is specified as too low compared to the second highest layer’s default value,
simulcast will be disabled.

simulcast cannot be toggled on and off without republishing the media through

a combination of having shouldPublishParticipant return false, calling
refreshStrategy, having shouldPublishParticipant return true and calling
refreshStrategy again.

Get Participant Attributes

If you specify attributes in the CreateParticipantToken endpoint request, you can see the

attributes in StageParticipantInfo properties:

stage.on(StageEvents.STAGE_PARTICIPANT_JOINED, (participant) => {

Publishing and Subscribing 105

Amazon IVS Real-Time Streaming User Guide

console.log("Participant ${participant.id} info:', participant.attributes);

1)

Handling Network Issues

When the local device's network connection is lost, the SDK internally tries to reconnect without
any user action. In some cases, the SDK is not successful and user action is needed.

Broadly the state of the stage can be handled via the STAGE_CONNECTION_STATE_CHANGED
event:

stage.on(StageEvents.STAGE_CONNECTION_STATE_CHANGED, (state) => {
switch (state) {

case StageConnectionState.DISCONNECTED:
// handle disconnected UI
break;

case StageConnectionState.CONNECTING:
// handle establishing connection UI
break;

case StageConnectionState.CONNECTED:
// SDK is connected to the Stage
break;

case StageConnectionState.ERRORED:
// unrecoverable error detected, please re-instantiate
Break;

1

In general, encountering errors after successfully joining a stage indicates that the SDK lost the
connection and was unsuccessful in reestablishing a connection. Create a new Stage object and try
to join when network conditions improve.

Broadcast the Stage to an IVS Channel

To broadcast a stage, create a separate IVSBroadcastClient session and then follow the usual
instructions for broadcasting with the SDK, described above. The list of StageStream exposed via
STAGE_PARTICIPANT_STREAMS_ADDED can be used to retrieve the participant media streams
which can be applied to the broadcast stream composition, as follows:

// Setup client with preferred settings
const broadcastClient = getIvsBroadcastClient();

Publishing and Subscribing 106

Amazon IVS Real-Time Streaming User Guide

stage.on(StageEvents.STAGE_PARTICIPANT_STREAMS_ADDED, (participant, streams) => {
streams.forEach(stream => {
const inputStream = new MediaStream([stream.mediaStreamTrack]);
switch (stream.streamType) {
case StreamType.VIDEO:
broadcastClient.addVideoInputDevice(inputStream, ‘video-
${participant.id}’, {
index: DESIRED_LAVYER,
width: MAX_WIDTH,
height: MAX_HEIGHT
1)
break;
case StreamType.AUDIO:
broadcastClient.addAudioInputDevice(inputStream, “audio-
${participant.id}’);
break;

1)
1)

Optionally, you can composite a stage and broadcast it to an IVS low-latency channel, to reach a

larger audience. See Enabling Multiple Hosts on an Amazon IVS Stream in the IVS Low-Latency
Streaming User Guide.

Known Issues and Workarounds

When closing browser tabs or exiting browsers without calling stage.leave(), users can still
appear in the session with a frozen frame or black screen for up to 10 seconds.

Workaround: None.

Safari sessions intermittently appear with a black screen to users joining after a session has
begun.

Workaround: Refresh the browser and reconnect the session.

Safari does not recover gracefully from switching networks.

Workaround: Refresh the browser and reconnect the session.

The developer console repeats an Error: UnintentionalError at
StageSocket.onClose error.

Known Issues and Workarounds 107

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/multiple-hosts.html

Amazon IVS Real-Time Streaming User Guide

Workaround: Only one stage can be created per participant token. This error occurs when more
than one Stage instance is created with the same participant token, regardless of whether the
instance is on one device or multiple devices.

« You may have trouble maintaining a StageParticipantPublishState.PUBLISHED state and
may receive repeated StageParticipantPublishState.ATTEMPTING_PUBLISH states when
listening to the StageEvents.STAGE_PARTICIPANT_PUBLISH_STATE_CHANGED event.

Workaround: Constrain video resolution to 720p when invoking getUserMedia or
getDisplayMedia. Specifically, your getUserMedia and getDisplayMedia constraint values
for width and height must not exceed 921600 (1280*720) when multiplied together.

Safari Limitations
« Denying a permissions prompt requires resetting the permission in Safari website settings at the
OS level.

« Safari does not natively detect all devices as effectively as Firefox or Chrome. For example, OBS
Virtual Camera does not get detected.

Firefox Limitations

» System permissions need to be enabled for Firefox to screen share. After enabling them, the user
must restart Firefox for it to work correctly; otherwise, if permissions are perceived as blocked,
the browser will throw a NotFoundError exception.

« The getCapabilities method is missing. This means users cannot get the media track's
resolution or aspect ratio. See this bugzilla thread.

« Several AudioContext properties are missing; e.g., latency and channel count. This could pose a
problem for advanced users who want to manipulate the audio tracks.

« Camera feeds from getUserMedia are restricted to a 4:3 aspect ratio on MacOS. See bugzilla
thread 1 and bugzilla thread 2.

« Audio capture is not supported with getDisplayMedia. See this bugzilla thread.

« Framerate in screen capture is suboptimal (approximately 15fps?). See this bugzilla thread.

Known Issues and Workarounds 108

https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getDisplayMedia#exceptions
https://bugzilla.mozilla.org/show_bug.cgi?id=1179084
https://bugzilla.mozilla.org/show_bug.cgi?id=1193640
https://bugzilla.mozilla.org/show_bug.cgi?id=1193640
https://bugzilla.mozilla.org/show_bug.cgi?id=1306034
https://bugzilla.mozilla.org/show_bug.cgi?id=1541425
https://bugzilla.mozilla.org/show_bug.cgi?id=1703522

Amazon IVS Real-Time Streaming User Guide

Mobile Web Limitations

» getDisplayMedia screen sharing is unsupported on mobile devices.

Workaround: None.

« Participant takes 15-30 seconds to leave when closing a browser without calling 1leave().

Workaround: Add a Ul that encourages users to properly disconnect.

» Backgrounding app causes publishing video to stop.

Workaround: Display a Ul slate when the publisher is paused.

» Video framerate drops for approximately 5 seconds after unmuting a camera on Android devices.

Workaround: None.

o The video feed is stretched on rotation for iOS 16.0.

Workaround: Display a Ul outlining this known OS issue.

« Switching the audio-input device automatically switches the audio-output device.

Workaround: None.

« Backgrounding the browser causes the publishing stream to go black and produce only audio.

Workaround: None. This is for security reasons.

Error Handling

This section is an overview of error conditions, how the Web Broadcast SDK reports them to the
application, and what an application should do when those errors are encountered. There are four
categories of errors:

try {

stage = new Stage(token, strategy);
} catch (e) {

// 1) stage instantiation errors

}

try {
await stage.join();
} catch (e) {

Error Handling 109

https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getDisplayMedia#browser_compatibility

Amazon IVS Real-Time Streaming User Guide

// 2) stage join errors

}

stage.on(StageEvents.STAGE_PARTICIPANT_PUBLISH_STATE_CHANGED, (participantInfo, state)
=> {

if (state === StageParticipantPublishState.ERRORED) {
// 3) stage publish errors
}
1);

stage.on(StageEvents.STAGE_PARTICIPANT_SUBSCRIBE_STATE_CHANGED, (participantInfo,
state) => {

if (state === StageParticipantSubscribeState.ERRORED) {
// 4) stage subscribe errors
}
1)

Stage Instantiation Errors

Stage instantiation does not remotely validate tokens, but it does check for some basic token
issues that can be validated on the client-side. As a result, the SDK may throw an error.

Malformed Participant Token

This occurs when the stage token is malformed. When instantiating a Stage, the SDK throws an
error with this message: "Error parsing Stage Token."

Action: Create a valid token and retry instantiating.

Stage Join Errors

These are the errors that may occur when initially attempting to join a stage.
Stage was Deleted

This occurs when joining a stage (associated with a token) which was deleted. The join SDK
method throws an error with this message: "Operation timed out."

Action: Create a valid token with a new stage and retry joining.
Expired Participant Token

This occurs when the token is expired. The join SDK method throws an error with this message:
"Token expired and is no longer valid."

Error Handling 110

Amazon IVS Real-Time Streaming User Guide

Action: Create a new token and retry joining.
Invalid or Revoked Participant Token

This occurs when the token is not valid or was revoked/disconnected. The join SDK method
throws an error with this message: "Operation timed out."

Action: Create a new token and retry joining.
Disconnected Token

This occurs when the stage token is not malformed but is rejected by the Stages server. The join
SDK method throws an error with this message: "Operation timed out."

Action: Create a valid token and retry joining.
Network Errors for Initial Join

This occurs when the SDK cannot contact the Stages server to establish a connection. The join
SDK method throws an error with this message: "Operation timed out."

Action: Wait for the device's connectivity to recover and retry joining.
Network Errors when Already Joined

If the device's network connection goes down, the SDK may lose its connection to Stage servers.
You may see errors in the console because the SDK can no longer reach backend services. POSTs to
https://broadcast.stats.live-video.net will fail.

If you are publishing and/or subscribing, you will see errors in the console related to attempts to
publish/subscribe.

Internally the SDK will try to reconnect with an exponential backoff strategy.

Action: Wait for the device's connectivity to recover. If publishing or subscribing, refresh the
strategy to ensure republication of your media stream(s).

Publish and Subscribe Errors
Publish Error: Publish States

The SDK reports ERRORED when a publish fails. This can occur due to network conditions or if a
stage is at capacity for publishers.

Error Handling 111

Amazon IVS Real-Time Streaming User Guide

stage.on(StageEvents.STAGE_PARTICIPANT_PUBLISH_STATE_CHANGED, (participantInfo, state)
=> {
if (state === StageParticipantPublishState.ERRORED) {
// Handle
}
1);

Action: Refresh the strategy to attempt republication of your media stream(s).
Subscribe Errors

The SDK reports ERRORED when a subscribe fails. This can occur due to network conditions or if a
stage is at capacity for subscribers.

stage.on(StageEvents.STAGE_PARTICIPANT_SUBSCRIBE_STATE_CHANGED, (participantInfo,
state) => {
if (state === StageParticipantSubscribeState.ERRORED) {
// &) stage subscribe errors
}
18

Action: Refresh the strategy to try a new subscribe.

IVS Broadcast SDK: Android Guide (Real-Time Streaming)

The IVS real-time streaming Android broadcast SDK enables participants to send and receive video
on Android.

The com.amazonaws.ivs.broadcast package implements the interface described in this
document. The SDK supports the following operations:

« Join a stage

» Publish media to other participants in the stage

o Subscribe to media from other participants in the stage

« Manage and monitor video and audio published to the stage
» Get WebRTC statistics for each peer connection

« All operations from the IVS low-latency streaming Android broadcast SDK

Latest version of Android broadcast SDK: 1.17.0 (Release Notes)

Android Guide 112

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#apr22-24-broadcast-rt

Amazon IVS Real-Time Streaming User Guide

Reference documentation: For information on the most important methods available in the
Amazon IVS Android broadcast SDK, see the reference documentation at https://aws.github.io/
amazon-ivs-broadcast-docs/1.17.0/android/.

Sample code: See the Android sample repository on GitHub: https://github.com/aws-samples/
amazon-ivs-broadcast-android-sample.

Platform requirements: Android 9.0 and later.

Getting Started

Install the Library

To add the Amazon IVS Android broadcast library to your Android development environment,
add the library to your module’s build.gradle file, as shown here (for the latest version of the
Amazon IVS broadcast SDK):

repositories {
mavenCentral()

dependencies {
implementation 'com.amazonaws:ivs-broadcast:1.17.0:stages@aar’

Add the following permission to your manifest to allow the SDK to enable and disable the
speakerphone:

<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS"/>

Alternately, to install the SDK manually, download the latest version from this location:

https://search.maven.org/artifact/com.amazonaws/ivs-broadcast

Be sure to download the aar with -stages appended.
Request Permissions

Your app must request permission to access the user’'s camera and mic. (This is not specific to
Amazon IVS; it is required for any application that needs access to cameras and microphones.)

Getting Started 113

https://aws.github.io/amazon-ivs-broadcast-docs/1.17.0/android/
https://aws.github.io/amazon-ivs-broadcast-docs/1.17.0/android/
https://github.com/aws-samples/amazon-ivs-broadcast-android-sample
https://github.com/aws-samples/amazon-ivs-broadcast-android-sample
https://search.maven.org/artifact/com.amazonaws/ivs-broadcast

Amazon IVS Real-Time Streaming User Guide

Here, we check whether the user has already granted permissions and, if not, ask for them:

final String[] requiredPermissions =
{ Manifest.permission.CAMERA, Manifest.permission.RECORD_AUDIO };

for (String permission : requiredPermissions) {
if (ContextCompat.checkSelfPermission(this, permission)
!= PackageManager.PERMISSION_GRANTED) {
// If any permissions are missing we want to just request them all.
ActivityCompat.requestPermissions(this, requiredPermissions, 0x100);
break;

Here, we get the user’s response:

@Override
public void onRequestPermissionsResult(int requestCode,
@NonNull String[] permissions,
@NonNull int[] grantResults) {
super.onRequestPermissionsResult(requestCode,
permissions, grantResults);
if (requestCode == 0x100) {
for (int result : grantResults) {
if (result == PackageManager.PERMISSION_DENIED) {

return;

}

setupBroadcastSession();

Publishing and Subscribing

Concepts

Three core concepts underlie real-time functionality: stage, strategy, and renderer. The design goal
is minimizing the amount of client-side logic necessary to build a working product.

Publishing and Subscribing

Amazon IVS Real-Time Streaming User Guide

Stage

The Stage class is the main point of interaction between the host application and the SDK. It
represents the stage itself and is used to join and leave the stage. Creating and joining a stage
requires a valid, unexpired token string from the control plane (represented as token). Joining and
leaving a stage are simple.

Stage stage = new Stage(context, token, strategy);

try {

stage.join();

} catch (BroadcastException exception) {
// handle join exception

}

stage.leave();

The Stage class is also where the StageRenderer can be attached:

stage.addRenderer(renderer); // multiple renderers can be added

Strategy

The Stage.Strategy interface provides a way for the host application to communicate
the desired state of the stage to the SDK. Three functions need to be implemented:
shouldSubscribeToParticipant, shouldPublishFromParticipant, and
stageStreamsToPublishForParticipant. All are discussed below.

Subscribing to Participants

Stage.SubscribeType shouldSubscribeToParticipant(@NonNull Stage stage, @NonNull
ParticipantInfo participantInfo);

When a remote participant joins the stage, the SDK queries the host application about the desired
subscription state for that participant. The options are NONE, AUDIO_ONLY, and AUDIO_VIDEO.
When returning a value for this function, the host application does not need to worry about the
publish state, current subscription state, or stage connection state. If AUDIO_VIDEO is returned,
the SDK waits until the remote participant is publishing before subscribing, and it updates the host
application through the renderer throughout the process.

Publishing and Subscribing 115

Amazon IVS Real-Time Streaming User Guide

Here is a sample implementation:

@Override

Stage.SubscribeType shouldSubscribeToParticipant(@NonNull Stage stage, @NonNull
ParticipantInfo participantInfo) {

return Stage.SubscribeType.AUDIO_VIDEO;

}

This is the complete implementation of this function for a host application that always wants all
participants to see each other; e.g., a video chat application.

More advanced implementations also are possible. Use the userInfo property on
ParticipantInfo to selectively subscribe to participants based on server-provided attributes:

@Override
Stage.SubscribeType shouldSubscribeToParticipant(@NonNull Stage stage, @NonNull
ParticipantInfo participantInfo) {
switch(participantInfo.userInfo.get(”role”)) {
case “moderator”:
return Stage.SubscribeType.NONE;
case “guest”:
return Stage.SubscribeType.AUDIO_VIDEO;
default:
return Stage.SubscribeType.NONE;

}
}

This can be used to create a stage where moderators can monitor all guests without being seen or
heard themselves. The host application could use additional business logic to let moderates see
each other but remain invisible to guests.

Publishing

boolean shouldPublishFromParticipant(@NonNull Stage stage, @NonNull ParticipantInfo
participantInfo);

Once connected to the stage, the SDK queries the host application to see if a particular participant
should publish. This is invoked only on local participants that have permission to publish based on
the provided token.

Here is a sample implementation:

Publishing and Subscribing 116

Amazon IVS Real-Time Streaming User Guide

@Override

boolean shouldPublishFromParticipant(@NonNull Stage stage, @NonNull ParticipantInfo
participantInfo) {
return true;

}

This is for a standard video chat application where users always want to publish. They can mute
and unmute their audio and video, to instantly be hidden or seen/heard. (They also can use
publish/unpublish, but that is much slower. Mute/unmute is preferable for use cases where
changing visibility often is desirable.)

Choosing Streams to Publish

@Override

List<LocalStageStream> stageStreamsToPublishForParticipant(@NonNull Stage stage,
@NonNull ParticipantInfo participantInfo);

}

When publishing, this is used to determine what audio and video streams should be published. This
is covered in more detail later in Publish a Media Stream.

Updating the Strategy

The strategy is intended to be dynamic: the values returned from any of the above functions can
be changed at any time. For example, if the host application does not want to publish until the
end user taps a button, you could return a variable from shouldPublishFromParticipant
(something like hasUserTappedPublishButton). When that variable changes based on

an interaction by the end user, call stage.refreshStrategy() to signal to the SDK that it
should query the strategy for the latest values, applying only things that have changed. If the
SDK observes that the shouldPublishFromParticipant value has changed, it will start

the publish process. If the SDK queries and all functions return the same value as before, the
refreshStrategy call will not perform any modifications to the stage.

If the return value of shouldSubscribeToParticipant changes from AUDIO_VIDEO to
AUDIO_ONLY, the video stream will be removed for all participants with changed returned values,
if a video stream existed previously.

Generally, the stage uses the strategy to most efficiently apply the difference between the previous
and current strategies, without the host application needing to worry about all the state required

Publishing and Subscribing 117

Amazon IVS Real-Time Streaming User Guide

to manage it properly. Because of this, think of calling stage.refreshStrategy() as a cheap
operation, because it does nothing unless the strategy changes.

Renderer

The StageRenderer interface communicates the state of the stage to the host application.
Updates to the host application’s Ul usually can be powered entirely by the events provided by the
renderer. The renderer provides the following functions:

void onParticipantJoined(@NonNull Stage stage, @NonNull ParticipantInfo
participantInfo);

void onParticipantLeft(@NonNull Stage stage, @NonNull ParticipantInfo participantInfo);

void onParticipantPublishStateChanged(@NonNull Stage stage, @NonNull ParticipantInfo
participantInfo, @NonNull Stage.PublishState publishState);

void onParticipantSubscribeStateChanged(@NonNull Stage stage, @NonNull ParticipantInfo
participantInfo, @NonNull Stage.SubscribeState subscribeState);

void onStreamsAdded(@NonNull Stage stage, @NonNull ParticipantInfo participantInfo,
@NonNull List<StageStream> streams);

void onStreamsRemoved(@NonNull Stage stage, @NonNull ParticipantInfo participantInfo,
@NonNull List<StageStream> streams);

void onStreamsMutedChanged(@NonNull Stage stage, @NonNull ParticipantInfo
participantInfo, @NonNull List<StageStream> streams);

void onError(@NonNull BroadcastException exception);

void onConnectionStateChanged(@NonNull Stage stage, @NonNull Stage.ConnectionState
state, @Nullable BroadcastException exception);

For most of these methods, the corresponding Stage and ParticipantInfo are provided.

It is not expected that the information provided by the renderer impacts the return values of the
strategy. For example, the return value of shouldSubscribeToParticipant is not expected to
change when onParticipantPublishStateChanged is called. If the host application wants to
subscribe to a particular participant, it should return the desired subscription type regardless of
that participant’s publish state. The SDK is responsible for ensuring that the desired state of the
strategy is acted on at the correct time based on the state of the stage.

Publishing and Subscribing 118

Amazon IVS Real-Time Streaming User Guide

The StageRenderer can be attached to the stage class:

stage.addRenderer(renderer); // multiple renderers can be added

Note that only publishing participants trigger onParticipantJoined, and whenever a
participant stops publishing or leaves the stage session, onParticipantLeft is triggered.

Publish a Media Stream

Local devices such as built-in microphones and cameras are discovered via DeviceDiscovery.
Here is an example of selecting the front-facing camera and default microphone, then return them
as LocalStageStreams to be published by the SDK:

DeviceDiscovery deviceDiscovery = new DeviceDiscovery(context);

List<Device> devices = deviceDiscovery.listlLocalDevices();
List<LocalStageStream> publishStreams = new ArraylList<LocalStageStream>();

Device frontCamera = null;
Device microphone = null;

// Create streams using the front camera, first microphone
for (Device device : devices) {
Device.Descriptor descriptor = device.getDescriptor();
if (!frontCamera && descriptor.type == Device.Descriptor.DeviceType.Camera &&
descriptor.position = Device.Descriptor.Position.FRONT) {
front Camera = device;

}
if (!microphone && descriptor.type == Device.Descriptor.DeviceType.Microphone) {
microphone = device;
}
}

ImagelLocalStageStream cameraStream = new ImagelocalStageStream(frontCamera);
AudiolLocalStageStream microphoneStream = new AudiolocalStageStream(microphoneDevice);

publishStreams.add(cameraStream);
publishStreams.add(microphoneStream);

// Provide the streams in Stage.Strategy

@Override

@NonNull List<LocalStageStream> stageStreamsToPublishForParticipant(@NonNull Stage
stage, @NonNull ParticipantInfo participantInfo) {

Publishing and Subscribing 119

Amazon IVS Real-Time Streaming User Guide

return publishStreams;

}

Display and Remove Participants

After subscribing is completed, you will receive an array of StageStream objects through the
renderer's onStreamsAdded function. You can retrieve the preview from an ImageStageStream:

ImagePreviewView preview = ((ImageStageStream)stream).getPreview();

// Add the view to your view hierarchy

LinearLayout previewHolder = findViewById(R.id.previewHolder);

preview.setlLayoutParams(new LinearLayout.LayoutParams(
LinearLayout.LayoutParams.MATCH_PARENT,
LinearLayout.LayoutParams.MATCH_PARENT));

previewHolder.addView(preview);

You can retrieve the audio-level stats from an AudioStageStream:

((AudioStageStream)stream).setStatsCallback((peak, rms) -> {
// handle statistics

1)

When a participant stops publishing or is unsubscribed from, the onStreamsRemoved function is
called with the streams that were removed. Host applications should use this as a signal to remove
the participant’s video stream from the view hierarchy.

onStreamsRemoved is invoked for all scenarios in which a stream might be removed, including:

« The remote participant stops publishing.
« A local device unsubscribes or changes subscription from AUDIO_VIDEO to AUDIO_ONLY.
« The remote participant leaves the stage.

« The local participant leaves the stage.

Because onStreamsRemoved is invoked for all scenarios, no custom business logic is required
around removing participants from the Ul during remote or local leave operations.

Publishing and Subscribing 120

Amazon IVS Real-Time Streaming User Guide

Mute and Unmute Media Streams

LocalStageStream objects have a setMuted function that controls whether the stream
is muted. This function can be called on the stream before or after it is returned from the
streamsToPublishForParticipant strategy function.

Important: If a new LocalStageStream object instance is returned by
streamsToPublishForParticipant after a call to refreshStrategy, the mute state of the
new stream obiject is applied to the stage. Be careful when creating new LocalStageStream
instances to make sure the expected mute state is maintained.

Monitor Remote Participant Media Mute State

When a participant changes the mute state of their video or audio stream, the renderer
onStreamMutedChanged function is invoked with a list of streams that have changed. Use the
getMuted method on StageStream to update your Ul accordingly.

@Override
void onStreamsMutedChanged(@NonNull Stage stage, @NonNull ParticipantInfo

participantInfo, @NonNull List<StageStream> streams) {

for (StageStream stream : streams) {

boolean muted = stream.getMuted();

// handle UI changes

}

}

Get WebRTC Statistics

To get the latest WebRTC statistics for a publishing stream or a subscribing stream, use
requestRTCStats on StageStream. When a collection is completed, you will receive statistics
through the StageStream.Listener which can be set on StageStream.

stream.requestRTCStats();

@Override
void onRTCStats(Map<String, Map<String, String>> statsMap) {
for (Map.Entry<String, Map<String, string>> stat : statsMap.entrySet()) {
for(Map.Entry<String, String> member : stat.getValue().entrySet()) {
Log.i(TAG, stat.getKey() + “ has member “ + member.getKey() + “ with value “ +
member.getValue());

Publishing and Subscribing

121

Amazon IVS Real-Time Streaming User Guide

}
}
}

Get Participant Attributes

If you specify attributes in the CreateParticipantToken endpoint request, you can see the
attributes in ParticipantInfo properties:

@Override

void onParticipantJoined(@NonNull Stage stage, @NonNull ParticipantInfo
participantInfo) {
for (Map.Entry<String, String> entry : participantInfo.userInfo.entrySet()) {
Log.i(TAG, “attribute: “ + entry.getKey() + “ = “ + entry.getValue());
}

}

Continue Session in the Background

When the app enters the background, you may want to stop publishing or subscribe only to other
remote participants' audio. To accomplish this, update your Strategy implementation to stop
publishing, and subscribe to AUDIO_ONLY (or NONE, if applicable).

// Local variables before going into the background
boolean shouldPublish = true;
Stage.SubscribeType subscribeType = Stage.SubscribeType.AUDIO_VIDEO;

// Stage.Strategy implementation

@Override

boolean shouldPublishFromParticipant(@NonNull Stage stage, @NonNull ParticipantInfo
participantInfo) {
return shouldPublish;

}

@Override

Stage.SubscribeType shouldSubscribeToParticipant(@NonNull Stage stage, @NonNull
ParticipantInfo participantInfo) {

return subscribeType;

}

// In our Activity, modify desired publish/subscribe when we go to background, then
call refreshStrategy to update the stage

Publishing and Subscribing 122

Amazon IVS Real-Time Streaming User Guide

@Override
void onStop() {
super.onStop();

shouldPublish = false;

subscribeTpye = Stage.SubscribeType.AUDIO_ONLY;
stage.refreshStrategy();
}

Enable/Disable Layered Encoding with Simulcast

When publishing a media stream, the SDK transmits high-quality and low-quality video
streams, so remote participants can subscribe to the stream even if they have limited downlink
bandwidth. Layered encoding with simulcast is on by default. You can disable it by using the
StageVideoConfiguration.Simulcast class:

// Disable Simulcast
StageVideoConfiguration config = new StageVideoConfiguration();
config.simulcast.setEnabled(false);

ImagelLocalStageStream cameraStream = new ImagelocalStageStream(frontCamera, config);

// Other Stage implementation code

Video-Configuration Limitations

The SDK does not support forcing portrait mode or landscape mode using
StageVideoConfiguration.setSize(BroadcastConfiguration.Vec2 size). In portrait
orientation, the smaller dimension is used as the width; in landscape orientation, the height. This
means that the following two calls to setSize have the same effect on the video configuration:

StageVideo Configuration config = new StageVideo Configuration();

config.setSize(BroadcastConfiguration.Vec2(720f, 1280f);
config.setSize(BroadcastConfiguration.Vec2(1280f, 720f);

Handling Network Issues

When the local device's network connection is lost, the SDK internally tries to reconnect without
any user action. In some cases, the SDK is not successful and user action is needed. There are two
main errors related to losing the network connection:

Publishing and Subscribing 123

Amazon IVS Real-Time Streaming User Guide

o Error code 1400, message: "PeerConnection is lost due to unknown network error"

« Error code 1300, message: "Retry attempts are exhausted"

If the first error is received but the second is not, the SDK is still connected to the stage and will
try to reestablish its connections automatically. As a safeguard, you can call refreshStrategy
without any changes to the strategy method'’s return values, to trigger a manual reconnect
attempt.

If the second error is received, the SDK's reconnect attempts have failed and the local device is
no longer connected to the stage. In this case, try to rejoin the stage by calling join after your
network connection has been reestablished.

In general, encountering errors after joining a stage successfully indicates that the SDK was
unsuccessful in reestablishing a connection. Create a new Stage object and try to join when
network conditions improve.

Using Bluetooth Microphones

To publish using Bluetooth microphone devices, you must start a Bluetooth SCO connection:

Bluetooth.startBluetoothSco(context);
// Now bluetooth microphones can be used

// Must also stop bluetooth SCO
Bluetooth.stopBluetoothSco(context);

Known Issues and Workarounds

« When an Android device goes to sleep and wakes up, it is possible for the preview to be in a
frozen state.

Workaround: Create and use a new Stage.

« When a participant joins with a token that is being used by another participant, the first
connection is disconnected without a specific error.

Workaround: None.

« There is a rare issue where the publisher is publishing but the publish state that subscribers
receive is inactive.

Known Issues and Workarounds 124

Amazon IVS Real-Time Streaming User Guide

Workaround: Try leaving and then joining the session. If the issue remains, create a new token
for the publisher.

« A rare audio-distortion issue may occur intermittently during a stage session, typically on calls of
longer durations.

Workaround: The participant with distorted audio can either leave and rejoin the session, or
unpublish and republish their audio to fix the issue.

« External microphones are not supported when publishing to a stage.

Workaround: Do not use an external microphone connected via USB for publishing to a stage.

» Publishing to a stage with screen share using createSystemCaptureSources is not
supported.

Workaround: Manage the system capture manually, using custom image-input sources and
custom audio-input sources.

« When an ImagePreviewView is removed from a parent (e.g., removeView() is called at the
parent), the ImagePreviewView is released immediately. The ImagePreviewView does not
show any frames when it is added to another parent view.

Workaround: Request another preview using getPreview.

« When joining a stage with a Samsung Galaxy S22/+ with Android 12, you may encounter a 1401
error and the local device fails to join the stage or joins but has no audio.

Workaround: Upgrade to Android 13.

« When joining a stage with a Nokia X20 on Android 13, the camera may fail to open and an
exception is thrown.

Workaround: None.

» Devices with the MediaTek Helio chipset may not render video of remote participants properly.

Workaround: None.

« On a few devices, the device OS may choose a different microphone than what's selected
through the SDK. This is because the Amazon IVS Broadcast SDK cannot control how the
VOICE_COMMUNICATION audio route is defined, as it varies according to different device
manufacturers.

Workaround: None.

Known Issues and Workarounds 125

Amazon IVS Real-Time Streaming User Guide

« Some Android video encoders cannot be configured with a video size less than 176x176.
Configuring a smaller size causes an error and prevents streaming.

Workaround: Do not configure the video size to be less than 176x176.

Error Handling

Fatal vs. Non-Fatal Errors

The error object has an "is fatal" boolean field of BroadcastException.

In general, fatal errors are related to connection to the Stages server (either a connection cannot
be established or is lost and cannot be recovered). The application should re-create the stage and
re-join, possibly with a new token or when the device's connectivity recovers.

Non-fatal errors generally are related to the publish/subscribe state and are handled by the SDK,
which retries the publish/subscribe operation.

You can check this property:

try {
stage.join(...)
} catch (e: BroadcastException) {
If (e.isFatal) {
// the error is fatal

Join Errors
Malformed Token
This happens when the stage token is malformed.

The SDK throws a Java exception from a call to stage. join, with error code = 1000 and fatal =
true.

Action: Create a valid token and retry joining.
Expired Token

This happens when the stage token is expired.

Error Handling 126

Amazon IVS Real-Time Streaming User Guide

The SDK throws a Java exception from a call to stage. join, with error code = 1001 and fatal =
true.

Action: Create a new token and retry joining.
Invalid or Revoked Token

This happens when the stage token is not malformed but is rejected by the Stages server. This is
reported asynchronously through the application-supplied stage renderer.

The SDK calls onConnectionStateChanged with an exception, with error code = 1026 and fatal
= true.

Action: Create a valid token and retry joining.
Network Errors for Initial Join

This happens when the SDK cannot contact the Stages server to establish a connection. This is
reported asynchronously through the application-supplied stage renderer.

The SDK calls onConnectionStateChanged with an exception, with error code = 1300 and fatal
= true.

Action: Wait for the device's connectivity to recover and retry joining.
Network Errors when Already Joined

If the device's network connection goes down, the SDK may lose its connection to Stage servers.
This is reported asynchronously through the application-supplied stage renderer.

The SDK calls onConnectionStateChanged with an exception, with error code = 1300 and fatal
= true.

Action: Wait for the device's connectivity to recover and retry joining.
Publish/Subscribe Errors

Initial

There are several errors:

o MultihostSessionOfferCreationFailPublish (1020)
o MultihostSessionOfferCreationFailSubscribe (1021)

Error Handling 127

Amazon IVS Real-Time Streaming User Guide

o MultihostSessionNolceCandidates (1022)

MultihostSessionStageAtCapacity (1024)

SignallingSessionCannotRead (1201)

SignallingSessionCannotSend (1202)

SignallingSessionBadResponse (1203)

These are reported asynchronously through the application-supplied stage renderer.

The SDK retries the operation for a limited number of times. During retries, the publish/subscribe
state is ATTEMPTING_PUBLISH / ATTEMPTING_SUBSCRIBE. If the retry attempts succeed, the
state changes to PUBLISHED / SUBSCRIBED.

The SDK calls onError with the relevant error code and fatal = false.

Action: No action is needed, as the SDK retries automatically. Optionally, the application can
refresh the strategy to force more retries.

Already Established, Then Fail

A publish or subscribe can fail after it is established, most likely due to a network error. The error
code for a "peer connection lost due to network error" is 1400.

This is reported asynchronously through the application-supplied stage renderer.

The SDK retries the publish/subscribe operation. During retries, the publish/subscribe state is
ATTEMPTING_PUBLISH / ATTEMPTING_SUBSCRIBE. If the retry attempts succeed, the state
changes to PUBLISHED / SUBSCRIBED.

The SDK calls onError with the error code = 1400 and fatal = false.

Action: No action is needed, as the SDK retries automatically. Optionally, the application can
refresh the strategy to force more retries. In the event of total connectivity loss, it's likely that the
connection to Stages will fail too.

IVS Broadcast SDK: iOS Guide (Real-Time Streaming)

The IVS real-time streaming iOS broadcast SDK enables participants to send and receive video on
iOS.

iOS Guide 128

Amazon IVS Real-Time Streaming User Guide

The AmazonIVSBroadcast module implements the interface described in this document. The
following operations are supported:

« Join a stage

» Publish media to other participants in the stage

» Subscribe to media from other participants in the stage

« Manage and monitor video and audio published to the stage
» Get WebRTC statistics for each peer connection

« All operations from the IVS low-latency streaming iOS broadcast SDK

Latest version of iOS broadcast SDK: 1.17.0 (Release Notes)

Reference documentation: For information on the most important methods available in the
Amazon IVS iOS broadcast SDK, see the reference documentation at https://aws.github.io/
amazon-ivs-broadcast-docs/1.17.0/ios/.

Sample code: See the iOS sample repository on GitHub: https://github.com/aws-samples/
amazon-ivs-broadcast-ios-sample.

Platform requirements: iOS 14 or greater
Getting Started

Install the Library

We recommend that you integrate the broadcast SDK via CocoaPods. (Alternatively, you can
manually add the framework to your project.)

Recommended: Integrate the Broadcast SDK (CocoaPods)

Real-time functionality is published as a subspec of the iOS Low-Latency Streaming broadcast SDK.
This is so customers can choose to include or exclude it based on their feature needs. Including it
increases the package size.

Releases are published via CocoaPods under the name AmazonIVSBroadcast. Add this
dependency to your Podfile:

pod 'AmazonIVSBroadcast/Stages'

Getting Started 129

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#apr22-24-broadcast-rt
https://aws.github.io/amazon-ivs-broadcast-docs/1.17.0/ios/
https://aws.github.io/amazon-ivs-broadcast-docs/1.17.0/ios/
https://github.com/aws-samples/amazon-ivs-broadcast-ios-sample
https://github.com/aws-samples/amazon-ivs-broadcast-ios-sample

Amazon IVS Real-Time Streaming User Guide

Run pod install and the SDK will be available in your . xcworkspace.

Important: The IVS real-time streaming broadcast SDK (i.e., with the stage subspec) includes all
features of the IVS low-latency streaming broadcast SDK. It is not possible to integrate both SDKs in
the same project. If you add the stage subspec via CocoaPods to your project, be sure to remove any
other lines in the Podfile containing AmazonIVSBroadcast. For example, do not have both these
lines in your Podfile:

pod 'AmazonIVSBroadcast'
pod 'AmazonIVSBroadcast/Stages'

Alternate Approach: Install the Framework Manually

1. Download the latest version from https://broadcast.live-video.net/1.17.0/

AmazonlVSBroadcast-Stages.xcframework.zip.

2. Extract the contents of the archive. AmazonIVSBroadcast.xcframework contains the SDK for
both device and simulator.

3. Embed AmazonIVSBroadcast.xcframework by dragging it into the Frameworks, Libraries,
and Embedded Content section of the General tab for your application target.

(] General Signing & Capabilities Resource Tags Info Build Settings Build Phases Build Rules

sluskldey v Frameworks, Libraries, and Embedded Content
@ BasicBroadcast
Name Embed

TARGETS
AmazonlVSBroadcast-iOS.xcframework Embed & Sign £

@ BasicBroadcast

@ ScreenCapture.appex Embed Without Signing $
@ ScreenCapture

+

Request Permissions

Your app must request permission to access the user’'s camera and mic. (This is not specific to
Amazon IVS; it is required for any application that needs access to cameras and microphones.)

Here, we check whether the user has already granted permissions and, if not, we ask for them:

switch AVCaptureDevice.authorizationStatus(for: .video) {
case .authorized: // permission already granted.

Getting Started 130

https://broadcast.live-video.net/1.17.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.17.0/AmazonIVSBroadcast-Stages.xcframework.zip

Amazon IVS Real-Time Streaming User Guide

case .notDetermined:
AVCaptureDevice.requestAccess(for: .video) { granted in
// permission granted based on granted bool.

}
case .denied, .restricted: // permission denied.
@unknown default: // permissions unknown.

}

You need to do this for both .video and . audio media types, if you want access to cameras and
microphones, respectively.

You also need to add entries for NSCameraUsageDescription and
NSMicrophoneUsageDescription to your Info.plist. Otherwise, your app will crash when
trying to request permissions.

Disable the Application Idle Timer

This is optional but recommended. It prevents your device from going to sleep while using the
broadcast SDK, which would interrupt the broadcast.

override func viewDidAppear(_ animated: Bool) {
super.viewDidAppear(animated)
UIApplication.shared.isIdleTimerDisabled = true

}

override func viewDidDisappear(_ animated: Bool) {
super.viewDidDisappear(animated)
UIApplication.shared.isIdleTimerDisabled = false

Publishing and Subscribing

Concepts

Three core concepts underlie real-time functionality: stage, strategy, and renderer. The design goal

is minimizing the amount of client-side logic necessary to build a working product.
Stage

The IVSStage class is the main point of interaction between the host application and the SDK.
The class represents the stage itself and is used to join and leave the stage. Creating or joining

Publishing and Subscribing 131

Amazon IVS Real-Time Streaming User Guide

a stage requires a valid, unexpired token string from the control plane (represented as token).
Joining and leaving a stage are simple.

let stage = try IVSStage(token: token, strategy: self)
try stage.join()

stage.leave()

The IVSStage class also is where the IVSStageRenderer and IVSErrorDelegate can be
attached:

let stage = try IVSStage(token: token, strategy: self)
stage.errorDelegate = self
stage.addRenderer(self) // multiple renderers can be added

Strategy

The IVSStageStrategy protocol provides a way for the host application to
communicate the desired state of the stage to the SDK. Three functions need to be
implemented: shouldSubscribeToParticipant, shouldPublishParticipant, and
streamsToPublishForParticipant. All are discussed below.

Subscribing to Participants

func stage(_ stage: IVSStage, shouldSubscribeToParticipant participant:
IVSParticipantInfo) -> IVSStageSubscribeType

When a remote participant joins a stage, the SDK queries the host application about the desired
subscription state for that participant. The options are .none, .audioOnly, and .audioVideo.
When returning a value for this function, the host application does not need to worry about the
publish state, current subscription state, or stage connection state. If . audioVideo is returned,
the SDK waits until the remote participant is publishing before subscribing, and it updates the host
application through the renderer throughout the process.

Here is a sample implementation:

func stage(_ stage: IVSStage, shouldSubscribeToParticipant participant:
IVSParticipantInfo) -> IVSStageSubscribeType {
return .audioVideo

Publishing and Subscribing 132

Amazon IVS Real-Time Streaming User Guide

}

This is the complete implementation of this function for a host application that always wants all
participants to see each other; e.g., a video-chat application.

More advanced implementations also are possible. Use the attributes property on
IVSParticipantInfo to selectively subscribe to participants based on server-provided
attributes:

func stage(_ stage: IVSStage, shouldSubscribeToParticipant participant:
IVSParticipantInfo) -> IVSStageSubscribeType {
switch participant.attributes["role"] {
case "moderator": return .none
case "guest": return .audioVideo
default: return .none

}

This can be used to create a stage where moderators can monitor all guests without being seen or
heard themselves. The host application could use additional business logic to let moderators see
each other but remain invisible to guests.

Publishing

func stage(_ stage: IVSStage, shouldPublishParticipant participant: IVSParticipantInfo)
-> Bool

Once connected to the stage, the SDK queries the host application to see if a particular participant
should publish. This is invoked only on local participants that have permission to publish based on
the provided token.

Here is a sample implementation:

func stage(_ stage: IVSStage, shouldPublishParticipant participant: IVSParticipantInfo)
-> Bool {
return true

This is for a standard video chat application where users always want to publish. They can mute
and unmute their audio and video, to instantly be hidden or seen/heard. (They also can use

Publishing and Subscribing 133

Amazon IVS Real-Time Streaming User Guide

publish/unpublish, but that is much slower. Mute/unmute is preferable for use cases where
changing visibility often is desirable.)

Choosing Streams to Publish

func stage(_ stage: IVSStage, streamsToPublishForParticipant participant:
IVSParticipantInfo) -> [IVSLocalStageStream]

When publishing, this is used to determine what audio and video streams should be published. This
is covered in more detail later in Publish a Media Stream.

Updating the Strategy

The strategy is intended to be dynamic: the values returned from any of the above functions can
be changed at any time. For example, if the host application does not want to publish until the end
user taps a button, you could return a variable from shouldPublishParticipant (something
like hasUserTappedPublishButton). When that variable changes based on an interaction by
the end user, call stage.refreshStrategy() to signal to the SDK that it should query the
strategy for the latest values, applying only things that have changed. If the SDK observes that

the shouldPublishParticipant value has changed, it will start the publish process. If the SDK
queries and all functions return the same value as before, the refreshStrategy call will not
make any modifications to the stage.

If the return value of shouldSubscribeToParticipant changes from .audioVideo to
.audioOnly, the video stream will be removed for all participants with changed returned values,
if a video stream existed previously.

Generally, the stage uses the strategy to most efficiently apply the difference between the previous
and current strategies, without the host application needing to worry about all the state required
to manage it properly. Because of this, think of calling stage.refreshStrategy() as a cheap
operation, because it does nothing unless the strategy changes.

Renderer

The IVSStageRenderer protocol communicates the state of the stage to the host application.
Updates to the host application’s Ul usually can be powered entirely by the events provided by the
renderer. The renderer provides the following functions:

func stage(_ stage: IVSStage, participantDidJoin participant: IVSParticipantInfo)

Publishing and Subscribing 134

Amazon IVS Real-Time Streaming User Guide

func stage(_ stage: IVSStage, participantDidlLeave participant: IVSParticipantInfo)

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didChange publishState:
IVSParticipantPublishState)

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didChange
subscribeState: IVSParticipantSubscribeState)

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didAdd streams:
[IVSStageStream])

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didRemove streams:
[IVSStageStream])

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didChangeMutedStreams
streams: [IVSStageStream])

func stage(_ stage: IVSStage, didChange connectionState: IVSStageConnectionState,
withError error: Error?)

It is not expected that the information provided by the renderer impacts the return values of the
strategy. For example, the return value of shouldSubscribeToParticipant is not expected to
change when participant:didChangePublishState is called. If the host application wants
to subscribe to a particular participant, it should return the desired subscription type regardless of
that participant’s publish state. The SDK is responsible for ensuring that the desired state of the
strategy is acted on at the correct time based on the state of the stage.

Note that only publishing participants trigger participantDidJoin, and whenever a participant
stops publishing or leaves the stage session, participantDidLeave is triggered.

Publish a Media Stream

Local devices such as built-in microphones and cameras are discovered via IVSDeviceDiscovery.
Here is an example of selecting the front-facing camera and default microphone, then returning
them as IVSLocalStageStreams to be published by the SDK:

let devices = IVSDeviceDiscovery().listlLocalDevices()

// Find the camera virtual device, choose the front source, and create a stream
let camera = devices.compactMap({ $0 as? IVSCamera }).first!

let frontSource = camera.listAvailableInputSources().first(where: { $0.position
.front })!

Publishing and Subscribing 135

Amazon IVS Real-Time Streaming User Guide

camera.setPreferredInputSource(frontSource)
let cameraStream = IVSLocalStageStream(device: camera)

// Find the microphone virtual device and create a stream
let microphone = devices.compactMap({ $0 as? IVSMicrophone }).first!
let microphoneStream = IVSLocalStageStream(device: microphone)

// Configure the audio manager to use the videoChat preset, which is optimized for bi-
directional communication, including echo cancellation.
IVSStageAudioManager.sharedInstance().setPreset(.videoChat)

// This is a function on IVSStageStrategy
func stage(_ stage: IVSStage, streamsToPublishForParticipant participant:
IVSParticipantInfo) -> [IVSLocalStageStream] {
return [cameraStream, microphoneStream]

Display and Remove Participants

After subscribing is completed, you will receive an array of IVSStageStream objects through the
renderer's didAddStreams function. To preview or receive audio level stats about this participant,
you can access the underlying IVSDevice object from the stream:

if let imageDevice = stream.device as? IVSImageDevice {
let preview = imageDevice.previewView()
/* attach this UIView subclass to your view */
} else if let audioDevice = stream.device as? IVSAudioDevice {
audioDevice.setStatsCallback({ stats in
/* process stats.peak and stats.rms */

H

When a participant stops publishing or is unsubscribed from, the didRemoveStreams function is
called with the streams that were removed. Host applications should use this as a signal to remove
the participant’s video stream from the view hierarchy.

didRemoveStreams is invoked for all scenarios in which a stream might be removed, including:

« The remote participant stops publishing.
» A local device unsubscribes or changes subscription from .audioVideo to .audioOnly.

« The remote participant leaves the stage.

Publishing and Subscribing 136

Amazon IVS Real-Time Streaming User Guide

» The local participant leaves the stage.

Because didRemoveStreams is invoked for all scenarios, no custom business logic is required
around removing participants from the Ul during remote or local leave operations.

Mute and Unmute Media Streams

IVSLocalStageStream objects have a setMuted function that controls whether the stream
is muted. This function can be called on the stream before or after it is returned from the
streamsToPublishForParticipant strategy function.

Important: If a new IVSLocalStageStream object instance is returned by
streamsToPublishForParticipant after a call to refreshStrategy, the mute state of the
new stream object is applied to the stage. Be careful when creating new IVSLocalStageStream
instances to make sure the expected mute state is maintained.

Monitor Remote Participant Media Mute State

When a participant changes the mute state of its video or audio stream, the renderer
didChangeMutedStreams function is invoked with an array of streams that have changed. Use
the isMuted property on IVSStageStream to update your Ul accordingly:

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didChangeMutedStreams
streams: [IVSStageStream]) {
streams.forEach { stream in
/* stream.isMuted */

Create a Stage Configuration

To customize the values of a stage's video configuration, use
IVSLocalStageStreamVideoConfiguration:

let config = IVSLocalStageStreamVideoConfiguration()
try config.setMaxBitrate(900_000)

try config.setMinBitrate(100_000)

try config.setTargetFramerate(30)

try config.setSize(CGSize(width: 360, height: 640))
config.degradationPreference = .balanced

Publishing and Subscribing 137

Amazon IVS Real-Time Streaming User Guide

Get WebRTC Statistics

To get the latest WebRTC statistics for a publishing stream or a subscribing stream, use
requestRTCStats on IVSStageStream. When a collection is completed, you will receive
statistics through the IVSStageStreamDelegate which can be set on IVSStageStream. To
continually collect WebRTC statistics, call this function on a Timer.

func stream(_ stream: IVSStageStream, didGenerateRTCStats stats: [String : [String :

String]l) {
for stat in stats {

for member in stat.value {
print("stat \(stat.key) has member \(member.key) with value \(member.value)")

Get Participant Attributes

If you specify attributes in the CreateParticipantToken endpoint request, you can see the
attributes in IVSParticipantInfo properties:

func stage(_ stage: IVSStage, participantDidJoin participant: IVSParticipantInfo) {
print("ID: \(participant.participantId)")
for attribute in participant.attributes {
print("attribute: \(attribute.key)=\(attribute.value)")

Continue Session in the Background

When the app enters the background, you can continue to be in the stage while hearing remote
audio, though it is not possible to continue to send your own image and audio. You will need to
update your IVSStrategy implementation to stop publishing and subscribe to .audioOnly (or
.none, if applicable):

func stage(_ stage: IVSStage, shouldPublishParticipant participant: IVSParticipantInfo)
-> Bool {
return false
}
func stage(_ stage: IVSStage, shouldSubscribeToParticipant participant:
IVSParticipantInfo) -> IVSStageSubscribeType {

Publishing and Subscribing 138

Amazon IVS Real-Time Streaming User Guide

return .audioOnly

Then make a call to stage.refreshStrategy().
Enable/Disable Layered Encoding with Simulcast

When publishing a media stream, the SDK transmits high-quality and low-quality video
streams, so remote participants can subscribe to the stream even if they have limited
downlink bandwidth. Layered encoding with simulcast is on by default. You can disable it with
IVSSimulcastConfiguration:

// Disable Simulcast
let config = IVSLocalStageStreamVideoConfiguration()
config.simulcast.enabled = false

let cameraStream = IVSLocalStageStream(device: camera, configuration: config)

// Other Stage implementation code

Broadcast the Stage to an IVS Channel

To broadcast a stage, create a separate IVSBroadcastSession and then follow the usual
instructions for broadcasting with the SDK, described above. The device property on
IVSStageStream will be either an IVSImageDevice or IVSAudioDevice as shown in the
snippet above; these can be connected to the IVSBroadcastSession.mixer to broadcast the
entire stage in a customizable layout.

Optionally, you can composite a stage and broadcast it to an IVS low-latency channel, to reach a
larger audience. See Enabling Multiple Hosts on an Amazon IVS Stream in the IVS Low-Latency

Streaming User Guide.

How iOS Chooses Camera Resolution and Frame Rate

The camera managed by the broadcast SDK optimizes its resolution and frame rate (frames-per-
second, or FPS) to minimize heat production and energy consumption. This section explains how
the resolution and frame rate are selected to help host applications optimize for their use cases.

When creating an IVSLocalStageStream with an IVSCamera, the camera is optimized
for a frame rate of IVSLocalStageStreamVideoConfiguration.targetFramerate

How iOS Chooses Camera Resolution and Frame Rate 139

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/multiple-hosts.html

Amazon IVS Real-Time Streaming User Guide

and a resolution of IVSLocalStageStreamVideoConfiguration.size. Calling
IVSLocalStageStream.setConfiguration updates the camera with newer values.

Camera Preview

If you create a preview of an IVSCamera without attaching it to a IVSBroadcastSession or
IVSStage, it defaults to a resolution of 1080p and a frame rate of 60 fps.

Broadcasting a Stage

When using an IVSBroadcastSession to broadcast an IVSStage, the SDK tries to optimize the
camera with a resolution and frame rate that meet the criteria of both sessions.

For example, if the broadcast configuration is set to have a frame rate of 15 FPS and a resolution
of 1080p, while the Stage has a frame rate of 30 FPS and a resolution of 720p, the SDK will
select a camera configuration with a frame rate of 30 FPS and a resolution of 1080p. The
IVSBroadcastSession will drop every other frame from the camera, and the IVSStage will
scale the 1080p image down to 720p.

If a host application plans on using both IVSBroadcastSession and IVSStage together, with
a camera, we recommend that the targetFramerate and size properties of the respective
configurations match. A mismatch could cause the camera to reconfigure itself while capturing
video, which will cause a brief delay in video-sample delivery.

If having identical values does not meet the host application’s use case, creating the higher quality
camera first will prevent the camera from reconfiguring itself when the lower quality session is
added. For example, if you broadcast at 1080p and 30 FPS and then later join a Stage set to 720p
and 30 FPS, the camera will not reconfigure itself and video will continue uninterrupted. This is
because 720p is less than or equal to 1080p and 30 FPS is less than or equal to 30 FPS.

Arbitrary Frame Rates, Resolutions, and Aspect Ratios

Most camera hardware can exactly match common formats, such as 720p at 30 FPS or 1080p at
60 FPS. However, it is not possible to exactly match all formats. The broadcast SDK chooses the
camera configuration based on the following rules (in priority order):

1. The width and height of the resolution are greater than or equal to the desired resolution, but
within this constraint, width and height are as small as possible.

2. The frame rate is greater than or equal to the desired frame rate, but within this constraint,
frame rate is as low as possible.

How iOS Chooses Camera Resolution and Frame Rate 140

Amazon IVS Real-Time Streaming User Guide

3. The aspect ratio matches the desired aspect ratio.

4. If there are multiple matching formats, the format with the greatest field of view is used.

Here are two examples:

» The host application is trying to broadcast in 4k at 120 FPS. The selected camera supports
only 4k at 60 FPS or 1080p at 120 FPS. The selected format will be 4k at 60 FPS, because the
resolution rule is higher priority than the frame-rate rule.

« Anirregular resolution is requested, 1910x1070. The camera will use 1920x1080. Be careful:
choosing a resolution like 1921x1080 will causes the camera to scale up to the next available
resolution (such as 2592x1944), which incurs a CPU and memory-bandwidth penalty.

What about Android?

Android does not adjust its resolution or frame rate on the fly like iOS does, so this does not impact
the Android broadcast SDK.

Known Issues and Workarounds

« Changing Bluetooth audio routes can be unpredictable. If you connect a new device mid-session,
iOS may or may not automatically change the input route. Also, it is not possible to choose
between multiple Bluetooth headsets that are connected at the same time. This happens in both
regular broadcast and stage sessions.

Workaround: If you plan to use a Bluetooth headset, connect it before starting the broadcast or
stage and leave it connected throughout the session.

 Participants using an iPhone 14, iPhone 14 Plus, iPhone 14 Pro, or iPhone 14 Pro Max may cause
an audio echo issue for other participants.

Workaround: Participants using the affected devices can use headphones to prevent the echo
issue for other participants.

« When a participant joins with a token that is being used by another participant, the first
connection is disconnected without a specific error.

Workaround: None.

« There is a rare issue where the publisher is publishing but the publish state that subscribers
receive is inactive.

Known Issues and Workarounds 141

Amazon IVS Real-Time Streaming User Guide

Workaround: Try leaving and then joining the session. If the issue remains, create a new token
for the publisher.

« When a participant is publishing or subscribing, it is possible to receive an error with code 1400
that indicates disconnection due to a network issue, even when the network is stable.

Workaround: Try republishing / resubscribing.

A rare audio-distortion issue may occur intermittently during a stage session, typically on calls of
longer durations.

Workaround: The participant with distorted audio can either leave and rejoin the session, or
unpublish and republish their audio to fix the issue.

Error Handling

Fatal vs. Non-Fatal Errors

The error object has an "is fatal" boolean. This is a dictionary entry under
IVSBroadcastErrorIsFatalKey which contains a boolean.

In general, fatal errors are related to connection to the Stages server (either a connection cannot
be established or is lost and cannot be recovered). The application should re-create the stage and
re-join, possibly with a new token or when the device's connectivity recovers.

Non-fatal errors generally are related to the publish/subscribe state and are handled by the SDK,
which retries the publish/subscribe operation.

You can check this property:

let nsError = error as NSError

if nsError.userInfo[IVSBroadcastErrorIsFatalKey] as? Bool == true {
// the error is fatal

}

Join Errors
Malformed Token

This happens when the stage token is malformed.

Error Handling 142

Amazon IVS Real-Time Streaming User Guide

The SDK throws a Swift exception with error code = 1000 and IVSBroadcastErrorisFatalKey = YES.
Action: Create a valid token and retry joining.

Expired Token

This happens when the stage token is expired.

The SDK throws a Swift exception with error code = 1001 and IVSBroadcastErrorlsFatalKey = YES.
Action: Create a new token and retry joining.

Invalid or Revoked Token

This happens when the stage token is not malformed but is rejected by the Stages server. This is
reported asynchronously through the application-supplied stage renderer.

The SDK calls stage(didChange connectionState, withError error) with error code =
1026 and IVSBroadcastErrorisFatalKey = YES.

Action: Create a valid token and retry joining.
Network Errors for Initial Join

This happens when the SDK cannot contact the Stages server to establish a connection. This is
reported asynchronously through the application-supplied stage renderer.

The SDK calls stage(didChange connectionState, withError error) with error code =
1300 and IVSBroadcastErrorisFatalKey = YES.

Action: Wait for the device's connectivity to recover and retry joining.
Network Errors when Already Joined

If the device's network connection goes down, the SDK may lose its connection to Stage servers.
This is reported asynchronously through the application-supplied stage renderer.

The SDK calls stage(didChange connectionState, withError error) with error code =
1300 and IVSBroadcastErrorisFatalKey value = YES.

Action: Wait for the device's connectivity to recover and retry joining.

Error Handling 143

Amazon IVS Real-Time Streaming User Guide

Publish/Subscribe Errors

Initial
There are several errors:

« MultihostSessionOfferCreationFailPublish (1020)

» MultihostSessionOfferCreationFailSubscribe (1021)
« MultihostSessionNolceCandidates (1022)

» MultihostSessionStageAtCapacity (1024)

« SignallingSessionCannotRead (1201)
 SignallingSessionCannotSend (1202)
 SignallingSessionBadResponse (1203)

These are reported asynchronously through the application-supplied stage renderer.

The SDK retries the operation for a limited number of times. During retries, the publish/subscribe
state is ATTEMPTING_PUBLISH / ATTEMPTING_SUBSCRIBE. If the retry attempts succeed, the
state changes to PUBLISHED / SUBSCRIBED.

The SDK calls IVSErrorSourceDelegate:didEmitError with the relevant error code and
IVSBroadcastErrorisFatalkey = NO.

Action: No action is needed, as the SDK retries automatically. Optionally, the application can
refresh the strategy to force more retries.

Already Established, Then Fail

A publish or subscribe can fail after it is established, most likely due to a network error. The error
code for a "peer connection lost due to network error" is 1400.

This is reported asynchronously through the application-supplied stage renderer.

The SDK retries the publish/subscribe operation. During retries, the publish/subscribe state is
ATTEMPTING_PUBLISH / ATTEMPTING_SUBSCRIBE. If the retry attempts succeed, the state
changes to PUBLISHED / SUBSCRIBED.

The SDK calls didEmitError with error code = 1400 and IVSBroadcastErrorisFatalKey = NO.

Error Handling 144

Amazon IVS Real-Time Streaming User Guide

Action: No action is needed, as the SDK retries automatically. Optionally, the application can
refresh the strategy to force more retries. In the event of total connectivity loss, it's likely that the
connection to Stages will fail too.

IVS Broadcast SDK: Custom Image Sources (Real-Time
Streaming)

Custom image-input sources allow an application to provide its own image input to the broadcast
SDK, instead of being limited to the preset cameras. A custom image source can be as simple as a
semi-transparent watermark or static “be right back” scene, or it can allow the app to do additional
custom processing like adding beauty filters to the camera.

When you use a custom image-input source for custom control of the camera (such as using
beauty-filter libraries that require camera access), the broadcast SDK is no longer responsible for
managing the camera. Instead, the application is responsible for handling the camera’s lifecycle
correctly. See official platform documentation on how your application should manage the camera.

Android

After you create a DeviceDiscovery session, create an image-input source:

CustomImageSource imageSource = deviceDiscovery.createImageInputSource(new
BroadcastConfiguration.Vec2(1280, 720));

This method returns a CustomImageSource, which is an image source backed by a standard
Android Surface. The sublcass SurfaceSource can be resized and rotated. You also can create an
ImagePreviewView to display a preview of its contents.

To retrieve the underlying Surface:

Surface surface = surfaceSource.getInputSurface();

This Surface can be used as the output buffer for image producers like Camera2, OpenGL ES, and
other libraries. The simplest use case is directly drawing a static bitmap or color into the Surface’s
Canvas. However, many libraries (such as beauty-filter libraries) provide a method that allows an
application to specify an external Surface for rendering. You can use such a method to pass this
Surface to the filter library, which allows the library to output processed frames for the broadcast
session to stream.

Custom Image Sources 145

https://developer.android.com/reference/android/view/Surface

Amazon IVS Real-Time Streaming User Guide

This CustomImageSource can be wrapped in a LocalStageStream and returned by the
StageStrategy to publish to a Stage.

10S
After you create a DeviceDiscovery session, create an image-input source:

let customSource = broadcastSession.createImageSource(withName: "customSourceName'")

This method returns an IVSCustomImageSource, which is an image source that allows the
application to submit CMSampleBuffers manually. For supported pixel formats, see the iOS
Broadcast SDK Reference; a link to the most current version is in the Amazon IVS Release Notes for
the latest broadcast SDK release.

Samples submitted to the custom source will be streamed to the Stage:

customSource.onSampleBuffer(sampleBuffer)

For streaming video, use this method in a callback. For example, if you're using the camera, then
every time a new sample buffer is received from an AVCaptureSession, the application can
forward the sample buffer to the custom image source. If desired, the application can apply further
processing (like a beauty filter) before submitting the sample to the custom image source.

The IVSCustomImageSource can be wrapped in an IVSLocalStageStream and returned by the
IVSStageStrategy to publish to a Stage.

IVS Broadcast SDK: Third-Party Camera Filters (Real-Time
Streaming)

This guide assumes you are already familiar with custom image sources as well as integrating the
IVS real-time streaming broadcast SDK into your application.

Camera filters enable live-stream creators to augment or alter their facial or background
appearance. This potentially can increase viewer engagement, attract viewers, and enhance the
live-streaming experience.

ioS 146

Amazon IVS Real-Time Streaming User Guide

Integrating Third-Party Camera Filters

You can integrate third-party camera filter SDKs with the IVS broadcast SDK by feeding the filter
SDK'’s output to a custom image input source. A custom image-input source allows an application
to provide its own image input to the Broadcast SDK. A third-party filter provider's SDK may
manage the camera’s lifecycle to process images from the camera, apply a filter effect, and output

it in a format that can be passed to a custom image source.

Third-Party

Captured Processed

~ Raw Image

—» Filter Provider — Video Ingest
SDK

Image

Device Camera IVS Broadcast SDK
(Custom Image Source)

Consult your third-party filter provider's documentation for built-in methods to convert a camera
frame, with the filter effect, applied to a format that can be passed to a custom image-input
source. The process varies, depending on which version of the IVS broadcast SDK is used:

« Web — The filter provider must be able to render its output to a canvas element. The
captureStream method can then be used to return a MediaStream of the canvas's contents. The
MediaStream can then be converted to an instance of a LocalStageStream and published to a
Stage.

« Android — The filter provider's SDK can either render a frame to an Android Surface provided
by the IVS broadcast SDK or convert the frame to a bitmap. If using a bitmap, it can then be
rendered to the underlying Surface provided by the custom image source, by unlocking and
writing to a canvas.

» i0S — A third-party filter provider's SDK must provide a camera frame with a filter effect
applied as a CMSampleBuffer. Refer to your third-party filter vendor SDK's documentation
for information on how to get a CMSampleBuffer as the final output after a camera image is
processed.

BytePlus

Android
Install and Set Up the BytePlus Effects SDK

See the BytePlus Android Access Guide for details on how to install, initialize, and set up the
BytePlus Effects SDK.

Integrating Third-Party Camera Filters 147

https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement/captureStream
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference/classes/LocalStageStream
https://docs.byteplus.com/en/effects/docs/android-v4101-access-guide

Amazon IVS Real-Time Streaming User Guide

Set Up the Custom Image Source

After initializing the SDK, feed processed camera frames with a filter effect applied to a custom-
image input source. To do that, create an instance of a DeviceDiscovery object and create a
custom image source. Note that when you use a custom image input source for custom control
of the camera, the broadcast SDK is no longer responsible for managing the camera. Instead, the
application is responsible for handling the camera’s lifecycle correctly.

Java

var deviceDiscovery = DeviceDiscovery(applicationContext)

var customSource = deviceDiscovery.createImageInputSource(BroadcastConfiguration.Vec2(
720F, 1280F

)

var surface: Surface = customSource.inputSurface
var filterStream = ImagelocalStageStream(customSource)

Convert Output to a Bitmap and Feed to Custom Image Input Source

To enable camera frames with a filter effect applied from the BytePlus Effect SDK to be forwarded
directly to the IVS broadcast SDK, convert the BytePlus Effects SDK's output of a texture to a
bitmap. When an image is processed, the onDrawFrame () method is invoked by the SDK. The
onDrawFrame() method is a public method of Android’'s GLSurfaceView.Renderer interface. In the
Android sample app provided by BytePlus, this method is called on every camera frame; it outputs

a texture. Concurrently, you can supplement the onDrawFrame () method with logic to convert
this texture to a bitmap and feed it to a custom image input source. As shown in the following
code sample, use the transferTextureToBitmap method provided by the BytePlus SDK to do
this conversion. This method is provided by the com.bytedance.labcv.core.util.ImageUtil library
from the BytePlus Effects SDK, as shown in the following code sample.You can then render to
the underlying Android Surface of a CustomImageSource by writing the resulting bitmap to a

Surface's canvas. Many successive invocations of onDrawFrame() results in a sequence of bitmaps,
and when combined, creates a stream of video.

Java

import com.bytedance.labcv.core.util.ImageUtil;

protected ImageUtil imageUtility;

BytePlus 148

https://developer.android.com/reference/android/opengl/GLSurfaceView.Renderer
https://docs.byteplus.com/en/effects/docs/android-v4101-access-guide#Appendix:%20convert%20input%20texture%20to%202D%20texture%20with%20upright%20face

Amazon IVS Real-Time Streaming User Guide

@Override
public void onDrawFrame(GL10 gl10) {

// Convert BytePlus output to a Bitmap
Bitmap outputBt = imageUtility.transferTextureToBitmap(output.getTexture(),ByteEffect

Constants.TextureFormat.Texture2D, output.getWidth(), output.getHeight());
canvas = surface.lockCanvas(null);

canvas.drawBitmap(outputBt, @f, 0f, null);
surface.unlockCanvasAndPost(canvas);

DeepAR

Android

See the Android Integration Guide from DeepAR for details on how to integrate the DeepAR SDK
with the Android IVS broadcast SDK.

i0S

See the iOS Integration Guide from DeepAR for details on how to integrate the DeepAR SDK with
the iOS IVS broadcast SDK.

Snap

Web

This section assumes you are already familiar with publishing and subscribing to video using the
Web Broadcast SDK.

To integrate Snap’s Camera Kit SDK with the IVS real-time streaming Web broadcast SDK, you need
to:

1. Install the Camera Kit SDK and Webpack. (Our example uses Webpack as the bundler, but you
can use any bundler of your choice.)

. Create index.html.
. Add setup elements.

. Display and set up participants.

o A W N

. Display connected cameras and microphones.

DeepAR 149

https://docs.deepar.ai/deepar-sdk/integrations/video-calling/amazon-ivs/android
https://docs.deepar.ai/deepar-sdk/integrations/video-calling/amazon-ivs/ios

Amazon IVS Real-Time Streaming User Guide

6. Create a Camera Kit session.

7. Fetch and apply a Lens.

8. Render the output from a Camera Kit session to a canvas.

9. Provide Camera Kit with a media source for rendering and publish a LocalStageStream.

10Create a Webpack config file.

Each of these steps is described below.

Install the Camera Kit SDK and Webpack

npm i @snap/camera-kit webpack webpack-cli

Create index.html

Next, create the HTML boilerplate and import the Web broadcast SDK as a script tag. In the
following code, be sure to replace <SDK version> with the broadcast SDK version that you are
using.

JavaScript

<l--

/*! Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-
Identifier: Apache-2.0 */

-—

<!DOCTYPE html>

<html lang="en">

<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />

<title>Amazon IVS Real-Time Streaming Web Sample (HTML and JavaScript)</title>

<!l-- Fonts and Styling -->

<link rel="stylesheet" href="https://fonts.googleapis.com/css?
family=Roboto:300,300italic,700,700italic" />

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.1/
normalize.css" />

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/milligram/1.4.1/
milligram.css" />

Snap 150

Amazon IVS Real-Time Streaming User Guide

<link rel="stylesheet" href="./index.css" />

<l-- Stages in Broadcast SDK -->

<script src="https://web-broadcast.live-video.net/<SDK version>/amazon-ivs-web-
broadcast.js"></script>
</head>

<body>
<!-- Introduction -->
<header>
<hl>Amazon IVS Real-Time Streaming Web Sample (HTML and JavaScript)</hl>

<p>This sample is used to demonstrate basic HTML /]S usage. <a href="https://

docs.aws.amazon.com/ivs/latest/userguide/multiple-hosts.html">Use the AWS CLI</
a> to create a Stage and a corresponding ParticipantToken.

Multiple participants can load this page and put in their own tokens. You can <a
href="https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-guides/stages#glossary"
target="_blank">read more about stages in our public docs.</p>

</header>

<hr />

<!-- Setup Controls -->
<!-- Local Participant -->

<hr style="margin-top: S5rem"/>

<l-- Remote Participants -->

<!-- Load all Desired Scripts -->
</body>
</html>

Add Setup Elements
Create the HTML for selecting a camera and microphone and specifying a participant token:

JavaScript

<!-- Setup Controls -->
<div class="row'">
<div class="column">

Snap 151

Amazon IVS Real-Time Streaming User Guide

<label for="video-devices">Select Camera</label>
<select disabled id="video-devices">
<option selected disabled>Choose Option</option>
</select>
</div>
<div class="column">
<label for="audio-devices">Select Microphone</label>
<select disabled id="audio-devices">
<option selected disabled>Choose Option</option>
</select>
</div>
<div class="column">
<label for="token">Participant Token</label>
<input type="text" id="token" name="token" />
</div>
<div class="column" style="display: flex; margin-top: 1.5rem">
<button class="button" style="margin: auto; width: 100%" id="join-button">Join
Stage</button>
</div>
<div class="column" style="display: flex; margin-top: 1.5rem">
<button class="button" style="margin: auto; width: 100%" id="leave-button">Leave
Stage</button>
</div>
</div>

Add additional HTML beneath that to display camera feeds from local and remote participants:

JavaScript

<!-- Local Participant -->
<div class="row local-container">
<canvas id="canvas'"></canvas>

<div class="column" id="local-media"></div>
<div class="static-controls hidden" id="local-controls">
<button class="button" id="mic-control">Mute Mic</button>
<button class="button" id="camera-control">Mute Camera</button>
</div>
</div>

<hr style="margin-top: 5rem"/>

<!-- Remote Participants -->

Snap 152

Amazon IVS Real-Time Streaming User Guide

<div class="row">
<div id="remote-media"></div>
</div>

Load additional logic, including helper methods for setting up the camera and the bundled
JavaScript file. (Later in this section, you will create these JavaScript files and bundle them into
a single file, so you can import Camera Kit as a module. The bundled JavaScript file will contain
the logic for setting up Camera Kit, applying a Lens, and publishing the camera feed with a Lens
applied to a stage.)

JavaScript

<!-- Load all Desired Scripts -->
<script src="./helpers.js"></script>
<script src="./media-devices.js"></script>
<l-- <script type="module" src="./stages-simple.js"></script> -->
<script src="./dist/bundle.js"></script>

Display and Set Up Participants

Next, create helpers. js, which contains helper methods that you will use to display and set up
participants:

JavaScript

/*! Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-
Identifier: Apache-2.0 */

function setupParticipant({ isLocal, id }) {
const groupId = islLocal ? 'local-media' : 'remote-media';
const groupContainer = document.getElementById(groupId);

const participantContainerId = islLocal ? 'local' : id;
const participantContainer = createContainer(participantContainerId);

const videoEl = createVideoEl(participantContainerId);

participantContainer.appendChild(videoEl);
groupContainer.appendChild(participantContainer);

return videoEl;

Snap 153

Amazon IVS Real-Time Streaming User Guide

function teardownParticipant({ islLocal, id }) {

const groupId = islLocal ? 'local-media' : 'remote-media';
const groupContainer = document.getElementById(groupld);
const participantContainerId = islLocal ? 'local' : id;

const participantDiv = document.getElementById(
participantContainerId + '-container'

);

if (!participantDiv) {
return;

}

groupContainer.removeChild(participantDiv);

function createVideoEl(id) {
const videoEl = document.createElement('video');
videoEl.id = id;
videoEl.autoplay = true;
videoEl.playsInline = true;
videoEl.srcObject = new MediaStream();
return videoEl;

function createContainer(id) {
const participantContainer = document.createElement('div');
participantContainer.classlList = 'participant-container';

participantContainer.id = id + '-container';

return participantContainer;

Display Connected Cameras and Microphones

Next, create media-devices. js, which contains helper methods for displaying cameras and
microphones connected to your device:

JavaScript

/*! Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-
Identifier: Apache-2.0 */

/**

* Returns an initial list of devices populated on the page selects

Snap 154

Amazon IVS Real-Time Streaming User Guide
*/
async function initializeDeviceSelect() {

const videoSelectEl = document.getElementById('video-devices');
videoSelectEl.disabled = false;

const { videoDevices, audioDevices } = await getDevices();
videoDevices.forEach((device, index) => {
videoSelectEl.options[index] = new Option(device.label, device.deviceld);

});
const audioSelectEl = document.getElementById('audio-devices');

audioSelectEl.disabled = false;
audioDevices.forEach((device, index) => {
audioSelectEl.options[index] = new Option(device.label, device.deviceld);

1)

/**
* Returns all devices available on the current device
*/
async function getDevices() {
// Prevents issues on Safari/FF so devices are not blank
await navigator.mediaDevices.getUserMedia({ video: true, audio: true });

const devices = await navigator.mediaDevices.enumerateDevices();
// Get all video devices
const videoDevices = devices.filter((d) => d.kind === 'videoinput');
if (!videoDevices.length) {
console.error('No video devices found.');

// Get all audio devices
const audioDevices = devices.filter((d) => d.kind === 'audioinput');
if (laudioDevices.length) {

console.error('No audio devices found.');

return { videoDevices, audioDevices };

async function getCamera(deviceId) {
// Use Max Width and Height
return navigator.mediaDevices.getUserMedia({

Snap 155

Real-Time Streaming User Guide

Amazon IVS
video: {
devicelId: devicelId ? { exact: deviceld } :
},
audio: false,
1}

async function getMic(deviceld) {
return navigator.mediaDevices.getUserMedia({
video: false,

audio: {
deviceld: deviceld ? { exact: deviceld } :
},
1)

Create a Camera Kit Session

null,

null,

Create stages. js, which contains the logic for applying a Lens to the camera feed and publishing
the feed to a stage. In the first part of this file, we import the broadcast SDK and Camera Kit Web
SDK and initialize the variables we will use with each SDK. We create a Camera Kit session by

calling createSession after bootstrapping the Camera Kit Web SDK. Note that a canvas element

object is passed to a session; this tells Camera Kit to render into that canvas.

Java

/*! Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-

Identifier: Apache-2.0 */

// All helpers are expose on 'media-devices.js' and 'dom.js'

// const { setupParticipant } = window;

// const { initializeDeviceSelect, getCamera, getMic } = window;

// require('./helpers.js');
// require('./media-devices.js');

const {
Stage,
LocalStageStream,
SubscribeType,
StageEvents,
ConnectionState,
StreamType,

} = IVSBroadcastClient;

Snap

156

https://kit.snapchat.com/reference/CameraKit/web/0.7.0/index.html#bootstrapping-the-sdk

Amazon IVS

Real-Time Streaming User Guide

import {
bootstrapCameraKit,
createMediaStreamSource,
Transform2D,

} from '@snap/camera-kit';

let
let
let
let

let
let
let

cameraButton = document.getElementById('camera-control');
micButton = document.getElementById('mic-control');
joinButton = document.getElementById('join-button');
leaveButton = document.getElementById('leave-button');

controls = document.getElementById('local-controls');
videoDeviceslList = document.getElementById('video-devices');
audioDeviceslList = document.getElementById('audio-devices');

// Stage management

let
let
let
let
let
let
let

stage;

joining = false;
connected = false;
localCamera;
localMic;
cameraStageStream;
micStageStream;

const liveRenderTarget = document.getElementById('canvas');

const init = async () => {
await initializeDeviceSelect();

const cameraKit = await bootstrapCameraKit({

apiToken: INSERT_API_TOKEN_HERE,

1)

const session = await cameraKit.createSession({ liveRenderTarget });

Fetch and Apply a Lens

To fetch your Lenses, insert your Lens Group 1D, which can be found in the Camera Kit Developer

Portal. In this example, we keep it simple by applying the first Lens in the Lens array that is

returned.

Snap

157

https://camera-kit.snapchat.com/
https://camera-kit.snapchat.com/

Amazon IVS Real-Time Streaming User Guide

JavaScript

const { lenses } = await cameraKit.lensRepository.loadlLensGroups([
INSERT_LENS_GROUP_ID_HERE,
1D;

session.applylLens(lenses[@]);

Render the Output from a Camera Kit Session to a Canvas

Use the captureStream method to return a MediaStream of the canvas's contents. The canvas

will contain a video stream of the camera feed with a Lens applied. Also, add event listeners
for buttons to mute the camera and microphone as well as event listeners for joining and
leaving a stage. In the event listener for joining a stage, we pass in a Camera Kit session and the
MediaStream from the canvas so it can be published to a stage.

JavaScript

const snapStream = liveRenderTarget.captureStream();

cameraButton.addEventListener('click', () => {

const isMuted = !cameraStageStream.isMuted;
cameraStageStream.setMuted(isMuted);
cameraButton.innerText = isMuted ? 'Show Camera' : 'Hide Camera';
1)
micButton.addEventListener('click', () => {
const isMuted = !micStageStream.isMuted;
micStageStream.setMuted(isMuted);
micButton.innerText = isMuted ? 'Unmute Mic' : 'Mute Mic';
1)

joinButton.addEventListener('click', () => {
joinStage(session, snapStream);

1)

leaveButton.addEventListener('click', () => {
leaveStage();
1)
};

Snap 158

https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement/captureStream

Amazon IVS Real-Time Streaming User Guide

Provide Camera Kit with a Media Source for Rendering and Publish a LocalStageStream

To publish a video stream with a Lens applied, create a function called setCameraKitSource to
pass in the MediaStream captured from the canvas earlier. The MediaStream from the canvas
isn't doing anything at the moment because we have not incorporated our local camera feed yet.
We can incorporate our local camera feed by calling the getCamera helper method and assigning
it to localCamera . We can then pass in our local camera feed (via localCamera) and the session
object to setCameraKitSource. The setCameraKitSource function converts our local camera
feed to a source of media for CameraKit by calling createMediaStreamSource. The media
source for CameraKit is then transformed to mirror the front-facing camera. The Lens effect is
then applied to the media source and rendered to the output canvas by calling session.play().

With Lens now applied to the MediaStream captured from the canvas, we can then proceed
to publishing it to a stage. We do that by creating a LocalStageStream with the video
tracks from the MediaStream. An instance of LocalStageStream can then be passed in to a
StageStrategy to be published.

JavaScript

async function setCameraKitSource(session, mediaStream) {
const source = createMediaStreamSource(mediaStream);
await session.setSource(source);
source.setTransform(Transform2D.MirrorX);
session.play();

}
const joinStage = async (session, snapStream) => {
if (connected || joining) {
retuzrn;
}

joining = true;
const token = document.getElementById('token').value;

if (!token) {
window.alert('Please enter a participant token');
joining = false;
retuzrn;

// Retrieve the User Media currently set on the page
localCamera = await getCamera(videoDeviceslList.value);

Snap 159

https://docs.snap.com/camera-kit/integrate-sdk/web/web-configuration#creating-a-camerakitsource
https://docs.snap.com/camera-kit/integrate-sdk/web/web-configuration#2d-transforms

Amazon IVS

Real-Time Streaming User Guide

localMic = await getMic(audioDeviceslList.value);

await setCameraKitSource(session, localCamera);

// Create StageStreams for Audio and Video

// cameraStageStream = new LocalStageStream(localCamera.getVideoTracks()[Q]);
cameraStageStream = new LocalStageStream(snapStream.getVideoTracks()[0]);
micStageStream = new LocalStageStream(localMic.getAudioTracks()[0]);

const strategy = {
stageStreamsToPublish() {
return [cameraStageStream, micStageStream];
},
shouldPublishParticipant() {
return true;
.
shouldSubscribeToParticipant() {
return SubscribeType.AUDIO_VIDEO;
},
i

The remaining code below is for creating and managing our stage:

JavaScript

stage = new Stage(token, strategy);

// Other available events:
// https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-guides/stages#events

stage.on(StageEvents.STAGE_CONNECTION_STATE_CHANGED, (state) => {
connected = state === ConnectionState.CONNECTED;

if (connected) {
joining = false;
controls.classList.remove('hidden');
} else {
controls.classList.add('hidden');
}
});

stage.on(StageEvents.STAGE_PARTICIPANT_JOINED, (participant) => {
console.log('Participant Joined:', participant);

1)

stage.on(

Snap

160

Amazon IVS Real-Time Streaming User Guide

StageEvents.STAGE_PARTICIPANT_STREAMS_ADDED,
(participant, streams) => {
console.log('Participant Media Added: ', participant, streams);

let streamsToDisplay = streams;

if (participant.islocal) {
// Ensure to exclude local audio streams, otherwise echo will occur
streamsToDisplay = streams.filter(
(stream) => stream.streamType === StreamType.VIDEO
);

const videoEl = setupParticipant(participant);
streamsToDisplay.forEach((stream) =>
videoEl.srcObject.addTrack(stream.mediaStreamTrack)
);
}
);

stage.on(StageEvents.STAGE_PARTICIPANT_LEFT, (participant) => {
console.log('Participant Left: ', participant);
teardownParticipant(participant);

1)

try {
await stage.join();
} catch (err) {
joining = false;
connected = false;
console.error(err.message);
}
};

const leaveStage = async () => {
stage.leave();

joining = false;
connected = false;

cameraButton.innerText = 'Hide Camera';
micButton.innerText = 'Mute Mic';
controls.classList.add('hidden');

};

Snap 161

Amazon IVS Real-Time Streaming User Guide

init();

Create a Webpack Config File

Create webpack.config. js and add the following code. This bundles the logic above so that you
can use the import statement to use Camera Kit.

JavaScript

const path = require('path');
module.exports = {
entry: ['./stage.js'],
output: {
filename: 'bundle.js',
path: path.resolve(__dirname, 'dist'),

}I
};

Finally, run npm run build to bundle your JavaScript as defined in the Webpack config file. You
can then serve HTML and JavaScript from a web server. For example, you can use Python's HTTP
server and open localhost:8000 to see the result:

Run this from the command line and the directory containing index.html
python3 -m http.server -d ./

Android

To integrate Snap’s Camera Kit SDK with the IVS Android broadcast SDK, you must install the
Camera Kit SDK, initialize a Camera Kit session, apply a Lens and feed the Camera Kit session'’s
output to the custom-image input source.

To install the Camera Kit SDK, add the following to your module’s build.gradle file. Replace
$cameraKitVersion with the latest Camera Kit SDK version.

Java

implementation "com.snap.camerakit:camerakit:$cameraKitVersion"

Initialize and obtain a cameraKitSession. Camera Kit also provides a convenient wrapper for
Android’'s CameraX APIs, so you don't have to write complicated logic to use CameraX with Camera

Snap 162

https://docs.snap.com/camera-kit/integrate-sdk/mobile/changelog-mobile
https://developer.android.com/training/camerax

Amazon IVS Real-Time Streaming User Guide

Kit. You can use the CameraXImageProcessorSource object as a Source for ImageProcessor,

which allows you to start camera-preview streaming frames.

Java

protected void onCreate(@Nullable Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

// Camera Kit support implementation of ImageProcessor that is backed by
CameraX library:
// https://developer.android.com/training/camerax
CameraXImageProcessorSource imageProcessorSource = new
CameraXImageProcessorSource(
this /*context*/, this /*1lifecycleOwner*/
)

imageProcessorSource.startPreview(true /*cameraFacingFront*/);
camerakKitSession = Sessions.newBuilder(this)
.imageProcessorSource(imageProcessorSource)

.attachTo(findViewById(R.id.camerakit_stub))
.build();

Fetch and Apply Lenses

You can configure Lenses and their ordering in the carousel on the Camera Kit Developer Portal:

Java

// Fetch lenses from repository and apply them
// Replace LENS_GROUP_ID with Lens Group ID from https://camera-kit.snapchat.com
cameraKitSession.getlLenses().getRepository().get(new Available(LENS_GROUP_ID),
available -> {
Log.d(TAG, "Available lenses: " + available);
Lenses.whenHasFirst(available, lens ->
cameraKitSession.getlLenses().getProcessor().apply(lens, result -> {
Log.d(TAG, "Apply lens [" + lens + "] success: " + result);
1)
1);

Snap 163

https://snapchat.github.io/camera-kit-reference/api/android/latest/-camera-kit/com.snap.camerakit/-source/index.html
https://snapchat.github.io/camera-kit-reference/api/android/latest/-camera-kit/com.snap.camerakit/-image-processor/index.html
https://camera-kit.snapchat.com/

Amazon IVS Real-Time Streaming User Guide

To broadcast, send processed frames to the underlying Surface of a custom image source. Use a
DeviceDiscovery object and create a CustomImageSource to return a SurfaceSource. You
can then render the output from a CameraKit session to the underlying Surface provided by the
SurfaceSource.

Java

val publishStreams = ArraylList<LocalStageStream>()

val deviceDiscovery = DeviceDiscovery(applicationContext)
val customSource =
deviceDiscovery.createImageInputSource(BroadcastConfiguration.Vec2(720f, 1280f))

cameraKitSession.processor.connectOutput(outputFrom(customSource.inputSurface))
val customStream = ImagelLocalStageStream(customSource)

// After rendering the output from a Camera Kit session to the Surface, you can
// then return it as a LocalStageStream to be published by the Broadcast SDK
val customStream: ImagelLocalStageStream = ImagelLocalStageStream(surfaceSource)
publishStreams.add(customStream)

@Override
fun stageStreamsToPublishForParticipant(stage: Stage, participantInfo:
ParticipantInfo): List<LocalStageStream> = publishStreams

Background Replacement

Background replacement is a type of camera filter that enables live-stream creators to change their
backgrounds. As shown in the following diagram, replacing your background involves:

1. Getting a camera image from the live camera feed.
2. Segmenting it into foreground and background components using Google ML Kit.
3. Combining the resulting segmentation mask with a custom background image.

4. Passing it to a Custom Image Source for broadcast.

N
Captured . Google + l H_"*_Bitmap_, —Video Ingest—p

"~ Raw Image ML Kit

—
Device Camera Segmentation Custom IVS Broadcast SDK
Mask Background (Custom Image Source)

Background Replacement 164

Amazon IVS Real-Time Streaming User Guide

Web

This section assumes you are already familiar with publishing and subscribing to video using the
Web Broadcast SDK.

To replace the background of a live stream with a custom image, use the selfie segmentation

model with MediaPipe Image Segmenter. This is a machine-learning model that identifies which

pixels in the video frame are in the foreground or background. You can then use the results from
the model to replace the background of a live stream, by copying foreground pixels from the video
feed to a custom image representing the new background.

To integrate background replacement with the IVS real-time streaming Web broadcast SDK, you
need to:

1. Install MediaPipe and Webpack. (Our example uses Webpack as the bundler, but you can use any
bundler of your choice.)

. Create index.html.

. Add media elements.

. Add a script tag.

. Create app.js.

. Load a custom background image.

. Create an instance of ImageSegmenter.

o N O U A WN

. Render the video feed to a canvas.

9. Create background replacement logic.
10Create Webpack config File.

11Bundle Your JavaScript file.

Install MediaPipe and Webpack

To start, install the @mediapipe/tasks-vision and webpack npm packages. The example
below uses Webpack as a JavaScript bundler; you can use a different bundler if preferred.

JavaScript

npm i @mediapipe/tasks-vision webpack webpack-cli

Make sure to also update your package. json to specify webpack as your build script:

Background Replacement 165

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-pub-sub-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-pub-sub-web.html
https://developers.google.com/mediapipe/solutions/vision/image_segmenter#selfie-model
https://developers.google.com/mediapipe/solutions/vision/image_segmenter#selfie-model
https://developers.google.com/mediapipe/solutions/vision/image_segmenter

Amazon IVS Real-Time Streaming User Guide

JavaScript

"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",
"build": "webpack"
iy

Create index.html

Next, create the HTML boilerplate and import the Web broadcast SDK as a script tag. In the
following code, be sure to replace <SDK version> with the broadcast SDK version that you are
using.

JavaScript

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />

<!-- Import the SDK -->

<script src="https://web-broadcast.live-video.net/<SDK version>/amazon-ivs-web-
broadcast.js"></script>
</head>

<body>

</body>
</html>

Add Media Elements

Next, add a video element and two canvas elements within the body tag. The video element will
contain your live camera feed and will be used as input to the MediaPipe Image Segmenter. The
first canvas element will be used to render a preview of the feed that will be broadcast. The second
canvas element will be used to render the custom image that will be used as a background. Since
the second canvas with the custom image is used only as a source to programmatically copy pixels
from it to the final canvas, it is hidden from view.

Background Replacement 166

Amazon IVS Real-Time Streaming User Guide

JavaScript

<div class="row local-container">
<video id="webcam" autoplay style="display: none"></video>
</div>
<div class="row local-container">
<canvas id="canvas" width="640px" height="480px"></canvas>

<div class="column" id="local-media"></div>
<div class="static-controls hidden" id="local-controls">
<button class="button" id="mic-control">Mute Mic</button>
<button class="button" id="camera-control">Mute Camera</button>
</div>
</div>
<div class="row local-container">
<canvas id="background" width="640px" height="480px" style="display: none"></
canvas>
</div>

Add a Script Tag

Add a script tag to load a bundled JavaScript file that will contain the code to do the background
replacement and publish it to a stage:

<script src="./dist/bundle.js"></script>

Create app.js

Next, create a JavaScript file to get the element objects for the canvas and video elements that
were created in the HTML page. Import the ImageSegmenter and FilesetResolver modules.
The ImageSegmenter module will be used to perform the segmentation task.

JavaScript

const canvasElement = document.getElementById("canvas");
const background = document.getElementById("background");
const canvasCtx = canvasElement.getContext("2d");

const backgroundCtx = background.getContext("2d");

const video = document.getElementById("webcam");

import { ImageSegmenter, FilesetResolver } from "@mediapipe/tasks-vision";

Background Replacement 167

Amazon IVS Real-Time Streaming User Guide

Next, create a function called init () to retrieve the MediaStream from the user’s camera and
invoke a callback function each time a camera frame finishes loading. Add event listeners for the
buttons to join and leave a stage.

Note that when joining a stage, we pass in a variable named segmentationStream. Thisis a
video stream that is captured from a canvas element, containing a foreground image overlaid on
the custom image representing the background. Later, this custom stream will be used to create an
instance of a LocalStageStream, which can be published to a stage.

JavaScript

const init = async () => {
await initializeDeviceSelect();

cameraButton.addEventListener("click", () => {
const isMuted = !cameraStageStream.isMuted;
cameraStageStream.setMuted(isMuted);
cameraButton.innerText = isMuted ? "Show Camera" : "Hide Camera";

1)

micButton.addEventListener("click", () => {
const isMuted = !micStageStream.isMuted;
micStageStream.setMuted(isMuted);
micButton.innerText = isMuted ? "Unmute Mic" : "Mute Mic";

1)

localCamera = await getCamera(videoDeviceslList.value);
const segmentationStream = canvasElement.captureStream();

joinButton.addEventListener("click", () => {
joinStage(segmentationStream);

1)

leaveButton.addEventListener("click", () => {
leaveStage();
});
b

Load a Custom Background Image

At the bottom of the init function, add code to call a function named initBackgroundCanvas,
which loads a custom image from a local file and renders it onto a canvas. We will define this

Background Replacement 168

Amazon IVS Real-Time Streaming User Guide

function in the next step. Assign the MediaStream retrieved from the user's camera to the video
object. Later, this video object will be passed to the Image Segmenter. Also, set a function named
renderVideoToCanvas as the callback function to invoke whenever a video frame has finished
loading. We will define this function in a later step.

JavaScript

initBackgroundCanvas();

video.srcObject = localCamera;
video.addEventListener("loadeddata", renderVideoToCanvas);

Let's implement the initBackgroundCanvas function, which loads an image from a local file.

In this example, we use an image of a beach as the custom background. The canvas containing the
custom image will be hidden from display, as you will merge it with the foreground pixels from the
canvas element containing the camera feed.

JavaScript

const initBackgroundCanvas = () => {
let img = new Image();
img.src = "beach.jpg";

img.onload = () => {
backgroundCtx.clearRect(®, @, canvas.width, canvas.height);
backgroundCtx.drawImage(img, 0, 0);
I
};

Create an Instance of ImageSegmenter

Next, create an instance of ImageSegmenter, which will segment the image and return the result
as a mask. When creating an instance of an ImageSegmenter, you will use the selfie segmentation

model.

JavaScript

const createImageSegmenter = async () => {
const audio = await FilesetResolver.forVisionTasks("https://cdn.jsdelivr.net/npm/
@mediapipe/tasks-vision@@.10.2/wasm");

imageSegmenter = await ImageSegmenter.createFromOptions(audio, {

Background Replacement 169

https://developers.google.com/mediapipe/solutions/vision/image_segmenter#selfie-model
https://developers.google.com/mediapipe/solutions/vision/image_segmenter#selfie-model

Amazon IVS Real-Time Streaming User Guide

baseOptions: {
modelAssetPath: "https://storage.googleapis.com/mediapipe-models/image_segmenter/
selfie_segmenter/floatl6/latest/selfie_segmenter.tflite",
delegate: "GPU",

3,
runningMode: "VIDEOQO",

outputCategoryMask: true,

1)
};

Render the Video Feed to a Canvas

Next, create the function that renders the video feed to the other canvas element. We need to
render the video feed to a canvas so we can extract the foreground pixels from it using the Canvas
2D API. While doing this, we also will pass a video frame to our instance of ImageSegmenter,
using the segmentforVideo method to segment the foreground from the background in the video
frame. When the segmentforVideo method returns, it invokes our custom callback function,

replaceBackground, for doing the background replacement.

JavaScript

const renderVideoToCanvas = async () => {
if (video.currentTime === lastWebcamTime) {
window.requestAnimationFrame(renderVideoToCanvas);
retuzrn;

}
lastWebcamTime = video.currentTime;
canvasCtx.drawImage(video, @, 0, video.videoWidth, video.videoHeight);
if (imageSegmenter === undefined) {
retuzrn;

let startTimeMs = performance.now();

imageSegmenter.segmentForVideo(video, startTimeMs, replaceBackground);

i

Create Background Replacement Logic

Create the replaceBackground function, which merges the custom background image with
the foreground from the camera feed to replace the background. The function first retrieves the

Background Replacement 170

https://developers.google.com/mediapipe/api/solutions/js/tasks-vision.imagesegmenter#imagesegmentersegmentforvideo
https://developers.google.com/mediapipe/api/solutions/js/tasks-vision.imagesegmenter#imagesegmentersegmentforvideo

Amazon IVS Real-Time Streaming User Guide

underlying pixel data of the custom background image and the video feed from the two canvas
elements created earlier. It then iterates through the mask provided by ImageSegmenter, which
indicates which pixels are in the foreground. As it iterates through the mask, it selectively copies
pixels that contain the user’'s camera feed to the corresponding background pixel data. Once that is
done, it converts the final pixel data with the foreground copied on to the background and draws it
to a Canvas.

JavaScript

function replaceBackground(result) {

let imageData = canvasCtx.getImageData(@, @, video.videoWidth,
video.videoHeight).data;

let backgroundData = backgroundCtx.getImageData(®, @, video.videoWidth,
video.videoHeight).data;

const mask = result.categoryMask.getAsFloat32Array();

let j = 0;

for (let i = @; i < mask.length; ++i) {
const maskVal = Math.round(mask[i] * 255.0);

jo+= 4
// Only copy pixels on to the background image if the mask indicates they are in the
foreground
if (maskVval < 255) {
backgroundData[j] = imageDatalj];
backgroundDatal[j + 1] imageDatal[j + 11];
backgroundDatal[j + 2] imageDatalj + 2];
backgroundData[j + 3] imageDatal[j + 3];

// Convert the pixel data to a format suitable to be drawn to a canvas
const uint8Array = new Uint8ClampedArray(backgroundData.buffer);
const dataNew = new ImageData(uint8Array, video.videoWidth, video.videoHeight);
canvasCtx.putImageData(dataNew, 0, 0);
window.requestAnimationFrame(renderVideoToCanvas);

}

For reference, here is the complete app. js file containing all the logic above:

Background Replacement 171

Amazon IVS

Real-Time Streaming User Guide

JavaScript

/*! Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-

Identifier: Apache-2.0 */

// All helpers are expose on 'media-devices.js' and 'dom.js'
const { setupParticipant } = window;

const { Stage, LocalStageStream, SubscribeType, StageEvents,
StreamType } = IVSBroadcastClient;

const canvasElement = document.getElementById("canvas");
const background = document.getElementById("background");
const canvasCtx = canvasElement.getContext("2d");

const backgroundCtx = background.getContext("2d");

const video = document.getElementById("webcam");

ConnectionState,

import { ImageSegmenter, FilesetResolver } from "@mediapipe/tasks-vision";

let cameraButton = document.getElementById("camera-control");
let micButton = document.getElementById("mic-control");

let joinButton = document.getElementById("join-button");

let leaveButton = document.getElementById("leave-button");

let controls = document.getElementById("local-controls");

let audioDeviceslList = document.getElementById("audio-devices");
let videoDeviceslList = document.getElementById("video-devices");

// Stage management

let stage;

let joining = false;

let connected = false;
let localCamera;

let localMic;

let cameraStageStream;
let micStageStream;

let imageSegmenter;

let lastWebcamTime = -1;

const init = async () => {
await initializeDeviceSelect();

cameraButton.addEventListener("click", () => {
const isMuted = !cameraStageStream.isMuted;
cameraStageStream.setMuted(isMuted);

Background Replacement

172

Amazon IVS Real-Time Streaming User Guide

cameraButton.innerText = isMuted ? "Show Camera" : "Hide Camera";

1);

micButton.addEventListener("click", () => {
const isMuted = !micStageStream.isMuted;
micStageStream.setMuted(isMuted);
micButton.innerText = isMuted ? "Unmute Mic" : "Mute Mic";

1);

i

localCamera = await getCamera(videoDeviceslList.value);
const segmentationStream = canvasElement.captureStream();

joinButton.addEventListener("click", () => {
joinStage(segmentationStream);

1)

leaveButton.addEventListener("click", () => {
leaveStage();
1)

initBackgroundCanvas();

video.srcObject = localCamera;
video.addEventListener("loadeddata", renderVideoToCanvas);

const joinStage = async (segmentationStream) => {
if (connected || joining) {
retuzrn;
}

joining = true;
const token = document.getElementById("token").value;

if (!token) {
window.alert("Please enter a participant token");
joining = false;
return;

// Retrieve the User Media currently set on the page
localMic = await getMic(audioDeviceslList.value);

cameraStageStream = new LocalStageStream(segmentationStream.getVideoTracks()[0@]);

Background Replacement

173

Amazon IVS Real-Time Streaming User Guide

micStageStream = new LocalStageStream(localMic.getAudioTracks()[0]);

const strategy = {
stageStreamsToPublish() {
return [cameraStageStream, micStageStream];
I
shouldPublishParticipant() {
return true;
},
shouldSubscribeToParticipant() {
return SubscribeType.AUDIO_VIDEO;
I
};

stage = new Stage(token, strategy);

// Other available events:
// https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-guides/stages#events
stage.on(StageEvents.STAGE_CONNECTION_STATE_CHANGED, (state) => {

connected = state === ConnectionState.CONNECTED;

if (connected) {
joining = false;
controls.classList.remove("hidden");
} else {
controls.classList.add("hidden");
}
1)

stage.on(StageEvents.STAGE_PARTICIPANT_JOINED, (participant) => {
console.log("Participant Joined:", participant);

1)

stage.on(StageEvents.STAGE_PARTICIPANT_STREAMS_ADDED, (participant, streams) => {
console.log("Participant Media Added: ", participant, streams);

let streamsToDisplay = streams;

if (participant.islocal) {
// Ensure to exclude local audio streams, otherwise echo will occur
streamsToDisplay = streams.filter((stream) => stream.streamType ===
StreamType.VIDEO);
}

Background Replacement 174

Amazon IVS Real-Time Streaming User Guide

const videoEl = setupParticipant(participant);
streamsToDisplay.forEach((stream) =>
videoEl.srcObject.addTrack(stream.mediaStreamTrack));

1)

stage.on(StageEvents.STAGE_PARTICIPANT_LEFT, (participant) => {
console.log("Participant Left: ", participant);
teardownParticipant(participant);

1)

try {
await stage.join();
} catch (err) {
joining = false;
connected = false;
console.error(err.message);
}
I

const leaveStage = async () => {
stage.leave();

joining = false;
connected = false;

cameraButton.innerText = "Hide Camera";
micButton.innerText = "Mute Mic";
controls.classList.add("hidden");

i

function replaceBackground(result) {

let imageData = canvasCtx.getImageData(®, @, video.videoWidth,
video.videoHeight).data;

let backgroundData = backgroundCtx.getImageData(@, @, video.videoWidth,
video.videoHeight).data;

const mask = result.categoryMask.getAsFloat32Array();

let j = 0;

for (let i = @; i < mask.length; ++i) {
const maskVal = Math.round(mask[i] * 255.0);

j += 4;
if (maskVal < 255) {
backgroundData[j] = imageDatalj];

Background Replacement 175

Amazon IVS Real-Time Streaming User Guide

backgroundDatal[j + 1]
backgroundDatal[j + 2]
backgroundDatal[j + 3]

imageDatal[j + 1];
imageDatalj + 2];
imageDatal[j + 3];

}

const uint8Array = new Uint8ClampedArray(backgroundData.buffer);

const dataNew = new ImageData(uint8Array, video.videoWidth, video.videoHeight);
canvasCtx.putImageData(dataNew, @, 0);
window.requestAnimationFrame(renderVideoToCanvas);

const createImageSegmenter = async () => {
const audio = await FilesetResolver.forVisionTasks("https://cdn.jsdelivr.net/npm/
@mediapipe/tasks-vision@@.10.2/wasm");

imageSegmenter = await ImageSegmenter.createFromOptions(audio, {
baseOptions: {
modelAssetPath: "https://storage.googleapis.com/mediapipe-models/image_segmenter/
selfie_segmenter/floatl6/latest/selfie_segmenter.tflite",
delegate: "GPU",
},
runningMode: "VIDEOQO",
outputCategoryMask: true,
18
};

const renderVideoToCanvas = async () => {
if (video.currentTime === lastWebcamTime) {
window.requestAnimationFrame(renderVideoToCanvas);
retuzrn;

}
lastWebcamTime = video.currentTime;
canvasCtx.drawImage(video, @, 0, video.videoWidth, video.videoHeight);
if (imageSegmenter === undefined) {
retuzrn;

let startTimeMs = performance.now();

imageSegmenter.segmentForVideo(video, startTimeMs, replaceBackground);

};

const initBackgroundCanvas = () => {

Background Replacement 176

Amazon IVS Real-Time Streaming User Guide

let img = new Image();
img.src = "beach.jpg";

img.onload = () => {
backgroundCtx.clearRect(@, @, canvas.width, canvas.height);
backgroundCtx.drawImage(img, 0, 0);
};
i

createImageSegmenter();
init();

Create a Webpack Config File
Add this configuration to your Webpack config file to bundle app. js, so the import calls will work:

JavaScript

const path = require("path");
module.exports = {
entry: ["./app.js"],
output: {
filename: "bundle.js",
path: path.resolve(__dirname, "dist"),

},
Iy

Bundle Your JavaScript files

npm run build

Start a simple HTTP server from the directory containing index.html and open
localhost: 8000 to see the result:

python3 -m http.server -d ./

Android

To replace the background in your live stream, you can use the selfie segmentation API of Google
ML Kit. The selfie segmentation API accepts a camera image as input and returns a mask that

Background Replacement 177

https://developers.google.com/ml-kit/vision/selfie-segmentation
https://developers.google.com/ml-kit/vision/selfie-segmentation

Amazon IVS Real-Time Streaming User Guide

provides a confidence score for each pixel of the image, indicating whether it was in the foreground
or the background. Based on the confidence score, you can then retrieve the corresponding pixel
color from either the background image or the foreground image. This process continues until

all confidence scores in the mask have been examined. The result is a new array of pixel colors
containing foreground pixels combined with pixels from the background image.

To integrate background replacement with the IVS real-time streaming Android broadcast SDK, you
need to:

Install CameraX libraries and the Google ML kit.
Initialize boilerplate variables.

Create a custom image source.

Manage camera frames.

Pass camera frames to Google ML Kit.

Overlay camera frame foreground onto your custom background.

N o v s~ DN =

Feed the new image to a custom image source.

Install CameraX Libraries and Google ML Kit

To extract images from the live camera feed, use Android’'s CameraX library. To install the CameraX
library and Google ML Kit, add the following to your module’s build.gradle file. Replace
${camerax_version} and ${google_ml_kit_version} with the latest version of the
CameraX and Google ML Kit libraries, respectively.

Java

implementation "com.google.mlkit:segmentation-selfie:${google_ml_kit_version}"
implementation "androidx.camera:camera-core:${camerax_version}"
implementation "androidx.camera:camera-lifecycle:${camerax_version}"

Import the following libraries:

Java

import androidx.camera.core.CameraSelector

import androidx.camera.core.ImageAnalysis

import androidx.camera.core.ImageProxy

import androidx.camera.lifecycle.ProcessCameraProvider

Background Replacement 178

https://developer.android.com/jetpack/androidx/releases/camera
https://developers.google.com/ml-kit/vision/selfie-segmentation/android

Amazon IVS Real-Time Streaming User Guide

import com.google.mlkit.vision.segmentation.selfie.SelfieSegmenterOptions

Initialize Boilerplate Variables
Initialize an instance of ImageAnalysis and an instance of an ExecutorService:

Java

private lateinit var binding: ActivityMainBinding
private lateinit var cameraExecutor: ExecutorService
private var analysisUseCase: ImageAnalysis? = null

Initialize a Segmenter instance in STREAM_MODE:

Java

private val options =
SelfieSegmenterOptions.Builder()
.setDetectorMode(SelfieSegmenterOptions.STREAM_MODE)
.build()

private val segmenter = Segmentation.getClient(options)

Create a Custom Image Source

In the onCreate method of your activity, create an instance of a DeviceDiscovery object and
create a custom image source. The Surface provided by the Custom Image Source will receive
the final image, with the foreground overlaid on a custom background image. You will then create
an instance of a ImageLocalStageStream using the Custom Image Source. The instance of a
ImagelLocalStageStream (named filterStream in this example) can then be published to a
stage. See the IVS Android Broadcast SDK Guide for instructions on setting up a stage. Finally, also

create a thread that will be used to manage the camera.

Java

var deviceDiscovery = DeviceDiscovery(applicationContext)

var customSource = deviceDiscovery.createImageInputSource(BroadcastConfiguration.Vec2(
720F, 1280F

))

var surface: Surface = customSource.inputSurface

Background Replacement 179

https://developers.google.com/ml-kit/vision/selfie-segmentation/android#detector_mode

Amazon IVS Real-Time Streaming User Guide

var filterStream = ImagelLocalStageStream(customSource)

cameraExecutor = Executors.newSingleThreadExecutor()

Manage Camera Frames

Next, create a function to initialize the camera. This function uses the CameraX library to extract
images from the live camera feed. First, you create an instance of a ProcessCameraProvider
called cameraProviderFuture. This object represents a future result of obtaining a camera
provider. Then you load an image from your project as a bitmap. This example uses an image of a
beach as a background, but it can be any image you want.

You then add a listener to cameraProviderFuture. This listener is notified when the camera
becomes available or if an error occurs during the process of obtaining a camera provider.

Java

private fun startCamera(surface: Surface) {
val cameraProviderFuture = ProcessCameraProvider.getInstance(this)
val imageResource = R.drawable.beach
val bgBitmap: Bitmap = BitmapFactory.decodeResource(resources, imageResource)
var resultBitmap: Bitmap;

cameraProviderFuture.addListener({
val cameraProvider: ProcessCameraProvider = cameraProviderFuture.get()

if (medialmage != null) {
val inputImage =
InputImage.fromMediaImage(medialmage,
imageProxy.imageInfo.rotationDegrees)

resultBitmap = overlayForeground(mask, maskWidth,
maskHeight, inputBitmap, backgroundPixels)

canvas = surface.lockCanvas(null);

canvas.drawBitmap(resultBitmap, 0f, 0f, null)

surface.unlockCanvasAndPost(canvas);

}
.addOnFailurelListener { exception ->
Log.d("App", exception.message!!)

Background Replacement 180

Amazon IVS Real-Time Streaming User Guide

}
.addOnCompletelListener {
imageProxy.close()

i

val cameraSelector = CameraSelector.DEFAULT_FRONT_CAMERA

try {
// Unbind use cases before rebinding
cameraProvider.unbindAll()

// Bind use cases to camera
cameraProvider.bindTolLifecycle(this, cameraSelector, analysisUseCase)

} catch(exc: Exception) {
Log.e(TAG, "Use case binding failed", exc)

}, ContextCompat.getMainExecutor(this))

Within the listener, create ImageAnalysis.Builder to access each individual frame from the live
camera feed. Set the back-pressure strategy to STRATEGY_KEEP_ONLY_LATEST. This guarantees
that only one camera frame at a time is delivered for processing. Convert each individual camera
frame to a bitmap, so you can extract its pixels to later combine it with the custom background
image.

Java

val imageAnalyzer = ImageAnalysis.Builder()

analysisUseCase = imageAnalyzer
.setTargetResolution(Size(360, 640))
.setBackpressureStrategy(ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST)
.build()

analysisUseCase?.setAnalyzer(cameraExecutor) { imageProxy: ImageProxy ->
imageProxy.image

val medialmage
val tempBitmap = imageProxy.toBitmap();
val inputBitmap = tempBitmap.rotate(imageProxy.imageInfo.rotationDegrees.toFloat())

Background Replacement 181

Amazon IVS Real-Time Streaming User Guide

Pass Camera Frames to Google ML Kit

Next, create an InputImage and pass it to the instance of Segmenter for processing. An
InputImage can be created from an ImageProxy provided by the instance of ImageAnalysis.
Once an InputImage is provided to Segmenter, it returns a mask with confidence scores indicating
the likelihood of a pixel being in the foreground or background. This mask also provides width and
height properties, which you will use to create a new array containing the background pixels from
the custom background image loaded earlier.

Java

if (medialmage != null) {
val inputImage =
InputImage.fromMediaImag

segmenter.process(inputImage)
.addOnSuccessListener { segmentationMask ->
val mask = segmentationMask.buffer
val maskWidth = segmentationMask.width
val maskHeight = segmentationMask.height
val backgroundPixels = IntArray(maskWidth * maskHeight)
bgBitmap.getPixels(backgroundPixels, @, maskWidth, @, @, maskWidth, maskHeight)

Overlay the Camera Frame Foreground onto Your Custom Background

With the mask containing the confidence scores, the camera frame as a bitmap, and the color pixels
from the custom background image, you have everything you need to overlay the foreground onto
your custom background. The overlayForeground function is then called with the following
parameters:

Java

resultBitmap = overlayForeground(mask, maskWidth, maskHeight, inputBitmap,
backgroundPixels)

This function iterates through the mask and checks the confidence values to determine whether
to get the corresponding pixel color from the background image or the camera frame. If the
confidence value indicates that a pixel in the mask is most likely in the background, it will get the
corresponding pixel color from the background image; otherwise, it will get the corresponding

Background Replacement 182

Amazon IVS Real-Time Streaming User Guide

pixel color from the camera frame to build the foreground. Once the function finishes iterating
through the mask, a new bitmap is created using the new array of color pixels and returned. This
new bitmap contains the foreground overlaid on the custom background.

Java

private fun overlayForeground(
byteBuffer: ByteBuffer,
maskWidth: Int,
maskHeight: Int,
cameraBitmap: Bitmap,
backgroundPixels: IntArray
): Bitmap {
@ColorInt val colors = IntArray(maskWidth * maskHeight)
val cameraPixels = IntArray(maskWidth * maskHeight)

cameraBitmap.getPixels(cameraPixels, @, maskWidth, @, 0, maskWidth, maskHeight)

for (i in @ until maskWidth * maskHeight) {
val backgroundLikelihood: Float = 1 - byteBuffer.getFloat()

// Apply the virtual background to the color if it's not part of the
foreground

if (backgroundLikelihood > 0.9) {
// Get the corresponding pixel color from the background image
// Set the color in the mask based on the background image pixel color
colors[i] = backgroundPixels.get(i)

} else {
// Get the corresponding pixel color from the camera frame
// Set the color in the mask based on the camera image pixel color
colors[i] = cameraPixels.get(i)

return Bitmap.createBitmap(
colors, maskWidth, maskHeight, Bitmap.Config.ARGB_8888

Feed the New Image to a Custom Image Source

You can then write the new bitmap to the Surface provided by a custom image source. This will
broadcast it to your stage.

Background Replacement 183

Amazon IVS Real-Time Streaming User Guide

Java

resultBitmap = overlayForeground(mask, inputBitmap, mutableBitmap, bgBitmap)
canvas = surface.lockCanvas(null);
canvas.drawBitmap(resultBitmap, 0f, 0f, null)

Here is the complete function for getting the camera frames, passing it to Segmenter, and
overlaying it on the background:

Java

@androidx.annotation.OptIn(androidx.camera.core.ExperimentalGetImage: :class)
private fun startCamera(surface: Surface) {
val cameraProviderFuture = ProcessCameraProvider.getInstance(this)
val imageResource = R.drawable.clouds
val bgBitmap: Bitmap = BitmapFactory.decodeResource(resources, imageResource)
var resultBitmap: Bitmap;

cameraProviderFuture.addListener({
// Used to bind the lifecycle of cameras to the lifecycle owner
val cameraProvider: ProcessCameraProvider = cameraProviderFuture.get()

val imageAnalyzer = ImageAnalysis.Builder()

analysisUseCase = imageAnalyzer
.setTargetResolution(Size(720, 1280))
.setBackpressureStrategy(ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST)
.build()

analysisUseCase!!.setAnalyzer(cameraExecutor) { imageProxy: ImageProxy ->

val medialmage
val tempBitmap
val inputBitmap =

imageProxy.image
imageProxy.toBitmap();

tempBitmap.rotate(imageProxy.imageInfo.rotationDegrees.toFloat())

if (mediaImage != null) {
val inputImage =
InputImage.fromMediaImage(medialmage,
imageProxy.imageInfo.rotationDegrees)

segmenter.process(inputImage)
.addOnSuccessListener { segmentationMask ->
val mask = segmentationMask.buffer
val maskWidth = segmentationMask.width

Background Replacement 184

Amazon IVS Real-Time Streaming User Guide

val maskHeight = segmentationMask.height

val backgroundPixels = IntArray(maskWidth * maskHeight)

bgBitmap.getPixels(backgroundPixels, @, maskWidth, @, 0,
maskWidth, maskHeight)

resultBitmap = overlayForeground(mask, maskWidth,
maskHeight, inputBitmap, backgroundPixels)

canvas = surface.lockCanvas(null);

canvas.drawBitmap(resultBitmap, 0f, @f, null)

surface.unlockCanvasAndPost(canvas);

}

.addOnFailurelListener { exception ->
Log.d("App", exception.message!!)

}
.addOnCompletelListener {

imageProxy.close()

};

val cameraSelector = CameraSelector.DEFAULT_FRONT_CAMERA

try {
// Unbind use cases before rebinding
cameraProvider.unbindAll()

// Bind use cases to camera
cameraProvider.bindToLifecycle(this, cameraSelector, analysisUseCase)

} catch(exc: Exception) {
Log.e(TAG, "Use case binding failed", exc)

}, ContextCompat.getMainExecutor(this))

IVS Broadcast SDK: Mobile Audio Modes (Real-Time Streaming)

Audio quality is an important part of any real-team media experience, and there isn't a one-size-
fits-all audio configuration that works best for every use case. To ensure that your users have the

Mobile Audio Modes 185

Amazon IVS Real-Time Streaming User Guide

best experience when listening to an IVS real-time stream, our mobile SDKs provide several preset
audio configurations, as well as more powerful customizations as needed.

Introduction

The IVS mobile broadcast SDKs provide a StageAudioManager class. This class is designed to
be the single point of contact for controlling the underlying audio modes on both platforms. On
Android, this controls the AudioManager, including the audio mode, audio source, content type,
usage, and communication devices. On iOS, it controls the application AVAudioSession, as well as
whether voiceProcessing is enabled.

Important: Do not interact with AVAudioSession or AudioManager directly while the IVS real-
time broadcast SDK is active. Doing so could result in the loss of audio, or audio being recorded
from or played back on the wrong device.

Before you create your first DeviceDiscovery or Stage object, the StageAudioManager class
must be configured.

Android (Kotlin)

StageAudioManager.getInstance(context).setPreset(StageAudioManager.UseCasePreset.VIDEQO_CHAT)
The default value

val deviceDiscovery = DeviceDiscovery(context)
val stage = Stage(context, token, this)

// Other Stage implementation code

iOS (Swift)

IVSStageAudioManager.sharedInstance().setPreset(.videoChat) // The default value

let deviceDiscovery = IVSDeviceDiscovery()
let stage = try? IVSStage(token: token, strategy: self)

// Other Stage implementation code

Introduction 186

https://developer.android.com/reference/android/media/AudioManager
https://developer.apple.com/documentation/avfaudio/avaudiosession
https://developer.apple.com/documentation/avfaudio/avaudioionode/3152101-voiceprocessingenabled?language=objc

Amazon IVS Real-Time Streaming User Guide

If nothing is set on the StageAudioManager before initialization of a DeviceDiscovery or
Stage instance, the VideoChat preset is applied automatically.

Audio Mode Presets

The real-time broadcast SDK provides three presets, each tailored to common use cases, as
described below. For each preset, we cover five key categories that differentiate the presets from
each other.

The Volume Rocker category refers to the type of volume (media volume or call volume) that is
used or changed via the physical volume rockers on the device. Note that this impacts volume
when switching audio modes. For example, suppose the device volume is set to the maximum
value while using the Video Chat preset. Switching to the Subscribe Only preset causes a different
volume level from the operating system, which could lead to a significant volume change on the
device.

Video Chat

This is the default preset, designed for when the local device is going to have a real-time
conversation with other participants.

Known issue on iOS: Using this preset and not attaching a microphone causes audio to play
through the earpiece instead of the device speaker. Use this preset only in combination with a
microphone.

Category Android i0S

Echo Cancellation Enabled Enabled

Volume Rocker Call Volume Call Volume

Microphone Limited based on the OS. USB Limited based on the OS. USB and
Selection microphones may not be available Bluetooth microphones may not

be available.

Bluetooth headsets that handle
both input and output together
should work; e.g., AirPods.

Audio Mode Presets 187

Amazon IVS

Real-Time Streaming User Guide

Category

Audio Output

Audio Quality

Subscribe Only

Android

Any output device should work.

Medium / Low. It will sound
like a phone call, not like media
playback.

i0oS

Limited based on the OS. Wired
headsets may not be available.

Medium / Low. It will sound
like a phone call, not like media
playback.

This preset is designed for when you plan to subscribe to other publishing participants but not
publish yourself. It focuses on audio quality and supporting all available output devices.

Category
Echo Cancellation
Volume Rocker

Microphone
Selection

Audio Output

Audio Quality

Studio

Android
Disabled
Media Volume

N/A, this preset is not designed
for publishing.

Any output device should work.

High. Any media type should
come through clearly, including
music.

i0S
Disabled
Media Volume

N/A, this preset is not designed
for publishing.

Any output device should work.

High. Any media type should
come through clearly, including
music.

This preset is designed for high quality subscribing while maintaining the ability to publish. It

requires the recording and playback hardware to provide echo cancellation. A use case here would
be using a USB microphone and a wired headset. The SDK will maintain the highest quality audio
while relying on the physical separation of those devices from causing echo.

Audio Mode Presets 188

Amazon IVS Real-Time Streaming User Guide
Category Android i0S
Echo Cancellation Disabled Disabled

Volume Rocker

Microphone
Selection

Audio Output

Audio Quality

Media Volume in most cases.
Call Volume when a Bluetooth
microphone is connected.

Any microphone should work.

Any output device should work.

High. Both sides should be able to
send music and hear it clearly on
the other side.

When a Bluetooth headset is
connected, audio quality will drop
due to Bluetooth SCO mode being
enabled.

Advanced Use Cases

Media Volume

Any microphone should work.

Any output device should work.

High. Both sides should be able to
send music and hear it clearly on
the other side.

When a Bluetooth headset is
connected, audio quality may
drop due to Bluetooth SCO mode
being enabled, depending on the
headset.

Beyond the presets, both the iOS and Android real-time streaming broadcast SDKs allow
configuring the underlying platform audio modes:

« On Android, set the AudioSource, Usage, and ContentType.

e OniOs, use AVAudioSession.Category, AVAudioSession.CategoryOptions, AVAudioSession.Mode,

and the ability to toggle if voice processing is enabled or not while publishing.

Note: When using these audio SDK methods, it is possible to incorrectly configure the underlying

audio session. For example, using the .allowBluetooth option on iOS in combination with the

.playback category creates an invalid audio configuration and the SDK cannot record or play

back audio. These methods are designed to be used only when an application has specific audio-

session requirements that have been validated.

Advanced Use Cases

189

https://developer.android.com/reference/android/media/MediaRecorder.AudioSource
https://developer.android.com/reference/android/media/AudioAttributes#USAGE_ALARM
https://developer.android.com/reference/android/media/AudioAttributes#CONTENT_TYPE_MOVIE
https://developer.apple.com/documentation/avfaudio/avaudiosession/category
https://developer.apple.com/documentation/avfaudio/avaudiosession/categoryoptions
https://developer.apple.com/documentation/avfaudio/avaudiosession/mode
https://developer.apple.com/documentation/avfaudio/avaudioionode/3152101-voiceprocessingenabled?language=objc

Amazon IVS Real-Time Streaming User Guide

Android (Kotlin)

// This would act similar to the Subscribe Only preset, but it uses a different
ContentType.
StageAudioManager.getInstance(context)
.setConfiguration(StageAudioManager.Source.GENERIC,
StageAudioManager.ContentType.MOVIE,
StageAudioManager.Usage.MEDIA);

val stage = Stage(context, token, this)

// Other Stage implementation code

iOS (Swift)

// This would act similar to the Subscribe Only preset, but it uses a different mode
and options.
IVSStageAudioManager.sharedInstance()
.setCategory(.playback,
options: [.duckOthers, .mixWithOthers],
mode: .default)

let stage = try? IVSStage(token: token, strategy: self)

// Other Stage implementation code

iOS Echo Cancellation

Echo cancellation on iOS can be independently controlled via IVSStageAudioManager as well
using its echoCancellationEnabled method. This method controls whether voice processing is
enabled on the input and output nodes of the underlying AVAudioEngine used by the SDK. It is
important to understand the effect of changing this property manually:

« The AVAudioEngine property is honored only if the SDK's microphone is active; this
is necessary due to the iOS requirement that voice processing be enabled on both the
input and output nodes simultaneously. Normally this is done by using the microphone
returned by IVSDeviceDiscovery to create an IVSLocalStageStream to publish.
Alternately, the microphone can be enabled, without being used to publish, by attaching an

Advanced Use Cases 190

https://developer.apple.com/documentation/avfaudio/avaudioionode/3152101-voiceprocessingenabled?language=objc

Amazon IVS Real-Time Streaming User Guide

IVSAudioDeviceStatsCallback to the microphone itself. This alternate approach is useful if
echo cancellation is needed while using a custom audio-source-based microphone instead of the
IVS SDK's microphone.

« Enabling the AVAudioEngine property requires a mode of .videoChat or .voiceChat.
Requesting a different mode causes iOS's underlying audio framework to fight the SDK, causing
audio loss.

« Enabling AVAudioEngine automatically enables the .allowBluetooth option.

Behaviors can differ depending on the device and iOS version.
iOS Custom Audio Sources

Custom audio sources can be used with the SDK by using
IVSDeviceDiscovery.createAudioSource. When connecting to a Stage, the IVS real-

time streaming broadcast SDK still manages an internal AVAudioEngine instance for

audio playback, even if the SDK's microphone is not used. As a result, the values provided to
IVSStageAudioManager must be compatible with the audio being provided by the custom audio
source.

If the custom audio source being used to publish is recording from the microphone but managed
by the host application, the echo-cancellation SDK above will not work unless the SDK-managed
microphone is activated. To work around that requirement, see iOS Echo Cancellation.

Publishing with Bluetooth on Android

The SDK automatically reverts to the VIDEO_CHAT preset on Android when the following
conditions are met:

« The assigned configuration does not use the VOICE_COMMUNICATION usage value.
« A Bluetooth microphone is connected to the device.

« The local participant is publishing to a Stage.

This is a limitation of the Android operating system in regard to how Bluetooth headsets are used
for recording audio.

Advanced Use Cases 191

Amazon IVS Real-Time Streaming User Guide

Integrating with Other SDKs

Because both iOS and Android support only one active audio mode per application, it is common

to run into conflicts if your application uses multiple SDKs that require control of the audio mode.
When you run into these conflicts, there are some common resolution strategies to try, explained

below.

Match Audio Mode Values

Using either the IVS SDK'’s advanced audio-configuration options or the other SDK's functionality,
have the two SDKs align on the underlying values.

Agora
iOS

On i0s, telling the Agora SDK to keep the AVAudioSession active will prevent it from
deactivating while the IVS real-time streaming broadcast SDK is using it.

myRtcEngine.SetParameters("{\'"che.audio.keep.audiosession\":true}");

Android

Avoid calling setEnableSpeakerphone on RtcEngine, and call enablelLocalAudio(false)
while publishing with the IVS real-time streaming broadcast SDK. You can call
enablelLocalAudio(true) again when the IVS SDK is not publishing.

Integrating with Other SDKs 192

Amazon IVS Real-Time Streaming User Guide

Using Amazon EventBridge with IVS Real-Time
Streaming

You can use Amazon EventBridge to monitor your Amazon Interactive Video Service (IVS) streams.

Amazon IVS sends change events about the status of your streams to Amazon EventBridge. All
events that are delivered are valid. However, events are sent on a best-effort basis, which means
there is no guarantee that:

» Events are delivered — A designated event can occur (e.g., a participant published) but it is
possible that Amazon IVS will not send a corresponding event to EventBridge. Amazon IVS tries
to deliver events for several hours before giving up.

» Events that are delivered will arrive in a specified timeframe — You may receive events up to a
few hours old.

» Events are delivered in order — Events may be out of order, especially if they are sent within a
short time of each other. For example, you could see Participant Unpublished before Participant
Published.

While it's rare for events to be missing, late, or out of sequence, you should handle these
possibilities if you write business-critical programs that depend on the order or existence of
notification events.

You can create EventBridge rules for any of the following events.

Event Type Event Sent When ...
IVS Composition State Change Destination An attempt to output to a Destinati
Failure on failed. For example, broadcast

ing to a channel failed because
there was no stream key or another
broadcast was happening.

IVS Composition State Change Destination Output to a Destination successfully
Start started.

IVS Composition State Change Destination End Output to a Destination finished.

193

Amazon IVS Real-Time Streaming User Guide

Event Type Event Sent When ...
IVS Composition State Change Destination Output to a Destination was
Reconnecting interrupted and a reconnect is being
attempted.
IVS Composition State Change Session Start A Composition session was created.

This event fires when a Composition
process pipeline successfully initializ
es. At this point, the Composition
pipeline has successfully subscribe

d to a Stage and is receiving media
and able to compose video.

IVS Composition State Change Session End A Composition session completed.

IVS Composition State Change Session Failure A Composition pipeline failed to
initialize due to Stage resources not
being available, or any other internal

error.
IVS Stage Update Participant A participant begins publishing to a
Published stage.
IVS Stage Update Participant A participant has stopped publishing
Unpublished to a stage.

Creating Amazon EventBridge Rules for Amazon IVS

You can create a rule that triggers on an event emitted by Amazon IVS. Follow the steps in Create
a rule in Amazon EventBridge in the Amazon EventBridge User Guide. When selecting a service,

choose Interactive Video Service (IVS).

Creating Amazon EventBridge Rules for Amazon IVS 194

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-get-started.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-get-started.html

Amazon IVS Real-Time Streaming User Guide

Examples: Composition State Change

Destination Failure: This event is sent when an attempt to output to a Destination failed. For
example, broadcasting to a channel failed because there was no stream key or another broadcast
was happening.

"version": "Q",
"id": "01234567-0123-0123-0123-012345678901",
"detail-type": "IVS Composition State Change",
"source": "aws.ivs",
"account": "aws_account_id",
"time": "2017-06-12T10:23:437",
"region": "us-east-1",
"resources": [
"arn:aws:ivs:us-east-1:aws_account_id:composition/123456789012"
1,
"detail": {
"event_name": "Destination Failure",
"stage_arn": "<stage-arn>",
"id": "<Destination-id>",
"reason": "eg. stream key invalid"

Destination Start: This event is sent when output to a Destination successfully started.

"version": "Q",
"id": "01234567-0123-0123-0123-012345678901",
"detail-type": "IVS Composition State Change",

"source": "aws.ivs",

"account": "aws_account_id",
"time": "2017-06-12T10:23:43Z",
"region": "us-east-1",

"resources": [
"arn:aws:ivs:us-east-1l:aws_account_id:composition/123456789012"

1,

"detail": {
"event_name": "Destination Start",
"stage_arn": "<stage-arn>",
"id": "<destination-id>",

Examples: Composition State Change 195

Amazon IVS Real-Time Streaming User Guide

}

Destination End: This event is sent when output to a Destination finished.

"version": "Q",
"id": "@1234567-0123-0123-0123-012345678901",
"detail-type": "IVS Composition State Change",
"source": "aws.ivs",
"account": "aws_account_id",
"time": "2017-06-12T10:23:437Z",
"region": "us-east-1",
"resources": [
"arn:aws:ivs:us-east-1l:aws_account_id:composition/123456789012"
1,
"detail": {
"event_name": "Destination End",
"stage_arn": "<stage-arn>",
"id": "<Destination-id>",

Destination Reconnecting: This event is sent when output to a Destination was interrupted and a
reconnect is being attempted.

"version": "Q",
"id": "01234567-0123-0123-0123-012345678901",
"detail-type": "IVS Composition State Change",

"source": "aws.ivs",

"account": "aws_account_id",
"time": "2017-06-12T10:23:43Z",
"region": "us-east-1",

"resources": [
"arn:aws:ivs:us-east-1l:aws_account_id:composition/123456789012"

1,

"detail": {
"event_name": "Destination Reconnecting",
"stage_arn": "<stage-arn>",
"id": "<Destination-id>",

}

Examples: Composition State Change 196

Amazon IVS Real-Time Streaming User Guide

}

Session Start: This event is sent when a Composition session was created. This event fires when
a Composition process pipeline successfully initializes. At this point, the Composition pipeline has
successfully subscribed to a Stage and is receiving media and able to compose video.

"version": "Q",
"id": "@1234567-0123-0123-0123-012345678901",
"detail-type": "IVS Composition State Change",
"source": "aws.ivs",
"account": "aws_account_id",
"time": "2017-06-12T10:23:4372",
"region": "us-east-1",
"resources": [
"arn:aws:ivs:us-east-1:aws_account_id:composition/123456789012"
1,
"detail": {
"event_name": "Session Start",
"stage_arn": "<stage-arn>"

Session End: This event is sent when a Composition session completed and all resources were
deleted.

"version": "Q",
"id": "01234567-0123-0123-0123-012345678901",
"detail-type": "IVS Composition State Change",
"source": "aws.ivs",
"account": "aws_account_id",
"time": "2017-06-12T10:23:43Z",
"region": "us-east-1",
"resources": [
"arn:aws:ivs:us-east-1:aws_account_id:composition/123456789012"
1,
"detail": {
"event_name": "Session End",
"stage_arn": "<stage-arn>"

Examples: Composition State Change 197

Amazon IVS Real-Time Streaming User Guide

Session Failure: This event is sent when a Composition pipeline failed to initialize due to Stage
resources not being available, no participants being in the stage, or any other internal error.

"version": "Q@",
"id": "@1234567-0123-0123-0123-012345678901",
"detail-type": "IVS Composition State Change",
"source": "aws.ivs",
"account": "aws_account_id",
"time": "2017-06-12T10:23:437",
"region": "us-east-1",
"resources": [
"arn:aws:ivs:us-east-1l:aws_account_id:composition/123456789012"
1,
"detail": {
"event_name": "Session Failure",
"stage_arn": "<stage-arn>",
"reason": "eg. no participants in the stage"

Examples: Stage Update

Stage update events include an event name (which classifies the event) and metadata about the
event. The metadata includes the participant ID which triggered the event, the associated stage
and session IDs, and the user ID.

Participant Published: This event is sent when a participant begins publishing to a stage.

"version": "Q",
"id": "12345678-1a23-4567-albc-1a2b34567890",
"detail-type": "IVS Stage Update",
"source": "aws.ivs",
"account": "123456789012",
"time": "2020-06-23T20:12:36Z",
"region": "us-west-2",
"resources": [
"arn:aws:ivs:us-west-2:123456789012:stage/AbCdefl1G2hij"
1,
"detail": {
"session_id": "st-1234567890",

Examples: Stage Update 198

Amazon IVS Real-Time Streaming User Guide

"event_name": "Participant Published",
"user_id": "Your User Id",
"participant_id": "xYzlc2d3es4f"

Participant Unpublished: This event is sent when a participant has stopped publishing to a stage.

"version": "Q",

"id": "12345678-1a23-4567-albc-1a2b34567890",

"detail-type": "IVS Stage Update",

"source": "aws.ivs",

"account": "123456789012",

"time": "2020-06-23T20:12:36Z",

"region": "us-west-2",

"resources": [
"arn:aws:ivs:us-west-2:123456789012:stage/AbCdef1G2hij"

1,

"detail": {
"session_id": "st-1234567890",
"event_name": "Participant Unpublished",
"user_id": "Your User Id",
"participant_id": "xYzlc2d3e4f"

Examples: Stage Update 199

Amazon IVS Real-Time Streaming User Guide

Server-Side Composition (Real-Time Streaming)

Server-side composition uses an IVS server to mix audio and video from all stage participants and
then sends this mixed video to an IVS channel (e.g., to reach a larger audience) or an S3 bucket.
Server-side composition is invoked through IVS control-plane endpoints in the stage's home
region.

Broadcasting or recording a stage using server-side composition offers numerous benefits, making
it an attractive choice for users seeking efficient and reliable cloud-based video workflows.

This diagram illustrates how server-side composition works:

@ 1 ~HLS—»
@G Viewer 1

Bob's VS Alice's VS
Device Broadcast SDK | Device Broadcast SDK

Web RTC Web RTC—T c
o B Viewer 2

()¢

Alice's
i IVS Channel e
B
=
};. RTMPS
Composited stream
Alice's Stage of Alice & Bob

Composited
stream

Viewer N

WebRTC——m—»

Server-Side S3 Bucket
Composition

Benefits

Compared to client-side composition, server-side composition has the following benefits:

« Reduced client load — With server-side composition, the burden of processing and combining
audio and video sources is shifted from individual client devices to the server itself. Server-side

Benefits 200

Amazon IVS Real-Time Streaming User Guide

composition eliminates the need for client devices to use their CPU and network resources for
compositing the view and transmitting it to IVS. This means viewers can watch the broadcast
without their devices having to handle resource-intensive tasks, which can lead to improved
battery life and smoother viewing experiences.

« Consistent quality — Server-side composition allows for precise control over the quality,
resolution, and bitrate of the final stream. This ensures a consistent viewing experience for all
viewers, regardless of their individual devices' capabilities.

» Resilience — By centralizing the composition process on the server, the broadcast becomes more
robust. Even if a publisher device experiences technical limitations or fluctuations, the server can
adapt and provide a smoother stream to all audience members.

« Bandwidth efficiency — Since the server handles the composition, stage publishers do not have
to spend extra bandwidth broadcasting the video to IVS.

Alternatively, to broadcast a stage to an IVS channel, you can do the composition client side; see
Enabling Multiple Hosts on an IVS Stream in the IVS Low-Latency Streaming User Guide.

IVS API

Server-side composition uses these key API elements:

« An EncoderConfiguration object allows you to customize the format of the video to be generated
(height, width, bitrate, and other streaming parameters). You can reuse an EncoderConfiguration
every time you call the StartComposition endpoint.

« Composition endpoints track the video composition and output to an IVS channel.

« StorageConfiguration tracks the S3 bucket where compositions are recorded.

To use server-side composition, you need to create an EncoderConfiguration and attach it when
calling the StartComposition endpoint. In this example, the SquareVideo EncoderConfiguration is
used in two Compositions:

IVS API 201

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/multiple-hosts.html

Amazon IVS

Real-Time Streaming User Guide

— ARN: X
Name: SquareVideo
Width: 720

0 Helght 720 ‘

EncoderConfiguration

Bucket Composition A

oo

RTMPS RTMPS
Composited Composited
Alice's stream of stream of Charlie's
IVS Channel Alice and Bab Charlie and Dana IVS Channel

IEE:

Viewer 1 Viewer 2 Viewer N Viewer 1 Viewer 2 Viewer N

IEE: - I

ARN: Y
Name: LandscapeVideo
Width: 720

Height: 576

EncoderConfiguration

A

Composition C
e F Composited

stream of
Emma and Felix

Viewer 1 Viewer 2 Viewer N

For complete information, see IVS Real-Time Streaming API Reference.

Layouts

The StartComposition endpoint offers two layout options: grid and pip (Picture-in-Picture).

Grid Layout

The grid layout arranges stage participants in a grid of equally sized slots. It provides several

customizable properties:

« videoAspectRatio sets the participant display mode to control the aspect ratio of video tiles.

« videoFillMode defines how video content fits within the participant tile.

» gridGap specifies the spacing between participant tiles in pixels.

« omitStoppedVideo allows excluding stopped video streams from the composition.

« featuredParticipantAttribute identifies the featured slot. When this is set, the featured
participant is displayed in a larger slot on the main screen, with other participants shown below

it.

For details on grid layout (including valid values and defaults for all fields), see the

GridConfiguration data type.

Layouts

202

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/index.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_GridConfiguration.html

Amazon IVS Real-Time Streaming User Guide

Featured

Picture-in-Picture (PiP) Layout

The PiP layout enables displaying a participant in an overlay window with configurable size,
position, and behavior. Key properties include:

pipParticipantAttribute specifies the participant for the PiP window.

pipPosition determines the corner position of the PiP window.

pipWidth and pipHeightconfigure the width and height of the PiP window.

pipOffset sets the offset position of the PiP window in pixels from the closest edges.

pipBehavior defines PiP behavior when all other participants have left.

Like the grid layout, the PiP supports featuredParticipantAttribute, omitStoppedVideo,
videoFillMode, and gridGap to further customize the composition.

For details on PiP layout (including valid values and defaults for all fields), see the PipConfiguration
data type.

Layouts 203

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_PipConfiguration.html

Amazon IVS Real-Time Streaming User Guide

Featured

Note: The maximum resolution supported by a stage publisher on server-side composition is
1080p. If a publisher sends video higher than 1080p, the publisher will be rendered as an audio-
only participant.

Important: Ensure your application does not depend on the specific features of the current layout,
such as size and position of tiles. Visual improvements to layouts can be introduced at any time.

Getting Started

Prerequisites

To use server-side composition, you must have a stage with active publishers and use an IVS
channel and/or an S3 bucket as the composition destination. Below, we describe one possible
workflow that uses EventBridge events to start a composition that broadcasts the stage to an IVS
channel when a participant publishes. Alternatively, you can start and stop compositions based
on your own app logic. See Composite Recording for another example which showcases the use of
server-side composition to record a stage directly to an S3 bucket.

1. Create an IVS channel. See Getting Started with Amazon IVS Low-Latency Streaming.

Getting Started 204

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/getting-started.html

Amazon IVS Real-Time Streaming User Guide

2. Create an IVS stage and participant tokens for each publisher.

3. Create an EncoderConfiguration.

4. Join the stage and publish to it. (See the "Publishing and Subscribing" sections of the real-time
streaming broadcast SDK guides: Web, Android, and iOS.)

5. When you receive a Participant Published EventBridge event, call StartComposition with your
desired layout configuration.

6. Wait for a few seconds and see the composited view in the channel playback.

App App
(HLS Viewer) App Backend
|

——Create IVS channel
|
:—Create IVS stage
|
|
:—Create participant tokens

| . .
——Create encoder configuration

Y

Y

Y

Y

Join IVS stage as a l
™ publisher participant™ |
l«—FEventBridge event (IVS Stage Update - Participant Published)——
|
:—Start Composition
|

Y

Y

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| «—EventBridge event (/VS Stream State Change - Stream Start)}——|
|

|

|
— IVS channel playback : -
|

Note: A Composition performs auto-shutdown after 60 seconds of inactivity from publisher
participants on the stage. At that point, the Composition is terminated and transitions to a
STOPPED state. A Composition is automatically deleted after a few minutes in the STOPPED state.

CLI Instructions

Using the AWS CLlI is an advanced option and requires that you first download and configure the
CLI on your machine. For details, see the AWS Command Line Interface User Guide.

Now you can use the CLI to create and manage resources. The Composition endpoints are under
the ivs-realtime namespace.

Create the EncoderConfiguration Resource

An EncoderConfiguration is an object that allows you to customize the format of the
generated video (height, width, bitrate, and other streaming parameters). You can reuse an
EncoderConfiguration every time you call the Composition endpoint, as explained in the next step.

CLI Instructions 205

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_EncoderConfiguration.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/web-publish-subscribe.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/android-publish-subscribe.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/ios-publish-subscribe.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_StartComposition.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

Amazon IVS Real-Time Streaming User Guide

The command below creates an EncoderConfiguration resource that configures server-side video
composition parameters like video bitrate, frame rate and resolution:

aws ivs-realtime create-encoder-configuration --name "MyEncoderConfig" --video
"bitrate=2500000,height=720,width=1280, framerate=30"

The response is:

{

"encoderConfiguration": {
"arn": "arn:aws:ivs:us-east-1:927810967299:encoder-configuration/9W590BY2M8s4",
"name": "MyEncoderConfig",
"tags": {},

"video": {
"bitrate": 2500000,
"framerate": 30,
"height": 720,
"width": 1280

}

}
}

Start a Composition

Using the EncoderConfiguration ARN provided in the response above, create your Composition
resource:

Grid Layout Example

aws ivs-realtime start-composition --stage-arn "arn:aws:ivs:us-
east-1:927810967299:stage/8faHz1SQp@ik" --destinations '[{"channel":

{"channelArn": "arn:aws:ivs:us-east-1:927810967299:channel/
DO1MW4dfMR8r", "encoderConfigurationArn": "arn:aws:ivs:us-
east-1:927810967299:encoder-configuration/9W590BY2M8s4"}}]"' --layout '{"grid":
{"featuredParticipantAttribute":"isFeatured", "videoFillMode":"COVER", "gridGap":0}}"'

PiP Layout Example

aws ivs-realtime start-composition --stage-arn "arn:aws:ivs:us-
east-1:927810967299:stage/8faHz1SQp@ik" --destinations '[{"channel": {"channelArn":
"arn:aws:ivs:us-east-1:927810967299:channel/DO1MW4dfMR8r", "encoderConfigurationArn":

CLI Instructions 206

Amazon IVS Real-Time Streaming User Guide

"arn:aws:ivs:us-east-1:927810967299:encoder-configuration/DEkKQHWPVaOw0"}}]"' --layout
"{"pip":{"pipParticipantAttribute":"isPip", "pipOffset":10,"pipPosition":"TOP_RIGHT"}}"

Note: You can use this tool to more easily generate the --1layout configuration based on your
layout choices.

The response will show that the Composition is created with a STARTING state. Once the
Composition starts publishing the composition, the state transitions to ACTIVE. (You can see the
state by calling the ListCompositions or GetComposition endpoint.)

Once a Composition is ACTIVE, the composite view of the IVS stage is visible on the IVS channel,
using ListCompositions:

aws ivs-realtime list-compositions

The response is:

{
"compositions": [
{
"arn": "arn:aws:ivs:us-east-1:927810967299:composition/YVoaXkKdEdRP",
"destinations": [
{
"id": "bD9rRoN91fHU",
"startTime": "2023-09-21T15:38:39+00:00",
"state": "ACTIVE"
}
1,
"stageArn": "arn:aws:ivs:us-east-1:927810967299:stage/8faHz1SQpoik",
"startTime": "2023-09-21T15:38:37+00:00",
"state": "ACTIVE",
"tags": {3}
}
]
}

Note: You need to have publisher participants actively publishing to the stage to keep the
composition alive. For more information, see the "Publishing and Subscribing" sections of the real-
time streaming broadcast SDK guides: Web, Android, and iOS. You must create a distinct stage
token for each participant.

CLI Instructions 207

https://composition.ivsdemos.com/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/web-publish-subscribe.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/android-publish-subscribe.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/ios-publish-subscribe.html

Amazon IVS Real-Time Streaming User Guide

Enable Screen Share
To use a fixed screen-share layout, follow the steps below.
Create the EncoderConfiguration Resource

The command below creates an EncoderConfiguration resource that configures server-side
composition parameters (video bitrate, framerate, and resolution).

aws ivs-realtime create-encoder-configuration --name "test-ssc-with-screen-share" --
video={bitrate=2000000, framerate=30,height=720,width=1280}

Create a stage participant token with a screen-share attribute. Since we will specify screen-
share as the name of the featured slot, we need to create a stage token with the screen-
share attribute set to true:

aws ivs-realtime create-participant-token --stage-arn "arn:aws:ivs:us-
east-1:123456789012:stage/u90iE29bT7Xp" --attributes screen-share=true

The response is:

"participantToken": {

"attributes": {

"screen-share": "true"

3,

"expirationTime": "2023-08-04T05:26:11+00:00",

"participantId": "E813MFk1PWLF",

"token":

"eyJhbGciOiJLTVMiLCJQeXAi0iJKV1QifQ.eyJ1leHAiOjE20TEXMjY3NzESImlhdCI6GMTY5MTA4MZzU3MSwianRpIjoiRT

}

Start the Composition

To start the composition using the screen-share feature, we use this command:

aws ivs-realtime start-composition --stage-arn "arn:aws:ivs:us-
east-1:927810967299:stage/8faHz1SQp@ik" --destinations '[{"channel": {"channelArn":
"arn:aws:ivs:us-east-1:927810967299:channel/DO1MW4dfMR8r", "encoderConfigurationArn":

Enable Screen Share 208

Amazon IVS Real-Time Streaming User Guide

"arn:aws:ivs:us-east-1:927810967299:encoder-configuration/DEkKQHWPVaOw0"}}]"' --layout
"{"grid":{"featuredParticipantAttribute":"screen-share"}}"'

The response is:

{
"composition" : {
"arn" : "arn:aws:ivs:us-east-1:927810967299:composition/B19tQcXRgtoz",
"destinations" : [{
"configuration" : {
"channel" : {
"channelArn" : "arn:aws:ivs:us-east-1:927810967299:channel/
DO1MW4dfMR8x",
"encoderConfigurationArn" : "arn:aws:ivs:us-east-1:927810967299:encoder-
configuration/DEkQHWPVaOw0"
},
"name" : ""
},
"id" : "SGmgBXTULuXv",
"state" : "STARTING"
1,
"layout" : {
"grid" : {
"featuredParticipantAttribute" : "screen-share",
"gridGap": 2,
"omitStoppedVideo": false,
"videoAspectRatio": "VIDEO"
}
b
"stageArn" : "arn:aws:ivs:us-east-1:927810967299:stage/8faHz1SQpAik",
"startTime" : "2023-09-27T21:32:38Z",
"state" : "STARTING",
"tags" : { }

When the stage participant E13MFk1PWLF joins the stage, that participant’s video will be
displayed in the featured slot, and all other stage publishers will be rendered below the slot:

Enable Screen Share 209

Amazon IVS Real-Time Streaming User Guide

Channel details

Channel name Channel type Video latency

test-channel Standard Low

Playback authorization Auto-record to S3 ARN

Disabled Disabled |

¥ Live stream

(@ Note: Playback will consume resources, and you will incur live video output cost. Learn more [

State Health Duration Viewers

a © Healthy 00:00:08 0

» Timed Metadata

Stop the Composition

To stop a composition at any point, call the StopComposition endpoint:

Enable Screen Share 210

Amazon IVS Real-Time Streaming User Guide

aws ivs-realtime stop-composition --arn arn:aws:ivs:us-east-1:927810967299:composition/
B19tQcXRgtoz

Composition Lifecycle

Use the diagram below to understand the state transitions of a Composition. At a high level, the

life cycle of a Composition is as follows:

1. A Composition resource is created when the user calls the StartComposition endpoint

2.

Once IVS successfully starts the Composition, an “IVS Composition State Change (Session Start)”
EventBridge event is sent. See Using EventBridge with IVS Real-Time Streaming for details about

events.

. Once a Composition is in an active state, the following can happen:

User stops the Composition — If the StopComposition endpoint is called, IVS initiates a
graceful shutdown of the Composition, sending "Destination End" events followed by a
"Session End" event.

Composition performs auto-shutdown — If no participant is actively publishing to the IVS
stage, the Composition is finalized automatically after 60 seconds and EventBridge events are
sent.

Destination failure — If a destination unexpectedly fails (e.g., the IVS channel gets deleted),
the destination transitions to the RECONNECTING state and a “Destination Reconnecting”
event is sent. If recovery is impossible, IVS transitions the destination to the FAILED state
and a “Destination Failure” event is sent. IVS keeps the composition alive if at least one of its
destinations is active.

. Once the composition is in the STOPPED or FAILED state, it is automatically cleaned up after

five minutes. (Then it no longer is retrieved by ListCompositions or GetComposition.)

Composition Lifecycle 211

Amazon IVS Real-Time Streaming User Guide

}

No more active destinations Composition
[EventBridge: Destination End ™ State: Failed

Unable to start

Composition
/StartComposition ~ State: Starting
5 minutes
/StopComposition EventBridge:
EvenBridge: SessionFailure
Destination End Composition
IVS server starts the Composition i » State: Stopping

EventBridge: Session Start

EventBridge: ©

Session End
\J No publisher data
Destination succeeds - received for more - 5 minutes
EventBridge: g:::‘e?(fémg ———~than 60 seconds — Sg:g_'gscmcz d —Clean Composition
Destination Start ’ EventBridge: ’ PP resource
l Y Session End
Destination failure -)
EventBridge: Destination Reconnecting Note: Composition-related EvertBridge
Destination transitions to Reconnecting state -- events have tme IVS Composition
if reconnect succeeds, keep Composition active; State Change" event type. This figure
otherwise, EventBridge: Destination Failure shows only the "Event" field.

Composition Lifecycle 212

Amazon IVS Real-Time Streaming User Guide

Composite Recording (Real-Time Streaming)

This document explains how to use the composite-recording feature within server-side
composition. Composite recording allows you to generate HLS recordings of an IVS stage by
effectively combining all stage publishers into one view using an IVS server, and then saving the
resulting video to an S3 bucket.

Prerequisites

To use composite recording, you must have a stage with active publishers and an S3 bucket to

use as the recording destination. Below, we describe one possible workflow that uses EventBridge
events to record a composition to an S3 bucket. Alternatively, you can start and stop compositions
based on your own app logic.

1. Create an IVS stage and participant tokens for each publisher.

2. Create an EncoderConfiguration (an object representing how the recorded video should be
rendered).

3. Create an S3 bucket and a StorageConfiguration (where the recording contents will be stored).

4. Join the stage and publish to it.

5. When you receive a Participant Published EventBridge event, call StartComposition with an S3
DestinationConfiguration object as the destination

6. After a few seconds, you should be able to see the HLS segments being persisted to your S3
buckets.

Prerequisites 213

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_CreateEncoderConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-bucket.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_CreateStorageConfiguration.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_StartComposition.html

Amazon IVS

Real-Time Streaming User Guide

- App B
(Real-time 9 iI:P .
Streamer) G
I
Buiim ICreate IVS stage
I

A

L—Create EncoderConfiguration

Y

Y

|

|

|

|

} L_Create participant tokens.
| |

|

|

|

|

| . .
:—Create StorageConfiguration

Y

| '
Hoin IVS stage as a publisher participant
1

Lt EventBridge event (VS Stage Update - Participant Published)—

Y

:—StartComposition
|

\J

. EventBridge event (/VS Composition State Change - Session Start)—

le— FventBridge event (/VS Composition State Change - Destination Start)—

A

1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|

Start Writing Recording Assets—i

Note: A composition performs auto-shutdown after 60 seconds of inactivity from publisher
participants on the stage. At that point, the composition is terminated and transitions to a
STOPPED state. A composition is automatically deleted after a few minutes in the STOPPED state.

For details, see Composition Lifecycle in Server-Side Composition.

Composite Recording Example: StartComposition with an S3 Bucket

Destination

The example below shows a typical call to the StartComposition endpoint, specifying S3 as

the only destination for the composition. Once the composition transitions to an ACTIVE

state, video segments and metadata will start to be written to the S3 bucket specified by the

storageConfiguration object. To create compositions with different layouts, see “Layouts” in

Server-Side Composition and the IVS Real-Time Streaming API Reference.

Request

POST /StartComposition HTTP/1.1
Content-type: application/json

"destinations": [

{
"53": {
"encoderConfigurationArns": [

Composite Recording Example: StartComposition with an S3 Bucket Destination

214

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_StartComposition.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_LayoutConfiguration.html

Amazon IVS Real-Time Streaming User Guide

"arn:aws:ivs:ap-northeast-1:927810967299:encoder-configuration/

PAAwglkRtjge"
1,
"storageConfigurationArn": "arn:aws:ivs:ap-
northeast-1:927810967299:storage-configuration/ZBcEbgbE24Cq"
}
}
1,

"idempotencyToken": "db1i782f1g9",
"stageArn": "arn:aws:ivs:ap-northeast-1:927810967299:stage/WyGkzNFGwiwr"

Response

"composition": {
"arn": "arn:aws:ivs:ap-northeast-1:927810967299:composition/s2AdaGUbvQgp",
"destinations": [

{

"configuration": {
"name": "",
"s3": {
"encoderConfigurationArns": [
"arn:aws:ivs:ap-northeast-1:927810967299:encoder-
configuration/PAAwglkRtjge"
1,

"recordingConfiguration": {
"format": "HLS"

},
"storageConfigurationArn": "arn:aws:ivs:ap-
northeast-1:927810967299:storage-configuration/ZBcEbgbE24Cq"
}
},
"detail": {
"s3": {
"recordingPrefix": "MNALAcH9j2EJ]/s2AdaGUbvQgp/2pBRKrNgX1ff/
composite"
}
},
"id": "2pBRKrNgX1ff",
"state": "STARTING"
}
1,

Composite Recording Example: StartComposition with an S3 Bucket Destination 215

Amazon IVS Real-Time Streaming User Guide

"layout": null,

"stageArn": "arn:aws:ivs:ap-northeast-1:927810967299:stage/WyGkzNFGwiwr",
"startTime": "2023-11-01T06:25:37Z2",

"state": "STARTING",

"tags": {}

The recordingPrefix field, present in the StartComposition response can be used to determine
where the recording contents will be stored.

Recording Contents

When the composition transitions to an ACTIVE state, you will start to see HLS video
segments and metadata files being written to the S3 bucket that was provided when calling
StartComposition. These contents are available for post-processing or playback as on-demand
video.

Note that after a composition becomes live, an “IVS Composition State Change” event is emitted,
and it may take a little time before the manifest files and video segments are written. We
recommend that you play back or process recorded streams only after the “IVS Composition State
Change (Session End)” event is received. For details, see Using EventBridge with VS Real-Time

Streaming .

The following is a sample directory structure and contents of a recording of a live IVS session:

MNALAcH9j2E]/s2AdaGUbvQgp/2pBRKrNgX1ff/composite
events
recording-started. json
recording-ended. json
media
hls

The events folder contains the metadata files corresponding to the recording event. JSON
metadata files are generated when recording starts, ends successfully, or ends with failures:

« events/recording-started. json
« events/recording-ended. json

« events/recording-failed. json

Recording Contents 216

Amazon IVS Real-Time Streaming User Guide

A given events folder will contain recording-started. json and either recording-
ended. json or recording-failed. json.

These contain metadata related to the recorded session and its output formats. JSON details are
given below.

The media folder contains the supported media contents. The hls subfolder contains all media
and the manifest files generated during the composition session and is playable with the IVS
player. The HLS manifest is located in the multivariant.m3u8 folder.

Bucket Policy for StorageConfiguration

When a StorageConfiguration object is created, IVS will get access to write content to the specified
S3 bucket. This access is granted by making modifications to the S3 bucket's policy. If the policy for
the bucket is altered in a way that removes IVS's access, ongoing and new recordings will fail.

The example below shows an S3 bucket policy that allows IVS to write to the S3 bucket:

"Version": "2012-10-17",
"Statement": [

{
"Sid": "CompositeWrite-yld212y",
"Effect": "Allow",
"Principal": {
"Service": "ivs-composite.ap-northeast-1.amazonaws.com"
I
"Action": [
"s3:PutObject",
"s3:PutObjectAcl"
1,
"Resource": "arn:aws:s3:::my-s3-bucket/*",
"Condition": {
"StringEquals": {
"s3:x-amz-acl": "bucket-owner-full-control"
},
"Bool": {
"aws:SecureTransport": "true"
}
}
}

Bucket Policy for StorageConfiguration 217

Amazon IVS Real-Time Streaming User Guide

}

JSON Metadata Files

This metadata is in JSON format. It comprises the following information:

Field Type Required Description

stage_arn string Yes ARN of the stage being used as
the source of the composition.

media object Yes Obiject that contains the
enumerated objects of media
content available for this
recording. Valid values: "hls".

hls object Yes Enumerated field that describes
the Apple HLS format output.

duration_ms integer Condition Duration of the recorded HLS
al content in milliseconds. This is

available only when recording
_status is "RECORDIN
G_ENDED" or "RECORDIN
G_ENDED_WITH_FAILURE"
If a failure occurred before any
recording was done, this is 0.

path string Yes Relative path from the S3 prefix
where HLS content is stored.

playlist string Yes Name of the HLS master playlist
file.
renditions object Yes Array of renditions (HLS variant)

of metadata objects. There always
is at least one rendition.

JSON Metadata Files 218

Amazon IVS Real-Time Streaming User Guide

Field Type Required Description

path string Yes Relative path from the S3 prefix
where HLS content is stored for
this rendition.

playlist string Yes Name of the media playlist file for
this rendition.

resolution_height int Condition Pixel resolution height of the
al encoded video. This is available
only when the rendition contains
a video track.

resolution_width int Condition Pixel resolution width of the
al encoded video. This is available
only when the rendition contains
a video track.

recording_ended_at string Condition RFC 3339 UTC timestamp when
al the recording ended. This is
available only when recording
_status is "RECORDIN
G_ENDED" or "RECORDIN
G_ENDED_WITH_FAILURE"

recording_started_at
and recording_ended_at

are timestamps when these
events are generated and may not
exactly match the HLS video-seg
ment timestamps. To accuratel
y determine the duration of a
recording, use the duration_ms
field.

JSON Metadata Files 219

Amazon IVS

Real-Time Streaming User Guide

Field Required

Type

recording_started_at string Condition

al

recording_status string Yes

recording_status_m string Condition

essage al

version string Yes

Example: recording-started.json

"version": "v1",

"stage_arn": "arn:aws:ivs:ap-northeast-1:123456789012:
"recording_started_at": "2023-11-01T06:01:36Z2",
"recording_status": "RECORDING_STARTED",

"media": {
"hls": {
"path": "media/hls",

Description

RFC 3339 UTC timestamp when
the recording started. This is
unavailable when recording
_status is RECORDING
_START_FAILED

See the note above for
recording_ended_at

Status of the recording. Valid
values: "RECORDING_STARTED
", "RECORDING_ENDED" ,
"RECORDING_START_F
AILED" , "RECORDIN
G_ENDED_WITH_FAILURE™"

Descriptive information on the
status. This is available only
when recording_status

is "RECORDING_ENDED"

or "RECORDING_ENDED_W
ITH_FAILURE"

The version of the metadata
schema.

stage/aAbBcCdDeE12",

Example: recording-started.json

220

Amazon IVS Real-Time Streaming User Guide

"playlist": "multivariant.m3u8",
"renditions": [
{

"path": "720p30-abcdeABCDE12",
"playlist": "playlist.m3u8",
"resolution_width": 1280,
"resolution_height": 720

Example: recording-ended.json

"version": "v1",
"stage_arn": "arn:aws:ivs:ap-northeast-1:123456789012:stage/aAbBcCdDeE12",
"recording_started_at": "2023-10-27T17:00:44Z",
"recording_ended_at": "2023-10-27T17:08:24Z",
"recording_status": "RECORDING_ENDED",
"media": {
"hls": {
"duration_ms": 460315,
"path": "media/hls",
"playlist": "multivariant.m3u8",
"renditions": [
{
"path": "720p30-abcdeABCDE12",
"playlist": "playlist.m3u8",
"resolution_width": 1280,
"resolution_height": 720

Example: recording-failed.json

"version": "v1",

Example: recording-ended.json 221

Amazon IVS Real-Time Streaming User Guide

"stage_arn": "arn:aws:ivs:ap-northeast-1:123456789012:stage/aAbBcCdDeE12",
"recording_started_at": "2023-10-27T17:00:447Z",
"recording_ended_at": "2023-10-27T17:08:24Z",
"recording_status": "RECORDING_ENDED_WITH_FAILURE",
"media": {
"hls": {
"duration_ms": 460315,
"path": "media/hls",

"playlist": "multivariant.m3u8",
"renditions": [
{

"path": "720p30-abcdeABCDE12",
"playlist": "playlist.m3u8",
"resolution_width": 1280,
"resolution_height": 720

Playback of Recorded Content from Private Buckets

By default, the recorded content is private; hence, these objects are inaccessible for playback using
the direct S3 URL. If you try to open the HLS multivariate playlist (m3u8 file) for playback using
the IVS player or another player, you will get an error (e.g., “You do not have permission to access
the requested resource”). Instead, you can play back these files with the Amazon CloudFront CDN
(Content Delivery Network).

CloudFront distributions can be configured to serve content from private buckets. Typically this
is preferable to having openly accessible buckets where reads bypass the controls offered by
CloudFront. You can set up your distribution to be served from a private bucket by creating an
origin access control (OAC), which is a special CloudFront user that has read permissions on the
private origin bucket. You can create the OAC after you create your distribution, through the
CloudFront console or API. See Creating a new origin access control in the Amazon CloudFront

Developer Guide.

Playback of Recorded Content from Private Buckets 222

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html#create-oac-overview-s3

Amazon IVS Real-Time Streaming User Guide

Setting Up Playback using CloudFront with CORS Enabled

This example covers how a developer can set up a CloudFront distribution with CORS enabled,
enabling playback of their recordings from any domain. This is especially useful during the
development phase, but you can modify the example below to match your production needs.

Step 1: Create an S3 Bucket

Create an S3 bucket that will be used to store the recordings. Note that the bucket needs to be in
the same region that you use for your IVS workflow.

Add a permissive CORS policy to the bucket:

1. In the AWS console, go to the S3 Bucket Permissions tab.

2. Copy the CORS policy below and paste it under Cross-origin resource sharing (CORS). This will
enable CORS access on the S3 bucket.

"AllowedHeaders": [
i

1,

"AllowedMethods": [
"PUT",

"POST",
"DELETE",
"GET"

1,

"AllowedOrigins": [
Hn

1,

"ExposeHeaders": [
"X-amz-server-side-encryption",
"x-amz-request-id",
"x-amz-id-2"

Setting Up Playback using CloudFront with CORS Enabled 223

Amazon IVS Real-Time Streaming User Guide

Step 2: Create a CloudFront Distribution

See Creating a CloudFront distribution in the CloudFront Developer Guide.

Using the AWS console, enter the following information:

For this field ... Choose this ...
Origin Domain The S3 bucket created in the previous step
Origin Access Origin access control settings (recommended),

using default parameters
Default cache behavior: Viewer Protocol Policy Redirect HTTP to HTTPS

Default cache behavior: Allowed HTTP GET, HEAD and OPTIONS
methods

Default cache behavior: Cache key and origin CachingDisabled policy
requests

Default cache behavior: Origin request policy CORS-S30rigin

Default cache behavior: Response headers SimpleCORS
policy
Web Application Firewall Enable security protections

Then save the CloudFront distribution.
Step 3: Set Up the S3 Bucket Policy

1. Delete any StorageConfiguration that you have set up for the S3 bucket. This will remove any
bucket policies that were automatically added when creating the policy for that bucket.

2. Go to your CloudFront Distribution, make sure all distribution fields are in the states defined in
the previous step, and Copy the Bucket Policy (use the Copy policy button).

3. Go to your S3 bucket. On the Permissions tab, select Edit Bucket Policy and paste the bucket
policy that you copied in the previous step. After this step, the bucket policy should have the
CloudFront policy exclusively.

Setting Up Playback using CloudFront with CORS Enabled 224

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-creating-console.html

Amazon IVS Real-Time Streaming User Guide

4. Create a StorageConfiguration, specifying the S3 bucket.

After the StorageConfiguration is created, you will see two items in the S3 bucket policy, one
allowing CloudFront to read contents and another one allowing IVS to write contents. An example
of a final bucket policy, with CloudFront and IVS access, is shown in Example: S3 Bucket Policy with
CloudFront and IVS Access.

Step 4: Play Back Recordings

After you successfully set up the CloudFront distribution and update the bucket policy, you should
be able to play back recordings using the IVS player:

1. Successfully start a Composition and make sure you have a recording stored on the S3 bucket.

2. After following the Step 1 through Step 3 in this example, the video files should be available
for consumption through the CloudFront URL. Your CloudFront URL is the Distribution domain
name on the Details tab in the Amazon CloudFront console. It should be something like this:

alb23cdef4ghij.cloudfront.net

3. To play the recorded video through the CloudFront distribution, find the object key for your
multivariant.m3u8 file under the s3 bucket. It should be something like this:

FDew6Szq5iTt/9NIpWIHjOwPT/fjFKbylPb3k4/composite/media/hls/
multivariant.m3u8

4. Append the object key to the end of your CloudFront URL. Your final URL will be something like
this:

https://alb23cdef4ghij.cloudfront.net/FDew6Szq5iTt/9NIpWIHjOwWPT/
fjFKbylPb3k4/composite/media/hls/multivariant.m3u8

5. You can now add the final URL to the source attribute of an IVS player to watch the full
recording. To watch the recorded video, you can use the demo in Getting Started in the IVS
Player SDK: Web Guide.

Example: S3 Bucket Policy with CloudFront and IVS Access

The snippet below illustrates an S3 bucket policy that allows CloudFront to read content to
the private bucket and IVS to write content to the bucket. Note: Do not copy and paste the

Example: S3 Bucket Policy with CloudFront and IVS Access 225

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/web-getting-started.html

Amazon IVS

Real-Time Streaming User Guide

snippet below to your own bucket. Your policy should contain the IDs that are relevant to your
CloudFront distribution and StorageConfiguration.

"Ver
"Sta
{

EING4Y

sion": "2012-10-17",
tement": [

"Sid": "CompositeWrite-7eiKaIGkC9DO",
"Effect": "Allow",
"Principal": {
"Service": "ivs-composite.ap-northeast-1.amazonaws.com"
.
"Action": [
"s3:PutObject",
"s3:PutObjectAcl"
1,
"Resource": "arn:aws:s3:::eicheane-test-1026-2-ivs-recordings/*",
"Condition": {
"StringEquals": {
"s3:x-amz-acl": "bucket-owner-full-control"
1,
"Bool": {
"aws:SecureTransport": "true"

"Sid": "AllowCloudFrontServicePrincipal",
"Effect": "Allow",
"Principal": {

"Service": "cloudfront.amazonaws.com"
.
"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::eicheane-test-1026-2-ivs-recordings/*",
"Condition": {

"StringEquals": {

"AWS:SourceArn": "arn:aws:cloudfront::844311324168:distribution/

MW5MN25A"

Example: S3

Bucket Policy with CloudFront and IVS Access

226

Amazon IVS Real-Time Streaming User Guide

Troubleshooting

« The composition is not written to the S3 bucket — Ensure that the S3 bucket and
StorageConfiguration objects are created and in the same region. Also ensure that IVS has access
to the bucket by checking your bucket policy; see Bucket Policy for StorageConfiguration.

» | can't find a composition when performing ListCompositions — Compositions are ephemeral
resources. Once they transition to a final state, they are deleted automatically after a few
minutes.

« My composition stops automatically — A composition will stop automatically if there is no
publisher on the stage for more than 60 seconds.

Known Issue

The media playlist written by composite recording has the tag #EXT-X-PLAYLIST-TYPE:EVENT
while the composition is ongoing. When composition is done, the tag is updated to #EXT-X-
PLAYLIST-TYPE:VOD. For a smooth playback experience, we recommend that you use this playlist
only after the composition finalizes successfully.

Troubleshooting 227

Amazon IVS Real-Time Streaming User Guide

OBS and WHIP Support (Real-Time Streaming)

This document explains how to use WHIP-compatible encoders like OBS to publish to IVS real-
time streaming. WHIP (WebRTC-HTTP Ingestion Protocol) is an IETF draft developed to standardize
WebRTC ingestion.

WHIP enables compatibility with software like OBS, offering an alternative (to the IVS broadcast
SDK) for desktop publishing. More sophisticated streamers familiar with OBS may prefer it for

its advanced production features, such as scene transitions, audio mixing, and overlay graphics.
This provides developers with a versatile option: use the IVS web broadcast SDK for direct browser
publishing or allow streamers to use OBS on their desktop for more powerful tools.

Also, WHIP is beneficial in situations where using the IVS broadcast SDK isn't feasible or preferred.
For example, in setups involving hardware encoders, the IVS broadcast SDK might not be an option.
However, if the encoder supports WHIP, you can still publish directly from the encoder to IVS.

OBS Guide

OBS supports WHIP as of version 30. To start, download OBS v30 or newer: https://
obsproject.com/.

To publish to an IVS stage using OBS via WHIP, follow these steps:

1. Generate a participant token with publish capability. In WHIP terms, a participant token is a
bearer token. By default, participant tokens expire in 12 hours, but you can extend the duration
up to 14 days.

2. Click Settings. In the Stream section of the Settings panel, select WHIP from the Service
dropdown.

3. For the Server, enter https://global.whip.live-video.net.
4. For the Bearer Token, enter the participant token that you generated in step 2.
5. Configure your video settings as you normally would, with a few restrictions:

a. IVS real-time streaming supports input up to 720p at 8.5 Mbps. If you exceed either of these
limits, your stream will be disconnected.

b. We recommend setting your Keyframe Interval in the Output panel to 1s or 2s. A low
keyframe interval allows video playback to start more quickly for viewers. We also

OBS Guide 228

https://www.ietf.org/archive/id/draft-ietf-wish-whip-01.html
https://obsproject.com/
https://obsproject.com/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-distribute-tokens.html

Amazon IVS Real-Time Streaming User Guide

recommend setting CPU Usage Preset to ultrafast and Tune to zerolatency, to enable the
lowest latency.

c. Because OBS does not support simulcast, we recommend keeping your bitrate below 2.5
Mbps. This enables viewers on lower-bandwidth connections to watch.

6. Press Start Streaming.

Note: We are aware of quality issues (like intermittent video freezing) that can occur with WHIP

in OBS. These typically arise when the broadcaster's network is unstable. We recommend testing
WHIP in OBS before using it for production live streams. Lowering your broadcast bitrate also may
help reduce the occurrence of these issues.

OBS Guide 229

Amazon IVS Real-Time Streaming User Guide

Service Quotas (Real-Time Streaming)

The following are service quotas and limits for Amazon Interactive Video Service (IVS) real-time
endpoints, resources, and other operations. Service quotas (also known as limits) are the maximum
number of service resources or operations for your AWS account. That is, these limits are per AWS
account, unless noted otherwise in the table. Also see AWS Service Quotas.

You use an endpoint to connect programmatically to an AWS service. Also see AWS Service
Endpoints.

All quotas are enforced per region.

Service Quota Increases

For quotas that are adjustable, you can request a rate increase through the AWS console. Use the
console to view information about service quotas too.

API call rate quotas are not adjustable.

API Call Rate Quotas

Endpoint Type Endpoint Default
Composition GetComposition 5TPS
Composition ListCompositions 5TPS
Composition StartComposition 5TPS
Composition StopComposition 5TPS
MediaEncoder CreateEncoderConfiguration 5TPS
MediaEncoder DeleteEncoderConfiguration 5TPS
MediaEncoder GetEncoderConfiguration 5 TPS
MediaEncoder ListEncoderConfigurations 5TPS

Service Quota Increases 230

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://console.aws.amazon.com/servicequotas/

Amazon IVS

Real-Time Streaming User Guide

Endpoint Type

Stage

Stage

Stage

Stage

Stage

Stage

Stage

Stage

Stage

Stage

Stage

Stage
StorageConfiguration
StorageConfiguration
StorageConfiguration
StorageConfiguration
Tags

Tags

Tags

Other Quotas

Endpoint
CreateParticipantToken
CreateStage

DeleteStage
DisconnectParticipant
GetParticipant

GetStage

GetStageSession

ListStages

UpdateStage
ListParticipants
ListParticipantEvents
ListStageSessions
CreateStorageConfiguration
DeleteStorageConfiguration
GetStorageConfiguration
ListStorageConfigurations
ListTagsForResource
TagResource

UntagResource

Default

50 TPS

5TPS

5TPS

5TPS

5TPS

5TPS

5TPS

5TPS

5TPS

5TPS

5TPS

5TPS

5TPS

5TPS

5TPS

5TPS

10 TPS

10 TPS

10 TPS

Other Quotas

231

Amazon IVS

Real-Time Streaming User Guide

Resource or Feature

EncoderConfigurations

Composition destinations

Composition: max duration

Compositions

Participant publish or
subscribe duration

Participant publish resolution

Participant download bitrate

Stage participants (publishe
rs)

Stage participants (subscrib
ers)

Default

20

24

24

720p

8.5 Mbps

10,000

Adjustable

Yes

No

No

Yes

No

No

No

No

Yes

Description

Maximum number of
EncoderConfiguration objects
per account.

Maximum number of
Destination objects in a
Composition object.

Maximum amount of time
a composition can exist, in
hours.

Maximum concurrent
Composition objects per
account.

Maximum length of time a
participant can publish or
remain subscribed to a stage,
in hours.

Maximum resolution of video
published by participants.

Maximum aggregate
download bitrate across all of
a participant’s subscriptions.

Maximum number of
participants who can be
publishing to a stage at once.

Maximum number of
participants who can be
subscribing to a stage at once.

Other Quotas

232

Amazon IVS Real-Time Streaming User Guide

Resource or Feature Default Adjustable Description

Stages 100 Yes Maximum number of stages,
per AWS Region.

StorageConfigurations 5 Yes Maximum number of
StorageConfiguration objects
per account.

Other Quotas 233

Amazon IVS Real-Time Streaming User Guide

Real-Time Streaming Optimizations

To ensure that your users have the best experience when streaming and viewing video using
IVS real-time streaming, there are several ways you can improve or optimize for parts of the
experience, using features that we offer today.

Introduction

When optimizing for a user's quality of experience, it's important to consider their desired
experience, which can change depending on the content they are watching and network
conditions.

Throughout this guide we focus on users who are either publishers of streams or subscribers of
streams, and we consider the desired actions and experiences of those users.

Adaptive Streaming: Layered Encoding with Simulcast

This feature is supported only in the following client versions:

¢ i0OS and Android 1.12.0+
e Web 1.5.1+

You must email amazon-ivs-simulcast@amazon.com to opt-in to this feature for your account.
Enabling simulcast via the SDK configuration will have no effect unless you are opted in.

Once you have opted into the feature, when using IVS real-time broadcast SDKs, publishers encode

multiple layers of video and subscribers automatically adapt or change to the quality best suited
for their network. We call this layered encoding with simulcast.

Layered encoding with simulcast is supported on Android and iOS, and on Chrome desktop
browsers (for Windows and macOS). We do not support layered encoding on other browsers.

In the diagram below, the host is sending three video qualities (high, medium, and low). IVS
forwards the highest quality video to each viewer based on available bandwidth; this provides an
optimal experience for each viewer. If Viewer's 1 network connection changes from good to bad,
IVS automatically starts sending Viewer 1 lower quality video, so Viewer 1 can keep watching the
stream uninterrupted (with the best quality possible).

Introduction 234

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#aug23-23_2
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#aug23-23_2

Amazon IVS

Real-Time Streaming User Guide

High Quality Vide Oz
Medium Quality Video

Low Quality Videoﬁ

Host

High Quality Video O ‘4:-‘ High bandwidth
=Bandwidth Match™—2" M °

Viewer 1

O

Medium Quality Video P . .
Bandwidth Match n -~ Medium bandwidth
Viewer 2
Low Quality Video
= Bandwidth Match "E':‘n Low bandwidth
Viewer 3

Default Layers, Qualities, and Framerates

The default qualities and layers provided for mobile and web users are as follows:

Mobile (Android, iOS)
High layer (or custom):

« Max bitrate: 900,000 bps
o Framerate: 15 fps
« Resolution: 360x640

Mid layer: none (not needed,
because the difference between
the high- and low-layer bitrates on
mobile is narrow)

Low layer:

« Max bitrate: 150,000 bps
o Framerate: 15 fps
o Resolution: 180x320

Web (Chrome)
High layer (or custom):

« Max bitrate: 1,700,000 bps
o Framerate: 30 fps
« Resolution: 1280x720

Mid layer:

« Max bitrate: 700,000 bps
o Framerate: 20 fps
« Resolution: 640x360

Low layer:

« Max bitrate: 200,000 bps
o Framerate: 15 fps
« Resolution: 320x180

Default Layers, Qualities, and Framerates

235

Amazon IVS Real-Time Streaming User Guide

Configuring Layered Encoding with Simulcast

To use layered encoding with simulcast, you must have opted into the feature, and enabled this on

the client. If you enable it, you will see an increase in overall bitrate transmitted, with the benefit of
less video freezing.

Android

// Opt-out of Simulcast
StageVideoConfiguration config = new StageVideoConfiguration();
config.simulcast.setEnabled(true);

ImagelLocalStageStream cameraStream = new ImagelLocalStageStream(frontCamera, config);

// Other Stage implementation code
iOS

// Opt-out of Simulcast
let config = IVSLocalStageStreamVideoConfiguration()
config.simulcast.enabled = true

let cameraStream = IVSLocalStageStream(device: camera, configuration: config)

// Other Stage implementation code
Web

// Opt-out of Simulcast
let cameraStream = new LocalStageStream(cameraDevice, {
simulcast: { enabled: true }

1)

// Other Stage implementation code

Streaming Configurations

This section explores other configurations you can make to your video and audio streams.

Configuring Layered Encoding with Simulcast 236

Amazon IVS Real-Time Streaming User Guide

Changing Video Stream Bitrate
To change the bitrate of your video stream, use the following configuration samples.
Android

StageVideoConfiguration config = new StageVideoConfiguration();

// Update Max Bitrate to 1.5mbps
config.setMaxBitrate(1500000);

ImagelLocalStageStream cameraStream = new ImagelLocalStageStream(frontCamera, config);

// Other Stage implementation code

i0S

let config = IVSLocalStageStreamVideoConfiguration();

// Update Max Bitrate to 1.5mbps
try! config.setMaxBitrate(1500000);

let cameraStream = IVSLocalStageStream(device: camera, configuration: config);

// Other Stage implementation code

Web

let cameraStream = new LocalStageStream(camera.getVideoTracks()[@], {
// Update Max Bitrate to 1.5mbps or 1500kbps
maxBitrate: 1500

)

// Other Stage implementation code

Changing Video Stream Framerate
To change the framerate of your video stream, use the following configuration samples.

Android

StageVideoConfiguration config = new StageVideoConfiguration();

Changing Video Stream Bitrate 237

Amazon IVS Real-Time Streaming User Guide

// Update target framerate to 10fps
config.targetFramerate(10);

ImagelLocalStageStream cameraStream = new ImagelocalStageStream(frontCamera, config);

// Other Stage implementation code
ioS
let config = IVSLocalStageStreamVideoConfiguration();

// Update target framerate to 10fps
try! config.targetFramerate(10);

let cameraStream = IVSLocalStageStream(device: camera, configuration: config);

// Other Stage implementation code
Web

// Note: On web it is also recommended to configure the framerate of your device from
userMedia
const camera = await navigator.mediaDevices.getUserMedia({
video: {
frameRate: {
ideal: 10,
max: 10,
},
1,
1)

let cameraStream = new LocalStageStream(camera.getVideoTracks()[Q], {
// Update Max Framerate to 10fps
maxFramerate: 10

1))
// Other Stage implementation code

Optimizing Audio Bitrate and Stereo Support

To change the bitrate and stereo settings of your audio stream, use the following configuration
samples.

Optimizing Audio Bitrate and Stereo Support 238

Amazon IVS Real-Time Streaming User Guide

Web

// Note: Disable autoGainControl, echoCancellation, and noiseSuppression when enabling
stereo.
const camera = await navigator.mediaDevices.getUserMedia({
audio: {
autoGainControl: false,
echoCancellation: false,
noiseSuppression: false
b
});

let audioStream = new LocalStageStream(camera.getAudioTracks()[0], {
// Optional: Update Max Audio Bitrate to 96Kbps. Default is 64Kbps
maxAudioBitrateKbps: 96,

// Signal stereo support. Note requires dual channel input source.
stereo: true

1)

// Other Stage implementation code

Android

StageAudioConfiguration config = new StageAudioConfiguration();

// Update Max Bitrate to 96Kbps. Default is 64Kbps.
config.setMaxBitrate(96000);

AudiolLocalStageStream microphoneStream = new AudiolLocalStageStream(microphone, config);

// Other Stage implementation code

ioS

let config = IVSLocalStageStreamConfiguration();

// Update Max Bitrate to 96Kbps. Default is 64Kbps.
try! config.audio.setMaxBitrate(96000);

let microphoneStream = IVSLocalStageStream(device: microphone, config: config);

Optimizing Audio Bitrate and Stereo Support

239

Amazon IVS

Real-Time Streaming User Guide

// Other Stage implementation code

Suggested Optimizations

Scenario

Streams with text, or slow moving
content, like presentations or slides

Streams with action or a lot of
movement

Streams with conversation or little
movement

Users streaming with limited data

Recommendations

Use layered encoding with simulcast or configure

streams with lower framerate.

Use layered encoding with simulcast.

Use layered encoding with simulcast or choose audio-

only (see "Subscribing to Participants" in the Real-Time
Streaming Broadcast SDK Guides: Web, Android, and
i05).

Use layered encoding with simulcast or, if you want

lower data usage for everyone, configure a lower

framerate and lower the bitrate manually.

Suggested Optimizations

240

Amazon IVS Real-Time Streaming User Guide

Resources and Support (Real-Time Streaming)

Resources

https://ivs.rocks/ is a dedicated site to browse published content (demos, code samples, blog
posts), estimate cost, and experience Amazon IVS through live demos.

Demos

Audio room

i BananaCoconut4
CranberryLycheeO joined Hello!

CranberryLycheeO is on stage CranberryLychee0 joined

* 50 * | 50 x CranberryLycheeO is on stage

. Say something... Say something... Say something...

The IVS real-time streaming demo for iOS and Android shows developers how to use Amazon

IVS to build a compelling real-time, social-user-generated content application. This application
features a scrollable feed of user-generated real-time streams. Users can create video streams and
audio-only rooms. Video-stream guests can join in guest spot or versus (VS) mode. Instructions on
how to deploy the required backend and build the application are available in the following GitHub
repositories:

« i0S: https://github.com/aws-samples/amazon-ivs-real-time-for-ios-demo/

Resources 241

https://ivs.rocks/
https://github.com/aws-samples/amazon-ivs-real-time-for-ios-demo/

Amazon IVS Real-Time Streaming User Guide

o Android: https://github.com/aws-samples/amazon-ivs-real-time-for-android-demo/

» Backend: https://github.com/aws-samples/amazon-ivs-real-time-serverless-demo/

Support

The AWS Support Center offers a range of plans that provide access to tools and expertise to
support your AWS solutions. All support plans provide 24/7 access to customer service. For
technical support and more resources to plan, deploy, and improve your AWS environment, choose
a support plan that best aligns with your AWS use case.

AWS Premium Support is a one-on-one, fast-response support channel to help you build and run
applications on AWS.

AWS re:Post is a community-based Q&A site for developers to discuss technical questions related
to Amazon IVS.

Contact Us has links for nontechnical inquiries about your billing or account. For technical
questions, use the discussion forums or support links above.

Support 242

https://github.com/aws-samples/amazon-ivs-real-time-for-android-demo/
https://github.com/aws-samples/amazon-ivs-real-time-serverless-demo/
https://console.aws.amazon.com/support/home
https://aws.amazon.com/premiumsupport/
https://repost.aws/tags/TAAkUVScqiTFmkt-h6LdmJHw/amazon-interactive-video-service
http://aws.amazon.com/contact-us/

Amazon IVS

Real-Time Streaming User Guide

Glossary

Also see the AWS glossary. In the table below, LL stands for IVS low-latency streaming; RT, IVS real-

time streaming.

Term

AAC

Adaptive bitrate
streaming

Adaptive streaming

Administrative user

ARN

Aspect ratio

Audio mode

Description LL RT Chat

Advanced Audio Coding. AAC is an audio coding v v
standard for lossy digital audio compression.

Designed to be the successor of the MP3 format,

AAC generally achieves higher sound quality than

MP3 at the same bitrate. AAC has been standardi

zed by ISO and IEC as part of the MPEG-2 and

MPEG-4 specifications.

Adaptive Bitrate (ABR) streaming allows the IVS v
player to switch to a lower bitrate when connectio

n quality suffers, and to switch back to a higher
bitrate when connection quality improves.

See Layered encoding with simulcast. v

An AWS user with administrative access to v v v
resources and services available in an AWS

account. See Terminology in AWS Setup User

Guide.

Amazon Resource Name, a unique identifier for an v v v
AWS resource. Specific ARN formats depend on
the resource type. For ARN formats used by IVS

resources, see in Service Authorization Reference.

Describes the ratio of frame width to frame v v
height. For example, 16:9 is the aspect ratio that
corresponds to the Full HD or 1080p resolution.

A preset or custom audio configuration optimized v
for different types of mobile device users and the

243

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html
https://docs.aws.amazon.com/SetUp/latest/UserGuide/setup-terminology.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

equipment that they use. See VS Broadcast SDK:
Mobile Audio Modes (Real-Time Streaming).

AVC, H.264, Advanced Video Coding, also referred to as H.264 v v
MPEG-4 Part 10 or MPEG-4 Part 10, a video compression standard
for lossy digital video compression.

Background A type of camera filter that enables live-stre v
replacement am creators to change their backgrounds. See
Background Replacement in IVS Broadcast SDK:

Third-Party Camera Filters (Real-Time Streaming).

Bitrate A streaming metric for the number of bits v v
transmitted or received per second.

Broadcast, Other terms for stream, streamer. v
broadcaster
Buffering A condition that occurs when the playback device v v

is unable to download the content before the
content is supposed to be played. Buffering can
manifest in several ways: content may randomly
stop and start (also known as stuttering), content
may stop for long periods of time (also known as
freezing), or the IVS player may pause playback.

Byte-range playlist A more granular playlist than the standard HLS v
playlist. The standard HLS playlist is made up of
10-second media files. With a byte-range playlist,
the segment duration is the same as the keyframe
interval configured for the stream.

Byte-range playlist is available only for the
broadcasts that were auto-recorded to an S3
bucket. It is created in addition to the HLS playlist.
See Byte-Range Playlists in Auto-Record to

Amazon S3 (Low-Latency Streaming).

244

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-mobile-audio-modes.html#modes
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-mobile-audio-modes.html#modes
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-3p-camera-filters-background-replacement.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-3p-camera-filters-background-replacement.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/record-to-s3.html#r2s3-byte-range-playlists

Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

CBR Constant Bitrate, a rate-control method for v v
encoders that maintains a consistent bitrate
throughout the entire playback of a video,
regardless of what is happening during the
broadcast. Lulls in the action may be padded to
achieve the desired bitrate, and peaks may be
quantized by adjusting the quality of encoding to
match the target bitrate. We strongly recommend
using CBR instead of VBR.

CDN Content Delivery Network or Content Distribut v
ion Network, a geographically distributed solution
that optimizes delivery of content such as
streaming video by bringing it closer to where
users are located.

Channel An IVS resource that stores configuration for v
streaming, including an ingest server, a stream

key, a playback URL, and recording options.

Streamers use the stream key associated with

a channel to start a broadcast. All metrics and
events generated during a broadcast are associate
d with a channel resource.

Channel type Determines the allowable resolution and frame v

rate for the channel. See Channel Types in the IVS

Low-Latency Streaming API Reference.

Chat logging An advanced option that can be enabled by v
associating a logging configuration with a chat
room.

245

https://docs.aws.amazon.com/ivs/latest/LowLatencyAPIReference/channel-types.html

Amazon IVS

Real-Time Streaming User Guide

Term

Chat room

Client-side
composition

CloudFront

CloudTrail

CloudWatch

Composition

Composition
pipeline

Description LL RT Chat

An IVS resource that stores configuration for a v
chat session, including optional features such as

Message Review Handler and Chat Logging. See

Step 2: Create a Chat Room in Getting Started with

IVS Chat.

Uses a host device to mix audio and video streams v v
from stage participants and then sends them

as a composite stream to an IVS channel. This

allows more control over the look of the compositi

on at the cost of higher utilization of client

resources and a higher risk of a stage or a host

issue impacting the viewers.

Also see server-side composition.

A CDN service provided by Amazon. v

An AWS service for collecting, monitoring, v v v
analyzing, and retaining events and account

activity from AWS and external sources. See

Logging IVS API Calls with AWS CloudTrail.

An AWS service for monitoring applications, v v v
responding to performance changes, optimizing

resource use, and providing insights into operation

al health. You can use CloudWatch to monitor IVS

metrics; see Monitoring IVS Real-Time Streaming

and Monitoring IVS Low-Latency Streaming.

The process of combining audio and video streams v v
from multiple sources into a single stream.

A sequence of processing steps required to v v
combine multiple streams and encode the
resulting stream.

246

https://docs.aws.amazon.com/ivs/latest/ChatUserGuide/getting-started-chat-create-room.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/cloudtrail.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/stage-health.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/stage-health.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/stream-health.html

Amazon IVS Real-Time Streaming User Guide
Term Description LL RT Chat
Compression Encoding of information using fewer bits than the v v

Control plane

CORS

Custom image
source

Data plane

Encoder, encoding

original representation. Any particular compressi
on is either lossless or lossy. Lossless compressi
on reduces bits by identifying and eliminating
statistical redundancy. No information is lost in
lossless compression. Lossy compression reduces
bits by removing unnecessary or less important
information.

Stores information about IVS resources such as v v v
channels, stages, or chat rooms and provides

interfaces for creating and managing these
resources. It is regional (based on AWS regions).

Cross-Origin Resource Sharing, an AWS feature v
that allows client web applications that are loaded

in one domain to interact with resources such as

S3 buckets in a different domain. Access can be
configured based on headers, HTTP methods, and

origin domains. See Using cross-origin resource

sharing (CORS) - Amazon Simple Storage Service

in Amazon Simple Storage Service User Guide.

An interface provided by the IVS Broadcast SDK v v
that allows an application to provide its own

image input instead of being limited to the preset

cameras.

The infrastructure that carries data from ingest v v v
to egress. It operates based on the configuration
managed in the control plane and is not restricted

to an AWS region.

The process of converting video and audio content v v
into a digital format, suitable for streaming.
Encoding can be hardware or software based.

247

https://docs.aws.amazon.com/AmazonS3/latest/userguide/cors.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/cors.html

Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

Event An automatic notification published by IVS to the v v v
AmazonEventBridge monitoring service. An event
represents a state or health change of a streaming
resource such as a stage or a composition pipeline.

See Using Amazon EventBridge with IVS Low-

Latency Streaming and Using Amazon EventBrid

ge with IVS Real-Time Streaming.

FFmpeg A free and open-source software project consistin v
g of a suite of libraries and programs for handling
video and audio files and streams. FFmpeg
provides a cross-platform solution to record,
convert and stream audio and video.

Fragmented stream Created when a broadcast disconnects and then v
reconnects within the interval specified in the
channel's recording configuration. The resulting
multiple streams are considered a single broadcast
and merged together into a single recorded
stream. See Merge Fragmented Streams in Auto-

Record to Amazon S3 (Low-Latency Streaming).

Frame rate A streaming metric for the number of video v v
frames transmitted or received per second.

HLS HTTP Live Streaming (HLS), an HTTP-based v
adaptive bitrate streaming communications

protocol used to deliver IVS streams to viewers.

HLS playlist A list of media segments that make up a stream. v
Standard HLS playlists are made up of 10-second
media files. HLS also supports more granular
byte-range playlists.

Host A real-time event participant who sends video v
and/or audio to the stage.

248

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/eventbridge.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/eventbridge.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/eventbridge.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/eventbridge.html
https://www.ffmpeg.org/
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/record-to-s3.html#r2s3-merge-fragmented-streams

Amazon IVS Real-Time Streaming User Guide
Term Description LL RT Chat
IAM Identity and Access Management, an AWS service v v v

that allows users to securely manage identitie
s and access to AWS services and resources,
including IVS.
Ingest IVS process for receiving video streams from a v v

Ingest server

Interlaced video

JSON

host or broadcaster for processing or delivery to
viewers or other participants.

Receives video streams and delivers them to a v
transcoding system, where streams are transmuxe
d or transcoded into HLS for delivery to viewers.

Ingest servers are specific IVS components
that receive streams for channels, along with
an ingestion protocol (RTMP, RTMPS). See the
information on creating a channel in Getting
Started with IVS Low-Latency Streaming.

Transmits and displays only odd or even lines of v v
subsequent frames to create perceived doubling

of frame rate without consuming extra bandwidth.

We do not recommend using interlaced video due

to the video quality concerns.

JavaScript Object Notation, an open-standard file v v v
format that uses human-readable text to transmit

data objects consisting of attribute-value pairs

and array data types or other serializable values.

249

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/getting-started.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/getting-started.html

Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat
Keyframe, delta The keyframe (also referred to as intra-cod v v

frame, keyframe ed or i-frame) is a full frame of the image in a

interval video. Subsequent frames, the delta frames (also

referred to as predicted or p-frames), only contain
the information that has changed. Keyframes will
appear multiple times within a stream, depending
on the keyframe interval defined in the encoder.

Lambda An AWS service for running code (referred to v v v
as Lambda functions) without provisioning any
server infrastructure. Lambda functions can run
in response to events and invocation requests, or
based on a schedule. For example, IVS Chat uses
Lambda functions to enable message review for a

chat room.
Latency, glass-to- A delay in data transfer. IVS defines latency ranges v v
glass latency as:

« Low latency: under 3 sec

« Real-time latency: under 300 ms

Glass-to-glass latency refers to the delay from
when a camera captures a live stream to when the
stream appears on a viewer's screen.

Layered encoding Enables simultaneous encoding and publishing v
with simulcast of multiple video streams with different quality
levels. See Adaptive Streaming: Layered Encoding

with Simulcast in Real-Time Streaming Optimizat

ions.

250

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/real-time-streaming-optimization.html#real-time-streaming-optimization-adaptive
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/real-time-streaming-optimization.html#real-time-streaming-optimization-adaptive

Amazon IVS

Real-Time Streaming User Guide

Term

Message review
handler

Mixer

Multi-host
streaming

Multivariant playlist

OAC

Description LL RT Chat

Enables IVS Chat customers to automatically v
review/filter user chat messages before they

are delivered to the chat room. It is enabled by

associating a Lambda function with a chat room.

See Creating a Lambda Function in Chat Message

Review Handler.

A feature of the IVS Mobile Broadcast SDKs v
that takes multiple audio and video sources and
generates a single output. It supports managemen

t of on-screen video and audio elements represent

ing sources such as cameras, microphones, screen
captures, and audio and video generated by the
application. The output can then be streamed

to IVS. See Configuring a Broadcast Session for

Mixing in IVS Broadcast SDK: Mixer Guide (Low-
Latency Streaming).

Combines streams from multiple hosts into a v
single stream. This can be accomplished using
either client-side or server-side composition.

Multi-host streaming enables scenarios such as
inviting viewers onto a stage for Q& A, competiti
ons between hosts, video chat, and hosts
conversing with each other in front of a large

audience.

An index of all the variant streams available for a v
broadcast.

Origin Access Control, a mechanism for restricti v

ng access to an S3 bucket, so that content such
as a recorded stream can be served only through
CloudFront CDN.

251

https://docs.aws.amazon.com/ivs/latest/ChatUserGuide/chat-message-review-handler.html#create-lambda-function
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/broadcast-mixer.html#broadcast-mixer-configure-session
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/broadcast-mixer.html#broadcast-mixer-configure-session

Amazon IVS

Real-Time Streaming User Guide

Term

OBS

Participant

Participant token

Playback token,
playback key pair

Playback URL

Description

Open Broadcaster Software, free and open source
software for video recording and live streaming

. OBS offers an alternative (to the IVS broadcast
SDK) for desktop publishing. More sophisticated
streamers familiar with OBS may prefer it for

its advanced production features, such as scene
transitions, audio mixing, and overlay graphics.

A real-time user connected to a stage as a host or
viewer.

Authenticates a real-time event participant when
they join a stage. A participant token also controls
whether a participant can send video to the stage.

An authorization mechanism that allows
customers to restrict video playback on private
channels. Playback tokens are generated from a
playback key pair.

A playback key pair is the public-private pair
of keys used to sign and validate the viewer
authorization token for playback. See Create
or Import a Playback Key in Setting up Private

Channels and see the Playback Key Pair endpoints
in the IVS Low-Latency API Reference.

Identifies the address a viewer uses to start
playback for a specific channel. This address can
be used globally. IVS automatically selects the
best location on the IVS global content delivery

network for delivering the video to each viewer.
See the information on creating a channel in
Getting Started with IVS Low-Latency Streaming.

LL

v

RT

v

Chat

252

https://obsproject.com/
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/private-channels-create-key.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/private-channels-create-key.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyAPIReference/Welcome.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/getting-started.html

Amazon IVS Real-Time Streaming User Guide
Term Description LL RT Chat
Private channel Allows customers to restrict access to their v

Progressive video

Quotas

Regions

Resolution

streams using an authorization mechanism based
on playback tokens. See Workflow for Private

Channels in Setting up Private Channels.

Transmits and displays all lines of each frame in v v
sequence. We recommend using progressive video
during all stages of a broadcast.

The maximum numbers of IVS service resources v v v
or operations for your AWS account. That is,

these limits are per AWS account, unless noted

otherwise. All quotas are enforced per region. See

Amazon Interactive Video Service endpoints and

quotas in AWS General Reference Guide.

Provide access to AWS services that physicall v v v
y reside in a specific geographic area. Regions

provide fault tolerance, stability, and resilience,

and can also reduce latency. With Regions, you can

create redundant resources that remain available

and unaffected by a regional outage.

Most AWS service requests are associated with

a particular geographic region. The resources
that you create in one region do not exist in any
other region unless you explicitly use a replication
feature offered by an AWS service. For example,
Amazon S3 supports cross-region replication.
Some services, such as IAM, do not have cross-reg
ional resources.

Describes the number of pixels in a single video v v
frame, for example, Full HD or 1080p defines a
frame with 1920x1080 pixels.

253

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/private-channels-workflow.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/private-channels-workflow.html
https://docs.aws.amazon.com/general/latest/gr/ivs.html
https://docs.aws.amazon.com/general/latest/gr/ivs.html

Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

Root user The owner of an AWS account. The root user has v v v
complete access to all AWS services and resources
in the AWS account.

RTMP, RTMPS Real-Time Messaging Protocol, an industry v v
standard for transmitting audio, video, and data
over a network. RTMPS is the secure version of
RTMP, running over a Transport Layer Security
(TLS/SSL) connection.

S3 bucket A collection of objects stored in Amazon S3. Many v
policies, including access and replication, are
defined at the bucket level and apply to all objects
in the bucket. For example, an IVS broadcast is
stored as multiple objects in an S3 bucket.

SDK Software Development Kit, a collection of libraries v v v
for the developers building applications with IVS.

Selfie segmentation Enables replacing the background in a live stream, v
using a client-specific solution that accepts a
camera image as input and returns a mask that
provides a confidence score for each pixel of the
image, indicating whether it is in the foreground
or the background. See Background Replacement
in IVS Broadcast SDK: Third-Party Camera Filters
(Real-Time Streaming).

Semantic versionin A version format in the form of Major.Minor.Patch. v v v
g Bug fixes not affecting the APl increment the

patch version, backward compatible API additions

/changes increment the minor version, and

backward incompatible API changes increment the

major version.

254

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-3p-camera-filters-background-replacement.html

Amazon IVS Real-Time Streaming User Guide
Term Description LL RT Chat
Server-side Uses an IVS server to mix audio and video from v

composition

Service quotas

Service-linked role

Stage

Stage session

Stream

stage participants and then sends this mixed video
to an IVS channel to reach a larger audience or

to store it in an S3 bucket. Server-side compositi
on reduces client load, improves resilience of

the broadcast, and enables more efficient use of
bandwidth.

Also see client-side composition.

An AWS service that helps you manage your v v v
quotas for many AWS services from one location.

Along with looking up the quota values, you can

also request a quota increase from the Service

Quotas console.

A unique type of IAM role that is linked directly to v
an AWS service. Service-linked roles are automatic

ally created by IVS and include all the permissio

ns that the service requires to call other AWS

services on your behalf, for example, to access an

S3 bucket. See Using Service-Linked Roles for IVS

in IVS Security.

An IVS resource that represents a virtual space v
where real-time event participants can exchange

video in real time. See Create a Stage in Getting

Started with IVS Real-Time Streaming.

Begins when the first participant joins a stage and v
ends a few minutes after the last participant stops

publishing to the stage. A long-lived stage may

have multiple sessions over its lifetime.

Data representing video or audio content being v v
sent continuously from a source to a destination.

255

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/security-service-linked-roles.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-create-stage.html

Amazon IVS

Real-Time Streaming User Guide

Term

Stream key

Stream starvation

Streamer

Subscriber

Tag

Description

An identifier assigned by IVS when you create a
channel; it is used to authorize streaming to the
channel. Treat the stream key like a secret, since
anyone with it can stream to the channel. See
Getting Started with IVS Low-Latency Streaming.

A delay or halt in stream delivery to IVS. It

occurs when IVS does not receive the expected
amount of bits that the encoding device advertise
d it would send over a certain timeframe. An
occurrence of stream starvation results in a stream
starvation event.

From a viewer's perspective, stream starvatio

n may appear as video that lags, buffers, or
freezes. Stream starvation can be brief (less than
5 seconds) or long (several minutes), depending
on the specific situation that resulted in stream
starvation. See What is Stream Starvation in
Troubleshooting FAQ.

A person or a device sending a video or audio
stream to IVS.

A real-time event participant who receives video
and/or audio of the hosts. See What is IVS Real-
Time Streaming.

A metadata label that you assign to an AWS
resource. Tags can help you identify and organize
your AWS resources. On the IVS documentation
landing page, see “Tagging” in any of the IVS API
documentation (for real-time streaming, low-laten

cy streaming, or chat).

LL

v

Chat

256

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/getting-started.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/troubleshooting-faqs.html#broadcast-encode-stream-starvation
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/what-is.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/what-is.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/

Amazon IVS

Real-Time Streaming User Guide

Term

Third-party camera

filters

Thumbnail

Timed metadata

Transcoding

Description

Software components that can be integrated with
the IVS Broadcast SDK to allow an application

to process images before providing them to the
Broadcast SDK as a custom image source. A third-

party camera filter may process images from the
camera, apply a filter effect, etc.

A reduced-size image taken from a stream. By
default, thumbnails are generated every 60
seconds, but a shorter interval can be configure
d. Thumbnail resolution depends on the channel
type. See Recording Contents in Auto-Record to

Amazon S3 (Low-Latency Streaming).

Metadata tied to specific timestamps within a
stream. It can be added programmatically using
the IVS API and becomes associated with specific
frames. This ensures that all viewers receive the
metadata at the same point relative to the stream.

Timed metadata can be used to trigger actions on
the client such as updating team statistics during
a sporting event. See Embedding Metadata within

a Video Stream.

Converts video and audio from one format to
another. An incoming stream may be transcode
d to a different format at multiple bitrates and
resolutions, to support a range of playback
devices and network conditions.

LL

v

RT

v

Chat

257

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/record-to-s3.html#r2s3-contents
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/metadata.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/metadata.html

Amazon IVS

Real-Time Streaming User Guide

Term

Transmuxing

Variant streams

VBR

Description LL RT Chat

A simple repackaging of an ingested stream to v v
IVS, with no re-encoding of the video stream.

“Transmux"” is short for transcode multiplexing,

a process that changes the format of an audio

and/or video file while keeping some or all of

the original streams. Transmuxing converts to a

different container format without changing the

file contents. Distinguished from transcoding.

A set of encodings of the same broadcast in v
several distinct quality levels. Each variant stream

is encoded as a separate HLS playlist. An index of

the available variant streams is referred to as a
multivariant playlist.

After the IVS player receives a multivariant playlist
from IVS, it can then choose between the variant
streams during playback, changing back and forth
seamlessly as network conditions change.

Variable Bitrate, a rate-control method for v v
encoders that uses a dynamic bitrate that changes

throughout playback, depending on the level of

detail needed. We strongly recommend against

using VBR due to video-quality concerns; use CBR

instead.

258

Amazon IVS

Real-Time Streaming User Guide

Term

View

Viewer

WebRTC

Description LL RT Chat

A unique viewing session which is actively v
downloading or playing video. Views are the basis
for the concurrent views quota.

A view starts when a viewing session begins
video playback. A view ends when a viewing
session stops video playback. Playback is the sole
indicator of viewership; engagement heuristic

s such as audio levels, browser tab focus, and
video quality are not considered. When counting
views, IVS does not consider the legitimacy of
individual viewers or try to deduplicate localized
viewership, such as multiple video players on

a single machine. See Other Quotas in Service

Quotas (Low-Latency Streaming).
A person receiving a stream from IVS. v

Web Real-Time Communication, an open-sour v v
ce project providing web browsers and mobile

applications with real-time communication. It

allows audio and video communication to work

inside web pages by allowing direct peer-to-peer
communication, eliminating the need to install

plugins or download native apps.

The technologies behind WebRTC are implement
ed as an open web standard and are available as
regular JavaScript APIs in all major browsers or as
libraries for native clients, like Android and iOS.

259

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/service-quotas.html#quotas-other
https://webrtc.org/

Amazon IVS

Real-Time Streaming User Guide

Term

WHIP

WSS

Description LL RT Chat

WebRTC-HTTP Ingestion Protocol, an HTTP based v
protocol that allows WebRTC based ingestion of

content into streaming services and/or CDNs.

WHIP is an IETF draft developed to standardize

WebRTC ingestion.

WHIP enables compatibility with software like
OBS, offering an alternative (to the IVS broadcast
SDK) for desktop publishing. More sophisticated
streamers familiar with OBS may prefer it for

its advanced production features, such as scene
transitions, audio mixing, and overlay graphics

WHIP is also beneficial in situations where using
the IVS broadcast SDK isn't feasible or preferred
. For example, in setups involving hardware
encoders, the IVS broadcast SDK might not be an
option. However, if the encoder supports WHIP,
you can still publish directly from the encoder to
IVS.

See OBS and WHIP Support.

WebSocket Secure, a protocol for establishing v
WebSockets over an encrypted TLS connection. It

is being used for connecting to IVS Chat endpoints

. See Step 4: Send and Receive Your First Message

in Getting Started with IVS Chat.

260

https://www.ietf.org/archive/id/draft-ietf-wish-whip-01.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/obs-whip-support.html
https://docs.aws.amazon.com/ivs/latest/ChatUserGuide/getting-started-chat-send-and-receive.html

Amazon IVS

Real-Time Streaming User Guide

Document History (Real-Time Streaming)

Real-Time Streaming User Guide Changes

Change

Broadcast SDK: Web 1.11.0

Broadcast SDK: Web 1.10.1

Broadcast SDK: Android
1.15.2,i0S 1.15.2

Broadcast SDK: iOS Guide

Broadcast SDK: Android
1.17.0,i0S 1.17.0

Description

Updated version number

and artifact links on the IVS
documentation landing page
and in the real-time-streamin
g broadcast SDK guide: Web.
Also see the Release Notes.

Updated version number

and artifact links on the IVS
documentation landing page
and in the real-time-streamin
g broadcast SDK guide: Web.
Also see the Release Notes.

Updated version number

and artifact links on the IVS
documentation landing page
and in the real-time-streamin
g broadcast SDK guides:
Android and iOS. Also see the
Release Notes.

In Publish a Media Stream, we
updated the code example.

Updated version number
and artifact links for the new
release, in the real-time-
streaming broadcast SDK
guides: Android and iOS. On
the Amazon IVS documenta

Date

May 6, 2024

April 30, 2024

April 30, 2024

April 26, 2024

April 22, 2024

Real-Time Streaming User Guide Changes

261

https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#may06-24-broadcast-web-rt
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#apr30-24-broadcast-web-1101-rt
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#apr30-24-broadcast-1152-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/ios-publish-subscribe.html#ios-publish-subscribe-publish-stream
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/

Amazon IVS

Real-Time Streaming User Guide

Server-side composition

OBS and WHIP Support

Broadcast SDK: Android
1.16.0, iOS 1.16.0, Web 1.10.0

tion landing page, updated
the broadcast SDK Reference
links to point to the new
version. Also see the Amazon
IVS Release Notes for this
release.

In SSC, made various changes,
especially in "Layout," to
explain PiP and grid layouts.

In the Web Broadcast SDK
Guide, added Server-Side
Rendering Support.

Added a note about quality
issues (like intermittent video
freezing) that can occur with
WHIP in OBS.

Updated version number

and artifact links for the new
release, in the real-time-
streaming broadcast SDK
guides: Android, iOS, and
Web. On the Amazon IVS
documentation landing page,
updated the broadcast SDK
Reference links to point to
the new version. Also see the

Amazon IVS Release Notes for

this release.

March 26, 2024

March 22, 2024

March 21, 2024

Real-Time Streaming User Guide Changes

262

https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#apr22-24-broadcast-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/server-side-composition.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web-getting-started.html#broadcast-web-getting-started-imports-server-side-rendering
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web-getting-started.html#broadcast-web-getting-started-imports-server-side-rendering
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#mar21-24-broadcast-rt

Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Android Updated version number March 13, 2024
1.15.1, i0S 1.15.1 and artifact links for the new

release, in the real-time-

streaming broadcast SDK

guides: Android and iOS. On

the Amazon IVS documenta

tion landing page, updated
the broadcast SDK Reference
links to point to the new
version. Also see the Amazon
IVS Release Notes for this

release.
Broadcast SDK: Mobile Audio In "Audio Mode Presets," March 1, 2024
Modes added information on

the Volume Rocker preset
category and an iOS known
issue with the Video Chat
preset. In "Advanced Use
Cases," added a note on
avoiding incorrect configura
tions, and added sections on
"iOS Echo Cancellation" and
"iOS Custom Audio Sources."

Real-Time Streaming User Guide Changes 263

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#mar13-24-broadcast-rt

Amazon IVS

Real-Time Streaming User Guide

Broadcast SDK: Android
1.15.0, iOS 1.15.0, Web 1.9.0

OBS and WHIP Support

Updated version number

and artifact links for the new
release, in the real-time-
streaming broadcast SDK
guides: Android, iOS, and
Web. On the Amazon IVS
documentation landing page,
updated the broadcast SDK
Reference links to point to
the new version. Also see the

Amazon IVS Release Notes for

this release.

Added a new page. This
document explains how

to use WHIP-compatible
encoders like OBS to publish
to IVS real-time streaming

. WHIP (WebRTC-HTTP
Ingestion Protocol) is an IETF
draft developed to standardi
ze WebRTC ingestion.

February 22, 2024

February 6, 2024

Real-Time Streaming User Guide Changes

264

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#feb22-24-rt

Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Android Updated version number February 1, 2024
1.14.1, i0S 1.14.1, Web 1.8.0 and artifact links for the new

release, in the real-time-

streaming broadcast SDK

guides: Android, iOS, and

Web. On the Amazon IVS

documentation landing page,

updated the broadcast SDK

Reference links to point to

the new version. Also see the

Amazon IVS Release Notes for

this release.

For the Android Guide,
we added a new Known
Issue (video size less than
176x176).

For the Web Guide, we added
a new Known Issue. The
workaround is constraining
video resolution to 720p
when invoking getUserMe
dia orgetDisplayMedia .

In Real-Time Streaming
Optimizations we updated
Configuring Layered Encoding

with Simulcast; now this is
disabled by default.

Real-Time Streaming User Guide Changes 265

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#feb01-24-rt

Amazon IVS

Real-Time Streaming User Guide

Broadcast SDK: Android
1.13.4,i0S 1.13.4, Web 1.7.0

IVS Glossary

Stage Health: New CloudWatc

h Metrics

Updated version number

and artifact links for the new
release, in the real-time-
streaming broadcast SDK
guides: Android, iOS, and
Web. On the Amazon IVS
documentation landing page,
updated the broadcast SDK
Reference links to point to
the new version. Also see the

Amazon IVS Release Notes for

this release.

Extended the glossary,
covering IVS real-time, low-
latency, and chat terms.

Renamed the PacketLos

s (Stage) metric to be
DownloadPacketLoss (Stage)
and released additional
CloudWatch metrics for IVS
real-time streaming:

+ DownloadPacketLoss
(Stage,Participant)

» DroppedFrames (Stage,Pa
rticipant)

» SubscribeBitrate (Stage,Pa
rticipant,MediaType)

See Monitoring IVS Real-Time
Streaming.

January 3, 2024

December 20, 2023

December 7, 2023

Real-Time Streaming User Guide Changes

266

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#jan03-24-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/stage-health.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/stage-health.html

Amazon IVS Real-Time Streaming User Guide

IAM managed policies Added two managed policies, December 5, 2023
IVSReadOnlyAccess and
IVSFullAccess. See:

« The new section on
Managed Policies for

Amazon IVS on the Security
page.

» Changes to Step 3: Set Up
IAM Permissions in Getting
Started with IVS Low-Laten

cy Streaming.
Broadcast SDK: Android Updated version number December 4, 2023
1.13.2,i0S 1.13.2 and artifact links for the new

release, in the real-time-
streaming broadcast SDK
guides: Android and iOS.

On the Amazon IVS
documentation landing page,
updated the broadcast SDK
Reference links to point to the
new version.

Also see the Amazon IVS
Release Notes for this release.

Real-Time Streaming User Guide Changes 267

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/getting-started-iam-permissions.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/getting-started-iam-permissions.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#dec04-23-rt

Amazon IVS

Real-Time Streaming User Guide

Broadcast SDK: Android
1.13.1

Service Quotas

Updated version number
and artifact links for the new
release, in the real-time-
streaming broadcast SDK
guide: Android.

On the Amazon IVS
documentation landing page,
updated the broadcast SDK
Reference links to point to the
new version.

Also see the Amazon IVS
Release Notes for this release.

Changed "Participant publish
resolution" from 1080p to
720p.

November 21, 2023

November 18, 2023

Real-Time Streaming User Guide Changes

268

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#nov21-23-rt

Amazon IVS

Real-Time Streaming User Guide

Broadcast SDK: Android
1.13.0, i0S 1.13.0

Composite Recording

Updated version number
and artifact links for the new
release, in the real-time-
streaming broadcast SDK
guides: Android and iOS.

On the Amazon IVS
documentation landing page,
updated the broadcast SDK
Reference links to point to the
new version.

Also see the Amazon IVS
Release Notes for this release.

We also made various updates
to Streaming Optimizations.
Among other things, the
"Adaptive Streaming: Layered
Encoding with Simulcast"
feature now requires explicit
opt-in and is supported only
in recent versions of the SDK.

Made the following changes:

« Added a Composite
Recording page for this new
feature.

« Updated Getting Started
with IVS Real-Time
Streaming with S3
endpoints in the policy in
"Set Up IAM Permissions."

« Updated Service Quotas
with call-rate quotas for the
new endpoints.

November 17, 2023

November 16, 2023

Real-Time Streaming User Guide Changes

269

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#nov17-23-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/real-time-streaming-optimization.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-composite-recording.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-composite-recording.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/service-quotas.html

Amazon IVS

Real-Time Streaming User Guide

Server-side composition
(SSQ)

IVS server-side composition
enables clients to offload the
composition and broadcast
ing of an IVS stage to an IVS-
managed service. SSC and
RTMP broadcast to a channel
are invoked through IVS
control-plane endpoints in
the stage’s home region. See:

Getting Started — We added
SSC endpoints to the policy
in "Set Up IAM Permissio
ns."

Using Amazon EventBridge
with IVS — We added new
metrics.

Server-Side Compositi

on - This new document
includes an overview and
setup instructions.

Service Quotas — We added
new call-rate limits and
other quotas.

Also see:

« Changes listed below in IVS

Real-Time Streaming API

Reference Changes.

» Changes listed in Document

History (Low-Latency
Streaming).

November 16, 2023

Real-Time Streaming User Guide Changes

270

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/eventbridge.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/eventbridge.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/server-side-composition.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/server-side-composition.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/service-quotas.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html

Amazon IVS

Real-Time Streaming User Guide

IVS broadcast SDK

IVS broadcast SDK

Getting Started with IVS Real-

Time Streaming

Monitoring Real-Time

Streaming

Broadcast SDK: Web Guide

In the Broadcast SDK
overview, we updated
Platform Requirements >
Native Platforms to clarify
which SDK versions are
supported and we added
"Mobile Browsers (iOS and
Android)."

In the Broadcast Web Guide,
we added "Mobile Web
Limitations."

We added a new page on
Third-Party Camera Filters.

We updated procedures in Set
Up IAM Permissions.

In CloudWatch Metrics: IVS
Real-Time Streaming, we
added sample values for
dimensions.

We made several changes to
Monitor Remote Participant
Media Mute State.

November 9, 2023

November 9, 2023

October 20, 2023

October 17, 2023

October 17, 2023

Real-Time Streaming User Guide Changes

271

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-3p-camera-filters.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-iam-permissions.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-iam-permissions.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/stage-health.html#stage-health-cloudwatch-metrics
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/stage-health.html#stage-health-cloudwatch-metrics
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/web-publish-subscribe.html#web-publish-subscribe-mute-state
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/web-publish-subscribe.html#web-publish-subscribe-mute-state

Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Web 1.6.0 Updated version number October 16, 2023
and artifact links for the new

release, in the real-time-
streaming broadcast SDK
guide: Web.

The Amazon IVS documenta

tion landing page points
to the current version of

Broadcast SDK References.

Also see the Amazon IVS
Release Notes for this release.

In the Web Guide, in "Retrieve
a MediaStream from a
Device," we also deleted the
two max lines; best practice is
to specify only ideal.

In Real-Time Streaming
Optimizations, we added
a new section, Optimizin
g Audio Bitrate and Stereo

Support.

Stage Health: New CloudWatc Released CloudWatch metrics October 12, 2023
h Metrics for IVS real-time streaming.

See Monitoring IVS Real-Time
Streaming.

Real-Time Streaming User Guide Changes 272

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#oct16-23-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/real-time-streaming-optimization.html#real-time-streaming-optimize-audio-stream
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/real-time-streaming-optimization.html#real-time-streaming-optimize-audio-stream
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/real-time-streaming-optimization.html#real-time-streaming-optimize-audio-stream
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/stage-health.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/stage-health.html

Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Android Updated version number October 12, 2023
1.12.1 and artifact links for the new

release, in the real-time-

streaming broadcast SDK

guide: Android. Also added a

new section, Using Bluetooth

Microphones.

The Amazon IVS documenta

tion landing page points

to the current version of
Broadcast SDK References.

Also see the Amazon IVS
Release Notes for this release.

Broadcast SDK: Web 1.5.2 Updated version number September 14, 2023
and artifact links for the new
release, in the real-time-
streaming broadcast SDK
guide: Web.

The Amazon IVS documenta

tion landing page points

to the current version of
Broadcast SDK References.

Also see the Amazon IVS
Release Notes for this release.

Getting Started with IVS Real- In Android > Install the September 12, 2023
Time Streaming Broadcast SDK, added data

binding.
Broadcast SDK error handling ~ Added "Error Handling" September 12, 2023

sections to the Broadcast SDK
Guides: Web, Android, and
i0s.

Real-Time Streaming User Guide Changes 273

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/android-publish-subscribe.html#android-publish-subscribe-bluetooth-microphones
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/android-publish-subscribe.html#android-publish-subscribe-bluetooth-microphones
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#oct12-23-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#sep14-23
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-broadcast-sdk-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-broadcast-sdk-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html

Amazon IVS

Real-Time Streaming User Guide

Getting Started with IVS Real-

In Distribute Participant

Time Streaming

Getting Started with IVS Real-

Tokens, added an Important
note about not building
functionality based on current
token format.

In Set Up IAM Permissions,

Time Streaming

Broadcast SDK: Web 1.5.1,
Android 1.12.0, and iOS
1.12.0

updated the set of permissio
ns.

Updated version number
and artifact links for the new
release, in the real-time-
streaming broadcast SDK
guides: Web, Android, and
iOS.

On the Amazon IVS
documentation landing page,
updated the broadcast SDK
Reference links to point to the
new version.

Also see the Amazon IVS
Release Notes for this release.

September 1, 2023

August 31, 2023

August 23, 2023

Real-Time Streaming User Guide Changes

274

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-distribute-tokens.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-distribute-tokens.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-iam-permissions.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#aug23-23_2

Amazon IVS Real-Time Streaming User Guide

Real-time streaming launch Major documentation changes August 7, 2023

accompany this release.

We renamed the previous
documentation to be IVS
Low-Latency Streaming and
published new IVS Real-
Time Streaming documenta
tion. The IVS documenta
tion landing page now has

separate sections for real-
time streaming and low-laten
cy streaming. Each section has
its own User Guide and API
Reference.

For other documentation
changes, see Document
History (Low-Latency

Streaming).

Broadcast SDK: Web 1.5.0, Updated version number August 7, 2023
Android 1.11.0, and iOS and artifact links for the new
1.11.0 release, in the broadcast SDK

guides: Web, Android, and

iOS.

On the Amazon IVS
documentation landing page,
updated the broadcast SDK
Reference links to point to the
new version.

Also see the Amazon IVS
Release Notes for this release.

Real-Time Streaming User Guide Changes 275

https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#aug07-23-broadcast
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#aug07-23-broadcast

Amazon IVS

Real-Time Streaming User Guide

IVS Real-Time Streaming API Reference Changes

API Change

Remove svs from ARN
patterns

Server-side composition
updates

Composite recording

Server-side composition

Stage Health: New
Participant Data

Description

ARN patterns which specified [is]vs were updated
to specify ivs. This affects all three Tag endpoints
and the ChannelDestinationConfigura

tion$channelArn field.

We added one object: PipConfiguration.

We modified two objects (LayoutConfiguration,
GridConfiguration). This affects the GetComposition
response and the StartComposition request and
response.

We added 4 StorageConfiguration endpoints and 7
objects (DestinationDetail, RecordingConfiguration,
S3DestinationConfiguration, S3Detail, S3Storage
Configuration, StorageConfiguration, StorageCo
nfigurationSummary).

We modified 3 objects (Composition, Destinati

on, DestinationConfiguration). This affects the
GetComposition response and the StartComposition
request and response.

We added 8 Composition and EncoderConfigurati
on endpoints and 11 objects (ChannelDestinatio
nConfiguration, Composition, CompositionSummary
, Destination, DestinationConfiguration, Destinati
onSummary, EncoderConfiguration, EncoderCo
nfigurationSummary, GridConfiguration, LayoutCon
figuration, and Video).

Added six fields to the Participant object:
browserName , browserVersion , ispName,

Date

April 25,
2024

March 13,
2024

November
16, 2023

November
16, 2023

October
12,2023

IVS Real-Time Streaming API Reference Changes

276

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_Participant.html

Amazon IVS Real-Time Streaming User Guide

API Change Description Date
osName, osVersion , and sdkVersion . This
affects the GetParticipant response.

Participant Token Added an Important note about not building September
functionality based on current token format. 1, 2023

IVS Real-Time Streaming Major documentation changes accompany this August 7,

launch release. We renamed the previous documentation 2023

to be IVS Low-Latency Streaming and published
new IVS Real-Time Streaming documentation. The
IVS documentation landing page now has separate

sections for real-time streaming and low-latency
streaming. Each section has its own User Guide and
API Reference.

IVS Real-Time Streaming API Reference is part of IVS

real-time streaming documentation. Previously it
was titled IVS Stage API Reference. Its prior history
is described in Document History (Low-Latency

Streaming).

IVS Real-Time Streaming API Reference Changes

277

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_ParticipantToken.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/index.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html

Amazon IVS Real-Time Streaming User Guide

Release Notes (Real-Time Streaming)

May 6, 2024

IVS Broadcast SDK: Web 1.11.0 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.11.0 Reference documentation: https://aws.githu
b.io/amazon-ivs-web-broadcast/docs/sdk-ref
erence

» Fixed an edge case where the SDK did not
attempt to recover on a stage DISCONNEC
T.

« Updated the error message for a join()
timeout error. Instead of "InitialConnectTim
edOut after 10 seconds," the SDK now
returns "Operation timed out."

April 30, 2024

IVS Broadcast SDK: Web 1.10.1 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.10.1 Reference documentation: https://aws.githu
b.io/amazon-ivs-web-broadcast/docs/sdk-ref

erence

« Minor bug fixes.

May 6, 2024 278

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference

Amazon IVS

Real-Time Streaming User Guide

April 30, 2024

Amazon IVS Broadcast SDK: Android 1.15.2, iOS 1.15.2 (Real-Time

Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.15.2 Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.15.2/andr

oid

Minor bug fixes. Upgrade to this version
only if you have a specific reason to do so;
otherwise, use the highest version that is
released.

iOS Broadcast SDK 1.15.2 Download for real-time streaming: https://
broadcast.live-video.net/1.15.2/AmazonlVSBr

oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.15.2/ios

Broadcast SDK Size: Android

Architecture Compressed Size
arm64-v8a 5.244 MB
armeabi-v7a 4.543 MB
x86_64 5.437 MB

Minor bug fixes. Upgrade to this version
only if you have a specific reason to do so;
otherwise, use the highest version that is
released.

Uncompressed Size
13.198 MB
9.192 MB

14.051 MB

April 30, 2024

279

https://aws.github.io/amazon-ivs-broadcast-docs/1.15.2/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.2/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.2/android
https://broadcast.live-video.net/1.15.2/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.15.2/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.15.2/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.2/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.2/ios

Amazon IVS Real-Time Streaming User Guide

Architecture Compressed Size Uncompressed Size

x86 5.631 MB 14.461 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

armé64 3.359 MB 7.836 MB

April 22, 2024

Amazon IVS Broadcast SDK: Android 1.17.0, iOS 1.17.0 (Real-Time
Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.17.0 Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.17.0/andr
oid

« Fixed a rare crash that can occur while
publishing.

iOS Broadcast SDK 1.17.0 Download for real-time streaming: https://
broadcast.live-video.net/1.17.0/AmazonlIVSBr
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.17.0/ios

e The AmazonIVSBroadcast framework
now includes a privacy manifest, as required
by Apple.

April 22, 2024 280

https://aws.github.io/amazon-ivs-broadcast-docs/1.17.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.17.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.17.0/android
https://broadcast.live-video.net/1.17.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.17.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.17.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.17.0/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.17.0/ios

Amazon IVS

Real-Time Streaming User Guide

Broadcast SDK Size: Android

Architecture Compressed Size
arm64-v8a 5.273 MB
armeabi-v7a 4.571 MB
x86_64 5.468 MB
x86 5.662 MB

Broadcast SDK Size: iOS

Architecture Compressed Size

armo64 3.388 MB

March 21, 2024

Uncompressed Size
13.275 MB

9.251 MB

14.137 MB

14.549 MB

Uncompressed Size

7.916 MB

Amazon IVS Broadcast SDK: Android 1.16.0, iOS 1.16.0, Web 1.10.0

(Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.10.0 Reference documentation: https://aws.githu
b.io/amazon-ivs-web-broadcast/docs/sdk-ref

erence

« Fixed an intermittent error when cleaning

up connections after unsubscribing or
leaving a stage.

Android Broadcast SDK 1.16.0 Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.16.0/andr

oid

March 21, 2024

281

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-broadcast-docs/1.16.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.16.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.16.0/android

Amazon IVS

Real-Time Streaming User Guide

Platform Downloads and Changes

» Fixed a previews freeze on the Exynos

variant of Samsung devices with Android 14.

» Added a function for querying camera zoom

capabilities and setting the zoom factor.

iOS Broadcast SDK 1.16.0 Download for real-time streaming: https://
broadcast.live-video.net/1.16.0/AmazonlVSBr

oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.16.0/ios

« Minor bug fixes.

Broadcast SDK Size: Android

Architecture Compressed Size
arm64-v8a 5.253 MB
armeabi-v7a 4.551 MB
x86_64 5.447 MB
x86 5.640 MB

Broadcast SDK Size: iOS

Architecture Compressed Size

armé64 3.361 MB

Uncompressed Size
13.21 MB

9.204 MB

14.070 MB

14.480 MB

Uncompressed Size

7.836 MB

Amazon IVS Broadcast SDK: Android 1.16.0, iOS 1.16.0, Web 1.10.0 (Real-Time Streaming)

282

https://broadcast.live-video.net/1.16.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.16.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.16.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.16.0/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.16.0/ios

Amazon IVS Real-Time Streaming User Guide

March 13, 2024

Amazon IVS Broadcast SDK: Android 1.15.1, iOS 1.15.1 (Real-Time
Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.15.1 Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.15.1/andr
oid

 Fixed a rare crash when subscribing to a
remote participant.

iOS Broadcast SDK 1.15.1 Download for real-time streaming: https://
broadcast.live-video.net/1.15.1/AmazonlIVSBr
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu

b.io/amazon-ivs-broadcast-docs/1.15.1/ios

 Fixed a rare crash when subscribing to a
remote participant.

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size
arm64-v8a 5.243 MB 13.194 MB
armeabi-v7a 4.541 MB 9.188 MB

x86_64 5.628 MB 14.455 MB

x86 5.434 MB 14.046 MB

March 13, 2024 283

https://aws.github.io/amazon-ivs-broadcast-docs/1.15.1/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.1/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.1/android
https://broadcast.live-video.net/1.15.1/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.15.1/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.15.1/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.1/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.1/ios

Amazon IVS Real-Time Streaming User Guide

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

armé64 3.358 MB 7.820 MB

March 13, 2024

Server-Side Composition APl Updates

We introduced new properties to the GridConfiguration and a new picture-in-picture layout,
enhancing the customization options for compositions. For specific documentation changes, see
the Document History (see the table of APl Reference changes).

Important: Ensure your application does not depend on the specific features of the current layout,
such as size and position of tiles. Visual improvements to layouts can be introduced at any time.

March 8, 2024

Server-Side Composition Layout Updates

Today we enabled the changes to the default grid layout that are described in the February 7, 2024

entry.

February 22, 2024

Amazon IVS Broadcast SDK: Android 1.15.0, iOS 1.15.0, Web 1.9.0
(Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.9.0 Reference documentation: https://aws.githu

b.io/amazon-ivs-web-broadcast/docs/sdk-ref

erence

« Improved internal error handling.

March 13, 2024 284

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference

Amazon IVS

Real-Time Streaming User Guide

Platform

Android Broadcast SDK 1.15.0

iOS Broadcast SDK 1.15.0

Broadcast SDK Size: Android

Downloads and Changes

Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.15.0/andr

oid
» Minor bug fixes.

Download for real-time streaming: https://
broadcast.live-video.net/1.15.0/AmazonlVSBr
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.15.0/ios

» Added an AVPictureInPicture
Controller extension to allow creating
a new instance with an IVSImageP
reviewView

» Added a new APl on IVSImageDevice
to create an AVSampleBufferDisp
layLayer to which the device renders.

» Fixed a low bitrate issue on devices running
iOS 17 and later.

« Minor bug fixes.

Architecture Compressed Size Uncompressed Size
arm64-v8a 5.243 MB 13.194 MB
armeabi-v7a 4.541 MB 9.188 MB

x86_64 5.628 MB 14.455 MB

x86 5.434 MB 14.046 MB

Amazon IVS Broadcast SDK: Android 1.15.0, iOS 1.15.0, Web 1.9.0 (Real-Time Streaming) 285

https://aws.github.io/amazon-ivs-broadcast-docs/1.15.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.0/android
https://broadcast.live-video.net/1.15.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.15.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.15.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.0/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.0/ios

Amazon IVS

Real-Time Streaming User Guide

Broadcast SDK Size: iOS

Architecture

armo64

February 7, 2024

Compressed Size Uncompressed Size

3.358 MB 7.820 MB

Server-Side Composition Layout Updates

This release introduces visual improvements to the default grid layout. These changes will optimize

how video is displayed and reduce blank space. These changes will be enabled on March 7, 2024.

Important: Ensure your application does not depend on the specific features of the current layout,

such as size and position of tiles. Visual improvements to layouts can be introduced at any time.

Description of the Change

Automatically selects the
optimal placement of
participants to maximize
video size.

Enhances space utilization by

reducing gaps and minimizing

black bars.

Adds a new “camera off"”
indicator for clear visibility
of participants not sharing
video.

oud New

1 2
2

1
1 2 3

3
_ 5

February 7, 2024

286

Amazon IVS

Real-Time Streaming User Guide

Description of the Change

Improves space utilization
and proportions for portrait
use cases.

Enhances space utilizati

on in portrait use cases by
minimizing spacing between
participants and reducing
letterboxing or pillarboxing.

oud

New

‘ W N - ‘ N -

Server-Side Composition Layout Updates

287

Amazon IVS Real-Time Streaming User Guide

February 6, 2024

OBS and WHIP Support

IVS can be used with WHIP-compatible encoders like OBS to publish to IVS real-time streaming.
WHIP (WebRTC-HTTP Ingestion Protocol) is an IETF draft developed to standardize WebRTC
ingestion. See the new page on OBS and WHIP Support.

February 1, 2024

Amazon IVS Broadcast SDK: Android 1.14.1, i0OS 1.14.1, Web 1.8.0
(Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.8.0 Reference documentation: https://aws.githu

b.io/amazon-ivs-web-broadcast/docs/sdk-ref

erence

« Layered encoding with simulcast is now
disabled by default.

» Fixed an issue where a Stage instance
would not cleanly disconnect when a Stage
was deleted, or when a participant was
disconnected from the server. The SDK
now emits a STAGE_CONNECTION_S
TATE_CHANGED event with a state of
DISCONNECTED (instead of ERRORED and
then CONNECTING).

« Fixed issue where publishing would fail
when updating the strategy with empty
audio or video tracks.

Android Broadcast SDK 1.14.1 Reference documentation: https://aws.githu

b.io/amazon-ivs-broadcast-docs/1.14.1/andr

oid

February 6, 2024

288

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-broadcast-docs/1.14.1/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.14.1/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.14.1/android

Amazon IVS

Real-Time Streaming User Guide

Platform

iOS Broadcast SDK 1.14.1

Downloads and Changes

» Layered encoding with simulcast is now
disabled by default.

e Updated 1ibWebRTC from M108 to M119.

 Fixed several crashes to improve overall
stability.

» Added support for stereo publishing. This
can be enabled through the StageAudi
oConfiguration object.

 Fixed a bug causing a black feed from
participants after joining a session.

» Updated internal 1ibWebRTC reference
s to avoid symbol conflicts when other
1ibWebRTC versions are included in the
same host application.

Download for real-time streaming: https://
broadcast.live-video.net/1.14.1/AmazonlIVSBr
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu

b.io/amazon-ivs-broadcast-docs/1.14.1/ios

« Layered encoding with simulcast is now
disabled by default.

« Updated 1ibWebRTC from M108 to M119.

 Fixed several crashes to improve overall
stability.

» Added support for stereo publishing.
This can be enabled through IVSLocalS
tageStreamAudioConfiguration

» Fixed a crash when enabling audio-only
mode for other participants.

o Improved TTV and reduced binary size.

Amazon IVS Broadcast SDK: Android 1.14.1, iOS 1.14.1, Web 1.8.0 (Real-Time Streaming)

289

https://broadcast.live-video.net/1.14.1/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.14.1/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.14.1/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.14.1/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.14.1/ios

Amazon IVS Real-Time Streaming User Guide

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size
arm64-v8a 5.223 MB 13.118 MB
armeabi-v7a 4.524 MB 9.134 MB

x86_64 5.418 MB 13.955 MB

x86 5.61 MB 14.369 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

armé64 3.350 MB 7.790 MB

January 3, 2024

Amazon IVS Broadcast SDK: Android 1.13.4, iOS 1.13.4, Web 1.7.0
(Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.7.0 Reference documentation: https://aws.githu
b.io/amazon-ivs-web-broadcast/docs/sdk-ref

erence

» Improved time-to-video for subscribers
joining stages.

 Removed the minAudioBitrateKbps
property (it was unused).

« Improved network recovery during internet
outages or changes.

January 3, 2024 290

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference

Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

Android Broadcast SDK 1.13.4 Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.13.4/andr
oid

« StageAudioConfiguration now supports
setting whether echo cancellation should be
enabled.

iOS Broadcast SDK 1.13.4 Download for real-time streaming: https://
broadcast.live-video.net/1.13.4/AmazonlVSBr
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.13.4/ios

« OniOS, we improved the audio engine for
both recording and playback with a focus on
stability and recoverability. This enhances
support for route changes while in use,
improves battery recovery for edge cases,
and reduces the amount of main thread
blocking.

» Fixed an issue where the microphone might
stay active even after it was detached from
a stage, leaving the iOS privacy indicator
on. (The SDK was not processing incoming
audio at the time.)

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size
arm64-v8a 5.187 MB 13.025 MB
armeabi-v7a 4.491 MB 9.056 MB

Amazon IVS Broadcast SDK: Android 1.13.4, iOS 1.13.4, Web 1.7.0 (Real-Time Streaming) 291

https://aws.github.io/amazon-ivs-broadcast-docs/1.13.4/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.4/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.4/android
https://broadcast.live-video.net/1.13.4/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.13.4/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.13.4/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.4/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.4/ios

Amazon IVS Real-Time Streaming User Guide
Architecture Compressed Size Uncompressed Size
x86_64 5.359 MB 13.829 MB
x86 5.553 MB 14.214 MB

Broadcast SDK Size: iOS

Architecture Compressed Size

arme64 3.45 MB

December 7, 2023

New CloudWatch Metrics

We renamed the PacketLoss (Stage) metric to be DownloadPacketLoss (Stage). We also released

additional CloudWatch metrics for IVS real-time streaming:

« DownloadPacketLoss (Stage,Participant)
» DroppedFrames (Stage,Participant)

» SubscribeBitrate (Stage,Participant,MediaType)

For details, see Monitoring IVS Real-Time Streaming.

Uncompressed Size

7.84 MB

December 7, 2023

292

Amazon IVS Real-Time Streaming User Guide

December 4, 2023

Amazon IVS Broadcast SDK: Android 1.13.2 and iOS 1.13.2 (Real-Time
Streaming)

Platform Downloads and Changes

All mobile (Android and iOS) » Noise-suppression configuration is available
for developers to enable/disable for
publishing.

Android Broadcast SDK 1.13.2 Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.13.2/andr

oid

« Improved the time it takes to load the
video (TTV) when joining the first stage in a
session.

iOS Broadcast SDK 1.13.2 Download for real-time streaming: https://
broadcast.live-video.net/1.13.2/AmazonlVSBr
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.13.2/ios

« No changes in the real-time SDK.

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size
arm64-v8a 5.177 MB 13.01 MB
armeabi-v7a 4.485 MB 9.045 MB

x86_64 5.352 MB 13.808 MB

December 4, 2023 293

https://aws.github.io/amazon-ivs-broadcast-docs/1.13.2/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.2/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.2/android
https://broadcast.live-video.net/1.13.2/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.13.2/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.13.2/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.2/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.2/ios

Amazon IVS Real-Time Streaming User Guide

Architecture Compressed Size Uncompressed Size

x86 5.547 MB 14.192 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

armé64 3.45 MB 7.82 MB

November 21, 2023

Amazon IVS Broadcast SDK: Android 1.13.1 (Real-Time Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.13.1 Reference documentation: https://aws.githu

b.io/amazon-ivs-broadcast-docs/1.13.1/andr

oid

 Fixed an issue that caused a crash when
quickly leaving, releasing, and rejoining the

same stage.
Broadcast SDK Size: Android
Architecture Compressed Size Uncompressed Size
arm64-v8a 5.177 MB 13.102 MB
armeabi-v7a 4.485 MB 9.046 MB
x86_64 5.353 MB 13.809 MB
x86 5.547 MB 14.192 MB

November 21, 2023 294

https://aws.github.io/amazon-ivs-broadcast-docs/1.13.1/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.1/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.1/android

Amazon IVS Real-Time Streaming User Guide

November 17, 2023

Amazon IVS Broadcast SDK: Android 1.13.0 and iOS 1.13.0 (Real-Time
Streaming)

Platform Downloads and Changes

All mobile (Android and iOS)

Updated Streaming Optimizations. Among

other things, the "Adaptive Streaming

: Layered Encoding with Simulcast"
feature now requires explicit opt-in and is
supported only in recent versions of the
SDK.

« Improved the stability of stages by reducing
occurrences of rare crashes.

« Improved the time it takes to load the video
(TTV) when joining a stage.

» Improved the experience with Bluetooth
devices.

« Optimized SDK CPU and memory usage,
and reduced the library size.

» Added the StageAudioManager class,
which can be used to set audio capture and
playback parameters, including presets for
voice communication, media playback and
more. For details, see the new page, IVS
Broadcast SDK: Mobile Audio Modes.

» Added a new requestQualityStats
function to display structured quality events
from WebRTC stats.

« Added a new function to update the audio
bitrate. It is set on LocalStageStream
objects just like the video configuration, but
through a new audio configuration object.

November 17, 2023 295

Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

Android Broadcast SDK 1.13.0 Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.13.0/andr
oid

» All methods on the StageRenderer
interface are now optional.

o Added support to Surfaceview -based
preview for better performance. The
existing getPreview methodsin Session
and StageStream continue to return a
subclass of TextureView , but this may
change in a future SDK version.

« If your application depends on
TextureView specifically, you can
continue with no changes. You also can
switch from getPreview to getPrevie
wTextureView to prepare for the
eventual change of what the default
getPreview returns.

« If your application does not require
TextureView specifically, we
recommend switching to getPrevie
wSurfaceView for lower CPU and
memory usage.

o The SDK now implements a new type of
preview called ImagePreviewSurfac
eTarget which works with the applicati
on-provided Android Surface object. It is not
a subclass of Android View, which provides
better flexibility.

 Fixed the case where onFrame callback for
remote participant is called at the wrong
time with the wrong size.

Amazon IVS Broadcast SDK: Android 1.13.0 and iOS 1.13.0 (Real-Time Streaming) 296

https://aws.github.io/amazon-ivs-broadcast-docs/1.13.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.0/android

Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

e SurfaceSource # getInputSurface
is now annotated with @Nullable . Your
code should check it before using it.

o Added UserIdand attributes to
ParticipantInfo .The UserIdand
attributes properties are embedded
in the token and applications can retrieve
them via ParticipantInfo whenevera
participant joins.

« Camera capture and preview rendering
now defaults to 720 x 1280 or publish
resolution (whichever is greater) at 15 fps.
You can adjust the resolution and/or the fps
using StageVideoConfiguration #
setCameraCaptureQuality

 IllegalArgumentException thrown
when setting configuration properties now
includes the provided value in the exception
message.

Amazon IVS Broadcast SDK: Android 1.13.0 and iOS 1.13.0 (Real-Time Streaming) 297

Amazon IVS

Real-Time Streaming User Guide

Platform

iOS Broadcast SDK 1.13.0

Downloads and Changes

Download for real-time streaming: https://
broadcast.live-video.net/1.13.0/Amazonl|VSBr

oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.13.0/ios

Fixed the issue where the SDK does not
change video configuration if the video
configuration is updated before publishing.

Incorporated the Google fix for a LibVPX
security vulnerability (CVE-2023-5217).
(Note that the Android SDK did not require
any changes for this issue.)

Applications using other libraries that
include 1ibwWebRTC will no longer have
conflicts with the IVS Broadcast SDK.

All methods on the IVSStageRenderer
protocol are now marked @optional .

Microphones and cameras returned by our
SDKs now have a guaranteed sorting order,
as documented in the SDKs themselves.

Multiple cameras can now have a value

of true for their isDefault property,
one for each position as determined by the
operating system.

Added IVSStageAudioManager , which
allows precise control over the underlyin
g AVAudioSession to enable a wider
variety of use cases for Stages functionality.

Added UserId to ParticipantInfo .

Amazon IVS Broadcast SDK: Android 1.13.0 and iOS 1.13.0 (Real-Time Streaming) 298

https://broadcast.live-video.net/1.13.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.13.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.13.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.0/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.0/ios

Amazon IVS

Real-Time Streaming User Guide

Broadcast SDK Size: Android

Architecture Compressed Size
arm64-v8a 5.17 MB
armeabi-v7a 4.48 MB
x86_64 5.35 MB
x86 5.54 MB

Broadcast SDK Size: iOS

Architecture Compressed Size

armé64 3.45 MB

November 16, 2023

Composite Recording

Uncompressed Size
13.00 MB

9.04 MB

13.80 MB

14.18 MB

Uncompressed Size

7.84 MB

This new feature enables recording the composited view of an IVS Stage to an Amazon S3 bucket.

For more information, see:

« Composite Recording — This is a new page.

» Getting Started with IVS Real-Time Streaming — We added S3 endpoints to the policy in "Set Up

IAM Permissions."

» Service Quotas — We added call-rate quotas for the new endpoints.

 |VS Real-Time Streaming API Reference — We added 4 StorageConfiguration endpoints and
7 objects (DestinationDetail, RecordingConfiguration, S3DestinationConfiguration, S3Detail,
S3StorageConfiguration, StorageConfiguration, StorageConfigurationSummary). We also

modified 3 objects (Composition, Destination, DestinationConfiguration); this affects the

GetComposition response and the StartComposition request and response.

November 16, 2023

299

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/index.html

Amazon IVS Real-Time Streaming User Guide

November 16, 2023

Server-Side Composition

IVS server-side composition enables clients to offload the composition and broadcasting of an IVS
stage to an IVS-managed service. Server-side composition and RTMP broadcast to a channel are
invoked through IVS control plane endpoints in the stage’'s home region. For more information,
see:

» Getting Started with IVS Real-Time Streaming — We added SSC endpoints to the policy in "Set Up
IAM Permissions."

« Using Amazon EventBridge with IVS Real-Time Streaming — We added new metrics.

« Server-Side Composition — This new document includes an overview and setup instructions.

» Service Quotas (Real-Time Streaming) — We added new call-rate limits and other quotas.

» Real-Time Streaming API Reference — We added 8 Composition and EncoderConfiguration

endpoints and 11 objects (ChannelDestinationConfiguration, Composition,
CompositionSummary, Destination, DestinationConfiguration, DestinationSummary,
EncoderConfiguration, EncoderConfigurationSummary, GridConfiguration, LayoutConfiguration,
and Video).

In the IVS Low-Latency Streaming User Guide, see:

« Enabling Multiple Hosts on an IVS Stream — We added "Broadcasting a Stage: Client-Side versus

Server-Side Composition" and updated "4. Broadcast the Stage."

October 16, 2023
Amazon IVS Broadcast SDK: Web 1.6.0 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.6.0 Reference documentation: https://aws.githu
b.io/amazon-ivs-web-broadcast/docs/sdk-ref

erence

o Improved Time-To-Video (TTV).

November 16, 2023 300

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/index.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/multiple-hosts.html
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference

Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

« Added maxAudioBitrate configuration,
supporting up to 128kbps of mono or stereo
audio channels.

October 12, 2023

New CloudWatch Metrics and Participant Data

We released CloudWatch metrics for IVS real-time streaming. For details, see Monitoring IVS Real-
Time Streaming.

We also added six fields to the Participant API object: browserName, browserVersion, ispName,
osName, osVersion, and sdkVersion. This affects the GetParticipant response. See the IVS Real-
Time Streaming API Reference.

October 12, 2023

Amazon IVS Broadcast SDK: Android 1.12.1 (Real-Time Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.12.1 Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.12.1/andr
oid

» Fixed a bug where calling Broadcast
Session.setlListener resulted in an

error.
Broadcast SDK Size: Android
Architecture Compressed Size Uncompressed Size
arm64-v8a 5.853 MB 16.375 MB

October 12, 2023 301

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/index.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/index.html
https://aws.github.io/amazon-ivs-broadcast-docs/1.12.1/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.12.1/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.12.1/android

Amazon IVS Real-Time Streaming User Guide

Architecture Compressed Size Uncompressed Size
armeabi-v7a 4.895 MB 10.803 MB
x86_64 6.149 MB 17.318 MB
x86 6.328 MB 17.186 MB

September 14, 2023
Amazon IVS Broadcast SDK: Web 1.5.2 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.5.2 Reference documentation: https://aws.githu
b.io/amazon-ivs-web-broadcast/docs/sdk-ref

erence

 Fixed a bug that prevented republish
ing with refreshStrategy when the
published state enters an ERRORED state.

August 23, 2023

Amazon IVS Broadcast SDK: Web 1.5.1, Android 1.12.0, and iOS 1.12.0
(Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.5.1 Reference documentation: https://aws.githu
b.io/amazon-ivs-web-broadcast/docs/sdk-ref

erence

» Fixed a bug with internal Maybe types on
TypeScript 5.

September 14, 2023 302

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference

Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

+ Added better detection for Simulcast
support.

» Fixed two race conditions with refreshSt
rategy when trying to publish.

« Fixed a race condition with refreshSt
rategy when trying to update participa
nts to subscribe to.

All mobile (Android and iOS) Fixed a rare issue where publishing action is
never completed.

« Improved the stability of stages by reducing
occurrences of rare crashes.

« Improved the stability of stages by resolving
race-condition issues caused by rapid join /
leave.

» Added a new setOnFrameCallback
method on ImageDevice . This allows
observation as frames pass through the
device itself, giving insight into the aspect
ratio of the latest images. This method also
can be used to detect when the first frame is
rendered for a remote participant in a stage.

Android Broadcast SDK 1.12.0 Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.12.0/andr
oid

« Android 9 is now supported.

o Improved CPU usage and performance.

Amazon IVS Broadcast SDK: Web 1.5.1, Android 1.12.0, and iOS 1.12.0 (Real-Time Streaming) 303

https://aws.github.io/amazon-ivs-broadcast-docs/1.12.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.12.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.12.0/android

Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

iOS Broadcast SDK 1.12.0 Download for real-time streaming: https://
broadcast.live-video.net/1.12.0/AmazonlVSBr
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.12.0/ios

» Corrected the signature of IVSDevice
Discovery.createAudioSource
WithName to return an IVSCustom
AudioSource instead of IVSCustom

ImageSource
Broadcast SDK Size: Android
Architecture Compressed Size Uncompressed Size
arm64-v8a 5.853 MB 16.375 MB
armeabi-v7a 4.895 MB 10.803 MB
x86_64 6.149 MB 17.318 MB
x86 6.328 MB 17.186 MB
Broadcast SDK Size: iOS
Architecture Compressed Size Uncompressed Size
armé4 5.06 MB 10.92 MB

Amazon IVS Broadcast SDK: Web 1.5.1, Android 1.12.0, and iOS 1.12.0 (Real-Time Streaming) 304

https://broadcast.live-video.net/1.12.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.12.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.12.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.12.0/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.12.0/ios

Amazon IVS

Real-Time Streaming User Guide

August 7, 2023

Amazon IVS Broadcast SDK: Web 1.5.0, Android 1.11.0, and iOS 1.11.0

Platform

Web Broadcast SDK 1.5.0

All mobile (Android and iOS)

Android Broadcast SDK 1.11.0

iOS Broadcast SDK 1.11.0

Downloads and Changes

Reference documentation: https://aws.githu
b.io/amazon-ivs-web-broadcast/docs/sdk-ref
erence

e Added Simulcast — When enabled, this
feature allows the publisher to send high-
and low-quality layers of video. Subscribe
rs automatically select their optimal quality
based on their network conditions. See
Optimizing Media.

Added Simulcast - When enabled, this feature
allows the publisher to send high- and low-
quality layers of video. Subscribers automatic
ally select their optimal quality based on
their network conditions. See “Enable/Disable
Layered Encoding with Simulcast” in the
Android and iOS Broadcast SDK Guides.

Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.11.0/andr
oid

« Fixed an issue where creating many stages
eventually results in a crash. (The exact
number of stages depends on the device.)

Download for real-time streaming: https://
broadcast.live-video.net/1.11.0/Amazonl|VSBr
oadcast-Stages.xcframework.zip

August 7, 2023

305

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/web-publish-subscribe.html#web-publish-subscribe-optimizing-media
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/android-publish-subscribe.html#android-publish-subscribe-simulcast
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/ios-publish-subscribe.html#ios-publish-subscribe-simulcast
https://aws.github.io/amazon-ivs-broadcast-docs/1.11.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.11.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.11.0/android
https://broadcast.live-video.net/1.11.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.11.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.11.0/AmazonIVSBroadcast-Stages.xcframework.zip

Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

Reference documentation: https://aws.githu
b.io/amazon-ivs-broadcast-docs/1.11.0/ios

» Corrected the signature of IVSDevice
Discovery.createAudioSource
WithName to return IVSCustom
AudioSource instead of IVSCustom

ImageSource
Broadcast SDK Size: Android
Architecture Compressed Size Uncompressed Size
arm64-v8a 5.811 MB 16.186 MB
armeabi-v7a 4.857 MB 10.646 MB
x86_64 6.108 MB 17.122 MB
x86 6.289 MB 16.994 MB
Broadcast SDK Size: iOS
Architecture Compressed Size Uncompressed Size
armé4 5.030 MB 10.810 MB

August 7, 2023

Real-Time Streaming

Amazon Interactive Video Service (IVS) Real-Time Streaming enables you to deliver live streams
with a latency that can be under 300 milliseconds from host to viewer.

August 7, 2023 306

https://aws.github.io/amazon-ivs-broadcast-docs/1.11.0/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.11.0/ios

Amazon IVS Real-Time Streaming User Guide

Major documentation changes accompany this release. The IVS documentation landing page now
has separate sections for real-time streaming and low-latency streaming. Each section has its own
User Guide and API Reference. For documentation details, see the Document History (for both real-
time and low-latency documentation changes). For real-time streaming, start with the IVS Real-

Time Streaming User Guide and IVS Real-Time Streaming API Reference.

Real-Time Streaming 307

https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/what-is.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/what-is.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/index.html

	Amazon IVS
	Table of Contents
	What is Amazon IVS Real-Time Streaming?
	Global Solution, Regional Control
	Streaming and Viewing are Global
	Control is Regional

	Getting Started with IVS Real-Time Streaming
	Introduction
	Prerequisites
	Other References
	Real-Time Streaming Terminology
	Overview of Steps

	Set Up IAM Permissions
	Use an Existing Policy for IVS Permissions
	Optional: Create a Custom Policy for Amazon IVS Permissions
	Create a New User and Add Permissions
	IAM User Access Keys
	Procedure

	Add Permissions to an Existing User

	Create a Stage
	Console Instructions
	CLI Instructions

	Distribute Participant Tokens
	Console Instructions
	CLI Instructions
	AWS SDK Instructions

	Integrate the IVS Broadcast SDK
	Web
	Set Up Files
	Using a Script Tag
	Using npm

	Android
	Create the Android Project
	Install the Broadcast SDK

	iOS
	Create the iOS Project
	Recommended: Install the Broadcast SDK (CocoaPods)
	Alternate Approach: Install the Framework Manually
	Configure Permissions

	Publish and Subscribe to Video
	Web
	Create HTML Boilerplate
	Accept Token Input and Add Join/Leave Buttons
	Add Media Container Elements
	Create app.js
	Create Application Variables
	Create joinStage 1: Define the Function and Validate Input
	Create joinStage 2: Get Media to Publish
	Create joinStage 3: Define the Stage Strategy and Create the Stage
	Create joinStage 4: Handle Stage Events and Render Media
	Create joinStage 5: Join the Stage
	Create leaveStage
	Initialize Input-Event Handlers
	Run the Application and Provide a Token
	What’s Next?

	Android
	Create Views
	Permissions
	App State
	RecyclerView Adapter

	Stage State
	Implementing the Stage SDK
	Stage.Strategy
	StageRenderer

	Implementing a Custom RecyclerView LayoutManager
	Hooking Up UI Actions
	Rendering the Participants

	iOS
	Create Views
	Permissions and Idle Timer
	App State
	Implement the Stage SDK
	IVSStageStrategy
	IVSStageRenderer

	Implementing a Custom UICollectionViewLayout
	Hooking Up UI Actions
	Rendering the Participants

	Monitoring Amazon IVS Real-Time Streaming
	What is a Stage Session?
	View Stage Sessions and Participants
	Console Instructions

	View Events for a Participant
	Console Instructions
	CLI Instructions

	Access CloudWatch Metrics
	CloudWatch Console Instructions
	CLI Instructions

	CloudWatch Metrics: IVS Real-Time Streaming

	IVS Broadcast SDK (Real-Time Streaming)
	Platform Requirements
	Native Platforms
	Desktop Browsers
	Mobile Browsers (iOS and Android)
	Known Limitations

	Webviews
	Required Device Access
	Support
	Versioning

	IVS Broadcast SDK: Web Guide (Real-Time Streaming)
	Getting Started
	Imports
	Using a Script Tag
	Using npm
	Server-Side Rendering Support

	Request Permissions
	List Available Devices
	Retrieve a MediaStream from a Device

	Publishing and Subscribing
	Concepts
	Stage
	Strategy
	Subscribing to Participants
	Publishing
	Choosing Streams to Publish
	Updating the Strategy

	Events

	Publish a Media Stream
	Publish a Screenshare
	Display and Remove Participants
	Mute and Unmute Media Streams
	Monitor Remote Participant Media Mute State
	Get WebRTC Statistics
	Optimizing Media
	Get Participant Attributes
	Handling Network Issues
	Broadcast the Stage to an IVS Channel

	Known Issues and Workarounds
	Safari Limitations
	Firefox Limitations
	Mobile Web Limitations

	Error Handling
	Stage Instantiation Errors
	Malformed Participant Token

	Stage Join Errors
	Stage was Deleted
	Expired Participant Token
	Invalid or Revoked Participant Token
	Disconnected Token
	Network Errors for Initial Join
	Network Errors when Already Joined

	Publish and Subscribe Errors
	Publish Error: Publish States
	Subscribe Errors

	IVS Broadcast SDK: Android Guide (Real-Time Streaming)
	Getting Started
	Install the Library
	Request Permissions

	Publishing and Subscribing
	Concepts
	Stage
	Strategy
	Subscribing to Participants
	Publishing
	Choosing Streams to Publish
	Updating the Strategy

	Renderer

	Publish a Media Stream
	Display and Remove Participants
	Mute and Unmute Media Streams
	Monitor Remote Participant Media Mute State
	Get WebRTC Statistics
	Get Participant Attributes
	Continue Session in the Background
	Enable/Disable Layered Encoding with Simulcast
	Video-Configuration Limitations
	Handling Network Issues
	Using Bluetooth Microphones

	Known Issues and Workarounds
	Error Handling
	Fatal vs. Non-Fatal Errors
	Join Errors
	Malformed Token
	Expired Token
	Invalid or Revoked Token
	Network Errors for Initial Join
	Network Errors when Already Joined

	Publish/Subscribe Errors
	Initial
	Already Established, Then Fail

	IVS Broadcast SDK: iOS Guide (Real-Time Streaming)
	Getting Started
	Install the Library
	Recommended: Integrate the Broadcast SDK (CocoaPods)
	Alternate Approach: Install the Framework Manually

	Request Permissions
	Disable the Application Idle Timer

	Publishing and Subscribing
	Concepts
	Stage
	Strategy
	Subscribing to Participants
	Publishing
	Choosing Streams to Publish
	Updating the Strategy

	Renderer

	Publish a Media Stream
	Display and Remove Participants
	Mute and Unmute Media Streams
	Monitor Remote Participant Media Mute State
	Create a Stage Configuration
	Get WebRTC Statistics
	Get Participant Attributes
	Continue Session in the Background
	Enable/Disable Layered Encoding with Simulcast
	Broadcast the Stage to an IVS Channel

	How iOS Chooses Camera Resolution and Frame Rate
	Camera Preview
	Broadcasting a Stage
	Arbitrary Frame Rates, Resolutions, and Aspect Ratios
	What about Android?

	Known Issues and Workarounds
	Error Handling
	Fatal vs. Non-Fatal Errors
	Join Errors
	Malformed Token
	Expired Token
	Invalid or Revoked Token
	Network Errors for Initial Join
	Network Errors when Already Joined

	Publish/Subscribe Errors
	Initial
	Already Established, Then Fail

	IVS Broadcast SDK: Custom Image Sources (Real-Time Streaming)
	Android
	iOS

	IVS Broadcast SDK: Third-Party Camera Filters (Real-Time Streaming)
	Integrating Third-Party Camera Filters
	BytePlus
	Android
	Install and Set Up the BytePlus Effects SDK
	Set Up the Custom Image Source
	Java

	Convert Output to a Bitmap and Feed to Custom Image Input Source
	Java

	DeepAR
	Android
	iOS

	Snap
	Web
	Install the Camera Kit SDK and Webpack
	Create index.html
	JavaScript

	Add Setup Elements
	JavaScript
	JavaScript
	JavaScript

	Display and Set Up Participants
	JavaScript

	Display Connected Cameras and Microphones
	JavaScript

	Create a Camera Kit Session
	Java

	Fetch and Apply a Lens
	JavaScript

	Render the Output from a Camera Kit Session to a Canvas
	JavaScript

	Provide Camera Kit with a Media Source for Rendering and Publish a LocalStageStream
	JavaScript
	JavaScript

	Create a Webpack Config File
	JavaScript

	Android
	Java
	Java
	Fetch and Apply Lenses
	Java
	Java

	Background Replacement
	Web
	Install MediaPipe and Webpack
	JavaScript
	JavaScript

	Create index.html
	JavaScript

	Add Media Elements
	JavaScript

	Add a Script Tag
	Create app.js
	JavaScript
	JavaScript

	Load a Custom Background Image
	JavaScript
	JavaScript

	Create an Instance of ImageSegmenter
	JavaScript

	Render the Video Feed to a Canvas
	JavaScript

	Create Background Replacement Logic
	JavaScript
	JavaScript

	Create a Webpack Config File
	JavaScript

	Bundle Your JavaScript files

	Android
	Install CameraX Libraries and Google ML Kit
	Java
	Java

	Initialize Boilerplate Variables
	Java
	Java

	Create a Custom Image Source
	Java

	Manage Camera Frames
	Java
	Java

	Pass Camera Frames to Google ML Kit
	Java

	Overlay the Camera Frame Foreground onto Your Custom Background
	Java
	Java

	Feed the New Image to a Custom Image Source
	Java
	Java

	IVS Broadcast SDK: Mobile Audio Modes (Real-Time Streaming)
	Introduction
	Audio Mode Presets
	Video Chat
	Subscribe Only
	Studio

	Advanced Use Cases
	iOS Echo Cancellation
	iOS Custom Audio Sources
	Publishing with Bluetooth on Android

	Integrating with Other SDKs
	Match Audio Mode Values
	Agora
	iOS
	Android

	Using Amazon EventBridge with IVS Real-Time Streaming
	Creating Amazon EventBridge Rules for Amazon IVS
	Examples: Composition State Change
	Examples: Stage Update

	Server-Side Composition (Real-Time Streaming)
	Benefits
	IVS API
	Layouts
	Grid Layout
	Picture-in-Picture (PiP) Layout

	Getting Started
	Prerequisites
	CLI Instructions
	Create the EncoderConfiguration Resource
	Start a Composition

	Enable Screen Share
	Create the EncoderConfiguration Resource
	Start the Composition
	Stop the Composition

	Composition Lifecycle

	Composite Recording (Real-Time Streaming)
	
	Prerequisites
	Composite Recording Example: StartComposition with an S3 Bucket Destination
	Request
	Response

	Recording Contents
	Bucket Policy for StorageConfiguration
	JSON Metadata Files
	Example: recording-started.json
	Example: recording-ended.json
	Example: recording-failed.json

	Playback of Recorded Content from Private Buckets
	Setting Up Playback using CloudFront with CORS Enabled
	Step 1: Create an S3 Bucket
	Step 2: Create a CloudFront Distribution
	Step 3: Set Up the S3 Bucket Policy
	Step 4: Play Back Recordings

	Example: S3 Bucket Policy with CloudFront and IVS Access

	Troubleshooting
	Known Issue

	OBS and WHIP Support (Real-Time Streaming)
	OBS Guide

	Service Quotas (Real-Time Streaming)
	Service Quota Increases
	API Call Rate Quotas
	

	Other Quotas
	

	Real-Time Streaming Optimizations
	Introduction
	Adaptive Streaming: Layered Encoding with Simulcast
	Default Layers, Qualities, and Framerates
	Configuring Layered Encoding with Simulcast

	Streaming Configurations
	Changing Video Stream Bitrate
	Changing Video Stream Framerate
	Optimizing Audio Bitrate and Stereo Support

	Suggested Optimizations

	Resources and Support (Real-Time Streaming)
	Resources
	Demos
	Support

	Glossary
	Document History (Real-Time Streaming)
	Real-Time Streaming User Guide Changes
	IVS Real-Time Streaming API Reference Changes

	Release Notes (Real-Time Streaming)
	May 6, 2024
	IVS Broadcast SDK: Web 1.11.0 (Real-Time Streaming)

	April 30, 2024
	IVS Broadcast SDK: Web 1.10.1 (Real-Time Streaming)

	April 30, 2024
	Amazon IVS Broadcast SDK: Android 1.15.2, iOS 1.15.2 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS

	April 22, 2024
	Amazon IVS Broadcast SDK: Android 1.17.0, iOS 1.17.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS

	March 21, 2024
	Amazon IVS Broadcast SDK: Android 1.16.0, iOS 1.16.0, Web 1.10.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS

	March 13, 2024
	Amazon IVS Broadcast SDK: Android 1.15.1, iOS 1.15.1 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS

	March 13, 2024
	Server-Side Composition API Updates

	March 8, 2024
	Server-Side Composition Layout Updates

	February 22, 2024
	Amazon IVS Broadcast SDK: Android 1.15.0, iOS 1.15.0, Web 1.9.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS

	February 7, 2024
	Server-Side Composition Layout Updates

	February 6, 2024
	OBS and WHIP Support

	February 1, 2024
	Amazon IVS Broadcast SDK: Android 1.14.1, iOS 1.14.1, Web 1.8.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS

	January 3, 2024
	Amazon IVS Broadcast SDK: Android 1.13.4, iOS 1.13.4, Web 1.7.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS

	December 7, 2023
	New CloudWatch Metrics

	December 4, 2023
	Amazon IVS Broadcast SDK: Android 1.13.2 and iOS 1.13.2 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS

	November 21, 2023
	Amazon IVS Broadcast SDK: Android 1.13.1 (Real-Time Streaming)
	Broadcast SDK Size: Android

	November 17, 2023
	Amazon IVS Broadcast SDK: Android 1.13.0 and iOS 1.13.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS

	November 16, 2023
	Composite Recording

	November 16, 2023
	Server-Side Composition

	October 16, 2023
	Amazon IVS Broadcast SDK: Web 1.6.0 (Real-Time Streaming)

	October 12, 2023
	New CloudWatch Metrics and Participant Data

	October 12, 2023
	Amazon IVS Broadcast SDK: Android 1.12.1 (Real-Time Streaming)
	Broadcast SDK Size: Android

	September 14, 2023
	Amazon IVS Broadcast SDK: Web 1.5.2 (Real-Time Streaming)

	August 23, 2023
	Amazon IVS Broadcast SDK: Web 1.5.1, Android 1.12.0, and iOS 1.12.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS

	August 7, 2023
	Amazon IVS Broadcast SDK: Web 1.5.0, Android 1.11.0, and iOS 1.11.0
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS

	August 7, 2023
	Real-Time Streaming

